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Chapter 1

Introduction

While consumer-grade genotyping – such as that used by 23andMe – has proven a popular and

inexpensive method to determine Single Nucleotide Polymorphisms (SNPs) in individuals, such

methods can only detect a set of reference genes, thus limiting their ability to detect all but the

simplest variations.

Whole genome sequencing (without a reference) is a powerful alternative, albeit compar-

atively expensive. However, the price has been steadily declining: while the Human Genome

Project cost $2.7 billion to complete in 2003 [1], as of 2019 it is possible to have a genome

sequenced for $299 [2], and the price continues to drop.

This decline in price is in large part owed to the advent of Next Generation Sequencing (NGS)

machines. The “Sanger” sequencing method used in the Human Genome project required a

high degree of human interaction, which NGS machines have subsequently automated, greatly

increasing the speed and decreasing the cost. And although NGS machines produce much

shorter reads (200 bases versus 800 bases in Sanger sequencing – a human genome is 3.4 billion

bases), this is overcome by re-sequencing the same DNA.

The process of combining short reads into longer sequences is called assembly, and while

finding the best overlap is NP-hard [3], many practical approaches have been proposed (see

surveys [4, 5, 6]).

Traditionally, assembly employed an overlap graph, where each read is a node, and an

edge exists if two reads have sufficient overlap [7, 8, 9]. Assembly then involves computing a

Hamiltonian tour of all nodes. This was an acceptable drawback when dealing with Sanger reads,

but is prohibitively expensive to deal with the abundant data that NGS machines produce.

Eulerian assembly replaces the overlap graph with a de Bruijn graph [10, 11], where every

k-length substring of the reads is a node, and the directed edges are defined by the k+ 1-length

substrings that contain the k-length vertices, where k is a user-selected parameter. For example,
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Figure 1.1: The k = 3 de Bruijn graph of reads ‘TACGT’, ‘TACGA’, ‘ACGTC’, ‘GTCGA’,
‘CGACT’, and ‘CGACG’. The edges are given by the substrings of length k + 1 = 4 from all
of the reads (‘TACG’, ‘ACGA’, ‘ACGT’, ‘CGTC’, and so on), and are represented by their
right-most symbol connecting the two vertices given by their two substrings of length k = 3

(e.g. TAC
G−→ ACG). The longest contig is found by starting at ‘ACG‘, and following its branch

labeled ‘T‘, and all subsequent edges, until we reach another branch at vertex ‘GAC’ (which
has two edges labeled ‘G’ and ‘T’), giving us ‘ACGTCGAC’ (8 bases).
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(a) k = 2 (b) k = 4

Figure 1.2: (a) The k = 2 de Bruijn graph of strings ‘TACGT’, ‘TACGA’, ‘ACGTC’, ‘GTCGA’,
‘CGACT’, and ‘CGACG’, and (b) the k = 4 de Bruijn graph of strings ‘TACGT’, ‘TACGA’,
‘ACGTC’, ‘GTCGA’, ‘CGACT’, and ‘CGACG’. The longest contig for (a) is ‘CGTCG’ (5
bases), and the longest contig for (b) is ‘TACGTC’ (6 bases).

for k = 3, the sequence ‘TACGT’ yields the edges ‘TACG’ and ‘ACGT’, and the edge ‘TACG’

connects the vertices ‘TAC’ and ‘ACG’ by dropping the initial ‘T’ and appending a ‘G’. A

complete example is given in Figure 1.1.

Contigs (contiguous sequences) are then found by following the edges between two branches

(see Figure 1.1). Most modern assembler programs use this paradigm [12, 13, 14, 15, 16, 17,

18, 19]. See [20] for a thorough explanation of de Bruijn graphs and their use in assembly.

While the de Bruijn graph can be constructed more efficiently than the overlap graph, it
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Figure 1.3: A k = 3 Colored de Bruijn Graph for two sets of reads. The black nodes and edges
represent the reads ‘TACGT’, ‘TACGA’, ‘ACGTC’, ‘GTCGA’, ‘CGACT’, and ‘CGACG’ (the
de Bruijn Graph from Figure 1.1). The gray nodes and edges represent the reads ‘TACGA’,
‘GTCGACG’, ‘CGACT’, ‘CGAGGTC’.

remains a bottleneck in assembly, both in terms of speed and size, with a de Bruijn graph of a

human genome requiring 300 GB of RAM [15]. Previous work has reduced this to 30 GB [21].

This thesis reduces this to 2 GB, bringing it in line with commodity hardware – a student

or field biologist could now perform this on their laptop. Around the same time as the work

done in this thesis, an alternative approach with similar performance was published [22], but

the Burrows-Wheeler based approach taken in this thesis offers more flexibility and faster edge

traversal.

It is common for modern assemblers to build multiple de Bruijn graphs. This is because

the k parameter significantly influences the topology – if k is too large there may be too few

edges, causing gaps in the graph. But if k is too small, the vertices may have too many edges,

increasing ambiguity. Both of these issues lead to shorter contigs, as is demonstrated in Figure

1.2. In fact, due to non-uniform coverage of NGS data, different areas of the same graph may

benefit from differing k values. To overcome this, assemblers such as Spades and IDBA [12, 13]

build de Bruijn graphs for increasing values of k, and use them in tandem. This yields better

quality assemblies, but is slowed down proportionally to the number of k values used. This

thesis introduces the first variation of the de Bruijn graph that can be built once, yet change

k values on-the-fly, at only a modest increase in size over the base succinct de Bruijn graph,

taking only 3.5 times the space, and only 30% longer to construct than a graph for a single

value of k.

Finally, in population genomics, biologists assemble multiple genomes in order to study
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the variations, among, for example, 10,000 vertebrate genomes [23]. To avoid constructing

multiple graphs, Iqbal et al. proposed the Colored de Bruijn Graph [24]. This graph capitalizes

on the fact that DNA is rarely unique to an individual. It does this by first constructing a de

Bruijn Graph of the entire populations NGS reads, and assigning each individual a unique color,

which annotates the vertices and edges (see Figure 1.3). In this thesis, we further augment our

succinct de Bruijn Graph to efficiently store these colors. When tested with four plant genomes,

Iqbal’s structure required 101 GB RAM, while ours only requires 4 GB of RAM. Furthermore,

our structure was able to store all known E. Coli genomes in 42 GB, where Iqbal’s was not

able to complete, but is estimated to require 3 TB of RAM. We also demonstrate the use of

our structure in creating a database of all Antimicrobial Resistance Genes, requiring 245 GB

of RAM (an estimated 18 TB with Iqbal’s structure), for rapidly locating resilient bacterial

outbreaks in food supply chains.

1.1 Original Papers

This thesis is comprised of the following three published papers, as well as a forth paper which

is included as an appendix due to its relevance to the third paper while not being core to this

thesis.

Paper I: Succinct de Bruijn Graphs

Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya.

In Algorithms in Bioinformatics. Proceedings of WABI 2012 (B. Raphael and J. Tang, editors). Lecture

Notes in Computer Science, vol. 7534, pages 225–235. Springer, Berlin, Heidelberg, 2012.

We propose a new succinct de Bruijn graph representation. If the de Bruijn graph of k-mers

in a DNA sequence of length N has m edges, it can be represented in 4m+ o(m) bits. This is

much smaller than existing representations. The numbers of outgoing and incoming edges of a

node are computed in constant time, and the outgoing and incoming edge with given label are

traversed in constant time and O(k) time, respectively. The data structure is constructed in

O(Nk logm/ log logm) time using no additional space.

Paper II: Variable-Order de Bruijn Graphs

Christina Boucher, Alex Bowe, Travis Gagie, Simon J. Puglisi, and Kunihiko Sadakane.

In Proceedings of the 2015 Data Compression Conference, Snowbird, Utah, pages 383–392. IEEE, 2015.

The de Bruijn graph GK of a set of strings S is a key data structure in genome assembly that

represents overlaps between all the K-length substrings of S. Construction and navigation of

the graph is a space and time bottleneck in practice and the main hurdle for assembling large

genomes. This problem is compounded because state-of-the-art assemblers do not build the
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de Bruijn graph for a single order (value of K) but for multiple values of K: they build d de

Bruijn graphs, each with a specific order, i.e., GK1 , GK2 , . . . , GKd
. This paradigm increases the

quality of the assembly produced, at the cost of greatly increases runtime, due to constructing

d graphs instead of one. In this paper, we show how to augment a succinct de Bruijn graph

representation by Bowe et al. (Proc. WABI, 2012) to support new operations that let us change

order on the fly, effectively representing all de Bruijn graphs up to some maximum order K in a

single data structure. Our experiments show our variable-order de Bruijn graph only modestly

increases space usage, construction time, and navigation time compared to a single order graph.

Paper III: Succinct Colored de Bruijn graphs

Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul S. Morley, Keith E. Belk, Robert Raymond,

Travis Gagie, Simon J. Puglisi, and Christina Boucher.

Bioinformatics, 33(20):3181–3187, 2017.

Iqbal et al. (Nature Genetics, 2012) introduced the colored de Bruijn graph, a variant of the

classic de Bruijn graph, which is aimed at “detecting and genotyping simple and complex genetic

variants in an individual or population”. Because they are intended to be applied to massive

population level data, it is essential that the graphs be represented efficiently. Unfortunately,

current succinct de Bruijn graph representations are not directly applicable to the colored

de Bruijn graph, which requires additional information to be succinctly encoded as well as

support for non-standard traversal operations. Our data structure dramatically reduces the

amount of memory required to store and use the colored de Bruijn graph, with some penalty to

runtime, allowing it to be applied in much larger and more ambitious sequence projects than

was previously possible.

Paper IV: Relative Select (Appendix A)

Christina Boucher, Alexander Bowe, Travis Gagie, Giovanni Manzini, and Jouni Sirén

In String Processing and Information Retrieval. Proceedings of SPIRE 2015 (C. Iliopoulos, S. Puglisi,

and E. Yilmaz, editors). Lecture Notes in Computer Science, vol. 9309, pp. 149–155. Springer, Cham,

2015.

Motivated by the problem of storing coloured de Bruijn graphs, we show how, if we can already

support fast select queries on one string, then we can store a little extra information and support

fairly fast select queries on a similar string.
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Preface to Paper I

Conway’s 2011 paper [21] received a lot of attention for being such a drastic decrease in the

memory requirement of a de Bruijn graph. It was the first succinct de Bruijn graph, using one

of the key building blocks of succinct data structures proposed by Okanohara and Sadakane

[25] – the sparse succinct bit vector. In Conway’s representation, the edges, or (k + 1)-mers of

the de Bruijn graph that were present would be represented with a 1 in the bit vector, and a 0

for every possible (k + 1)-mer that was not in the graph.

While a de Bruijn graph would typically have hundreds of millions, or even multiple billions

of edges in the case of humans, the number of possible edges would be on the order of 4k+1.

For a common k value such as 31, this would be 432 ' 1.84× 1019, meaning that only one tenth

of a billionth of possible edges would be present. This meant that even though the sparse bit

vector was tuned to handle very sparse data, it still had to represent those 0s somehow.

After discussing this with Sadakane, he identified that the de Bruijn graph is similar to a

bound-depth suffix trie, and could hence be represented with something like a Burrows–Wheeler

transform, effectively removing the need for representing edges that were not in the graph, and

allowing it to scale in size without a relation to k.

The following paper introduces this Burrows–Wheeler-inspired data structure in theory, with

data being reported during WABI 2012, and later in the blog post in Appendix A. In the end,

we reduced it to around 4GB uncompressed when using the same data and k value as Conway,

and around 2GB when using a compressed Wavelet Tree to represent the edges (which was

slower to traverse).

My contribution to this paper was identifying the opportunity to compress de Bruijn graphs

beyond the work of Conway by avoiding storing edges that were not present in the data, imple-

menting and testing the succinct de Bruijn graph in C++, and presenting it.

8



Chapter 2

Succinct de Bruijn Graphs

We propose a new succinct de Bruijn graph representation. If the de Bruijn graph

of k-mers in a DNA sequence of length N has m edges, it can be represented in

4m+ o(m) bits. This is much smaller than existing ones. The numbers of outgoing

and incoming edges of a node are computed in constant time, and the outgoing

and incoming edge with given label are found in constant time and O(k) time,

respectively. The data structure is constructed in O(Nk logm/ log logm) time using

no additional space.

2.1 Introduction

Within the last two decades, assembling a genome from enormous amount of reads from various

DNA sequencers has been one of the most challenging and important computational problems

in molecular biology. Though the problem is proved to be NP-hard [3], many algorithms have

been proposed for the problem (see the surveys [4, 5, 6]). Most of these algorithms follow a

so-called Overlap-Layout-Consensus strategy, where an algorithm first finds overlaps between

reads, next layouts these reads, and finally finds the consensus genome. These algorithms can

be categorized into two types, due to the graph used in the overlap phase.

Most old-time assembly algorithms (especially for the long Sanger reads) first construct a

graph called the overlap graph after finding the overlapping pairs of reads, where each node

represents a read and edges are constructed between nodes iff the corresponding two reads have

an overlap of enough length [7, 8, 9]. But this strategy is difficult to apply against the huge

data from more recent epoch-making next-generation sequencers (NGSs). The NGS machines

can sequence vast amount of genome data. It makes it computationally very hard to compare

all the pairs of reads. Moreover, most NGSs cannot read long DNA fragments (e.g., at most
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200bp in the case of Illumina HiSeq2000), and their read lengths are not long enough to detect

overlaps with enough lengths between reads. To conquer these problems, many recent assembler

algorithms utilize a graph called the de Bruijn graph in the overlap phase [11, 14, 15, 17, 18, 19],

instead of the overlap graph.

A de Bruijn graph is a graph where each node represents a k-mer (a substring of length k)

that exists in the reads, and an edge exists iff there is an exact overlap of length k− 1 between

the corresponding k-mers. The de Bruijn graph can be constructed more efficiently than the

overlap graph in many cases, but the overlap phase is still the bottleneck of most assembly

algorithms based on the de Bruijn graph. This is because storing the de Bruijn graph requires

huge amount of memory. Thus we focus on reducing the memory required for the de Bruijn

graph in this paper.

There have been proposed only two data structures for reducing the size of memory for

the de Bruijn graph. The succinct data structure proposed by Conway and Bromage [21] is

a data structure that straightforwardly represents the de Bruijn graph by a bit vector. Its

representation should be smaller than a naive ordinary implementation of the de Bruijn graph,

but it still requires O(m ·k) memory, where k is the k-mer length and m is the number of edges

in the de Bruijn graph, which means it would be very large when k is large. The other data

structure is by Ye et al. [26], which stores only a subset of nodes of the de Bruijn graph to save

memory, but it is not actually the de Bruijn graph.

In this paper, we propose a new succinct representation of a de Bruijn graph which only

requires m(2+log σ) bit to store1, where σ is the alphabet size (i.e., σ = 4 in the case of DNA).

The size of this representation is not affected by the value of k and is much smaller than either

of the two previous methods. Moreover we will present the algorithm to construct the data

structure on-line. Our main result is summarized as follows:

Theorem 2.1. The k-dimensional de Bruijn graph of M string of total length N on an alphabet

of size σ can be stored in m(2+log σ)+O((σ+M) logm)+o(m log σ) bits where m is the number

of edges in the graph. The numbers of outgoing and incoming edges of a node are computed

in O(log σ/ log logm) time, and the outgoing and incoming edge with given label are found in

O(log σ/ log logm) time and O(k log2 σ/ log logm) time, respectively. The node for a given k-

mer is found in O(k log σ/ log logm) time. If σ = polylog(m), the time complexities become

O(1), O(1), O(k log σ), and O(k) time, respectively.

Theorem 2.2. The k-dimensional de Bruijn graph of a string of length N can be constructed

in O
(
Nk · logm

log logm(1 + log σ
log logm)

)
time using no additional space. This representation can be

converted to the static one in O
(
m logm
log logm(1 + log σ

log logm)
)

time.

1The base of logarithm is 2.
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For DNA sequences (σ = 4), the succinct de Bruijn graph can be constructed in

O(Nk logm/ log logm) time and its space becomes 4m + o(m) bits. This is much smaller

than existing ones. For example, the succinct representation of Conway and Bromage [21]

uses 40.8GB for storing a de Bruijn graph with m = 12,292,819,311 edges and k = 27 (28.5

bits per edge). On the other hand, if we use an efficient implementation of rank/select data

structures [25] for our representation, the estimated size is less than 5 bits per edge. Therefore

the above graph is stored in less than 8GB.

2.2 Preliminaries

2.2.1 de Bruijn graphs

In the original definition [27], the k-dimensional de Bruijn graph of σ symbols is a directed

graph representing overlaps between strings of symbols defined as follows. The graph has σk

nodes, consisting of all length-k strings of the symbols. A node is denoted by (u1, . . . , uk) where

u1, . . . , uk are symbols. For any pair of nodes u = (u1, . . . , uk) and v = (v1, . . . , vk) such that

u2 = v1, u3 = v2, . . . , uk = vk−1, the graph has a directed edge from u to v labeled with vk. In

this paper we call it the complete k-dimensional de Bruijn graph of σ symbols.

The de Bruijn graphs considered in this paper are subgraphs of the complete de Bruijn

graph. We define the k-dimensional de Bruijn graph of a string T as follows. The nodes of the

graph correspond to all length-k substrings of T . If the string is of length N , the graph has at

most N − k + 1 nodes. The edges of the graph are defined in the same way as the complete de

Bruijn graph. For convenience, we add k characters $ at the head of the string, and a $ at the

end.

We can also store a set of M strings T1, . . . , TM as follows. We append a terminator $i to

the tail of each string Ti, and concatenate all the strings. Then we add k characters $0 at the

head. Figure 2.1 shows an example.

2.2.2 Basic succinct data structures

Let T = T [1]T [2] · · ·T [N ] be a string of length N on alphabet A, that is, T [i] ∈ A for any

i = 1, . . . , N . Let σ = |A| denote the alphabet size. We can store T in Ndlog2 σe bits. The

space does not depend on the word size of CPU. We can retrieve any character T [i] in constant

time using bit operations on words.

The most basic succinct data structure is the one for computing rank , select , and access

values on strings, which are defined as follows. The value access(T, i) returns T [i] for 1 ≤ i ≤ N .

The value rankc(T, i) where c ∈ A and 1 ≤ i ≤ N is the number of c’s in T [1] · · ·T [i]. For
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Figure 2.1: The 3-dimensional de Bruijn graph of strings ‘TACAC’, ‘TACTC’, and ‘GACTC’.

any T and c we define rankc(T, 0) = 0. The value selectc(T, j) where c ∈ A and 1 ≤ j ≤
rankc(T,N) is the position of j-th c in T . For any T and c we define selectc(T, 0) = 0 and for

any j > rankc(T,N) selectc(T, j) = N + 1. Let tr(N, σ), ts(N, σ), and ta(N, σ) denote the time

complexity for computing rank , select , and access, respectively, on a string of length N and

alphabet size σ. For brevity, we assume that for any N1 ≤ N2, tr(N1, σ) ≤ tr(N2, σ) and for any

σ1 ≤ σ2, tr(N, σ1) ≤ tr(N, σ2). Let tb(N,Σ) denote the maximum of tr(N, σ), ts(N, σ), ta(N, σ).

For convenience, we define predc(T, i) = selectc(T, rankc(T, i)) which is the position of

the first occurrence of c when we scan T from the position i to the head, and succc(T, i) =

selectc(T, rankc(T, i− 1) + 1) which is the position of the first occurrence of c when we scan T

from the position i to the end. If T [i] is the first (last) occurrence of c, pred (succ) returns 0

(N + 1).

There exist many succinct data structures for rank and select on strings. Among them, we

use the one by Ferragina et al. [28] for the static case (the case the string does not change). A

string of T length n on an alphabet of size σ can be stored in nH0(T ) +O(σ log n) + o(n log σ)

bits so that rank , select and access queries take O(log σ/ log logn) time, where H0(T ) denotes

the order-0 entropy of the string. Note that if the alphabet size σ is polylog(n), the queries are

done in constant time. For a binary alphabet case, we can use a simpler data structure that
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has the same time and space complexities [29].

For the dynamic case where the string is modified by inserting or deleting a character, we use

the one by Navarro and Sadakane [30] which stores the string in nH0(T )+O(σ log n)+o(n log σ)

bits so that rank , select and access queries and insertion and deletion of a character take

O( logn
log logn(1 + log σ

log logn)) time. For polylog-sized alphabets, the operations are done in optimal

O(log n/ log logn) time. The time complexities for insert and delete are denoted by tu(n, σ).

2.2.3 The XBW data structure

The XBW-transform [31] is a method for compressing and indexing labeled trees. It is an exten-

sion of the Burrows-Wheeler transform [32] used for compressing and indexing strings. Given a

rooted tree with n nodes where each node has a label in the set of size σ, the XBW-transform

converts the tree into a representation of 2n+n log σ bits. The size of the representation matches

the information-theoretic lower bound. We can support tree navigational operations by adding

small-size auxiliary indexes.

Because the XBW is for storing a tree, we cannot use it directly for storing de Bruijn graphs,

which is a cyclic graph. This paper proposes a new compact representation of de Bruijn graphs

of strings.

2.3 Succinct de Bruijn Graphs

Let G be a k-dimensional de Bruijn graph of a string T of length N on alphabet A. Let n

and m be the numbers of nodes and edges of G, respectively. A succinct representation of G

supports the following operations:

• outdegree(v) returns the number of outgoing edges from node v.

• outgoing(v, c) returns the node w pointed to by the outgoing edge of node v with edge

label c. If no such node exists, it returns −1.

• indegree(v) returns the number of incoming edges to node v.

• incoming(v, c) returns the node w = (w1, . . . , wk) such that there is an edge from w and

v and w1 = c. If no such node exists, it returns −1.

• index(s) returns the index i of the node whose label is the string s of length k.

We define A− as any set of size |A| such that A− ∩A = ∅. Let c− denote an element of A−

corresponding to an element c ∈ A. We also define a function u as u(c−) = c for any c− ∈ A−

and u(c) = c for any c ∈ A. We assume that the function is evaluated in constant time.
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2.3.1 The succinct representation

The representation consists of the following components:

• a string W = W [1]W [2] · · ·W [m] where each character is from A ∪A−.

• a string last of length m on the binary alphabet {0, 1}.

• an array F of length σ = |A|.

An example is shown in Figure 2.2.

The string W is defined as follows. Each character W [i] represents the label of an edge of

G. Each edge u → v of G is associated with the node label of u. Those edge labels are sorted

in the lexicographic order of reversals of associated node labels. Ties are broken by edge labels.

Let Node[i] denote the node label for W [i]. This is not explicitly stored.

The string last is defined as last[i] = 1 if i = n or Node[i] is different from Node[i + 1], or

last[i] = 0 otherwise. From this definition, all node labels Node[i] with last[i] = 1 are distinct,

and those indices i have one-to-one correspondence with the nodes of G. Therefore we use an

index i of the strings such that last[i] = 1 to represent a node v. Let n denote the number of

nodes.

The array F stores cumulative frequencies of the last characters of node labels. Namely, for

any c ∈ A, F [c] = |{i | 1 ≤ i ≤ m,C(i) < c}| where C(i) denotes the last character of Node[i].

Because F [$i] = i for i = 0, 1, . . . ,M , we need not store them.

The array F is represented in O(σ logm) bits. If F does not change, we can store it as it

is using a simple array and F [c] is computed in constant time. In a dynamic case that a new

node or edge is inserted to the de Bruijn graph, we have to update F accordingly. By using a

balanced binary tree, F can be maintained in O(log σ) time.

We also use the inverse of F , that is, given i, we need to know the last character c of Node[i].

In a static case, this can be computed in constant time using a rank/select data structure of

O(σ logm) + O(m log logm/ logm) bits [29]. In a dynamic case, it is done in O(log σ) time

using a balanced binary search tree. It can be improved to O( logm
log logm(1 + log σ

log logm)) time using

[30]. This data structure uses O(σ log n) +O(m log logm/ logm) bits. Let tf denote the largest

time complexity of those operations.

A character W [i] is from either A or A−. If W [i] is from A−, it means that there exists

j < i such that W [j] = u(W [i]) and Node[j] and Node[i] have the identical suffix of length k−1.

We can define a one-to-one mapping between indices i of last with last[i] = 1 and indices j of

W with W [j] ∈ A. As stated above, the indices i with last[i] = 1 have one-to-one correspondence

with the nodes of the de Bruijn graph G. Consider indices j with W [j] ∈ A. Let Node′[j]
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Figure 2.2: The succinct representation of the de Bruijn graph in Figure 2.1. Lines between
Node and W show fwd and bwd functions.

denote the concatenation of the length k − 1 suffix of Node[j] and W [j]. For any Node′[j],

there exists i such that Node[i] = Node′[j]. Because of the definition of W , there are no indices

j and j′ (j 6= j′) such that Node′[j] = Node′[j′]. Therefore there is a one-to-one mapping.

Furthermore, the mapping is represented by rank and select queries on W . Let i, j be indices

such that last[i] = 1 and Node[i] = Node′[j]. Let c = C(i) be the last character of Node[i] and

r = rank1(last, i)− rank1(last, F [c]). Then it holds j = selectc(W, r). From j, i is computed by

c = W [i], r = rankc(W, j) and i = select1(last, rank1(last, F [c]) + r). We define bwd(i) = j and

fwd(j) = i. The time complexities of bwd(i) and fwd(j) are O(tf + tb(m, 2σ)).

Our data structure is similar to the XBW data structure [31] in the sense that the last array

in ours is the same as Slast in the XBW. We propose a new encoding scheme for storing labels

of a graph.
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2.3.2 The outdegree and outgoing operations

The outdegree(v) operation is easy to support. We assume that v is the index of last such that

last[v] = 1 and Node[v] is the label of the node. From the definition of last, it is obvious that

outdegree(v) = v − pred1(last, v − 1). The time complexity is O(tb(m, 2)).

The outgoing(v, c) operation is done as follows. For any 1 ≤ i ≤ m, we define R(i) =

[pred1(last, i − 1) + 1, succ1(last, i)], which is the range of W and last that for all j ∈ R(i),

Node[j] are identical. The labels of outgoing edges of node v are stored in W [j] for j ∈ R(v).

Let j be the index such that u(W [j]) = c. We can find j by predc(W, v) and predc−(W, v). Then

x = outgoing(v, c) can be computed by x = fwd(j).

The time complexity for outgoing(v, c) is O(tf + tb(m, 2σ)).

2.3.3 The indegree and incoming operations

Consider to compute indegree(v). Let d = C(v) and x = bwd(v). Then it holds d = W [x] and

the first character of Node[x] is the label of an edge pointing to v. Let y = succd(W,x). Then

all d− between W [x] and W [y] correspond to parents of v. The number of such d− is computed

by rank on W . The time complexity is O(tf + tb(m, 2σ)).

To compute incoming(v, c), we need to obtain the first character of Node[i] such that x ≤
i < y and u(W [i]) = d. The first character of Node[i] is computed by C(bk−1(i)) where bk−1

stands for applying bwd(succ1(last, i)) repeatedly k − 1 times. We perform a binary search to

find the index i such that c = C(bwdk−1(i)). The time complexity is O(k(tf + tb(m, 2σ)) log σ).

2.3.4 The index operation

Recall that index(s) returns the index i of the node whose label is the string s of length k.

Precisely, it returns i such that last[i] = 1 and Node[i] = s. The algorithm for index(s) is similar

to [33]. Let i1 < i2 < · · · < iw be the indices such that last[ij ] = 1 and Node[ij ] and s have

the same suffix of length d (1 ≤ d ≤ k). Let i0 be the smallest index in R(i1). Then for any i

such that i0 ≤ i ≤ iw, Node[i] and s have the same suffix of length d and for other indices this

does not hold. Therefore index(s) can be done by computing ranges [i0, iw] for d = 1, 2, . . . , k.

Let cd denote the d-th character of s (1 ≤ d ≤ k). For d = 1, the range is [F [c1] + 1, F [c1 + 1]].

Given the range [`d, rd] for d, we can compute the range [`d+1, rd+1] for d + 1 as follows. The

end of the range rd+1 is computed by rd+1 = outgoing(rd, cd+1). The beginning of the range `d

is computed by pred1(last, outgoing(succ1(last, `d), cd+1) + 1.

The above algorithm can be simplified. Instead of computing ranges [i0, iw], we can use

[i1, iw]. For d = 1, the range is [succ1(last, F [c1] + 1), F [c1 + 1]]. Given the range [`d, rd] for d,
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the range for d+ 1 is obtained by rd+1 = outgoing(rd, cd+1) and `d+1 = outgoing(`d, cd+1). The

time complexity is O(k(tf + tb(m, 2σ))).

2.3.5 Time and space complexities

We implement the above data structure for the static case using known succinct data structures.

The array F is stored in σ logm bits. The data structure for computing C(i) uses O(σ logm) +

O(m log logm/ logm) bits. The operation time tf is constant. The string last is stored in

m+ o(m) bits so that rank , select , and access takes constant time [29]. The string W is stored

by using [28]. Because the characters of W are from A∪A−∪{$1, . . . , $M}, the alphabet size is

2σ +M . We can reduce the alphabet size to 2σ + 1 by unifying the M terminators $1, . . . , $M

into a character $. We distinguish two terminators, but encode them using the same code.

The string W is stored in m log(2σ +M) +O((σ +M) logm) + o(m log σ) = m+m log σ +

O((σ+M) logm)+o(m log σ) bits, and the time complexities tr, ts, ta are O( log σ
log logm). Therefore

the time complexities for outdegree, indegree, outgoing , incoming , and index are O( log σ
log logn),

O( log σ
log logn), O( log σ

log logn), O( k log2 σ
log logn), O( k log σ

log logn), respectively.

For polylog-size alphabets, outdegree, indegree and outgoing takes constant time, incoming

takes O(k log σ) time, and index takes O(k) time.

2.4 On-line construction

In this section we propose an on-line construction algorithm of the de Bruijn graph of a string.

Here on-line means given the succinct de Bruijn graph G of a string T = T [1] · · ·T [N ], we

change it to the succinct de Bruijn graph G′ of the string T ′ = T [1] · · ·T [N + 1] which is made

by appending a character to T .

As stated above, our succinct representation of G assumes that a character $ is appended

to the end of T . Let p be the position of $ in W . To construct the succinct representation of

G′, we first change W [p] from $ to T [N + 1] and modify other parts if necessary, then insert $

to another position of W . The details are as follows.

Let p be the position of $ in W for the string T = T [1] · · ·T [N ]. If a new character

c = T [N + 1] is appended to the end of T , we change W [p] from $ to T [N + 1]. We have

to maintain the invariant that for all i ∈ R(p), that is, Node[i] = Node[p], W [i] are distinct.

Because before changing W [p] they are distinct, we can check the invariant by finding the

character c = T [N + 1] or c− in W [i] such that i ∈ R(p). This is done by rank and select on W .

If T [N + 1] already exists in the range, let p′ be its position. We delete W [p] and last[p] and

we insert $ in W at position x = fwd(p′). We also insert 0 in last[x] because Node[x] already
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exists. We update p = x and the array F accordingly.

If T [N + 1] does not exist in the range, we change W [p] = $ to either c = T [N + 1] or c−.

To determine c or c−, we first find the nearest occurrence of c to W [p], namely, its position is

j = predc(W,p−1) if it exists (j > 0). We compare Node[j] with Node[p]. If they have the same

suffix of length k − 1, we change W [p] to c−, and otherwise change W [p] to c. We compare

characters of Node[j] and Node[p] one by one using the bwd function. We also compare Node[j2]

with Node[p] where j2 = succc(W,p + 1) if it exists (j2 ≤ m). If they share the length k − 1

suffix, we change c2 = W [j2] to c−2 . This takes O(k(tf + tb(m, 2σ))) time. If the nearest c does

not exist (j = 0), let j = F [c]. The position x to insert $ is computed by x = fwd(j). We insert

0 to last[x] if W [p] or W [j2] has a character in A−, or 1 otherwise. Finally we set p = x and

update the array F .

In total, the update operation takes O(k(tf + tb(m, 2σ))) time. If we use the dynamic

rank/select data structure of [30] for W and last, tb = O( logm
log logm(1 + log σ

log logm)) time. We

also use [30] for computing C(i). Then tf = O( logm
log logm(1 + log σ

log logm)) and the space is

O(σ log n) + O(m log logm/ logm) bits. Because we repeat this update operation N times

for all characters of the input string, the succinct de Bruijn graph can be constructed in

O
(
Nk · logm

log logm(1 + log σ
log logm)

)
time. For polylog-sized alphabets, it becomes O(Nk · logm

log logm).

It is easy to construct the static data structure from the dynamic one. The strings last

and W for the static one are generated by applying access operations to the dynamic one for

i = 1, . . . ,m in O(mtb(m, 2σ)) time. After constructing the static strings, the auxiliary data

structures for computing rank/select are constructed in O(m) time.

2.5 Conclusion

We have proposed a succinct representation of de Bruijn graphs, which can be constructed with

efficient time and space complexities, and in an on-line manner. Therefore they are useful for

large-scale genome assembly.

The succinct de Bruijn graph can be also used for data compression. The PPM (Prediction

by Partial Matching) is a text compression algorithm [34]. In the order-k PPM, a character is

compressed using statistical information that it appears after a string of length k based on a

given probability distribution. We can easily extend our succinct de Bruijn graph to be used

for PPM compression. In addition to the array W , we use another array to store the numbers

of times that each edge is traversed. Then we have enough information for compression. The

succinct de Bruijn graph is used for natural language processing because it stores all n-grams

in a text.

Our future work will be to improve the time complexity for the on-line construc-
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tion algorithm, and to implement the proposed data structure and apply it for assem-

bling large genomes and PPM data compression. A sample source code is available at

http://code.google.com/p/csalib/.
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Preface to Paper II

In the first paper we showed how to remove the relationship to k from the size complexity of a

de Bruijn graph. However, k is still an exceedingly important factor – it determines the edges

in the graph, and the edges of the graph determine the quality of the assembled output.

As there is no best k for some given data, it was common to assemble using multiple k

values, and keep the best result. Soon after, iterative de Bruijn graphs were developed that

would assemble with increasing values of k, using the output of the previous iteration to clean

the input data at each step. This introduced a relationship to k in the time complexity of an

assembly pipeline, whereby up to k graphs must be constructed, but significantly improved the

assembly quality.

Since our approach used dummy edges to ensure that every base in input data would be an

outgoing edge of at least one node, and all of the node strings were discarded, I wondered if we

could augment our data structure to represent de Bruijn graphs of multiple k values.

The next paper introduces the first de Bruijn graph that can change k on the fly, bypassing

the need to construct multiple de Bruijn graphs.

My contribution was the original concept, co-working on designing the algorithms, imple-

menting the data structure, experimenting, writing roughly 25% of the paper, and presenting

it.
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Chapter 3

Variable-Order de Bruijn Graphs

The de Bruijn graph GK of a set of strings S is a key data structure in genome

assembly that represents overlaps between all the K-length substrings of S. Con-

struction and navigation of the graph is a space and time bottleneck in practice

and the main hurdle for assembling large genomes. This problem is compounded

because state-of-the-art assemblers do not build the de Bruijn graph for a single

order (value of K) but for multiple values of K: they build d de Bruijn graphs, each

with a specific order, i.e., GK1 , GK2 , . . . , GKd
. Although, this paradigm increases

the quality of the assembly produce but it greatly increases runtime, because of the

need to construct d graphs instead of one. In this paper, we show how to augment

a succinct de Bruijn graph representation by Bowe et al. (Proc. WABI, 2012) to

support new operations that let us change order on the fly, effectively representing

all de Bruijn graphs up to some maximum order K in a single data structure. Our

experiments show our variable-order de Bruijn graph only modestly increases space

usage, construction time, and navigation time compared to a single order graph.

3.1 Introduction

Accurate assembly of genomes is a fundamental problem in bioinformatics and is vital to several

ambitious scientific projects, including the 10,000 vertebrate genomes (Genome 10K) [23], Ara-

bidopsis variations (1001 genomes) [35], human variations (1000 genomes) [36], and the Human

Microbiome [37] projects. The genome assembly process builds long contiguous DNA sequences,

called contigs, from shorter DNA fragments, called reads, typically 100-150 (DNA) symbols in

length.

In Eulerian sequence assembly [10, 11], a de Bruijn graph is constructed with a vertex v for
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every K-mer (substring of length K) present in an input set of reads, and an edge (v, v′) for every

observed (K + 1)-mer in the reads with K-mer prefix v and K-mer suffix v′. Contigs are then

extracted from this graph. Most state-of-the-art assemblers use this paradigm [12, 13, 14, 15, 16],

and follow the same general outline: extract (K+1)-mers from the reads; construct the de Bruijn

graph on the set of (K + 1)-mers; simplify the graph; and construct the contigs (simple paths

in the graph). The value of K can be, and is often required to be, specified by the user.

Determining an appropriate value of K is important and has a direct impact on assembly

quality. Stated very briefly, when K is too small the resulting graph is complicated by spu-

rious edges and nodes, and when K is too large the graph becomes too sparse and possibly

disconnected.

In an attempt to circumvent the need to choose a single, ideal value of K, SPAdes [12] and

IDBA [13] use a number of different K values. IDBA [13] builds a number of de Bruijn graphs

for each a fixed set of K values. At a given iteration of the algorithm, the de Bruin graph for

the current value of K is built from the reads and the contigs for that graph are constructed,

then all the reads that align to at least one of those contigs are removed from the current set

of reads. In the next iteration the graph is built by converting every edge from the previous

graph to a vertex while treating contigs as edges. SPAdes [12] uses a similar approach but uses

all the reads at each iteration.

3.1.1 Our Contribution

SPAdes [12] and IDBA [13] represent the state-of-the-art for genome assemblers, producing

assemblies of greatly improved quality compared to previous approaches. However, their need

to construct several de Bruijn graphs of different orders over the assembly process makes them

extremely slow on large genomes.

In this paper we address this problem by describing a succinct data structure that, for a

given K, efficiently represents all the de Bruijn graphs for k ≤ K and allows navigation within

and between each graph. In addition also describe an alternative representation which is smaller

but slower.

We have implemented the faster version of our data structure and shown that in practice it

requires around 3.5 times the space of a graph for a single K, and incurs a modest slow down in

construction time and on navigation operations. Compared with the conference version of this

paper [38], we have implemented an external memory construction algorithm, and demonstrated

the scalability of our structure on much larger data sets.
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3.1.2 Related Work

There are several succinct data structures for the de Bruijn graph of a single order (i.e. value of

K). One of the first approaches was introduced by Simpson et al. [15] as part of the development

of the ABySS assembler. Their method stores the graph as a distributed hash table and thus

requires 336 GB to store the graph corresponding to a set of reads from a human genome

(HapMap: NA18507). In 2011, Conway and Bromage [21] reduced space requirements by using

a sparse bitvector (by Okanohara and Sadakane [25]) to represent the (K+1)-mers (the edges),

and used rank and select operations (to be described shortly) to traverse it. As a result, their

representation took 32 GB for the same data set. Minia, by Chikhi and Rizk [22], uses a

Bloom filter to store edges. They traverse the graph by generating all possible outgoing edges

at each node and testing their membership in the Bloom filter. Using this approach, the graph

was reduced to 5.7 GB on the same dataset. Contemporaneously, Bowe, Onodera, Sadakane

and Shibuya [39] developed a different succinct data structure based on the Burrows-Wheeler

transform [32] that requires 2.5 GB. Their representation, which henceforth we refer to as BOSS

from the authors’ initials, is a starting point for our methods and we will discuss it in detail

below. Very recently Chikhi et al. [40] implemented the de Bruijn graph using an FM-index

and minimizers. Their method uses 1.5 GB on the same NA18507 data.

The data structure of Bowe et al. [39] is combined with ideas from IDBA-UD [41] in a

metagenomics assembler called MEGAHIT [42]. In practice MEGAHIT requires more memory

than competing methods but produces significantly better assemblies.

Lastly, Lin and Pevzner [43] recently introduced the manifold de Bruijn graph, which as-

sociates arbitrary substrings with nodes (the substrings are fixed during preprocessing), rather

than K-mers. Lin and Pevzner’s structure is mainly of theoretical interest since it has not yet

been implemented.

3.1.3 Roadmap

Section 3.2 sets notation, and formally lays down the problem and auxiliary data structures

we use. Section 3.3 gives details of the BOSS representation [39]. Sections 3.4 and 3.5 then

describes our variable-order de Bruijn graph structure. In Section 3.6 we report on experiments

comparing the practical performance of our data structure to that of a single-order de Bruijn

graph. Section 5 offers directions for future work.
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3.2 Preliminaries

3.2.1 De Bruijn Graphs

Given an alphabet Σ of σ symbols and a set of strings {S1, S2, . . . , St}, Si ∈ Σ+, the de Bruijn

graph of order K, denoted GSK , or just GK , when the context is clear, is a directed, labelled

graph defined as follows.

Let MK be the set of distinct K-mers (strings of length K) that occur as substrings of

some Si. MK+1 is defined similarly. GK has exactly |MK | nodes and with each node u we

associate a distinct K-mer from MK , denoted label(u). Edges are defined by MK+1: for each

string T ∈MK+1 there is a directed edge, labelled with symbol T [K + 1], from node u to node

v, where label(u) = T [1,K] and label(v) = T [2,K + 1].

3.2.2 Rank and Select

Two basic operations used in almost every succinct and compressed data structure are rank and

select. Given a sequence (string) S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ,

and integers i,j, rankc(S, i) is the number of times that c appears in S[1, i], and selectc(S, j) is

the position of the j-th occurrence of c in S. For a binary string B[1, n], the classic solution for

rank and select [44] is built upon the input sequence, requiring o(n) additional bits. Generally,

rank1 and select1 are considered the default rank and select queries. More advanced solutions

(e.g. [25]) achieve zero-order compression of B, representing it in just nH0(B) + o(n) bits of

space, and supporting rank and select operations in constant time.

3.2.3 Wavelet Trees

To support rank and select on larger alphabet strings, the wavelet tree [45, 46] is a commonly

used data structure that occupies n log σ+ o(n log σ) bits of space and supports rank and select

queries in O(log σ) time. Wavelet trees also support a variety of more complex queries on

the underlying string (see, e.g. [47]), in O(log σ) time, and we will make use of some of this

functionality in Section 3.5.

3.3 BOSS representation

Conceptually, to build the BOSS representation [39] of a Kth-order de Bruijn graph from a set

of (K + 1)-mers, we first add enough dummy (K + 1)-mers starting with $s so that if αa is in

the set, then some (K + 1)-mer ends with α (α a K-mer, a a symbol). We also add enough

dummy (K + 1)-mers ending with $ that if bα is in the set, with α containing no $ symbols,
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1) $ $ $ T
2) CGA C
3) $ TA C
4) GAC G
5) GAC T
6) TAC G
7) GTC G
8) ACG A
9) ACG T

10) TCG A
11) $ $ T A
12) ACT $
13) CGT C
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Figure 3.1: The BOSS matrix (left) and de Bruijn graph (right) for the quadruples CGAC,
GACG, GACT, TACG, GTCG, ACGA, ACGT, TCGA, CGTC.

then some (K+1)-mer starts with α. We then sort the set of (K+1)-mers into the right-to-left

lexicographic order of their first K symbols (with ties broken by the last symbol) to obtain a

matrix. If the ith through jth (K + 1)-mers start with α, then we say node [i, j] in the graph

has label α, with j − i+ 1 outgoing edges labelled with the last symbols of the ith through jth

(K + 1)-mers. If there are n nodes in the graph, then there are at most σn rows in the matrix,

i.e., (K + 1)-mers.

For example, if K = 3 and the matrix is the one from Bowe et al.’s paper, shown in the left

of Fig. 3.1, then the n = 11 nodes are

[1, 1], [2, 2], [3, 3], [4, 5], [6, 6], [7, 7], [8, 9], [10, 10], [11, 11],

[12, 12], [13, 13]

with labels

$$$,CGA, $TA,GAC,TAC,GTC,ACG,TCG, $$T,

ACT,CGT,

respectively. The 3rd-order de Bruijn graph itself is shown in the right of the figure.

Bowe et al. described a number of queries on the graph, all of which can be implemented in

terms of the following three with at most an O(σ)-factor slowdown:
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• forward(v, a) returns the node w reached from v by an edge labelled a, or NULL if there

is no such node;

• backward(v) lists the nodes u with an edge from u to v;

• lastchar(v) returns the last character of v’s label.

In our example, forward([8, 9],A) = [2, 2], backward([2, 2]) = [8, 9], [10, 10] and lastchar([8, 9]) =

G. Since backward always returns at least one node, we can recover any non-dummy node’s

entire label by K calls to lastchar interleaved with K − 1 calls to backward.

3.4 Varying order

If we delete the first column of the matrix in Figure 3.1, the result is almost the BOSS matrix

for a 2nd-order de Bruijn graph whose nodes

[1, 1], [2, 2], [3, 3], [4, 6], [7, 7], [8, 10], [11, 11], [12, 12], [13, 13]

have labels

$$,GA,TA,AC,TC,CG, $T,CT,GT ,

respectively. Similarly, if we delete the first two columns of the original matrix, the result is

almost the BOSS matrix for a 1st-order graph whose nodes

[1, 1], [2, 3], [4, 7], [8, 10], [11, 13]

have labels

$,A,C,G,T ,

respectively. If we delete the first three columns, the result is almost the BOSS graph for the

0th-order graph whose single node [1, 13] has an empty label. Notice we allow the same node to

appear in different graphs, with labels of different lengths. If readers find this confusing, they

can imagine that nodes are triples instead of pairs, with the additional component storing the

label’s length.

The truncated form of a higher order BOSS differs from the BOSS of a lower order in that

some rows are repeated, which could prevent the BOSS representation from working properly.

Suppose that, instead of trying to apply forward, backward and lastchar directly to nodes in the

new graphs, we augment the BOSS representation of the original graph to support the following

three queries:
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• shorter(v, k) returns the node whose label is the last k characters of v’s label;

• longer(v, k) lists nodes whose labels have length k ≤ K and end with v’s label;

• maxlen(v, a) returns some node in the original graph whose label ends with v’s label, and

that has an outgoing edge labelled a, or NULL otherwise.

If we want a node in the original graph whose label ends with v’s label but we do not care

about its outgoing edges, then we write maxlen(v, ∗). Notice shorter and longer are symmetric,

in the sense that if v’s label has length kv and x ∈ longer(v, kv), then shorter(x, kv) = v. In our

example, shorter([4, 5], 2) = [4, 6] while longer([4, 6], 3) = [4, 5], [6, 6] and maxlen([4, 6],G) could

return either [4, 5] or [6, 6], while maxlen([4, 6],T) = [4, 5] and maxlen([4, 6],A) = NULL.

If v is a node in the original graph — e.g., v is returned by maxlen — then we can use the

BOSS implementations of forward, backward and lastchar. Otherwise, if v’s label has length kv

then

forward(v, a) = shorter(forward(maxlen(v, a), a), kv)

lastchar(v) = lastchar(maxlen(v, ∗)) .

Assuming queries can be applied to lists of nodes, we can compute backward(v) as

shorter(backward(maxlen(longer(v, kv + 1), ∗)), kv),

removing any duplicates.

To see why we can compute backward like this, suppose v’s label is αa, so longer(v, kv + 1)

returns a list of all d ≤ σ nodes whose labels have the form bαa. Applying maxlen to this list

returns a second list of d nodes, with labels β1b1αa, . . . , βdbdαa of length K. Applying backward

to this second list returns yet a third list, of all the at most σd nodes whose labels have the

form cβibiα. We need only one node returned calling backward on each node in the second list,

so we can discard all but at most d nodes in the third list. Finally, applying shorter to the third

list returns a fourth list, of all d nodes whose labels have the form biα, each of which may be

repeated at most σ times in the list.

3.5 Implementing shorter, longer and maxlen

The BOSS representation includes a wavelet tree over the last column W of the BOSS matrix,

and a bitvector L of the same length with 1s marking where nodes’ intervals end. In our

example, W = TCCGTGGATAA$C and L = 1110111011111.
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Now we can implement maxlen([i, j], a) in O(log σ) time: we use rank and select on W to

find an occurrence W [r] of a in W [i..j], if there is one; we then use rank and select on L to

find the last bit L[i′ − 1] = 1 with i′ ≤ r and the first bit L[j′] = 1 with j′ ≥ r, and return

[i′, j′]. (If there is no occurrence of 1 strictly before L[r], then we set i′ = 1.) We can implement

maxlen([i, j], ∗) in O(1) time: instead of using rank and select on W to find r, we simply choose

any r between i and j.

In our example, for maxlen([4, 6],G) we first find an occurence W [r] of G in W [4..6], which

could be either W [4] or W [6]; if we choose r = 4 then the last bit L[i′ − 1] = 1 with i′ ≤ r is

L[3] and the first bit L[j′] = 1 with j′ ≥ r is L[5], so we return [i′, j′] = [4, 5]; if we choose r = 6

then the last bit L[i′ − 1] = 1 with i′ ≤ r is L[5] and the first bit L[j′] = 1 with j′ ≥ r is L[6],

so we return [i′, j′] = [6, 6].

To implement shorter and longer, we store a wavelet tree over the sequence L∗ in which L∗[i]

is the length of the longest common suffix of the label of the node in the original graph whose

interval includes i, and the label of the node whose interval includes i+ 1; this takes O(logK)

bits per (K+ 1)-mer in the matrix. To save space, we can omit Ks in L∗, since they correspond

to 0s in L and indicate that i and i+1 are in the interval of the same node in the original graph;

the wavelet tree then takes O(logK) bits per node in the original graph and O(n logK) bits in

total. In our example, L∗ = 0, 1, 0, 3, 2, 1, 0, 3, 2, 0, 1, 1 (and we can omit the 3s to save space).

For shorter([i, j], k), we use the wavelet tree over L∗ to find the largest i′ ≤ i and the smallest

j′ ≥ j with L∗[i′−1], L∗[j′] < k and return [i′, j′], which takesO(logK) time. For longer([i, j], k),

we use the wavelet tree to find the set B = {b : L∗[b] < k ; i − 1 ≤ b ≤ j} — which includes

i − 1 and j — and then, for each consecutive pair (b, b′) in B, we report [b + 1, b′]; this takes

a total of O(|B| logK) time. With these implementations, if the time bounds for forward(v, a),

backward(v) and lastchar(v) are O(tforward), O(tbackward) and O(tlastchar) when v is a node in the

original graph, respectively, then they are O(tforward + log σ + logK), O(σ(tbackward + logK))

and O(tlastchar + 1) when v is not a node in the original graph.

In our example, for shorter([4, 5], 2) we find the largest i′ ≤ 4 and the smallest j′ ≥ 5 with

L∗[i′ − 1], L∗[j′] < 2 — which are 4 and 6, respectively — and return [4, 6]. For longer([4, 6], 3)

we find the set B = {b : L∗[b] < 3 ; 3 ≤ b ≤ 6} = {3, 5, 6} and report [4, 5] and [6, 6].

A smaller but slower approach is not to store L∗ explicitly but to support access to any

cell L∗[i] by finding the nodes in the original graph whose intervals include i and i + 1, then

using backward and lastchar to compute their labels and find the length of their longest common

suffix; this takes a total of O(K(tbackward + tlastchar)) time. To implement shorter and longer, we

store a range-minimum data structure [48] over L∗, which takes 2n+ o(n) bits and returns the

position of the minimum value in a specified substring of L∗ in O(1) time.

For shorter([i, j], k), we use binary search and range-minimum queries to find the largest
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Table 3.1: Input size (top), construction time, memory use, and structure size (middle), and
mean time taken for each navigation operation (lower), for all data sets and both structures.
For variable-order, the multipliers in parenthesis are the increase over the fixed-order results.
Cells marked “N/A” for fixed-order indicate operations not possible with that structure.

Dataset E. coli Human chromosome 14 Human Parrot
DSK Size (GB) 1.52 6.88 26.74 70.28

Number of K-mers 204,098,902 461,445,333 1,794,522,954 4,716,731,435
BOSS Order fixed variable fixed variable fixed variable fixed variable

Construction (mins) 3.93 5.09 (1.30x) 14.37 18.72 (1.30x) 64.45 83.85 (1.30x) 162.58 225.73 (1.39x)
Graph Size (GB) 0.16 0.41 (2.56x) 0.40 1.38 (3.45x) 1.67 5.42 (3.25x) 4.20 13.60 (3.24x)
Peak RAM (GB) 3.16 3.16 (1.00x) 3.22 3.22 (1.00x) 7.65 9.31 (1.22x) 15.30 15.29 (1.00x)
Peak Disk (GB) 12.17 12.17 (1.00x) 56.68 56.68 (1.00x) 248.37 248.37 (1.00x) 562.28 562.28 (1.00x)

forward (µs) 6.00 17.03 (2.84x) 6.24 16.17 (2.59x) 7.07 18.31 (2.59x) 7.77 19.39 (2.50x)
backward (µs) 8.23 59.77 (7.26x) 8.47 55.63 (6.57x) 9.27 62.85 (6.78x) 10.46 63.87 (6.11x)
lastchar (µs) 0.01 0.01 (1.00x) 0.01 0.01 (1.00x) 0.01 0.01 (1.00x) 0.01 0.01 (1.00x)
maxlen (µs) N/A 1.43 N/A 1.56 N/A 2.02 N/A 2.46
maxlenc (µs) N/A 5.41 N/A 5.98 N/A 6.71 N/A 7.49
shorter1 (µs) N/A 14.65 N/A 17.72 N/A 19.54 N/A 19.84
shorter2 (µs) N/A 14.83 N/A 17.79 N/A 19.68 N/A 19.98
shorter4 (µs) N/A 15.11 N/A 18.02 N/A 19.90 N/A 20.20
shorter8 (µs) N/A 15.73 N/A 18.39 N/A 20.29 N/A 20.64
longer1 (µs) N/A 21.53 N/A 18.61 N/A 21.06 N/A 20.57
longer2 (µs) N/A 56.96 N/A 41.08 N/A 49.01 N/A 47.07
longer4 (µs) N/A 503.60 N/A 323.50 N/A 446.51 N/A 428.97
longer8 (µs) N/A 6441.33 N/A 5338.38 N/A 18349.80 N/A 24844.80

i′ ≤ i and the smallest j′ ≥ j with L∗[i′ − 1], L∗[j′] < k and return [i′, j′], which takes

O(K(tbackward + tlastchar) log(nσ)) time. For longer([i, j], k), we recursively split [i, j] into

subintervals with range-minimum queries, at each step using backward and lastchar to check

that the minimum value found is less than k; this takes O(K(tbackward + tlastchar)) time per

node returned. With these implementations, forward(v, a), backward(v) and lastchar(v) take

O(tforward +K(tbackward + tlastchar) log(nσ)), O
(
σK(tbackward + tlastchar) log(nσ) + σ2tbackward

)
and O(tlastchar + 1) time, respectively, when v is not a node in the original graph.

For σ = O(1), our bounds are summarized in the following theorem.

Theorem 3.1. When σ = O(1), we can store a variable-order de Bruijn graph in O(n logK)

bits on top of the BOSS representation, where n is the number of nodes in the Kth-order

de Bruijn graph, and support forward and backward in O(logK) time and lastchar in O(1)

time. We can also use O(n) bits on top of the BOSS representation, at the cost of using

O(K log n/ log log n) time for forward and backward.
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3.6 Experiments

We have implemented the wavelet tree based data structure on top of an efficient implementation

of the BOSS single-K data structure1. Both structures make use of the SDSL-lite software

library2 for succinct data structures, and the the construction code makes use of the STXXL

software library3 for external memory data structures and sorting. The construction code is

also concurrent in many places.The smaller but slower version was not implemented.

Our test machine was a server with a hyperthreaded quad-core 2.93 Ghz Intel Core i7-875K

CPU and 16 GB RAM running Ubuntu Server 14.04. Four Samsung 850 EVO 250GB SSDs

were used for temporary storage for STXXL, with a fifth identical drive used for temporary

storage for SDSL-Lite and final graph output. In order to make use of STXXL’s parallel disk

and asynchronous I/O support4, the SSDs were not in a RAID configuration. The input files

were read from a mechanical 2TB 7200 RPM disk.

To minimize the effect of external factors on our results, each experiment was repeated three

times with the minimum values reported. The swap file was disabled, forcing the operating

system to keep each graph completely in memory, and there were no other users on the server.

3.6.1 Test Data

In order to test the scalability of our approach, we repeated the experiment on readsets of

varying size. Our first data set consists of 27 million paired-end 100 character reads (strings)

from E. coli (substr. K-12). It was obtained from the NCBI Short Read Archive (accession

ERA000206, EMBL-EBI Sequence Read Archive). The total size of this data set is around 2.3

GB compressed on disk (6 GB uncompressed).

The second data set is 36 million 155 character reads from the Human chromosome 14

Illumina reads used in the GAGE benchmark5, totalling 1.3 GB compressed on disk (6 GB

uncompressed).

For our third data set we obtained 1,415 million paired-end 100 character Human genome

reads (SRX01231) that were generated by Illumina Genome Analyzer (GA) IIx platform. The

total size of this data set is 130 GB compressed on disk (470 GB uncompressed).

Our fourth data set is 700 million paired-end 101 character reads, and 131 paired-end 75

character reads from the short insert libraries of the Parrot data (ERA201590) provided in

1The implementation is released under GPLv3 license at http://github.com/cosmo-team/cosmo. As Cosmo
is under continuous development, a static snapshot of the code used in this paper is available at https://

github.com/cosmo-team/cosmo/tree/varord-paper.
2https://github.com/simongog/sdsl-lite
3https://github.com/stxxl/stxxl
4http://stxxl.sourceforge.net/tags/master/design algo sorting.html
5http://gage.cbcb.umd.edu/
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Assemblathon 2[49]. The total size of this data set is 64 GB compressed on disk (245 GB

uncompressed).

We used DSK [50] on each data set to find the unique (K + 1)-mers. It is usual to have

DSK ignore low-frequency (K + 1)-mers (as they may result from sequencing errors). However,

removing such (K + 1)-mers may result in the removal of some k-mers with k ≤ K that would

otherwise have an acceptable frequency. We therefore set the frequency threshold to be as low

as possible: 1 (accepting all (K + 1)-mers) for all data sets except for the Human genome data

set, which was too big for our SSDs during construction, and too big to fit into RAM afterwards.

Hence, for the Human genome data set, the frequency threshold was 2.

A value of K = 27 was chosen for the E. coli data, and K = 55 for the Human data sets

as these values produced good assemblies in previous papers (see, e.g., [40]). K = 55 was also

chosen for the Parrot data set, as it produced a graph that almost filled the main memory. The

resulting file sizes and (K + 1)-mer totals are shown in Table 3.1.

3.6.2 Construction

In order to convert the input DSK data to the format required by BOSS (in the correct or-

der, with dummy edges, as required by both single-K and variable-K structures), we use the

following process, which has been designed with disk I/O in mind.

While reading the DSK input data, we generate and add the reverse complements for each

(K+ 1)-mer, then sort them by their first K symbols (the source nodes). Concurrently, we also

sort another copy of the (K + 1)-mers and their reverse complements by their last K symbols

(the target nodes). Let the resulting tables be A and B, respectively.

Next, we calculate the set differences A − B, comparing only the K-length prefixes to the

K-length suffixes respectively. This tells us which source nodes do not appear as target nodes,

which we prepend with $ signs to create the required incoming dummy edges (K each), and

then sort by the first K symbols. Concurrently, we also calculate B − A to give us the nodes

requiring outgoing dummy edges (to which we append $). Let the resulting tables be I and O,

respectively. At this point B can be deleted.

Finally, we perform a three-way merge (by first K symbols) of A, I, and O, outputting the

rightmost column. In the case of the variable-K graph, we also calculate the L∗ values while

merging. Finally, we construct the necessary succinct indexes from the output.

The time bottleneck in the above process is clearly in sorting the A and I tables. |I| can be

as big as K|A|, but in practice only 1% or fewer nodes require incoming dummies. Our elements

are of size O(K), thus, overall, construction of both data structures takes O
(
K2|A| log |A|

)
time

and O
(
K2|A|

)
space in theory, but in practice takes O(K|A| log |A|) time and O(K|A|) space.
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3.6.3 Results

For each data set, the (K + 1)-mers from DSK (and their reverse complements) were converted

into the BOSS format using the process outlined in 3.6.2, using the external memory vectors

and multithreaded, external memory sort from STXXL. The BOSS structure and L∗ wavelet

tree were then built using indexes from SDSL-lite.

Construction times and structure sizes are shown in Table 3.1. While the variable-K BOSS

structure is around 30% slower to build, and 2.6 to 3.5 times larger than the standard BOSS

structure, this is clearly much faster and less space consuming than building K separate in-

stances of the BOSS structure. The peak RAM and disk usage is the same for both structures

except in the case of the Human genome data set, where the variable-K BOSS structure used

22% more RAM.

To measure navigation functions forward and backward we took the mean time over 20,000

random queries. For the variable-K graph, the k values for each node were chosen randomly

between 8 and K. Results are shown in Table 3.1. The new structure makes the forward oper-

ation 2.5 to 3 times slower for k < K, though we note that for k = K forward time is identical.

The backward operation is much slower in the new structure, but is much less frequently used

than forward in assembly algorithms (for a variation that supports fast backward calculations,

see [51]). We also measured lastchar, which took only nanoseconds on both structures.

To see how fast the order can be changed, we timed shorter and longer for changes of 1, 2,

4, and 8 symbols. Our experiments show that in practice changing order by a single symbol

(shorter1 and longer1) is a cheap operation, taking around the same time as forward. For larger

changes in order, the time for shorter is stable (shorter1, shorter2, shorter4, and shorter8 all

take roughly the same time), whereas longer takes significantly more time as the difference in

order increases. This is because longer must compute a set of nodes, and the size of that set

grows roughly exponentially with the change in order (longer takes around 10µs per node when

averaged over the size of the resulting set).

As expected, maxlen is very fast (it requires a single rank and select operation over a bit

vector), and only slightly affected when finding the specified outgoing edge label (which uses a

rank and select over the BOSS wavelet tree instead).

3.7 Conclusion

We have described a method for efficiently representing multiple de Bruijn graphs of different

orders in a single succinct data structure. As well as the usual graph traversal operations, the

data structure supports new operations which allow the order of the de Bruijn graph to be
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changed on the fly. This data structure has the potential to greatly improve the memory and

space usage of current state-of-the-art assemblers that build the de Bruijn graph for multiple

values of K, and ultimately allow those assemblers to scale to large, eukaryote genomes. The

integration of our new data structure into a real assembler is thus our most pressing avenue for

future work.
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Preface to Paper III

In the previous paper, we demonstrated for the first time that de Bruijn graphs using a BWT-

based representation could be augmented to support additional operations and applications.

At the time, metagenomics was becoming a popular topic, with the Colored de Bruijn Graph,

introduced in 2012, sitting at the center of many metagenomic tools. We wanted to see how we

could extend our idea to create a succinct Colored de Bruijn Graph.

Initially, we took inspiration from Jouni Siren’s 2014 paper Relative FM-Indexes, which

described a way to use an FM-Index for one sequence, S1, to provide a fully functional FM-

index for another sequence, S2, with minimal extra information. This was essentially the same

as our goal for the colored de Bruijn graph, which would capitalise on the fact that most genomes

in a population are very similar.

Siren’s paper described how to implement a relative version of the access and rank functions,

which were essential to implement a succinct de Bruijn graph, but didn’t have a relative select

function. We worked with Siren to describe such a function in the paper Relative Select [52],

with the goal of using it to implement a succinct colored de Bruijn graph. This paper is available

in Appendix A.

However, in parallel, we began experimenting with a simpler translation of the Cortex

Colored de Bruijn Graph using a succinct bit matrix to store color. Cortex simply did bubble

detection, which would not require the relative operations above. As a result, we only needed

to represent colors using a succinct bit matrix. This simple idea yielded practical results, which

are presented in the next paper.

My contribution to Colored de Bruijn Graphs was in identifying the opportunity, designing

the data structure, assisting implementation and experimentation, and roughly 20% of the

writing.
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Chapter 4

Succinct Colored de Bruijn Graphs

Motivation: Iqbal et al. (Nature Genetics, 2012) introduced the colored de Bruijn

graph, a variant of the classic de Bruijn graph, which is aimed at “detecting and

genotyping simple and complex genetic variants in an individual or population”.

Because they are intended to be applied to massive population level data, it is

essential that the graphs be represented efficiently. Unfortunately, current succinct

de Bruijn graph representations are not directly applicable to the colored de Bruijn

graph, which requires additional information to be succinctly encoded as well as

support for non-standard traversal operations.

Results: Our data structure dramatically reduces the amount of memory required

to store and use the colored de Bruijn graph, with some penalty to runtime, allowing

it to be applied in much larger and more ambitious sequence projects than was

previously possible.

Availability: https://github.com/cosmo-team/cosmo/tree/VARI

4.1 Introduction

In the 20 years since it was introduced to bioinformatics by [10], the de Bruijn graph has become

a mainstay of modern genomics, essential to genome assembly [20, 53, 54]. The near ubiquity of

de Bruijn graphs has led to a number of succinct representations, which aim to implement the

graph in small space, while still supporting fast navigation operations. Formally, a de Bruijn

graph constructed for a set of strings (e.g., sequence reads) has a distinct vertex v for every

unique (k− 1)-mer (substring of length k− 1) present in the strings, and a directed edge (u, v)

for every observed k-mer in the strings with (k − 1)-mer prefix u and (k − 1)-mer suffix v. A

contig corresponds to a non-branching path through this graph. See [20] for a more thorough
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explanation of de Bruijn graphs and their use in assembly.

[24] introduced the colored de Bruijn graph, a variant of the classical structure, which is

aimed at “detecting and genotyping simple and complex genetic variants in an individual or

population.” The edge structure of the colored de Bruijn graph is the same as the classic

structure, but now to each vertex ((k − 1)-mer) and edge (k-mer) is associated a list of colors

corresponding to the samples in which the vertex or edge label exists. More specifically, given a

set of n samples, there exists a set C of n colors c1, c2, .., cn where ci corresponds to sample i and

all k-mers and (k− 1)-mers that are contained in sample i are colored with ci. A bubble in this

graph corresponds to an undirected cycle, and is shown to be indicative of biological variation

by [24]. Cortex, the implementation of [24], uses the colored de Bruijn graph to develop a

method of assembling multiple genomes simultaneously, without losing track of the individuals

from which (k − 1)-mers (and k-mers) originated. This graph is derived from either multiple

reference genomes, multiple samples, or a combination of both.

Variant information of an individual or population can be deduced from structure present

in the colored de Bruijn graph and the colors of each k-mer. As implied by [24], the ultimate

intended use of colored de Bruijn graphs is to apply it to massive, population-level sequence data

that is now abundant due to next generation sequencing technology (NGS) and multiplexing.

These technologies have enabled production of sequence data for large populations, which has

led to ambitious sequencing initiatives that aim to study genetic variation for agriculturally

and bio-medically important species. These initiatives include the Genome 10K project that

aims to sequence the genomes of 10,000 vertebrate species [23], the iK5 project [55], the 150

Tomato Genome ReSequencing project [56, 57], and the 1001 Arabidopsis project, a worldwide

initiative to sequence cultivars of Arabidopsis [58]. Hence, the succinct colored de Bruijn graph

is applicable in the context of these projects, in that it can assist in variation discovery within

a species by analyzing all the data in these projects at once.

In addition to species-specific initiatives, scientific and regulatory agencies are showing in-

creased interest in shotgun metagenomic sequences for public health purposes [59, 60], specifi-

cally monitoring for antimicrobial resistance (AMR) [61, 62]. AMR is considered one of the top

public health threats, with fears that the spread of AMR will lead to increased morbitiy and mor-

tality for many bacterial illnesses [63, 64]. AMR occurs when bacteria express genetic elements

that render them impervious to antibiotic treatments. Importantly, these genetic resistance

elements can be exchanged between distantly-related bacteria via multiple genetic mechanisms,

which makes AMR an inherently population-level phenomenon [65]. Shotgun metagenomic se-

quencing allows access to the entire microbial population in a sample (the ”metagenome”),

which is of immense value for tracking and understanding the evolution of resistance elements

within and across diverse bacteria[66]. This metagenomics approach to AMR surveillance has
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been applied in both human and agricultural settings [67, 68], generating hundreds of samples

with terabytes of sequence data for relatively small studies. Given the large number of samples

and large size of sequence data involved in these whole-genome and metagenomic projects, it

is imperative that the colored de Bruijn graph can be stored and traversed in a space- and

time-efficient manner.

Our Contribution We develop an efficient data structure for storage and use of the colored

de Bruijn graph. Compared to Cortex, the implementation of [24], our new data structure

dramatically reduces the amount of memory required to store and use the colored de Bruijn

graph, with some penalty to runtime. We demonstrate this reduction in memory through a

comprehensive set of experiments across the following three datasets: (1) four plant genomes,

(2) 3,765 Escherichia coli assemblies, and (3) 87 sequenced metagenomic samples from com-

mercial beef production facilities. We show our method, which we refer to as Vari (Finnish

for color), has better peak memory usage on all these datasets. Our plant reference genomes

dataset required 101 GB of RAM for Cortex to represent while Vari required only 4 GB.

And our largest two datasets contain too many k-mers and colors for Cortex’s data structure

to represent in the 512 GB of RAM available on our bioinformatics servers. Vari is a novel

generalization of the succinct data structure for classical de Bruijn graphs due to [39], which

is based on the Burrows-Wheeler transform of the sequence reads, and thus, has independent

theoretical importance.

In addition to demonstrating the memory and runtime of Vari, we validate its output using

the E.coli reference genome and a simulated variant.

Related Work As noted above, maintenance and navigation of the de Bruijn graph is a space

and time bottleneck in genome assembly. Space-efficient representations of de Bruijn graphs

have thus been heavily researched in recent years. One of the first approaches was introduced

by [15] as part of the development of the ABySS assembler. Their method stores the graph as

a distributed hash table and thus requires 336 GB to store the graph corresponding to a set of

reads from a human genome (>38x depth paired-end reads from Illumina Genome Analyzer II,

HapMap: NA185071).

[21] reduced space requirements by using a sparse bitvector (by [25]) to represent the k-mers

(the edges), and used rank and select operations (to be described later) to traverse it. As a

result, their representation took 32 GB for the same data set. Minia, by [22], uses a Bloom

filter to store edges. They traverse the graph by generating all possible outgoing edges at each

node and testing their membership in the Bloom filter. Using this approach, the graph was

1https://www.ncbi.nlm.nih.gov/sra/?term=SRA010896
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reduced to 5.7 GB on the same dataset. Contemporaneously, [39] developed a different succinct

data structure based on the Burrows-Wheeler transform [32] that requires 2.5 GB. The data

structure of [39] is combined with ideas from IDBA-UD [41] in a metagenomics assembler called

MEGAHIT [42]. In practice MEGAHIT requires more memory than competing methods but

produces significantly better assemblies. [40] implemented the de Bruijn graph using an FM-

index and minimizers. Their method uses 1.5 GB on the same NA18507 data. [69] released

the Bloom Filter Trie, which is another succinct data structure for the colored de Bruiin graph;

however, we were unable to compare our method against it since it only supports the building

and loading of a colored de Bruijn graph and does not contain operations to support our

experiments. SplitMEM [70] is a related algorithm to create a colored de Bruijn graph from

a set of suffix trees representing the other genomes. Lastly, Lin et al. [71] point out the

similarity between the breakpoint graph, which is traditionally viewed as a data structure to

detect breakpoints between genome rearrangements, and the colored de Bruijn graph.

Roadmap In the next section, we describe our succinct colored de Bruijn graph data struc-

ture, generalizing the stucture for classic de Bruijn graphs presented by [39]. Section 4.3

then elucidates the practical performance of the new data structure, comparing it to Cortex.

Section 5 offers some concluding remarks.

4.2 Methods

Our data structure for colored de Bruijn graphs is based on the succinct representation of

individual de Bruijn graphs introduced by [39]—which we refer to as the BOSS representation

from the authors’ initials—so we start by describing that representation. We note that BOSS is

itself a generalization of FM-indexes [33] obtained by extending the Burrows-Wheeler transform

(BWT) from strings to the multisets of edge-labels of de Bruijn graphs. We then give a general

explanation of how we add colors, and finally give details of our implementation.

4.2.1 BOSS Representation

Consider the de Bruijn graph G = (V,E) for a set of k-mers, with each k-mer a0 · · · ak−1 repre-

senting a directed edge from the node labelled a0 · · · ak−2 to the node labelled a1 · · · ak−1, with

the edge itself labelled ak−1. Define the nodes’ co-lexicographic order to be the lexicographic

order of their reversed labels. Let F be the list of G’s edges sorted co-lexicographically by their

ending nodes, with ties broken co-lexicographically by their starting nodes (or, equivalently, by

their k-mers’ first characters). Let L be the list of G’s edges sorted co-lexicographically by their

starting nodes, with ties broken co-lexicographically by their ending nodes (or, equivalently, by
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their own labels). If two edges e and e′ have the same label, then they have the same relative

order in both lists; otherwise, their relative order in F is the same as their labels’ lexicographic

order. Defining the edge-BWT (EBWT) of G to be the sequence of edge labels sorted according

to the edges’ order in L, so label(L[h]) = EBWT(G)[h] for all h, this means that if e is in position

p in L, then in F it is in position

|{d : d ∈ E, label(d) ≺ label(e)}|+ EBWT(G).ranklabel(e)(p)− 1 ,

where EBWT(G).ranklabel(e)(p) is the number of times label(e) appears in EBWT(G)[1, p]. It

follows that if we have, first, an array storing |{d : d ∈ E, label(d) ≺ c}| for each character c

and, second, a fast rank data structure on EBWT(G) then, given an edge’s position in L, we

can quickly compute its position in F .

Let BF be the bitvector with a 1 marking the position in F of the last incoming edge of

each node, and let BL be the bitvector with a 1 marking the position in L of the last outgoing

edge of each node. Given a character c and the co-lexicographic rank of a node v, we can use

BL to find the interval in L containing v’s outgoing edges, then we can search in EBWT(G)

to find the position of the one e labelled c. We can then find e’s position in F , as described

above. Finally, we can use BF to find the co-lexicographic rank of e’s ending node. With the

appropriate implementations of the data structures, we can store G in (1 + o(1))|E|(lg σ + 2)

bits, where σ is the size of the alphabet (i.e., 4 for DNA), such that when given a character c

and the co-lexicographic rank of a node v, in O(log log σ) time we can find the node reached

from v by following the directed edge labelled c, if such an edge exists.

If we know the range L[i..j] of k-mers whose starting nodes end with a pattern P of length

less than (k − 1), then we can compute the range F [i′..j′] of k-mers whose ending nodes end

with Pc, for any character c, since

i′ = |{d : d ∈ E, label(d) ≺ c}|+ EBWT(G).rankc(i− 1)

j′ = |{d : d ∈ E, label(d) ≺ c}|+ EBWT(G).rankc(j)− 1 .

It follows that, given a node v’s label, we can find the interval in L containing v’s outgoing

edges in O(k log log σ) time, provided there is a directed path to v (not necessarily simple) of

length at least k − 1. In general there is no way, however, to use EBWT(G), BF and BL alone

to recover the labels of nodes with no incoming edges.

To prevent information being lost and to be able to support searching for any node given

its label, Bowe et al. add extra nodes and edges to the graph, such that there is a directed path

of length at least k − 1 to each original node. Each new node’s label is a (k − 1)-mer that is
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prefixed by one or more copies of a special symbol $ not in the alphabet and lexicographically

strictly less than all others. Notice that, when new nodes are added, the node labelled $k−1

is always first in co-lexicographic order and has no incoming edges. Bowe et al. also attach an

extra outgoing edge labelled $, that leads nowhere, to each node with no original outgoing edge.

The edge-BWT and bitvectors for this augmented graph are, together, the BOSS representation

of G.

4.2.2 Adding Color

We cannot represent the colored de Bruijn graph for a multiset G = {G1, . . . , Gt} of individual

de Bruijn graphs satisfactorily by simply representing each individual graph separately, for

two reasons: first, the memory requirements would quickly become impractical and, second, we

should be able to answer efficiently queries such as “which individual graphs contain this edge?”

Therefore, we set G to be the union of the individual graphs and build the BOSS representation

only for G. As long as most of the k-mers are common to most of the individual graphs, the

memory needed to store G is comparable to that need to store an individual graph.

To indicate which edges of G are in which individual graphs, we build and store a two-

dimensional binary array C in which C[i, j] indicates whether the ith edge in G is present in

the jth individual de Bruijn graph (i.e., whether that edge has the jth color). (Recall from

the description above of BOSS that we consider the edges in G to be sorted lexicographically

by the reversed labels of their starting nodes, with ties broken lexicographically by their own

single-character labels.) If the individual graphs are sufficiently similar, then we can compress

C effectively and store it in such a way that we can still access its individual bits quickly and

support fast rank and select queries on the rows. (A select query on the ith row takes an

argument r and returns the index j of the rth individual graph that contains the ith edge in

G.) In the next subsection we give details of some relatively simple compression strategies that

support fast access, rank and select. With these data structures, we can navigate efficiently in

any of the individual graphs and switch between them. For example, we can efficiently check

whether an edge has a particular color (with an access), count the number of colors it has (with

a rank query) or list them (with repeated select queries). We have not yet considered more

sophisticated compression schemes that could still offer fast queries while taking advantage of,

e.g., correlations among the variations or grouping of the individual graphs by subpopulation.

Figure 4.1 shows an example of how we represent a colored de Bruijn graph consisting of

two individual de Bruijn graphs. Suppose we are at node ACG in the graph, which is the co-

lexicographically eighth node. Since the eighth 1 in BL is BL[10] and it is preceded by two 0s,

we see that ACG’s outgoing edges’ labels are in EBWT[8..10], so they are A, C and T. Suppose we
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Figure 4.1: Left: A colored de Bruijn graph consisting of two individual graphs, whose edges
are shown in red and blue. (We can consider all nodes to be present in both graphs, so they
are shown in purple.) Center: The nodes sorted into co-lexicographic order, with each node’s
number of incoming edges shown on its left and the labels of its outgoing edges shown on its
right. The edge labels are shown in red or blue if the edges occur only in the respective graph,
or purple if they occur in both. Right: Our representation of the colored de Bruijn graph: the
edge-BWT and bitvectors for the BOSS representation for the union of the individual graphs,
and the binary array C (shown transposed) whose bits indicate which edges are present in which
individual graphs.

want to follow the outgoing edge e labelled C. We see from C[9, 0..1] (i.e., the tenth column in

CT) that e appears in the second individual graph but not the first one (i.e., it is blue but not

red). There are four edges labelled A in the graph and three Cs in EBWT(G)[0..9], so e is F [6].

(Since edges labelled $ have only one end, they are not included in L or F .) From counting the

1s in BF [0..6], we see that e arrives at the fifth node in co-lexicographic order that has incoming

edges. Since the first node, $$$, has no incoming edges, that means e arrives at the sixth node

in co-lexicographic order, CGC.

4.2.3 Implementation

We now give some details of how our data structure is implemented and constructed in practice.

4.2.3.1 Data Structure

The arsenal of component tools available to succinct data structures designers has grown con-

siderably in recent years [72], with many methods now implemented in libraries. We chose to

make heavy use of the succinct data structures library (SDSL)2 in our implementation.

EBWT(G), the sequence of edge labels, is encoded in a wavelet tree, which allows us to

perform fast rank queries, essential to all our graph navigations. The bitvectors of the wavelet

tree and the B bitvector are stored in the Raman-Raman-Rao (RRR) encoding [29]. The rows of

the color matrix, C, are concatenated (i.e. C is stored in row-major order) and this single long

2https://github.com/simongog/sdsl-lite
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bit string is then compressed. It is either stored with RRR encoding, or alternately Elias-Fano

encoding [25, 73, 74] which supports online construction. Online construction is important for

datasets where C is too large to fit in memory in uncompressed form, such as our metagenomic

sample dataset. These encodings reduce the size of C considerably because we expect rows to

be very sparse and both encodings exploit this sparseness.

4.2.3.2 Construction

In order to convert the input data to the format required by BOSS (that is, in correct sorted

order, including dummy edges and bit vectors), we use the following process. We take care to

ensure only subsets of data are needed in RAM at any one time during construction.

Our construction algorithm takes as input the set of (k-mer, color-set) pairs present in the

input sets of reads, or alternately, k-mer counts for each color which we convert to the former

ourselves. Here, color-set is a bit set indicating which samples the k-mer occurs in. We provide

the option to use the Cortex frontend to generate the (k-mer, color-set). Unfortunately, this

also limits the datasets to those that would run through Cortex. To overcome this, we provide

the option to use a list of KMC2 [75] sorted k-mer counts as input. With this option, the k-

mers from each k-mer count file in native KMC2 binary format are streamed through a priority

queue to produce the union of all k-mer sets; initially one k-mer from each file is tagged with

which file it originated from, and the (k-mer, file ID) pair is added to the queue. The priority

queue ensures the lexicographically smallest k-mer instances across all files can be popped off

the queue consecutively. All of the k-mer count files contributing a particular k-mer value have

their corresponding color recorded as ‘1’ bits in the bit set for that k-mer. Both the k-mer

and the bit set are then appended to vectors which optionally are allocated in external memory

using the STXXL3 library. As each k-mer is popped off the queue, another k-mer is added to

the queue to take the old k-mer’s place (i.e. using the file identified by the popped k-mer’s tag).

This process continues until all files are read in their entirety. By both streaming data from the

source files and streaming it to the external vectors, only a small amount of the data need exist

in memory at a time; the priority queue will only contain the number of samples and only one

row of the color matrix needs to exist in memory before being written out to disk.

After constructing the initial union set of k-mers and their corresponding color rows, BOSS

construction mostly continues as originally described by Bowe et al.. The changes from the

original construction algorithm are that most of the data optionally resides in external memory

and the rows of the color matrix are permuted with their corresponding k-mers as they are

sorted. For each of the k-mers we generate the reverse complement (giving it the same color-set

3http://stxxl.sourceforge.net/
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as its twin). Then, for each k-mer (including the reverse complements), we sort the (k-mer,

color-set) pairs by the first k − 1 symbols (the source node of the edge) to give the F table

(from here, the colors are moved around with rows of F , but otherwise ignored until the final

stage). Independently, we sort the k-mers (without the color-sets) by the last k − 1 symbols

(the destination node of the edge) to give the L table.

With F and L tables computed, we calculate the set difference F − L (comparing only the

(k − 1)-length prefixes and suffixes respectively), which tells us which nodes require incoming

dummy edges. Each such node is then shifted and prepended with $ signs to create the required

incoming dummy edges (k− 1 each). These incoming dummy edges are then sorted by the first

k − 1 symbols. Let this table of sorted dummy edges be D. Note that the set difference L− F
will give the nodes requiring outgoing dummy edges, but these do not require sorting, and so

we can calculate it as is needed in the final stage.

Finally, we perform a three-way merge (by first k − 1 symbols) D with F , and L − F

(calculated on the fly). For each resulting edge, we keep track of runs of equal k − 1 length

prefixes, and k − 2 length suffixes of the source node, which allows us to calculate the BF and

BL bit vectors, respectively. Next, we write the bit vectors, symbols from last column, and

count of the second to last column to a packed file on disk, and the colors to a separate file.

The color file is then either buffered in RAM and RRR encoded or optionally streamed from

disk and then Elias-Fano encoded online (i.e. only the compressed version is ever resident). The

time bottleneck in the above process is clearly in sorting the D and F tables, which are of the

same size, and are made up of elements of size O(k). Thus, overall, construction of the data

structure takes O(k(|F | log |F |)) time.

4.2.3.3 Traversal

We implemented two traversal methods based on those of Cortex with a modification in light

of our intention to apply Vari to metagenomic reads looking for AMR gene presence.

The first, bubble calling, is a simple algorithm to detect sequence variation in genomic data.

It consists of iterating over a set of k-mers in order to find places where bubbles start and

terminate. When combined with the k-mer color (in a colored de Bruijn graph), this enables

identification of places where genomic sequences diverge from one another. The differing region

of the two sequences will form the two arms of a bubble, each colored with only one of the two

sequence’s colors. A bubble is identified when a vertex has two outgoing edges. Each edge is

followed in turn to navigate a non-branching path until reaching a vertex with two incoming

edges. If the terminating vertex is the same for both paths, we call this a bubble. Colors for

the bubbles are determined by looking at the color assignment of the corresponding (k)-mers.
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Our implementation in Vari closely follows the pseudocode given by [24].

Cortex’s traversal algorithms were designed for single isolates. For the beef safety experi-

ments, which use metagenomic samples, we implemented a traversal inspired by Cortex’s path

divergence algorithm. In the original Cortex path divergence algorithm, bubbles are identified

where a user-supplied reference sequence prescribes a walk through a (possibly tangled) sections

of the graph in one arm of a bubble while the alternative arm must be branch free. This branch

free requirement on the second arm could be a problem for metagenomic data. Due to the pres-

ence of tangle inducing homologous genomes and risk of inferring erroneous, chimeric sequences

(which comprise reads from a mix of genomes in the sample), variant detection in metagenomic

data is more complex. In the absence of a simple metagenomic-aware traversal algorithm, we

implemented a variation of the path divergence algorithm which addresses a simpler problem,

primarily for the purpose of measuring performance. This algorithm uses a reference guided

approach and allows us to measure the memory footprint at traversal time as well as the time

savings of not traversing the entire dataset. For this purpose, we focus specifically on the pres-

ence of AMR genes (our reference sequence) rather than variants of those genes; in our derived

algorithm we ignore sample path segments leading away from and returning to the AMR gene

path. This avoids some of the problems with tangles, incomplete coverage, or read errors. Thus

as we traverse the gene path, we simply count the number of samples in each sample group that

color the current edge. We note that keeping C in row major order allows us to compute this

count in constant time as the difference between two rank queries.

4.3 Results

We evaluated Vari performance on three different datasets, described below. For this evalu-

ation, we compare peak memory, which was measured as the maximum resident set size, and

CPU core time, measured as the user+system process time as our metrics. In addition to eval-

uating performance, we also validated Vari by the ability to correctly call bubbles known to

be present in a simulated dataset.

Our software supports a variety of options. It can consume k-mer counts from either Cortex’s

binary files or KMC2. For all experiments, we use the KMC2 flow because using Cortex as a

front end limits designs to only those that would fit in memory with Cortex. Next, our software

can compress the color matrix using either RRR or Elias-Fano encodings. The SDSL-light

implementation allows the color matrix to be compressed in an on-line fashion only using the

Elias-Fano encoding. This allows us to process larger designs, as the uncompressed matrix need

never fit in RAM, and thus we use this option for all experiments. Finally, STXXL (which

holds temporary vectors during data structure construction) allows using internal or external
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Table 4.1: Characteristics of our datasets. The E. coli dataset represents 3,765 strains and
hence only summary statistics for size and GC content are given. Accession numbers for this
dataset as well as download procedure can be found in assembly summary.txt as discussed in
the main text.

.

Name Accession Numbers Aprox. Size GC Content

Plant Species

Rice (NC 008394 to NC 008405) 430 Mbp 43.42%
Tomato (NC 015438 to NC 015449) 950 Mbp 43.42%
Corn (NC 024459 to NC 024468) 2.07 Gbp 35.70%
Arabidopsis (NC 003070 to NC 003076) 135 Mbp 47.4%

E. coli strains N/A
avg=5.1 Mbp
min=2.9 Mbp
max= 7.7 Mbp

50.5%

Beef safety PRJNA292471 N/A 44.3%

memory. Again, we used the more scalable external memory option for all experiments. All

experiments were performed on a machine with AMD Opteron model 6378 processors, having

512 GB of RAM and 64 cores.

4.3.1 Datasets

The three different datasets were chosen in order to test and evaluate the performance of Vari

on a variety of diverse yet realistic data types that are likely to be used as input into Vari. For

the first two datasets which comprise single isolates, we use preassembled genomes. Assembly

serves to try correct sequencing errors which could otherwise falsely be detected as variants.

To this end, Cortex includes its own optional data cleaning operations. However, by using

instead the output of third party assembly software we can compare the colored de Bruijn graph

performance on identical graphs. Characteristics about these datasets are provided in Table

4.1.

Our first performance dataset comprises reference genomes for four different plant

species: Oryza sativa Japonica (rice)4[76], Solanum lycopersicum (tomato)5[56, 57], Zea

mays (corn)6[77], and Arabidopsis thaliana (Arabidopsis)7[78]. This represents a sufficiently

large dataset for comparing the performance of Vari with Cortex.

4http://rice.plantbiology.msu.edu/annotation pseudo current.shtml
5ftp://ftp.solgenomics.net/tomato genome/assembly/build 2.50/SL2.50ch00.fa.tar.gz
6ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF 000005005.1 B73 RefGen v3/

GCF 000005005.1 B73 RefGen v3 genomic.fna.gz
7ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis thaliana/dna/
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Table 4.2: Data structure construction performance measurements. CPU time is user plus
system time as reported by ‘/bin/time’. (Internal) memory is reported in megabytes and is
the maximum resident set size. KMC2 includes both counting and sorting k-mers. Vari-dBG
forms the k-mer union and builds the succinct de Bruijn graph. Vari-C compresses the color
matrix.

Cortex KMC2 Vari-dBG Vari-C

Dataset CPU time Mem. CPU time Mem. CPU time
Int.

Mem.
Ext.
Mem.

CPU time Mem.

Plants 2h 25m 27s 109,579 19m 50s 4,335 1h 34m 37s 5,388 156,504 3m 09s 3,528
E. coli (k=32) N/A N/A 3h 15m 40s 104 9h 30m 11s 126,777 319,328 53m 54s 42,043
E. coli (k=48) N/A N/A 4h 35m 29s 149 10h 47m 46s 128,077 427,460 1h 02m 07s 42,100
E. coli (k=64) N/A N/A 5h 05m 27s 189 11h 21m 08s 127,523 522,576 1h 09m 07s 42,134

Beef safety N/A N/A 34h 04m 46s 11,688 82h 42m 48s 109,091 4,378,840 6h 44m 12s 217,705

Our second performance dataset consists of the set of all 3,765 NCBI GenBank assemblies89

having the organism name field equal to “Escherichia coli” as of March 22, 2016. To evaluate the

effects of varying k-mer size, we ran this dataset with k = 32, 48, 64. The union of all assemblies

contains 158,501,209 k-mers for k=32, 205,938,139 k-mers for k=48, and 251,764,413 k-mers

for k=64. The minimum, maximum, and average assembly lengths are 2,911,360 bp, 7,687,202

bp, and 5,156,744 bp, respectively.

Our third performance dataset consists of 87 metagenomic samples10 taken at various time-

points during the beef production process from eight pens of cattle in two beef production facil-

ities by [67]. Sequentially, these timepoints were feedlot arrival, feedlot exit, slaughter transport

truck, slaughter holding, and slaughter trimmings and sponges. Sample reads were preprocessed

using trimmomatic v0.36 by Bolger et al. [79]. Although further assembly or error correction

would have been possible, it would reduce the biological variation which may be useful for some

queries. Furthermore, building the data structure on uncorrected data better stresses our rep-

resentation method. Samples were then arranged into groups based on the sample timepoints.

The original study used these samples to demonstrate the advantages of shotgun metagenomic

sequencing in tracking the evolution of antimicrobial resistance longitudinally within a complex

environment like beef production; the results suggested that selective pressures occurred within

the feedlot, but that slaughter safety measures drastically reduced both bacterial and AMR lev-

els. In addition to the metagenomic samples, we included 4,062 AMR genes from the previously

mentioned gene databases11. 23 genes in the databases containing IUPAC codes other than the

four bases were filtered out as KMC2 and the succinct de Bruijn graph were configured with a

8ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly summary.txt
9https://www.ncbi.nlm.nih.gov/genome/doc/ftpfaq/

10https://www.ncbi.nlm.nih.gov/bioproject/292471
11https://meg.colostate.edu/MEGaRes/
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four symbol alphabet. Because we have the reference to guide the traversal, all AMR genes were

combined into a single color. By combining AMR genes, the uncompressed color matrix that

exists on disk during sorting and as intermediate file is much smaller (still occupying 1.2 TB),

thus accelerating the permutation during construction and reducing the external memory and

disk space requirements. The union of all samples and genes contains 40,995,794,366 32-mers

and the GC content is 44.3%. While our server has enough RAM to represent a dataset with

twice the memory footprint, this dataset nearly exhuasted the approximately 10 TB of disk

space available when intermediate files were preserved. Thus this dataset is on the order of the

upper limit for Vari in practice.

Finally, for validation purposes, we generated a dataset12 comprising two genomes: (1) E.

coli K-12 substraing MG 1655 reference genome, and (2) a copy of the reference genome to which

we applied various simulated mutations. We simulated mutations by choosing 100 random loci

and either inserting, deleting, or replacing a region of random length ranging from 200-500 bp.

For each mutation locus, we record the flanking regions and the two variants (original reference

and simulated) as a ground truth bubble.

4.3.2 Time and Memory Usage

To measure Vari’s resource use and compare with Cortex by [24] where possible, we con-

structed the colored de Bruijn graph for the plant dataset, the E. coli assembly dataset and

the beef safety dataset. Construction time and memory is detailed in Table 4.2. We performed

bubble calling on the first two and recorded peak memory usage and runtime. Direct resource

comparison with Cortex was only possible on the smallest dataset, as the largest two have

too many k-mers and colors to fit in memory on our machine with Cortex. Based on the

data structure defined in Cortex’s source as well as the supplementry information provided

by Iqbal et al., it would have required more than 3 TB of RAM and more than 18 TB of RAM

for its hash table entries alone, respectively.

In order to test query performance characteristics, various experiments were performed on

all three performance datasets described in the previous subsection. Datasets varied in the

number of k-mers in the graph from 158 million to over 40 billion, the number of colors, from

4 to 3,765, and degree of homology from disperate plants to the single E. coli species. This

diversity shows the space savings achievable when the population is largely homologous, as is

the case with the E. coli dataset, where the graph component is relatively small, in contrast

to the plant dataset, where the graph component is relatively large. As can be seen in Table

4.3, where directly comparable, Vari used an order of magnitude less than the peak memory

12https://github.com/cosmo-team/cosmo/tree/VARI/experiments/ecoli validation
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Table 4.3: Comparison between the peak memory and time usage required to store all the k-
mers and run bubble calling on the data in Cortex and Vari. The peak memory is given in
megabytes (MB) or gigabytes (GB). The running time is reported in seconds (s), minutes (m),
and hours (h). The succinct de Bruijn graph and compressed color matrix components of the
memory footprint are listed in parenthesis as sdBG and sC, respectively.

Cortex Vari

Dataset No. of k-mers Colors Memory Time Memory Time

Plants (k=32) 1,709,427,823 4 100.93 GB 2h 18m 3.53 GB (sdBG=0.89 GB, sC=1.95 GB) 32h 39m
E. coli (k=32) 158,501,209 3,765 N/A N/A 42.17 GB (sdBG=0.09 GB, sC=38.35 GB) 3h 57m
E. coli (k=48) 205,938,139 3,765 N/A N/A 42.26 GB (sdBG=0.11 GB, sC=38.42 GB) 4h 38m
E. coli (k=64) 251,764,413 3,765 N/A N/A 42.32 GB (sdBG=0.13 GB, sC=38.45 GB) 5h 28m
Beef safety (k=32) 40,995,794,366 88 N/A N/A 245.54 GB (sdBG=27.08 GB, sC=200.34 GB) N/A

that Cortex required but required greater running time. This memory and time trade-off is

important in larger population level data. This is highlighted by our largest two datasets which

could not be run with Cortex. Hence, lowering the memory usage in exchange for higher

running time deserves merit in contexts where there is data from large populations.

4.3.3 Validation on Simulated E. coli

We ran the implementations of bubble calling from both Vari and Cortex, using k=32 on

the simulated E. coli dataset. Both tools reported the same set of 223 bubbles, 55 of which

were in the ground truth set. This ensures our software faithfully implements the original data

handling capabilities of Cortex. For biological implications of colored de Bruijn graph variant

calls and in particular with parameter choices such as k see Iqbal et al. [24].

4.3.4 Observations on Beef Safety Dataset

While the beef safety dataset was primarily used for measuring the scalability of Vari and

to determine if representing a dataset of this type and size was possible, we used Vari to

additionally make observations about the presence of AMR genes in the beef production dataset.

As previously described, during our path divergence derived algorithm, we compute a count of

how many k-mers in each AMR gene are found across all samples within a sample group. This

algorithm need only traverse the AMR genes, so despite the size of the overall dataset, it only

took 20 minutes to load and access the necessary parts of the data structure. In contrast, if

bubble calling were to run at the same rate for this dataset as for the E. coli assembly dataset,

it would take 3,001 hours to complete, thus suggesting value in a targeted inquiry approach on

datasets of this size.

Since longer genes have more k-mers, the counts are likely to be larger, as are those from
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larger sample groups. To make these counts comparable, we normalize by both gene length and

sample group size. We can then examine the number of genes having a disproportionately large

(> 3 std. dev. above mean) shared k-mer count for each gene and sample group combination.

The number of such genes with disproportionately large normalized counts in each sample group

were: feedlot arrival - 304, feedlot exit - 93, transport truck - 230, slaughter holding - 16, and

slaughter trimmings and sponges - 0. This observation supports the conclusion of [67], namely,

that antimicrobial interventions during slaughter were effective in reducing AMR gene presence

in the trimmings and sponge samples, which represent the finished beef products just before

they are shipped to retail outlets for human consumption.

4.4 Conclusion

We presented Vari, which is an implementation of a succinct colored de Bruijn graph that

significantly reduces the amount of memory required to store and use the colored de Bruijn

graph. In addition to the memory savings, we validated our approach using E coli. Moreover,

we introduced the use of colored de Bruijn graph for accurately identifying the presence of

AMR genes within metagenomic samples, which is an important advance as public health

officials increasingly move towards a metagenomic sequence-based approach for surveillance

and identification of resistant bacteria [61, 62, 64]. Possible nontrivial extensions to our work

include (1) (1) using multi-threading to speed up the bubble calling, (2) compressing the color

array C more effectively by taking advantage of correlations among the variations, and (3)

applying more sophisticated approaches to metagenomic data.
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Chapter 5

Conclusion

In this thesis, we proposed the first Burrows–Wheeler based representation of de Bruijn graphs,

a linchpin in bioinformatic pipelines. This reduced the memory requirements by an order of

magnitude, enabling basic DNA assembly to be performed on a laptop.

While there are competing representations with similar memory benefits, the ordered na-

ture of the Burrows–Wheeler based representation enabled augmentation using additional data

structures to support more powerful operations.

In the case of the variable order de Bruijn graph, by including the longest common suffix

array, stored using a wavelet tree, we can quickly change the value of k on the fly. This is the

first data structure to support this, and can be used to improve genome assembly quality, while

taking only 3.5 times the space and 30% longer to construct than a single de Bruijn graph, and

avoiding building multiple de Bruijn graphs like previous approaches would take.

In the case of the Colored de Bruijn graph, we utilised a compressed bit matrix to store

color information in the same order as the edges. This allowed us to implement the algorithms

described in [24] in almost two orders of magnitude less space, ultimately enabling this analysis

for datasets that were previously unsupported. Finally, we demonstrated its practical use by

applying it to locating bacterial outbreaks in food supply chains.

After publishing these papers, some open questions remained:

1. The Variable-Order de Bruijn Graph described how to change the value of k on the fly.

This could in theory support any procedure utilising multiple k values during traversal, but

the exact methodology was left unanswered. Using the Variable-Order de Bruijn graph,

how should order change operations be applied to improve the quality of the assembly?

How much could the quality be improved?

2. A method using Range Minimum Query data structures to support varying k was also
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suggested, which would take a performance hit, yet reduce the size. However, experi-

mental results were only given for the implementation using a Wavelet Tree. It would be

interesting to see how they compare in practice.

3. The Colored de Bruijn Graph becomes more powerful when built with data from larger

populations. This is good news, as sequence data is being produced at an increasing rate.

However, as the graph is a static data structure, it must be rebuilt using the original

k-mers, and new k-mers, whenever new sequence data is added. There is ongoing research

into merging Burrows–Wheeler transforms – could this be utilised to allow updating a

Colored de Bruijn Graph?

4. Our color matrix implementation was rudimentary, using only a general purpose succinct

bit vector data structure. It should be possible to improve the compression by using an

approach specifically suited to the task.

Since the papers in this thesis were published, there has been a number of papers published

which further explored the power of the Burrows–Wheeler based representation, including ad-

dressing the above questions.

Belazzougui et al. were able to improve the complexity of variable-order backward traversal,

which was the slowest of our proposed operations [80]. This would allow it to be practical to

store only one of the reverse complements of the DNA, in order to reduce the memory it takes,

while taking a smaller speed penalty.

Dı́az-Domı́nguez et al. describe a variant of the variable-order graph, called the hidden-

order de Bruijn graph, replacing the LCP array with a succinct cartesian tree, which reduced

the memory requirements, and allowed them to develop a scheme to extract remarkably long

contigs, which are more informative than what would be available in a simple fixed-k de Bruijn

graph [81]. Later, Dı́az-Domı́nguez et al. further augmented this to simulate a complete DNA

string graph (briefly described in the introduction of this thesis), unlocking substantially longer

contigs, still [82].

Muggli et al. presented a merging algorithm, enabling two Colored de Bruijn graphs to

be combined into one – we could now re-use existing graphs while gathering new sequence

data [83]. This was shortly after improved on by Egidi et al., who reduced the working space

by half [84]. There has also been research into improving the compression scheme for the color

matrix [85, 86].

There have also been a number of papers which augment the succinct de Bruijn graph with

other additional information, such as long range distance information [87] and optical maps [88],

providing more positional information to better disambiguate contigs.
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Other research has included making the de Bruijn graph fully dynamic [89, 90], and applying

colored de Bruijn graphs to real-time search of increasingly large bacterial and viral genomic

databases [91]. A review is also available in [92].

By introducing a simple, customizable, succinct representation of the all-important de Bruijn

graph, we are now able to better analyze increasingly large datasets. This has the potential

to make research much easier, which will deepen our understanding of DNA, allowing us to

develop novel treatments for illnesses.
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Appendix A

Relative Select

Motivated by the problem of storing coloured de Bruijn graphs, we show how, if we

can already support fast select queries on one string, then we can store a little extra

information and support fairly fast select queries on a similar string.

A.1 Introduction

Many compressed data structures for strings rely on three fundamental queries: access, rank

and select. The query S.access(i) on a string S returns its ith character; the query S.ranka(i)

returns the number of occurrences of character a in the prefix of S of length i; and the query

S.selecta(j) returns the position of the jth leftmost occurrence of a in S. Suppose we have

a data structure supporting these queries on a string S1 and we want another data structure

supporting them on a similar string S2. It is not difficult to store S2 in small space and support

access to it via access to S1. For example, we can find a longest common subsequence of S1 and

S2, store two bitvectors with 1s marking their characters not in that subsequence, and store

the characters marked in S2. The total number of 1s in the two bitvectors is at most twice

the standard edit distance d between S1 and S2 (i.e., the number of single-character insertions,

deletions and substitutions needed to change one into the other) so we can store them in O(d)

space and support rank and select on them using O(log log(|S1|+ |S2|)) time using a sparse-

bitvector implementation [93]. To access S2[i], we check whether it appears in the common

subsequence: if so, we use rank and select queries on the bitvectors to find the corresponding

character in S1, which we access; if not, we find S2[i]’s rank among characters marked in S2

and look it up.

Last year, when describing their relative FM-index data structure, Belazzougui et

al. [94] showed how to store O(d) extra words and support any rank query on S2 using
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O(log log(|S1|+ |S2|)) time on top of a rank query on S1. In this paper we show how to store

O(d) extra words and support any select query on S2 using O(log log(|S1|+ |S2|)) time on top

of a select query on S1. We call this relative select and we expect it to be useful when storing

compressed data structures for navigating in coloured de Bruijn graphs [24].

Belazzougui el al. were interested in saving space when storing FM-indexes [33] for many

genomes from the same species. An FM-index for a genome is essentially just a data structure

supporting access and rank on the Burrows-Wheeler Transform [32] (BWT) of that genome.

The BWT sorts the characters of a string into the lexicographic order of the suffixes that

immediately follow them. The edit distance between two genomes from the same species tends

to be small relative to their lengths and in practice the edit distance between their BWTs also

tends to be small. Therefore, if we store the FM-index for one genome normally, we can use

Belazzougui et al.’s result to save space when storing FM-indexes for other genomes from the

same species (at the cost of higher query times).

It is possible to support nearly all the functionality of an FM-index without using select

queries on the underlying BWT, so Belazzougui et al. did not consider relative select. When the

FM-index is used in a compressed suffix tree, however, select queries are needed for computing

suffix links and for certain other operations. Our interest in relative select comes from Bowe

et al.’s [39] (see also [38]) compressed representation of de Bruijn graphs — which is based on

something like an FM-index and uses select queries to find nodes’ predecessors, and which we call

the BOSS representation for the authors’ initials — and the possibility of extending it to coloured

de Bruijn graphs. Our plan for future work is to view a coloured de Bruijn graph as a union

of normal de Bruijn graphs, and relatively compress the BOSS representations of those graphs.

Due to space constraints, we provide a brief summary of the BOSS representation and coloured

de Bruijn graphs as an appendix. In Section A.2 we describe how we implement relative select,

and in Section A.3 we show experimentally that our implementation is practical. For simplicity

and because we are interested mainly in working with DNA, we assume throughout that the size

of the alphabet is constant, and we work in the word-RAM model with Ω(log(|S1| + |S2|))-bit

words.

A.2 Design

Although our implementation of relative select is made up of steps that are individually very

simple, the overall effect might be confusing. To mitigate this, we break our presentation into

pieces: first, we consider the case when S2 is a subsequence of S1; then, we consider the case

when S2 is a supersequence of S1; and finally, we combine our solutions for these special cases

to obtain a general solution. We close this section with a small example.
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Lemma A.1. Given a select data structure for a string S1, and a subsequence S2 of S1, we can

store O(|S1| − |S2|) extra words and support any select query on S2 using O(log log |S1|) time

on top of a select query on S1.

Proof. We store a bitvector B[1..|S1|] with 1s marking the characters of S1 that do not appear

in S2. For each distinct character x, we store a bitvector Bx[1..occ(x, S1)], where occ(x, S1) is

the number of occurrences of x in S1, with 1s marking the occurrences of x in S1 that do not

appear in S2. We use the same sparse-bitvector implementation as in Section A.1, so this takes

a total of O(|S1| − |S2|) extra words and lets us compute

S2.selectx(i) = B.rank0(S1.selectx(Bx.select0(i)))

using O(log log |S1|) time on top of a select query on S1. To see why this equality holds, consider

that Bx.select0(i) returns the rank in S1 of the ith x that appears in S2; S1.selectx(Bx.select0(i))

returns the position of that x in S1; and B.rank0(S1.selectx(Bx.select0(i))) returns the position

of that x in S2.

Lemma A.2. Given a select data structure for a string S1, and a supersequence S2 of S1, we

can store O(|S2| − |S1|) extra words and support any select query on S2 using O(log log |S2|)
time on top of a select query on S1.

Proof. We store a bitvector B[1..|S2|] with 1s marking the characters of S2 that do not appear

in S1, and a select data structure for the subsequence D of S2 consisting of those marked

characters. For each distinct character x, we store a bitvector Bx[1..occ(x, S2)] with 1s marking

the occurrences of x in S2 that do not appear in S1. We use a sparse-bitvector implementation

again, so this takes a total of O(|S2| − |S1|) extra words and lets us compute

S2.selectx(i) =

{
B.select0(S1.selectx(Bx.rank0(i))) if Bx[i] = 0,

B.select1(D.selectx(Bx.rank1(i))) if Bx[i] = 1.

using O(log log |S2|) time on top of a select query on S1. To see why this equality holds,

suppose the ith x in S2 also appears in S1, so Bx[i] = 0. Consider that Bx.rank0(i) returns

the rank of that x in S1; S1.selectx(Bx.rank0(i)) returns the position of that x in S1; and

B.select0(S1.selectx(Bx.rank0(i))) returns the position of that x in S2. Now suppose the ith x in

S2 does not appear in S1, so Bx[i] = 1. Consider that Bx.rank1(i) returns the rank of that x inD;

D.selectx(Bx.rank1(i)) returns the position of that x in D; and B.select1(D.selectx(Bx.rank1(i)))

returns the position of that x in S2.
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Theorem A.1. Given a select data structure for a string S1, and another string S2, we can

store O(d) extra words, where d is the edit distance between S1 and S2, and support any select

query on S2 using O(log log(|S1|+ |S2|)) time on top of a select query on S1.

Proof. Consider a sequence of d single-character insertions, deletions and substitutions that

turns S1 into S2. Let C be the common subsequence of S1 and S2 consisting of characters left

unchanged by these d edits (or a longer common subsequence if we can find one). By Lemma A.1,

we can store O(d) extra words and support any select query on C using O(log log |S1|) time on

top of a select query on S1. By Lemma A.2, we can then store O(d) extra words and support

any select query on S2 using O(log log |S2|) time on top of a select query on C. Therefore, we

can store O(d) extra words on top of the select data structure for S1 and support any select

query on S2 using O(log log(|S1|+ |S2|)) time on top of a select query on S1.

For example, consider the strings S1 = TCTGCGTAAAAGGTGC and S2 = TGCTCGTAAAACGCG

(the BWTs of GCACTTAGAGGTCAGT and GCACTAGACGTCAGT, respectively, from the run-

ning example in Belazzougui et al.’s paper). Their edit distance is 5 and their longest common

subsequence is C = TCTCGTAAAAGG. If we already have a select data structure for S1 and we

want one for S2, we first add support for relative select on C by the bitvectors B,BA, . . . , BT,

shown below; then we add support for relative select on S2 by storing bitvectors B′, B′A, . . . , B
′
T,

also shown below, and a select data structure for D = GCC. We note that if we have a relative

FM-index for S2 with respect to S1, then it already includes B, B′ and D.

B[1..16] = 0001000000010101 B′[1..15] = 010000000001010

BA[1..4] = 0000 B′A[1..4] = 0000

BC[1..3] = 001 B′C[1..4] = 0011

BG[1..5] = 10100 B′G[1..4] = 1000

BT[1..4] = 0001 B′T[1..3] = 000

To compute S2.selectC(4), for instance, we check B′C[4] and see it is 1, meaning the fourth C in

S2 does not appear in C. Since B′C.rank1(4) = 2, it is the second C in D. Since D.selectC(2) = 3,

it is the third character in D. Finally, since B′1.select1(3) = 14, it is the 14th character in S2,

meaning S2.selectC(4) = 14.

To compute S2.selectG(3), we check B′G[3] and see it is 0, meaning the third G in S2 also

appears in C. Since B′G.rank0(3) = 2, it is the second G in C. Since

C.selectG(2) = B.rank0(S1.selectG(BG.select0(2))) = 11 ,

it is the 11th character in C. Finally, since B′1.select0(11) = 13, it is the 13th character in S2,

meaning S2.selectG(3) = 13.
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Table A.1: Average query times for 100 million random LF and Ψ queries on NA12878 stored
relative to the human reference genome, with and without chromosome Y.

FM-index Relative FM-index + Relative Select

ChrY space LF Ψ space LF Ψ total space Ψ

yes 1090 MB 0.55 µs 1.22 µs 218 MB 3.95 µs 48.0 µs 382 MB 6.11 µs
no 1090 MB 0.55 µs 1.11 µs 181 MB 3.84 µs 44.8 µs 331 MB 6.12 µs

A.3 Experiments

We augmented our implementation of the Relative FM-index with the new select structure.1

The implementation is written in C++ and based on the Succinct Data Structures Library

2.0 [93]. We used g++ version 4.8.1 to compile the code, and ran the experiments on a system

with two 16-core AMD Opteron 6378 processors and Linux kernel 2.6.32. We used a single core

for the query tests.

As our reference sequence, we used the 1000 Genomes Project’s version of the GRCh37

human reference genome, both with (3.096 Gbp) and without (3.036 Gbp) chromosome Y. For

a target sequence, we chose the maternal haplotypes of the 1000 Genomes Project’s individual

NA12878 (3.036 Gbp) [95]. We built a plain FM-index for the reference sequences and the target

sequence, as well as relative FM-indexes for the target sequence relative to both references and

with and without structures for relative select; the lengths of the common subsequences used

were 2.992 Gbp and 2.991 Gbp, respectively. In all cases, we used plain bitvectors in the wavelet

trees and entropy-compressed bitvectors [29] for marking the common subsequences.

To test the performance of relative select, we ran 100 million random Ψ(i) = BWT.selectc(i−
C[c]) queries on the BWT of the target sequence, using a plain FM-index and Relative FM-

indexes with and without relative select. (Character c is the ith character in the BWT in sorted

order, while C[c] is the number of occurrences of characters smaller than c in the BWT.) The im-

plementation of Ψ in the Relative FM-index without relative select was based on binary search-

ing with rank queries. As a comparison, we also ran LF(i) = C[BWT[i]] + BWT.rankBWT[i](i)

queries. Table A.1 shows the results: the relative FM-indexes without relative select are each

about a fifth the size of the normal FM-indexes but rank queries are about seven times slower

and select queries are about forty times slower; the relative FM-indexes with relative select are

about a third the size of the normal FM-indexes but select queries are only about five times

slower (rank queries are unaffected).

1https://github.com/jltsiren/relative-fm
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A.4 Appendix: de Bruijn Graphs

In biology, the (edge-centric) kth-order de Bruijn graph for a set of strings (e.g., DNA reads) is

the graph whose nodes are those strings’ k-mers (substrings of length k), with a directed edge

(u, v) from u to v if at least one of the strings contains a substring of length k + 1 with u as a

prefix and v as a suffix. We label (u, v) with the last character of v. Almost all state-of-the-art

DNA assemblers build contigs via Eulerian assembly [10, 11] on de Bruijn graphs, making their

space- and time-efficient representation an important problem in bioinformatics.

Bowe et al. add certain dummy nodes and edges, sort the edges into the right-to-left lexico-

graphic order of the nodes they leave, and take the last column of the matrix whose rows are

the edges in sorted order (or, equivalently, take the last character in each edge). The result is

like a BWT in which edges correspond to characters and nodes correspond to the substrings

containing all their out-edges’ characters. For example, for the string TACGTCGACGACT and

k = 3, Bowe et al. derive the edge-BWT TCCGTGGATAA$C. (This example is from [38].) With

some auxiliary data structures, we can use rank and select queries on this edge-BWT to navigate

forward and backward in the graph.

For the two strings TACGTCGACGACT and TACGACGCGACT and k = 3, the de Bruijn

graph is 2 nodes larger than the graphs for strings separately. If we store whether each edge

occurs in the first string, the second string, or both, then the result is a coloured de Bruijn

graph. Coloured de Bruijn graphs were introduced by Iqbal et al. [24] for detecting variations

between individuals’ genomes, and are now also used in other areas of genomics. We can view

the coloured de Bruijn graph as the union of each graph consisting of edges of the same colour.

In a future paper we will show how to combine the BOSS representations of the individual

de Bruijn graphs to obtain a representation of the coloured de Bruijn graph, and also how to

relatively compress the auxiliary data structures for the BOSS representations of the individual

graphs.

We can use Belazzougui et al.’s result to relatively compress the edge-BWTs of the individ-

ual graphs while still supporting rank over them. For example, the edge-BWTs for TACGTC-

GACGACT and TACGACGCGACT with k = 3 are TCCGTGGATAA$C and TCCGTGGACAA$,

respectively. They are so close — edit distance 2 — because most of the strings’ 4-tuples are

common to both and, thus, most of their de Bruijn graphs’ edges are common to both. We

note that, for reasonable values of k, most of the (k+1)-mers in genomes from the same species

should also be common to most of the genomes. In this paper we showed how to support relative

select on similar strings, which we will eventually need to navigate backward across edges in

our representation of coloured de Bruijn graphs.
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Appendix B

Succinct de Bruijn Graphs Blog Post

This post will give a brief explanation of a Succinct implementation for storing de Bruijn

graphs,1 which is recent (and continuing) work I have been doing with Sadakane.

Using our new structure, we have squeezed a graph for a human genome (which took around

300 GB of memory if using previous representations) down into 2.5 GB. In addition, the con-

struction method allows much of the work to be done on disk. Your computer might not have

300 GB of RAM, but you might have 2.5 GB of RAM and a hard disk.

I have given a talk about this a few times, so I’ve been itching to write it up as a blog post

(if only to shamelessly plug my blog at conferences). However, since it is a lowly blog post, I

won’t give attention to the gory details, nor provide any experimental results. But this post is

merely to communicate the approach. Feel free to check out our conference paper [39], and stay

tuned for the journal paper.

In this blog post, I will first give an introduction to de Bruijn graphs (Section B.1) and

how they are used in DNA assembly (Section B.2). Then I will briefly explain some previous

implementations (Section B.3) before reaching the main topic of this post: our new succinct

representation (Section B.4). The explanation first explains some preliminaries, such as how

we were inspired by the Burrows Wheeler Transform (Section B.4.1), and what rank and select

are (Section B.4.3), which are required to understand the construction method (Section B.4.2),

and traversal interface (Section B.4.4) respectively.

For those following along at home, I have implemented a demo version in Python.2 It

doesn’t use efficient implementations of rank and select, nor provide any compression – it is

merely meant to demonstrate the key ideas with (hopefully) readable high level code. An

optimised version will be made available at some point.

1http://en.wikipedia.org/wiki/De Bruijn graph
2https://github.com/alexbowe/debby/blob/0.1.1/debby.py
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Okay, here we go. . .

B.1 De Bruijn Graphs

De Bruijn graphs are a beautifully simple, yet useful combinatoric object which I challenge you

not to lose sleep over.

Since their discovery around 1946, they have been used in a variety of applications, such as

encryption, psychology, chess and even card tricks. Quite recently they have become a popular

data structure for DNA assembly of short read data.

They are defined as a directed graph, where each node u represents a fixed-length string

(say, of length k, and an edge exists from u to v iff they overlap by k − 1 symbols. That is,

u[2..k] = v[1..k − 1].

Let’s make this concrete with a diagram:

Doesn’t this just feel good to look at? Now tilt your head and look at it this way: it

is essentially a Finite State Machine3 with additional bounded memory of the last k visited

states, if you added a few more states to allow for incomplete input at the start. For example,

if X represents blank input, from a starting state XXX we might have the transition chain:

XXX→ XX1→ X10→ 101 (which is already a node in the graph). Put this way, it is easy to

3https://en.wikipedia.org/wiki/Finite-state machine
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see that the k previous edges define the current node. This perspective will make things easier

to understand later, I promise.

Still with me? Good. Then let’s also consider that if one node is defined by a k-length

string, then a pair of nodes (i.e. an edge) can be identified by a k + 1 length string, since they

overlap and differ by 1 symbol. This will also be important later.

And of course, this can be extended to larger alphabet sizes than binary (say, 4. . . ).

B.2 DNA Assembly

First suggested in 2001 by Pevzner et al. [11], we can use de Bruijn graphs to represent a

network of overlapping short read data.

The long and short of it (heh heh) is that a DNA molecule is currently too difficult to

sequence (that is, read it into a computer) in its entirety. Special methods must be used so we

can sequence parts of the molecule, and hand off the putting-back-together process (assembly)

to an algorithm.

One current popular sequencing method is shotgun sequencing, which clones the genome

a bunch of times, then randomly breaks each clone into short segments. If we can sequence

the short segments, then the fact that we randomly cut up the clones should lead us to have

overlapping reads. Of course it is a bit more complicated than this in reality, but this is the

essence of it.

We then move a sliding window over each read, outputing overlapping k-mers (the k-length

strings), which we use to create our de Bruijn graph.

About now mathematicians among you might raise your hand to tell me “that may not

technically yield a de Bruijn graph”. That’s correct – in Bioinformatics the term “de Bruijn

graph” is overloaded to mean a subgraph. Even though genomes are long strings, most genomes
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won’t have every single k-mer present, and there is usually repeated regions. This means our

data will be sparse.

Consider the following contrived example. Take the sequence TACGACGTCGACT. If we

set k = 3, our k-mers will be TAC, ACG, CGA, and so on. We would end up with this de

Bruijn graph:

After we construct the graph from the reads, assembly becomes finding the “best” contiguous

regions. The jury is still out on what the best method is (or what “best” even means); the

point of this post isn’t about assembly, but our implementation of the data structure and how

it provides all required navigation options to implement any traversal method. I recommend

reading this primer from Nature4 if you want to get deeper into this.

Even though this is only a de Bruijn subgraph, these things still grow pretty big. It is worth-

while considering how to handle this scalability issue, if only to reduce hardware requirements

of sequencing (thus proliferating personal genomics), and potentially improve traversal speed

(due to better memory locality). Increased efficiency might also enable richer multiple-genomic

analysis.

B.3 Previous Representations

One of the first approaches to this was to scale “horizontally”. Simpson et al. [15] introduced

ABySS in 2009. The graph for reads from a human genome (HapMap: NA18507),5 which used

a distributed hash table, reached 336 GB.

In 2011, Conway and Bromage [21] instead approached this problem from a “vertical” scaling

perspective (that is, scaling to make better use of a single system’s resources), by using a sparse

4http://www.cs.ucdavis.edu/~gusfield/cs225w12/deBruijn.pdf
5ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA010/SRA010896/SRX016231/
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bitvector (by Okanohara and Sadakane [25]) to represent the (k + 1)-mers (the edges), and

used rank and select (to be described shortly in Section B.4.3) to traverse it. As a result, their

representation took 32 GB for the same data set.

Minia, by Cikhi and Rizk (2012) [22], proposed yet another approach by using a bloom filter6

(with additional structure to avoid false positive edges that would affect the assembly). They

traverse by generating possible edges and testing for it in the bloom filter. Using this approach,

the graph was reduced to 5.7 GB.

B.4 Our Succinct Representation

As stated, we were able to represent the same graph in 2.5 GB (after some further compression

techniques, which I will save for a future post).

The key insight is that the edges define overlapping node labels. This is similar to that of

Conway and Bromage, although they have some redundancy, since some nodes are represented

more times than necessary.

We further exploit the mutual information7 of edges by taking inspiration from the Burrows

Wheeler Transform [32].

B.4.1 Inspiration from the Burrows Wheeler Transform

The Burrows Wheeler Transform [32] is a reversible string permutation that can be searched

directly and has the admirable quality of having long strings of repeated characters (great for

compression). The easiest way to calculate the BWT of a string is to sort each symbol by

their prefixes in colex order (that is, alphabetic order of the reverse of the string, not reverse

alphabetic!) More information can be found on Wikipedia8 and this Dr. Dobbs9 article.

The XBW is a generalisation of the BWT that applies to rooted, labeled trees [31]. The idea

is that instead of taking all suffixes, we sort all paths from the root to each node, and support

tree navigation (since it isn’t a linearly shaped string) with auxiliary bit vectors indicating

which edges are leaves, and which are the last edges (of their siblings) of internal nodes.

I won’t go into detail, but in the next section you should be able to see glimpses of these

two ideas.

6http://en.wikipedia.org/wiki/Bloom filter
7https://en.wikipedia.org/wiki/Mutual information
8http://en.wikipedia.org/wiki/Burrows-Wheeler transform
9http://marknelson.us/1996/09/01/bwt/
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B.4.2 Construction

The simplest construction method10 is to take every < node, edge > pair and sort them based

on the reverse of the node label (colex order), removing duplicates11. We also padding to ensure

every node has an incoming and an outgoing edge. This maintains the fact that a node is defined

by its previous k edges. An example can be seen below:

You may have spotted that we have flagged some edges with a minus symbol. This is to

disambiguate identically labelled incoming edges – edges that exit separate nodes, but have the

same symbol, and thus enter the same node. In the example below, the nodes ACG and CGA

both have two incoming edges.

10The paper also describes an online construction method (where we can update by appending), and an iterative
method that builds the k-dimensional de Bruijn graph from an existing (k–1)-dimensional de Bruijn graph.

11We currently use an external merge sort, but intend to optimise as this is where Minia beats us time-wise.
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Notice that each outgoing edge is stored contiguously? We include a bit vector to represent

whether an edge is the last edge exiting a node. This means that each node will have a sequence

of zero-or-more 0-bits, followed by a single 1-bit.

Since a 1 in the L vector identifies a unique node, we can use this vector (and select, explained

shortly in Section B.4.3) to index nodes, whereas standard array indexing points to edges.

Finally, instead of storing the node labels we just need to store the final column of the node

labels. Since the node labels are sorted, it is equivalent to store an array of first positions:

In total we have a bitvector L, an array of flagged edge labels W , and a position array F of

size σ (the alphabet size). Respectively, these take m bits, m log 2σ = 3m bits (for DNA), and

σ logm = o(m) bits12, given m edges – a bit over 4 bits per edge. Using appropriate structures

12This is “little o” notation, which may be unfamiliar to some people. Intuitively it means “grows much slower
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(not detailed) we can compress this further, to around 3 bits per edge.

B.4.3 Rank and Select

Rank and select are the bread and butter of succinct data structures, because so many operations

can be implemented using them alone. rankc(i) returns the number of occurences of symbol c

on the closed range [0, i], whereas selectc(i) returns the position of the ith occurence of symbol

c.

They are kind of like inverse functions, although rank() is not injective13, so cannot have a

true inverse. For this reason, if you want to find the position of the left-nearest c, you would

have to use select() in orchestra with rank() (a common pattern).

Speaking of patterns of use, it may also help to keep this in mind: rank is for counting,

and select is for searching, or can be thought of as an indirect addressing technique (such as

addressing a node using the L array). Two rank queries can count over a range, whereas two

select queries can find a range. A rank and a select query can find a range where either a start

point or end point are fixed.

Rank, select and standard array access can all be done in O(1) time when σ = polylog(N),14

if represent a bitvector using the structure described by Raman, Raman and Rao in 2007 [29]

(which I explained in an earlier blog post15), and for larger alphabets use the index described

by Ferragina, Manzini, Makinen, and Navarro in 2006 [28]. In our implementation, we use

modified versions to get it down to 3 bits per edge.

than”, and is stricter than big O. A formal definition can be found on Wikipedia, https://en.wikipedia.org/
wiki/Big O notation#Little-o notation

13http://en.wikipedia.org/wiki/Injective function
14http://stackoverflow.com/questions/1801135/what-is-the-meaning-of-o-polylogn-in-particular-

how-is-polylogn-defined
15https://alexbowe.com/rrr
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B.4.4 Interface Overview

While it might not be obvious, these three arrays provides support for a full suite of navigation

operations. An overview is given in these tables, which link to the implementation details that

follow.

First, to navigate each of the edges, we define two internal functions (using rank and select

calls, see Section B.4.3):

Operation Description Complexity

forward(i) Return index of the last edge of the node pointed to by edge i O(1)

backward(i) Return index of the first edge that points to the node that the edge at i

exits.

O(1)

Using these two functions, we can implement the less confusing public interface below, which

operate on node indexes:

Operation Description Complexity

outdegree(v) Return number of outgoing edges from node v O(1)

outgoing(v, c) From node v, follow the edge labeled by symbol c. O(1)

label(v) Return (string) label of node v. O(k)

indegree(v) Return number of incoming edges to node v. O(1)

incoming(v, c) Return predecessor node starting with symbol c, that has an edge to

node v.

O(k log σ)

The details of the above functions are given in the following sections.

B.4.5 Forward

In order to support the public interface, we create for ourselves a simpler way to work with

edges: the complementing forward and backward functions.

Recall that all node labels are defined by predecessor edges, then we have represented each

edge in two different places: the F array (which is equivalent to the last column of the “Node”

array), and the edge array W . It follows that, since it is sorted, the node labels maintain the

same relative order as the edge labels. This can be seen in the following figure:
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Note that the number of Cs in the last column of Node is different from the number of Cs

in W , because the first C in W points to two edges. For this reason, we ignore the first edge

from node GAC (although it doesn’t affect the relative order). In fact, we ignore any edge that

doesnt have L[i] == 1.

Then, following an edge is simply finding the corresponding relatively positioned node! All

it takes is some creative counting, using rank and select (Section B.4.3), as pictured below:

First we access W [i] to find the edge label, then calculate rankC up to row to gives us the

relative ordering of our edges with this label. Let’s call this relative index r. In our example
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we are following the 2nd C-labeled edge.

To find the 2nd occurence of C in F , first we need to know where the first occurence is. We

can use F to find that. Then we can select to the 2nd one, using the last array. Because the

last array is binary only, this requires us to count how many 1s there are before the run of Cs

(using rank), then adding 2 to land us at the 2nd C.

The W access, rank over W , rank and select over L, accessing F , and the addition are all

done in O(1) time, so forward also takes O(1) time.

B.4.6 Backward

Backward is very similar to forward, but calculated in a different order: we find the relative

index of the node label first, and use that to find the corresponding edge (which may not be

the only edge to point to this node, but we define it to point to the first one, that is one that

isn’t flagged with a minus).

We can find our relative index of the node label by issuing two rank queries instead, and

using select on W to find the first incoming edge.

For similar reasons to Forward this is O(1).

B.4.7 Outdegree

This is an easy one. This function accepts a node (not edge!) index v, and returns the number

of outgoing edges from that node. Why did I say this was easy? Well, remember that all our
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outgoing edges from the same node are contiguous in our data structure. See the diagrams

below, paying attention to the node ACG.

By definition (since nodes are unique and sorted), this will always be the case. We also

defined our so-called “last” vector L to have a 0 for every edge from a given node, except the

last edge. All we need to do is count how many 0s there are, then add 1. Put another way,

we need to measure the distance between 1s (since the previous 1 will belong to the previous

node). Since we know the node index, we can use select for that!

In the above example, we are querying the outdegree of node 6 (the 7th node due to zero-

basing). First we select to find the position of the 7th 1, which gives us the last edge of that

node. Then we simply subtract the position of the previous node (node 5, the 6th node):

select(7)− select(6) = 8− 6 = 2. Boom.

Select queries can be answered in O(1) time, so outdegree is also O(1).

B.4.8 Outgoing

Outgoing(v, c) returns the target node after traversing edge c from node v, which might not

exist. The hard part is finding the correct edge index to follow; after that we can conveniently

use the forward() function we defined earlier.

To ease the explanation, consider a simple bit vector 00110100. To count how many 1s there

are up to and including the 7th position, we would use rank. The answer is 3, but at this stage

we still don’t know the position of the 3rd 1 (we can’t see the bitvector). In general, it may or

may not be in the 7th position. We could scan backwards, or we could just use select(3) to find

the position (since this returns the first position i that has rank(i) = 3).

So essentially we can count how many of those edges there are before the node we are

interested in, then use select to find the position. If the position is inside this nodes range (of
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contiguous edges), then we follow it.

We complicated things a bit by separating our edges into flagged and non-flagged, so we

may have to issue two of these queries (for the minus flags). The flagging is useful later in

Indegree (Section B.4.10).

In the next example, our nonflagged edge doesn’t fall in our nodes range, so we make a

second query. It is possible that this one will return a positive result, but in the example it

doesn’t. By that stage though, we can respond with by returning −1 to signal that the edge

doesn’t exist.

forward() is defined to move us to the last edge of the resulting node, so the value in last

will be 1. Hence, we can use rank to convert our edge index into a node index before returning

it.

This is a constant number of calls to O(1) functions, so outgoing is also O(1).
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B.4.9 Label

At some point (e.g. during traversal) we are probably going to want to print the node labels

out. Let’s work out how to do that.

Remember, we aren’t storing the node labels explicitly. The F array will come in handy:

We can use the position of our node (found using select) as a reverse lookup into F . This

can be done in constant time with a sparse bit vector, or in logarithmic time using binary

search, or we can use a linear scan if our alphabet is small. In any case, lets assume it is O(1)

time, although a linear scan might be faster in practice (fewer function calls may yield a lower

constant coefficient).

In the above example, we select to node 6 (the 7th 1 in last), which gives us the last edge

index (any edge will do, but the last one is the easiest to find). This happens to be row 8, so

from F we know that all the last symbols between on the open range [7, 10) are G.

Then we just use bwd() on the current edge to find an edge that pointed to this node, then

rinse and repeat k times.
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B.4.10 Indegree

In a similar manner to outdegree (Section B.4.7), all we need to do is count the edges that point

to the current node label. Take for example the graph:

We can easily find the first incoming edge by using backward(). To count the remaining

edges our minus flags come in handy; In the W array, the next G (non-flagged) belongs to a

different node, because we defined W to have minus flags if the source node has the same k− 1

suffix (or, if same-labeled edges also share the same target node).
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From here it is simple enough to do a linear scan (or even use select) until the next non-

flagged edge; the maximum distance it could be is σ2. For larger alphabets, a more efficient

method is to use rank instead:

First we find the position of the next non-flagged G, which gives us the end point of our

range (we already have the start point from the first rank). Then we use rank to calculate how

many G – there are to the end position, and subtract the initial rank value from this, giving us

how many G – occur within the range.

This is once again a constant number of O(1) function calls, which means indegree() is also

O(1).

B.4.11 Incoming

Incoming, which returns the predecessor node that begins with the provided symbol, is probably

the most difficult operation to implement. However, it does use approaches similar to the

previous functions.
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Consider this: from indegree(), we already know how to count each of the predecessor nodes.

We can access these nodes if we instead use select to iterate over the predecessor nodes, rather

than using rank to simply count. Then, to disambiguate them by first character, we can use

label().

A linear scan over the predecessors in this fashion would work, but for large alphabets we

can use binary search (with a select call before each array access) to support this in O(k log σ)

time; log σ for the binary search, where each access is a O(1) select, followed by O(k) to compute

the label.

This is demonstrated in the example below:

B.5 Conclusion

In conclusion, by using memory more efficiently, hopefully the cost of genome seqeuencing can

be reduced, both proliferating the technology, but also giving way to more advanced population

analysis. To that end, we have described a novel approach to representing de Bruijn graphs

efficiently, while supporting a full suite of navigation operations quickly. Much of the (BWT-

inspired) construction can be done efficiently on disk, but we intend to improve this soon to

compete with Minia.

The total space is a theoretical m(2 + log σ + o(1)) bits in general, or 4m + o(m) bits for

DNA, given m edges. Using specially modified indexes we can lower this to around 3 bits per

edge.

I apologize that an efficient implementation isn’t available, nor have I provided experimental

results. But if you found this post interesting you can get your hands dirty with the Python

implementation16 I have provided. The results and efficient implementation are on their way.

16https://github.com/alexbowe/debby/blob/0.1.1/debby.py
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