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Feature extraction of two dimensional Ising model by

unsupervised neural networks
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Machine learning is a techniqﬁe which makes computers perform various intellectual tasks
such as discrimination of subtle images, translation of languages, or generation of irqéges. This
technique has been very successful and received considerable attention in data science as well
as natural science. This success comes from deep learning which is one of the models to
achieve machine learning with Deep Neural Network (DNN) calculation motivated by the
neural network of biological brain. It was considered that the DNN has .too. many parameters
to calculate, but the recent development of computer makes the calculaf.ion.possible. '

It is true that the DNN is a very useful framework, but why does it work so well? In order
that machine learning works successfully, it is crucial to find suitable representations of input
data for tasks we want to achieve. In general, however, it is very difficult to design the suitable
representations by human hands. One of the ideas for overcoming this problem is to get the
representations by machine learning. This is called representation learning. It is believed that
DNN automaticaily achieves this representation learning in the process of its training. In
other words, DNN can extract “fe‘atures” from complicated dataset effectively.

However, the theoretical understanding of how DNN extracts the features from dataset is

unclear. One of possible answers to these questions is following. Input data and their specific
features usually have a hierarchical structureix an image of a cat can still be identified as an‘
‘anima'l m a very iow resolution image but you may not be able to distingufsh it from a dog.
Such hierarchy of features can be efficiently reflected by the deep structure of neural networks.
. Namely, .it is believed that DNN learns low-level (microscopic) representations in the upper
stream of the network and gradually extracts higher-level (macroécopic) representations as the
input data flows downstream. In other words, the initial data will get coarse-grained téwards
the output. This view is reminiscent of the renormalization group (RG) in statistical physies
and qu;mtum field theories, and various thoughts and studies are given based on this analogy.

The RG is the most important concept and technology to understand the critical phenomena
in statistical physics and also ﬁlays‘ an essential role to constructively define quantum field
theories on lattice. It is based on idea (and proved by Kenneth Wilson) that the long-distant
macroscopic behavior of a ﬁany body system is universally described by relevant bper_ators.
(relevant information) around a fixed point, and not affected by microscopic ﬂetails in the
continuum limit. Through reduction of degrees of freedom in RG, the relevant information is
emphasized while other irrelevant information is discarded.

In this thesis, in order to explore the feature extraction of DNN, we train Restricted

Boltzmann Machine (RBM) by spin configurations of 2-dimensional Ising model and construct



a flow of teinperature generated by the trained RBM. Th}s flow is motivated by the
renormalization group flow of a statistical model. It is thought that this flow empliasiies the

“relevant” features the unéupervised networks learn, and eliminate “irrelevant” information
| from the dataset. In our simulations, we provide three different types of trainings. One'type of
.RBM (we call type V) is trained by configurations at various temperatures from low to high.
Other two types (type H and L) are trained by configurations only at high (and only at low)
temperétures. After we fix the parameters in RBM by training, we iterate reconstruction of the
spin configurations and generate the flows of the configurations. Then, we translate these
flows of the configurations into the flows of the temperature. In order to measure the
temperature of a distribution of configurations, we prepare another neural network trained by
a supervised learning. Ou1; results are following, In tyi)e H/L. RBM, the temperature
approaches higher/l_owex" temperature than the critical temperature as expected. On the other
hand, in the type V RBM, the temperature approac}rles the critical point as opposed to the
conventional RG flow of the Ising model. This means that type V RBM extracts the critical
point as features even though we do not give the information about the phase transition. We
also analyzed these results by the singular value decomposition of weight matrix.

Is it universal that the flow of unsupervised network approaches to the critical point? To
check this, we investigated the flow by Autoencode'r (AE). As in RBM, we train AE by
configurations at various temperatures from low to high. ‘We generate " the flows of
configurations by AE and translate these configuration flows to the temperature flows by

supervised network, We compare the fixed point temperatures of AEs trained by different

- learning epochs. Unlike the RBM case, the temperature of the fixed points of AE trained

sufficiently is lower than the critical temperature if AE is sufficiently trained (5000 epochs).
On the other hand, if the learning epochs are 1000, the fixed point temperature monotonically
increase with the number of hidden units. We found that the fixed point becomes the critical
point when the gapped structure in singular value spectrum of weight matrix vanishes. We
also prepare the datasets in narrow range of temperatures: higher temperatures case
corresponding to type H (T = 4.6, 4.7, - - -, 5.0), lower temperatures case co_rr.esponding to type
L(T= 1.0, 1.1, - - -, 1.5) and around the critical temperature case (T = 2.2, 2.3). The fixed point
temperatures are higher than the critical temperature, lower than the critical temperature
and around the critical temperature, respectively. This result suggests that AE can learn the
specific temperature of the dataset and the fixed point of the AE flow corresponds to>' the

features which AE learns.
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