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Abstract

In this thesis, we investigate a possibility of an MeV-scale reheating temperature of
the Universe and discuss the active- and sterile neutrino thermalization in the scenario.
Focusing on the roles of neutrinos in the light element production in the big-bang nu-
cleosynthesis, we obtain observational constraints on i) lower bounds on the reheating
temperature, and ii) a possibility of existence of light sterile neutrinos inferred from re-
sults of short-baseline neutrino experiments, which are summarized in Refs. [1, 2].
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Chapter 1

Introduction

In this chapter, we describe the outline and the organization of this thesis. Also, we refer
to the unit system and notations of variables and constants adopted in this thesis.

1.1 Outline of this thesis

Observations of the light element abundances produced in the epoch of big-bang nuclosyn-
thesis (BBN) have a great capacity to study the physical phenomena which occurred in the
early Universe. Also, we can test an underlying theory of cosmology and particle physics
by comparing theoretical- and observed abundances of light elements.

In this thesis, we especially focus on a possibility of an MeV-scale reheating temperature
of the Universe, motivated by theories beyond the standard model of particle physics which
include long-lived massive particles with masses around the weak scale ∼ O(100) GeV,
decaying only through gravitational interaction.

The other main focus of this thesis is on neutrino physics. As will be seen in this thesis,
neutrinos play important roles in cosmological phenomena in the early Universe. This is
because they are one of the most abundant species in the epoch of big-bang nucleosynthesis
and recombination, and they are therefore closely related to the expansion history and
the dynamics of the phenomena. For this reason, it is important or almost essential to
understand property and behavior of neutrinos in extreme environments realized in the
hot Big-Bang Universe. Apart from a cosmological interest, neutrinos physics have been
drawing strong attention to many physicists, working in vast research fields such as the
astrophysics, particle physics, and nuclear physics. To provide a deep understanding and
a verification of physics related to the above fields, many observational- and experimental
programs have been performed in the past, e.g. neutrino oscillation experiments, neutrino-
less double beta decay experiments, and neutrino mass measurements. In particular, a
theoretical prediction of neutrino oscillation, the transition from a state of one flavor to
another, has been experimentally verified, and many researchers believe that it should
be clear evidence of the physics beyond the standard model of particle physics. Besides,
researchers are currently planning a lot of future programs as explained later. In this thesis,
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6 CHAPTER 1. INTRODUCTION

we also look into a possible existence of sterile neutrinos with a wide range of masses,
motivated by a long-standing problem present in the short-baseline neutrino oscillation
experiments and a possibility that sterile neutrinos constitute the dark matter.

This thesis is mainly based on our studies summarized in the papers:

[1] T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram, and S. Hannes-
tad. “MeV-scale reheating temperature and thermalization of oscillating neutrinos by
radiative and hadronic decays of massive particles.” JCAP 12 (2019) 012 [arXiv:
1908.10189],

[2] T. Hasegawa, K. Kohri, S. Wang, R. S. L. Hansen, T. Tram, and S. Hannestad.
“MeV-scale reheating temperature and cosmological constraints on sterile neutrinos”,
In preparation (2019),

both of which focus on the possibility of the MeV-scale reheating temperature, but their
purposes are different. The first paper aims to investigate a lower bound on the reheating
temperature, and that of the second paper is to explore a possibility of sterile neutrinos
with a wide range of masses in the range of O(eV) to O(keV) from cosmological point of
view.

In the first paper [1], we perform a numerical computation of the neutrino thermal-
ization in the reheating and evaluate its effects on the production of light elements. As
a result, we obtain the lower bound on the reheating temperature TRH ≳ 1.8 MeV when
some massive particle X, responsible for the reheating, dominantly decays into radiation,
i.e. X → γ + . . . or X → l+ . . . where γ is photons and l is charged leptons. Meanwhile,
we obtain TRH ≳ 4–5 MeV when X dominantly decays into hadrons, i.e. X → q + . . .
or X → g + . . . , where g is gluons and q is quarks, depending on the mass of X and the
hadronic branching ratio of the decay.

In the second paper [2], we calculate the thermalization of sterile neutrinos and find
that light sterile neutrinos with its mass of eV-scale, whose existence is inferred from
experimental results of short-baseline neutrino oscillation experiments, is consistent with
cosmology if TRH ∼ O(1) MeV, in contrast to the case of the standard big-bang model
with an implicit assumption that TRH >> O(1) MeV.

We elaborate the first- and the second papers in Chapters 5 and 6, respectively.

1.2 Organization of this thesis

The organization of this thesis is as follows:
In Chapter 2, we review the standard theory of cosmology, the standard big-bang

model, and then in Chapter 3 we explain the production of light elements in the early
Universe predicted in the standard big-bang model, the standard big-bang nucleosynthe-
sis (SBBN). In Chapter 4, in order to prepare for the later chapters, we survey neutrino
oscillation phenomena, first focusing on neutrino oscillation in a vacuum, and then ex-
plaining how matter effects affect the phenomena.

https://iopscience.iop.org/article/10.1088/1475-7516/2019/12/012/pdf
https://arxiv.org/abs/1908.10189
https://arxiv.org/abs/1908.10189
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Chapters 5 and 6 are devoted to descriptions of our studies [1,2]. Particularly, in Chap-
ter 5 we focus on Ref. [1], where we present our results of the neutrino thermalization in the
reheating and light element abundances synthesized in BBN assuming an MeV-scale re-
heating temperature. Particular attention is paid to treatment of neutrino thermalization
calculations. Also, we demonstrate how neutrino oscillation and neutrino self-interaction,
i.e. collisional processes among neutrinos, affect flavor-dependent neutrino abundances
and light element abundances. In Chapter 6, we then focus on Ref. [2], where we discuss
cosmological constraints on sterile neutrinos, whose existence is motivated by e.g. the dis-
covery of neutrino oscillation, searches for the dark matter, and results of short-baseline
neutrino oscillation experiments.

Finally, in Chapter 7 we draw our conclusion and comment on prospects of our studies
summarized in this thesis.

1.3 System of units

In this thesis, we adopt the natural unit, where c = ℏ = kB = 1. Therefore, dimensions of
time [T ], length [L], and mass [M ] are related to the dimension of energy [E] as [L]−1 =
[T ]−1 = [M ] = [E]. Also, temperature has units of energy, and it is measured in terms of
eV.

1.4 Notations of variables and constants

In this section, we present notations and definitions of physical variables and constants
which often appear in this thesis.
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Symbol Definition

c Speed of light.

h Planck constant.

ℏ Reduced Planck constant, ℏ ≡ h/2π.

kB Boltzmann constant.

G Gravitational constant.

me Electron mass.

mp Proton mass.

mn Neutron mass.

mN Atomic mass unit, mN ≡ m12C ' 931.5 MeV.

Mpl Planck mass, Mpl ≡
√
cℏ/G.

mpl Reduced planck mass, mpl ≡ Mpl/
√
8π.

τn Neutron lifetime.

GF Fermi coupling constant.

K Space curvature.

Λ Cosmological constant.

γµ Gamma matrix (µ = 1, 2, 3, 4).

γ5 Chirality, γ5 ≡ iγ0γ1γ2γ3.

Table 1.1: Symbols and definitions of physical- and mathematical constants.
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Symbol Definition

a Scale factor.

z Red shift.

H Hubble parameter, H ≡ (da/dt)/a.

ρ Total energy density.

ρB Energy density of baryons.

p Total pressure.

n Total number density.

nB Number density of baryons.

n̄B Number density of anti-baryons.

nL Number density of leptons.

n̄L Number density of anti-leptons.

nγ Number density of photons.

w Equation of state parameter, w ≡ p/ρ.

T Cosmic temperature.

Tγ Photon temperature.

Te Electron temperature.

Tν Neutrino temperature.

TRH Reheating temperature.

ds Line element.

r Radial distance.

θ Azimuthal angle.

ϕ Polar angle.

gµν Space-time metric.

Rµν Ricci tensor.

R Ricci scalar, R ≡ Rµνgµν .

ηB Baryon asymmetry, ηB ≡ (nB − n̄B)/nγ.

ηL Lepton asymmetry, ηL ≡ (nL − n̄L)/nγ.

Neff Effective number of neutrino species.

Table 1.2: Symbols and definitions of physical variables.
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Symbol Definition

fν Distribution function of neutrinos.

να Flavor eigenstates of neutrinos (where α = e, µ, τ, s).

νi Mass eigenstates of neutrinos (i = 1, 2, 3, . . . ).

θ12 Mixing angle between ν1 and ν2.

θ23 Mixing angle between ν2 and ν3.

θ13 Mixing angle between ν1 and ν3.

δm2
12 Squared mass difference between ν1 and ν2, δm

2
12 ≡ m2

2 −m2
1.

δm2
23 Squared mass difference between ν2 and ν3, δm

2
23 ≡ m2

3 −m2
2.

δm2
13 Squared mass difference between ν1 and ν3, δm

2
13 ≡ m2

3 −m2
1.

δD Dirac CP phase.

αM Majorana CP phase.

UPMNS Flavor mixing matrix .

H Hydrogen.

D Deuterium.

T Tritium.
3He Helium 3.
4He Helium 4.
6Li Lithium 6.
7Li Lithium 7.
7Be Beryllium 7.
12C Carbon 12.

nH Number density of H.

nD Number density of D.

nT Number density of T.

n3He Number density of 3He.

n4He Number density of 4He.

n6Li Number density of 6Li.

n7Li Number density of 7Li.

n7Be Number density of 7Be.

D/H Number density ratio of D to H, D/H ≡ nD/nH.

Yp Mass fraction of 4He, Yp ≡ m4Hen4He/ρB

Table 1.3: Symbols and definitions of physical variables.



Chapter 2

Standard Big-Bang Model

In this chapter, we review the standard theory of cosmology, the standard big-bang model,
which is usually assumed in the field of cosmology.

The standard big-bang model is a widely believed theory of cosmology, which describes
the time- and temperature evolution of the Universe from a hot and dense state right after
the big bang to the current epoch. According to the model, the Universe was born about
13.8 billion years ago, and then it has been cooling down due to the cosmic expansion until
today. The maximum temperature of the Universe attained in the “big-bang” (i.e. the
reheating) is still unknown, but roughly speaking it should be higher than ∼ 1 MeV for ex-
plaining light element abundances synthesized in BBN and cosmic microwave background
(CMB) observed in the Universe. In contrast, the current temperature of the Universe is
known to be less than 3 K from observations of CMB [3]. This vast difference between
the maximum and the current temperatures means that the Universe can be regarded as
a testing ground of both high-energy and low-energy physics.

The standard big-bang model is built on the cornerstones of modern physics, namely
the general relativity and the standard theory of particle physics, which are well-tested
theories of macroscopic and microscopic phenomena, respectively. The standard big-bang
model offers comprehensive explanations for various physical phenomena in the Universe.
Particularly, there are four important events which are known as evidence for the validity
of the model; namely

(i) Light element abundances produced in the big-bang nucleosynthesis (BBN),

(ii) Cosmic microwave background (CMB) radiation, emitted in the recombination pro-
cesses of atomic nuclei with electrons,

(iii) Large-scale structure (LSS) of the Universe, formed from density perturbations gen-
erated in the early Universe,

(iv) Redshifts associated with galaxies, explained by the Hubble’s law.

11



12 CHAPTER 2. STANDARD BIG-BANG MODEL

The theoretical predictions and observational results of these events are in reasonable
agreement with each other, and that is the reason that most researchers regard the big-
bang model as “standard theory” of cosmology.

In the following, we explain the formulations of the standard big-bang model. In
Section 2.1, we first introduce fundamental equations of the model, which describe an
expansion of the Universe. More thorough discussions should be found in great textbooks,
e.g. Refs. [4–7].

2.1 Dynamical equations of the Universe

In this section, we introduce fundamental equations of the standard big-bang model, paying
particular attention to explicit- and implicit assumptions of the model.

2.1.1 General relativity

The standard big-bang model is built on the general relativity, established by A. Einstein
in the early 19th century. According to the theory, a behavior of the standard model
particles in the expanding Universe can be described by the Einstein field equation, which
provides a relation between space-time and matter:

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν , (2.1)

where Rµν is the Ricci curvature tensor, R(= Rµ
µ) is the Ricci scalar, gµν is the space-time

metric, G is the gravitational constant, Tµν is the energy-momentum tensor of matter,
and Λ is the cosmological constant. The Ricci tensor can be expressed in terms of the
Christoffel symbols:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα, (2.2)

where Γα
µν,α ≡ ∂Γµν,α

∂xα , and the Christoffel symbols are defined as

Γµ
αβ =

gµν

2
[gαν,β + gβν,α − gαβ,ν ] , (2.3)

where again gαν,β ≡ ∂gαν,β

∂xα . As is obvious from Eqs. (2.1)–(2.3), once we have expressions
of the space-time metric gµν and the energy-momentum tensor Tµν , we can understand
gravitational effects on particles in the Universe. Then, how can we determine them?
Next, we focus on this question.

2.1.2 Cosmological principle

In the standard big-bang model, we impose a working hypothesis called “cosmological
principle”, which states that the Universe is isotropic and homogeneous on large scales.
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This hypothesis is well consistent with precise observations of the cosmic microwave back-
ground and the large-scale structure of the Universe, and it seems to be a providence of
nature. The spacetime metric which satisfies the cosmological principle is uniquely deter-
mined except for a choice of the space curvature K. It is called the Friedman-Lemaitre-
Robertson-Walker (FLRW) metric [8–11]:

ds2 = −c2dt2 + a(t)2
[

dr2

1−Kr2
+ r2

(
dθ2 + sin2θ dϕ2

)]
, (2.4)

where K = +1, 0,−1 respectively corresponds to the open, flat, and closed space-time of
the Universe. Also, a(t) is the scale factor, which measures the size of the Universe at a
given time.

2.1.3 Friedman equation

Due to the requirement of the cosmological principle, viz. a homogeneity and isotropy of
the Universe, together with the Lorentz invariance, an expression of the energy-momentum
tensor of the Universe is uniquely determined as:

Tµν = p gµν + (p+ ρ)uµuν , (2.5)

where uµ is a four-velocity of the observer, and it can be written as uµ = (1, 0, 0, 0) in
the comoving frame, in which the observer is at rest with respect to the expanding space-
time. Also, p and ρ are the pressure and the energy density of the system, respectively. It
should be stressed that the energy-momentum tensor in Eq. (2.5) has the same expression
as the perfect fluid, but it is not an assumption by hand. It can be derived from the more
fundamental requirements mentioned above.

The evolution equations of the expanding Universe are obtained by substituting the
FLRW metric, Eq. (2.4), and the energy-momentum tensor, Eq. (2.5), into the Einstein
field equation, Eq. (2.1):

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− K

a2
+

Λ

3
=

ρ

3m2
pl

− K

a2
+

Λ

3
, (2.6)

where mpl(≡ 1/
√
8πG) ∼ 1018 GeV is the reduced Planck constant, and H is the Hubble

parameter, which gives the expansion rate of the Universe at the time t. The Eq. (2.6) is
called the Friedman equation, and it originates from the spatial part of the Einstein field
equation, Eq. (2.1). The second term of Eq. (2.6) is due to the spacial curvature of the
Universe. It is usually neglected because its contribution is expected to be very small after
the inflation, which causes a rapid expansion of the Universe. In addition to the Friedman
equation in Eq. (2.6), we can derive the following equation from the time component of
the field equation Eq. (2.1):

ρ̇+ 3H(ρ+ p) = 0 , (2.7)
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which corresponds to the conservation of energy and momentum of the Universe.
Once we have an equation of state of the Universe, it is possible to obtain a thermody-

namic evolution of the Universe by combining it with Eqs. (2.6)–(2.7). In the simple case
where a specific particle component dominates the total energy density of the Universe,
and hence the equation of state is nearly constant with time, we can analytically solve the
equations. In general, particle components are roughly fallen into three types; namely

1. Relativistic particles - radiation,

2. Non-relativistic particles - matter,

3. Dark energy,

which are characterized by the equation of state parameters w ≡ p/ρ = 1/3, 0, and -1,
respectively. 1 For a constant value of w, we can find the relation between the total energy
density of the Universe ρ and the scale factor a(t):

ρ ∝ a−3(1+w) , (2.8)

which leads to

ρ ∝ a−4 for w = 1/3, (2.9)

ρ ∝ a−3 for w = 0, (2.10)

ρ = const. for w = −1. (2.11)

Since the second term in the right-hand side of Eq. (2.6) is basically negligible, the scale
factor a(t) always increases with time. Thus, it follows from Eqs. (2.9)–(2.11) that radi-
ation components dominate the energy density of the Universe in the early epoch when
the scale factor is still relatively small. This stage of the Universe is called the radiation-
dominated (R.D.) epoch. Afterwards, as the energy density of radiations rapidly decreases
with time, matter contributions surpass it at a certain time, and the matter-dominated
(M.D.) epoch realizes. Finally, total energy density is dominated by the dark energy, whose
energy density is always constant, and the Universe enters into the dark-energy-dominated
(D.E.D.) epoch. A schematic picture of the evolution of the total energy density of the
Universe is shown in Figure 2.1, where possible existences of the inflation epoch and the
early matter-dominated epoch realized by the inflaton oscillating at around its potential
minimum, called oscillation epoch, are not depicted in the figure.

1The origin of dark energy is still unknown, but the recent observational results favor the equation of
state parameter which is very close to unity [12]. Thus, the vacuum energy and the cosmological constant,
both of which are characterized by w = −1, are favored as candidates of the dark energy. However, energy
density of the vacuum energy derived from the standard model of particle physics ρvac ∼ m4

pl ∼ 1076 GeV4

is too large to explain the observational value of the dark energy ρDE ∼ 3× 10−47 GeV4, This problem is
called “cosmological constant problem”, and it is a long-standing problem in the fields of cosmology and
particle physics.
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R
.D
.

M.D.

D.E.D.

lo
g
ρ

a(t)

radiation

matter

dark energy

Figure 2.1: Schematic picture of the evolution of the energy density. The x-axis is the
scale factor a(t), and the y-axis is the energy density for each particle component, namely
the red-dotted line is for radiation (ρrad), the blue dashed line is for matter (ρmat), and
the black solid line is for the dark energy (ρDE). The value in the x-(y-) axis increases
towards the right (upward) direction.

In the same way, we can obtain the relation between the cosmic time t and the scale
factor a(t) by combining Eqs. (2.6) and (2.7):

a ∝ t
2

3(1+w) for w 6= −1 , (2.12)

a ∝ eHt for w = −1 , (2.13)

where we assume Λ = 0 and K = 0 for simplicity. The former condition is well satisfied
in the early Universe where ρrad and ρmat are much larger than ρDE, and the latter is also
approximately true if we assume existence of the inflationary phase in the early Universe.
Substituting the equation of state parameters w into Eq. (2.13), it follows from Eq. (2.13)
that

a ∝ t1/2 for R.D. epoch , (2.14)

a ∝ t2/3 for M.D. epoch , (2.15)

a ∝ eHt for D.E.D. epoch . (2.16)

Thus, the scale factor a(t) is proportional to the power of time t in the R.D. and M.D.
epochs, while it exponentially grows with time in the D.E.D. epoch as in the inflationary
phase or in the current Universe.
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2.2 Thermal history of the Universe

In this section, we briefly explain the thermal history of the Universe in the standard big-
bang model. The interested readers can consult more comprehensive reviews in Refs. [5,
6, 13].

As we have seen in the previous section, the standard big-bang model is based on the
standard model of particle physics. We summarize in Table 2.1 the particle content of the
standard model together with its mass and internal degrees of freedom gf . Since the time
at which each cosmic event occurs is determined by the cosmic temperature rather than
the cosmic time, the evolution of the Universe is called the “thermal history”.

For concreteness, let us assume that the cosmic temperature far exceeds the Elec-
troweak (EW) scale in the very early epoch of the Universe, i.e. T >> O(100) GeV.
Then, all of the cosmic events can be summarized in Table 2.2. We refrain from explain-
ing each event in detail, but we instead only refer to the important aspects of the thermal
history in the following.

2.2.1 Effective number of relativistic species

At high temperature right after the inflation and the subsequent reheating (i.e. the ‘Big-
Bang’), the cosmic temperature is expected to be very high so that a large number of
particle species are excited in the system since all of the standard model particles are
ultra-relativistic in such epochs. Due to the cosmic expansion, the temperature gradually
decreases, and some of the standard model particles become non-relativistic. Since the
number- and energy densities of non-relativistic particles are Boltzmann-suppressed and
fall exponentially with the temperature, their contributions decrease to be negligible. As
some particle becomes non-relativistic, the energy and entropy of the particle are trans-
ferred to other particle species which are still relativistic. In this way, an effective number
of relativistic species becomes smaller and smaller as the Universe expands and the tem-
perature decreases. Figure 2.2 shows the evolution of the effective number of relativistic
degrees of freedom g∗, which is defined as

ρrad =
∑
i

ρi =
π2

30
g∗(T )T 4, (2.17)

where ρrad is the total energy density of relativistic particles (‘radiations’), and i runs over
all relativistic species. As can be seen from Table 2.1, the most massive species in the
standard model is the top quark, whose masses is ' 173 GeV. All the standard model
particles are therefore excited at T >> O(100) GeV, and g∗ = 106.75 in such epochs (see
Figure 2.2). After the EW symmetry breaking at T ∼ 100 GeV, the scalar- and vector
bosons (namely H0,W±, and Z0) together with the heavy quarks (t) disappear from the
system at around temperatures corresponding to their masses. As the temperature further
goes down, other species also start to decay or annihilate into lighter species, and their
abundances become vanishing. The effective number of species is g∗ ∼ 61.75 just before
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types species & symbols mass gf

photon: γ 0 2

Gauge bosons W boson: W± 80 GeV 2 · 3 = 6

Z boson: Z0 91 GeV 3

gluon: g 0 8 · 2 = 16

Scalar boson Higgs boson: H0 125 GeV 1

electron: e± 0.511 MeV 2 · 2 = 4

muon: µ± 106 MeV

Lepton tau lepton: τ± 1777 MeV

electron neutrino: νe, ν̄e < 0.6 eV 2 · 1 = 2

mu neutrino: νµ, ν̄µ < 0.6 eV

tau neutrino: ντ , ν̄τ < 0.6 eV

up quark: u, ū 2 MeV 2 · 2 · 3 = 12

down quark: d, d̄ 5 MeV

Quark charm quark: c, c̄ 1 GeV

strange quark: s, s̄ 100 MeV

top quark: t, t̄ 173 GeV

bottom quark: b, b̄ 4 GeV

Table 2.1: Particle content of the standard model of particle physics together with its
mass and the internal degrees of freedom gf [13].

the QCD transition occurs at T ∼ 150 MeV, after which its value goes down to g∗ ∼ 10.75
due to the hadronization, in which quarks and gluons (‘hadrons’) are combined to form
baryons or mesons. In this epoch, the thermal bath of the cosmic plasma consists of
only three particle species, namely photons, electrons, and neutrinos (g∗ = gγ + 7

8
ge +

7
8
gν = 2 + 7

8
· 2 · 2 + 7

8
· 2 · 3 = 10.75 where the factor 7

8
is a correction for Fermions).

Among them, e± have relatively large mass me ' 0.5 MeV and start to annihilate at the
corresponding temperature, slightly later than the neutrino decoupling at T ∼ 1 MeV.
Therefore, for T ≲ 0.5 MeV there remains photon- and neutrino degrees of freedom, and

thereby g∗ = gγ+
7
8
gν = 2+ 7

8
·2 ·3 ·

(
4
11

)4/3 ' 3.38, where the factor
(

4
11

)4/3
originates from
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cosmic event temperature T time t

Inflation ? ?

Reheating ? ?

Baryogenesis ? ?

EW transition 100 GeV 20 ps

QCD transition 150 MeV 20 µs

Neutrino decoupling 1 MeV 1 s

e−e+ annihilation 500 keV 6 s

Big-Bang nucleosynthesis 100 keV 3 min

Matter-radiation equality 0.75 eV 60 kyr

Recombination 0.26–0.33 eV 260–380 kyr

Photon decoupling 0.23–0.28 eV 380 kyr

Reionization 2.6–7.0 meV 100–400 Myr

Dark energy-matter equality 0.33 meV 9 Gyr

Present 0.24 meV 13.8 Gyr

Table 2.2: Standard picture of the thermal history of the Universe and cosmic events in
the standard big-bang model [13]. The epochs in which the inflation, the reheating, and
the baryogenesis take place are still unknown.

the dilution of neutrinos due to the e−e+ annihilation, as explained later in Section 3.2.1.
As can be seen in Eq. (2.6), the expansion rate H depends on the total energy density

of the Universe, and it can be written as H2 = ρ
3m2

pl
+ · · · = π2

90
g∗T 4/m2

pl + · · · . There-

fore, the evolution of g∗ determines the relation between the cosmic temperature T and
the expansion rate H, and this gives the reason that g∗ is an important parameter for
understanding the thermal history of the Universe.

2.2.2 Freeze-out of particles

If all of the particles are always in equilibrium with other particles until today, number
densities of non-relativistic particles would be strongly suppressed by the Boltzmann factor
and almost completely vanishing in the current Universe. In contrast, there are non-
negligible abundances of heavy particles such as nuclear elements (and possibly the dark
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Figure 2.2: Evolution of the effective number of relativistic degrees of freedom g∗ as
functions of the cosmic temperature and time [13].

matter) around us. That is because the creation- and destruction of some particle species
effectively finish (‘decouple’) and afterwards the particle abundance is conserved during the
expansion of the Universe. This is called the ‘freeze-out’ of the particle, and it happens
when the Hubble expansion rate becomes equal to the reaction rates for creation- and
destruction processes relevant to the particle, Γ ∼ H, which is often called the ‘Gamow’s
criterion’.

Figure 2.3 shows a schematic picture for the evolution of the number density per unit
volume (V = a3). Since the freeze-out often takes place when the temperature is of the
same order as the particle mass, it is convenient to follow the evolution as a function
of m/T . As in Figure 2.3, the destruction processes decouple at freeze-out temperature,
and there survives a larger abundance than the equilibrium one, which is proportional to
exp[−m/T ].

2.2.3 Boltzmann equation

In the previous subsection, we have seen the freeze-out temperature of particles Tf is
determined by the simple criterion, Γ(Tf ) = H(Tf ). This gives a rough estimate of the
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Figure 2.3: Schematic picture of the evolution of the comoving number density of par-
ticles na3. The actual- and equilibrium abundances are shown by the red solid- and the
black dashed lines, respectively [13].

relic abundance if and only if the particle under consideration is in equilibrium with the
rest of the cosmic plasma, and therefore the reaction rate Γ can be expressed as a simple
analytical function of the cosmic temperature T . Otherwise, it is essential to solve the
Boltzmann equation to describe the evolution beyond equilibrium:

df

dt
= C[f, t], (2.18)

which describes an evolution of a distribution function f , i.e. the number density in a
unit phase-space volume, of some particle as functions of its momentum and the cosmic
time. The term in the right-hand side of Eq. (2.18), C[f(p, t), t], is the collision term of
the particle, whose concrete expressions depend on the specific collisional processes under
consideration, and it can be calculated from scattering matrix elements, Mαβ, where α
and β are arbitrary initial- and final states of the collisional process. If we write the
distribution function as functions of its three momentum p, space coordinates x, and the
cosmic time t, f = f(x,p, t), the total derivative of the distribution function with respect
to time (i.e. the left-hand side) in Eq. (2.18) can be rewritten as follows:(

∂

∂t
+ ẋ · ∂

∂x
+ ṗ · ∂

∂p

)
f(x,p, t) = C[f(x,p, t), t], (2.19)
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where ẋ and ṗ are time derivatives of the space coordinate and the three-momentum with
respect to time, respectively. Since we assume the homogeneity and the isotropy of the
Universe, the distribution function does not depend on the space coordinate x and the
direction of momentum p. In the current situation, we can therefore write f = f(p, t),
where p (≡ |p|) is the absolute momentum. Finally, we find

df(p, t)

dt
=

(
∂

∂t
−Hp

∂

∂p

)
f(p, t) = C[f(p, t), t], (2.20)

which is the Boltzmann equation for the homogeneous and the isotropic Universe. In the
derivation of Eq. (2.20), we have used the relation, ∂p/∂t = −Hp. We note that the term
proportional to the Hubble rate H stems from the redshift of momentum due to the cosmic
expansion, p ∝ a−1.



Chapter 3

Standard Big-Bang Nucleosynthesis

In this chapter, we review the standard theory of the big-bang nucleosynthesis, the stan-
dard big-bang nucleosynthesis (SBBN), and an inference of the primordial abundances of
light elements from observations. The knowledge of this chapter is useful for understand-
ing our results in Chapters 5 and 6, where we discuss observational constraints on the
reheating temperature and sterile neutrinos imposed by BBN, respectively.

3.1 Overview

The big-bang nucleosynthesis is a sequence of nuclear reaction processes responsible for the
production of light elements such as Hydrogen (H), Deuterium (D), Tritium (T), Helium
(3He, 4He), Lithium (6Li, 7Li), and Beryllium (7Be), which took place at around t ∼ 0.01–
100 sec (T ∼ 10–0.1 MeV). Among these, T and 7Be are later converted into 3He and 7Li
through beta decays with their half-lives of 12.32 yrs and 53.2 days, respectively. Thus,
the primordial abundance of 3He (7Li) is given by a sum of 3He and T abundances (7Li
and 7Be abundances) right after the end of BBN ∼ O(104–105) sec.

Elements heavier than carbon (12C), i.e. elements with the mass number A ≥ 12,
are only slightly produced in the nucleosynthesis although these elements are more stable
than the elements with A < 12. This is because there is no stable nucleus with A = 5
and 8, and the density of particles in the BBN epoch is so sparse that the three-body
reaction 3α →12C (“Triple alpha process”) is inefficient, where we label 4He as α. Such
heavier elements present in our surroundings such as C, O, or Fe are mainly synthesized
in massive stars through e.g. s- and r processes. On the ground that there is no way to
accurately estimate the primordial abundances of such “rare” elements from observations
for the time being, we are not able to compare theoretical- and observational abundances
of such heavier elements. Therefore, we only consider the production of light elements
with A < 8 listed above.

22
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In this thesis, light element abundances are denoted by

D/H = nD/nH, (3.1)
3He/D = n3He/nD, (3.2)

Yp = ρ4He/ρB, (3.3)
6Li/H = n6Li/nH, (3.4)
7Li/H = n7Li/nH, (3.5)

where ni is the number density of nuclear species i, ρ4He is the mass density of 4He, and
ρB is the energy density of baryons, i.e. ρB ≈ mN (nB − n̄B) where mN ≈ 931.5 MeV
is the atomic mass unit, whereas nB and n̄B are the number densities of baryons and
anti-baryons, respectively.

As can be seen later in this chapter, the theory of SBBN is in excellent agreement with
“inferred” primordial abundances of light elements, and therefore a comparison between
predicted- and inferred abundances of light elements provides a powerful tool to test the
theory of cosmology and its underlying theory, viz. the theory of gravity and particle
physics.

History of research

The notion of the big-bang nucleosynthesis (also called primordial nucleosynthesis) dates
back to the paper written by G. Gamow in 1946 [14], and the first calculation of the
4He abundance was given by R. Alpher, H. Bethe, and G. Gamow in their well-known
paper [15], which is also known as “αβγ theory” named after their names. Afterwards,
F. Hoyle and R. Tayler provided an analytical estimate of the 4He abundance in 1964 [16].
Then, P. Peebles [17] and R. Wagoner, W. Fowler, A. William, and F. Hoyle [18] de-
veloped a detailed code for the numerical calculation of the nucleosynthesis in 1996 and
1967, respectively. Particularly, the latter considered a complicated network of nuclear
reactions, and not only the calculation of 4He abundance but also that of other light
element abundances were available. Henceforth, some other authors also independently
offered nucleosynthesis codes [19–21], and among them the updated version of the Wag-
oner’s code [21] has become the standard code of BBN. Since then, nuclear reaction rates
of the nucleosynthesis have been updated every several years, and finite temperate effects
and Coulomb corrections were subsequently incorporated into the code [22]. More re-
cently, the Wagoner’s code has been greatly improved by L. Kawano [23], and it turned
out to be more user-friendly, much faster, and more documented, which facilitated other
researchers in working in this field of study. Still, new nucleosynthesis codes have been
offered. Among them, famous ones are PArthENoPE code [24], and AlterBBN code [25],
which enable researchers to easily consider some non-standard scenario of cosmology and
particle physics.
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Figure 3.1: Feynman diagrams of charged-current (left) and neutral-current (right) in-
teractions of neutrinos with electrons mediated by W - and Z bosons, respectively. The
process in the left panel applies only to electron neutrinos νe, while the right panel applies
to all flavors of neutrinos, namely να = νe, νµ, and ντ .

3.2 Theory of standard big-bang nucleosynthesis

In this section, we explain the big-bang nucleosynthesis from the theoretical point of view,
especially focusing on the theory of SBBN predicted in the framework of the standard
big-bang model. First, we introduce a thermal history around the epoch of BBN, and
then we discuss an analytical estimation of the primordial abundances of light elements.

3.2.1 Thermal history around BBN

The production of light elements occurs around t ∼ 0.01–100 sec and T ∼ 10 MeV to
0.1 MeV, which corresponds to the era well within the radiation-dominated (R.D.) epoch
as described in Chapter 2. In this epoch, only three particle species are relevant to the
dynamics of the Universe, namely photons γ, electrons e−, neutrinos ν since an abundance
of any particle with its mass larger than the cosmic temperature T is non-relativistic and
therefore its contribution to the total energy density and pressure is strongly suppressed
compared to radiation components listed above. Thus, neutrons and protons, which con-
stitute nuclear elements, are almost irrelevant to the dynamics of the Universe at least in
this case. In particular, there are mainly two important events around the BBN epoch:

1. Neutrino decoupling,

2. Electron annihilation.

In the following, we briefly describe them.
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Neutrino decoupling

In the standard big-bang model, we believe that all particles are thermalized by thermal-
and non-thermal production during- or after the reheating, and all particles are assumed
to be in thermal- and chemical equilibrium at the ‘initial’ time. In contrast, neutrinos only
interact through weak interaction in the process, e.g. e−+e+ → να+ν̄α, e

±+να → e±+ν̄α,
and να + νβ → να + νβ where α and β(6= α) are flavors of neutrinos, viz. e, µ, or τ . The
reaction rate of them is approximately written as

Γν = neσν |v| ' G2
FT

5, (3.6)

where ne is the electron number density, |v| is the absolute velocity of neutrinos, GF is
the Fermi coupling constant, and we have approximated the electron number density and
the cross-section of weak interaction to their thermal ones, i.e. ne ' T 3 and σν 7→ 〈σν〉 '
GFT

2. As can be seen from Eq. (3.6), the reaction rate depends on the number density of
electrons, whose mass is me ' 0.511 MeV. Thus, when the cosmic temperature drops as
the same order or below the mass of electrons, their number density rapidly decreases from
ne ' T 3 to ne ' (meT )

3/2e−me/T due to the exponential suppression by the Boltzmann
factor, leading to a fast drop of the reaction rate of neutrinos. Since a physical process
whose reaction rate is much smaller than the Hubble expansion rate is no longer effective
and it “decouples” from the system, neutrinos cannot be in equilibrium if Γν << H. For
neutrinos, the temperature of the decoupling can be estimated as

Γν

H
' G2

FT
5

T 2/m2
pl

'
(

T

1MeV

)3

, (3.7)

where we have used H =
√

8πGρ/3 =
√
g∗T 4/m2

pl ' T 2/mpl with the relativistic degrees

of freedom g∗ defined by

ρ =
π2

30
g∗T 4, (3.8)

where ρ is the total energy density, and it can be approximately written as

ρ ' ρrad ' ργ + ρe + ρν =
π2

30
gγT

4 +
7

8

(
π2

30
geT

4

)
+

7

8

(
π2

30
gνT

4

)
. (3.9)

around the epoch of BBN, i.e. T ∼ 10 MeV to 0.1 MeV. In the above, ρrad is the energy
density of radiations, ρi and gi are the energy density and the statistical degrees of freedom
of a particle i (= γ, e, and ν), respectively. Note that the factor 7/8 in the expressions of ρe
and ρν accounts for the difference between Fermi- and Bose statistics. From Eq. (3.9), we
can see that g∗ ' gγ+

7
8
ge+

7
8
gν = 2+7/2+21/4 = 10.75, which justifies the approximation

used in Eq. (3.7). Therefore, neutrinos decouple at around T ∼ O(1) MeV.
The decoupling temperature of electron neutrino νe is in fact smaller than that of

µ neutrino νµ and τ neutrinos ντ . This is because electron neutrinos additionally react
with electrons through charged-current interactions (left panel in Figure 3.1) along with
neutral-current ones (right panel in Figure 3.1), and thereby Γνe > Γνx where νx = νµ or
ντ .
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Figure 3.2: Evolution of the temperatures of neutrinos and photons as a function of
the scale factor a(t) [13]. The scale factor is normalized by its value at high temperature
T (>> me). The black dashed line is the neutrino temperature Tν , and the red solid line
is the photon temperature Tγ. In the figure, both photons and neutrinos are assumed to
be thermalized at the initial time.

Electron annihilation

For the cosmic temperature below 1 MeV, neutrinos are almost completely decoupled from
the thermal bath consisting of electromagnetic particles, namely photons, and electrons.
In this epoch, neutrinos still contribute to the total energy density and thereby affecting
background dynamics, but they are irrelevant to the evolution of the thermal bath.

When the temperature of photons and electrons drop to the same order or below the
electron mass me(' 0.511 MeV), the annihilation of electrons and positrons begins. Since
neutrinos already decouple at this time, their energy and entropy are entirely transferred
to photons, and the photon temperature Tγ becomes slightly greater than the neutrino
temperature Tν . On the ground that the cosmic expansion is an adiabatic process, the
total entropy in the Universe is conserved, which means

(sγ + se) a
3
before = sγ a

3
after, (3.10)
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where abefore and aafter are the scale factor long before- and after the electron annihilation,
and sγ and se are the entropy density of photons and electrons, respectively:

sγ =
2π2

45
g∗s,γT

3
γ , se =

7

8

(
2π2

45
g∗s,eT

3
e

)
, (3.11)

where the temperature of electrons Te is equal to the photon temperature Tγ since they
continue to interact with each other even after the electron annihilation. 1 Assuming
that the electron-positron annihilation instantaneously starts and finishes at Tγ = me,
Eq. (3.11) results in

Tγ

Tν

=

(
11

4

) 1
3

' 1.40, (3.12)

for Tγ << me.

It is important to accurately follow the evolution of the energy density of radiation
components, namely photons, electrons, and neutrinos, by taking into account this tem-
perature difference between photons and neutrinos due to the electron annihilation. This
is because, as explained in the next section, neutrino abundances and the total energy
density of the Universe are main factors which controls the neutron-to-proton (‘np’) ratio
n/p just before the nucleosynthesis, and it is closely related to the final abundances of
light elements.

Figure 3.2 shows the evolution of the photon temperature Tγ and the neutrino tem-
perature Tν as functions of the scale factor a(t), where assume neutrinos are completely
thermalized before the neutrino decoupling or the electron annihilation. The result is
obtained by simultaneously solving the Friedman equation Eq. (2.6) and the conservation
equation of energy and momentum Eq. (2.7) with an input of the thermal energy density
and pressure of each particle.

3.2.2 Neutron-to-proton ratio

In the above, we have seen that the neutrino decoupling and the electron annihilation are
the most important events in the epoch around BBN. This is because these events are
closely related to the freeze-out value of the neutron-to-proton ratio before the nucleosyn-
thesis, which is one of the decisive parameters for the final abundances of light elements.
In this subsection, we therefore focus on the evolution of the neutron-to-proton ratio.

1Photons and electrons no longer interact with each other after the Compton scattering γ+e− → γ+e−

decouples in the epoch of recombination Tγ ∼ 1 eV.



28 CHAPTER 3. STANDARD BIG-BANG NUCLEOSYNTHESIS

Inter-converting processes between neutrons and protons

In the early Universe, the neutron-to-proton ratio is regulated by the following processes
mediated by the weak interaction:

n+ νe ↔ p+ e−, (3.13a)

n+ e+ ↔ p+ ν̄e, (3.13b)

n ↔ p+ e− + ν̄e. (3.13c)

The general form of their reaction rates can be written as a nine dimensional integral with
respect to momentum:

Γ12→34 =
1

2E1

∑∫
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3

× (2π)4δ(4) (p1 + p2 − p3 − p4)S〈|M |212→34〉F (p1, p2, p3, p4) ,

(3.14)

for the processes (3.13a) and (3.13b), and

Γ1→234 =
1

2E1

∑∫
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3

× (2π)4δ(4) (p1 − p2 − p3 − p4)S〈|M |21→234〉F (p1, p2, p3, p4) ,

(3.15)

for the process (3.13c), where S is the symmetric factor which gives a factor of 1/2 if
particles in the initial- and final states are identical, δ(4) (p1 + p2 − p3 − p4) is the 4D
Dirac delta function corresponding to the conservation of four-momentum, 〈|M |2〉 is the
spin-averaged and summed square of the nuclear matrix element, and F (p1, p2, p3, p4) is
the phase space factor including Pauli blocking effects, which can be expressed as

F (p1, p2, p3, p4) ≡ f(p1)f(p2) (1− f(p3)) (1− f(p4)) , (3.16)

for the processes (3.13a) and (3.13b), and

F (p1, p2, p3, p4) ≡ f(p1) (1− f(p2)) (1− f(p3)) (1− f(p4)) , (3.17)

for the process (3.13c). Some of the above integrals can be analytically performed (see
e.g. Refs. [6, 26,27]):

Γn+νe→p+e− = K
∫∞
q

dϵ ϵ
√
ϵ2−1(ϵ−q)2

{1+exp(−ϵz)}[1+exp{(ϵ−q)zν}] , (3.18a)

Γn+e+→p+ν̄e = K
∫∞
1

dϵ ϵ
√
ϵ2−1(ϵ+q)2

{1+exp(ϵz)}[1+exp{−(ϵ+q)zν}] , (3.18b)

Γp+ν̄e→e++n = K
∫∞
1

dϵ ϵ
√
ϵ2−1(ϵ+q)2

{1+exp(−ϵz)}[1+exp{(ϵ+q)zν}] , (3.18c)

Γp+e−→n+νe = K
∫∞
q

dϵ ϵ
√
ϵ2−1(ϵ−q)2

{1+exp(ϵz)}[1+exp{−(ϵ−q)zν}] , (3.18d)

Γn→p+e−+ν̄e = K
∫ q

1
dϵ ϵ

√
ϵ2−1(ϵ−q)2

{1+exp(−ϵz)}[1+exp{(ϵ−q)zν}] , (3.18e)

Γp+e−+ν̄e→n = K
∫ q

1
dϵ ϵ

√
ϵ2−1(ϵ−q)2

{1+exp(ϵz)}[1+exp{−(ϵ−q)zν}] , (3.18f)
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where ϵ = Ee/me, z = me/Te, zν = me/Tνe and q = Q/me where Q = mn − mp '
1.293 MeV is the mass difference between neutrons and protons, where we have as-
sumed that electron neutrinos are thermalized and have a temperature of Tνe . Also,

K =
G2

F

2π3 (1 + 3g2A)m
5
e with the axial vector coupling of nucleons gA is a constant factor,

which is related to the free neutron lifetime τn:

τn = Γ−1
n→peν (3.19)

=

[
G2

F

2π3

(
1 + 3g2A

)
m5

eΛ

]−1

' K−1, (3.20)

where Λ ≡
∫ q

1
dϵϵ(ϵ− q)2 (ϵ2 − 1)

1/2 ' 1.636. The total reaction rates of the reactions Γnp

is given by Γnp = Γn→p + Γp→n, where

Γn→p = Γn+νe→p+e− + Γn+e+→p+νe + Γn→p+e−+νe , (3.21)

Γp→n = Γp+e−→n+νe + Γp+νe→e++n + Γp+e−+νe→n. (3.22)

Focusing on Γp+e−→n+νe , it takes values at high- and low temperatures below [6]:

Γpe−→n+νe ∼

{
τ−1
n (T/me)

3 exp(−Q/T ) for T << Q

π
60
π (1 + 3g2A)G

2
FT

5 ' G2
FT

5 for T >> Q
. (3.23)

Initial and freeze-out values of n/p ratio

Since the Hubble rate can be written as H ' T 2/mpl (see Eq. (3.7)), reaction rates of
the exchange reactions between protons and neutrons are much larger than the Hubble
expansion rate of the Universe at high temperatures, and the opposite is true at low
temperatures, as can be seen from Eq. (3.23). By equating the Hubble rate and the
exchange rates, we obtain the temperature at which the exchange process decouples, the
“freeze-out temperature” Tf :

2

Γpe−→n+νe

H
∼ G2

FT
5

T 2/mpl

∼
(

T

0.7 MeV

)
, (3.24)

which means Tf ∼ 0.7 MeV. The evolution of the n−p exchange rate and the Hubble rate
obtained by numerical computations is shown in Figure 3.3, where we can see that the
Hubble rate H actually exceeds the n−p exchange rate Γpe−→n+νe at around T ∼ 0.7 MeV.
Therefore, all of the process (3.13a)–(3.13b) are both in kinetic- and chemical equilibrium

2The free neutron decay (3.13c) continues even after the processes (3.13a)–(3.13b) decouple, and it
further decreases the neutron-to-proton ratio before the nucleosynthesis of light elements. However, the
freeze-out value of the neutron-to-proton ratio is more important because the neutron decay is still inert
just when the nucleosynthesis proceed rapidly at around T ' 0.08 MeV and t ' 200 sec [28].
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Figure 3.3: Evolution of the forward reaction rate of the np exchanging processes and the
Hubble expansion rate as functions of the cosmic temperature and time. The temperature
at which the Hubble rate exceeds the forward rate corresponds to the freeze-out tempera-
ture Tf for the weak processes. The red solid line is the forward rate Γn→p, and the black
dashed line is the Hubble rate H. The baryon-to-photon ratio, the neutron lifetime, and
the effective number of neutrino species are fixed to be ηB = 6.0 × 10−10, τn = 880 sec,
and Neff = 3.046, respectively.

for T (≡ Tγ = Te = Tν) >> Tf . In such cases, the number density for non-relativistic
neutrons and protons can be written as

ni = gi

(
miT

2π

)3/2

exp

(
−mi + µi

T

)
, (3.25)

where i = n, p and gi is the statistical degrees of freedom. In addition, the sum of chemical
potentials of initial- and final states are equal:

µn + µνe = µp + µe. (3.26)
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Therefore, neutron-to-proton ratio n/p ≡ nn/np can be given by

n/p ' exp[−{(mn −mp) + (−µn + µp)}/T ] = exp[−{Q+ (µe − µνe)}/T ]. (3.27)

The contribution of chemical potentials µe and µνe on the neutron-to-proton ratio is nor-
mally assumed to be negligible. This is because the order of µe/T and µνe/T are expected
to be the same as the baryon-to-photon ratio ∼ O(10−10) due to the charge neutrality of
the Universe and the standard mechanism of the baryogenesis, i.e. the sphaleron process.
If this is true, the neutron-to-proton ratio has the following values at high- (T >> Q) and
low (T ∼ Tf ) temperatures:

n/p ' exp[−Q/T ] (3.28)

'
{

1 for T >> Q

1/6 for T ∼ Tf

, (3.29)

which implies that there is the same number of neutrons and protons, nn = np, at high
temperature. Since neutrons spontaneously decay into protons and light species with
its lifetime τn = 880.2 ± 1.0 sec (68% C.L.) [29], the freeze-out value of the neutron-to-
proton ratio (n/p)f = exp[−Q/Tf ] ' 1/6 further decreases down to ' 1/7 [28]. The
temperature evolution of the n/p ratio obtained by numerical computations is shown in
Figure 3.4, where it can be seen that the n/p ratio actually deviates from the prediction
under equilibrium, i.e. n/p ∼ exp[−Q/T ]. The rapid decrease of the n/p ratio at T '
0.1 MeV is due to the onset of the nucleosynthesis.

3.2.3 Predicted abundances of light elements

Predictions of the light element abundances as a result of BBN have been provided both
in analytical- and numerical ways. First, we discuss analytical calculations and then we
describe numerical analyses. More thorough discussions can be found in e.g. Refs. [6,30,31]
(see Refs. [28, 32] for more recent papers).

Analytical estimation

The analytical estimate of the light element abundances can be obtained by viewing the
nucleosynthesis as a series of departures from “nuclear statistical equilibrium” (NSE) of
nuclear reactions. The most simple case was discussed in Subsection 3.2.2, where we
described how the freeze-out value of the neutron-to-proton ratio is determined. The
purpose of this section is to express the production abundances of light elements in terms
of the neutron- and proton abundances so that we can obtain an analytical picture of
BBN.

When all of the nuclear reactions which are responsible for production or destruction of
some nuclear species are much faster than the expansion rate of the Universe, the nuclear
species are in both kinetic and chemical equilibrium, and in this case the nuclear species are
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Figure 3.4: Evolution of the neutron-to-proton ratio n/p as functions of the comic tem-
perature T and time t [28]. The black dashed line is the equilibrium value ' exp[−Q/T ],
and the red solid line is the realistic n/p ratio obtained by numerical computations. The
baryon-to-photon ratio, the neutron lifetime, and the effective number of neutrino species
are fixed to be ηB = 6.0× 10−10, τn = 880 sec, and Neff = 3.046, respectively.

under the nuclear statistical equilibrium. In the same way as for neutrons and protons, in
kinetic equilibrium, the number density of non-relativistic nuclear species with the atomic
number Z and the mass number A can be written as

nA = gA

(
mAT

2π

) 3
2

exp

(
µA −mA

T

)
, (3.30)

where mA, µA, and gA are the mass, the chemical potential, and the statistical degrees of
freedom of the nuclear species, respectively. If chemical equilibrium is also attained, the
chemical potential µA is related to those of neutrons (µn) and protons (µp):

µA = Zµp + (A− Z)µn. (3.31)
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AZ BA gA
2H(D) 2.22 MeV 3
3H(T) 8.48 MeV 2
3He 7.72 MeV 2
4He 28.3 MeV 1
12C 92.2 MeV 1

Table 3.1: The binding energy BA and the statistical degrees of freedom gA of the nuclear
species of each nuclear species AZ with the mass number A and the atomic number Z.

Then, by using Eq. (3.31) we can rewrite the exponential part of Eq. (3.30) in terms of
the number density of neutrons and protons as follows:

exp (µA/T ) = exp [(Zµp + (A− Z)µn) /T ] (3.32)

' nZ
p n

A−Z
n

(
2π

mNT

) 3
2
A

2−A exp [(Zmp + (A− Z)mn) /T ] , (3.33)

where we have used Eq. (3.30) for neutrons and protons and approximated the masses of
neutrons and protons to the atomic mass unit mN ≡ m12C ≈ 931.5 MeV, neglecting the
small mass difference (∼ 1.3 MeV) between protons and neutrons, in the second line. As
a result, NSE abundance for some nuclear species nA can be expressed as

nA ' gAA
3
22−A

(
2π

mNT

) 3(A−1)
2

nZ
p n

A−Z
n exp

(
BA

T

)
, (3.34)

where BA is the binding energy of the nuclear species, which is given by

BA = Zmp + (A− Z)mn −mA. (3.35)

The binding energies of light elements BA are summarized in Table 3.1. Since the number
density of particles is diluted by the cosmic expansion and is proportional to a(t)−3, it is
convenient to express the abundance of nuclear elements in terms of comoving quantities,
which is constant in the expanding Universe. We normalize the number density of nuclear
elements with the mass abundance of baryons Xb,

Xb ≡ mNnN

= mN(nn + np +
∑
A

AnA), (3.36)

and label normalized quantities as XA:

XA ≡ mAnA

Xb

=
AnA

nN

, (3.37)
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where nn and np are respectively the number densities of free neutrons and free protons,
and nA is the number density of nuclear species A. The mass abundance of nuclear
elements defined as Eq. (3.37) satisfies

∑
AXA = 1 by definition. Using Eqs. (3.34) and

(3.37), we find

XA = λ(A)

(
T

mN

) 3(A−1)
2

ηA−1
B XZ

p X
A−Z
n exp

(
BA

T

)
, (3.38)

where λ(A) ≡ gAζ(3)
A−1π

(1−A)
2 2

(3A−1)
2 A

5
2 is a constant prefactor depending on the mass

number A, and ηB is the baryon-to-photon ratio defined as

ηB ≡ nN

nγ

' 2.68× 10−8
(
ΩBh

2
)
, (3.39)

where ΩB ≡ ρB/ρc, with the energy density of baryons ρB and the critical energy density
of the Universe ρc ≡ 3H2/8πG, is the density parameter of baryons. The value of ηB is
known to be ' 6.13 × 10−10 from CMB observations [3]. Also, h is the reduced Hubble
parameter defined by H = 100h km/sec ·Mpc−1.

In order to discuss the production abundance in more detail, let us consider the sys-
tem consisting of n, p, D, T, 3He, and 4He, neglecting heavier elements than 4He. At
high temperature (≳ 10 MeV), NSE is attained for these nuclear species, and their mass
abundances obey Eq. (3.38):

XD = 16.3

(
T

mN

)3/2

ηB exp

(
BD

T

)
XnXp, (3.40)

XT = 57.4

(
T

mN

)3

η2B exp

(
BT

T

)
X2

nXp, (3.41)

X3He = 57.4

(
T

mN

)3

η2B exp

(
B3He

T

)
XnX

2
p , (3.42)

X4He = 113

(
T

mN

)9/2

η3B exp

(
B4He

T

)
X2

nX
2
p . (3.43)

and therefore
Xn +Xp +XD +XT +X3He +X4He = 1. (3.44)

In the following, we firstly explain important nuclear reactions responsible for the produc-
tion of light elements with the mass number A < 4.

As discussed before, three-body nuclear reactions decouple much earlier than the BBN
epoch, and therefore they cannot contribute to the nucleosynthesis. Among two-body
reactions, the following ones are especially important for the production of each nuclear
species [30].

· Deuterium (D):
n+ p → D+ γ (3.45)
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· Mass-3 elements (T, 3He):

D + D → T + p, 3He + n (3.46)
3He + n → T + p (3.47)

D + p → 3He + γ (3.48)

· Helium 4 (4He):

T + D → 4He + n (3.49)
3He + D → 4He + p (3.50)

Then we discuss NSE abundances for a typical temperature in the following:

· At high temperature: T ∼ 10 MeV, t ∼ 0.01 sec

As we have seen in the previous subsection, if the temperature is at or above 10 MeV, all of
the above elements are in NSE, and neutrons and protons have the same abundances, i.e.
Xn ' Xp ' 0.5. Thus, for the baryon-to-photon ratio ηB = 6×10−10, mass abundances of
light elements can be estimated by Eqs. (3.40)–(3.43); XD ∼ 10−11, XT ∼ 10−24, X3He ∼
10−24, and X4He ∼ 10−34. As can be seen from these NSE values, an only tiny number of
light elements are produced during high-temperature epochs.

· At around the freeze-out temperature of n/p ratio: T ∼ 1 MeV, t ∼ 1 sec

As estimated in Eq. (3.24) the freeze-out temperature of the neutron-to-proton ratio is
Tf ∼ 1 MeV and the freeze-out value is (n/p)f ∼ 1/6. Therefore, mass abundances of
neutrons and protons are Xn ' 1/6 and Xp ' 5/6, respectively. Thus, for the baryon-to-
photon ratio ηB = 6 × 10−10, mass abundances of light elements are XD ∼ 10−11, XT ∼
10−24, X3He ∼ 10−24, and X4He ∼ 10−34. It would be surprising that the nucleosynthesis
of light elements is still inert although the temperature is already lower than the binding
energies of light elements BA (see Table 3.1). This is due to the enormous amount of
entropy in the Universe s compared to the baryon number density nN , which can be seen
from the observational value of the baryon-to-photon ratio ηB ≡ nN

nγ
∼ nN

s
∼ 10−10 the

prefactors proportional to the power of ηB in Eqs. (3.40)–(3.43) prevent the light elements
from being produced abundantly and delay the nucleosynthesis. In other words, a lot of
photons contribute to the inverse reaction of n + p → D + γ and immediately destroy D
produced in the forward reaction. This kind of situations that delayed the formation of
nuclear elements with A ≥ 3 is called “Deuterium bottleneck”.

· At low temperature: T ∼ 0.1 MeV, t ∼ 100 sec

When the temperature drops below 1 MeV, some of the nuclear species fall out of their
NSE tracks as the creation- and destruction reactions gradually decouple. Specifically,
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neutrons and protons finish interacting at around T ' 0.8 MeV, 4He leaves from NSE
at around T ' 0.6 MeV, the interaction between the mass-3 elements (T, 3He) stops
at around T ' 0.08 MeV, and the creation of mass-3 elements (T, 3He) from D becomes
ineffective at around T ' 0.07 MeV. Therefore, we cannot estimate the nuclear abundance
by relying on the NSE condition in this epoch. In the case where nuclear elements fall
out of the NSE tracks, but their total creation- and destruction (i.e. the forward and
the inverse) rates are equal, the nuclear elements are still in the “quasi-static equilibrium”
(QSE). The nuclear elements are actually in QSE after D becomes abundantly produced
so that XD ' Xn ' Xp, and after the most of D are converted into 4He, which is most
stable among light elements with A < 12. This happens at around T ' 0.08 MeV right
after all nuclear elements fall out of the NSE tracks. Since all neutrons are consumed to
synthesize 4He which consists of two neutrons and protons, the final mass abundance of
4He can be estimated as

X4He =
m4Hen4He

mNnN

' 4mN(nn/2)

mN(np + nn)

∣∣∣∣
T=Tbbn

=
2(n/p)bbn

1 + (n/p)bbn
' 0.25, (3.51)

where (n/p)bbn ' 1/7 is the SBBN value of the neutron-to-proton ratio just before rapid
production of 4He occurs, and Tbbn ' 0.08 MeV is the temperature at that time. In the
above, we have approximated m4He ' 4mN , neglecting the binding energy of 4He.

The abundance of other nuclear species cannot be simply estimated as for 4He. We
need another way to analytically obtain their abundances. The nuclear abundances are in
general followed by the equation:

dYi

dt
=

∑
k,l

YkYl[kl]−
∑
j

YiYj[ij], (3.52)

where Yi ≡ Xi/A, whereas [ij] and [kl] are destroying- and creating rates for i, respectively.
After 4He is rapidly produced at T ∼ 0.08 MeV, the nuclear elements fall into QSE.
Since the condition of QSE means that the left-hand side of Eq. (3.52) is vanishing, the
abundance of a nuclear species i is governed by the following equation at this stage:

Yi(T ) =

∑
k,l YkYl[kl]∑

j Yj[ij]
. (3.53)

Thus, once we obtain temperature-dependent destroying- and creating rates for nuclear
species i, we can obtain a nuclear abundance Yi as a function of the cosmic temperature
T . The formula of the QSE abundance Eq. (3.53) holds until all of the destroying rates
for i decouple. The final abundance of a nuclear species i, Yi, final, is determined by the
freeze-out temperature of the decoupling Tf as follows:

Yi,final = Yi(Tf )

=

∑
k,l Yk (Tf )Yl (Tf ) [kl] (Tf )∑

j Yj (Tf ) [ij] (Tf )
. (3.54)
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AZ Tf

H(D) 0.03MeV
3H(T) 0.009MeV
3He 0.03MeV
4He 0.06MeV
7Li 0.02MeV
7Be 0.02MeV

Table 3.2: The freeze-out temperature Tf of each nuclear species AZ with the mass
number A and the atomic number Z.

The freeze-out temperature of nuclear species is obtained in Ref. [30], and we summarize
them in Table 3.2. The detailed analysis of the QSE abundance was performed in Ref. [31],
and they obtained YD ' 0.7×10−4, YT ' 0.37×10−6, Y3He ' 0.2×10−4, Y7Li ' 0.7×10−10,
and Y7Be ' 0.1×10−10 for ΩBh

2 = 0.01 with the density parameter of baryons ΩB ≡ ρB/ρc
where ρB is the energy density of baryons and ρc ≡ 3H2/8πG is the critical density of the
Universe. 3

Numerical computation

In the previous subsection, we explain to what extent we can analytically understand the
final abundances of light elements. Next, we focus on numerical computations of BBN for
comparing its result with inferred values of light elements from astronomical observations.

Figure 3.5 shows the evolution of light element abundances in the SBBN. The re-
sults are obtained by numerically solving the Boltzmann equation for nuclear elements,
Eq. (3.52), together with the Friedman equation, Eq. (2.6), and the conservation equation
of energy and momentum, Eq. (2.7), with the Kawano BBN code [23]. As is obvious
from Eq. (3.34), nuclear abundances depend on the value of the baryon-to-photon ratio
ηB. Also, nuclear abundances are very sensitive to the freeze-out value of the neutron-to-
photon ratio, and therefore to the neutron lifetime τn as described before. In Figure 3.5,
these input parameters are fixed to be ηB = 6.0 × 10−10 and τn = 880 sec, respectively.
As for the nuclear abundances, in the figure they are expressed in terms of the number
density of the nuclear species ni divided by that of free protons np, which is related to Yi

by the relation:

Yi = ni/nN = ni/(nn + np) = ni/np. (3.56)

3The density parameter of baryons is uniquely related to the baryon-to-photon ratio ηB ≡ nN/nγ

through the relation:
ηB ' 2.8× 10−8ΩBh

2, (3.55)

which can be applied after the electron annihilation as ηB is expected to be constant without any entropy
injection. By using this relation, we can see that ΩBh

2 = 0.01 corresponds to ηB ' 2.8× 10−10, which is
slightly smaller than the Planck value ΩBh

2 = 0.0224 (i.e. ηB ' 6.13× 10−10) [3].
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Figure 3.5: Evolution of light element abundances in the standard big-bang nucleosyn-
thesis (SBBN). The baryon-to-photon ratio, the neutron lifetime, and the effective number
of neutrino species are fixed to be ηB = 6.0 × 10−10, τn = 880 sec, and Neff = 3.046, re-
spectively. [Figure courtesy of K. Kohri.]

Also, we note that Yp in the figure is not the abundance of protons, but the mass abundance
of 4He, i.e. Yp = m4Hen4He/nN . It can be seen in Figure 3.5 that all elements are started
to be created at around T ∼ 0.1 MeV, where the deuterium bottleneck finally opens.
Furthermore, it seems that the analytical estimation of light element abundances is true
within an order of magnitude.

3.3 Observation of light elements

In the previous section, we discuss a theoretical prediction of light element abundances
and explain analytical- and numerical estimation of them. In this section, we focus on
an observational inference of primordial abundances of light elements. Since the main
purpose of this thesis is to obtain an observational constraint on parameters of theoretical
models, we only describe observed abundances of D, 4He, which are generally used for a
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comparison of theoretical predictions with observational determinations. 4

3.3.1 Deuterium (D)

As a theoretical prediction of the deuterium abundance D/H (≡ nD/nH) strongly depends
on the baryon-to-photon ratio ηB in the BBN epoch, it has been used for a direct compar-
ison between theoretical- and observational values to provide constraints on ηB or other
parameters in the theoretical models. The determination of ηB from D/H has become
available after the systematic uncertainty in the observed abundance of D/H significantly
decreased by observing Lyman series absorption lines of neutral hydrogen and deuterium
in quasar absorption systems at high redshift. Particularly, by selecting a handful of sys-
tems, Cooke et al. [39] significantly reduced the systematic uncertainties in the data, and
their analysis provided a very accurate measurement of primordial abundance:(

D

H

)
= (2.53± 0.04)× 10−5 (68%C.L.). (3.57)

Surprisingly, the uncertainty of D/H is only 2% at 1-σ level, and this enables us to make
use of BBN as a powerful probe of physics in the early epoch. In a more recent analysis of
Ref. [40], they took into account 13 measurements of D/H which focus on the absorption
system at the redshift z = 2.504 towards Q1009+2956. Consequently, taking a weighted
mean of the 13 analyses on D/H, they estimated the primordial value of D/H:(

D

H

)
= (2.545± 0.025)× 10−5 (68%C.L.) , (3.58)

which gives an accuracy of 1% level. In our studies explained in Chapters 5 and 6, we use
this reported value of D/H to discuss observational constraints.

3.3.2 Helium 4 (4He)

The 4He abundance has long been used to constrain some non-standard physics/scenarios
of cosmology or particle physics. This is because the 4He abundance is very sensitive to

4As for the other elements, an observable amount of 3He should be produced in the BBN epoch, but its
primordial abundance is very difficult to infer because we cannot detect hyperfine emission lines from 3He
gas cloud at high redshift, which is expected to contain information of the primordial value. Also, authors
in Ref. [33] claimed that they detected the 6Li abundance, but it was later shown to be an artifact due
to systematic errors in astrophysical origin [34–37]. As the reported abundance of 6Li was much larger
than the prediction of SBBN, an inconsistency between the theoretical- and the observed abundances of
6Li was called the “Lithium-6 problem”. Finally, there is a long-standing problem called the “Lithium-7
problem” in the primordial abundance of 7Li that the theoretical prediction of the 7Li abundance is almost
three times greater than that inferred from observations (for a detailed recent review of the lithium probe,
see [38]). Several possible solutions have been proposed in terms of particle physics, nuclear physics, and
astronomy, but it has not solved yet. Since one generally refrains from using the 7Li abundance to obtain
constraints on some physics from BBN. Therefore, we do not discuss the 7Li abundance, either.
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the freeze-out value of the neutron-to-photon ratio and the freeze-out temperature of the
interconverting processes between protons and neutrons, which are easy to be modified if
we assume theories other than the standard big-bang cosmology, viz. the general relativity
and the standard model of particle physics.

The primordial abundance of 4He is determined by observing emission lines of H and
4He from metal-poor stars in extra-galactic HII regions, where an ionized gas of hydrogen
abundantly exists. Since 4He is known to be produced by nuclear fusions in massive
stars together with heavier elements, in order to infer the primordial abundance of 4He
produced in BBN, we must perform a regression of the 4He abundance with respect to a
metallicity of stars. However, the observational determination of the 4He abundance has
been annoyed with large systematic uncertainties relevant to the property of stars, which
have prevented from obtaining an accuracy better than 1% level.

In Ref. [41], Y. Izotov et al. reported a new determination of the 4He abundance
by using the emission lines in an infrared band as well as a visible band obtained from
observations of 45 extra-galactic HII regions. As a result, they obtained

Yp = 0.2551± 0.0022. (68%C.L.) , (3.59)

Recently, in the paper by E. Aver et al. [42], they have reanalyzed their original dataset
by taking into account newly available observations of metal-poor stars with a near-infrared
line λ10830 [41] and significantly reduced the uncertainties. Consequently, they obtained
the regression:

Yp = 0.2449± 0.0040 + (78.9± 43.3)O/H (68%C.L.) , (3.60)

where O/H is the oxygen abundance. Since the primordial abundance of 4He can be
obtained from regression to zero metallicity (i.e. O/H → 0), they found

Yp = 0.2449± 0.0040 (68%C.L.) , (3.61)

which means the uncertainty is less than 2% at 68% C.L. In our studies, we adopt this
reported value in Eq. (3.61).

3.4 Theoretical predictions and observed abundances

In the previous sections, we have seen how light element abundances are estimated in terms
of theories and observations. In this section, we compare those results to get knowledge
of implications and consequences.

Figure 3.6 shows the theoretical- and observed abundances of light elements as a func-
tion of the baryon-to-photon ratio ηB, which is the only free parameter of BBN. The figure
tells us that the theoretical predictions and the observed abundances of D/H and Yp (for
Nν = 3) are well in agreement with each other, and the inferred value of ηB obtained from
BBN is consistent with the independent constraint from CMB, ηB = (6.11± 0.08)× 10−10
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(2-σ C.L.). We note that Neff = 3.046 is the standard assumption of the big-bang cos-
mology, and cases of Nν = 2 and 4 are also shown for reference. The point is that the
theoretical prediction of Yp increases as ηB increases, while the opposite is true for D/H.
The dependence of Yp and D/H on ηB can be understood as follows. As can be seen
from Eq. (3.40), the deuterium bottleneck opens earlier for large ηB. Thus, there remain
more neutrons than for small ηB because fewer neutrons decay before the nucleosynthesis.
Since the 4He abundance is an increasing function of the n/p ratio, large ηB leads to large
Yp. As for D/H, the final abundance of D is determined by the freeze-out temperature
of the destroying processes for D as explained in Subsection 3.2.3 (see Eq. (3.54)). The
main processes responsible for the deuterium destruction are DD- and DT reactions in
Eqs. (3.46) and (3.49). The reaction rates of these destroying processes are proportional
to ηB, and more D are therefore burned into mass-3 (T, 3He) or mass-4 (4He) elements for
large ηB. For this reason, there remains a smaller abundance of D for large ηB, and vice
versa.
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Figure 3.6: Theoretical predictions and observed abundances of light element abundances
as functions of the baryon-to-photon ratio ηB and the density parameter of baryons ΩB.
The pink vertical band shows the CMB bound on the baryon-to-photon ratio at 2-σ level
ηB = (6.11± 0.08)× 10−10, reported in Ref. [43]. The yellow boxes are the observational
values with 2-σ uncertainties. In the top panel, the boxes surrounded by the dashed- and
solid lines are observational abundances of Yp given in Eqs. (3.59) and (3.61), respectively.
The theoretical abundances are plotted by the green bands. The 4He abundance is depicted
for three values of the effective number of neutrino species, namely Nν = 2, 3, and 4 (from
the bottom to the top). [Figure courtesy of K. Kohri.]



Chapter 4

Neutrino oscillation

In this chapter, we review the formalism of neutrino oscillation for understanding its effect
on observables in the early Universe.

Neutrino oscillation is a phenomenon that the flavor of neutrino changes to another
flavor during its flight in a vacuum or in a medium. The theoretical study of neutrino
oscillation was started in 1954 when B. Pontecorvo predicted the flavor transition between
neutrinos and anti-neutrinos in analogy with the theory of oscillation between K0 and
K0 states [44]. After that, Z. Maki, M. Nakagawa, S. Sakata are inspired by the paper,
and they proposed that different flavors of neutrinos periodically oscillate with each other
if each flavor of neutrinos has different masses [45]. At the same time, R. Davis and
other researchers in the HOMESTAKE experiment found that the observed flux of solar
neutrinos (i.e. electron neutrinos) is much smaller than the theoretical prediction [46].
Similar results were also obtained by KamiokaNDE [47] and SNO [48] experiments, and
the problem of neutrino flux (“solar neutrino problem”) was verified. Therefore, many
researchers made an effort to solve it in view of astrophysics or particle physics. It was not
until 1998 that the theory of neutrino oscillation was confirmed. Researchers of Super-
Kamiokande [49] experiment found that there is also a deficit in a flux of atmospheric
neutrinos (i.e. µ-type neutrinos), and both problems of the solar and atmospheric neutrino
fluxes can be simultaneously explained by the theory of neutrino oscillation [50].

Today, neutrinos are known to play an important role in a certain astrophysical envi-
ronment or some epoch of the thermal history of the Universe. Thus, it would be nearly
essential for those who are interested in these fields of research to take into account the
effect of neutrino oscillation.

As is explained later in this chapter, a behavior of neutrino oscillation is known to be
modified if neutrinos propagate in a matter. Therefore, we firstly explain neutrino oscil-
lation in a vacuum in Section 4.1. Afterwards, we discuss the matter effects on neutrino
oscillation in Section 4.2. Also, if we are interested in the effect of neutrino oscillation
on thermodynamic variables of neutrinos in a statistical ensemble, we cannot straight-
forwardly apply the formalism in Sections 4.1 and 4.2. In such cases, we must rely on
a density matrix formalism to simultaneously consider neutrino oscillation with neutrino

43
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collisions. We explain the formalism in Section 4.3.

4.1 Neutrino oscillation in a vacuum

In this section, we briefly introduce the neutrino oscillation in a vacuum.
In the standard theory of particle physics, neutrino masses are assumed to be exactly

zero, but this is not a symmetry requirement of SU(3)×SU(2)×U(1). As described in the
paper by Maki, Nakagawa, Sakata [45], if neutrinos actually have masses along with flavor
mixings, their mass and flavor eigenstates can be mixed with each other, and neutrinos of
flavor eigenstate α experience a transition into different flavor eigenstate β(6= α) and vice
versa. As explained in the above, neutrinos are experimentally known to in fact exhibit
this kind of periodic behavior between different flavor eigenstates, and this phenomenon
is called neutrino oscillation. In the following, we show how neutrino oscillation can be
expressed on the basis of quantum mechanics, first assuming that there is no background
particle in the system.

In the case where three types of neutrinos, namely electron neutrinos (νe), µ neutrinos
(νµ), and τ neutrinos (ντ ), have flavor mixings with each other, their flavor eigenstates
can be expressed as superpositions of their mass eigenstates: 1 |νe〉

|νµ〉
|ντ 〉

 = U

 |ν1〉
|ν2〉
|ν3〉

 or |να〉 =
∑
i

Uαi |νi〉 , (4.1)

where |νi〉 (i = 1, 2, 3) in the right-hand side are respectively mass eigenstates of neutrinos
whose mass eigenvalues are m1,m2 and m3, whereas |να〉 (α = e, µ, τ) in the left-hand side
are respectively flavor eigenstates of neutrinos which correspond to νe, νµ and ντ . Also,
U is the flavor-mixing matrix of neutrinos, and it is often called PMNS matrix, where
“PMNS” is an acronym for Pontecorvo, Maki, Nakagawa, and Sakata, who developed the
theory of neutrino oscillation. The unitary matrix U is given by a product of rotation
matrices in three dimensions (U23, U13, and U12) and the CP matrix (UCP ), i.e.

U = U23 U13 U12 UCP , (4.2)

where each matrix in the right-hand side is normally parametrized as

U23 ≡

 1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

 , (4.3)

U13 ≡

 cos θ13 0 eiδD sin θ13
0 1 0

−e−iδD sin θ13 0 cos θ13

 , (4.4)

1In this section, we neglect a possibility that active neutrinos, involved in the standard model, have a
flavor mixing with an extra flavor eigenstate, i.e. sterile neutrinos. That is, we only focus on the neutrino
oscillation among three flavors of active neutrinos.
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U12 ≡

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

 , (4.5)

UCP ≡

 eiα1/2 0 0
0 eiα2/2 0
0 0 1

 , (4.6)

where θ12, θ23 and θ13 are mixing angles in a vacuum giving flavor mixings between corre-
sponding mass eigenstates, whereas δD and αM,i where i = 1, 2 are respectively the Dirac-
and Majorana phases, which originate from the CP violation of the theory. Therefore,
each component of the PMNS matrix Uαi can be written as

U =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3,


=

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδD

0 1 0
−s13e

iδD 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 eiα1/2 0 0
0 eiα2/2 0
0 0 1


=

 c12c13 s12c13 s13e
−iδD

−s12c23 − c12s23s13e
iδD c12c23 − s12s23s13e

iδD s23c13
s12s23 − c12c23s13e

iδD −c12s23 − s12c23s13e
iδD c23c13

 eiα1/2 0 0
0 eiα2/2 0
0 0 1

 ,

(4.7)

where we define cij ≡ cos θij and sij ≡ sin θij. In Table 4.1, we summarize experimental
values of oscillation parameters, namely δm2

ij, θij, and δD.
For simplicity, we hereafter focus on the two-flavor neutrino mixing between να and

νβ, where α 6= β. In this case, the flavor- and mass eigenstates are related as follows:

|να〉 = cos θ |ν1〉+ sin θ |ν2〉 , (4.8)

|νβ〉 = − sin θ |ν1〉+ cos θ |ν2〉 , (4.9)

where |να〉 and |νβ〉 are the flavor eigenstates, whereas |ν1〉 and |ν2〉 are the mass eigen-
states, respectively. Also, θ is the mixing angle between να and νβ. In this case, the flavor
mixing matrix can be written as

U =

(
cos θ sin θ
− sin θ cos θ

)
, (4.10)

with which we can rewrite Eqs. (4.8) and (4.9) as(
|να〉
|νβ〉

)
= U

(
|ν1〉
|ν2〉

)
. (4.11)
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Parameter 1-σ range

δm2
12 7.55+0.20

−0.16 eV2

|δm2
31| (NO) (2.50± 0.03)× 10−3 eV2

|δm2
31| (IO) 2.42+0.03

−0.04 × 10−3 eV2

θ12 34.5+1.2
−1.0

◦

sin2 θ12 3.20+0.20
−0.16

θ23 (NO) 47.7+1.2
−1.7

◦

sin2 θ23 (NO) 0.547+0.020
−0.030

θ23 (IO) 47.9+1.0
−1.7

◦

sin2 θ23 (IO) 0.551+0.018
−0.030

θ13 (NO) 8.45+0.16
−0.14

◦

sin2 θ13 (NO) 2.160+0.083
−0.069

θ13 (IO) 8.53+0.14
−0.15

◦

sin2 θ13 (IO) 2.220+0.074
−0.076

δD/π (NO) 1.21+0.21
−0.15

δD (NO) 218+38
−27

◦

δD/π (IO) 1.56+0.13
−0.15

δD (IO) 281+23
−27

◦

Table 4.1: Summary of neutrino oscillation parameters reported in Ref. [51].
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The time evolution of the flavor eigenstate |να〉 can be given as follows:

|να〉(t) = e−iHt|να〉 (t = 0)

=
∑
i

Uαie
−iEit|νi〉

∼ e−ipt U

 e
−im2

1t

2p 0

0 e
−im2

2t

2p

U † |νi〉 . (4.12)

In the above, H is the free Hamilton of neutrinos, which satisfies H|νi〉 = Ei|νi〉 =√
p2 +m2

i |νi〉 with Ei (mi) the energy- (mass-) eigenvalue of |νi〉. In the third line of
Eq. (4.12), we assume that neutrinos are relativistic, p >> mi, and used the approxima-
tion, Ei ∼ p +m2

i /2p. The expression of Eq. (4.12) is also true for the time evolution of
|νβ〉. Thus, we can put them together into the matrix form as follows:(
|να〉
|νβ〉

)
(t) = exp

{
−i

(
p+

m2
1 +m2

2

2p
t

)}
exp

{
−i

δm2

2p
t

}(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)(
|να〉
|νβ〉

)
(t = 0) ,

(4.13)

where we have defined δm2 ≡ m2
2 −m2

1. Taking a time derivative of the above equation,
we find the evolution equation of flavor eigenstates:

i
d

dt

(
|να〉
|νβ〉

)
(t) =

δm2

2p

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)(
|να〉
|νβ〉

)
(t = 0), (4.14)

where we neglect the first exponential factor of the right-hand side of Eq. (4.13) since it
is just a phase factor of neutrino wave functions.

From Eq. (4.13) we find the transition probability of neutrinos, P (να → νβ):

P (να → νβ) = |〈νβ(t)|να〉|2

= sin2 2θ sin2 δm
2

2p
t. (4.15)

In the same way, we also find the survival probability of neutrinos, P (να → να):

P (να → να) = |〈να(t)|να〉|2

= 1− sin2 2θ sin2 δm
2

2p
t. (4.16)

As can be seen from Eqs. (4.15) and (4.16), a neutrino produced in a flavor eigenstate
periodically changes its flavor during propagating through space. Moreover, we can also
see from Eq. (4.15) that the transition probability is zero either if neutrinos are massless or
if their masses are equal, i.e. δm2 = 0. The transition- and survival probabilities are just
described by the mixing angle θ if the oscillation length Lν ≡ 4πp/δm2 is much shorter
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than the typical distance or the time scale of the oscillation ∼ p/δm2 is much faster than
that of the system:

P (να → νβ) = sin2 2θ

〈
sin2 δm

2

2p
t

〉
∼ 1

2
sin2 2θ, (4.17)

P (να → να) = 1− sin2 2θ

〈
sin2 δm

2

2p
t

〉
∼ 1− 1

2
sin2 2θ, (4.18)

where 〈·〉 is the time or thermal average, and we replaced 〈·〉 part with its average, i.e.
〈sin2 δm2

2p
t〉 → 1/2.

So far, we assume that there is no background particle, and therefore neutrinos are
freely propagating in the system. On the other hand, our objective is to understand the
behavior of neutrino oscillation in the early Universe, where a huge amount of particles are
present in the background. Therefore, we consider the matter effects in the next section.

4.2 Neutrino oscillation in a matter

In this section, we discuss the effects of background particles on neutrino oscillation. To
make its effect clear, let us consider the simplified system consisting of νe, νµ, and electrons.
We assume here that electrons are non-relativistic, and their spin directions are randomly
distributed. In such a situation, all flavors of neutrinos interact with electrons through
neutral-current interaction (right panel in Figure 3.1):

να + e− → να + e− via Z0 boson , (4.19)

while νe additionally interacts through charged-current one (left panel in Figure 3.1):

νe + e− → νe + e− via W± boson . (4.20)

As we have seen in Section 4.1, the transition probability only depends on the energy
difference of neutrinos. Thus, it is only worth discussing the contribution of charged-
current interactions of neutrinos, which makes a difference in the potentials of νe and
νµ.

The interaction Hamiltonian for the charged-current process, Hint, can be written as

Hint =
GF√
2
ν̄eγ

µ(1− γ5)eēγµ(1− γ5)νe

=
√
2GFneν

†
eνe, (4.21)
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where γµ (µ = 1, 2, 3, 4) is the Gamma matrix, and γ5 (≡ iγ0γ1γ2γ3) is the Chirality. In
the above expression, we used the Fierz transformation and treated electrons as a thermal
background. Also, a contribution responsible for the CP violation has been neglected for
simplicity. Consequently, the time evolution of νe and νµ states can be given by

i
d

dt

(
|νe〉
|νµ〉

)
(t) =

[
δm2

2E

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)
+
√
2GFne

(
1 0
0 0

)](
|νe〉
|νµ〉

)
(t = 0)

=

[
1

2E
UvacM

2U †
vac +

√
2GFne

(
1 0
0 0

)](
|νe〉
|νµ〉

)
(t = 0)

=
1

2E

[
UvacM

2U †
vac + A

(
1 0
0 0

)](
|νe〉
|νµ〉

)
(t = 0)

≡ H

(
|νe〉
|νµ〉

)
, (4.22)

where A ≡ 2
√
2GFneE, and Uvac denotes the flavor mixing matrix in a vacuum. The

second term in the bracket [·] arises from the charged-current process in Figure 3.1, which
we are concerned with.

The effective mass difference in a medium is obtained by diagonalizing the neutrino
Hamiltonian in Eq. (4.22). As a result, the effective mass difference in a medium δm2

M(=
m2

M,2 −m2
M,1) can be written as

δm2
M =

√
(δm2 cos 2θ − A)2 + (δm2 sin 2θ)2 , (4.23)

whereas the effective mixing angle in a medium θM is determined so that it satisfies(
|νe〉M
|νµ〉M

)
=

(
cos θM sin θM
− sin θM cos θM

)(
|νe〉
|νµ〉

)
, (4.24)

where |νe〉M and |νµ〉M are flavor eigenstates of νe and νµ in a medium, respectively. At
last, we find

cos 2θM =
δm2 cos 2θ − A√

(δm2 cos 2θ − A)2 + (δm2 sin 2θ)2
, (4.25)

sin 2θM =
δm2 sin 2θ√

(δm2 cos 2θ − A)2 + (δm2 sin 2θ)2
. (4.26)

As is obvious from Eqs. (4.23) and (4.26), if there is no background particles and hence
A = 0, the effective mass difference and mixing angle are equal to those in a vacuum, i.e.
δm2

M = δm2 and θM = θ. In contrast, if the condition, A = δm2 cos 2θ, is satisfied, the
effective mixing angle takes its maximum value, i.e. sin 2θM = 1 (θM = π/4), and the
transition probability also becomes its maximum,

P (να → νβ) =
1

2
sin2 2θM → 1/2 (= Pmax), (4.27)
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the last approximation holds if the oscillation time scale in a matter is much shorter than
the typical time scale of the system.

The modification of the effective mass difference and mixing angle due to in-medium
effects were first predicted by L. Wolfenstein in 1978 [52], followed by S. Mikheyev and
A. Smirnov, who indicated a possibility of resonant neutrino oscillation [53]. This kind of
the matter effects on neutrino oscillation is called “MSW (Mikheyev-Smirnov-Wolfenstein)
effect” named after their names, and it is one of the most well-known phenomena in the
field of neutrino physics. Similarly, the resonant oscillation is called “MSW resonance”,
and the theoretical prediction of this resonant oscillation has contributed to solving the
solar neutrino problem, mentioned above. 2

At this point, we are focusing on the flavor transition of one each neutrino. In contrast,
in the case where neutrinos are in a thermal bath, and we are interested in the thermo-
dynamic evolution of the system, it is not worth discussing the transition probability of
neutrinos one by one. This is because there are a variety of neutrinos in a thermal bath
characterized by e.g. different energy, birth time, or free streaming scale. For this rea-
son, in the next section, we introduce the formalism which gives us a way to describe the
neutrino oscillation effects on thermodynamic quantities.

4.3 Neutrino oscillation in statistical ensembles

In previous sections, we focus on the transition probability of neutrinos with particular
energy E and oscillation phase (δm2/2p)t. In contrast, if we are interested in neutrinos in a
thermal bath, as in our studies in Chapters 5 and 6, we cannot directly apply the formalism
in the previous sections as each neutrino has a different energy and oscillation phase. In
such cases, it is mandatory to treat them as a statistical ensemble and consider the effect
of neutrino oscillation on thermodynamic quantities. As we have seen in Subsection 2.2.3,
thermodynamic evolution of particles can generally be described by the Boltzmann equa-
tion, Eq. (2.20). However, this equation is based on the classical theory, i.e. the general
relativity, and it is therefore incompatible with the neutrino oscillation, which originates
from the quantum nature of neutrinos. To simultaneously consider neutrino production
by flavor transitions and neutrino collisions, we must rely on the density matrix formalism
(see Refs. [55–57] for detailed derivations and more thorough discussions).

In this formalism, particle states are described by N -body density matrix ϱ(n), which
has N × N elements. In contrast, in the system which we are interested in, the cosmic
temperature is an MeV-scale, and a correlation between particles due to collisions can
safely be ignored. Therefore the system can be well described by a direct sum of one-body

2Here, we assume the net density of neutrinos, nν − nν̄ , is so small that there is no matter effect due
to the self-scattering of neutrinos, following the standard assumption on the lepton asymmetry of the
Universe, i.e. ηL ≳ 10−10. For a net density ηL ≳ 10−7, such matter effects cannot be negligible (see
e.g. [54]).
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reduced density operators:

ϱ(n)(k) =
∑
i

⊕ ϱi(k)⊕ ϱ̄i(k)⊕ ϱν(k), (4.28)

where ϱi and ϱ̄i are one-body reduced density operators for particles other than neutrinos,
and ϱν is that for neutrinos and anti-neutrinos. The one-body reduced density matrix for
neutrinos, ϱν , can be expressed as 2N × 2N matrix, where N is the number of neutrino
species which has a flavor mixing. As in the system which we focus on, a correlation
between neutrinos and anti-neutrinos is almost negligible as well, and the density matrix
for neutrinos is almost block-diagonal in flavor space. In this case, the neutrino density
matrix can be decomposed into two N×N submatrices; one is for neutrinos and the other
for anti-neutrinos. In this thesis, we denote the density matrix for neutrinos by ϱ and that
for anti-neutrinos by ϱ̄. The diagonal component of the density matrix is the distribution
function for each flavor of neutrinos, and the off-diagonal component is the correlation
between different flavors of neutrinos. Then, an ij element of the density matrices for

neutrinos and anti-neutrinos can respectively be expressed as ϱij(p) =
〈
a†i (p)aj(p)

〉
and

ϱ̄ij(p) =
〈
ā†i (p)āj(p)

〉
, where ai and a†i are respectively the annihilation- and the creation

operators for νi, and āi and ā†i are those for ν̄i.
The evolution of the density matrix is described by the extended version of the classical

Boltzmann equation, which has a similar form to the Liouville-von-Neumann equation but
with collision terms [55–57]. As only two-body scattering is relevant to the dynamics in the
system with an MeV-scale temperature, up to the second-order in the weak interaction,
or in the Fermi-coupling constant GF , the equation can be expressed as:

iL[ϱ] = [H, ϱ] + C[ϱ], (4.29)

where L[ϱ] in the left-hand side is the Liouville operator, which contains derivatives in
time t, space x, and momentum p:

L[·] = ∂t[·] + ẋ · ∇x[·] + ṗ · ∇p[·], (4.30)

among which the space derivative is vanishing in the spatially homogeneous and isotropic
system, as in the standard big-bang Universe. Also, the momentum derivative can be
simplified due to the same reason as ṗ·∇p 7→ ṗ ∂p, where p = |p| is the absolute momentum,
as there is no typical direction in the Universe. Moreover, as the momentum is gradually
redshifted in the expanding Universe, it is proportional to a−1, which leads to ṗ = −pH.
Taken into account these conditions, the Liouville operator can be rewritten as:

L[·] = ∂t[·]−Hp∂p[·] . (4.31)

As for the terms in the right-hand side of Eq. (4.29), H is the hamiltonian of neutrinos,
which consists of two contributions:

H = Hvac +Hint, (4.32)
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where the first term is the contribution relevant to the flavor mixing in a vacuum, whereas
the second term originates from the coherent scattering of neutrinos with background
particles, and it is proportional to the first order in the Fermi coupling. Also, the second
term in the right-hand side, C[ϱ], is the collision term for neutrinos, which describe the
second-order effects in the Fermi coupling.

As is seen from the discussion so far, we assume:

1. the spatial inhomogeneity of the system can be ignored,

2. the density of the system is dilute so that a correlation between particles of different
species can be neglected,

3. the energy scale of the system is low, and it is therefore enough to consider up to
O(G2

F ) terms in the neutrino hamiltonian,

all of which seem to be valid in the epoch with the cosmic temperature T << v (∼ G
−1/2
F ),

where v ∼ O(100) GeV is the typical energy scale described by the electroweak theory of
the standard model of particle physics. The above assumptions are questionable in the
extreme environments attained in e.g. supernovae explosions or neutron star mergers as the
system is known to be highly inhomogeneous. For the discussion of such inhomogeneous
effects, see Refs. [58–63].

In the following, we next look into each contribution in the neutrino hamiltonian and
the collision term.

4.3.1 Vacuum term

This contribution originates from the mass difference and the mixing angle between distinct
neutrino species. The expression is similar to the one in the previous section:

Hvac =
UM2U †

2E
, (4.33)

whereM is the mass matrix in mass basis, which can be expressed asM2 = diag(m2
1,m

2
2,m

2
3)

in the case of the three-flavor mixing, and it is related to the mass matrix in flavor basis
M2 as M2 = UM2U †. As can be seen from the expression, a behavior of neutrino oscilla-
tion in a vacuum is solely determined by neutrino energy E and phenomenological mixing
parameters, the mass differences δm2 and the mixing angles θ; i.e. all information of the
system is included in the Hubble parameter H if no matter exists in the background. The
vacuum term for anti-neutrinos H̄vac is the same as Eq. (4.33), i.e. H̄vac = Hvac.

4.3.2 Matter term

As we discussed in the previous section, when neutrinos travel through a medium and
scatter with background particles, their masses and mixings are effectively modified. This
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is due to the forward scattering of neutrinos, which does not change their energy or
momentum. The contribution to the neutrino self-energy is depicted in Figure 4.1. Since
we are interested in the epoch with an MeV-scale temperature, the system mainly consists
of photons, electrons, and neutrinos, which remain relativistic at this epoch. Therefore,
for electron neutrinos lα in the bubble diagram can be neutrinos of flavor α or electrons,
and f in the tadpole diagram can be neutrinos of any flavor or electrons. For µ- and τ
neutrinos the bubble diagram does not exist. The matter potential due to the forward
scattering of neutrinos with electrons can therefore be written as [64]:

Hint, e =

√
2GF

2

(
1 + 4 sin2 θW

)
(ne− − ne+)−

8
√
2GFp

3m2
W

(ρe− + ρe+) , (4.34)

for νe,

Hint, e = −
√
2GF

2

(
1− 4 sin2 θW

)
(ne− − ne+) , (4.35)

for νµ and ντ . In the above expression, θW is the weak mixing angle, while ne− (ne+) and
ρe− (ρe+) are number- and energy densities of electrons and positrons, respectively. On
the other hand, the matter potential due to the forward scattering of neutrinos themselves
can be expressed as [56]:

Hint, ν(p) =
√
2GF

∫
dq {GS Tr ((ϱ(q)− ϱ̄∗(q))GS) +GS (ϱ(q)− ϱ̄∗(q))GS}

−8
√
2GFp

3m2
Z

∫
dqqGS (ϱ(q) + ϱ̄∗(q))GS, (4.36)

where q = |q|, and GS is an n × n dimensionless matrix of neutral-current coupling
constants, and it is equal to an identity matrix in the framework of the standard model
of particle physics. To derive the above equation, we have assumed that the system is
isotropic, and the effect of anisotropy, which is important in the supernovae explosion, can
be ignored. In Eq. (4.36), the first term originates from the tadpole diagram, whereas the
second term from the bubble diagram.

In the matter potentials induced by the neutrino-electron scattering, Eqs. (4.34)–(4.35),
and the neutrino-neutrino scattering, Eq. (4.36), the asymmetric part can be neglected.
This is because the baryon asymmetry of the Universe is known to be small∼ O(10−10) [29]
and the asymmetry in the number densities of charged leptons, i.e. ne− −ne+ , is expected
to be the same order of magnitude as the baryon asymmetry for charge neutrality of the
Universe. On the other hand, the asymmetry in the number densities of neutral leptons,
namely neutrinos, is not very well constrained from observations, and an upper bound on
the asymmetry is O(10−3–10−2) depending on the flavor of neutrinos [65], which is much
larger than the observed value of the baryon asymmetry. However, it is difficult to prepare
for such large asymmetry of neutrinos in the framework of the standard model of particle
physics, and there is no strong motivation to consider the cases where the asymmetric term
in Hint, ν (∝ ϱ− ϱ̄∗) play an important role in the neutrino oscillation. Thus, throughout
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this thesis we assume that all the asymmetric contributions of the matter potential can
be ignored. In this case, for νe-νs mixing the matter potential, Hint, can be written as:

Hint = −8
√
2GFp

3m2
Z

[(
1− sin2 θW

)−1
(ρe− + ρe+)Ge +

∫
dqqGS(ϱ(q) + ϱ̄(q))GS

]
, (4.37)

where Ge is a diagonal matrix with one in the matrix element which corresponds to νe,
and we have used the relation, cos θW = mW/mZ .

It should be worth noticing that if baryon asymmetry exist in the early Universe,
there are extra contributions to the matter potential due to the tadpole diagram in Fig-
ure 4.1 [64]:

Hint, n = −
√
2GF

2
(nn − nn̄) , (4.38)

which originates from the asymmetry of the number densities of neutrons, and similarly

Hint, p =

√
2GF

2

(
1− 4 sin2 θW

)
(np − np̄) , (4.39)

which originates from the asymmetry of the number densities of protons. These two
contributions are not taken into account in this thesis since they are much smaller than
the symmetric terms of Hint, e and Hint, ν for the baryon asymmetry of O(10−10).

4.3.3 Collision term

As we have seen in the previous subsection, coherent forward scattering of neutrinos with
background particles induce the matter potential in the neutrino hamiltonian, which brings
about an interesting behavior of neutrino oscillation. These contributions are first order
in the Fermi coupling constant. In the environment in which we are interested, i.e. in
the early epoch of the Universe with an MeV-scale temperature, incoherent scattering of
neutrinos is also important. As described earlier, only two-body reaction processes are
relevant in this epoch, and it is therefore sufficient to consider contributions up to O(G2

F )
in the collision term. In this case, the general expression of the collision term can be
written as:

C [ϱij] = πV [k′, l′|m′, n′]V [k, l|m,n] δ
(1)
E (k′, l′|m′, n′)

[ϱn′lϱm′k (δmk′ − ϱmk′) (δil′ − ϱil′)− ϱmk′ϱil′ (δkm′ − ϱkm′) (δn′l − ϱn′l)] δnj

+ complex conjugate, (4.40)

where δ
(1)
E is the 1D Dirac delta function, which corresponds to the energy conservation

of particles in the initial- and final states, whereas δij is the Kronecker delta function.
Also, V contains the scattering matrix element, whose detailed expression is given in
Chapter 5. In the expression, each label stands for momentum and a discrete index which
characterizes individual particles, and a summation over the same indices is assumed.
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Figure 4.1: Feynman diagram for the lowest-order contribution to the forward scattering
of neutrinos, which modifies the effective neutrino mass. In the upper panel, lα in the
bubble diagram is a lepton of the same flavor as the neutrinos in the initial- and final
states. In the bottom panel, f in the tadpole diagram is a fermion coupling to the Z
boson.

The part including the Kronecker delta function corresponds to Pauli blocking effects,
but it is now in a matrix form. In Chapters 5 and 6 we consider all relevant processes
for the collision term of neutrinos. In general, it is demanding to calculate Eq. (4.40)
without any simplification, but in the case of neutrino oscillation between an active- and a
sterile species of neutrinos the collision term is significantly simplified by neglecting Pauli
blocking factors and electron masses and by assuming thermal distributions of background
particles other than neutrinos:

C[ϱ] = R[ϱ] +D[ϱ], (4.41)
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where R[ϱ] is the diagonal part of the collision term, which can be expressed as

R [ϱii] = CαG
2
FpT

4 (feq − ϱii) , (4.42)

whereas D[ϱ] is the off-diagonal contribution of the collision term:

D [ϱij] = −1

2
CαG

2
FpT

4ϱij, (4.43)

where i 6= j, T is the cosmic temperature, and feq = 1/[exp(p/T ) + 1]. Also, Cα is the
coefficient of the collision term, Cα = 1.27 for νe–νs mixing and Cα = 0.92 for νµ–νs or
ντ–νs mixing [66]. In particular, R[ϱ] is responsible for repopulating neutrinos mixed with
sterile neutrinos, while D [ρij] breaks the coherence of different flavors of neutrinos.

The simple expressions in Eqs. (4.42)–(4.43) cannot be used when neutrinos largely
deviate from equilibrium, and for this reason we do not rely on such assumptions and
calculate the collision term without any simplification in Chapters 5 and 6.



Chapter 5

MeV-scale reheating temperature
and thermalization of
active neutrinos [1]

Abstract: In this chapter, we investigate lower limits on the reheating temperature imposed
by big-bang nucleosynthesis assuming both radiative and hadronic decays of such massive
particles. For the first time, the effects of neutrino self-interactions and oscillations are
taken into account in the neutrino thermalization calculations. By requiring consistency
between theoretical and observational values of light element abundances, we find that the
reheating temperature should conservatively be TRH ≳ 1.8 MeV in the case of 100% radia-
tive decay, and TRH ≳ 4–5 MeV in the case of 100% hadronic decays for particle masses
in the range of 10 GeV to 100 TeV.

5.1 Introduction

In the standard big-bang cosmology it is normally assumed that radiation components
(photons, electrons/positrons, and neutrinos) were perfectly thermalized, and energy of
radiation dominated the total energy density of the Universe well before the beginning of
big-bang nucleosynthesis (BBN). In a modern picture of the early Universe, this radiation-
dominated epoch is expected to be realized after the decay of a massive particle such as
the inflaton, the particle associated with the inflaton field driving inflation, or another
massive particle such as the curvaton. If such massive particles abundantly existed in the
early Universe, their non-relativistic energy could dominate the total energy, and then an
early matter-dominated epoch should have been realized before the radiation-dominated
epoch. Therefore, particle production caused by their decays and subsequent entropy
production (called reheating) dramatically modify the thermal history of the Universe.
The Universe could experience the reheating more than once after inflation depending
on the fundamental theory of particle physics. Since many theoretical models have been

57
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Figure 5.1: Feynman diagram for the decay of dilatons into two photons, ϕ → γ + γ.
g(≡ mϕ/MPl) is the coupling constant suppressed by the Planck mass.

proposed as a theory beyond the standard model of particle physics, it is required to have
some ways to find the true theory of nature. One of the approaches is to investigate the
possible value of “reheating temperature” which is defined by the cosmic temperature when
the radiation-dominated epoch just started. This is because the reheating temperature is
related to the property of the massive particles, and we can constrain the theories through
the observational bound on the reheating temperature.

As for a candidate of inflaton field or curvaton field, a lot of unstable massive scalar
fields, e.g. moduli, dilaton fields, are predicted in particle physics theories beyond the
standard model such as supergravity or superstring theory. They tend to dominate the
total energy of the Universe during their oscillation epochs. It is notable that they typically
have masses at or above the weak scale and decay only through gravitational interaction.
This means that they have long lifetimes of O(0.1) sec–O(10) sec, and the reheating
temperature after their decay is expected to be O(1) MeV. For example, coupling between
photons and dilatons, a scalar particle which appears in the superstring theory, can be
written as − exp[−ϕ/Mpl]FµνF

µν , where Mpl is the Planck mass, ϕ is the dilaton field,
and Fµν is the field strength of photons. Since the exponential part of the coupling can
be expanded as ' 1 − ϕ/Mpl, the coupling is suppressed by the Planck mass. For this
coupling, the corresponding decay rate can be expressed as m3

ϕ/M
2
pl with mϕ the mass of

dilatons. Thus, by defining g ≡ mϕ/Mpl the decay process of ϕ can be represented as
Figure 5.1, and the decay rate of ϕ is expressed as g2mϕ. This kind of decays, whose rates
are suppressed by the Planck mass, lead to the longevity of such particles.

Since neutrinos decoupled from the thermal plasma at around the cosmic temperature
T ∼ O(1) MeV, they would have suffered imperfect thermalization due to the late-time
entropy production caused by their decay. Thus, we have a strong motivation to observa-
tionally test this kind of cosmological scenarios with decaying particles which induce the
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MeV-scale reheating temperature.

The theory of BBN based on the standard big-bang cosmology, i.e. standard BBN,
successfully explains observational light element abundances (see e.g. Ref. [29] and ref-
erences therein), and the theory says that the light elements are synthesized at around
T ∼ O(0.01) MeV–O(0.1) MeV. As we shall see in Section 5.4, BBN is highly sensitive to
the neutrino abundances. Therefore, we can examine the MeV-scale reheating scenarios
by using BBN as a probe.

In Ref. [26], lower bounds on reheating temperature have been studied in terms of BBN
for the first time. They have shown that an incomplete thermalization of neutrinos gives
the most significant effect on BBN assuming that 100% of the long-lived massive parti-
cles decay into electromagnetic radiations such as photons or charged leptons. Because
of competition between decreases and increases of the produced amount of 4He by the
imperfect thermalization of the neutrinos, we can constrain the reheating temperature.
As a result, they have obtained a conservative lower bound on the reheating temperature
TRH > 0.5 MeV–0.7 MeV (95% C.L.).

Afterwards, in Ref. [27], they discussed hadronic decays of massive particles, i.e. di-
rect decays into quarks and/or gluons which immediately fragment into hadrons such as
pions, kaons, or nucleons. The thermalization of radiations proceeds in the same way as
in the case where 100% of the massive particles decay into electromagnetic radiations.
This is because almost all of the kinetic energy of hadrons are transferred into radiation
through Coulomb scattering with background electrons/positrons or inverse-Compton like
scattering with background photons, and a neutral pion π0 immediately decays into two
photons. In the case of the hadronic decay, interconverting reactions between ambient
protons and neutrons induced by emitted hadrons are extraordinarily important because
they increase the neutron to proton ratio which is a key parameter of resultant abundances
of light elements. As a result, they obtained a lower bound TRH > 2.5–4 MeV (95% C.L.)
depending on the mass of the long-lived massive particles and their branching ratio into
hadrons.

Subsequently, two- and three-flavor neutrino oscillations were respectively considered
in the thermalization process of neutrinos in Refs. [67] and [68] where they obtained a
lower bound TRH > 2 MeV (95% C.L.) and TRH > 4.1 MeV (95% C.L.) assuming radiative
decay of the massive particles.

Some other cosmological probes other than BBN are also sensitive to neutrino abun-
dances. Here we briefly refer to the recent papers which focused on this topic. In Ref. [27],
they discussed possible effects of an incomplete thermalization of neutrinos on a temper-
ature anisotropy and polarization of Cosmic Microwave Background (CMB) and a galaxy
power spectrum of Large Scale Structure (LSS). Ref. [69] obtained a combined constraint
TRH > 4 MeV (95% C.L.) by considering BBN, CMB (WMAP) and LSS (2dF Galaxy
Redshift Survey).

After that, authors in Ref. [70] have updated the CMB and LSS data by using WMAP
three-year data and SDSS luminous red galaxies data, and they obtained TRH > 2 MeV
(95% C.L.). Similar analysis has been done in Ref. [71] by using WMAP five-year data
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and SDSS luminous red galaxies data where they obtained TRH > 2 MeV (95% C.L.) from
CMB only and TRH > 3.2 MeV (95% C.L.) from CMB by including external priors from
SDSS red luminous galaxy survey and the constraint from the comic age. Besides, authors
in Ref. [68] have reported a new constraint TRH > 4.3 MeV (95% C.L.) from CMB by
using Planck 2015 data.

In this thesis, we extend the study of Ref. [27] by considering neutrino oscillation and
neutrino self-interaction in the calculation of the neutrino thermalization. We assume both
radiative and hadronic decays of the massive particles and give an updated bound on the
reheating temperature set by BBN. This is the first study that considers effects of neutrino
self-interactions on the neutrino thermalization to constrain the reheating temperature.

The structure of this chapter is as follows. In Section 5.2, we introduce the formalism
of the neutrino thermalization assuming the MeV-scale reheating temperature. In Sec-
tion 5.3, we show the results of neutrino thermalization in the reheating and describe how
neutrino oscillation and neutrino self-interaction affect the thermalization process. The
results of BBN are shown in Section 5.4 where we discuss the effects of both radiative
and hadronic decays on light element abundances. Finally, we draw our conclusion in
Section 5.5.

5.2 Reheating and neutrino thermalization

In this section, we describe the neutrino thermalization in the low-reheating-temperature
Universe and introduce the key equations.

As described in the previous section, there are some candidate particles in theories going
beyond the Standard Model of particle physics which are weakly interacting and decay at
around BBN. Here, we call the long-lived massive particles just “massive particles” and
label them X. We assume the energy density of the massive particles dominates those
of other particles at an initial time and the Universe is completely matter-dominated
before the massive particles start to decay. In this setting, the entropy production caused
by the decay of X induces particle production via electromagnetic, weak, and strong
interactions. As a result, photons and charged leptons are rapidly thermalized in the
reheating via electromagnetic interactions, whereas the weakly interacting neutrinos are
slowly created in the thermal bath of photons and charged leptons. 1 As neutrinos decouple
from the thermal bath at around a temperature of O(1) MeV, neutrinos should not be fully
thermalized if TRH ∼ O(1) MeV. A degree of thermalization of neutrinos affects the light
element abundances [26]. For this reason, it is especially important to accurately calculate

1In the case where the massive particles decay intro quarks and/or gluons, they fragment into mesons
and baryons after the hadronization, and almost all the kinetic energy of hadrons are transferred into
radiation due to the reason mentioned before. Therefore, contributions of secondary neutrinos produced by
the decay of hadrons can be neglected. However, there is also another possibility that the massive particles
directly decay into neutrinos, e.g. X → να+ν̄α where α = e, µ, τ [69]. In this case, electromagnetic plasma
is produced only from neutrinos via weak interaction, which gives totally different results of the neutrino
thermalization and BBN. In this thesis we do not consider the possibility.
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the thermalization of neutrinos in the reheating for TRH ∼ O(1) MeV. Therefore, we next
look into the dynamics of neutrino thermalization in the thermal plasma.

In the Universe with a temperature of O(1) MeV, electrons and positrons are the
only charged leptons which are abundant in the system since the abundances of muons
and tau leptons are strongly suppressed by Boltzmann factors. Therefore, neutrinos are
mainly produced in the annihilation process of electrons and positrons, e−+ e+ → να+ ν̄α
where α = e, µ, τ . Since electron neutrino (νe) is not only produced by the neutral-
current weak interaction but also by the charged-current one, it tends to be produced more
than µ neutrinos (νµ) and τ neutrinos (ντ ) when all neutrinos are not fully thermalized.
Consequently, neutrino oscillations play a role in equilibrating neutrino abundances in this
case, and we have to simultaneously consider the neutrino production by collisions and
flavor oscillations.

Our treatment of neutrino oscillation is consistent with that of Ref. [67]. That is, we
adopt the effective two-flavor mixing scheme which is a good description for approximately
including full three-flavor mixings when the collision rates of νµ and ντ are identical, and
one mixing angle is predominantly important compared to others (see e.g. Ref. [54] for
more details on the effective two-flavor mixing scheme). The former condition is well
satisfied because of the absence of muons and tau leptons in the system with a temperature
of O(1) MeV. On the other hand, the latter condition is only approximately satisfied since
the reactor neutrino mixing θ13 is known to be non-negligible compared to other mixings,
namely the solar neutrino mixing θ12 and the atmospheric neutrino mixing θ23 [51]. In
later sections, however, we show that the effect of θ13 on BBN is very small compared
to that of θ12 or neutrino self-interaction irrespective of the mass ordering of neutrinos.
Therefore, the effective two-flavor mixing scheme (with the solar neutrino mixing) gives a
good description of the full three-flavor mixings at least for the current purpose. In this
scheme, we label the degenerate state of νµ and ντ as x neutrinos (νx) and consider the
flavor mixing between νe and νx. Also, we label the other neutrino species which does not
mix with other flavors as spectator neutrino (νsp) in this two-flavor treatment.

In general, neutrino states can be described by a one-particle irreducible density matrix
ϱp ≡ ϱ(p, t) where p ≡ |p| is the absolute momentum. 2 Since we focus on the effective
two-flavor mixing, the density matrix is expressed in terms of a 2 × 2 Hermitian matrix,
and we label each element of the density matrix as

ϱp =

(
ρee ρex
ρ∗ex ρxx

)
. (5.1)

The diagonal part of the matrix corresponds to the distribution function of mixed neutrinos
(namely νe and νx), that is, ρee = fνe and ρxx = fνx , while the off-diagonal elements
represent the quantum coherence among neutrinos with different flavors. In this thesis,
the chemical potentials of neutrinos are set to be zero. Under this assumption, the density

2Since we focus on the Universe with a temperature of O(1) MeV, we can neglect tiny neutrino masses
which are known to be sub-eV scale [29]. In this case, the energy of neutrinos E is equal to its absolute
momentum, i.e. E = p.
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matrix of neutrinos is equal to that of anti-neutrinos, i.e. ϱp = ϱ̄p, and they have the same
abundance. Therefore, it is not necessary to follow the time evolution of anti-neutrinos
separately from that of the corresponding neutrinos.

We can obtain the time evolution of the neutrino density matrix by solving the momentum-
dependent Quantum Kinetic Equation [56,57] which is formally written as

dϱp
dt

=
∂ϱp
∂t

−H p
∂ϱp
∂p

= −i [Hp, ϱp] + C(ϱp) . (5.2)

In the above equation, the term including the Hubble parameter H corresponds to the ef-
fect of the expansion of the Universe, and C(ϱp) is the collision term of neutrinos expressed
as

C(ϱp) =

(
Rνe −Dρex

−Dρ∗ex Rνx

)
, (5.3)

where Rνe and Rνx are the production rates of νe and νx, respectively. Also, D is
the collisional-damping rate which breaks the flavor coherence among different flavors
of neutrinos. In this thesis, we adopt a simplified treatment of the damping effects
discussed in Ref. [68] and neglect the additional contributions such as “damping-like
terms” which appear in Ref. [57]. In this thesis, we consider the collisional processes
a(k)+ b(p) → c(k′)+d(p′) shown in Table. 5.1 including those of neutrino self-interaction.
In this case, the expressions of the repopulation and the damping terms are [72],

Rνα(k) = 2π

∫
dΠk′dΠp′dΠp δE(kp|k′p′)

×
∑
i

V2[να(k), ν̄α(p)|i(k′), ī(p′)] [fi(Ek′)fī(Ep′)(1− fνα(k))(1− fν̄α(p))

− fνα(k)fν̄α(p)(1− fi(Ek′))(1− fī(Ep′))]

+
∑
j

V2[να(k), j(p)|να(k′), j(p′)] [fνα(k
′)fj(Ep′)(1− fνα(k))(1− fj(Ep))

−fνα(k)fj(Ep)(1− fνα(k
′))(1− fj(Ep′))] ,

(5.4)

D(k) = π
∑
α

∫
dΠk′dΠp′dΠp δE(kp|k′p′)

×
∑
i

V2[να(k), ν̄α(p)|i(k′), ī(p′)] [fi(Ek′)fī(Ep′)(1− fν̄α(p))

+fν̄α(p)(1− fī(Ep′))(1− fi(Ek′))]

+
∑
j

V2[να(k), j(p)|να(k′), j(p′)] [fνα(k
′)fj(Ep′)(1− fj(Ep))

+fj(Ep)(1− fj(Ep′))(1− fνα(k
′))] ,

(5.5)
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Process (α 6= β) S |M |2

I. e− + e+ → να + ν̄α
25G2

F [ (2 sin
2 θW ± 1)2(k · p′)(p · k′) + 4 sin4 θW (k · k′)(p · p′)

+2m2
e sin

2 θW (2 sin2 θW ± 1)(k · p) ]

II. να + e+ → να + e+
25G2

F [ (2 sin
2 θW ± 1)2(k · k′)(p · p′) + 4 sin4 θW (k · p)(k′ · p′)

−2m2
e sin

2 θW (2 sin2 θW ± 1)(k · p′) ]

III. να + e− → να + e−
25G2

F [ (2 sin
2 θW ± 1)2(k · p)(k′ · p′) + 4 sin4 θW (k · k′)(p · p′)

−2m2
e sin

2 θW (2 sin2 θW ± 1)(k · p′) ]
IV. να + να → να + να 26G2

F (k · p)(k′ · p′)
V. να + νβ → να + νβ 25G2

F (k · p)(k′ · p′)
VI. να + να → να + να 27G2

F (k · p′)(p · k′)
VII. να + νβ → να + νβ 25G2

F (k · p′)(p · k′)
VIII. να + να → νβ + νβ 25G2

F (k · p′)(p · k′)

Table 5.1: Collision process a(p) + b(k) → c(p′) + d(k′) which contributes to the ther-
malization of neutrinos of each flavor να, νβ (α, β = e, µ, τ where α 6= β). The process I
is the production process of neutrinos due to electron annihilation, the processes II - III
are the scattering processes between neutrinos and electrons, and the processes IV - VIII
are the self-interaction processes among neutrinos. Here, θW is the Weinberg angle, GF is
the Fermi-coupling constant, S is the symmetry factor, and |M |2 is the squared scattering
matrix element. The positive sign in the expression is for νe and the minus sign for νµ or
ντ (i.e. for νx and νsp). The expressions of the process I, II, IV, and V are also applied to
the corresponding anti-neutrinos.

where α = e, x, and k, p, k′, and p′ are absolute momenta of the particle a, b, c, and d,
respectively. Also, dΠp ≡ d3p

(2π)3
, and δE(kp|k′p′) ≡ δ(1)(Ek+Ep−Ek′ −Ep′) is the 1D Dirac

delta function corresponding to energy conservation for each process. The summation
index i runs over electrons and all flavors of neutrinos other than να (i.e. νβ where
β 6= α), while j runs in addition over positrons, να, and all flavors of anti-neutrinos. The
expression of V2 is written as

V2[a(p), b(k)|c(p′), d(k′)] = (2π)3δ(3)(k+p, k′+p′)N2
aN

2
bN

2
cN

2
dS|M |2(a(p), b(k)|c(p′), d(k′)) ,

(5.6)
where S|M |2(a(p), b(k)|c(p′), d(k′)) is the squared scattering matrix element for the pro-
cesses in Table. 5.1 summed over initial and final spins, and symmetrized over identical
particles in the initial and the final state. Also, Ni ≡

√
1/2Ei where Ei is the energy of

particle i (i = a, b, c, d) and δ(3)(k+p, k′+p′) ≡ δ(3)(k+p−k′−p′) is the 3D Dirac delta
function corresponding to the momentum conservation. As for the processes in Table. 5.1,
we analytically reduce the dimension of momentum integrals in the above expressions from
nine to two and calculate the full collision terms without any simplifying assumptions in
the same way as in Ref. [72].
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In the expression of Eq. (5.2), Hp is neutrino Hamiltonian which is expressed as

Hp = Hp, vac +Hp,mat =
M2

2p
− 8

√
2GFp

3

[
El

m2
W

+
Eν

m2
Z

]
+
√
2GF

∫
dΠp′(ϱp′ − ϱ̄∗p′) , (5.7)

where GF is the Fermi-coupling constant. Also, mW and mZ are the masses of W and Z
bosons, respectively. In the above expression, the first term, Hp, vac, is the contribution
which induces the vacuum oscillation where M is the mass matrix in flavor basis. The
mass matrix M is related to the one in mass basis M as M2 = UM2U † where U is the
PMNS matrix. In the effective two-flavor mixing scheme,

M2 =

(
m2

1 0
0 m2

2

)
, U =

(
cos θ sin θ
− sin θ cos θ

)
, (5.8)

where δm2 ≡ m2
2−m2

1 is the squared-mass difference and θ is the mixing angle in a vacuum
between νe and νx. Also, the second term in the Hamiltonian, Hp,mat, corresponds to the
matter potentials which arise from coherent scatterings between neutrinos and charged-
leptons. In the term, El corresponds to the total energy density of charged leptons, while
Eν to that of neutrinos:

El =

(
ρe 0
0 0

)
, Eν =

∫
dΠp′ p

′ (ϱp′ + ϱ̄∗p′) =

(
ρνe ρνex
ρ∗νex ρνx

)
, (5.9)

where ρe = ρe− + ρe+ is the total energy density of electrons and positrons, while ρνe and
ρνx are those of νe and νx, respectively. Also, we have defined ρνex ≡

∫
dΠp′ p

′ (ρex + ρ̄∗ex)
and ρ∗νex ≡

∫
dΠp′ p

′ (ρ∗ex + ρ̄ex). In the expression of El, we have neglected the existence
of muons or tau leptons due to their large masses. 3 The asymmetric part of Hp,mat is
often assumed to vanish when ρ = ρ̄ for neutrinos and the number density of electrons
and positrons are identical. For the diagonal part of the Hamiltonian this is true, however
the off-diagonal part gets a contribution from the neutrinos as shown in Eq. (5.7) since
ϱ∗p 6= ϱp.

As for the oscillation parameters, we use the best fit values of the mass-squared differ-
ences and mixing angles reported in Ref. [51]: 4

δm2
12 = 7.55× 10−5 eV2 , sin2 θ12 = 3.20× 10−1 , (5.10)

δm2
13 = 2.50× 10−3 eV2 , sin2 θ13 = 2.160× 10−2 (NO) , (5.11)

δm2
13 = −2.42× 10−3 eV2 , sin2 θ13 = 2.220× 10−2 (IO) , (5.12)

3In the effective two-flavor mixing scheme, we need to treat both νµ and ντ in the same way. Therefore,
we do not consider background muons or tau leptons whose contribution is very small compared to that
of electrons.

4The atmospheric neutrino mixing (θ23, δm
2
23) is irrelevant to the oscillation between νe and νx in the

effective two-flavor mixing scheme. Therefore, we do not use the value in this thesis.
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where “NO” (“IO”) means normal (inverted) mass ordering of neutrinos, respectively. For
the numerical calculation, we rewrite the 2 × 2 density matrix with polarization vectors
(P0,P ):

ϱp =

(
ρee ρex
ρ∗ex ρxx

)
=

1

2
[P0(p)σ0 + P (p) · σ ] , (5.13)

where σ0 = 1 is the identity matrix and σ = (σx, σy, σz) are the Pauli matrices. With
P = (Px, Py, Pz), distribution functions of mixed neutrinos can be written as

fνe =
1

2
(P0 + Pz) , fνx =

1

2
(P0 − Pz) . (5.14)

Also, we can rewrite the expression of Eq. (5.2) as follows:

Ṗ =
−→
H × P −D (Px x+ Py y) + (Rνe −Rνx) z , (5.15)

Ṗ0 = Rνe +Rνx , (5.16)

which leads to

Ṗνe = Hx Py −Hy Px + 2Rνe , (5.17)

Ṗνx = Hy Px −Hx Py + 2Rνx , (5.18)

Ṗx =
1

2
Hy (Pνe − Pνx)−Hz Py −DPx , (5.19)

Ṗy = Hz Px −
1

2
Hx (Pνe − Pνx)−DPy , (5.20)

where x,y and z are unit vectors, and we defined Pνe ≡ P0 +Pz and Pνx ≡ P0 −Pz. Each

component of the neutrino potential
−→
H , i .e. Hi = Tr (Hp σi) where i = x, y, z, is written

as

Hx =
δm2

2p
sin 2θ − 16

√
2GF p

3m2
Z

∫
dΠp′ p

′Px , (5.21)

Hy = 2
√
2GF

∫
dΠp′ Py , (5.22)

Hz = −δm2

2p
cos 2θ +Hmat . (5.23)

The second term in Hz is the matter contribution which is explicitly written as

Hmat = −8
√
2

3
GF p

[
ρe
m2

W

+
ρνe − ρνx

m2
Z

]
(5.24)

= −4
√
2

3π2
GF p

[
ge
m2

W

∫ ∞

0

dp′ p′2
Ee

exp(Ee/Tγ) + 1

+
gν
m2

Z

∫ ∞

0

dp′ p′3(fνe − fνx)

]
, (5.25)
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where Tγ is the photon temperature, and Ee =
√

p2 +m2
e is the energy of electrons. Also,

ge = 4 is the statistical degree of freedom of electrons and gν = 2 is that of neutrinos of
each flavor.

With the matter potential Hmat, the mass-squared difference and the mixing angle in
a vacuum are modified in a medium by MSW effect as follows [52,53]:

δm2
M

2p
=

√(
δm2

2p

)2

sin2 2θ +

(
−δm2

2p
cos 2θ +Hmat

)2

, (5.26)

sin2 2θM =

(
δm2

2p

)2

sin2 2θ(
δm2

2p

)2

sin2 2θ +
(
− δm2

2p
cos 2θ +Hmat

)2 , (5.27)

where δm2
M and θM are the in-medium mass-squared difference and the mixing angle,

respectively. We note here that in Eqs. (5.26)–(5.27) we simplify the expressions by ne-
glecting the small contributions of the off-diagonal part of the matter potential Hp,mat

in Eq. (5.7) (see Ref. [54] for the exact expressions of the MSW effect). As can be seen
from Eqs. (5.26) and (5.27), the matter potential |Hmat| ∝ T 5

γ dominates the vacuum

one |Hvac| ≡ | − δm2

2p
cos 2θ| ∝ T−1

γ , i.e. |Hmat| >> |Hvac|, at high temperature such as

Tγ > O(10) MeV and θM ∼ 0 holds for most energy modes. 5 On the other hand, the
opposite hierarchy, i.e. |Hvac| >> |Hmat|, holds at low temperature and the mixing pa-
rameters take the same values as those in a vacuum: θM ∼ θ, δm2

M ∼ δm2. For neutrinos
with momentum p = 〈p〉 ∼ 3.15Tγ where 〈·〉 means a thermal average, the level crossing
between these potentials, i.e. |Hmat| ∼ |Hvac|, occurs at the temperature Tc

Tc ∼ G
−1/3
F (δm2 cos 2θ)1/6 ∼

 3 MeV
(

δm2
12

2.5×10−3 eV2

)1/6

5 MeV
(

δm2
13

7.5×10−5 eV2

)1/6 , (5.28)

where, in the above evaluation, we have replaced p with 〈p〉 ∼ 3.15Tγ and approximated
(cos 2θ)1/6 ∼ 1 which is well satisfied for θ12 and θ13. Therefore, neutrino oscillation
becomes effective at around a temperature of O(1) MeV for the solar neutrino mixing
(θ12, δm12) and the reactor neutrino mixing (θ13, δm13), which is the reason for taking its
effect on the neutrino thermalization into account.

On the other hand, since νsp decouple from flavor mixings of neutrinos, the time evo-
lution of this neutrino species is just given by the classical Boltzmann equation:

dfνsp
dt

=
∂fνsp
∂t

−H p
∂fνsp
∂p

= C(fνsp) , (5.29)

where fνsp is the distribution function of νsp, and C(fνsp) is the collision term whose
expression is equal to that of νx, i.e. C(fνsp) = Rνx (see Eq. (5.4)).

5We assume here that the neutrinos are thermalized with photons and have a temperature Tγ for
simplicity.
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To calculate the thermalization process of neutrinos in the expanding Universe, we also
need to compute the energy conservation equation:

dρ

dt
= −3H(ρ+ P ) , (5.30)

which can be expressed as the time evolution of the photon temperature Tγ :

dTγ

dt
= −

−ΓXρX + 4H(ργ + ρν) + 3H(ρe + Pe) +
dρν
dt

∂ργ
∂Tγ

|a(t) + ∂ρe
∂Tγ

|a(t)
, (5.31)

where a(t) is the scale factor at the cosmic time t, ΓX is the decay rate of the massive
particles, whereas ρ and P are the total energy density and the total pressure, respectively:

ρ = ργ + ρe + ρν + ρX

=
π2

15
T 4
γ +

ge
2π2

∫ ∞

0

dp′ p′2
Ee

exp(Ee/Tγ) + 1

+
gν
2π2

∫ ∞

0

dp′ p′3(fνe + fνx + fνsp) + ρX , (5.32)

P = Pγ + Pe + Pν

=
π2

45
T 4
γ +

ge
6π2

∫ ∞

0

dp′
p′4

Ee

1

exp(Ee/Tγ) + 1

+
gν
6π2

∫ ∞

0

dp′ p′3(fνe + fνx + fνsp) . (5.33)

Here, ργ(Pγ), ρe(Pe), ρν(Pν) and ρX mean the energy density (pressure) of photons, elec-
trons, neutrinos and the massive particles, respectively. The total energy density and
the total pressure of neutrinos are a sum of three contributions: ρν = ρνe + ρνx + ρνsp ,
Pν = Pνe +Pνx +Pνsp . With the total energy density, the Hubble parameter H is obtained
by solving the Friedmann equation:

H ≡ ȧ

a
=

√
8πGρ

3
. (5.34)

In the above expression, we can obtain the time evolution of ρX by solving the Boltzmann
equation of the massive particles X:

dρX
dt

= −ΓXρX − 3HρX , (5.35)

which can be integrated analytically for non-relativistic particles X:

ρX
s

=
ρX,0

s0
e−ΓX t , (5.36)
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where ρX,0 and s0 are respectively the initial energy- and entropy density of X, and ρX,0

is assumed to be much larger than those of other particles, i.e. ρX,0 >> (ργ + ρe + ρν)t=0.
In addition, ΓX is related to TRH through the Hubble parameter H = H(TRH) as follows:

ΓX = 3H . (5.37)

Since the energy density of the Universe is dominated by radiation components after most
of the massive particles decayed and Tγ ∼ TRH is realized, we can approximately write the
Hubble parameter as

H =

√
g∗π2

90

T 2
RH

mpl

, (5.38)

wherempl ∼ 2.435×1018 GeV is the reduced Planck mass, and g∗ = 10.75 is the relativistic
degrees of freedom in the Universe with a temperature of O(1) MeV. Hence, the relation
between TRH and the decay rate of X is approximately written as

TRH ∼ 0.7

(
ΓX

sec−1

)1/2

MeV . (5.39)

From the above expression, we can see that TRH ∼ O(1) MeV corresponds to the lifetime of
the massive particles τX = Γ−1

X ∼ O(1) sec. 6 It should be worth noticing that the reheating
temperature defined by Eq. (5.39) is just a rough estimate of the cosmic temperature
when the reheating is completed. Therefore, the definition of the reheating temperature
includes a systematic error at or below the level of O(1) %. On the other hand, this error
is irrelevant to the observational constraint in terms of the decay rate of X, ΓX , or the
lifetime of X, τX , as these parameters are ’directly’ related to the final result of BBN.

To obtain the neutrino distribution functions and a degree of the neutrino thermaliza-
tion in the reheating, we simultaneously solve the Eqs. (5.17), (5.18), (5.19), (5.20), (5.29),
(5.31), (5.34) and (5.36) from the initial time t = 10−4 sec to the final time t = 107 sec
corresponding to the cosmic time well before and after BBN, respectively. We find that
the final results are independent of the choice of the initial time as long as the initial
temperature of electromagnetic particles is much higher than TRH. Besides, we divide the
energy range of neutrinos into 100 bins and calculate the kinetic equation for each bin.
This means that we must simultaneously compute more than 400 equations in the code.
Furthermore, we set the maximum- and the minimum values of the neutrino energies de-
pending on the value of the reheating temperature, but we guarantee that the maximum-
and minimum values respectively satisfy the relations pmax > 30 Tγ and pmin < 10−2 Tγ at
all times for numerical convergence. As for the initial energy density of the massive particle
ρX , we assume that the massive particle X has an initial energy density 1000 times larger
than the total energy density of radiations, ρrad = ργ + ρe + ρν . This choice of ρX gives
convergent results of the neutrino thermalization. We have checked a numerical accuracy

6Since the actual value of g∗ depends on the value of TRH, Eq. (5.37) just gives a rough estimate of
when the radiation-dominated epoch is realized.



5.3. RESULTS: NEUTRINO THERMALIZATION IN THE REHEATING 69

of O(10−2)% level for each input parameter mentioned above, which is much smaller than
the theoretical- and observational errors in the light element abundances. Therefore, nu-
merical results should be accurate enough to guarantee a precision of O(0.1)% level for
the lower bound on the reheating temperature.

To calculate neutrino thermalization processes, we use a modified version of the LASAGNA
code [73,74] which is, in the original version, a solver of ordinary differential equations for
calculating sterile neutrino production in the early Universe. The LASAGNA code con-
tains three types of ODE solvers. Two of them are based on the fourth-order explicit- and
implicit Runge-Kutta methods, and the other is based on the implicit method which de-
pends on the numerical differential formulae (ndf) of order 1–5, developed by Shampine [75]
(see Refs. [73,74] for more details). This time, we use the ndf solver because the solver is
suitable for integrating stiff ODEs and it is numerically efficient.

In the next section, we show our numerical results of the neutrino thermalization and
BBN in the low-reheating-temperature Universe.

5.3 Results: neutrino thermalization in the reheating

In this section, we show our numerical results of neutrino thermalization. To express the
time evolution of the neutrino thermalization, we define the effective number of neutrino
species Neff :

Neff = Neff, νe +Neff, νx +Neff, νsp =
∑

α= e, x, sp

ρνα/ρνα, std
, (5.40)

where Neff, να is the contribution for each neutrino species, and ρνα, std
is the energy density

of each neutrino species in the standard big-bang cosmology. 7 The value of Neff is almost
equal to the actual number of neutrino species when all neutrinos are fully thermalized.

Figure 5.2 shows the relation between TRH and Neff for the cases with and without
neutrino self-interaction. As shown in Figure 5.2, the value ofNeff increases as TRH becomes
large, and the value is almost equal to 3.046 above TRH ≳ 10 MeV which is the canonical
value in the standard big-bang cosmology with large TRH [76, 77]. The above threshold
value of TRH arises from the fact that weak reaction processes which are responsible for
the neutrino thermalization decouple at around a temperature Tdec given by Γweak/H ∼
G2

FT
5
dec/(T

2
dec/mpl) ∼ 1, i.e. Tdec ∼ (G2

Fmpl)
− 1

3 ∼ O(1) MeV where Γweak is the thermal
reaction rate of weakly-interacting particles. Therefore, if TRH is larger than Tdec, neutrinos
have enough time to be fully thermalized before decoupling. Also, it can be seen from
Figure 5.2 that both neutrino oscillation and neutrino self-interaction increase the value
of Neff . This is because the production rate of νe is larger than that of νx (Rνe > Rνx),
and thereby neutrino oscillation increases the total production rate of neutrinos Rν, tot (≡
Rνe +Rνx). To understand this effect more quantitatively, let us assume that all neutrino

7The energy density of νe is slightly larger than those of νx and νsp after electron annihilation due
to the larger reaction rate of νe with electrons. Therefore, we discriminate among ρνα, std

with different
flavors.
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Figure 5.2: Relations between TRH and Neff . The top- and middle panels respec-
tively show the effect of neutrino oscillation in the case without and with neutrino self-
interaction, while the bottom one shows the effect of neutrino self-interaction in the case
with (δm2

12, θ12). The canonical value Neff = 3.046 [76] is also plotted with the black dotted
horizontal line.

species are almost thermalized. In this case, we can approximate the production rates of
νe and νx as [78]

Rνe ∼ CeG
2
FT

5
γ (feq − fνe) , (5.41)

Rνx ∼ CxG
2
FT

5
γ (feq − fνx) , (5.42)

where feq is the Fermi-Dirac distribution feq = 1/(1 + exp(p/Tγ)), and fνe and fνx
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Figure 5.3: Time evolution of Neff for each value of TRH. The black solid line is for
TRH = 10 MeV, the blue long-dashed line is for TRH = 5 MeV, the red middle-dashed
line is for TRH = 2 MeV, and the green short-dashed line is for TRH = 1 MeV. Neutrino
oscillation with (δm2

12, θ12) and neutrino self-interaction are considered in the calculation.

are distribution functions of νe and νx, respectively. Also, Ce ∼ 1.27 is the collision
coefficient for νe and Cx ∼ 0.92 is that for νx [79]. By denoting the effect of neu-
trino oscillation at a certain time by ∆f ≡ fν |with osci − fν |no osci ≡ −∆fνe = ∆fνx , we
can evaluate the effect of neutrino oscillation on the total production rate of neutrinos
∆Rν, tot ≡ Rν, tot|with osci−Rν, tot|no osci = (Rνe|with osci+Rνx |with osci)−(Rνe |no osci+Rνx|no osci) =
(Rνe|with osci −Rνe|no osci) + (Rνx |with osci −Rνx|no osci) ≡ ∆Rνe +∆Rνx as follows:

∆Rν, tot = ∆Rνe +∆Rνx

∼ G2
FT

5
γ (−Ce∆fνe − Cx∆fνx)

= G2
FT

5
γ (Ce − Cx)∆f . (5.43)

As we can see from the expression, the quantity ∆Rν, tot is larger than zero when ∆f =
fνe−fνx > 0 which holds if the reheating temperature is sufficiently low for neutrinos to be
fully thermalized and thereby fνe > fνx . Consequently, we can see that neutrino oscillation
increases the total production rate of neutrinos unless all neutrinos are completely ther-
malized. Neutrino self-interaction plays a role similar to neutrino oscillation. That is, they
equilibrate abundances of neutrinos among themselves and enhance the thermalization of
neutrinos in the same way as neutrino oscillation.
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We can also see from Figure 5.2 that the effect of θ13 is much smaller than that of
θ12 or neutrino self-interaction. This is true independent of the neutrino mass ordering.
The relative differences of effects among different mixings can be understood as follows:
If the vacuum term (Hvac) dominates other matter terms (Hmat) and neutrino oscillation
occur adiabatically, the effective transition rate of neutrinos from one flavor to another
(i.e. να → νβ where α 6= β) due to neutrino oscillation can be written as [80]

Γtrans =
1

4
sin 2θ Γcoll , (5.44)

where Γcoll is the collision rate of neutrinos. Therefore, the value of the mixing angle solely
determines how large oscillation happens in this case. As we can see from Eqs. (5.10)-
(5.12), the value of sin2 θ12 is almost ten times larger than that of sin2 θ13. That is the
reason that the effect of θ12 on the neutrino thermalization is larger than θ13 in the case of
normal mass ordering. In the case of inverted mass ordering, neutrino oscillation proceeds
via MSW resonance, and non-adiabatic effects can be important. As for this point, authors
in Ref. [54] evaluated the adiabaticity of the MSW resonance and concluded that the non-
adiabatic effects are negligible. Therefore, an efficient oscillation should occur when a large
population of neutrinos goes through the resonance even if we adopt the reactor neutrino
mixing θ13. Since the MSW resonance happens at around a temperature of Tc ∼ 5 MeV
for neutrino with p = 〈p〉 ∼ 3.15Tγ, we can expect larger oscillation effects in the case of
θ13 (IO) at TRH < Tc, which in fact can be seen in Figure 5.2.

Figure 5.4 shows the time evolution of Neff , and Figure 5.4 is the same as Figure 5.3,
but for the contribution for each neutrino species Neff, να (α = e, x, sp). Since the final
abundance of neutrinos does not depend on the condition before reheating, we assume
that neutrinos have thermal spectra (i.e. Fermi-Dirac distributions) at the initial time.
We can see from Figure 5.3 that the value of Neff decreases until TRH is realized. This is
due to the entropy production from decays of the massive particles. The value of Neff then
increases at Tγ < TRH until neutrinos are decoupled from other particles at around a few
MeV. This corresponds to the upturn behavior in the evolution of Neff . Besides, we can
see from the evolution of Neff, να in Figure 5.4 that neutrino oscillation becomes effective at
around a temperature of a few MeV, whereas neutrino self-interaction becomes effective at
higher temperature. The former is because, as we have discussed in the previous section,
neutrino oscillation with the solar neutrino mixing (δm2

12, θ12) is effective when the photon
temperature is lower than Tc ∼ 3 MeV. The latter is due to the reason that the reaction
rates of neutrino self-interactions monotonically increase with the photon temperature.

The role of neutrino oscillation and neutrino self-interaction is shown in Figure 5.5,
where we plot final energy spectra of neutrinos for the cases with and without neutrino os-
cillation or neutrino self-interaction. The energy spectra are evaluated at Tγ ∼ 10−2 MeV
which corresponds to the epoch well after electron annihilation. In the case of TRH =
2 MeV, both of these effects decrease the difference in neutrino abundances. On the other
hand, if TRH is large enough (e.g. TRH = 10 MeV), neutrinos are almost completely ther-
malized well before decoupling. Therefore, neutrino oscillation or neutrino self-interaction
plays no role in the final abundance of neutrinos.
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Figure 5.4: Time evolution of Neff, να for TRH = 2 MeV. Neff, νe (top panel) is for νe,
Neff, νx (middle panel) is for νx and Neff, νsp (bottom panel) is for νsp. In the red long-
dashed and green solid lines, neutrino oscillation with (δm2

12, θ12) is taken into account,
and neutrino self-interaction is considered in the blue middle-dashed and green solid lines.
In the figure of Neff, νsp , the black short-dashed (blue middle-dashed) and red long-dashed
(green solid) lines are overlapping.

Figure 5.6 shows the dependence of the mean energy of νe, νx and νsp(i.e. ρνα/nνα) on
TRH. The quantity Rdist on the vertical axis was introduced to measure the distortion in
the final energy spectrum of neutrinos in Ref. [27], and it is defined as

Rdist =
1

3.15Tν, eff

ρν
nν

, (5.45)

where Tν, eff is the effective temperature of neutrinos Tν, eff = [ 4π2

3ζ(3)
nν ]

1/3. As we can see
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Figure 5.5: Final energy spectra of neutrinos. The horizontal axis is the neutrino
energy p divided by the photon temperature Tγ. The vertical axis is the differential
energy spectrum of neutrinos. In the figure, neutrino self-interaction is considered in
the left column, whereas neutrino oscillation with (δm2

12, θ12) is considered in the right
column. We consider (δm2

12, θ12) in the case with neutrino oscillation in the left column.
The thermal spectrum is plotted with the black dot-dashed line. In the top-left panel, the
thin red short-dashed and blue thick short-dashed lines are overlapping, while the red thin
long-dashed and blue thick long-bashed lines are overlapping in the top-right panel. Also,
all plots are almost overlapping in the case of TRH = 10 MeV.

from this definition, Rdist = 1 corresponds to the thermal spectrum, and Rdist > 1 indicates
larger mean energy. It can be seen from Figure 5.6 that the value of Rdist increases as TRH

becomes smaller. This is because neutrinos are only produced from the annihilation of
electrons e− + e+ → να + ν̄α, and neutrinos in the final state therefore have energy larger
than twice the electron mass. Thus, if neutrinos are mainly produced when the electron
mass is not negligible, and the equilibration process e± + να → e± + να is not effective as
in the case of TRH ≲ O(1) MeV, Rdist becomes larger than unity. Also, since νe scatter
with electrons stronger than νx and νsp due to the charged-current interaction, the energy
distribution of νe is closer to the thermal spectrum. That is the reason that the relation
Rdist, νe < Rdist, νx , Rdist, νe < Rdist, νsp holds for a sufficiently small TRH. Furthermore, we
can see from Figure 5.6 that both neutrino oscillation and neutrino self-interaction increase
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Figure 5.6: Dependence of the mean energy of νe (top panel), νx (middle panel) and νsp
(bottom panel) on TRH. The vertical axis is the distortion parameter Rdist for each neutrino
species. Rdist = 1 corresponds to the thermal spectrum. In the middle panel, the blue
long-dashed and green solid lines are overlapping. Also, in the bottom panel, the black
dot-dashed (red short-dashed) and blue long-dashed (green solid) lines are overlapping.
We consider (δm2

12, θ12) in the case with neutrino oscillation.

Rdist, νe , while decrease Rdist, νx . This is because neutrino oscillation and neutrino self-
interaction equilibrate the neutrino abundances of different flavors as shown in Figure 5.5.
The reason is as follows: If the final distribution function of neutrinos is changed by a
factor of κ (i.e. fν 7→ κfν where κ < 1 for νe and κ > 1 for νx) due to neutrino oscillation
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or neutrino self-interaction, then the distortion parameter should be also modified by

R̃dist/Rdist =
κρν/κnν

3.15(κ1/3Tν, eff)

(
ρν/nν

3.15Tν, eff

)−1

= κ−1/3 , (5.46)

where R̃dist andRdist are distortion parameters for the cases with and without effects of neu-
trino oscillation or neutrino self-interaction, respectively. Therefore, these effects increase
Rdist, νe and decrease Rdist, νx as long as neutrino oscillation or neutrino self-interaction is
effective. Moreover, since the reaction rate of neutrino self-interaction strongly depends
on the number density of neutrinos, its effect on Rdist becomes small more rapidly than
neutrino oscillation as TRH decreases. These effects on Rdist can be estimated by com-
paring neutrino distribution functions in Figure 5.5 and is consistent with the results in
Figure 5.6. On the other hand, since νsp does not mix with another flavor of neutrinos,
they are only affected by neutrino self-interaction.

In the next section, we discuss the light element abundances created in the process of
BBN taking our computed neutrino thermalization into account.

5.4 Big Bang Nucleosynthesis

As mentioned in Section 5.2, incomplete thermalization of neutrinos affects the dynamics
of the standard BBN. In this section, we explain the role of neutrinos in the production
of light elements and show our results of BBN obtained by assuming TRH ∼ O(1) MeV.

5.4.1 Formulation of BBN

We have seen in the previous section that the late-time entropy production due to decays of
X induces the incomplete thermalization of neutrinos before decoupling. Since neutrinos
take part in the weak reaction processes,

n ↔ p+ e− + ν̄e , (5.47a)

e+ + n ↔ p+ ν̄e , (5.47b)

νe + n ↔ p+ e− , (5.47c)

which interchange ambient neutrons and protons with each other, non-thermal spectra of
neutrinos significantly change the freeze-out value of the neutron-to-proton ratio (n/p)f ≡
(nn/np)T=Tf

where nn and np are the number density of neutrons and protons, respectively,
whereas Tf is the freeze-out temperature of the processes (5.47a)–(5.47c). As described
later in this section, the theoretical values of light element abundances are very sensitive to
the neutron-to-proton ratio before BBN. Therefore, theoretical predictions of the standard
BBN should be modified in the Universe with small TRH. Since the predictions of standard
BBN is well consistent with the observational values, we can constrain TRH by requiring



5.4. BIG BANG NUCLEOSYNTHESIS 77

that the late-time entropy production does not spoil the current success of the standard
BBN.

In the case where the massive particles have a hadronic branching ratio, there are
additional neutron-proton interchanging processes other than (5.47a)–(5.47c) via strong
interactions caused by injected hadrons N +H ↔ N ′ +H ′ where N and N ′ are nucleons,
and H and H ′ are mesons or baryons. If the hadronic branching ratio is large enough,
the hadronic processes dominantly affect the neutron-to-proton ratio, which results in dif-
ferent light element abundances compared to the case of 100% radiative decays of the
massive particles [27]. In the current study, we consider the hadronic processes involving
pions (π±) and nucleons (n, n̄, p, p̄) which are injected from hadronic decays of the mas-
sive particles. The energetic hadrons produced in the decay of the massive particles are
instantaneously stopped by Coulomb scattering with background electrons/positrons or
inverse-Compton like scattering with background photons [81–83]. Therefore, the hadrons
affecting neutron-proton inter-conversions are thermalized, and we can use thermal cross-
sections for the calculation. As for the hadronic cross-sections, we adopt those given
in Table.1 of Ref. [81] for the mean values and assume 30% experimental error in each
cross-section for conservative treatment (see also Refs. [27, 84]).

To follow the evolution of light element abundances, we solve the Boltzmann equations
of light elements using the Kawano code [23]. Since some of the nuclear reaction rates
in the code are already outdated, we replace them with the latest ones (see Ref. [85] for
more information). Also, we rewrite some equations in the code to allow for the late-time
entropy production accompanied by the decays of X. Moreover, since the free neutron
decay (i.e. the forward process of (5.47a)) continues even after the other weak processes
of (5.47a)–(5.47c) decoupled at Tγ ∼ Tf , the value of the neutron-to-proton ratio just
before BBN depends on the lifetime of neutrons (see e.g. [28]). In the current study, we
use the value of the neutron lifetime τn reported in Ref. [29]:

τn = 880.2± 1.0 sec (68% C.L.) . (5.48)

As for the observational values of light elements, we adopt the primordial mass fraction
of helium 4He, Yp, reported in Ref. [42]:

Yp = 0.2449± 0.0040 (68% C.L.) , (5.49)

whereas for the observational value of primordial abundance of deuterium D, we adopt
the latest value reported in Ref. [40]:

D/H = (2.545± 0.025)× 10−5 (68% C.L.) . (5.50)

5.4.2 Results of BBN: Radiative decay

First we show the results of radiative decay, i.e. the hadronic branching ratio Br = 0. In
this case, photons and charged leptons emitted from the decay of X are instantaneously
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Figure 5.7: Relations between TRH and Yp in the case of 100% radiative decays of X.
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neutrino oscillation for the cases without and with neutrino self-interaction, respectively.
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The gray-shaded region corresponds to the 2-σ observational bound.
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Figure 5.8: Same as Figure 5.7, but for D/H.

thermalized via the electromagnetic force, and results of neutrino thermalization and BBN
are independent of the mass of X, mX . In Figure 5.7 and Figure 5.8, the relation between
TRH and D/H and Yp are shown, respectively. We assume 100% radiative decays of the
massive particles in these figures. The baryon-to-photon ratio ηB is the only free parameter
in the standard BBN. In the low-reheating-temperature Universe, a baryon number is
diluted by the entropy production due to the decays of the massive particles, and hence
ηB is decreased by many orders of magnitude. Therefore, we set the large initial value of
ηB so that the final value of ηB is consistent with observations of light elements. To plot
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Figure 5.7 and Figure 5.8, we fix the final value of ηB to the median value reported by
Planck collaboration [3]:

ηB = 6.13× 10−10 . (5.51)

Since almost all neutrons are processed into 4He which is the most stable among light
elements, the primordial mass fraction of 4He can be written as Yp ≡ ρ4He/ρB ∼ 2/{1 +
(n/p)−1

BBN} ∼ 0.25, where (n/p)BBN ≡ (n/p)f e
−t/τn is the neutron-to-proton ratio just

before deuterium bottleneck opens (i.e. Tγ ∼ 0.08 MeV and t ∼ 200 sec), and the last
approximation holds in the standard big-bang cosmology where (n/p)BBN ∼ 1/7 [28].
Therefore, the value of (n/p)BBN almost entirely determines the final abundance of 4He.
As for the final abundance of D, the value of Neff is also important because it is related
to the Hubble parameter (see Eqs. (5.32), (5.34) and (5.40)) and determines when each
light element departs from the nuclear statistical equilibrium [30, 31]. 8 Furthermore, as
we can see from Figure 5.7 and Figure 5.8, the influences of neutrino oscillation and self-
interaction on light element abundances are similar, and both of these effects increase Yp

and D/H. To understand the numerical results on light element abundances, next we focus
on the dynamics of the freeze-out of the neutron-to-proton ratio.

Since nucleons are always non-relativistic, (n/p)f can be expressed with the freeze-out
temperature if TRH is MeV scale as (n/p)f ∼ exp(−Q/Tf ) where Q ≡ mn−mp ∼ 1.3 MeV
is the mass difference of nucleons. We note that Tf is determined by the relative values of
the neutron-proton inter-converting weak reaction rates Γnp and the Hubble parameter H
and is roughly given by Γnp(Tf )/H(Tf ) ∼ 1. In the low-reheating-temperature Universe,
the total energy density is smaller than that in the standard big-bang cosmology under the
same photon temperature due to the incomplete thermalization of neutrinos. 9 Therefore,
the expansion rate of the Universe is also small in the scenario, and this effect delays the
decoupling of the processes (5.47a)–(5.47c) and thereby decreases (n/p)f .

The influence is not only in the Hubble parameter H but also in the reaction rates Γnp.

8We can intuitively understand the dependence of the D abundance on the expansion rate of the
Universe in the BBN epoch by focusing on the binding energy of D and 4He, i.e. BD ∼ 2.22 MeV and
B4He ∼ 28.3 MeV, and the freeze-out temperature of the destroying reactions of D. Since the binding
energy of 4He is much larger than that of D, D should burn into 4He (via mass-3 elements, T and 3He)
as long as the destroying reactions of D such as DD and DT fusions are effective. For this reason, a small
value of Neff (or equivalently a small expansion rate H), attained in the low reheating temperature cases,
delays a decoupling of the destroying reactions, and hence a smaller abundance of D remains unburnt.
That is the reason that a large expansion rate in the BBN epoch leads to a large abundance of D and vice
versa.

9We recall the reader that Tγ determines when light element abundances are to be created since the
reaction process p + n → D + γ responsible for the deuterium production is the first step of BBN, and
its backward reaction rate depends on Tγ . For this reason, the values of Γnp and H should not be
characterized by the cosmic time but rather by Tγ . That is the reason that a larger value of Neff ∝ ρν/ργ
leads to a larger expansion rate of the Universe at the epoch of BBN.
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Specifically, the reaction rate of the processes (5.47a)–(5.47c) can be written as [27]

Γn→pe−ν̄e = K

∫ Q−me

0

dp′
[√

(p′ −Q)2 −m2
e(Q− p′)

p′2

1 + e(p′−Q)/Tγ
(1− fνe(p

′))

]
,

Γne+→pν̄e = K

∫ ∞

Q+me

dp′
[√

(p′ −Q)2 −m2
e(p

′ −Q)
p′2

e(pνe−Q)/Tγ + 1
(1− fνe(p

′))

]
,

Γnνe→pe− = K

∫ ∞

0

dp′
[√

(p′ +Q)2 −m2
e(p

′ +Q)
p′2

1 + e−(p′+Q)/Tγ
fνe(p

′)

]
,

Γpe−ν̄e→n = K

∫ Q−me

0

dp′
[√

(p′ −Q)2 −m2
e(Q− p′)

p′2

e−(pνe−Q)/Tγ + 1
fνe(p

′)

]
,

Γpe−→nνe = K

∫ ∞

0

dp′
[√

(p′ +Q)2 −m2
e(Q+ p′)

p′2

e(pνe+Q)/Tγ + 1
(1− fνe(p

′))

]
,

Γpν̄e→ne+ = K

∫ ∞

Q+me

dp′
[√

(p′ −Q)2 −m2
e(Q− p′)

p′2

1 + e−(pνe−Q)/Tγ
fνe(p

′)

]
,

where me is the electron mass, and K ∼ (1.636τn)
−1 is a normalization factor whose value

is determined by the neutron lifetime τn. Of these reaction rates, some depend on fνe and
others on 1− fνe . In the low-reheating-temperature Universe, the neutrino abundance of
each flavor is smaller than the case of the standard big-bang cosmology. Therefore, by
denoting the reduction of fνe due to the incomplete thermalization of neutrinos by ∆fνe ,
the following relation holds for sufficiently small TRH (< Tdec ∼ O(1) MeV):∣∣∣∣ ∆fνe

(1− fνe)

∣∣∣∣ � ∣∣∣∣∆fνe
fνe

∣∣∣∣ for fνe � 0.5 . (5.52)

As a result, with such a small value of TRH, the total reaction rate Γnp ≡ Γn→pe−ν̄e +
Γne+→pν̄e + Γnνe→pe− + Γpe−ν̄e + Γpe−→nνe + Γpν̄e→ne+ becomes smaller than that of the
standard big-bang cosmology as written in Ref. [27]. Therefore, this effect accelerates the
decoupling of the processes (5.47a)–(5.47c) and thereby increases (n/p)f . Consequently,
the relative magnitude of these two opposite contributions determines the net effect of
incomplete thermalization of neutrinos on (n/p)f .

As described in the previous section, neutrino oscillation and self-interaction slightly
enhance the neutrino thermalization and increase the total energy density of neutrinos
and hence Neff . As a result, the Hubble expansion rate increases due to these effects.
Additionally, since the νe abundance is decreased by the conversion νe → νx, and only
νe take part in the reaction processes (5.47a)–(5.47c), Γnp decreases by considering these
effect. Therefore, neutrino oscillation and self-interaction always play a role in delaying
the freeze-out of neutron-to-proton ratio and increasing Tf and (n/p)f , which leads to
larger values of Yp and D/H.

As is the case for Neff (see Figure 5.2), we can also see from Figure 5.7 and Figure 5.8
that the impact of the solar neutrino mixing (δm2

12, θ12) is much larger than that of the
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reactor neutrino mixing (δm2
13, θ13) independent of the neutrino mass ordering. Therefore,

the effective two-flavor mixing with (δm2
12, θ12) gives a good approximation to the full

three-flavor neutrino mixings. For this reason, we hereafter only consider (δm2
12, θ12) in

the case with neutrino oscillation.
To obtain the observational constraint on TRH, we perform a Monte-Carlo calculation

of BBN and χ2 analysis at each point on the grids of ηB and TRH assuming observational
values for Yp (Ref. [42]) and D/H (Ref. [40]). 10 In the Monte-Carlo calculation, we
assume that the reaction rates in the standard BBN, the hadronic reaction rates and
the neutron lifetime follow Gaussian distribution and propagate their reported errors to
obtain theoretical uncertainties on the light element abundances. Since an allowed region
is defined by a parameter space where theoretical abundances of light elements explain
each observational value, we give the lower bound on TRH combining χ2 values of both
D/H and Yp:

11

χ2
D/H+Yp

≡ χ2
D/H + χ2

Yp
=

{(D/H)th(ηB, TRH)− (D/H)obs}2

σ2
D, th(ηB, TRH) + σ2

D, obs

+
{Yp, th(ηB, TRH)− Yp, obs}2

σ2
Yp, th

(ηB, TRH) + σ2
Yp, obs

,

(5.53)
where χ2

D/H and χ2
Yp

are χ2 values of D/H and Yp, respectively. Also, σi, th and σi, obs where

i = D/H and Yp are respectively the theoretical and observational 1-σ variance of each
light element abundance.

Figure 5.9 shows the allowed region in the plane of ηB and TRH in the case of the 100%
radiative decays. In the current study, we assume that χ2

D/H and χ2
Yp

follow Gaussian

distribution. In this case, we can find the lower bound at 95% C.L. on TRH by requiring
χ2
D/H+Yp

(ηB, TRH) < 5.991:

TRH ≳ 1.8 MeV , (5.54)

in the case with both neutrino oscillation and self-interaction. As can be seen from Fig-
ure 5.2, the value of the reheating temperature TRH is uniquely related to that of the
effective number of neutrino species Neff in the scenario that we are considering. 12 Thus,

10As written in e.g. [69,86], it is technically incorrect to adopt the CMB bound ηB = (6.13±0.04)×10−10

reported by the Planck collaboration [3] as a prior of BBN because the recombination process depends
on the values of Neff and Yp, and there are correlations between ηB and these quantities. In other words,
CMB is not independent of the neutrino thermalization and BBN. In Ref. [3], they adopt the canonical
value Neff = 3.046 [76] and Yp calculated by assuming the standard BBN, which are not necessarily
realized in the low-reheating-temperature Universe.

11There remains a long-standing problem in the standard BBN that the theoretical prediction of the
7Li abundance is approximately three times larger than that of the observational value if we input the
value of the baryon-to-photon ratio from CMB into the calculation of BBN (see e.g. [29]). Therefore, we
refrain from using the 7Li abundance to constrain TRH in the current study.

12The value of the effective number of neutrino species Neff depends on the cosmological scenario. For
example, if we consider possibilities of dark radiations, neutrino decays, or entropy production by some
exotic particles, its value tend to be largely modified. Therefore, the value of Neff is ’degenerate’ between
different cosmological scenarios, and therefore we cannot clarify the true story of nature by just discussing
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Eq. (5.54) leads to the possible minimum value of Neff at 95% C.L.:

Neff ≳ 1.0. (5.55)

The lower bound on Neff is notably smaller than the 2-σ bound obtained from the standard
big-bang nucleosynthesis, Neff > 2.26 [88].

Also, we depict in Figure 5.10 the comparison between cases with and without neutrino
oscillation or neutrino self-interaction. As can be seen from Figure 5.10, we find TRH ≳
1.5 MeV in the case with neutrino oscillation and without self-interaction, whereas TRH ≳
0.6 MeV in the case without neutrino oscillation and with neutrino self-interaction. The
BBN bound in the case with neutrino oscillation or self-interaction is tighter than that in
the case without them. This is because, as we can see from Figure 5.8, neutrino oscillation
and self-interaction increase the value of Yp, and the discrepancy between theoretical and
observational values becomes large compared to the case without these effects.

5.4.3 Results of BBN: Hadronic decay

As described above, if the massive particles have a branching ratio into hadrons, the
constraint on TRH imposed by BBN can be modified compared to when the decays of X
are fully radiative (i.e. Br = 0). The effects of hadronic decays on light element abundances
are shown in Figure 5.11 where we plot the dependence of D and 4He abundances on TRH

for each value of mX and Br. The case of Br = 0 in the figure corresponds to 100%
radiative decays of X which is plotted for reference. In the figure, we assume that the
massive particles have a non-negligible branching ratio into u ū quark pairs to calculate the
number of hadrons produced in the decays of X with Pythia 8.2 code. 13 The systematic
error in the result of the Pythia code is expected to be much smaller than those in the
hadronic reaction rates. Thus, errors in the number of emitted hadrons should safely be
ignored.

Figure 5.11 shows that both the 4He and D abundances increases due to the hadronic
decay effects. The reason is as follows. First, there exist more target protons than target
neutrons in the system for T ≲ 10 MeV. This is because the neutron-proton ratio follows
n/p ' exp(−Q/T ) as long as the neutron-proton exchange reactions through weak inter-
action keep them in equilibrium, and n/p is therefore smaller than unity in this epoch.
Second, injected hadrons such as pions and kaons extraordinarily exchange ambient pro-
tons with neutrons through strong interaction via, e.g.

p+ π− → n+ π0,

n+ π+ → p+ π0.

the value of Neff . We need another information, e.g. distribution functions of neutrinos, which are possibly
revealed by future direct detection experiments of neutrinos such as PTOLEMY [87].

13We have checked that the BBN bound does not depend on the quark flavor emitted from the massive
particles if the mass of the massive particles is much larger than the total mass of emitted quarks (i.e.
mX >> mqα where mqα is the quark mass of particular flavor α).
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We note that the neutral pion π0 produced in the processes immediately decays into two
photons and does not cause the corresponding inverse processes in this epoch. For these
reasons, the injected hadrons induce a net flow from p to n. This gives an out of equilibrium
abundances of neutron and proton and leads to a larger n/p ratio (see [27, 81] for more
detailed discussions). As a result, the 4He and D abundances, which increase with (n/p)f ,
get larger than those of the standard BBN. Besides, it can be seen from Figure 5.11 that
the effect of hadronic decays is large for a large Br or a small mX . Comparing the cases
of mX = 100 TeV, Br = 0.001 (red thin dashed) and mX = 10 GeV, Br = 1 (blue thick
solid) in Figure 5.11, we can see that the discrepancy of D/H or Yp between these cases is
of the same order or much larger than that of the 2-σ observational error if TRH is a few
MeV.

To understand the reason, we define the comoving variable for the initial abundance of
the massive particles YX = nX/s where nX is the number density of the massive particles
X, and s is the total entropy density of the Universe. If we assume that X dominates
the total energy at the initial time and most of it is transferred to radiation components
before the reheating is completed, we can write the initial value of YX as follows:

YX =
nX

s
∼

(π
2

30
g∗ T 4

RH)/mX

2π2

45
g∗s T

3
RH

∼ 3

4

TRH

mX

, (5.56)

where g∗ and g∗s are relativistic degrees of freedom defined by energy and entropy density
respectively. In the standard big-bang cosmology, g∗ ∼ g∗s holds before electron-positron
annihilation sets in. As we can see from the above expression, YX gets larger for smaller
mX . Besides, the number of hadrons emitted from the decays of X is almost proportional
to m0.4

X (see Ref. [83]), and therefore the total number of hadrons emitted from X is almost
proportional to m−0.6

X . Since the energetic hadrons instantaneously lose their energy and
are thermalized with background particles before inter-converting ambient neutrons and
protons, the number of emitted hadrons determine the magnitude of the hadronic-decay
effect on BBN. Therefore, the influence of hadronic decays on BBN should be stronger for
smaller mX .

To show the effects of neutrino oscillation and neutrino self-interaction on the light
element abundances in the case of hadronic decays, we plot in Figure 5.12 the dependence
of Yp and D/H on TRH for (mX , Br) = (10 GeV, 1.0) and (100 TeV, 0.001) where we expect
large and small effects of hadronic decays, respectively. As we can see from Figure 5.12,
if TRH is a few MeV, neutrino oscillation and neutrino self-interaction affect light element
abundances at the level of O(10)% for D/H and O(1)% for Yp when mX = 10 GeV and
Br = 1.0, whereas the correction isO(10)% for both cases of D and Yp whenmX = 100 TeV
and Br = 0.001. Since we give the observational bound on TRH by summing up the
χ2 values of D/H and Yp, the constraint on TRH should be changed by O(1)% when
mX = 10 GeV and Br = 1.0 and by O(10)% when mX = 100 TeV and Br = 0.001.

We show in Figure 5.13 the allowed region in the same plane as Figure 5.9, but in the
case when hadronic decays are included. In the figure, we show four representative cases
of (mX , Br) = (10 GeV, 1.0), (10 GeV, 0.001), (100 TeV, 1.0) and (100 TeV, 0.001).
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A possible minimum value of the reheating temperature TRH,min in terms of BBN is
shown in Figure 5.14 as a function of mX . We can see from the figure that the BBN bound
is tighter in the case of a small mX or a large Br. Codnsequently, we obtain the lower
bound on TRH at 95% C.L.:

TRH ≳ 4.1− 4.9 MeV for mX = 10 GeV − 100 TeV , (5.57)

when the hadronic branching ratio Br = 1.0, whereas

TRH ≳ 2.1− 3.7 MeV for mX = 10 GeV − 100 TeV , (5.58)

when Br = 0.001 in the case with both neutrino oscillation and neutrino self-interaction.
In the same as 100% radiative decay cases, these bounds on TRH can be rewritten as lower
bounds on Neff at 95% C.L.:

Neff ≳ 2.7− 2.9 for mX = 10 GeV − 100 TeV , (5.59)

when the hadronic branching ratio Br = 1.0, whereas

Neff ≳ 1.3− 2.5 for mX = 10 GeV − 100 TeV , (5.60)

when the hadronic branching ratio Br = 0.001. As can be seen from the above constraints,
the lower bound on Neff can be more severe than the standard BBN bound for the hadronic
decay cases depending on the choice of mX and Br. Since there is no other motivated
scenarios where neutrinos are diluted compared to photons, a possible detection of the
effective number of neutrino species smaller than three in future observations should be a
clear evidence of the low reheating temperature. Also, it should also be useful to detect
the cosmic neutrino background (CνB) and reveal the energy distribution of neutrinos for
verifying the MeV-scale reheating scenario as neutrinos obtain unique non-thermal spectra
depending on the value of TRH. In this way, the future direct detection program of CνB
such as the PTOLEMY experiment will be able to examine this scenario [87].

In this study, we also find that neutrino oscillation and neutrino self-interaction can
change the value of TRH,min at the level of O(1)% for most of the range of mX in the case
of hadronic decays.

5.5 Conclusion of Chapter 5

In this chapter, we have investigated the possibility that the reheating temperature of
the Universe is O(1) MeV motivated by long-lived massive particles which often appear
in the particle physics theory beyond the standard model and induce a late-time entropy
production by their decays. In this scenario, neutrinos are not necessarily thermalized well
before the beginning of BBN. Hence, the expansion rate of the Universe and weak reaction
processes are significantly altered, which changes the freezeout value of the neutron to
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proton ratio. We have calculated the thermalization of neutrinos including the effects of
both neutrino oscillation and neutrino self-interaction (Figures 5.2–5.4) and obtained a
lower bound on the reheating temperature TRH ≳ 1.8 MeV (95% C.L.) (Figure 5.9) in the
case of 100% radiative decay.

On the other hand, if the massive particles also decay into hadrons, there is an ad-
ditional effect on BBN via inter-conversion of ambient neutron and proton through the
scatterings of the hadrons. In this case, the constraint becomes tighter than that of 100%
radiative decay (Figure 5.11). Then, we obtained the lower bound TRH ≳ 2 MeV–5 MeV
(95% C.L.) depending on the masses of the massive particles (10 GeV–100 TeV) and the
hadronic branching ratio of the decay (Figures 5.13–5.14).

In this study, we also found that neutrino oscillation and neutrino self-interaction
increase the efficiency of neutrino thermalization (Figures 5.2 and 5.4) and decrease the
exchange rate between neutrons and protons, thereby enhancing the theoretically expected
abundances of helium, Yp (Figure 5.7), and deuterium, D/H (Figure 5.8). These effects
increase the minimum value of the reheating temperature at the level of O(10)% in the
case of 100% radiative decays (Figure 5.9) and O(1)% in most cases of hadronic decays
(Figure 5.12).
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Figure 5.9: Allowed region in the (ηB, TRH) plane in the case of 100% radiative decays
of X. The 95% (68%) C.L. contour is plotted with the blue solid (red dashed) line. The
outside of the small region surrounded by the blue solid (red dashed) line is excluded at
95% (68%) C.L. The constraint on ηB at 95% C.L. (68% C.L.) in the case of the standard
BBN is also shown as the dark (light) shaded region. The top panel shows the allowed
region in terms of both Yp and D/H, whereas the bottom-left and bottom-right panels
show those of D/H and Yp, respectively. Neutrino oscillation and neutrino self-interaction
are considered in the calculation.
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is for the case only with neutrino oscillation, and one with the short-dashed line is for the
case only with neutrino self-interaction.
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Chapter 6

MeV-scale reheating temperature
and thermalization of
sterile neutrinos [2]

Abstract: In this chapter, we investigate the possible existence of sterile neutrinos with a
various range of masses in terms of cosmology by assuming an MeV-scale reheating tem-
perature. By numerically calculating sterile neutrino production via neutrino oscillation,
we find that the existence of light sterile neutrinos inferred from short-baseline neutrino
oscillation experiments becomes consistent with observational results of big-bang nucleosyn-
thesis (BBN) if the reheating temperature is O(1) MeV.

6.1 Introduction

Since the LSND collaboration has reported a 3.8-σ anomaly in their results in the 1990s [89],
various experimental projects have been proposed to investigate its physical origin. The
anomaly was later confirmed by the MiniBooNE collaboration in both neutrino and anti-
neutrino modes [90], and they recently verified a consistent anomaly in its updated version
of the experiment [91]. In addition to the above accelerator neutrino oscillation experi-
ments, similar anomalies have been found in other types of experiments, e.g. reactor
neutrino experiments such as Daya Bay [92] and Double Chooz [93] or Gallium experi-
ments such as SAGE [94–96] and GALLEX [97–99]. One of the most plausible solutions to
the anomaly is the existence of light sterile neutrinos with its mass of eV-scale which has
a flavor mixing with active neutrinos. In order to verify or exclude the possibility, many
future experimental programs have been planned, e.g. SBN experiment hosted by Fermi
laboratory [100] and JSNS2 experiment hosted by KEK [101]. Recently, IceCube collabo-
ration investigated the existence of the light sterile neutrinos by searching for a resonant
conversion from sterile- to active neutrinos. As a result, they obtained a strong constraint
on the light sterile neutrinos, excluding a wide parameter region indicated by the short-

93
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baseline neutrino anomaly [102]. Moreover, the existence of such light sterile neutrinos is
strongly disfavored by other disappearance experiments such as MINOS/MINOS+ [103]
and NOνA [104]. Also, as shown in Ref. [105], a combined constraint from reactor neu-
trino experiments (Daya Bay [106], Bugey-3 [107], and PROSPECT [108]) partially exclude
the possible parameter values of the eV-scale sterile neutrinos inferred from the appear-
ance experiments. Therefore, there is an unacceptable contradiction between appearance-
and disappearance experiments, and the origin of the anomaly is still under debate (see
Ref. [105] for the current experimental status of sterile neutrinos).

If such light sterile neutrinos exist and have an appreciable mixing with active neu-
trinos, they would be abundantly produced through neutrino oscillation in the early
Universe and affect the consequences of big-bang nucleosynthesis (BBN) and cosmic mi-
crowave background (CMB). In Refs. [73, 86], they calculated the production of light
sterile neutrinos in the early Universe and shown that the light sterile neutrinos inferred
from the anomaly are completely thermalized before the beginning of BBN and CMB,
which means that the existence of the light sterile neutrino is strongly excluded from
BBN and CMB. However, this contradiction between cosmology and the possible exis-
tence of the sterile neutrino can be solved by assuming large chemical potentials of active
neutrino [73, 109–111], self-interaction among sterile neutrinos [112, 113] or non-standard
interaction of sterile neutrinos [114–117].

In this study we focus on another solution to the problem that the thermalization
of the sterile neutrinos is suppressed by the low reheating temperature. This possibil-
ity has been investigated in Refs. [105, 118–122]. In Refs. [118, 119, 122], they studied the
production of sterile neutrinos assuming an MeV-scale reheating temperature. In the ther-
malization calculation of sterile neutrinos, they estimated the sterile neutrino abundance
produced via non-resonant active-sterile neutrino oscillation by using simple analytical
formula (see Eq. (4) in Ref. [118]). They assumed that the sterile neutrino production via
vacuum oscillation starts when the reheating is completed, which is not true as indicated
in Ref. [121]. In reality, a large part of active- and sterile neutrinos are produced in the
reheating, i.e., before the reheating temperature is attained, and therefore in-medium ef-
fects cannot be neglected in the thermalization calculation of sterile neutrinos for a sterile
neutrino mass of O(1) eV and the reheating temperature is O(1) MeV. Also, they sim-
plified their discussions by assumming that the reheating temperature is 5 MeV, leading
to more severe constraints on sterile neutrinos than in reality obtained without fixing the
value of the reheating temperature. As a result, they obtained a rough picture of to what
extent BBN and CMB have a sensitivity to sterile neutrinos by discussing a contribution
of sterile neutrinos on the effective number of neutrino species Neff . After that, authors
in Ref. [121] revisited the sterile neutrino production in the MeV-scale reheating scenario
by calculating the semi-classical Boltzmann equation with effective collision terms and
provided a more detailed analysis on the thermalization of active- and sterile neutrinos.
However, as described in e.g. Refs. [78, 123], it is necessary to calculate the original ki-
netic equation, instead of the semi-classical Boltzmann equation, to accurately follow the
sterile neutrino thermalization unless the off-diagonal components of the collision term for
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neutrinos (i.e. collisional damping term) dominate those of the neutrino hamiltonian. In
addition, Ref. [121] did not provide an exact constraint in the parameter space of sterile
neutrinos from cosmology.

In this study, we revisit the sterile neutrino thermalization in the Universe with an
MeV-scale reheating temperature and refine the cosmological constraint on the sterile
neutrinos obtained in Ref. [105, 118–120, 122], by performing a detailed computation of
BBN. The main purpose of this study is to provide robust and accurate constraints on the
eV-scale mass sterile neutrinos, motivated by the short-baseline neutrino anomaly.

The structure of this chapter is as follows: In Section 6.2, we introduce cosmological
scenarios with late-time entropy production which induces the MeV-scale reheating tem-
perature and explain our formulation for calculating the production of active- and sterile
neutrinos. In Section 6.3, we show our numerical results of the thermalization calcula-
tions of neutrinos, and afterwards we discuss our results of the computation of BBN in
Section 6.4. Finally, Section 6.6 is devoted to conclusions.

6.2 Sterile neutrino production in the reheating

In this section, we explain the dynamics of cosmological scenarios with late-time entropy
production, which results in the MeV-scale reheating temperature and introduce key equa-
tions for calculating sterile neutrino production in the reheating.

In this scenario, we assume the existence of a long-lived scalar particle, which we label
as X in this thesis. A candidate of the scalar particle is inflaton or other exotic particles
which appear in particle physics theories beyond the standard model such as gravitino,
flaton or dilaton. If such particles are abundantly produced in the early Universe, these
particles would dominate the energy density of the Universe and create an early matter-
dominated epoch before the ordinary radiation-dominated epoch. In this case, decays of
the scalar particles induce a large entropy production and subsequent dramatic particle
production of the standard model particles. Therefore, if sterile neutrinos νs couple to
active neutrinos, viz. electron neutrinos (νe), µ neutrinos (νµ), and τ neutrinos (ντ ),
via flavor mixing, sterile neutrinos are also produced from active neutrinos via neutrino
oscillation in the reheating. As we describe in the later section, light element abundances
created in BBN highly depend on the neutrino abundance. Therefore, it is important to
accurately calculate production abundances and final energy spectra of active- and sterile
neutrinos created before the onset of BBN. In what follows, we describe the fundamental
equations which are necessary to follow active- and sterile neutrino thermalization in the
reheating.

If the reheating temperature is below QCD scale ∼ O(100) MeV, and the radiation-
dominated epoch therefore realizes after the hadronization, neutrinos are solely produced
in the annihilation process of charged leptons l + l̄ → να + ν̄α (α = e, µ, τ) where l
and l̄ are charged leptons and corresponding anti-particles, respectively. These processes
proceed via weak interaction while photons and charge leptons are rapidly created in the
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thermal plasma via electromagnetic interaction. Therefore, sterile neutrinos are also slowly
produced from active neutrino via flavor mixings in the reheating. For this reason, in order
to follow the time evolution of sterile neutrinos, we need to simultaneously compute the
production of active neutrinos by collisions and sterile neutrino thermalization via neutrino
oscillation. 1 An analytical estimation of the sterile neutrino abundance produced by non-
resonant oscillation between active- and sterile neutrinos was provided in Ref. [124], where
they obtained that a production rate of sterile neutrino has a sharp peak at temperature
Tmax :

Tmax ∼ 13MeV
( ms

1 eV

)1/3

, (6.1)

where ms is the mass of sterile neutrinos. Hence, if the reheating temperature is below
Tmax, sterile neutrino abundance is strongly suppressed compared to that obtained in
the standard big-bang cosmology. That is the reason that the low-reheating-temperature
scenario could solve the above-mentioned contradictions between the existence of sterile
neutrinos and cosmology.

The states of active- and sterile neutrinos are expressed as a one-body-irreducible den-
sity matrix, written as a Nf ×Nf Hermitian matrix where Nf is the number of neutrino
flavors mixed. In this study, we assume that only one of the three flavors of active neutri-
nos has a flavor mixing with sterile neutrinos, which is often called the 1+1 mixing scheme.
Under the assumption, two flavors of active neutrinos are irrelevant to the neutrino os-
cillation and the sterile neutrino production. We call the neutrino species which mixes
with sterile neutrinos active-mixed neutrino νa in contrast to other decoupled species,
active-spectator neutrinos νsp. Since it is natural for all flavors of active neutrinos to have
a flavor mixing with sterile neutrinos, this treatment is approximately true if one of the
three mixings between active- and sterile neutrinos dominates the others. Otherwise, this
treatment is just an assumption for simplicity. In the following, we first introduce a for-
malism assuming that electron neutrinos (νe) have a flavor mixing with sterile neutrinos
(νs). In this case, other active species, namely µ neutrinos (νµ) and τ neutrinos (ντ ),
decouple from the neutrino oscillation and the sterile neutrino production.

6.2.1 Formalism: νe–νs mixing

We assume here that only νe have a flavor mixing with νs. In this case, the states of
spectator neutrinos, namely νµ and ντ , are degenerate, and it is unnecessary to separately
calculate dynamical equations for each. This is because the cosmic temperature is always
below O(1) MeV after the reheating for TRH ∼ O(1) MeV, and muons and τ leptons
are therefore absent from the thermal bath of the Universe due to their large masses. In
the following, quantities of the spectator neutrinos are multiplied by a factor of two for
summing up contributions of νµ and ντ .

1We do not consider exotic interactions among active- or sterile neutrinos. Hence, the sterile neutrinos
are solely produced via active-sterile neutrino oscillations.
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Since we assume the 1+1 mixing, the density matrix of neutrinos with energy E can
be expressed as a 2×2 matrix:

ϱp(t) ≡ ϱ(E, t) =

(
ϱaa ϱas
ϱ∗as ϱss

)
, (6.2)

where the energy of active- and sterile neutrinos E can be replaced with their absolute
momentum p, i.e. E → p ≡ |p| with p the three-momentum of neutrinos. This is because
masses of active neutrinos are known to be sub-eV scale [29] and negligible in a thermal
bath of T ∼ O(1) MeV. Also, we restrict ourselves to the mass range of sterile neutrinos
below 10 keV so that they are always relativistic before their production effectively finishes
at around a temperature of the neutrino decoupling T ∼ Tdec.

2 In Eq. (6.2), the diagonal
elements of the density matrix corresponds to the distribution functions of active- and
sterile neutrinos, i.e. ϱaa = fa and ϱss = fs while the off-diagonal elements correspond to
a quantum coherence between them.

The time evolution of the density matrix is described by the momentum-dependent
quantum kinetic equation, which is derived from Liouville-Von-Neumann Equation for the
N -body density matrix. It can formally be written as [56,57]

dϱp(t)

dt
=

(
∂

∂t
−H p

∂

∂p

)
ϱp(t) = −i [Hν , ϱp(t)] + C[ϱp(t), t] , (6.3)

where C[ϱp(t), t] is the collision term for the active-mixed neutrinos, H is the Hubble
parameter, and Hν in the commutator is the neutrino Hamiltonian.

In this study, we assume for simplicity that neutrino chemical potentials are zero,
µνα ≡ 0. 3 Hence, the effect of µνα does not affect the thermalization of sterile neutrinos.
In such a case, it is unnecessary to follow the time evolution of anti-neutrinos separately
from corresponding neutrinos, and the neutrino Hamiltonian consists of two contributions:

Hν =
M2

2p
− 8

√
2GFp

3

[
ECC

m2
W

+
ENC

m2
Z

]
, (6.4)

where GF is the Fermi coupling constant, and mW (mZ) is the mass of W (Z) boson. The
first term in the right-hand side of Eq. (6.4) is responsible for the neutrino oscillation in
a vacuum, and M is the mass matrix in flavor basis, which is related to the one in mass
basis M as M2 = UM2U † where U is the flavor-mixing matrix. Since we assume the 1+1
mixing, we have

M2 =

(
m2

1 0
0 m2

2

)
, U =

(
cos θ − sin θ
sin θ cos θ

)
, (6.5)

2This limitation is mandatory because non-relativistic neutrinos do not oscillate into another fla-
vor [125], and we cannot rely on the kinetic equation for neutrinos (Eq. (6.3)) in such cases.

3This is a reasonable assumption because an additional term in the neutrino hamiltonian, which arises
from non-zero values of µνα

, can be negligible compared to others if we assume µνα
∼ O(10−10), as

is naturally attained in the standard mechanism of baryogenesis via sphaleron processes. The effect of
the neutrino chemical potentials on the production of sterile neutrinos has been closely studied in e.g.
Refs. [73, 110,111,126].
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where m1 and m2 (> m1) are respectively the mass eigenvalues relevant to the active
mixed- and sterile neutrinos, and θ is the vacuum mixing angle between them. Given the
expression of the flavor-mixing matrix U , we can write the relation between the mass- and
the flavor eigenstates of neutrinos as

|νa〉 = cos θ |ν1〉 − sin θ |ν2〉 , (6.6)

|νs〉 = sin θ |ν1〉+ cos θ |ν2〉 , (6.7)

where |νa〉 and |νs〉 are flavor eigenstates of active- and sterile neutrinos while |ν1〉 and |ν2〉
are the mass eigenstates of lighter- and heavier states, respectively.

On the other hand, the second- and third terms in the right-hand side of Eq. (6.4)
are matter effects induced by the coherent scatterings of active-mixed neutrinos with
electrons νa + e± → νa + e±, which modify the relation between the mass- and the flavor
eigenstates of neutrinos. Especially, the second (third) term of Eq. (6.4) arises from
charged- (neutral-) current weak interactions of νa (= νe) with electrons, and ECC ≡
diag(ρe, 0) and ENC ≡ diag(ρνa , 0) where ρe and ρνa are the energy densities of electrons
and active-mixed neutrinos, respectively. 4

As for the collision term for the active-mixed neutrinos in Eq. (6.3), C[ϱp(t), t], we take
into account the processes summarized in Table 5.1 in Chapter 5; namely, the production
of active neutrinos from electron annihilation, neutrino-electron scatterings, and neutrino
self-interactions. The expression of the collision term can be written as

C[ϱp(t), t] =

(
Rνa −Dϱas
−Dϱ∗as 0

)
, (6.8)

where Rνa is the production rate of active-mixed neutrinos, and D is the collisional-
damping factor, which gives decoherence between states of νa and νs. The expressions
of Rνa and D can be written as Eqs. (5.4) and (5.5) in Chapter 5, respectively.

For numerical convenience, we expand the density matrix with Pauli matrices and
rewrite the kinetic equation into scalar equations:

ϱp(t) =

(
ϱaa ϱas
ϱ∗as ϱss

)
=

1

2
[P0 σ0 + P · σ ] . (6.9)

where P0 and P = (Px, Py, Pz) are expansion coefficients, which are called polarization
vectors. In the above expression, σ0 = 1 is the identity matrix, and σ = (σx, σy, σz) are
the Pauli matrices. Since the diagonal components of the density matrix correspond to
the distribution functions for active mixed- and sterile neutrinos, we have

fνa =
1

2
(P0 + Pz) , fνs =

1

2
(P0 − Pz) . (6.10)

4Since abundances of muons and τ leptons are much smaller than that of electrons, i.e. ρx << ρe
where x = µ, τ , in a thermal bath of T ∼ O(1) MeV due to Boltzmann suppression, we do not consider
contributions of muons or τ leptons.
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The expression of the quantum kinetic equation (Eq. (6.3)) can be rewritten with polar-
ization vectors as follows:

Ṗ =
−→
H × P −D (Px x+ Py y) + Ṗ0 z , (6.11)

Ṗ0 = Rνa , (6.12)

which we further rewrite into

Ṗνa = Hx Py +Rνa , (6.13)

Ṗνs = −Hx Py , (6.14)

Ṗx = −Hz Py −DPx , (6.15)

Ṗy = Hz Px −
1

2
Hx (Pνa − Pνs)−DPy , (6.16)

where we have defined Pνa ≡ P0 + Pz and Pνs ≡ P0 − Pz. Furthermore, the neutrino

hamiltonian Hν given by Eq. (6.4) is rewritten in terms of polarization vectors as
−→
H =

(Hx,Hy,Hz) where

Hx =
δm2

2p
sin 2θ , (6.17)

Hy = 0 , (6.18)

Hz = −δm2

2p
cos 2θ +Hmat . (6.19)

In the above expression, δm2 ≡ m2
2−m2

1 (m2 > m1) is the squared-mass difference between
the mass eigenstates, and Hmat is the matter potential, whose expression can be written
as

Hmat = −8
√
2

3
GF p

[
ρe
m2

W

+
ρνa
m2

Z

]
= −4

√
2

3 π2
GF p

[
ge
m2

W

∫ ∞

0

dp′ p′2
Ee

exp(Ee/Tγ) + 1
+

gν
m2

Z

∫ ∞

0

dp′ p′3fνa

]
. (6.20)

In the above expression, Tγ is the photon temperature, and Ee =
√

p2 +m2
e is the energy

of electrons. Also, ge = 4 is the statistical degree of freedom of electrons and gν = 2 is
that of neutrinos of each flavor. The first- and second terms in the bracket originate from
a charged-current and neutral-current interactions of νe with electrons, respectively. The
quantum kinetic equation expressed in terms of the polarization vectors, Eq. (6.11), has
an analogous form to the spin precession formula and thus useful to understand neutrino
oscillation phenomena.

Since the active-spectator neutrinos νsp are irrelevant to the neutrino oscillation, its
time evolution can be described by the momentum-dependent classical Boltzmann equa-
tion:

dfνsp(t)

dt
=

(
∂

∂t
−H p

∂

∂p

)
fνsp(t) = C[fνsp(t), t] , (6.21)
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where fνsp is the distribution function for active-spectator neutrinos, and C[fνsp(t), t] is
the collision term for them, whose expression is given by Eq. (5.4) with a replacement
νa → νsp.

In order to calculate the thermalization of active- and sterile neutrinos in the expanding
Universe, we must solve the Friedman equation, which gives the evolution of the scale factor
a(t) of the Universe:

H ≡ ȧ

a
=

√
8πGρ

3
, (6.22)

where ρ is the total energy density:

ρ = ργ + ρe + ρν + ρX

=
π2

15
T 4
γ +

ge
2π2

∫ ∞

0

dp p2
Ee

exp(Ee/Tγ) + 1

+
gν
2π2

∫ ∞

0

dp p3(fνa + 2fνsp + fνs) + ρX , (6.23)

where, in the above expression, ργ, ρe, ρν and ρX are the energy densities of background
photons, electrons, neutrinos and the scalar particles, respectively. The total energy den-
sity of neutrinos is given by ρν = ρνa + ρνsp + ρνs .

The evolution of ρX can be given by solving the integrated Boltzmann equation for X:

dρX
dt

= −ΓXρX − 3HρX , (6.24)

where ΓX is the decay rate of X. This equation can be integrated analytically for non-
relativistic particles X, and we find

ρX
s

=
ρX,0

s0
e−ΓX t , (6.25)

where ρX,0 and s0 are the energy- and entropy densities of X at the initial time t0, re-
spectively. Here, we assume that ρX,0 dominate the energy densities of other particles, i.e.
ρX,0 >> (ργ + ρe + ρν)t=t0 .

The standard-model particles and the sterile neutrinos obtain energy and entropy from
the scalar particles X in the reheating. It is therefore required to simultaneously solve the
equation of energy conservation:

dρ

dt
= −3H(ρ+ Ptot) , (6.26)

where Ptot is the total pressure, which can be expressed as

Ptot = Pγ + Pe + Pν

=
π2

45
T 4
γ +

ge
6π2

∫ ∞

0

dp
p4

Ee

1

exp(Ee/Tγ) + 1

+
gν
6π2

∫ ∞

0

dp p3(fνa + 2fνsp + fνs) . (6.27)
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Since all electromagnetically-charged particles are instantaneously thermalized in the re-
heating, they have a common temperature Tγ. Hence, we can rewrite Eq. (6.26) into the
time evolution of Tγ:

dTγ

dt
= −

−ΓXρX + 4H(ργ + ρν) + 3H(ρe + Pe) +
dρν
dt

∂ργ
∂Tγ

|a(t) + ∂ρe
∂Tγ

|a(t)
, (6.28)

where ΓX and TRH are uniquely related to each other via

ΓX = 3H(TRH). (6.29)

Since the energy density is dominated by radiations after the reheating, we can write the
Hubble expansion rate H = H(TRH) as

H(TRH) =

√
g∗π2

90

T 2
RH

mpl

, (6.30)

where mpl ∼ 2.4× 1018 GeV is the reduced Planck mass, and g∗ = 10.75 is the canonical
value of the relativistic degrees of freedom for the cosmic temperature of O(1) MeV. By
substituting Eq. (6.30) into Eq. (6.29), we find

TRH ∼ 0.7 MeV

(
ΓX

sec−1

)1/2

. (6.31)

This equation tells us that the decay rate of X is uniquely related to the reheating tem-
perature, and the smaller decay rate of X leads to the lower reheating temperature. 5

In order to obtain the thermalization of active- and sterile neutrinos, we numerically
calculate Eqs. (6.13)–(6.16), (6.21), (6.22), (6.25), and (6.28). For this purpose, we use a
modified version of the LASAGNA code [73,74], which is an efficient ODE solver optimized
for calculating the sterile neutrino production in the early Universe.

6.3 Numerical result: sterile neutrino thermalization

In this section, we show the numerical results of active- and sterile neutrino thermalization
in the reheating, obtained by assuming TRH ∼ O(1) MeV. First, we discuss the case of
νe–νs mixing, followed by the cases of νµ–νs and ντ–νs mixing.

5Since the actual value of g∗ attained after the reheating depends on the thermalization degree of
active- and sterile neutrinos, Eq. (6.31) just gives a rough estimate of when the Universe comes into the
radiation-dominated epoch.
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6.3.1 νe–νs mixing

The production abundance of neutrinos is often described in terms of the effective number
of neutrino species Neff . In the case of νe–νs mixing, it is defined as

Neff = Neff, νa +Neff, νs + 2Neff, νsp = ρνa/ρνstd + ρνs/ρνstd + 2 ρνsp/ρνstd , (6.32)

where Neff, να (α = e, s, sp) is the contribution of each neutrino species, and ρνstd is the
energy density of neutrinos in the standard big-bang cosmology. 6 The factor of two in
front of Neff, νsp is for summing up contributions of νµ and ντ . As can be seen from the
definition, Neff, να = 1 corresponds to the full thermalization of να, and then the energy
spectrum of να can be expressed as the thermal Fermi-Dirac distribution.

We plot in Figure 6.1 the relation between the reheating temperature TRH and the
effective number of neutrino species Neff . In the figure, we use the best fit values of mixing
parameters of light sterile neutrinos reported in Ref. [127]:

δm2 = 1.29 eV2 , sin2 2θ = 0.035 , (6.33)

which was obtained from data analysis of reactor neutrino experiments. Figure 6.1 shows
that both Neff and Neff, να increase with respect to TRH. This is because the neutrino pro-
duction via e−+e+ → να+ ν̄α is more efficient at a higher temperature, and neutrinos have
more time to be produced in the process. Also, an inequality Neff, νa > Neff, νsp always holds
because νe interact with electrons stronger than νµ and ντ as explained before. Moreover,
Figure 6.1 reveals that neutrino self-interaction enhances the sterile neutrino production.
The reason is that neutrino self-interaction increases the collisional-damping rate D (see
Eq. (5.5)) and increase the effective production rate of sterile neutrinos, which can be
approximately written as D sin2 2θM, where θM is the in-medium mixing angle between
active- and sterile neutrinos [128]. This important effect of neutrino self-interaction was
not considered in Ref. [121].

Figure 6.2 shows the time evolution of Neff, να for typical values of TRH. The behavior
of Neff, να is determined by two competing effects: dilution of neutrinos due to the entropy
production induced by the decay of X and the production of neutrinos. Since neutrinos are
only weakly produced in the thermal bath of photons and electrons, the former contribution
is dominant for Tγ > TRH and its effect becomes maximum at around Tγ ∼ TRH, which
corresponds to the cosmic time almost equal to the lifetime of X (i.e. τX = Γ−1

X ). That is
the reason that there is a local minimum of Neff, να at around Tγ ∼ TRH. On the other hand,
for Tγ < TRH the latter contribution, neutrino production in the thermal bath, becomes

6We normalize the contribution of να (α = e, µ, τ) to the effective number of neutrino species Neff, να in
units of the energy density of νe in the standard big-bang cosmology, ρνe, std

. We can instead normalize ρνα

in units of the standard energy density of νµ or ντ , but the difference between ρνα/ρνe, std
and ρνα/ρνµ, std

(or ρνα
/ρντ, std

) should be quite small (< 1%) and hence negligible. We note here that the value of Neff

is just a quantity which gives information on to what extent neutrinos are thermalized, and it is not an
observable used for a comparison between theories and observations. Hence, an error of Neff is irrelevant
to our final results, and we do not stick to a precise value of Neff .
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Figure 6.1: Effective number of neutrino species Neff = Neff, a + Neff, s + 2 Neff, sp as
a function of the reheating temperature TRH, where Neff, a, Neff, s and Neff, sp are contri-
butions of active mixed-, sterile- and active-spectator neutrinos, respectively. The left-
and the middle panels correspond to the cases without and with neutrino self-interaction,
respectively. The right figure shows the effect of neutrino self-interaction. In the left- and
middle panels, the black solid line is for Neff , whereas the red short-dashed, the green
middle-dashed and the blue long-dashed lines are for Neff, a, Neff, sp and Neff, s, respectively.
In the right panel, neutrino self-interaction is taken into account in the solid lines, and
the red thick-, the green medium- and the blue thin solid lines are for Neff, a, Neff, sp and
Neff, s, respectively. In contrast, neutrino self-interaction is not considered in the dashed
lines, and the red thick dashed-, the green medium dashed- and the blue thin dashed lines
are for Neff, a, Neff, sp and Neff, s, respectively.

dominant as the former contribution becomes negligible after the decay of X. Therefore,
the value of Neff, να increases for Tγ < TRH until neutrinos decouple from other particles at
around Tγ ∼ 3 MeV for νe and Tγ ∼ 5 MeV for νµ and ντ . Also, Figure 6.2 indicates that
light sterile neutrinos with masses of eV-scale start to be created via neutrino oscillation
at around a temperature of 13 MeV, as discussed in the previous section (see Eq. (6.1)).

In Figure 6.3, we plot the final energy spectrum of each flavor of neutrinos for the
typical values of TRH. We can see that the spectrum of sterile neutrinos is similar to those
of active neutrinos, which is a characteristic feature of the non-resonant production. Also,
it can be seen from Figure 6.3 that a peak position of the neutrino energy spectrum is
smaller than p/Tγ ∼ 3.15, which corresponds to thermally-averaged energy of fermions.
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This is because photon temperature Tγ increases by a factor of (11/4)1/3 ∼ 1.4 compared
to those of neutrinos after the annihilation of electrons, and the peak position shift to
p/Tγ ∼ 3.15/1.4 ∼ 2.25.

Figure 6.4 shows an averaged energy of neutrinos as a function of the reheating tem-
perature. The averaged energy of neutrinos can be expressed as a distortion parameter
Rdist, να defined by

Rdist, να =
1

3.15Tνα, eff

ρνα
nνα

, (6.34)

where Tνα, eff (= [4π2nνα/3ζ(3)]
1/3) is the effective temperature for each flavor of neutrinos.

As can be seen from this definition, Rdist, να = 1 corresponds to the thermal spectrum.
Figure 6.4 reveals that the value of Rdist, νa and Rdist, νsp decrease as TRH increases, and
it is almost equal to unity for TRH > 10 MeV. This is because active neutrinos are only
produced from the annihilation of electrons e− + e+ → να + ν̄α, and each neutrino in the
final state has energy larger than the electron mass me ∼ 0.5 MeV. Therefore, if neutrinos
are mainly produced when the electron mass is not negligible, the value of the Rdist, να

becomes larger than unity. Actually, the scattering process of neutrinos with electrons,
e± + να → e± + να, equilibrates neutrino spectra, but the scattering rates have almost
the same value O(G2

F ) as that of e− + e+ → να + ν̄α, and therefore neutrinos are not
completely equilibrated. Furthermore, Figure 6.4 shows the relation Rdist, νa < Rdist, νsp

(i.e. Rdist, νe < Rdist, νµ or Rdist, ντ ) holds for any given value TRH. The reason is that
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Figure 6.3: Dependence of the final energy spectra of neutrinos on the reheating temper-
ature in the case with neutrino self-interaction. The x-axis is the neutrino energy p divided
by the photon temperature Tγ. The y-axis is the differential energy spectrum of neutrinos.
The spectra are evaluated at Tγ = 10−2 MeV, much later than the electron annihilation
and the neutrino decoupling. The left panel is for νa, the middle panel is for νsp, and the
right panel is for νs. In the figure, the red long-dashed line is for TRH = 1 MeV, the blue
middle-dashed line is for TRH = 5 MeV, the green short-dashed line is for TRH = 10 MeV,
and the black solid line is for TRH = 20 MeV. In the left- and the middle panels, the lines
of TRH = 20 MeV and the Fermi-Dirac spectrum are almost overlapping.

scattering rates of νe with electrons/positrons, νe + e± → νe + e±, are larger than those
for νµ and ντ . Furthermore, we can see that the value of Rdist, νs has the same dependence
on TRH as those of active neutrinos, but it is larger than Rdist, νa and Rdist, νsp . This is
because sterile neutrinos do not scatter with electrons and they cannot equilibrate their
energy spectrum. We note that the value of Rdist, νs at TRH = 5 MeV is smaller than that
obtained in Ref. [105], Rdist, νs = 4.11. This is possibly due to the approximations that
they adopted to simplify the calculation.

Figure 6.5 shows the dependence of the dark matter fraction of sterile neutrinos Ωs/ΩDM

on the reheating temperature TRH for each value of the active-sterile mixing angle sin2 θ
and on the active-sterile mixing angle sin2 θ for each value of TRH. The mass of the
sterile neutrino is fixed to be ms = 1 keV. The left- and right panels of Figure 6.5 are
reproductions of Figure 9 and Figure 10 in Ref. [121], respectively.
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6.4 Big Bang Nucleosynthesis

In this section, we focus on BBN. First, we briefly explain the role of neutrinos in BBN, and
then we introduce the formalism of the calculation of BBN. Lastly, we present numerical
results, obtained by assuming TRH ∼ O(1) MeV.

6.4.1 Neutrino thermalization and neutron to proton ratio

Neutrinos affect light element abundances in two ways: First, they are involved in the
exchange reactions between protons and neutrons in the following:

n ↔ p+ e− + ν̄e , (6.35a)

e+ + n ↔ p+ ν̄e , (6.35b)

νe + n ↔ p+ e− , (6.35c)

which set the neutron-to-proton ratio (n/p) before the nucleosynthesis. As is well known,
the neutron-to-proton ratio is one of the most important parameters of BBN, which de-
termine the final abundances of light elements. Especially, the mass abundance of 4He,
Yp, can be estimated by a simple analytical formula Yp ∼ 1/{1+ (n/p)−1

bbn} where (n/p)bbn
is the neutron-to-proton ratio just before the deuterium bottleneck opens and the syn-
thesis of light elements begins (at the cosmic time tbbn ∼ 200 sec and the temperature
Tbbn ∼ 80 keV [28]). With the neutron lifetime τn and the freeze-out value of the neutron-
to-proton ratio (n/p)f , we can write (n/p)bbn = (n/p)f e

−tbbn/τn . In this study, we adopt
the free neutron lifetime τn reported in Ref. [29]:

τn = 880.2± 1.0 sec (68%C.L.). (6.36)

In the standard big-bang cosmology, where all the active neutrinos are assumed to be fully
thermalized well before an onset of BBN, the freeze-out value is known to be (n/p)f ∼ 1/6,
which leads to (n/p)bbn ∼ 1/7 and therefore Yp ∼ 0.25 [29]. In contrast, if neutrinos are
not fully thermalized, the value of (n/p)f would be affected because both of the reaction
rates of the processes (6.35a)–(6.35c), Γnp, and the Hubble expansion rate H ∼ √

ρ/mpl

decrease due to the effect, and the freeze-out temperature of the processes (6.35a)–(6.35c)
should be modified (see e.g. Refs. [26,27] for detailed discussions). Since 4He is the second
most abundant element in the Universe, final abundances of other light elements such as
D, 3He, 6Li, and 7Li are very sensitive to the 4He abundance, and that is the main reason
that light element abundances are modified if TRH ∼ O(1) MeV. The important point is
that since only νe is relevant to the processes (6.35a)–(6.35c), BBN is highly sensitive to
the νe abundance and its energy spectrum. Hence, light element abundances are excellent
probes of any physics in the early Universe, which exchange flavors of neutrinos such as
neutrino self-interaction, να + ν̄α → νβ + ν̄β (α 6= β), or neutrino oscillation, να → νβ.
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6.4.2 Observational abundances

An observational accuracy of light element abundances has been greatly improved over the
last few decades. Especially, a precision of deuterium and helium abundances are already
down to a few-percent level, and their observational data provide a precise determination
of the baryon-to-photon ratio in the standard big-bang nucleosynthesis (SBBN) [29].

In our study, we adopt an observational value of the primordial mass abundance of
4He, Yp, reported in Ref. [42]:

Yp = 0.2449± 0.0040 (68%C.L.) , (6.37)

which has been obtained by observing a recombination line of metal-poor stars in the
extra-galactic HII regions or blue compact galaxies.

On the other side, we adopt the primordial value of the deuterium abundance D/H,
i.e. the number density ratio of deuterium to hydrogen, reported in Ref. [40]:

D/H = (2.545± 0.025)× 10−5 (68%C.L.) , (6.38)

which has been determined by observing absorption spectra in high-redshift metal-poor
quasar absorption systems.

6.4.3 Numerical calculation

We calculate the Boltzmann equations of light elements using a modified version of Kawano
BBN code [23] with updated nuclear reaction rates (see Ref. [85] for more details). A contri-
bution of X is taken into account into the Friedman equation and the energy conservation
equation. Additionally, we pre-evaluate energy densities of active- and sterile neutrinos
along with weak reaction rates of the processes (6.35a)–(6.35c) with the LASAGNA code
and interpolate the data in the BBN code. In our study, we assume that the mass of the
scalar particle mX is smaller than the pion mass mπ ∼ 130 MeV. In this case, a direct
decay into hadrons is kinematically prohibited, and the scalar particles X fully decay into
radiations such as photons and charged leptons. 7

Further, in order to estimate theoretical uncertainties of light element abundances, we
propagate experimental errors in the nuclear reaction rates and the free neutron lifetime
by performing a Monte-Carlo calculation at each point in the 3D space of ms, sin

2 2θ,
and TRH. Then, we can obtain observational constraints on mixing parameters of sterile

7If mX is larger than mπ, hadrons should be created as a secondary particle even when the scalar
particle X fully decay into radiations, and the effect induced by injected hadrons is important as shown
in Ref. [1, 27, 85]. Also, it could be possible that the scalar particle directly decays into neutrinos, e.g.
X → να + ν̄α where α = e, µ, τ . In such cases, a relic thermal bath of photons and electrons are mainly
produced from neutrinos via weak interaction. Hence, the thermalization of active- and sterile neutrinos
should be totally different from both cases of radiative and hadronic decays of X [69]. We will consider
this possibility in future work.
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neutrinos by performing χ2 analysis using both theoretical and observational abundances
of light elements. We define a χ2 function as follows:

χ2 ≡ χ2
D/H + χ2

Yp
=

{(D/H)th − (D/H)obs}2

σ2
D, th + σ2

D, obs

+
{Yp, th − Yp, obs}2

σ2
Yp, th

+ σ2
Yp, obs

, (6.39)

where χ2
D/H and χ2

Yp
are χ2 functions in terms of D/H and Yp, respectively. Also, i th (σi, th)

and i obs (σi, obs), where i = D/H and Yp, are respectively the theoretical- and observational
values (uncertainties) of light elements. The theoretical predictions and uncertainties are
defined at each point in the 3D space written above, i.e. i th = i th(ms, sin

2 2θ, TRH) and
σi, th = σi, th(ms, sin

2 2θ, TRH). In the computation of BBN, the baryon-to-photon ratio
is the free parameter of the theory. On the other hand, a precise value of the baryon-
to-photon ratio has been obtained by the Planck collaboration, and therefore we use the
value as a prior of BBN in this study:

ηB = (6.14± 0.04)× 10−10. (6.40)

The region of 95% confidence level is defined as a parameter space which satisfies

χ2(ms, sin
2 2θ, ηB, TRH) < 5.991. (6.41)

Then, we can obtain the BBN bound on sterile neutrinos by mapping it to the 2D space
of the mixing parameters, i.e. ms and sin2 2θ.

6.4.4 Numerical result: νe–νs mixing

First, we show the result of BBN in the case of νe–νs mixing. Figure 6.6 shows the
dependence of the 4He and D abundances on the reheating temperature TRH for the mixing
parameters of sterile neutrinos Eq. (6.33). Light element abundances produced in BBN
strongly depend on the value of the baryon-to-photon ratio ηB = (nB − n̄B)/nγ where nB

(n̄B) is the number density of baryons (anti-baryons), and nγ is the number density of
photons. Since ηB is a free parameter of BBN, in Figure 6.6 we use the median value of
ηB reported by Planck collaboration [3]:

ηB = 6.14× 10−10 (68%C.L.) . (6.42)

As can be seen from Figure 6.6, light element abundances increase with the reheating
temperature. This is because sterile neutrinos are more abundantly produced for large
TRH (see Figure 6.1), and therefore the total energy density of the Universe is larger than
the case without the contribution of sterile neutrinos. This induces the early decoupling
of the weak processes (6.35a)–(6.35c), and the neutron-to-photon ratio is increased due to
the effect, which leads to large values of Yp and D/H (see Chapter 5 or Ref. [1] for more
detailed explanations). In this way, overproduction of the light sterile neutrinos is relieved
in the low-reheating-temperature scenario.
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Figure 6.6: The mass abundance of 4He, Yp, and the deuterium abundance, D/H, as
functions of the reheating temperature TRH. The value of the baryon-to-photon ratio is
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and D/H (Ref. [40]) are also shown as the gray-shaded region.

6.5 Cosmological constraint on sterile neutrinos

In this section, we discuss cosmological constraints on sterile neutrinos, obtained from the
computation of the sterile neutrino production and the synthesis of light elements.

Figure 6.7 shows the constraint on sterile neutrinos imposed by BBN. In the figure,
the 2-σ allowed region of the light sterile neutrinos, obtained in Ref. [127], is also shown.
Besides, we plot the dark-matter constraint on sterile neutrinos, obtained by comparing
between the density parameter of sterile neutrino Ωs and the relic abundance of dark matter
ΩDM, i.e. Ωs < ΩDM = 0.263 (best fit value from Planck + BAO) [3]. To obtain the dark
matter bound, the reheating temperature is fixed to 5 MeV as the density parameter of
sterile neutrinos depends on the value of this parameter. 8

It can be seen from Figure 6.7 that the existence of the light sterile neutrinos is actually
in agreement with the observation of light elements synthesized in BBN for the reheating
temperature of O(1) MeV. This result is in contrast to the previous results obtained in the
framework of the standard big-bang cosmology, where neutrinos are implicitly assumed to
be thermalized well before the nucleosynthesis [73,129,130].

As active- and sterile neutrinos obtain unique energy spectra depending on the reheat-

8As we have seen in Chapter 5, the reheating temperature of 5 MeV almost corresponds to the lower
bound imposed by BBN for the cases without sterile neutrinos. Therefore, it can be seen as a typical
value of the reheating temperature that we are interested in.
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ing temperature, we would be able to verify or exclude the scenario by observing energy
distributions of active neutrinos in the future neutrino experiment such as the PTOLEMY
project, which is aiming at directly detecting cosmic neutrino background (CνB) with de-
tectors on the earth.
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Figure 6.7: Observational constraint on the mixing parameter of sterile neutrinos.
The blue fine-meshed and the red coarse-meshed regions are excluded by BBN and the
overproduction of dark matter, respectively. The dark matter bound is obtained by fixing
the reheating temperature to 5 MeV. Also, the 2-σ inferred region and the best-fit value of
the mixing parameter for the light sterile neutrinos obtained in Ref. [127] are also shown
by the red vertical region and the black box, respectively.

6.6 Conclusion of Chapter 6

In this chapter, we have investigated the possible existence of sterile neutrinos with a vari-
ous range of masses in terms of cosmology assuming an MeV-scale reheating temperature.

The eV-scale sterile neutrinos, inferred from short-baseline neutrino oscillation exper-
iments, are currently strongly and partially disfavored by several results of long-baseline
neutrino oscillation experiments (MINOS/MINOS+, NOνA, and IceCube) and reactor
neutrino experiments (Daya Bay, Bugey-3, and PROSPECT), respectively. However, the
origin of the anomaly existing in the short-baseline neutrino experiments is still under
debate, and it is therefore still interesting to examine the possibility of the light sterile
neutrinos from cosmological point of view.

In our study we have performed numerical computation of the sterile neutrino produc-
tion through neutrino oscillation and shown that the existence of light sterile neutrinos
inferred from short-baseline neutrino oscillation experiments becomes consistent with ob-
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servational results of big-bang nucleosynthesis (BBN) for the reheating temperature of
O(1) MeV. This is in contrast to the result obtained in the standard big-bang cosmology,
where neutrinos are assumed to be thermalized well before the nucleosynthesis.

As neutrinos obtain unique energy spectra depending on the reheating temperature
in this scenario, we would be able to verify or exclude the scenario by observing energy
spectra of active neutrinos in the future neutrino experiment such as the PTOLEMY
project, which is aiming at directly detecting cosmic neutrino background with detectors
on the earth.



Chapter 7

Summary and future prospects

In this chapter, we summarize the conclusions drawn in the previous chapters and provide
a comment on the future prospects of our studies.

7.1 Summary of this thesis

In our studies, we have investigated the possibility of an MeV-scale reheating tempera-
ture of the Universe and discussed the active- and sterile neutrino thermalization in the
scenario. Such a low reheating temperature is motivated by theories beyond the standard
model of particle physics which include long-lived massive particles with masses around
the weak scale ∼ O(100) GeV, decaying only through gravitational interaction. By fo-
cusing on the roles of active- and sterile neutrinos in the production of light elements
synthesized in the big-bang nucleosynthesis (BBN) and discussing their thermalization
in the reheating, we have obtained observational constraints on i) lower bounds on the
reheating temperature, and ii) possibilities of sterile neutrinos with a various range of its
mass, which are summarized in Refs. [1] and [2], respectively.

In chapter 5, we focused on our study [1], which investigated a lower bound on the
reheating temperature imposed by BBN. Since the reheating temperature is still unknown,
and its value is closely related to e.g. a possible thermal history of the Universe, a property
of exotic particles responsible for the reheating, dark matter production, and a mechanism
of baryogenesis, it is of great importance to provide robust and accurate constraints on it in
terms of observations. In contrast to the standard big-bang cosmology, where neutrinos are
implicitly assumed to be completely thermalized before the onset of BBN, the MeV-scale
reheating temperature leads to the flavor-dependent imperfect thermalization of neutrinos
as shown in Figures 5.2–5.5. Consequently, the initial condition of BBN (i.e. the freeze-
out value of the neutron-to-proton ratio n/p) is affected by the reduced abundances of
neutrinos (especially of νe), and theoretical predictions of nuclear abundances are modified
compared to those predicted in the standard big-bang nucleosynthesis. To consider more
specifically, we have examined two possibilities for the decay mode of the long-lived massive
particles X:
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(a) Radiative decays:

X decays into photons (γ) or charged leptons (l), i.e. X → γ + . . . or X → l+ . . . ,

(b) Hadronic decays:

X decays into quarks (q) or gluons (g), i.e. X → q + . . . or X → g + . . . .

By numerically calculating the thermalization of neutrinos and the nucleosynthesis, we
have obtained theoretical abundances of light elements both for the case of the radiative
decay (Figures 5.7–5.8) and for the case of the hadronic decay (Figure 5.11). The notable
point of our study is that we have performed detailed calculations of the neutrino ther-
malization, taking into account neutrino oscillation and neutrino self-interaction, in both
cases of the radiative- and hadronic decays.

As a result, a comparison of the theoretical prediction with observed abundances
(Eq. (3.61) for 4He and Eq. (3.58) for D) leads to the 95% C.L. lower bound on the
reheating temperature:

TRH ≳ 1.8 MeV , (7.1)

for the massive particle X which fully decays into radiation, and

TRH ≳ 4.1− 4.9 MeV , (7.2)

for the massive particle X which fully decays into hadrons for the mass range of the
massive particle mX = 10 GeV–100 TeV (Figure 5.14). As expected, the lower bound
is more stringent if the massive particle has a hadronic branching ratio. This is because
injected hadrons such as pions π± additionally inter-convert neutrons and protons as
e.g. π− + p → π0 + n and n + π+ → p + π0, and thereby significantly increasing the
n/p ratio compared to the 100% radiative decay cases. Furthermore, we revealed that
neutrino oscillation and neutrino self-interaction enhance the thermalization of neutrinos
(Figures 5.2, 5.4, and 5.5) and reduce the inter-conversion rates of neutrons with protons,
thereby increasing the lower bound on the reheating temperature at the level of O(10)% in
the case of the 100% radiative decays (Figure 5.10) and O(1)% in most cases of hadronic
decays (Figure 5.12). Also, the reheating temperature TRH and the effective number
of neutrino species Neff have a one-to-one correspondence in the scenario that we are
considering, and therefore we also obtained a 95% C.L. lower bound on Neff :

Neff ≳ 1.0, (7.3)

for the massive particle X which fully decays into radiation. In the same way, for the
massive particle X which fully decays into hadrons, we found:

Neff ≳ 2.7− 2.9 for mX = 10 GeV − 100 TeV , (7.4)

when the hadronic branching ratio Br = 1.0, whereas

Neff ≳ 1.3− 2.5 for mX = 10 GeV − 100 TeV , (7.5)
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when the hadronic branching ratio Br = 0.001. It can be seen that the possible minimum
value of Neff is not always smaller than the 95% lower bound in the standard big-bang
nucleosynthesis, Neff > 2.26. However, possible detection of the effective number of neu-
trino species smaller than three in future observations should be clear evidence of the low
reheating temperature. Additionally, it should also be useful to detect the cosmic neu-
trino background (CνB) and reveal the energy distribution of neutrinos for verifying the
MeV-scale reheating scenario as neutrinos obtain unique non-thermal spectra depending
on the value of TRH. In this way the future direct detection program of CνB such as the
PTOLEMY experiment will be able to examine this scenario [87].

In chapter 6, we concentrated on our study (Ref. [2]), which investigated the possible
existence of sterile neutrinos with a various range of masses in terms of cosmology assuming
an MeV-scale reheating temperature. The motivation of this study is the light sterile
neutrinos with eV-scale masses, inferred from results obtained in short-baseline (SBL)
neutrino oscillation experiments. Such eV-scale sterile neutrinos, which have appreciable
mixings with active neutrinos, are known to be copiously produced in the early Universe
through neutrino oscillation, and hence its existence is inconsistent with observations of
BBN and CMB. This is however only true in the standard big-bang cosmology, and some
non-standard physics could save the existence of the light sterile neutrinos. The MeV-scale
reheating temperature is one of the plausible possibilities because maximum production
of sterile neutrinos occurs at

Tmax ∼ 13MeV
( ms

1 eV

)1/3

, (7.6)

with ms the sterile neutrino mass. Thus, for the reheating temperature of O(1) MeV,
sterile neutrino production is always ineffective, and its final abundance is expected to
be significantly suppressed, improving the agreement between light sterile neutrinos and
cosmology. In our study, we have calculated the sterile neutrino abundance produced
through neutrino oscillation (Figure 6.6) and then found that the parameter space for the
light sterile neutrinos inferred from the SBL experiments become consistent with observa-
tional results of BBN if the reheating temperature is at the same order or below O(1) MeV
(Figure 6.7).

7.2 Future prospects

Finally, let us comment on the future prospects of our studies. There are mainly two
things worth referring to.

First, in our studies we only discussed BBN to constrain the reheating temperature
(Chapter 5) and the property of sterile neutrinos (Chapter 6). On the other hand, dy-
namics of the cosmic microwave background (CMB) and the large-scale structure (LSS)
of the Universe also depend on the expansion history of the Universe, and their results
should therefore be sensitive to the thermalization of active- and sterile neutrinos. For this
reason, it would be interesting to discuss observational constraints imposed by CMB and
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LSS along with BBN. This requires us to perform a tough numerical computation, but it
will not be a far-reaching project because there are several sophisticated- and numerically
efficient codes for the computation of CMB and LSS which are publicly available.

The second future issue which deserves to be improved is the treatment of the neutrino
oscillation. In Chapter 5 we approximated the full three-flavor neutrino mixings to the
effective two-flavor mixing between νe and νx by neglecting the reactor neutrino mixing
(δm2

13, θ13). This treatment is indeed accurate enough to obtain the constraint on the
reheating temperature as we revealed in the study, but it is inevitable to consider full
three-flavor mixing if one hopes to discuss the effects of the CP-violating phase or the
lepton chemical potentials on the neutrino thermalization because the effective two-flavor
approximation is incompatible with these effects. Therefore, it is desirable to take full
three-flavor mixings into account by improving the numerical efficiency of our code for a
computation of the reheating and the neutrino thermalization. Similarly, in Chapter 6
we simplified the neutrino oscillation between three active- and one sterile neutrinos (3+1
mixing) to the two-flavor mixing between one active- and one sterile neutrinos (1+1 mix-
ing). This treatment is just an approximation without any justification, and it is therefore
more severe than the previous one. The numerical computation based on the 3+1 mixing
is challenging, but that based on the 2+1 mixing is somewhat realistic. One would be able
to attain it by performing MPI calculations with a supercomputer.
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