
Bidirectional Programming for

Parsing and Retentive Printing

by

Zirun Zhu

Dissertation

submitted to the Department of Informatics

in partial ful�lment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

March 2020

iii

Abstract

Language designers usually need to implement parsers and printers for doing the conversion
between program text and abstract syntax trees (ASTs), which are commonly found and constantly
used in application scenarios such as resugaring, code refactoring, and observing the results of
compiler optimisation. It is desirable that when producing a new piece of program text from a
slightly modi�ed (e.g. optimised) AST which corresponds to some original piece of program text, the
printer can preserve the layouts, comments, and syntactic sugar contained in the original program
text as much as possible. In order to do so, the common practice is to enrich ASTs with whatever
information that is needed (such as comments), so that the printer can use the enriched information
to produce better-printed results. However, the approach violates the design philosophy of ASTs,
for ASTs should be abstract and compact and contain only essential information.

This thesis reconciles the compactness of ASTs and printing quality by proposing retentive

printing, which takes not only an AST but also a piece of original program text, so that there is no
need to enrich ASTs with unnecessary information (already in the original program text). We �rst
propose a domain-speci�c language BiYacc, whose program denotes a consistent (i.e. well-behaved)
pair of parser and retentive printer for an unambiguous context-free grammar. BiYacc is based on
the theory of bidirectional transformations (BX) and in particular (state-based asymmetric) lenses,
which helps to guarantee by construction that the generated parser and retentive printer pairs are
always well-behaved. We show that BiYacc facilitates many tasks such as resugaring, language
evolution, and simple refactoring.

However, using only unambiguous grammars can be rather inconvenient in practice, as am-
biguous grammars (with disambiguation directives) are often considered more natural and human-
friendly than their unambiguous versions. Therefore, we make the �rst move to support ambiguous
grammars and tackle grammatical ambiguity in the bidirectional setting by proposing an approach
based on generalised parsing and disambiguation �lters, which produce all parse results and (try
to) select the only desired one in the parsing direction; the �lters are carefully bidirectionalised so

iv

that they also work in the printing direction and will not break the well-behavedness between the
pair of parser and retentive printer. We extend BiYacc with this functionality and design accessible
directives for specifying production rules’ associativity and (relative) priorities, which give rise to
compositional and commutative �lters.

Next, we explore the possibility of precise information retention and formalise the statement
‘the printer can preserve the layouts, comments, and syntactic sugar contained in the original
program text as much as possible’. We propose an extension of the (state-based asymmetric) lens
framework, called retentive lenses, which satisfy a new Retentiveness law guaranteeing that if
parts of an AST are unchanged, then the corresponding parts of the original program text are
retained in the newly printed program text as well. We verify our idea by introducing a (new) DSL
for writing tree transformations (especially between CSTs and ASTs). Retentive lenses are not
state-based, and its integration into BiYacc is left to our future work.

v

Acknowledgements

Many people have played a crucial role in helping me pursue my PhD; without their support, all
the tranquillity, mirth, and academic attainments shall have been wiped out.

I would like to express my gratitude to my (former) supervisor Zhenjiang Hu. Whilst being
very busy, Zhenjiang always has a great passion for research and is willing to have a discussion
with students. I remembered that there were more than ten times that our discussion started in
the afternoon and lasted over twenty o’clock, during my �rst year here. Zhenjiang is generous
to students: he supported me in attending summer schools and doing collaborative research
abroad. Before I graduate, Zhenjiang suggests job opportunities as well. In the last year of my
PhD, Zhenjiang moved to Peking University; consequently, there has been an adjustment to my
PhD supervision system. Therefore, here, I would like to thank my current principal supervisor
Ichiro Hasuo, my supervisor Hiroyuki Kato, my sub-supervisor Kanae Tsushima, and Makoto
Tatsuta and Taro Sekiyama—the other �ve of the defence committee—and also Masato Takeichi,
who showed much interest in my research and we have had several useful discussions. They spare
time to listen to my presentation, read my thesis, and give advice on my research.

I am grateful to my collaborators, Hsiang-Shang Ko, Zhixuan Yang, João Saraiva, Pedro Martins,
Yongzhe Zhang, and Meng Wang, for the in-depth discussions and helpful suggestions. Hsiang-
Shang is a an all-rounder, a postdoctoral researcher here. Not only is he good at theorem proving,
writing, and coding, but also willing to spell out complex and abstract theorems to students; he
assists me from beginning to end and is like my de facto supervisor. Zhixuan is a �rst-year student;
however, he quickly involved himself in research and helped us simplify our theoretical framework
much. At the early stage in our research, João and Pedro brought up initial ideas and suggested
suitable case studies; after that, João also provided guidance on parsing techniques. Yongzhe
contributed to some parts of the �rst version of the implementation. Meng had invited me to
have intensive discussions at the University of Kent and sometimes in an international conference;
his suggestions were later implemented and proved to be useful. Unarguably, without them, the

vi

research will not progress as smoothly as it had been.
I love my parents and con�dants, those overseas and the ones nearby, who make my life full

of comfort and happiness; we can always have a chat and share our views and feelings, freely, on
whatever in the world. In particular, my mother supports me in pursuing a PhD abroad at the very
beginning and o�ers help through the years unceasingly. (For some reasons, I would not mention
their names, which will de�nitely constitute a rather long list, here.) Finally, I must thank the
world I live in, where most areas are at peace, at least on the surface, and therefore brings good
atmosphere and su�cient fund for PhD students, like me, conducting research into unimportant
and unnecessary projects. Such research will never come into blossom otherwise.

vii

Contents

1 Introduction 1

1.1 Organisation and Contributions . 5

2 Parsing and Printing as Lenses 7

2.1 Bidirectional Transformations and Lenses . 7
2.2 Parsing and Printing as Lenses . 9
2.3 Rationale of Our Approach . 12

3 A DSL for Simultaneously Specifying Consistent Parser and Printer Pairs 17

3.1 A First Look at BiYacc . 18
3.2 Design Details . 23
3.3 Case Study: The Tiger Language . 34
3.4 Related Work . 42

4 Bidirectionalised Filters for Handling Grammatical Ambiguity 47

4.1 Problems with Ambiguous Grammars . 49
4.2 Generalised Parsing and Bidirectionalised Filters 50
4.3 The New BiYacc System for Ambiguous Grammars 53
4.4 Bi-Filter Directives . 59
4.5 Manually Written Bi-Filters . 70
4.6 Case Study Using Ambiguous Tiger . 71
4.7 Related Work . 74
4.8 Discussions . 76

5 Retentive Printing 79

5.1 Retentive Lenses for Trees . 81

viii Contents

5.2 A DSL for Retentive Tree Transformation . 89
5.3 Edit Operations and Link Maintenance . 101
5.4 Case Studies . 103
5.5 Related Work . 111
5.6 Discussions . 115

6 Conclusions 121

Bibliography 123

Appendix A Proofs about Retentive Lenses 131

A.1 Composability . 131
A.2 Retentiveness of the DSL . 134

Appendix B Refactoring Operations as Edit Operation Sequences 143

1

1
Introduction

The same thing may have di�erent representations. For instance, the notion of 17 can be described
by 17 in Arabic numerals, by seventeen in English1, and by 十七 in both Chinese and Japanese.
For the general public using di�erent languages to communicate with each other, we develop
translators (such as Google Translate) to do the conversion—here, the conversion for the notion of
17. As for programming languages, the situation is more or less the same: Programming languages
have both concrete syntax speci�cations and abstract syntax speci�cations, and we need a pair of
parser and printer2 as the ‘translator’ to do the conversion between them. As Figure 1.1 shows, a
piece of program text, while conforming to a concrete syntax speci�cation, is a �at string that can
be easily edited by the programmer. The parser extracts the tree structure from such a string to a
concrete syntax tree (CST), and converts it to an abstract syntax tree (AST), which is a structured
and simpli�ed representation and is easier for a compiler back end to manipulate—for example, to
e�ciently produce code in machine languages. On the other hand, a printer converts an AST back
to a piece of program text that can be understood by the user without much e�ort.

1Here we consider writing systems.
2People may call a printer an unparser or a serialiser. But anyway, in this thesis, we will stick to the terminology

printer that is commonly used in functional programming communities.

2 Chapter 1. Introduction

/* A program to solve the
8 queens puzzle.*/

let
var N := 8

type intArray = array of int

var row := intArray [N] of 0
var col := intArray [N] of 0
var diag1 := ...

TLetExp [TVarDec "N" True Nothing (
TIntExp 8),TTypeDec (TTyDec ("
intArray",TArrayTy "int")),TVarDec "
row" True Nothing (TArrayExp "
intArray" (TVarExp (TSimpleVar "N"))
(TIntExp 0)),TVarDec "col" True
Nothing (TArrayExp "intArray" (
TVarExp (TSimpleVar "N")) (TIntExp 0)
),TVarDec "diag1" True Nothing (
TArrayExp "intArray" ...

Figure 1.1: Human-readable program text and its corresponding compact abstract syntax tree. (The abstract
syntax tree does not contain unnecessary information such as comments and layouts.)

The conversions between program text and ASTs are commonly found and constantly used in
applications such as

• resugaring (Pombrio and Krishnamurthi, 2014, 2015), where a piece of program text is parsed
to its AST and evaluated (one step), and then the evaluation result is printed to new program
text for the user’s ease of observation;

• code refactoring (Fowler and Beck, 1999), where instead of directly modifying a piece of
program text, most refactoring tools will �rst parse the program text into its AST, perform
code refactoring on the AST, and regenerate new program text;

• observing (compiler) optimisations (Hennessy, 1982), where a piece of program text is parsed
to an AST and optimised, and the user understands optimisation techniques by observing
the new program text printed from the optimised AST;

• bug reporting (Traver, 2010), where a piece of program text is parsed to its AST to be checked
but error messages should be displayed for the program text;.

Let us look at a concrete example (about observing optimisations) in Figure 1.2: The original
program text is an arithmetic expression, containing a negation, a comment, and parentheses (one
pair of which is redundant). It is �rst parsed to an AST (supposing that addition is left-associative)
where the negation is desugared to a subtraction, parentheses are implicitly represented by the
tree structure, and the comment is thrown away. Suppose that the AST is optimised by replacing
Add (Num 1) (Num 1) with a constant Num 2. The user may want to observe the optimisation made
by the compiler, but the AST is an internal representation not exposed to the user, so a natural

3

Original program text:

-a {- a is the variable denoting . . . -}
* (1 + 1 + (a))

Abstract syntax tree:

Mul (Sub (Num 0) (Var "a"))
(Add (Add (Num 1) (Num 1)) (Var "a"))

Optimised abstract syntax tree:

Mul (Sub (Num 0) (Var "a"))
(Add (Num 2) (Var "a"))

Printed result from a conventional printer:

(0 - a) * (2 + a)

Printed result from our retentive printer:

-a {- a is the variable denoting . . . -}
* (2 + (a))

Figure 1.2: Comparison between conventional printing and retentive printing. (The abstract syntax tree is
represented in Haskell’s syntax. The reader unfamiliar with Haskell may view the AST in this way: the
root of the AST is a node named Mul, which has two subtrees named Sub and Add respectively.)

4 Chapter 1. Introduction

idea is to propagate the change on the AST back to the program text to make it easy for the user
to check where the changes are. With a conventional printer, however, the printed result will
probably mislead the user into thinking that in addition to replacing 1 + 1 with 2, the negation
-a is also replaced by a subtraction (0 - a) by the compiler; also, the loss of comment makes it
harder for the user to compare the updated and original versions of the text. Obviously, this is
because the AST does not contain enough information such as the comments and constructs for
the syntactic sugar negation (in Figure 1.2).

To make the printed results better, existing approaches choose to enrich ASTs with whatever
information that is needed, such as comments and layouts for code refactoring, tags (marking from
which CST construct an AST construct is parsed) for resugaring, and line and column numbers for
bug reporting. The choice of enriching ASTs indeed leads to a problem, as it violates the design
philosophy of ASTs—ASTs should be abstract, compact, and contain only essential information.
Moreover, this is far from economical, because the compiler of a language has already de�ned a
(relatively clean) AST, but each application still de�nes its own version.

This thesis reconciles the compactness of ASTs and printing quality by proposing retentive

printing. Di�erent from a conventional printer, a retentive printer takes a piece of program text
and an AST that is usually slightly modi�ed from the AST corresponding to the original program
text; it produces a new piece of program text in a way that not only considers all the modi�cation
to the AST but also tries to preserve the information in the original program text (that is not in
the AST). In this way, the syntactic sugar, comments, and layouts in the unmodi�ed parts of the
program text can still be preserved (even using abstract and compact ASTs), which can be seen
clearly from the result of using our retentive printer on the above arithmetic expression example in
Figure 1.2. It is worth noting that retentive printing is a generalisation of the conventional notion
of printing, because a retentive printer can accept an AST and an empty piece of program text, in
which case it will behave just like a conventional printer, producing a new piece of program text
depending on the AST only.

Furthermore, to ease the work of developing compiler front ends, we design domain-speci�c
languages (DSLs) in which a single speci�cation compiles to a pair of parser and retentive printer
that are consistent with each other—for instance, the program text printed from an AST should
be parsed to the same tree. The uni�cation is indeed helpful, for it overcomes two drawbacks of
designing a parser and a printer separately for a language: (i) It takes extra e�ort to guarantee that
the two closely related components are consistent with each other. (ii) When the language evolves,
we need to revise both components and prove their consistency again. The idea of generating a
pair of parser and conventional printer using DSLs is not new (Boulton, 1996; Brabrand et al., 2008;

1.1 Organisation and Contributions 5

Duregård and Jansson, 2011; Matsuda and Wang, 2018b; Rendel and Ostermann, 2010; van den
Brand et al., 2001), however, we are yet the �rst to consider a consistent pair of parser and retentive
printer.

The proposed solutions in this thesis are inspired by the research on bidirectional transforma-

tions (BX) (Abou-Saleh et al., 2018; Czarnecki et al., 2009) and in particular asymmetric lenses (Foster,
2009; Foster et al., 2007). We will explain, in Chapter 2, that a pair of parser and retentive printer
indeed form an asymmetric lens that synchronise program text and ASTs, and in this way, the
consistency between a pair of parser and retentive printer is naturally modelled as well-behavedness
of a lens. To summarise, our solution

• reconcile the compactness of ASTs and printing quality, and

• allows the user to design consistent parser and (retentive) printer pairs for a fully disam-
biguated context-free grammar (CFG) in a single speci�cation.

1.1 Organisation and Contributions

We organise the remainder of the thesis as follows. Chapter 3–Chapter 5 are the main contribu-
tions of this thesis, which include both the ideas and foundations, and the language design and
implementation.

Chapter 2. We introduce bidirectional transformations, (asymmetric) lenses, and our method of
modelling parsing and printing as state-based asymmetric lenses. In practice, since it is hard to
synchronise unstructured program text and structured ASTs, we further divide the synchronisation
between program and ASTs into two: an isomorphism between program text and CSTs, and a lens
between CSTs and ASTs. We present some related work which justi�es the need for yet another
way to unify parsing and printing and the method we adopt.

Chapter 3. We present a concrete solution to the uni�cation of parsing and retentive printing:
We deliberate on the language design of the basic version of a DSL, BiYacc, which can generate a
consistent pair of parser and retentive printer as a lens from a single speci�cation for unambiguous
grammars. This chapter is adapted from our early papers on BiYacc (Zhu et al., 2015, 2016).

Chapter 4. We make an extension to our solution (mainly) for the isomorphism part (between
program text and CSTs). In Chapter 3, we state that our solution only handles unambiguous

6 Chapter 1. Introduction

grammars, which will be rather inconvenient in practice. Now, we explore the possibility of
supporting ambiguous grammars with disambiguation directives while still keeping the well-
behavedness (i.e. consistency) between a generated parser and printer pair. We achieve this by
proposing bidirectionalised �lters (bi-�lters) based on the technology of generalised parsing and
(unidirectional) �lters and integrating them into BiYacc. This chapter is revised from our journal
paper on the extended BiYacc (Zhu et al., 2020a).

Chapter 5. We make another extension to our solution mainly for the lens part (between CSTs
and ASTs). Over the years, we �nd that while lenses are designed to retain information—for
instance, information such as syntactic sugar and comments in the updated program text—well-
behavedness (as the consistency) says very little about the retention of information. To guarantee
the retention of information theoretically, we propose Retentiveness and an extension of the
original lenses, called retentive lenses. We verify our idea by introducing a (new) DSL for writing
tree transformations (especially between CSTs and ASTs). Retentive lenses are not state-based, and
its integration into BiYacc is left to our future work. This chapter is recast from our unpublished
paper on retentive lenses (Zhu et al., 2020b).

Chapter 6. We conclude the thesis by reviewing our contributions and discussing some possible
future work.

An online tool that implements the approach described in the thesis can be accessed at
https://biyacc.k331.one. We assume basic knowledge about functional programming languages and
their notations, in particular Haskell (Bird, 2014; Marlow et al., 2010). In Haskell, an argument of
function application does not need to be enclosed in (round) parentheses, i.e. we write f x instead
of f (x); type variables are implicitly universally quanti�ed, i.e. f :: a → b → a is the same as
f :: ∀a b . a → b → a where :: means has type. Additionally, we omit universal quanti�cation for
free variables in an equation; for instance, id x = x is in fact ∀x . id x = x . Throughout the thesis,
we typeset general de�nitions and properties in math style and speci�c examples in code style.

https://biyacc.k331.one

7

2
Parsing and Printing as Lenses

This chapter provides foundations of bidirectional programming for parsing and printing. We
commence with an introduction to bidirectional transformations (Section 2.1) by presenting the
origin and a particular framework called state-based asymmetric lenses. Then we model a consistent
pair of parse and print functions as a state-based asymmetric lens (Section 2.2). Finally, we present
general related work as the rationale of our approach (Section 2.3). The presentation of more
in-depth related work assumes familiarity with the technical content of this thesis, and is thus
given at the end of each chapter (Sections 3.4, 4.7, and 5.5).

2.1 Bidirectional Transformations and Lenses

The theoretical foundation of the thesis is bidirectional transformations (BX) (Abou-Saleh et al.,
2018; Czarnecki et al., 2009), in particular (asymmetric) lenses (Foster, 2009; Foster et al., 2007),
which are believed to be a satisfactory solution (Foster et al., 2007) to the long-standing view

update problem (Bancilhon and Spyratos, 1981; Dayal and Bernstein, 1982; Gottlob et al., 1988) in
the (relational) database community since 1970s. The view update problem can be better explained
with the help of Figure 2.1: We call a database s that contains comprehensive data a source, from

8 Chapter 2. Parsing and Printing as Lenses

q

Source View

uv

Query

Update us

q

s v

v's'

Figure 2.1: The view update problem.

which we can use a query q to obtain data of our interest; the result of the query q on the source s

forms a view v, which in general contains only a portion of the data in the source. For the sake
of convenience or security, the user is sometimes supposed to modify the view v instead of the
original source s. Given a view v ′ modi�ed from v by an update uv, the view update problem is
how to calculate an update us on the source s that transforms s to s′ such that q s′ = = v ′.

While the (relational) database community has studied the view update problem more from
a theoretical aspect and proposed many solutions, the bidirectional transformation community
tackles the problem more from a language-oriented perspective, that is, to provide elegant (domain-
speci�c) programming languages which support the user in writing a single program that can be
interpreted both as a query and as an update. In this way, the query and update are guaranteed
to work in harmony and the single program is also easy to maintain (Abou-Saleh et al., 2018).
Although there are many bidirectional programming frameworks (Section 2.3.2), in this thesis, we
will mainly introduce the state-based asymmetric lens framework (Foster, 2009; Foster et al., 2007)
since other frameworks are marginally relevant to the particular approach we adopt to building
pairs of consistent parsers and printers. The state-based asymmetric lens framework is illustrated
in Figure 2.2, where a lens consists of a pair of get and put functions. While the get function is
the same as query, the put function does not calculate an update us from uv; instead, put accepts
a source s and a (modi�ed) view v ′ and directly propagate the changes in v ′ back to s. That is,
we abstract out the notion of update (i.e. uv and us) and use the states of data (i.e. s and v ′) only.
State-based lenses have become popular since the pioneering work of Foster et al. (2007) on a
combinatorial language for bidirectional tree transformations.

2.2 Parsing and Printing as Lenses 9

get

update

put

s v

v's'

Figure 2.2: The framework of state-based asymmetric lenses.

De�nition 2.1.1 (Lenses). A lens between a source type S and a view type V is a pair of functions

get :: S → V

put :: S × V → S

satisfying the well-behavedness laws (Stevens, 2008):

put (s, v) = s′ ⇒ get s′ = v (Correctness)

get s = v ⇒ put (s, v) = s (Hippocraticness)

Intuitively, a get function extracts a part of a source of interest to the user as a view, and a put

function takes a source and a view and produces an updated source incorporating information
from the view. The Correctness law enforces that put must embed all information of the view into
the updated source, so the view can be recovered from the source by get, while the Hippocraticness
law prohibits put from performing unnecessary updates by requiring that putting back a view
directly extracted from a source by get must produce the same, unmodi�ed source.

2.2 Parsing and Printing as Lenses

When we say a pair of (conventional) parser and printer are consistent with each other, we want
to ensure the following two properties:

print t = s ⇒ parse s = t

10 Chapter 2. Parsing and Printing as Lenses

parse s = t ⇒ print t = s

The �rst property says that a piece of program text s printed from an abstract syntax tree t should
be parsed to the same tree t; the second property asserts that updating a piece of program text s
with an abstract syntax tree t parsed from s should leave s unmodi�ed, including syntactic sugar
and formatting details such as parentheses and whitespace.

But this seems impossible, for the abstract syntax tree t usually does not (should not) include
syntactic sugar and formatting details—which, however, can be found in the program text s. Thus,
a reasonable idea is to let print also take the program text s as input; then we have the following
(inverse-like) consistency properties for a pair of parser and retentive printer:

print (s, t) = s′ ⇒ parse s′ = t

parse s = t ⇒ print (s, t) = s

Observant readers might have noticed that the two (inverse-like) consistency properties are exactly
Correctness and Hippocraticness of asymmetric lenses, if we regard parse as get and print as put.
Thus, a consistent pair of parser and retentive printer indeed forms a well-behaved lens.

However, in practice, directly synchronising unstructured program text and structured ASTs
turns out to be a di�cult task. Fortunately, we can decompose the lens between program text
and ASTs into the composition of a (partial) isomorphism between program text and CSTs and a
lens between CSTs and ASTs instead. This is possible because the production rules in a context-
free grammar dictate how to produce (valid) program text from nonterminals, and a CST can be
regarded as encoding one particular way of producing program text using the production rules.
Therefore we can always �rst establish an isomorphism between unstructured program text and
its unique CST1, and later synchronise the structured CST and AST using a lens, as shown in
Figure 2.3. Moreover, as the parse and print semantics are potentially partial in the real world, we
also need to take partiality into account when choosing a BX framework in which to model parse
and print.

2.2.1 Composition of Isomorphisms and Lenses

We start from the de�nition of (partial) isomorphisms.

1If the grammar is unambiguous, the isomorphism is also unique. We will expound more on this in Section 3.2.2.

2.2 Parsing and Printing as Lenses 11

program
text AST

program
text CST AST

lens

lensisomorphism

Figure 2.3: Decomposing a lens into the composition of an isomorphism and another lens.

De�nition 2.2.1 (Isomorphism). A (partial) isomorphism between two types A and B is a pair of
functions

to :: A→ Maybe B

from :: B → Maybe A

such that
to a = Just b ⇔ from b = Just a .

Partiality is explicitly represented by making the functions return Maybe-values: a to or from
function returns Just r where r is the result, or Nothing if the input is not in the domain. We will
show that the transformations between program text and CSTs exactly form a partial isomorphism
in Section 3.2.2.

Now we adapt the de�nition of lenses (De�nition 2.1.1) to its partial version (Macedo et al.,
2013; Pacheco et al., 2014a).

De�nition 2.2.2 (The Partial Version of Lenses). A lens between a source type S and a view
type V is a pair of functions

get :: S → Maybe V

put :: S × V → Maybe S

satisfying the partial version of well-behavedness laws:

put (s, v) = Just s′ ⇒ get s′ = Just v (Correctness)

get s = Just v ⇒ put (s, v) = Just s (Hippocraticness)

12 Chapter 2. Parsing and Printing as Lenses

The parse and print semantics will be the pair of functions get and put in a (partial) lens,
required by de�nition to satisfy the two well-behavedness laws, which are exactly the consistency
properties reformulated in a partial setting:

De�nition 2.2.3 (The Partial Version of Consistency Properties).

print (s, t) = Just s ′ ⇒ parse s ′ = Just t

parse s = Just t ⇒ print (s, t) = Just s

De�nition 2.2.4 (Composition of Isomorphism and Lenses). Given an isomorphism (to and from)
between A and B and a lens (get and put) between B and C , we can compose them to form a new
lens between A and C , whose components get ′ and put ′ are de�ned by

get ′ :: A→ Maybe C
get ′ a = to a >>= get

put ′ :: A × C → Maybe A
put ′ (a, c) = to a >>= λ b→ put (b, c) >>= from

where
(>>=) :: Maybe a → (a → Maybe b) → Maybe b
Just x >>= f = f x

Nothing >>= f = Nothing .

This is specialised from the standard de�nition of lens composition (Foster et al., 2007)—an
isomorphism can be lifted to a lens (whose put component passes its second argument to the from
component of the isomorphism), which can then be composed with another lens to give rise to a
new lens. We thus have the following lemma.

Lemma 2.2.5. Any lens resulted from the composition in De�nition 2.2.4 is well-behaved.

2.3 Rationale of Our Approach

Before implementing our solution concretely (in the next section), here we introduce other ap-
proaches to the uni�cation of parsing and printing and explain why we need yet another one
(Section 2.3.1); we present several other bidirectional transformation frameworks and brie�y
discuss the reason of our choice (Section 2.3.2); we also compare two approaches to designing

2.3 Rationale of Our Approach 13

state-based lenses, namely get-based approaches and put-based approaches, and examine why
put-based approaches are more suitable for the uni�cation of parsing and printing (Section 2.3.3).

2.3.1 Other Approaches to the Uni�cation

Much research has been devoted to describing parsers and printers in a single program (Boulton,
1996; Duregård and Jansson, 2011; Matsuda and Wang, 2018b; Rendel and Ostermann, 2010; van den
Brand et al., 2001). Despite their advantages, these domain-speci�c languages are not designed for
(and therefore cannot deal with) synchronisation between program text and ASTs: their generated
printers are pretty printers, which try to produce good-looking program text that is readable for
programmers. To be precise, van den Brand et al., Rendel and Ostermann, and Duregård and
Jansson use pre-de�ned pretty printing strategies which cannot be customised by the user; on
the other hand, Boulton and Matsuda and Wang provide the functionality of smartly adjusting
the layout in the printed program text according to the user’s speci�cation. We believe that the
di�erence mainly lies in the fact that van den Brand et al., Rendel and Ostermann, and Duregård
and Jansson let the user describe either parsers or grammars while Boulton and Matsuda and
Wang let the user specify printers.

Regarding the properties to be satis�ed by a parser and printer pair (De�nition 2.2.3), Boulton,
van den Brand et al., and Duregård and Jansson do not mention any, just like most industrial
tools such as Xtext (Friese et al., 2008); in contrast, both Rendel and Ostermann and Matsuda
and Wang propose properties similar to ours. Rendel and Ostermann uses a partial isomorphism

(De�nition 2.2.1) to construct a consistent pair of parser and printer; Matsuda and Wang use
grammar inversion to produce a consistent parser from the printer speci�cation; the parser and
printer pair satis�es a non-deterministic version of the inverse properties

print t ⇓ND s⇔ t ∈ parse s .

This print function can produce either pretty or ugly strings, non-deterministically. Nevertheless,
both Rendel and Ostermann’s and Matsuda and Wang’s properties ‘tend to’ fail when a language has
syntactic sugar: As for Rendel and Ostermann’s approach, in fact, there is no hope of establishing
such partial isomorphism if the language has syntactic sugar, for the parse function is not injective
in this case; for instance, parse may convert both a negation and a subtraction to the same AST1.
As for Matsuda and Wang’s approach, the property will be correct if the non-determinism takes

1Unless we let the parse function fail when the input is negation (or subtraction). But this is not what we want.

14 Chapter 2. Parsing and Printing as Lenses

the syntactic sugar into account, but we did not �nd the consideration either in (the explanation
of the non-determinism in) their paper or in their implementation.

To be short, the essential factor distinguishing our approach from others is that our printer is
retentive and can deal with synchronisation, while all the above-mentioned existing approaches
are targeted at producing good-looking program text and hence cannot handle synchronisation.

2.3.2 Other Bidirectional Transformation Frameworks

We only introduced (asymmetric) lenses because they are considered an elegant solution to the
view update problem (Foster et al., 2007)—where views are ASTs and sources are program text in
our setting. Here, we expound more on bidirectional transformations.

Most of the bidirectional transformation frameworks can be divided into three categories in
terms of the types of the get and put functions (Pacheco, 2012):

• mappings, in which get :: S → V and put :: V → S form a bijection and are inverse functions
to each other (due to the degenerate well-behavedness);

• asymmetric lenses or simply lenses, in which get :: S → V and put :: S × V → S are
asymmetric and satisfy well-behavedness, as introduced in De�nition 2.1.1.

• symmetric lenses or maintainers, in which get :: S × V → V and put :: V × S → S are
symmetric and satisfy the symmetric version of well-behavedness.

Under each framework, there are many di�erent approaches and we can classify them as set-
based (or state-based), edit-based, and delta-based ones (Johnson et al., 2016) from the perspective of
update representation: In set-based approaches, an update on a source or view is simply represented
by its (post-) state; in edit-based approaches, an update is represented by a sequence of operations,
such as move, delete, and insert, that are �nally applied to a pre-state to produce a post-state;
in delta-based approaches, an update is represented by a delta between a pre-state and a post-
state—the notion of delta is a little abstract and we will not go further into the detail here; but
concretely, deltas can also (but not necessarily) be implemented as edit operations (Diskin et al.,
2011a). Despite the di�erence, the three approaches are closely related and their relations are
summarised by Johnson et al. (2016).

In general, set-based approaches are the most �exible ones (Pacheco, 2012) as they demand
only the states of the sources and views; no more precise information regarding the update
operation is required. However, they may not produce desired results for many applications. By

2.3 Rationale of Our Approach 15

contrast, the edit-based and delta-based approaches are usually tightly coupled with applications
and hence less �exible; but they are likely to use the additional information to produce better
update results (Foster, 2009; Pacheco, 2012). We opt for state-based lenses because in our setting,
parsers and printers usually take only the states of program text and ASTs; moreover, a parser
and printer pair of a language may be used in many language-related applications such as bug
reporting, code refactoring, and resugaring mentioned in the introduction, so that we need an
approach that is �exible and loosely coupled with any application.

2.3.3 Get-based and Put-based Lens Languages

Usually, lens languages reduce the burden of the user by enabling the user to think in either the
get direction or the put direction: When using lens languages to write transformations, the user
describes the semantics of the two transformations by merely considering the get or put direction;
the other is ‘automatically derived’ (�xed) by the pre-de�ned semantics of the lenses and is well-
behaved by design. A lens language is called get-based if it encourages the user to describe the get

behaviour and is called put-based if it encourages the user to specify the put behaviour (Ko and Hu,
2018). Typical state-based lenses are tree lenses (Foster et al., 2007), Boomerang (Bohannon et al.,
2008), quotient lenses (Foster et al., 2008), matching lenses (Barbosa et al., 2010), BiFluX (Pacheco
et al., 2014b), and BiGUL (Ko et al., 2016); among them, tree lenses, Boomerang, quotient lenses,
and matching lenses are get-based, while BiFluX and BiGUL are put-based.

In the situation of parsing and (retentive) printing, we prefer put-based design to get-based
design1. This can be easily justi�ed by the concrete example which we previously mentioned in
Figure 1.2. Supposing that the AST is Sub (Num 0) (Var "a") and the program text is missing, by
specifying printing strategies (i.e. describing the put behaviour), the user is able to declare that
s/he wants either 0 - a or -a, which does not a�ect the parsing behaviour (get behaviour) because
both 0 - a and -a will be parsed to Sub (Num 0) (Var "a"). That is, the user is granted the control
over generating desired program text—but s/he still does not need to consider the parsing direction.
By contrast, since get-based frameworks by design should not let the user consider the semantics
of the printing direction, the user does not (and should not) have the control over the printed
program text. How the programmer can e�ectively work with put-based paradigm has been more
formally explained in terms of a Hoare-style logic, using the BiGUL language as an example (Ko
and Hu, 2018).

1Whilst we prefer put-based design, it still cannot meet the requirement of precise information retention in complex
situations. This will be explained clearly in Chapter 5 and especially in that chapter’s related work.

16 Chapter 2. Parsing and Printing as Lenses

The di�erence is indeed reasonable, as there is a lemma (Foster, 2009) indicating that ‘put is
the essence of bidirectional programming’ (Fischer et al., 2015).

Lemma 2.3.1 (put determines get). Given a put function, there is at most one get function that
forms a (well-behaved) lens with this put function (Foster, 2009).

Thanks to this, in this thesis we can focus on the printing (put) behaviour, leaving the parsing
(get) behaviour implicitly but unambiguously speci�ed.

17

3
A DSL for Simultaneously Specifying

Consistent Parser and Printer Pairs

In the last chapter, we gave an introduction to the foundation for modelling a consistent pair of parse
and print functions as a well-behaved lens. Now, it is time to present a concrete implementation.
In this chapter, we focus on the language design of the basic version of BiYacc—a domain-speci�c
language which enables the user to design consistent parser and (retentive) printer pairs for
unambiguous grammars1 simultaneously—with the help of the running example about arithmetic
expressions shown in Figure 1.2. We start with an overview of BiYacc (Section 3.1), which gives
the reader an impression of what a program in BiYacc looks like and how the program executes.
Then we expound on the design details of the DSL (Section 3.2). Related work is presented in the
last section of this chapter, where we compare BiYacc with several other similar systems.

1We will support ambiguous grammars in Chapter 4.

18 Chapter 3. Basic BiYacc

1 #Abstract
2 data Arith = Num Int
3 | Var String
4 | Add Arith Arith
5 | Sub Arith Arith
6 | Mul Arith Arith
7 | Div Arith Arith
8

9 #Concrete
10 Expr -> Expr '+' Term
11 | Expr '-' Term
12 | Term ;
13

14 Term -> Term '*' Factor
15 | Term '/' Factor
16 | Factor ;
17

18 Factor -> '-' Factor
19 | Numeric
20 | Identifier
21 | '(' Expr ')' ;

22 #Directives
23 LineComment: "//" ;
24 BlockComment: "/*" "*/" ;
25

26 #Actions
27 Arith +> Expr
28 Add x y +> [x +> Expr] '+' [y +> Term];
29 Sub x y +> [x +> Expr] '-' [y +> Term];
30 e +> [e +> Term];
31 ;;
32 Arith +> Term
33 Mul x y +> [x +> Term] '*' [y +> Factor];
34 Div x y +> [x +> Term] '/' [y +> Factor];
35 e +> [e +> Factor];
36 ;;
37 Arith +> Factor
38 Sub (Num 0) y +> '-' [y +> Factor];
39 Num i +> [i +> Numeric];
40 Var n +> [n +> Identifier];
41 e +> '(' [e +> Expr] ')';
42 ;;

Figure 3.1: A BiYacc program for the arithmetic expression example.

3.1 A First Look at BiYacc

We �rst give an overview of BiYacc by going through the BiYacc program shown in Figure 3.1 that
deals with the arithmetic expression example in Figure 1.2. The program consists of de�nitions of
the abstract syntax, concrete syntax, directives, and actions for retentively printing ASTs to CSTs;
we will introduce them in order.

3.1.1 Syntax De�nitions

Abstract Syntax. The abstract syntax part, which starts with the keyword #Abstract, is just
one or more de�nitions of Haskell data types. In our example, the abstract syntax is de�ned in
lines 2–7 by a single datatype Arith whose elements are constructed from constants and arithmetic
operators. Di�erent constructors—namely Num, Var, Add, Sub, Mul, and Div—are used to construct
di�erent kinds of expressions.

Concrete Syntax. The concrete syntax part, beginning with the keyword #Concrete, is de�ned
by a context-free grammar. For our expression example, in lines 10–21 we use a standard unam-
biguous grammatical structure to encode operator precedence and order of association, involving

3.1 A First Look at BiYacc 19

three nonterminal symbols Expr, Term, and Factor: An Expr can produce a left-sided tree of Terms,
each of which can in turn produce a left-sided tree of Factors. To produce right-sided trees or
operators of lower precedence under those with higher precedence, the only way is to reach for the
last production rule Factor -> '(' Expr ')', resulting in parentheses in the produced program
text. There are also prede�ned nonterminals Numeric and Identi�er, which produce numerals and
identi�ers respectively.

Directives. The #Directives part de�nes the syntax of comments and disambiguation directives.
For example, line 23 shows that the syntax for single line comments is “//”1, while line 24 states that
“/*” and “*/” are respectively the beginning mark and ending mark for block comments. Since the
grammar for arithmetic expressions is unambiguous, there is no need to give any disambiguation
directive for this example (whereas the ambiguous version of the grammar in Figure 4.1 needs to
be augmented with a few such directives).

3.1.2 Printing Actions

The main part of a BiYacc program starts with the keyword #Actions and describes how to update
a CST with an AST. For our expression example, the actions are de�ned in lines 27–42 in Figure 3.1.
Before explaining the actions, we should �rst say that program text is identi�ed with CSTs when
programming BiYacc actions: Conceptually, whenever we write a piece of program text, we are
actually describing a CST rather than just a sequence of characters, which has been mentioned in
the paragraph before Section 2.2.1. We will expound on this identi�cation of program text with
CSTs in Section 3.2.2.3 in detail.

The #Actions part consists of groups of actions, and each group begins with a ‘type declaration’
of the form HsType ‘+>’ Nonterminal stating that the actions in this group specify updates on CSTs
generated from Nonterminal using ASTs of type HsType. Informally, given an AST and a CST, the
semantics of an action is to perform pattern matching simultaneously on both trees, and then
use components of the AST to update corresponding parts of the CST, possibly recursively. (The
syntax ‘+>’ suggests that information from the left-hand side is embedded into the right-hand
side.) Usually the nonterminals in a right-hand side pattern are overlaid with update instructions,
which are also denoted by ‘+>’.

1While single quotation marks are for characters, double quotation marks are for strings. For simplicity, the user
can always use double quotation marks.

20 Chapter 3. Basic BiYacc

Let us look at a speci�c action—the �rst one for the expression example, at line 28 of Figure 3.1:

Add x y +> [x +> Expr] '+' [y +> Term];

The AST-side pattern Add x y is just a Haskell pattern; as for the CST-side pattern, the main
intention is to refer to the production rule Expr -> Expr '+' Term and use it to match those CSTs
produced by this rule—since the action belongs to the group Arith +> Expr, the part ‘Expr ->’
of the production rule can be inferred and thus is not included in the CST-side pattern. Finally
we overlay ‘x +>’ and ‘y +>’ on the nonterminal symbols Expr and Term to indicate that, after the
simultaneous pattern matching succeeds, the subtrees x and y of the AST are respectively used to
update the left and right subtrees of the CST.

Having explained what an action means, we can now explain the semantics of the entire
program. Given an AST and a CST as input, �rst a group (of actions) is chosen according to
the types of the trees. Then the actions in the group are tried in order, from top to bottom,
by performing simultaneous pattern matching on both trees. If pattern matching for an action
succeeds, the updating operations speci�ed by the action is executed; otherwise the next action
is tried. Execution of the program ends when the matched action speci�es either no updating
operations or only updates to primitive data types such as Numeric. BiYacc’s most interesting
behaviour shows up when all actions in the chosen group fail to match—in this case a suitable
CST will be created. The speci�c approach adopted by BiYacc is to perform pattern matching on
the AST only and choose the �rst matched action. A suitable CST conforming to the CST-side
pattern is then created, and after that the whole group of actions is tried again. This time the
pattern matching will succeed at the action used to create the CST, and the program will be
able to make further progress. For instance, assuming that the source is 1 * 2 while the view is
Add (Num 1) (Num 2), a new source skeleton representing _ + _ will be created and the _ part will
be updated recursively later. We will elaborate more on this in Section 3.2.

Deep Patterns. By using deep patterns, we can write actions that establish nontrivial rela-
tionships between CSTs and ASTs. For example, the action at line 38 of Figure 3.1 associates
abstract subtraction expressions whose left operand is zero with concrete negated expressions;
this action is the key to preserving negated expressions in the CST. For an example of a more
complex CST-side pattern: Suppose that we want to write a pattern that matches those CSTs
produced by the rule Factor -> '-' Factor, where the inner nonterminal Factor produces a
further '-' Factor using the same rule. This pattern is written by overlaying the production rule

3.1 A First Look at BiYacc 21

on the �rst nonterminal Factor (an additional pair of parentheses is required for the expanded
nonterminal): '-' (Factor -> '-' Factor). More examples involving this kind of deep patterns
can be found in Section 3.3.

Layout and Comment Preservation. The retentive printer generated by BiYacc is capable of
preserving layouts and comments, but, perhaps mysteriously, in Figure 3.1 there is no clue as to
how layouts and comments are preserved. This is because we decide to hide layout preservation
from the user, so that the more important logic of abstract and concrete syntax synchronisation
is not cluttered with layout preserving instructions. Our approach is fairly simplistic: We store
layout information following each terminal in an additional �eld in the CST implicitly, and treat
comments in the same way as layouts. During the printing stage, if the pattern matching on an
action succeeds, the layouts and comments after the terminals shown in the right-hand side of
that action are preserved; on the other hand, layouts and comments are dropped when a CST is
created in the situation where pattern matching fails for all actions in a group. The layouts and
comments before the �rst terminal are always kept during the printing process.

Parsing Semantics. So far we have been describing the retentive printing semantics of the
BiYacc program, but we may also work out its parsing semantics intuitively by interpreting the
actions from right to left, converting the production rules to the corresponding constructors. (This
might remind the reader of the usual Yacc (Johnson, 1975) actions.) In fact, this thesis will not
de�ne the parsing semantics formally, because the parsing semantics is completely determined by
the retentive printing semantics (Lemma 2.3.1): If the actions are written with the intention of
establishing some relation between the CSTs and ASTs, then BiYacc will be able to derive the only
well-behaved parser, which respects that relation.

3.1.3 Program Execution

To get a solid feeling of how BiYacc works, let us go through the execution of the program in
Figure 3.1 on the program text and optimised AST shown in Figure 1.2 to see how the updated
program text is produced.

At the beginning, the types of the input CST and AST are assumed to match those of the
�rst group of actions, and we will try the actions in the �rst group in order. Consider the �rst
action at line 28: since the input AST is a multiplication (Mul ...) which does not match the
AST-side pattern Add x y and the CST (-a * ...) is produced from Expr -> Term (followed by

22 Chapter 3. Basic BiYacc

Term -> Term '*' Factor) that does not match the CST-side pattern Expr '+' Term, both the
pattern matching on the AST-side and the CST-side fail. So, we need to try other actions in order:
We fail at line 29 but succeed at line 30, because the AST-side pattern e can match any input
AST and the input CST indeed is produced from Expr -> Term. This action tells us to update the
CST’s subtree produced from a Term with the whole AST; since now the type of the AST is still
Arith but the type of the (subtree of the) CST to be updated becomes Term, we move on to the
second group Arith +> Term. In the second action group, the action at line 33 matches. This action
tells us to further update the subtree -a with Sub (Num 0) (Var "a") and the and the subtree
(1 + 1 + (a)) with Add (Num 2) (Var "a") respectively. Note that at this point, the comments
and layout information after the terminal * is preserved1.

For the update to be performed on the left-hand side of the multiplication, i.e. using Sub (Num

0) (Var "a") to update -a, the second action group Arith +> Term is chosen because the update
strategy [x +> Term] indicates that we should use x (of type Arith, inferred from the AST-side
pattern) to update the (subtree of the) CST produced from a Term. This time, the action at line 35
matches, which tells us to proceed with the third action group Arith +> Factor. Then we reach
the action at line 38, where we use Sub (Num 0) (Var "a") to update -a and preserve the negation;
�nally we reach line 40, which uses Var "a" in the AST to update the variable a in the CST and
preserves the comments and layout information after it. (The update is still performed even though
the concrete and abstract sides are the same.)

The update to be performed on the right-hand side of the multiplication is executed similarly:
The third action group is selected and the action at line 41 matches; now, the outermost parentheses
of (1 + 1 + (a)) are preserved and we are to update the subtree 1 + 1 + (a) produced from the
Expr inside the parentheses with the AST Add (Num 2) (Var "a"). This time, the action at line 28
matches and 1 + 1 will be updated with Num 2 and (a) will be updated with Var "a" respectively.
When we use Num 2 to update 1 + 1, none of the actions of the �rst group matches; in this case, we
need to produce a new CST from scratch according to the input AST. So, we �nd the �rst action, at
line 30, whose AST-side pattern e matches the input AST, and create a new CST according to the
action’s CST-side pattern Expr -> Term; this leads us to go into the second group. The remaining
execution sequences are as follows: Actions at lines 33, 34, and 35 fail to match the CST and AST
simultaneously, so the CST is reshaped to a Factor according to the AST at line 35 and we run
into the third action group. Actions at lines 38, 39, 40, and 41 fail to match the CST and AST
simultaneously, so the CST is adapted to a Numeric value at line 39. The newly created numeric

1In this example, however, there is no comment after the terminal *

3.2 Design Details 23

Compiled to

Concrete 
Syntax

Abstract 
Syntax

Directives Printing  
Actions

BiYacc Program

Arith +> Expr 
... 

data Arith = 
... 

Expr ->
Expr '+' Term ...

LineComment: 
... 

Program  
Text Tokens CST AST

Lexer Parser

BiGUL
Program

   

Printer

ExecutableIsomorphism between  
program text and CSTs

Lens between  
CSTs and ASTs

Figure 3.2: Architecture of BiYacc.

value is eventually replaced by the integer 2 of the AST, and a default layout (a space) is inserted
after it. This is why the updated result for this part is ‘2 ’ instead of ‘2’. For the update on (a)

with Var "a", the actions succeed at lines 35, 41, 30, 35, and 40.

3.2 Design Details

In this section, we expound on a basic version of BiYacc that handles unambiguous grammars.
The architecture is illustrated in Figure 3.2, where a BiYacc program

‘#Abstract’ decls ‘#Concrete’ pgs ‘#Directives’ drtvs ‘#Actions’ ags , (3.1)

consisting of abstract syntax, concrete syntax, directives, and printing actions, as formally de�ned
in Figure 3.3, is compiled into into a few Haskell source �les and then into an executable (by a
Haskell compiler) for converting between program text and ASTs. Speci�cally:

• The abstract syntax part (decls for Haskell data type declarations) is already valid Haskell
code and is (almost) directly used as the de�nitions of AST data types.

24 Chapter 3. Basic BiYacc

• The concrete syntax part (pgs for production groups) is translated to de�nitions of CST data
types (whose elements are representations of how a string is produced using the production
rules), and also used to generate the pair of concrete parser (including a lexer) and printer
for the conversion between program text and CSTs. This pair of concrete parser and printer
can be shown to form a (partial) isomorphism (which will be de�ned in Section 2.2.1). This
part will be explained in Section 3.2.2.

• The directives part (drctvs for directives) is used in the lexer for recognising single-line and
multi-line comments.

• The printing actions part (ags for action groups) is translated to a BiGUL program (which is
a lens, see De�nition 2.2.2) for handling (the semantic part of) parsing and retentive printing
between CSTs and ASTs. This part will be explained in Section 3.2.3.

The whole executable is a well-behaved lens since it is the composition of an isomorphism and a
lens, as stated in Lemma 2.2.5.

3.2.1 The Underlying DSL, BiGUL

From a BiYacc program, in addition to generating a parser and a printer, we also need to guarantee
that the two generated programs are consistent with each other, i.e. satisfying the partial version
of the well-behavedness (De�nition 2.2.2). This is achieved by compiling BiYacc programs to
the put-based bidirectional programming language BiGUL1 (Ko et al., 2016). It has been formally
veri�ed in Agda (Norell, 2007) that BiGUL programs always denote well-behaved lenses, and
BiGUL has been ported to Haskell as an embedded DSL library (Hu and Ko, 2018). More details
about BiGUL can be found in the lecture notes on BiGUL programming (Hu and Ko, 2018).

In this subsection, we brie�y introduce three operations, Replace, Update, and Case, which are
used in BiGUL programs compiled from BiYacc programs. A BiGUL program has type BiGUL s v,
where s and v are respectively the source and view types.

Replace. The simplest BiGUL operation we use is

Replace :: BiGUL s s

which discards the original source and returns the view—which has the same type as the source—as
the updated source. That is, the put semantics of Replace is the function λs v → Just v.

1The work on BiGUL is not a contribution of this thesis.

3.2 Design Details 25

ProgramF ‘#Abstract’ HsDeclarations
[‘#Concrete’ ProductionGroup+]
‘#Directives’ CommentSyntaxDecl Disambiguation
‘#Actions’ ActionGroup+
[‘#OtherFilters’ OtherFilters]

ProductionGroup F Nonterminal ‘->’ ProductionBody+{‘|’} ‘;’
ProductionBody F [‘[’Constructor‘]’] Symbol+ [‘{#’‘Bracket’‘#}’]

Symbol F Primitive | Terminal | Nonterminal
Constructor F Nonterminal

CommentSyntaxDecl F ‘LineComment:’ String ‘;’ ‘BlockComment:’ String ‘;’
DisambiguationF [Priority] [Associativity]

ActionGroup F HsType ‘+>’ Nonterminal
Action+ ‘;;’

ActionF HsPa�ern ‘+>’ Update+ ‘;’
Update F Symbol

| ‘[’ HsVariable ‘+>’ UpdateCondition ‘]’
| ‘(’ Nonterminal ‘->’ Update+ ‘)’

UpdateConditionF Symbol
| ‘(’ Nonterminal ‘->’ UpdateCondition+ ‘)’

Figure 3.3: Syntax of BiYacc programs. (Nonterminals with pre�x Hs denote Haskell entities and follow
the Haskell syntax; the notation nt+{sep} denotes a nonempty sequence of the same nonterminal nt
separated by sep. Optional elements are enclosed in a pair of square brackets. The parts relating to
disambiguation and �lters will be explained in Chapter 4.)

Update. The next operation update is more complex, and is implemented with the help of
Template Haskell (Sheard and Jones, 2002). The general form of the operation is

$(update [p | spat |] [p | vpat |] [d | bs |]) :: BiGUL s v .

This operation decomposes the source and view by pattern matching with the patterns spat and
vpat respectively, pairs the source and view components as speci�ed by the patterns (see below),
and performs further BiGUL operations listed in bs on the source–view pairs; the way to determine
which source and view components are paired and which operation is performed on a pair is by
looking for the same names in the three arguments. For example, the update operation

$(update [p| (x, _) |] [p| x |] [d| x = Replace |])

26 Chapter 3. Basic BiYacc

matches the source with a tuple pattern (x, _) and the view with a variable pattern x, so that the
�rst component of the source tuple is related with the whole view; during the update, the �rst
component of the source is replaced by the whole view, as indicated by the operation x = Replace.
(The part marked by underscore (_) simply means that it will be skipped during the update.) Given
a source (1,2) and a view 3, the operation will produce (3,2) as the updated source. In general,
any (type-correct) BiGUL program can be used in the list of further updates, not just the primitive
Replace.

Case. The most complex operation we use is Case for doing case analysis on the source and
view:

Case :: [Branch s v] → BiGUL s v .

Case takes a list of branches, of which there are two kinds: normal branches and adaptive branches.
For a normal branch, we should specify a main condition using a source pattern spat and a view
pattern vpat, and an exit condition using a source pattern spat ′:

$(normalSV [p | spat |] [p | vpat |] [p | spat ′ |]) :: BiGUL s v → Branch s v .

An adaptive branch, on the other hand, only needs a main condition:

$(adaptiveSV [p | spat |] [p | vpat |]) :: (s→ v → s) → BiGUL s v .

Their semantics in the put direction are as follows: A branch is applicable when the source and
view respectively match spat and vpat in its main condition. Execution of a Case chooses the �rst
applicable branch from the list of branches, and continues with that branch. When the applicable
branch is a normal branch, the associated BiGUL operation is performed, and the updated source
should satisfy the exit condition spat ′ (or otherwise execution fails); when the applicable branch
is an adaptive branch, the associated function is applied to the source and view to compute an
adapted source, and the whole Case is rerun on the adapted source and the view; it must go into a
normal branch this time, otherwise the execution fails. Think of an adaptive branch as bringing a
source that is too mismatched with the view to a suitable shape—for example, when the source is
a subtraction while the view is an addition, which are by no means in correspondence, we must
adapt the source to an addition—so that a normal branch that deals with sources and views in
some sort of correspondence can take over. This adaptation mechanism is used by BiYacc to print
an AST when the source program text is too di�erent from the AST or even nonexistent at all.

3.2 Design Details 27

3.2.2 The Concrete Parsing and Printing Isomorphism

In this subsection, we describe the generation of CST data types and concrete printers (Sec-
tion 3.2.2.1), the generation of concrete parsers (Section 3.2.2.2), and �nally the inverse properties
satis�ed by the concrete parsers and printers (Section 3.2.2.3).

3.2.2.1 Generating CST Data Types and Concrete Printers

In BiYacc, we represent CSTs produced from a nonterminal nt as an automatically generated
Haskell datatype named nt, whose constructors represent the production rules for nt. For each
of these data types, we also generate a printing function which takes a CST as input and produces
a string as dictated by the production rules in the CST.

For instance, in Figure 3.1, the group of production rules from the nonterminal Factor (lines
18–21) is translated to the following Haskell datatype and concrete printing function:

data Factor = Factor1 String Factor

| Factor2 (String, String)

| Factor3 (String, String)

| Factor4 String Expr String

| FactorNull

cprtFactor :: Factor -> String

cprtFactor (Factor1 s1 factor1) = "-" ++ s1 ++ cprtFactor factor1

cprtFactor (Factor2 (numeric, s1)) = numeric ++ s1

cprtFactor (Factor3 (identifier, s1)) = identifier ++ s1

cprtFactor (Factor4 s1 expr1 s2) = "(" ++ s1 ++ cprtExpr expr1 ++ ")" ++ s2

cprtFactor FactorNull = ""

cprtExpr :: Expr -> String

...

where Factor1 . . .Factor4 are constructors corresponding to the four production rules, while
FactorNull represents an empty CST of type Factor and is used as the default value whenever we
want to create new program text depending on the view only. As an example, Factor1 represents
the production rule Factor -> '-' Factor, and its String �eld stores the whitespace appearing
after a negation sign in the program text.

Following this idea, we de�ne the translation from production rule groups (pgs in formula (3.1))

28 Chapter 3. Basic BiYacc

to datatype de�nitions by source-to-source compilation rules:

[[pgs]]ProductionGroup =
〈
[[pg]]ProductionGroup

�� pg ∈ pgs〉
[[nt ‘->’ bodies]]ProductionGroup =

‘data’ nt ‘=’
〈
con(nt, body)

〈
field(s)

�� s ∈ body〉 ‘|’
�� body ∈ bodies〉

nullCon(nt) .

Compilation rules of this kind will also be used later, so we introduce the notation here: Compilation
rules are denoted by semantic brackets ([[·]]), and refer to some auxiliary functions, whose names
are in small caps. A nonterminal in subscript gives the ‘type’ of the argument or metavariable
before it. The angle bracket notation

〈
f e

�� e ∈ es
〉

denotes the generation of a list of entities
of the form f e for each element e in the list es, in the order of their appearance in es. In more
detail: con(nt, body) retrieves the constructor for a production rule. The �elds of a constructor are
generated from the right-hand side of the corresponding production rule in the way described by
the auxiliary function field— nonterminals that are not primitives are left unchanged (using their
names for data types), primitives are stored in the String type 1, terminal symbols are dropped, and
an additional String �eld is added for each terminal and primitive for storing layout information
(whitespaces and comments) appearing after the terminal or primitive in the program text. The
last step is to insert an additional empty constructor, whose name is denoted by nullCon(nt).

3.2.2.2 Generating Concrete Lexers and Parsers

The implementation of the concrete parser, which turns program text into CSTs, is further separated
into two phases: lexing and parsing. In both phases, the layout information (whitespaces and
comments) is automatically preserved, which makes the CSTs isomorphic to the program text.

Lexer. Apart from handling the terminal symbols appearing in a grammar, the lexer automatically
derived by BiYacc can also recognise several kinds of literals, including integers, strings, and
identi�ers, respectively produced by the nonterminals Numeric, String, and Identifier. For now,
the forms of these literals are prede�ned, but we take this as a step towards a lexerless grammar,
in which strings produced by nonterminals can be speci�ed in terms of regular expressions.
Furthermore, whitespaces and comments are carefully handled in the derived lexer, so they can be

1The reason for storing primitives in the String type is because String is the most precise representation that will
not cause the loss of any information. For instance, this is useful for retaining the leading zeros of an integer such as
073. Storing 073 as Integer will cause the loss of the leading zero.

3.2 Design Details 29

completely stored in CSTs and correctly recovered to the program text in printing. This feature of
BiYacc, which we explain below, makes layout preservation transparent to the programmer.

An assumption of BiYacc is that whitespaces are only considered as separators between other
tokens. (Although there exist some languages such as Haskell and Python where indentation
does a�ect the meaning of a program, there are workarounds, e.g. writing a preprocessing program
to insert explicit separators.) Usually, token separators are thrown away in the lexing phase, but
since we want to keep layout information in CSTs, which are built by the parser, the lexer should
leave the separators intact and pass them to the parser. The speci�c approach taken by BiYacc is
wrapping a lexeme and the whitespaces following it into a single token. Beginning whitespaces
are treated separately from lexing and parsing, and are always preserved. And in this prototype
implementation, comments are also considered as whitespaces.

Parser. The concrete parser is used to generate a CST from a list of tokens according to the
production rules in the grammar. Our parser is built using the parser generator Happy (Marlow
and Gill, 2001), which takes a speci�cation of a grammar in Backus normal form (BNF) with
semantic actions and produces a Haskell module containing a parser function. The grammar we
feed into Happy is still essentially the one speci�ed in a BiYacc program, but in addition to parsing
and constructing CSTs, the Happy actions also transfer the whitespaces wrapped in tokens to
corresponding places in the CSTs. For example, the production rules for Factor in the expression
example, as shown on the left below, are translated to the Happy speci�cation on the right:

Factor

-> '-' Factor

| Numeric

| Identifier

| '(' Expr ')' ;

{

Factor

: token1 Factor { Factor1 $1 $2 }

| tokenNumeric { Factor2 $1 }

| tokenIdentifier { Factor3 $1 }

| token2 Expr token3 { Factor4 $1 $2 $3 } .

We use the �rst expansion (token1 Factor) to explain how whitespaces are transferred: The gener-
ated Happy token token1 matches a ‘-’ token produced by the lexer, and extracts the whitespaces
wrapped in the ‘-’ token; these whitespaces are bound to $1, which is placed into the �rst �eld of
Factor1 by the associated Haskell action.

3.2.2.3 Inverse Properties

Now we give the types of the concrete printer and parser generated from a BiYacc program and
show that they form an isomorphism. Let the type CST be the set of all the CSTs de�ned by the
grammar of a BiYacc program; by default it is the source type (nonterminal) of the �rst group

30 Chapter 3. Basic BiYacc

of actions in the #Actions part. We have seen in Section 3.2.2.1 how to generate its datatype
de�nition and a concrete printing function

cprint :: CST→ String .

On the other hand, from the grammar we directly use a parser generator to generate a concrete
parsing function

cparse :: String→ Maybe CST ,

which is Maybe-valued since a piece of input text may be invalid. This cparse function is one
direction of the isomorphism in the executable, while the other direction is

Just ◦ cprint :: CST→ Maybe String .

Below we show that the inverse properties amount to the requirements that the generated parser
is ‘correct’ and the grammar is unambiguous.

Since our concrete parsers are generated by the parser generator Happy (Marlow and Gill,
2001), we need to assume that they satisfy some essential properties, for we cannot control the
generation process and verify those properties.

De�nition 3.2.1 (Parser Correctness). A parser cparse is correct with respect to a printer cprint
exactly when

cparse text = Just cst ⇒ cprint cst = text (3.2)

cprint cst = text ⇒ ∃ cst ′. cparse text = Just cst ′ . (3.3)

To see what (3.2) means, recall that our CSTs, as described in Section 3.2.2.1, encode precisely
the derivation trees, with the CST constructors representing the production rules used, and cprint

traverses the CSTs and follows the encoded production rules to produce the derived program text.
Now consider what cparse is supposed to do: It should take a piece of program text and �nd a
derivation tree for it, i.e. a CST which cprints to that piece of program text. This statement is
exactly (3.2). In other words, (3.2) is the functional speci�cation of parsing, which is satis�ed if the
parser generator we use behaves correctly. Also it is reasonable to expect that a parser will be able
to successfully parse any valid program text, and this is exactly (3.3).

We also need to make an assumption about concrete printers: throughout this section we
assume that the grammar is unambiguous, and this amounts to injectivity of cprint—for any piece

3.2 Design Details 31

of program text there is at most one CST that prints to it.
With these assumptions, we can now establish the isomorphism (which is rather straightfor-

ward).

Theorem 3.2.2 (Inverse Properties). If a parser cparse is correct with respect to an injective printer
cprint, then cparse and Just ◦ cprint form an isomorphism, that is,

cparse text = Just cst ⇔ (Just ◦ cprint) cst = Just text .

Proof. The left-to-right direction is immediate since the right-hand side is equivalent to cprint cst =

text, and the whole implication is precisely (3.2). For the right-to-left direction, again the antecedent
is equivalent to cprint cst = text, and we can invoke (3.3) to obtain cparse (text) = Just cst ′ for
some cst ′. This is already close to our goal—what remains to be shown is that cst ′ is exactly cst,
which is indeed the case because

cparse text = Just cst ′

⇒ { antecedent }
cparse (cprint cst) = Just cst ′

⇒ { (3.2) }
cprint cst ′ = cprint cst

⇒ { cprint is injective }
cst ′ = cst .

3.2.3 Generating the BiGUL Lens

The source-to-source compilation from the actions part of a BiYacc program to a BiGUL program
(i.e. lens) is shown in Figure 3.4 and Figure 3.5. Additional arguments to the semantic bracket
are typeset in superscript, and the notation

〈
. . .

�� . . . ∈ . . .〉{s} means inserting s between the
elements of the list.

Action Groups. Each group of actions is translated into a small BiGUL program, whose name
is determined by the view type vt and source type st and denoted by prog(vt, st). The BiGUL
program has one single Case statement, and each action is translated into two branches in this
Case statement, one normal and the other adaptive. All the adaptive branches are gathered in the

32 Chapter 3. Basic BiYacc

[[‘#Abstract’ decls ‘#Concrete’ pgs ‘#Directives’ drctvs ‘#Actions’ agsProgram]] =
decls

〈
[[pg]]ProductionGroup

�� pg ∈ pgs〉 〈
[[ag]]ActionGroup

�� ag ∈ ags〉
[[vt ‘+>’ st acts]]ActionGroup = prog(vt, st) ‘::’ ‘BiGUL’ st vt
prog(vt, st) ‘=’ ‘Case’

‘[’
〈
[[a]]N,vt,st

Action ‘,’
�� a ∈ acts〉 〈

[[a]]A, stAction

�� a ∈ acts〉{‘,’} ‘]’
[[vpat ‘+>’ updates]]N,vt,st

Action =
‘$(normalSV’

‘[p|’ srcCond(ersVars(‘[’ st ‘->’ updates ‘]’)Update) ‘|]’ ‘[p|’ vpat ‘|]’
‘[p|’ srcCond(ersVars(‘(’ st ‘->’ updates ‘)’)Update) ‘|])’

‘$(update’ ‘[p|’ removeAs(vpat) ‘|]’
‘[p|’ srcPat(‘(’ st ‘->’ updates ‘)’)Update ‘|]’
‘[d|’

〈
[[u]]

vt,vpat
Update

�� u ∈ updates〉 ‘|])’

[[‘[’ var ‘+>’ ucPrimitive ‘]’]]vt,vpatUpdate = var ‘= Replace;’
[[‘[’ var ‘+>’ ucNonterminal ‘]’]]vt,vpatUpdate = var ‘=’ prog(varType(vt, vpat, var), uc) ‘;’
[[‘[’ var ‘+>’ ‘(’ nt ‘->’ . . . ‘)’ ‘]’]]vt,vpatUpdate = [[‘[’ var ‘+>’ nt ‘]’]]vt,vpatUpdate
[[‘(’ . . . ‘->’ updates ‘)’]]vt,vpatUpdate =

〈
[[u]]

vt,vpat
Update ‘;’

�� u ∈ updates〉
[[symbol]]

vt,vpat
Update = ‘’

[[vpat ‘+>’ updates]]A, stAction = ‘$(adaptiveSV’ ‘[p| _ |]’ ‘[p|’ vpat ‘|])’
‘(_ _ ->’ defaultExpr(ersVars(‘(’ st ‘->’ updates ‘)’))

Figure 3.4: Semantics of BiYacc programs (as BiGUL programs).

second half of the Case statement, so that normal branches will be tried �rst. For example, the
third group of type Arith +> Factor is compiled to

bigulArithFactor :: BiGUL Factor Arith

bigulArithFactor =

Case [. . . -- normal branches

. . . -- adaptive branches

] .

Normal Branches. We said in Section 3.1 that the semantics of an action is to perform pattern
matching on both the source and view, and then update parts of the source with parts of the view.
This semantics is implemented with a normal branch: The source and view patterns are compiled
to the main condition, and, together with the updates overlaid on the source pattern, also to an

3.2 Design Details 33

field(nt)Nonterminal = nt
field(t)Terminal = ‘String’
field(p)Primitive = ‘(’ p ‘, String)’
ersVars(‘[’ var ‘+>’ uc ‘]’)Update = uc
ersVars(‘(’ nt ‘->’ updates ‘)’)Update = ‘(’ nt ‘->’

〈
ersVars(u)

�� u ∈ updates〉 ‘)’
ersVars(symbol)Update = symbol

srcCond(‘(’ nt ‘->’ uconds ‘)’)UpdateCondition = ‘(’ con(nt,
〈
condHead(uc)

�� uc ∈ uconds〉)〈
srcCond(uc)

�� uc ∈ uconds〉 ‘)’
srcCond(symbol)UpdateCondition = ‘_’
condHead(‘(’ nt ‘->’ . . . ‘)’)UpdateCondition = nt
condHead(symbol)UpdateCondition = symbol
srcPat(‘[’ var ‘+>’ ucPrimitive ‘]’)Update = ‘(’ var ‘, _)’
srcPat(‘[’ var ‘+>’ ucNonterminal ‘]’)Update = var
srcPat(‘(’ nt ‘->’ updates ‘)’)Update = ‘(’ con(nt,

〈
condHead(uc)

�� uc ∈ ersVars(updates)〉)〈
srcPat(u)

�� u ∈ updates〉 ‘)’
srcPat(symbol)Symbol = ‘_’
defaultExpr(symbol)Primitive = ‘(undefined, " ")’
defaultExpr(symbol)Nonterminal = nullCon(symbol)
defaultExpr(symbol)Terminal = ‘" "’
defaultExpr(‘(’ nt ‘->’ uconds ‘)’)UpdateCondition = con(nt,

〈
condHead(uc)

�� uc ∈ uconds〉)〈
defaultExpr(uc)

�� uc ∈ uconds〉
Figure 3.5: Semantics of BiYacc programs (as BiGUL programs)—auxiliary functions.

update operation. For example, the �rst action in the Arith–Factor group

Sub (Num 0) y +> '-' (y +> Factor)

is compiled to

$(normalSV [p| (Factor1 _ _) |] [p| Sub (Num 0) y |] [p| (Factor1 _ _) |])

$(update [p| Sub (Num 0) y |] [p| (Factor1 _ y) |] [d| y = bigulArithFactor; |]) .

When the CST is a Factor1 and the AST matches Sub (Num 0) y, we enter this branch, decompose
the source and view by pattern matching, and use the view’s right subtree y to update the second
�eld of the source while skipping the �rst �eld (which stores whitespaces); the name of the BiGUL
program for performing the update is determined by the type of the smaller source y (deduced by
varType) and that of the smaller view.

34 Chapter 3. Basic BiYacc

Adaptive Branches. When all actions in a group fail to match, we should adapt the source
into a proper shape to correspond to the view. This is done by generating adaptive branches
from the actions during compilation. For example, besides a normal branch, the �rst action in the
Arith–Factor group Sub (Num 0) y +> '-' (y +> Factor) is also compiled to

$(adaptiveSV [p| _ |] [p| Sub (Num 0) _ |]) (\ _ _ -> Factor1 " " FactorNull) .

Since the source pattern of the main condition (of the adaptive branch) is a wildcard, the branch
is always applicable if the view matches Sub (Num 0) _. The body of the adaptation function is
generated by the auxiliary function defaultExpr, which creates a skeletal value—here Factor1 "

" FactorNull represents a negation skeleton - whose value is not (recursively) created yet—that
matches the source pattern. These adaptive branches are placed at the end of an action group
and tried only if no normal branches are applicable so that unnecessary adaptation will never be
performed.

Entry Point. The entry point of the program is chosen to be the BiGUL program compiled from
the �rst group of actions. This corresponds to our assumption that the initial input concrete and
abstract syntax trees are of the types speci�ed for the �rst action group. It is rather simple so the
rules are not shown in the �gure. For the expression example, we generate a de�nition

entrance = bigulArithExpr

which is invoked in the main program.

Well-behavedness. Since BiGUL programs always denote well-behaved lenses, a fact which
has been formally veri�ed (Norell, 2007), we get the following theorem for free.

Theorem 3.2.3 (Well-behavedness). The BiGUL program generated from a BiYacc program is a
lens; that is, it satis�es the well-behavedness laws in De�nition 2.2.2 with cst substituted for the
source s and ast for the view v:

put cst ast = Just cst ′ ⇒ get cst ′ = Just ast

get cst = Just ast ⇒ put cst ast = Just cst .

3.3 Case Study: The Tiger Language

The design of BiYacc may look simplistic and make the reader wonder how much it can describe.
In fact, BiYacc can already handle real-world language features: We successfully built a pair of

3.3 Case Study: The Tiger Language 35

parser and printer for almost a full set of the C programming language following the C89 grammar
based on Kernighan and Ritchie (1989) (excluding preprocessing parts and several primitive types).
As another example, Kinoshita and Nakano (2017) adopted BiYacc as part of their system for
synchronising Coq functions and their corresponding Ocaml programs.

But due to the fact that we could not �nd any o�cial de�nition of the abstract syntax of C, in
this section, we will demonstrate BiYacc with a medium-size case study on the Tiger language,
which is a statically typed imperative language �rst introduced in Appel’s textbook on compiler
construction (Appel, 1998). Since Tiger’s purpose of design is pedagogical, it is not too complex and
yet covers many important language features including conditionals, loops, variable declarations
and assignments, and function de�nitions and calls. Tiger is therefore a good case study with
which we can test the potential of our BX-based approach to constructing parsers and retentive
printers. Some of these features can be seen in this Tiger program:

function foo() =

(for i := 0 to 10

do (print(if i < 5 then "smaller"

else "bigger");

print("\n"))) .

To give a sense of Tiger’s complexity, it takes a grammar with 81 production rules to specify
Tiger’s syntax, while for C89 and C99 it takes respectively 183 and 237 rules1 without any
disambiguation declarations (based on Kernighan and Ritchie (1989) and the draft version of 1999
ISO C standard, excluding the preprocessing part). The di�erence is basically due to the fact that
C has more primitive types and various kinds of assignment statements.

Excerpts of the abstract and concrete syntax of Tiger are shown in Figure 3.6. The abstract
syntax is largely the same as the original one de�ned in Appel’s textbook (page 98); as for the
concrete syntax, Appel does not specify the whole grammar in detail, so we use a version slightly
adapted from Hirzel and Rose’s lecture notes (Hirzel and Rose, 2013). In order to make the
grammar unambiguous, we divide the (binary) operators into several groups, with the highest-
precedence terms (like literals) placed in the last group, just like what we did in the arithmetic
expression example (Figure 3.1); to handle features that are not supported by BiYacc, we let the AST
constructors TFunctionDec and TTypeDec take a single function and type declaration respectively,

1However, the grammar uses extended BNF and many production rules require an expansion regarding their
optional cases in order to be accepted by Happy. For instance, we need to fully expand for (Expropt ; Expropt ; Expropt)
and write a total of eight cases regarding the occurrence or absence of each expression. In this sense, C has a lot more
production rules than Tiger has.

36 Chapter 3. Basic BiYacc

instead of a list of adjacent ones (for representing mutual recursion) as in Appel (1998), since
we cannot handle the synchronisation between a list of lists (in ASTs) and a list (in CSTs) with
BiYacc’s syntax; �nally, to circumvent the ‘dangling else problem’, a terminal ‘end’ is added to
mark the end of an if-then expression.

We have successfully tested our BiYacc program for Tiger on all the sample programs provided
on the homepage of Appel’s book1, including a merge sort implementation and an eight-queen
solver, and there is no problem parsing and printing them with well-behavedness guaranteed.
In the following subsections, we will present some printing strategies described in the BiYacc
program to demonstrate what BiYacc, in particular retentive printing, can achieve.

3.3.1 Syntactic Sugar and Resugaring

We start with a simple example about syntactic sugar, which is pervasive in programming languages
and lets the programmer use some features in an alternative (perhaps conceptually higher-level)
syntax. For instance, Tiger represents boolean values false and true respectively as zero and
nonzero integers, and the logical operators & (‘and’) and | (‘or’) are converted to a conditional
structure in the abstract syntax: e1 & e2 is desugared and parsed to TCond e1 e2 (TInt 0) and
e1 | e2 to TCond e1 (TInt 1) e2. The printing actions for them in BiYacc are

TExp +> Prmtv

TCond e1 (TInt 1) (JJ e2) +> [e1 +> Prmtv] '|' [e2 +> Prmtv1];

TExp +> Prmtv1

TCond e1 e2 (JJ (TInt 0)) +> [e1 +> Prmtv1] '&' [e2 +> Prmtv2]; .

The parse function for these kinds of syntactic sugar is not injective, since the basic syntax and its
sugared form are both mapped to the same AST structure. A conventional printer which takes
only the AST as input cannot reliably determine whether an abstract expression should be printed
to the basic form or the sugared form, whereas a retentive printer can make the correct decision
by inspecting the CST.

The idea of resugaring (Pombrio and Krishnamurthi, 2014) is to print evaluation sequences in
a core language in terms of a surface syntax. Here we show that, without any extension, BiYacc is
already capable of propagating some AST changes that result from evaluation back to the concrete
syntax, subsuming a part of Pombrio and Krishnamurthi’s work (Pombrio and Krishnamurthi,
2014, 2015).

1https://www.cs.princeton.edu/~appel/modern/testcases/

https://www.cs.princeton.edu/~appel/modern/testcases/

3.3 Case Study: The Tiger Language 37

#Abstract
type TSymbol = String

data Tuple a b = Tuple a b

data BBool = TT | FF
data MMaybe a = NN | JJ a
data List a = Nil | Cons a (List a)

data TExp = TString String | TInt Int | TNilExp | TCond TExp TExp (MMaybe TExp)
| TLet (List TDec) TExp | TOp TExp TOper TExp | TExpSeq (List TExp) | ...

data TOper = TPlusOp | TMinusOp | ... | TEqOp | TNeqOp | ...

data TDec = TVarDec TSymbol BBool (MMaybe TSymbol) TExp
| TTypeDec (Tuple TSymbol TTy) | TFunctionDec TFundec

data TFundec = TFundec TSymbol (List TFieldDec) (MMaybe TSymbol) TExp ...

#Concrete
Exp -> LetExp | ArrExp | IfThen | IfThenElse | Prmtv

| ForExp | RecExp | WhileExp | Assignment | 'break' ;

VarDec -> 'var' Identifier ':=' Exp
| 'var' Identifier ':' Identifier ':=' Exp ;

LValue -> Identifier | OtherLValue ;
OtherLValue -> LValue '.' Identifier

| Identifier '[' Exp ']' | OtherLValue '[' Exp ']' ;

SeqExp -> '(' ')' | '{' ExpSeq '}' ;
ExpSeq -> Exp ';' ExpSeq | Exp ;

IfThenElse -> [ITE] 'if' Exp 'then' Exp 'else' Exp ;
IfThen -> [IT] 'if' Exp 'then' Exp 'end' ;

Prmtv -> Prmtv '|' Prmtv1
| Prmtv1 ;

Prmtv3 -> Prmtv3 '+' Prmtv4
| Prmtv3 '-' Prmtv4
| Prmtv4 ; ...

Prmtv1 -> Prmtv1 '&' Prmtv2
| Prmtv2 ;

Prmtv5 -> '-' Prmtv5 | Numeric | String
| LValue | SeqExp | CallExp | "nil" ;

...

Figure 3.6: An excerpt of Tiger’s abstract and unambiguous concrete syntax. (Here we de�ne our own
BBool type and MMaybe type for avoiding name clashing with Haskell’s built-in ones.)

38 Chapter 3. Basic BiYacc

We borrow their example of resugaring evaluation sequences for the logical operators ‘or’ and
‘not’, but recast the example in Tiger. The ‘or’ operator has been de�ned as syntactic sugar in
Section 3.3.1. For the ‘not’ operator, which Tiger lacks, we introduce ‘~’, represented by TNot in
the abstract syntax. Now consider the source expression

~1 | ~0 ,

which is parsed to

TCond (TNot (TInt 1)) (TInt 1) (JJ (TNot (TInt 0))) .

A typical evaluator will produce the following evaluation sequence given the above AST:

TCond (TNot (TInt 1)) (TInt 1) (JJ (TNot (TInt 0)))

→ TCond (TInt 0) (TInt 1) (JJ (TNot (TInt 0)))

→ TNot (TInt 0)

→ TInt 1 .

If we perform retentive printing after every evaluation step using BiYacc, we will get the following
evaluation sequence on the source:

~1 | ~0 → 0 | ~0 → ~0 → 1 .

Due to the Correctness property, parsing these concrete terms will yield the corresponding ab-
stract terms in the abstract evaluation sequence, and this is exactly Pombrio and Krishnamurthi’s
‘emulation’ property, which they have to prove for their system. For BiYacc, however, the emula-
tion property holds by construction, since BiYacc programs are always well-behaved. Another
di�erence is that we do not need to insert additional information (such as tags) into an AST for
recording which surface syntax structure a node comes from. One advantage of our approach is
that we keep the abstract syntax pure, so that other tools—the evaluator in particular—can process
the abstract syntax without being modi�ed, whereas in Pombrio and Krishnamurthi’s approach,
the evaluator has to be adapted to work on the enriched abstract syntax.

Note that the above resugaring for Tiger is achieved for free—the programmer does not need
to write additional or special code. In general, BiYacc can easily and reliably propagate AST
changes that involve only ‘simpli�cation’, i.e. replacing part of an AST with a simpler tree. Thus it
should not be surprising that BiYacc can also propagate simpli�cation-like optimisations such
as constant propagation and dead code elimination and some refactoring transformations such
as variable renaming and adding or removing parameters. We can achieve all these by using one
‘general-purpose’ BiYacc program, which does not need to be tailored for each application.

3.3 Case Study: The Tiger Language 39

3.3.2 Language Evolution

When a language evolves, some new features of the language (e.g. the foreach loop introduced
in Java 5 (Gosling et al., 2006)) can be implemented by desugaring to some existing features
(e.g. ordinary for loops), so that the compiler back end and abstract syntax de�nition do not need
to be extended to handle the new features. As a consequence, all the engineering work about
optimising transformations or refactoring (Fowler and Beck, 1999) that has been developed for the
abstract syntax remains valid.

Consider a kind of ‘generalised-if’ expression allowing more than two cases, resembling
the alternative construct in the guarded command language (Dijkstra, 1975). We extend Tiger’s
concrete syntax with the following production rules:

Exp -> . . . | Guard | . . . ;

Guard -> 'guard' CaseBs 'end';

CaseBs -> CaseB CaseBs | CaseB ;

CaseB -> LValue '=' Numeric '->' Exp ; .

For simplicity, we restrict the predicate produced by CaseB to the form LValue '=' Numeric, but
in general the Numeric part can be any expression computing an integer. The retentive printing
actions for this new construct can still be written within BiYacc, but require much deeper pattern
matching:

TExp +> Guard

TCond (TOp (TVar lv) TEqOp (TInt i)) e1 Nothing +>

'guard' (CaseBs -> (CaseB -> [lv +> LValue] '='

[i +> Numeric] '->' [e1 +> Exp])

) 'end';

TCond (TOp (TVar lv) TEqOp (TInt i)) e1 (J if2@(TCond _ _ _)) +>

'guard' (CaseBs -> (CaseB -> [lv +> LValue] '='

[i +> Numeric] '->' [e1 +> Exp])

[if2 +> CaseBs]

) 'end';

;;

40 Chapter 3. Basic BiYacc

TExp +> CaseBs

TCond (TOp (TVar lv) TEqOp (TInt i)) e1 Nothing +>

(CaseB -> [lv +> LValue] '=' [i +> Numeric] '->' [e1 +> Exp]);

TCond (TOp (TVar lv) TEqOp (TInt i)) e1 (J if2@(TCond _ _ _)) +>

(CaseB -> [lv +> LValue] '=' [i +> Numeric] '->' [e1 +> Exp])

[if2 +> CaseBs];

;; .

Although a little complex, these printing actions are in fact fairly straightforward: The �rst group
of type Tiger +> Guard handles the enclosing guard–end pairs, distinguishes between single- and
multi-branch cases, and delegates the latter case to the second group, which prints a list of branches
recursively.

This is all we have to do—the corresponding parser is automatically derived and guaranteed
to be consistent. Now guard expressions are desugared to nested if expressions in parsing and
preserved in printing, and we can also resugar evaluation sequences on the ASTs to program text.
For instance, the following guard expression

guard choice = 1 -> 4

choice = 2 -> 8

choice = 3 -> 16 end

is parsed to

TCond (TOp (TVar (TSV "c")) TEqOp (TInt 1)) (TInt 4) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))))

where TSimpleVar is shortened to TSV, and choice is shortened to c. Suppose that the value of the
variable choice is 2. The evaluation sequence on the AST will then be

TCond (TOp (TVar (TSV "c")) TEqOp (TInt 1)) (TInt 4) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))))

→ TCond (TInt 0) (TInt 4) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))))

→ TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))

→ TCond (TInt 1) (TInt 8) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))

→ TInt 8 .

3.3 Case Study: The Tiger Language 41

And the translated evaluation sequence on the concrete expression will be

guard choice = 1 -> 4

choice = 2 -> 8

choice = 3 -> 16 end

9
→ guard choice = 2 -> 8

choice = 3 -> 16 end

9
→ 8 .

Retentive printing fails for the �rst and third steps (the program text becomes an if-then-else

expression if we do printing at these steps), but this behaviour in fact conforms to Pombrio and
Krishnamurthi’s ‘abstraction’ property, which demands that core evaluation steps that make
sense only in the core language must not be propagated to the surface. In our example, the �rst
and third steps in the TCond-sequence evaluate the condition to a constant, but conditions in
guard expressions are restricted to a speci�c form and cannot be a constant; evaluation of guard
expressions thus has to proceed in bigger steps, throwing away or going into a branch in each
step, which corresponds to two steps for TCond.

The reader may have noticed that, after the guard expression is reduced to two branches, the
layout of the second branch is disrupted; this is because the second branch is in fact printed from
scratch. In current BiYacc, the printing from an AST to a CST is accomplished by recursively
performing pattern matching on both tree structures. This approach naturally comes with the
disadvantage that the matching is mainly decided by the position of the nodes in the AST and CST.
Consequently, a minor structural change on the AST may totally disrupt the matching between
the AST and the CST. Nonetheless, the problem can theoretically and completely be solved by a
new property Retentiveness proposed in Chapter 5.

3.3.3 Other Potential Applications

We conclude this section by shortly discussing several other potential applications. In general,
(current) BiYacc can easily and reliably propagate AST changes that have local e�ect such as
replacing part of an AST with a simpler tree, without destroying the layouts and comments of
una�ected code. Thus it would not be surprising that BiYacc can also propagate (i) simpli�cation-
like optimisations such as constant folding and constant propagation and (ii) some code refactoring
transformations such as variable renaming. All these functionalities are achieved for free by one
‘general-purpose’ BiYacc program, which does not need to be tailored for each application.

42 Chapter 3. Basic BiYacc

Summary of the Case Study. We program in BiYacc and obtain a consistent pair of parser
and retentive printer for the Tiger language. Well-behavedness of the pair is tested against all the
sample programs provided on the homepage of Appel’s book. We demonstrate that BiYacc is able
to preserve syntactic sugar and achieve resugaring using clean and compact ASTs without any
other e�ort, which are not the case for conventional approaches (that choose to enrich ASTs). We
also demonstrate that, using BiYacc, if Tiger evolves and there is a new kind of ‘generalised-if’
expression that is desugared to the same TCond construct, all we need to do is add several cases for
the production rules and printing actions; the newly generated parser and retentive printer are
still consistent and correctly handle the new syntactic sugar.

3.4 Related Work

3.4.1 Building Parser and Printer Pairs at Once

In Section 2.3.1, we have seen that existing approaches are not designed to handle the synchroni-
sation between program text and ASTs. Here, we further compare our approach with others’ in
depth, especially Rendel and Ostermann’s (2010) and Matsuda and Wang’s (2018b) approaches,
which also guarantee some properties between a parser and printer pair.

Both Rendel and Ostermann and Matsuda and Wang (2018a; 2018b) adopt a combinator-based
approach1 whereas we use a generator-based approach, where small components describing both
parsing and printing are glued together to yield more sophisticated behaviour, and can guarantee
properties similar to Theorem 3.2.2 with cst replaced by ast in the equations. (Let us call the variant
version Theorem 1′, since it will be used quite often later.) In Rendel and Ostermann’s system
(called ‘invertible syntax descriptions’, which we shorten to ISDs henceforth), both the parsing
and printing semantics are prede�ned in the combinators and consistency is guaranteed by their
partial isomorphisms, whereas in Matsuda and Wang’s system (called FliPpr), the combinators
describing pretty printing are translated by a semantic-preserving transformation to a core syntax,
which is further processed by their grammar-based inversion system (Matsuda et al., 2010) to
realise the parsing semantics. Brabrand et al. (2008) present a tool XSugar that handles bijections
between the XML syntax (representation) and any other syntax (representation) for the same
language, guaranteeing that the syntax transformation is reversible. However, the essential factor
that distinguishes our system from others is that the printer produced from a BiYacc program is

1Although they use di�erent implementation techniques, we will not dive into them in our related work. See
Matsuda and Wang’s (Matsuda and Wang, 2018a) related work for a comparison.

3.4 Related Work 43

retentive and can deal with synchronisation.
Although the above-mentioned systems are tailored for unifying parsing and printing, there

are design di�erences. An ISD is more like a parser, while FliPpr lets the user describe a printer: To
handle operator priorities, for example, the user of ISDs will assign priorities to di�erent operators,
consume parentheses, and use combinators such as chainl to handle left recursion in parsing,
while the user of FliPpr will produce necessary parentheses according to the operator priorities.
For BiYacc in this chapter which deals with unambiguous grammars only, the user de�nes a
concrete syntax that has a hierarchical structure (e.g., Expr, Term, and Factor) to express operator
priority, and write printing strategies to produce (preserve) necessary parentheses. The user of
XSugar will also likely need to use such a hierarchical structure.

It is interesting to note that the part producing parentheses in FliPpr essentially corresponds
to the hierarchical structure of grammars. For example, to handle arithmetic expressions in FliPpr,
we can write:

ppr' i (Minus x y) =

parensIf (i >= 6) $ group $

ppr 5 x <> nest 2

(line' <> text "-" <> space' <> ppr 6 y); .

FliPpr will automatically expand the de�nition and derive a group of ppr_i functions indexed
by the priority integer i, corresponding to the hierarchical grammar structure. In other words,
there is no need to specify the concrete grammar, which is already implicitly embedded in the
printer program. This makes FliPpr programs neat and concise. Following this idea, BiYacc
programs can also be made more concise: In a BiYacc program, the user is allowed to omit the
production rules in the concrete syntax part (or omit the whole concrete syntax part), and they
will be automatically generated by extracting the terminals and nonterminals in the right-hand
sides of all actions. However, if these production rules are supplied, BiYacc will perform some
sanity checks: It will make sure that, in an action group, the user has covered all of the production
rules of the nonterminal appearing in the ‘type declaration’, and never uses unde�ned production
rules.

Just like basic BiYacc, all of the systems described above (aim to) handle unambiguous gram-
mars only. Theoretically, when the user-de�ned grammar (or the derived grammar) is ambiguous,
ISDs’ partial isomorphism could guarantee Theorem 1′ by returning Nothing on ambiguous input;
FliPpr’s (own) Theorem 1 is comparable to Theorem 1′ by taking all the language constructs
which may cause non-injective printing into account. However, according to the paper, FliPpr’s
Theorem 1 appears to only consider nondeterministic printing based on prettiness (layouts). Since

44 Chapter 3. Basic BiYacc

the discussion on ambiguous grammars has not been presented in their papers, we also tested
their implementation and the behaviour is as follows: Neither ISDs nor FliPpr will notify the
user that the (derived) grammar is ambiguous at compile time. For ISDs, the right-to-left direction
of our Theorem 1′ will fail, while for FliPpr, both directions will fail. (They never promise to
handle ambiguous grammars, though.) In contrast, Brabrand et al. give a detailed discussion about
ambiguity detection, and XSugar statically checks if the transformations are ‘reversible’. If any
ambiguity in the program is detected, XSugar will notify the user of the precise location where
ambiguity arises. In BiYacc, the ambiguity detection of the input grammar is performed by the
employed parser generator (currently Happy), and the result is reported at compile time; if no
warning is reported, the well-behavedness is always guaranteed. Note that the ambiguity detection
can produce false positives: warnings only mean that the grammar is not LALR(1) but does not
necessarily mean that the grammar is ambiguous—ambiguity detection is undecidable for the full
CFG (Cantor, 1962).

Finally, we compare BiYacc with an industrial tool, Augeas, which provides the user with a
local con�guration API that converts con�guration data into a rose tree representation (Lutterkort,
2008). Similar to BiYacc, Augeas also uses the idea of state-based asymmetric lenses so that its
parse and print functions satisfy well-behavedness and it tries to preserve comments and layouts
when printing the tree representation back. However, since the purpose of Augeas and BiYacc
is di�erent, the di�erences between the tools are also noticeable: (i) Augeas works for regular
grammars while BiYacc works for (unambiguous) context-free grammars. (ii) Augeas uses a
combinator-based approach while BiYacc adopts a generator-based approach. (iii) Augeas works
more like a simple parser that stops after constructing CSTs: in the parsing direction, Augeas
unambiguously separates strings into sub-strings, turn sub-strings into tokens, and use tokens
to build the corresponding tree; but since each lens combinator (of Augeas) has its prede�ned
strategy to turn its acceptable strings into the tree representation, the corresponding (rose) tree
will be determined once the input string and the lens combinators for parsing the string are given;
Augeas does not provide a functionality to further transform a rose tree. On the other hand,
BiYacc �rst turns a string into its isomorphic CST (fully determined the input string and the
grammar description) and �nally converts the CST to its AST in accordance with the algebraic
data types de�ned by the user; that is, the relation between a string (CST) and its AST is not
predetermined but can be adjusted by the user (through printing actions).

3.4 Related Work 45

3.4.2 Comparison with a Get-based Approach

As explained in Section 2.3.3, the purpose of bidirectional programming is to relieve the burden of
thinking bidirectionally—the programmer writes a program in only one direction, and a program
in the other direction is derived automatically. In the context of parsing and retentive printing, the
get-based approach lets the programmer describe a parser, whereas the put-based approach lets the
programmer describe a printer. Below we discuss in more depth how the put-based methodology
a�ects BiYacc’s design by comparing BiYacc with a closely related, get-based system.

Martins et al. (2014) introduces an attribute grammar–based BX system for de�ning transfor-
mations between two representations of languages (two grammars). The utilisation is similar to
BiYacc: The programmer de�nes both grammars and a set of rules specifying a forward trans-
formation (i.e. get), with a backward transformation (i.e. put) being automatically generated. For
example, the BiYacc actions in lines 28–30 of Figure 3.1 can be expressed in Martins et al.’s system
as

get EA (plus (x, ‘+’,y)) → add(get EA (x), get
T
A (y))

get EA (minus(x, ‘-’,y)) → sub (get EA (x), get
T
A (y))

get EA (fromt(e)) → get TA (e)

which describes how to convert certain forms of CSTs to corresponding ASTs. The similarity is
evident, and raises the question as to how get-based and put-based approaches di�er in the context
of parsing and retentive printing.

The di�erence lies in the fact that, with a get-based system, certain decisions on the backward
transformation are, by design, permanently encoded in the bidirectionalisation system and cannot
be controlled by the user, whereas a put-based system can give the user fuller control. For instance,
when no source is given and more than one rules can be applied, Martins et al.’s system chooses,
by design, the one that creates the most specialised version. This might or might not be ideal for
the user of the system. As an example, suppose that we port to Martins et al.’s system the BiYacc
action that relates negation with an abstract Sub expression, coexisting with a more general rule
that maps a concrete subtraction to an abstract Sub expression. Then printing the AST Sub (Num

0) (Var "a") from scratch will and can only produce -a, as dictated by the system’s hard-wired
printing logic. By contrast, the user of BiYacc can easily choose to print the AST from scratch as
-a or 0 - a by suitably ordering the actions.

This di�erence is somewhat subtle, and one might argue that Martins et al.’s design simply
went one step too far—if their system had been designed to respect the rule ordering as speci�ed by
the user, as opposed to always choosing the most specialised rule, the system would have given its

46 Chapter 3. Basic BiYacc

user the same �exibility as BiYacc. Interestingly, whether to let user-speci�ed rule/action ordering
a�ect the system’s behaviour is, in this case, exactly the line between get-based and put-based
design. The user of Martins et al.’s system writes rules to specify a get transformation, whose
semantics is the same regardless of how the rules are ordered, and thus it would be unpleasantly
surprising if the rule ordering turned out to a�ect the system’s behaviour. By contrast, the user of
BiYacc only needs to think in one direction about the printing behaviour, for which it is natural
to consider how the actions should be ordered when an AST has many corresponding CSTs; the
parsing behaviour will then be automatically and uniquely determined. In short, relevance of
action ordering is incompatible with get-based design, but is a natural consequence of put-based
thinking.

47

4
Bidirectionalised Filters for

Handling Grammatical Ambiguity

In this chapter, we make an extension to our solution (mainly) for the isomorphism part (between
program text and CSTs). In Chapter 3, we have described the basic version of BiYacc, about which
there is an important assumption (stated in Section 3.2.2.3) that grammars have to be unambiguous.
Having this assumption can be rather inconvenient in practice, however, as ambiguous grammars
(with disambiguation directives) are often preferred since they are considered more natural and
human-friendly than their unambiguous versions (Afroozeh and Izmaylova, 2015; Klint and Visser,
1994). Therefore, the purpose of this section is to revise the architecture of basic BiYacc to allow
the use of ambiguous grammars and disambiguation directives. This is in fact a long-standing
problem, for tools designed for building (consistent) parser and printer pairs usually do not support
such functionality (Section 3.4).

For example, consider the ambiguous grammar (with disambiguation directives) and printing
actions in Figure 4.1, which we will refer to throughout this section. Note that the parenthesis
structure is dropped when converting a CST to its AST (as stated by the last printing action of
Arith +> Expr). The grammar is converted to CST datatypes and constructors as in Section 3.2.2.1,

48 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

#Concrete
Expr -> [Plus] Expr '+' Expr

| [Minus] Expr '-' Expr
| [Times] Expr '*' Expr
| [Division] Expr '/' Expr
| [Paren] '(' Expr ')'
| [Lit] Numeric
;

#Directives
Priority:
Times > Plus ;
Times > Minus ;
Division > Plus ;
Division > Minus ;

Associativity:
Left: Plus, Minus, Times, Division ;

#Actions
Arith +> Expr
Add x y +> [x +> Expr] '+' [y +> Expr] ;
Sub x y +> [x +> Expr] '-' [y +> Expr] ;
Mul x y +> [x +> Expr] '*' [y +> Expr] ;
Div x y +> [x +> Expr] '/' [y +> Expr] ;
Num i +> [i +> Numeric] ;
e +> '(' [e +> Expr] ')' ;

;;

Figure 4.1: Arithmetic expressions de�ned by an ambiguous grammar and the corresponding printing
actions. For simplicity, the variable and negation productions are omitted.

but here we explicitly give names such as Plus and Times to production rules, and these names
(instead of automatically generated ones) are used for constructors in CSTs. Compared with this
grammar, the unambiguous one shown in Figure 3.1 is less intuitive as it uses di�erent nonterminals
to resolve the ambiguity regarding operator precedence and associativity.

In this chapter, we explain the problem brought by ambiguous grammars (Section 4.1) and
address it (Section 4.2) using generalised parsing and bidirectionalised �lters (bi-�lters for short).
Then we extend BiYacc with bi-�lters (Section 4.3) while still respecting consistency of the
generated parser and printer pairs. To program with bi-�lters easily, we provide compositional bi-
�lter directives (Section 4.4) which compile to priority and associativity bi-�lters; power users can
also de�ne their own bi-�lters (Section 4.5) and we illustrate this by writing a bi-�lter that solves the
(in)famous dangling-else problem. With bi-�lters, we rewrite the Tiger language in its ambiguous
form (that is closer to its original de�nition) and disambiguate it; we highlight the changes in the
grammar and in the case study compared to the unambiguous one (Section 4.6). Finally, we present
related work regarding generalised parsing and disambiguation �lters (Section 4.7) and discuss
several issues (Section 4.8) regarding implementation details and future research directions.

4.1 Problems with Ambiguous Grammars 49

4.1 Problems with Ambiguous Grammars

Consider the original architecture of BiYacc in Figure 3.2, which we want to (and basically
will) retain while adapting it to support ambiguous grammars. The �rst component (of the
executable) we should adapt is cparse :: String→ Maybe CST, the (concrete) parsing direction of
the isomorphism: since there can be multiple CSTs corresponding to the same program text, cparse
needs to choose one of them as the result. Disambiguation directives (Johnson, 1975) were invented
to describe how to make this choice. For example, with respect to the grammar in Figure 4.1, text
1 + 2 * 3 will have either of the two CSTs1:

cst1 =
]Plus 1 (Times 2 3)

cst2 =
]Times (Plus 1 2) 3

depending on the precedence of addition and multiplication. Conventionally, we can use the
Yacc-style disambiguation directives %left '+'; %left '*'; to specify that multiplication has
higher precedence over addition, and instruct the parser to choose cst1.

However, merely adapting cparse with disambiguation behaviour is not enough, since the
isomorphism (Theorem 3.2.2), in particular its right to left direction (which is simpli�ed as
cparse (cprint cst) = Just cst), cannot be established when an ambiguous grammar is used—in the
example above, cparse (cprint cst2) = Just cst1 , Just cst2. This is because the image of
cparse is strictly smaller than the domain of cprint (in general): if we start from any CST not in the
image of cparse, we will never be able to get back to the same CST through cprint and then cparse.
This tells us that, to retain the isomorphism, the domain of cprint should not be the whole CST but
only the image of cparse, i.e. the set of valid CSTs (as de�ned by the disambiguation directives),
which we denote by CSTF (for reasons that will be made clear in Section 4.3).

Now that the right-hand side domain of the isomorphism is restricted to CSTF , the source of
the lens should be restricted to this set as well. For get :: CST→ Maybe AST we need to restrict
its domain, which is easy; for put :: CST → AST → Maybe CST we should revise its type to
CSTF → AST→ Maybe CSTF , meaning that put should now guarantee that the CSTs it produces
are valid, which is nontrivial. For example, consider the result of put cst ast where ast = Mul

(Add (Num 1) (Num 2)) (Num 3) and cst is some arbitrary tree. A natural choice is cst2, which,
however, is excluded from CSTF by disambiguation. A possible solution could be making put

refuse to produce a result from ast, but this is unsatisfactory since ast is perfectly valid and should
not be ignored by put. A more satisfactory way is to create a CST with proper parentheses, like

1For simplicity, we use] to annotate type-incorrect CSTs in which �elds for layouts (and comments) and unimportant
constructors such as Lit are omitted.

50 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

cst3 =]Times (Paren (Plus 1 2)) 3. But it is not clear in what cases parentheses need to be
added, in what cases they need not, and in what cases they cannot.

We are now led to a fundamental problem: generally, put strategies for producing valid CSTs
should be inferred from the disambiguation directives, but the semantics of Yacc disambiguation
directives are de�ned over the implementation of Yacc’s underlying LR parsing algorithm with a
stack (Aho et al., 1975; Johnson, 1975), and therefore it is nontrivial to invent a dual semantics in the
put direction. To have a simple and clear semantics of the disambiguation process, we turn away
from Yacc’s traditional approach and opt for an alternative approach based on generalised parsing

with disambiguation �lters (Klint and Visser, 1994; van den Brand et al., 2002), whose semantics
can be speci�ed implementation-independently. Based on this simple and clear semantics, we will
be able to devise ways to amend put to produce only valid CSTs, and formally state the conditions
under which the executable generated by the revised BiYacc is well-behaved.

4.2 Generalised Parsing and Bidirectionalised Filters

The idea of generalised parsing is for a parser to produce all possible CSTs corresponding to its
input program text instead of choosing only one CST (possibly prematurely) (Earley, 1970; Scott
and Johnstone, 2010; Tomita, 1985; Younger, 1967), and works naturally with ambiguous grammars.
In practice, a generalised parser can be generated using, e.g., Happy’s GLR mode (Marlow and Gill,
2001), and we will assume that given a grammar we can obtain a generalised parser:

cgparse :: String→ [CST] .

The result of cgparse is a list of CSTs. We do not need to wrap the result type in Maybe—if cgparse
fails, an empty list is returned. And we should note that, while the result is a list, what we really
mean is a set (commonly represented as a list in Haskell) since we do not care about the order of
the output CSTs and do not allow duplicates.

With generalised parsing, program text is �rst parsed to all the possible CSTs; disambiguation
then becomes an extremely simple concept: removing CSTs that the user does not want. One pos-
sible semantics of disambiguation may be a function judge :: Tree→ Bool; during disambiguation,
this function is applied to all candidate CSTs, and a candidate cst is removed if judge cst returns
False, or kept otherwise. We call these functions disambiguation �lters (‘�lters’ for short). 1 For

1The general type for disambiguation �lters is [t] → [t], which allows comparison among a list of CSTs. However,
since in this paper we only consider property �lters de�ned in terms of predicates (on a single tree), it is su�cient to use

4.2 Generalised Parsing and Bidirectionalised Filters 51

example, to state that top-level addition is left-associative, we can use the following �lter1 to reject
right-sided trees:

plusJudge :: Expr -> Bool

plusJudge (]Plus _ (Plus _ _)) = False

plusJudge _ = True .

This simple and clean semantics of disambiguation is then amenable to ‘bidirectionalisation’, which
we do next.

Note that, unlike Yacc’s disambiguation directives, which assign precedence and associativity
to individual tokens and implicitly exclude ‘some’ CSTs, in plusJudge above we explicitly ban
incorrect CSTs through pattern matching. Having described which CSTs are incorrect, we can
further specify what to do with incorrect CSTs in the printing direction. Whenever a CST ‘in a
bad shape’, i.e. rejected by a �lter like plusJudge, is produced, we can repair it so that it becomes
‘in a good shape’:

plusRepair :: Expr -> Expr

plusRepair (]Plus t1 (Plus t2 t3)) =]Plus t1 (Paren (Plus t2 t3))

plusRepair t = t .

The above function states that whenever a Plus is another Plus’s right child, there must be
a parenthesis structure Paren in between. Observant readers might have found that the trees
processed by plusJudge and plusRepair have the same pattern. We can therefore pair the two
functions and make a bidirectionalised �lter (‘bi-�lters’ for short):

plusLAssoc :: Expr -> (Expr, Bool)

plusLAssoc (]Plus t1 (Plus t2 t3)) = (]Plus t1 (Paren (Plus t2 t3)), False)

plusLAssoc t = (t, True) .

But there is still some redundancy in the de�nition of plusLAssoc, for when the input tree is correct
we always return the same input tree; this can be further optimised:

plusLAssoc' :: Expr -> Maybe Expr

plusLAssoc' (]Plus t1 (Plus t2 t3)) = Just (]Plus t1 (Paren (Plus t2 t3)))

plusLAssoc' _ = Nothing .

the simpli�ed type t → Bool.
1This is not a very realistic �lter, although it su�ciently demonstrates the use of �lters and removes ambiguity in

simplest cases like 1 + 2 * 3. In general, the �lter should be complete (De�nition 4.3.2) so that ambiguity is fully
removed from the grammar.

52 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

Generalising the example above, we arrive at the de�nition of bi-�lters.

De�nition 4.2.1 (Bidirectionalised Filters). A bidirectionalised �lter F working on trees of type t
is a function of type BiFilter t de�ned by

type BiFilter t = t → Maybe t

satisfying
repair F t = t ′ ⇒ judge F t ′ = True (RepairJudge)

where the two directions repair and judge are de�ned by

repair :: BiFilter t → (t → t)

repair F t = case F t of
Nothing→ t

Just t ′ → t ′

judge :: BiFilter t → (t → Bool)

judge F t = case F t of
Nothing→ True
Just _ → False .

The functions repair and judge accept a bi-�lter and return respectively the specialised repair

and judge functions for that bi-�lter. For clarity, we let repairF denote repair F and let judgeF
denote judge F . The bi-�lter law RepairJudge dictates that repairF should bring its input tree into
a correct state with respect to judgeF . The reader may wonder why there is not a dual JudgeRepair
law saying that if a tree is already of an allowed form justi�ed by judgeF , then repairF should
leave it unchanged. In fact this is always satis�ed according to the de�nitions of judge and repair ,
so we formulate it as a lemma.

Lemma 4.2.2 (JudgeRepair). Any bi-�lter F satis�es the JudgeRepair property:

judgeF t = True ⇒ repairF t = t .

Proof. From judgeF t = True we deduce F t = Nothing, which implies repairF t = t .

In the next section, we will describe how to �t generalised parsers and bi-�lters into the
architecture of BiYacc. To let bi-�lters work with the lens part between CSTs and ASTs, we require

4.3 The New BiYacc System for Ambiguous Grammars 53

Compiled to

Isomorphism between  
program text and CSTs

Lens between  
CSTs and ASTs

Program  
Text Tokens CST AST

Lexer Parser

BiGUL
Program

   

Printer

Executable

CST ́
Bi-Filter

Concrete 
Syntax

Abstract 
Syntax

Directives Printing  
Actions

BiYacc Program

Arith +> Expr 
... 

data Arith = 
... 

Expr ->
Expr '+' Term ...

LineComment: 
Priority: 
Associativity:

Other 
Filters

[myFilter ::
BiFilter Expr] ...

Figure 4.2: New architecture of BiYacc. (New components are in light grey.)

a further property characterising the interaction between the repairing direction of a bi-�lter and
the get direction of a lens.

De�nition 4.2.3 (PassThrough). A bi-�lter F satis�es the PassThrough property with respect to a
function get exactly when

get ◦ repairF = get .

If we think of a get function as mapping CSTs to their semantics (in our case ASTs), then the
PassThrough property is a reasonable requirement since it guarantees that the repaired CST will
have the same semantics as before (as it is converted to the same AST). This property will be
essential for establishing the well-behavedness of the executable generated by the revised BiYacc.

4.3 The New BiYacc System for Ambiguous Grammars

As depicted in Figure 4.2, the executable generated by the new BiYacc system is still the composition
of an isomorphism and a lens, which is the structure we have tried to retain. To precisely identify
the changes in several generated components (in the executable �le) and demonstrate how parsing
and printing work with a bi-�lter, we present Figure 4.3 and will use this one instead. In the new
system, we will still use the get and put transformations generated from printing actions and

54 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

selected
cst

selectByF get

putrepairFcprint

cgparse

repaired
cstʹ

text

textʹ

modify

ast

astʹ

possible
csts

cstʹ

Isomorphism between text and cst

Lens between cst and ast
Figure 4.3: A schematic diagram showing how parsing and printing work with a bi-�lter.

the concrete printer cprint from grammars, while the concrete parser cparse is replaced with a
generalised parser cgparse. Additionally, the #Directives and #OtherFilters parts will be used
to generate a bi-�lter F , whose judgeF (used in the selectByF function in Figure 4.3) and repairF
components are integrated into the isomorphism and lens parts respectively, so that the right-hand
side domain of the isomorphism and the source of the lens become CSTF , the set of valid CSTs:

CSTF = { cst ∈ CST | judgeF cst = True } .

Next, we introduce the (new) isomorphism and lens parts, and prove their inverse properties and
well-behavedness respectively.

4.3.1 The Revised Isomorphism between Program Text and CSTs

Let us �rst consider the isomorphism part between String and CSTF , which is enclosed within the
blue dotted lines in Figure 4.3 and consists of cprint, cgparse, and selectByF :

cprint :: CST→ String

cgparse :: String→ [CST]

selectByF :: [CST] → Maybe CSTF
selectByF csts = case selectBy judgeF csts of

[cst] to Just cst

4.3 The New BiYacc System for Ambiguous Grammars 55

_ → Nothing

selectBy :: (a → Bool) → [a] → [a]
selectBy p [] = []
selectBy p (x : xs) | p x = x : selectBy p xs

selectBy p (x : xs) | otherwise = selectBy p xs .

In the parsing direction, �rst cgparse produces all the CSTs; then selectByF utilises a function
selectBy and a predicate judgeF to (try to) select the only correct cst; if there is no correct CST or
more than one correct CST, Nothing is returned. The function selectBy, which selects from the
input list exactly the elements satisfying the given predicate, is named �lter in Haskell’s standard
libraries but renamed here to avoid confusion. In the printing direction, we still use cprint to
�atten a (correct) CST back to program text. Formally, constructed from cgparse and cprint, the
two directions of the isomorphism are

cparseF :: String→ Maybe CSTF
cparseF = selectByF ◦ cgparse

cprintF :: CSTF → Maybe String

cprintF = Just ◦ cprint .

We are eager to give the revised version of the inverse properties (Theorem 4.3.5) and their
proofs, which, however, depend on two assumptions about generalised parsers and bi-�lters. So
let us present them in order.

De�nition 4.3.1 (Generalised Parser Correctness). A generalised parser cgparse is correct with
respect to a printer cprint exactly when

cgparse text = { cst ∈ CST | cprint cst = text } .

This is exactly De�nition 3.7 of Klint and Visser (1994). We remind the reader again that we
use sets and lists interchangeably for the parsing results.

De�nition 4.3.2 (Bi-Filter Completeness). A bi-�lter F is complete with respect to a printer cprint
exactly when

text ∈ Img cprint ⇒
��{ cst ∈ CSTF | cprint cst = text }

�� = 1 .

56 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

(Img f = {y | ∃x . f x = y } is the image of the function f .)

This is revised from De�nition 4.3 of Klint and Visser (1994), where they require that �lters
select exactly one CST and reject all the others. Since it is undecidable to judge whether a given
context-free grammar is ambiguous (Cantor, 1962), we cannot tell whether a (bi-)�lter (for the
full CFG) is complete, either. But still, some checks can be performed on simple cases, as stated in
Section 4.7.

The following two lemmas connect our two assumptions, De�nitions 4.3.1 and 4.3.2, with the
de�nitions of cparseF and cprintF .

Lemma 4.3.3. Given cparseF and cprintF where cgparse is correct and F is complete with respect
to cprint, we have

text ∈ Img cprint ⇒ ∃ cst ∈ CSTF . cparseF text = Just cst ∧ cprint cst = text .

Proof. We reason:

selectByF (cgparse text)

= { De�nition of SelectByF }
case selectBy judgeF (cgparse text) of { [cst] → Just cst; _→ Nothing }

= { Generalised Parser Correctness }
case selectBy judgeF { cst ∈ CST | cprint cst = text } of

{ [cst] → Just cst; _→ Nothing }

= { selectBy judgeF only selects correct CSTs regarding F }
case { cst ∈ CSTF | cprint cst = text } of { [cst] → Just cst; _→ Nothing }

= { Bi-Filter Completeness, ∃cst ′ s.t. { cst ∈ CSTF | cprint cst = text } = [cst ′] }
case [cst ′] of { [cst] → Just cst; _→ Nothing }

= { De�nition of case }
Just cst .

Moreover, cst satis�es cprint cst = text, since the latter is the comprehension condition of the set
from which cst is chosen, and therefore cprintF cst = Just text.

Lemma 4.3.4 (Printer Injectivity). If F is a complete bi-�lter, then cprintF is injective.

4.3 The New BiYacc System for Ambiguous Grammars 57

Proof. Assume that cst, cst ′ ∈ CSTF and cprint cst = cprint cst ′ = text for some text; that is, both
cst and cst ′ are in the set P = { cst ∈ CSTF | cprint cst = text }. Since text ∈ Img cprint, by the
completeness of F we have P = 1, and hence cst = cst ′.

We can now prove a generalised version of Theorem 3.2.2 for ambiguous grammars.

Theorem 4.3.5 (Inverse Properties with Bi-Filters). Given cparseF and cprintF where cgparse is
correct and F is complete, then the following holds:

cparseF text = Just cst ⇒ cprintF cst = Just text (4.1)

cprintF cst = Just text ⇒ cparseF text = Just cst . (4.2)

Proof. For (4.1): Let Just cst = selectByF (cgparse text). According to the de�nition of selectByF ,
we have cst ∈ cgparse text. By Generalised Parser Correctness cprint cst = text, and therefore
cprintF cst = Just text.

For (4.2): The antecedent implies cprint cst = text. By Lemma 4.3.3, we have cparseF text =

Just cst ′ for some cst ′ ∈ CSTF such that cprintF cst ′ = Just text = cprintF cst. By Lemma 4.3.4 we
know cst ′ = cst, and thus cparseF text = Just cst.

4.3.2 The Revised Lens between CSTs and ASTs

Recall that the #Action part of a BiYacc program produces a lens (BiGUL program) consisting of a
pair of well-behaved get and put functions:

get :: CST→ Maybe AST

put :: CST × AST→ Maybe CST .

To work with a bi-�lter F , in particular its repairF component, they need to be adapted to getF
and putF , which accept only valid CSTs:

getF :: CSTF → Maybe AST

getF = get

putF :: CSTF × AST→ Maybe CSTF
putF (cst, ast) = fmap repairF (put (cst, ast))

58 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

where fmap is a standard Haskell library function de�ned (for Maybe) by

fmap :: (a → b) → Maybe a → Maybe b

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x) .

We will need a lemma about fmap, which can be straightforwardly proved by a case analysis.

Lemma 4.3.6. If fmap f mx = Just y, then there exists x such that mx = Just x and f x = y.

Now we prove that getF and putF are well-behaved, which is a generalisation of Theorem 3.2.3
for ambiguous grammars.

Theorem4.3.7 (Well-behavedness with Bi-Filters). Given a complete bi-�lter F and a well-behaved
lens consisting of get and put, if get and F additionally satisfy PassThrough, then the getF and
putF functions with respect to F are also well-behaved:

putF (cst, ast) = Just cst ⇒ getF cst = Just ast (4.3)

getF cst = Just ast ⇒ putF (cst, ast) = Just cst . (4.4)

Proof. For (4.3): The antecedent expands to fmap repairF (put (cst, ast)) = Just cst, which, by
Lemma 4.3.6, implies put (cst, ast) = Just cst ′′ for some cst ′′ such that repairF cst ′′ = cst ′. Now
we reason:

getF cst ′

= { De�nition of getF and cst ∈ CSTF }

get cst ′

= { De�nition of cst ′ }
get (repairF cst ′′)

= { PassThrough }
get cst ′′

= { Correctness }
Just ast .

4.4 Bi-Filter Directives 59

For (4.4):

putF (cst, ast)

= { De�nition of putF }
fmap repairF (put (cst, ast))

= { Hippocraticness }
fmap repairF (Just cst)

= { De�nition of fmap }

Just (repairF cst)

= { Since cst ∈ CSTF , judgeF cst = True. By JudgeRepair }
Just cst .

4.4 Bi-Filter Directives

Until now, we have only considered working with a single bi-�lter, but this is without loss of
generality because we can provide a bi-�lter composition operator (Section 4.4.1) so that we
can build large bi-�lters from small ones. This is a suitable semantic foundation for introducing
Yacc-like directives for specifying priority and associativity into BiYacc (Section 4.4.2), since
we can give these directives a bi-�lter semantics and interpret a collection of directives as the
composition of their corresponding bi-�lters. We will also discuss some properties related to this
composition (Section 4.4.3).

4.4.1 Bi-Filter Composition

We start by de�ning bi-�lter composition, with the intention of making the net e�ect of applying
a sequence of bi-�lters one by one the same as applying their composite. Although the intention
is better captured by Lemma 4.4.2, which describes the repair and judge behaviour of a composite
bi-�lter in terms of the component bi-�lters, we give the de�nition of bi-�lter composition �rst.

De�nition 4.4.1 (Bi-Filter Composition). The composition of two bi-�lters is de�ned by

(/) :: (t → Maybe t) → (t → Maybe t) → (t → Maybe t)

(j / i) t = case i t of

60 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

Nothing→ j t

Just t ′ → case j t ′ of
Nothing→ Just t ′

Just t ′′ → Just t ′′ .

When applying a composite bi-�lter j / i to a tree t , if t is correct with respect to i (i.e. i t =
Nothing), we directly pass the original tree t to j; otherwise t is repaired by i , yielding t ′, and we
continue to use j to repair t ′. Note that if j t ′ = Nothing, we return the tree t ′ instead of Nothing.

Lemma 4.4.2. For a composite bi-�lter j / i , the following two equations hold:

repair (j / i) t = (repair j ◦ repairi) t

judge (j / i) t = judgej t ∧ judgei t .

Proof. By the de�nition of bi-�lter composition.

Composition of bi-�lters should still be a bi-�lter and satisfy RepairJudge and PassThrough.
This is not always the case though—to achieve this, we need some additional constraint on the
component bi-�lters, as formulated below.

De�nition 4.4.3. Let i and j be bi-�lters. We say that j respects i exactly when

judgei t = True ⇒ judgei (repair j t) = True .

If j respects i , then a later applied repair j will never break what may already be repaired by a
previous repairi . Thus in this case we can safely compose a j after i . This is proved as the following
theorem.

Theorem 4.4.4. Let i and j be bi-�lters (satisfying RepairJudge and PassThrough). If j respects i ,
then j / i also satisfy RepairJudge and PassThrough.

Proof. For RepairJudge, we reason:

judge (j / i) (repair (j / i) t)

= { Lemma 4.4.2 }
judge (j / i) (repair j (repairi t))

= { Lemma 4.4.2 }

4.4 Bi-Filter Directives 61

judgej (repair j (repairi t)) ∧ judgei (repair j (repairi t))

= { RepairJudge of j }
True ∧ judgei (repair j (repairi t))

= { judgei (repairi t
′) = True; j respects i }

True ∧ True

= True .

And for PassThrough:

get (repair (j / i) t)

= { Lemma 4.4.2 }
get (repair j (repairi t))

= { PassThrough of j }
get (repairi t)

= { PassThrough of i }
get t .

4.4.2 Priority and Associativity Directives

To relieve the burden of writing bi-�lters manually and guaranteeing respect among bi-�lters
being composed, we provide some directives for constructing bi-�lters dealing with priority1

and associativity, which are generally comparable to Yacc’s conventional disambiguation direc-
tives. The bi-�lter directives in a BiYacc program can be thought of as specifying ‘production
priority tables’, analogous to the operator precedence tables of, for example, the C programming
language (Kernighan and Ritchie, 1989) (chapter Expressions) and Haskell (Marlow et al., 2010)
(page 51). The main di�erences (in terms of the parsing direction) are as follows:

• For bi-�lters, priority can be assigned independently of associativity and vice versa, while
the Yacc-style approach does not permit so—by design, when the Yacc directives (such as

1The Yacc-style approach adopts the word precedence (Johnson, 1975) while the �lter-based approaches tend to
use the word priority (Klint and Visser, 1994; van den Brand et al., 2002). We follow the traditions and use either word
depending on the context.

62 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

%left and %right) are used on multiple tokens, they necessarily specify both the precedence
and associativity of those tokens.

• For bi-�lters, priority and associativity directives may be used to specify more than one
production priority tables, making it possible to put unrelated operators in di�erent tables
and avoid (unnecessarily) specifying the relationship between them. It is impossible to do so
with the Yacc-style approach, for its concise syntax only allows a single operator precedence
table.

Our bi-�lter directives repair CSTs violating priority and associativity constraints by adding
parentheses—for example, if the production of addition expressions in Figure 4.1 is left-associative,
then we can repair]Plus 1 (Plus 2 3) by adding parentheses around the right subtree, yield-
ing]Plus 1 (Paren (Plus 2 3)), provided that the grammar has a production of parentheses
annotated with the bracket attribute (van den Brand and Visser, 1996; Visser, 1997b):

Expr -> ...

| [Paren] '(' Expr ')' {# Bracket #} .

It instructs our bi-�lter directives to use this production when parentheses need to be added.
Internally, from the production and bracket attribute annotation, a type class AddParen and
corresponding instances for each datatype generated from concrete syntax (Expr for this example)
are automatically created:

class AddParen t where

canAddPar :: t -> Bool

addPar :: t -> t

where canAddPar tells whether a CST can be wrapped in a parenthesis structure and addPar adds
that structure if it is possible or behaves as an identity function otherwise. This makes it possible
to automatically generate bi-�lters to repair incorrect CSTs (and help the user to de�ne their own
bi-�lters more easily—see Section 4.5).

In order for bi-�lter directives to work correctly, the user should notice the following re-
quirements: (i) Directives shall not mention the parenthesis production annotated with bracket
attribute so that they respect each other and work properly (as introduced in De�nition 4.4.3). (ii)
Suppose that the parenthesis production is NT → αNTRβ where α and β denote a sequence of
terminals—for instance, Expr -> '(' Expr ')' above— there shall be exactly one printing action
de�ned for the parenthesis production in the form of v +> α[v +> NTR]β for the PassThrough

4.4 Bi-Filter Directives 63

property to hold: for any CST, the (added) parenthesis structure will all be dropped through the
conversion to its AST.

Next we introduce our priority and associativity directives and their bi-�lter semantics. From
a directive, we �rst generate a bi-�lter that checks and repairs only the top of a tree; this bi-�lter is
then lifted to check and repair all the subtrees in a tree. In the following we will give the semantics
of the directives in terms of the generation of the top-level bi-�lters, and then discuss the lifted
bi-�lters and other important properties they satisfy in Section 4.4.3.

Priority Directives

A priority directive de�nes relative priority between two productions; it removes (in the parsing
direction) or repairs (in the printing direction) CSTs in which a node of (relatively) lower priority
is a direct child of the node of (relatively) higher priority. For instance, we can de�ne that (the
production of) multiplication has higher priority than (the production of) addition for the grammar
in Figure 4.1 by writing

Expr -> Expr '*' Expr > Expr -> Expr '+' Expr ; or just Times > Plus ; .

The directive �rst produces the following top-level bi-�lter: 1

fTimesPlusPrio (Times t1 t2 t3) =

case or [match t1 p, match t2 p, match t3 p, False] of

False -> Nothing

True -> Just (Times (if match t1 p then addPar t1 else t1)

(if match t2 p then addPar t2 else t2)

(if match t3 p then addPar t3 else t3))

where p = Plus undefined undefined undefined .

We �rst check whether any of the subtrees t1, t2, and t3 violates the priority constraint, i.e. having
Plus as its top-level constructor—this is checked by the match function, which compares the top-
level constructors of its two arguments. The resulting boolean values are aggregated using the list
version of logical disjunction or :: [Bool] → Bool. If there is any incorrect part, we repair it by
inserting a parenthesis structure using addPar.

1Although terminals such as '*' and '+' are uniquely determined by constructors and not explicitly included in
the CSTs, there are �elds in CSTs for holding whitespace after them. Thus Times still has three subtrees. Also, for
simplicity, the bi-�lter fTimesPlusPrio attempts to repair the whitespace subtree t2 even though the repair can
never happen since t2 cannot match p.

64 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

In general, the syntax of priority directives is

Priority F ‘Priority:’ PDirective+

PDirective F ProdOrCons ‘>’ ProdOrCons ‘;’
| ProdOrCons ‘<’ ProdOrCons ‘;’

ProdOrCons F Prod | Constructor

Prod F Nonterminal ‘->’ Symbol+

where Constructor and Symbol are already de�ned in Figure 3.3; for each priority declaration, we
can use either productions or their names (i.e. constructors).

If the user declares that a production NT 1 → RHS1 has higher priority than another production
NT 2 → RHS2, the following priority bi-�lter will be generated:

toPrioFilter[[(RHS1,NT 1, RHS2,NT 2)]] =

‘f’conRHS1 conRHS2‘Prio’ ‘(’conRHS1 fillVars(RHS1)‘) =’
‘case or [’

〈
‘match’ t ‘p,’

�� t ∈ fillVars(RHS1)
〉
‘False’‘] of’

‘False -> Nothing’
‘True -> Just (’ conRHS1

〈
repair(t)

�� t ∈ fillVars(RHS1)
〉
‘)’

‘where p = ’ con(NT 2, RHS2) fillUndefined(RHS2)

‘f’conRHS1 conRHS2‘Prio’ ‘_’ ‘=’ ‘Nothing’

repair(t) = ‘(if match’ t ‘p’ ‘then addPar’ t ‘else’ t ‘)’

conRHS1 = con(NT 1, RHS1)

conRHS2 = con(NT 2, RHS2) .

con looks up constructor names for input productions (divided into nonterminals and right-hand
sides); fillVars(nt) generates variable names for each terminal and nonterminal in nt (here RHS1);
fillUndefined is similar to fillVars but it produces undefined values instead. If productions are
referred to using their constructors, we can simply look up the nonterminals and right-hand sides
and use the same code generation strategy.

Transitive Closures. In the same way as conventional Yacc-style approaches, the priority
directives are considered transitive. For instance,

Expr -> Expr '*' Expr > Expr -> Expr '+' Expr ;

Expr -> Expr '+' Expr > Expr -> Expr '&' Expr ;

4.4 Bi-Filter Directives 65

implies that Expr -> Expr '*' Expr > Expr -> Expr '&' Expr ;. The feature is important in
practice since it greatly reduces the amount of routine code the user needs to write for large
grammars.

Associativity Directives

Associativity directives assign (left- or right-) associativity to productions. A left-associativity
directive bans (or repairs, in the printing direction) CSTs having the pattern in which a parent and
its right-most subtree are both left-associative, if the (relative) priority between the parent and the
subtree is not de�ned; a right-associativity directive works symmetrically.

As an example, we can declare that both addition and subtraction are left-associative (for the
grammar in Figure 4.1) by writing

Left: Expr -> Expr '+' Expr, Expr -> Expr '-' Expr;

or just Left: Plus, Minus;. Since the relative priority between Plus and Minus is not de�ned, we
generate top-level bi-�lters for all the four possible pairs formed out of Plus and Minus:

fPlusPlusLAssoc (Plus t1 t2 t3) =

if match t3 p then Just (Plus t1 t2 (addPar t3)) else Nothing

where p = Plus undefined undefined undefined

fPlusPlusLAssoc _ = Nothing

fMinusMinusLAssoc (Minus t1 t2 t3) =

if match t3 p then Just (Minus t1 t2 (addPar t3)) else Nothing

where p = Minus undefined undefined undefined

fMinusMinusLAssoc _ = Nothing

fPlusMinusLAssoc (Plus t1 t2 t3) =

if match t3 p then Just (Plus t1 t2 (addPar t3)) else Nothing

where p = Minus undefined undefined undefined

fPlusMinusLAssoc _ = Nothing

fMinusPlusLAssoc (Minus t1 t2 t3) =

if match t3 p then Just (Minus t1 t2 (addPar t3)) else Nothing

where p = Plus undefined undefined undefined

fMinusPlusLAssoc _ = Nothing .

66 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

For instance, fPlusPlusLAssoc accepts]Plus (Plus 1 2) 3 but not]Plus 1 (Plus 2 3), which is
repaired to]Plus 1 (Paren (Plus 2 3)).

Generally, the syntax of associativity directives is

Associativity F ‘Associativity:’ Le�Assoc RightAssoc
Le�Assoc F ‘Left:’ ProdOrCons+{‘,’} ‘;’

RightAssoc F ‘Right:’ ProdOrCons+{‘,’} ‘;’ .

Now we explain the generation of (top-level) bi-�lters from associativity directives. We will
consider only left-associativity directives, as right-associativity directives are symmetric. For
every pair of left-associative productions whose relative priority is not de�ned—including cases
where the two productions are the same—we generate a bi-�lter to repair CSTs whose top uses the
�rst production and whose right-most child uses the second production. Let NT 1 → α1NT 1R and
NT 2 → α2NT 2R be two such productions, where α1 (α2) matches a sequence of arbitrary symbols
of any length and NT 1R (NT 2R) is the right-most symbol and must be a nonterminal. (If it is not a
nonterminal, it is meaningless to discuss associativity.) The generated bi-�lter is

toLAssocFilter[[α1NT 1R,NT 1,α2NT 2R,NT 2]] =

‘f’ conRHS1 conRHS2 ‘LAssoc’ ‘(’conRHS1 fillVars(α1NT 1R) ‘)’ ‘=’
‘if match ’ ntrVar ‘ p’

‘then Just (’ conRHS1 fillVars(α1) ‘(addPar’ ntrVar ‘))’
‘else Nothing’

‘where p = ’conRHS2 fillUndefined(α2NT 2R)

‘f’ conRHS1 ‘LAssoc’ ‘_’ ‘=’ ‘Nothing’

conRHS1 = con(NT 1,α1NT 1R)

conRHS2 = con(NT 2,α2NT 2R)

ntrVar = fillVarsFrom(length(α1),NT 1R) .

Functions con, fillUndefined, and fillVar have the same behaviour as before; fillVarsFrom
(which is a variation of fillVars) generates variable names for each terminal and nonterminal in
its argument with su�x integers counting from a given number to avoid name clashing.

Handling Injective Productions. Sometimes the grammar may contain injective productions
(also called chain productions) (van den Brand et al., 2002), which have only a single nonterminal

4.4 Bi-Filter Directives 67

on their right-hand side, like InfE -> [FromE] Exp. When we use it to de�ne a grammar
InfE -> [FromE] Exp

Exp -> [Plus] InfE '+' InfE

| [Times] InfE '*' InfE ,

program text 1 + 2 * 3 will be parsed to two CSTs, namely cst1 =]Plus (FromE 1) (FromE (

Times 2 3)) and cst2 =]Times (FromE (Plus 1 2) (FromE 3)), and we want to spot cst2 and
discard it using the priority directive Times > Plus. If handled naively, the bi-�lter generated from
the directive would only remove CSTs having pattern Times (Plus _ _) _ (and two other similar
ones), but cst2 would not match the pattern due to the presence of the FromE node between Times

and Plus. We made some e�ort in the implementation to make the match function ignore the nodes
corresponding to injective productions (FromE in this case).

4.4.3 Properties of the Generated Bi-Filters

We discuss some properties of the bi-�lters generated from our priority and associativity directives,
to justify that it is safe to use these bi-�lters without disrupting the well-behavedness of the whole
system. Speci�cally:

• The generated top-level bi-�lters satisfy RepairJudge, and it is easy to write actions to make
them satisfy PassThrough.

• The bi-�lters lifted from the top-level bi-�lters still satisfy RepairJudge and PassThrough.

• The lifted bi-�lters are commutative, which not only implies that all such bi-�lters respect
each other and can be composed in any order, but also guarantees that we do not have to
worry about the order of composition since it does not a�ect the behaviour.

We will give only high-level, even informal, arguments for these properties, since, due to the
generic nature of the de�nitions of these bi-�lters (in terms of Scrap Your Boilerplate (Lämmel and
Jones, 2003)), to give formal proofs we would have to introduce rather complex machinery (e.g.,
datatype-generic induction), which would be tedious and distracting.

Top-level bi-�lters. The fact that the generated top-level bi-�lters satisfy RepairJudge can
be derived from the requirement that the directives do not mention the parenthesis production.
Because of the requirement, in the generated bi-�lters, repairing is always triggered by match

ing a non-parenthesis production, and after that repairing will not be triggered again because
a parenthesis production will have been added. For example, in the bi-�lter fTimesPlusPrio (in

68 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

Section 4.4.2), with match t1 p, match t2 p, and match t3 p we check whether t1, t2, and t3 has
Plus as the top-level production, which is di�erent from the parenthesis production Paren; if any
of the matching succeeds, say t1, then addPar t1 will add Paren at the top of t1, and match (addPar

t1) p is guaranteed to be False, so the subsequent invocation of judge fTimesPlusPrio will
return True. For PassThrough, since all the top-level bi-�lters do is add parenthesis productions,
we can simply make sure that appearances of the parenthesis production are ignored by get,
i.e. get (addPar s) = get s for all s; this, by well-behavedness, is the same as making put (printing
actions) skip over parentheses. For example, for the grammar in Figure 4.1, we should write
t +> '(' [t +> Expr] ')' as the only printing action mentioning parentheses, which means that
put (Paren s, t) = fmap Paren (put (s, t)) for all s and t . Then the following reasoning implies
that get (Paren s) = get s for all s:

get (Paren s) = Just t

⇔ { ⇒ by Hippocraticness and⇐ by Correctness }
put (Paren s, t) = Just (Paren s)

⇔ { By the above statement: put (Paren s, t) = fmap Paren (put (s, t)) }

fmap Paren (put (s, t)) = Just (Paren s)

⇔ { Lemma 4.3.6 and the de�nition of fmap }

put (s, t) = Just s

⇔ { ⇒ by Correctness and⇐ by Hippocraticness }
get s = Just t

for all s and t .

Lifted bi-�lters. The lifted bi-�lters apply the top-level bi-�lters to all the subtrees in a CST in
a bottom-up order. Formally, we can de�ne, datatype-generically, a lifted bi-�lter as a composition
of top-level bi-�lters, and use datatype-generic induction to prove that there is suitable respect
among the top-level bi-�lters being composed, and that the lifted bi-�lter satis�es RepairJudge
and PassThrough if the top-level ones do. But here we provide only an intuitive argument. What
the lifted bi-�lters do is �nd all prohibited pairs of adjoining productions and separate all the pairs
by adding parenthesis productions. For RepairJudge, since all prohibited pairs are eliminated after
repairing, there will be nothing left to be repaired in the resulting CST, which will therefore be
deemed valid. For PassThrough, the intuition is the same as that for the top-level bi-�lters.

4.4 Bi-Filter Directives 69

Commutativity. Composite bi-�lters i / j and j / i may have di�erent behaviour, so in general
we need to know the order of composition to �gure out the exact behaviour of a composite bi-�lter.
This can be di�cult when using our bi-�lter directives, since a lot of bi-�lters are implicitly
generated from the directives, and it is not straightforward to specify the order in which all the
explicitly and implicitly generated bi-�lters are composed. Fortunately we do not need to do so,
for all the bi-�lters generated from the directives are commutative, meaning that the order of
composition does not a�ect the behaviour.

De�nition 4.4.5 (Bi-Filter Commutativity). Two bi-�lters i and j are commutative exactly when

repairi ◦ repair j = repair j ◦ repairi .

By Lemma 4.4.2, this implies repair (i / j) = repair (j / i). Note that judge (i / j) = judge (j / i)

by de�nition, so we do not need to require this in the de�nition of commutativity.
An important fact is that commutativity is stronger than respect, so it is always safe to compose

commutative bi-�lters.

Lemma 4.4.6. Commutative bi-�lters respect each other.

Proof. Given commutative bi-�lters i and j , we show that j respects i . Suppose that judgei t = True

for a given tree t . Then

judgei (repair j t)

= { repairi t = t , since judgei t = True }

judgei (repair j (repairi t))

= { i and j are commutative }
judgei (repairi (repair j t))

= { RepairJudge }
True .

It follows by symmetry that i respects j as well.

Now let us consider why any two di�erent lifted bi-�lters are commutative. (Commutativity is
immediate if the two bi-�lters are the same.) There are two key facts that lead to commutativity:
(i) repairing does not introduce more prohibited pairs of productions, and (ii) the prohibited
pairs of adjoining productions checked and repaired by the two bi-�lters are necessarily di�erent.

70 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

Therefore the two bi-�lters always repair di�erent parts of a tree, and can repair the tree in any
order without changing the �nal result. Fact (i) is, again, due to the requirement that the directives
do not mention the parenthesis production, which is the only thing we add to a tree when repairing
it. Fact (ii) can be veri�ed by a careful case analysis. For example, we might be worried about the
situation where a left-associative directive looks for production Q used at the right-most position
under production P , while a priority directive also similarly looks for Q used under P , but the two
directives cannot coexist in the �rst place since the �rst directive implies P and Q have no relative
priority whereas the second one implies Q has lower priority than P .

4.5 Manually Written Bi-Filters

There are some other ambiguities that our directives cannot eliminate. In these cases, the user can
de�ne their own bi-�lters and put them in the #OtherFilters part in a BiYacc program as shown
in Figure 3.3. The syntax is

OtherFilters F ‘[’ HsFunDecl+{‘,’} ‘]’ HsCode
HsFunDecl F HsFunName ‘ :: BiFilter ’ Nonterminal .

That is, this part of the program begins with a list of declarations of the names and types of the
user-de�ned bi-�lters, whose Haskell de�nitions are then given below.

Now we demonstrate how to manually write a bi-�lter by resolving the ambiguity brought
by the dangling else problem. But before that, let us brie�y review the problem, which arises, for
example, in the following grammar:

Exp -> [ITE] 'if' Exp 'then' Exp 'else' Exp

| [IT] 'if' Exp 'then' Exp .

With respect to this grammar, the program text if a then if x then y else z can be recognised
as either if a then (if x then y else z) or if a then (if x then y) else z. To resolve the
ambiguity, usually we prefer the ‘nearest match’ strategy (which is adopted by Pascal, C, and Java):
else should match its nearest then, so that if a then (if x then y else z) is the only correct
interpretation.

The user may think that the problem can be solved by a priority (bi-)�lter ITE > IT;, in the
hope that the production if-then-else binds tighter than the production if-then. Unfortunately,
this is incorrect as pointed out by Klint and Visser (1994), because the corresponding (bi-)�lter

4.6 Case Study Using Ambiguous Tiger 71

incorrectly rules out the pattern]ITE _ _ (IT _ _), which prints to unambiguous text, e.g., if a

then b else if x then y. In fact, the (dangling else) problem is tougher than one might think
and cannot be solved by any (bi-)�lter performing pattern matching with a �xed depth (Klint and
Visser, 1994).

Klint and Visser proposed an idea to disambiguate the dangling-else grammar: Let Greek
letters α, β, . . . match a sequence of symbols of any length. Then the program text if α then β else

γ should be banned if the right spine of β contains any if ψ then ω, as shown in the paper (Klint
and Visser, 1994). With the full power of (bi-)�lters, which are fully-�edged Haskell functions,
we can implement this solution in the following bi-�lter:

fCond (ITE c1 e1 e2) = case checkRightSpine e1 of

True -> Nothing

False -> Just (ITE c1 (addPar e1) e2)

-- collect the names of the constructors in the right spine and

-- check if the collected constructors contain "IT"

checkRightSpine t =

This bi-�lter is commutative with the bi-�lters generated from our directives, for it (i) only searches
for non-parenthesis productions that are not declared in any other directives, and (ii) inserts
only a parenthesis production when repairing incorrect CSTs. The reader may �nd the code of
checkRightSpine in more detail in Figure 4.5. One remark is that wrapping the whole e1 into a
parenthesis production is a lazy man’s way, which is correct but does not insert parentheses to the
most proper place—for instance, to repair if x then a + if b then c else d, both if x then (

a + if b then c) else d and if x then a + (if b then c) else d are correct, and the former
is our lazy man’s way.

4.6 Case Study Using Ambiguous Tiger

In Section 3.3, we have shown how to obtain a consistent pair of parser and retentive printer of
Tiger in unambiguous grammars using BiYacc, and demonstrated the power of retentive printers
by examples about syntactic sugar, resugaring, and language evolution. Now, we (re-)de�ne the
Tiger language using ambiguous grammars and bi-�lters. The examples about syntactic sugar,
resugaring, and language evolution basically remain the same, so we mainly ignore them and only
point out the di�erence.

72 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

#Concrete
SeqExp -> '{' '}' | '{' ExpSeq '}' ;
ExpSeq -> Exp ';' ExpSeq | Exp ;

Prmtv -> [Paren] '(' Exp ')' {# Bracket #} | CallExp | SeqExp | ...
| [Or] Prmtv '|' Prmtv | [And] Prmtv '&' Prmtv
| [Plus] Prmtv '+' Prmtv | [Times] Prmtv '*' Prmtv | ...
| [Neg] '-' Prmtv | Numeric | String | LValue | 'nil' ;

IfThenElse -> [ITE] 'if' Exp 'then' Exp 'else' Exp ;
IfThen -> [IT] 'if' Exp 'then' Exp ;
...

Figure 4.4: An excerpt of Tiger’s ambiguous concrete syntax.

Excerpts of the concrete syntax of ambiguous Tiger are shown in Figure 4.4. Here, we add
a parenthesis production to the grammar (and discard it when converting CSTs to ASTs, so that
the PassThrough property could be satis�ed), for Tiger’s original grammar has no parenthesis
production and an expression within round parentheses is regarded as a singleton expression
sequence. This modi�cation also makes it necessary to change the enclosing brackets for expression
sequences from round brackets () to curly brackets {}, which helps (LALR(1) parsers) to distinguish
a singleton expression sequence from an expression within parentheses.

Following Hirzel and Rose (2013)’s speci�cation, the disambiguation directives for Tiger are
shown in Figure 4.5; for instance, we de�ne multiplication to be left-associative. The directives also
include a concrete treatment of the dangling else problem, which is usually ‘not solved’ when using
a Yacc-like (LA)LR parser generator to implement parsers: in this case, rather than resolving the
grammatical ambiguity, we often rely on the default behaviour of the parser generator—preferring
shift.

Modi�cations to the Syntactic Sugar Example. In accordance with the changes to theTiger’s
concrete syntax, the printing actions for this example now becomes

TExp +> Prmtv

TCond e1 (TInt 1) (JJ e2) +> [e1 +> Prmtv] '|' [e2 +> Prmtv];

TCond e1 e2 (JJ (TInt 0)) +> [e1 +> Prmtv] '&' [e2 +> Prmtv]; .

4.6 Case Study Using Ambiguous Tiger 73

#Directives
Priority:
Times > Plus ;
And > Or ;
...

Associativity:
Left: Times, Plus, And ... ;
Right: Assign, ... ;

#OtherFilters
[fDanglingElse :: BiFilter IfThenElse]

fDanglingElse (ITE t1 exp1 t2 exp2 t3 exp3) =
case checkRightSpine exp2 of
True -> Nothing
False -> Just (ITE t1 exp1 t2 (addPar exp2) t3 exp3)

checkRightSpine t = let spineStrs = getRSpineCons t
in and $ map (\str -> str /= "IT") spineStrs

class GetRSpineCons t where
getRSpineCons :: t -> [String]

instance GetRSpineCons IfThenElse where
getRSpineCons (ITE _ _ _ _ _ r) = ["ITE"] ++ getRSpineCons r

instance GetRSpineCons IfThen where
getRSpineCons (IT _ _ _ r) = ["IT"] ++ getRSpineCons r

instance GetRSpineCons LetExp where
getRSpineCons (LetExp1 _ _ _ _ _) = ["LetExp1"]

...

Figure 4.5: An excerpt of the disambiguation directives for Tiger. (A type class GetRSpineCons is de�ned
and implemented for collecting the constructors on the right spine of a given tree. Function getRSpineCons
is recursively invoked for CSTs whose right-most subtree is (parsed from) a nonterminal.)

74 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

4.7 Related Work

The grammar of a programming language is usually designed to be unambiguous. Various parser-
dependent disambiguation methods such as grammar transformation (LaLonde and des Rivieres,
1981) and parse table con�icts elimination (Johnson, 1975) have been developed to guide the parser
to produce a single correct CST (Klint and Visser, 1994). On the other hand, natural languages that
are inherently ambiguous usually require their parsing algorithms to produce all the possible CSTs;
this requirement gives rise to algorithms such as Earley (Earley, 1970) and generalised LR (Tomita,
1985) (GLR for short). Although these parsing algorithms produce all the possible CSTs, both their
time complexity and space complexity are reasonable. For instance, GLR runs in cubic time in the
worst situation and in linear time if the grammar is ‘almost unambiguous’ (Scott et al., 2007).

The idea to relate generalised parsing with parser-independent disambiguation for program-
ming languages is proposed by Klint and Visser (1994). According to Klint and Visser, �lters can be
classi�ed as lexical level ones and context-free level ones. As their names suggest, lexical �lters are
used in the tokenising phase to prefer longest match and identifying keywords while context-free
�lters are used to remove unwanted parses in the parsing phase1. For context-free level �lters,
they are further classi�ed as two kinds: property �lters (de�ned in terms of predicates on a single
tree) and comparison �lters (de�ned in terms of relations among trees), but we only adapted and
bidirectionalised predicate �lters in this thesis. One di�culty lies in the fact that it is unclear how
to de�ne the repair function for comparison �lters, as they generally select better trees rather than
absolutely correct ones—in the printing direction, since put only produces a single CST, we do not
know whether this CST needs repairing or not (for there is no other CST to compare). This is also
one of the most important problems for our future work.

Parser-independent disambiguation (for handling priority and associativity con�icts) can
also be found in LaLonde and des Rivieres’s (LaLonde and des Rivieres, 1981) and Aasa’s (Aasa,
1995) work. At �rst glance, our repair function is quite similar to LaLonde and des Rivieres’s
post-parse tree transformations that bring a CST into an expression tree, on whose nodes additional
restrictions of priority and associativity are imposed. To be simple (but not completely precise),
a CST’s corresponding expression tree is obtained by �rst dropping all the nodes constructed
from injective productions2 (note that parentheses nodes are still kept) and then use a precedence-

introducing tree transformation to reshape the result. The transformation will do ‘repairing’ by
1Although using advanced techniques, tokenising and parsing can be merge into a single phase to become

scannerless parsing (van den Brand et al., 2002), we treat them as two separate phases in this thesis.
2An injective production, or a chain production, is one whose right-hand side is a single nonterminal; for instance,

E -> N.

4.7 Related Work 75

rotating all the adjacent nodes of the tree where priority or associativity constraint is violated.
By contrast, our repair function is simpler and only introduces parentheses in places where the
judge function returns False. In short, their tree transformations are a kind of parser-independent
disambiguation which does not require generalised parsing; however, those tree transformations
are (almost) not applicable in the printing direction if well-behavedness is taken into consideration
(due to the rotation of CSTs). But there is no need for LaLonde and des Rivieres to consider the
printing direction, either. Furthermore, it is not clear whether their approach can be generalised
to handle other types of con�icts rather than the ones caused by priority and associativity.

There is much research on how to handle ambiguity in the parsing direction as discussed
above; conversely, little research is conducted for ‘handling ambiguity in the printing direction’
and we �nd only one paper (van den Brand and Visser, 1996) that describes how to produce correct
program text regarding priority and associativity, which is also one of the bases of our work. We
extend their work (van den Brand and Visser, 1996) by allowing the bracket attribute to work with
injective productions such as E -> T; T -> F; F -> '(' E ')' {# Bracket #};. (The previous
work seems to only support the bracket attribute in the form of E -> '(' E ')' {# Bracket #};;
whether the nonterminal E on the left-hand side and right-hand side can be di�erent is not made
clear.)

Here we also brie�y discuss ambiguity detection for the �lter approaches: Priority and asso-
ciativity (bi-)�lters can be applied to (LA)LR parse tables to resolve (shift/reduce) con�icts (Klint
and Visser, 1994; van den Brand et al., 2002; Visser, 1997a,b), and thus the completeness for simple
(bi-)�lters (see De�nition 4.3.2) on LALR(1) grammars can be statically checked. However, our
implementation does not support it, for bi-�lter directives are more general, as stated in the begin-
ning of Section 4.4.2, and therefore cannot be transformed to the underlying parser generator’s
Yacc-style directives. Finding a way to directly apply priority and associativity bi-�lters to parse
tables (generated by Happy) is left as future work.

Finally, we compare our approach with the conventional ones in general. In history, a printer
is believed to be much simpler than a parser and is usually developed independently (of its
corresponding parser). While a few printers choose to produce parentheses at every occasion
naively, most of them take disambiguation information (for example, from the language’s operator
precedence table) into account and try to produce necessary parentheses only. However, as the
Yacc-style conventional disambiguation (Johnson, 1975) is parser-dependent, this parentheses-
adding technique is also printer-dependent. As the post-parse disambiguation increases the
modularity of the (front end of the) compiler (LaLonde and des Rivieres, 1981), we believe that our
post-print parentheses-adding increases the modularity once again. Additionally, the uni�cation

76 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

of disambiguation for both parsing and printing makes it possible for us to impose bi-�lter laws,
which further makes it possible to guarantee the well-behavedness of the whole system.

4.8 Discussions

In this chapter, we made an extension to our solution (mainly) for the isomorphism part. We
proposed bi-�lters and extended BiYacc by incorporating bi-�lters while still respecting the
consistency of the generated parser and printer pairs. We provided compositional bi-�lter direc-
tives which compile to priority and associativity bi-�lters and demonstrated how to manually
write bi-�lters. Here, we brie�y discuss several issues: bi-�lters as asymmetric lenses, e�cient
implementation of bi-�lters, and relaxation of the Correctness law.

Bi-Filters as Asymmetric Lenses

Although it is not necessary, bi-�lters can be regarded as a special kind of asymmetric lenses
between CSTs and boolean values. Given a bi-�lter F , we use getF and putF to denote the get and
put functions (partially) applied to F and give their semantics:

getF :: CST→ Maybe Bool
getF s = Just (judgeF s)

putF :: CST→ Bool→ Maybe CST
putF s False | get s = = Just True = Just defVal
putF s False | get s = = Just False = Just s
putF s True = Just (repairF s)

where defVal is a value satisfying judgeF defVal = False. (Since many bi-�lters are based on
pattern matching, it is very easy to create a defVal having invalid patterns.)

It is easy to prove the well-behavedness between getF and putF with the help of bi-�lter laws.

Hippocraticness. Case 1: getF s = Just True. Then putF s True = Just (repairF s) = Just s by
JudgeRepair.

Case 2: getF s = Just False. Then putF s False = Just s .

4.8 Discussions 77

Correctness. Case 1: The view is False and getF s = Just True. Then Just s ′ = putF s False =

Just defVal; getF s ′ = getF defVal = Just False.

Case 2: The view is False and getF s = Just False. Then Just s ′ = putF s False = Just s ; getF s ′ =
getF s = Just False.

Case 3: The view is True. Then Just s ′ = putF s True = Just (repairF s); getF s ′ = getF (repairF s) =

Just True by RepairJudge.

E�cient Bi-Filters

For e�ciency concerns, (bi-)�lters should be applied as early as possible (Klint and Visser, 1994).
As an illustration, if the disambiguation involving associativity and priority of binary operators is
delayed until generating all the CSTs, there will be millions of trees awaiting disambiguation for a
simple (but highly ambiguous) expression such as 1 + 2 + · · · + 15. To speed up parsing, we can
‘write’ the judge function of priority and associativity bi-�lters into parse tables so that incorrect
CSTs in terms of priority and associativity will not be produced at all. The result is the same as
applying them to CSTs if injective productions (chains) are automatically handled, as discussed in
papers (Klint and Visser, 1994; van den Brand et al., 2002; Visser, 1997a,b) and can be seen in some
real-world application (van den Brand et al., 2001).

We showed how to compile disambiguation directives to bi-�lters by directly performing
pattern-matching on input trees, which brings intuitive semantics makes the correctness easy
to verify. However, this approach has a �aw that the generated code is ine�cient and, in the
worst case, grows quadratically in the number of priority directives. For instance, suppose that
(productions) A and B have higher priority than C and D, which further have higher priority than
E, F , and G; since priority is transitive, A and B also have higher priority than E, F , and G. These
in total contribute to 2 × 2 + 2 × 3 + 2 × 3 = 16 cases. A better approach is to sort, for each priority
table, the priority directives in order and assign to each production an integer representing its
priority, so that we can use a generic function comparing the priorities of a parent node and each
of its child node.

Relaxation of Correctness and Quotient Lenses

Well-behavedness enforces that (i) if we parse a piece of program text to a tree and print the tree
back, we get the same text, and (ii) if we print a tree to program text and parse it back, we get an

78 Chapter 4. Bidirectionalised Filters for Handling Grammatical Ambiguity

identical tree. Statement (i) is perfect (for program text), as we focus on syntactic components
of the program text. However, statement (ii) is a little too restrictive for ASTs, for we care more
about the semantics of an AST rather than its structure. In other words, di�erent ASTs may have
the same semantics and therefore there is no need to force an AST to print and parse to the same
tree—as long as the semantics does not change. A possible �x is to de�ne equivalence classes
for ASTs according to their semantics and revise the Correctness law to work on equivalence
classes. The �x will also signi�cantly advance the use of bi-�lters, as the revised PassThrough law
working on equivalence classes will permit a large number of repair functions that are forbidden
before. For instance, in order to comply with PassThrough law, we had adapted Tiger’s grammar
to let parenthesis structures of a CST be dropped when they are transformed to ASTs. Given that
parenthesis structures in ASTs do not a�ect the semantics and ASTs with and without parenthesis
structure belong to the same equivalence class, there is no need to adapt the grammar. The research
on lenses for equivalent classes can be found in research papers about quotient lenses (Foster et al.,
2008) and Boomerang (Bohannon et al., 2008).

79

5
Retentive Printing

We have introduced our DSL (Chapter 3) and an extension (Chapter 4) that deals with grammatical
ambiguity (mainly) for the isomorphism part. In this chapter, we explore another extension to our
solution for the lens part.

Over the years, we �nd that while lenses are designed to retain information—for instance,
information such as syntactic sugar and comments in the updated program text—the two well-
behavedness laws are not strong enough for guaranteeing information retention in the put direction
when the view is not consistent with the source (i.e. get s , v). This results in a problem that,
in terms of information retention, ‘well-designed’ lenses lead to good performance while ‘bad-
designed’ ones lead to bad performance, despite the fact that they are all well-behaved. Our DSL
BiYacc has the same problem: it is the design of BiYacc which happens to propagate changes
properly into program text while keeping comments; it succeeds in some cases but will fail in
many others.

Let us �rst illustrate how well-behaved lenses may behave badly by a very simple example,
in which get is a projection (function) extracting the �rst element from a tuple of integers and
strings. (Hence a source and a view are consistent if the �rst element of the source tuple is equal
to the view.)

80 Chapter 5. Retentive Printing

get :: (Int, String) -> Int

get (i, s) = i

Given this speci�c get, we can de�ne put1 and put2, both of which are well-behaved with get but
the behaviour is rather di�erent: put1 simply replaces the integer of the source (tuple) with the
view, while put2 super�uously sets the string (of the tuple) empty, in silence, when the source
(tuple) is not consistent with the view.

put1 :: (Int, String) -> Int -> (Int, String)

put1 (i, s) i' = (i', s)

put2 :: (Int, String) -> Int -> (Int, String)

put2 src i' | get src == i' = src

put2 (i, s) i' | otherwise = (i', "")

From another perspective, put1 retains the string from the old source when performing the update,
while put2 chooses to discard that string—which is not desired but ‘perfectly legal’, for the string
does not contribute to the consistency relation. In fact, unexpected behaviour of this kind of
well-behaved lenses could even lead to disaster in practice. For instance, relational databases can
be thought of as tables consisting of rows of tuples, and well-behaved lenses used for maintaining
a database and its view may erase important data after an update, as long as the data does not
contribute to the consistency relation (in most cases this is because the data is simply not in the
view). This fact seems fatal, as asymmetric lenses have been considered a satisfactory solution to the
longstanding view update problem (stated at the beginning of Foster et al.’s seminal paper (Foster
et al., 2007)).

The root cause of the information loss (after an update) is that while lenses are designed to
retain information, well-behavedness actually says very little about the retention of information:
the only law guaranteeing information retention is Hippocraticness, which merely requires that
the whole source should be unchanged if the whole view is. In other words, if we have a very small
change on the view, we are free to create any source we like. This is too ‘global’ in most cases,
and it is desirable to have a law that makes such a guarantee more ‘locally’.

To have a �ner-grained law, we propose retentive lenses, an extension of the original lenses,
which can guarantee that if parts of the view are unchanged, then the corresponding parts of the
source are retained as well. Compared with the original lenses, the get function of a retentive
lens is enriched to compute not only the view of the input source but also a set of links relating
corresponding parts of the source and the view. If the view is modi�ed, we may also update the set

5.1 Retentive Lenses for Trees 81

of links to keep track of the correspondence that still exists between the original source and the
modi�ed view. The put function of the retentive lens is also enriched to take the links between
the original source and the modi�ed view as input, and it satis�es a new law, Retentiveness, which
guarantees that those parts in the original source having correspondence links to some parts of
the modi�ed view are retained at the right places in the updated source.

In this chapter, we formalise the idea of links and develop a formal de�nition of retentive
lenses (Section 5.1) for tree-based data1. To show that retentive lenses are feasible, we present a
DSL (Section 5.2) for writing tree synchronisers; we present its syntax, semantics, and also prove
that any program written in our DSL gives rise to a pair of retentive get and put. With the help
of several view editing operations that also update the links between the view and the original
source (Section 5.3), we demonstrate the usefulness of retentive lenses in practice by presenting
case studies on code refactoring, resugaring, and XML synchronisation (Section 5.4). We discuss
related work (Section 5.5) regarding various alignment strategies for lenses, provenance and origin
between two pieces of data, and operation-based BX. Finally, we brie�y discuss (Section 5.6)
the (possibility of) integration of Retentiveness into BiYacc, our choices of opting for triangular
diagrams and Strong Retentiveness (that subsumes Hippocraticness), our thought on (retentive)
lens composition, the feasibility of retaining code styles for refactoring tools, and our choice of
the word retentive.

5.1 Retentive Lenses for Trees

In this section, we will start by introducing a ‘region model’ for decomposing trees (Section 5.1.1),
and providing a high-level sketch of what retentive lenses should do (Section 5.1.2). After that, we
develop a formal de�nition of links (Section 5.1.3) and retentive lenses (Section 5.1.4) for algebraic
data types (which we call ‘trees’ or ‘terms’), through revising classic lenses (Foster et al., 2007) by

• extending get and put to incorporate links—speci�cally, we will make get return a collection
of consistency links, and make put additionally take a collection of input links—and

• adding a �ner-grained law Retentiveness, which formalises the statement ‘if parts of the
view are unchanged then the corresponding parts of the source should be retained’.

To be concrete, we will use the synchronisation of concrete and abstract representations of
arithmetic expressions as the running example throughout.

1Although we focus on the synchronisation between tree-based data, the structure shall be considered more general
than tables in relational databases. (A table is a list of tuples, and both lists and tuples can be encoded as trees.)

82 Chapter 5. Retentive Printing

data Expr = Plus Annot Expr Term
| Minus Annot Expr Term
| FromT Annot Term

data Term = Lit Annot Int
| Neg Annot Term
| Paren Annot Expr

type Annot = String

data Arith = Add Arith Arith
| Sub Arith Arith
| Num Int

getE :: Expr -> Arith
getE (Plus _ e t) = Add (getE e) (getT t)
getE (Minus _ e t) = Sub (getE e) (getT t)
getE (FromT _ t) = getT t

getT :: Term -> Arith
getT (Lit _ i) = Num i
getT (Neg _ t) = Sub (Num 0) (getT t)
getT (Paren _ e) = getE e

Figure 5.1: Data types for concrete and abstract syntax of the arithmetic expressions and the consistency
relations between them as getE and getT functions in Haskell.

5.1.1 Regions of Trees

Let us �rst get familiar with the concrete and abstract representations of the running example
given in Figure 5.1, a (simpli�ed) variation of the arithmetic expressions in Figure 3.1. Here, data
types of CSTs are explicitly de�ned and all the constructors have an annotation �eld of type
Annot for holding comments. The two concrete types Expr and Term coalesce into the abstract
representation type Arith, which does not include annotations, explicit parentheses, and negations.
The consistency relations between CSTs and ASTs are de�ned in terms of the get functions—e ::

Expr (resp. t :: Term) is consistent with a :: Arith exactly when getE e = a (resp. getT t = a).

As mentioned in the introduction, the core idea of Retentiveness is to use links to relate parts
of the source and view. For trees, a straightforward interpretation of a ‘part’ is a subtree of the
data. But it is too restrictive in most cases, and a more useful interpretation of a ‘part’ is a region

of a tree, i.e. a partial subtree. Partial trees are trees where some subtrees can be missing. We will
describe the content of a partial tree with a pattern that contains wildcards at the positions of
missing subtrees. In Figure 5.2, all grey areas are examples of regions; the topmost region in cst is
located at the root of the whole tree, and its content has the pattern Plus "a plus" _ _ , which
says that the region includes the Plus node and the annotation "a plus", but not the other two
subtrees with roots Minus and Neg matched by the wildcards.

5.1 Retentive Lenses for Trees 83

Plus

"a plus" Minus Neg

0

Lit

FromT…

…

… 0

"a neg"

1

Lit

Lit

… 2

Plus

FromT Paren

Lit

Neg…

"a neg"

… 2

… Minus

… FromT

Add

Sub Sub

Num

0 2

Num Num

0 1

Num

Lit… …

…

Add

Sub Sub

Num

0 1

Num Num

0 2

Num

equal

cst ast

ast'cst′

"a plus"

1

Lit

…

Figure 5.2: The triangular guarantee. (Grey areas are some of the possible regions. Two light dashed lines between
cst and ast are two of the consistency links produced by getE cst. When updating cst with ast', the region
Neg "a neg" _ connected by the red dashed diagonal link is guaranteed to be preserved in the result cst', and
getE cst' will link the preserved region to the same region Sub (Num 0) _ of ast'.)

5.1.2 A Sketch of Retentive Lenses

Having broken up source and view trees into regions, we can put in links to record the correspon-
dences between source and view regions. In Figure 5.2, for example, the light red dashed lines
between the source cst and the view ast = getE cst represent two possible links. The topmost
region of pattern Plus "a plus" _ _ in cst corresponds to the topmost region of pattern Add _ _

in ast, and the region of pattern Neg "a neg" _ in the right subtree of cst corresponds to the
region of pattern Sub (Num 0) _ in ast. The get function of a retentive lens will be responsible for
producing an initial set of links between a source and its view.

As the view is modi�ed, the links between the source and view should also be modi�ed to
re�ect the latest correspondences between regions. For example, in Figure 5.2, if we change ast to
ast' by swapping the two subtrees under Add, then there should be a new link (among others)
recording the fact that the Neg "a neg" _ region and the Sub (Num 0) _ region are still related. In
general, the collection of diagonal links between cst and ast' may be created in many ways, such
as directly comparing cst and ast' and producing links between matching areas, or composing

84 Chapter 5. Retentive Printing

the light red dashed consistency links between cst and ast and the light blue dashed ‘vertical
correspondence’ between ast and ast'. How these links are obtained is a separable concern,
though, and in this chapter we will focus on how to restore consistency assuming the existence of
diagonal links. (We will discuss this issue again in Section 5.6.2.)

When it is time to put the modi�ed view back into the source, the links between the source
and the modi�ed view are used to guide what regions in the old source should be retained in
the new one and at what positions. In addition to the source and view, the put function of a
retentive lens also takes a collection of links, and provides what we call the triangular guarantee,
as illustrated in Figure 5.2: when updating cst with ast', the region Neg "a neg" _ (i.e. syntactic
sugar negation) connected by the red dashed link is guaranteed to be preserved in the result cst'
(as opposed to changing it to a Minus), and the preserved region will be linked to the same region
Sub (Num 0) _ of ast' if we run getE cst'. The Retentiveness law will be a formalisation of the
triangular guarantee.

5.1.3 Formalisation of Links

We start with some notations.

Relations. Relations from set A to set B are subsets of A × B, and we denote the type of these
relations by A ∼ B. Given a relation r : A ∼ B, de�ne its converse r ◦ : B ∼ A by r ◦ = { (b,a) |

(a,b) ∈ r }, its left domain by ldom (r) = { a ∈ A | ∃b . (a,b) ∈ r }, and its right domain by
rdom (r) = ldom (r ◦). The composition r · s : A ∼ C of two relations r : A ∼ B and s : B ∼ C is
de�ned as usual by r · s = { (a, c) | ∃b . (a,b) ∈ r ∧ (b, c) ∈ s }. The type of partial functions from A

to B is denoted by A 7→ B. The domain dom(f) of a function f : A 7→ B is the subset of A on
which f is de�ned; when f is total, i.e. dom(f) = A, we write f : A→ B. We will allow functions
to be implicitly lifted to relations: a function f : A 7→ B also denotes a relation f : B ∼ A such that
(f x, x) ∈ f for all x ∈ dom(f)1.

Patterns and Paths. We will work within a universal set Tree of trees, which is inductively
built from all possible �nitely branching constructors. (The semantics of an algebraic data type
is then the subset of Tree that consists of those trees built with only the constructors of the data
type.) Similarly, the set Pa�ern is inductively built from all possible �nitely branching constructors,

1This �ipping of domain and codomain (from A 7→ B to B ∼ A) makes function composition compatible with
relation composition: a function composition g ◦ f lifted to a relation is the same as g · f , i.e. the composition of g and f
as relations.

5.1 Retentive Lenses for Trees 85

variables, and a distinguished wildcard element . We will also need a set Path of all possible
paths for navigating from the root of a tree to one of its subtrees. The exact representation
of paths is not crucial: paths are only required to support some standard operations such as
sel : Tree × Path 7→ Tree such that sel(t,p) is the subtree of t at the end of path p (starting from the
root), or unde�ned if p does not exist in t; we will mention these operations in the rest of the paper
as the need arises. But, when giving concrete examples, we will use one particular representation:
a path is a list of natural numbers indicating which subtree to go into at each node—for instance,
starting from the root of cst in Figure 5.2, the empty path [] points to the root node Plus, the
path [0] points to "a plus" (which is the �rst subtree under the root), and the path [2,0] points
to "a neg".

Regions and Links. We de�ne a collection of links between two trees as a relation of type
Region ∼ Region, where Region = Pa�ern × Path: a region is identi�ed by a path leading to a
subtree and a pattern describing the part of the subtree included in the region. Brie�y, a link is a
pair of regions, and a collection of links is a relation between regions of two trees. For brevity we
will write Links for Region ∼ Region.

Example 5.1.1. In Figure 5.2, the two shaded regions of cst are described by (Plus "a plus"

_ _ , []) and (Neg "a neg" _ , [2]) respectively. The diagonal link between cst and ast' is
represented as the link collection {((Neg "a neg" _ , [2]) , (Sub (Num 0) _ , [0]))} (despite
being a singleton), which can also be regarded as a relation relating (Neg "a neg" _ , [2]) to
(Sub (Num 0) _ , [0]) and vice versa.

An arbitrary collection of links may not make sense for a given pair of trees though—a region
mentioned by some link may not exist in the trees at all. We should therefore characterise when a
collection of links is valid for two trees.

De�nition 5.1.2 (Region Containment). For a tree t and a set of regions Φ ⊆ Region, we say that
t |= Φ (read ‘t contains Φ’) exactly when

∀(pat, path) ∈ Φ. sel(t, path) matches pat.

De�nition 5.1.3 (Valid Links). Given ls : Links and two trees t and u, we say that ls is valid for t
and u, denoted by t

ls
←→ u, exactly when

t |= ldom (ls) and u |= rdom (ls).

86 Chapter 5. Retentive Printing

Example 5.1.4. The link collection given in Example 5.1.1 is valid for cst and ast' because
cst |= {(Neg "a neg" _ , [2])}, ast' |= {(Sub (Num 0) _ , [0])}.

5.1.4 Formalisation of Retentive Lenses

Now we have all the ingredients for the formal de�nition of retentive lenses.

De�nition 5.1.5 (Retentive Lenses). For a set S of source trees and a set V of view trees, a retentive
lens between S and V is a pair of functions

get : S 7→ V × Links

put : S × V × Links 7→ S

satisfying

• Hippocraticness: if get s = (v, ls), then (s, v, ls) ∈ dom(put) and

put (s, v, ls) = s ; (5.1)

• Correctness: if put (s, v, ls) = s′, then s′ ∈ dom(get) and

get s′ = (v, ls′) for some ls′ ; (5.2)

• Retentiveness:

fst · ls ⊆ fst · ls′ (5.3)

where fst : A ∼ A × B is the �rst projection function (lifted to a relation).

Modulo the handling of links, Hippocraticness and Correctness remain the same as their
original forms (in the de�nition of well-behaved lenses). Retentiveness further states that the
input links ls must be preserved, except for the location of source regions (i.e. rdom (snd · ls) in
the compact relational notation). The region patterns (data) and the location of the view region,
which are fst · ls in the relational notation, must be exactly the same. Retentiveness formalises
the triangular guarantee in a compact way, and we can expand it pointwise to see that it indeed
specialises to the triangular guarantee.

5.1 Retentive Lenses for Trees 87

Proposition 5.1.6 (Triangular Guarantee). Given a retentive lens, suppose put (s, v, ls) = s′

and get s′ = (v, ls′). If ((spat, spath), (vpat, vpath)) ∈ ls, then for some spath′ we have s′ |=

{(spat, spath′)} and ((spat, spath′), (vpat, vpath)) ∈ ls′.

Example 5.1.7. In Figure 5.2, if the put function takes cst, ast', and links ls = {((Neg "a neg" _

, [2]) , (Sub (Num 0) _ , [0]))} as arguments and successfully produces an updated source s',
then get s' will succeed. Let (v,ls') = get s'; we know that we can �nd a link in ls' with the
path of its source region removed: c = (Neg "a neg" _ , (Sub (Num 0) _ , [0])) ∈ fst · ls'. So
the view region referred to by c is indeed the same as the one referred to by the input link, and
having c ∈ fst · ls' means that the region in s' corresponding to the view region will match the
pattern Neg "a neg" _ .

Finally, we note that retentive lenses are an extension of well-behaved lenses: every well-
behaved lens between trees can be directly turned into a retentive lens (albeit in a trivial way).

Example 5.1.8 (Well-behaved Lenses are Retentive Lenses). Given a well-behaved lens de�ned
by д : S → V and p : S × V → S, we de�ne get : S 7→ V × Links and put : S × V × Links 7→ S as
follows:

get s = (g s, ∅)

put (s, v, ls) = p (s, v)

In the de�nition, dom(put) is restricted to
{
(s, v, ∅)

}
. Hippocraticness and Correctness hold

because the underlying д and p are well-behaved. Retentiveness is satis�ed vacuously since the
input link of put is empty.

5.1.5 Composition of Retentive Lenses

It is standard to provide a composition operator for composing large lenses from small ones. Here
we discuss this operator for retentive lenses, which basically follows the de�nition of composition
for well-behaved lenses, except that we need to deal with links carefully.

We use (·) to denote link composition and its (overloaded) lifted version that works on two
collections of links. (Although (·) was used for relation composition before, we have shown that a
single link can be lifted to a singleton link collection and a collection of links can be viewed as a
relation; so it is reasonable to reuse the same symbol.) Below we use lensAB to denote a retentive
lens that synchronises trees of sets A and B, дetAB and putAB the get and put functions of the lens,
lab a link between tree a (of set A) and tree b (of set B), and lsab a collection of links between a

and b.

88 Chapter 5. Retentive Printing

a b

cʹ

②-l lsab = getlAB a

① lsacʹ

③ lsbcʹ = 
 (lsacʹ˚ · lsab)˚

bʹ
⑤ lsbʹcʹ =  
 getlBC bʹ

⑥ lsabʹ =  
 lsacʹ · lsbʹcʹ˚

④ bʹ = putBC (b, c, lsbcʹ)

aʹ

⑦ aʹ =  
 putAB (a, bʹ, lsabʹ)

⑧-l lsaʹcʹ = getlBC (getvAB aʹ)

②-v b = getvAB a

getv s = fst (get s)  
getl s = snd (get s)

Figure 5.3: The put behaviour of a composite retentive lens lensAB ; lensBC . (The process of put is divided into
steps 1© to 8©. Step 8© produces consistency links for showing triangular guarantee.)

De�nition 5.1.9 (Retentive Lens Composition). Given two retentive lenses lensAB and lensBC ,
de�ne the get and put functions of their composition by

дetAC a = (c, lsab · lsbc)

where (b, lsab) = дetAB a

(c, lsbc) = дetBC b

putAC (a, c′, lsac ′) = a′

where (b, lsab) = дetAB a

lsbc ′ = (ls◦
ac ′
· lsab)

◦

b′ = putBC (b, c′, lsbc ′)

lsb′c ′ = fst (дetBC b′)

lsab′ = lsac ′ · ls
◦

b′c ′

a′ = putAB (a, b′, lsab′)

where дetAB and putAB (resp. дetBC and putBC) are the corresponding get and put functions of
lensAB (resp. lensBC), and ls◦ is the collection of links produced from ls by swapping each link’s
starting point and ending point. (Recall that a collection of links is regarded as a relation.)

The get behaviour of a composite retentive lens is straightforward; the put behaviour, on the
other hand, is a little complex and can be best understood with the help of Figure 5.3. Let us �rst

5.2 A DSL for Retentive Tree Transformation 89

Expr <---> Arith
Plus _ x y ~ Add x y
Minus _ x y ~ Sub x y
FromT _ t ~ t

Term <---> Arith
Lit _ i ~ Num i
Neg _ r ~ Sub (Num 0) r
Paren _ e ~ e

Figure 5.4: The program in our DSL for synchronising data types de�ned in Figure 5.1.

recap the composite behaviour of put of traditional lenses: in Figure 5.3, if we need to propagate
changes from data c′ back to data a without links, we will �rst construct the intermediate data b

(by running дetAB a), propagate changes from c′ to b and produce b′, and �nally use b′ to update
a. The composition of retentive lenses is similar: besides the intermediate data b, we also need
to construct intermediate links lsbc ′ (3© in the �gure) for retaining information when updating
b to b′, so that we can further construct intermediate links lsab′ (6© in the �gure) for retaining
information when updating a to a′ using b′.

Theorem 5.1.10 (Composability). The composite lens lensAC = lensAB ; lensBC from two retentive
lenses lensAB and lensBC is still a retentive lens.

The proof is available in the Appendix A.1.

5.2 A DSL for Retentive Tree Transformation

The de�nition of retentive lenses is somewhat complex, but we can ease the task of constructing
retentive lenses with a declarative domain-speci�c language. Our DSL is designed to describe
consistency relations between algebraic data types, and from each consistency relation de�ned
in the DSL, we can obtain a pair of get and put functions forming a retentive lens. Below we
will give an overview of the DSL and how retentive lenses are derived from programs in the DSL
using the arithmetic expression example (Section 5.2.1), the syntax (Section 5.2.2) and semantics
(Section 5.2.3) of the DSL, and �nally the theorem stating that the generated lenses satisfy the
required laws (Theorem 5.2.1). Proof of the theorem is in Appendix A.2, but the essence is given
in the last part of Section 5.2.1.

5.2.1 Overview of the DSL

In this subsection, we introduce our DSL by describing the consistency relations between the
concrete syntax and abstract syntax of the arithmetic expression example in Figure 5.1. Furthermore,
we show how to �exibly update the cst in Figure 5.2 in di�erent ways with di�erent input links.

90 Chapter 5. Retentive Printing

In our DSL, we de�ne data types in Haskell syntax and describe consistency relations between
them that bear some similarity to get functions. For example, the data type de�nitions for Expr
and Term written in our DSL remain the same as those in Figure 5.1, and the consistency relations
between them (i.e. getE and getT in Figure 5.1) are expressed as the ones in Figure 5.4. Here we
specify two consistency relations similar to getE and getT: one between Expr and Arith, and the
other between Term and Arith. Each consistency relation is further de�ned by a set of inductive
rules, stating that if the subtrees matched by the same variable appearing on the left-hand side
(i.e. source side) and right-hand side (i.e. view side) are consistent, then the larger pair of trees
constructed from these subtrees are also consistent. (For primitive types which do not have
constructors such as integers and strings, we consider them consistent if and only if they are
equal.) Take

Plus _ x y ~ Add x y

for example: it means that if xs is consistent with xv , and ys is consistent with yv , then Plus a xs ys
and Add xv yv are consistent for any value a, where a corresponds to the ‘don’t-care’ wildcard in
Plus _ x y. So the meaning of Plus _ x y ~ Add x y can be better understood as the following
proof rule:

xs ∼ xv ys ∼ yv
Plus a xs ys ∼ Add xv yv

Each consistency relation is translated to a pair of get and put functions de�ned by case analysis
generated from the inductive rules. Detail of the translation will be given in Section 5.2.3, but the
idea behind the translation is a fairly simple one which establishes Retentiveness by construction.
For get, the rules themselves are already close to function de�nitions by pattern matching, so
what we need to add is only the computation of output links. For put, we use the rules backwards
and de�ne a function that turns the regions of an input view into the regions of the new source,
reusing regions of the old source wherever required: when there is an input link connected to
the current view region, put grabs the source region at the other end of the link in the old source;
otherwise, put creates a new source region as described by the left-hand side of an appropriate
rule.

For example, suppose that the get and put functions generated from the consistency relation
Expr <---> Arith are named getEA and putEA respectively. The inductive rule Plus _ x y ~

Add x y generates the de�nition for getEA s when s matches Plus _ x y: getEA (Plus _ x y)

computes a view recursively in the same way as getE in Figure 5.1; furthermore, it produces a
new link between the top regions Plus and Add, and keeps the links produced by the recursive

5.2 A DSL for Retentive Tree Transformation 91

cst = Plus "an add"
 (Minus "a sub"
 (FromT "a term" (Lit "0 in sub" 0))
 (Lit "1 in sub" 1))
 (Neg "a neg" (Lit "2 in neg" 2))

ast = Add (Sub (Num 0) (Num 1))
 (Sub (Num 0) (Num 2))

cst1 = Plus ""
 (Minus ""
 (FromT "" (Lit "" 0))
 (Lit "2 in neg" 2))
 (Neg "" (Lit "1 in sub" 1))

cst3 = Plus ""
 (Minus ""
 (FromT "" (Lit "" 0))
 (Lit "" 2))
 (Neg "" (Lit "" 1))

cst2 = Plus ""
 (FromT ""
 (Neg "a neg" (Lit "2 in neg" 2)))
 (Paren ""
 (Minus "a sub"
 (FromT "a term" (Lit "0 in sub" 0))
 (Lit "1 in sub" 1)))

ast' = Add (Sub (Num 0) (Num 2))
 (Sub (Num 0) (Num 1))

Figure 5.5: cst is updated in many ways. (Red dashed lines are some of the input links for cst2.)

calls getEA x and getEA y. In the put direction, the inductive rule Plus _ x y ~ Add x y leads to
a case putEA s (Add x y) ls, under which there are two subcases: if there is any link in ls that is
connected to the Add region at the top of the view, putEA grabs the region at the other end of the
link in the old source and tries to use it as the top part of the new source; if such a link does not
exist, putEA uses a Plus with a default annotation as a substitute for the top part of the new source.
In either case, the subtrees of the new source at the positions marked by x and y are computed
recursively from the view subtrees x and y.

With getEA and putEA1 generated from Figure 5.4, we can synchronise the (old) cst and
(modi�ed) ast' in di�erent ways by running putEA with di�erent input links. Figure 5.5 illustrates
this:

• If the user assumes that the two non-zero numbers Num 1 and Num 2 in ast are exchanged,
then four links (between cst and ast') should be established: a link connects region Lit

"1 in sub" _ with region Num _ (of the tree Num 1); a link connects Lit "2 in neg" _ with
Num _ (of the tree Num 2); two links connects 1 and 1, and 2 and 2. The result is cst1, where

1There are also getTA and putTA generated from the consistency relation Term <---> Arith, which are
mutually recursive with getEA and putEA respectively.

92 Chapter 5. Retentive Printing

the literals 1 and 2 are swapped, along with their annotations. Note that all other annotations
disappeared because the user did not include links for preserving them.

• If the user thinks that the two subtrees of Add are swapped and passes putEA links that connect
not only the roots of the subtrees of Plus and Add but also all their inner subtrees, the desired
result should be cst2, which represents ‘-2 + (0 - 1)’ and retains all annotations, in e�ect
swapping the two subtrees under Plus and adding two constructors FromT and Paren to
satisfy the type constraint. Figure 5.5 shows the input links for Neg and its subtrees.

• If the user believes that ast' is created from scratch and not related to ast, then cst3 may be
the best choice, which represents the same expression as cst1 except that all the annotations
are removed.

While the core idea is simple, there are cases in which the translated functions do not constitute
valid retentive lenses, and the crux of Theorem 5.2.1 is �nding suitable ways of computation or
reasonable conditions to circumvent all such cases (some of which are rather subtle). The following
cases should give a good idea of what is involved in the correctness of the theorem.

I. The translated functions may not be well-de�ned. For example, in the get direction, an arbitrary
set of rules may assign zero or more than one view to a source, making get partial (which,
though allowed by the de�nition, we want to avoid) or ill-de�ned, and we will impose (fairly
standard) restrictions on patterns to preclude such rules. These restrictions are su�cient to
guarantee that exactly one rule is applicable in the get direction but not in the put direction, in
which we need to carefully choose a rule among the applicable ones or risk non-termination
(e.g. producing an in�nite number of parentheses by alternating between the Paren and FromT

rules).

II. A region grabbed by put from the old source may not have the right type. For example, if put is
run on cst, ast', and the link between them in Figure 5.2, it has to grab the source region
Reg "a neg" _ , which has type Term, and install it as the second argument of Plus, which
has to be of type Expr. In this case there is a way out since we can convert a Term to an Expr

by wrapping the Term in the FromT constructor. We will formulate conditions under which
such conversions are needed and can be synthesised automatically.

III. Hippocraticness may be accidentally invalidated by put. Suppose that there is another parenthe-
sis constructor Brac that has the same type as Paren and for which a similar rule Brac _ e ~ e

is supplied. Given a source that starts with Brac "" (Paren "" ...), get will produce two

5.2 A DSL for Retentive Tree Transformation 93

links (among others) relating both the Brac and Paren regions with the empty region at the
top of the view. If put is immediately invoked on the same source, view, and links, it may
choose to process the link attached to the Paren region �rst rather than the one attached
to the Brac region, so that the new source starts with Paren "" (Brac "" ...), invalidat-
ing Hippocraticness. Therefore put has to carefully process the links in the right order for
Hippocraticness to hold.

IV. Retentiveness may be invalidated if put does not correctly reject invalid input links. Unlike get,
which can easily be made total, put is inherently partial since input links may well be invalid
and make Retentiveness impossible to hold. For example, if there is an input link relating a
Neg region and an Add region, then it is impossible for put to produce a result that satis�es
Retentiveness since get does not produce a link of this form. Instead, put must correctly reject
invalid links for Retentiveness to hold. Apart from checking that input links have the right
forms as speci�ed by the rules, there are more subtle cases where the view regions referred to
by a set of input links are overlapping—for example, in a view starting with Sub (Num 0) ...

there can be links referring to both the Sub _ _ region and the Sub (Num 0) _ region at the
top. Our get cannot produce overlapping view regions, and therefore such input links must
be detected and rejected as well.

In the last part of this subsection, we show that the DSL is possible to handle general tree
transformations despite the fact that it is tailored for describing consistency relations between
syntax trees. The following are some small but typical programming examples.

Let us consider the binary trees

data BinT a = Tip | Node a (BinT a) (BinT a) .

We can concisely de�ne the mirror consistency relation between a tree and its mirroring as

BinT Int <---> BinT Int

Tip ~ Tip

Node i x y ~ Node i y x .

We demonstrate the implicit use of some other consistency relations when de�ning a new one.
Suppose that we have de�ned the following consistency relation between natural numbers and
boolean values:

Nat <---> Bool

Succ _ ~ True

Zero ~ False .

94 Chapter 5. Retentive Printing

Program
Prog F TypeDef ∗ RelDef +

Type Definition
TypeDef F data Type = Con Type∗ {| Con Type∗}∗

Consistency Relation Definition
RelDef F Types ←→ Typev Rule

+

Inductive Rule
Rule F Pats ~ Patv

Pa�ern
Pat F _ | Var | Con Pat

Figure 5.6: Syntax of the DSL.

Then we can easily describe the consistency relation between a binary tree over natural numbers
and a binary tree over boolean values:

BinT Nat <---> BinT Bool

Tip ~ Tip

Node x ls rs ~ Node x ls rs .

Let us consider rose trees, a data structure mutually de�ned with lists:

data RTree a = RNode a (List (RTree a))

data List a = Nil | Cons a (List a) .

We can de�ne the following consistency relation to associate the left spine of a tree with a list:

RTree Int <---> List Int

RNode i Nil ~ Cons i Nil

RNode i (Cons x _) ~ Cons i x .

5.2.2 Syntax

The syntax of our DSL is summarised in Figure 5.6, where nonterminals are in italic; terminals
are typeset in typewriter font; {} is for grouping; ?, ∗, and + represent zero-or-one occurrence,
zero-or-more occurrence, and one-or-more occurrence respectively, and Type, Con, and Var are
syntactic categories (whose de�nitions are omitted) for the names of types, constructors, and

5.2 A DSL for Retentive Tree Transformation 95

variables respectively. We sometimes additionally attach a subscript s orv to a symbol to mean that
the symbol is related to sources or views. A program consists of two parts: data types de�nitions
and consistency relations between these data types. We adopt the Haskell syntax for data type
de�nitions—a data type is de�ned by specifying a set of data constructors and their argument
types. As for the de�nitions of consistency relations, each of them starts with Types ↔ Typev ,
declaring the source and view types for the relation. The body of each consistency relation is a list
of inductive rules, each of which de�ned by a pair of source and view patterns Pats ∼ Patv , where
a pattern can include wildcards, variables, and constructors.

5.2.2.1 Syntactic Restrictions

We impose some syntactic restrictions to guarantee that programs in our DSL indeed give rise to
retentive lenses (Theorem 5.2.1).

On patterns, we require (i) pattern coverage: for any consistency relation S ↔ V = {pi ∼ qi |

1 6 i 6 n } de�ned in a program, {pi } should cover all possible cases of type S, and {qi } should
cover all cases of type V . We also require (ii) source pattern disjointness: any distinct pi and pj

should not be matched by the same tree. Finally, (iii) a bare variable pattern is not allowed on the
source side (e.g. x ∼ D x), and (iv) wildcards are not allowed on the view side (e.g. C x ∼ D x), and
(v) the source side and the view side must use exactly the same set of variables. These conditions
ensure that get is total and well-de�ned (ruling out Case I in Section 5.2.1).

To state the next requirement we need a de�nition: two data types S1 and S2 de�ned in a
program are interchangeable in data type S exactly when (i) there are some data type V ′ and V

for which consistency relations S1 ↔ V ′, S2 ↔ V ′ and S ↔ V are de�ned in the program, and
(ii) S may have subterms of type S1 and S2 , and V may have subterms of type V ′. If S1 and S2 are
interchangeable, then Case II (Section 5.2.1) may happen: when doing put on S and V there might
be input links dictating that values of type S2 should be retained in a context where values of
type S1 are expected, or vice versa. When this happens, we need two-way conversions between
S1 and S2 .

We choose a simple way to ensure the existence of conversions: for any interchangeable types
S1 and S2 with S1 ↔ V ′ and S2 ↔ V ′ de�ned, we require that there exists a sequence of data types
in the program

S1 = T1, T2, · · · , Tn−1, Tn = S2

with n >= 2 such that for any 1 6 i < n, consistency relation Ti ↔ V ′ is de�ned and has a rule
Pati ∼ x whose source pattern Pati contains exactly one variable, and its type in Pati isTi+1 (we also

96 Chapter 5. Retentive Printing

require such a sequence with the roles of S1 and S2 switched). With rule Pati ∼ x, we immediately
get a function ti : Ti+1 → Ti contructing a Ti from a term v of Ti+1 by substituting v for x in Pati
(and �lling wildcard positions with default values). Then we have the needed conversion function:

injS2→S1@V ′ = tn−1 ◦ · · · ◦ t2 ◦ t1 (5.4)

(and similary injS1→S2@V ′). For example, FromT _ t ~ t gives rise to a function

injTerm→Expr@Arith x = FromT "" x

and it can be used to convert Term to Expr whenever needed when doing put with view type Arith.

5.2.3 Semantics

We give the semantics of our DSL in terms of a translation into ‘pseudo-Haskell’, where we may
replace chunks of Haskell code with natural language descriptions to improve readability. As
in Section 5.1.4, let Tree be the set of values of any algebraic data type, and Pa�ern the set of all
patterns. For a pattern p ∈ Pa�ern, Vars p denotes the set of variables in p. For each v ∈ Vars p,
TypeOf (p, v) is (the set of all values of) the type of v in pattern p, and path (p, v) is the path of
variable v in pattern p. We use the following functions (two of which are dependently typed) to
manipulate patterns:

isMatch : Pa�ern × Tree→ Bool

decompose : (p ∈ Pa�ern) × Tree 7→
(
Vars p→ Tree

)
reconstruct : (p ∈ Pa�ern) ×

(
Vars p→ Tree

)
7→ Tree

�llWildcards : Pa�ern × Tree 7→ Pa�ern

�llWildcardsWD : Pa�ern → Pa�ern

eraseVars : Pa�ern → Pa�ern .

Given a pattern p and a tree t, isMatch (p, t) tests whether t matches p. If the match succeeds,
decompose (p, t) returns a function mapping every variable in p to its corresponding matched
subtree of t. Conversely, reconstruct (p, f) produces a tree matching p by replacing every occurrence
of v ∈ Vars p in p with f v, provided that p does not contain any wildcard. To remove wildcards,
we can use �llWildcards (p, t) to replace all the wildcards in p with the corresponding subtrees of t

5.2 A DSL for Retentive Tree Transformation 97

(coerced into patterns) when t matches p, or use �llWildcardsWD to replace all the wildcards with
the default values of their types. Finally, eraseVars p replaces all the variables in p with wildcards.
The de�nitions of these functions are straightforward and omitted here1.

5.2.3.1 Get Semantics

For a consistency relation S ↔ V de�ned in our DSL with a set of inductive rules R = { spatk ∼
vpatk | 1 6 k 6 n }, its corresponding getSV function has the following type:

getSV : S → V × Links

The idea of computing get s is to use a rule spatk ∼ vpatk ∈ R such that s matches spatk—the
restrictions on patterns imply that such a rule uniquely exists for all s—to generate the top portion
of the view with vpatk , and then recursively generate subtrees for all variables in spatk . The get

function also creates links in the recursive procedure: when a rule spatk ∼ vpatk ∈ R is used, it
creates a link relating the matched parts/regions in the source and view, and extends the paths in
the recursively computed links between the subtrees. In all, the get function de�ned by R is:

getSV s = (reconstruct (vpatk, fst ◦ vls), lroot ∪ links) (5.5)

where �nd k such that spatk ∼ vpatk ∈ R and isMatch(spatk, s)

vls = (get ◦ decompose (spatk, s)) ∈ Vars spatk → V × Links

spat ′ = eraseVars (�llWildcards (spatk, s))

lroot = { ((spat ′, []), (eraseVars vpatk, [])) }

links =
{
((spat, path (spatk, v) ++ spath), (vpat, path (vpatk, v) ++ vpath))

| v ∈ Vars vpatk, ((spat, spath), (vpat, vpath)) ∈ snd (vls v)
}

.

The auxiliary function path : (p ∈ Pa�ern) × Vars p → Path returns the path from the root of a
pattern to one of its variables, and (++) is path concatenation. While the recursive call is written as
get ◦ decompose (spatk, s) in the de�nition above, to be precise, get should have di�erent subscripts
TypeOf (spatk, v) and TypeOf (vpatk, v) for di�erent v ∈ Vars spatk .

1Non-linear patterns are allowed: multiple occurrences of the same variable in a pattern must have the same type
and they must capture the same value.

98 Chapter 5. Retentive Printing

5.2.3.2 Put Semantics

For a consistency relation S ↔ V de�ned in our DSL as R = { spatk ∼ vpatk | 1 6 k 6 n }, its
corresponding putSV function has the following type:

putSV : Tree × V × Links 7→ S .

The source argument of put is given the generic type Tree since the type of the old source may be
di�erent from the type of the result that put is supposed to produce. Given arguments (s, v, ls),
put is de�ned by two cases depending on whether the root of the view is within a region referred
to by the input links, i.e. whether there is some (, (, [])) ∈ ls.

• In the �rst case where the root of the view is not within any region of the input links, put
selects a rule spatk ∼ vpatk ∈ R whose vpatk matches v—our restriction on view patterns
implies that at least one such rule exists for all v—and uses spatk to build the top portion of
the new source: wildcards in spatk are �lled with default values and variables in spatk are
�lled with trees recursively constructed from their corresponding parts of the view.

putSV (s, v, ls) = reconstruct (spat ′k, ss) (5.6)

where �nd k such that spatk ∼ vpatk ∈ R and isMatch (vpatk, v)

and k satis�es the extra condition below

vs = decompose (vpatk, v)

ss = λ (t ∈ Vars spatk) →

put(s, vs t, divide (path (vpatk, t)), ls) (5.7)

spat ′k = �llWildcardsWD spatk

divide (pre�x, ls) = { (rs, (vpat, vpath)) | (rs, (vpat, pre�x ++ vpath) ∈ ls) } (5.8)

The omitted subscripts of put in (5.7) are TypeOf (spatk, t) and TypeOf (vpatk, t). Addi-
tionally, if there is more than one rule whose view pattern matches v, the �rst rule whose
view pattern is not a bare variable pattern is preferred for avoiding in�nite recursive calls:
if vpatk = x, the size of the input of the recursive call in (5.7) does not decrease because
vs t = v and path (t, vpatk) = []. For example, when the view patterns of both Plus _ x

y ~ Add x y and FromT _ t ~ t match a view tree, the former is preferred. This helps to
avoid non-termination of put as mentioned in Case I in (the last part of) Section 5.2.1.

5.2 A DSL for Retentive Tree Transformation 99

• In the case where the root of the view is an endpoint of some link, put uses the source region
(pattern) of the link as the top portion of the new source.

putSV (s, v, ls) = injTypeOf spatk→S@V (reconstruct(spat
′
k, ss)) (5.9)

where l = ((spat, spath), (vpat, vpath)) ∈ ls

such that vpath = [], spath is the shortest

�nd k such that spatk ∼ vpatk ∈ R and spat

is eraseVars (�llWildcards (spatk, t)) for some t

spat ′k = �llWildcards (spatk, spat)

vs = decompose (vpatk, v)

ss = λ (t ∈ Vars spatk) →

put(s, vs t, divide (path (vpatk, t)), ls \ { l })) (5.10)

When there is more than one source region linked to the root of the view, to avoid Case III
in Section 5.2.1, put chooses the source region whose path is the shortest, which ensures
that the preserved region patterns in the new source will have the same relative positions as
those in the old source, as the following �gure shows.

Source View New source

r1

r2
r3

r1

r2

r3

Since the linked source region (pattern) does not necessarily have type S, we need to
use the function injTypeOf spatk→S@V (Equation 5.4) to convert it to type S; this function is
available due to our requirement on interchangeable data types (see Syntax Restrictions in
Section 5.2.2).

5.2.3.3 Domain of put

To avoid Case IV in Section 5.2.1, in the actual implementation of put there are runtime checks for
detecting invalid input links, but these checks are omitted in the above de�nition of put for clarity.

100 Chapter 5. Retentive Printing

We extract these checks into a separate function check below, which also serves as a decision
procedure for the domain of put.

check : Tree × V × Links→ Bool

check (s, v, ls) =

chkWithLink (s, v, ls) if some ((,), (, [])) ∈ ls

chkNoLink (s, v, ls) otherwise

chkNoLink corresponds to the �rst case of put (5.6).

chkNoLink (s, v, ls) = cond1 ∧ cond2 ∧ cond3

where �nd k such that spatk ∼ vpatk ∈ R and isMatch (vpatk, v)

and k satis�es the same condition as in (5.6)

vs = decompose (vpatk, v)

vp t = path (vpatk, t)

cond1 = ls = = ©«
⋃

t ∈Vars spatk

addVPre�x (vp t, divide (vp t, ls))ª®¬
cond2 =

∧
t ∈Vars spatk

check (s, vs t, divide (vp t, ls))

cond3 = if vpatk is some bare variable pattern ‘x ’ then

TypeOf (spatk, x) ↔ V has a rule spatj ∼ vpatj such that

isMatch (vpatj, v) and vpatj is not a bare variable pattern

addVPre�x (pre�x, rs) = { ((a, b), (c, pre�x ++ d)) | ((a, b), (c, d)) ∈ rs }

The divide function is de�ned as in Equation 5.8. Condition cond1 checks that every link in ls

is processed in one of the recursive calls, i.e. the path of every view region of ls starts with
path (vpatk, t) for some t. (Speci�cally, if Vars spatk is empty, ls in cond1 should also be empty
meaning that all the links have already been processed.) cond2 summarises the results of check
for recursive calls. cond3 guarantees the termination of recursion: When vpatk is a bare variable
pattern, the recursive call in Equation 5.7 does not decrease the size of any of its arguments; cond3
makes sure that such non-decreasing recursion will not happen in the next round1 for avoiding

1For presentation purposes we only check two rounds here, but in general we should check N + 1 rounds where N
is the number data types de�ned in the program.

5.3 Edit Operations and Link Maintenance 101

in�nite recursive calls.
For chkWithLink, as in the corresponding case of put (Equation 5.9), let l = ((spat, spath),

(vpat, vpath)) ∈ ls such that vpath = [] and spath is the shortest when there is more than one such
link.

chkWithLink (s, v, ls) = cond1 ∧ cond2 ∧ cond3 ∧ cond4

where

cond1 = isMatch (spat, sel (s, spath)) ∧ isMatch (vpat, sel (v, vpath))

cond2 = ∃!(spatk, vpatk) ∈ R. vpat = eraseVars vpatk

∧ spat is eraseVars (�llWildcards (spatk, t)) for some t

cond3 = ls = =({ l } ∪
⋃

t ∈Vars spatk

addVPre�x (path (vpatk, t),

divide (path (vpatk, t), ls \ { l })))

cond4 =
∧

t ∈Vars spatk

check (s, vs t, divide (path (vpatk, t)), ls \ { l }))

cond1 makes sure that the link l is valid (De�nition 5.1.3) and cond2 further checks that it can be
generated from some rule of the consistency relations. cond3 and cond4 are for recursive calls:
the latter summarises the results for the subtrees and the former guarantees that no link will be
missed. It is cond3 that rejects the subtle case of overlapping view regions as described at the end
of Case IV in Section 5.2.1.

5.2.3.4 Retentiveness of the DSL

We can now state our main theorem in terms of the de�nitions of get and put above.

Theorem 5.2.1. [Generated Lenses are Retentive] Let put ′ be put with its domain intersected
with S × V × Links, get and put ′ form a retentive lens as in De�nition 5.1.5.

The proof goes by induction on the size of the arguments to put or get and can be found in
Appendix A.2.

5.3 Edit Operations and Link Maintenance

In the retentive lens framework, a get function only produces horizontal links between a source
and its consistent view, while the input links to a put function are the ones between a source and

102 Chapter 5. Retentive Printing

CA

CD

CB

CE CF

A

D F

CA

CD

CB

CE CF

A

D F'

replace F with F'

CA

CD

CB

CE CF

A

D D

CA

CD

CB

CE CF

A

? D

copy D to its sibling move D to its sibling

CA

CD

CB

CE CF

A

F D

swap D and its sibling

original source,
view, and links

Figure 5.7: How edit operations replace, copy, move, and swap main links.

a modi�ed view. To bridge the gap, in this section, we demonstrate how to update the view while
maintaining the links using a set of typical edit operations (on views). These edit operations will
be used in the three case studies in the next section.

We de�ne four edit operations, replace, copy, move, and swap, of which move and swap are
de�ned in terms of copy and replace. The edit operations accept not only an AST but also a set of
links, which is updated along with the AST. The interface has been designed in a way that the last
argument of an edit operation is the pair of the AST and links, so that the user can use Haskell’s
ordinary function composition to compose a sequence of edits (partially applied to all the other
arguments). The implementation of the four edit operations takes less than 40 lines of Haskell
code, as our DSL already generates useful auxiliary functions such as fetching a subtree according
to a path in some tree.

We brie�y explain how the edit operations update links, as illustrated in Figure 5.7: Replacing
a subtree at path p will destroy all the links previously connecting to path p. Copying a subtree
from path p to path p′ will duplicate the set of links previously connecting to p and redirect the
duplicated links to connect to p′. Moving a subtree from p to p′ will destroy links connecting to p′

and redirect the links (previously) connecting to p to connect to p′. Swapping subtrees at p and p′

will also swap the links connecting to p and p′.

5.4 Case Studies 103

5.4 Case Studies

We demonstrate how our DSL works for the problems of code refactoring (Fowler and Beck, 1999),
resugaring (Pombrio and Krishnamurthi, 2014, 2015), and XML synchronisation (Pacheco et al.,
2014b), all of which require that we constantly make modi�cations to ASTs and synchronise
them with CSTs. For all these problems, retentive lenses provide a systematic way for the user to
preserve information of interest in the original CST after synchronisation.

5.4.1 Refactoring

As we will report below, we have programmed the consistency relations between CSTs and ASTs
for a small subset of Java 8 (Gosling et al., 2014) and tested the generated retentive lens on a
particular refactoring. Even though the case study is small, we believe that our framework is
general enough: We have surveyed the standard set of refactoring operations for Java 8 provided
by Eclipse Oxygen (with Java Development Tools) and found that all the 23 refactoring operations
can be represented as the combinations of our edit operations de�ned in Section 5.3. Note that
position-wise replacement and list alignment (which will be discussed in the last paragraph in
Section 5.4.3 and in more detail in Section 5.5.1) is su�cient for only about half of the refactoring
operations, in which the code (precisely, subtrees of an AST) is moved around within a list-like
structure (such as an expression list or a statement list). For the remaining half of the operations,
the code is moved out of its original list-like structure so that some ‘global tracking information’
such as links are required, where our retentive lenses outperform well-behaved lenses. A summary
can be found in Appendix B.

5.4.1.1 The Push-Down Code Refactoring

An example of the push-down code refactoring is illustrated in Figure 5.8. At �rst, the user designed
a Vehicle class and thought that it should possess a fuel method for all the vehicles. The fuel

method has a JavaDoc-style comment and contains a while loop, which can be seen as syntactic
sugar and is converted to a standard for loop during parsing. However, when later designing
Vehicle’s subclasses, the user realises that bicycles cannot be fuelled and decides to do the push-
down code refactoring, which removes the fuel method from Vehicle and pushes the method
de�nition down to subclasses Bus and Car but not Bicycle. Instead of directly modifying the
(program) text, most refactoring tools choose to parse the program text into its ast, perform code
refactoring on the ast, and regenerate new (program) text'. The bottom-left corner of Figure 5.8

104 Chapter 5. Retentive Printing

public class Vehicle {
 /**
 * fuelling it
 */
 public int fuel (int vol) {
 while (vol < ...) { ... }
 }
 ...
}

public class Car extends Vehicle {
 ...
}

public class Vehicle {
 ...
}

public class Car extends Vehicle {
 /**
 * fuelling it
 */
 public int fuel (int vol) {
 while (vol < ...) { ... }
 }
 ...
}

JCCompilationUnit

Vehicle ClassDec Car ClassDec …

fuel MethodDec …

forloop …

JCCompilationUnit

Vehicle ClassDec Car ClassDec …

fuel MethodDec …

forloop …

…

…

parse

modify

as if modify here

print

text ast

refactored
text

refactored
ast

Figure 5.8: An example of the push-down code refactoring. (For simplicity, subclasses Bus and Bicycle are
omitted.)

shows the desired (program) text' after refactoring, where we see that the comment associated
with fuel is also pushed down, and the while sugar is kept. However, the preservation of the
comment and syntactic sugar does not come for free actually, as the ast—being a concise and
compact representation of the program text—includes neither comments nor the form of the
original while loop. So if the user implements the parse and print functions as back-and-forth
conversions between CSTs ASTs (or even as a well-behaved lens), they may produce unsatisfactory
results in which the comment and the while syntactic sugar are lost.

5.4.1.2 Implementation in Our DSL

Implementation of the whole code refactoring tool for Java 8 using retentive lenses requires much
engineering work. In this thesis, we focus on the theoretical foundation and language design, and
have only implemented the transformation system (between CSTs and ASTs) for a small subset of
Java 8 to demonstrate the possibility of having the whole system.

5.4 Case Studies 105

public class Vehicle {
 ...
}

public class Car extends Vehicle {
 public int fuel (int vol) {
 for (; vol < ... ;) {...}
 }
 ...
}

Figure 5.9: An unsatisfactory result after refactoring, losing the comment and while syntactic sugar.

Following the grammar of Java 8, we de�ne data types for a simpli�ed version of its concrete
syntax, which consists of de�nitions of classes, methods, and variables; arithmetic expressions
(including assignment and method invocation); and conditional and loop statements. For con-
venience, we also restrict the occurrence of statements and expressions to exactly once in some
cases (such as variable declarations). Then we de�ne the corresponding simpli�ed version of the
abstract syntax that follows the one de�ned by the JDT parser (Oracle Corporation and OpenJDK
Community, 2014). This subset of Java 8 has around 80 CST constructs (production rules) and 30
AST constructs; the 70 consistency relations among them generate about 3000 lines of code for the
retentive lenses and auxiliary functions (such as the ones for conversions between interchangeable
data types and edit operations).

Now, we de�ne the consistency relations. Since the structure of the consistency relations for
the transformation system is roughly similar to the ones in Figure 5.4, here we only highlight
two of them as examples; the reader can refer to the supplementary material to see the complete
program. We see that for the concrete syntax everything is a class declaration (ClassDecl), while
for the abstract syntax everything is a tree (JCTree). As a ClassDecl should correspond to a
JCClassDecl, which by de�nition is yet not a JCTree, we use the constructors FromJCStatement

and FromJCClassDecl to make it a JCTree, emulating the inheritance in Java. This is described by
the consistency relation1

1We include keywords such as class in the CST patterns for improving readability, although they should be
removed.

106 Chapter 5. Retentive Printing

ClassDecl <---> JCTree

NormalClassDeclaration0 _ "class" n "extends" sup body ~

FromJCStatement (FromJCClassDecl (JCClassDecl N n (J (JCIdent sup)) body))

NormalClassDeclaration1 _ mdf "class" n "extends" sup body ~

FromJCStatement (FromJCClassDecl (JCClassDecl (J mdf) n (J (JCIdent sup)) body))

... .

Depending on whether a class has a modi�er (such as public and private) or not, the concrete
syntax is divided into two cases while we use a Maybe type in the abstract syntax representing both
cases. (To save space, the constructors Just and Nothing are shortened to J and N respectively.)
Similarly, there are further two cases where a class does not extend some superclass and are
omitted here.

Next, we see how to represent while loop using the basic for loop, as the abstract syntax of a
language should be as concise as possible1:

Statement <---> JCStatement

While "while" "(" exp ")" stmt ~ JCForLoop Nil exp Nil stmt

where the four arguments of JCForLoop in order denote (list of) initialisation statements, the loop
condition, (list of) update expressions, and the loop body. As for a while loop, we only need to
convert its loop condition exp and loop body stmt to AST types and put them in the correct places
of the for loop. Initialisation statements and update expressions are left empty since there is none.

5.4.1.3 Demo

We can now perform some experiments on Figure 5.8.

• First we test put cst ast ls, where (ast, ls) = get cst. We get back the same cst, show-
ing that the generated lenses do satisfy Hippocraticness.

• As a special case of Correctness, we let cst' = put cst ast [] and check fst (get cst')

= = ast. In cst', the while loop becomes a basic for loop and all the comments disappear.
This shows that put will create a new source solely from the view if links are missing.

• Then we change ast to ast' and the set of links ls to ls' using our edit operations, simulating
the push-down code refactoring for the fuel method. To show the e�ect of Retentiveness

1Although the JDT parser does not do this.

5.4 Case Studies 107

more clearly, when building ast', the fuel method in the Car class is copied from the Vehicle
class, while the fuel method in the Bus class is built from scratch (i.e. replaced with a ‘new’
fuel method). Let cst' = put cst ast' ls'. In the fuel method of the Car class, the while

loop and its associated comments are preserved; but in the fuel method of the Bus class,
there is only a for loop without any associated comments. This is where Retentiveness
helps the user to retain information on demand. Finally, we also check that Correctness
holds: fst (get cst') = = ast'.

5.4.2 Resugaring Revisited

We have explained the notion of resugaring in Section 3.3.1 and used theTiger language to illustrate
how BiYacc helps to solve some simple cases of the resugaring problem. In this subsection, we
demonstrate that the resugaring problem, rather than just simple cases, can be completely solved
while leaving ASTs unmodi�ed with the help of Retentiveness and our DSL: To retain syntactic
sugar, we can write consistency relations between the surface syntax and the abstract syntax and
pass the generated put function proper links.

We still take resugaring for Tiger as an example. As shown in Figure 4.4, we use names
(i.e. data constructors) Or and And to represent logical or and logical and expressions in CSTs
respectively; they will both be converted to if-then-else expressions represented by TCond (de�ned
in Figure 3.6) in ASTs. Since the code for de�ning consistency relations for Tiger in this DSL is
substantially similar to the code for de�ning parser and printer pairs in BiYacc, we only show the
core part of the code regarding logical expressions.

Prmtv <---> Arith

Or l r ~ Cond l (Num 1) r

And l r ~ Cond l r (Num 0)

...

With the generated put, resugaring for the one-step evaluated ast' = Cond 0 1 c from ast =

Cond (Cond 0 10 0) 1 c (that is parsed from text 0 & 10 | c) is illustrated in the following �gure.
For this simple case, we can obtain ast' and links ls by using the replace edit operation to replace
Cond 0 10 0 in ast with (the one-step evaluated result) 0. As for cst', the syntactic sugar Or is
preserved, for Retentiveness requires fst · ls ⊆ fst · ls′.

108 Chapter 5. Retentive Printing

Or

And c

0 10

Cond

Cond

0 10 0

1 c

Cond

0 1 c

eval

Or

0 c

eval
...

cst ast

cst' ast'

ls

ls'

Both Pombrio and Krishnamurthi’s ‘tag approach’ and our ‘link approach’, in actuality, identi�es
where an AST construct comes from; however, the link approach has an advantage that it leaves
ASTs clean and unmodi�ed so that we do not need to patch up the existing compiler to deal with
tags.

5.4.3 XML Synchronisation

In this subsection, we present a case study on XML synchronisation, which is pervasive in the real
world and di�erent from syntax tree manipulation. The speci�c example used in this subsection is
from Pacheco et al.’s paper (Pacheco et al., 2014b), where they use their DSL, BiFluX, to synchronise
address books.

As for their example, both the source address book and the view address book are grouped
by social relationships; however, the source address book contains names, emails, and telephone
numbers while the view (social) address book contains names only:
data AddrBook =

AddrBook (List AddrGroup)

data AddrGroup =

AddrGroup String (List Person)

data Person =

Person (Triple Name Email Tel)

data SocialBook =

SocialBook (List SocialGroup)

data SocialGroup =

SocialGroup String (List Name)

data Triple a b c= Triple a b c

type Name = String ...

To synchronise AddrBook and SocialBook, we write consistency relations in our DSL and the
core ones are

5.4 Case Studies 109

AddrGroup <---> SocialGroup

AddrGroup grp p ~ SocialGroup grp p

List Person <---> List Name

Nil ~ Nil

Cons p xs ~ Cons p xs

Person <---> Name

Person t ~ t

Triple Name Email Tel <---> Name

Triple name _ _ ~ name .

The consistency relations will compile to a pair of get and put.
As for their example, the original source addrBook and its consistent view socialBook are

AddrBook

(Cons (AddrGroup "coworkers" (Cons

(Person (Triple "Hugo Pacheco" "hugo@nii.ac.jp" "000111")) (Cons

(Person (Triple "Zhenjiang Hu" "hu@nii.ac.jp" "222333")) Nil)))

(Cons (AddrGroup "friends" (Cons

(Person (Triple "John Doe" "doe@abc.xyz" "444555")) Nil)) Nil))

and

SocialBook

(Cons (SocialGroup "coworkers" (Cons

"Hugo Pacheco" (Cons

"Zhenjiang Hu" Nil)))

(Cons (SocialGroup "friends" (Cons

"John Doe" Nil)) Nil))

respectively.
The view socialBook is updated in a way that we

1. reorder the two groups;

2. change Hugo’s group (from coworkers to friends);

3. create a new social relationship group (family) for family members.

That is, if we assume that, in the social group friends, Hugo Pacheco is inserted after John Doe,
the desired updated socialBook' should be

110 Chapter 5. Retentive Printing

SocialBook

(Cons (SocialGroup "friends" (Cons

"John Doe" (Cons

"Hugo Pacheco" Nil)))

(Cons (SocialGroup "coworkers" (Cons

"Zhenjiang Hu" Nil))

(Cons (SocialGroup "family" Nil) Nil))) .

In our case, to produce socialBook', we handle the three update steps using our basic edit
operations (in this case, only swap, move, and replace) which also maintain the links. Feeding the
original source addrBook, updated view socialBook' and links hls' to the (generated) put function,
we obtain the following updated addrBook':

AddrBook (Cons (AddrGroup "friends" (Cons

(Person (Triple "John Doe" "doe@abc.xyz" "444555")) (Cons

(Person (Triple "Hugo Pacheco" "hugo@nii.ac.jp" "000111")) Nil)))

(Cons (AddrGroup "coworkers" (Cons

(Person (Triple "Zhenjiang Hu" "hu@nii.ac.jp" "222333")) Nil))

(Cons (AddrGroup "family" Nil) Nil))) .

It is clearly seen that carefully maintained links help us to preserve email addresses and telephone
numbers associated with each person during the put process; note that the updated view is
not consistent with the original source and in this case, well-behavedness does not guarantee
information retention.

As pointed out by Pacheco et al., examples of this kind motivate extensions to alignment-aware
languages such as Boomerang (Bohannon et al., 2008) and matching lenses (Barbosa et al., 2010).
In fact, it is hard for those languages to handle source-view alignment of this kind, where some
view elements are moved out of its original list-like structure (or chunk (Barbosa et al., 2010)) and
put into a new list-like structure, probably far away—because when using those languages, we
usually lift a lens combinator k handling a single element to k∗ dealing with a list of elements, so
that the ‘scope’ of the alignment performed by k∗ is always set within that single list (it currently
works on). Pacheco et al. overcome the problem by providing the functionality that allows us to
write alignment strategies manually; in this way, when we see several lists at once, we are free to
look up elements in all the lists1.

1To be precise, in this speci�c social address book example, an element is still aligned within a single list only;
however, when it becomes an ‘unmatched’ element, the user can write his own strategy such as reusing some elements
in other lists for avoiding information loss, rather than creating a new one from scratch.

5.5 Related Work 111

5.5 Related Work

5.5.1 Alignment

From the dawn of the bidirectional programming languages (Foster et al., 2007), alignment has been
recognised as an important problem when we need to synchronise two lists—if a view element (in
a list) is modi�ed (e.g., inserted, deleted, or reordered), which source element should be matched
with the (modi�ed) view element and updated correspondingly? Our work on retentive lenses
with links is closely related to this.

5.5.1.1 Alignment for Lists

The earliest lenses (Foster et al., 2007) only allow source and view elements to be matched
positionally—the n-th source element is simply updated using the n-th element in the modi�ed
view. Later, lenses with more powerful matching strategies are proposed, such as dictionary lenses
(Bohannon et al., 2008) and their successor matching lenses (Barbosa et al., 2010). In matching
lenses, a source is divided into a resource consisting of chunks of information that can be reordered,
and a ‘rigid complement’ storing information outside the chunk structure; the reorderable chunk
structure is preserved in the view. When a put is invoked, it will �rst do source-view elements
matching, which �nds the correspondence between chunks of the old and new views using some
prede�ned strategies; based on the correspondence, the resource is ‘pre-aligned’ to match the
chunks in the new view. Then element-wise updates are performed on the aligned chunks. The
design of matching lenses is to be practically easy to use, so they are equipped with a few �xed
matching strategies (such as greedy align) from which the user can choose. However, whether the
information is retained or not, still depends on the lens applied after matching. As a result, the
more complex the applied lens is, the more di�cult to reason about the information retained in
the new source. (Moreover, they su�er a disadvantage that the alignment is only between a single
source list and a single view list, as already discussed in the last paragraph of Section 5.4.3.)

BiFluX (Pacheco et al., 2014b) not only provides the user with align-by-position and align-by-
key matching strategies as two primitives but also allows the user to write her/his own alignment
strategies. In this way, when we see several lists at once, we are free to search for elements and
match them in all the lists. But this alignment still has some limitations: (i) it works only for
list-like data (data that can be �attened into a list); (ii) each source element and each view element
can only be matched at most once—after that they are classi�ed as either matched pair, unmatched

source element, or unmatched view element. Assuming that an element in the view has been copied

112 Chapter 5. Retentive Printing

several times, there is no way to align all the copies with the same source element. (However, it is
possible to reuse an element several times for the handling of unmatched elements.)

By contrast, retentive lenses are designed to abstract out matching strategies (alignment) and
are more like taking the result of matching as an additional input. This matching is not a one-layer
matching but rather, a global one that produces (possibly all the) links between a source’s and a
view’s unchanged parts. The information contained in the linked parts is preserved independently
of any further applied lenses.

5.5.1.2 Alignment for Containers

To generalise list alignment, a more general notion of data structures called containers (Abbott et al.,
2005) is used (Hofmann et al., 2012). In the container framework, a data structure is decomposed
into a shape and its content; the shape encodes a set of positions, and the content is a mapping
from those positions to the elements in the data structure. The existing approaches to container
alignment take advantage of this decomposition and treat shapes and contents separately. For
example, if the shape of a view container changes, Hofmann et al.’s approach will update the
source shape by a �xed strategy that makes insertions or deletions at the rear positions of the
(source) containers. By contrast, Pacheco et al.’s method permits more �exible shape changes, and
they call it shape alignment (Pacheco et al., 2012). In our setting, both the consistency on data and
the consistency on shapes are speci�ed by the same set of consistency declarations. In the put

direction, both the data and shape of a new source is determined by (computed from) the data and
shape of a view, so there is no need to have separated data and shape alignments.

Container-based approaches have the same situation (as list alignment) that the retention of
information is dependent on the basic lens applied after alignment. Besides, as a generalisation
of list alignment, it is worth noting that separation of data alignment and shape alignment will
hinder the handling of some algebraic data types. First, in practice, it is usually di�cult for the
user to de�ne container data types and represent their data using containers. We use two mutually
recursive data types Expr and Term de�ned in Figure 5.1 to illustrate. If the user wants to use
containers to de�ne them, one way might be to parametrise the types of terminals (leaves in a
tree, here Integer only):

5.5 Related Work 113

data Expr i = Plus (Expr i) (Term i)

| Minus (Expr i) (Term i)

| FromT (Term i)

data Term i = Neg (Term i)

| Lit i

| Paren (Expr i)

data Arith i = Add (Arith i) (Arith i)

| Sub (Arith i) (Arith i)

| Num i

Here the terminals are of the same type Integer. However, imagine the situation where there are
more than ten types of leaves, it is a boring task to parameterise all of them as type variables.

Moreover, the container-based approaches face another serious problem: they always translate
a change on data in the view to another change on data in the source, without a�ecting the shape
of a container. This is wrong in some cases, especially when the decomposition into shape and data
is inadequate. For example, let the source be Neg (Lit 100) and the view Sub (Num 0) (Num 100).
If we modify the view by changing the integer 0 to 1 (so that the view becomes Sub (Num 1) (

Num 100)), the container-based approach would not produce a correct source Minus ..., as this
data change in the view must not result in a shape change in the source. In general, the essence
of container-based approaches is the decomposition into shape and data such that they can be
processed independently (at least to some extent), but when it comes to scenarios where such
decomposition is unnatural (like the example above), container-based approaches can hardly help.

5.5.2 Provenance and Origin

Our idea of links is inspired by research on provenance (Cheney et al., 2009) in database communi-
ties and origin tracking (van Deursen et al., 1993) in the rewriting communities.

Cheney et al. classify provenance into three kinds, why, how, and where: why-provenance is
the information about which data in the view is from which rows in the source; how-provenance
additionally counts the number of times a row is used (in the source); where-provenance in
addition records the column where a piece of data is from. In our setting, we require that two
pieces of data linked by vertical correspondence be equal (under a speci�c pattern), and hence
the vertical correspondence resembles where-provenance. Leaping from database communities
to programming language communities, we �nd that the above-mentioned provenance is not
powerful enough as they are mostly restricted to relational data, namely rows of tuples. In
functional programming, the algebraic data types are more complex (represented as sums of

114 Chapter 5. Retentive Printing

products), and a view is produced by more general functions rather than relational operations such
as selection, projection, and join. For this need, dependency provenance (Cheney et al., 2011) is
proposed; it tells the user on which parts of a source the computation of a part of a view depends.
In this sense, our consistency links are closer to dependency provenance.

The idea of inferring consistency links can be found in the work on origin tracking for term
rewriting systems (van Deursen et al., 1993), in which the origin relations between rewritten
terms can be calculated by analysing the rewrite rules statically. However, it was developed
solely for building traces between intermediate terms rather than using trace information to
update a tree further. Based on origin tracking, de Jonge and Visser implemented an algorithm
for code refactoring systems, which ‘preserves formatting for terms that are not changed in the
(AST) transformation, although they may have changes in their subterms’ (de Jonge and Visser,
2012). This description shows that the algorithm also decomposes large terms into smaller ones
resembling our regions. Therefore, in terms of the formatting aspect, we think that retentiveness
can be in e�ect the same as their theorem if we adopt the ‘square diagram’ (see Section 5.6.2).
However, they only tailored the theorem for their speci�c printing algorithm but did not generalise
the theorem to other scenarios.

Similarly, Martins et al. developed a system for attribute grammars which de�ne transforma-
tions between tree structures (in particular CSTs and ASTs) (Martins et al., 2014). Their bidirectional
system also uses links to trace the correspondence between source nodes and view nodes, which
is later used by put to solve the syntactic sugar problem. The di�erences between their system
and ours are twofold: One is that in their system, links are implicitly used in the put direction.
The advantage (of implicit link usage) is that, for the user, links become transparent and are
automatically maintained when a view is updated; the disadvantage is that, as a result, newly
created nodes on an AST can never have ‘links back’ to the old CST, even if they might be the
copies of some old nodes. The second di�erence is the granularity of links; in their system, a
link seems to connect the whole subtrees between a CST and an AST instead of between smaller
regions. As a result, if a leaf of an AST is modi�ed, all the nodes belonging to the spine from the
leaf to the root will lose their links.

The use of consistency links can also be found in Wang et al.’s work, where the authors extend
state-based lenses and use links for tracing data in a view to its origin in a source (Wang et al., 2011).
When a sub-term in the view is edited locally, they use links to identify a sub-term in the source
that ‘contains’ the edited sub-term in the view. When updating the old source, it is su�cient to
only perform state-based put on the identi�ed sub-term (in the source) so that the update becomes
an incremental one. Since lenses generated by our DSL also create consistency links (albeit for a

5.6 Discussions 115

di�erent purpose), they can be naturally incrementalised using the same technique.

5.5.3 Operation-based BX

Our work is closely relevant to the operation-based approaches to BX, in particular, the delta-based
BX model (Diskin et al., 2011a,b) and edit lenses (Hofmann et al., 2012). The (asymmetric) delta-
based BX model regards the di�erences between a view state v and v ′ as deltas, which are abstractly
represented as arrows (from the old view to the new view). The main law of the framework can be
described as ‘given a source state s and a view delta detv , detv should be translated to a source
delta dets between s and s ′ satisfying get s′ = v ′’. As the law only guarantees the existence of
a source delta dets that updates the old source to a correct state, it is yet not su�cient to derive
Retentiveness in their model, for there are in�nite numbers of translated delta dets which can
take the old source to a correct state, of which only a few are ‘retentive’. To illustrate, Diskin
et al. tend to represent deltas as edit operations such as create, delete, and change; representing
deltas in this way will only tell the user what must be changed in the new source, while it requires
additional work to reason about what is retained. However, it is possible to exhibit Retentiveness
if we represent deltas in some other proper form. Compared to Diskin et al.’s work, Hofmann et al.
give concrete de�nitions and implementations for propagating edit operations (in a symmetric
setting).

5.6 Discussions

In this chapter, we showed that well-behavedness is not su�cient for retaining information after
an update and it may cause problems in many real-world applications such as code refactoring.
To address the issue, we illustrated how to use links to preserve desired data fragments of the
original source, and developed a semantic framework of (asymmetric) retentive lenses for region
models. Then we presented a small DSL tailored for describing consistency relations between
syntax trees; we showed its syntax, semantics, and proved that the pair of get and put functions
generated from any program in the DSL form a retentive lens. We further illustrated the practical
use of retentive lenses by giving examples in the �eld of code refactoring, XML synchronisation,
and resugaring. In the related work, we discussed the relations with alignment, origin tracking,
and operation-based BX. At the end of the chapter, we will brie�y discuss the integration of
Retentiveness into BiYacc, Strong Retentiveness (that subsumes Hippocraticness), our thought on
(retentive) lens composition, the feasibility of retaining code styles for refactoring tools, and our

116 Chapter 5. Retentive Printing

choice of the word ‘retentive’.

5.6.1 BiYacc and Retentive Printing

BiYacc does not support ‘the real retentive printing (formalised in this chapter). Why do not we
design BiYacc in a way that supports it from the very beginning? The truth is that, two years after
BiYacc’s birth, we realised that state-based lenses, even being put-based, are not powerful enough
for our application scenario, so that we have to devise a more powerful lens framework, and that
gives birth to retentive lenses and the small experimental DSL introduced in this chapter.

The DSL (introduced in this chapter) itself is closely related to but simpler than BiYacc, and
retentive lenses generated from the DSL can theoretically be used as a new back end of BiYacc
and to achieve retentive printing. The idea is appealing, yet we have not integrated retentive lenses
into BiYacc because of the con�icts of their design philosophies: as mentioned very early in this
thesis before, BiYacc is state-based and put-based, while retentive lenses are (champion) neither of
them. Retentive lenses seem to be a framework that lies in between: It is not state-based because,
in addition to the states of a pair of source and view, the put function also accepts a set of links
recording trace information. It is not delta-based or operation-based because the set of links are
between a source and a view instead of a view and its modi�ed one; as a result, the put function
does not produce edits/delta/correspondence between an old source and its updated one, either. It
is not put-based since the user explicitly speci�es consistency relations between sources and views
rather than implementing put functions (which implicitly derive consistency relations). Finally, it
is not get-based since the user needs to supply links as an additional input to put—although it can
be left empty—which means that the user still sometimes needs to consider the put behaviour.

We leave the integration of retentive lenses into BiYacc-like tools as future work. Nonetheless,
it should not be too di�cult, even considering bi-�lters—which, fortunately, have been designed in
a modular way and should not hurt retentiveness—but the real problems are, for example, (i) how
to create consistency links for (the consistency relations extracted from) printing strategies which
involve more complex features such as deep patterns and (ii) how to let the user easily obtain the
links (supplied to put) (s)he wants.

5.6 Discussions 117

5.6.2 Opting for Triangular Diagrams

The reader may wonder why do not we formalise Retentiveness and retentive lenses in a way that
it satis�es a square commutative diagram

hls · vls = vls′ · hls′

where

(v, hls) = get s

(v ′, vls) = modify v (for some view-modifying function modify)
(s′, vls′) = put (s, v ′, vls)

(v ′, hls′) = get s′ .

That is, put takes some ‘vertical links’ between a view and its modi�ed version and produces vertical
links between an old source and its updated version, and the composition of the old consistency
links hls and vertical links vls is equal to the composition of the new vertical links vls′ and
consistency links hls′. A possible design for vertical links is to represent a link as two paths sharing
the same region pattern, i.e. (vpath, vpat, vpath′)—meaning that a data fragment (vpat, vpath) in
a view is not destroyed but probably moved to vpath′ in the updated view. When composing
horizontal links with vertical links, we �rst transform each vertical link (vpath, vpat, vpath′) to
an equivalent representation ((vpat, vpath), (vpat, vpath′)) and then reuse the link composition
introduced in Section 5.1.5.

Including such vertical links representing view updates in the theory was something we
thought about (for quite some time), but eventually, we opted for the current, simpler theory. The
rationale is that the original state-based lens framework (which we extended) does not really have
the notion of view update built in. A view given to a put function is not necessarily modi�ed
from the view got from the source—it can be constructed in any way, and put does not have to
consider how the view is constructed. Coincidentally, the paper about (symmetric) delta-based
lenses (Diskin et al., 2011b) also introduces square diagrams and later switches to triangular
diagrams. We retain this separation of concern in our framework, in particular separating the jobs
of retentive lenses and third-party tools.

118 Chapter 5. Retentive Printing

5.6.3 Strong Retentiveness

Through our research into Retentiveness, we also tried a di�erent theory, which we call Strong
Retentiveness now, that requires that the consistency links generated by get should capture all
the ‘information’ of the source and uniquely identify it. Strong Retentiveness is appealing in the
sense that (we proved that) it subsumes Hippocraticness: the more information we require that the
new source have, the more restrictions we impose on the possible forms of the new source; in the
extreme case where the input links are consistency links—which capture all the information and
can only be satis�ed by at most one source—the new source has to be the same as the original one.
However, using Strong Retentiveness demands extra e�ort in practice, for a set of region patterns
can never uniquely identify a tree; as a result, much more information is required. For instance,
cst1 = Minus "" (Lit 1) (Lit 2) has region patterns reg1 = Minus "" _ _, reg2 = Lit 1, and
reg3 = Lit 2, which, however, are also satis�ed by cst2 = Minus "" (Lit 2) (Lit 1) in which
regions are assembled in a di�erent way.

This observation inspires us to generalise region patterns to properties in order for holding
more information (that can eventually uniquely identify a tree) and generalise links connecting
Pa�ern × Path to links connecting Property × Path accordingly. We eventually formalised three
kinds of properties that are su�cient to capture all the information of a tree (e.g. cst1): region
patterns (e.g. reg1, reg2, and reg3), relative positions between two regions (e.g. reg2 is the �rst child
of reg1 and reg3 is the second child of reg1), and top that marks the top of a tree (e.g. reg1 is the
top). Worse still, observant readers might have found that properties need to be named so that
they can be referred to by other properties; for instance, the region pattern Minus "" _ _ is named
reg1 and is referred to as the top of cst1. This will additionally cause many di�culties in lens
composition, as di�erent lenses might assign the same region di�erent names and we need to
do ‘alpha conversion’. Take everything into consideration, �nally, we opted for the ‘weaker’ but
simpler version of Retentiveness.

5.6.4 Rethinking Lens Composition

We de�ned retentive lens composition (De�nition 5.1.9) in which we treat link composition as
relation composition. In this case, however, the composition of two lenses lensAB and lensBC may
not be satisfactory because the link composition might (trivially) produce an empty set as the
result, if lensAB and lensBC decompose a tree b (of type B) in a di�erent way, as the following
example shows:

5.6 Discussions 119

white

Neg Sub

…

…

Lit

2 20

Sub

Num Num NumNum

0 1

lensAB lensBC

In the above �gure, lensAB connects the region (pattern) Neg a _ with Sub (Num 0) _ (the grey
parts); while lensBC decomposes Sub (Num 0) _ into three small regions and establishes links for
them respectively. For this case, our current link composition simply produces an empty set as the
result.

Coincidentally, similar problems can also be found in quotient lenses (Foster et al., 2008): A
quotient lens operates on sources and views that are divided into many equivalent classes, and
the well-behavedness is de�ned on those equivalent classes rather than a particular pair of source
and view. In order to establish a sequential composition l; k, the authors require that the abstract
(view-side) equivalence relation of lens l is identical to the concrete (source-side) equivalence of
lens k. We leave other possibilities of link composition to future work.

As for our DSL, the lack of composition does not cause problems because of the philosophy of
design. Take the scenario of writing a parser for example where there are two main approaches
for the user to choose: to use parser combinators (such as Parsec) or to use parser generators
(such as Happy). While parser combinators o�er the user many small composable components,
parser generators usually provide the user with a high-level syntax for describing the grammar of
a language using production rules (associated with semantic actions). Then the generated parser
is used as a ‘standalone black box’ and usually will not be composed with some others (although it
is still possible to be composed ‘externally’). Our DSL is designed to be a ‘lens generator’ and we
have no di�culty in writing bidirectional transformations for the subset of Java 8 in Section 5.4.1.

5.6.5 Retaining Code Styles

A challenge to refactoring tools is to retain the style of program text such as indentation, vertical
alignment of identi�ers, and the place of line breaks. For example, an argument of a function
application may be vertically aligned with a previous argument; when a refactoring tool moves
the application to a di�erent place, what should be retained is not the absolute number of spaces
preceding the arguments but the property that these two arguments are vertically aligned.

120 Chapter 5. Retentive Printing

Although not implemented in the DSL, these properties can be added to the set of Property as
introduced in Section 5.6.3.For instance, we may have VertAligned x y ∈ Property for x, y ∈ Name

(i.e. x and y are names of some regions); a CST satis�es such a property if region y is vertically
aligned with region x.When get computes an AST from such a vertically aligned argument and
produces consistency links, the links will not include (real) spaces preceding the argument as
a part of the source region; instead, the links connect the property VertAligned x y (and the
corresponding AST region).In the put direction, such links serve as directives to adjust the number
of spaces preceding the argument to conform to the styling rule. In general, handling code styles
can be very language-speci�c and is beyond the scope of this thesis but could be considered a
direction of future work.

5.6.6 The Word Retentive

We are not the �rst to use the word retentive; the use of the word appeared in the paper on
symmetric lenses (Hofmann et al., 2011), which is the pioneering work of edit lenses (Hofmann
et al., 2012). In the paper (Hofmann et al., 2011), they de�ned both retentive sum lenses and
forgetful sum lenses, where the ‘retentive one keeps complements for both sub-lenses (branches)
while the forgetful one keeps only one complement corresponding to the last put branch.’ The
usage is the same there: retentive is used to describe the kind of sum lenses that are able to memory
and preserve more information.

121

6
Conclusions

We showed the necessity of a retentive printer, which should reconcile the compactness of ASTs
and printing quality. We solved the problem by proposing a DSL, BiYacc, whose program denotes a
pair of well-behaved parser and retentive printer for an unambiguous CFG; the parser and retentive
printer are, in actuality, formed by the composition of an isomorphism between program text and
CSTs, and a lens between CSTs and ASTs. We show that BiYacc facilitates many tasks such as
resugaring, language evolution, and simple refactoring by demonstrating them in a medium-size
case study on the Tiger language. After that, we improved our solution in two directions: one for
the isomorphism part and the other for the lens part. For the isomorphism part, we supported
(fully-disambiguated) ambiguous grammars by generalised parsing and bi-�lters; in the parsing
direction, bi-�lters remove incorrect CSTs produced from some generalised parser; in the printing
direction, bi-�lters repair a potentially incorrect CST produced from some put function (for
synchronising CSTs and ASTs). Bi-�lters are carefully bidirectionalised so that they will not break
the well-behavedness laws—provided that they satisfy our proposed bidirectioanlised �lter laws.
We extend BiYacc with this functionality and design accessible directives for specifying production
rules’ associativity and (relative) priorities, which give rise to compositional and commutative
�lters; power users can also de�ne their own �lters. We demonstrate the extended BiYacc using

122 Chapter 6. Conclusions

the same Tiger language de�ned by an ambiguous grammar and a set of disambiguation rules,
which also includes a manually written one for the dangling else problem. For the lens part, by
putting forward retentive lenses and Retentiveness, we guarantee precise information retention
such as comments and syntactic sugar in the situation where the input source (i.e. CSTs) and
view (i.e. ASTs) are not consistent. We verify our idea by introducing a new DSL for writing
tree transformations (especially between CSTs and ASTs) and presenting case studies on code
refactoring, resugaring, and XML synchronisation. Retentive lenses are incompatible with either
state-based lenses or put-based design, and we leave the integration of retentive lenses into BiYacc
or developing some other new DSL supporting (true) retentive printing as possible future work.
Related work and other future work are discussed in each individual chapters.

123

Bibliography

Annika Aasa. 1995. Precedences in Speci�cations and Implementations of Programming Languages. In
Selected Papers of the Symposium on Programming Language Implementation and Logic Programming
(PLILP ’91). Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 3–26. http://dl.acm.org/
citation.cfm?id=203429.203431

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers: Constructing Strictly Positive
Types. Theoretical Computer Science 342, 1 (Sept. 2005), 3–27. https://doi.org/10.1016/j.tcs.2005.06.002

Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens. 2018. Introduction
to Bidirectional Transformations. In Bidirectional Transformations: International Summer School, Oxford,
UK, July 25-29, 2016, Tutorial Lectures, Jeremy Gibbons and Perdita Stevens (Eds.). Springer International
Publishing, Cham, 1–28. https://doi.org/10.1007/978-3-319-79108-1_1

Ali Afroozeh and Anastasia Izmaylova. 2015. Faster, Practical GLL Parsing. In Compiler Construction,
Björn Franke (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 89–108. https://doi.org/10.1007/
978-3-662-46663-6_5

A. V. Aho, S. C. Johnson, and J. D. Ullman. 1975. Deterministic Parsing of Ambiguous Grammars. Commun.
ACM 18, 8 (Aug. 1975), 441–452. https://doi.org/10.1145/360933.360969

Andrew W. Appel. 1998. Modern Compiler Implementation in ML, First Edition. Cambridge University Press,
New York, NY, USA. https://doi.org/10.1017/CBO9780511811449

François Bancilhon and Nicolas Spyratos. 1981. Update Semantics of Relational Views. ACM Transactions
on Database Systems 6, 4 (Dec. 1981), 557–575. http://doi.acm.org/10.1145/319628.319634

Davi M.J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and Benjamin C. Pierce. 2010. Matching
Lenses: Alignment and View Update. In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’10). ACM, New York, NY, USA, 193–204. https://doi.org/10.1145/
1863543.1863572

Richard Bird. 2014. Thinking Functionally with Haskell. Cambridge University Press, Cambridge, UK.
https://doi.org/10.1017/CBO9781316092415

http://dl.acm.org/citation.cfm?id=203429.203431
http://dl.acm.org/citation.cfm?id=203429.203431
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1007/978-3-662-46663-6_5
https://doi.org/10.1007/978-3-662-46663-6_5
https://doi.org/10.1145/360933.360969
https://doi.org/10.1017/CBO9780511811449
http://doi.acm.org/10.1145/319628.319634
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1017/CBO9781316092415

124 Bibliography

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. 2008.
Boomerang: Resourceful Lenses for String Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’08). ACM, New York, NY, USA, 407–419.
https://doi.org/10.1145/1328438.1328487

Richard J. Boulton. 1996. Syn: a single language for speci�ying abstract syntax tress, lexical analysis, parsing
and pretty-printing. Technical Report UCAM-CL-TR-390. University of Cambridge, Computer Laboratory.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-390.ps.gz

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. 2008. Dual Syntax for XML Languages.
Information Systems 33, 4-5 (June 2008), 385–406. https://doi.org/10.1016/j.is.2008.01.006

David G. Cantor. 1962. On The Ambiguity Problem of Backus Systems. J. ACM 9, 4 (Oct. 1962), 477–479.
https://doi.org/10.1145/321138.321145

James Cheney, Amal Ahmed, and Umut a. Acar. 2011. Provenance As Dependency Analysis. Mathematical
Structures in Computer Science 21, 6 (Dec. 2011), 1301–1337. https://doi.org/10.1017/S0960129511000211

James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in Databases: Why, How, and
Where. Found. Trends databases 1, 4 (April 2009), 379–474. https://doi.org/10.1561/1900000006

Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and James F. Terwilliger.
2009. Bidirectional Transformations: A Cross-Discipline Perspective. In Proceedings of the 2nd International
Conference on Theory and Practice of Model Transformations (ICMT ’09). Springer-Verlag, Berlin, Heidelberg,
260–283. https://doi.org/10.1007/978-3-642-02408-5_19

Umeshwar Dayal and Philip A. Bernstein. 1982. On the Correct Translation of Update Operations on
Relational Views. ACM Trans. Database Syst. 7, 3 (Sept. 1982), 381–416. https://doi.org/10.1145/319732.
319740

Maartje de Jonge and Eelco Visser. 2012. An Algorithm for Layout Preservation in Refactoring Transfor-
mations. In Software Language Engineering, Anthony Sloane and Uwe Aßmann (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 40–59. https://doi.org/10.1007/978-3-642-28830-2_3

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs.
Commun. ACM 18, 8 (Aug. 1975), 453–457. https://doi.org/10.1145/360933.360975

Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. 2011a. From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology 10 (2011), 6:1–25. http:
//www.jot.fm/contents/issue_2011_01/article6.html

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Hermann, and Fernando Orejas.
2011b. From State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case. In Model

https://doi.org/10.1145/1328438.1328487
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-390.ps.gz
https://doi.org/10.1016/j.is.2008.01.006
https://doi.org/10.1145/321138.321145
https://doi.org/10.1017/S0960129511000211
https://doi.org/10.1561/1900000006
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/319732.319740
https://doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/10.1145/360933.360975
http://www.jot.fm/contents/issue_2011_01/article6.html
http://www.jot.fm/contents/issue_2011_01/article6.html

Bibliography 125

Driven Engineering Languages and Systems, Jon Whittle, Tony Clark, and Thomas Kühne (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 304–318. https://doi.org/10.1007/978-3-642-24485-8_22

Jonas Duregård and Patrik Jansson. 2011. Embedded Parser Generators. In Proceedings of the 4th ACM
Symposium on Haskell (Haskell ’11). ACM, New York, NY, USA, 107–117. https://doi.org/10.1145/2034675.
2034689

Jay Earley. 1970. An E�cient Context-free Parsing Algorithm. Commun. ACM 13, 2 (Feb. 1970), 94–102.
https://doi.org/10.1145/362007.362035

Sebastian Fischer, ZhenJiang Hu, and Hugo Pacheco. 2015. The Essence of Bidirectional Programming.
Science China Information Sciences 58, 5 (May 2015), 1–21. https://doi.org/10.1007/s11432-015-5316-8

John Nathan Foster. 2009. Bidirectional Programming Languages. Ph.D. Dissertation. University of Pennsyl-
vania. https://repository.upenn.edu/edissertations/56/

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007.
Combinators for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update Problem.
ACM Transactions on Programming Language Systems 29, 3, Article 17 (May 2007). https://doi.org/10.
1145/1232420.1232424

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. 2008. Quotient Lenses. SIGPLAN Not. 43, 9
(Sept. 2008), 383–396. https://doi.org/10.1145/1411203.1411257

Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Boston, MA, USA. https://www.csie.ntu.edu.tw/~r95004/Refactoring_improving_the_
design_of_existing_code.pdf

Peter Friese, Sven E�tinge, and Jan Köhnlein. 2008. Xtext - Language Engineering for Everyone! https:
//www.eclipse.org/Xtext/

James Gosling, Bill Joy, and Guy Steele. 2006. The Java Language Speci�cation, Third Edition. https:
//docs.oracle.com/javase/specs/

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2014. The Java Language Speci�cation,
Java SE 8 Edition (Java Series). https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

Georg Gottlob, Paolo Paolini, and Roberto Zicari. 1988. Properties and Update Semantics of Consistent
Views. ACM Trans. Database Syst. 13, 4 (Oct. 1988), 486–524. https://doi.org/10.1145/49346.50068

John Hennessy. 1982. Symbolic Debugging of Optimized Code. ACM Transactions on Programming Language
Systems 4, 3 (July 1982), 323–344. http://doi.acm.org/10.1145/357172.357173

https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1145/2034675.2034689
https://doi.org/10.1145/2034675.2034689
https://doi.org/10.1145/362007.362035
https://doi.org/10.1007/s11432-015-5316-8
https://repository.upenn.edu/edissertations/56/
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1411203.1411257
https://www.csie.ntu.edu.tw/~r95004/Refactoring_improving_the_design_of_existing_code.pdf
https://www.csie.ntu.edu.tw/~r95004/Refactoring_improving_the_design_of_existing_code.pdf
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://doi.org/10.1145/49346.50068
http://doi.acm.org/10.1145/357172.357173

126 Bibliography

Martin Hirzel and Kristo�er Høgsbro Rose. 2013. Tiger Language Speci�cation. https://cs.nyu.edu/courses/
fall13/CSCI-GA.2130-001/tiger-spec.pdf

Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2011. Symmetric Lenses. SIGPLAN Not. 46, 1 (Jan.
2011), 371–384. https://doi.org/10.1145/1925844.1926428

Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2012. Edit Lenses. In Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’12). ACM, New York,
NY, USA, 495–508. https://doi.org/10.1145/2103656.2103715

Zhenjiang Hu and Hsiang-Shang Ko. 2018. Principles and Practice of Bidirectional Programming in BiGUL.
In Bidirectional Transformations: International Summer School, Oxford, UK, July 25–29, 2016, Tutorial
Lectures, Jeremy Gibbons and Perdita Stevens (Eds.). Springer International Publishing, Cham, 100–150.
https://doi.org/10.1007/978-3-319-79108-1_4

Michael Johnson, Robert D Rosebrugh, et al. 2016. Unifying Set-Based, Delta-Based and Edit-Based Lenses.
In Proceedings of the 5th International Workshop on Bidirectional Transformations co-located with The
European Joint Conferences on Theory and Practice of Software (ETAPS 2016), Anthony Anjorin and
Jeremy Gibbons (Eds.), Vol. 1571. CEUR Workshop Proceedings, Eindhoven, The Netherlands, 1–13.
http://ceur-ws.org/Vol-1571/paper_13.pdf

Stephen C. Johnson. 1975. Yacc: Yet Another Compiler-Compiler. AT&T Bell Laboratories Technical Reports
(AT&T Bell Laboratories Murray Hill, New Jersey 07974) (32). http://dinosaur.compilertools.net/yacc/

Brian W. Kernighan and Dennis M. Ritchie. 1989. The C Programming Language. Prentice Hall Press, Upper
Saddle River, NJ, USA. https://dl.acm.org/doi/book/10.5555/100511

Daisuke Kinoshita and Keisuke Nakano. 2017. Bidirectional Certi�ed Programming. In Proceedings of the 6th
International Workshop on Bidirectional Transformations co-located with The European Joint Conferences
on Theory and Practice of Software (ETAPS 2017), Romina Eramo and Michael Johnson (Eds.), Vol. 1827.
CEUR Workshop Proceedings, Uppsala, Sweden, 31–38. http://ceur-ws.org/Vol-1827/paper7.pdf

Paul Klint and Eelco Visser. 1994. Using Filters for the Disambiguation of Context-Free Grammars. In
Proceedings of the ASMICS Workshop on Parsing Theory, G. Pighizzini and P. San Pietro (Eds.). University
of Milan, Italy, Milano, Italy, 1–20. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9812

Hsiang-Shang Ko and Zhenjiang Hu. 2018. An Axiomatic Basis for Bidirectional Programming. Proceedings
of the ACM on Programming Languages 2, POPL, Article 41 (Dec. 2018), 29 pages. https://doi.org/10.
1145/3158129

Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. 2016. BiGUL: A Formally Veri�ed Core Language for
Putback-based Bidirectional Programming. In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial

https://cs.nyu.edu/courses/fall13/CSCI-GA.2130-001/tiger-spec.pdf
https://cs.nyu.edu/courses/fall13/CSCI-GA.2130-001/tiger-spec.pdf
https://doi.org/10.1145/1925844.1926428
https://doi.org/10.1145/2103656.2103715
https://doi.org/10.1007/978-3-319-79108-1_4
http://ceur-ws.org/Vol-1571/paper_13.pdf
http://dinosaur.compilertools.net/yacc/
https://dl.acm.org/doi/book/10.5555/100511
http://ceur-ws.org/Vol-1827/paper7.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9812
https://doi.org/10.1145/3158129
https://doi.org/10.1145/3158129

Bibliography 127

Evaluation and Program Manipulation (PEPM ’16). ACM, New York, NY, USA, 61–72. https://doi.org/10.
1145/2847538.2847544

Wilf R. LaLonde and Jim des Rivieres. 1981. Handling Operator Precedence in Arithmetic Expressions with
Tree Transformations. ACM Transactions on Programming Language Systems 3, 1 (Jan. 1981), 83–103.
https://doi.org/10.1145/357121.357127

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A Practical Design Pattern for Generic
Programming. In Proceedings of the 2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation (TLDI ’03). ACM, New York, NY, USA, 26–37. https://doi.org/10.1145/604174.
604179

David Lutterkort. 2008. Augeas—A con�guration API. In Proceedings of the Ottawa Linux Symposium.
Ottawa, Canada, 47–56. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.607.5792

Nuno Macedo, Hugo Pacheco, Alcino Cunha, and José Nuno Oliveira. 2013. Composing least-change
lenses. Proceedings of the Second International Workshop on Bidirectional Transformations 57 (2013), 1–19.
https://doi.org/10.14279/tuj.eceasst.57.868

Simon Marlow et al. 2010. Haskell 2010 language report. https://www.haskell.org/onlinereport/haskell2010/

Simon Marlow and Andy Gill. 2001. The Parser Generator for Haskell. https://www.haskell.org/happy/

Pedro Martins, João Saraiva, João Paulo Fernandes, and Eric Van Wyk. 2014. Generating Attribute Grammar-
based Bidirectional Transformations from Rewrite Rules. In Proceedings of the ACM SIGPLAN 2014
Workshop on Partial Evaluation and Program Manipulation (PEPM ’14). ACM, New York, NY, USA, 63–70.
https://doi.org/10.1145/2543728.2543745

Kazutaka Matsuda, Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. 2010. A Grammar-Based Approach
to Invertible Programs. In Proceedings of the 19th European Conference on Programming Languages and
Systems (ESOP’10), Andrew D. Gordon (Ed.). Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg,
448–467. https://doi.org/10.1007/978-3-642-11957-6_24

Kazutaka Matsuda and Meng Wang. 2018a. Embedding Invertible Languages with Binders: A Case of the
FliPpr Language. In Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell (Haskell
2018). ACM, New York, NY, USA, 158–171. http://doi.org/10.1145/3242744.3242758

Kazutaka Matsuda and Meng Wang. 2018b. FliPpr: A System for Deriving Parsers from Pretty-Printers.
New Generation Computing 36, 3 (01 Jul 2018), 173–202. https://doi.org/10.1007/s00354-018-0033-7

Ulf Norell. 2007. Towards a Practical Programming Language Based on Dependent Type Theory. Ph.D.
Dissertation. Chalmers University of Technology. http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf

https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/357121.357127
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.607.5792
https://doi.org/10.14279/tuj.eceasst.57.868
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/happy/
https://doi.org/10.1145/2543728.2543745
https://doi.org/10.1007/978-3-642-11957-6_24
http://doi.org/10.1145/3242744.3242758
https://doi.org/10.1007/s00354-018-0033-7
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf

128 Bibliography

Oracle Corporation and OpenJDK Community. 2014. OpenJDK. http://openjdk.java.net/

Hugo Pacheco, Alcino Cunha, and Zhenjiang Hu. 2012. Delta lenses over inductive types. Electronic
Communications of the EASST 49 (2012), 1–17. https://doi.org/10.14279/tuj.eceasst.49.713

Hugo Pacheco, Zhenjiang Hu, and Sebastian Fischer. 2014a. Monadic Combinators for “Putback” Style
Bidirectional Programming. In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and
Program Manipulation (PEPM ’14). ACM, New York, NY, USA, 39–50. https://doi.org/10.1145/2543728.
2543737

Hugo Pacheco, Tao Zan, and Zhenjiang Hu. 2014b. BiFluX: A Bidirectional Functional Update Language
for XML. In Proceedings of the 16th International Symposium on Principles and Practice of Declarative
Programming (PPDP ’14). ACM, New York, NY, USA, 147–158. https://doi.org/10.1145/2643135.2643141

Hugo José Pereira Pacheco. 2012. Bidirectional Data Transformation by Calculation. Ph.D. Dissertation.
University of Minho. https://www.di.uminho.pt/~hpacheco/publications/phdthesis.pdf

Justin Pombrio and Shriram Krishnamurthi. 2014. Resugaring: Lifting Evaluation Sequences Through
Syntactic Sugar. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 361–371. https://doi.org/10.1145/2594291.2594319

Justin Pombrio and Shriram Krishnamurthi. 2015. Hygienic Resugaring of Compositional Desugaring. In
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015).
ACM, New York, NY, USA, 75–87. https://doi.org/10.1145/2784731.2784755

Tillmann Rendel and Klaus Ostermann. 2010. Invertible Syntax Descriptions: Unifying Parsing and Pretty
Printing. In Proceedings of the Third ACM Haskell Symposium on Haskell (Haskell ’10). ACM, New York,
NY, USA, 1–12. https://doi.org/10.1145/1863523.1863525

Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electronic Notes in Theoretical Computer Science
253, 7 (Sept. 2010), 177–189. https://doi.org/10.1016/j.entcs.2010.08.041

Elizabeth Scott, Adrian Johnstone, and Rob Economopoulos. 2007. BRNGLR: A cubic Tomita-style GLR
parsing algorithm. Acta Informatica 44, 6 (2007), 427–461. https://doi.org/10.1007/s00236-007-0054-z

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. In Proceedings of
the 2002 ACM SIGPLAN Workshop on Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16. https:
//doi.org/10.1145/581690.581691

Perdita Stevens. 2008. Bidirectional model transformations in QVT: semantic issues and open questions.
Software & Systems Modeling 9, 1 (Dec. 2008), 7. https://doi.org/10.1007/s10270-008-0109-9

http://openjdk.java.net/
https://doi.org/10.14279/tuj.eceasst.49.713
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/2643135.2643141
https://www.di.uminho.pt/~hpacheco/publications/phdthesis.pdf
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2784731.2784755
https://doi.org/10.1145/1863523.1863525
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1007/s00236-007-0054-z
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1007/s10270-008-0109-9

Bibliography 129

Masaru Tomita. 1985. An E�cient Context-free Parsing Algorithm for Natural Languages. In Proceedings of
the 9th International Joint Conference on Arti�cial Intelligence - Volume 2 (IJCAI’85). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 756–764. http://dl.acm.org/citation.cfm?id=1623611.1623625

V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What They Mean. Advances in
Human-Computer Interaction 2010, Article 3 (Jan. 2010), 26 pages. https://doi.org/10.1155/2010/602570

Mark van den Brand and Eelco Visser. 1996. Generation of Formatters for Context-free Languages. ACM
Transactions on Software Engineering and Methodology 5, 1 (Jan. 1996), 1–41. https://doi.org/10.1145/
226155.226156

Mark G. J. van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong, Merijn de Jonge, Tobias Kuipers,
Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser.
2001. The ASF+SDF Meta-environment: A Component-Based Language Development Environment.
In Proceedings of the 10th International Conference on Compiler Construction (CC ’01). Springer-Verlag,
London, UK, 365–370. https://doi.org/10.1007/3-540-45306-7_26

Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. 2002. Disambiguation Filters
for Scannerless Generalized LR Parsers. In Proceedings of the 11th International Conference on Compiler
Construction (CC ’02). Springer-Verlag, London, UK, 143–158. https://doi.org/10.1007/3-540-45937-5_12

A. van Deursen, P. Klint, and F. Tip. 1993. Origin Tracking. Journal of Symbolic Computation 15, 5-6 (May
1993), 523–545. https://doi.org/10.1016/S0747-7171(06)80004-0

Eelco Visser. 1997a. A Case Study in Optimizing Parsing Schemata by Disambiguation Filters. In International
Workshop on Parsing Technology (IWPT 1997). Massachusetts Institute of Technology, Boston, USA, 210–
224. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1339

Eelco Visser. 1997b. Syntax De�nition for Language Prototyping. Ph.D. Dissertation. University of Amsterdam.
https://dare.uva.nl/search?identi�er=4a30326d-626f-4355-a2e7-29b0239e975f

Meng Wang, Jeremy Gibbons, and Nicolas Wu. 2011. Incremental Updates for E�cient Bidirectional Trans-
formations. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’11). ACM, New York, NY, USA, 392–403. https://doi.org/10.1145/2034773.2034825

Daniel H. Younger. 1967. Recognition and parsing of context-free languages in time n3. Information and
Control 10, 2 (1967), 189 – 208. http://www.sciencedirect.com/science/article/pii/S001999586780007X

Zirun Zhu, Hsiang-Shang Ko, Pedro Miguel Ribeiro Martins, João Alexandre Saraiva, and Zhenjiang Hu. 2015.
BiYacc: Roll Your Parser and Re�ective Printer into One. In Proceedings of the 4th International Workshop
on Bidirectional Transformations co-located with Software Technologies: Applications and Foundations (STAF
2015), Alcino Cunha and Ekkart Kindler (Eds.), Vol. 1396. CEUR Workshop Proceedings, L’Aquila, Italy,
43–50. http://ceur-ws.org/Vol-1396/p43-zhu.pdf

http://dl.acm.org/citation.cfm?id=1623611.1623625
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/226155.226156
https://doi.org/10.1145/226155.226156
https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1016/S0747-7171(06)80004-0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1339
https://dare.uva.nl/search?identifier=4a30326d-626f-4355-a2e7-29b0239e975f
https://doi.org/10.1145/2034773.2034825
http://www.sciencedirect.com/science/article/pii/S001999586780007X
http://ceur-ws.org/Vol-1396/p43-zhu.pdf

130 Bibliography

Zirun Zhu, Hsiang-Shang Ko, Yongzhe Zhang, Pedro Martins, João Saraiva, and Zhenjiang Hu. 2020a.
Parsing and Re�ective Printing, Bidirectionally. New Generation Computing (2020), to appear. https:
//doi.org/10.1007/s00354-019-00082-y

Zirun Zhu, Zhixuan Yang, Hsiang-Shang Ko, and Zhenjiang Hu. 2020b. Retentive Lenses. (2020). https:
//arxiv.org/abs/2001.02031

Zirun Zhu, Yongzhe Zhang, Hsiang-Shang Ko, Pedro Martins, João Saraiva, and Zhenjiang Hu. 2016.
Parsing and Re�ective Printing, Bidirectionally. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2016). ACM, New York, NY, USA, 2–14. https:
//doi.org/10.1145/2997364.2997369

https://doi.org/10.1007/s00354-019-00082-y
https://doi.org/10.1007/s00354-019-00082-y
https://arxiv.org/abs/2001.02031
https://arxiv.org/abs/2001.02031
https://doi.org/10.1145/2997364.2997369
https://doi.org/10.1145/2997364.2997369

131

A
Proofs about Retentive Lenses

A.1 Composability

In this section, we show the proof of Theorem 5.1.10 with the help of Figure 5.3 and the de�nition
of retentive lens composition (De�nition 5.1.9).

Hippocraticness Preservation. We prove that the composite lens satis�es Hippocraticness with the
help of Figure 5.3 and the de�nition of retentive lens composition (De�nition 5.1.9).
Let дetAC a = (c, lsac). We prove putAC (a, c′, lsac ′) = a′ = a. In this case, c′ = c and lsac ′ = lsac .

putAC (a, c′, lsac ′)

={ putAC (a, c′, lsac ′) = a′ = putAB (a, b′, lsab′) }
putAB (a, b′, lsab′)

={ lsab′ = lsac ′ · ls
◦

b′c ′ }

putAB (a, b′, lsac ′ · ls
◦

b′c ′)

={ Since c′ = c, we have lsac ′ = lsac and lsb′c ′ = lsb′c }
putAB (a, b′, (lsac · ls◦b′c)

◦)

132 Appendix A. Proofs about Retentive Lenses

={ b′ = putBC (b, c′, lsbc ′) and c′ = c }
putAB (a,putBC (b, c, lsbc), lsac · ls◦b′c)

={ By Hippocraticness of lensBC , b′ = putBC (b, c, lsbc) = b }
putAB (a, b, lsac · ls◦bc)

={ The link composition is 6© in Figure 5.3, and b′ = b }
putAB (a, b, lsab)

={ Hippocraticness of lensAB }
a .

Correctness Preservation. We prove that the composite lens satis�es Correctness with the help of
Figure 5.3 and the de�nition of retentive lens composition (De�nition 5.1.9).
Let a′ = putAC (a, c′, lsac ′), we prove fst (дetAC a′) = c′.

fst (дetAC a′)

={ De�nition of дetAC }
fst (дetBC (fst (дetAB a′)))

={ a′ = putAC (a, c′, lsac ′) }

fst (дetBC (fst (дetAB (putAC (a, c′, lsac ′)))))

={ putAC (a, c′, lsac ′) = a′ = putAB (a, b′, lsab′) }
fst (дetBC (fst (дetAB (putAB (a, b′, lsab′)))))

={ Correctness of lensAB }
fst (дetBC (b′))

={ b′ = putBC (b, c′, lsbc ′) }
fst (дetBC (putBC (b, c′, lsbc ′)))

={ Correctness of lensBC }
c′ .

Retentiveness Preservation. In Figure 5.3, we prove fst · lsac ⊆ fst · lsa′c ′ .
To �nish the proof, we need the following lemma.

A.1 Composability 133

Lemma A.1.1. Given a relation R and a function f , we have

rdom (f · R) = rdomR if ldomR ⊆ rdom f , and

ldom (R · f) = ldomR if rdomR ⊆ ldom f .

Proof. We prove the �rst equation; the second equation is symmetric.
Suppose f : X → Y and R : Y ∼ Z . By de�nition, rdomR = { z ∈ Z | ∃y ∈ Y , y R z } and
rdom (f · R) = { z ∈ Z | ∃y ∈ Y , ∃ x ∈ X , x f y R z }. Since ldomR ⊆ rdom f , we know
that ∀y. y ∈ ldomR ⇒ y ∈ rdom f ; on the other hand, we also have y ∈ rdom f ⇒ ∃x . x ∈ X .
Therefore, ∀y. y ∈ ldomR ⇒ ∃x . x ∈ X and thus rdom (f · R) = { z ∈ Z | ∃y ∈ Y , ∃ x ∈ X , x f

y R z } = { z ∈ Z | ∃y ∈ Y , y R z } = rdomR.

Now, we present the main proof:

fst · lsac

={ R = R · idrdomR }

fst · lsac ′ · idrdom (lsac′)

⊆{ idrdom (lsac′) ⊆ lsc ′b′ · ls
◦

c ′b′ by sub-proof-1 below }
fst · lsac ′ · (lsc ′b′ · ls

◦

c ′b′)

={ Relation composition is associative }
fst · (lsac ′ · lsc ′b′) · ls

◦

c ′b′

={ lsab′ = lsac ′ · lsc ′b′ (6© in Figure 5.3) }
fst · lsab′ · ls

◦

c ′b′

⊆{ Retentiveness of lensAB and ls◦c ′b′ = lsb′c ′ }
fst · lsa′b′ · lsb′c ′

={ lsa′c ′ = lsa′b′ · lsb′c ′ }

fst · lsa′c ′ .

sub-proof-1: idrdom (lsac′) ⊆ lsc ′b′ · ls
◦

c ′b′
⇔ rdom (lsac ′) ⊆ ldom (lsc ′b′) and we prove the

latter using linear proofs. The right column of each line gives the reason how it is derived.

1. ldom (lsc ′b′) = rdom (lsb′c ′) de�nition of relations

2. fst · lsbc ′ ⊆ fst · lsb′c ′ Retentiveness of lensBC

134 Appendix A. Proofs about Retentive Lenses

3. rdom (fst · lsbc ′) ⊆ rdom (fst · lsb′c ′) 2 and de�nition of relation inclusion

4. rdom (lsbc ′) ⊆ rdom (lsb′c ′) 3 and Lemma A.1.1

5. lsbc ′ = (ls
◦

ac ′ · lsab)
◦ = (lsc ′a · lsab)

◦ 3© in Figure 5.3

6. rdom (lsbc ′) = rdom (lsc ′a · lsab)◦ 5

7. rdom (lsc ′a · lsab)◦ = ldom (lsc ′a · lsab) de�nition of converse relation

8. ldom (lsc ′a · lsab) ⊆ ldom (lsc ′a) de�nition of relation composition

9. ldom (lsc ′a) = rdom (lsac ′) de�nition of converse relation

10. rdom (lsbc ′) = rdom (lsac ′) 6, 7, 8, and 9

11. rdom (lsac ′) ⊆ ldom (lsc ′b′) 10, 4, and 1

A.2 Retentiveness of the DSL

In this section, we prove that the get and put semantics given in Section 5.2.3 does satisfy the three
properties (De�nition 5.1.5) of a retentive lens. Most of the proofs are proved by induction on the
size of the trees.

Lemma A.2.1. The get function described in Section 5.2.3.1 is total.

Proof. Because we require source pattern coverage, get is de�ned for all the input data. Besides,
since our DSL syntactically restricts source pattern spatk to not being a bare variable pattern, for
any v ∈ Vars(spatk), decompose(spatk, s) is a proper subtree of s. So the recursion always decreases
the size of the s parameter and thus terminates.

Lemma A.2.2. For a pair of get and put described in Section 5.2.3.2 and any s : S, check(s, get(s)) =
True.

Proof. We prove the lemma by induction on the structure of s. By the de�nition of get and check,

check(s, get(s))

={ get(s) produces consistency links }
chkWithLink(s, get(s))

={ Unfolding get(s) }
chkWithLink(s, reconstruct(vpatk, fst ◦ vls), lroot ∪ links)

A.2 Retentiveness of the DSL 135

where vpatk , fst, vls, lroot and links are those in the de�nition of get (5.5). In chkWithLink, cond1
and cond2 are true by the evident semantics of pattern matching functions such as isMatch and
reconstruct. cond3 is true following the de�nition of lroot , links, and divide. Finally, cond4 is true by
the inductive hypothesis.

Lemma A.2.3. (Focusing) If sel(s,p) = s ′ and for any ((_, spath), (_, _)) ∈ ls, p is a pre�x of spath,
then

put(s, v, ls) = put(s′, v, ls′) and check(s, v, ls) = check(s′, v, ls′)

where ls′ = { ((a,b), (c,d)) | ((a,p ++ b), (c,d)) }.

Proof. From the de�nitions of put and check, we �nd that their �rst argument (of type S) is invariant
during the recursive process. In fact, the �rst argument is only used when checking whether a
link in ls is valid with respect to the source tree. Since all links in ls connect to the subtree s′, the
parts in s above s′ can be trimmed and the identity holds.

Theorem A.2.4. (Hippocraticness of the DSL) For any s of type S,

put(s, get(s))1 = s .

Proof of Hippocraticness. Also by induction on the structure of s,

put(s, get(s))

={ Unfolding get(s) }
put(s, reconstruct(vpatk, fst ◦ vls), lroot ∪ links) ,

where spatk ∼ vpatk ∈ R is the unique rule such that spatk matches s. lroot , links, and vls are de�ned
exactly the same as in get (5.5).

Now we expand put. Because lroot links to the root of the view, put falls to its second case.

put(s, get(s)) = inj(reconstruct(spatk ′, ss)) (A.1)

1For simplicity, we regard (a, (b, c)) the same as (a, b, c).

136 Appendix A. Proofs about Retentive Lenses

where

spatk ′

= { spat in (5.9) is eraseVars(�llWildcards(spatk, s)) }
�llWildcards(spatk, eraseVars(�llWildcards(spatk, s)))

= { See Figure A.1 }
�llWildcards(spatk, s) .

and

ss = λ(t ∈ Vars(spatk)) → put(s, vs(t), divide(Path(vpatk, t), links))

where vs = decompose(vpatk, reconstruct(vpatk, fst ◦ vls)) = fst ◦ vls. (See the beginning of the
proof.) Since vls = get ◦ decompose(spatk, s), we have

ss = λ(t ∈ Vars(spatk)) →

put(s, fst(get(decompose(spatk, s)(t))), divide(Path(vpatk, t), links))

By Lemma A.2.3, we have

ss = λ(t ∈ Vars(spatk)) →

put(decompose(spatk, s)(t), fst(get(decompose(spatk, s)(t))),

snd(get(decompose(spatk, s)(t))))

= { Inductive hypothesis for decompose(spatk, s)(t) }

λ(t ∈ Vars(spatk)) → decompose(spatk, s)(t)

= decompose(spatk, s) .

Now, we substitute �llWildcards(spatk, s) for spatk ′ and decompose(spatk, s) for ss in equation (A.1),
and obtain

put(s, get(s))

={ Equation(A.1) }
injS→S@V (reconstruct(spatk

′, ss))

=injS→S@V (reconstruct(�llWildcards(spatk, s), decompose(spatk, s)))

A.2 Retentiveness of the DSL 137

C

_ _ zx

spatk s

C

W Y ZX

fillWildcards  
 (spatk, s)

C

W Y zx

eraseVars  
 (fillWildcards(spatk, s))

C

W Y __

fillWildcards(spatk, 
 eraseVars(fillWildcards(spatk, s)))

C

W Y ZX

Figure A.1: A property regarding �llWildcards.

C

_ _ zx

spatk s

C

W Y ZX

decompose(spatk, s)

x → X
z → Z

fillWildcards(spatk, s)

C

W Y zx

reconstruct(fillWildcards(spatk, s), 
 decompose(spatk, s))

C

W Y ZX

Figure A.2: A property regarding Reconstruct-Decompose.

={ See Figure A.2 }

injS→S@V (s)

=s .

This completes the proof of Hippocraticness.

Theorem A.2.5. (Correctness of the DSL) For any (s, v, ls) that makes check(s,v, ls) = True,
get(put(s, v, ls)) = (v, ls′), for some ls′.

Proof of Correctness. We prove Correctness by induction on the size of (v, ls). The proofs of the
two cases of put are quite similar, and therefore we only present the �rst one, in which put(s, v, ls)

falls into the �rst case of put: i.e.

put(s, v, ls) = reconstruct(�llWildcardsWithDefaults(spatk), ss) .

Then

get(put(s, v, ls)) = get(reconstruct(�llWildcardsWithDefaults(spatk), ss))

138 Appendix A. Proofs about Retentive Lenses

where spatk ∼ vpatk ∈ R, isMatch(vpatk, v) = True, and

ss = λ(t ∈ Vars(spatk)) →

put(s, decompose(vpatk , v)(t), divide(Path(vpatk, t), ls)) .

Now expanding the de�nition of get, because of the disjointness of source patterns, the same
spatk ∼ vpatk ∈ R will be select again. Thus

get(put(s, v, ls)) = (reconstruct(vpatk, fst ◦ vls), · · ·)

where

vls = get ◦ decompose(spatk, put(s, v, ls))

= get ◦ decompose(spatk, reconstruct(�llWildcardsWithDefaults(spatk), ss))

= { See Figure A.3 }
get ◦ ss

= λ(t ∈ Vars(spatk)) → get(put(s, decompose(vpatk , v)(t), divide(Path(vpatk, t), ls)))

To proceed, we want to use the inductive hypothesis to simplify get(put(· · ·)). When vpatk is
not a bare variable pattern, decompose(vpatk , v)(t) is a proper subtree of v and the size of the third
argument (i.e. links ls) is non-increasing; thus the inductive hypothesis is applicable. On the other
hand, if vpatk is a bare variable pattern, the sizes of all the arguments stays the same; but cond3 in
chkNoLink guarantees that in the next round of the recursion, a pattern vpatk that is not a bare
variable pattern will be selected. Therefore we can still apply the inductive hypothesis. Applying
the inductive hypothesis, we get

vls = λ(t ∈ Vars(spatk)) → (decompose(vpatk , v)(t), · · ·)

Thus get(put(s, v, ls)) = (reconstruct(vpatk, decompose(vpatk, v)), · · ·) = (v, · · ·), which completes
the proof of Correctness.

TheoremA.2.6. (Retentiveness of the DSL) For any (s, v, ls) that check(s, v, ls) = True, get(put(s, v, ls)) =
(v ′, ls′), for some v ′ and ls′ such that

{ (spat, (vpat, vpath)) | ((spat, spath), (vpat, vpath)) ∈ ls }

A.2 Retentiveness of the DSL 139

C

_ _ zx

spatk
decompose(spatk, reconstruct( 
 fillWildcardsWithDefaults(spatk), ss))ss

x → Xʹ
z → Zʹ

C

d1 d2 zx

fillWildcards-  
 WithDefaults(spatk)

reconstruct(fillWildcards-  
 WithDefaults(spatk), ss)

C

d1 d2 ZʹXʹ

x → Xʹ
z → Zʹ

Figure A.3: A property regarding Decompose-Reconstruct.

⊆ { (spat, (vpat, vpath)) | ((spat, spath), (vpat, vpath)) ∈ ls′ }

Proof of Retentiveness. Again, we prove Retentiveness by induction on the size of (v, ls). The proofs
of the two cases of put are similar, and thus we only show the second one here.

If there is some l = ((spat, spath), (vpat, [])) ∈ ls, let spatk ∼ vpatk be the unique rule in S ∼ V

that isMatch(spatk, spat) = True. We have

get(put(s, v, ls))

={ De�nition of put }
get(injTypeOf (spatk)→S (s

′))

={ get(inj(s)) = get(s) as shown in (Section 5.2.2.1) }
get(s ′)

where s ′ = reconstruct(�llWildcards(spatk, spat), ss) and

ss = λ(t ∈ Vars(spatk)) →

put(s, decompose(vpatk , v)(t), divide(Path(vpatk, t), ls \ { l }))

Now we expand the de�nition of get (and focus on the links)

get(put(s, v, ls)) = (· · · , { lroot } ∪ links)

where lroot = ((eraseVars(�llWildcards(spatk, s′)), []) , (eraseVars(vpatk), [])),

links = { ((a, Path(spatk, t) ++ b), (c, Path(vpatk, t) ++ d)) (A.2)

| t ∈ Vars(vpatk), ((a,b), (c,d)) ∈ snd(vls(t)) } ,and

140 Appendix A. Proofs about Retentive Lenses

vls(t)

={ Unfolding vls }
(get ◦ decompose(spatk, s ′))(t)

={ Unfolding s′ }
(get ◦ decompose(spatk, reconstruct(�llWildcards(spatk, spat), ss)))(t)

={ Similar to the case shown in Figure A.3 }
(get ◦ ss)(t)

={ De�nition of ss }
get(put(s, decompose(vpatk , v)(t), divide(Path(vpatk, t), ls \ { l }))) .

For lroot , we have

eraseVars(�llWildcards(spatk, s′))

={ Unfolding s′ }
eraseVars(�llWildcards(spatk, reconstruct(�llWildcards(spatk, spat), ss)))

={ See Figure A.4 }
eraseVars(�llWildcards(spatk, spat))

={ By cond2 in chkWithLink }
spat

Use the �rst clause of cond2 , we have vpat = eraseVars(vpatk). Thus

lroot = ((eraseVars(�llWildcards(spatk, s′)), []) , (eraseVars(vpatk), [])) = ((spat, []), (vpat, [])) ,

and therefore the input link l = ((spat, spath), (vpat, [])) is ‘preserved’ by lroot , i.e. fst · {l} =
fst · {lroot} .

For the links in ls \ { l }, we show that they are preserved in links (A.2) above. By cond3 in
chkWithLink, for every link m ∈ ls \ { l }, there is some tm in Vars(spatk) such that

m ∈ addVPre�x(Path(vpatk, tm), divide(Path(vpatk , tm), ls \ { l })).

Ifm = ((a,b), (c, Path(vpatk , tm) ++ d)), then

m′ = ((a,b), (c,d)) ∈ divide(Path(vpatk , tm), ls \ { l }).

A.2 Retentiveness of the DSL 141

C

_ _ zx

spatk spat

C

W0 Y0 __

C

W0 Y0 zx

fillWildcards  
 (spatk, spat)

C

W0 Y0 ZX

reconstruct( 
 fillWildcards(spatk, spat), ss)

ss

C

W Y ZX

C

W0 Y0 zx

fillWildcards(spatk, reconstruct( 
 fillWildcards(spatk, spat), ss))

Figure A.4: Another property regarding �llWildcards.

By the inductive hypothesis for snd(vls(tm)), m′ is ‘preserved’, that is

∃b ′. ((a,b ′), (c,d)) ∈ snd(vls(tm))

Now by the de�nition of links (A.2), ((a, Path(spatk , tm) ++ b ′), (c, Path(vpatk , tm) ++ d)) ∈ links,
thereforem is also preserved.

Corollary A.2.7. Let put ′ = put with its domain intersected with S × V × LinkSet, get and put ′

form a retentive lens as in De�nition 5.1.5 since they satisfy Hippocraticness (5.1), Correctness
(5.2) and Retentiveness (5.3).

143

B
Refactoring Operations as
Edit Operation Sequences

We summarise how the 23 refactoring operations for Java 8 in Eclipse Oxygen could be described
by replace, copy, move, swap, insert, and delete, where the insert and delete operations on lists can
be implemented in terms of the �rst four. For instance, to insert an element e at position i in a list
of length n (where 1 6 i 6 n), we can follow these steps: (i) Change the list to length n + 1. (ii)
Starting from the tail of the list, move each element at position j such that j > i to position j + 1.
(iii) replace the element at position i with e. Deleting the element at position i is almost as simple
as moving each element after i one position ahead and decrease the length of the list by one.

Table B.1: Refactoring Operations as Edit Operation Sequences.

Refactor Opera-
tion

Description Edit Operations

Rename Renames the selected element and (if enabled)
corrects all references to the elements

replace the selected element and
all references with the new name.

144 Appendix B. Refactoring Operations as Edit Operation Sequences

Use Supertype
Where Possible

Replaces occurrences of a type with one of its
supertypes after identifying all places where this
replacement is possible.

replace all occurrences.

Generalize De-
clared Type

Allows the user to choose a supertype of the
reference’s current type. If the reference can be
safely changed to the new type, it is.

replace all occurrences.

Infer Generic
Type Argu-
ments

Replaces raw type occurrences of generic types
by parameterized types after identifying all
places where this replacement is possible.

replace all occurrences.

Encapsulate
Field

Replaces all references to a �eld with getter and
setter methods.

insert getters and setters; replace
all occurrences (with getters or set-
ters respectively).

Change Method
Signature

Changes parameter names, parameter types, pa-
rameter order and updates all references to the
corresponding method.

replace all occurrences. Use swap
if we need to change the parameter
order.

Extract Method Creates a new method containing the statements
or expression currently selected and replaces the
selection with a reference to the new method.

insert a new method; move se-
lected code; replace the selection.

Extract Local
Variable

Creates a new variable assigned to the expression
currently selected and replaces the selection with
a reference to the new variable.

insert a new variable; copy the se-
lected expression to the variable as-
signment; replace the selected ex-
pression.

Extract Con-
stant

Creates a static �nal �eld from the selected ex-
pression and substitutes a �eld reference, and
optionally rewrites other places where the same
expression occurs.

insert a �eld; copy the selected ex-
pression; replace the selected ex-
pression.

Introduce
Parameter

Replaces an expression with a reference to a new
method parameter, and updates all callers of the
method to pass the expression as the value of
that parameter.

insert a method parameter; insert
the selected expression to all the
callers (use copy if we want to pre-
serve the information attached to
the expression); replace the expres-
sion with the new method param-
eter.

Introduce
Factory

Creates a new factory method, which will call
a selected constructor and return the created
object. All references to the constructor will be
replaced by calls to the new factory method.

insert a factory method; replace all
the references to the constructor.

145

Introduce Indi-
rection

Creates a static indirection method delegating to
the selected method.

insert a method.

Convert to
Nested

Converts an anonymous inner class to a member
class.

insert a member class; move the
code within the anonymous class
to the member class; delete the
anonymous class.

Move Type to
New File

Creates a new Java compilation unit for the se-
lected member type or the selected secondary
type, updating all references as needed.

Move the selected code to the new
�le; replace all references.

Convert Local
Variable to Field

Turn a local variable into a �eld. If the variable is
initialized on creation, then the operation moves
the initialization to the new �eld’s declaration
or to the class’s constructors.

insert a �eld; copy the initializa-
tion; delete the variable declara-
tion.

Extract Super-
class

Extracts a common superclass from a set of sib-
ling types. The selected sibling types become
direct subclasses of the extracted superclass af-
ter applying the refactoring.

insert a superclass; move �elds
to the superclass; replace declara-
tions of sibling types (classes) so
that they extend the superclass;
insert lacking �elds into sibling
classes.

Extract Inter-
face

Creates a new interface with a set of methods and
makes the selected class implement the interface.

generally the same as above.

Move Moves the selected elements and (if enabled) cor-
rects all references to the elements (also in other
�les).

move the selected elements;
replace all references.

Push Down Moves a set of methods and �elds from a class
to its subclasses.

move the methods and �elds.

Pull Up Moves a �eld or method to a superclass of its
declaring class or (in the case of methods) de-
clares the method as abstract in the superclass.

move the �eld or insert an abstract
method declaration.

Introduce
Parameter
Object

Replaces a set of parameters with a new class,
and updates all callers of the method to pass
an instance of the new class as the value to the
introduce parameter.

insert a class de�nition; move the
parameters to the class; in callers’
de�nitions, delete the set of param-
eters and insert the class type as a
new parameter; for callers’ argu-
ments, delete the arguments corre-
sponding to the set of parameters
and insert a class instance.

146 Appendix B. Refactoring Operations as Edit Operation Sequences

Extract Class Replaces a set of �elds with new container object.
All references to the �elds are updated to access
the new container object.

insert a new class; move the �elds;
replace references to the �elds
with references to the container
object and �eld names.

Inline Inline local variables, methods or constants. For a variable or a constant, replace
the occurrences with the value;
delete the de�nition. For a method,
replace all occurrences of param-
eters within the method body
with real arguments; replace the
method call with the (new) method
body; delete the method de�nition.

	1 Introduction
	1.1 Organisation and Contributions

	2 Parsing and Printing as Lenses
	2.1 Bidirectional Transformations and Lenses
	2.2 Parsing and Printing as Lenses
	2.3 Rationale of Our Approach

	3 A DSL for Simultaneously Specifying Consistent Parser and Printer Pairs
	3.1 A First Look at BiYacc
	3.2 Design Details
	3.3 Case Study: The Tiger Language
	3.4 Related Work

	4 Bidirectionalised Filters for Handling Grammatical Ambiguity
	4.1 Problems with Ambiguous Grammars
	4.2 Generalised Parsing and Bidirectionalised Filters
	4.3 The New BiYacc System for Ambiguous Grammars
	4.4 Bi-Filter Directives
	4.5 Manually Written Bi-Filters
	4.6 Case Study Using Ambiguous Tiger
	4.7 Related Work
	4.8 Discussions

	5 Retentive Printing
	5.1 Retentive Lenses for Trees
	5.2 A DSL for Retentive Tree Transformation
	5.3 Edit Operations and Link Maintenance
	5.4 Case Studies
	5.5 Related Work
	5.6 Discussions

	6 Conclusions
	Bibliography
	Appendix A Proofs about Retentive Lenses
	A.1 Composability
	A.2 Retentiveness of the DSL

	Appendix B Refactoring Operations as Edit Operation Sequences

