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Abstract

In this thesis, we discuss “backward simulation,” which traces a time-reversed path

from a target region to the initial configuration. If the outputs of the original sim-

ulation (“forward simulation”) are easily restored from those obtained by backward

dynamics, we can use backward simulation as a computational tool. In particular,

the time required to calculate the probability to reach a target region from the initial

configurations can be significantly reduced when the target region is small, but the

initial distribution is broad. An example is a computation of the probability that a

typhoon will hit the Tokyo area exactly under a given stochastic model.

It is, however, difficult to design backward dynamics with the desired properties.

The näıve method described later defines a natural candidate for backward dynam-

ics. Surprisingly, this näıve method does not, however, work as expected; it does

not reproduce the correct probabilities defined by the forward simulation, and the

calculation of factors required to correct the bias is often computationally expensive.

The aim of this thesis is to draw attention to these facts and propose an algorithm

that partially resolves the problem. We named this algorithm the time reverse

Monte Carlo method (TRMC). TRMC is based on the ideas of sequential importance

sampling (SIS) and sequential Monte Carlo (SMC). Time-reversed dynamics itself

was discussed in several studies, mostly from a theoretical viewpoint. On the other

hand, related computational problems are found in data science, especially in time-

series analysis using state-space models. Our problem can formally be regarded

as a limiting case of the “smoothing” part of these algorithms, where only one

observation (“target”) is available at the end of the time series. There are, however,

important differences from our problem, which are discussed in this thesis. TRMC

essentially involves introducing simplified backward dynamics with a weight. This

weight enables the bias of estimators to be corrected. In this algorithm, we introduce

a backward transition probability. We can choose an arbitrary probability density as

a backward transition probability, while the computation efficiency strongly depends

on it.

To give concrete examples, we also present numerical results. Forward simula-
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tions are used to check the consistency and computational efficiency of our result.

TRMC with SIS was tested for a stochastic difference equation and a stochastic

typhoon model and the Lorenz 96 model; it converges more efficiently than forward

simulations in some of these examples. Three types of improved versions of TRMC

are also introduced. The first one is a higher-order approximation in backward dy-

namics. The second one is TRMC with resampling for simulations with a larger

number of steps. The third one is TRMC with an external field. In these improve-

ments, TRMC provides unbiased estimates of the probabilities without expensive

computation. These three types of improved schemes are shown to be advantageous.

We also discussed the limitation. The examples provided in this thesis show that

backward simulations using TRMC provide unbiased estimates of the probabilities

and can be more efficient than forward simulations. In these examples, the compu-

tational efficiencies of TRMC are higher than those obtained by forward simulation.

Note that TRMC can be used to calculate the probability for an arbitrarily small

target region; this would be impossible by using forward simulation. There are,

however, cases in which TRMC is inefficient. First, TRMC is not advantageous

if the time-reversed paths rarely encounter a region in which the initial density is

high; this can occur when the initial density is not broad. Another case in which

TRMC can be inefficient is when the weight is highly time dependent. If paths with

smaller weights in the initial stage of backward simulation acquire larger weights

in the latter stage, resampling of the path (particle splitting) in SMC may not be

effective. In this case, if TRMC with SIS is ineffective, TRMC with SMC also shows

poor performance.

At last, we show the possible improvement of TRMC and its relation to the

Bayes formula. It is useful to introduce optimal backward dynamics. Although it

is not easy to obtain these dynamics a priori, the formal definition is derived. This

formulation appears similar to the formulas used in Bayesian inference when the

probability obtained by forward simulations is regarded as an analog of the prior

distribution. It is also considered as the optimal backward dynamics.
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Chapter 1

Introduction

1.1 Background

In this thesis, we discuss “backward simulation,” which traces a time-reversed path

from a target region A to the initial configuration (Fig. 1.1). If the outputs of the

original simulation (“forward simulation”) are easily restored from those obtained

by backward dynamics, we can use backward simulation as a computational tool. In

particular, the time required to calculate the probability to reach A from the initial

configurations can be significantly reduced when the target region A is small but the

initial distribution is broad. An example is a computation of the probability that a

typhoon will hit the Tokyo area exactly under a given stochastic model (Sect. 4.2).

It is, however, difficult to design backward dynamics with the desired properties.

Specifically, consider the forward dynamics of a D-dimensional stochastic process X

defined by

Xi+1 = g(Xi) + ηi, (1.1)

where ηi is an independent noise that obeys an arbitrary distribution and the func-

tion g : RD → RD describes noiseless forward dynamics. Then, a näıve way to derive

a time-reversed equation is to rearrange Eq. (1.1) as

Xi = g−1(Xi+1 − ηi). (1.2)

Here, we assume that function g is a one-to-one and onto function and denotes the

inverse function of g as g−1. We can construct a time-reversed path iteratively, using
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Forward dynamics

Target regionInitial distribution

Backward dynamics

Target regionInitial distribution

Figure 1.1: Forward and backward simulations. The forward simulation is inefficient

when the target region A is much smaller than the support of the initial distribution

p(x0). The backward simulation simulates paths from the target region A to the

support of the initial distribution p(x0).

Eq. (1.2) and the independent realization of ηi, starting from the target region. It

defines an apparently natural candidate for backward dynamics.

Surprisingly, this näıve method does not work as expected; it does not repro-

duce the correct probabilities defined by the forward simulation, and the calculation

of factors required to correct the bias is often computationally expensive. This

becomes clear in Sect. 1.2. Furthermore, the computation of g−1 in Eq. (1.2) is

time-consuming and reduces the efficiency of the computation.

The aim of this thesis is to draw attention to these facts and propose an algorithm

that partially resolves the problem. We named this algorithm the time reverse

Monte Carlo method (TRMC). TRMC is based on the ideas of sequential importance

sampling (SIS) [1, 2] and sequential Monte Carlo (SMC) [1, 3, 4, 5]. We discuss

TRMC based on SIS in Chap. 4 and its improved version based on resampling

and an external field in Chap. 5. There have been several studies using “path

reweighting” in computational chemistry [6, 7]. These studies used reweighting for

different purposes.

TRMC based on SIS is tested for a stochastic difference equation, a stochastic

typhoon model and the Lorenz 96 model in Chap. 4. Three types of the improved

version of TRMC are also introduced in Chap. 5. The first one is a higher-order
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approximation in backward dynamics. The second one is TRMC with resampling for

simulations with a larger number of steps. The third one is TRMC with an external

field. These three types of improved schemes are shown to be advantageous. In

these improvements, TRMC provides unbiased estimates of the probabilities without

expensive computation. In Sect. 6.1, we discuss its relation to the Bayes formula,

as well as the possible improvement and limitations of TRMC.

Time-reversed dynamics itself was discussed in several studies [8, 9, 10], mostly

from a theoretical viewpoint. On the other hand, related computational problems

are found in data science, especially in time-series analysis using state-space mod-

els [11, 12, 13]. Our problem can formally be regarded as a limiting case of the

“smoothing” part of these algorithms, where only one observation (“target”) is avail-

able at the end of the time series. There are, however, important differences from

our problem, which are discussed in Sect. 6.1. Studies related to the statistical in-

ference on a discrete state stochastic process, such as genepropagation [2, 14] and

information source detection [15] were also reported. These studies, however, did

not consider dynamical systems of continuous variables.

1.2 Failure of Näıve Method

Here, we provide a detailed discussion of the näıve method and its drawbacks, which

form the motivation for our algorithm. Before providing details, we formulate the

problem. Let ST = {0 = t0 ≤ t1 · · · ≤ tN = T} be a partition of the interval [0, T ],

and let step size ∆t = ti+1 − ti be a constant; xi is used to represent the value of

stochastic process X at time point ti. The transition probability density from xi to

xi+1 defined by Eq. (1.1) is denoted as p (xi+1|xi). We consider an estimation of the

probability P (XN ∈ A) that XN hits a small target region A in the D-dimensional

space. The probability is formally written as

P (XN ∈ A) =

∫
dx0:N1xN∈A

{
N−1∏
i=0

p (xi+1|xi)

}
p(x0), (1.3)

where 1x∈A is the indicator function that takes value 1 when x ∈ A, and 0 other-

wise, and p(x0) is the initial distribution of the forward simulation. Hereafter, dxk:l
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indicates dxkdxk+1 · · · dxl for k ≤ l.

A näıve method is defined as a repeated simulation with a uniformly distributed

initial condition in the target region A using Eq. (1.2). Initially, it appears sufficient

to evaluate P (XN ∈ A) as 1
M

∑M
j=1 p(x

(j)
0 ). However, there are two problems with

this näıve method. First, the exact computation of g−1 in Eq. (1.2) is not easy.

Computing g−1 using numerical root-finding techniques such as the Newton-Raphson

method is computationally intensive and its severity increases as the dimension

increases.

Second, this computation does not reproduce the correct probability P (XN ∈ A)

even with the exact g−1. To understand this problem, we show the difference between

the forward simulation and the näıve method. Let us define

Yi = Xi − ηi−1 = g(Xi−1); i ∈ [1, . . . , N ]. (1.4)

Using this definition, we can rewrite Eq. (1.2) as

Yi + ηi−1 = g−1(Yi+1). (1.5)

Equation (1.5) can be simplified into

Yi = g−1(Yi+1)− ηi−1. (1.6)

The probability calculated using Eq. (1.6) corresponds to the equation∫
dy1:NdxN

1xN∈A
VA

p̃f (yN |xN)

{
N−1∏
i=1

p̃ (yi|yi+1)

}
p(g−1(y1))VA, (1.7)

where yi = g(xi−1), p̃f (yN |xN) is the transition probability density from xN to yN

defined by Eq. (1.4) with i = N and p̃ (yi|yi+1) is the transition probability density

from yi+1 to yi defined by Eq. (1.6). An initial condition xN is uniformly distributed

in the target region A and VA is the volume of target region A.

We have to introduce the Jacobian of function g so that Eq. (1.7) is consistent

with Eq. (1.3). To show this, Eq. (1.3) is rewritten using equations

p(xi|xi−1)dxi = |det(Jg−1(yi+1))| p̃ (yi|yi+1) dyi+1, (1.8)

i ∈ [1, · · · , N − 1]

p(x0)dx0 = |det(Jg−1(y1))| p
(
g−1(y1)

)
dy1, (1.9)
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Volume at Volume at 

Figure 1.2: Change in the infinitesimal volume in the state space along each path.

where |det(Jg−1(yi))| is the absolute value of the Jacobian of function g−1. As a

result, the probability P (XN ∈ A) is calculated as

P (XN ∈ A) =

∫
dy1:NdxN

1xN∈A
VA

J(y1, . . . , yN)p̃f (yN |xN)

{
N−1∏
i=1

p̃ (yi|yi+1)

}
p
(
g−1(y1)

)
VA,

(1.10)

J(y1, . . . , yN) =

{
N−1∏
i=0

|det(Jg−1(yi+1))|

}
. (1.11)

We can obtain the correct probability using Eq. (1.10) instead of Eq. (1.7). The

Jacobian Jg−1 calculation is, however, computationally expensive.

We note that the factor J(y1, . . . , yN) goes to

exp

(
−
∫ T

0

divf(xt)dt

)
(1.12)

in the limit as ∆t → 0 when we assume that g(x) = x + f(x)∆t. The proof of

Eq. (1.12) is given in next section (Sect. 1.2.1). This shows that we must include

factor J(y1, . . . , yN) for unbiased estimation even in the limit of infinitesimal ∆t.

We can regard the factor written in Eq. (1.12) as the change in the infinitesimal

volume along each path (Fig. 1.2).
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1.2.1 Derivation of Eq. (1.12)

The aim of this section is to prove Eq. (1.12). Up to the first-order ∆t, the Jacobian

det(Jg(x)) is given by

det(Jg(x)) = det (I +∇f(x)∆t)

= 1 + Tr (∇f(x)∆t) +O((∆t)2)

= exp [divf(x)∆t] +O((∆t)2), (1.13)

where I is the unit matrix of order D×D. D is the dimension of stochastic process

X.

Using Eq. (1.13), we obtain in the limit as ∆t→ 0

J(y1, . . . , yN) =
N−1∏
i=0

|det(Jg−1(yi+1))|

= exp

[
N∑
i=1

−divf(xi)∆t

]
+O((∆t)2)

−−−→
∆t→0

exp

[
−
∫ T

0

divf(xt)dt

]
. (1.14)

The above equation is Eq. (1.12).
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Chapter 2

Theoretical Background

In this chater, we describe the basic knowledge of the sequential Monte Carlo (SMC)

method since the time reverse Monte Carlo (TRMC) method is based on the ideas

of SMC. SMC is one of the Monte Carlo methods to generate samples efficiently

according to a series of probability distributions evolving with time using importance

sampling and resampling mechanisms. SMC have been widely used to deal with

stochastic dynamic systems in engineering, bioinformatics, finance and many other

fields [1, 16, 17, 18, 19, 20, 21, 22, 23, 24].

A method for estimating the posterior state of a dynamic system by SMC is

specifically called a particle filter [16, 19]. Particle filter has been the most common

application of SMC. See, for example, [3, 25] for reviews. SMC method is also used

for Bayesian modeling [26, 27].

We start this chapter the sequential Importance Sampling (SIS) method and

then present SMC as a combination of SIS and resampling. SIS corresponds to the

generalization of the importance sampling technique (IS) for a sequence of distribu-

tions.

2.1 Sequential Importance Sampling

Here, we assume that a probability density pi(x1:i) is a complicated probability

distribution not to sample from it directly. Then, we consider approximating a

probability density pi(x1:i) for particular i. Hereafter, for any sequence {xi}i≥1, xk:l

7



indicates (xk, xk+1, . . . , xl) for k ≤ l. In SIS, we obtain sample from the probability

density pi(x1:i) using a probability density qi(x1:i) called proposal density. Typically,

we select qi(x1:i) to be easy to sample from (e.g., uniform or Gaussian distribution,

etc.). In SIS literature, qi(x1:i) has the following structure

qi(x1:i) = qi−1(x1:(i−1))qi(xi|x1:(i−1))

= q1(x1)
i∏

k=2

qk(xk|x1:(k−1)). (2.1)

We also introduce the weight function as the following

wi(x1:i) =
pi(x1:i)

qi(x1:i)
. (2.2)

If we generate M independent samples x
(j)
1:i ∼ qi(x1:i) for j = 1, . . . ,M , we can

approximate pi(x1:i) by the empirical probability density p̂i(x1:i) using Eq. (2.1) and

(2.2) as the following

p̂i(x1:i) =
1

M

M∑
j=1

wi(x
(j)
1:i )δx(j)1:i

(x1:i) (2.3)

, where δx0(x) denotes the Dirac delta function located at x0.

We carefully need to select qi(x1:i) because sampling efficiency strongly depends

on the choice of an proposal density qi(x1:i). The same problem occurs in our

study. See Sect. 3.1 for details. An appropriate selection of qi(x1:i) in SIS is to find

qi(x1:i) which minimizes the variance of the weights wi(x1:i). Obviously, this value is

minimised at qi(x1:i) = pi(x1:i). It is impossible to select qi(x1:i) = pi(x1:i) since this

is the reason why we have to use qi(x1:i) instead of pi(x1:i). However, as a policy

for tackling this problem, this idea results in that we should select qi(x1:i), which is

close as possible as to the original probability density pi(x1:i).

To obtain samples following the distribution qi(x1:i), we sample x1 ∼ q1(x1) at

time 1 then xk ∼ qk(xk|x1:(k−1)) at time k for k = 2, . . . , i. We can calculate the

8



associated weights wi(x1:i) recursively using the following decomposition

wi(x1:i) =
pi(x1:i)

qi(x1:i)

=
pi−1(x1:(i−1))pi(xi|x1:(i−1))

qi−1(x1:(i−1))qi(xi|x1:(i−1))

= w(i−1)(x1:(i−1))
pi(xi|x1:(i−1))

qi(xi|x1:(i−1))
. (2.4)

SIS algorithm proceeds as follows

SIS Algorithm

Step 1: At time k = 1

(a) Draw M samples
{
x

(1)
1 , · · · , x(M)

1

}
from q1(x).

(b) Calculate the weights w1(x
(j)
1 ) for j = 1, . . . ,M .

Step 2: Apply the following steps for j = 1, . . . ,M , and for k = 2, . . . , i

(a) Generate a sample x
(j)
k with the probability qk−1(x|x(j)

1:(k−1)).

(b) Compute the weight wk(x
(j)
1:k) using Eq.(2.4).

Though successes in short-run simulation, it will turn out that SIS algorithm

fails in the long-run simulation. Notably, the weights will become highly degenerate

after several time steps, in the sense that a small part of particles contains almost all

weights. It means that most particles contribute nothing to the probability density

estimation. See, for example [28].

It is a challenging problem when the probability density pi(x1:i) has unknown

parameters. These must be estimated before running SIS algorithm. Some develop-

ments are found in [29, 30, 31] to solve this problem. In this thesis, we assume all

the parameters are known.

2.2 Sequential Monte Carlo

As we describe the above, the variance of the weights
{
wji
}M
j=1

tends to increase

as time proceeds in most cases [3]. This phenomenon is referred to as degeneracy,

9



Resampling

Probability 
density

Particles 
after resampling

Particles 
before resampling

Figure 2.1: Graphical example of resampling. Particles with large weights are re-

placed with multiple copies of them, and particles with small weights are removed.

and it means that the weights become unbalanced, and a few weights dominate all

the others. This consequently causes a decrease in computational efficiency. One of

the ways to solve this problem is resampling [3, 4, 5, 32]. Resampling increases the

number of high weighted particles while decreasing low weighted particles. After

resampling, weights
{
wji
}M
j=1

are reset to 1
M

. Figure 2.1 shows a graphical scheme

of resampling. Resampling its own adds additional Monte Carlo error; however,

resampling avoids the accumulation of error over time and make the approximation

of the probability distributions pi(x1:i) much more stable. There have been similar

ideas called splitting [33, 34, 35, 36] for rare event simulation.

We should not resample at every time step in a simulation. There is a measure

of the quality of the particle approximation. One of the most standard measures is

the effective sample size (ESS) [17, 20], which is given at time i

Meff =
1∑M

j=1 w̃i(x
(j)
1:i )

2
, (2.5)

10



where w̃ is the normalized weight

w̃i(x
(j)
1:i ) =

w̃i(x
(j)
1:i )∑M

j=1wi(x
(j)
1:i )

. (2.6)

A small value of Meff corresponds to high degeneracy. Meff is a number between

1 and M which indicates how many useful samples the algorithm has roughly. A

resampling procedure is performed when Meff is less than a certain threshold; typ-

ically M
2

[3]. The other criteria is the entropy of the weights Hi [37, 38], which

reaches the maximum value when w̃i(x
(j)
1:i ) = 1

M

Hi = −
M∑
j=1

w̃i(x
(j)
1:i ) log 2

(
w̃i(x

(j)
1:i )
)
. (2.7)

We resample when the entropy is less than a certain given threshold.

Here, we use the following procedure of resampling at time i.

Resampling

1. M times with replacement from set
{
x

(j)
1:i

}M
j=1

of samples, where the probability

of sampling set of x
(j)
1:i is proportional to wi(x

(j)
1:i ).

2.
{
x

(j)
1:i

}M
j=1

and associated weights
{
wi(x

(j)
1:i )
}M
j=1

are replaced by the set of repli-

cated samples with an equal weight 1
M

.

There are commonly used three resampling schemes: multinomial resampling [16],

residual resampling [39], and stratified resampling [40]. We use the simplest ap-

proach, multinomial resampling. See [41] for some other commonly used resampling

algorithms.

The sequential Monte Carlo (SMC) is a combination of SIS and resampling.

Sometimes, SMC is referred to as the sequential Importance Resampling (SIR). The

algorithm is as follows.

SMC Algorithm

Step 1: At time k = 1

(a) Draw M samples
{
x

(1)
1 , · · · , x(M)

1

}
from q1(x).

11



(b) Calculate the weights w1(x
(j)
1 ) for j = 1, . . . ,M .

(c) If resampling criteria is satisfied then do resampling.

Step 2: Apply the following steps for j = 1, . . . ,M , and for k = 2, . . . , i

(a) Generate a sample x
(j)
k with the probability qk−1(x|x(j)

1:(k−1)).

(b) Compute the weight wk(x
(j)
1:k) using Eq.(2.4).

(c) If resampling criteria is satisfied then do resampling.

After the resampling step at any time point i, we obtain an approximations of

pi(x1:i)

p̂i(x1:i) =
1

M

M∑
j=1

δ
x
(j)
1:i

(x1:i). (2.8)

Some other commonly used Monte Carlo methods can be regarded as particular

cases of SMC algorithm introduced above. For example, the annealed importance

sampling [42] can be considered as SMC samplers without resampling.

12



Chapter 3

Time Reverse Monte Carlo

Method

3.1 Time Reverse Monte Carlo Method

To overcome the difficulties we explained in Sect.1.2, we propose the TRMC method.

TRMC essentially involves introducing simplified backward dynamics with a weight.

This weight enables the bias of estimators to be corrected. First, we introduce a

backward transition probability q (xi+1 → xi) from xi+1 to xi. We can choose an

arbitrary probability density q, while the computation efficiency strongly depends

on it. Once we introduce q (xi+1 → xi), we can rewrite Eq. (1.3) as

P (XN ∈ A) =

∫
dx0:N

1xN∈A
VA

{
N−1∏
i=0

q (xi+1 → xi)Wi

}
VAp(x0), (3.1)

where

Wi =
p (xi+1|xi)

q (xi+1 → xi)
(3.2)

is the weight required to correct the bias of estimators.

The algorithm consists of the following steps.

TRMC Algorithm

Step 1: Draw M samples
{
x

(1)
N , · · · , x(M)

N

}
from the uniform distribution in VA.

13



Step 2: Apply the following steps for j = 1, . . . ,M , and for i = N − 1, . . . , 0.

(a) Generate a sample from x
(j)
i+1 to x

(j)
i with transition probability q

(
x

(j)
i+1 → x

(j)
i

)
.

(b) Calculate weight W
(j)
i using Eq. (3.2).

Step 3: Evaluate the unbiased estimates of probability P (XN ∈ A) as

P (XN ∈ A) w
1

M

M∑
j=1

W (j), (3.3)

where the factor

W (j) =

{
N−1∏
i=0

W
(j)
i

}
VAp(x

(j)
0 ) (3.4)

is attached to each simulation path.

The inputs of our algorithm are the number of Monte Carlo paths M , the number of

time steps N , the initial distribution p(x0), the target region A, and the transition

probability density q. When we actually perform the simulation on our computers,

we take the logarithm of these weights to prevent numerical overflow.

This algorithm provides unbiased estimates of the desired probabilities. The idea

of this scheme is a kind of SIS [1]. An advantage of our method is that we do not

need to calculate g−1 or their Jacobian matrices at each i.

Suppose p(x0) is uniformly distributed on B ⊂ RD; p(x0) = 1
VB

1x0∈B, VB is the

volume of B. The efficiency of our algorithm does not depend on the factor VA when

VB is considerably large while the forward simulation does not work in the limit as

VA → 0. This is the advantage of using our algorithm.

The remaining problem involves determining the method for choosing the tran-

sition probability q (xi+1 → xi). The basic idea is to choose the backward dynamics

that generates trajectories similar to the forward dynamics defined by Eq. (1.1).

The similarity of the trajectory is measured by W (j) in Eq. (3.4).

14



3.2 Implementation for Stochastic Difference Equa-

tion

To give concrete examples of the transition probability q (xi+1 → xi), we assume the

forward dynamics to be given in the following form:

Xi+1 = Xi + f (Xi) ∆t+ εi
√

∆t. (3.5)

This corresponds to the case wherein g(x) = x + f(x)∆t in Eq. (1.1). The noise εi

is assumed to be i.i.d. Gaussian noise with mean zero and the variance-covariance

matrix Σ = σσT . This class of equations appears in a wide range of problems in many

different fields such as physics [43], computational chemistry [44], and mathematical

finance [45, 46].

In this case, as a simple choice, we can use the following backward dynamics:

Xi = Xi+1 − f (Xi+1) ∆t+ εi
√

∆t, (3.6)

where we used the symmetry of Gaussian noise εi. This approximation corresponds

to substituting f (Xi+1) for f (Xi) in Eq. (3.5). This zeroth-order approximation

seems to be quite a bold assumption at first glance. However, even under this

approximation, we can get the correct probabilities using the weight as we will see

later in Chap. 4. In addition to that, we introduce a more efficient higher-order

approximation in Sect. 5.1.

With this choice, weight Wi in Eq. (3.2) takes the form

Wi =
p (xi+1|xi)
q (xi+1 → xi)

(3.7)

=
exp

[
−1

2
(xi+1 − xi − f(xi)∆t)

T (Σ∆t)−1 (xi+1 − xi − f(xi)∆t)
]

exp
[
−1

2
(xi+1 − xi − f(xi+1)∆t)T (Σ∆t)−1 (xi+1 − xi − f(xi+1)∆t)

]
= exp

[
− (f(xi+1)− f(xi))

T Σ−1

(
(xi+1 − xi)−

∆t

2
(f(xi+1) + f(xi))

)]
. (3.8)

As we show in the next section, the resultant algorithm is simple yet effective

compared with the forward simulation when the target region A is smaller than the

support of the initial distribution p(x0).
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We note that the factor
∏N−1

i=0 Wi goes to

exp

(
−
∫ T

0

divf(xt)dt

)
(3.9)

in the limit as ∆t→ 0. The proof of Eq. (3.9) is given in next section (Sect.3.2.1).

Note that Eq. (3.9) coincides with Eq. (1.12) derived from a different assumption.

3.2.1 Derivation of Eq. (3.9)

The aim of this section is to prove (3.9).

Up to the first-order ∆t, the weight at time ti is given by

Wi = exp

[
− (f(xi+1)− f(xi))

T Σ−1

(
(xi+1 − xi)−

∆t

2
(f(xi+1) + f(xi))

)]
(3.10)

= exp

[
Tr

(
− (f(xi+1)− f(xi))

T Σ−1

(
(xi+1 − xi)−

∆t

2
(f(xi+1) + f(xi))

))]
= exp

[
−Tr

(
(∇f(xi)(xi+1 − xi))T Σ−1(xi+1 − xi)

)
+ o(∆t)

]
= exp

[
−Tr

(
∇f(xi)

TΣ−1(xi+1 − xi)(xi+1 − xi)T
)

+ o(∆t)
]
.

In the limit as ∆t → 0, Eq. (3.5) becomes the following stochastic differential

equation:

dXt = f (Xt) dt+ σdWt, (3.11)

where Wt is a standard Brownian motion. Here, we used Ito’s rule [45, 46], in which

we substitute
√
dt for dWt and consider up to the order of dt. Using Eq. (3.11), we

obtain the following relation in the limit as ∆t→ 0

(xi+1 − xi)(xi+1 − xi)T −−−→
∆t→0

dxtdx
T
t = (f (xt) dt+ σdWt) (f (xt) dt+ σdWt)

T

(3.12)

= σdWtdW
T
t σ

T + o(dt) = Σdt, (3.13)

where we used the relationships dWtdW
T
t = dt and σσT = Σ.
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As a result, we obtain using Eq. (3.10) and (3.13)

N−1∏
i=0

Wi = exp

[
−

N−1∑
i=0

Tr
(
∇f(xi)

TΣ−1(xi+1 − xi)(xi+1 − xi)T
)

+ o(∆t)

]
(3.14)

−−−→
∆t→0

exp

[
−
∫ T

0

Tr
(
∇f(xt)

T
)
dt

]
= exp

[
−
∫ T

0

divf(xt)dt

]
, (3.15)

which is Eq. (3.9).
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Chapter 4

Applications

We present the numerical results in this chapter. Forward simulations (FS) are used

to check the consistency and computational efficiency of our result.

Using forward and backward dynamics, we simulate sample trajectories x =

{x1, · · · , xN} generated by each model and compute the probability P (XN ∈ A)

from M independent simulations.

We denote a standard error of TRMC to evaluate the computational efficiency

by σs. We also denote the standard error of FS by σFs . Using these variables, we

define a relative value of variance by

ρ1 =

(
σFs
σs

)2

. (4.1)

The factor ρ1 indicates the computational efficiency only including the effect caused

by the variance of estimators for a fixed sample size. With this definition, more

complex algorithms tend to be more efficient while they require more computational

time. Then, we also define another measure of the relative computational efficiency

ρ2 as

ρ2 = ρ1
τF

τ
, (4.2)

where τ is the computational time in seconds of the simulation and τF is the com-

putational time of FS in seconds. This efficiency is defined in the sense of the

actual performance considering both the computational time and the variance of

the resulting estimates.
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4.1 Stochastic Difference Equation

To show the working of the TRMC algorithm, we first deal with a two-dimensional

stochastic difference equation defined by

xi+1 = xi +
(
xi + λxy

2
i

)
∆t+ εx

√
∆t,

yi+1 = yi + (yi + λyxi) ∆t+ εy
√

∆t, (4.3)

where λx and λy are constants. Noise εx and εy obey a Gaussian distribution with

mean zero and variances σ2
x and σ2

y, respectively.

We evaluate the convergence speed of our algorithm for the stochastic difference

equations. Here we consider equation (4.3) for λx = 1, λy = 3,∆t = 0.01 and σx =

σy = 2. Target region A is {(x, y); 19.875 ≤ x ≤ 20.125, 13.875 ≤ y ≤ 14.125}. We

also assume that initial state (x0, y0) is uniformly distributed inD = {(x, y); 3 ≤ x ≤ 7, 8 ≤ y ≤ 12}.
We set the number of Monte Carlo paths M to 107 and the number of time steps

N to 10. The result of the simulation using these parameters is shown in Table 4.1

(Case I). It reveals that our algorithm gives unbiased probabilities as compared to

those calculated by FS. Furthermore, it shows that TRMC is 2.6 times in ρ2 (4.3

times in ρ1) more efficient than FS. The row titled as “TRMC (no weight)” means

that we ignore the factor defined by equation (3.4) when we evaluate the probability.

In this case, it does not reproduce the unbiased estimates of the probability.

Fig.4.1 shows the convergence of TRMC when the number of Monte Carlo paths

M increases. The horizontal line in Fig.4.1 indicates the estimated probability by

FS with the number of Monte Carlo paths M = 107. The horizontal dashed line in

Fig.4.1 shows the ±1 standard error confidence intervals by FS with the number of

Monte Carlo paths M = 107. It reveals that our algorithm converges correctly on

increasing the number of Monte Carlo paths M .

To simulate events with smaller probabilities, we make target region A smaller as

{(x, y); 19.9375 ≤ x ≤ 20.0625, 13.9375 ≤ y ≤ 14.0625}. We have shown the results

as Case II in Table 4.1 and Fig.4.2. These results show that our algorithm becomes

more efficient as the probability decreases.

19



0.0020

0.0024

0.0028

0.0032

104 105 106 107

Number of Monte Carlo Paths

E
st

im
at

ed
 P

ro
ba

bi
lit

y

Figure 4.1: Convergence of TRMC for the stochastic difference equation (4.3). The

estimated probabilities are converged to those obtained by FS, as the number of

Monte Carlo paths increases. Error bars indicate approximate ±1 standard error

confidence intervals by TRMC. The horizontal solid line indicates the estimated

probability by FS. The horizontal dashed line represents ±1 standard error confi-

dence intervals by FS. FS has the same number of Monte Carlo paths M = 107 as

TRMC.
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Figure 4.2: Convergence of TRMC for the stochastic difference equation (4.3).

Smaller probability case. The estimated probabilities are converged to those prob-

abilities by the forward simulation, as the number of Monte Carlo paths increases.

Error bars indicate approximate ±1 standard error confidence intervals by TRMC.

The horizontal solid line indicates the estimated probability by FS. The horizontal

dashed line represents ±1 standard error confidence intervals by FS. FS has the

same number of Monte Carlo paths M = 107 as TRMC.
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Table 4.1: Comparison between TRMC, TRMC (no weight), and FS for a stochastic

difference equation.

Case I

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 2.516× 10−3 0.007× 10−3 4.3 2.6

TRMC (no weight) 3.546× 10−3 < 10−6 − −
FS 2.500× 10−3 0.015× 10−3 1.0 1.0

Case II

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 6.314× 10−4 0.019× 10−4 17.1 10.7

TRMC (no weight) 8.893× 10−4 < 10−7 − −
FS 6.202× 10−4 0.079× 10−4 1.0 1.0
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4.2 Stochastic Typhoon Model

The first example is a stochastic typhoon model [47], which gives an example of risk

estimation by the proposed method. The stochastic typhoon model was designed to

reproduce the statistics of typhoons in the northwestern part of the Pacific Ocean.

This is a four-dimensional model given by

xi+1 = xi + vi,

vi+1 = V (xi+1) + w (vi − V (xi)) + εi,

V (xi) = a0 + a1xφ,i + a2 sinxλ,i + a3 sin2 xλ,i,

(4.4)

where we use a global coordinate system defined by the geographic longitude (φ)

and latitude (λ). We also define the two-dimensional position x = (xφ, xλ), speed

v = (vφ, vλ) of a typhoon, and function V (x) = (Vφ(x), Vλ(x)). w, a0, a1, a2, and

a3 are constants. The noise ε obeys a Gaussian distribution with mean zero and

variances σ2.

We fix w = 0.93, a0 = (0.792, 0.538), a1 = (0.122, 0.371), a2 = (−0.513, 0.583),

a3 = (0.770,−0.387), σ = 0.4. We estimated these parameters based on the typhoon

best track data for 62 years from 1951 to 2012, which are provided by the RSMC

(Regional Specialized Meteorological Center) Tokyo. The best track data is available

on the RSMC website 1. Since typhoon behavior has seasonality, we have to estimate

these parameters in each month. We fix these parameters based on June data so

that the probability becomes O(10−4) as we see later.

The target region A is {(xφ, xλ); 138.5 ≤ xφ ≤ 139.5, 34.5 ≤ xλ ≤ 35.5}. Since

there is no range constraint on the distribution of the final speed vf at the target,

we adopt a uniform distribution with a suitably wide range Uf ; here, Uf is defined

as the region
{

(vφ, vλ);Vφ(xA)−3 ≤ vφ ≤ Vφ(xA)+3, Vλ(xA)−3 ≤ vλ ≤ Vλ(xA)+3
}
,

where xA is the center of target region A.

We also assume that the initial condition is uniformly distributed inD =
{

(x, v); 111 ≤
xφ ≤ 129,−4 ≤ xλ ≤ 14, v ∈ U0

}
, where U0 is defined as the region

{
(vφ, vλ);Vφ(x0)−

1.5 ≤ vφ ≤ Vφ(x0) + 1.5, Vλ(x0)− 1.5 ≤ vλ ≤ Vλ(x0) + 1.5
}

and x0 = (120, 5). This

corresponds to the case wherein typhoons that occurred in the Philippines travel to

1http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html
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the Tokyo area exactly with a small probability. We set M to 108 and N to 16.

Examples of Monte Carlo paths for both simulations are given in Figs. 4.3 and 4.4.
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Figure 4.3: Example of Monte Carlo

paths generated by the stochastic ty-

phoon model originating from the north-

western part of the Pacific Ocean. Each

line corresponds to a path generated by

the forward simulation. The black rect-

angular region shows the possible initial

position of typhoons in the northwestern

part of the Pacific Ocean. The initial

positions of typhoons are uniformly dis-

tributed.
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Figure 4.4: Example of Monte Carlo

paths generated by TRMC starting from

Tokyo. Each line corresponds to a path

generated by TRMC. The black rectan-

gular region corresponds to the possible

initial position of typhoons in the north-

western part of the Pacific Ocean.

This simulation was carried out on a laptop computer with 2.3 Ghz Intel core

i5 and 8 GBytes memory. The computational time of TRMC in this simulation for

generating 108 Monte Carlo paths is around 4.0× 103 seconds.

Table 4.2 shows the result of computational experiments for the stochastic ty-

phoon model. It shows that the probabilities of FS and TRMC agree within the

error bars. If we ignore the factor defined by Eq. (3.4), it does not reproduce the un-
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Figure 4.5: Convergence of TRMC for the stochastic typhoon model. The estimated

probabilities converge to those obtained by FS as the number of Monte Carlo paths

increases. Error bars indicate approximate ±1 standard error confidence intervals

for TRMC. The horizontal solid line indicates the estimated probability by FS. The

horizontal dashed line represents ±1 standard error confidence intervals for FS. FS

has the same number of Monte Carlo paths, M = 108, as TRMC.

biased probability as in the case of the stochastic difference equation. Furthermore,

it shows that TRMC is 4.2 times in terms of ρ2 and 7.3 times in ρ1) more efficient

than FS. Fig. 4.5 shows the convergence of TRMC when the number of Monte Carlo

paths M increases. It reveals that our algorithm converges correctly on increasing

the number of Monte Carlo paths M .

To simulate events with smaller probabilities, we make the target region A

smaller as {(xφ, xλ); 138.75 ≤ xφ ≤ 139.25, 34.75 ≤ xλ ≤ 35.25}. It shows that the

smaller the probability, the more efficient our algorithm becomes as compared with

the FS.

In Fig. 4.4, a few Monte Carlo paths are shown to have moved northward. To

prevent this from happening and improve its efficiency, we restrict the velocity dis-

tribution of Monte Carlo paths to the tendency to move southward. We change the

range Uf of the final speed vf to
{

(vφ, vλ);Vφ(xA)−3 ≤ vφ ≤ Vφ(xA)+3, Vλ(xA)−2 ≤
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vλ ≤ Vλ(xA) + 2
}
. We call this simulation TRMC (restricted) in Fig. 4.6. Table 4.2

shows that the probabilities of TRMC and TRMC (restricted) agree within error

bars. Because the number of unnecessary Monte Carlo paths moving northward

decreases, TRMC (restricted) is more efficient than TRMC. More severe constraint

vλ ≥ 0, however, causes a small bias in the estimated probabilities: see TRMC

(vλ ≥ 0) in Table 4.2. Fig. 4.7 also shows that our algorithm converges correctly on

increasing the number of Monte Carlo paths M .

So far, we consider the case that the number of time steps from the initial

position to Tokyo (N = 16) is precisely known. We can relax this assumption, but

we should be careful with a limitation of a discrete time model. A typhoon can

pass nearby Tokyo, for example, between N = 15 and N = 16, which causes an

underestimation of the actual risk when we only consider hit at integral time steps.

A way to reduce this effect is to develop models with smaller steps, while it is also

possible to introduce some initialization or interpolation method into a backward

simulation. However, we leave this as a future problem, because this study aims to

check whether the concept of backward simulation is mathematically valid.

Table 4.2: Comparison among TRMC, TRMC (restricted), TRMC (no weight), and

FS for stochastic typhoon model.

Case I

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 6.514× 10−4 0.009× 10−4 7.3 4.2

TRMC (restricted) 6.501× 10−4 0.007× 10−4 13.5 7.9

TRMC (vλ ≥ 0) 6.424× 10−4 0.007× 10−4 − −
TRMC (no weight) 0.805× 10−4 < 10−7 − −

FS 6.568× 10−4 0.026× 10−4 1.0 1.0

Case II

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 1.631× 10−4 0.002× 10−4 29.0 16.4

TRMC (no weight) 0.202× 10−4 < 10−7 − −
FS 1.630× 10−4 0.012× 10−4 1.0 1.0
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Figure 4.6: Example of Monte Carlo paths generated by TRMC starting from Tokyo.

The velocity distribution is restricted to the tendency to move southward. Each line

corresponds to a path generated by TRMC. The black rectangular region corre-

sponds to the possible initial position of typhoons in the northwestern part of the

Pacific Ocean.
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Figure 4.7: Convergence of TRMC for the stochastic typhoon model in the smaller

probability case. The estimated probabilities converge to those obtained by FS as

the number of Monte Carlo paths increases. Error bars indicate approximate ±1

standard error confidence intervals for TRMC. The horizontal solid line indicates

the estimated probability by FS. The horizontal dashed line represents ±1 standard

error confidence intervals for FS. FS has the same number of Monte Carlo paths,

M = 108, as TRMC.
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4.3 Lorenz 96 Model

As a higher-dimensional example, we evaluate the efficiency of our algorithm for the

Lorenz 96 model [48, 49, 50]. The Lorenz 96 model is an atmospheric model and was

introduced by Edward Lorenz in 1996. This model is defined as the set of coupled

ordinary differential equations.

dxk
dt

= fk(x) + εk,

fk(x) = −xk−2xk−1 + xk−1xk+1 − xk + F, (4.5)

k = 1 . . . K,

xk = xk+K = xk−K ,∀k

where x = {xk; k = 1 . . . K} is the state of the system and F is a constant. x is

regarded as some atmospheric quantity in K sectors of a latitude circle (Fig. 4.8).

Figure 4.8: A conceptual diagram of the Lorenz 96 Model. x = {xk; k = 1 . . . K} is

regarded as some atmospheric quantity in K sectors of a latitude circle.

The first two terms and the third term in fk(x) represent an advection and
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damping term, respectively. F represents an external forcing term. We set K = 9

and introduce Gaussian noise εk with mean zero and variance σ2. Here, we choose

F = 8, a value known to cause weak chaotic behavior and often used as a benchmark

in data assimilation [51].

To simulate Eq. (4.5), we have to discretize it. While many discretization schemes

are available, we focus on the simplest and most common scheme, the Euler scheme.

The time-discretized version of Eq. (4.5) by the Euler scheme is

xk,i+1 = xk,i + f(xi)∆t+ εk∆t, k = 1 . . . K, (4.6)

where we set ∆t to 0.001 and σ to 0.1/
√

∆t.

The target regionA is aK-dimensional hypercube {(x1, . . . , xK)| − 5.0 ≤ xi ≤ 7.0; i = 1 . . . K}.
We also assume that the initial state for xi is uniformly distributed in

D = {(x1, . . . , xK)|1.5 ≤ xi ≤ 8.5; i = 1 . . . K}. We set M to 107 and N to 100.

We conduct this simulation on the environment described in Sect. 4.2. The

computational time of TRMC in this simulation for generating 107 Monte Carlo

paths is around 3.0× 103 seconds.

Table 4.3 shows the result of computational experiments for the Lorenz 96 model.

It shows that the probabilities of TRMC and FS agree within the error bars. The

case where we ignore the factor defined by Eq. (3.4) does not reproduce the same

unbiased probability as the other computational experiments. The result shows that

TRMC can perform better for estimating the probabilities in the high-dimensional

case. TRMC is 5.18 times more efficient than FS in terms of ρ2, and 8.23 times in

ρ1 more efficient in Table 4.3. Fig. 4.9 shows the convergence of TRMC when the

number of Monte Carlo paths M increases. It reveals that our algorithm converges

correctly on increasing the number of Monte Carlo paths M .
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Figure 4.9: Convergence of TRMC for the Lorenz 96 model. The estimated prob-

abilities converge to those obtained by FS as the number of Monte Carlo paths

increases. Error bars indicate approximate ±1 standard error confidence intervals

for TRMC. The horizontal solid line indicates the estimated probability by FS. The

horizontal dashed line represents ±1 standard error confidence intervals for FS. FS

has the same number of Monte Carlo paths, M = 107, as TRMC.
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Table 4.3: Comparison among TRMC, TRMC (no weight), and FS for the Lorenz

96 model.

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 2.358× 10−3 0.005× 10−3 8.23 5.18

TRMC (no weight) 0.957× 10−3 < 10−6 − −
FS 2.373× 10−3 0.015× 10−3 1.00 1.00
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Chapter 5

Improved Schemes

5.1 Higher-order Approximation

In this section, we propose a higher-order approximation in backward dynamics;

it traces paths generated by Eq. (3.6) more accurately. Hereafter, we denote this

algorithm as TRMC (HO). This algorithm is effective when the amount of noise is

small. Using this algorithm, the variance of the weights and estimated probabilities

reduces.

To derive a higher-order approximation, we modify Eq. (3.6) as follows

Xi = Xi+1 − f̃ (2) (Xi+1) ∆t+ εi
√

∆t (5.1)

where f̃ (2) (x) is a second-order approximation of f (Xi) defined as

f̃ (2) (x) = f (x− f (x) ∆t) . (5.2)

For the n-order approximation, we recursively define the following equations

f̃ (n) (x) =

f (x) (n = 1)

f
(
x− f̃ (n−1) (x) ∆t

)
(otherwise)

. (5.3)

Using this higher-order approximation, we run the backward simulation for the

stochastic difference equation. The parameters are the same as case I with a larger

number of time steps (N = 15). We set the order of the higher-order approximation
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Figure 5.1: Distribution of weight
∏N−1

i=0 Wi in TRMC and TRMC (HO) for the

stochastic difference equation(4.3). The variance of the distribution by the TRMC

(HO) is much smaller than that by TRMC.

as n = 2 in the following simulation. The result is shown in Table 5.1 and indicates

that TRMC (HO) is much more efficient in this case.

We also show the weight distribution of TRMC and TRMC (HO) in Fig.5.1. As

we expect, the variance of the distribution by TRMC (HO) is smaller than that by

TRMC, which leads to the efficient estimation of probabilities.

Table 5.1: Comparison between TRMC, TRMC (HO), and the forward simulation

for the stochastic difference equation (4.3)

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 2.305× 10−4 0.063× 10−4 0.6 0.3

TRMC (HO) 2.324× 10−4 0.003× 10−4 181.7 85.5

FS 2.273× 10−4 0.048× 10−4 1.0 1.0
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5.2 Resampling

Let us consider cases with a larger number of time steps. The proposed algorithm

may not always work efficiently in this situation. For example, we consider the

case where N is equal to 500 in the Lorenz 96 model (Fig. 5.2); these weights are

normalized such that their sum is 1, i.e.,
∑M

j=1 W
(j) = 1. The inset located at the top

right of the figure shows the graph with a logarithmic scale on the x-axis. This style

is also used in Fig. 5.4. The weight distribution corresponding to N = 500 in Fig. 5.2

has a heavy-tailed distribution. This phenomenon is referred to as degeneracy, and

it means that the weights become unbalanced, and a few weights dominate all the

others. This consequently causes a decrease in computational efficiency [1].

We introduce an improved scheme to solve this problem, which is realized by

resampling (see Sect. 2.2). Hereafter, we denote it as TRMC (RS). This algorithm

is effective when both the number of time steps and the amount of noise are large.

Note that our algorithm is based on time-reversed dynamics and uses SMC dif-

ferently from the previous studies [4, 52, 49, 53, 54] on rare event sampling.

We assume that the resampling procedure modifies the weight at s time step

s−1∏
i=0

Wi (5.4)

of each Monte Carlo path to an unweighted one by eliminating Monte Carlo paths

having small weights and by multiplying Monte Carlo paths having large weights.

We denote the jth Monte Carlo path as x(j) =
{
x

(j)
0 , . . . , x

(j)
s

}
. The procedure

of resampling is as follows:

1. Define normalized weights

W̃ (j) =

∏s−1
i=0 W

(j)
i∑M

j=1

∏s−1
i=0 W

(j)
i

.

2. Resample M times with replacement from set
{
x(j)
}M
j=1

of Monte Carlo paths,

where the probability of sampling set of x(j) is proportional to W̃ (j).

After a resampling step, Monte Carlo paths
{
x(j)
}M
j=1

and associated weights
{
W (j)

}M
j=1

are replaced by the set of replicated Monte Carlo paths with an equal importance
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Figure 5.2: Distribution of weight
∏N−1

i=0 Wi in TRMC with different numbers of

time steps. The vertical and horizontal lines indicate the weight density and the

value of weights, respectively. The weight distributions with a large number of time

steps have a heavy-tailed distribution.
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weight W (j) = 1
M

∑M
j=1

∏s−1
i=0 W

(j)
i . Degeneracy is estimated using the effective sam-

ple size [17, 20]:

Meff =
1∑M

j=1(W̃ (j))2
. (5.5)

A small value of Meff corresponds to high degeneracy. Hence, a resampling pro-

cedure is performed when this value is lower than a certain threshold Θ = αM ,

where α is a relative threshold. That is, a resampling procedure is performed when
Meff

M
< α.

Using this resampling, we simulate the Lorenz 96 model with σ = 0.3/
√

∆t,

which is larger than that in Sect. 4.3. We set the threshold α to 0.05, 0.5, and 0.9.

The simulations with these threshold values of α are denoted by α = 5%, 50%, and

90% respectively. We can use the Eq. (3.1) to evaluate probabilities even in this

case.

Table 5.2 shows the result of computational experiments for the Lorenz 96 model.

It shows that the probabilities of FS, TRMC, and TRMC (RS, α=50%) agree within

the error bars.

Table 5.2: Comparison among TRMC, TRMC (RS, α=50%), and FS for the Lorenz

96 model.

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 2.500× 10−3 0.025× 10−3 2.1 4.08

TRMC (RS, α=50%) 2.616× 10−3 0.020× 10−3 3.2 6.09

FS 2.504× 10−3 0.050× 10−3 1.0 1.0

On the other hand, Fig. 5.3 shows that TRMC (RS) is more efficient than TRMC

in a wide range of threshold values. We also show the weight distributions of TRMC

and TRMC (RS) in Fig. 5.4. The variance of the distribution is much smaller for

TRMC (RS) than for TRMC.
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Figure 5.3: Comparison among FS (Forward), TRMC, and TRMC(RS) for the

Lorenz 96 model. α = α0% means TRMC(RS) with α = α0
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Figure 5.4: Distribution of the weight
∏N−1

i=0 Wi in TRMC and TRMC (RS) for the

Lorenz 96 model. We set the threshold α to 0.5 for TRMC (RS). The variance of

the distribution is much smaller for TRMC (RS) than for TRMC.
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5.3 External Field

As we already saw in Sect. 4.2, there are many paths that do not hit the target region

A, even though the support of the initial distribution p(x0) is much bigger than the

target region A. In an exact backward dynamics, as we see later in Appendix.A,

σ(T − t,Xt)
∇(p(T − t,Xt)σ(T − t,Xt))

T

p(T − t,Xt)
(5.6)

must be considered in a drift term to simulate an exact backward dynamics for mul-

tidimensional cases. To close our backward dynamics Eq.(3.6) to an exact backward

dynamics, we add an external field (EF) which induce these non hit paths in the

direction of the target region A. Assuming that the σ(t, x) is constant, this term

can be written as

Σ∇ log(p(T − t,Xt)), (5.7)

where Σ = σσT . By adding Eq. (5.7) as the external field to the backward dynamics,

we expect that this will causes a increase in computational efficiency because the

dynamics can be closer to an exact backward dynamics:

Xi = Xi+1 + (−f (Xi+1) + Σ∇ log(p((i+ 1)∆t,Xi+1))) ∆t+ εi
√

∆t. (5.8)

But implementation of these quantity, however, requires to know the probability

distribution p(t, x), which is usually not available prior to the simulations. Therefore,

as one of the simplest choices, we approximate the probability p(t, x) by Gaussian

distributions in this thesis

p(t, x) ∝ exp

[
−1

2

(
x− ((1− t

T
)xA +

t

T
xB)

)T

(Σβ(t+ α))−1

(
x− ((1− t

T
)xA +

t

T
xB)

)]
,

(5.9)

where xA is the center of the target region A. xB is the center of the support B of the

initial distribution p(x0). α, β are positive parameters which control the strength

of an external field.

By a simple calculation, we can prove

Σ∇ log p(t, x) = − 1

β(t+ α)

(
x−

(
(1− t

T
)xA +

t

T
xB

))
. (5.10)
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We introduce the factor defined by Eq. (5.10) as an external field to the backward

dynamics (3.6). In this case, we can transform the backward dynamics (3.6) as the

following

Xi = Xi+1 +

(
−f (Xi+1) +

1

β(i∆t+ α)

(
x−

(
(1− i

N
)xA +

i

N
xB

)))
∆t+ εi

√
∆t.

(5.11)

Hereafter, we refer TRMC with this backward dynamics as TRMC (EF). TRMC

and TRMC (EF) are the same in the limit where α → ∞ or β → ∞. In TRMC

(EF), the external field pulls the path in the direction of a target region A. As a

result, TRMC (EF) forcefully increases the probability which the simulation paths

hit a target region A.

Using TRMC (EF), we simulate the stochastic typhoon model explained in

Sect. 4.2. We set the control parameter α to 100, 50, 10, 5, 3 and 1. The simu-

lations with these control values of α are denoted by α = 100, 50, 10, 5, 3 and 1

respectively. We set the control parameter β to 0.5 and treat as fixed value here.

We can estimate β from the target region A and the number of time steps N.

Table 5.3 shows the result of computational experiments for the stochastic ty-

phoon model with TRMC (EF). It shows that the probabilities of FS, TRMC, and

TRMC (EF, α = 10) agree within the error bars. On the other hand, TRMC (EF,

α = 1) does not reproduce the unbiased estimates of the probability. This is because

that the strong external field compared to the support of the initial distribution p(x0)

occurs bias. Fig. 5.5 shows the estimated probabilities for FS, TRMC, and TRMC

(EF) with several α.

Table 5.3: Comparison among TRMC and TRMC (EF) for the stochastic typhoon

model.

Method P (XN ∈ A) σs ρ1 ρ2

TRMC 6.598× 10−4 0.009× 10−4 7.2 6.9

TRMC (EF, α = 10) 6.593× 10−4 0.004× 10−4 49.1 46.6

TRMC (EF, α = 1) 6.606× 10−4 0.110× 10−4 0.1 0.1

FS 6.626× 10−4 0.026× 10−4 1.0 1.0
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Figure 5.5: Comparison of the estimated probabilities among FS (Forward), TRMC,

and TRMC (EF) for the stochastic typhoon model. α = α0 means TRMC (EF) with

α = α0. TRMC (EF) is more efficient than TRMC in a wide range of threshold

values. Error bars indicate approximate ±1 standard error confidence intervals.

TRMC (EF, α = 1) does not reproduce the unbiased estimates of the probability

because of the strong external field.
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Fig. 5.6 shows that TRMC (EF) is more efficient than TRMC in a wide range

of threshold values. We also show the weight distributions of TRMC and TRMC
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Figure 5.6: Comparison among FS (Forward), TRMC, and TRMC (EF) for the

stochastic typhoon model. α = α0 means TRMC (EF) with α = α0. TRMC (EF)

is more efficient than TRMC in a wide range of threshold values.

(EF) in Fig. 5.7. The variance of the distribution is much smaller for TRMC (EF)

than for TRMC. Obviously, TRMC (EF) does not has a heavy tailed distribution

compared to TRMC. Fig. 5.8 shows the number of a hit when α changes. It reveals

that the number of a hit tends to increase when α decreases as we expected.

42



0

1 × 104

2 × 104

3 × 104

4 × 104

5 × 104

0 1 × 10−4 2 × 10−4

Weight

W
ei

gh
t d

en
si

ty

TRMC TRMC (EF)

0.0

0.2

0.4

0.6

−25 −20 −15 −10 −5

Log Weight

W
ei

gh
t d

en
si

ty

Figure 5.7: Distribution of the weight
∏N−1

i=0 Wi in TRMC and TRMC (EF) for

the stochastic typhoon model. We set the threshold α to 10 for TRMC (EF). The

variance of the distribution is much smaller for TRMC (EF) than for TRMC.
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Figure 5.8: The number of a hit when α changes for the stochastic typhoon model.

α = α0 means TRMC (EF) with α = α0. The number of a hit tends to increase

when α decreases as we expected.
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Examples of Monte Carlo paths for TRMC and TRMC (EF) are shown in

Figs. 5.9 and 5.10. In the case of Fig. 5.10, it is confirmed that the number of

paths with extreme behavior has been reduced.
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Figure 5.9: Example of Monte Carlo

paths generated by TRMC starting from

Tokyo. Each line corresponds to a path

generated by TRMC.
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Figure 5.10: Example of Monte Carlo

paths generated by TRMC (EF) starting

from Tokyo. Each line corresponds to a

path generated by TRMC (EF, α = 10).

α (and β) is also a kind of hyperparameter and needs to be determined in advance

of the simulation. We need an indicator of how to tune these hyperparameters. As

one of the ways, we can use α (and β) where the effective sample size Meff is

maximal. We explicitly write the definition of the effective sample size Meff used

here

Meff =
1∑M

j=1(W̃ (j))2
,

W̃ (j) =

{∏N−1
i=0 W

(j)
i

}
VAp(x

(j)
0 )∑M

j=1

{∏N−1
i=0 W

(j)
i

}
VAp(x

(j)
0 )

. (5.12)

Fig. 5.11 shows the α dependency of Meff . The effective sample size becomes

the largest when α = 10, which is consistent with the tendency of computational
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efficiency. The other way is to use the effective sample size ratio defined by effective

sample size Meff divided by the number of a hit. Fig. 5.12 shows the α dependency

of the effective sample size ratio. In this method, we can use α before the sharp

decrease of the effective sample size ratio. This result is also consistent with the

tendency of computational efficiency.
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Figure 5.11: The α dependency of Meff

for the stochastic typhoon model. α = α0

means TRMC (EF) with α = α0. The

effective sample size becomes the largest

when α = 10, which is consistent with

the tendency of computational efficiency.
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Figure 5.12: The α dependency of the ef-

fective sample size for the stochastic ty-

phoon model. α = α0 means TRMC

(EF) with α = α0.
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Chapter 6

Discussion and Concluding

Remarks

6.1 Discussion

The examples provided in the preceding sections show that backward simulations

using TRMC provide unbiased estimates of the probabilities and can be more effi-

cient than forward simulations. In these examples, the computational efficiencies of

TRMC are 3–16 times higher than those obtained by forward simulation, when the

calculated probability of hitting the target is 2× 10−3–10−5. Note that TRMC can

be used to calculate the probability for an arbitrarily small target region; this would

be impossible by using forward simulation.

There are, however, cases in which TRMC is inefficient. First, TRMC is not

advantageous if the time-reversed paths rarely encounter a region in which the initial

density p(x0) is high; this can occur when the initial density is not broad. Another

case in which TRMC can be inefficient is when the weight in Eq. (3.8) (or, in the

continuous time version, Eq. (3.9)) is highly time dependent. If paths with smaller

weights in the initial stage of backward simulation acquire larger weights in the

latter stage, resampling of the path (particle splitting) in SMC may not be effective.

In this case, if TRMC with SIS is ineffective, TRMC with SMC also shows poor

performance.
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To discuss the possible improvement of the algorithm, it is useful to introduce

optimal backward dynamics. Although it is not easy to obtain these dynamics a

priori, the formal definition is derived as follows. First, the marginal probability at

step n obtained from the forward simulation is defined as

p(xn) =

∫
dx0:n−1

{
n−1∏
i=0

p (xi+1|xi)

}
p(x0), (6.1)

which satisfies the relation

p(xi+1) =

∫
p(xi+1|xi)p(xi)dxi. (6.2)

Using Eqs. (6.1) and (6.2), the transition probability q∗ of the optimal backward

dynamics is defined as

q∗(xi+1 → xi) =
p(xi+1|xi)p(xi)∫
p(xi+1|xi)p(xi)dxi

=
p(xi+1|xi)p(xi)

p(xi+1)
.. (6.3)

Note that Eq. (6.3) appears similar to the formulas used in Bayesian inference when

the probability p(xi) obtained by forward simulations is regarded as an analog of the

prior distribution of xi. In terms of the selection of Eq. (6.3) for backward dynamics,

the following relation holds{
n−1∏
i=0

p (xi+1|xi)

}
p(x0) = p(xN)

0∏
i=N−1

q∗(xi+1 → xi). (6.4)

Eq. (6.4) means that the combined probability of time-reversed paths defined by

forward simulation is recovered by the backward dynamics Eq. (6.3). Specifically,

the time-reversed paths initialized by p(xN) automatically converge to their initial

density p(x0) using the backward dynamics Eq. (6.3). In this sense, q∗(xi+1 → xi)

in Eq. (6.3) is considered as the optimal backward dynamics. This idea is known

in Monte Carlo studies [2]. Implementation of these dynamics, however, requires

the probabilities p(xi), i = 1, . . . N , which are usually not available prior to the

simulations.

Note that the backward dynamics defined by the Langevin equation in previous

studies [8, 9, 10] can be derived from Eq. (6.3) as a continuous-time limit.

Equations (6.3) and (6.4) were previously discussed [11, 12, 13] in the field

of time-series data analysis, where approximations of the marginal probabilities
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p(xi), i = 1, . . . N are used to define the backward dynamics q(xi+1 → xi). In these

studies, the observed data were available at many of the time steps i = 0, . . . , N ,

whereas the target is given only at i = N in our problem. Then, approximations

of probabilities p(xi), i = 1, . . . N are derived using forward simulations constrained

with the observed data (“filtering stage”).

It is, however, difficult to apply these methods to our problem. If we were to

apply a similar method to our problem, we would have to run a number of forward

simulations to estimate p(xi), i = 1, . . . N before executing backward simulations.

This would be computationally expensive and seems unrealistic without a highly

efficient method for the probability estimation. Methods such as those discussed

previously [55, 56] may be applied to optimize the backward dynamics in our prob-

lem, but this is left for future study.

On the other hand, when some observed data are available outside the equations

that describe the stochastic process, we may use these data to approximate p(xi), i =

1, . . . N and hence use them to approximate the optimal backward dynamics. In

this case, we avoid the use of a large amount of forward computation to construct

the optimized backward dynamics. This seems possible for the stochastic typhoon

model, where data from actual observations of real typhoons are available. Note

that this idea is different from data assimilation (i.e., inference with simulations

combined with observed data), because here we use observed data only to improve

the computational efficiency; they do not cause the bias of calculated probabilities.

As a practical approach, it is possible to approximate q∗(xi+1 → xi) as follows

q(xi+1 → xi) =
p(xi+1|xi)p(xi)

p(xi+1)

≈ exp

[
−1

2
(xi+1 − xi − f(xi)∆t)

T
(Σ∆t)

−1
(xi+1 − xi − f(xi)∆t)− log

p(xi)

p(xi+1)

]
= exp

[
−1

2
(∆xi − f(xi)∆t)

T
(Σ∆t)

−1
(∆xi − f(xi)∆t)−∆ log p(xi)

]
= exp

[
−1

2
(∆xi − (f(xi+1)− Σ∇ log p(xi+1)) ∆t)

T
(Σ∆t)

−1
(∆xi − (f(xi+1)− Σ∇ log p(xi+1)) ∆t) +O(∆t)

]
,

(6.5)

where ∆xi = xi+1 − xi, ∆ log p(xi) = log p(xi+1)− log p(xi). The dynamics derived

from Eq. (6.5) is the following stochastic difference equation

Xi = Xi+1 + (−f (Xi+1) + Σ∇ log(p(Xi+1))) ∆t+ εi
√

∆t. (6.6)
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Because Eq. (6.6) coincides with Eq. (5.8) after rearranging, the exact backward

dynamics coincide with the optimal backward dynamics in the range of O(∆t) un-

der this approximation. Therefore, we can interpret TRMC (EF) as one of the

approximation methods of the optimal backward dynamics.

In this thesis, we assumed that the number of time steps is fixed. This is not,

however, always clear in advance in realistic problems. In the case of a realistic

typhoon model, we must consider the case of passing through Tokyo between two

discrete time steps. This problem is called the high-dimensional boundary crossing

problem. To our best knowledge, a few research is known for the high-dimensional

boundary crossing problem (see, e.g., [57, 58, 59]). Therefore, the interpolation

method for our case must be developed in future work.

6.2 Concluding Remarks

We discussed methods for the backward simulation of the stochastic process. These

methods trace a time-reversed path from the target region to the initial configura-

tion. A näıve approach to this problem was shown not to function as expected. To

resolve the difficulties, the time reverse Monte Carlo method (TRMC) was intro-

duced. The TRMC method is based on SIS and SMC, and is designed to provide

the probabilities of events correctly. TRMC with SIS was tested for the stochastic

difference equation and the stochastic typhoon model and the Lorenz 96 model;

it converges more efficiently than forward simulations in some of these examples.

Three types of improved versions of TRMC are also introduced. The first one is

a higher-order approximation in backward dynamics. The second one is TRMC

with resampling for simulations with a larger number of steps. The third one is

TRMC with an external field. In these improvements, TRMC provides unbiased

estimates of the probabilities without expensive computation. These three types of

improved schemes are shown to be advantageous. We also discussed the limitation

and possible improvement of TRMC and its relation to the Bayes formula.
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Appendix

A Time Reversal of Diffusions

In this section, we review the theory of time reversal for diffusion processes developed

by Haussmann and Pardoux [9] and Föllmer [60]. For simplicity, we treat a one-

dimensional system.

Let the dynamics of a stochastic process X = {Xu; 0 ≤ u < T} on the probability

space (Ω,F ,P) is defined by

Xt = X0 +

∫ t

0

b(u,Xu)du+

∫ t

0

σ(u,Xu)dWu, 0 ≤ t ≤ T (A.1)

where the integral is defined as the Ito integral and W = {Wu; 0 ≤ u < T} is Brow-

nian motion. This type of process is called “diffusion process” or “Ito process”. A

diffusion process is a Markov process with continuous sample paths. The functions

b and σ are called, respectively, the “drift coefficient” and “diffusion coefficient”.

Standard Brownian motion corresponds to a diffusion process with b(t, x) = 0 and

σ(t, x) = 1.

Definition A.1 The Ito integral. We assume that Xt, Yt be an adapted stochastic

process. Let Π = {t0, t1, ..., tn} be a partition of [0, t] with 0 = t0 < t1 < · · · < tn = t,

then define the sum

I(t) =
n−1∑
j=0

Ytj+1
(Xtj+1

−Xtj). (A.2)

The stochastic process I(t) in Eq.(A.2) is the Ito integral. I(t) converges in proba-

bility as the mesh ||Π|| of the partition tends to zero if the limit exists. In this case,

the Ito integral is written as

I(t) =

∫ t

0

YudXu. (A.3)
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Given a stochastic process X, we define the time-reversed process

X̃t = XT−t. (A.4)

Using Eq. (A.1), we can write

XT−t = XT +

∫ T−t

T

b(u,Xu)du+

∫ T−t

T

σ(u,Xu)dWu. (A.5)

Eq.(A.5) can be written with time-reversed process X̃ as

X̃t = X̃0 −
∫ t

0

b(T − s, X̃s)ds−
∫ t

0

σ(T − s, X̃s)dWT−s, (A.6)

where we make the substitution s = T − u. The stochastic integral
∫ t

0
σ(T −

s, X̃s)dWT−s in Eq.(A.6) is defined as

n−1∑
i=0

σ(T − ti+1, X̃ti+1
)(WT−ti −WT−ti+1

), (A.7)

where we choose partition points

0 = t0 < t1 < · · · < tn = t. (A.8)

We also define the time-reversed Brownian motion as the following:

W̄t = WT−t −WT . (A.9)

Lemma A.1 The Ito’s Lemma. let f(t, x) be a function for which the partial

derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined and continuous. Let X =

{Xt; 0 ≤ u ≤ T} be an Ito process defined by Eq.(A.1). Then, for every T ≥ 0,

f(T,XT ) = f(0, X0)

+

∫ T

0

(
ft(t,Xt) + fx(t,Xt)b(t,Xt) +

1

2
fxx(t,Xt)σ

2(t,Xt)

)
dt

+

∫ T

0

fx(t,Xt)σ(t,Xt)dWt. (A.10)

In shorthand differential form,

df(t,Xt) =

(
ft(t,Xt) + fx(t,Xt)b(t,Xt) +

1

2
fxx(t,Xt)σ

2(t,Xt)

)
dt

+ fx(t,Xt)σ(t,Xt)dWt. (A.11)
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Applying Ito’s lemma to σ(t,Xt), Eq. (A.7) is written as

n−1∑
i=0

σ(T − ti+1, X̃ti+1
)(WT−ti −WT−ti+1

)

= −
n−1∑
i=0

σ(T − ti+1, X̃ti+1
)(W̄ti+1

− W̄ti)

= −
n−1∑
i=0

σ(T − ti, X̃ti)(W̄ti+1
− W̄ti) + σ(T − ti, X̃ti)∂xσ(T − ti, X̃ti)∆ti, (A.12)

where ∆ti = ti+1 − ti. Taking the limit as n→∞, we get∫ t

0

σ(T − s, X̃s)dWT−s =

∫ t

0

σ(T − s, X̃s)dW̄s +

∫ t

0

σ(T − s, X̃s)∂xσ(T − s, X̃s)ds.

(A.13)

Using Eq. (A.13) and (A.6), we get

X̃t = X̃0 +

∫ t

0

{
−b(T − s, X̃s) + σ(T − s, X̃s)∂xσ(T − s, X̃s)

}
ds

+

∫ t

0

σ(T − s, X̃s)dW̄s (A.14)

It is important here to note that W̃ is not Brownian motion because

E
[
X̃t(W̄u − W̄t)

]
= E

[
XT−t(WT−u −WT−t)

]
6= 0, (A.15)

where 0 ≤ t ≤ u ≤ T . To find the correct Brownian motion, we prove the following

relation

E
[
G(Xt)

(
Wt −Wu +

∫ t

u

∂x(p(s,Xs)σ(s,Xs))

p(s,Xs)
ds

)]
= 0, (A.16)

where G : R→ R. See [61] for the detail. Then, we define W̃t as the following

W̃t = W̄t −
∫ T

T−t

∂x(p(s,Xs)σ(s,Xs))

p(s,Xs)
ds, (A.17)

W̃t is the Brownian motion.

As Eq.(A.1) can be written in differential form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (A.18)

52



, we can also write the exact backward dynamics in differential form as

dX̃t = b̃(T − t, X̃t)dt+ σ(T − t, X̃t)dW̃t (A.19)

b̃(t, x) = −b(t, x) + σ(t, x)∂xσ(t, x) + σ(t, x)
∂x(p(t, x)σ(t, x))

p(t, x)
. (A.20)

This equation is an equation that strictly reverses time. We call this the exact

backward dynamics here. We can simulate the exact backward dynamics using a

numerical method such as the Euler method.
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B Application to Options Portfolio Valuation

In this appendix, we introduce options portfolio valuation where TRMC can be

effective as an application for finance. An option is a kind of derivative securities.

Derivative securities are securities whose value is based on underlying security price

(e.g., stock price, bond price, etc.). For example, the simplest option, a European

call option on an underlying security, gives the holder a right (not an obligation;

then, the name “option”) to buy the underlying security at a specified date for a

specified price (this is called the strike price, we denote by K). There are different

types of options. Here, we only deal with the call/put option, which gives the holder

the right to buy/sell security. See, for example, [62] for further information about

derivative securities and financial engineering.

Estimating the correct value for these options is an essential and challenging

problem in the financial industry. The breakthrough was occurred by Black and

Scholes (1973) [63], which introduced the no-arbitrage principle and pricing-formula

for generic options. Generally speaking, we can estimate the right value of the option

VT

VT =

∫ ∞
0

dUT payoff(UT )p(UT |U0)p(U0), (B.1)

where T is the maturity time of the options, U = {Ut; 0 ≤ t ≤ T} is the stochastic

process of an underlying security price, p(UT |U0) is the transition probability density

from U0 to UT , and payoff(·) is a payoff function depending on UT , K, and the option

types. the payoff of a call/put option are the following

payoff(u) =

max(u−K, 0) (call option)

max(K − u, 0) (put option)
. (B.2)

In this appendix, we assume that there is one underlying security and the discretized

dynamics of the price process U = {U0, U1, . . . , UN} follows a log-normal model

Ui+1 = rUi∆t+ εiUi
√

∆t, (B.3)

where r is the annualized risk-free interest rate, N∆t = T , and the noise εi is

assumed to be i.i.d. Gaussian noise with mean zero and the variance σ2.
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Monte Carlo methods are popular computational methods to estimates Eq. (B.1),

especially when the portfolio includes a lot of options (options portfolio), or the

underlying space has a large dimensionality [64].

An important point in the practical financial risk management of an options

portfolio is that the value of an option portfolio changes non-linearly. By starting

a simulation from multiple initial conditions (e.g., multiple stock prices) and cal-

culating the value of an options portfolio for each initial condition, we can grasp

the non-linear risk. Then, it is possible to estimate how much loss in the value of

a portfolio will occur when the financial market falls sharply. TRMC can be effi-

cient in evaluating derivative portfolios with payoffs under ”limited conditions” as

we explain later.

Here, we regard this ”limited condition” as the target region A and estimate an

options portfolio value by applying TRMC. In the financial industry, it is common

to calculate using a forward simulation, so we use FS as a baseline in this appendix.

We fix r = 0.01,∆t = 0.01, T = 1, K = 18000, σ = 0.2. We also assume

that initial conditions (underlying security price) U0 is uniformly distributed in

{u0; 15000 ≤ u0 ≤ 25000}. The target region A is {uT ; 17500 ≤ uT ≤ 18500}We set

the number of Monte Carlo paths M to 106 and the number of time steps N to 100.

We can use the Black-Scholes formula to price call/put options respectively

Vcall,T = N(d1)U0 −N(d2)Ke−rT

Vput,T = −N(−d1)U0 −N(−d2)Ke−rT , (B.4)

where d1 =
log(

UT
K

)

σ
√
T

, d2 = d1 − σ
√
T and N(·) is the standard normal cumulative

distribution function [62].

We also designed the payoff function shown in Fig. B.1. The non-zero region of

this payoff function corresponds to the target region A in TRMC. Since the payoff

function introduced here can be described as a combination of call/put options, we

can use Black-Scholes formula to calculate the exact solution of this simulation. As

Black-Scholes formula calculates the value at a specific underlying security price

U0, we divided the initial distribution of underlying security price into bins (we set

this to 40), and evaluated the options using the security price at the center of each
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Figure B.1: The shape of the payoff function, which we use here. The non-zero

region of this payoff function corresponds to the target region A in TRMC.

bin. Fig. B.2 shows the result of computational experiments for this simulation.

It shows that the value calculated using TRMC and the exact solution by Black-

Scholes formula almost agree within the error bars. Fig. B.3 shows that TRMC is

more efficient than FS in a wide range of underlying security prices. Here, we denote

a standard error of TRMC to evaluate the computational efficiency by σs. We also

denote the standard error of FS by σFs . Using these variables, as in the main text,

we define a measure of the relative computational effciency ρ2 as

ρ2 =

(
σFs
σs

)2
τF

τ
,

where τ is the computational time in seconds of the simulation and τF is the com-

putational time of FS in seconds. This efficiency is defined in the sense of the

actual performance considering both the computational time and the variance of

the resulting estimates.

There are two advantageous points in TRMC compared to using Black-Scholes

formula. The first one is that we can use TRMC even though when we can not
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Figure B.2: Comparison among TRMC and the exact solution by BS formula for

options portfolio valuation. Error bars indicate approximate 1 standard error con-

fidence intervals for TRMC.
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Figure B.3: TRMC is more efficient than FS in a wide range of underlying security

prices. ρ2 values in a wide range of underlying security prices.
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obtain an analytical solution by Black-Scholes formula. The second point is that

we can easily apply TRMC to high-dimensional systems compared to getting an

analytical solution by Black-Scholes formula.
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