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Abstract

In this thesis, we consider F-theory compactifications. In the first half of the thesis, we

study the roles of the loci of f(z) = 0 and g(z) = 0 that are the coefficient functions in

the Weierstrass form, in F-theory. They are thought of as complex codimension-one objects

and correspond to the two kinds of critical points of a dessin d’enfant of Grothendieck. The

P 1 base space is divided into several cell regions bounded by some domain walls extending

from these planes and D-branes, on which the imaginary part of the J-function vanishes. This

amounts to drawing a dessin with a canonical triangulation. We show that the dessin provides

a new way of keeping track of mutual non-localness among 7-branes without employing

unphysical branch cuts or their base point. With the dessin we can see that weak- and

strong-coupling regions coexist and are located across an S-wall from each other. We also

present a simple method for computing a monodromy matrix for an arbitrary path by tracing

the walls it goes through.

In the last half, we investigate higher-codimension singularities of Calabi-Yau manifolds.

In F-theory, matters arise from codimension-two singularities of Calabi-Yau manifolds. For

Calabi-Yau three-folds, the matters are the hypermultiplets that localize at the codimension-

two singularities in six dimensions. The hypermultiplets are typically full-hypers, but in spe-

cial cases become half-hypers. When the enhancements of the symmetries are SU(6) → E6,

SO(12) → E7 and E7 → E8, we obtain the half-hypers. We perform the resolutions of such

singular Calabi-Yau three-folds. We obtain the intersection diagrams for such singularities.

We also discuss the relation between the incomplete and complete resolutions.
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Chapter 1

Introduction

In 1996, Vafa proposed F-theory [1]1, which is a non-perturbative description of compactified

type IIB superstring theory with 7-branes. Type IIB superstring theory has self S-duality [3].

This is a strong-weak duality since roughly speaking, S-duality maps a coupling constant gs

to 1/gs. S-duality in type IIB superstring theory plays a central role in the construction of

F-theory.

S-duality appears in various places in physics. Historically, S-duality is first found in

N = 4 SU(N) supersymmetric Yang-Mills (SYM) theory by Montonen and Olive [4]. N=2

SYM theory also exhibits S-duality. The duality also plays an important role in Seiberg-

Witten theory [5], which is characterized by Seiberg-Witten curve. The relation between

Seiberg-Witten theory and F-theory is discussed in [6–8].

Type IIB superstring theory includes two scalars, the Ramond-Ramond (RR) 0-form

C0 and the dilaton ϕ [9]. Combining C0 and ϕ, we can define the axio-dilaton field τ =

C0 + ie−ϕ. The S-duality transformation converts τ to (aτ + b)/(cτ + d), where a, b, c, d ∈ Z
and ad− bc = 1, which is an SL(2,Z) transformation. The transformation is identical to the

modular transformation of the torus. In this sense, we can give a geometric interpretation

to type IIB superstring theory, that is, we identify the axio-dilaton τ with the complex

structure moduli of the torus. This is F-theory. The configuration space of the axio-dilaton

filed corresponds to the moduli space of the torus, which is similar to Seiberg-Witten theory.

1We can also find good reviews [2].
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CHAPTER 1. INTRODUCTION 7

In Seiberg-Witten theory, the τ that is identified to the moduli of the torus is a function of

the Coulomb branch parameter.

It is sometimes said that F-theory is the twelve-dimensional theory. However, the extra

two dimensions are virtual dimensions. This is in contrast to M-theory. In the case of M-

theory, the extra one dimension is the eleventh real space. Indeed, the extra two dimensions in

F-theory do not have the Kähler moduli. F-theory is a geometric interpretation that provides

a definition of some compactifications of type IIB superstring theory.

The concrete description of F-theory is established as follows: We consider a torus with

the complex moduli that depends on the coordinates of a compact subspace B of the ten-

dimensional space-time. Combining B with the torus, the total manifold Y is described by an

elliptic fibration. We call it the compactification of F-theory on Y . When B is n-dimensional

complex manifold, we denote it as Bn, Y becomes (n + 1) complex manifold, we denote as

Yn+1. In the language of type IIB superstring theory, it is a compactification on the manifold

Bn with the non-trivial axio-dilaton background field that depends on the coordinates of Bn,

namely,

F/Yn+1 ↔ IIB/Bn.

Supersymmetry requires that the first Chern class of Yn+1 needs to vanish, which means that

Yn+1 is a Calabi-Yau manifold [10, 11]. For example, the base space Bn is P 1 when Yn+1 is

a K3 manifold.

Existence of the axio-dilaton background field, which is a complex scalar field, implies the

existence of 7-branes. Due to S-duality, 7-branes have not only RR charges but also Neveu-

Schwarz-Neveu-Schwarz (NSNS) charges. The axio-dilaton field has non-trivial monodromies

around singular points, which correspond to the positions of 7-branes. In the context of F-

theory, the positions are points where the fibered torus shrinks. When we place all 7-branes

in different points, the torus becomes singular, but the total space Yn+1 is not singular.

At a stack of 7-branes, not only the fibered torus but also total space becomes singular.

The gauge symmetry enhances on the world-volume of the 7-brane stack. Information of

the gauge symmetry is translated to the fiber type of the codimension-one singularities in

F-theory. Such singularities are classified by Kodaira. In particular, the fiber types of IV ∗,
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III∗ and II∗ are remarkable since the corresponding gauge symmetries are E6, E7 and E8,

respectively. If we have only D-branes (and orientifold planes), such exceptional groups do not

appear. Indeed, we cannot construct the exceptional groups in type IIB compactifications.

It is one of the advantages of F-theory that we can realize the exceptional groups.

In this thesis, we will review the relation between enhancement of the gauge symmetries

and singularities of geometry. The fiber type of a codimension-one singularity can be labeled

by the SL(2,Z) monodromy around the fiber. It was show that all types of Kodaira fibers

can be represented by some product of monodromies of a basic set of 7-branes: A = [1, 0]-

brane = D-brane, B = [1, 1]-brane and C = [1,−1]-brane, where a [p, q]-brane is a 7-brane

with p RR charges and q NSNS charges. The gauge symmetry on a coalescence of 7-branes

has been clearly explained by using string junctions [12–28]. String junctions are also useful

to describe chiral matter [29], non-simply laced Lie algebras [30], i.e., Bn, Cn, F4 and G2

types of simple Lie algebra, the Mordell-Weil lattice of a rational elliptic surface [31] and

deformations of algebraic varieties [32,33].

An elliptic fibration K3 manifold or a rational elliptic surface is defined by the Weierstrass

equation, y2 = x3 + fx+ g, where f and g depend on the coordinates of the base space P 1.

The positions of 7-branes are given by the discriminat locus, ∆ = 0, where ∆ = 4f3 + 27g2.

One of the purposes of this thesis is that one investigates the role of the locus of f = 0

and g = 0 [34, 35]. We will identify the loci with the two kinds of critical points of a dessin

d’enfant of Grothendieck. The base space P 1 is divided into several cell regions bounded by

some domain walls extending from these planes and D-branes. This corresponds to drawing

a dessin with a canonical triangulation. We also study how the locus of f = 0 and g = 0 and

the cell regions depend on monodromies.

Perhaps the field of string phenomenology is the best place where F-theory fulfills its

potential [36–52]. One readily realizes the SU(5) grand unified theory (GUT), which can

naturally explain the apparently complicated assignment of hypercharges to quarks and lep-

tons, in F-theory. Moreover, F-theory also has good compatibility to the GUT with the

exceptional gauge groups since the exceptional gauge groups, e.g. E6, naturally emerge in

F-theory as we saw above.
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In order to understand the relation between geometries and realized theories, we need

to go beyond the Kodaira classification that associates with codimension-one singularities.

Let us consider a F-theory compactification on an elliptic fibration singular Calabi-Yau four-

fold. This compacification provide us a four-dimensional theory. The Calabi-Yau four-fold

has not only codimension-one singularities but also codimension-two and three singularities.

As we saw, information of a gauge symmetry is translated to the types of the codimension-

one singularities. The data of the matter representations in four dimensions are encoded to

the codimension-two singularities [53–60]. In addition, the codimension-three singularities

correspond to the Yukawa coupling in the four-dimensional theory [37,38,61,62].

Unfortunately, there is no a complete classification of the codimension-two and three

singularities. This is a big problem in mathematics and physics. However, we can analyze

some specific cases. In this thesis, we will review the case of a Calabi-Yau three-fold that is

the elliptic fibration over the Hirzebruch surface. In this case, we can classify the singularities

by Tate’s algorithm [55].

In addition, we can investigate resolutions of Calabi-Yau four-folds via the Coulomb

branch of three-dimensional N = 2 SYM theories [63, 64] [65–68]. This is motivated by the

duality between F-theory and M-theory. The Coulomb branch is separated into some phases,

and each phase corresponds to the different resolutions. As an example, we will analyze SU(5)

gauge group, and we will obtain a network of the resolutions of the Calabi-Yau four-fold.

For Calabi-Yau three-folds, the matters are the hypermultiplets in six-dimensions, which

localize at the condimension-two singularities. The hypermultiplets are typically full-hypers,

but in special cases half-hypers [53–55,57,60]. When the enhancements of the symmetries are

SU(6) → E6, SO(12) → E7 and E7 → E8, we obtain the half-hypers under some conditions.

We will consider the resolutions of such singular Calabi-Yau three-folds. The first case was

performed by Morrison and Taylor [57]. In the first case, we do not need small resolutions

when we have the half-hypers. This is called the incomplete resolution. We focus on the

second and third cases. We will find the same structure from the explicit resolutions of

SO(12) → E7 and E7 → E8 [69].

The organization of this thesis is as follows: In Chapter 2, we review basics of F-theory.
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We start with type IIB superstring theory, and we introduce the idea of F-theory. We also

provide some mathematical facts. We see that a discriminant locus of a Weierstrass form

corresponds to a position of a 7-brane. In the last section of this chapter, we consider

the duality between F-theory and M-theory. In Chapter 3, we consider codimension-one

singularities. Singularity types are classified by Kodaira classification. We see that not only

SU and SO gauge symmetry but also E type gauge symmetry appear. In addition, we

introduce string junctions. The gauge enhancements can be interpreted as the possible string

junctions under some conditions. In Chapter 4, we focus on the locus of f = 0 and g = 0

in the Weierstrass form. This is one of the main part of this thesis. We point out that they

correspond to the two kinds of critical points of a dessin d’enfant of Grothendieck. We also

provide simple method for computing a monodromy matrix for an arbitrary path by tracing

the walls it goes through. In Chapter 5, we investigate higher-codimension singularities. We

see that matter fields emerge when we have codimension-two singularities. We also analyze

phases of resolutions of a Calabi-Yau four-fold by using three-dimensional supersymmetric

gauge theories. In Chapter 6, we perform the resolutions for some special cases. When the

gauge enhancements are SU(6) → E6, SO(12) → E7 and E7 → E8, the half-hypers emerge

under some conditions. We consider the case of SO(12) → E7 in this chapter. In Appendix

A, we show the explicit solutions to E6 string junctions. There are 72 solutions in the table.

In Appendix B, we perform the resolution for the case of E7 → E8. We consider the both

the incomplete resolution and the complete resolution.



Chapter 2

Basics of F-theory

F-theory describes a non-perturbative expression of compactifications of type IIB superstring

theory with 7-branes [1, 53, 54, 70–73]. Due to S-duality, there are not only D7-branes but

also general [p, q]-7-branes. We have twenty-four 7-branes if we require compactness of the

internal space. F-theory is established by identifying the complex axio-dilaton field in type

IIB superstring theory with the complex structure moduli of the torus. The compact space of

F-theory needs to be Calabi-Yau elliptic fibrations, which is represented by the Weierstrass

equation. We can obtain the complex structure moduli τ via the Jacobi J-function. The

positions of the 7-branes correspond to the discriminant locus of the Weierstrass equation.

2.1 Type IIB superstring theory and 7-branes

We start with ten-dimensionalN = (2, 0) supergravity theory which is the low energy effective

theory of type IIB superstring theory. The action in the string frame are given by

Sstring =
1

2κ210

∫
d10x e−2ϕ√−g

(
R+ 4gMN∂Mϕ∂Nϕ

)
− 1

4κ210

∫
e−2ϕH3 ∧ ∗H3

− 1

8κ210

∫
F1 ∧ ∗F1 −

1

8κ210

∫
F3 ∧ ∗F3 −

1

8κ210

∫
F5 ∧ ∗F5 −

1

8κ210

∫
F7 ∧ ∗F7

− 1

8κ210

∫
F9 ∧ ∗F9 −

1

4κ210

∫
C4 ∧H3 ∧ F3

+ (fermionic terms),

(2.1.1)

11



12 2.1 Type IIB superstring theory and 7-branes

where κ210 = 8πG10 is the ten-dimensional Newton constant, and M,N = 0, 1, 2, . . . , 9 are

the indices of the ten-dimensional space-time. In string theory, the constant is given by

1

2κ210
=

2π

ℓ8s
, (2.1.2)

where ℓs = 2π
√
α′ is the string length. In this thesis, we choose ℓ8s = 2π. The field strengths

in (2.1.1) are defined as

H3 = dB2, F1 = dC0, F3 = dC2 − C0dB2,

F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2, F9 = ∗F1, F7 = − ∗ F3,

(2.1.3)

where Cp (p = 0, 2, 4) is the RR p-form and B2 is the NSNS 2-form. ϕ is the dilaton field,

which provides the string coupling constant:

gs = eϕ. (2.1.4)

In addition, we must impose the duality relation at the level of the equation of motions:

F5 = ∗F5. (2.1.5)

The action in the string frame is convenient when we consider the theory of the string

world-sheet. On the other hand, we usually use the Einstein frame when we work on gravity

theories. The action in the Einstein frame is given by the transformation for the metric,

gMN → eϕ/2gMN . (2.1.6)

We introduce the combined field

τ = C0 + ie−ϕ, (2.1.7)

which is called the complex axio-dilaton field. By using equations (2.1.6) and (2.1.7), we

obtain the action in the Einstein frame

SEinstein =

∫
d10x

√
−g

(
R− 1

2
gMN ∂Mτ∂N τ̄

(Im τ)2

)
− 1

2

∫
(Im τ)2H3 ∧ ∗H3

− 1

4

∫
F3 ∧ ∗F3 −

1

4

∫
F5 ∧ ∗F5 −

1

4

∫
F7 ∧ ∗F7 −

1

2

∫
C4 ∧H3 ∧ F3

+ (fermionic terms).

(2.1.8)
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This action is invariant under SL(2,Z) transformations

τ → aτ + b

cτ + d
,

(
C2

B2

)
→ M

(
C2

B2

)
, C4 → C4

gMN → gMN M =

(
a b
c d

)
,

(2.1.9)

where ad− bd = 1 so that M ∈ SL(2,Z)1. In particular, when we choose

M =

(
0 −1
1 0

)
, (2.1.10)

then the τ transforms as

τ → −1

τ
. (2.1.11)

From the definition of the τ (2.1.7), the imaginary part of the τ gives the inverse of the

string coupling constant, 1/gs. Therefore, the SL(2,Z) transformation (2.1.10) maps a strong

coupling to a weak coupling, and vice versa. In this sense, S-duality is a strong-weak duality.

We construct a D7-brane solution. D7-branes couple to the RR 8-form. In other words,

D7-branes are the magnetic source of the RR 0-form C0, which is the magnetic dual of C8.

Since the D7-brane is the complex codimension-one object, we demand that all of the fields

depend on the coordinates x8 and x9, and we introduce the complex coordinate z = x8+ ix9.

The Bianchi identity of F9 in the existence of one D7-brane provide us∮
S1

∗F9 =

∮
S1

dC0 = 1, (2.1.12)

where we use that one D7-brane has one RR charge. The S1 is a contour around the D7-brane

in the (x8, x9)-plane.

In order to find the D7-brane solution, we set

B2 = C2 = C4 = 0. (2.1.13)

In addition, we also require that the vacuum expectation value (VEV) of all the fermions

vanish. Under these constraints, the action becomes

SEinstein =

∫
d10x

√
−g

(
R− 1

2
gij

∂iτ∂j τ̄

(Im τ)2

)
, (2.1.14)

1More precisely, the action is invariant under SL(2,R) transformation. Due to the non-perturbative effects,
the SL(2,R) symmetry breaks to SL(2,Z).
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where i, j = 8, 9. We set the ansatz for the metric

ds2 = ηµνdx
µdxν + eφ(z,z̄)dzdz̄, (2.1.15)

where µ, ν = 0, 1, . . . , 7 and ηµν = diag.(−1,+1, . . . ,+1). From the equation of motion of the

τ̄ , we obtain

∂∂̄τ =
2

τ − τ̄
∂τ ∂̄τ, (2.1.16)

where ∂ = ∂z and ∂̄ = ∂z̄. Besides, the Einstein equation yields the two equations:

∂τ∂τ̄ − ∂̄τ ∂̄τ̄ = 0, (2.1.17)

∂∂̄φ =
1

(τ − τ̄)2
(
∂τ ∂̄τ̄ + ∂̄τ∂τ̄

)
. (2.1.18)

The first equation (2.1.17) is given by the (89) component of the Einstein equation. The sec-

ond equation (2.1.18) is presented by (aa) component of the Einstein equation, a = 1, 2, . . . , 7.

As a solution to (2.1.16) and (2.1.17), we take a holomorphic function2, namely,

∂̄τ = 0. (2.1.19)

From the Bianchi identity (2.1.12), we can determine

τ(z) =
1

2πi
ln(z − z0) + (terms regular at z0), (2.1.20)

where z0 is the position of the D7-brane. Encircling z0, which means (z− z0) → e2πi(z− z0),

the τ(z) transform as

τ → τ + 1 (2.1.21)

since the τ(z) has the logarithmic term. The behavior under this transformation is called

monodromy. The origin of monodromy is the SL(2,Z) duality in type IIB superstring theory.

Indeed, the monodromy around D7-brane (2.1.21) is generated by

M =

(
1 1
0 1

)
, (2.1.22)

2The D7-brane is a half BPS solution. We can derive this holomorphic condition from the requirement of
supersymmetry [74].
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where the matrix M is defined in (2.1.9).

Next, we would like to find the solution of the multiple 7-branes. We choose that the

τ(z) is a holomorphic function again. Inserting the holomorphic function τ(z) into (2.1.18),

we obtain

∂∂̄φ =
∂τ ∂̄τ̄

(τ − τ̄)2
= ∂∂̄ ln τ2, (2.1.23)

where τ2 = Im τ . The general solution of this equation is given by

φ(z, z̄) = ln τ2(z, z̄) + F (z) + F̄ (z̄), (2.1.24)

identically,

eφ(z,z̄) = τ2(z, z̄)f(z)f̄(z̄), (2.1.25)

where F (z) = ln f(z) is an arbitrary holomorphic function. We require modular invariance

of φ(z, z̄). With τ2(z, z̄), we can construct a modular invariant combination

τ2(z, z̄) |η(τ)|4 , (2.1.26)

where η(τ) is Dedekind’s η-function that is defined as

η(τ) = q1/24
∞∏
n=1

(1− qn) (2.1.27)

with q = e2πiτ . In addition, we also require that eφ(z,z̄) is non-vanish at everywhere. Using

the one brane solution (2.1.20), we have q ∼ z − zi near the positions of 7-branes zi. The

combination (2.1.26) becomes

τ2 |η(τ)|4 ∼ τ2

∣∣∣(z − zi)
1/24

∣∣∣4 , (2.1.28)

near the z ∼ zi. Immediately, we see that the modular invariant combination (2.1.26) van-

ishes at the positions of 7-branes, z = zi. In order to avoid this, we need to multiply the

combination by ∣∣∣∣∣
N∏
i=1

(
1

z − zi

)1/24
∣∣∣∣∣
4

, (2.1.29)
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where N is the number of the 7-branes. Consequently, we find the multiple 7-branes solution

of φ(z, z̄):

eφ(z,z̄) = τ2(z, z̄) |η(τ(z))|4
∣∣∣∣∣
N∏
i=1

(
1

z − zi

)1/24
∣∣∣∣∣
4

. (2.1.30)

We consider the behavior of the metric at infinity. At |z| → ∞, we have

eφ(z,z̄) ∼ (zz̄)−N/12, (2.1.31)

since τ(z) → const., thus the metric of the z-plane is given by

ds2 ∼ (zz̄)−N/12dzdz̄ = dwdw̄ (2.1.32)

where w = z1−N/12. This expression imply that we have the deficit angle of 2πN/12 around

infinity. As a result, if we demand that the z-plane is compact, namely P 1, N needs to be

24.

2.2 Elliptic fibrations and Weierstrass forms

The complex axio-dilaton field τ is transformed as

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z), (2.2.1)

under the SL(2,Z) duality. This transformation is identical to the transformation of the

complex structure moduli of the torus. In order to establish F-theory, we identify the complex

axio-dilaton field with the complex structure moduli of the torus. The axio-dilaton field

depends on the coordinates of the compact space in type IIB superstring theory. In F-theory,

compact spaces are described by elliptic fibrations.

We describe an elliptic curve3 as a hypersurface in the weighted projective spaceWCP 2(2, 3, 1).

The weighted projective space is a generalization of projective space. We denote the homo-

geneous coordinates of WCP 2(2, 3, 1) as (X : Y : Z). The identification of the coordinates is

given by

(X,Y, Z) ∼ (λ2X,λ3Y, λZ), (2.2.2)

3An elliptic curve is defined as a torus with the origin.
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where λ ∈ C∗ = C− {0}. We define the Weierstrass form as

PW = Y 2 −X3 − fXZ4 − gZ6, (2.2.3)

where f and g are the parameters of torus. The elliptic curve is described as the zero-locus

of the Weierstrass form PW. In particular, when we choose the inhomogeneous coordinates

as

x =
X

Z2
, y =

Y

Z3
, (2.2.4)

then the Weierstrass equation is expressed as

y2 = x3 + fx+ g. (2.2.5)

We can compute the complex structure moduli of the torus from the Weierstrass equation

(or the Weierstrass form). The moduli τ is given by

τ =

∮
β ω∮
α ω

, ω =
dx

y
, (2.2.6)

where α and β represent the one-cycles of the elliptic curve. The ω is the holomorphic

one-form on the elliptic curve4.

Next, we consider the elliptic fibrations:

π : Eτ → Yn+1

↓
Bn

(2.2.7)

where Eτ is an elliptic curve and Bn is a complex n-dimensional base space. When type

IIB superstring theory is compactified on Bn, F-theory is compactified on Yn+1. We can

regard the elliptic fibration Yn+1 as the holomorphic line bundle L over Bn (with a choice of

sections). The first Chern class of Yn+1 is given by

c1(Yn+1) = c1(Bn)− c1(L). (2.2.8)

On the other hand, supersymmetry and the Einstein equation provide the relation [11]

c1(Bn) = c1(L). (2.2.9)

4In Seiberg-Witten theory, the ω is called Seiberg-Witten differential [5].
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As a result, we have c1(Yn+1) = 0, which means Yn+1 is a Calabi-Yau manifold.

We focus on the n = 1 case. Y2 is the two-dimensional Calabi-Yau manifold, namely, the

K3 manifold. The base space B1 becomes P 1. We denote the coordinates of P 1 as z. The

elliptic fibered K3 manifold is described by the Weierstrass equation,

y2 = x3 + f(z)x+ g(z), (2.2.10)

where f(z) and g(z) are the order eight and twelve polynomial of the z, respectively.

In order to obtain the τ from the Weierstrass equation (2.2.10), we introduce the Jacobi

J-function:

J(τ) =

(
ϑ2(τ)

8 + ϑ3(τ)
8 + ϑ4(τ)

8
)3

54ϑ2(τ)8ϑ3(τ)8ϑ4(τ)8
, (2.2.11)

where the ϑ constants are defined as

ϑ2(τ) = ϑ2(0|τ) = 2q1/8
∞∏

m=1

(1− qm) (1 + qm)2 ,

ϑ3(τ) = ϑ3(0|τ) =
∞∏

m=1

(1− qm)
(
1 + qm−1/2

)2
,

ϑ4(τ) = ϑ4(0|τ) =
∞∏

m=1

(1− qm)
(
1− qm−1/2

)2
,

(2.2.12)

with q = e2πiτ . The properties of the Jacobi J-function are as follows:

• The J-function is invariant under the modular transformations.

• The J-function is the one-to-one mapping of the fundamental domain into C, and of the

region Re τ < 0 in the fundamental domain into the upper half-plane H. The specific

values τ = e2πi/3, i, i∞ correspond to J = 0, 1,∞, respectively.

• In the limit q → 0, the asymptotic form of the J-function is

J(τ) →
(

1

12

)3

e2πτ2−2πiτ1 , (2.2.13)

where τ1 = Re τ and τ2 = Im τ .
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We provide the procedure that read off a modular transformation of τ from a value of the

J-function. For this purpose, we expand the second property. The J-function is one-to-one

mapping of the fundamental domain into C, while the function is one-to-many of the upper

half-plane H into C. Since the J-function is the modular invariant, a value of the J-function of

course goes back to the same value after the modular transformation. However, the trajectory

of the values of the J-function depends on the modular transformation. As an example, let

us consider T -transformation,

T : τ → τ + 1. (2.2.14)

For simplicity, we start from a point in the fundamental domain with Re τ < 0 . The point

is mapped onto a point in the upper half-plane of the space of the J-function. Under the

T -transformation (2.2.14), the value of τ crosses the line (i, i∞) and (e2πi/3, i∞) in order.

Correspondingly, the point in the space of the J-function crosses the line (1,∞) and (∞, 0)

in order. Similarly, under the S-transformation,

S : τ → −1

τ
, (2.2.15)

the point in the space of the J-function crosses the line (1,∞) and (0, 1) in order. This

method will be important in the later section.

2.3 Discriminant loci and [p, q]-branes

In terms of f(z) and g(z) in the Weierstrass equation, the J-function (2.2.11) is given by

J(τ(z)) =
4f(z)3

4f(z)3 + 27g(z)2
. (2.3.1)

Solving the equation for the τ , we obtain the τ(z) as the function of z. The τ(z) goes to i∞
at the position of the 7-branes. This point corresponds to J(τ) = ∞. Therefore, in terms of

the Weierstrass equation, the positions of the 7-branes are given by

∆(z) = 0, ∆(z) = 4f(z)3 + 27g(z)2, (2.3.2)

where the ∆(z) is called the discriminant. For the K3 manifold, f(z) and g(z) are the order

eight and twelve polynomials of z, respectively. Hence, the discriminant locus ∆(z) = 0 has
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the twenty-four solutions in general, which means that there exist the twenty-four 7-branes.

This is consistent with the previous section.

Note that the discriminant locus ∆(z) = 0 is also the positions where the elliptic fiber

becomes singular. The partial derivatives of Weierstrass form with respect to x and y vanish

at the points where the elliptic fiber is singular:

3x2 + f(z) = 0, (2.3.3)

y = 0. (2.3.4)

Inserting the two equations (2.3.3) and (2.3.4) to the Weierstrass equation (2.2.10), we have

2f(z)x+ 3g(z) = 0. (2.3.5)

We insert this equation to (2.3.3), so that we obtain

4f(z)3 + 27g(z)2 = 0, (2.3.6)

where we assume x ̸= 0 at the points of the singular torus. If x = 0 at the position of the

singular torus, we have f = 0. Together with the Weierstrass equation, (2.3.6) is also satisfied

when x = 0. As a result, we see the discriminant locus ∆(z) = 0 is also the positions where

the elliptic fiber becomes singular.

The 7-branes are classified by the monodromies around itself. As we saw in (2.1.21), the

D7-brane has the monodromy τ → τ + 1. If a 7-brane has the other monodromy, it is no

longer the D7-brane. In order to label the 7-branes, we consider (p, q)-strings, which have

the p NSNS charges and the q RR charges. We can obtain the (p, q)-string as the SL(2,Z)
transformation of the fundamental string (F1-string) or the D1-string. In other words, the

(p, q)-string is the bound state of the p F1-strings and the q D1-strings . We define [p, q]-

branes. We can attach the (p, q)-string to [p, q]-brane. In this notation, the D7-brane is

denoted as the [1, 0]-brane. The monodromy matrix of the [1, 0]-brane is given by

M[1,0] =

(
1 1
0 1

)
. (2.3.7)

Let us consider the relation between the general (p, q)-string and its monodromy matrix

M[p,q]. The gauge field on the theory of the world-volume of the 7-brane couples to the
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NSNS two-form B2 and the RR two-form C2 at the point where the (p, q)-string is attached.

Thereby we have a term ∫
(q, p)

(
C2

B2

)
∧ ∗F, (2.3.8)

where F is the two-form field strength and ∗ menas the eight-dimensional Hodge dual. We

require that the term is invariant under the monodromy transformation. Since the RR and

NSNS two-forms transform as (
C2

B2

)
→ M

(
C2

B2

)
(2.3.9)

under the SL(2,Z) duality, we demand

(q, p)M = (q, p). (2.3.10)

The solution to this equation is given by

M[p,q] =

(
1 + pq p2

−q2 1− pq

)
. (2.3.11)

Equivalently, we see that

M̃[p,q] =

(
0 1
1 0

)
MT

[p,q]

(
0 1
1 0

)
=

(
1− pq p2

−q2 1 + pq

)
(2.3.12)

satisfies

M̃[p,q]

(
p
q

)
=

(
p
q

)
. (2.3.13)

Therefore, if the 7-brane has monodromy M[p,q], the (p, q)-string can be attached.

Note that any [p, q]-branes can be transformed into the [1, 0]-brane by the SL(2,Z) trans-
formation

M[1,0] = g−1
[p,q]M[p,q]g[p,q], (2.3.14)

where g[p,q] is a SL(2,Z) element. In this sense, any single 7-brane can be thought of as single

D7-brane locally. However, two or more different types of 7-branes cannot be transformed
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into the [1, 0]-branes simultaneously. For instance, the [p1, q1]-brane can be transformed to

[1, 0]-brane by g[p1,q1], but the [p2, q2]-brane do not become the [1, 0]-brane in general:

g−1
[p1,q1]

M[p1,q1]g[p1,q1] = M[1,0], (2.3.15)

g−1
[p1,q1]

M[p2,q2]g[p1,q1] ̸= M[1,0]. (2.3.16)

Such non-local 7-branes cannot be brought on top of each other in a supersymmetric way in

general.

2.4 Relations to M-theory

M-theory is conjectured as a strong coupling limit of type IIA superstring theory [75]. This

is an eleven-dimensional theory and a low energy effective theory of M-theory is N = 1

eleven-dimensional supergravity. The action of the supergravity is given by

S =
1

2κ211

∫
d11x

(√
−gR− 1

2
G4 ∧ ∗G4 −

1

6
A3 ∧G4 ∧G4

)
+ (fermionic terms), (2.4.1)

where A3 is a three-form gauge field and G4 = dA3. The eleven-dimensional Planck length

is defined as

1

2κ211
=

2π

ℓ9p
. (2.4.2)

The eleven-dimensional supergravity is related to type IIA supergravity via S1 compactifi-

cation of the eleventh direction. We provide the relation between the parameters in eleven

dimensions and ten dimensions:

RM

ℓ9p
=

1

ℓ8sg
2
s

, (2.4.3)

where RM is the radius of S1.

There are two kind of objects in M-theory, namely, M2-branes and M5-branes. M2-branes

and M5-branes are coupled to the three-form gauge field A3 electrically and magnetically,

respectively. The solutions to M2-branes are given by

ds2M2 = fM2(r)
−2/3ηµνdx

µdxν + fM2(r)
1/3dxidxi, (2.4.4)

G4 = dx0dx1dx2df(r)−1, fM2(r) = 1 +
32π2ℓ6pNM2

r6
, r2 = xixi, (2.4.5)
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where µ, ν = 0, 1, 2 and i = 3, . . . , 10. NM2 is the number of M2-branes. The solution to

M5-branes are as follows:

ds2M5 = f
−1/3
M5 (r)ηµνdx

µdxν + f
2/3
M5 (r)dx

idxi, (2.4.6)

G4 =
ϵijklm
4!

∂if(r)dx
jdxkdxldxm, f(r) = 1 +

πℓ3pNM5

r3
, r2 = xixi, (2.4.7)

where µ, ν = 0, . . . , 5 and i, j, · · · = 6, . . . , 10. NM5 is the number of M5-branes.

We can find relations between M- and F-theory through T -duality between type IIA and

IIB superstring theory [76]. Let us consider a M-theory compactification on T 2 with

T 2 = SM × SA. (2.4.8)

We denote the radiuses of SM and SA as RM and RA, respectively. When RM → 0, the theory

goes to type IIA theory on SA. The components of the metric gµ,10 and g10,10 become the

RR 1-form C1 and the dilation ϕ in type IIA theory, respectively. Taking T -dual along SA,

we find type IIB theory on SB with the radius RB given by

RB =
ℓ2s
RA

, (2.4.9)

where ℓs is the string length. The limit RA → 0, namely, RB → ∞, corresponds to the

decompactified limit of type IIB theory. The component of the C1 along SA dualizes to the

RR 0-form C0 in type IIB side.

As a result, M-theory on T 2 with V = vol(T 2) is dual to type IIB superstring theory. The

duality is summarized in Table 2.1. The S-duality in type IIB is interpreted as the modular

transformation of T 2 in M-theory side.

M-theory on T 2 Type IIB on S1
B

complex structure moduli of T 2, τ axio-dilaton, τ = C0 + ie−ϕ

volume of T 2, V metric, ds2 = ηµνdx
µdxν + ℓ4s/V dy2 with y ≃ y + 1

Table 2.1: The duality between M-theory and type IIB theory

Next let us consider a fiberwise duality of M-theory. We compactify M-theory on Yn+1,

where Yn+1 is an elliptic fibration over Bn. Yn+1 is a Calabi-Yau manifold when we require
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supersymmetry. Using the fiberwise duality, M-thoery on Yn+1 is dual to type IIB theory

on Bn × S1
B. Now we can establish M/F-theory duality. Taking limit V → 0, the dual

IIB theory becomes the compactification on Bn, which is the F-theory compactification on

Yn+1. Furthermore, M2-branes wrapped on the torus (p, q) times correspond to (p, q)-strings,

which will be introduced in the next chapter, wrapped on S1
B in IIB theory. We summarize

M/F-theory duality as follows:

M-theory on Yn+1 with V → 0 F-theory on Yn+1

complex structure moduli of fibered T 2, τ

M2-brane wrapped on T 2 (p, q) times (p, q)-string

Table 2.2: The duality between M-theory and F-theory



Chapter 3

Enhancement of Gauge Symmetries
and String Junctions

In the previous chapter, we considered the compactification of type IIB superstring theory

with 7-branes. We identified the complex axio-dilaton field to the complex structure moduli

of the torus so that we construct F-theory. The positions where the 7-branes are placed

correspond to the discriminant locus.

In type II superstring theory, if we have N D-branes, U(1)N gauge symmetry emerges

on the world-volume of the D-branes [77]. When the N D-branes make a stack, the gauge

symmetry enhances to U(N). Moreover, we have also SO(2N) or Sp(2N) when we introduce

orientifold planes (O-planes). Now there are not only D7-branes but also general 7-branes.

Due to this, we expect to emerge other gauge symmetries. Indeed, we will see appearance of

E type symmetry.

3.1 The Kodaira classification

We expect that the types and configuration of the 7-branes have something to do with the

gauge symmetry. In the previous section, we pointed out that the J-function has the data of

the 7-branes. On the other hand, the J-function decides the K3 manifold in F-theory. Thus,

we expect that one can obtain information of the gauge symmetry form the geometry of the

K3 manifold.

25
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We consider stacks of 7-branes. As we saw above, the discriminant locus ∆(z) = 0 has a

solution at each position of single 7-brane. When the 7-branes make a stack, the discriminant

locus has a multiple root at a position of the stack. At such a point, not only the fibered

torus but also the total K3 manifold becomes singular. The partial derivatives of Weierstrass

form with respect to x, y and z become zero at the points where the elliptic fiber is singular:

3x2 + f(z) = 0, (3.1.1)

y = 0, (3.1.2)

f ′(z)x+ g′(z) = 0. (3.1.3)

The first two equations are the same as (2.3.3) and (2.3.4), respectively. In general, we

can choose the singular point to be z = 0. The solution to the three equations and the

Weierstrass equation (2.2.10) presents the singular point of the K3 manifold. We have the

two cases: x = y = 0 or x ̸= 0, y = 0.

Firstly, we consider the case of x = y = 0. Due to (3.1.1), we have f(0) = 0, that is,

ord(f) ≥ 1. In addition, (3.1.3) means g′(0) = 0, thus we obtain ord(g) ≥ 2. Consequently,

for the discriminant, we find ord(∆) ≥ 3.

Secondly, we consider the case of x ̸= 0, y = 0. Immediately, we see f(0) ̸= 0 from (3.1.1),

that is, ord(f) = 0. Inserting (3.1.1) and (3.1.2) to the Weierstrass equation, we have

2f(0)x+ 3g(0) = 0, (3.1.4)

so that we find g(0) ̸= 0, i.e., ord(g) = 0. In addition, by using (3.1.1), (3.1.3) and (3.1.4),

we obtain

∆′(0) = 12f2(0)f ′(0) + 54g(0)g′(0) = 0, (3.1.5)

thus ord(∆) ≥ 2. Therefore, when the discriminant has the multiple root, namely, the 7-

branes make the stack, the elliptic K3 becomes singular.

Singularities of the elliptic K3 manifold are classified by Kodaira [19]. The singularities

are labeled by not only the order of the discriminant but also the orders of the f(z) and g(z)

in the Weierstrass equation. We show the table of the Kodaira classification in Table 3.1. We

also show corresponding brane configurations. This classification is derived from resolutions

of singular K3 surfaces.
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Fiber type ord(f) ord(g) ord(∆) Singularity type 7-brane configuration Brane type

In 0 0 n An−1 An An−1

II ≥ 1 1 2 A0 CA H0

III 1 ≥ 2 3 A1 CA2(= A2B) H1

IV ≥ 2 2 4 A2 CA3(= A2BA) H2

I∗n ≥ 2 3 6 + n Dn+4 An+4BC Dn+4

I∗n 2 ≥ 3 6 + n Dn+4 An+4BC Dn+4

II∗ ≥ 4 5 10 E8 A7BC2 E8

III∗ 3 ≥ 5 9 E7 A6BC2 E7

IV ∗ ≥ 3 4 8 E6 A5BC2 E6

Table 3.1: The Kodaira classification

3.2 String junctions and gauge enhancement

In Section 2.3, we introduced the general 7-branes, i.e., the [p, q]-branes. The [p, q]-brane has

the monodromy M[p,q]. The (p, q)-string is invariant under the monodromy. However, the

general (r, s)-string transform under the monodromy, where (r, s) ̸= (p, q). In this section,

we will discuss the (r, s)-string, and in order to explain the effect of the monodromy, we

introduce string junctions [13–20].

We consider the (r, s)-string which encircles around the [p, q]-brane. The tension of the

(r, s)-string is given by

Tr,s =
1

√
τ2
|r + sτ |. (3.2.1)

Multiplying the metric of the 7-brane solution, we find the local mass of the (r, s)-string,

dsr,s =

∣∣∣∣∣(r + sτ)η2(τ)
∏
i

(z − zi)
−1/12dz

∣∣∣∣∣ . (3.2.2)

We require that the mass is invariant under the monodromy of the [p, q]-brane, so that the
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(r, s)-string transforms as(
r
s

)
→
(
0 1
1 0

)
MT

[p,q]

(
0 1
1 0

)(
r
s

)
=

(
r
s

)
+ (ps− qr)

(
p
q

)
(3.2.3)

under the monodromy transformation. We introduce the cut which are extended from the

7-brane. We interpret the monodromy that the τ and the (r, s)-string are affected as the

effect of the cut.

According to (3.2.1), the difference of the charges are proportional to (p, q), which can be

attached to the [p, q]-brane. Due to this, we can deform the contour of the string, and we find

a string junction. In other words, we can interpret the string junction as the Hanany-Witten

effect [78]. The charges of the strings are conserved at the junction.

Comparing the monodromy matrix around the singularity of the K3 manifold with M[p,q],

we can identify the fiber type in the Kodaira classification with the 7-brane configuration.

The 7-brane configurations for each fiber type is summarized in Table 3.1. Here we show

notation and the monodromy matrices of the A, B and C-branes:

A = [1, 0]; M[1,0] =

(
1 1
0 1

)
, (3.2.4)

B = [1, 1]; M[1,1] =

(
2 1
−1 0

)
, (3.2.5)

C = [1,−1]; M[1,−1] =

(
0 1
−1 2

)
. (3.2.6)

For example, let us see the fiber type III. The Weierstrass equation of this fiber type is

represented by

y2 = x3 + zx. (3.2.7)

The monodromy matrix around this singularity is given by(
0 1
−1 0

)
. (3.2.8)

From the Table 3.1, we find that the 7-brane configuration is made from two A-branes and

a C-brane. Indeed, the monodromy matrix around these 7-branes agrees with (3.2.8):

CA2 = M[1,−1]M
2
[1,0] =

(
0 1
−1 0

)
. (3.2.9)
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Note that the notation of A, B and C-branes is one of the choices of the bases1.

Next, we see the correspondence between possible string junctions and gauge enhance-

ment. Endpoints of a string are attached to two 7-branes, and the charges of the string at the

endpoints need to consist with the types of the 7-branes. Due to monodromies, the charges

of the string at each endpoint are different from each other in general. In other words, this

is the origin of the string junctions. There exist strings that connect two 7-branes only when

the two charges agree with the types of the 7-branes, respectively. The possible strings or

string junctions correspond to the adjoint representation of the enhanced gauge symmetry.

Let us see a few examples. First, we consider the fiber type I∗0 . The brane configuration

consist of AAAABC. We see that we have the strings that connect two A-branes directly

since the (1, 0)-string is invariants under the monodromy of the A-brane:(
0 1
1 0

)
MT

[1,0]

(
0 1
1 0

)(
1
0

)
=

(
1
0

)
. (3.2.10)

Hence, we can obtain SU(4) gauge group from the four A-branes. In order to find other

possible strings, we decompose SO(8) into SU(4)× U(1):

28 = 15+ 6+ 6+ 1. (3.2.11)

The 15 represantation in the right hand side corresponds to the direct paths between the

two A-branes and the Cartan subgroup of SU(4). The singlet 1 represents the rest of the

Cartan of SO(8). The two 6’s are strings that connect two different A-branes indirectly,

which means that the strings start form an A-brane, stride across the cuts of the B and

the C-branes and finally are connected with an A-brane. The reason for this is that the

monodromy BC changes only the direction of the (1, 0)-string, namely,(
0 1
1 0

)
(BC)T

(
0 1
1 0

)(
1
0

)
=

(
−1
0

)
. (3.2.12)

The indirect paths can be interpreted as string junctions.

Second example is the fiber type IV ∗. The brane configuration consists of five A-branes,

1More precisely, any monodromy can be described only two independent matrices. For instance, the
monodromy matrix of the fiber type I∗0 is given by A4BC, and this is equal to (CA)3.
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a B-brane and two C-branes. We decompose E6 into SU(5)× SU(2)× U(1):

78 =(24,1) + (1,1)

+ (10,2) + (10,2)

+ (5,1) + (5,1)

+ (1,3).

(3.2.13)

The first line in the right hand side corresponds to direct paths between the two different

A-branes and Cartan’s. The last one is also the direct paths of C-branes. The second and

third lines represent the indirect paths between two A-branes and two C-branes, respectively.

3.3 Self-intersection numbers of string junctions

In the previous section, we introduced string junctions. The string junctions are another

representation of monodromies. We roughly saw correspondence between string junctions

and a gauge symmetry. However, not all possible string junctions are allowed as BPS states.

In the previous section, we saw the string junctions of the fiber type I∗0 as a example. We

considered only the indirect paths that connect two different A-branes, but we did not allow

indirect paths that connect the same A-brane. Indeed, such a string junction does not satisfy

the BPS condition. In this section, we show the BPS condition of the string junctions.

Originally, the string junctions are conjectured by the duality between M-theory on the

torus and type IIB superstring theory on the circle [79]. As we saw in Section 2.4, M2-branes

that are wrapped on the two cycles of the torus (p, q) times are identified with (p, q)-strings.

Considering a M2-brane solution that is dual to three (pi, qi)-strings (i = 1, 2, 3) which are

jointed at a point, we can show that the tensions vanish at the jointing point when the charges

are conserved.

For our purpose, we introduce the junction J. A string junction consists of Qi
A (1, 0)-

strings that are connected with a i-th A-brane, Qj
B (1,−1)-strings that are connected with

j-th B-brane and Qk
C (1, 1)-strings that are connected with k-th C-brane. We represent A,
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B and C-branes as ai, bi and ci, respectively. The junction J is defined as

J =
∑
i

Qi
Aai +

∑
j

Qj
Bbj +

∑
k

Qk
Cck. (3.3.1)

The BPS condition is given by the condition for the self-intersection of the junction.

We consider the self-intersection of the junction. First we define the self-intersection

number of the basis strings a, b and c as −1,

(ai,ai) = (bi, bi) = (ci, ci) = −1. (3.3.2)

In order to define a contribution to a self-intersection number from a junction point, we

consider the (r, s)-string which encircles around the [p, q]-brane. The self-intersection number

of this setup is of course zero. We can regard this setup as the string junction, that is, the

string junction is made from (ps− qr) (p, q)-strings that are attached to [p, q]-brane and the

junction point. The contribution to the intersection number from the former is given by

[−(ps−qr)2]. Since the total self-intersection number needs to be zero, the contribution from

the junction point, we denote as J3, is given by

(J3,J3) =

∣∣∣∣pi pi+1

qi qi+1

∣∣∣∣ , (3.3.3)

where i = 1, 2, 3 are the labels of the three (pi, qi)-strings in the string junction. We labeled

in the clockwise direction. This contribution is independent of i with p4 = p1 and q4 = q1.

Now we have (p1, q1) = ((ps− qr)p, (ps− qr)q) and (p2, q2) = (r, s), so (J3,J3) = (ps− qr)2.

Therefore, the total intersection number becomes zero.

We consider J = ai + aj with i ̸= j. This junction has no junction points, namely,

(J3,J3) = 0. A contribution from the (1, 0)-strings that are attached to the A-branes is

(−2). Since

−2 = (ai + aj ,ai + aj) = −1 + 2(ai,aj)− 1, (3.3.4)

we have (ai,aj) = 0 for i ̸= j. Similarly, we can also find (bi, bj) = (ci, cj) = 0. Next we

consider J = a+ b. The self-intersection number (J,J) is given by

(J,J) = (a,a) + (b, b) +

∣∣∣∣1 1
0 −1

∣∣∣∣ = −3. (3.3.5)
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By using (a, b), this is expressed as

−3 = (a+ b,a+ b) = −2 + 2(a, b), (3.3.6)

thus we find (a, b) = −1/2. In the same manner, we can determine the other intersections.

We conclude that

(ai,aj) = (bi, bj) = (ci, cj) = −δij , (3.3.7)

(a, b) = −1

2
, (3.3.8)

(a, c) =
1

2
, (3.3.9)

(b, c) = 1. (3.3.10)

Therefore, we can calculate the self-intersection number of the general string junction:

(J,J) =−
nA∑
i=1

(
Qi

A

)
−

nB∑
i=1

(
Qi

B

)
−

nC∑
i=1

(
Qi

C

)
−

nA∑
i=1

nB∑
j=1

Qi
AQj

B +

nA∑
i=1

nC∑
j=1

Qi
AQj

C + 2

nB∑
i=1

nC∑
j=1

Qi
BQ

j
C.

(3.3.11)

We provide the BPS condition. The BPS condition is encoded into the condition for the

self-intersection numbers of the junctions. The condition is given by

(J,J) ≥ −2. (3.3.12)

This condition is derived from the duality between M-theory on the elliptic fibration K3

and IIB theory on the S1 fibration over P 1. Taking the decompactified limit of S1, the M-

theory side corresponds to the limit where the fibered torus shrinks. In this limit, the string

junctions that satisfy the BPS condition correspond to the holomorphic curves J ′ of the K3

surface [18,80]. The self-intersection number of such curves is given by [81,82]

(J ′, J ′) = 2g − 2 + b, (3.3.13)

where g is the genus and b is the number of boundary. As a result, we find the condition

(3.3.12).
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3.4 Root systems and string junctions

In the previous section, we considered the BPS condition for the string junctions. As we saw

in Section 3.1, the gauge enhancements are achieved by specific 7-brane configurations that

are fixed by the Kodaira classification. The gauge fields that is in the adjoint representation

are derived from some string junctions. In this section, we focus on such string junctions.

We identify such string junctions with the root vectors of the gauge group [13,17].

The adjoint representation consists of the string junctions that satisfy the following con-

ditions:

p = q = 0, (3.4.1)

(J,J) = −2, (3.4.2)

where p =
∑

iQ
i
A +

∑
iQ

i
B +

∑
iQ

i
C and q = −

∑
iQ

i
B +

∑
iQ

i
C, namely, (p, q) are the

total charges of the string junction. The fist condition implies that the charges of the string

junction become zero at infinity. The second condition is derived from the dual M-theory.

In the M-theory side, enhanced gauge fields come from the M2-branes which are wrapped on

the holomorphic curves with g = 0 (and b = 0).

3.4.1 An example: E6

As an example, we consider the case of E6. The 7-brane configuration is given by A5BC2.

We obtain the general junction J,

J =
5∑

i=1

Qi
Aai +QBb+

2∑
i=1

Qi
Cci. (3.4.3)

The condition (3.4.1) yields

5∑
i=1

Qi
A +QB +

2∑
j=1

Qj
C = 0, (3.4.4)

−QB +

2∑
j=1

Qj
C = 0. (3.4.5)
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In addition, we have

−
5∑

i=1

(
Qi

A

)
− (QB)−

2∑
j=1

(
Qj

C

)
−

5∑
i=1

Qi
AQB +

5∑
i=1

2∑
j=1

Qi
AQj

C + 2

2∑
j=1

QBQ
j
C = −2 (3.4.6)

from (3.4.2). We find the 72 solutions, which correspond to the roots of E6. We show all

solutions in Appendix A.

E6 group has the six simple roots. The string junctions that correspond to the simple

roots are

Q⃗1 = (1,−1, 0, 0, 0, 0, 0, 0),

Q⃗2 = (0, 1,−1, 0, 0, 0, 0, 0),

Q⃗3 = (0, 0, 1,−1, 0, 0, 0, 0),

Q⃗4 = (0, 0, 0, 1, 1,−1,−1, 0),

Q⃗5 = (0, 0, 0, 0, 0, 0, 1,−1),

Q⃗6 = (0, 0, 0, 1,−1, 0, 0, 0),

(3.4.7)

identically,

α1 = a1 − a2,

α2 = a2 − a3,

α3 = a3 − a4,

α4 = a4 + a5 − b− c1,

α5 = c1 − c2,

α6 = a4 − a5,

(3.4.8)

where Q⃗i = (Q1
A, Q2

A, Q3
A, Q4

A, Q5
A, QB, Q

1
C, Q

2
C). We show the string junctions in Fig 3.1.

We can see that the six string junctions provide the Cartan matrix Aij(E6):

(αi, αj) = −Aij(E6). (3.4.9)
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Fig. 3.1: We show the six string junctions in (3.4.7) or (3.4.8) which correspond to the
simple roots of E6. The black circles denote the A-brane, the white circle is the B-brane and
the squares are the C-branes.



Chapter 4

A dessin on the base

So far we considered F-theory conpactifications on K3 manifolds, which are two-dimensional

Calabi-Yau manifolds. This is required by the consequence of supersymmetry. The K3

surfaces are described by the Weierstrass equation (2.2.10). In this chapter, we consider a

rational elliptic surface1 , which is one of the two rational elliptic surfaces arising in the stable

degeneration limit of a K3 surface. The rational elliptic surface is not a Calabi-Yau manifold,

but it is useful for investigating F-theory conpactification. The rational elliptic surface is also

described by the Weierstrass equation. In this chapter, we focus on not only the discriminant

locus, ∆ = 0, but also the f = 0 and the g = 0 locus [34,35].

4.1 What is an elliptic point plane?

We start with a Weierstrass equation

y2 = x3 + fx+ g, (4.1.1)

where y, x, f and g are sections of an O(3), an O(2), an O(4) and an O(6) bundle over the

base P 1. This equation defines a rational elliptic surface. We can also regard it as the total

space of a Seiberg-Witten curve (with the “u”-plane being the base) of an N = 2 SU(2)

gauge theory [5] or an E-string theory. [83–86] In an affine patch of P 1 with the coordinate

z, the coefficient functions f(z) and g(z) are a 4th and a 6th order polynomial in z.
1Sometimes this is called as a 1/2 K3 surface.

36
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As is well known, the modulus τ of the elliptic fiber of (4.1.1) is given by the implicit

function:

J(τ) =
4f3

4f3 + 27g2
, (4.1.2)

where J is the elliptic modular function. The denominator of the right hand side

∆ ≡ 4f3 + 27g2 (4.1.3)

is called the discriminant. Near its zero locus z = zi, Imτ goes to ∞ (if one has chosen

the “standard” fundamental region) for generic (that is, nonzero) f and g. Examining the

behavior of J(τ) around ∞, we find

τ(z) =
1

2πi
log(z − zi) (const. +O(z − zi)) , (4.1.4)

which implies the existence of a D7-brane at each discriminant locus. 2

On the other hand, since a locus of f(z) = 0 or g(z) = 0 alone does not mean ∆ = 0,

it is not a D-brane. However, if the loci of f(z) = 0 and g(z) = 0 are present together

with a D-brane, they play a significant role in generating a (p, q)-7-brane by acting SL(2,Z)
conjugate transformations on a D-brane or as components of an orientifold plane, as we show

below. In this paper, we will collectively call the loci of f(z) = 0 and g(z) = 0 “elliptic point

planes”.3

Elliptic point planes consist of two types, the loci of f(z) = 0 and g(z) = 0, which have

different properties. In this paper, we call the locus of f(z) = 0 an f=0 locus plane, or an

f -plane for short, and that of g(z) = 0 a g=0 locus plane, or a g-plane for short. 4

At the location of an f -plane, the value of the J-function is

J(τ) =
4f3

4f3 + 27g2
= 0, (4.1.5)

2Thus, henceforth in this paper, we refer to a locus of the discriminant as (a locus of) a “D-brane”. As we
will see, however, the monodromy around it is not always T for a general choice of the reference point, due to
the presence of the elliptic point planes.

3In the standard fundamental region of the modular group of a two-torus, there are two elliptic points

τ = e
2πi
3 and i. They are fixed points of actions of some elliptic elements of SL(2,Z), hence the name.

4 Despite the name “plane”, an elliptic point plane is no more a rigid object but a smooth submanifold
when the elliptic fibration over P1 is further fibered over another manifold, just like a D-brane.
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which corresponds to τ = e
2πi
3 . On the other hand, at the position of a g-plane ,

J(τ) =
4f3

4f3 + 27g2
= 1, (4.1.6)

so this implies τ = i. In their neighborhoods, J(τ) is expanded as

J(τ) =
1

3!
J ′′′(e

2πi
3 )(τ − e

2πi
3 )3 +O

(
(τ − e

2πi
3 )4

)
, (4.1.7)

J(τ) = 1−
12K

(
1√
2

)4
π2

(τ − i)2 +O
(
(τ − i)3

)
, (4.1.8)

where K(k) is the complete elliptic integral of the first kind

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

. (4.1.9)

Thus τ = e
2πi
3 is a triple zero of J(τ) and τ = i is a double zero of J(τ)− 1.

Suppose that z = 0 is a locus of f = 0. Since

J(τ(z)) =
4f(z)3

4f(z)3 + 27g(z)2
, (4.1.10)

J(τ(z)) is O(z3) at z = 0. So (4.1.7) shows that τ − e
2πi
3 is O(z) there, implying that the

monodromy is trivial around the locus of f . Similarly, if z = 0 is a locus of g = 0, J(τ(z))−1

is now O(z2). Comparing this with (4.1.8), we see that τ(z)− i is also O(z), and hence there

is no monodromy around the locus of g = 0, either.

However, this is not the end of the story. Fig. 4.2 shows the various choices of fundamental

regions of the modulus τ and the corresponding complex plane as its image mapped by the J-

function. From this we can see that if one goes around τ = e
2πi
3 once on the upper half plane,

one goes through three different fundamental regions to get back to the original position.

Likewise if one goes around τ = i, one undergoes two different fundamental regions. Thus

an f -plane is a complex codimension-one submanifold at which three different regions on the

z-plane corresponding to different fundamental regions meet, while a g-plane is similarly the

place where two different regions meet. The regions on the z-plane corresponding to different

fundamental regions are bounded by real codimension-one domain walls which consist of the

zero loci of the imaginary part of the J-function.
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Furthermore, each region on the z-plane corresponding to a definite fundamental region

is divided by a domain wall

{τ | ImJ(τ) = 0, ReJ(τ) > 1} (4.1.11)

(a dashed green line) into two regions ImJ(τ) > 0 and ImJ(τ) < 0.

On the other hand, a D-brane resides at a discriminant locus ∆ = 0, from which two

domain walls {τ | ImJ(τ) = 0, ReJ(τ) < 0} (a green line) and {τ | ImJ(τ) = 0, ReJ(τ) > 1}
(a dashed green line) extend out into the bulk z space (P1) (Fig. 4.1).

Fig. 4.1: An example configuration of D-branes, elliptic point planes and the cell regions
bounded by the domain walls extended from them. D-branes are located at the loci of ∆ = 0,
while elliptic point planes are at the loci of f = 0 and g = 0. In this example we can see
two f -planes at z = 1, 2, three g-planes and six D-branes. (This figure is depicted for the
Weierstrass equation (4.1.1) for f and g (4.4.19) with ϵ = 0.9.)

Since the value of J is ∞ at a discriminant locus for generic (i.e. nonzero) values of f

and g, D-branes can never, by definition, touch nor pass through (a non-end point of) the

domain walls because ImJ(τ) must vanish at the domain walls.

In this way, the z-space (= P1) is divided into several “cell regions”, which correspond

to different fundamental regions in the preimage of the J-function, by the domain walls

extended from the elliptic point planes (= f -planes and g-planes) and D-branes (Fig. 4.1).
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In particular, f -planes and g-planes extend the domain walls

{τ | ImJ(τ) = 0, 0 < ReJ(τ) < 1} (4.1.12)

(blue lines), and crossing through this wall implies that the type IIB coupling locally gets

S-dualized (if starting from the standard choice of the fundamental region) (Fig. 4.2). Then

there is a difference in monodromies between when one goes around a D-brane within a single

cell region bounded by some domain walls and when one first crosses through a domain wall,

moves around a D-brane and then crosses back through the wall again to the original position;

they are different by an SL(2,Z) conjugation. This is what’s happening in what has been

called a “B-brane” or a “C-brane” in the discussions of string junctions. That is, while the

monodromy matrix is necessarily

T =

(
1 1
0 1

)
(4.1.13)

as long as the reference point is chosen to be in the standard fundamental region, a non-

trivial (non-D-brane) (p, q)-brane arises if the monodromy is measured by going back and

forth between regions corresponding to different fundamental regions in the preimage upper-

half plane.

We would like to emphasize here that such a local S transformation never takes place

without these “elliptic point planes” (= f -planes and g-planes). If it were not for elliptic

point planes but there are only D-branes, the domain walls extended from them are only the

ones

{τ | ImJ(τ) = 0, ReJ(τ) < 0} (4.1.14)

(green lines) and

{τ | ImJ(τ) = 0, ReJ(τ) > 1} (4.1.15)

(dashed green lines). So crossing through these walls only leads to a T transformation which

commutes with the original monodromies of D-branes.

In the discussion below, we refer to the domain wall (4.1.14) (a green lines) as T -wall and

the one (4.1.15) (a dashed green line) as T ′-wall, whereas we call the type of domain wall

(4.1.12) (a blue line) S-wall.
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Id TT- 1

S

ST

ST- 1

TST- 1S

STS
ST- 1S

- 1.0 - 0.5 0.0 0.5 1.0

0- 2 - 1 1 2

- 2

- 1

1

2

Fig. 4.2: Left: The upper half plane and various fundamental regions. The shaded regions are
the regions in which the imaginary part of the image of the J-function ImJ(τ) is positive. The
symbol in each fundamental region (such as Id, T , S, . . .) is the group element of SL(2,Z) that
maps the standard fundamental region to the fundamental region specified by the symbol.
Right: The images of the J-function (= the whole complex plane). The green, blue and
dashed green lines correspond to the respective boundary components of any one half of (the
closure of) the fundamental regions.

To conclude this section we summarize the definitions of the new objects and notions

introduced in this section as a mini-glossary.

Mini-glossary

f-plane A (complex) codimension-one object corresponding to a zero locus of f(z) in the

Weierstrass form on the z-plane. Represented by a small square in the figures.

g-plane A (complex) codimension-one object corresponding to a zero locus of g(z) in the

Weierstrass form on the z-plane. Represented by a small 45◦-rotated square in the figures.

elliptic point plane The collective name for f -planes and g-planes.

T -wall A (real) codimension-one object (domain wall) corresponding to a zero locus of ImJ

with ReJ < 0, extending from a D-brane and a f -plane. Represented by a green line.

T ′-wall A (real) codimension-one object (domain wall) corresponding to a zero locus of ImJ

with ReJ > 1, extending from a D-brane and a g-plane. Represented by a dashed green line.
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S-wall A (real) codimension-one object (domain wall) corresponding to a zero locus of ImJ

with 0 < ReJ < 1, extending from a f -plane and a g-plane. Represented by a blue line.

cell region A closed region on the z-plane (P1 base of the elliptic fibration) bounded by

the T -, T ′- and S-walls. Each cell region corresponds to either half of the (closure of the) 5

fundamental region with ImJ > 0 or ImJ < 0 of the fiber modulus.

shaded cell region The cell region corresponding to the (closure of the) half fundamental

region with ImJ > 0 (Fig. 4.1).

4.2 Relation to “dessin d’enfant” of Grothendieck

In fact, the construction in the previous section is nothing but drawing a “dessin d’enfant” of

Grothendieck [87], known in mathematics, on the P 1 base with a canonical triangulation.6 A

dessin d’enfant, meaning a drawing of a child, is a graph consisting of some black points, white

points and lines connecting these points, drawn according to a special rule. To demonstrate

the rule, let us consider, for example, a function [88]:

F (x) = −(x− 1)3(x− 9)

64x
= 1− (x2 − 6x− 3)2

64x
, (4.2.1)

where x ∈ P1. F is a map from P1 to P1. At almost everywhere on P1, F is a homeomorphism,

sending a small disk to another in a one-to-one way. However, F maps a small disk centered

at x = 1 to one centered at F = 0 in a three-to-one way. Similarly, F is a two-to-one map

from a small disk centered at x = 3±2
√
3 to one centered at F = 1. The points x = 1, 3±2

√
3

are said critical points, and the corresponding values of F are said critical values. If the map

from the neighborhood around a critical point to another around the corresponding critical

value is k-to-one, we say that the ramification index of the critical point is k.

Now the rule to draw the dessin associated with (4.2.1) is as follows: Place a black point at

every preimage of 0, and a white point at every preimage of 1. Next draw lines at preimages

of the line segment [0, 1]. The result is shown in Fig. 4.3(a):

The equation (4.2.1) induces a branched covering over P1. Treating this graph as a

combinatorial object, one can reproduce the information of the branched covering as follows:
5Below we abuse terminology and refer to a “fundamental region” as one modulo points on its boundary.
6 The contents of this section are triggered by a suggestion made by the anonymous referee of Phys. Rev. D.
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Fig. 4.3: (a)(left panel): The dessin for (4.2.1). (b)(right panel): The triangulated dessin.
× represents an ∞ point. The extra lines have been drawn at the preimages of the segment
[−∞, 0] and [1,∞]. The other ∞ point is not shown in this figure as it is infinitely far away.

One first adds a point ∞ to each region of the dessin. One then connects each ∞ with lines

to the black or white points as many times as they appear on the boundary of the region.

This yields a triangulation of the dessin. Assigning either the upper- or the lower-half plane

to each triangle depending on the ordering of 0, 1, ∞, and glueing these half planes together,

one obtains a branched covering equivalent to the original one [88].

In the present case, the equation (4.1.10) defines a Belyi function, a holomorphic function

whose critical values are only 0, 1 and ∞ and nothing else. The black and white points

in the dessin shown in Fig. 4.3(a) correspond to the f -planes and g-planes. The points ∞
added in the triangulation of the dessin are D-branes. The lines shown in Fig. 4.3(a) are the

S-walls, while the lines connecting the ∞ points and the black or white points drawn in the

triangulation are the T - and T ′-walls.

What is special about (4.1.10) is that it induces a local homeomorphism between the P1

base and the upper-half plane. Indeed, as we saw in the previous section, the correspondence

is one-to-one everywhere, even in the vicinity of the elliptic orbits τ = e
2πi
3 and i. This is

so because the J = 0 (f = 0) points are always critical points with ramification index three,

and the J = 1 (g = 0) points are always with ramification index two. In this paper, we treat

the dessin not as just a combinatorial graph, but draw the ∞ points and the triangulating

lines (the T - and T ′-walls) also as preimages of the J-function, as shown in Fig. 4.3(b). The
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special feature of (4.1.10) then allows us to use the (triangulated) dessin as a convenient tool

to compute monodromies, as we see below.

4.3 Basic properties of elliptic point planes

4.3.1 Basic properties of f-planes

As we defined in the previous sections, there are two kinds of elliptic point planes: f -planes

and g-planes. In this section we describe the basic properties of f -planes.

As the name indicates, f -planes are the loci where the function f vanishes. As we saw in

the previous section, these are the places where the J-function vanishes and τ becomes e
2πi
3

(or its SL(2,Z) equivalents).

As we saw in the previous section, the expansion of J(τ) near τ = e
2πi
3 is given by (4.1.7).

If there is an f -plane at z = 0, f = 0 there, yielding

f(z) = f41z + f42z
2 + · · · , (4.3.1)

g(z) = g60 + g61z + g62z
2 + · · · , (4.3.2)

where f4i, g6j are constants with indices running over i = 1, . . . , 8 and j = 1, . . . , 12 for a K3

surface and i = 1, . . . , 4 and j = 1, . . . , 6 for a rational elliptic surface. Since

4f3

4f3 + 27g2
=

4f3
41

27g260
z3(1 +O(z)), (4.3.3)

τ(z) asymptotically approaches

τ(z) = e
2πi
3 +

2f41

(9g260J
′′′(e

2πi
3 ))

1
3

z (4.3.4)

as z → 0. Therefore, τ is regular near z = 0, and hence an f -plane does not carry D-brane

charges.

Parameterize a small circle around z = 0 by z = ϵeiθ (ϵ > 0), then if one goes around along

it once, so does τ once around e
2πi
3 along a small circle with a radius ϵ

∣∣∣2f41/(9g260J ′′′(e
2πi
3 ))

1
3

∣∣∣.
Thus, although the monodromy around an f -plane is trivial, one passes through the boundary
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of the half-fundamental region six times on the upper-half plane as one goes once around an f -

plane. Since the neighborhoods of z = 0 and τ = e
2πi
3 are homeomorphic, the neighborhood

of z = 0 around an f -plane is also divided into six cell regions corresponding to different

half-fundamental regions. The six domain walls separating these cell regions consist of three

S-walls (blue) with (0 < ReJ(τ) < 1) and three T -walls (green) (ReJ(τ) < 0), which are

extended alternately from the f -plane, forming a locally Z3-symmetric configuration.

On the upper-half plane, if one starts from the standard fundamental region and passes

through preimages (of the J-function) of a T -wall (green) and an S-wall (blue) to go to

the SL(2, Z) equivalent point, then the SL(2,Z) transformation mapping the original point

to the final point is T−1S. Further, if one crosses through preimages of a T -wall (green)

and an S-wall (blue) again, the transformation to the final SL(2, Z) equivalent point is

(T−1S)2 = −ST ∼ ST (as PSL(2,Z)) .

Since

(T−1S)3 = 1, (4.3.5)

T−1S generates a Z3 group, which is the isotropy group of the elliptic point τ = e
2πi
3 . It

is easy to show that this T−1S transformation acts on the neighborhood of this point as a

2πi
3 rotation. Therefore, the configuration of τ near an f -plane is locally invariant under the

simultaneous actions of the spacial Z3 rotation and the Z3 SL(2,Z) transformation. The

metric near an f -plane is locally Z3 invariant.

4.3.2 Basic properties of g-planes

Likewise, the expansion of J(τ) around τ = i is given by (4.1.8). Let a g-plane be at z = 0

this time. f(z) and g(z) are expanded as

f(z) = f40 + f41z + f42z
2 + · · · , (4.3.6)

g(z) = g61z + g62z
2 + · · · . (4.3.7)

Since

4f3

4f3 + 27g2
= 1− 27g261

4f3
40

z2(1 +O(z)), (4.3.8)
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τ(z) approaches

τ(z) = i+
3iπ

1
2 g61

4K( 1√
2
)2f

3
2
40

z (4.3.9)

as z → 0. Thus τ is again regular near a g-plane, therefore a g-plane does not have D-brane

charges, either. The monodromy around a g-plane is also trivial, although if one goes around

it, one will be passing through the S-walls (blue lines) and the T ′-walls (dashed green lines)

alternately, twice for each.

Suppose that on the upper-half plane one starts from an arbitrarily given point near τ = i

in the standard fundamental region with Reτ < 0 and goes through the preimages of an S-

wall and a T ′-wall to reach the SL(2,Z)-equivalent point. This move can be achieved by the

SL(2,Z) S transformation. This S transformation acts on the neighborhood of τ = i as a Z2

rotation. The metric near a g-plane is also SL(2,Z) invariant. Thus the vicinity of a g-plane

is invariant under the Z2 rotation associated with the S transformation.

4.4 Simple method to compute the monodromy using the
dessin

Drawing the contours of the walls and the positions of the D-branes and elliptic point planes,

we can have a figure of the complex plane divided into several cell regions such as Fig. 4.1,

which we call a dessin.7 For a given Weierstrass equation, the dessin provides us with a very

simple method to compute the monodromy matrices along an arbitrary path around branes

on the complex plane (= an affine patch of the P1 or the “u-plane” of a Seiberg-Witten

curve).

4.4.1 The method

To illustrate the method, let us consider the Seiberg-Witten curve of N = 2 pure (Nf = 0)

SU(2) supersymmetric gauge theory [5]. The equation is

y2 = x3 − ux2 + x. (4.4.1)

7This corresponds to a triangulated dessin in the sense of Grothendieck.
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Taking u as the coordinate z, we obtain a Weierstrass equation with

f(u) = −1

3
u2 + 1, g(u) = − 2

27
u3 +

1

3
u, (4.4.2)

whose dessin is shown in the upper panel of Fig. 4.4. Let us compute the monodromy around

each discriminant locus. Choosing a starting point near the left locus (shown as a cross), the

left path crosses the walls as

→ G → B → G → dG →, (4.4.3)

where G denotes the T -wall, B the S-wall and dG the T ′-wall.8

The monodromy matrices for various patterns of crossings are

→ dG → G → = T,

→ G → dG → = T−1,

→ dG → B → = → B → dG → = S,

→ B → G → = ST,

→ G → B → = T−1S, (4.4.4)

where the first wall of each row is the crossing from a shaded cell region (ImJ > 0) to an

unshaded one (ImJ < 0), and the second is from an unshaded to a shaded one. 9 The

monodromy matrices are defined as

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
(4.4.6)

8 G, B and dG are respectively the first letters of Green, Blue and dashed Green. We have avoided using
T , S or T ′ here as the monodromy matrices for the crossing do not coincide with the names of the walls.

9Therefore, these rules only apply when one computes a monodromy for a path that starts from and ends
in a shaded cell region (ImJ > 0). The rules for computing a monodromy for a path from an unshaded cell
region (ImJ < 0) to another are similar but different:

→ dG → G → = T−1,

→ G → dG → = T,

→ dG → B → = → B → dG → = S,

→ B → G → = ST−1,

→ G → B → = TS. (4.4.5)
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as usual, where we say that the monodromy matrix is

(
a b
c d

)
if the modulus τ is changed

to

τ ′ = M ◦ τ ≡ aτ + b

cτ + d
. (4.4.7)

They are defined only in PSL(2,Z), i.e. up to a multiplication of −1.

By using the rule (4.4.4), we can immediately find the monodromy matrix for the path

(4.4.3) as

T−1S · T−1 = T−1ST−1

∼ STS, (4.4.8)

where ∼ denotes the equality in PSL(2,Z).

Similarly, the crossed walls for the right path are

→ G → dG → G → dG → G → dG → B → G → . (4.4.9)

Using rule (4.4.4) again, we find that the monodromy is

T−1 · T−1 · T−1 · ST = T−3ST. (4.4.10)

A confusing but important point of the rule is that, in the first example, the monodromy

matrix T−1 which corresponds to the crossings→ G → dG → taking place after the crossings

→ G → B → is multiplied to T−1S from the right. This will be confusing because if

M =

(
a b
c d

)
, M ′ =

(
a′ b′

c′ d′

)
and τ ′ = M ◦τ , τ ′′ = M ′ ◦τ ′, then the monodromy matrix

M ′′ =

(
a′′ b′′

c′′ d′′

)
representing τ 7→ τ ′′ = M ′′ ◦ τ is given by

M ′′ = M ′M, (4.4.11)

in which M ′ is multiplied from the left.

More generally, the following statement holds: Let γ be a path specified by the series of

the walls

γ :→ W1 → W2 → · · · → Wk →, (4.4.12)
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where Wi (i = 1, . . . , k) are either of G, B or dG, and let Mγ denote the associated mon-

odromy matrix of γ. k is an even positive integer. (If it is odd, a shaded cell region is mapped

to an unshaded cell region or vice versa, and the transformation cannot be an SL(2,Z) trans-
formation). Let γ1, γ2 be paths specified by the series of the walls crossed by them

γ1 :→ W
(1)
1 → W

(1)
2 → · · · → W

(1)
k1

→,

γ2 :→ W
(2)
1 → W

(2)
2 → · · · → W

(2)
k2

→, (4.4.13)

and let γ1+> γ2 be the jointed path

γ1+> γ2 :→ W
(1)
1 → · · · → W

(1)
k1

→ W
(2)
1 → · · · → W

(2)
k2

→, (4.4.14)

where we use the new symbol +> to denote the operation of jointing two paths.10 Then

Proposition.

Mγ1+>γ2 = Mγ1Mγ2 . (4.4.15)

Remark. As we noted above, the monodromy matrix corresponding to a later crossing comes

to the right, unlike (4.4.11) in which the matrix for the later transformation is multiplied

from the left.

Proof. By induction with respect to the total number of crossed walls, it is enough to show

the statement for the cases when γ2 is any of the crossing patterns (4.4.4). Suppose that

γ1 starts from a cell region C0 and ends in another C1, and that γ2 goes from the cell

region C1 to another C2, where γ2 is taken to be any of the crossing patterns (4.4.4), say,

γ2 =→ dG → G → andMγ2 = T . Let Pγi (i = 1, 2) be the associated maps which send points

in the cell region Ci−1 to those in the cell region Ci, respectively, such that the torus modulus

over the point is SL(2,Z) equivalent. We say two points on P1 are SL(2,Z) equivalent if the
torus fiber moduli over them are SL(2,Z) equivalent. Using this terminology, we can say

that Pγi (i = 1, 2) are the maps which send the points in Ci−1 to their SL(2,Z) equivalent

points in Ci, respectively. Since τ(z) is holomorphic in z and J(τ) is holomorphic in τ , the

10We will not use the usual symbol for the addition “+” since this operation is noncommutative.
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domain of the map Pγ1 is not necessarily restricted to only C0 but can be extended to outside

C0 as far as it is in a small neighborhood of z0.

Let z0 be a point in C0, and let z1 = Pγ1(z0) ∈ C1, z2 = Pγ2(z1) ∈ C2. If we denote τi

(i = 0, 1, 2) be the modulus of the torus fiber over zi (i = 0, 1, 2), they satisfy

J(τi) =
4f(zi)

3

4f(zi)3 + 27g(zi)2
, (4.4.16)

where τ1 and τ2 are the values analytically continued from τ0 along the paths γ1, and then

γ2. Taking τ0 in the standard fundamental region, the transformation from τ0 to τ1 is given

by τ1 = Mγ1 ◦ τ0, but consecutive transformation from τ1 to τ2 is not Mγ2 ◦ τ1, as τ1 does

not belong to the standard fundamental region in general. Rather, since Pγ1 is locally an

isomorphism between a neighborhood around z0 and that around z1, the final point z2 can

be written as the Pγ1 image of z′1, where z′1 is the SL(2,Z) equivalent point in the cell region

reached along the path γ2 first from z0, if z2 is close enough to z1 (Fig. 4.5). If, on the

other hand, z2 is not close to z1, we can continuously deform the complex structure of the

elliptic fibration so that z2 may come close to z1. Since this is a continuous deformation, the

monodromy transformation matrix does not change, as the entries of the matrix take discrete

values. Thus we may assume that z2 is close to z1.

Since τ0 is taken in the standard fundamental region, τ ′1, the modulus of the torus fiber

over z′1, is given by

τ ′1 = Mγ2 ◦ τ0. (4.4.17)

Therefore, since τ2 = Mγ1 ◦ τ ′1, we find

τ2 = Mγ1 ◦Mγ2 ◦ τ0

= (Mγ1Mγ2) ◦ τ0, (4.4.18)

which is what the proposition claims.

In deriving (4.4.18), we did not use the fact that γ2 was assumed to be a particular pattern

among (4.4.4), but the relation (4.4.18) likewise holds for other pattens. This completes the

proof of the proposition.11

11 In this proof, γ2 is taken to be a path to the next adjacent cell region, whereas γ1 is assume to be some
long path leading to a faraway cell region. If γ1 is also a path to another next adjacent cell region, it can be
explicitly checked that the proposition holds in this case as well.
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4.4.2 Example: Monodromies of Nf = 4 SU(2) Seiberg-Witten curves

The proposition (4.4.15) together with the rule (4.4.4) provides us with a very convenient

method to compute the monodromy for an arbitrary Weierstrass model along an arbitrary

path.

Fig. 4.6 is a dessin of Nf = 4 SU(2) Seiberg-Witten curve with some mass parameters.

The Weierstrass equation is (4.1.1) where

f =(z − 1)(z − 2),

g =ϵ(z − i)(z − 2i)(z − 3i)

+ (1− ϵ)

(
− 5

16
i

√
3

2
z3 +

17iz2

4
√
6

− i
√
6z +

4

3
i

√
2

3

)
(4.4.19)

with ϵ = 3 × 10−7. This choice of g interpolates between the configuration in which all the

g-locus planes are located on the imaginary axis at equal intervals (ϵ = 1) and the one in

which four of the six D-branes collide together at z = 0 to form a I4 singular fiber (ϵ = 0),

with the f -planes fixed at z = 1, 2. The figure is the configuration very close to the latter

limit.

As is well known, the one-parameter (“u”) family of tori describe the moduli space of the

gauge theory and can be compactified into a rational elliptic surface by taking the variables

and coefficient functions to be sections of appropriate line bundles, where the u parameter

becomes the affine coordinate z of the base P1. Note, however, that the dessin can be drawn

on this affine patch independently of the choices of the bundles; it only affects how many

D-branes are at the infinity of P1.

This figure shows how the monodromies around the two D-branes on the right (located

at z ≈ 1 and ≈ 2) change depending on the choice of the reference point. If it is taken far

enough (as marked as a white star), the monodromies along the black contours read M2,1

and M0,1. This means that, as we show later, a (2, 1) and a (0, 1) string become light near

the respective D-branes, showing that the locations of the D-branes are the (2, 1) dyon and

the monopole point on the moduli space of the gauge theory, which is well known.

If the reference point is taken closer (as marked as a black star), then the monodromies
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along the dashed black contours are M1,1(= B) and M1,−1(= C), which agrees with the ABC

brane description of the I∗0 Kodaira singular fiber.

Finally, if the reference point is taken to be very close to the D-branes inside the cell

regions surrounded by the S-walls, then the monodromies along the dotted contours are both

T , showing that these branes look ordinary D-branes if they are observed from very close to

them.

4.4.3 (p, q)-brane as an effective description

Of course, it is well known that the monodromy changes depending the choice of the reference

point. A monodromy matrix measured from some reference point gets SL(2,Z) conjugated

if it is measured from another point. What is new here that, by drawing a dessin, we can

precisely see how and from where the monodromy matrix changes and gets conjugated as we

vary the position of the reference point.

For instance, we can see from Fig. 4.6 that the monodromies around the two D-branes on

the right are either M2,1, M0,1 or M1,1(= B), M1,−1(= C) for most choices of the reference

point on the z(≡ u)-plane, and they are recognized as ordinary (M1,0 = A) D-branes only

when they are viewed from the points in the tiny regions surrounded by the S-walls. Thus

we see that the effective description of the two branes as (1, 1)(= B)- and (1,−1)(= C)-

branes are good at the energy scale lower than the scale of the size of the small cell regions

surrounded by the S-walls.

However, one can also set the mass parameters of the same gauge theory so that the dessin

of the Seiberg-Witten curve looks as shown in Fig. 4.1. In this case, the S-walls spread into

wide areas of the P1. There is not much difference among the six D-branes, and there is no

obvious reason to distinguish particular two as B or C from the other four D-branes.

Remark. We have seen that a cluster of a D-brane and two elliptic point planes, in which the

former is surrounded by the S-walls extended from the latter, may be effectively identified

as a B- or a C-brane, if viewed from a distance of the size of the cluster. Thus one might

think that an “exact” (p, q)-brane (whose monodromy is Mp,q along arbitrary small loop) can
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be obtained by taking the f - and g-planes on top of each other so that the size of the cell

region the S-walls surround becomes zero. This is not the case, however, since if the f - and

g-planes collide, the order of the discriminant becomes two, implying that another D-brane

also automatically comes on top of the D-brane, f -plane and g-plane. Since it contains two

D-branes, it cannot be identified as a single (p, q)-brane in the ABC-brane description.
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Id TT- 1

S

ST

ST- 1

TST- 1S

STS
ST- 1S

- 1.0 - 0.5 0.0 0.5 1.0

Fig. 4.4: The upper panel: The dessin of Nf = 0 SW curve (f(u) = −1
3u

2 + 1, g(u) =
− 2

27u
3 + 1

3u). The lower panel: The crossed walls and the corresponding monodromies.
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Fig. 4.5: Taking τ0 in the standard fundamental region, the transformation from τ0 to τ1 is
given by τ1 = Mγ1 ◦ τ0, but consecutive transformation from τ1 to τ2 is not Mγ2 ◦ τ1, as τ1
does not belong to the standard fundamental region in general. Rather, we have τ2 = Mγ1 ◦τ ′1
with τ ′1 = Mγ2 ◦ τ0 as Pγ1 induces an isomorphism.
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Fig. 4.6: Monodromies of Nf = 4 SU(2) Seiberg-Witten curve. It shows how the mon-
odromies around the two D-branes on the right (located at z ≈ 1 and ≈ 2) change depending
on the choice of the reference point. If it is taken far enough (as marked as a white star), the
monodromies along the black contours read M2,1 and M0,1. If the reference point is taken
closer (as marked as a black star), then the monodromies along the dashed black contours
are M1,1(= B) and M1,−1(= C). If, on the other hand, the reference point is taken to be very
close to the D-branes inside the cell regions surrounded by the S-walls, then the monodromies
along the dotted contours are both T .



Chapter 5

Higher-codimension singularities

So far we considered eight-dimensional compactifications of F-theory. Enhancement of gauge

symmetries arise from the singularities of the K3 surface. They are the codimension-one

singularities, namely, the points in the base space of the elliptic K3 surface.

In this chapter we consider higher-codimension singularities. Supersymmetry requires

that the compact space need to be a Calabi-Yau manifold. The Calabi-Yau three-fold can

have not only the codimension-one singularities but also the codimension-two singularities. As

we will see, such codimension-two singularities provide massless matters in F-theory [53–56].

In addition, we also consider the Calabi-Yau four-fold. We will see that phases of res-

olutions of the Calabi-Yau four-fold can be investigated by the Coulomb branch of three-

dimensional N = 2 supersymmetric gauge theories [65–68].

5.1 Matters in F-theory

Let us consider F-thoery compactifications on the Calabi-Yau three fold. In particular, we

concentrate on the elliptic fibered Calabi-Yau three-fold over the Hirzebruch surface Fn. The

Hirzebruch surface is a P 1 fibration over P 1, which is characterized single integer n. The

Calabi-Yau three-fold is defined as follows: We start with the four homogeneous coordinates

57
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(u′, v′, u, v). We introduce the two charges of the coordinates as follows:

u′ v′ u v

Q(λ) : 1 1 n 0

Q(µ) : 0 0 1 1

(5.1.1)

In other words, we introduce the two identifications between the four coordinates as

(u′, v′, u, v) ∼ (λu′, λv′, λnu, v) (5.1.2)

(u′, v′, u, v) ∼ (u′, v′, µu, µv), (5.1.3)

where λ, µ ∈ C and n ∈ Z. The Hirzebruch surface is defined as

Fn = {C4 − (0, 0, 0, 0)}/ ∼, (5.1.4)

which is labeled by an integer n. If n = 0, the surface becomes the direct product P 1 × P 1.

The elliptic fibered Calabi-Yau three-fold over the Hirzebruch surface is described by the

Weierstrass form. We introduce the affine coordinates as

z′ =
u′

v′
, z =

u

v
. (5.1.5)

The Weierstrass equation is given by

y2 = x3 + f(z, z′)x+ g(z, z′), (5.1.6)

where

f(z, z′) =
8∑

i=0

zif(4−i)n+8(z
′), (5.1.7)

g(z, z′) =

12∑
j=0

zjg(6−j)n+12(z
′). (5.1.8)

The subscripts of f(4−i)n+8(z
′) and g(6−j)n+12(z

′) represent the degree of the polynomial. The

each terms of f and g is determined by the charges in (5.1.1), i.e. the each polynomials have

the same charges. The charges of x and y are assigned as follows:

x y

Q(λ) : 2n+ 4 3n+ 6

Q(µ) : 4 6

(5.1.9)
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The discriminant is given by

∆(z, z′) = 4f3(z, z′) + 27g2(z, z′)

=
(
4f3

4n+8(z
′) + 27g26n+12(z

′)
)

+
(
12f2

4n+8(z
′)f3n+8(z

′) + 54g6n+12(z
′)g5n+12(z

′)
)
z

+
(
12f2

4n+8(z
′)f2n+8(z

′) + 12f4n+8(z
′)f2

3n+8(z
′) + 54g6n+12(z

′)g4n+12(z
′) + 27g25n+12(z

′)
)
z2

+ · · ·

+
(
4f3

−4n+8(z
′) + 27g2−6n+12

)
z24.

(5.1.10)

5.1.1 An example: I2 → I3

As an example, let us consider the codimension-two singularity where the fiber type I2 en-

hances to I3. The stack of two 7-branes intersects with another 7-brane at this point. Matters

appear at the singular point. The corresponding gauge groups are SU(2) → SU(3). We as-

sume that the codimension-one singularity where we have the fiber type I2 is localized at

z = 0. The orders of f , g and ∆ are given by

ord(f) = 0, ord(g) = 0, ord(∆) = 2. (5.1.11)

The fist two equations imply f4n+8(z
′) ̸= 0 and g6n+12(z

′) ̸= 0 at z = 0. The last equation

means {
4f3

4n+8(z
′) + 27g26n+12(z

′) = 0, (5.1.12)

12f2
4n+8(z

′)f3n+8(z
′) + 54g6n+12(z

′)g5n+12(z
′) = 0 (5.1.13)

at z = 0. As a solution to (5.1.12), we choose{
f4n+8(z

′) = −3h22n+4(z
′),

g6n+12(z
′) = 2h32n+4(z

′),
(5.1.14)

where h2n+4(z
′) is a polynomial that has the degree of (2n + 4) and where we assume

h2n+4(z
′) ̸= 0. Then, the second equation (5.1.13) provides

g5n+12(z
′) = −f3n+8(z

′)h2n+4(z
′), (5.1.15)
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thus when the identity is satisfied, we have SU(2) symmetry at z = 0.

Inserting (5.1.14) and (5.1.15), we obtain

∆(z, z′)

=
(
108f2n+8(z

′)h22n+4(z
′) + 108h2n+4(z

′)g4n+12(z
′)− 9f2

3n+8(z
′)
)
h22n+4(z

′)z2 +O(z′3),

(5.1.16)

where O(z′3) represents the terms whose the degrees are 3 or higher. When

108f2n+8(z
′)h22n+4(z

′) + 108h2n+4(z
′)g4n+12(z

′)− 9f2
3n+8(z

′) = 0, (5.1.17)

the order of the discriminant is enhanced to 3, namely, ord(∆) = 2 → 3, which means that

the fiber type I2 is enhanced to I3
1.

The matters are localized at the codimension-two singularity where the equation (5.1.17) is

satisfied. Let us count the number of the matters. In the sense of N = (1, 0) supersymmetry

in six dimensions, the matters are the hypermultiplets. There are the two types of the

hypermultiplets; the neutral and the charged hypermultiplets. The number of the neutral

hypermultiplets corresponds to the dimensions of complex moduli for i = 0, 1, 2, 3 and j =

0, 1, 2, 3, 4, 5 in (5.1.7) and (5.1.8)2. TheWeierstrass equation that satisfy (5.1.14) and (5.1.15)

is given by

y2 =x3 − 3xh22n+4(z
′) + 2h32n+4(z

′)− zf3n+8(z
′)h2n+4(z

′)

+ x
8∑

i=1

zif(4−i)n+8(z
′) +

12∑
j=2

zjg(6−j)n+12.
(5.1.18)

The dimensions of complex moduli are given by the number of the coefficients of the polyno-

mials. We obtain

n
(neutral)
H =(2n+ 5) + (3n+ 9) + (2n+ 9) + (n+ 9)

+ (4n+ 13) + (3n+ 13) + (2n+ 13) + (n+ 13)− 1

=18n+ 83, (5.1.19)

1When h2n+4(z
′) = 0, the order of the discriminant also becomes ord(∆) = 3. In this case, we have

f4n+8(z
′) = g6n+12(z

′) = g5n+12(z
′) = 0, that is, ord(f) = 1 and ord(g) = 2. This corresponds to the fiber

type III.
2When we consider elliptic fibered K3 surfaces, singular fibers are placed at z = 0. In the case of the elliptic

fibered Calabi-Yau three-fold over the Hirzebruch surface, however, fibers become singular at z = 0 and ∞.
The fact that we consider z = 0 is reflected on i = 0, 1, 2, 3 and j = 0, 1, 2, 3, 4, 5. As we will see in the next
subsection, the two lines z = 0,∞ correspond to each E8 in E8 × E8 heterotic superstring theory.
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where the last −1 implies an overall factor.

The charged matters arise from the extra zero-locus (5.1.17). The degree of the left hand

side in (5.1.17) is 6n+16. In general, when a gauge group H is enhanced to G, the matters of

G/(H ×U(1)) emerge. In this case, SU(2) is enhanced to SU(3). We decompose the adjoint

representation of SU(3) into SU(2)× U(1):

8 = 3+ 2+ 2+ 1, (5.1.20)

that is, the hypermultiplets are in 2. Therefore, number of charged matters is given by

n
(charged)
H = 2 · (6n+ 16). (5.1.21)

We get the total number of the matters

nH = n
(charged)
H + n

(neutral)
H

= 30n+ 115. (5.1.22)

As we will see in the next subsection, the number nH is consistent with the six-dimensional

anomaly cancellation in the heterotic side.

5.1.2 Dual heterotic theory

The F-theory compactification on a Calabi-Yau three-fold whose base space is a Hirzebruch

surface is dual to E8×E8 heterotic superstring theory compactified on an elliptic fibered K3

surface. This is interpreted as the fiberwise duality between F-thoery on K3 and E8 × E8

heterotic theory on T 2.

First of all, the three-form that is introduced in order to cancel an anomaly is given by

H = dB + ω3L − ω3Y , (5.1.23)

where ω3L and ω3Y are the Lorentz and the Yan-Mills Chern-Simons three-form, respectively.

Since the three-form H needs to be globally well defined, the integration of the exterior

derivative of H over K3 must be zero3:

1

2

1

8π2

∫
K3

(
trR2 − 1

30
TrF 2

)
= 0, (5.1.24)

3We denote traces in the fundamental representation as “tr”, and the adjoint representation as “Tr”.
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where we multiply the factor 1/(16π2). The first term in the left hand side is half of the

Pontryagin number, and it gives 24 for K3. On the other hand, the second term in the left

hand side represents the instanton number. As a result, the configuration of the gauge field

has the 24 instantons in the K3 surface.

We denote the instanton numbers as (12 + n, 12 − n) for each E8. The parameter n

corresponds to the label of the Hirzebruch surface Fn in dual F-theory. When the 12 + n

instantons break the first E8 to some gauge group G, we obtain the charged hypermultiplets

and the neutral hypermultiplets.

Next we consider the numbers of the charged hypermultiplets and the neutral hyper-

multiplets. Spin-half particles in six dimensions come from gravitinos and gauginos in ten

dimensions. We concentrate on the latter. When a gauge group G is broken to G′ by the

gauge field getting a value on H, the adjoint representation of G is decomposed into a sum

of the representation of (G′,H):

G =
∑
i

(Li,Ci), (5.1.25)

where G is the adjoint representation of G, Li and Ci are the representations of G′ and H,

respectively. Thus the number of the spin-half particles in Li is given by the index of the

spin-half particles in Ci of K3:

ni =
1

8π2

∫
K3

(
1

2
trCiF

2 − 1

48
dim(Ci) trR

2

)
(5.1.26)

=
ri
8π2

∫
K3

1

2
TrF 2 − dim(Ci), (5.1.27)

where

ri =
trCiF

2

TrF 2
(5.1.28)

is depend only on the representation Ci. The ri is given by Table 5.1.
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G′ ×H ⊂ G = E8 G = 248 trCiF
2

E7 × SU(2) (133,1) + (56,2) + (1,3) tr3F
2 = 4tr2F

2

E6 × SU(3) (78,1) + 2(27,3) + (1,8) tr8F
2 = 6tr3F

2

SO(12)× (SU(2)× SU(2))
(66, (1,1)) + (32, (2,1)) + (32, (1,2))

+(12, (2,2)) + (1, (3,1)) + (1, (1,3))

tr(2,2)F
2 = 2(tr(2,1)F

2 + tr(1,2)F
2)

tr(3,1)F
2 = 4tr(2,1)F

2

SO(10)× SU(4) (45,1) + (16,4) + (10,6) + (1,15)
tr6F

2 = 2tr4F
2

tr15F
2 = 8tr4F

2

SO(8)× SO(8) (28,1) + 3(8,8) + (1,28) tr28F
2 = 6tr8F

2

SU(6)× (SU(2)× SU(3))
(35, (1,1)) + (20, (2,1)) + 2(15, (1,3))

+2(6, (2,3)) + (1, (3,1)) + (1, (1,8))

tr(3,1)F
2 = 4tr(2,1)F

2

tr(1,8)F
2 = 6tr(1,3)F

2

tr(2,3)F
2 = 3tr(2,1)F

2 + 2tr(1,3)F
2

SU(5)× SU(5) (24,1) + 2(5,10) + 2(10,5) + (1,24)
tr10F

2 = 3tr5F
2

tr24F
2 = 10tr5F

2

SU(4)× SO(10) (15,1) + (6,10) + (4,16) + (1,45)
tr16F

2 = 2tr10F
2

tr45F
2 = 8tr10F

2

SU(3)× E6 (8,1) + 2(3,27) + (1,78) tr78F
2 = 4tr27F

2

SU(2)× E7 (3,1) + (2,56) + (1,133) tr133F
2 = 4tr56F

2

Table 5.1: The decompositions of the adjoint representation of E8.

When the gauge field F has 12+n instantons in E8, the number of the hypermultiplet is

given by

ni = 30ri(12 + n)− dim(Ci). (5.1.29)

We summarize the numbers of the charged hypermultiplets and the neutral (singlet) hyper-

multiplets in Table 5.2. Note that H consists of the direct product of the two groups for the

cases of G′ = SO(12) and SU(6). This is the reason why there is the parameter r in the case

of rank 6 in Table 5.2, that is, we denote the instanton numbers of SU(2) and SU(3) as 4+ r

and 8 + n− r, respectively.

Let us see the case of SU(2), which we considered in the previous subsection from the
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point of view of F-theory. We see that the numbers of the charged and the neutral hypermul-

tiplets in Table 5.2 coincide with n
(charged)
H and n

(neutral)
H that are derived from the F-theory

compactification on the Calabi-Yau three-fold.

Finally, we consider anomaly cancellation in six dimensions. The condition of anomaly

cancellation is given by

H − V = 273− 29T, (5.1.30)

where H, V and T are the numbers of hypermultiplets, vector multiplets and tensor multi-

plets, respectively. The tensor multiplet comes from the gravity multiplet in ten dimensions,

so that T = 1. H includes 20 hypers which come from the gravity multiplet. For each E8

which has 12 + n or 12− n instantons, the conditions of anomaly cancellation are

nH − nV = 112 + 30n or 112− 30n. (5.1.31)

For the SU(2) case, according to (5.1.22), nH = 30n+115, and nV = 3. We can see that the

condition of anomaly cancellation is satisfied.
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Gauge group Charged hypers Neutral hypers

E7

(
n+8
2

)
56 2n+ 21

E6 × U(1)
(
n+8
2

)
(27+ 27+ 1+ 1) 2n+ 21

SO(12)× SU(2)
(
n+8
2

)
[(32,1) + (12,2)] 2n+ 21

E6 (n+ 6)27 3n+ 28

SO(10)× U(1) (n+ 6)(16+ 10+ 1) 3n+ 28

SU(6)× SU(2) (n+ 6)[(6,2) + (15,1)] 3n+ 28

SO(12)
(
n+4
2

)
32+ (n+ 8)12 2n+ 18

SU(6)× U(1)
(
n+4
2

)
(15+ 15+ 1+ 1) + (n+ 8)(6+ 6) 2n+ 18

SO(10)× U(1)
(
n+4
2

)
(16+ 16) + (n+ 8)(10+ 1+ 1) 2n+ 18

SO(10) (n+ 4)16+ (n+ 6)10 4n+ 33

SU(5)× U(1) (n+ 4)(10+ 5+ 1) + (n+ 6)(5+ 5) 4n+ 33

SO(8)× U(1) (n+ 4)(8c + 8s) + (n+ 6)(8v + 1+ 1) 4n+ 33

SU(6)
(
r
2

)
20+ (16 + r + 2n)6+ (2 + n− r)15 3n− r + 21

SU(5)× U(1)
(
r
2

)
(10+ 10) + (16 + r + 2n)(5+ 1) + (2 + n− r)(10+ 5) 3n− r + 21

SO(8) (n+ 4)(8v + 8c + 8s) 6n+ 44

SU(4)× U(1) (n+ 4)[(6+ 1+ 1) + (4+ 4) + (4+ 4)] 6n+ 44

SU(5) (n+ 2)10+ (3n+ 16)5 5n+ 36

SU(4)× U(1) (n+ 2)(6+ 4) + (3n+ 16)(4+ 1) 5n+ 36

SU(4) (n+ 2)6+ (4n+ 16)4 8n+ 51

SU(3)× U(1) (n+ 2)(3+ 3) + (4n+ 16)(3+ 1) 8n+ 51

SU(3) (6n+ 18)3 12n+ 66

SU(2)× U(1) (6n+ 18)(2+ 1) 12n+ 66

SU(2) (6n+ 16)2 18n+ 83

Table 5.2: The number of the hypermultiplets.



66 5.2 Resolutions of Calabi-Yau four-folds from gauge theories

5.2 Resolutions of Calabi-Yau four-folds from gauge theories

As seen in the previous section, matters arise from codimension-two singularities in the F-

theory compactifications. Calabi-Yau three-folds can have codimension-one and two singular-

ities. On the other hand, if we consider more phenomenological physics such as grand unified

theories (GUT), we need to deal with Calabi-Yau four-folds in F-theory. The Calabi-Yau

four-folds can have not only codimension-one and two but also codimension-three singulari-

ties. The codimension-three singularities determine the structure of Yukawa couplings in the

four-dimensional theory that is the theory of the 7-branes world-volume.

Supersymmetric gauge theories are a powerful tool for examining structure of geometry.

Such gauge theories are realized by string theory compactifications on Calabi-Yau manifolds4.

Geometry of Calabi-Yau manifolds associates with their moduli spaces. There are many

related works. [65–68,89–101]

In this section, we consider F/M duality. F-theory compactifications on Calabi-Yau four-

folds are dual to M-theory compactifications on Calabi-Yau four-folds, which present three-

dimensional N = 2 supersymmetric gauge theories. The geometry of the Calabi-Yau four-fold

determine the structure of the gauge theory. In particular, the condimension-one singularity

decides the gauge group, and the network of the small resolution corresponds to the structure

of the classical Coulomb phase since the resolution corresponds to the symmetry breaking

[65,100–102].

As an example, we consider SU(5) gauge theory with Nf chiral multiplets in 5 and

10 representation. We set that masses of the chiral multiplets are zero. In addition, we

assume that there is no classical Chern-Simons term. The vector multiplet in the adjoint

representation includes a real scalar field ϕ. In general, SU(5) gauge group breaks to U(1)4

by the VEVs of the scalar. The Coulomb branch is described by the Weyl chamber. We

choose the fundamental Weyl chamber as

α⃗i · ϕ⃗ > 0, (5.2.1)

4G2 and Spin(7) manifolds are also considered, but we do not discuss such manifolds.
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where α⃗i (i = 1, 2, 3, 4) are the simple roots of SU(5):

α⃗1 = (2,−1, 0, 0), α⃗2 = (−1, 2,−1, 0), α⃗3 = (0,−1, 2,−1), α⃗4 = (0, 0,−1, 2). (5.2.2)

ϕ⃗ = (ϕ1, ϕ2, ϕ3, ϕ4) is the VEV in the Cartan subalgebra of SU(5).

Now we have the chiral multiplets, which make a substructure in the Coulomb branch.

The Lagrangian includes the mass terms of the chiral multiplets Q(f):

Lmass =
∑
f

∣∣∣ϕQ(f)
∣∣∣2 =∑

f

∣∣∣ϕ⃗ · ω⃗f

∣∣∣2 ∣∣∣Q(f)
∣∣∣2 , (5.2.3)

where f = 5 or 10 representation and ω⃗f is its weight. Note that when ϕ⃗ · ω⃗f = 0, the

corresponding matter becomes massless. In the sense of geometry of Calabi-Yau manifolds,

it corresponds to the singularity with higher-codimensions.

Let us classify the region of the Coulomb branch. The region is divided by the zero loci

of ϕ⃗ · ω⃗f , namely, the region is characterized by ϕ⃗ · ω⃗f > 0 or ϕ⃗ · ω⃗f < 0. However, not all the

regions are allowed since we are working on the fundamental Weyl chamber (5.2.1). We show

the consistent phases for 5 representation in Table 5.3 and for 10 representation in Table

5.4. We have four phases in 5 representation and eight phases in 10 representation. When

we obtain the tables, we use the weights for 5 representation,

ω⃗5
1 = (1, 0, 0, 0), ω⃗5

2 = (−1, 1, 0, 0), ω⃗5
3 = (0,−1, 1, 0),

ω⃗5
4 = (0, 0,−1, 1), ω⃗5

5 = (0, 0, 0,−1),
(5.2.4)

and for 10 representation,

ω⃗10
1 = (0, 1, 0, 0), ω⃗10

2 = (1,−1, 1, 0), ω⃗10
3 = (1, 0,−1, 1), ω⃗10

4 = (1, 0, 0,−1),

ω⃗10
5 = (−1, 0, 1, 0), ω⃗10

6 = (−1, 1,−1, 1), ω⃗10
7 = (−1, 1, 0,−1),

ω⃗10
8 = (0,−1, 0, 1), ω⃗10

9 = (0,−1, 1,−1), ω⃗10
10 = (0, 0,−1, 0).

(5.2.5)

Since we have the matters in both 5 and 10 representation in the gauge theory, we need

to combine the two phases for 5 representation and for 10 representation. However, not all

combinations are allowed. For instance, let us consider the combination of I5 and I10. We

find that the phase I5 implies

0 < ϕ1 < ϕ2 < ϕ3 < ϕ4. (5.2.6)
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ω⃗5
1 ω⃗5

2 ω⃗5
3 ω⃗5

4 ω⃗5
5

I5 + + + + −
II5 + + + − −
III5 + + − − −
IV5 + − − − −

Table 5.3: The phases for 5 representation.

ω⃗10
1 ω⃗10

2 ω⃗10
3 ω⃗10

4 ω⃗10
5 ω⃗10

6 ω⃗10
7 ω⃗10

8 ω⃗10
9 ω⃗10

10

I10 + + + + + + + − − −
II10 + + + + + + − − − −
III10 + + + + + − − − − −
IV10 + + + + − − − − − −
V10 + + + − + + − + − −
VI10 + + + − + + − − − −
VII10 + + + − + − − − − −
VIII10 + + − − + − − − − −

Table 5.4: The phases for 10 representation.

On the other hand, the condition ϕ⃗ · ω⃗10
4 > 0 in the phase I10 provides

ϕ1 > ϕ4, (5.2.7)

so that the combination of I5 and I10 is empty. The combinations that are not empty are

shown in Table 5.5. We have twelve phases, which correspond to the different resolutions of

the Calabi-Yau four-fold in the geometric sense.

1 2 3 4 5 6 7 8 9 10 11 12

5 III5 III5 II5 III5 III5 IV5 I5 II5 II5 III5 II5 II5

10 I10 II10 III10 III10 IV10 IV10 V10 V10 VI10 VI10 VII10 VIII10

Table 5.5: The possible phases.



CHAPTER 5. HIGHER-CODIMENSION SINGULARITIES 69

The boundaries of the phases are codimension-one surface where ϕ⃗ · g⃗ = 0, that is, the

phases are cones. The cones are defined as ϕ⃗ · g⃗i > 0, where g⃗i with i = 1, 2, 3, 4 are the four

generators. For each phase, we find the generators in Table 5.6. For example, the phase 1 is

represented by

ϕ · (2,−1, 0, 0) > 0, ϕ · (0,−1, 2,−1) > 0, ϕ · (0, 0,−1, 2) > 0, ϕ · (−1, 1, 0,−1) > 0. (5.2.8)

Phase Generators

1 (2,−1, 0, 0), (0,−1, 2,−1), (0, 0,−1, 2), (−1, 1, 0,−1)

2 (0,−1, 2,−1), (1, 0, 0,−1), (−1, 1,−1, 1), (1,−1, 0, 1)

3 (−1, 2,−1, 0), (0, 0,−1, 2), (1, 0, 0,−1), (0,−1, 1, 0)

4 (0, 0,−1, 2), (−1, 0, 1, 0), (1,−1, 1,−1), (0, 1,−1, 0)

5 (0,−1, 2,−1), (0, 0,−1, 2), (−1, 1, 0, 0), (1, 0,−1, 0)

6 (−1, 2,−1, 0), (0,−1, 2,−1), (0, 0,−1, 2), (1,−1, 0, 0)

7 (2,−1, 0, 0), (−1, 2,−1, 0), (0,−1, 2,−1), (0, 0,−1, 1)

8 (2,−1, 0, 0), (−1, 2,−1, 0), (0, 0, 1,−1), (0,−1, 0, 1)

9 (2,−1, 0, 0), (−1, 1,−1, 1), (0,−1, 1, 0), (0, 1, 0,−1)

10 (2,−1, 0, 0), (0,−1, 2,−1), (−1, 0, 0, 1), (0, 1− 1, 0)

11 (−1, 2,−1, 0), (1, 0,−1, 1), (−1, 0, 0, 1), (1,−1, 1,−1)

12 (2,−1, 0, 0), (−1, 2− 1, 0), (0, 0,−1, 2), (−1, 0, 1,−1)

Table 5.6: The generators of the phases.

The two phases that share the same boundary are adjacent. The two adjacent phases have

the generator with the opposite sign each other. For example, the phase 1 and 2 are adjacent.

The phase 1 has the generator g⃗
(1)
4 = (−1, 1, 0,−1), and the phase 2 has g⃗

(2)
4 = (1,−1, 0, 1),

namely, g⃗
(1)
4 = −g⃗

(2)
4 . The phase 1 and 2 share the same boundary represented by

ϕ⃗ · (−1, 1, 0,−1) = 0. (5.2.9)

In Fig. 5.1, We draw the network of the relations between each phase. The connected two
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phases are adjacent. In the Calabi-Yau four-fold, the adjacent phases are related by flop

transitions.

Investigating the Coulomb branch of three-dimensional N = 2 gauge theories, we can

classify resolutions of Calabi-Yau four-folds. In the case of SU(5), we find the twelve phases.

Each phase corresponds to the different resolutions of the Calabi-Yau manifold. All of the

resolutions are realized by the toric resolutions, the algebraic resolutions and its flop tran-

sitions in [65]. The allowed regions of the Coulomb branch are completely classified by the

decorated box graph [66–68]. The box graph is constructed by boxes with signs (or color).

Fig. 5.1: The network of phases of SU(5) gauge theory.



Chapter 6

Half-hypermultiplets and
incomplete/complete resolutions

6.1 Half-hypermultiplets in six-dimensional F-theory

Half-hypermultiplets arise when the unbroken gauge group is SU(6), SO(12) or E7 [53–55,

57,60]. These models can be systematically obtained by tuning the complex structure of the

SU(5) model.

We start with the six-dimensional compactification on F-theory on an elliptically Calabi-

Yau three-fold over a Hirzebruch sursface Fn [53, 54]. Let z, s be affine coordinates of the

fiber and base P 1’s, respectively1. The Weierstrass equation

y2 = x3 + f(z, s)x+ g(z, s) (6.1.1)

develops an SU(5) singularity if [55]

f(z, s) =− 3h4n+2 + 12h2n+2Hn+4z − 12
(
H2

n+4 − hn+2qn+6

)
z2 + fn+8z

3 + f8z
4, (6.1.2)

g(z, s) =2h6n+2 − 12h4n+2Hn+4z +
(
24h2n+2H

2
n+4 − 12h3n+2qn+6

)
z2

+
(
−fn+8h

2
n+2 + 24hn+2Hn+4qn+6 − 16H3

n+4

)
z3

+
(
−f8h

2
n+2 + 2fn+8Hn+4 + 12q2n+6

)
z4 + gn+12z

5 + g12z
6,

(6.1.3)

1In Chapter 5, we denoted s as z′.

71
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where hn+2, Hn+4, qn+6, fn+8 and gn+12 are polynomials of s of degrees specified by the

subscripts. This Calabi-Yau three-fold admits a K3 fibration, and we work with one of the

rational elliptic surfaces in the stable degeneration limit of the K3 so that the orders of

the polynomials f(z, s) and g(z, s) are truncated at z4 and z6, respectively. This suffices

since the anomalies cancel for each E8 gauge group, and also we are interested in the local

structure of the singularity. x and y are then taken to be sections of O(2(−KFn − C0)) and

O(3(−KFn−C0)), where C0 is a divisor class with C2
0 = −n, satisfying −KFn = 2C0+(2+n)f

with the fiber class f . Similar modifications are necessary for f(z, z′) and g(z, z′). This

deviation from the anti-canonical class (and hence from a Calabi-Yau) is because we consider

a rational-elliptic-surface fibration.

The Weierstrass equation (6.1.1) with (6.1.2) and (6.1.3) can be written in Tate’s form as

y′2 + x′3 + α4z
4x′ + α6z

6 + a0z
5 + a2z

3x′ + a3z
2y′ + a4zx

′2 + a5x
′y′ = 0 (6.1.4)

with

a0 = gn+12 − 2Hn+4f8, a2 = fn+8, a3 = 4
√
3iqn+6,

a4 = −6Hn+4, a5 = 2
√
3ihn+2, α4 = f8, α6 = g12.

(6.1.5)

For completeness we write x, y in (6.1.1) in terms of x′, y′ in (6.1.4):

x =x′ +
1

3

(
a4z −

1

4
a25

)
,

y =i

(
y′ +

1

2

(
a5x+ a3z

2
))

.

(6.1.6)

6.1.1 SU(6)

To obtain an equation for SU(6) gauge group, which yields half-hypermultiplets, we set [55]

hn+2 = trhn+2−r,

Hn+4 = trHn+4−r,

qn+6 = ur+4hn+2−r,

fn+8 = trfn+8−r − 12ur+4Hn+4−r,

gn+12 = 2(ur+4fn−r+8 + f8trHn−r+4).

(6.1.7)



CHAPTER 6. HALF-HYPERMULTIPLETS AND INCOMPLETE/COMPLETE
RESOLUTIONS 73

Then the spectral cover factorizes as

0 = a0z
5 + a2z

3x′ + a3z
2y′ + a4zx

′2 + a5x
′y′

=
(
x′tr + 2z2ur+4

) (
z3fn−r+8 + 2i

√
3y′hn−r+2 − 6zx′Hn−r+4

)
,

(6.1.8)

indicating that the SU(5) instanton is reduced to an SU(3)×SU(2) instanton in the heterotic

dual. In this specification f(z, z′) and g(z, z′) become

fSU(6)(z, s) =− 3t4rh
4
n−r+2 + 12zt3rh

2
n−r+2Hn−r+4 + z2

(
12trur+4h

2
n−r+2 − 12t2rH

2
n−r+4

)
+ z3 (trfn−r+8 − 12ur+4Hn−r+4) + f8z

4,

(6.1.9)

and

gSU(6)(z, s) =2t6rh
6
n−r+2 − 12zt5rh

4
n−r+2Hn−r+4

+ z2
(
24t4rh

2
n−r+2H

2
n−r+4 − 12t3rur+4h

4
n−r+2

)
+ z3

(
−t3rfn−r+8h

2
n−r+2 + 36t2rur+4h

2
n−r+2Hn−r+4 − 16t3rH

3
n−r+4

)
+ z4

(
−f8t

2
rh

2
n−r+2 + 2t2rfn−r+8Hn−r+4 + 12u2r+4h

2
n−r+2 − 24trur+4H

2
n−r+4

)
+ z5 (2f8trHn−r+4 + 2ur+4fn−r+8) + g12z

6.

(6.1.10)

The discriminant reads

∆SU(6) =9z6t3rh
4
n−r+2

(
t3r
(
12g12h

2
n−r+2 − f2

n−r+8

)
+ t2r

(
−24f8ur+4h

2
n−r+2 − 24ur+4fn−r+8Hn−r+4

)
−144tru

2
r+4H

2
n−r+4 − 96u3r+4h

2
n−r+2

)
+O(z7).

(6.1.11)

Thus the Weierstrass model with (6.1.9),(6.1.10) indeed has a codimension-one SU(6) singu-

larity along z = 0.

The zero loci of tr are the points where the SU(6) singularity is enhanced to E6, those of

hn−r+2 are the ones to D6, and those of the remaining factor of degree 2n + r + 16 are the

ones to A6. They respectively yield r half-hypermultiplets in 20, n− r+2 hypermultiplets in

15 and 2n+ r + 16 hypermultiplets in 6.

The number of the complex structure moduli is 3n−r+21, which satisfies the anomaly-free

constraint

nH − nV =20 · r
2
+ 15(n− r + 2) + 6(2n+ r + 16) + 3n− r + 21 − 35

=30n+ 112.
(6.1.12)
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Note that this condition does not hold if the multiplets in 20 are ordinary hypermultiplets.

6.1.2 SO(12)

To further obtain an equation for SO(12) gauge group, one only needs to set hn+2−r = 0 in

(6.1.7). The spectral cover is now

(
x′tr + 2z2ur+4

)(
x′Hn−r+4 −

1

6
z2fn−r+8

)
= 0. (6.1.13)

These factors are in the same form, corresponding to two SU(2)’s of the instanton gauge

group of the heterotic theory.

Then f(z, s) and g(z, s) are

fSO(12)(z, s) = −12z2t2rH
2
n−r+4 + z3 (trfn−r+8 − 12ur+4Hn−r+4) + f8z

4, (6.1.14)

and

gSO(12)(z, s) =− 16z3t3rH
3
n−r+4 + 2z4

(
t2rfn−r+8Hn−r+4 − 12trur+4H

2
n−r+4

)
+ 2z5 (f8trHn−r+4 + ur+4fn−r+8) + g12z

6.
(6.1.15)

The discriminant is given by

∆SO(12) = −36z8t2rH
2
n−r+4 (trfn−r+8 + 12ur+4Hn−r+4)

2 +O(z9). (6.1.16)

The zero loci of both tr and Hn−r+4 give rise to E7 singularities to yield n + 4 half-

hypermultiplets. The loci of the remaining factor are A7 singularities, giving n + 8 hypers

in 12. With additional neutral hypermultipltets from the 2n+18 complex structure moduli,

we have

nH − nV = 32 · n+ 4

2
+ 12(n+ 8) + 2n+ 18 − 66

= 30n+ 112
(6.1.17)

as it should be. Again, if 32 is not a half-hyper, the anomaly does not cancel.
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6.1.3 E7

Finally, the E7 model can be obtained by setting Hn−r+4 = 0 in the SO(12) model. This

amounts to set hn+2 = Hn+4 = qn+6 = 0 in the SU(5) model. The gauge group of the

heterotic vector bundle is SU(2). f(z, s) and g(z, s) are simply given by

fE7(z, s) = fn+8z
3 + f8z

4, (6.1.18)

and

gE7(z, s) = gn+12z
5 + g12z

6. (6.1.19)

The discriminant is

∆E7 = 4f3
n+8z

9 +O(z10) (6.1.20)

implies that n+ 8 half-hypermultiplets in 56 of E7 arise. Again they must be half-hyper as

nH − nV =56 · n+ 8

2
+ 2n+ 21− 133

=30n+ 112.
(6.1.21)

6.2 Incomplete resolution: D6 → E7

In this section, we concentrate on the incomplete resolution of the case of D6 → E7 [69]. We

consider a Weierstrass model on a base two-fold B2 with local coordinates {z, s}, where the

codimension one singularity arises along z = 0 and the codimension-two singularity arises at

s = 0 on the z = 0 complex line.

6.2.1 Blowing up p1 first

We consider the model

Φ(x, y, z, s) = −y2 + x3 + f(z, s)x+ g(z, s) = 0, (6.2.1)

where

f(z, s) = −3s2z2 + z3,

g(z, s) = 2s3z3 − sz4.
(6.2.2)
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At s ̸= 0, the orders of f , g and the discriminant ∆ in z are (2, 3, 6), while at s = 0, they

are (3,∞, 9). Therefore (6.2.2) describes the enhancement I∗2 → IV ∗ of the Kodaira type,

satisfying the requirement.

1st blow up

With (6.2.2), Equation (6.2.1) reads

Φ(x, y, z, s) = xz2(z − 3s2) + sz3(2s2 − z) + x3 − y2 = 0. (6.2.3)

This model has a codimension-one singularity at (0, 0, 0, s). We blow up this by replacing

the complex line (x, y, z) = (0, 0, 0) with P 2 × C in C4 by passing to the following charts

corresponding to three affine patches of P 2 for fixed s.

Chart 1x

The Calabi-Yau three-fold that is blown up is given by

Φ(x, xy1, xz1, s) = x2Φx(x, y1, z1, s), (6.2.4)

where

Φx(x, y1, z1, s) = x2
(
z31 − sz41

)
+ x (sz1 − 1)2 (2sz1 + 1)− y21. (6.2.5)

The exceptional curve C1 and the singularities are

C1 in 1x : x = 0, y1 = 0. (6.2.6)

Singularities : (x, y1, z1, s) =

(
0, 0,

1

s
, s

)
,

(
0, 0,− 1

2s
, s

)
. (6.2.7)

These singularities are of codimension-one, which we refer to as p1 and q1, respectively.

Chart 1y

Φ(x1y, y, yz1, s) = y2Φy(x1, y, z1, s), (6.2.8)

Φy(x1, y, z1, s) = 2s3yz31 + x1yz
2
1

(
yz1 − 3s2

)
− sy2z41 + x31y − 1, (6.2.9)

C1 in 1y : Invisible in this patch, (6.2.10)

Singularities : None. (6.2.11)



CHAPTER 6. HALF-HYPERMULTIPLETS AND INCOMPLETE/COMPLETE
RESOLUTIONS 77

In chart 1y, the exceptional curve cannot be seen, and hence has no singularity.

Chart 1z

Φ(x1z, y1z, z, s) = z2Φz(x1, y1, z, s), (6.2.12)

Φz(x1, y1, z, s) = z
(
2s3 − 3s2x1 − sz + x31 + x1z

)
− y21 (6.2.13)

C1 in 1z : : z = 0, y1 = 0. (6.2.14)

Singularities : (x1, y1, z, s) = (s, 0, 0, s), (−2s, 0, 0, s). (6.2.15)

The two singularities are the same as (6.2.7). The first singularity is p1, while the second is

q1.

2nd blow up

In the 1st blow up, we have found two singularities. There are two ways to resolve them.

Either we blow up at p1 first, or we do at q1 first. In this subsection, let us blow up at p1

first.

In order to blow up the singularities of Φz(x1, y1, z, s) = 0 at p1, we shift the coordinate

x1 so that the singularity comes to (0, 0, 0, s). Defining

Ψz(x̃1, y1, z, s) = Φz(x̃1 + s, y1, z, s), (6.2.16)

the singularities of Ψt(x̃1, y1, z, s) are now at (0, 0, 0, s) (= p1) and (−3s, 0, 0, s) (= q1). We

blow up the singularities of Ψz(x̃1, y1, z, s) at (0, 0, 0, s).

Chart 2zx

Ψz(x̃1, x̃1y2, x̃1z2, s) = x̃21Ψzx(x̃1, y2, z2, s), (6.2.17)

Ψzx(x̃1, y2, z2, s) = x̃1z2(3s+ x̃1 + z2)− y22. (6.2.18)

C2 in 2zx : x̃1 = 0, y2 = 0. (6.2.19)

Singularities : (x̃1, y2, z2, s) = (0, 0, 0, s), (0, 0,−3s, s), (−3s, 0, 0, s). (6.2.20)
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We find three singularities in this chart, and we name the first singularity (0, 0, 0, s) as q2

and the second one (0, 0,−3s, s) as r2, respectively. The third one is the same as q1.

Chart 2zy

In this chart, we do not have singularities.

Chart 2zz

Ψz(x̃2z, y2z, z, s) = z2Ψzz(x̃2, y2, z, s), (6.2.21)

Ψzz(x̃2, y2, z, s) = x̃2z
(
3sx̃2 + x̃22z + 1

)
− y22, (6.2.22)

C2 in 2zz : z = 0, y2 = 0, (6.2.23)

Singularities : (x̃2, y2, z, s) = (0, 0, 0, s),

(
− 1

3s
, 0, 0, s

)
. (6.2.24)

We observe two singularities. The former, we denote as q2, is one which can only be seen in

this chart, while the latter is r2 already seen in chart 2zx.

3rd blow up

We blow up the singularities of Ψzx(x̃1, y2, z2, s) = 0 at p2:

Chart 3zxx

Ψzx(x̃1, x̃1y3, x̃1z3, s) = x̃21Ψzxx(x̃1, y3, z3, s), (6.2.25)

Ψzxx(x̃1, y3, z3, s) = z3(3s+ x̃1z3 + x̃1)− y23, (6.2.26)

C3 in 3zxx : x̃1 = 0, y23 = 3sz3, (6.2.27)

Singularities : (x̃1, y3, z3, s) = (−3s, 0, 0, s). (6.2.28)

The singularity is q1, which we have already seen in Chart 1x and 1z. If s ̸= 0, this singularity

is not on the exceptional curve C3.
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Chart 3zxz

Ψzx(x̃3z2, y3z2, z2, s) = z22Ψzxz(x̃3, y3, z2, s), (6.2.29)

Ψzxz(x̃3, y3, z2, s) = 3sx̃3 + x̃3(x̃3 + 1)z2 − y23, (6.2.30)

C3 in 3zxz : z2 = 0, y23 = 3sx̃3, (6.2.31)

Singularities : (x̃3, y3, z2, s) = (0, 0,−3s, s) = r2. (6.2.32)

This singularity is also not on C3 when s ̸= 0.

Therefore, there are no singularities on C3 when s ̸= 0. This is the reason why the reso-

lution is incomplete; in the complete case there appears another codimension-two singularity

on C3 so that the intersection diagram acquires an additional node to comprise the E7 Dynkin

diagram.

The remaining singularities are resolved by blowing up at r2, q1 and q2, which are all

codimension-one. Since r2 and q1 are different points on C3, while q2 is not on C3 but on C2,

they can be independently blown up.

The whole process of blowing up is summarized in Table 6.1.

1st blow up 2nd blow up 3rd blow up 4th blow up
◦
p0 → ◦

p1 (s : 0 : 1) → ◦
p2 (1 : 0 : 0) (in 2zx) → regular

q1 (−2s : 0 : 1) q1 (1 : 0 : 0) (x̃1 = −3s)
◦
q1 (1 : 0 : 0) (x̃1 = −3s) → regular

r2(1 : 0 : −3s)
◦
r2 (0 : 0 : 1) (z2 = −3s) → regular

◦
q2 (0 : 0 : 1) (in 2zz) → regular

Table 6.1: The incomplete case when p1 is blown up first. The singularities appearing at
each step of the process are shown with their homogeneous coordinates on P 2. The ones
marked by a circle are those blown up at the subsequent processes. p0 denotes the original
singularity on the fiber. The notes in the parentheses (such as x̃1 = −3s for q1) imply that
they are not generically (i.e. unless s ̸= 0) the points on the P 2 arising at the respective step
of the blowing-up process.
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6.2.2 Exceptional curves at s = 0: change from a root into a weight

Their intersection diagram is D6 for s ̸= 0 (upper diagram in Fig. 6.1). On the other hand,

when s = 0, the singular point r2 coincides with the intersection of C2 and C3. q1 also coincides
with the intersection of C1 and C3. Then the exceptional curve arising from the blowing up

at r2 “bridges” between C2 and C3, and the one at q1 does between C1 and C3. Writing the

exceptional curves for s = 0 as δi (i = 1, 2, 3), δr2 , δq1 and δq2 , we can express them in terms

of C’s as in [57]:

Cq1 = δq1 , C1 = δ1, C2 = δ2, C3 = 2δ3 + δq1 + δr2 , Cr2 = δr2 , Cq2 = δq2 . (6.2.33)

These expressions can be found by carefully up-lifting C’s to the chart introduced in a further

blow-up and taking the s → 0 limit. For instance, Cr2 is the exceptional curve arising from

the blow-up at r2:

Chart 4zxzx

Υzxz(x̃3, y3, z̃2, s) = Ψzxz(x̃3, y3, z̃2 − 3s, s), (6.2.34)

Υzxz(x̃3, x̃3y4, x̃3z̃4, s) = x̃23Υzxzx(x̃3, y4, z̃4, s)

= x̃23
(
x̃3z̃4 − 3s+ z̃4 − y24

)
,

(6.2.35)

Cr2 in 4zxzx : x̃3 = 0, y24 = z̃4 − 3s. (6.2.36)

Singularities : None. (6.2.37)

δr2 is the exceptional curve obtained by taking the s → 0 limit in Cr2 :

δr2 in 4zxzx : x̃3 = 0, y24 = z̃4. (6.2.38)

On the other hand, C3 is

z2 = 0, y23 = 3sx̃3 (6.2.39)

in Chart 3zxz, and hence y24 = z̃4 in Chart 4zxzx; this coincides with δr2 (6.2.38). Thus we

conclude that C3 “contains” δr2 . Likewise, we can verify that C3 also contains δq1 . Finally, C3
reduces in the s → 0 limit to y23 = 0 which has multiplicity two, we obtain the expression for

C3 in (6.2.33).
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Fig. 6.1: The intersection diagrams of the exceptional curve C’s and δ’s. We blew up the
singularity p1 first.

Using the fact that the intersection matrix of C’s is the minus of the SO(12) Cartan

matrix:

−CI · CJ =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2

 , (6.2.40)

where I, J = q1, 1, 3, 2, r2, q2. We can obtain by using (6.2.33) the intersection matrix of δ’s:

−δI · δJ =



2 −1 −1 0 0 0
−1 2 0 0 0 0
−1 0 3

2 0 −1 0
0 0 0 2 −1 −1
0 0 −1 −1 2 0
0 0 0 −1 0 2

 . (6.2.41)



82 6.2 Incomplete resolution: D6 → E7

Interestingly, as was observed in [57], the self-intersection of one of the exceptional curves

(δ3) is −3/2, which is the minus of the length squared of a weight in the spinor representation

of SO(12). Thus we see that at a generic s ̸= 0 codimension-one locus of the singularity the

exceptional fibers after the resolutions form a root system of SO(12), but at s = 0 one of the

simple roots is transmuted to a weight in the spinor representation. A similar but slightly

different observation was made in [66].

These δ’s form a basis of the two-cycles appearing at the codimension-two singularity after

the resolution. On the lattice spanned by these δ’s, there are precisely 32 points of length

squared 3/2. They are of the form
∑

I=q1,1,3,2,r2,q2
nIδI with either nI ≥ 0 for all I, or nI ≤ 0

for all I. Note that, unlike in the the cases of the ordinary or the complete resolutions, there

appears only one irreducible representation (= 32) in the integer span of the two-cycles at

the singularity.

6.2.3 Blowing up q1 first

In Section 6.2.1, between the two singularities, p1 was blown up first. In this section, let us

blow up q1 first and see the differences. This time we make a shift of the coordinate x1 so

that q1 comes to (0, 0, 0, s): We define

Σz(x̃1, y1, z, s) ≡ Φz(x̃1 − 2s, y1, z, s), (6.2.42)

Σz(x̃1, y1, z, s) = 0 has singularities (3s, 0, 0, s) (= p1) and (0, 0, 0, s) (= q1). We blow up the

latter singularity. The process is completely parallel to that in Section 6.2.1 so we will only

describe the relevant charts and show the main differences from the previous case.

2nd blow up

Chart 2zx

Σz(x̃1, x̃1y2, x̃1z2, s) = x̃21Σzx(x̃1, y2, z2, s), (6.2.43)

Σzx(x̃1, y2, z2, s) = z2(3s− x̃1)(3s− x̃1 − z2)− y22, (6.2.44)

C2 in 2zx : x̃1 = 0, y22 = 3sz2(3s− z2), (6.2.45)

Singularities : (x̃1, y2, z2, s) = (3s, 0, 0, s) = p1. (6.2.46)
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There are no other singularities in chart 2zy or 2zz, so we blow up p1 in chart 2zx. Again, we

need to shift the coordinate so that the singularity we now blow up comes to the origin:

Ξzx(x̄1, y2, z2, s) ≡ Σzx(x̄1 + 3s, y2, z2, s). (6.2.47)

3rd blow up

The relevant charts are 3zxx and 3zxz.

Chart 3zxx

Ξzx(x̄1, x̄1y3, x̄1z3, s) = x̄21Ξzxx(x̄1, y3, z3, s), (6.2.48)

Ξzxx(x̄1, y3, z3, s) = x̄1z3(z3 + 1)− y23, (6.2.49)

C3 in 3zxx : x̄1 = 0, y3 = 0, (6.2.50)

Singularities : (x̄1, y3, z3, s) = (0, 0,−1, s) = r2, (0, 0, 0, s) = p2. (6.2.51)

Chart 3zxz

Ξzx(x̄3z2, y3z2, z2, s) = z22Ξzxz(x̄3, y3, z2, s), (6.2.52)

Ξzxz(x̄3, y3, z2, s) = x̄3(x̄3 + 1)− y23, (6.2.53)

C3 in 3zxz : z2 = 0, y3 = 0, (6.2.54)

Singularities : (x̄3, y3, z2, s) = (−1, 0, 0, s) = r2, (0, 0, 0, s) = q2. (6.2.55)

The process of blowing up is summarized in Table 6.2.

6.2.4 Exceptional curves at s = 0: Differences from the p1-first case

δ’s C’s for the q1-first case are given by

C2 = 2δ2 + δp2 + 2δ3 + 2δq2 + δr2 , C1 = δ1, Cp2 = δp2 , C3 = δ3, Cq2 = δq2 , Cr2 = δr2 .
(6.2.56)



84 6.3 Complete resolution: D6 → E7

1st blow up 2nd blow up 3rd blow up 4th blow up
◦
p0 → ◦

q1 (−2s : 0 : 1) → regular

p1 (s : 0 : 1)
◦
p1 (1 : 0 : 0) (x̃1 = 3s) → ◦

p2 (1 : 0 : 0) → regular
◦
q2 (0 : 0 : 1) → regular
◦
r2 (1 : 0 : −1) → regular

Table 6.2: The incomplete case when q1 is blown up first.

The intersection matrix of CI ’s is (6.2.40) with I, J = 2, 1, p2, 3, q2, r2. Then (6.2.56) yields

the intersections of δI ’s as

−δI · δJ =



3
2 0 0 0 −1 0
0 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
−1 0 0 −1 2 0
0 0 0 −1 0 2

 . (6.2.57)

In this case, we obtain an E6-like diagram as one representing the intersections of the ex-

ceptional curves (6.2.57) at the codimension-two singularity. (6.2.57) is not, however, the E6

Cartan matrix itself, as the self-intersection of δ1 is −3/2. We show the intersection diagrams

of this case in Fig. 6.2.

We can search for the elements of the form
∑

I=q1,1,3,2,r2,q2
nIδI whose square is −3/2 to

find, again, that there are 16 + 16 such elements, the former of which have nI ≥ 0 for all I,

and the latter of which have nI ≤ 0 for all I. Thus, in this case as well, there is only one

irreducible representation (= 32) at the singularity.

6.3 Complete resolution: D6 → E7

In this case we set Hn+4 = s2 with other parameters being the same as the previous section.

The blow-up procedures are almost parallel to the incomplete resolutions, except for the

replacement s → s2.
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Fig. 6.2: The intersection diagrams of the exceptional curve C’s and δ’s. We blew up the
singularity q1 first.

6.3.1 Blowing up p1 first

In this case, a difference arises in chart 3zxx when p2 is blown up in 2zx, where we have

Ψzx(x̃1, x̃1y3, x̃1z3, s) = x̃21Ψzxx(x̃1, y3, z3, s), (6.3.1)

Ψzxx(x̃1, y3, z3, s) = z3(3s
2 + x̃1z3 + x̃1)− y23, (6.3.2)

C3 in 3zxx : x̃1 = 0, y23 = 3s2z3, (6.3.3)

Singularities : (x̃1, y3, z3, s) = (−3s2, 0, 0, s) = q1, (0, 0,−1, 0) = p3. (6.3.4)

The last one is a new isolated codimension-two singularity, that did not appear in the incom-

plete resolution in the previous section. This isolated singularity can also be seen in chart

3zxz. By a shift of the coordinate we can see that this is a conifold singularity. The excep-

tional curve arising from the small resolution intersects with δ3 at a single point on s = 0,
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which completes an E7 intersection diagram (Fig. 6.3). Note that the extra node extends

from the one represented by a triangle in the incomplete resolution. In the present complete

case, however, this δ3 is naturally considered to have an ordinary sef-intersection number −2

as we will see below.

By carefully examining what becomes of CI ’s in the small resolution, it can be shown that

the relation (6.2.33) is modified to

Cq1 = δq1 , C1 = δ1, C2 = δ2, C3 = 2δ3 + δq1 + δr2 + δcomplete, Cr2 = δr2 , Cq2 = δq2 ,
(6.3.5)

where δcomplete is the new exceptional curve arising from the small resolution of the isolated

conifold singularity. Then assuming the ordinary self-intersection numbers among δ’s as

specified by the E7 Dynkin diagram shown in Fig. 6.3, we find that the intersection matrix

among C’s is computed by (6.3.5) to be precisely the minus of the SO(12) Cartan matrix

(6.2.40).

The process of blowing up in this subsection is summarized in Table 6.3.

1st blow up 2nd blow up 3rd blow up 4th blow up
◦
p0 → ◦

p1 (s2 : 0 : 1) → ◦
p2 (1 : 0 : 0) (in 2zx) →

◦
p3 (1 : 0 : 0; s = 0) (codim.2) → regular

q1 (−2s2 : 0 : 1) q1 (1 : 0 : 0) (x̃1 = −3s2)
◦
q1 (1 : 0 : 0) (x̃1 = −3s2) → regular

r2(1 : 0 : −3s2)
◦
r2 (0 : 0 : 1) (z2 = −3s2) → regular

◦
q2 (0 : 0 : 1) (in 2zz) → regular

Table 6.3: The complete case when p1 is blown up first. The new isolated codimension-two
conifold singularity is shown in red. δ3 is now an ordinary node represented by a circle (cf.
Fig. 6.1).

6.3.2 Blowing up q1 first

When q1 is blown up first, a difference arises this time in chart 2zz, where a conifold singularity

is developed at (x2, y2, z, s) = (0, 0, 0, 0), which we denote by q3 (shown in red in Table 6.4),

where the relation to the coordinates in chart 1z is (x̃1, y1, z, s) = (x̃2z, y2z, z, s). This is also
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Fig. 6.3: The E7 Dynkin diagram obtained by a complete resolution with p1 blow up first.

an isolated codimension-two singularity developed only at s = 0. Since this is in chart 2zz,

this singularity is located at (0 : 0 : 1) on P 2 emerged by the blow up at s = 0. Therefore, it

is not visible in chart 2zx or 3zx∗. Moreover, after the coordinate shift similar to (6.2.42), Ψzx

becomes identical to the incomplete case. Thus the process is the same as the incomplete

case afterwards. Therefore, the only extra exceptional curve is the one arising from the small

resolution of the isolated conifold singularity on δ2. This adds an extra node to the diagram

in the lower panel of Fig. 6.2, as we show in Fig. 6.4. We denote this new curve as δcomplete

here. This is E7, and the extra node again extends from δ2 that was the “weight” node

represented by the triangle in the incomplete case. In the complete resolution, it becomes an

ordinary node with self-intersection −2, being consistent with the modified relation:

C2 = 2δ2 + δp2 + 2δ3 + 2δq2 + δr2 + δcomplete,

C1 = δ1, Cp2 = δp2 , C3 = δ3, Cq2 = δq2 , Cr2 = δr2 ,
(6.3.6)

and the intersection matrix is given by

−δI · δJ =



2 −1 0 0 0 0 0
−1 2 0 0 0 −1 0
0 0 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 −1
0 −1 0 0 −1 2 0
0 0 0 0 −1 0 2


, (6.3.7)
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where I, J = complete, 2, 1, p2, 3, q2, r2. That is, (6.3.6) reproduces the minus of the D6

Cartan matrix as the intersection matrix among C’s if the intersections of δ’s are the ones

specfied by the E7 Dynkin diagram as shown in Fig. 6.4.

1st blow up 2nd blow up 3rd blow up 4th blow up
◦
p0 → ◦

q1 (−2s2 : 0 : 1) → ◦
q3 (0 : 0 : 1; s = 0) (codim.2) → regular

p1 (s2 : 0 : 1)
◦
p1 (1 : 0 : 0) (x̃1 = 3s) → ◦

p2 (1 : 0 : 0) → regular
◦
q2 (0 : 0 : 1) → regular
◦
r2 (1 : 0 : −1) → regular

Table 6.4: The complete case when q1 is blown up first.

Fig. 6.4: The E7 Dynkin diagram obtained by a complete resolution with q1 blow up first.
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Conclusions

In this chapter, we conclude this thesis. We have considered the F-theory compactifications

on the K3 manifolds and the Calabi-Yau manifolds. The compact manifolds in F-theory are

described by elliptic fibrations, and degeneracy of the elliptic curve corresponds to existence of

7-branes. Physics depends on geometry of the compact manifolds, especially its singularities

play important roles.

Codimension-one singularities associate with enhancement of gauge symmetry, which im-

plies a stack of 7-branes. Coexistence of D-branes and non-pure-D7-branes, i.e., (p, q)-brane,

is an essential feature of F-theory. Due to this, the gauge enhancements exhibit not only

SU(N) but also exceptional gauge groups. We can interpret such gauge enhancements as a

spectrum of string junctions. These 7-branes are conventionally described algebraically in

terms of A, B and C-branes. Allowed configurations of the 7-branes are decided by types of

the singularities, which are classified by the Kodaira classification.

In Chapter 4, noticing that all the discriminant loci are on equal footing and there is no a

priori reason to distinguish one from the others, we have considered new complex codimension-

one objects consisting of the zero loci of the coefficient functions f and g of the Weierstrass

equation, which we referred to as an “f -plane” and a “g-plane”, collectively as “elliptic point

planes”. They are two kinds of critical points of a “dessin d’enfant” known in mathematics.

Although they do not carry D-brane charges and do not have non-trivial monodromies,

they play an essential role in achieving a gauge enhancement by altering the monodromies
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around the branes. More precisely, if there are some elliptic point planes, the z-plane is

divided into several cell regions, each of which corresponds to a (half of a) fundamental

region in the preimage of the J-function. A cell region is bounded by several domain walls

extending from these elliptic point planes and D-branes, on which the imaginary part of

the J-function vanishes. In particular, the elliptic point planes extend a special kind of

domain walls, which we call “S-walls”, crossing through which implies that the type IIB

complex string coupling is S-dualized. Consequently, on the z-plane coexist a theory in the

perturbative regime and its nonperturbative S-dual simultaneously. The monodromy around

several 7-branes is thus not just a product of monodromy around each 7-brane any more, but

they get SL(2,Z) conjugated due to the difference of the corresponding fundamental regions

the base points belong to.

In this sense one may say that the nonperturbative properties of F-theory are the conse-

quence of the coexisting “locally S-dualized regions” bounded by the S-walls extended from

the elliptic point planes. In the orientifold limit [72], the D-branes and the elliptic point

planes gather to form a I∗0 singular fiber, so that the S-walls extended from the elliptic point

planes are contracted with each other and confined, so the S-walls are not seen from even a

short distance.

We have also considered singularities of Calabi-Yau manifolds with higher-codimensions.

In particular, F-theory compactifications on elliptic fibered Calabi-Yau three-folds over Hirze-

bruch surfaces, which can have codimension-two singularities, are dual to E8 × E8 heterotic

superstring theory on elliptic fibered K3 surfaces. The codimension-two singularities provide

matter fields in six dimensions.

Comparing to dual heterotic theory, we can establish correspondence between geometry of

the Calabi-Yau three-folds and information of the matters. We have seen that can interpret

the number of the matters as the number of the complex structure moduli, which is the

number of the coefficients in the defining equation.

Geometry of Calabi-Yau manifolds is also investigated from insight of supersymmetric

gauge theories. In Section 5.2, we have focused on Calabi-Yau four-folds. Based on M-theory

compactification, we have provided a brief review of relation between the Coulomb branch of
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three-dimensional N = 2 gauge theory and the resolutions of the Calabi-Yau four-fold.

Moreover, we have examined some special cases such that enhancement of gauge symmetry

is SU(6) → E6, SO(12) → E7 or E7 → E8, which yield hypermultiplets in six-dimensions. In

particular, we have concentrated on the SO(12) → E7 case in Chapter 6. We have performed

explicit blowing-ups and investigated the intersection numbers of the exceptional curves.

In the case of the incomplete resolutions, we observe only codimension-one singularities.

The intersection matrix of the exceptional curves is the SO(12) Cartan matrix rather than

the E7 one. Taking an another definition, we have referred as δ’s, we obtain a fractional

self-intersection number.

For the complete resolutions, the results are completely changed. The codimension-two

singularity appear, and the intersection matrix of the exceptional curves becomes E7 Cartan

matrix. In this case, we have not half-hypers but full-hypers in six-dimensional field theory.

We hope that this result of incomplete and complete resolutions will be understood from

the point of view of elliptic point planes. Besides, we also hope this new way of presenting

the non-localness among 7-branes will be useful for understanding of the structure of higher-

codimension singularities with higher-rank enhancement such as discussed in [43, 53–55, 62,

103].
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Appendix A

The string junctions of E6

We show the complete set of 72 string junctions in the case of E6:

Q1
A Q2

A Q3
A Q4

A Q5
A QB Q1

C Q2
C

1 -1 -1 -1 -1 0 2 1 1

2 -1 -1 -1 0 -1 2 1 1

3 -1 -1 0 -1 -1 2 1 1

4 -1 -1 0 0 0 1 0 1

5 -1 -1 0 0 0 1 1 0

6 -1 0 -1 -1 -1 2 1 1

7 -1 0 -1 0 0 1 0 1

8 -1 0 -1 0 0 1 1 0

9 -1 0 0 -1 0 1 0 1

10 -1 0 0 -1 0 1 1 0

11 -1 0 0 0 -1 1 0 1

12 -1 0 0 0 -1 1 1 0

13 -1 0 0 0 1 0 0 0

14 -1 0 0 1 0 0 0 0

15 -1 0 1 0 0 0 0 0

16 -1 1 0 0 0 0 0 0
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Q1
A Q2

A Q3
A Q4

A Q5
A QB Q1

C Q2
C

17 0 -1 -1 -1 -1 2 1 1

18 0 -1 -1 0 0 1 0 1

19 0 -1 -1 0 0 1 1 0

20 0 -1 0 -1 0 1 0 1

21 0 -1 0 -1 0 1 1 0

22 0 -1 0 0 -1 1 0 1

23 0 -1 0 0 -1 1 1 0

24 0 -1 0 0 1 0 0 0

25 0 -1 0 1 0 0 0 0

26 0 -1 1 0 0 0 0 0

27 0 0 -1 -1 0 1 0 1

28 0 0 -1 -1 0 1 1 0

29 0 0 -1 0 -1 1 0 1

30 0 0 -1 0 -1 1 1 0

31 0 0 -1 0 1 0 0 0

32 0 0 -1 1 0 0 0 0

33 0 0 0 -1 -1 1 0 1

34 0 0 0 -1 -1 1 1 0

35 0 0 0 -1 1 0 0 0

36 0 0 0 0 0 0 -1 1

37 0 0 0 0 0 0 1 -1

38 0 0 0 1 -1 0 0 0

39 0 0 0 1 1 -1 -1 0

40 0 0 0 1 1 -1 0 -1

41 0 0 1 -1 0 0 0 0

42 0 0 1 0 -1 0 0 0

43 0 0 1 0 1 -1 -1 0

44 0 0 1 0 1 -1 0 -1
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Q1
A Q2

A Q3
A Q4

A Q5
A QB Q1

C Q2
C

45 0 0 1 1 0 -1 -1 0

46 0 0 1 1 0 -1 0 -1

47 0 1 -1 0 0 0 0 0

48 0 1 0 -1 0 0 0 0

49 0 1 0 0 -1 0 0 0

50 0 1 0 0 1 -1 -1 0

51 0 1 0 0 1 -1 0 -1

52 0 1 0 1 0 -1 -1 0

53 0 1 0 1 0 -1 0 -1

54 0 1 1 0 0 -1 -1 0

55 0 1 1 0 0 -1 0 -1

56 0 1 1 1 1 -2 -1 -1

57 1 -1 0 0 0 0 0 0

58 1 0 -1 0 0 0 0 0

59 1 0 0 -1 0 0 0 0

60 1 0 0 0 -1 0 0 0

61 1 0 0 0 1 -1 -1 0

62 1 0 0 0 1 -1 0 -1

63 1 0 0 1 0 -1 -1 0

64 1 0 0 1 0 -1 0 -1

65 1 0 1 0 0 -1 -1 0

66 1 0 1 0 0 -1 0 -1

67 1 0 1 1 1 -2 -1 -1

68 1 1 0 0 0 -1 -1 0

69 1 1 0 0 0 -1 0 -1

70 1 1 0 1 1 -2 -1 -1

71 1 1 1 0 1 -2 -1 -1

72 1 1 1 1 0 -2 -1 -1



Appendix B

Resolutions: E7 → E8

B.1 Incomplete resolution: blowing up p2 first

In this case we take

f(z, s) = sz3 + z4, g(z, s) = z5. (B.1.1)

The concrete process of the incomplete resolution of the codimension-two singularity enhance-

ment from E7 to E8 goes as follows:

1st blow up

Chart 1x

Φ(x, xy1, xz1, s) = x2Φx(x, y1, z1, s), (B.1.2)

Φx(x, y1, z1, s) = sx2z31 + x3(z1 + 1)z41 + x− y21, (B.1.3)

C1 in 1x : x = 0, y1 = 0, (B.1.4)

Singularities : None. (B.1.5)
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Chart 1y

Φ(x1y, y, yz1, s) = y2Φy(x1, y, z1, s), (B.1.6)

Φy(x1, y, z1, s) = x1y
2z31(s+ yz1) + x31y + y3z51 − 1, (B.1.7)

C1 in 1y : Invisible in this patch, (B.1.8)

Singularities : None. (B.1.9)

Chart 1z

Φ(x1z, y1z, z, s) = z2Φz(x1, y1, z, s), (B.1.10)

Φz(x1, y1, z, s) = z
(
x1z(s+ z) + x31 + z2

)
− y21, (B.1.11)

C1 in 1z : z = 0, y1 = 0. (B.1.12)

Singularities : (x1, y1, z, s) = (0, 0, 0, s). (B.1.13)

We refer to this singularity as p1.

2nd blow up

Chart 2zx

Φz(x1, x1y2, x1z2, s) = x21Φzx(x1, y2, z2, s), (B.1.14)

Φzx(x1, y2, z2, s) = z2x1
(
z2(s+ z2) +

(
z22 + 1

)
x1
)
− y22, (B.1.15)

C2 in 2zx : x1 = 0, y2 = 0, (B.1.16)

Singularities : (x1, y2, z2, s) = (0, 0,−s, s) = q2, (0, 0, 0, s) = p2. (B.1.17)

Here we see two singularities on C2 which coincide with each other at s = 0.
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Chart 2zy

Φz(x2y1, y1, y1z2, s) = y21Φzy(x2, y1, z2, s), (B.1.18)

Φzy(x2, y1, z2, s) = x2y1t
2
2(s+ y1z2) + x32y

2
1z2 + y1z

3
2 − 1, (B.1.19)

C2 in 2zy : Invisible in this patch, (B.1.20)

Singularities : None. (B.1.21)

Chart 2zz

Φz(x2z, y2z, z, s) = z2Φzz(x2, y2, z, s), (B.1.22)

Φzz(x2, y2, z, s) = z
(
sx2 + zx32 + zx2 + 1

)
− y22, (B.1.23)

C2 in 2zz : t = 0, y2 = 0, (B.1.24)

Singularities : (x2, y2, z, s) =

(
−1

s
, 0, 0, s

)
. (B.1.25)

This singularity is q2, which was also seen in chart 2zx. At this stage, we have two singularities

p2 and q2. In this section we blow up at p2 first. We can see this singularity in chart 2zx

only, so we consider Φzx(x1, y2, z2, s) in the next blow up.

3rd blow up

Chart 3txx

Φzx(x1, x1y3, x1z3, s) = x21Φzxx(x1, y3, z3, s), (B.1.26)

Φzxx(x1, y3, z3, s) = z3x1
(
sz3 + z23x

2
1 + z23x+ 1

)
− y23, (B.1.27)

C3 in 3zxx : x1 = 0, y3 = 0, (B.1.28)

Singularities : (x1, y3, z3, s) =

(
0, 0,−1

s
, s

)
= r3, (0, 0, 0, s) = p3. (B.1.29)

We name the first singularity r3, and the second singularity p3.
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Chart 3zxz

Φzx(x3z2, y3z2, z2, s) = z22Φzxz(x3, y3, z2, s), (B.1.30)

Φzxz(x3, y3, z2, s) = z2x3
(
s+ z22x3 + z2 + x3

)
− y23, (B.1.31)

C3 in 3zxz : z2 = 0, y3 = 0, (B.1.32)

Singularities : (x3, y3, z2, s) = (0, 0,−s, s) = q2, (0, 0, 0, s) = q3, (−s, 0, 0, s) = r3.
(B.1.33)

The first singularity is not on C3 unless s = 0; this is q2. We name the second singularity q3.

The third one is r3 already seen in chart 3zxx.

Since p3 and q3 are different point even when s → 0, we can blow up at them independently

on charts 3zxx and 3zxz, respectively. Let us first blow up at p3 using Φzxx(x1, y3, z3, s):

4th blow up at p3

Chart 4zxxx

Φzxx(x1, x1y4, x1z4, s) = x21Φzxxx(x1, y4, z4, s), (B.1.34)

Φzxxx(x1, y4, z4, s) = sz24x1 + z34x
4
1 + z34x

3
1 + z4 − y24, (B.1.35)

C4 in 4zxxx : x1 = 0, y24 = z4, (B.1.36)

Singularities : None. (B.1.37)

Chart 4zxxz

Φzxx(x4z3, y4z3, z3, s) = x21Φzxxz(x4, y4, z3, s), (B.1.38)

Φzxxz(x4, y4, z3, s) = sz3x4 + z43x
3
4 + z33x

2
4 + x4 − y24, (B.1.39)

C4 in 4zxxz : z3 = 0, y24 = x4, (B.1.40)

Singularities : (x4, y4, z3, s) =

(
0, 0,−1

s
, s

)
. (B.1.41)

This singularity is not on C4 even when s = 0; this is r3. There is no singularity any more

on C4, so let us turn to the singularities observed in chart 3zxz: (x1, y3, z3, s) = (0, 0,−s, s) =

q2, (0, 0, 0, s) = q3, (−s, 0, 0, s) = r3.
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4th blow up at q3

We next blow up at q3; using Φtxt(x3, y3, t2, s), we find

Chart 4zxzx

Φzxz(x3, x3y4, x3z4, s) = x23Φzxzx(x3, y4, z4, s), (B.1.42)

Φzxzx(x3, y4, z4, s) = z4
(
s+ z24x

3
3 + z4x3 + x3

)
− y24, (B.1.43)

C′
4 in 4zxzx : x3 = 0, y24 = sz4, (B.1.44)

Singularities : (x3, y4, z4, s) = (−s, 0, 0, s). (B.1.45)

This is r3, which is not on C′
4 unless s = 0.

Chart 4zxzz

Φzxz(x4z2, y4z2, z2, s) = z22Φzxzz(x4, y4, z2, s), (B.1.46)

Φzxzz(x4, y4, z2, s) = sx4 + z2x4
(
z22x4 + x4 + 1

)
− y24, (B.1.47)

C′
4 in 4zxzz : z2 = 0, y24 = sx4, (B.1.48)

Singularities : (x4, y4, z2, s) = (0, 0,−s, s). (B.1.49)

This is q2, which is not on C′
4 unless s = 0, either. So far, all the singularities except for q2

and r3 are resolved. Since r3 is located in the (0 : 0 : 1) direction on the P 2 blown up at q3,

whereas r3 is in the (1 : 0 : 0) direction on the same P 2, they are never the same point even

when s = 0. Thus we can blow up at them independently.

5th blow up at r3 in chart 4zxzx

To blow up at r3, we shift the x3 coordinate so that this singularity is represented as (0, 0, 0, s)

in a new coordinate x̃3:

Ψzxzx(x̃3, y4, z4, s) ≡ Φzxzx(x̃3 − s, y4, z4, s). (B.1.50)

Then it can be verified that no singularity arises in Ψzxzxx or Ψzxzxz defined below. The

exceptional curves are:
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Chart 5zxzxx

Ψzxzx(x̃3, x̃3y5, x̃3z5, s) = x̃23Ψzxzxx(x̃3, y5, z5, s), (B.1.51)

Ψzxzxx(x̃3, y5, z5, s) = z35 x̃3(x̃3 − s)3 + z25(x̃3 − s) + z5 − y25, (B.1.52)

C5 in 5zxzxx : x̃3 = 0, y25 = −sz25 + z5. (B.1.53)

Chart 5zxzxz

Ψzxzx(x̃5z4, y5z4, z4, s) = z24Ψzxzxz(x̃5, y5, z4, s), (B.1.54)

Ψzxzxz(x̃5, y5, z4, s) = z4(z4x̃5 − s)3 − s+ z4x̃5 + x̃5 − y25, (B.1.55)

C5 in 5zxzxz : z4 = 0, y25 = x̃5 − s. (B.1.56)

5th blow up at q2 in chart 4txtt

Having resolved the singularity r3, we turn to the resolution of q2 in chart 4zxzz. For this we

need a different coordinate shift:

Σzxzz(x4, y4, z̃2, s) ≡ Φzxzz(x4, y4, z̃2 − s, s). (B.1.57)

Then Ψzxzz has a singularity at (x4, y4, z̃2, s) = (0, 0, 0, s). Again, Ψzxzzx and Ψzxzzz defined

below have no singularity. The exceptional curves are:

Chart 5zxzzx

Σzxzz(x4, x4y5, x4t̃5, s) = x24Σzxzzx(x4, y5, t̃5, s), (B.1.58)

Σzxzzx(x4, y5, z̃5, s) = (x4z̃5 − s)3 + x4z̃5 − s+ z̃5 − y25, (B.1.59)

C5 in 5zxzzx : x4 = 0, y25 = z̃5 − s− s3. (B.1.60)
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Chart 5zxzzz

Σzxzz(x5z̃2, y5z̃2, z̃2, s) = z̃2Σzxzzz(x5, y5, z̃2, s), (B.1.61)

Σzxzzz(x5, y5, z̃2, s) = x25
(
(z̃2 − s)3 + z̃2 − s

)
+ x5 − y25, (B.1.62)

C5 in 5zxzzz : z̃2 = 0, y25 =
(
−s3 − s

)
x25 + x5. (B.1.63)

1st blow up 2nd blow up 3rd blow up 4th blow up 5th blow up
◦
p0 → ◦

p1 (0 : 0 : 1) → ◦
p2 (1 : 0 : 0) → ◦

p3 (1 : 0 : 0) → regular
◦
q3 (0 : 0 : 1) → regular

q2 (1 : 0 : −s) q2 (0 : 0 : 1) (z2 = −s) → ◦
q2 (0 : 0 : 1) (z2 = −s) → regular

r3 (−s : 0 : 11)
◦
r3 (1 : 0 : 0) (x3 = −s) → regular

Table 2.1: The incomplete case when p2 is blown up first.

B.2 Exceptional curves at s = 0

The intersection matrix among CI ’s

−CI · CJ =



2 0 0 −1 0 0 0
0 2 0 0 −1 0 −1
0 0 2 −1 −1 −1 0
−1 0 −1 2 0 0 0
0 −1 −1 0 2 0 0
0 0 −1 0 0 2 0
0 −1 0 0 0 0 2


(B.2.1)

and the relations

C1 = δ1, C2 = δ2, C3 = δ3, C4 = δ4, C′
4 = 2δ′4 + δr3 + δq2 , Cr3 = δr3 , Cq2 = δq2

(B.2.2)
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imply that the intersection matrix among δI ’s is

−δI · δI =



2 0 0 −1 0 0 0
0 2 0 0 0 0 −1
0 0 2 −1 0 −1 0
−1 0 −1 2 0 0 0
0 0 0 0 3

2 −1 −1
0 0 −1 0 −1 2 0
0 −1 0 0 −1 0 2


, (B.2.3)

where I, J = 1, 2, 3, 4, 4′, r3, q2.

Similarly to the previous examples, one of the δ’s (= δ′4) has self-intersection −3/2, which

equals to the minus of the length squared of a weight in the 56 representation of E7. It can

also be verified that there are precisely 28 elements of the form
∑

I=1,2,3,4,4′,r3,q2
nIδI with

non-negative integer coefficients, nI ≥ 0 for all I, such that the length squared is 3
2 , and also

there are the same number of elements with non-positive integer coefficients, nI ≤ 0 for all

I. They all together form the whole weights of the 56 representation. Again, there is only a

single set, indicating that it is a half-hypermultiplet.

B.3 Complete resolution: blow up p2 first

We will now consider the complete resolution. This can be achieved by taking fn+8 = s2

instead of s. This amounts to replacing s in (B.1.1) with s2. Similarly to the previous

sections, we find an additional isolated codimension-two conifold singularity after we blow

up q3. As shown in red in Table 2.2, this new singularity, which we denote by r4, arises at

(1 : 0 : −1) on the P 2 particularly at s = 0. This adds an extra node to the incomplete

intersection diagram to form the correct E8 Dynkin diagram as we show in Fig. 2.2. The

node δ′4, which was formerly represented by a triangle in Fig. 2.1, is now an ordinary node

consisting of the root system of E8. This is consistent with the modified relations:

C1 = δ1, C2 = δ2, C3 = δ3, C4 = δ4, C′
4 = 2δ′4 + δr3 + δq2 + δcomplete, Cr3 = δr3 , Cq2 = δq2 ,

(B.3.1)

which can be verified by a careful up-lifting of CI ’s into the coordinate system of the small

resolution.
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Fig. 2.1: The intersection diagrams of the exceptional curve C’s and δ’s. We blew up the
singularity p2 first.

1st blow up 2nd blow up 3rd blow up 4th blow up 5th blow up

◦
p0 → ◦

p1 (0 : 0 : 1) → ◦
p2 (1 : 0 : 0) → ◦

p3 (1 : 0 : 0) → regular

◦
q3 (0 : 0 : 1) → ◦

r4 (1 : 0 : −1; s = 0) (codim.2) → regular

q2 (1 : 0 : −s) q2 (0 : 0 : 1) (z2 = −s) → ◦
q2 (0 : 0 : 1) (z2 = −s) → regular

r3 (−s : 0 : 11)
◦
r3 (1 : 0 : 0) (x3 = −s) → regular

Table 2.2: The incomplete case when p2 is blown up first.
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Fig. 2.2: The E8 Dynkin diagram obtained by a complete resolution with p2 blow up first.
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