
A Stretch Bounding Approach for Segment Routing
Traffic Engineering

by

Tossaphol Settawatcharawanit

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

March 2020

A Stretch Bounding Approach for Segment Routing Traffic Engineering

Copyright 2020

by

Tossaphol Settawatcharawanit

i

A Stretch Bounding Approach for Segment

Routing Traffic Engineering

Abstract

The unprecedented growth of network traffic has brought excessive challenges to

network operators. To prevent network congestion, network operators conduct

traffic engineering (TE) for their routing optimization. In addition, network oper-

ators are motivated to optimize their resource utilization by the highly competitive

nature of communication network industries and also paramount costs of operat-

ing a sheer volume of network resources. However, it is not trivial to perform

traffic engineering in dynamic systems since there are many involved processes

(e.g. traffic monitoring and traffic approximation) and also requirements (e.g.

computation interval for TE).

In recent years, segment routing traffic engineering (SRTE) has emerged as one

of the promising approaches for traffic engineering because of its high scalability

and low control overheads. By leveraging the source routing paradigm, SRTE

ii

embeds routing paths into packet headers in which simplifying the control plane

of TE. However, many studies have shown that conventional SRTE approaches

in large-scale networks are computationally prohibitive, which may lead to de-

layed system operations and unsatisfactory service qualities. This contradicts the

practice that, generally, network operators require to recompute their TE program

within a predefined time limit (e.g. 5-10 minutes). Many studies have tried to find

solutions to meet this time requirement but at the expense of sacrificing network

link utilization.

To make the SRTE problem practical, we first consider an approach to reduce the

problem size of SRTE based on bounding the routing stretch. Even though the

stretch bounding approaches have been studied in wireless sensor networks as an

approach to restricting routing length, it remains unknown how the stretch bound-

ing approach can be applied to SRTE. We formulate an SRTE problem based on

stretch bounding with an objective to minimize network congestion (i.e. minimize

the maximum link utilization). Since optimization is usually done systematically

in general SRTE approaches, this motivated us to approach the problem differ-

ently. In other words, in the general SRTE, the same set of intermediate node

is used for every flows in the network, which results in poor link utilization. In

our scheme, we look into the details of the problem and cut the search space of

the problem by means of stretch bounding. This allows us to construct different

candidate intermediate node set for each source-destination pair by which help to

iii

balance the congestion efficiently.

The stretch bounding approach helps limit the number of candidate for interme-

diate nodes; the intermediate node that is too far away—if the intermediate node

is used, it will occupy the link capacity along with every link on the path—will

not be selected since they are not very useful for the solution.

We then proposed an algorithm design for the problem in which candidate inter-

mediate nodes sets can be selected efficiently, thus reducing the problem size. As

a result, the computation time is significantly reduced as compared to the State

of the Art approach. Simulation results show that the computation time can be

reduced significantly, while maximum link utilization can be kept near-optimal.

However, if network operators desire to control the computation time further, the

problem will become more complicated. To this end, we proposed to study a trade-

off relationship between computation time and link utilization in SRTE. As for

SRTE problem, one can reduce the problem size by mean of reducing candidate in-

termediate nodes at the cost of higher link utilization. On the other hand, the link

utilization can be reduced by means of having more nodes as candidate intermedi-

ate nodes sets. These two objectives can be seen as conflicting objective functions.

Thus, we are motivated to formulate SRTE problem to characterize this trade-off

relationship as a bi-objective mixed-integer nonlinear program (BOMINLP).

iv

Due to the hardness of the BOMINLP (i.e. conflicting objective function, mixed

decision variables, and nonlinear constraints), there is no solution approach to

solve the problem directly. To this end, we are motivated to decompose the prob-

lem into two sequential sub-problems. The first sub-problem is to minimize com-

putation time through node selection, and the second one is to minimize maximum

link utilization via flow assignment. For node selection, we leverage the monoton-

ically increasing relationship of the number of candidate intermediate node and

computation time in general SRTE to model the problem. Then, we solve the

problem with randomized sampling based on the stretch bounding approach in

which we leverage partial information regarding the relationship of the number

of candidate intermediate node and computation time through the regulatory co-

efficient. Next, we eliminate candidate intermediate node based on the result of

the node selection problem, and we solve a linear program (LP) using existing

software tools for the sub-problems, respectively.

We then evaluate the proposed approach based on real traffic matrices and real

network topologies from publicly available datasets. The simulation results show

that our proposed approach help balance the two performance metrics effectively

and efficiently as compared with several comparison approaches. In addition, the

results show that the computation time on all tested network topologies can be

kept within network operators’ predefined time limit.

v

In brief, we formulate traffic engineering problems under two different objectives in

SRTE, and we give practical and efficient solutions. From a theoretical standpoint,

we leverage linear programming and problem decomposition to keep the solution

space of the decomposed sub-problems intact after problem decomposition. Simu-

lation results show that our approaches outperform other comparison approaches

and have abilities to provide better performance and also shorter computation

intervals for SRTE problem.

vi

To my parents, for their unbounded love.

vii

Contents

Abstract i

Contents vii

List of Figures ix

List of Tables xi

List of Symbols xii

Acknowledgements 1

1 Introduction 3
1.1 Overview and Motivation . 3
1.2 Related Work . 6
1.3 Contributions . 8
1.4 Dissertation Organization . 10

2 Background 12
2.1 Software-defined network architecture 13
2.2 Traffic Engineering . 15

2.2.1 Multi-protocol label switching traffic engineering 16
2.2.2 Internet protocol (IP) based traffic engineering 16
2.2.3 Segment Routed Traffic Engineering 16

3 Segment Routing Traffic Engineering with Stretch Bounding 22
3.1 Preliminary . 23
3.2 System Model . 24

3.2.1 Network Environment . 24
3.2.2 Flow Splitting . 25
3.2.3 Stretch Bounding . 29

3.3 Problem Formulation . 31
3.4 Algorithm Design . 32

3.4.1 Offline Computation . 32

viii

3.5 Performance Evaluation . 34
3.6 Summary . 39

4 A Computation-Efficient Approach for Segment Routing Traffic
Engineering 40
4.1 Preliminary . 41
4.2 System Model . 42

4.2.1 Node Selection . 42
4.3 Problem Formulation . 43
4.4 Algorithm Design . 47
4.5 Performance Evaluation . 51

4.5.1 Simulation settings . 51
4.5.1.1 System Set-up . 51
4.5.1.2 Datasets . 51
4.5.1.3 Routing metrics . 53
4.5.1.4 Performance Metrics 53
4.5.1.5 Comparison Schemes 55

4.5.2 Simulation results . 57
4.5.2.1 Comparison between SRTE (2-seg) and SRTE (∞-

seg) . 57
4.5.2.2 The choices of stretch bounding coefficients 59
4.5.2.3 The comparison among TE approaches 62
4.5.2.4 The impact of routing metrics 66

4.6 Discussion . 68
4.6.1 Implementation on real networks 68
4.6.2 Decomposition loss . 69
4.6.3 The relationship between the line curves and a network

topology . 69
4.7 Summary . 71

5 Conclusion 72
5.1 Discussion and Future Work . 73

5.1.1 Traffic matrix . 73
5.1.2 Online segment routing traffic engineering 74
5.1.3 Maximize total network throughput 74
5.1.4 Machine learning approach 75
5.1.5 Stretch bounding improves delay and fairness 75

5.2 Final Remarks . 75

Bibliography 77

List of Publications 87

ix

List of Figures

2.1 Software define network (SDN) architecture 14
2.2 Segment routing with equal cost shortest paths: the segment label of

node is denoted as ”F’s label”. 18
2.3 Segment routing examples: the operation of segment. 19
2.4 Segment routing examples: first and second segments illustration. . . . 20

3.1 Segment routing examples: 1-segment splitting ratio of the first and
second segments. 26

3.2 The stretch bounding concept. 30
3.3 The algorithmic overview of SRBS. 33
3.4 Visualization of 100 nodes network topology. 35
3.5 Visualization of 79 nodes network topology (Exodus) from the Rock-

etfuel project [66]. 36
3.6 The maximum link utilization. 37
3.7 The computation time. 38

4.1 Stretch bounding approach. 43
4.2 The algorithmic overview of SRTE+. 47
4.3 RedBestel network topology [48]. 52
4.4 VtlWavenet network topology [48]. 52
4.5 Interoute network topology [48]. 53
4.6 Deltacom network topology [48]. 54
4.7 Colt network topology [48]. 55
4.8 Visualization of GEANT network topology. 56
4.9 A comparison between SRTE (2-seg) and SRTE (∞-seg). 58
4.10 The impact of stretch bounding coefficient (unary): The maximum link

utilization. 61
4.11 The impact of stretch bounding coefficient (unary): the computation

time. 61
4.12 Performance comparison among various approaches (β = 0.04, unary):

the maximum link utilization. 64
4.13 Performance comparison among various approaches (β = 0.04, unary):

The computation time (in log scale). 65

x

4.14 The impact of routing metrics (β = 0.04, Geant): the maximum link
utilization. 66

4.15 The impact of routing metrics (β = 0.04, Geant): the computation
time (in log scale). 67

xi

List of Tables

4.1 Datasets, network topologies and traffic matrices. 57
4.2 Datasets, network topologies and traffic matrices. 58
4.3 The line slopes of θ corresponding to Figure 4.10. 59
4.4 The line slopes of ζ corresponding to Figure 4.11. 60
4.5 The list of balanced stretch bounding coefficients (the grey-shaded col-

umn and row refer to the settings used in Figure 4.12-4.15. 63
4.6 A comparison between SRTE+ and SRTE (corresponding to Figure 4.12

and Figure 4.13). 63
4.7 The computation time of SRTE+ (corresponding to Figure 4.13). . . . 64

xii

List of Symbols

The next list describes primary symbols that will be later used throughout
the body of dissertation.

Graph-related Symbols

G Network graph

Guv Edge-induced directed subgraph of G, formed
from Ēs directed from u to v for all u, v ∈ V

V Set of vertices (nodes)

Vuv Set of vertices (nodes) of Guv for all u, v ∈ V
E Set of undirected edges (links)

Ēs Set of undirected edges (links) along each shortest
path s ∈ Puv for all u, v ∈ V

Euv Set of directed edges (links) of Guv, where each
edge have a direction according to Puv

w(e) Link weight e ∈ E
c(e) Link capacity e ∈ E
Puv Set of all shortest paths from u to v for all u, v ∈

V
inuv(z) Set of incoming edges incident to node z ∈ Vuv

for all u, v ∈ V
outuv(z) Set of outgoing edges from node z ∈ Vuv for all

u, v ∈ V
str(i, l, j) Stretch of the segment routing path of i, l and j

for all i, l, j ∈ Vij
Number Sets

R Real Numbers

Z Integer Numbers

xiii

Other Symbols

tij Traffic demand from i to j for all i, j ∈ V
fuv(e) 1-segment splitting ratio from u to v for all u, v ∈

V on e ∈ E , where fuv(e) ∈ [0, 1]

w(e) 2-segment splitting ratio from i to j that passes
through l for all i, l, j ∈ V on link e

vilj(α) Binary indicator of candidate intermediate node
l between i and j

vilj(α) Binary indicator of candidate intermediate node
l between i and j for all i, l, j ∈ V , α ≥ 1

xilj Decision variable of the amount of traffic flow
from i to j that passes through l for all i, l, j ∈ V

yilj Decision variable of candidate intermediate node
l between i and j for all i, l, j ∈ V

θ Maximum link utilization

θ̈ Normalized maximum link utilization

φ Maximum link utilization obtained by using a
shortest path algorithm

α Coefficient for stretch bounding, where α ≥ 1

β Regulatory coefficient, where 0 < β � 1

ζ Computation time

1

Acknowledgements

First of all, I am grateful to my advisor, Yusheng Ji, for being patience, sharp,

and reliable. She always gives excellent advice and suggestions. I will always

cherish her support during the tough times of my Ph.D. studies. In addition, I

would like to thank her for giving me the opportunity to do a Ph.D. I think it is

a good life lesson for me.

I want to thank Shigeki Yamada for his great support and advice during

my early years of studies. Also, I would like to express my sincere gratitude to

Shunji Abe, Kensuke Fukuda, Michihiro Koibuchi, and Yongbing Zhang for their

participation as the dissertation committee members. They gave me insightful

and constructive advice that help improve this dissertation.

Yi-Han Chaing has been such a great friend and an excellent mentor. He

has influenced me a lot in various aspects of my studies (e.g. his concise way

of writing, and also his thought process on research). I often think about the

discussions I had with him.

I am thankful to Vorapong Suppakitpaisarn. He gives me various advice

2

throughout my studies and also his support. I am grateful for an opportunity to

study in his classes (e.g. Approximation Algorithms, and Network Optimization).

I am thankful to Kalika Sooksomboon for her comments and advice. She is an

excellent reviewer. I also appreciate all the lab members for all their help on

various occasions. Also, I would like to thank NII professors who really pays

attention to students in their classes.

Last but not least, I would like to express my deepest gratitude to my parents,

Termsak Setavatcharavanit and Sukanya Athabowornpisal, for giving me their

endless support and understanding. My mother is a wise woman and an excellent

household pundit. All my achievements have been possible with her advice in

the background. My father is very supportive in my pursuing a PhD. I am deeply

indebted for his countless sacrifices and patience. Indeed, he would be the proudest

person of my achievements. I also would like to thank Sasikarn Jiviriyawat for her

support during my difficult time.

Tossaphol Settawatcharawanit

Tokyo, Japan

March, 2020

3

Chapter 1

Introduction

This chapter provides a brief overview of segment routed traffic engineering

(SRTE), motivation, related work, and highlights the contribution of this disser-

tation.

1.1 Overview and Motivation

The rapid growth of internet services (e.g. video streaming, social network-

ing, and online games) has brought a great challenge to network operators, as

these services operate on operators’ infrastructure, which leads to the notorious

congestion issue. In addition, the markets of communication networks are highly

competitive; as a result, network operators have to adapt their network manage-

ment tool to utilize network resources effectively.

Unfortunately, traditional internet protocol (IP) based networks generally

4

use shortest path routing, where shortest paths are calculated with shortest path

algorithms (e.g. Dijkstra algorithm [24] and Bellman-Ford algorithm [16]). Obvi-

ously, there are two main issues of shortest path routing that can be problematic.

First, only one shortest path is used for each source-destination pair and thereby

limiting network throughput. Second, shortest path routing has limited capability

to adapt to dynamic traffic patterns as adjusting link weight based on the level of

congestion may create oscillations [17].

The congestion problem is increasingly important as the amount of traffic

on operators’ networks grow. Consequently, network operators leverage traffic

engineering (TE) to manage network resources, by means of mapping network

traffic to links, reconfiguring the mapping according to traffic changes, such that

the performance and reliability of the network can be ensured.

Traditionally, network operators employ the multi-protocol label switching

traffic engineering (MPLS-TE) or IP based TE (adjusting link weight) for their

routing optimization. However, these TE approaches have their own shortcomings.

• IP based TE: Since the invent of the internet, network operators have relied

on traditional IP routing that leverage shortest path algorithms (e.g. open

shortest path first (OSPF) and intermediate system to intermediate system

(IS-IS)) to map traffic flows on physical communication links. However, TE

concept was hard to realized for IP networks because the limited function

of traditional IP mainly in three ways [10]. First, traffic monitoring was

5

inaccurate and inadequate in IP networks. Second, IP networks use additive

routing metrics for route selection). More importantly, IP based TE does

not have the flexibility to adapt to traffic changes, as modifying link weights

may affect overall traffic flows and also has limited path selection diversity.

Third, it is NP-hard to set-up optimal link weights [22].

• MPLS-TE was introduce in [11, 12] to address TE problem, as traffic steer-

ing can be performed with multi-protocol label switching (MPLS) tunnelling

mechanism. MPLS-TE with LDP and RSVP-TE was considered to be the

state of the art approach for traffic engineering for many years. Though,

they are known to incur high overhead because resource states have to be

maintained along routing paths. Fundamental challenges of MPLS-TE are

reported in [29]. One is the notorious scalability issues: MPLS-TE leverages

resource reservation protocol traffic engineering (RSVP-TE) to maintain net-

work states at each network node, thus incurs high control overhead. Second

challenge is that to leverage path diversity of the network, MPLS-TE must

maintain a sheer number of RSVP-TE tunnels; this places a considerable

amount of works to network operators. Third challenge for MPLS-TE is

that RSVP-TE architecture is tied to distributed architecture, which is non-

trivial to achieve optimal resource utilization and hard to re-optimize.

Recently, SRTE has attracted a sheer amount of attention from both academia

and industry due to its simplicity and efficiency that help improve TE in various

6

ways. First, SRTE leverages source routing paradigm, simplifying network state

distribution, as routing information is embedded into packet headers. Second,

SRTE uses a PCE or SDN architecture [26, 29], which has been proven benefits

network management in recent years [21, 55]; network operators can simply place

theirs optimization programs onto a logically centralized controller [2]. The role

of software define network (SDN) controller is to monitor network states, perform

optimization, and then execute path selection based on the optimization programs.

It is worth to note that, segment routing has wide range of applications

(e.g. traffic engineering, network monitoring [9, 51], and service function chaining

(SFC) [54, 1, 57]). Nowadays, communication networks are increasing in size

and also complexity. Network operators are motivated to come up with simple

and efficient approaches to manage network resources. Many network operators

consider SRTE as a critical part of TE because of its simplicity and functionality.

However, solving SRTE problem is a non-trivial task due to the complexity of

SRTE problem. This dissertation aims to investigate the usefulness of SRTE in

practice.

1.2 Related Work

There are various works on SRTE that have been devoted to network con-

gestion in recent years.

In [18], to the best of our knowledge, Bhatia et al. is the first to formu-

7

late a generic SRTE problem to minimize maximum link utilization, where all

intermediate nodes are used to construct optimal segment routing paths. Thus,

their optimization program required tremendous computation time to solve, es-

pecially for realistic network topologies. In [23], Cianfrani et al. formulated a

mixed-integer linear program for the SRTE problem to minimize the maximum

link utilization among segment routing nodes in hybrid segment routed networks,

where some nodes are segment routing-capable and the rests are legacy nodes. In

[60], Schüller et al. proposed tunnel training architecture with tunnel limit ex-

tension for 2-segment routing that utilizes shortest path routing; the results were

evaluated with proprietary European backbone network datasets. In [52], Li et al.

proposed a mixed-integer linear program to optimize link utilization while limiting

the number of segment labels to a constant number. Although the above works

have addressed the network congestion issues, they do not pay much attention to

the reduction of computation time.

In literature, some other exiting works on SRTE put their focuses on im-

proving computation time, system throughput, or the use of segment labels. In

[69] and [68], Trimponias et al. proposed to reduce the number of candidate in-

termediate nodes based on graph centrality (e.g. degree centrality, betweenness

centrality), thereby minimizing computation time at the price of worse link uti-

lization. To the best of our knowledge, these works are the first to reveal the

computation complexity of SRTE and propose to reduce the problem size. Unfor-

tunately, their approaches leverage static graph centrality, which leads to static

8

intermediate nodes selection. Hence, this increases the maximum link utilization

when a small amount of candidate intermediate nodes are selected. In [77], Zhong

et al. proposed an online maximum profit algorithm to solve a segment routing

problem in integrated terrestrial-satellite networks. In [35], Gang et al. formulated

a mixed integer linear program (MILP) to maximize throughput in hybrid segment

routing networks. In [44], Huang et al. proposed an integer linear program (ILP)

that considers the maximum segment label depth and flow entry overhead. In [76],

Zhang et al. proposed a bandwidth allocation algorithm to maximize user satis-

faction as a function of resource allocation in hybrid segment routing networks.

In [40], Hartert et al. formulated a constraint programming problem for SRTE,

and designed a local search algorithm that can be manually terminated to meet

a predefined time limit. In [37], Gay et al. proposed a local search approach to

improve current TE solutions iteratively rather than finding a complete solution

based on the assumption that traffic changes are limited. However, none of the

above works can guide us on how to strike a balance between link utilization and

computation time in SRTE.

1.3 Contributions

In this dissertation, our goal is to study the practicality of SRTE in real

networks. Our contribution can be seen as two scopes of SRTE with different

objectives as follows. First, we performed a preliminary study of SRTE with stan-

9

dard operators’ objective function (i.e. minimize the maximum link utilization).

Due to the large problem size, we then proposed the stretch bounding approach

to limit the number of candidate intermediate nodes, leading to a smaller problem

size, compared with generic SRTE. The intuition behind our stretch bounding

approach is that we should not include candidate intermediate nodes that are too

far away from source-destination pairs, as they are rarely helpful to minimize the

maximum link utilization. Our approach allows us to construct different sets of

candidate intermediate nodes for each source-destination pairs, which is the main

contributor to our performance gains. The idea of stretch bounding has been

studied before in the literature in wireless sensor networks (WSNs). The purpose

of stretch bounding is to explicitly control the path length for transmission (i.e.,

stretch), thereby reducing transmission latency [43, 30]. However, it remains un-

known from these works how to leverage stretch bounding for link utilization in

SRTE. We then compared our approach against the optimal routing of SRTE.

Second, in order to make our approach robust against traffic changes, we must

recompute our optimization program in a tiny interval. We are then motivated to

investigate the trade-off relationship between the link utilization and computation

time. When network operators want to reduce the maximum link utilization,

the network operator needs to sacrifice the computation time, as all candidate

intermediate nodes must be taken into account for routing. Conversely, when the

network operators want to reduce the computation time, the network operator can

select a small number of candidate intermediate nodes, then the computation time

10

can be reduced at the price of increasing link utilization. Indeed, one can see that

this problem is non-trivial due to the conflicting objective functions. Furthermore,

when we need to select the candidate intermediate nodes to reduce the problem

size as the selection is combinatorial in nature. This also makes the problem

non-trivial, as integer variables are introduced to the problem. Another challenge

is that the problem becomes nonlinear after the problem formulation because of

involved decision variables. In brief, we formulated bi-objective mixed integer

nonlinear programming (BOMINLP) to characterize the trade-off characteristics

of the link utilization and computation time. Due to the hardness in solving

the problem directly, we then motivated to resort to a problem decomposition

approach. Then, we proposed a randomized sampling approach based on stretch

bounding. We evaluated our results with both real and synthesis datasets against

various approaches.

1.4 Dissertation Organization

The rest of this dissertation is structured as follows. We discuss the back-

ground and related work in Chapter 2. In Chapter 3, we discuss the prelimi-

nary study of the stretch bounding approach for SRTE. Then, we present system

models, problem formulation, and algorithm design for the SRTE problem. We

evaluated the proposed approach with both real and synthetic network topolo-

gies. In Chapter 4, we study the trade-off relationship between computation time

11

and link utilization in SRTE. We formulated the problem as a bi-objective mixed-

integer nonlinear program, which is NP-hard in general. To this end, we proposed

a problem decomposition approach that we decompose the main problem into

two sequential sub-problems of node selection and flow assignment. Then, we

proposed to solve the node selection problem with a randomized sampling based

stretch bounding approach, and we solve the flow assignment sub-problem with

linear programming (LP) solver. Finally, We conclude this dissertation, discuss

limitations, and provide directions for future works in Chapter 5.

12

Chapter 2

Background

Communication networks have been evolved rapidly from distributed net-

work architecture to logically centralized network architecture in recent years.

The key reason behind this massive change is that managing existing commu-

nication networks with ossified distributed protocols are sub-optimal. Similarly,

traffic engineering (TE) makes substantial improvement from the tangled link

weight adjustment approach to the multi-protocol label switching traffic engi-

neering (MPLS-TE) approach. However, the traditional MPLS-TE incurs high

overhead due to its resource reservation mechanism. In the light of simplicity

and efficiency, segment routed traffic engineering (SRTE) has become a promising

approach to replace complex conventional TE approaches. Moreover, network op-

erators prefer simplicity over complexity, and also openness over proprietary. For

these reasons, SRTE has become an indispensable part of many autonomous sys-

tems. This chapter provides background and relevant knowledge of the underlining

13

architecture of SRTE [29].

2.1 Software-defined network architecture

Traditional distributed network architecture focused on providing robustness

in case of failures (e.g. link failures and switch failures). At the time that the

internet was invented, a centralized network architecture was thought to be too

vulnerable to failures (e.g. link failures, device failures, and etc.). However, today,

communication networks are too complex to manage with distributed network

architecture, and also distributed network management may result in sub-optimal

resource utilization.

Moreover, due to the accomplishment of internet services, communication

networks are rapidly growing in size, which results in large scale complex systems

that are hard to manage. The concept of a software define network (SDN) was

introduced to increase simplicity and make the system easier to evolve with its

openness in the control plane. As a result, SDN has transformed many aspects

of computer networking. The concept of SDN is to separate the control from the

data plane. In other words, the control plane of network switches can be moved

into a logically centralized controller, or simply called a controller. And the role

of a controller is to manage switches according to network events. As the network

has the centralized controller to make decisions in responding to events, the role of

switches is simply packet forwarding according to the commands of the controller

14

Applications

SDN controller

Switches

Application layer

Control layer

Infrastructure layer

Northbound interfaces
(e.g. API)

Southbound interfaces
(e.g. Openflow)

Figure 2.1: SDN architecture

[20, 21]. The SDN architecture is illustrated in Figure 2.1. Network operators

can put their business logic or application program (e.g. TE, network monitoring)

onto applications layer, which can be deployed on the SDN controller. The appli-

cation communicates with SDN controller through the northbound interfaces (i.e.

Application programming interface (API)). After receiving application inputs, the

controller can communicate through the southbound interface (e.g. Openflow [55])

to regulate switches’ behavior for flow assignment, network monitoring, and so on.

Recently, SRTE has been proposed to utilize the SDN controller for TE purpose

[26, 29].

15

2.2 Traffic Engineering

The unprecedented growth of network traffic has brought great challenges

to network operators as traditional internet protocol (IP) based routing cannot

provide the quality of services when traffic is substantially growing in size [72].

Therefore, network operators need a method to steer traffic away from congested

paths to less congested paths in order to keep service quality unchanged or even

provide better service quality.

The diversification of traffic types and the explosive growth of traffic de-

mands have prompted great research attention to traffic engineering. By means

of TE [13, 75, 33, 63], network flows can be dynamically embedded into physical

substrate networks corresponding to the information about traffic from source to

destination, thereby avoiding network congestion and optimizing routing perfor-

mance for network operators. Recently, the benefit of the centralized controller

for TE has been advocated in [41, 3, 46]. Network operators typically aim to

minimize the utilization of the most utilized link (bottleneck link), as the higher

the link utilization implies, the higher the congestion.

In order to guarantee a quality of service, a traffic engineering program must

be fast to execute while efficient in terms of performance. Network operators

typically recompute their TE program in short interval (e.g. 5-10 minutes) [41] in

order to adapt to traffic changes. Then, newly obtained information can be used

for a new traffic matrix forecast [7, 58, 56, 27].

16

2.2.1 Multi-protocol label switching traffic engineering

In practice, a commonly adopted mechanism for TE is MPLS-TE [11, 12, 67,

49, 74, 25], in which network resources along each routing path can be reserved.

However, MPLS-TE requires to maintain and distribute network states (such as

network topology and bandwidth availability) across the whole network [14], which

may result in poor network scalability [5].

2.2.2 IP based traffic engineering

As alternative to MPLS-TE, IP based TE approaches [34, 33, 32, 8, 31,

31] require hurdle operations from network operators to carefully set link weights

according to traffic changes. Furthermore, by tweaking link weights, all traffic

flows may be affected, which is not the case for MPLS-TE since a tunnel can be

created per flow.

2.2.3 Segment Routed Traffic Engineering

Recently, SRTE has been proposed to help network operators to manage their

resources efficiently. Indeed, various pitfalls of the previous approaches have been

addressed by SRTE. First, SRTE has overcome the scalability issues of MPLS-

TE since SRTE is not relied on a resource reservation protocol traffic engineering

(RSVP-TE) and label distribution protocol (LDP) [6] to request, maintain and dis-

tribute network resource states along a routing path as in MPLS-TE [11]. Thanks

17

to the advancement of SDN, SDN architecture [2] helps SRTE to simplify TE

mechanism by leveraging a centralized controller to maintain network states [29,

4].

Second, similar to label Switching Path (LSP) of multi-protocol label switch-

ing (MPLS), Segment Routing utilizes source routing paradigm to distribute rout-

ing information. Segment routing paths can be constructed by combining two or

more segments into an end-to-end path, and each segment is the shortest path

between two nodes. The end-to-end path can be seen as a logical tunnel from

ingress to egress with the segment label specified in the packet header. However,

not every segment has to be specified in the packet header with a segment label

since we can leverage the shortest path to specify each part of the end-to-end path

that traverses to some intermediate nodes between source and destination. Thus,

we can use these intermediate nodes or a destination node as segment labels, as

shown in Figure 2.2.

This mechanism relaxes the restrict condition of the shortest path routing

because a considerable amount of paths can be constructed with the shortest

path information given by interior Gateway Protocol (IGP) [29]. Moreover, this

mechanism helps limit the overhead processing of packet header greatly since

only a few segment labels are still needed for constructing an end-to-end tunnel.

Therefore, SRTE that leverages centralized controllers to maintain network states

has been regarded as a promising solution to cope with the network scalability

issues of MPLS-TE.

18

A

B

C

D

E

F
Packet
to F

Packet
to F

Packet
to F

Packet
to F

Packet
to F

Packet
to F

F’s
label

F’s
label

F’s
label

F’s
label

Figure 2.2: Segment routing with equal cost shortest paths: the segment label of
node is denoted as ”F’s label”.

In SRTE, a segment indicates the shortest path between any two nodes and

a segment routing path is an end-to-end path composed of multiple connected

segments. Therefore, each segment routing path can be viewed as a logical tunnel

from the ingress to the egress. By using intermediate nodes as segment labels in

SRTE, the excessive number of concatenated labels in MPLS-TE can be alleviated.

There are two types of routing data plane that can be used for segment

routing:

1. MPLS [65],

19

2. Segment Routing over IPv6 dataplane (SRv6) [28].

Send: Receive:

Send:

Receive:

Shortest path Shortest path

Destination:

Segment Routing Path

Figure 2.3: Segment routing examples: the operation of segment.

We illustrate how segment routing works in practice in Figure 2.3 and Fig-

ure 2.4. A segment is either a single shortest path or a set of equal-cost shortest

paths between any two nodes in the network. Whenever an incoming flow passes

through a node, it will be divided into multiple outgoing sub-flows, which can

be implemented by the equal-cost multi-path routing (ECMP) [42]. A segment

routing path is an established end-to-end path that is constituted by a sequence

of segments.

In Figure 2.3, the source node i sends a traffic flow to an intermediate node

l with the segment labels l and j. When the intermediate node l receives the

first packet of the flow, the segment label of the intermediate node l is popped

out. Then, the intermediate node l can reroute the traffic flow to the destination

node j with the segment label j. The segment labels that need to be specified

in the packet header are the remaining segment labels of rerouting nodes and the

20

destination.

Intermediate node

First segment Second segment

Figure 2.4: Segment routing examples: first and second segments illustration.

In Figure 2.4, we see that each segment routing path is composed of two

segments. The traffic from the source node i to the destination node j passes

through the intermediate node l. The first segment is routed on a single shortest

path, but the second one is routed on two equal-cost shortest paths.

Despite the generality of multi-segment settings, we will focus on the use of

two segments. The reasons for choosing the 2-segment setting are two-fold:

• lower elapsed time for processing packet headers, and

• near-optimal maximum link utilization.

The maximum link utilization performance of 2-segment is identical to ∞-

segment. Moreover, the effectiveness of the 2-segment setting has been asserted

by [61, 18, 62]; therefore, we restrict our focus to the 2-segment setting in the

following chapters. However, solving SRTE problem is non-trivial for real-world

21

networks in general due to the large problem size in SRTE [64, 69]. This motivates

us to develop efficient approaches for SRTE.

22

Chapter 3

Segment Routing Traffic

Engineering with Stretch

Bounding

The main idea behind this dissertation is, one of the essential issues in seg-

ment routed traffic engineering (SRTE), to reduce the computation time for traffic

engineering (TE) program execution. As the network is growing in size, the com-

putation time requires to compute the TE program is becoming more and more

demanding. It is highly desirable for network operators to have an efficient ap-

proach for SRTE.

23

3.1 Preliminary

TE is an essential application for network operators to manage network re-

sources. Recently, SRTE has been adopted widely among network operators as an

essential tool for TE. By using SRTE, the control plane of TE application can be

simplified without the need to use resource reservation protocol traffic engineering

(RSVP-TE) or manually configure link weights. Generally, a TE program must be

fast and efficient in order to facilitate the network operator’s demands. These two

characteristics are vital since network operators usually deploy a TE program to

optimize network resources, and repeatedly execute the program in short intervals

(e.g., 5 minutes).

SRTE is emerging as an important application for network operators to man-

age resource utilization by using segment routing paths as candidates for route

selection. In order to facilitate the network operator demands, a TE program

should be fast and efficient. These two characteristics are essential since the TE

program must be invoked periodically in short intervals. The segment routing

paths can be constructed by concatenating the shortest paths between two nodes

such that there is a path from source to destination. We are interested in the prob-

lem of finding intermediate nodes to construct segment routing paths minimizing

the maximum link utilization. However, the existing approaches have the short-

comings that either they require a substantial amount of time to find a solution,

or they must sacrifice a considerable amount of link utilization.

24

In this chapter, we propose the segment routing traffic engineering with

Bounded Stretch (SRBS) to cope with the computation complexity of the SRTE

problem. In contrast to the works in [18] and [69], our approach aims to reduce

the computation time of the problem by limiting the number of candidates for in-

termediate nodes with a stretch bounding constraint relative to the shortest path

of each source-destination pair. Notice that these intermediate node candidates

can be obtained in advance with only the shortest paths information.

3.2 System Model

In this section, we introduce the theoretical model of SRTE. We first describe

the model assumptions, and we then describe the SRTE problem in details.

3.2.1 Network Environment

Consider a general network graph G = (V , E , w, c), where V and E refer to

the sets of vertices (i.e. routers) and directed edges (i.e. links), respectively, and

each edge e ∈ E is associated with the weight w(e) ∈ R > 0 and the capacity

c(e) ∈ R > 0 . We assume that each router is controlled by a logically centralized

controller, which is responsible for traffic flow management and monitoring.

In addition, each source-destination pair (i, j) can have a traffic demand tij

for all i, j ∈ V . This traffic demand has to be accommodated in the network.

For brevity, we denote by Puv the set of all shortest paths directed from

25

node u to node v, and by Ēs the set of edges along each shortest path s ∈ Puv,

where u, v ∈ V . Note that the shortest paths can be constructed by the interior

Gateway Protocol (IGP) extension protocol for segment routing, which has been

under standardization[59].

3.2.2 Flow Splitting

Let L be the set of all intermediate nodes and L ⊆ V . For each traffic

demand, the traffic from a source node i to a destination node j is routed through

an intermediate node or multiple intermediate nodes l ∈ L. Segment Routing

path from i to j can be constructed by concatenating two shortest paths: the

shortest path from the source node i to an intermediate node l and the shortest

path from an intermediate node l to the destination node j. Each shortest path

on the segment routing path is called a segment of the routing path. For each

segment of a segment routing path, the amount of traffic demand is divided into

equal proportions if multiple equal-cost shortest paths are used. Let |L| be the

number of intermediate nodes used in total. Each possible path from i to j can

traverse up to M intermediate nodes or M + 1 < |L| segments.

Consider a traffic demand from a source node i to a destination node j, let

l be an intermediate node selected by the centralized controller for this traffic

flow. Then, a source node i can send a traffic flow to an intermediate node l with

segment labels of l and j. When the intermediate node l receives the first packet

26

Intermediate node

First segment Second segment

Figure 3.1: Segment routing examples: 1-segment splitting ratio of the first and
second segments.

of the flow, the intermediate node l can be popped out its segment label. Then,

the intermediate node l can reroute the traffic flow to the destination node j with

the segment label of the destination node j. The segment labels that need to be

specified in the packet header are the only segment labels of rerouting nodes and

a destination.

Segment routing leverages equal-cost multi-path routing (ECMP) to dis-

tribute sub-flows across multiple paths. Note that we assume traffic can be split

equally with ECMP. In order to prevent packet reordering effect in TCP, we note

that traffic splitting is performed at IP flow level. To quantify the amount of

sub-flows (of the source-destination pair) passing through each individual edge,

consider a flow that passes through an intermediate node l from the source node

i to the destination node j in the 2-segment setting. We denote fil(e) and flj(e)

the 1-segment splitting ratios of the first and second segment, respectively. We

27

give an example in Figure 3.1.

Let Guv = (Vuv, Euv) be an edge-induced directed sub-graph when Euv =⋃
s∈Puv

Ēs, where s is a shortest path from u to v, s ∈ Puv, and Vuv is a set of

nodes incident to an edge in Euv. Note that, while G is undirected, Guv is directed as

the set Euv contains a direction from u to v in the shortest path s. To assess fil(e)

and flj(e), suppose that z is a node in Guv, we define the following information:

• inuv(z): the set of nodes that are incident to incoming edges of node z ∈ Vuv.

• outuv(z): the set of nodes that are incident to outgoing edges of node z ∈ Vuv.

Then, we define fuv(e) as

fuv(e) =


f ′uv(e), if e ∈ Euv,

0, otherwise,

∀e ∈ E , u, v ∈ V , (3.1)

where f ′uv(e) is a ratio of sub-flow of 1-segment splitting ratios from u to v on link

e.

Without loss of generality, each edge e can be rewritten as a tuple of vertices

(q, r) that associated with edge e such that we can rewrite f ′uv(e) as f ′uv(q, r). Note

that we will use the two terms interchangeably throughout this dissertation. With

the above information, we can obtain an assignment of f ′uv(q, r) which satisfies the

28

following equations:

∑
q∈inuv(r)

f ′uv(r, q) =
∑

q∈outuv(r)

f ′uv(q, r),

∀u, v ∈ V , q ∈ Vuv \ {u, v},∀(r, q), (q, r) ∈ E (3.2)∑
q∈outuv(u)

f ′uv(u, q) = 1, ∀u, v ∈ V ,∀(u, q) ∈ E , (3.3)∑
q∈inuv(v)

f ′uv(q, v) = 1, ∀u, v ∈ V ,∀(q, v) ∈ E , (3.4)

f ′uv(q1, r) = f ′uv(q2, r),

∀q1, q2 ∈ out(r),∀u, v ∈ V ,∀(q1, r), (q2, r) ∈ E , (3.5)

where (3.2)-(3.4) refer to flow conservation at an intermediate node, the source

node, and the destination node, respectively. (3.5) ensures outgoing traffic should

split equally with ECMP.

By substitute (u, v) in fuv(e) with (i, l) and (l, j), we can obtain fil(e) and

flj(e), respectively. For example, if there is only one shortest path from i to l,

then fil(e) = 1 for all links e on the path from i to l. However, If a link e is not

on the shortest path from i to l, then fil(e) = 0. If there are multiple equal cost

shortest paths from i to l, the amount of flow is divided equally. Thus, fil(e) can

be fractional for each link e on the shortest path from i to l. We omit an example

for flj(e) as it is similar to fil(e).

Subsequently, we define the 2-segment splitting ratio (aggregate the splitting

ratios of the two segments) gilj(e) as

gilj(e) = fil(e) + flj(e), ∀e ∈ E , i, l, j ∈ V . (3.6)

29

3.2.3 Stretch Bounding

Two of the most important characteristics for TE program are the efficiency

of a solution and the computation time to obtain a solution. The reason is that an

optimal solution with the best quality may not be a good solution if the computa-

tion time to obtain the solution is too long. We argue that a good solution should

be a solution which can be obtained in a short time while retaining a near-optimal

performance.

In this section, we propose a fast and efficient approach called SRBS. The

SRBS introduce a stretch bounding constraint to the linear programming (LP)

formulation. The role of the stretch bounding constraint is to limit the number of

candidates for intermediate nodes.

In wireless sensor network (WSN), the purpose of stretch bounding is to

explicitly control the path length for transmission (i.e., stretch), thereby reducing

transmission latency [43, 30]. However, it remains unknown from these works how

to leverage stretch bounding for link utilization in SRTE.

For each source-destination pair, there is a tremendous number of candidate

intermediate nodes, but some of them are too far away from either the source

or the destination. Therefore, it is essential in practice to keep the number of

candidate intermediate nodes at a reasonable value.

Consider the source node, an intermediate node and the destination node

triple (i, l, j), and the shortest paths s1 ∈ Pil, s2 ∈ Plj and s3 ∈ Pij. We define

30

Shortest path Stretch bounding

All paths

Figure 3.2: The stretch bounding concept.

the stretch as the ratio of the total weights of the two segments to that of an

end-to-end shortest path, which can be expressed as

str(i, l, j) =

∑
e∈Ēs1

w(e) +
∑

e∈Ēs2
w(e)∑

e∈Ēs3
w(e)

, ∀i, l, j ∈ V . (3.7)

By leveraging the stretch concept, the number of candidate intermediate

nodes can be greatly reduced through stretch bounding. In Figure 3.2, node n

and node m are in a stretch bounding; as a result, these nodes should be included

as candidate intermediate nodes for routing. While node q and node p are too far

away for the source-destination pair, hence these two nodes should not be included

for routing.

To indicate restrict whether node l serves as a candidate intermediate node

after applying stretch bounding, we define leverage a stretch bounding coefficient

31

as

str(i, l, j) ≤ α, ∀i, l, j ∈ V , (3.8)

which is used to ensure that str(i, l, j) is not greater than a stretch bounding

coefficient α ≥ 1. In other words, the weight of a segment routing path from i to

j through l must be less than or equal to the weight of the stretched path that is

scaled by α times the length of the shortest path from i to j where α >= 1. Note

that α = 1 states that only the shortest paths are used, and α =∞ represents no

stretch bounding takes effect. We denote Sij as a set of candidates intermediate

nodes that satisfy a stretch bounding constraint relative to the shortest path from

i to j, and Sij ⊂ V . The size of Sij is |V|2. Then, we leverage stretch bounding to

select candidate intermediate nodes into Sij.

3.3 Problem Formulation

We formulate SRTE as an optimization problem with an objective to mini-

mize the maximum utilization. This variant of TE is a standard objective function

for TE in carrier networks where traffic matrix can be approximated in advanced,

and the network operator aims to minimize the traffic congestion in the network.

We can now introduce the SRTE problem. We denote a decision variable xilj

as the amount of flow, which is routed from i to j through an intermediate node

l. Given traffic flow demand tij, the goal is to find xilj the amount of traffic flow

32

from i to j passing through an intermediate node l with the objective to minimize

the maximum link utilization θ. The linear programming is as follow:

P1 (Minimize maximum link utilization):

min
x

θ, ←− maximum link utilization

s.t. C1.1:
∑
l∈Sij

xilj = tij, ∀i, j ∈ V ,

C1.2:
∑
i∈V

∑
j∈V

∑
l∈Sij

gilj(e)xilj ≤ θ · c(e), ∀e ∈ E ,

C1.3: xilj ≥ 0, ∀i, j ∈ V ,∀l ∈ Sij,

The objective is to minimize the maximum utilization θ of all links. Con-

straint C1.1 ensures that each traffic is routed through some intermediate node.

Constraint C1.2 is a capacity constraint which ensures that sum of all the traffic

routed through a link does not exceed the link capacity. Constraint C1.3 assures

that the amount of traffic is non-negative.

3.4 Algorithm Design

3.4.1 Offline Computation

We observed that the stretch bounding (3.8) could be computed offline since

the stretch bounding requires only the shortest paths information from the IGP.

Note that we can compute the Sij for all source-destination pairs in advanced.

33

Connectivity information
(gilj(e), i, j, l, w(e),V)

Candidate intermediate nodes (Sij)

Stretch bounding Stretch bounding coefficient (α)

LP solver

Traffic matrix (tij)

Connectivity information
(gilj(e), i, l, j,V, E , c(e))

Segment routing paths (xilj)

Figure 3.3: The algorithmic overview of SRBS.

As a consequence, we can replace an intermediate node l with a candidate

for intermediate node s ∈ Sij which satisfied the stretch bounding (3.8) in the

constraints (C1.1)-(C1.3).

Algorithm 1 presents the procedures to obtain Sij and solve the LP pro-

gram sequentially. For each source-destination pair (i, j), we select l ∈ L into Sij

satisfying the stretch bounding (3.8). After obtaining Sij, we solve P1 based on

obtaining Sij as intermediate nodes set for each source-destination pair.

34

Algorithm 1 A SRBS algorithm

Input: α, V , E , {c(e),∀e ∈ E}, {tij,∀i, j ∈ V}, {gilj(e),∀i, l, j ∈ V , e ∈ E}.

Output: x.

1: Sij ← ∅

2: for (i, j) ∈ V do

3: for l ∈ V do

4: if str(i, l, j) ≤ α then

5: Sij ← l ∪ Sij

6: Solve P1 based on Sij;

7: Output x← {xilj,∀l ∈ Sij, i, j ∈ V}.

3.5 Performance Evaluation

In this section, we evaluate the performance of SRBS in comparison to SRTE

with two metrics: (1) the computation time, and (2) the maximum link utilization.

We conduct our experiments to evaluate the validity of our proposed ap-

proaches on two network topologies from [40]: 100 nodes 572 links topology with

9,817 traffic demands, and 79 nodes 294 links topology with 6,161 traffic demands.

We show visualization of 100 nodes and 79 nodes topologies as network graph in

Figure 3.4 and Figure 3.5. The 100 nodes topology is a synthetic network topol-

ogy, and the 79 nodes topology is a real topology from the Rocketfuel project

[66]. On each topology, we use link weights, link capacities and traffic demands

provided with the topologies. The traffic demands matrices are generated with

35

Figure 3.4: Visualization of 100 nodes network topology.

the gravity model fed by exponentially distributed random variables. However,

we scale the traffic demand volume by 10 in order to saturate the network links.

We conduct our simulations on 2.60 GHz 16-core Xeon processor and 64 GB of

memory running Ubuntu Linux Server version 16.04 with Linux kernel 4.4.0. As

for linear programming solver, we use IBM ILOG CPLEX version 12.8 for all of

our simulations. We ran the experiment 10 times for each data point. In addition

to that, we have error bars with 95 percent confident intervals on all data points.

The results show that the fluctuation from the bars is minimal.

A common question that may arise is ”how large the stretch bounding coef-

ficient should be?”. If we choose the stretch too large, then the computation time

36

Figure 3.5: Visualization of 79 nodes network topology (Exodus) from the Rock-
etfuel project [66].

to solve the linear programming will be high, or the maximum utilization may

increase if the stretch is too short. Hence, we can set the stretch bounding coeffi-

cient to be a small value such as 1.3, and we use this value throughout the chapter.

The complete evaluation of the stretch bounding coefficient is not presented here

due to limited space.

To show the performance of the proposed SRBS, we compare the SRBS to

the optimal solution SRTE [18]. Figure 3.6a(a) and Figure 3.7a(b) depict the

maximum link utilization and the computation time of 100 nodes topology. The

results show that SRBS reduces the computation time by at most 99.6%, and the

maximum link utilization is increased by only 5% at most from the optimal link

37

200 400 600 800 1000
Number of flows

0

10

20

30

40

50

60

M
a
x
im

u
m

 l
in

k
u
ti

liz
a
ti

o
n
 (

%
)

SRTE

SRBS

(a) The maximum link utilization ratio in 100 nodes topology.

200 400 600 800 1000
Number of flows

0

10

20

30

40

M
a
x
im

u
m

 l
in

k
u
ti

liz
a
ti

o
n
 (

%
)

SRTE

SRBS

(b) The maximum link utilization ratio in 79 nodes topology.

Figure 3.6: The maximum link utilization.

utilization in SRTE.

Figure 3.6b(c) and Figure 3.7b(d) show the maximum link utilization and

the computation time of 79 nodes topology. The results show that our approach

achieves almost the same value of the optimal maximum link utilization in SRTE,

38

200 400 600 800 1000
Number of flows

0

200

400

600
C

o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)
SRTE

SRBS

(a) The computation time in 100 nodes topology.

200 400 600 800 1000
Number of flows

0

50

100

150

200

250

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

SRTE

SRBS

(b) The computation time in 79 nodes topology.

Figure 3.7: The computation time.

while the computation time is reduced by at most 82% in this topology.

39

3.6 Summary

In this chapter, we proposed segment routing traffic engineering with stretch

bounding. The main idea of this approach is that we leverage the stretch bounding

approach, which is the path stretch that relative to the shortest path of the source-

destination pair to limit the number of intermediate node candidates. Then, we

compared our approach against generic SRTE approach in [18]. The simulation

results show that our approach achieves a near-optimal solution while the compu-

tation time is reduced by 99.6% at most. This shows the effectiveness of stretch

bounding to reduce the problem size of SRTE by excluding candidate intermediate

nodes that are too far away from source-destination pairs. We believe that our

approach is a promising solution for SRTE.

40

Chapter 4

A Computation-Efficient

Approach for Segment Routing

Traffic Engineering

In the previous chapter, we introduced an approach to improve the perfor-

mance of segment routed traffic engineering (SRTE). In this chapter, we focus

on the trade-off relationship between link utilization and computation time. In

this chapter, we address SRTE with two different objectives: 1. minimize link uti-

lization 2. minimize computation time. We then formulate a bi-objective mixed

integer nonlinear programming (BOMINLP) with respect to the two objective

functions. Finally, we introduce randomized sampling with stretch bounding ap-

proach to tackle this problem.

41

4.1 Preliminary

In this chapter, our goal is to investigate the trade-off relationship between

link utilization and computation time in SRTE. To this end, we formulate a

BOMINLP to minimize link utilization and computation time. In the light of

the two conflicting objective functions and the non-linearity of constraints, we

decompose the original problem into two sequential sub-problems as:

1. node selection,

2. flow assignment.

Then, we propose a randomized sampling approach for the first sub-problem and

then leverage an LP solver for the second one. We employ two publicly available

datasets for performance evaluation, and our simulation results demonstrate that

the proposed solution can effectively reduce the computation time but also retain

comparable maximum link utilization.

The contributions of this chapter are as follows.

• We investigate the trade-off relationship of link utilization and computation

time in SRTE and formulate it as a BOMINLP.

• We decompose the original problem into the sequential sub-problems of node

selection and flow assignment.

• We propose a randomized sampling approach and leverage an linear pro-

gramming (LP) solver for the sub-problems, respectively.

42

• We show that our proposed solution can reduce computation time enor-

mously while achieving comparable maximum link utilization on publicly

available datasets.

4.2 System Model

4.2.1 Node Selection

By leveraging the stretch concept, the number of candidate intermediate

nodes can be greatly reduced through stretch bounding. The purpose of stretch

bounding is to specifically manipulate the path length for transmission (i.e., stretch),

thereby reducing transmission latency [43, 30]. However, it remains unknown from

these works how to use stretch bounding for link utilization in SRTE.

To indicate whether node l serves as a candidate intermediate node after

applying stretch bounding, we define the indicator as

vilj(α) =


1, str(i, l, j) ≤ α,

0, otherwise,

∀i, l, j ∈ V , (4.1)

which is used to ensure that str(i, l, j) is not greater than a stretch bounding

coefficient α ≥ 1. Note that α = 1 states that only the shortest paths are used, and

α = ∞ represents no stretch bounding takes effect. For example, see Figure 4.1,

vinj = 1 and vinj = 1 indicate that node n and node m are inside stretch bounding.

While viqj = 0 and vipj = 0 indicate that node p and node q are too far away from

43

Shortest path Stretch bounding

All paths

Figure 4.1: Stretch bounding approach.

the source node i and destination node j.

4.3 Problem Formulation

Generally, network operators have incentives to periodically optimize link

utilization and computation time to adapt to network dynamics. For these rea-

sons, we formulate an optimization problem as a BOMINLP to jointly minimize

maximum link utilization θ and computation time ζ via

x = {xilj,∀i, l, j ∈ V} , (flow assignment) (4.2)

y = {yilj, ∀i, l, j ∈ V} , (node selection) (4.3)

44

where xilj denotes the amount of traffic flow from node i to node j that passes

through node l and yilj determines whether l serves as a candidate intermediate

node between i and j for all i, l, j ∈ V .

Mathematically, we formulate the BOMINLP as

P2 (Joint Node Selection and Flow Assignment):

min
y

ζ , h(y), ←− computation time

min
x

θ, ←− maximum link utilization

s.t. C2.1:
∑
l∈V

xiljyilj = tij, ∀i, j ∈ V ,

C2.2:
∑
i∈V

∑
j∈V

∑
l∈V

gilj(e)xiljyilj ≤ θ · c(e), ∀e ∈ E ,

C2.3:
∑
l∈V

yilj = min(
∑
l∈V

vilj(α), dβ|V|e), ∀i, j ∈ V ,

C2.4: yilj ∈ {0, 1}, ∀i, l, j ∈ V ,

C2.5: xilj ≥ 0, ∀i, l, j ∈ V ,

where h : y → R≥0 is a monotonically increasing function that maps from candi-

date intermediate nodes to the corresponding computation time. This monotoni-

cally increasing property can be observed in general SRTE (e.g. [69, 64]). C2.1

represents that the flow assignment should satisfy all traffic demands. C2.2 en-

sures that the flows routed through a link do not exceed the link capacity. C2.3

presents the intermediate node restriction by stretch bounding and restricts the

size of candidate intermediate nodes through the regulatory coefficient β to pre-

vent loosely bounded stretches. However, in practice, one may choose loosely

45

bounded stretches (i.e., large α) to prevent network congestion, but at the price

of high computation time since there are many choices of paths. Furthermore, as

a complement, β can be used to limit the number of candidate intermediate nodes

(e.g. β = 2.5-7% [69]). C2.4 and C2.5 refer to the auxiliary constraints for node

selection and flow assignment, respectively. Note that constraint C2.1 and C2.2

are different from the C1.1 and C1.1 in a way that C2.1 and C2.2 have y as a

multiplier for node selection.

In essence, P2 is formulated to characterize the trade-off between maximum

link utilization and computation time. However, there is a lack of solution ap-

proaches for tackling P2 directly due to the following reasons.

• Conflicting objective functions. To minimize ζ, it is desirable to have less

selected nodes, which may give rise to a concentrated flow assignment. To

minimize θ, it is intuitive to assign flow uniformly as much as possible, but

at the price of more selected intermediate nodes. Evidently, it is not possible

to optimize ζ and θ simultaneously.

• Mixed decision variables. The decision variables x are non-negative real

numbers and y are binary integers. Due to the combinatorial feature of

y, solving P2 optimally is in essence NP-hard (as a general integer linear

program (ILP) [36]).

• Nonlinear constraints. C2.1 and C2.2 involve products between two de-

cision variables. These expressions make x and y involved and difficult to

46

decouple.

The aforementioned reasons explain the difficulties in solving P2 optimally. There-

fore, we are motivated to consider the following two sequential sub-problems:

P3 (Node Selection) :

min
y

ζ,

s.t.C2.3,C2.4,

and

P4 (Flow Assignment) :

min
x|y

θ,

s.t.C2.1,C2.2,C2.5.

It is important to note that, if we fix y, the BOMINLP stated above will

turn to be an LP. In this way, we simply need to look for a subset of candidate

intermediate nodes in P3 through y, based on which we find out a flow assignment

in P4 through x. Since P3 and P4 are an ILP and an LP, respectively, we can then

design a computation-efficient algorithm for solving them in practice.

Remark 1 (Decomposition loss). In fact, P3 and P4 retain all of the constraints

in P2; therefore the feasible solution space of P2 can be kept intact after the problem

decomposition.

47

4.4 Algorithm Design

Connectivity information
(gilj(e), i, j, l, w(e),V)

Candidate intermediate nodes (yilj)

Phase 1 (Node selection)

Phase 2 (Flow assignment)

Stretch bounding

Randomized sampling
based node selection

Stretch bounding coefficient (α)

Regulatory coefficient (β)

LP solver

Traffic matrix (tij)

Connectivity information
(gilj(e), i, l, j,V, E , c(e))

Segment routing paths (xilj)

Figure 4.2: The algorithmic overview of SRTE+.

In this section, we propose a two-phase algorithm (denoted by SRTE+) to

address the decomposed sub-problems P3 and P4. Our design principle is to select

candidate intermediate nodes efficiently and effectively.

In Phase 1, we leverage a randomized sampling approach for the node se-

lection in which each intermediate node has equal probability to be chosen as

candidate intermediate nodes during the sampling process. The purpose of the

randomized sampling is to distribute the traffic load among a limited number

48

Algorithm 2 A Computation-Efficient 2-Phase SRTE+ Algorithm

Input: α, β, V , E , {c(e),∀e ∈ E}, {tij,∀i, j ∈ V}, {gilj(e),∀i, l, j ∈ V , e ∈ E}.

Output: x.

(Phase 1) Randomized Sampling based Node Selection

1: Initialize V̄ij ← {l|vilj(α) = 1 in (4.1) ,∀i, l, j ∈ V };

2: Initialize y ← {yilj = 0,∀i, l, j ∈ V};

3: for i ∈ V do

4: for j ∈ V do

5: if |V̄ij| ≤ dβ|V|e then

6: for l ∈ V̄ij do

7: Set yilj ← 1;

8: else

9: Initialize L ← ∅;

10: while |L| < dβ|V|e do

11: Choose l ∈ V̄ij \ L randomly;

12: Set yilj ← 1 and L ← L ∪ {l};

(Phase 2) LP-based Flow Assignment

13: Solve P4 based on y;

14: Output x←
{
xilj,∀l ∈ V̄ij, i, j ∈ V

}
.

of candidate intermediate nodes so that the congestion at a specific link can be

avoided. The LP problem size becomes larger if there are more elements of y being

49

one. Therefore, the number of elements of y being one will determine the size of

the LP and the computation time to solve it. In Phase 2, we reduce the number

of decision variables according to y, and then solve P4. Note that Algorithm 2

leverages α and β as partial information to reduce the computation time, since

the exact form of h may not be available.

Algorithm 2 presents a computation-efficient 2-phase algorithm for SRTE+

(see Figure 4.2 for an overview).

• Lines 1-2: The algorithm initializes the set of candidate intermediate nodes

with V̄ij and sets the indicators y to zeros.

• Lines 5-7: The algorithm checks the size |V̄ij| of candidate intermediate

nodes. If the size is at least dβ|V|e, all intermediate nodes in V̄ij are selected

as candidate intermediate nodes by setting yilj to 1 for all l ∈ V̄ij.

• Lines 8-12: If the size |V̄ij| is greater than dβ|V|e, the algorithm randomly

selects candidate intermediate nodes from V̄ij until the number of candidates

intermediate nodes reach dβ|V|e. Specifically, the algorithm initially sets L

to be the empty set to keep track of the selected candidate intermediate

nodes. The algorithm iteratively selects intermediate node l from V̄ij \ L by

setting yilj to 1, and then adding l into L.

• Lines 13-14: Finally, the algorithm solves P4 with the reduced number of

candidate intermediate nodes in y (the number of y being 1 is reduced),

50

which implies the reduced problem size of P4.

Since LP can be solved in polynomial time using Karmarkar’s interior-point

algorithm, which grows in cubic order of the number of variables [47]. Conse-

quently, the running time of SRTE grows quickly with the number of nodes |V|

and the number of candidate intermediate nodes (the number of elements of y

being 1). Such running time would be very slow even for a network of moderate

size when all nodes are considered as candidate intermediate nodes. For instance,

among the data set that we employ in Sec. 4.5, the number of nodes ranges from

27 to 153, corresponding to (27)3 to (153)3 segment routing path variables, which

could lead to the LP solving computationally prohibitive. By means of the regu-

latory coefficient β, solving the LP can be accelerated by 1− β (e.g. 96.6% when

β = 0.04). Note that with specific candidate intermediate nodes, the problem P4 is

in essence an LP, which can be solved by various software tools (e.g. CPLEX[45],

GUROBI [39] or GLPK [53]).

Remark 2. To implement SRTE+ on real networks, the most common way is to

leverage a software define network (SDN) architecture. By using the SDN archi-

tecture, we can directly place our optimization program (i.e. Algorithm 1) on an

SDN controller. After running the optimization program, the SDN controller will

configure routers according to the decisions of the flow assignment.

51

4.5 Performance Evaluation

In this section, we first choose balance stretch bounding coefficients for our

proposed solution in different network topologies. Then, we compare our proposed

solution with various traffic engineering (TE) approaches. Finally, we demonstrate

the impact of routing metrics. Note that all of the following simulation results are

averaged over all traffic matrices and yield 95% confidence intervals.

4.5.1 Simulation settings

4.5.1.1 System Set-up

We conduct our simulations on a Dell PowerEdge R430 server (composed

of an Intel Xeon E5-2640 v3 processor and 64-GB physical memory) with Linux

4.4.0. As to the LP solver, we use IBM ILOG CPLEX version 12.8 [45].

4.5.1.2 Datasets

To make our simulation results reproducible, we employ the following two

public datasets that provide practical network topologies and traffic matrices.

• The REPETITA dataset [38] contains 266 real-world network topologies (five

of which will be chosen for our performance evaluation), and each network

topology is associated with 5 synthetic traffic matrices. We show the selected

topologies on world map in Figure 4.3 - Figure 4.7.

52

Figure 4.3: RedBestel network topology [48].

Figure 4.4: VtlWavenet network topology [48].

• The GEANT dataset [70] contains one network topology and 10,772 real-

world traffic matrices (96 of which will be chosen for our performance eval-

uation). We show the topology in Figure 4.8.

53

Figure 4.5: Interoute network topology [48].

In addition, we restrict the number of flows to 5,000 for each traffic matrix due to

the shortage of system memory. More detailed information regarding the network

topologies and traffic matrices can be found in Table 4.2.

4.5.1.3 Routing metrics

We consider three different, commonly used routing metrics as follows:

• unary: all links have equal weights.

• delay: each link weight is calculated based on the physical link distance.

• inverse: each link weight is set to the inverse of the link capacity.

4.5.1.4 Performance Metrics

To evaluate the effectiveness of our proposed solution, we employ the com-

putation time ζ and the normalized maximum link utilization θ̈ = θ/φ as our

primary performance metrics, where φ is the maximum link utilization obtained

54

Figure 4.6: Deltacom network topology [48].

by a shortest path algorithm (e.g. Dijkstra algorithm [24] and Bellman-Ford al-

gorithm[16]).

Note that the normalization is to scale the link utilization results such that

the link utilization of the shortest path is at 100% utilization. For brevity, we will

interchangeably use the terminology normalized maximum link utilization and

maximum link utilization.

55

Figure 4.7: Colt network topology [48].

4.5.1.5 Comparison Schemes

To demonstrate the performance gain achieved by our proposed solution

SRTE+, we consider the following TE approaches for comparison.

56

Figure 4.8: Visualization of GEANT network topology.

• SRTE[18]: all of the nodes in V are chosen as candidate intermediate nodes.

• SRBS[64]: candidate intermediate nodes are chosen similarly as SRTE+,

except that SRBS neither regulates the size of candidate intermediate nodes

nor performs randomized sampling.

• DEG[69]: all of the nodes are sorted in descending order of their degree

centrality, and the first dβ|V|e nodes will be chosen.

• BETW[69]: all of the nodes are sorted in descending order of their between-

ness centrality, and the first dβ|V|e nodes will be chosen.

• RAND[69]: dβ|V|e of nodes are chosen uniformly as candidate intermediate

57

Table 4.1: Datasets, network topologies and traffic matrices.

Dataset name Topology name Traffic matrix

REPETITA RedBestel (see Figure 4.3) RedBestel.0000

REPETITA VtlWavenet (see Figure 4.4) VtlWavenet2011.0003

REPETITA Interoute (see Figure 4.5) Interoute.0001

REPETITA Deltacom (see Figure 4.6) Deltacom.0001

REPETITA Colt (see Figure 4.7) Colt.0001

GEANT GEANT (see Figure 4.8) IntraTM-2005-04-29-09-15

nodes.

For simplicity, we focus on the unary routing metric (i.e., all links have equal

weights) in Sec. 4.5.2.2 and 4.5.2.3. The impact of various routing metrics will be

left to Sec. 4.5.2.4.

4.5.2 Simulation results

4.5.2.1 Comparison between SRTE (2-seg) and SRTE (∞-seg)

Figure 4.9 compares the 2-segment SRTE setting (2-seg) and unbounded

segment SRTE setting (∞-seg). 2-seg uses ECMP, while ∞-seg uses all simple

paths available to reach the destination without considering the routing cost. The

results show that 2-seg has similar performance compared with ∞-seg. Thus,

58

Table 4.2: Datasets, network topologies and traffic matrices.

Topology name # of nodes # of edges # of traffic matrices # of flows

RedBestel 84 93 5 5000

VtlWavenet 92 96 5 5000

Interoute 110 148 5 5000

Deltacom 113 161 5 5000

Colt 153 177 5 5000

GEANT 27 38 96 729

Red
Bes

te
l

VtlW
ave

net

Inte
ro

ute

Delt
aco

m
Colt

Gea
nt

Topology name

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.
N

or
m

.
M

ax
.

lin
k

ut
ili

za
ti

on
,
θ̈

SRTE (2-seg) SRTE (∞-seg)

Figure 4.9: A comparison between SRTE (2-seg) and SRTE (∞-seg).

based on these results, we focus on 2-seg in this dissertation.

59

Stretch
bounding
coefficient

Topology name

RedBestel VtlWavenet Interoute Deltacom Colt GEANT

1.0–1.1 −0.193 −0.445 −1.851 −0.300 −0.104 0

1.1–1.2 −0.193 −0.843 −0.853 −2.784 −1.740 0

1.2–1.3 −0.569 −0.673 −0.026 0 −1.037 −0.003

1.3–1.4 0 −0.005 0 0 −0.257 −3.583

1.4–1.5 0 0 0 0 0 −1.279

1.5–1.6 0 0 0 0 0 0

1.6–1.7 0 0 0 0 0 0

1.7–1.8 0 0 0 0 0 0

1.8–1.9 0 0 0 0 0 0

1.9–2.0 0 0 0 0 0 0

2.0–∞ 0 0 0 0 0 0

(↑ a zero/negative value indicates a flat/decreasing line segment)

Table 4.3: The line slopes of θ corresponding to Figure 4.10.

4.5.2.2 The choices of stretch bounding coefficients

Choosing stretch bounding coefficients differently has direct impacts on both

of the performance metrics as depicted in Figure 4.10 and Figure 4.11.

Large stretch bounding coefficients improve link utilization. In Fig-

ure 4.10, as the stretch bounding coefficient increases, the maximum link utiliza-

tion tends to decrease for all network topologies. This is because larger stretch

bounding coefficients can offer more candidate intermediate nodes and more path

60

Stretch
bounding
coefficient

Topology name

RedBestel VtlWavenet Interoute Deltacom Colt GEANT

1.0–1.1 32.092 61.36 48.816 49.118 10.192 0.033

1.1–1.2 150.125 131.084 134.086 179.566 326.281 1.914

1.2–1.3 105.08 129.373 138.285 166.828 238.813 2.669

1.3–1.4 141.799 124.471 143.782 169.909 293.664 7.567

1.4–1.5 116.581 141.88 171.006 192.088 245.424 1.104

1.5–1.6 91.373 91.906 116.472 111.613 198.656 4.967

1.6–1.7 99.266 125.363 126.973 164.539 211.177 2.937

1.7–1.8 115.424 132.483 167.05 242.768 444.01 2.917

1.8–1.9 61.117 104.514 124.094 57.422 54.932 1.559

1.9–2.0 111.783 149.623 209.362 483.603 243.254 4.438

2.0–∞ 1211.555 1826.717 1417.152 1257.509 2473.967 28.273

(↑ a positive value indicates a monotonically increasing line segment)

Table 4.4: The line slopes of ζ corresponding to Figure 4.11.

choices. In addition, we observe that the maximum link utilization remains un-

changed when the stretch bounding coefficient becomes large. The reason is that

large stretch bounding coefficients include many candidate intermediate nodes that

are too far away, and therefore they cannot reduce the maximum link utilization

any further. Note that how vertices are connected can affect link weights and

network connectivity, so the lines in Figure 4.10 can vary greatly with network

topologies.

61

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 ∞
Stretch size, α

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
.

M
ax

.
lin

k
ut

ili
za

ti
on

,
θ̈

RedBestel

VtlWavenet

Interoute

Deltacom

Colt

Geant

Figure 4.10: The impact of stretch bounding coefficient (unary): The maximum
link utilization.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 ∞
Stretch size, α

0

100

200

300

400

500

C
om

pu
ta

ti
on

ti
m

e,
ζ

(s
)

RedBestel

VtlWavenet

Interoute

Deltacom

Colt

Geant

Figure 4.11: The impact of stretch bounding coefficient (unary): the computation
time.

Large stretch bounding coefficients require heavy computation. In

Figure 4.11, we see that the computation time is monotonically increasing with

62

the stretch bounding coefficient.

The reason is that large stretch bounding coefficients will increase the number

of candidate intermediate nodes, and hence the problem size of LP and the re-

quired computation time significantly increase. In addition, the larger the network

topology, the higher the computation time due to the greater problem size.

Stretch bounding coefficients balance the performance metrics. As

the maximum link utilization remains unchanged and the computation time in-

creases monotonically, we can certainly choose the smallest stretch bounding co-

efficient (the saturated point) that corresponds to the lowest maximum link uti-

lization. In other words, increasing the stretch bounding coefficient beyond the

saturated point does not help decrease the link utilization, but will incur higher

computation time. By looking at Figure 4.10 and Figure 4.11, we see that there

exist stretch bounding coefficients that balance the maximum link utilization and

computation time on each network topology. Accordingly, we have the balanced

stretch bounding coefficients for each network topology, as shown in Table 4.5,

which will be used for the following subsections.

4.5.2.3 The comparison among TE approaches

Figure 4.12 and Figure 4.13 illustrate how SRTE+ outperforms other TE

approaches in terms of the two performance metrics.

SRTE+ improves link utilization effectively. In Figure 4.12, SRTE+

outperforms DEG, BETW, and RAND in terms of the maximum link utiliza-

63

Table 4.5: The list of balanced stretch bounding coefficients (the grey-shaded
column and row refer to the settings used in Figure 4.12-4.15.

Dataset name Topology name Unary Delay Inverse

REPETITA RedBestel 1.3 1.3 1.3

REPETITA VtlWavenet 1.3 1.3 1.3

REPETITA Interoute 1.2 1.2 1.3

REPETITA Deltacom 1.2 1.4 1.2

REPETITA Colt 1.4 1.4 1.3

GEANT GEANT 1.5 1.4 1.2

Topology SRTE+ (θ) SRTE (θ) SRTE+ (ζ) SRTE (ζ)

RedBestel 0.775 0.746 14.823 362.901

VtlWavenet 0.724 0.710 7.521 412.117

Interoute 0.655 0.643 14.629 382.064

Deltacom 0.436 0.415 28.503 409.602

Colt 0.653 0.609 43.417 489.671

GEANT 0.936 0.936 0.106 4.481

Table 4.6: A comparison between SRTE+ and SRTE (corresponding to Figure 4.12
and Figure 4.13).

tion. The reason is that stretch bounding allows SRTE+ to use diverse candidate

intermediate nodes, whereas the centrality approaches use static candidate inter-

64

Red
Bes

te
l

VtlW
ave

net

Inte
ro

ute

Delt
aco

m
Colt

Gea
nt

Topology name

0.0

0.5

1.0

1.5

2.0

2.5
A

vg
.

N
or

m
.

M
ax

.
lin

k
ut

ili
za

ti
on

,
θ̈

SRTE+

SRBS

SRTE

DEG

BETW

RAND

Figure 4.12: Performance comparison among various approaches (β = 0.04,
unary): the maximum link utilization.

Dataset name Topology name # of nodes # of edges Computation time (s)

REPETITA RedBestel 84 93 14.823

REPETITA VtlWavenet 92 96 7.251

REPETITA Interoute 110 148 14.629

REPETITA Deltacom 113 161 28.503

REPETITA Colt 153 177 43.416

GEANT GEANT 27 38 0.106

Table 4.7: The computation time of SRTE+ (corresponding to Figure 4.13).

mediate nodes for all source-destination pairs. SRTE+ has competitive maximum

link utilization as compared to SRTE and SRBS. Even though the number of

candidate intermediate nodes in SRTE+ is much smaller than those in SRTE and

65

Red
Bes

te
l

VtlW
ave

net

Inte
ro

ute

Delt
aco

m
Colt

Gea
nt

Topology name

10−1

100

101

102

103

A
vg

.
co

m
pu

ta
ti

on
ti

m
e,
ζ

(s
)

SRTE+

SRBS

SRTE

DEG

BETW

RAND

Figure 4.13: Performance comparison among various approaches (β = 0.04,
unary): The computation time (in log scale).

SRBS, the maximum link utilization remains low in SRTE+.

SRTE+ reduces the computation time enormously. In Figure 4.13 (in

log scale), SRTE+ outperforms SRTE and SRBS in terms of computation time

since the LP problem size in SRTE+ is much smaller than those in SRTE and

SRBS. SRTE+ has comparable computation time to DEG, BETW and RAND

because the regulatory coefficient ensures that SRTE+ has similar LP problem

sizes as the centrality approaches. Note that our simulation results demonstrate

that the computation time of SRTE+ (for all network topologies that we have

tested) can be kept within one minute, which conforms to the requirement that

TE programs are typically invoked by network operators periodically in short

66

SRTE+ SRBS SRTE DEG BETW RAND
Approach name

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
vg

.
N

or
m

.
M

ax
.

lin
k

ut
ili

za
ti

on
,
θ̈

unary delay inverse

Figure 4.14: The impact of routing metrics (β = 0.04, Geant): the maximum link
utilization.

intervals, e.g. 5-10 minutes[41].

SRTE+ balances the two objective functions effectively. SRTE serves

as a lower bound of SRTE+ with respect to the maximum link utilization as it

uses all candidate intermediate nodes to reduce network congestion. Even though

SRTE+ sacrifices a small amount of link utilization (θ), the computation time (ζ)

can be reduced enormously.

4.5.2.4 The impact of routing metrics

Figure 4.14 and Figure 4.15 show how SRTE+ varies with other routing

metrics and how it outperforms other TE approaches.

SRTE+ thrives on various routing metrics. In Figure 4.14, SRTE+

67

SRTE+ SRBS SRTE DEG BETW RAND
Approach name

10−1

100

101

A
vg

.
co

m
pu

ta
ti

on
ti

m
e,
ζ

(s
)

unary delay inverse

Figure 4.15: The impact of routing metrics (β = 0.04, Geant): the computation
time (in log scale).

has comparable maximum link utilization as compared to SRTE and SRBS even

SRTE+ has a much fewer number of candidate intermediate nodes. In addition,

SRTE+ outperforms DEG, BETW, and RAND in terms of maximum link utiliza-

tion since SRTE+ can better distribute the traffic load to less congested paths as

compared to the centrality approaches. In Figure 4.15, SRTE+ outperforms all

comparison TE approaches across all routing metric in terms of computation time

since it has small LP problem size.

68

4.6 Discussion

4.6.1 Implementation on real networks

Solving general linear or nonlinear programs could be time-consuming and

challenging in dynamic systems. In [41], Hong et al. state that traffic engineering

programs must be invoked periodically by network operators in short intervals, e.g.

5-10 minutes. To meet this time requirement, we are thus motivated to propose

the computation-efficient two-phase algorithm (i.e. SRTE+) to facilitate segment

routing traffic engineering in practice. Our simulation results demonstrate that,

for all network topologies that we have tested, the computation time of SRTE+

can be kept within one minute (see the last column of Table 4.7). Since our

performance evaluation is conducted entirely based on publicly available datasets,

it reveals that SRTE+ indeed provides a computation-efficient solution in real

networks.

On the other hand, to implement SRTE+ on real networks, the most common

way is to leverage a SDN architecture. By using the SDN architecture, we can

directly place our optimization program (namely SRTE+) on an SDN controller.

After running the optimization program, the SDN controller will configure routers

accordingly. More details regarding SDN and segment routing architectures can

be found in [26] and [29], respectively.

69

4.6.2 Decomposition loss

The problem decomposition (from P1 to P2 and P3) actually does not re-

sult in a loss, since P2 and P3 retain all constraints of P1, thereby keeping the

feasible solution space of P1 intact after the problem decomposition. However,

SRTE+ may result in losses as it selects part of the network nodes as candidate

intermediate nodes.

Nevertheless, we can show that SRTE+ is actually computation-efficient

through our simulations. To show this, we compare SRTE+ with SRTE. Since

SRTE leverages all network nodes (while SRTE+ only uses part of the network

nodes) to reduce network congestion, it serves as a lower bound of SRTE+ with

respect to θ. Table 4.6 compares the performances of θ and ζ between SRTE+

and SRTE, from which we see that

Although SRTE+ sacrifices a small amount of θ (by at most 7%), the compu-

tation time ζ can be reduced enormously (by at least 91%), which explains that

SRTE+ is a computation-efficient solution approach.

4.6.3 The relationship between the line curves and a

network topology

The relationship between the line curves (in Figure 4.10 and Figure 4.11) and

a network topology can be described as follows. Figure 4.10, there is no explicit

relationship between the line curves and the network topologies, since it depends

70

on link weights and network connectivity (i.e. how vertices are connected), which

varies greatly with network topologies.

However, we see that the link utilization θ decreases with stretch bounding

coefficients α and then becomes saturated for all network topologies. Figure 4.11,

the larger the network topology, the higher the computation time. In addition,

the computation time tends to grow faster for larger network topologies, and it

increases monotonically with stretch bounding coefficients for all network topolo-

gies.

Note that in order to determine the line curves, we have to specify a range

of α first, and then calculate the line curves based on the simulation results of θ

and ζ. Particularly, in this paper, we concentrate on the range of [1.0, 2.0] since

balanced stretch bounding coefficients for the network topologies that we have

tested all lie within the range of [1.2, 1.5]. Then, we will have the simulation

results of θ and ζ with respect to α, based on which we can get the line curves

(provided in Tables 2 and 3).

From these two tables, we arrive at the following observations.

• We can see that the link utilization generally decreases with stretch bounding

coefficients (i.e. negative slopes) and will be saturated (i.e. zero slopes) as

the stretch bounding coefficients are sufficiently large.

• We can observe that the computation time is monotonically increasing (i.e.

positive slopes) with stretch bounding coefficients.

71

4.7 Summary

In this chapter, we formulated a BOMINLP to characterize the trade-off

between link utilization and computation time in SRTE. Due to the conflicting

objective functions, mixed decision variables, and nonlinear constraints of the

original problem, we proposed to decompose it into the node selection and flow

assignment sub-problems.

Then, we designed a computation-efficient two-phase SRTE+ algorithm to

solve the sub-problems sequentially: we first proposed randomized sampling to

reduce the number of candidate intermediate nodes and then assigned traffic flows

by solving LPs with reduced problem sizes.

We conducted our simulations based on two publicly available datasets with

practical network topologies and traffic matrices. Extensive simulation results

show that SRTE+ can reduce computation time enormously with respect to several

comparison approaches, and meanwhile the achieved maximum link utilization

remains comparable.

72

Chapter 5

Conclusion

How do we improve the performance of SRTE such that SRTE can be used

in practice? This dissertation attempted to answer this question: by studying

the network operators’ desired properties for TE in general and also considering

different objectives to reduce network congestion. First, we introduced a stretch

bounding approach to reduce the problem size of SRTE. Our results showed that

we arrive at a performance gain for SRTE that network operators can be used

under their tight computation intervals.

Apart from the performance gain in SRTE, this dissertation also studies the

trade-off characteristics of link utilization and computation time. We formulate

the problem as a bi-objective mixed-integer nonlinear program (BOIMNLP). Due

to the hardness in solving the problem directly, we decompose the problem into

two sequential sub-problems of node selection and flow assignment. Consequently,

we proposed a randomized sampling approach based on stretch bounding to solve

73

the node selection problem. Then, we leverage linear programming (LP) solvers

for the flow assignment problem. The results showed that the proposed approach

could effectively balance the link utilization and computation time.

In summary, we believe that the approaches developed in this dissertation can

help improve the performance of SRTE such that it can be used in real networks. In

the rest of this chapter, we conclude some of the lessons learned and also highlight

possibilities for future work in Sec. 5.1. Finally, we summarize this dissertation in

Sec. 5.2.

5.1 Discussion and Future Work

Certainly, our approaches and results are bound to limitations in several ways.

In this section, we discussed how to extend the main idea of this dissertation so

that the assumption is less restrictive or more practical in the real systems. We

also discussed the possibility of other considerations regarding SRTE in various

aspects.

5.1.1 Traffic matrix

Throughout this dissertation, we have made an assumption that network

operators have obtained traffic matrices using a combination of methods (e.g.

traffic analysis and traffic measurement) [15, 19, 71, 73]. While this is possible in

practice, there are some cases where the traffic matrix may not be representative of

74

the current network traffic. First, the limitation of traffic measurement may limit

the quality of traffic matrix derivation. Second, realistic traffic matrix datasets

are rarely available since this information is sensitive. Besides, large-scale traffic

measurement is not easy to perform [50].

5.1.2 Online segment routing traffic engineering

Throughout this dissertation, we have an assumption that a traffic matrix

at a given time is known. While the traffic matrix can be obtained through

traffic matrix monitoring and approximation methods. Often, the obtained traffic

matrix is not accurate, or the computation interval is too large to adapt to traffic

changes. As a consequence, one might consider an online approach for SRTE

problem without knowledge of future arrival of traffic nor traffic matrix. Note

that the online method has its limitation as well; as the future arrival of traffic is

unknown, then the performance may be somewhat far from the optimal [18].

5.1.3 Maximize total network throughput

Although we only consider minimizing congestion with the minimize link

utilization objective in our optimization programs, other objectives can also be

considered, such as maximize total network throughput. Apart from minimizing

congestion variant of objective functions, this variant of objective function is also

being used inside autonomous systems as well.

75

5.1.4 Machine learning approach

In this dissertation, we leverage the stretch bounding approach and also ran-

domized sampling for candidate intermediate nodes selection, respectively. How-

ever, one can consider an alternative approach for candidate intermediate nodes

selection based on machine learning algorithms (e.g. neural networks) or even rein-

forcement learning to learn intermediate nodes selection based on stretch bounding

or even solely use machine learning for routing.

5.1.5 Stretch bounding improves delay and fairness

Stretch bounding approach can be considered as an approach that helps im-

prove both delay and fairness. Stretch bounding limits the path length for each

source-destination pairs such that network delay is naturally limited. Also, fair-

ness regarding each source-destination pairs is also improved as stretch bounding

balance the traffic to route to different paths. Note that in the network designers’

perspective, there is a trade-off between link utilization and delay when designing

a fully utilized network. However, it is beyond the scope of this work.

5.2 Final Remarks

We have presented two approaches to address SRTE problem. The first one

is segment routing traffic engineering with bounded stretch. We showed that the

proposed approach has near-optimal performance in terms of link utilization, while

76

computation time can be reduced enormously. The second one is a computation-

efficient approach for segment routing traffic engineering. Even though we cannot

claim the optimality of the proposed approach, we have shown that our proposed

approaches can balance the link utilization and computation time effectively. The

approaches described in this dissertation aim to tackle SRTE problem where the

centralized computing element (e.g. path computation element, software-defined

network (SDN) controller) is assumed to be present in the network. To the best

of our knowledge, this dissertation is the first to study stretch bounding approach

in SRTE. In addition, we are first to study the trade-off between two essential

metrics in SRTE (i.e. link utilization and computation time). We believe that this

dissertation will benefit network operators who utilize the simplicity and efficiency

of segment routing in general.

77

Bibliography

[1] A. Abdelsalam et al. “Implementation of virtual network function chaining

through segment routing in a linux-based NFV infrastructure”. In: IEEE

NetSoft. July 2017, pp. 1–5.

[2] S. Agarwal, M. Kodialam, and T. V. Lakshman. “Traffic engineering in

software defined networks”. In: IEEE INFOCOM. Ap. 2013, pp. 2211–2219.

[3] Sugam Agarwal, Murali Kodialam, and TV Lakshman. “Traffic engineer-

ing in software defined networks”. In: Proc. IEEE INFOCOM. Apr. 2013,

pp. 2211–2219.

[4] I. F. Akyildiz et al. “Research challenges for traffic engineering in software

defined networks”. In: IEEE Network 30.3 (May 2016), pp. 52–58.

[5] Ian F Akyildiz et al. “A new traffic engineering manager for DiffServ/MPLS

networks: design and implementation on an IP QoS Testbed”. In: Elsevier

Comput. Commun. 26.4 (2003), pp. 388–403.

[6] L. Andersson et al. “LDP Specification”. In: RFC 5036 (Oct. 2015).

78

[7] A. Asgari et al. “Scalable monitoring support for resource management and

service assurance”. In: IEEE Network 18.6 (Nov. 2004), pp. 6–18.

[8] Ashwin Sridharan, R. Guerin, and C. Diot. “Achieving near-optimal traffic

engineering solutions for current OSPF/IS-IS networks”. In: IEEE INFO-

COM. Vol. 2. Mar. 2003, 1167–1177 vol.2.

[9] F. Aubry et al. “SCMon: Leveraging segment routing to improve network

monitoring”. In: IEEE INFOCOM. Apr. 2016, pp. 1–9.

[10] D. O. Awduche. “MPLS and traffic engineering in IP networks”. In: IEEE

Commun. Mag. 37.12 (Dec. 1999), pp. 42–47.

[11] D. Awduche et al. “Requirements for Traffic Engineering Over MPLS”. In:

RFC 2702 (Sept. 1999).

[12] Daniel O Awduche. “MPLS and traffic engineering in IP networks”. In: IEEE

Commun. Mag. 37.12 (1999), pp. 42–47.

[13] Daniel O. Awduche et al. A Framework for Internet Traffic Engineering.

Tech. rep. IETF, Nov. 2001. url: https://tools.ietf.org/html/draft-

ietf-tewg-framework-05.

[14] Daniel Awduche et al. “Overview and principles of Internet traffic engineer-

ing”. In: RFC 3272 (May 2002).

https://tools.ietf.org/html/draft-ietf-tewg-framework-05
https://tools.ietf.org/html/draft-ietf-tewg-framework-05

79

[15] A. Azzouni and G. Pujolle. “NeuTM: A neural network-based framework

for traffic matrix prediction in SDN”. In: IEEE/IFIP NOMS. Apr. 2018,

pp. 1–5.

[16] Richard Bellman. “On a routing problem”. In: Quart. Appl. Math. 16.1

(1958), pp. 87–90.

[17] Dimitri Bertsekas and Robert Gallager. Data Networks (2Nd Ed.) Prentice-

Hall, Inc., 1992.

[18] R Bhatia et al. “Optimized network traffic engineering using segment rout-

ing”. In: Proc. IEEE INFOCOM. Apr. 2015.

[19] X. Cao et al. “Interactive Temporal Recurrent Convolution Network for Traf-

fic Prediction in Data Centers”. In: IEEE Access 6 (Dec. 2018), pp. 5276–

5289.

[20] Martin Casado, Nate Foster, and Arjun Guha. “Abstractions for Software-

defined Networks”. In: Commun. ACM 57.10 (Sept. 2014), pp. 86–95.

[21] Martin Casado et al. “Ethane: Taking Control of the Enterprise”. In: SIG-

COMM Comput. Commun. Rev. 37 (2007), pp. 1–12.

[22] M. Chiesa, G. Kindler, and M. Schapira. “Traffic Engineering With Equal-

Cost-MultiPath: An Algorithmic Perspective”. In: IEEE/ACM Trans. Netw.

25.2 (Apr. 2017), pp. 779–792.

80

[23] A Cianfrani, M Listanti, and M Polverini. “Incremental Deployment of Seg-

ment Routing Into an ISP Network: a Traffic Engineering Perspective”. In:

IEEE/ACM Trans. Netw. 25.5 (Oct. 2017), pp. 3146–3160.

[24] E W Dijkstra. “A note on two problems in connexion with graphs”. In:

Numer. Math. 1.1 (1959), pp. 269–271.

[25] A. Elwalid et al. “MATE: MPLS adaptive traffic engineering”. In: Proc.

IEEE INFOCOM. Vol. 3. Apr. 2001, pp. 1300–1309.

[26] Adrian Farrel et al. “An Architecture for Use of PCE and the PCE Com-

munication Protocol (PCEP) in a Network with Central Control”. In: RFC

8283 (Dec. 2017).

[27] A. Feldmann et al. “Deriving traffic demands for operational IP networks:

methodology and experience”. In: IEEE/ACM Trans. Netw. 9.3 (June 2001),

pp. 265–279.

[28] Clarence Filsfils et al. IPv6 Segment Routing Header (SRH). Tech. rep.

IETF, Oct. 2019. url: https://tools.ietf.org/html/draft-ietf-

6man-segment-routing-header-25.

[29] Clarence Filsfils et al. “Segment Routing Architecture”. In: RFC 8402 (July

2018).

[30] R Flury, S V Pemmaraju, and R Wattenhofer. “Greedy Routing with Bounded

Stretch”. In: Proc. IEEE INFOCOM. Apr. 2009.

https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-25
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-25

81

[31] B. Fortz, J. Rexford, and M. Thorup. “Traffic engineering with traditional

IP routing protocols”. In: IEEE Commun. Mag. 40.10 (Oct. 2002), pp. 118–

124.

[32] B. Fortz and M. Thorup. “Optimizing OSPF/IS-IS weights in a changing

world”. In: IEEE J. Sel. Areas. Commun. 20.4 (May 2002), pp. 756–767.

[33] B Fortz and M Thorup. “Internet traffic engineering by optimizing OSPF

weights”. In: Proc. IEEE INFOCOM. Mar. 2000.

[34] Bernard Fortz, Mikkel Thorup, and Mikkel Thorup. “Increasing Internet

Capacity Using Local Search”. In: Comput. Optim. Appl. 29.1 ().

[35] Yirou Gang et al. “Throughput Maximization Routing in the Hybrid Seg-

ment Routing Network”. In: Proc. Telecomun. and Commun. Eng. Nov.

2018.

[36] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[37] S Gay, R Hartert, and S Vissicchio. “Expect the unexpected: Sub-second

optimization for segment routing”. In: Proc. IEEE INFOCOM. May 2017.

[38] Steven Gay, Pierre Schaus, and Stefano Vissicchio. “REPETITA: Repeat-

able Experiments for Performance Evaluation of Traffic-Engineering Algo-

rithms”. In: CoRR (Oct. 2017). arXiv: 1710.08665 [cs.NI]. url: http:

//arxiv.org/abs/1710.08665.

https://arxiv.org/abs/1710.08665
http://arxiv.org/abs/1710.08665
http://arxiv.org/abs/1710.08665

82

[39] “Gurobi”. In: (2019). url: https://www.gurobi.com/.

[40] Renaud Hartert et al. “A Declarative and Expressive Approach to Control

Forwarding Paths in Carrier-Grade Networks”. In: ACM SIGCOMM Com-

put. Commun. Rev. 45.5 (Oct. 2015), pp. 15–28.

[41] Chi-Yao Hong et al. “Achieving High Utilization with Software-driven WAN”.

In: ACM SIGCOMM Comput. Commun. Rev. 43.4 (Aug. 2013), pp. 15–26.

[42] Christian E. Hopps. “Analysis of an Equal-Cost Multi-Path Algorithm”. In:

RFC 2992 (Nov. 2000).

[43] K. Huang et al. “Bounded stretch geographic homotopic routing in sensor

networks”. In: Proc. IEEE INFOCOM. Apr. 2014.

[44] L. Huang et al. “Optimizing Segment Routing With the Maximum SLD

Constraint Using Openflow”. In: IEEE Access 6 (Apr. 2018), pp. 30874–

30891.

[45] “IBM ILOG CPLEX Optimization Studio”. In: (2014). url: http://www-

01.ibm.com/software/commerce/optimization/cplex-optimizer.

[46] Sushant Jain et al. “B4: Experience with a Globally-deployed Software

Defined WAN”. In: ACM SIGCOMM Comput. Commun. Rev. 43.4 (Aug.

2013), pp. 3–14.

[47] N. Karmarkar. “A New Polynomial-time Algorithm for Linear Program-

ming”. In: Proc. ACM STOC. Dec. 1984.

https://www.gurobi.com/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer

83

[48] S. Knight et al. “The Internet Topology Zoo”. In: IEEE J. Sel. Areas Com-

mun. 29.9 (Oct. 2011), pp. 1765–1775.

[49] M. Kodialam and T. V. Lakshman. “Minimum interference routing with ap-

plications to MPLS traffic engineering”. In: Proc. IEEE INFOCOM. Vol. 2.

Mar. 2000, pp. 884–893.

[50] V. A. Le, P. Le Nguyen, and Y. Ji. “Deep Convolutional LSTM Network-

based Traffic Matrix Prediction with Partial Information”. In: IFIP/IEEE

IM. Apr. 2019, pp. 261–269.

[51] X. Li and K. L.Yeung. “ILP Formulation for Monitoring-Cycle Construction

Using Segment Routing”. In: IEEE LCN. Oct. 2018, pp. 485–492.

[52] X. Li and K. L. Yeung. “Traffic Engineering in Segment Routing using

MILP”. In: Proc. IEEE ICC. May 2019.

[53] A Makhorin. “GLPK (GNU Linear Programming Kit)”. In: (Oct. 2008).

url: http://www.gnu.org/software/glpk/glpk.html.

[54] A. Mayer et al. “An Efficient Linux Kernel Implementation of Service Func-

tion Chaining for Legacy VNFs Based on IPv6 Segment Routing”. In: IEEE

NetSoft. June 2019, pp. 333–341.

[55] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Net-

works”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–

74.

http://www.gnu.org/software/glpk/glpk.html

84

[56] A. Medina et al. “Traffic Matrix Estimation: Existing Techniques and New

Directions”. In: ACM SIGCOMM Comput. Commun. Rev. 32.4 (Aug. 2002),

pp. 161–174.

[57] F. Paolucci. “Network service chaining using segment routing in multi-

layer networks”. In: IEEE/OSA J. Opt. Commun. Netw. 10.6 (June 2018),

pp. 582–592.

[58] K. Papagiannaki et al. “Long-term forecasting of Internet backbone traffic:

observations and initial models”. In: IEEE INFOCOM. Vol. 2. Mar. 2003,

pp. 1178–1188.

[59] Peter Psenak and Stefano Previdi. OSPFv3 Extensions for Segment Routing.

Tech. rep. IETF, Jan. 2019. url: https://datatracker.ietf.org/doc/

html/draft-ietf-ospf-ospfv3-segment-routing-extensions-23.

[60] T. Schüller et al. “Traffic Engineering Using Segment Routing and Consid-

ering Requirements of a Carrier IP Network”. In: IEEE/ACM Trans. Netw.

26.4 (Aug. 2018), pp. 1851–1864.

[61] Timmy Schüller et al. “Traffic engineering using segment routing and con-

sidering requirements of a carrier IP network”. In: Proc. IFIP Netw. June

2017.

[62] T Schüller et al. “Predictive Traffic Engineering with 2-Segment Routing

Considering Requirements of a Carrier IP Network”. In: Proc. IEEE LCN.

Oct. 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-ospf-ospfv3-segment-routing-extensions-23
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-ospfv3-segment-routing-extensions-23

85

[63] S. Secci et al. “Resilient Traffic Engineering in a Transit-Edge Separated

Internet Routing”. In: 2011 IEEE International Conference on Communi-

cations (ICC). June 2011, pp. 1–6.

[64] T Settawatcharawanit et al. “Segment Routed Traffic Engineering with Bounded

Stretch in Software-Defined Networks”. In: Proc. IEEE LCN. Oct. 2018.

[65] Rob Shakir et al. Segment Routing with MPLS data plane. Tech. rep. IETF,

May 2019. url: https://tools.ietf.org/html/draft-ietf-spring-

segment-routing-mpls-22.

[66] Neil Spring, Ratul Mahajan, and David Wetherall. “Measuring ISP Topolo-

gies with Rocketfuel”. In: Proceedings of the 2002 Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Communica-

tions. SIGCOMM ’02. New York, NY, USA: ACM, 2002, pp. 133–145.

[67] G. Swallow. “MPLS advantages for traffic engineering”. In: IEEE Commu-

nications Magazine 37.12 (Dec. 1999), pp. 54–57.

[68] G. Trimponias et al. “Node-Constrained Traffic Engineering: Theory and

Applications”. In: IEEE/ACM Trans. Netw. 27.4 (Aug. 2019), pp. 1344–

1358.

[69] George Trimponias et al. On traffic engineering with segment routing in SDN

based WANs. Tech. rep. Mar. 2017. url: https://arxiv.org/abs/1703.

05907.

https://tools.ietf.org/html/draft-ietf-spring-segment-routing-mpls-22
https://tools.ietf.org/html/draft-ietf-spring-segment-routing-mpls-22
https://arxiv.org/abs/1703.05907
https://arxiv.org/abs/1703.05907

86

[70] Steve Uhlig et al. “Providing Public Intradomain Traffic Matrices to the

Research Community”. In: ACM SIGCOMM Comput. Commun. Rev. 36.1

(Jan. 2006), pp. 83–86.

[71] J. Wang et al. “Spatio temporal modeling and prediction in cellular net-

works: A big data enabled deep learning approach”. In: IEEE INFOCOM.

May 2017, pp. 1–9.

[72] N. Wang et al. “An overview of routing optimization for internet traffic

engineering”. In: IEEE Commun. Surveys Tuts. 10.1 (Apr. 2008), pp. 36–

56.

[73] K. Xie et al. “Accurate recovery of Internet traffic data: A tensor completion

approach”. In: IEEE INFOCOM. Apr. 2016, pp. 1–9.

[74] Xipeng Xiao et al. “Traffic engineering with MPLS in the Internet”. In:

IEEE Network 14.2 (Mar. 2000), pp. 28–33.

[75] Junjie Zhang et al. “Dynamic hybrid routing: Achieve load balancing for

changing traffic demands”. In: Proc. IEEE IWQoS. May 2014.

[76] P. Zhang et al. “Bandwidth Allocation With Utility Maximization in the Hy-

brid Segment Routing Network”. In: IEEE Access 7 (June 2019), pp. 85253–

85261.

[77] G. Zhong, J. Yan, and L. Kuang. “Improving Integrated Terrestrial-Satellite

Network Utilization using Near-Optimal Segment Routing”. In: 2018 IEEE/CIC

ICCC Wkshps. Aug. 2018.

87

List of Publications

Journal Paper

T. Settawatcharawanit, Y. Chiang, V. Suppakitpaisarn and Y. Ji, ”A Computation-
Efficient Approach for Segment Routing Traffic Engineering,” in IEEE Ac-
cess, vol. 7, pp. 160408-160417, 2019.

International Conference

T. Settawatcharawanit, V. Suppakitpaisarn, S. Yamada and Y. Ji, ”Segment
Routed Traffic Engineering with Bounded Stretch in Software-Defined Net-
works,” 2018 IEEE 43rd Conference on Local Computer Networks (LCN),
Chicago, IL, USA, 2018, pp. 477-480.

Domestic conference

T. Settawatcharawanit and Y. Ji, ”Segment Routed Traffic Engineering using
Randomized Sampling with Bounded Stretch,” BS-4-25, 2019 IEICE General
Conference. [English Session Award]

T. Settawatcharawanit and Y. Ji, ”Segment Routed Traffic Engineering using
Randomized Sampling with Bounded Stretch,” NS2019-118, IEICE Techni-
cal Report on Networks Systems.

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements
	Introduction
	Overview and Motivation
	Related Work
	Contributions
	Dissertation Organization

	Background
	Software-defined network architecture
	Traffic Engineering
	Multi-protocol label switching traffic engineering
	ip based traffic engineering
	Segment Routed Traffic Engineering

	Segment Routing Traffic Engineering with Stretch Bounding
	Preliminary
	System Model
	Network Environment
	Flow Splitting
	Stretch Bounding

	Problem Formulation
	Algorithm Design
	Offline Computation

	Performance Evaluation
	Summary

	A Computation-Efficient Approach for Segment Routing Traffic Engineering
	Preliminary
	System Model
	Node Selection

	Problem Formulation
	Algorithm Design
	Performance Evaluation
	Simulation settings
	System Set-up
	Datasets
	Routing metrics
	Performance Metrics
	Comparison Schemes

	Simulation results
	Comparison between SRTE (2-seg) and SRTE (-seg)
	The choices of stretch bounding coefficients
	The comparison among TE approaches
	The impact of routing metrics

	Discussion
	Implementation on real networks
	Decomposition loss
	The relationship between the line curves and a network topology

	Summary

	Conclusion
	Discussion and Future Work
	Traffic matrix
	Online segment routing traffic engineering
	Maximize total network throughput
	Machine learning approach
	Stretch bounding improves delay and fairness

	Final Remarks

	Bibliography
	List of Publications

