
Minimising Makespan of Discrete
Controllers: A Qualitative Approach

by

Ezequiel Gustavo Castellano

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

March 2020

iii

Acknowledgments

I would like to thank my advisor Prof. Nobukazu Yoshioka, as well as my
subadvisors Prof. Shin Nakajima and Prof. Hiroyuki Kato of the Graduate
University of Advanced Studies. I would also like to acknowledge the examiners
Prof. Kenji Tei, Prof. Nicolás D’Ippolito and Prof. Fuyuki Ishikawa. I am
gratefully indebted to them for their very valuable comments on this thesis.

I would also like to extend my deepest gratitude to Prof. Victor Braberman
and Prof. Sebastián Uchitel of the University of Buenos Aires. Their ideas were
the inspiration for my research direction. In particular, I would like to thank
Victor for keep following my research closely and always giving me great advice.

I am also grateful to the National Institute of Informatics and the Japanese
government for honoring me with a scholarship that made my studies possible. I
would also like to extend this thanks to the University of Buenos Aires and the
government of Argentina, who provided me with strong background to do my
studies abroad through free education. Free education does not guarantee same
opportunities for everyone, but it is one step forward to equality.

Huge thanks should also go to all my friends and people I met in the last
years. Friends are always there to listen when you are having hard times, to
celebrate victories, or to just be there. My most sincere thanks go to my friends
from El Pelle, UBA courses, UBA futsal, LaFHIS, TIEC, NII and many other
life friends. I would like to list each of them individually, but I do not want the
acknowledgments to be longer than the rest of this thesis.

Special thanks to my family for providing me with unfailing support and
continuous encouragement throughout my entire life. My deepest gratitude to mi
mamá Silvia, mi papá Rafa, mi hermana Cyntia y mi abuela Dora. Through life,

iv

the environment changes yourself, but your familiy are the ones that give you the
basis to move through that environment.

Last but not least, I would also like to thank Linguang, el amor de mi vida, for
always being next to me supporting me at times of stress, but most importantly
for joining me in this adventure called life. This thesis would not be possible
without her support.

Ezequiel Castellano

P.S.: Thanks to you that you are reading me now. Shall I say sorry instead?

v

Committee

Advisor Dr. YOSHIOKA Nobukazu
Professor of National Institute of Informatics/SOKENDAI

Subadvisor Dr. NAKAJIMA Shin
Professor of National Institute of Informatics/SOKENDAI

Subadvisor Dr. KATO Hiroyuki
Professor of National Institute of Informatics/SOKENDAI

Examiner Dr. TEI Kenji
Professor of Waseda University

Examiner Dr. ISHIKAWA Fuyuki
Professor of National Institute of Informatics

Examiner Dr. D’IPPOLITO Nicolás
Professor of University of Buenos Aires

vii

Contents

List of Figures xi

Notation in Figures xv

List of Tables xvii

List of Algorithms xix

Abstract xxi

1 Introduction 1
1.1 Formal methods in software engineering 1
1.2 Qualitative controller synthesis . 3
1.3 Proposed approach . 4
1.4 Objectives . 5
1.5 Outline . 5

2 Survey of Related Areas 7
2.1 Supervisory control . 8
2.2 Reactive synthesis . 9
2.3 Automated planning . 10

3 Background 13
3.1 Event-based reactive systems . 13
3.2 Labeled transition systems . 14
3.3 Fluent linear temporal logic . 16

viii Contents

3.4 LTS control synthesis . 17
3.5 Parametric timed automata . 19
3.6 Satisfiability modulo theories . 23

4 Industrial Automation Example 25

5 A Qualitative Approach for Makespan 29
5.1 The main parts of the problem . 29
5.2 Defining makespan . 31
5.3 Measuring makespan . 33
5.4 Comparing makespan . 35
5.5 Dealing with contingencies . 35
5.6 Makespan-minimising controllers 37
5.7 Obtaining makespan-minimising controllers 38

6 Control Problems with Activities 41
6.1 Industrial example as a control problem 41
6.2 Understanding time in LTS control 44
6.3 Modelling activities in LTSs . 44
6.4 Defining control problem with activities 46

7 A Qualitative Comparison Framework 49
7.1 Comparing under the same contingencies 49
7.2 Timed semantics of LTS . 52
7.3 Using parameters to measure makespan 56
7.4 Comparing symbolic expressions . 58
7.5 Beyond the horizon . 60

7.5.1 Motivating example . 60
7.5.2 Interpreting the infinity in PTA 62

8 A Makespan-Minimising Controller 67
8.1 Defining makespan-minimising controllers 67
8.2 Synthesising makespan-minimising controllers 70

Contents ix

9 Evaluation 75
9.1 Extending MTSA . 76

9.1.1 MTSA . 76
9.1.2 Specifying control problems with activities in MTSA 79
9.1.3 Implementing the comparison framework 80
9.1.4 Comparing Γ expressions with Z3 82

9.2 Experiments . 84
9.2.1 Comparison against standard synthesis algorithm 84
9.2.2 Scalability in the job scheduling example 89
9.2.3 Discussion . 90

10 Related Work 93
10.1 Quantitative approaches for preferences 93
10.2 Qualitative approaches for preferences 95
10.3 Temporal problems and uncertainty 97

11 Conclusions 101
11.1 Contributions . 101
11.2 Limitations and potential extensions 102

Bibliography 105

xi

List of Figures

2.1 Control-loop system of a plant and its supervisor 8
2.2 The interface of a controller for a coffee maker 10

3.1 Generic example of parallel composition of two LTS. 15
3.2 Examples of deterministic and non-deterministic LTSs. 16
3.3 General example of timed automata. 19
3.4 General examples of Parametric Timed Automata. 21
3.5 Timed automatons obtained by replacing the parameters of H1 with

the values indicated in each parameter valuation. 22

4.1 Illustration of an industrial automation plant with five tools and
two types of input products to be processed. 26

4.2 Requirements of the industrial automation example in natural
language. 26

4.3 Industrial automation example activities 27
4.4 Alternatives for using the tools on products of type two. 28

5.1 Two main problems and its different components. 30
5.2 Satisfaction of safety (�S) and reachability (♦P) goals over traces. 31
5.3 Makespan in reachability and safety controllers 32
5.4 Using numbers to measure makespan 33
5.5 Formalisms that are used in each step of the transformation to solve

the problem of measuring qualitative makespan and comparing it. . 34
5.6 Comparison of two controllers under different environment behaviour

during the execution. 36

xii List of Figures

5.7 Possible relations between a makespan-minimising controller and
other controllers. 38

5.8 Proposed approach to synthesis a makespan-minimising controller. . 39

6.1 LTS components describing the behaviour of the industrial automa-
tion example . 42

6.2 Production constraints described in FLTL. 42
6.3 Fluent definitions used to describe the formulas of the automation

example . 43
6.4 Possible controllers for the same problem. 43
6.5 Universal controller for the industrial example. 48

7.1 Scheduled composition of the controllers and environment from the
industrial automation example . 53

7.2 Timed semantics (PTAs) of the controllers and environment of the
industrial automation example . 55

7.3 Environment model of two process activities and one communication
process . 60

7.4 A possible controller executed with the environment satisfies the goal 61
7.5 Timed semantics of the controller of the two activities example . . . 62
7.6 Interpreter automata of the controller of the two activities example 65
7.7 Timed Automaton obtained after replacing the values of the Inter-

mediate PTA of the controller of the two activities example 65
7.8 PTA that does not accept abd∗, when considering valuations over

the reals. 66
7.9 Interpreting the infinity parameters valuation in a more general PTA 66

8.1 Universal controller for the example of the industrial automation
example . 71

8.2 SubLTSs of the universal controller from the state q4. 72
8.3 SubLTSs of the universal controller from the state q3. 73

9.1 Interface of MTSA displaying the specification of the industrial
automation example. 77

List of Figures xiii

9.2 MTSA displaying the components of the environment of the indus-
trial automation example. 78

9.3 Visualization of the controller synthesised by the standard synthesis
algorithm of MTSA. 78

9.4 Interface of MTSA displaying the lower part of the specification of
the industrial automation example with the activities definition and
a keyword to enable Algorithm 2. 79

9.5 Visualization of the controller synthesised by the Algorithm 2. . . . 80
9.6 Comparison framework for a pair of controllers C1 and C2 82
9.7 Comparing two Γ expressions with Z3. 83
9.8 Experimental setting to compare the solution generated by Algo-

rithm 2 against the ones produced by standard synthesis algorithm
of MTSA. 85

9.9 Controllers produced by standard algorithm of MTSA and Algorithm 2. 87
9.10 Scheduled parallel composition of controllers generated by the

standard synthesis algorithm and the Algorithm 2 on the IA example. 88

xv

Notation in Figures

−→ transition or controllable transition (in a control problem setting)

99K uncontrollable transition

a−−→ transition with action a

[x==10]
a−−−−→ transition with action a and guard [x == 10]

−−−−→
{x} transition with reset clocks {x}

state or transient states (when non-transient states are distinguished)

non-transient state

final state or goal state (in a control problem setting)

x ≤ 10
state with invariant x ≤ 10

xvii

List of Tables

6.1 Activities definition for the industrial automation example. 45

7.1 Possible results of comparing two controllers 59

9.1 Possible results of comparing two controllers under a scheduler σ. . 81
9.2 Results of the evaluation of Algorithm 2 on cases studies from

different fields that involve the execution of activities to reach a goal. 86
9.3 Results of the performance of Algorithm 2 on the JOB case study

with increasing number of tasks. 90

xix

List of Algorithms

1 Obtaining Γ of the timed semantics of a controller 57
2 Non-dominated controller algorithm. 70

xxi

Abstract

Qualitative controller synthesis techniques produce controllers that guarantee to
achieve a given goal in the presence of an adversarial environment. However,
qualitative synthesis only produces one controller out of many possible solutions
and typically does not provide support for expressing preferences over other
alternatives.

Synthesis and planning techniques that allow expressing preferences exist,
such as those regarding performance or reliability. Such quality attributes are
modelled by introducing a quantitative aspect to the system specification, which
imposes a preference order on the controllers that satisfy the qualitative part of
the specification. However, from a practical perspective, these approaches require
modelling quality attributes quantitatively, whereas in many cases, such detailed
representation is not available, possible, or desired.

The main objective of this thesis is to present a formal approach to reason
about preferences qualitatively, restricting attention to makespan of discrete
event-based controllers for safety and reachability goals. Time is reasoned upon
symbolically, which relieves the user from providing concrete quantitative measures.
In particular, we study the scenario in which durations of individual activities are
not known up-front.

First, we show how controllers can be symbolically and fairly compared by
fixing the contingencies. Then, we present an algorithm to produce controllers that
are makespan-minimising. The algorithm was implemented in the MTSA tool, as
well as evaluated in case studies.

Keywords: Discrete Event Systems, Reactive Synthesis, Supervisory Control,
Reachability, Makespan.

1

1
Introduction

1.1 Formal methods in software engineering

Specifying the requirements of the system is one of the first steps in the process of
constructing a system [1]. In this process, the assumptions about the environment
in which the system will be deployed are defined, as well as the guarantees
that the system will provide. In software engineering, the requirements are
divided into functional requirements and non-functional requirements. Functional
requirements are intended to capture the behaviour that the system must have,
while non-functional requirements describe quality attributes of the system, which
define a preference order among possible solutions.

Modelling is a key part in the process of building a system. Models are used to
build abstractions of the environment based on our assumptions and understanding
of the world. These models are used to represent the behaviour of the system
that we intend to build. Besides, models are useful to validate those abstractions
and assumptions with relevant stakeholders and engineers. In particular, we are

2 Chapter 1. Introduction

interested in using mathematical models to describe the behaviour of both the
environment and the system, because this enables the possibility of formally
checking if our system is correct with respect to the specification. In addition, this
type of models can be executed by a machine, reducing the gap between models
and what it is executed.

In a world with constantly increasing interaction between systems and humans,
the attention to techniques that can ensure the satisfaction of the requirements
is rising. For instance, Model checking [2] is becoming a key instrument in
critical systems such as flying control systems [3, 4], industrial robot systems [5],
autonomous driving [6, 7], and medical systems [8]. Model checking is a technique
that allows us to verify that our system satisfies the requirements if we specify
them in a formal language, which means that we can automatically check that our
system is correct according to the specification.

In this thesis, we are interested in modelling problems that involve reactive
systems. Reactive systems [9] are computing systems which are interactive in
nature. Their interaction could be with other computing systems and also with
human beings. From the reactive system point of view, all these are external
interactions with its environment. Reactive systems are among the hardest
computing systems to program [10], because this type of systems needs to be
prepared to react to any possible interaction with the environment that is defined
by its interface.

Temporal logic [56] is a formalism that has shown to produce good results in
specifying functional requirements of reactive systems [10]. By using this technique,
we can specify the requirements in a formal language that clearly distinguishes the
assumptions and guarantees of our system. One of the advantages of specifying
our system in a formal language like temporal logic is that we can directly apply
model checking techniques.

Specifying requirements in a formal language like temporal logic also enables a
more ambitious goal, which is building solutions from the specification automatically.
Given a specification in terms of assumptions and guarantees, discrete controller
synthesis is a technique that can produce solutions that are correct by construction
regarding the specification [11, 12]. General synthesis from temporal logic is known
to be 2EXPTIME-complete [11]. However, there are polynomial algorithms for a

1.2 Qualitative controller synthesis 3

subset of this logic. For instance, there are applications of synthesis to robotic
problems [13, 14, 15] that are specified with GR(1) formulas [16], which are a
subset of linear temporal logic formulas that have polynomial synthesis algorithms.

Controllers can be synthesised offline and executed at run-time. This means
that synthesis time is not a critical aspect, but termination is. Once a controller is
synthesised, it is expected to be executed a large number of times. It will only
be necessary to synthesise a new controller when changes in the environment
or requirements arise. In these cases, updating controller techniques could be
applied [17], which, however, is not within the scope of this work.

1.2 Qualitative controller synthesis

The problem of automatically synthesising event-based solutions from environment
models and qualitative goal specifications has been widely studied [18, 11, 19, 16].
In these problems, the environment and the goals are specified by using a formal
language. The environment is typically modelled as a state machine whose
actions are partitioned into controllable and uncontrollable actions. The controller
synthesis problem is to automatically produce a solution, i.e., a controller, that
by only disabling controllable actions guarantees the satisfaction of the goals.
In particular, we focus on reachability and safety goals which are of interest to
supervisory control theory [18], conformant [20] and contingent [21] planning.

Qualitative control problems are boolean in the sense that a controller satisfies
a set of goals, or it does not. When a qualitative control problem has a solution,
we say it is realisable. Realisable control problems may allow for several possible
solutions. Different solutions may differ in the strategy which they apply to
satisfy the goals. Typically, based on the arrival of monitored actions, the
strategies implemented by controllers decide which and when to start activities.
For instance, regarding end-to-end makespan, a controller that starts several
activities concurrently instead of executing them sequentially can be, intuitively,
considered as a better strategy, no matter which the durations of the activities
are. Unfortunately, qualitative synthesis procedures are, so far, oblivious to such
considerations. The controller produced is one of the many alternatives and users
cannot specify their preferences; e.g., lower-makespan controller. Thus, it is desired

4 Chapter 1. Introduction

to have the ability to express preferences and automatically compute a solution
from a set of possible solutions to a control problem accordingly.

Synthesis and planning techniques that allow expressing preferences exist,
such as those regarding performance or reliability. Such quality attributes are
modelled by introducing a quantitative aspect to the system specification, which
imposes a preference order on the controllers that satisfy the qualitative part
of the specification [22, 23, 24]. However, from a practical perspective, these
approaches require modelling quality attributes quantitatively, whereas in many
cases, such detailed representation is not available, possible, or desired.

1.3 Proposed approach

In this thesis, we define lower-makespan as our preference and introduce a formal
approach to qualitatively reason about makespan of discrete event-based controllers
for safety and reachability goals. To reason qualitatively about makespan of
controllers, we introduce a symbolic time metric derived from Parametric Timed
Automata (PTA) [25] semantics. This metric requires modelling sub-tasks of the
problem which take time as activities, but no quantitative information about
the duration of the activities is required. Then, we define a mechanism to
compare makespan of controllers under unknown durations of activities and
event contingencies produced by uncontrollable behaviour. Such a comparison
is made through exhaustive analysis by using a symbolic computation over the
parameters of a PTA [26] and Satisfiability Modulo Theories (SMT) solving [27]).
The parameters of the PTA represent the uncertain duration of the activities.
Then, we define makespan-minimising controllers by using the symbolic comparison
and we introduce an algorithm that produces a makespan-minimising controller
qualitatively. The algorithm is implemented in the MTSA tool [28] and evaluated
in case studies. The evaluation consists of comparing the output produced by our
algorithm against the standard synthesis algorithm of the tool.

1.4 Objectives 5

1.4 Objectives

The main objective is to present a formal approach to reason about preferences
qualitatively, restricting attention to makespan of discrete event-based controllers
for safety and reachability goals. We aim to provide a framework in which time is
reasoned symbolically, which relieves the user from providing concrete quantitative
measures. In particular, we study the scenario in which durations of individual
activities are not known up-front. Our hypothesis is that it is possible to i)
define a qualitative framework to compare controllers qualitatively regarding their
makespan, ii) specify preferences in control problems qualitatively, and iii) produce
controllers that reflect those preferences.

The intended output of this thesis is a qualitative framework to compare of
makespan of controllers, and a qualitative algorithm that produces controllers
with lower-makespan than the ones produced by standard qualitative synthesis
algorithms. To validate our approach we provide formal definitions and proofs to
show why reasoning about preferences by using our formalisation is valid. Besides,
we implement our ideas in the MTSA tool [28], a qualitative synthesis tool, and
compare the controllers produced by our algorithm against the ones produced by
the tool.

1.5 Outline

This thesis is structured as follows. Chapter 2 surveys the main related areas.
Chapter 3 introduces the background. Chapter 4 illustrates an example that is
used throughout the rest of the thesis. Chapter 5 presents the general problem
and the approach of this work. Chapter 6 introduces the control problem with
activities, and it models the example as a control problem. Chapter 7 defines how
to compare the makespan of a pair of discrete controllers qualitatively. Chapter 8
defines makespan-minimising controllers and presents an algorithm that produces
a makespan-minimising controller. Chapter 9 shows the experimental results of the
implementation of the algorithm in case studies. Chapter 10 discusses about the
related work. Chapter 11 presents the conclusions, limitations of the proposed
approach and future directions.

7

2
Survey of Related Areas

The problem of automatically producing solutions from formal specification has a
long history. The first formulation of the problem was done by Church [29, 30] in
the context of logical circuits. Church introduced the problem of synthesizing
digital circuits, which have inputs and outputs signals, from logical specifications.
Different communities proposed variations of this problem, as well as formulations
and approaches that aim to solve the problem of automatically producing solutions
from formal specification. Some of the research areas that tackled a similar
problem are supervisory control [18] in control engineering community, reactive
synthesis [11] in computer science community and automated planning [31] in
artificial intelligence community. In the recent years, there are several works that
are attempting to connect all these approaches to bring the knowledge gained in
one community to the others [12, 32, 33, 34, 35, 36, 37, 38]. There are authors
that are proposing unified views of some forms of automated planning and reactive
synthesis [33] because of the similarities between these areas. Some examples of
knowledge exchange between these communities are the use of planning heuristics

8 Chapter 2. Survey of Related Areas

to obtain solutions in the supervisory control community [39], and the use of LTL
to model temporally extended goals in the planning community [40, 41, 42].

2.1 Supervisory control

Supervisory control [18] problems of discrete-event systems are defined as a plant,
a set of controllable actions and a set of marked states. The plant is typically
modelled as a deterministic finite-state automata. As defined in this thesis, the
actions of the automata are partitioned into controllable and uncontrollable actions.
The marked states are a subset of states of the automata, which are the acceptance
ones. The solution to this problem is a supervisor, which must guarantee achieving
the marked states by disabling controllable actions. A supervisor is defined as
a function that enables a subset of events based on the history of events that
have happened so far. The subset of actions must include all the uncontrollable
actions because the supervisor has no control over them. The supervisor and
the plant form a closed-loop system, in which the supervisor chooses the control
actions from the possible events enabled by the plant. Figure 2.1 illustrates the
control-loop system. Then, the plant executes one of the actions enabled by the
supervisor. However, the supervisor has no control over this choice.

Figure 2.1: Control-loop system of a plant and its supervisor [12].

A supervisor is non-blocking if it can reach a marked state from any reachable
state of the closed-loop system formed by the supervisor and the plant [12]. This
means that the control-loop system never reaches a deadlock, unless it is a marked
state, or never reaches a livelock that does not contain marked states.

2.2 Reactive synthesis 9

A typical requirement for supervisors is maximal permissiveness. This means
that a supervisor is expected to disturb the plant as little as possible. A unique
maximally-permissive supervisor always exist, which is not generally the case in
the reactive synthesis framework [12].

The problems presented in this work are similar to the ones of supervisory
control when the plant is fully observable. In fully observable problems, the
supervisor can observe all the events that happened and determine the current
event of the plant uniquely, because the plant is deterministic.

2.2 Reactive synthesis

The reactive synthesis problem was introduced by Pnueli and Rosner in 1989 [11]
by using linear temporal logic (LTL) [43] as the specification language for both the
environment and the system goals. The propositions used to describe those formulas
are partitioned into two disjoint sets: the input (uncontrollable) propositions and
the output (controllable) propositions. A solution to this problem is a controller,
which is an operational specification of a module that restricts the traces allowed
in the specification of the environment to those traces satisfying the system goals.
Controllers are open dynamical systems in the sense that its behaviour depends
on the inputs that it receives. A reactive system has to satisfy a specification
for every possible input to the system. The specification of reactive synthesis
problems is considered to be more declarative, because it describes the desired
behaviour of the controller on the interface level without setting requirements
about the internal structure of the solution [12]. Figure 2.2 illustrates an example
of a typical controller with one input and two outputs.

Classical definition of reactive synthesis does not have a notion of plant or
environment modelled as state machine [44, 11]. However, in the controller
synthesis community, there are variations of the original formulation that use
plants to describe the behaviour of the environment [45, 46, 47, 48]. In these
works, the interaction between the controller and the plant (environment) is done
through events as in supervisory control problems. This is also the approach taken
in this thesis. One advantage of modelling the environment as an automata is to
reduce the size of the formulas used in the specification. This is important because

10 Chapter 2. Survey of Related Areas

translating an LTL formula into an automata is at least exponential in the size of
the formula [12, 11].

Figure 2.2: The interface of a controller for a coffee maker [12]. Input signal c is
the button to order coffee. Output signals are grinding g and brewing b.

Solving a reactive synthesis problem typically involves transformations from
LTL formulas into some type of word automaton such as Büchi automaton [12].
Then, the automaton is usually translated into a game between two players: the
environment and the system. In this game, the system has to be able to win the
game for every possible play of the environment [48]. If this is possible, there is a
winning strategy, the problem is realisable and there is a controller.

The general problem of synthesis from LTL specifications was shown to be
2EXPTIME complete [11]. Thus, the reactive synthesis community focused
on exploring subsets of LTL formulas that are expressive enough to describe
interesting problems. For instance, GR(1) formulas are one of the most expressive
and widespread formulas with polynomial synthesis algorithms [16].

2.3 Automated planning

Planning problems are typically defined as a finite set of propositions that can be
modified by the use of actions [31]. Actions have preconditions and effects. The
preconditions are the values that the propositions must hold to apply an action,
while the effects define how the values of the propositions change. The goal is to
generate a sequence of actions that modifies the propositions from their initial
values to the goal values, which are called the goal propositions. This can also be

2.3 Automated planning 11

represented as a set of states, actions, and transitions, where each state represents
a different valuation of the propositions. In this representation, the goal states are
those that represent the values of the goal propositions. A plan, the solution, is a
sequence of actions leading from the initial state to a goal state. Planning domains
and problems are sometimes described in PDDL (planning domain definition
languange) [49].

In classical planning problems, the effects of the actions are deterministic, which
means that all the actions are controllable. The reactivity of the environment
is typically not modelled, and in case of differences between the plan and the
execution, the most common approach is to re-plan, i.e., to produce a new plan.
Thus, the focus of this area is to produce efficient and optimal algorithms to
generate plans. Efficiency is measured in time to produce the solution, and
optimality typically refers to the number of actions of the plan. More compact
plans are preferable. In this type of problems, heuristic search [50] is the approach
that is often used to find a solution.

The use of temporal logics to specify problems is not limited to the reactive
synthesis community. The planning community has also introduced the use of LTL
to model temporally extended goals [51] for planning domains that have actions
with both deterministic and non-deterministic effects. Most of the approaches
propose to compile LTL specifications into classical planning [41, 42], while others
propose specific planners for problems with LTL goals [40].

Planning domains with non-deterministic actions exist [52, 53] but with less
attention than its deterministic counterpart. Fully Observable Non-Deterministic
(FOND) Planning [54] models non-determinism by defining a set of propositions
whose value can change over time regarding actions with non-deterministic effects.
This makes FOND problems similar to reactive synthesis problems because the
exact plan that will be executed is not known until execution time. Thus, FOND
plans have to consider all possible contingencies that may appear during execution.
Strong plans are those that guarantee that the goal is achieved regardless of
contingencies. In the recent years, it has been shown that it is possible to transform
reactive synthesis problems with reachability and safety goals into FOND planning
problems [55].

13

3
Background

In this chapter we present the key underlying theories that are necessary to explain
the rest of this work. Section 3.1 briefly introduces the concept of reactive systems.
Section 3.2 and Section 3.3 describe the formalisms that are used to define control
problems in Section 3.4. Section 3.5 and Section 3.6 presents the formalisms that
are used to define the comparison between two LTS controllers.

3.1 Event-based reactive systems

Reactive systems [9] are machines that interact with their environment through
sensors and actuators. This type of systems can modify the environment through
their actions and perceive the changes through their sensors. The interaction
between a reactive system and the environment is modelled by events (or actions).
Act is a set of symbols that defines the set of observable actions. Some of these
actions are executed by the machine, while other actions are events that the
machine observes to decide its next actions. Both the environment and the machine

14 Chapter 3. Background

(the controller) will be modelled by using Labelled Transition Systems, which are
defined in the next section.

3.2 Labeled transition systems

Labelled Transition System (LTS) [56] are one of the formalisms that is typically
used for modelling the behaviour of a system. LTS is a transition system in which
states are connected through transitions, which are labelled with actions. By using
LTS for modelling behaviour, it is possible to decompose the behaviour of the
system into several components. The interaction between these components (LTSs)
is modelled by the parallel composition [56] of the LTSs. The parallel composition
is defined as an LTS that models the asynchronous execution of composed models,
interleaving non-shared actions while forcing synchronisation on shared actions.
We use q `−→ q′ to denote a transition that (q, `, q′) ∈ ∆. Figure 3.1 illustrates two
different LTSs and the parallel composition of them.

Definition 3.1 (Labelled Transition Systems) A labelled transition system
(LTS) is a tuple (Q,Σ,∆, q0) where

• Q is a finite set of states,

• Σ ⊆ Act is its alphabet, Act is the set of observable actions,

• ∆ ⊆ (Q× Σ×Q) is a transition relation, and

• q0 ∈ Q is the initial state.

Definition 3.2 (Parallel Composition) The parallel composition (‖) of two
LTSs M and N , is a symmetric operator such that M‖N = (QM × QN ,ΣM ∪
ΣN ,∆M‖N , (qM0 , qN0)), where ∆M‖N is the smallest relation that satisfies the
following rules:

qM
`−→M qM

′

(qM ,qN)
`−→M‖N (qM ′,qN)

`∈ΣM\ΣN
qN

`−→N qN
′

(qM ,qN)
`−→M‖N (qM ,qN ′)

`∈ΣN\ΣM

qM
`−→M qM

′, qN ,
`−→N ,qN

′

(qM ,qN)
`−→M‖N (qM ′,qN ′)

`∈ΣM∩ΣN

3.2 Labeled transition systems 15

0 1
b

a
0 1

a

cM1 M2 M1||M2

0,0 0,1

b

c
1,0

a

1,1

c
b

d

d

d

Figure 3.1: Generic example of parallel composition of two LTS.

The paths and traces of an LTS are used to describe possible behaviour during
the execution. A path of an LTS is a possibly infinite sequence of states and
actions, i.e., a valid sequence of transitions in the LTS. A trace is a sequence of
actions that can be executed by the LTS. That is, that there exists a corresponding
path in the LTS. We denote the set of infinite traces of an LTS M as Tr(M). The
satisfaction of a formula in the LTS will be determined by its traces. The details
will be explained in the next section. We also refer to the possibly infinite set of
paths of an LTS that reach a state q from the initial state as Paths(M, q). For
example: q0

a−→ q1 ∈ Paths(M1, q1) and q0
c−→ q1

d−→ q1 ∈ Paths(M2, q1). Note that
q0,0

a−→ q0,1 6∈ Paths(M1‖M2, q0,1) because the parallel composition synchronizes on
the shared action a.

Definition 3.3 (Path) A path q0
`0−→ q1

`1−→ . . . of an LTS M = (Q,Σ,∆, q0) is
a sequence of transitions of an LTS M .

Definition 3.4 (Trace) A trace of an LTS M = (Q,Σ,∆, q0) is a sequence of
actions π = `0, `1, . . . , iff there exists a path q0

`0−→ q1
`1−→ . . . in the LTS M .

LTS models can be deterministic or non-deterministic. A model is deterministic
when given a state and an action of an LTS there is at most one successor. This
means that given a trace there is a unique corresponding path. In contrast, if an
LTS is non-deterministic, given a trace there may be multiple corresponding paths,
because for a given action a state may have more than one successor. This work
focuses only on deterministic models. Figure 3.2 illustrates some examples of
deterministic and non-deterministic LTSs.

16 Chapter 3. Background

0 1
b

a
0 1

b

a
a

deterministic non-deterministic

M3 M4
2b c

a 0
1

b

a

a
M5

2

c

Figure 3.2: Examples of deterministic and non-deterministic LTSs.

Definition 3.5 (Deterministic) An LTS (Q,Σ,∆, q0) is deterministic when
∀q ∈ Q ∀` ∈ Σ {(q, `, q′) | (q, `, q′) ∈ ∆} ≤ 1.

We overload the symbol of the transition relation to define the set enabled
actions in a state as ∆(q) = {` | q `−→ q′}, and the successors of a state as
∆(q, `) = {q′ | q `−→ q′}. For example, in the LTS M3, ∆(q0) = {a, b} and
∆(q0, a) = {q1}. Besides, when members of a tuple are not explicitly described we
assume them to be indexed by the name of the tuple. For instance, given an LTS
M we refer to its members as M = (QM ,ΣM ,∆M , qM0) with qM a state of QM .

3.3 Fluent linear temporal logic

Temporal logic [56] is one of the most commonly used formalism to express
properties about correctness of the execution of a system. This logic extends
propositional logic with modalities that permit to describe infinite behaviour that
a system must have. Temporal logics can be linear or branching, depending on how
time is modelled. From a linear-time perspective there is only one possible future,
while from a branching-time perspective multiple alternative futures may exist at
the same time. That is to say, branching logic can describe properties that may
only hold in some futures, while linear logic describes properties that must hold in
every possible future. This work uses an extension of Linear Temporal Logic
(LTL) [56], which is the logic that it is used to describe linear-time properties.

Fluent Linear Temporal Logic (FLTL) [57] is the language that we use for
describing properties. FLTL is a linear-time temporal logic for reasoning about
fluents instead of state-based propositions. A fluent Fl is defined by a pair of sets

3.4 LTS control synthesis 17

and a Boolean value: Fl = 〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the set of initiating
actions, TFl ⊆ Act is the set of terminating actions and IFl ∩ TFl = ∅. A fluent may
be initially true or false as indicated by InitFl. Every action ` ∈ Act induces a
fluent, namely ˙̀ = 〈`, Act \ {`}, false〉. The logic has the same expressiveness as
standard LTL. However, as fluents can be used to overlay state-based propositions
on an event-based model, FLTL allows to represent properties in a more compact
manner.

Let F be the set of all possible fluents over the observable actions Act. An
FLTL formula is defined inductively by using the standard Boolean connectives
and temporal operators X (next), U (strong until) as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

where Fl ∈ F , and ψ and ϕ are formulas FLTL. As well, we use the standard
operators ∧, ♦ (eventually), � (always), and W (weak until). FLTL formula
satisfaction is standard and it is computed over traces and fluents.

Let Π be the set of infinite traces over Act. The trace π = `0, `1, . . . satisfies
a fluent Fl at position i, denoted π, i |= Fl, if and only if one of the following
conditions holds:
- InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ `j /∈ TFl)
- ∃j ∈ N · (j ≤ i ∧ `j ∈ IFl) ∧ (∀k ∈ N · j < k ≤ i → `k /∈ TFl)
In other words, a fluent holds at position i if and only if it initially holds or some
initiating action has occurred, but no terminating action has yet occurred. We
denote that a possibly infinite trace π satisfies an FLTL formula ϕ for every
position i as π |= ϕ.

3.4 LTS control synthesis

The controller synthesis problem is the problem of automatically producing a
solution from a formal specification. The solution to this problem is called a
controller. The LTS control problem is an event-based control problem following
the world-machine model [58]. In LTS control problems, the formal specification of
the problem is decomposed into a description of the environment and a set of

18 Chapter 3. Background

functional goals [59]. The behaviour of the environment is described as an LTS (or
the composition of several LTSs), and the goals are expressed as FLTL formulas.
The environment describes when different actions can occur. The controller can
decide when to execute some of these actions, but cannot control when the other
actions happen. Thus, the actions Σ of the environment are partitioned into
controllable actions Σc and uncontrollable actions Σu (Σ = Σc ∪Σu ∧Σc ∩Σu = ∅).
When describing LTS models we may assume that this partition exists.

The controller is also modelled as an LTS that restricts the ocurrence of
controllable actions based on the observation of the events that have occurred. A
controller C is executed concurrently with the environment E. Since both of them
are LTSs, this is modelled by the parallel composition of LTSs (E‖C). To be a
solution, a controller must satisfy the following conditions. First, a controller must
ensure that the goals G are satisfied in every trace of its concurrent execution with
the environment. We denote that a controller satisfies the goals as E‖C |= G, which
means that every trace in the concurrent execution (∀π ∈ Tr(E‖C)) satisfies the
goals (π |= G). Second, a controller must not block the uncontrollable behaviour.
The notion of a controller that does not block uncontrollable actions is built on
the concept of the legal environment for Interface Automata [60]. Intuitively, a
controller C is a legal LTS for the environment E, when in every state (qE, qC) of
E‖C, an uncontrollable action is enabled in (qE, qC) iff it is also enabled in qE.
Third, the concurrent execution E‖C must be deadlock-free.

Definition 3.6 (LTS Control Problem) Given an LTS E = (QE,Σ,∆E, qE0),
a goal G expressed in FLTL, and a set of controllable actions Σc ⊆ Σ, the solution
to the control problem E = 〈E,G,Σc〉 is to find a deterministic LTS C = (QC ,Σ,
∆C , qC0) such that i) C is a legal LTS for E, ii) E‖C is deadlock free, and iii)
every infinite trace π in Tr(E‖C) satisfies G (π |= G).

Definition 3.7 (Legal LTS) Given an LTS E = (QE,Σ,∆E, qE0), an LTS C =
(QC ,Σ,∆C , qC0) and Σu ⊆ Σ, the LTS C is a legal LTS for E if ∀(qE, qC) ∈ QE‖C

holds that ∆E‖C((qE, qC))∩Σu = ∆E(qE)∩Σu, where QE‖C are the states of E‖C.

To distinguish between enabled controllable actions and enabled uncontrollable
actions we use the following notation.

3.5 Parametric timed automata 19

- Enabled Controllable Actions: ∆c(q) = ∆(q) ∩ Σc.

- Enabled Uncontrollable Actions: ∆u(q) = ∆(q) ∩ Σu.

3.5 Parametric timed automata

The formalisms mentioned above permit to describe properties about the behaviour
of a system. However, by using those formalisms it is not possible to describe
timing aspects. For instance, we are not able to model that an activity must finish
within sixty seconds. Timed automata (TA) [56] is typically the formalism that is
used to model the behaviour of time-critical systems. In fact, both LTS and TA
are types of transition systems. The main difference is that TA comes with a
finite set of clocks, which are real-valued variables. Note that this real-valued
variables are used to represent time. Thus, in the transitions, clocks can be reset
but cannot be assigned with a particular value. These clocks can be used to define
time conditions in the automata. Conditions can be used to express invariants in
the states or to describe guards in the transitions. That is to say, it permits to
model conditions that the clocks of the system must satisfy to stay in a state or to
transition from one state to another. For example, we could have a clock x1 to
measure when an activity is being performed. Then, we could use a state invariant
x1 ≤ 60 to model that the activity must leave a state within sixty seconds, or a
guard describing that some transition could only be taken within some time range
20 ≤ x1 ≤ 60. Automaton T1 of Figure 3.3 describes a timed automaton with some
of these conditions.

x1 ≤ 10 x1 ≤ 60

[x1 == 10]
a
{}

x2 ≤ 0

[20 <= x1 <= 60]
b

{x2}

[x2==0]
r

{x1}

T1 q0 q1

q2

Figure 3.3: General example of timed automata.

20 Chapter 3. Background

Definition 3.8 (Timed Automaton) A timed automaton (TA) is a tuple TA
= (Σ, Q,Q0, X,Qf , I,Θ) where

• Σ is a set of actions,

• Q is a set of states,

• Q0 ⊆ Q is a set of initial states,

• X is a finite set of clocks with domain R≥0,

• Qf ⊆ Q a set of final states

• I : Q→ XC(X) a state-invariant function, and

• Θ is a set of edges s.t. each edge is a tuple (q1, `, q2, λ, µ) ∈ Θ with q1 ∈ Q,
` ∈ Σ, q2 ∈ Q, a set of clocks to be reset λ ⊆ X, and a guard µ ∈ XC(X).

Conditions over clocks are usually referred as clock constraints. A valid clock
constraint over the set of clocks X is defined as follows:

xc ::= x < r | x ≤ r | x ≥ r | x > r | xc ∧ xc

where x ∈ X and r ∈ R≥0. We will refer to the set of clock constraints over a set
of clocks X as XC(X).

Timed automata is very powerful formalism to model time-critical systems, but
it requires to have the precise time constraints that the system must satisfy. In
this work, we are going to use time models to give a time semantic to models in
which the time constraints are not available upfront. Therefore, we are going to
use parametric timed automata (PTA) [25] to give a time semantic to LTS models.
Parametric timed automata is an extension of timed automata in which clock
constraints can be also defined over a finite set of parameters P with domain R≥0.
For instance, we would be able to express that an activity must finish within
time p, where p could be any real value. This is essential for us to model that an
activity may take some time in an abstract way. Similarly to PTA, a valid clock
constraint over the set of clocks X and parameters P is defined as follows:

xc ::= x < r | x ≤ r | x ≥ r | x > r | x < p | x ≤ p | x ≥ p | x > p | xc ∧ xc

3.5 Parametric timed automata 21

where x ∈ X, p ∈ P and r ∈ R≥0. We will refer to the set of clock constraints over
a set of clocks X as XC(X,P).

Definition 3.9 (Parametric Timed Automaton) A parametric timed automa-
ton (PTA) is a tuple H = (Σ, Q,Q0, X, P,Qf , I,Θ) where

• Σ is a set of actions,

• Q is a set of states,

• Q0 ⊆ Q is a set of initial states,

• X is a finite set of clocks with domain R≥0,

• P is a finite set of parameters with domain R≥0,

• Qf ⊆ Q a set of final states,

• I : Q→ XC(X,P) a state-invariant function, and

• Θ is a set of edges s.t. each edge is a tuple (q1, `, q2, λ, µ) ∈ Θ with q1 ∈ Q,
` ∈ Σ, q2 ∈ Q, a set of clocks to be reset λ ⊆ X, and a guard µ ∈ XC(X,P).

x1 ≤ p1 x1 ≤ p2

[x1 == p1]
a
{}

x2 ≤ 0

[p3 <= x1 <= p2]
b

{x2}

[x2==0]
r

{x1}

Γ(H1) = p1 <= p2 ∧ p3 <= p2

H1 q0 q1

q2

Figure 3.4: General examples of Parametric Timed Automata. Γ(H1) describes the
conditions that parameters {p1, p2, p3} of H1 need to satisfy to reach a final state.

The parameters in PTA can be instantiated into constant real-values. This
means that every time that a parameter p appears in a guard or an invariant, the
parameter is replaced by a constant real value r. A parameter valuation γ for

22 Chapter 3. Background

a set of parameters P is function γ : P → R≥0 that assigns to each parameter
p ∈ P a constant real-value γ(p). Given a parameter valuation γ and a PTA, we
can obtain a TA by replacing the parameters with the constant real-values that
are defined by γ. However, some parameter valuations might fix the guards and
invariants with values that make impossible to take some transitions. For instance,
if the invariant of the state becomes x1 ≤ 60 and the guard of the only outgoing
transition becomes x1 ≥ 100. In this case, the invariant and the guard will never
be valid at the same time. Thus, it is not possible to continue progressing from
that state. When many transitions become invalid, there might not be a path that
reaches a final state from the initial state. Then, the TA obtained may become
invalid as a whole, since it is not describing any accepted behaviour. Figure 3.4
shows a parametric timed automaton H1 that is similar to the timed automaton T1

but with some parameters instead of constant numbers in the conditions. In this
example, if parameter p3 becomes 100, parameter p2 becomes 60 and parameter p1

becomes 10, the final state is not reachable. Thus, the parameters must satisfy
certain conditions to reach a final state.

x1 ≤ 10 x1 ≤ 60

[x1 == 10]
a
{}

x2 ≤ 0

[20 <= x1 <= 60]
b

{x2}

[x2==0]
r

{x1}

γ1(H1)

q0 q1

q2

γ1 = [p1⟵10,	p2⟵60,	p3⟵20]

x1 ≤ 10 x1 ≤ 60

[x1 == 10]
a
{}

x2 ≤ 0

[100 <= x1 <= 60]
b

{x2}

[x2==0]
r

{x1}

γ2(H1)

q0 q1

q2

γ2 = [p1⟵10,	p2⟵60,	p3⟵100]

Figure 3.5: Timed automatons obtained by replacing the parameters of H1 with
the values indicated in each parameter valuation.

The assignment of values to the parameters is formalised as a parameter
valuation. A parameter valuation is consistent with a PTA, if there exists at
least one path that reaches a final state in the TA obtained from replacing the
parameters with the constant values. In other words, the TA obtained describes a

3.6 Satisfiability modulo theories 23

non-empty language. We denote a parameter valuation γ, i.e., an assignment of
real values (r1, . . . , rn) ∈ R|P |≥0 to the parameters (p1, . . . , pn) ∈ P , that is consistent
with a PTA H as γ H, or simply (r1, . . . , rn) H. The set of parameter
valuations that is consistent with a PTA H is denoted in the literature as Γ(H) [25].
Γ(H) is a set of constraints that a parameter valuation must satisfy to produce a
valid TA from a given PTA. Γ(H) can be expressed as a symbolic expression, which
can be calculated by performing a fixed point iteration algorithm [26]. For instance,
in the example of Figure 3.4, Γ(H1) is defined as Γ(H1) = p1 ≤ p2 ∧ p3 ≤ p2. Also
note that by applying the parameter valuation γ1 = [p1 ← 10, p2 ← 60, p3 ← 20]
to H1 we obtain a timed automaton like T1 from Figure 3.3. We denote it as
γ1(H1). As mentioned above, given a valuation γ2 = [p1 ← 10, p2 ← 60, p3 ← 100],
we obtain a timed automaton γ2(H1), in which there is no trace that reaches a
final state. Figure 3.5 shows these two timed automaton. The transition shown in
gray cannot be traversed because no clocks would satisfy that condition.

In general, computing Γ is undecidable, if there are more than three clocks in
PTAs with cycles [25]. However, this work focuses on PTAs that do not have
cycles, in which the symbolic procedure finishes [61]. In Chapter 7 we show the
details to calculate Γ(H) for the type of PTAs involved in this work.

3.6 Satisfiability modulo theories

The Boolean satisfiability problem (SAT) [62] is the problem of determining if
a propositional boolean formula can be satisfiable or not. That is, to find an
assignment of values (True or False) to the propositions of the formula that makes
the formula be True. If such assignment exists, then the formula is satisfiable.
For instance, the formula p ∨ q is satisfiable because the assignment p = True

and q = False makes p ∨ q = True. However, the formula p ∧ ¬p is unsatisfiable
because there is no possible assignment that makes this formula evaluate to True.

In the same vein, the satisfiability modulo theories (SMT) [27] problem is a
decision problem for logical formulas of theories expressed in first order logic with
equality. SMT formulas are more expressive than the ones of SAT. Among the
supported theories are the theory of integers, the theory of real numbers, the
theory of lists, the theory of arrays and theories of many other data structures. In

24 Chapter 3. Background

this work, we use SMT for solving decidability problems of the theory of real
numbers. For instance, the formula p1 > p2 ∧ p1 ≥ 0 ∧ p2 ≥ 0 is satisfiable because
there exists at least a pair of values p1 = 60 and p2 = 20 that evaluates the formula
to True. This are the type of formulas (or expressions) that are produced by
Γ. Checking whether these expressions are satisfiable or not is central to our
approach.

25

4
Industrial Automation Example

Assume an industrial automation setting, in which different product types are to be
produced through a variety of processing activities according to given constraints.
For simplicity, we assume that there are two product types. The machine has an
inner tray where the raw elements of the products can be placed. The products
have to be processed by using different tools that are available in the machine.
Figure 4.1 shows a high level illustration of the configuration of the environment.

Figure 4.2 describes the list of requirements that the machine needs to satisfy
to produce a product by using different tools. Some of the requirements are
general, while others are specific to the product type to be processed.

According to the description from Figure 4.2, there are some tasks or activities
that need to be performed to produce a product. First, the machine transforms
the input-raw elements into processed elements by using some of the tools. Second,
it checks that the processed elements fulfill the quality requirements by using a QA
Checker. Third, if the quality of the product is not right, the machine repairs the
products by using a Repairing Tool. Finally, it places the processed and quality

26 Chapter 4. Industrial Automation Example

Tool 1 Tool 2 Tool 3 QA
Checker

Repairing
Tool

Machine

Raw T1
Elements

Raw T2
Elements In-tray Out-tray

Processed
T1 Elements

Processed
T2 Elements

Figure 4.1: Illustration of an industrial automation plant with five tools and two
types of input products to be processed.

General requirements:

1. Check the quality of a product before placing it in the output tray.

2. If the processed product does not pass the quality check, use the repairing
tool to meet the quality requirements.

3. Emit a signal when the product is placed in the output tray.

4. Warning! Never start the tool 2 while the tool 1 is being used because it
may produce a power outage.

5. Process one product at a time.

Product type specific requirements:

Type 1: Use the tool 3 to process them.

Type 2: Use the tool 1 and tool 2 to process them.
The tools can be applied in any order.

Figure 4.2: Requirements of the industrial automation example in natural language.

assured elements into the out-tray. The machine can process one element at a
time, and it needs to use different tools depending on the product type.

Figure 4.3 shows an illustration of the activities that have to be done to process
a product. The restrictions about when the tools cannot be used at the same time
are not shown in this diagram. According to the requirements, there are three

27

Use
Tool 3

Use
Tool 1

Use
Tool 2

Check
Quality

Repair
Product

Input
Raw

Element

Output
Processed
Element

T1

T2

Ok

Fail

Figure 4.3: Diagram describing the activities that must be performed to process a
product depending on the input type.

alternatives for using the tools on products of type 2, which are shown in Figure 4.4.
All of these alternatives satisfy the requirements. However, Alternative 1 seems to
be preferable from a time perspective because it uses the tools simultaneously.
This may save time in processing a product regardless the time it takes to use each
of the tools. The main goal of this work is to find a way to express preference for
solutions that may save execution time in a qualitative manner, i.e., without using
numbers to represent the durations of the activities. We believe that it is possible
to produce a comparison framework that can show that solutions like Alternative 1
always have lower-makespan than Alternative 2 or Alternative 3. Besides, we aim
to produce synthesis algorithms that avoid sequential solutions like the ones show
here, when concurrent alternatives are available.

28 Chapter 4. Industrial Automation Example

Use
Tool 1

Use
Tool 2

Use
Tool 1

Use
Tool 2

Use
Tool 2

Use
Tool 1

(Start tool 1 first, then use
tool 2 simultaneously)

Alternative 1 Alternative 2 Alternative 3

Figure 4.4: Alternatives for using the tools on products of type two.

29

5
A Qualitative Approach for Makespan

In this chapter we define the proposed approach from a high level perspective.
Section 5.1 presents the two main problems that we aim to solve and the role that
activities play in them. Section 5.2 defines the concept of makespan in qualitative
problems with safety and reachability goals. Section 5.3 defines how to measure
and Section 5.4 how to compare makespan of controllers. Section 5.5 defines
how to deal with contigencies when comparing makespan. Section 5.6 defines
makespan-minimising controllers, which are the type of controllers that we would
like to generate. Section 5.7 introduces the main idea of the proposed algorithm to
obtain a makespan-minimising controller. The details will be described in the
following chapters.

5.1 The main parts of the problem

Our goal is to produce a framework to generate controllers that are preferable
regarding a qualitative metric. The metric chosen in this work is makespan,

30 Chapter 5. A Qualitative Approach for Makespan

which is explained in the next section. Thus, one of the problems we aim to
solve is How to synthesise lower-makespan controllers?. Typically, the inputs of a
control problem are a description of the environment, a set of system goals and
the actions that can be controlled. The Controller Synthesiser from Figure 5.1
illustrates this case. We propose to add extra information to the control problem
to define algorithms that use this information to give more preferable controllers
regarding makespan. This is illustrated in the second Controller Synthesiser* of
the same figure. In this approach, we relieve the user from providing quantitative
estimations, but require additional qualitative description of the environment.
This description is the activities definition, which is simply a description of the
actions that are related in the environment. Details about activities are described
in Section 5.3. In our approach, Activities definition must be specified at design
time, because they are used to synthesise the controller.

Enviroment

Goals

Controllable
Actions

Activities
Definition

Controller
Synthesiser

Controller
Synthesiser*

Enviroment

Goals

Controllable
Actions

Controller

Controller*

Result
How to synthesise lower-makespan controllers?

How to compare makespan of controllers?

Activities
Definition

Enviroment

Goals

Controllable
Actions

Comparison
Framework

Figure 5.1: Two main problems and its different components.

Activities definition play also an important role in the other part of the

5.2 Defining makespan 31

problem, which is how to compare makespan of controllers? (qualitatively). The
problem is to determine if any of the two controllers has lower-makespan than the
other. This is also illustrated in Figure 5.1 as input of the comparison framework.
Here activities are used to provide a timed semantics to controllers, which is
defined as a parametric timed automata. By modelling activities, we can define a
way to compare controllers qualitatively. Besides, activities are also used when
defining schedulers, which are used to model different behaviour of the environment
regarding contingencies. Details about this is described in Section 5.5.

5.2 Defining makespan

This research focuses on controllers with safety and reachability goals. Safety
goals are used to define behaviour that should always be satisfied. It can be
used to model bad behaviour that we want to avoid or to ensure some good
behaviour throughout the whole execution. Reachability goals are typically used
to model good behaviour that we want to achieve. Reachability goals can be
seen as missions that must be accomplished. The satisfaction of the goals is
evaluated when executing the controller with its environment. Figure 5.2 shows the
satisfaction of these formulas over traces of the the E‖C. Note that a controller
must continue ensuring the safety S proposition after reaching a state that makes
the proposition P become True.

Safety S

Reachability P

¬P ¬P P P ∨ ¬P

S S S S

Figure 5.2: Satisfaction of safety (�S) and reachability (♦P) goals over traces.

We define the goal states as those in which the reachability goal becomes
accomplished, i.e., the mission is achieved. In Figure 5.2, the goal state is denoted

32 Chapter 5. A Qualitative Approach for Makespan

with double-lined circle. Achieving a reachability goal in the minimum time
possible is a preference that is often desired. Thus, we define makespan as our
metric to evaluate the quality of a controller. Makespan measures the time that
elapses from the start of a task to the end. In our approach, makespan is measured
from the initial state to the goal states. After reaching a goal state, a controller
may do the minimum actions to keep itself safe, or it could continue to do other
safe activities. The only condition after reaching a goal state is to respect the safety
goals. This type of controllers is of interest in environments where a new mission
can be assigned by updating the system with a new controller [17]. For example,
a robot that is deployed in another planet and receives missions periodically.
Figure 5.3 shows an abstract representation of how a safety and reachability
controller would look like. In the following chapters, we will often illustrate the
controllers only from initial state to goal states, because those are states considered
when measuring makespan.

Initial
State Goal States

Makespan

Figure 5.3: Abstract illustration of a controller for safety and reachability.
Makespan is measured from the initial state to the goal states. Actions are omitted.

5.3 Measuring makespan 33

5.3 Measuring makespan

Makespan tends to be considered as a quantitate measure. Quantitative algorithms
for makespan can produce optimal solutions when precise quantitative models are
available. However, quantitative information are not always available or precise
enough to be modelled. For instance, not always the duration of the activities
are known in advance. In those cases, avoiding quantitative modelling may be
desirable, because using quantitative algorithms on those models may produce
solutions that are over-fitted to inaccurate numbers. For example, Figure 5.4
shows an abstract example of calculation of the average duration on a graph that
has all the possible alternatives to reach goal states. A quantitative approach
would choose a solution like Option 1 because the value that represents makespan
is lower than that of Option 2. However, if the estimation of those values were
inaccurate we would be discarding the Option 2 arbitrarily.

Initial
State

Goal
States

Makespan

6

4

8

7
Option 2
Makespan: 7

Option 1
Makespan: 6Graph with all

alternatives

Figure 5.4: Illustrative example of using numbers to measure makespan. Numbers
represent average duration to reach goal states. Actions are omitted.

In our approach, we define a qualitative way to compare controllers. This
approach requires engineers to annotate the control problems with activities
definition, which aggregate actions that are implicitly related. For instance, the
action of start doing something and finishing doing something can be modelled
as a doing something activity. This means that our method does not require
estimating numbers that represent durations, but making the implicit relation
between the actions become explicit as activities.

34 Chapter 5. A Qualitative Approach for Makespan

The way in which we measure makespan is similar to a logical description of
the behaviour of the controllers regarding activities. For instance, the makespan of
a controller is the time it takes the activity doing something plus that of activity
moving somewhere. In more complex scenarios, the description would also have
disjunctions depending on contingencies. For example, if the robot is in the
right location the makespan of the controller is the time takes doing something,
otherwise it is the time it takes moving to location plus that of doing something.

Timed
Semantics of
Controller 2

Qualitative
Makespan of
Controller 2

Qualitative
Controller 2

Labelled Transition
Systems

Parametric Timed
Automata

Qualitative
Controller 1

Timed
Semantics of
Controller 1

Qualitative
Makespan of
Controller 1

Satisfiability
Modulo Theories

Measuring qualitative makespan of controllers

Comparing qualitative makespan of controllers

Symbolic
Expressions

Enviroment
Activity

Definitions Goals
Controllable

Actions

Comparison Framework Result of Comparison

Symbolic
Expressions
Comparator

C1 dominates C2

C2 dominates C1

Equivalent

Incomparable

Figure 5.5: Formalisms that are used in each step of the transformation to solve
the problem of measuring qualitative makespan and comparing it.

This is formalised by defining a timed semantics for LTS controllers with
activities definition by using parametric timed automata. Activities are used to
define symbols (clocks and parameters) of a PTA, which is the timed semantics
of a controller. Then, we obtain a logical expression from the PTA, which is
defined in terms of these symbols. This expression is the qualitative makespan of a
controller based on activities definition. Figure 5.5 illustrates the process of this
transformation. As we can observe in this figure, the next issue to address is how
to compare qualitative makespan of two different controllers.

5.4 Comparing makespan 35

5.4 Comparing makespan

Given a qualitative control problem, there are different solutions (or controllers)
that can be obtained by using different synthesis algorithms. In a quantitative
approach, it would be easy to compare them by using average-case or worst-case
makespan. In our qualitative approach, we need to define how to compare
qualitative makespan of controllers, because they are logical expressions with
parameters that represent activities durations, for which it is not defined how
to compare them. Our goal is to establish a comparison relation between these
expressions. For instance, it seems that doing something takes longer than moving
to location plus doing something, but we need to formally show that.

To establish the relation between the qualitative makespan of two controllers,
we are going to perform two comparisons, we are going to check if one controller
can have a behaviour of higher makespan than the other, and the reverse. In
Figure 5.5 this is modelled by the Symblic Expressions Comparator. Checking
for a behaviour of higher makespan means to find a case in which the controller
performs worse than the other. After checking that in both directions, the defined
comparison produces one out of the four possible results, which are also shown in
the same figure: C1 dominates C2, C2 dominates C1, equivalent or incomparable.
A controller dominates the other, if it always behaves better or the same with the
other. The details about how to measure and compare makespan are explained in
Chapter 7.

5.5 Dealing with contingencies

The problems that are considered in this work are reactive, which means that the
behaviour of the environment is not always the same. The reactiveness of the
environment is modelled with uncontrollable actions. The controller cannot choose
which or when uncontrollable actions happen. Instead, the environment chooses
during the execution of the controller. It would be unfair to compare controllers
assuming different behaviour of the environment. Thus, the comparison defined
here fixes the behaviour of the environment and then compares the controllers
under the same conditions.

36 Chapter 5. A Qualitative Approach for Makespan

C2 dominates C1

C1 is better C2 is better Equivalent Incomp.

0 > 1 >= 0 0

C1 dominates C2

C1 is better C2 is better Equivalent Incomp.

> 1 0 >= 0 0

Equivalent

C1 is better C2 is better Equivalent Incomp.

0 0 k 0

Incomparable

C1 is better C2 is better Equivalent Incomp.

>= 0 >= 0 >= 0 > 1

> 1 > 1 >= 0 >= 0

Aggregate Results

Timed
Semantics of
Controller 2

Qualitative
Makespan of
Controller 2

Qualitative
Controller 2

Timed
Semantics of
Controller 1

Qualitative
Makespan of
Controller 1

Qualitative
Controller 1

SMT
Solver

C1 is better

C2 is better

Equivalent

Incomparable

Environment behaviour 1

Result under behaviour 1

Timed
Semantics of
Controller 2

Qualitative
Makespan of
Controller 2

Qualitative
Controller 2

Timed
Semantics of
Controller 1

Qualitative
Makespan of
Controller 1

Qualitative
Controller 1

SMT
Solver

C1 is better

C2 is better

Equivalent

Incomparable

Environment behaviour 2

Result under behaviour 2

Timed
Semantics of
Controller 2

Qualitative
Makespan of
Controller 2

Qualitative
Controller 2

Timed
Semantics of
Controller 1

Qualitative
Makespan of
Controller 1

Qualitative
Controller 1

SMT
Solver

C1 is better

C2 is better

Equivalent

Incomparable

Environment behaviour k

Result under behaviour k

Figure 5.6: Comparison of two controllers under different environment behaviour
during the execution.

5.6 Makespan-minimising controllers 37

Figure 5.6 illustrates the multiple comparisons that are needed to establish a
relation between two controllers. Each of the comparisons considers a different
behaviour of the environment. Also note that we use the word "dominates" because
a controller dominates another controller only if the controller is always better than
or equivalent to the other controller under any fixed behaviour of the environment.
The term dominance is used in game theory to refer to strategies that provide
greater utility to a player, regardless of what the other player does. In our case,
the utility is to have lower makespan, and the other player is the environment,
who can choose which and when to execute an uncontrollable action. The bottom
of Figure 5.6 shows how different behaviours of the environment are aggregated
to produce the final result of the comparison. Two controllers are equivalent
if their makespan is always equivalent, and they are incomparable if there are
cases in which one is better and cases in which the other one is better, or if
there is a case in which their makespan is incomparable by itself. This could
happen if two controllers perform different activities under the same behaviour
of the environment. Section 7.1 formalizes how the different behaviours of the
environment are modelled.

5.6 Makespan-minimising controllers

A makespan-minimising controller is our definition of a good controller. This
concept is defined by using the qualitative comparison of makespan between
controllers. A controller is makespan-minimising if it is not dominated by any
other controller. In other words, there cannot be another controller that performs
better than a makespan-minimising controller in every case.

Figure 5.7 illustrates the possible relations between a makespan-minimising
controller and other controllers. A makespan minimising controller can dominate
another controller, can be incomparable with other controller, or can be equivalent
to other controller, which also implies that there could be more than one.
Makespan-minimising controller is formalised in Section 8.1.

38 Chapter 5. A Qualitative Approach for Makespan

Makespan
Minimasing
Controller

Controller 1

Controller N

Controller 2

MMC dominates C2

equivalent

incomparable

Figure 5.7: Possible relations between a makespan-minimising controller and other
controllers.

5.7 Obtaining makespan-minimising controllers

To obtain a makespan-minimising controller we proposed an algorithm that takes
as input a control problem (environment, controllable actions and goals) and
the activities definition. This means that the only extra requirement to use this
algorithm is to make explicit the activities definition. The idea of the algorithm is
to first obtain a solution that contains all the possible alternatives to reach a
goal. This is typically referred as universal controller. Then, the algorithm prunes
transitions that lead to executions that are always worse than some of the other
alternatives. To do that, it also uses the qualitative comparison of makespan
between controllers.

Figure 5.8 illustrates the process of synthesising a controller with our approach.
As mentioned above, the inputs of the algorithm are the input of the standard
synthesis algorithm and the set of activity definitions. The activity definitions
are necessary because the algorithm uses the comparison framework to prune
transitions from a universal controller. The comparison framework requires activity
definitions to be defined to give a timed semantics to the controller. The details of
the algorithm are presented in Section 8.2.

5.7 Obtaining makespan-minimising controllers 39

Activities
Definition

Universal
Controller

Synthesiser
Enviroment

Goals

Controllable
Actions

Universal
Controller

Comparison
Framework

Controller Synthesiser*

Prunining
Transitions
Algoritm

Controller*

Figure 5.8: Proposed approach to synthesis a makespan-minimising controller.

41

6
Control Problems with Activities

This chapter introduces the control problem with activities. Section 6.1 models
the industrial example from Chapter 4 as a control problem. Then, it shows
alternative controllers to the same problem, and the limitations of standard
qualitative synthesis techniques to express preferences. Section 6.2 describes how
to interpret the passage of time in LTS Control. Section 6.3 shows how to model
activities that take time in LTS. Finally, Section 6.4 introduces the formalization
of the control problem with activities.

6.1 Industrial example as a control problem

The specification of the control problem is given as a set of LTSs describing the
behaviour of the environment (Figure 6.1) and a set of FLTL formulas describing
production constraints (Figure 6.2). In Figure 6.1, the environment is specified
as several components, and it is the parallel composition of all of them (E =
Process1‖Process2‖Process3‖Choice‖QA‖RepairProcess). Processi models the

42 Chapter 6. Control Problems with Activities

use of a a tool i ∈ {1, 2, 3} to process a raw element and it is described with the
index i for conciseness. Solid lines (→) denote controllable transitions, and dashed
lines (99K) denotes uncontrollable transitions. For instance, the action that starts
a tool (e.g.: sA1) is controllable, and the action that determines the product type
is uncontrollable (type1 and type2). This means that the machine does not control
the input type nor when the tools finish processing a raw element.

0 1

ChoiceProcessi

eAi

sAi
checkQA

0 1

QA

okQA

failQA

0 1

RepairProcess

sfix

efix
0

2done

done

type1

1

type2

Figure 6.1: LTS components describing the behaviour of the of the environment
E = Process1‖Process2‖Process3‖Choice‖QA‖RepairProcess.

As mentioned above, formulas in Figure 6.2 describe the production constraints.
Type T1 products require using the tool 3 (activity A3), while T2 type products
require using the tool 1 and 2 (activity A1 and A2). After finishing the required
activities, products must undergo a quality check (R1). When the quality check
fails, it is required to do a repair activity (R2). Once the product has passed the
quality requirements, it is signalled with the action done (R3). Additionally, for
safety reasons, A2 cannot be started while A1 is ongoing (R4). The goal is to
produce one product of the required type (♦ ˙done) while always satisfying the
production constraints (�(R1 ∧R2 ∧R3 ∧R4)).

R1) ˙checkQA =⇒ ((TC1 ∧ AC3) ∨ (TC2 ∧ AC1 ∧ AC2))
R2) ˙sfix =⇒ QAFailed
R3) ˙done =⇒ QAChecked
R4) ˙sA2 =⇒ ¬OngoingA1

Figure 6.2: Production constraints described in FLTL.

The formulas described in Figure 6.2 are combinations of the fluents described
in Figure 6.3 and fluents ˙̀ induced by an action `. Fluents TCi and ACi are
described with the index i for brevity. TCi denotes the product type choice while

6.1 Industrial example as a control problem 43

ACi denotes that the activity Ai has finished. QAChecked holds, when a product
satisfies the quality requirements. QAFailed holds when the quality check fails
but the product is not repaired yet. OngoingA1 is a fluent that holds when A1 has
started (sA1) but not ended yet (eA1).

a) TCi = 〈{typei}, {done}, false〉
b) ACi = 〈{eAi}, {done}, false〉
c) QAChecked = 〈{okQA, efix}, {type1, type2}, false〉
d) QAFailed = 〈{failQA}, {efix}, false〉
e) OngoingA1 = 〈{sA1}, {eA1}, false〉

Figure 6.3: Fluent definitions used to describe the formulas of Figure 6.2.

The synthesis problem is to build a controller that satisfies production
requirements by controlling processing activities, while the choice of product type
and the result of the quality check are unknown in advance. Various solutions
to this problem exist, and current synthesis techniques are likely to yield the
controller C2 of Figure 6.4; whereas the controller C1 in the same figure is another
valid solution.

type1

type2

sA3 checkQA

failQA

sfix

done

done

type1

type2
done

C1

C2

okQA

done

eA3
eA2

efix

failQA

checkQA okQA

sA2

sA1

eA1 eA2

eA1

efixsfix

eA2
sA1

sA1 eA1
sA2

eA2

eA3sA3

Figure 6.4: Possible controllers for the same problem.

Regarding makespan, C1 seems to be better than C2. It is because, for products
of type T2, C1 will always try to run the two activities concurrently, while C2 will

44 Chapter 6. Control Problems with Activities

perform them sequentially. Intuitively, from a time point of view, C1 will perform
as well as or better than C2 for any fixed choice of the environment (the type of
product to be built and the result of the quality check).

6.2 Understanding time in LTS control

In LTS models, time passes only on states, and transitions change states instanta-
neously. In general, the amount of time that passes between two different actions
is unknown. The standard way of modelling the passing of time in LTS is to
incorporate actions that represent the start and the end of activities which take
time. This is the approach we adopt. We assume that all activities that have
duration will be modelled with start and end actions.

Another aspect to analyse is the behaviour of a controller when is concurrently
executed with the environment. We assume that a controller is proactive. That
means that the controller is always ready to take a controllable transition as soon
as a controllable transition becomes enabled. Thus, states in which there is at
least one outgoing controllable transition (∆c(q) 6= ∅) are considered to be the
ones in which time does not pass. Such states are called transient states [63]. Note
that it does not mean that the controller is faster than the environment. In states
in which both controllable and uncontrollable actions are enabled, any of the
enabled actions may occur. No matter which of them occur first, we understand
that no time has passed in those states. In Figure 6.4, the transient states are
denoted in white color, while the non-transient are shown in grey color.

6.3 Modelling activities in LTSs

To formally specify the activities in our models, we require an LTSs to be annotated
with an activities definition AD = (A, Start, Ends). A is a set of symbols that
represent each activity α uniquely. The function Start : A → Σc defines the
controllable action that starts an activity. The function Ends : A → 2Σu defines
the uncontrollable actions that determine the end of an activity. These two
functions must be defined for each activity α ∈ A. An action can be related to at

6.3 Modelling activities in LTSs 45

most one activity. Table 6.1 illustrates the activities definition of the industrial
example.

Definition 6.1 (Activities Definition) Given an LTS M = (Q,Σ,∆, q0) with
Σ = Σc ∪ Σu, an activities definition AD = (A, Start, Ends) for M is defined by

• A a set of symbols,

• Start : A → Σc a function defining the starting actions of the activities, and

• Ends : A → 2Σu a function defining the ending actions of the activities,

where ∀α ∈ A Start(α) ∈ Σc ∧ Ends(α) 6= ∅ ∧ ∀α′ ∈ A α 6= α′ =⇒ Start(α) 6=
Start(α′) ∧ Ends(α) ∩ Ends(α′) = ∅.

Activity (A) Start Ends
Activity 1 (A1) sA1 eA1

Activity 2 (A2) sA2 eA2

Activity 3 (A3) sA3 eA3

Repair (Fix) sfix efix

Table 6.1: Activities definition for the industrial automation example.

An LTS M must fulfill certain conditions to be activity compatible with an
activities definition AD. First, all paths that lead to a state must have the same
set of running activities. We say that an activity α ∈ A is running in a state if the
activity has being started but not ended at the given state. For example, in a state
qm that is reached by the trace type2, sA1 , sA2 the running activities are A1 and A2

(ζ(qm) = {A1, A2}). Second, when an activity α is running in a state qm, the set of
ending actions must be enabled (Ends(qm) ⊆ ∆(qm)), and also the starting action
must be disabled (Start(qm) 6∈ ∆(qm)). This means that an activity cannot be
started again while it is running. If we do not impose these restrictions, models
with a trace like sA1 ,sA1 ,eA1 ,eA1would be possible. In this trace, it is not possible
to know which is the corresponding end of activity of each of the starts of activity.

Definition 6.2 (Running Activity) Given a finite path η ∈ Paths(M) of an LTS
M = (Q,Σ,∆, q0) and an activity α ∈ A defined in AD = (A, Start, Ends), we say

46 Chapter 6. Control Problems with Activities

that α is a running activity in the state qm, according to the path η = q0
`1−→ . . .

`k−→
. . .

`i−→ . . .
`m−→ qm, if ∃k ≤ m s.t. `k = Start(α) and ∀k < i ≤ m `i 6∈ Ends(α).

We use ξ(η) to denote the set of running activities according to a path and we use
ζ(qm) = ⋃

η∈Paths(M,qm) ξ(η) to denote the set of running activities in a state.

Definition 6.3 (Activity Compatible) An LTS M = (Q,Σ,∆, q0) is activity
compatible with an activity definition AD = (A, Start, Ends) if ∀q ∈ Q and
∀α ∈ A the following holds:

1. ∀η ∈ Paths(M, q) ξ(η) = ζ(q)

2. α ∈ ζ(q)⇔ Ends(α) ⊆ ∆(q)

3. Start(α) ∈ ∆(q)⇒ α 6∈ ζ(q)

6.4 Defining control problem with activities

We restrict attention to goals of the form G = �S∧♦P , where S (safety goals) and
P (reachability goals) are propositional FLTL formulas. A solution to problems
with this type of goals must ensure that i) every infinite path of E‖C satisfies the
safety formula S, and ii) that it is always possible to reach a state in which the
propositional formula P becomes True from the initial state. Recall Figure 5.2 to
observe how satisfaction over traces is defined. Similarly to Definition 3.6, we
define a control problem with activities as an LTS control problem in which the
LTS environment is activity compatible with an activity definitions, and the goals
are safety and reachability goals.

Definition 6.4 (Control Problem with Activities) Given an activity definitions
AD = (A, Start, Ends), an LTS E = (QE,Σ,∆E, qE0) that is activity compatible
with AD, a safety and reachability goal G = �S ∧ ♦P expressed in FLTL,
and a set of controllable actions Σc ⊆ Σ, the solution to the control problem
E = 〈E,AD, G,Σc〉 is a deterministic LTS C = (QC ,Σ,∆C , qC0) such that i) C is
a legal environment for E, ii) E‖C is deadlock free, and iii) every infinite trace π
in Tr(E‖C) satisfies G (π |= G).

6.4 Defining control problem with activities 47

We distinguish the states in which the proposition P is satisfied for the first
time as the goal states. These states are a subset of the states of the controller
executed in parallel with the environment E‖C, because the satisfaction of the
goals is evaluated on the traces of this LTS. The goal states QG are those in QE‖C

that can be reached through a path from the initial state that does not contain
another state satisfying the reachability property.

Definition 6.5 (Goal States) Given a control problem with activities E =
〈E,AD, G,Σc〉 and a controller C that is solution to the control problem E,
we define the goal states QG as those states qG ∈ QE‖C where ∃q0

`1−→ . . .
`m−→

qm
`G−→ qG ∈ Paths(E‖C, qG) such that `1 . . . `m 6|= G and `1 . . . `m, `G |= G.

In controller synthesis problems with reachability goals, algorithms that produce
memoryless solutions have linear complexity in the size of the problem [64]. These
controllers are a sub-graph of the LTS defined by the parallel composition of
the environment with the LTSs that represent the fluents used to describe the
goals (E‖Mfl1‖ . . . ‖Mflk). From a game-theoretical perspective, this composition
represents the arena of the game between the environment and the controller.
Furthermore, universal controllers [65] are those that subsume any other memoryless
controller [66]. If we restrict attention to the sub-graph resulting from removing
all outgoing transitions from goal states, universal controllers have the form of
directed acyclic graphs (DAG). This observation is important because some of the
algorithms presented in this thesis assume an acyclic graph.

Definition 6.6 (Universal Controller) Given a control problem with activities
E = 〈E,AD, G,Σc〉, a universal controller U = (QU ,ΣU ,∆U , qU0) for E is a solution
that subsumes every memoryless controller C = (QC ,ΣC ,∆C , qC0) that is solution
for E (QC ⊆ QU ∧ ∀q ∈ QC ∆C(q) ⊆ ∆U(q)).

Figure 6.5 shows the universal controller for the industrial example. We can
observe that the universal controller subsumes the controllers shown in Figure 6.4.
States q0, q1, q2, q3, q4, q6, q8, q9, q10, q11, q12, q13, q14, q15, q16, q17 are the ones
that subsume the controller C1, while q0, q1, q2, q3, q5, q7, q10, q11, q12, q13, q14,
q15, q16, q17 subsume the controller C2.

48 Chapter 6. Control Problems with Activities

0

1

3

type1

type2

4

8

2
sA3

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

5

7

U

9

10

15
okQAeA3

eA2

efixsA2

sA1

eA1 eA2

eA1

eA2
sA1

eA1

sA2

sA1

Figure 6.5: Universal controller for the industrial example.

49

7
A Qualitative Comparison Framework

This chapter focuses on how to compare solutions of a control problem with
activities. We first formalise how to deal with contingencies by using schedulers
(Section 7.1). Then, we give a timed semantics to LTSs based on PTA (Section 7.2)
and show how to obtain a symbolic expression that represents the makespan of a
controller using that PTA (Section 7.3). The parameters of the PTA stand for
activity duration as well as a parameter representing the end-to-end makespan. By
using parameters, we model that time durations are unknown a priori. Then, we
define how to compare a pair of controllers by comparing their symbolic expressions
(Section 7.4). Finally, we discuss the usage of real numbers to model the duration
of activities that may not finish (Section 7.5).

7.1 Comparing under the same contingencies

When comparing controllers, we should pay attention to how uncontrollable
behaviour occurs. For instance, let us consider the following unfair comparison

50 Chapter 7. A Qualitative Comparison Framework

between the two controllers mentioned in Section 6.1. On the one hand, controller
C1 requires the final repair while constructing a product of type T1. On the other
hand, controller C2 does not require the repair while building a product of type T2.
This comparison could suggest that controller C2 has a lower makespan, but the
conclusion is obviously flawed because the contingencies of which type of product
is built and whether a repair is required or not do not depend on the controller
itself and should not affect the comparison. Therefore, contingency scenarios
should be consistent when a comparison is performed.

We use schedulers [67] to formalise how to resolve contingencies at a given
state of the environment. We assume that schedulers are Markovian [67] and yield
a decision only based on the current environment state regardless of the history
of states traversed. Thus, we define schedulers as a function σ : QE × 2Σ → 2Σ

that picks a subset of enabled actions A (K1), which stand for the actions that
might be enabled by an arbitrary controller (Definition 7.1). The conditions
defined aim to model schedulers that, we believe, ensure a fair comparison. This
definition distinguishes actions into three categories: controllable, ending, and
other uncontrollable actions.

Definition 7.1 (Scheduler) Given an environment E and a set of activity
definitions AD, a scheduler is a function σ : QE × 2Σ → 2Σ that satisfies the
following conditions:
K1) σ(qE, A) ⊆ A ∩∆E(qE)
K2) (|σ(qE, A)| = 1 ∧ σ(qE, A) ⊆ Σc ∪ (Σu \ Σe))∨

(σ(qE, A) ∩ Σe = σ(qE, A))
K3) (σ(qE, A) ⊆ Σu)⇒ ∀A′(σ(qE, A′) = σ(qE, A))
K4) σ(qE, A) ⊆ Σc ⇒ ∀A′ ⊆ ∆E(qE)

((σ(qE, A) ⊆ A′ ⇒ σ(qE, A′) = σ(qE, A))∧
(σ(qE, A) 6⊆ A′ ∧ A′ ∩ Σc 6= ∅ ⇒ σ(qE, A′) ⊆ Σc)∧
(σ(qE, A) 6⊆ A′ ∧ A′ ∩ Σc = ∅ ⇒ σ(qE, A′) ⊆ Σu))

where A ⊆ ∆E(qE), qE ∈ QE, and Σe = {` | ` ∈ Σu ∧ ∃α ∈ A ` ∈ Ends(α)}.

Above conditions require schedulers to either pick all enabled ending-actions or
exactly one of the other enabled actions (K1 & K2). Since the duration of the
activities is unknown, schedulers do not choose among the ending actions. Also,

7.1 Comparing under the same contingencies 51

schedulers have to be consistent, regarding the choices of uncontrollable (K3)
and controllable actions (K4). That is, if possible, they pick the same actions or
category.

For the sake of simplicity, to illustrate the behaviour of schedulers in the
industrial example we will focus on the subset of states that overlap with the
universal controller. We use the numbers shown in Figure 6.5 to refer to each
of these states. One possible scheduler σ1 is one that, amongst other things,
determines the product type to be built is T2 and that repair is not needed. Note
that for q3 and q4, the output of the scheduler varies depending on which are the
actions that controller has enabled. In state q3, when a controller enables {sA1 , sA2}
or {sA2}, the output is {sA2}. Otherwise, the output is the other controllable
action {sA1}, which is the case of controller C2. Similarly, in state q4, when a
controller enables the controllable action, i.e., {sA1 , eA2}, the scheduler intends to
enables the action {sA1}. Otherwise, it enables the uncontrollable action {eA2},
which should be enabled by every controller. This represents the case in which
the end of activity action does not happen before a controller can execute a
controllable action.
- σ1(q0, {type1, type2}) = {type2}
- σ1(q3, {sA1 , sA2}) = {sA2}, σ1(q3, {sA2}) = {sA2}, σ1(q3, {sA1}) = {sA1}
- σ1(q4, {sA1 , eA2}) = {sA1}, σ1(q3, {eA2}) = {eA2}
- σ1(q5, {eA1}) = {eA1}
- σ1(q6, {sA1}) = {sA1}
- σ1(q7, {sA2}) = {sA2}
- σ1(q8, {eA1 , eA2}) = {eA1 , eA2}
- σ1(q9, {eA1}) = {eA1}
- σ1(q10, {eA2}) = {eA2}
- σ1(q11, {checkQA}) = {checkQA}
- σ1(q12, {failQA, okQA}) = {okQA}
- σ1(q15, {done}) = {done}

Another possible scheduler σ2 could determine the product type to be built is
T1 and that quality check failed, which requires to repair the product. Note that
these two schedulers represent two different behaviours of the environment. For
products of T1 there are no alternative solutions. Thus, the representation of

52 Chapter 7. A Qualitative Comparison Framework

scheduler σ2 is more compact than that of scheduler σ1.
- σ2(q0, {type1, type2}) = {type1}
- σ2(q1, {sA3}) = {sA3}
- σ2(q2, {eA3}) = {eA3}
- σ2(q11, {checkQA}) = {checkQA}
- σ2(q12, {failQA, okQA}) = {failQA}
- σ2(q13, {sfix}) = {sfix}
- σ2(q14, {efix}) = {efix}
- σ2(q16, {done}) = {done}

Schedulers are defined to consider the enabled actions in a state of the
environment (∆E(qE)) and the actions a particular controller enables (A). Thus,
we apply schedulers to a controller when executing in the environment E‖σC
(Definition 7.2). This produces an LTS E‖σC that has a subset of the transitions
defined by the standard parallel composition of E‖C.

Definition 7.2 (Scheduled Composition) The scheduled composition E‖σC
is an asymmetric operator defined as the parallel composition (‖) changing the
shared rule of ∆E‖σC as follows:

qE
`−→Eq

′
E , qC

`−→Cq
′
C , `∈σ(qE1 ,∆C(qC1))

(qE ,qC)
`−→E‖σC(q′E ,q

′
C)

`∈ΣE∩ΣC

In Figure 7.1, we show the scheduled composition of the controller C1 and C2

(in Figure 6.4) composed in parallel with the environment E under a scheduler σ1.
Note that by using the scheduler, we can observe the controllers under similar
behaviour of the environment.

7.2 Timed semantics of LTS

Our interpretation of time in a discrete controller is based on PTA [25], which is
an extension of Timed Automata (TA) [56] that incorporates final states, clocks
and parameters to LTSs. Clocks are real-valued variables that increase linearly,
and parameters are unknown constants. We use PTA to interpret how time passes

7.2 Timed semantics of LTS 53

type2

checkQA

done

type2

E||σC1

E||σC2

okQA

done

eA2

checkQA

okQA

sA2 sA1
eA1 eA2

eA1

sA1 eA1
sA2

eA2

Figure 7.1: Scheduled composition of the controllers and environment defined in
Section 6.1 under a scheduler σ1.

on a controller, when the controller is executing in parallel with the environment
under a given scheduler σ. Definition 7.3 presents the Timed Semantics of a
controller by using a PTA. This PTA focuses on the paths between the initial
state and goal states, because makespan is measured between those states.

Definition 7.3 (Timed Semantics) Given a control problem E = 〈E,AD, G,Σc〉,
a controller C that is solution for E , a scheduler σ for the environment E and goal
states QG in E‖σC, we define the timed semantics of E‖σC as a parametric timed
automaton PTA(E‖σC) = (Σ′, Q′, Q′0, X, P,Qf , I,Θ) as follows:
• a set of actions Σ′ = Σ ∪ {sf , ef}
• a set of states Q′ = QE‖σC ∪ {q0

′, q′f}
• a set of initial states Q′0 = {q0

′}
• a set of clocks X = {xα | α ∈ A} ∪ {xqE | qE ∈ QE} ∪ {xu, xf}
• a set of parameters P = {pα | α ∈ A} ∪ {pqE | qE ∈ QE} ∪ {pf}
• a set of final states Qf = {q′f}
• a state invariant I defined as

I(q) =

xu ≤ 0 if qC is transient∧
α∈ζ(q) xα ≤ pα if qC is not transient

and ζ(q) 6= ∅
xqE ≤ pqE otherwise

54 Chapter 7. A Qualitative Comparison Framework

for every state q = (qE, qC) ∈ QE‖σC and I(q0
′) = I(q′f) = xu ≤ 0

• a set of edges Θ s.t. (q1, `, q2, λ, µ) ∈ Θ iff either
- (q1 = (qE1 , qC1), `, q2 = (qE2 , qC2)) ∈ ∆E‖σC and
((qC1 is transient and has guard

µ =

 xu = 0 ∧ xα = pα if ∃α ∈ A ` ∈ Ends(α)
xu = 0 otherwise

) or
(qC1 is not transient and has guard

µ =

 xα = pα if ∃α ∈ A ` ∈ Ends(α)
xqE1

= pqE1
if ζ(s1) = ∅

)) and reset clocks

λ = {xu} ∪ {xqE2
} ∪ {xα|∃α ∈ A ` = Start(α)}

- q1 ∈ QG and q2= q′f and ` = ef and has guard µ = (xf = pf) and reset
clocks λ = {xu}

- q1 = q0
′ and q2 = q(E‖C)↓σ0

and ` = sf and has guard µ = (xu = 0) and
reset clocks λ = {xu, xf}

The defined PTA features a clock xα and parameter pα for each activity α.
Each clock xα measures the time elapsed from the start of the activity α to
the end of it. The transitions that are start of activity reset the clock, and the
transitions that are end of activity have a guard. This guard denotes that the
transition can be taken, when the time elapsed by the clock of the activity is equal
to its corresponding parameter (pα = xα). When the activity is being processed,
there are invariants that restrict the clock of the activity to be greater than its
parameter (xα ≤ pα). This represents that the activity takes time pα. Similarly,
there is a clock xqE and parameter pqE for each state (qE, qC), in which all the
outgoing transitions are uncontrollable actions and no activities are running.
The clock xqE measures the time spent at (qE, qC), and pqE stands for the total
sojourn time. This models the time that the controller waits, when there are no

7.2 Timed semantics of LTS 55

activities running. For instance, this happens in the initial state of the industrial
automation example, when the controller is waiting for the product type to be
processed. Finally, another clock xf and parameter pf are added to measure the
end-to-end makespan. This clock works as an envelope that subsumes all the other
clocks. That is to say, all the other parameters that appear in at least one path
of the PTA are bounded by pf . Besides, transient states, i.e., states that have
controllable actions enabled, are forced to be abandoned in zero time through an
invariant (xu < 0). This is consistent with the definition of transient states in
Section 6.2. Note that “qC is transient” refers to the enabled actions in C without
applying the scheduler (∆c

C(qC) 6= ∅). The final states are the goal states that
appear in the scheduled composition.

xu ≤ 0

[pA1=xA1]
eA1
{xu}[xu =0]

sA2
{xA2 , xu}

[xu =0]
sA1

{xA1}

xu ≤ 0
xA1 ≤ pA1

xA2 ≤ pA2

xA1 ≤ pA1

[pA2=xA2]
eA2
{}

xA2 ≤ pA2

[pA2=xA2]
eA2
{xu}

[pA1=xA1]
eA1
{}

xu ≤ 0xu ≤ 0 xq12 ≤ pq12

[xu =0]
sf1

{xq0 , xf1
}

[xu =0]
checkQA

{xq12}
xq0 ≤ pq0

[pq0=xq0]
type2
{xu}

xu ≤ 0
[xu =0]
done
{xu}

xu ≤ 0

[pq12=xq12]
okQA
{xu}

xu ≤ 0

[pf1
=xf1

]

ef1
{xu}

xu ≤ 0

[pA2=xA2]
eA2
{xu}

[xu =0]
sA1

{xA1}

[pA1=xA1]
eA1
{xu}

xA1 ≤ pA1 xu ≤ 0 xA2 ≤ pA2

[xu =0]
sA2

{xA2}

xu ≤ 0xu ≤ 0 xq12 ≤ pq12

[xu =0]
sf2

{xq0 , xf2
}

[xu =0]
checkQA

{xq12}
xq0 ≤ pq0

[pq0=xq0]
type2
{xu}

xu ≤ 0
[xu =0]
done
{xu}

xu ≤ 0

[pq12=xq12]
okQA
{xu}

xu ≤ 0
[pf2

=xf2
]

ef2
{xu}

PTA(E ||σ C1)

PTA(E ||σ C2)

Figure 7.2: Timed semantics (PTAs) of the controllers and environment defined in
Section 6.1 under the same scheduler σ1 used in Figure 7.1.

In Figure 7.2, we show the timed semantics (PTAs) of the controller C1 and
C2 (in Figure 6.4) composed in parallel with the environment E under the same
scheduler σ1 used in Figure 7.1. Note that the clocks xq0 and parameters pq0 refer
to a state of the environment q0 ∈ QE, which is the initial state of the composition

56 Chapter 7. A Qualitative Comparison Framework

E of the LTSs from Figure 6.1. The other state q12 corresponds to the state of the
composition in which the LTS QA is in the state 1, LTS Choice is in the state 2
and the other LTSs are in the initial state 0. We use the environment state to
define the clocks and parameters in the states, because we want to model that two
controllers have the same waiting time in the same state of the environment.

7.3 Using parameters to measure makespan

The parameters of the timed semantics (PTA) defined above represent the different
activities and environment states that are on paths that reach a goal state from
the initial state. These parameters can be instantiated into values, which models
one possible duration of the activities. In PTA, a parameter valuation defines an
assignment of values to the parameters. A parameter valuation has to satisfy
certain constraints to produce a valid timed automaton (TA), when replacing the
parameters of the PTA by the values that the parameter valuation defines. If a
parameter valuation produces a valid TA, it means that those values are a possible
duration for the activities to reach the goal. Thus, knowing which are the valid
parameters for the duration of the activities is essential to know which are the
possible values that the end-to-end parameter pf may take.

As mentioned in Chapter 3, there is a symbolic procedure to calculate the
constraints of the parameters, which is defined in the literature as Γ. The general
procedure [26] to compute Γ is known to be undecidable, if there are more than three
clocks in PTAs with cycles [25]. However, Γ can be computed for the fragment of
PTAs related to reachability controllers. The general procedure works symbolically
through computing a fixed point of a precondition operator. Given that the PTAs
generated are acyclic, the procedure terminates, and the fixpoint computation boils
down into a one-pass backwards propagation of expressions. These expressions are
changed at each edge by the precondition operator. Moreover, for the particular
case of the PTAs from Definition 7.3, Algorithm 1 shows how to calculate Γ by
using the precondition operator shown in Definition 7.4. In Algorithm 1, we denote
the edges from state q as Θ(q) = {(q1, `, q2, λ, µ) | (q1, `, q2, λ, µ) ∈ Θ ∧ q = q1}.

3These PTAs have only one initial and one final state.

7.3 Using parameters to measure makespan 57

Algorithm 1 Obtaining Γ of the timed semantics of a controller (Definition 7.3)
1: procedure Γ(H)
2: [q0, . . . , qn, qf] = topological_sort(H,Qf)
3: ψqf = True3

4: for q ∈ [qn, . . . , q0] do
5: ψq = ∨

ε∈Θ(q) preε(ψq′)
6: return ψq0 [∀x ∈ X(x := 0)]3

The algorithm first initialises the formula ψqf of the final state with True

(line 3), and it traverses the other states in the inverse topological order while
initialising the value of the formula in each state (line 4 - 5). The result of Γ(H) is
the formula of the initial state ψq0 after resetting the clocks, i.e. replacing all the
occurrences with the value 0. The precondition operator uses two sub-operators:
transition-step B and time-step ⇒. The transition-step B adds the guard µ to
the formula and resets the clocks x ∈ λ in ψ. The time-step ⇒ adds the state
invariant to the formula, but in the non-transient case it uses a new variable
δ and an existential quantifier to represent the possible passage of time. The
passage of time is done by replacing all the appearances of the clocks x ∈ X in
the formula ψ and state invariant I(q) with x+ δ. Note that the new variable δ
will not appear in the formula produced by pre, because the algorithm applies
quantifier elimination in each step to remove the existential quantifier.

Definition 7.4 (Precondition Operator) Given an edge ε = (q1, `, q2, λ, µ) ∈
Θ and the linear formula ψ corresponding to the propagated conditions of the state
q2, the precondition operator preε is defined as follows:

preε(ψ) = (⇒ (q1,B(ε,⇒ (q2, ψ))))
B(ε, ψ) = (µ ∧ ψ[∀x ∈ λ · x := 0])

⇒ (q, ψ) =

ψ ∧ I(q) if q is transient
∃δ ≥ 0 / otherwise
(ψ ∧ I(q))[∀x ∈ X(x := x+ δ)]

For the PTAs in Definition 7.3, Γ of the built PTA is a time constraint of
the end-to-end makespan parameter as well as the parameters of the activities
and environment states. Γ is the relation among parameters that defines the

58 Chapter 7. A Qualitative Comparison Framework

end-to-end makespan as a linear expression of time durations by using the
parameters. For instance, for the PTAs in Figure 7.2, Γ(PTA(E‖σC1)) = ((pA2 ≥
pA1 ∧ pf1 = pA2 + pq0 + pq12) ∨ (pA1 ≥ pA2 ∧ pf1 = pA1 + pq0 + pq12)) whereas
Γ(PTA(E‖σC2)) = (pf2 = pA1 + pA2 + pq0 + pq12) are simplified versions of the
symbolic expression that represent their makespan. The expression Γ(PTA(E‖σC1))
states that, when the duration of activity α1 is greater than that of α2, the
makespan (pf1) is the sum of durations of activity α1 plus the time spent in the
states q0 and q12; otherwise, the makespan is the duration of activity α2 plus the
time spent in the states q0 and q12. In contrast, Γ(PTA(E‖σC2)) is the sum of
the duration of the two activities plus the time spent in the states. Thus, no
matter which values are assigned to the parameters, pf1 cannot be greater than pf2 .
Even though here it is easy to see, checking the existence of these parameters will
require the use of an SMT-solver.

7.4 Comparing symbolic expressions

In the previous section we defined how to obtain Γ of a controller when concurrently
executed with the environment under a scheduler σ. Here we proceed to discuss how
to compare controllers by using the obtained Γ. For the the PTAs in Figure 7.2, we
explained that it was possible to find a set of values for the parameters that makes
the end-to-end parameter pf1 of Γ(PTA(E‖σC1)) be greater than the parameter
pf2 of Γ(PTA(E‖σC1)), i.e., pf2 > pf1 . When such a scheduler and a set of values
for the parameters exist, we say that the controller C1 shows a behaviour of higher
makespan than C2 (noted C2^C1). This means that there is a possible scenario in
which the controller C1 takes longer than the controller C2. However, it is not
possible to find an scheduler and a set of values that makes the controller C2 show
a behaviour of higher makespan than C1.

Definition 7.5 (Behaviour of Higher Makespan) Given two controllers C1

and C2, C1 shows a behaviour of higher makespan (noted C2^C1) than C2 iff
∃σ ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0 ((r1..rn, rf1) Γ(PTA(E‖σC1)) ∧ (r1..rn, rf2)
Γ(PTA(E‖σC2)) ∧ rf1 > rf2).

To compare two controllers, we evaluate their makespan under every possible

7.4 Comparing symbolic expressions 59

scheduler. We say that a controller C1 shows a behaviour of higher makespan
than C2 (C2^C1), if there exists a parameter valuation and a scheduler such
that the makespan of C1 is strictly higher than that of C2. That is to say, C1

shows a behaviour of higher makespan than C2 iff ∃σ ∃(r1..rn, rf1, rf2) ∈ Rn+2
≥0

((r1..rn, rf1) Γ(PTA(E‖σC1)) ∧ (r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 > rf2). It
means that there exists at least one case, in which for the same scheduler σ
and assignment of values (r1, . . . , rn) to the parameters (p1 . . . pn), C1 performs
worse than C2 (rf1 > rf2). These parameters stand for activity durations and
environment states that are common to the two controllers. The values rf1 and rf2

are assigned to the end-to-end makespan parameters pf1 and pf2 of the controllers
C1 and C2 respectively. These two values are conditioned by the values (r1, . . . , rn).

We define the relationship between two controllers based on the ^ comparison
in both ways, C1^C2 and C2^C1. Table 7.1 shows the four possible outcomes of
this comparison. Two controllers are: i) Incomparable when there are circumstances
in which both controllers show a behaviour of higher makespan than the other,
ii) Equivalent when there is no scheduler that allows one controller to show a
behaviour of higher makespan than the other, or iii) one dominates the other when
one controller does not show a behaviour of higher makespan than the other, while
the other shows a behaviour of higher makespan. Note that this comparison takes
into account all possible schedulers of an environment.

C2^C1 C1^C2 Conclusion
Sat Sat Incomparable
Unsat Unsat Equivalent (C1 as good as C2)
Sat Unsat C2 dominates C1
Unsat Sat C1 dominates C2

Table 7.1: Possible results of comparing two controllers

60 Chapter 7. A Qualitative Comparison Framework

7.5 Beyond the horizon

In this work, the horizon of the comparison framework is defined by the goal states,
which are the states where the reachability proposition is satisfied for the first time.
Typically, in these states there are no running activities. In this case, the duration
of the activities is bounded by the main parameter. However, there are solutions
to control problems in which there are running activities in the goal states. This
means that some end of activity events may occur after reaching a goal state, or
may never occur. This is possible because we are using LTS models that are over
infinite traces, and the end of activity actions are uncontrollable. That is to say,
there may be infinite traces in which the end of activity never occurs, i.e., some
activities may not finish. Then, is it reasonable to define the comparison by using
real numbers? What should be the duration of the activities when they do not
finish? Section 7.5.1 presents an example in which this phenomena occurs, and
Section 7.5.2 shows how to interpret the parameters of the activities that do not
finish by using the comparison framework defined above.

7.5.1 Motivating example

Let us consider an example in which there are two activities α1 and α2. These
activities start with actions s1 and s2, and finish with actions e1 and e2 respectively.
The goal is to finish one of the two activities (i.e.: ♦(ė1 ∨ ė2)). Figure 7.3 shows
the LTSs that model this environment.

0 1

Process2

e2

s2
0 1

Process1

e1

s1

0 1

Messenger

ack

notify

Figure 7.3: Environment model of two process activities and one communication
process (E = Process1‖Process2‖Messenger).

One possible controller would be the one that starts doing both activities as
soon as possible. Figure 7.4 illustrates the behaviour of this controller. Note that

7.5 Beyond the horizon 61

in this figure, we are also modelling the behaviour after reaching the goal states.
This controller first starts the activity α1, then starts activity α2 (if activity α1

did not finish immediately), and waits for the activities to finish. When one
of the two activities finishes, the controller starts notifying that the goal was
achieved. A possible trace in the execution of the controller with the environment
is s1, s2, e2, notify, ack, notify, ack Then, there is an infinite trace in which
the end of one of the two activities never occurs because other actions may occur
infinitely many times. This can happen if do not have any fairness assumption.
Note that the LTS shown in Figure 7.4 also illustrates E‖C.

6

0 1

s1
3s2

e1

8

4

e1

e2

e2

e1

5

7

notify

ack
e2

notify

ack

9

notify

ack

e1

Figure 7.4: A possible controller executed with the environment from Figure 7.3
that satisfies the goal ♦(ė1 ∨ ė2). Goal states are states 4, 6 and 8.

To represent that an activity does not finish, we should permit parameter
valuations that assign ∞ to the parameters of the activities. Consider a scheduler
σ that permits the controller to start the two activities. The consistent parameter
valuations under this scheduler are Γ∗(E‖σC1) ≡ ((pf = pα1 ∧ pα1 ≤ pα2)) ∨ (pf =
pα2 ∧ pα2 ≤ pα1) ∧ pf 6=∞), where Γ∗ is an extension of Γ that allows parameter
valuations to be ∞. The details about Γ∗ are explained in Section 7.5.2. Note that
pf 6=∞ becomes a necessary parameter constraint to reach a goal state, which
was implicit before. This condition will indirectly require to one of the activity
parameters (pα1 or pα2) not to become infinity. However, there is no bound for the
other activity parameter, which may not finish before reaching a goal state.

62 Chapter 7. A Qualitative Comparison Framework

PTA(E ||σC)PTA(E ||σC)

xu≤ 0
xu≤ 0

[xu= 0]

s1
{xα1}

[xu= 0]

s2
{xα2}

xα1 ≤ pα1 ∧
xα2 ≤ pα2

xu ≤ 0

xu ≤ 0

[xα2= pα2]

e2
{xu}

[xα1= pα1]

e1
{xu}

xu ≤ 0

[xu =0]

sf
{xf, xu}

xu ≤ 0

[xf= pf]
ef

{xu}

[xf= pf]
ef

{xu}

Figure 7.5: Timed semantics of the controller of Figure 7.4 when executed in the
environment of Figure 7.3, under a scheduler that allows the controller to start the
two activities.

Let us assume a valuation γ∗ : P → R≥0 ∪ {∞} that assigns infinity to
activity α2 and a real value to activity α1 (γ∗ : [pf ← N, pα1 ← N, pα2 ←∞] with
N ∈ R≥0). This represents a valid trace in the execution of the controller in the
environment that never takes the final event of the activity α2. Nonetheless, the
parameter valuation with infinity cannot directly apply to a PTA because TA
is defined over the reals without infinity. Thus, to apply this valuation of the
parameters to the PTA, we need to pre-process the invariants and guards of the
PTA. First, we produce an intermediate PTA by replacing the conditions where
parameters assigned to infinity appear with conditions that do not involve these
parameters. Then, we produce a valuation over the reals for the other parameters.
Finally, we apply this parameter valuation to the intermediate PTA.

7.5.2 Interpreting the infinity in PTA

As mentioned above, the timed semantics defined in Section 7.2 does not allow
parameters to be instantiated as infinity, because valuations of PTAs are defined
over R≥0. However, the timed semantics is a particular case of PTA, which
has invariants that are of the form (∧

x ≤ p ∧ ∧
x ≤ k) and guards of the form

(∧
x = p ∧ ∧

x = k) with x ∈ X, p ∈ P and k ∈ R≥0. Interpreting ∞ for these
conditions is possible, but it requires some extra steps. Parameters in the invariants
always appear as the upper bound of a clock. A clock will never reach the value of
the parameter when the parameter becomes infinity. Thus, these conditions (e.g.:
xα2 ≤ pα2) can be replaced by True, because it is true that the clock will never

7.5 Beyond the horizon 63

reach the value ∞ (e.g.: xα2 ≤ ∞). Parameters in the guards always appear as an
equality with the clock. By using the same reasoning, this condition can never
be satisfied. Thus, the parts of these conditions that have an equality with a
parameter to become infinity (e.g.: xα2 = pα2) are interpreted as False, because a
clock cannot be equal to ∞ (e.g.: xα2 =∞).

First, we need to extend the semantics of PTA valuations to support positive
reals and infinity for this subset of PTAs. Given a timed semantics PTA H = (Σ,
Q,Q0, X, P,Qf , I,Θ), an infinity parameter valuation γ∗ : P → R+ ∪ {∞} is an
assignment of values in R≥0∪{∞} to the parameters in P . These infinity parameter
valuations are only defined for the timed semantics. Allowing comparisons between
infinite values for general PTAs may lead to critical problems. For instance, an
inequality comparing a set of parameters may become infeasible if more than
one parameter assigned to infinity by a valuation γ∗ (e.g.: p1 ≤ p3 ∗ p2 and
γ∗ = [p1 ←∞, p2 ←∞, p3 ←∞]). However, the conditions of timed semantics
PTAs are simpler. They are conjunctions of inequalities of the form x ≤ p or
x ≤ 0 (state invariants) and x = p or x = 0 (guards) with no relationship between
parameters. Thus, it is possible to define a language that accepts infinity as a
valuation in terms of R≥0 by replacing some conditions.

To formalize this transformation, we define an interpreter automata and an
interpreter valuation. The interpreter automata I(H) is a PTA that replaces parts
of the invariants and guards which have a parameter assigned to infinity by a γ∗

with True or False. The interpreter valuation is a parameter valuation over the
reals for the parameters that are not assigned to ∞ by an infinity valuation γ∗.

Definition 7.6 (Interpreter Automata) Given a PTA H = (Σ, Q,Q0, X, P,

Qf , I,Θ) and an infinity parameter valuation γ∗, we define the interpreter automata
I(H) = (Σ, Q,Q0, X, P

′, Qf , I
′,Θ′) as a PTA such that

• P ′ = {p | p ∈ P ∧ γ∗(p) 6=∞},

• ∀q ∈ Q : I ′(q) = ∇γ∗(I(q)), and

• (q1, `, q2, λ,∇γ∗(µ)) ∈ Θ′ ⇔ (q1, `, q2, λ, µ) ∈ Θ,

64 Chapter 7. A Qualitative Comparison Framework

where ∇γ∗(ψ) is a function that recursively substitutes all the atoms that contain
parameters that are assigned to infinity in ψ as follows:

∇γ∗(ψ) =

Ξγ∗(x on p) ∧∇γ∗(ϕ) if ψ ≡ x on p ∧ ϕ
x on k ∧∇γ∗(ϕ) if ψ ≡ x on k ∧ ϕ
Ξγ∗(x on p) if ψ ≡ x on p

x on k if ψ ≡ x on k

Ξγ∗(x on p) =

True if γ∗(p) =∞∧ on∈ {<,≤}
False if γ∗(p) =∞∧ on∈ {>,≥,=}
x on p otherwise

where k ∈ R≥0, p ∈ P and on∈ {<,≤, >,≥,=}.

Definition 7.7 (Interpreter valuation) Given an infinity parameter valuation
γ∗ : P → R≥0 ∪ {∞}, we define the interpreter valuation of γI as a parameter
valuation γI : P ′ → R≥0 s.t ∀p ∈ P ′γI(p) = γ∗(p), where P ′ = {p | p ∈ P ∧γ∗(p) 6=
∞}.

Let us recall the motivating example. In Figure 7.6, we show the intermediate
PTA obtained after replacing the parts of the conditions where the parameter pα2

appeared with values True and False, depending on how the parameter is used.
We can see that a clock being less than or equal to infinity (x2 ≤ ∞) is interpreted
as True, while a clock being equal (x2 =∞) is interpreted as False.

After interpreting the parameters that are assigned to infinity in the original
PTA, we need to assign the rest of the values defined in the valuation γ∗ to
the PTA from Figure 7.7. To this end, we define the interpreter valuation
γI : [pf ← N, pα1 ← N] as a valuation over the real numbers. The interpreter
valuation is only defined for the parameters from γ∗ that are not assigned to ∞.
Figure 7.7 shows the result of applying the γI to the PTA. In this Figure, the
transitions and states that are not reachable were removed for clarity.

Analogously, we use Γ∗(H) to describe the set of infinity parameter valuations
that are consistent with a PTA H, and γ∗(H) to represent the TA obtained from
applying an infinity parameter valuation. The timed-behaviour defined by the
timed automaton γ∗(H) is equivalent to the timed automaton obtained after

7.5 Beyond the horizon 65

xu≤ 0
xu≤ 0

[xu= 0]

s1
{xα1}

[xu= 0]

s2
{xα2}

xα1 ≤ pα1 ∧
True

xu ≤ 0

xu ≤ 0

[False]
e2

{xu}

[xα1= pα1]

e1
{xu}

xu ≤ 0

[xu =0]

sf
{xf, xu}

xu ≤ 0

[xf= pf]
ef

{xu}

[xf= pf]
ef

{xu}

I(PTA(E||σ C))

Figure 7.6: Interpreter automata obtained by replacing the parts of the conditions
related to the parameter pα2 , which was assigned to ∞ by the valuation γ∗ : [pf ←
N, pα1 ← N, pα2 ←∞] with N ∈ R≥0.

xu≤ 0
xu≤ 0

[xu= 0]

s1
{xα1}

[xu= 0]

s2
{xα2}

xα1 ≤ N

xu ≤ 0

[xα1= N]

e1
{xu}

xu ≤ 0

[xu =0]

sf
{xf, xu}

xu ≤ 0

[xf= N]
ef

{xu}

Figure 7.7: Timed Automaton obtained after replacing the values of the Intermedi-
ate PTA from Figure 7.6 with the value N . This was the value defined by the
parameter valuation γI : [pf ← N, pα1 ← N] with N ∈ R≥0.

substituting each non-infinity parameter of the interpreter valuation γI in the
PTA I(H) as described above (i.e.: γI(I(H))).

This interpretation may also be used for general PTAs that have conditions
and invariants similar to the ones of the timed semantics. In Figure 7.8 we show
an example of a PTA H that has the following restriction over the parameters
Γ(H) ≡ ((p1 ≤ p2 ∧ p1 = p3) ∨ (p2 ≤ p1 ∧ p2 = p3)). Given a valuation over the
reals γ, the trace abd∗ would not be a possible trace in H, because the clock x2

must eventually reach p2 and take the transition c. However, by using the infinity
consistent parameter valuations Γ∗(H) ≡ ((p1 ≤ p2 ∧ p1 = p3) ∨ (p2 ≤ p1 ∧ p2 =
p3) ∧ (p3 6=∞)), the trace abd∗ becomes a possible trace in H, because the infinity
parameter valuation γ∗ = [p1 ← 5, p2 ← ∞, p3 ← 5] is characterised by Γ∗(H).
In Figure 7.9, we show the interpreted automata I(H), which is the result of
replacing the conditions that have parameters that are mapped to infinity (p2 ≤ ∞

66 Chapter 7. A Qualitative Comparison Framework

xu ≤ 0
x1 ≤ p1 ^

x2 ≤ p2 ^ x3 ≤ p3
[xu =0]

a
{x1 , x2, x3}

[x2= p2^ x3= p3]

c
{x0} x1 ≤ p1 ^

x0 ≤ 3

xu ≤ 0

[x1= p1]

b
{x0}

x2 ≤ p2 ^
x0 ≤ 2

[x2= p2]

c
{x0}

[x1= p1^ x3= p3]

b
{x0}

[x0= 3]

d
{x0}

[x0= 0]

e
{x0}

[x0 ≤ 2]

d
{x0}

M

Figure 7.8: PTA that does not accept abd∗, when considering valuations over the
reals.

is replaced by True and p2 =∞ by False). This interpretation may also be of
interest when giving a timed semantics to an LTS without pruning the outgoing
transitions of the goal states, but this is out of the scope of this work.

xu ≤ 0
x1 ≤ p1 ^

True ^ x3 ≤ p3
[xu =0]

a
{x1 , x2, x3}

[False^ x3= p3]

c
{x0} x1 ≤ p1 ^

x0 ≤ 3

xu ≤ 0

[x1= p1]

b
{x0}

True ^
x0 ≤ 2

[False]
c
{x0}

[x1= p1^ x3= p3]

b
{x0}

[x0= 3]

d
{x0}

[x0= 0]

e
{x0}

[x0 ≤ 2]

d
{x0}

M’

Figure 7.9: Interpreting the infinity parameters valuation γ∗ = [p1 ← 5, p2 ←
∞, p3 ← 5] on the PTA from Figure 7.8.

67

8
A Makespan-Minimising Controller

In this chapter we formalize the concept of makespan-minimising controller and
define an algorithm to produce a solution that is makespan-minimising.

8.1 Defining makespan-minimising controllers

A quantitative approach would define a controller with minimum makespan
as the one that can reach goal in the least time possible, where the time is
measured by a number that typically represents the average run. In this work,
we define a makespan-minimising controller in a qualitative manner. As briefly
explained in Section 5.6, the definition of makespan-minimising controller is
based on the dominance relationship defined in Section 7.4. A controller C
is makespan-minimising if it is a non-dominated controller. In other words, a
controller is makespan-minimising if there is no other controller C ′ that dominates
the controller C. This is formalised in the Definition 8.1.

68 Chapter 8. A Makespan-Minimising Controller

Definition 8.1 (Non-dominated) Given a control problem with activities E =
〈E,AD, G,Σc〉 and the set of solutions C for E , we say that C ∈ C is non-dominated
iff 6 ∃C ′ ∈ C (C ′ dominates C).

Note that when a control problem is realisable, there is at least one non-
dominated controller. Without loss of generality, we restrict to the subset of
memoryless solutions [66], because solutions that have additional memory would
also have additional makespan. Since this set is finite, it is not possible for all of
them to be dominated by another controller. This is because C dominates C ′ is a
transitive and asymmetric relation. Also note that there can be more than one
non-dominated controller.

Lemma 8.2 (Transitivity) Given controllers C1, C2, C3, C1 dominates C2 ∧
(C2 dominates C3 ∨ C2 as good as C3) ⇐⇒ C1 dominates C3.

Proof. It can be proven from definition of behaviour of higher makespan
(Definition 7.5), dominates and as good as (Table 7.1).

1. C1 dominates C2 ⇐⇒ (Definition 7.5 and Table 7.1)
a. ∃σ ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 < rf2)∧
b. ∀σ ∀(r1..rn, rf1, rf2) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 ≤ rf2)

2. C2 dominates C3 ⇐⇒ (Definition 7.5 and Table 7.1)
a. ∃σ ∃(r1..rn, rf2, rf3) ∈ Rn+2

≥0

((r1..rn, rf2) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf2 < rf3)∧
b. ∀σ ∀(r1..rn, rf2, rf3) ∈ Rn+2

≥0

((r1..rn, rf2) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf2 ≤ rf3)

3. C2 as good as C3 ⇐⇒ (Definition 7.5 and Table 7.1)
a. ∀σ ∀(r1..rn, rf2, rf3) ∈ Rn+2

≥0

((r1..rn, rf2) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf2 = rf3)

8.1 Defining makespan-minimising controllers 69

4. C1 dominates C2 ∧ C2 dominates C3 ⇐⇒ (1 and 2.b)
a. ∃σ ∃(r1..rn, rf1, rf3) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf1 < rf3)∧
b. ∀σ ∀(r1..rn, rf1, rf3) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf1 ≤ rf3)
⇐⇒ (Definition 7.5 and Table 7.1) C1 dominates C3

5. C1 dominates C2 ∧ C2 as good as C3 ⇐⇒ (1 and 3.a)
a. ∃σ ∃(r1..rn, rf1, rf3) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf1 < rf3)∧
b. ∀σ ∀(r1..rn, rf1, rf3) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf3) Γ(PTA(E‖σC2)) ∧ rf1 ≤ rf3))
⇐⇒ (Definition 7.5 and Table 7.1) C1 dominates C3

6. C1 dominates C2 ∧ (C2 dominates C3 ∨ C2 as good as C3)
⇐⇒ (4 and 5) C1 dominates C3

ut

Lemma 8.3 (Asymmetry) Given controllers C1 and C2, C1 dominates C2 =⇒
¬(C2 dominates C1).

Proof. It can be proven by contradiction. Assume C2 dominates C1.
1. C1 dominates C2 =⇒ (Definition 7.5 and Table 7.1)
a. ∃σ ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 < rf2)∧
b. ∀σ ∀(r1..rn, rf1, rf2) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1))∧
(r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 ≤ rf2)

2. C2 dominates C1 =⇒ (Definition 7.5 and Table 7.1)
a. ∃σ ∃(r1..rn, rf2, rf1) ∈ Rn+2

≥0

((r1..rn, rf2) Γ(PTA(E‖σC1))∧

70 Chapter 8. A Makespan-Minimising Controller

(r1..rn, rf1) Γ(PTA(E‖σC2)) ∧ rf2 < rf1)∧
b. ∀σ ∀(r1..rn, rf2, rf1) ∈ Rn+2

≥0

((r1..rn, rf2) Γ(PTA(E‖σC1))∧
(r1..rn, rf1) Γ(PTA(E‖σC2)) ∧ rf2 ≤ rf1)

3. There is a contradiction between 1.b. and 2.a.. Then, ¬(C2 dominates C1).
ut

8.2 Synthesising makespan-minimising controllers

There are algorithms for controller synthesis problems that produce memoryless
controllers [66, 64, 68]. Such algorithms have linear complexity in the size of the
problem, and they build controllers in the form of directed acyclic graphs (DAG),
which are subgraphs of the given problem. These controllers are universal in
the sense that any other memoryless controller is a subgraph of the universal
controller.

Algorithm 2 Non-dominated controller algorithm.
1: procedure non_dominated(E,AD, G, Σc)
2: U = universal_synthesis(E, Σc, G)
3: K = E‖U
4: [q0, . . . , qn] = topological_sort(K, QG)
5: for q ∈ sorted([qn, . . . , q0]) do
6: Alt = {{c} | c ∈ ∆c

K(q)}
7: if ∆u

K(q) 6= ∅ then Alt= Alt∪{∅}
8: if |Alt|> 1 then
9: D = ∅
10: for A ∈ Alt ∧A′ ∈ Alt \ {A} do
11: if K〈q,A′〉 dominates K〈q,A〉 then D = D ∪A

12: ∆K = ∆K \ {(q, c, q′) | (q, c, q′) ∈ ∆K ∧ c ∈ D}
return K

Algorithm 2 produces a non-dominated controller. This algorithm first obtains
a universal controller. Then, it traverses the states of the universal controller in
the inverse topological order. In the states that have more than one controllable
action enabled, the algorithm uses the dominance comparison to disable some
of the enabled controllable actions. The dominance comparison initially only

8.2 Synthesising makespan-minimising controllers 71

compares two controllers from the initial state. However, by defining a sub-LTS
(Definition 8.4), the comparison can be made from any states, not limiting to the
initial state. It then generates the set of alternatives Alt of a state. An alternative
can be one of the controllable actions c ∈ ∆c(q) or ∅ that represents waiting for
uncontrollable events to happen. It compares an alternative A ∈ Alt against
all the other alternatives A′1 . . . A′n ∈ Alt, by comparing sub-LTS M〈q,A〉 against
sub-LTSs M〈q,A′1〉 . . .M〈q,A′n〉. If any of the other alternatives in M〈q,A′1〉 . . .M〈q,A′n〉
dominates M〈q,A〉, it removes the controllable transition of alternative A from ∆K .

Definition 8.4 (sub-LTS) Given an LTS M = (Q,Σ,∆, q0), a state q ∈ Q and
A ⊆ ∆c(q), we define M〈q,A〉 = (Q,Σ,∆′, q) as a sub-LTS of M , whose initial state
is q, and the transition function as ∆′ = ∆ \ {(q, `′, q′) | (q, `′, q′) ∈ ∆c(q)∧ `′ 6∈ A}.

0

1

3

type1

type2

4

8

2
sA3

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

5

7

U

9

10

15
okQAeA3

eA2

efixsA2

sA1

eA1 eA2

eA1

eA2
sA1

eA1

sA2

sA1

Figure 8.1: Universal controller for the example of Section 6.1. The red transition
is the transition removed by the Algorithm 2.

Figure 8.1 shows the universal controller of the example presented in Section 6.1.
Note that K = E‖U is structurally equivalent to U . In this example, the algorithm
traverses the states in the order specified in the states of the figure. Here, the
states with more than one alternative are only two. One is the state 4 which
has alternatives ∅ and {sA1}. Figure 8.2 illustrates these two subLTSs. Since
the alternative of waiting for eA2 does not dominate the one that enables the
action sA1 (i.e. K〈q3,{sA1}〉 dominates K〈q3,∅〉), the algorithm does not remove any
controllable transition here.

72 Chapter 8. A Makespan-Minimising Controller

4

8

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

K<q4, ∅>

9

10

15
okQA

eA2

efix

eA1 eA2

eA1

eA2

sA1

sA1

4 6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

9

15
okQA

efix

eA1

eA2

sA1

K<q4,{sA1
}>

Figure 8.2: SubLTSs of the universal controller from the state q4.

The other state in which there are alternatives is the state 3. In these case, there
are also two subLTSs which are shown in Figure 8.3. Here, the alternative {sA1} is
dominated by the alternative {sA2} (K〈q4,{sA2}〉 dominates K〈q4,{sA1}〉). Then, the
algorithm removes the transition (q3, sA1 , q5) from the universal controller, which
is shown in red in Figure 8.1. Finally, the resulting controller would be equivalent
to C1 of Figure 6.4, if we consider only the states that are reachable from the
initial state.

8.2 Synthesising makespan-minimising controllers 73

3 4

8

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

9

10

15
okQA

eA2

efixsA2

eA1 eA2

eA1

eA2
sA1

sA1

3

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

5

7 10

15
okQA

eA2

efix

sA1

eA1

sA2

K<q3,{sA2}>

K<q3,{sA1}>

Figure 8.3: SubLTSs of the universal controller from the state q3.

The following theorem shows that the Algorithm 2 produces a controller K
that is non-dominated.

Theorem 8.5 (K is non-dominated) Given an activity control problem E =
〈E,AD, G,Σc〉, a K = non_dominated(E,AD, G,Σc), and the set of solutions
C for E, K is a controller and 6 ∃C ∈ C (C dominates K).

Proof.
i) The algorithm produces a controller. This comes from the fact that it is not
possible to have a circular relationship of dominance. Thus, the algorithm can
never remove all the transitions of a state.
ii) The non-dominance can be proved by induction on the topological order. The
inductive step requires reasoning on properties which relate valuations satisfying

74 Chapter 8. A Makespan-Minimising Controller

Γ in the sub-LTS of a state to valuations satisfying Γ of successor sub-LTSs.
Universality of U is also required to prove that all memoryless controllers are
considered. Also note that all non-dominated memoryless controllers are included
in the result yielded by the algorithm. ut

75

9
Evaluation

In this chapter, we report the details of the implementation of Algorithm 2 and
some of the experiments done. The algorithm was implemented in an extension of
MTSA [28] that uses Z3 [69] as SMT-Solver, which is necessary in the dominance
comparison. MTSA is a tool to specify discrete-event controls problems described
in FLTL and LTS. We extended this tool to specify control problems with activities.
The implementation of Algorithm 2 was validated on case studies from the
literature. The evaluation consists in comparing the result produced by the
Algorithm 2 against the one produced by the standard algorithm of MTSA. In
addition, the synthesis time of the algorithm was evaluated on different instances
of the job scheduling case study, which is one of the examples used in the previous
experiment. In those case studies, the activities are inferred from the actions that
informally denoted start and end of activity.

76 Chapter 9. Evaluation

9.1 Extending MTSA

In this section, we first show how to specify control problems in the MTSA Tool.
Then, we explain how we extended the tool to specify control problems with
activities. In particular, we show how the syntax of the specification language is
extended and how to compare the makespan of two controllers by using Z3.

9.1.1 MTSA

MTSA [28] is a tool to specify qualitative control problems described with LTSs
and FLTL formulas. The tool is written in Java language and has an graphical
interface to define control problems. The interface can be used to specify problems,
to visualize the controllers produced by the tool, and to enact the controllers [70]
on robots, by previously defining the interface with the robot. Figure 9.1 shows
the interface of MTSA displaying the specification of the industrial automation
example.

In MTSA, control problems are specified in a simple process algebra notation
called Finite State Process (FSP) [71]. FSP specification language allows for
a compact textual representation of LTSs. In Figure 9.1 we can see the LTS
definitions of the industrial automation example. For instance, the QA LTS
illustrated in Figure 6.1 is described as QA = (query -> (fail -> QA | ok ->
QA). The different processes can be composed into another process by using the
standard parallel composition. This is shown in the last line under LTS definitions
as ||Environment = (PROCESS(1) || PROCESS(2) || PROCESS(3) || FIX || QA ||
PROD). To make the specification clearer, some ranges and sets are defined at the
top of the file. Those definitions are not necessary, but can be used to specify
processes and formulas in a more compact way. They are also helpful in reducing
the number of errors when specifying control problems in the tool. The different
components can be visualized in the tool for users validation. Figure 9.2 shows the
tool displaying the different components.

Fluents and FLTL properties are defined in a syntax similar to the one used
in Section 6.1. In the safety properties definitions, the symbol [] represents
the temporal operator �. The symbols &&, ||, ! and − > represent the logical

9.1 Extending MTSA 77

Figure 9.1: Interface of MTSA displaying the specification of the industrial
automation example.

operators ∧, ∨, ¬ and =⇒ respectively. These properties are equivalent to the
ones shown when defining the control problem with activities.

78 Chapter 9. Evaluation

Figure 9.2: MTSA displaying the components of the environment of the industrial
automation example.

To generate a controller we need an LTS representing the environment and
the controller specification (controllerSpec). The specification includes a list of
safety propositions, the set of controllable actions, and the reachability goal, which
is defined as a fluent. Then, the controller is defined as controller || Controller
= (Environment)∼{CtrlSpec}. If the problem is realisable, the controller can
synthesise a solution, which can be visualized as in Figure 9.3.

Figure 9.3: Visualization of the controller synthesised by the standard synthesis
algorithm of MTSA.

9.1 Extending MTSA 79

9.1.2 Specifying control problems with activities in MTSA

We extended the definition of controller specification to define control problems
with activities. Figure 9.4 shows the MTSA interface with the additional inputs.
The controller specification has now two optional attributes: algorithm and
activityDefinitions. The keyword algorithm enables the possibility of using a
different algorithm to synthesise a controller, which in our case is a non-dominated
controller (NON_DOMINATED). The keyword activityDefinitions takes as input
a set of activities, which are defined as fluents in the tool. By doing that, we
enforce the first rule to be activity compatible.

Figure 9.4: Interface of MTSA displaying the lower part of the specification of the
industrial automation example with the activities definition and a keyword to
enable Algorithm 2.

Figure 9.4 shows that the only extra requirements to use our approach are to
specify one extra activity as a fluent, which is Fixing, and to add the keyword
algorithm = NON_DOMINATED and the activities definition in the controller
specification.By adding this extra information the tool can synthesise the controller

80 Chapter 9. Evaluation

shown in Figure 9.5, which does not have the sequential alternative on products
of type two. In state q10 the only controllable action enabled is sA[2], while in
the corresponding state of Figure 9.5, which is state q11, the action sA[1] is also
enabled. Note that the numbers shown in the states are automatically created by
the tool for visualization, but do not have any correlation to the original states of
the control problem. In Section 9.2.1 we explain why this solution is better than
the standard one.

Figure 9.5: Visualization of the controller synthesised by the Algorithm 2.

9.1.3 Implementing the comparison framework

As defined in Section 7.4, comparing two controllers qualitatively requires to
compare two controllers under every possible scheduler. In the implementation, we
separated the problem of generating schedulers from the problem of finding a
possible set of values to the parameters. The schedulers are generated from the
LTS model of the environment. For each state of the LTS, we define the possible
candidates according to the Definition 7.1. Then, we combine them to generate
different schedulers. Since the number of states is finite, the number of schedulers
is also finite. Given a scheduler σ, we say that a controller has a behaviour of
higher makespan under the scheduler σ as C1^σC2 : ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0

9.1 Extending MTSA 81

((r1..rn, rf1) Γ(PTA(E‖σC1)) ∧ (r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 > rf2).
Similarly, we define the outcome of the comparison for a particular σ based on the
bidirectional comparison of behaviour of higher makespan (C1^σC2 and C2^σC1).
Table 9.1 shows the four possible outcomes of this bidirectional comparison. We
say that they are equivalent when they perform the same for every possible value
assignment to the parameters, and that two controllers are incomparable when it is
possible to find a set of values that shows a behaviour of higher makespan in
both cases. For instance, two controllers would be incomparable if they perform
different activities to reach a goal state.

C2^σC1 C1^σC2 Conclusion (under σ)
Sat Sat Incomparable (C1 �σ C2)
Unsat Unsat Equivalent (C1 uσ C2)
Sat Unsat C2 is better than C1 (C2 �σ C1)
Unsat Sat C1 is better than C2 (C1 �σ C2)

Table 9.1: Possible results of comparing two controllers under a scheduler σ.

Figure 9.6 shows the comparison framework for two controllers. As men-
tioned above, the framework compares two controllers under every possible
scheduler. This means that for each scheduler σ ∈ {σ1 . . . σk}, there are two
queries to be resolved. These queries are C2^σC1 : ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1)) ∧ (r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 > rf2) and
C1^σC2 : ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0 ((r1..rn, rf1) Γ(PTA(E‖σC1))∧(r1..rn, rf2)
Γ(PTA(E‖σC2)) ∧ rf2 > rf1). Given a scheduler σ, the comparison framework
resolves C2^σC1 by using Z3 SMT-solver [69]. The SMT-Solver is able to determine
if these expressions are satisfiable or not. Besides, when the expression is satisfiable,
it can also return a possible assignment of values to the parameters. By aggregating
the result of the individual queries to the SMT-Solver, it is possible to determine
that i) a controller C1 dominates C2 if (∀σ C1 �σ C2 ∨C1 uσ C2)∧ (∃σ C1 �σ C2),
ii) that they are equivalent if ∀σC1 uσ C2, or iii) that they are incomparable if
(∃σC1 �σ C2) ∨ (∃σ∃σ′ C1 �σ C2 ∧ C2 �σ′ C1).

82 Chapter 9. Evaluation

Controller 1

Controller 2

Enviroment

Γ (PTA(E ||σ1 C1)

Γ (PTA(E ||σ1 C2)

SMT
Solver

C1 is better σ1

C2 is betterσ1

Equivalent σ1

Incomparable σ1 C1 dominates C2

C2 dominates C1

Equivalent

Incomparable

Γ (PTA(E ||σk C1)

Γ (PTA(E ||σk C2)

SMT
Solver

C1 is better σk

C2 is betterσk

Equivalent σk

Incomparable σk

Activity
Definitions GoalsControllable

Actions

Scheduler σ1

Scheduler σk

Figure 9.6: Comparison framework for a pair of controllers C1 and C2. The number
of SMT queries depends on the number schedulers (σ1 . . . σk).

9.1.4 Comparing Γ expressions with Z3

In order to implement the comparison framework in MTSA, we integrated the tool
with the SMT-Solver Z3 by using the Java API [72]. Among other classes, we use
BoolExpr, RealExpr, Context, and Solvers. Most of the operations that involve
using Z3 are wrapped as functions in the classMTSSynthesis.controller.gr.time.comp
arator.MySMT . Figure 9.7 illustrates the fragment of the code that compares two
Γ expressions. This expressions are obtained from the timed semantics of the
scheduled composition of a controller. Each of this comparisons corresponds to
one of the comparisons per secheduler. This means that those expressions are
equivalent to each pair Γ(PTA(E‖σC1)) and Γ(PTA(E‖σC2)) shown in Figure 9.6.

In Figure 9.7, lines 6-13 initialize the expressions that are common to the
two queries that are done to Z3 in each step. That is the Γ expressions of the
two controllers (e.g.:gamma1.getExpression()) and some expressions that express
that variables involved are positive reals (R≥0). This is necessary because it is

9.1 Extending MTSA 83

1 package MTSSynthesis.controller.gr.time.comparator;
2 import ...
3 public class GammaComparator<A, S> {
4 ...
5 public Result compareGammas(Gamma gamma1, Gamma gamma2){
6 List<BoolExpr> expressions = new ArrayList<BoolExpr>();
7 expressions.add(positive);
8 expressions.add(smt.nonNegative(gamma1.getParameter()));
9 expressions.add(smt.nonNegative(gamma1.getClock()));

10 expressions.add(smt.nonNegative(gamma2.getParameter()));
11 expressions.add(smt.nonNegative(gamma2.getClock()));
12 expressions.add(gamma1.getExpression());
13 expressions.add(gamma2.getExpression());
14

15 BoolExpr T2_GT_T1 = smt.greaterThan(gamma2.getParameter(),
gamma1.getParameter());

16 BoolExpr T1_GT_T2 = smt.greaterThan(gamma1.getParameter(),
gamma2.getParameter());

17

18 //isT2_GT_T1 is satisfiable if exists a valuation that makes T2 > T1.
19 Pair<Status,Model> isT2_GT_T1 = smt.check(expressions, T2_GT_T1);
20 Pair<Status,Model> isT1_GT_T2 = smt.check(expressions, T1_GT_T2);
21

22 Result result;
23 if(isT1_GT_T2.getFirst().equals(Status.SATISFIABLE)){
24 if(isT2_GT_T1.getFirst().equals(Status.SATISFIABLE)){
25 result = Result.INCOMPARABLES;
26 }else{
27 result = Result.WORSE;//T1 is WORSE
28 }
29 }else{
30 if(isT2_GT_T1.getFirst().equals(Status.UNSATISFIABLE)){
31 result = Result.EQUALLYGOOD;
32 }else {
33 result = Result.BETTER;//T1 is BETTER
34 }
35 }
36 return result;
37 }
38 ...
39 }

Figure 9.7: Comparing two Γ expressions with Z3.
.

84 Chapter 9. Evaluation

not possible to directly define positive real variables in Z3. Otherwise, variables
that represent activities durations may be instantiated into negative values.
Lines 15-16 create two BoolExpr that represent the parts that differ in the two
queries described in the previous section: T2 > T1 and T1 < T2. Lines 19-20
execute this two queries. These queries are C2^σC1 : ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0

((r1..rn, rf1) Γ(PTA(E‖σC1)) ∧ (r1..rn, rf2) Γ(PTA(E‖σC2)) ∧ rf1 > rf2) and
C1^σC2 : ∃(r1..rn, rf1, rf2) ∈ Rn+2

≥0 ((r1..rn, rf1) Γ(PTA(E‖σC1))∧(r1..rn, rf2)
Γ(PTA(E‖σC2)) ∧ rf2 > rf1). The result of these queries is a pair that contains
the status and a model. The status can be satisfiable or unsatisfiable. When the
result is satisfiable the model contains a set of possible values to explain why it is
satisfiable. Otherwise, the model is null. The rest of the code shown in this figure
is to calculate the result of the comparison according to Table 9.1, which is shown
from the perspective of Γ1. The code is available in the repository of MTSA [73].

9.2 Experiments

In this section, we report two experiments that were performed to evaluate
the Algorithm 2. The purpose of the first experiment is to show that it is
possible to produce controllers that are better regarding makespan by using only
qualitative information. In this experiment, we compare the controller produced
by the standard synthesis algorithm of MTSA against the one produced by the
Algorithm 2. The objective of the second experiment is to evaluate the performance
of the algorithm on a variation of a job scheduling problem (JOB(n)) [74], where n
jobs must be executed while satisfying dependencies related to the start and end of
activities. The number of jobs involved in the problem was increased in order to
evaluate the performance of the algorithm regarding the size of the problem.

9.2.1 Comparison against standard synthesis algorithm

The experiment consists in synthesising a controller with the standard algorithm
of MTSA and the Algorithm 2 and in comparing those controllers by using the
comparison framework. For each case study, the experiment is performed as shown
in Figure 9.8. The standard synthesis algorithm takes as input an environment, a

9.2 Experiments 85

set of controllable actions, and the goals. The non-dominated controller algorithm
takes those inputs and the set of activity definitions. The controllers generated are
compared by using the comparison framework, which also uses the same inputs as
the Algorithm 2.

Enviroment

Goals

Controllable
Actions

Activities
Definition

Standard
Synthesis

Algorithm of
MTSA

Non-
dominated
controller
Algorithm

Enviroment

Goals

Controllable
Actions

MTSA
Controller

ND Controller

Activities
Definition

Enviroment

Goals

Controllable
Actions

Comparison
Framework

C1 dominates C2

C2 dominates C1

Equivalent

Incomparable

Figure 9.8: Experimental setting to compare the solution generated by Algorithm 2
against the ones produced by standard synthesis algorithm of MTSA.

For the evaluation we selected the following case studies because they involve
executing a set of activities in a reactive environment.
• Furniture Delivery Service (FDS), a web service composition problem [75].

Requests to web services are modeled as activities that can end as a success
or as a failure. The goal is to successfully arrange a purchase and delivery, or
failure after two re-attempts.
• Industrial Automation (IA) [48]. The motivating example described in

Section 6.1. Contingencies are related to the type of product to be processed
and the need for a final repair action, while the goal is to produce a product.
• Medical (MED) [76]. A sick patient has one of five possible sickness and
a doctor has two tests to discover wich of them is. The two tests are the
check of stain and count cells. Each sickness requires a different medicine.
If the doctor applies the correct medicine the patient is cured, otherwise
the patient dies. The goal is to cure the patient, and the contingencies are

86 Chapter 9. Evaluation

product of the test results.
• Job scheduling problem (JOB(n)) [74] where n jobs must be executed while

satisfying dependencies related to the relative start and end of activities.
These problems have alternative solutions, and some of them seem to be better

than the other in terms of makespan. Most of them may also require different
activities to fulfill the goal depending on the contingencies that occur. Besides, for
this case studies, the solution generated by the standard synthesis algorithm of
MTSA is a universal controller.

Results

Table 9.2 shows the results of obtaining a non-dominated controller for the case
studies FDS, MED, IA and JOB(4). For each case study we report the number
of states of the universal controller (#QU), the number of transitions of the
universal controller separated in controllables (C), end of activity (EA), and other
uncontrollables (U), the number of transitions removed by the algorithm (#D),
the number of reachable states from the initial state (#QC∗) and the result of the
comparison between the two controllers (Result). The universal controller U is the
solution produced by the standard synthesis algorithm and controller C∗ the one
produced by Algorithm 2.

Example #QU
#Transitions (#∆U) #D #QC∗ ResultC EA U

FDS 69 72 24 5 0 69 Same Controller
MED 50 40 24 1 0 50 Same Controller
IA 25 18 10 2 1 23 C∗ dom. U

JOB(4) 34 30 23 0 1 20 C∗ dom. Us

Table 9.2: Results of the evaluation of Algorithm 2 on cases studies from different
fields that involve the execution of activities to reach a goal.

The results show that for the case studies FDS and MED the number of
transitions removed is 0. This means that the controller produced by both
algorithms is the same. We inspected the case studies and noticed that despite the
existence of different alternatives to reach the goal in a concurrent manner, the
order in which the controllable actions are executed do not affect the makespan
in reaching the goal. Then, it is reasonable that Algorithm 2 does not remove

9.2 Experiments 87

any transition and produces the same result as the standard synthesis algorithm.
In contrast, for the case studies JOB(4) and IA transitions are removed from
the universal controller. By removing those transitions, the controller produced
by Algorithm 2 avoids those taking transitions that lead to behaviour of higher
makespan independently of the durations of the activities and contingencies.
Table 9.2 shows that controller produced by Algorithm 2 dominates the one
produced by the standard synthesis algorithm. In the next section, we inspect the
industrial automation example to explain why C∗ dominates U .

Inspecting the industrial automation example

Figure 9.9 shows the controllers produced by the standard algorithm of MTSA and
the Algorithm 2. The only difference in the input is the activities definition. The
controller synthesised by MTSA is equivalent to the universal controller from
Figure 6.5, while the Algorithm 2 produces the same controller as in Figure 8.1,
after removing the red transition.

Enviroment

Goals

Controllable
Actions

Activities
Definition

Standard
Synthesis

Algorithm of
MTSA

Non-
dominated
controller
Algorithm

Enviroment

Goals

Controllable
Actions

0

1

3

type1

type2

4

8

2
sA3

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

5

7

U

9

10

15
okQAeA3

eA2

efixsA2

sA1

eA1 eA2

eA1

eA2
sA1

eA1

sA2

sA1

0

1

3

type1

type2

4

8

2
sA3

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

C*

9

10

15
okQAeA3

eA2

efixsA2

eA1 eA2

eA1

eA2
sA1

sA1

Figure 9.9: Controllers produced by standard algorithm of MTSA and Algorithm 2.
The controller C∗ dominates U because C∗ does not have transition sA1 in

the state q3, which leads to a sequential execution of the activities A1 and A2.
In particular, the controller C∗ is better than C for the following scheduler σ3,
because the controller C∗ does not enable the action sA1 in the state q3.
- σ3(q0, {type1, type2}) = {type2}
- σ3(q3, {sA1 , sA2}) = {sA1}, σ3(q3, {sA2}) = {sA2}, σ3(q3, {sA1}) = {sA1}

88 Chapter 9. Evaluation

- σ3(q4, {sA1 , eA2}) = {sA1}, σ3(q3, {eA2}) = {eA2}
- σ3(q5, {eA1}) = {eA1}
- σ3(q6, {sA1}) = {sA1}
- σ3(q7, {sA2}) = {sA2}
- σ3(q8, {eA1 , eA2}) = {eA1 , eA2}
- σ3(q9, {eA1}) = {eA1}
- σ3(q10, {eA2}) = {eA2}
- σ3(q11, {checkQA}) = {checkQA}
- σ3(q12, {failQA, okQA}) = {okQA}
- σ3(q15, {done}) = {done}

This scheduler would lead to a comparison between the scheduled composition
of the controllers like the one shown in Figure 9.10. This two scheduled controllers
are analogous to the ones shown in Figure 7.1. In Section 7.3, we show that it
is possible to find a set of parameters that makes the makespan of U by higher
than that of C∗. For instance, this happens when all the parameters are assigned
with value 1. This is because for this scheduler, the scheduled composition of the
universal controller is sequential, while the one of the controller C∗ is concurrent.

0

3

type2

11
checkQA

12
done

17

5

7 10

15
okQA

eA2

sA1

eA1

sA2

0

3

type2

4

8

6

11
checkQA

12
done

17

9

10

15
okQA

sA2

eA1 eA2

eA1

eA2
sA1

sA1

E||σ3U

E||σ3C*

Figure 9.10: Scheduled parallel composition of controllers generated by the
standard synthesis algorithm and the Algorithm 2 on the IA example.

9.2 Experiments 89

9.2.2 Scalability in the job scheduling example

The experiment takes as input a control problem with activities. The goal is to
evaluate the synthesis time of the Algorithm 2. We distinguish the synthesis time
of the universal controller from the total time to identify the time it takes to
apply the comparison for pruning transitions in each state. We report number
of transitions removed and the number of reachable states after removing the
transitions. The number of reachable states is of interest because more compact
controllers are easier to validate. Additionally, we compare the solution synthesised
by Algorithm 2 with the one generated with the standard algorithm of MTSA.

The experiment is performed on different instances of the JOB(n) case study
with increasing number of jobs to be executed (n ∈ 4, 5, 6, 7). In this case study,
there are n jobs to be executed and the goal is to finish all of them. To exemplify
this case study, we use the JOB(4) instance. In this instance, there are four
jobs: job1, job2, job3 and job4. Each of the jobs consumes the amount of memory
indicated by the number. There are two type of restrictions regarding when jobs
can be executed. First, there is a memory limit that does not allow to execute all
the jobs at the same time. For simplicity, the memory limit is set to be n+ 1. For
example, job4 and job2 cannot be executed at the same time because there is not
enough memory (4 + 2 > 5). Second, there are also dependencies between the
jobs. For instance, job2 has to be executed after job1 finishes and job1 must start
after either job4 or job3 have started. These dependencies are modelled as safety
constraints in the model. The number of dependencies in each instance of the case
study is n− 2 and the dependencies are chosen arbitrarily .

Results

Table 9.3 shows the results of obtaining a non-dominated controller for JOB(n)
case study with n ∈ {4, 5, 6, 7}. For each instance, we report the number of
states of the universal controller (#QU), synthesis time of the universal controller
(Synth. Time C∗), the number of transitions of the universal controller separated
in controllables (C), end of activity (EA), and other uncontrollables (U), the
number of transitions removed by the algorithm (#D), the number of reachable
states from the initial state (#QC∗), the synthesis time of the Algorithm 2 (Synth.

90 Chapter 9. Evaluation

Time C∗) and the result of the comparison between the universal controller and
the controller C∗, which is the one produced by Algorithm 2. As in the previous
experiment, the universal controller U also referst to the solution produced by the
standard synthesis algorithm.

Case #QU
Synth. #∆U #D #QC∗

Synth. ResultStudy Time U C EA U Time C∗
JOB(4) 34 0.006s 30 23 0 1 20 3.81s C∗ dom. U
JOB(5) 63 0.012s 58 49 0 3 39 21.73s C∗ dom. U
JOB(6) 101 0.029s 103 81 0 5 90 240.26s C∗ dom. U
JOB(7) 259 0.329s 288 219 0 22 211 18833.77s C∗ dom. U

Table 9.3: Results of the performance of Algorithm 2 on the JOB case study with
increasing number of tasks.

The results of the experiment show that synthesis time of the Algorithm 2 in
the JOB(n) increments when the size of the problem increases regarding states and
transitions. The reason is that each local comparison generates the set of possible
schedulers, which size grows with respect to the number of actions and states. In
contrast, we can observe that the synthesis time of the universal controller stays
below a second. The case study JOB(8) was not reported in the table because of
time-out, which was defined as 24h (86400 seconds). The number of transitions
pruned by the algorithm increases in larger problems, as well as the number
of states of the non-dominated controller is reduced compared to that of the
universal controller. In all these cases, the controller produced by the standard
algorithm of MTSA was equivalent to the universal controller. These controllers
were dominated by the ones produced by the Algorithm 2.

9.2.3 Discussion

The results of the experiments show that the Algorithm 2 can prune those
transitions that lead to sequential behaviour from a universal control. This shows
that it is possible to qualitatively define a preference, and to define an algorithm
that can take it into account. However, the algorithm does not scale up to large
problems, because the number of schedulers increases as the size of the problem
does. On the positive side, we can observe that many transitions are removed

9.2 Experiments 91

by the algorithm when the size of the problem increases. In some cases, these
decisions also reduce the number of reachable states in the controller making it
more compact and easier to validate by an engineer or stakeholder. For instance, in
the JOB(5) case study, the number of states decreased by 38% (from 63 states to
39 states). The impact in the number of states of the controller changes depending
on how close this transition is in terms of steps to the initial state. Removing a
transition that is closer to the initial states produces a bigger impact in the size of
states.

The fact that no transitions are removed in the case studies FDS and MED
shows that not every problem has a solution that is better than other. Sometimes
the order in which the actions are executed is not necessarily relevant. Our
hypothesis that the order of the actions matter in this case studies was not correct.
For instance, in the MED case study, we expected that the order in which the
tests were done would affect the makespan of the solution. This is because one of
the two tests could directly indicate which is the sickness that the patient has.
In order to understand the details, let us explain more about this case study.
As mentioned before, there is a patient that needs to be diagnosed among five
possible diseases (disease 1 . . . disease 5). There are two possible medical tests to
evaluate the condition of the patient: stains and count cells. The stain test has
three possible results: A (disease 3 or 4), B (disease 1 or 2) and C (disease 5).
The count cells test has two possible results: Normal (disease 2 or 4) or High
(disease 1, 3 or 5). The fact that the stain test can directly diagnose disease 5
made us believe that the makespan of a controller doing this test first would be
less than that of a controller doing count cells test first. However, when analysing
the results, we realised that the order in which tests are done does not matter.
The only thing that matters is that the controller tries to execute the two tests as
soon as possible. If the result of the test that diagnoses the sicknesses directly
comes first, the controller would diagnose the patient without waiting for the
result of the other test. This means that in the goal states there are still activities
running. For instance, the following trace would be a possible: sCountCells, sStain,
eStainResultC, useMedicineC. Here, in the goal state, the activity of counting cells
test is still running. This is the reason why in those cases, the algorithm does not
remove any controllable transitions, which is the expected output.

93

10
Related Work

In this chapter, we summarize some papers from the literature that are relevant to
our work. These works are from the areas described in Chapter 2, which are
supervisory control, reactive synthesis, and automated planning. Section 10.1
presents quantitative approaches to preferences, while Section 10.2 shows qualitative
approaches. Section 10.3 discusses time and uncertainty, which is also a relevant
topic in this thesis. Each section finishes with a comparison between approaches
taken in the literature and our approach.

10.1 Quantitative approaches for preferences

In the supervisory control community, optimal control for quantitative discrete-
event systems studies the performance of the controller [77, 78]. A solution to
this problem should not only achieve a goal, but also achieve it in an optimal
manner. The performance of the controller is measured by introducing cost
functions, and the goal is to reach a set of desired states while optimising the

94 Chapter 10. Related Work

cost. Passino et al. [78] proposed a heuristic search algorithm to reach one of the
target states optimally. In the work of Brave et al. [77], the authors presented
a solution that uses optimal attractors to generate a supervisor that reaches a
set of target states and stays there indefinitely. Pantelic et al. [79] studied a
synthesis method for probabilistic models. Minimising makespan was studied
by Su et al., who proposed a solution by modelling the problem as an optimal
supervisor problem [81]. Pruekprasert et al. [82] proposed an algorithm to compute
an optimal solution to infinite sequences problems modelled by weighted automata,
which is based on two-player games.

In the reactive synthesis community, formally reasoning about the quality of
the solutions has been a relevant topic in the recent years [22, 83]. Bloem et al. [22]
proposed a method that uses quantitative properties to measure how good is an
implementation. They also presented an optimal synthesis method, which solves
games with quantitative objectives. In particular, their solution uses lexicographic
mean-payoff conditions to express quantitative properties for reactive systems.
Those algorithms are to solve problems with safety requirements, which can be
solved by using lexicographic mean-payoff games [23], and to solve problems with
liveness requirements, which need using both lexicographic mean-payoff games and
parity objectives. Chaterjee et al. [84] studied multi-dimensional quantitative
objectives on multidimensional mean-payoff and energy games. They proposed a
symbolic and incremental synthesis method to solve multi-dimensional energy
parity games, which computes a finite-memory winning strategy, if exists.

There are also tools for quantiative synthesis. For instance, QUASY [85] is the
first tool for quantitative synthesis that can model both adversarial environments
and probabilistic environments. This tool can solve these two types of quantitative
synthesis problems by using two-player games and Markov Decision Processes
(MDPs) with quantitative winning objectives.

In the work of Amalgor et al. [83], the authors presented a different approach
by defining a specification formalism to measure how well the system satisfies the
specification. They define propositional quality and temporal quality for temporal
logic by adding quantitative information that is used as a metric of satisfaction.
A similar method has also been applied in branches of planning that use LTL
synthesis to generate plans [86].

10.2 Qualitative approaches for preferences 95

In the planning community, preferences are added in the third version of
planning domain definition language (PDDL) [87]. This version of PDDL permits
defining preferences, hard constraints, as well as a metric function that defines the
quality of the plan. For instance, it is possible to specify for example when a robot
leaves the room, it would be better if it turns off the light. The metric function is an
arithmetic function, which allows to define how to measure the quality of a plan in
terms of length of the plan and number of violations of the preferences [88]. Some
authors proposed that this type of preferences could be compiled into classical
planning with action costs [89], which is also a quantitative approach.

Decision theoretic-planning [90] solves planning problems with non-deterministic
effects by obtaining an optimal policy from an MDP. A policy in the MDP is a
function that returns an action based on the history of actions and observations
perceived. Finding optimal policies can be seen as a form of preference-based
planning. Preferences can be specified by using a reward functions. However,
defining a utility function that reflects the preferences of the user is not trivial [91].

Typically, to compare solutions, quantitative techniques must aggregate values
of different executions by using the worst or average case. As mentioned above,
this requires modelling costs and probabilities in the models. This means that
quantitative measures are sensitive to the numbers that users assign in the models.
In contrast, our approach does not require probabilistic modelling or quantitative
information about the environment. Instead, we establish a way to compare
controllers qualitatively by using a symbolic comparison. The synthesis method
proposed does not guarantee an optimal solution, but relieves the user from
providing quantitative information. Our work is currently limited to reachability
and safety goals with a makespan preference, while some quantitative methods can
generate optimal solutions for problems with liveness goals [23, 82] and multiple
preferences [84], which are aspects we intend to develop in our future work.

10.2 Qualitative approaches for preferences

Qualitative approaches to express preferences exist in the planning community [91].
One of these approaches is conditional preference networks (CP-nets) [92] , which
allows users to specify conditional preference relations among variables. For

96 Chapter 10. Related Work

instance, a user could specify that email is preferred over SMS under general
circumstances, but if the signal is low SMS is preferred over email. This type
of relations induces a partial order, which means that incomparability is also
a possible outcome of CP-net. TCP-nets [93] is an extension of CP-nets that
allows modelling tradeoff preferences between certain variables. For example,
delivering priority packages is more important than fuel economy. Despite that
incomparable is a possible outcome of TCP-nets as well, this form of preferences
permits reducing incomparable results.

Other approaches focus on defining temporal preferences qualitatively. That
is, allowing the user to specify temporal aspects in the execution of a plan [91],
which hold under certain preconditions. One of these approaches proposes a
framework for temporal preferences that is expressed in Boolean language and
arithmetic operators [94]. The arithmetic operators are introduced to define
quantified operations over steps of the plan. For example, the will of delivering
package A prior to package B can modelled as deliver A in step k of the execution,
and deliver B in step p with be p > k. This form of preference also defines a
partial order, which allows for incomparability. In this framework, aggregation of
preferences is possible by defining a preference relation in quantitative terms,
which means that it is not purely qualitative.

Another interesting approach in temporal preferences is a language named
LPP [95], which alllows expressing temporal preferences in some form of LTL that
allows quantification and aggregation preferences. For instance, it is possible to
define preferences such as ψ1 : eventually return to pick-up more mail, ψ2: always
deliver priority mail before standard one, or ψ3: do not deliver mail A until you
deliver mail B. The user can also define levels of satisfaction, e.g., excellent > good
> bad. Then it is possible to define how preference formulas affect the levels of
satisfaction. For instance, satisfying ψ1 and ψ2 is excellent, satisfying only ψ1 is
good, and satisfying only ψ3 is bad. Then the plan is evaluated by using those
levels of satisfaction, which makes this framework have a total order, i.e., there are
no incomparables.

Some works implemented planners for qualitative languages on top of general-
purpose solvers such as SAT, ASP or CSP solvers [96, 97, 98]. For instance,
PREF-PLAN [98] is a planner that uses TCP-net [93] specification language and a

10.3 Temporal problems and uncertainty 97

constraint satisfaction problem solver as part of its planning engine. As most of
the planning techniques, they do not represent the entire problem as a graph and
use heuristics to find next actions for the plan. In this step, they create a graph
of depth k and define a constraint satisfaction problem that produces the most
preferred plan for the next k actions. However, this does not guarantee that the
solution produced is optimal.

To the best of our knowledge, both supervisory control and reactive synthesis
community have not explored modelling preferences qualitatively. As mentioned in
the previous section, preferences in these two areas are mainly studied quantitatively
in the search of optimality. Our approach intends to be the first step in a similar
direction to that of qualitative approaches in planning. Our approach generates a
partial order among alternative solutions to a control problem. Currently we
focus only on makespan, while qualitative preferences in planning can support for
multiple preferences, which is one of the branches that we aim to develop as future
directions. Nonetheless, the proposed framework to compare controllers is different
from the works that we previously mentioned.

Those approaches focus on expressing preferences regarding the order in which
events occur (e.g.: deliver a prior to b) or preference among alternative ways of
doing something (e.g.: deliver by email is preferred over deliver by SMS). We
believe that some of these forms of preferences can be captured as temporal logic
properties of our models, which is similar to what is done in temporal preferences.
The main difference is that preferences are not required to be satisfied by the
solution produced while properties in a control problem must be satisfied. Another
important difference is that those approaches are designed for classical planning,
which means that those problems do not involve contingencies. In addition, none
of those approaches seem to focus on modelling time qualitatively. Our form of
comparison is a novel approach, and it is the only one that relies on PTA and
SMT-Solving to produce a qualitative result in the context of controller synthesis.

10.3 Temporal problems and uncertainty

Minimising time in reaching a goal is not only considered as a quality measure,
but also as a requirement that the system must statisfy. In fact, the main goal of

98 Chapter 10. Related Work

temporal planning problems is to minimise the makespan in reaching a deadline [99],
while satisfying a set of quantitative temporal constraints about the order in
which activities have to be executed. PDDL is capable of expressing temporal and
numeric properties of planning domains [100].

In the planning community, there has been strong interest in the uncertainty
of durations, i.e., achieving the goal for any possible value of uncontrollable
durations [101, 102]. This problem is named strong temporal planning with
uncontrollable durations (STPUD). A strong plan must always reach the goal.
In STPUD problems, the planner can choose when to start an action, and the
environment chooses when it finishes within bounds that are known to the planner.
Uncertain durations are bounded between concrete values [δmin, δmax]. One of
these works [103] uses SMT to encode time constraints and determine if a temporal
problem is solvable. The SMT-Solver is used to find examples of uncontrollable
time points, given an assignment to the controllable points. This type of problems
extends strong temporal planning problems, which are plans that do not deal with
contingencies. In contrast, conditional simple temporal networks with uncertainty
and decisions (CSTNUD) [104] allow to represent both dynamic controllability and
uncertain durations. Zavatteri [104] proposes to encode the problem as timed
game automata and presents synthesis methdos for CSTNUD.

The problem of how to synthesise a controller has also been defined for timed
automata [105]. This problem extends the controller synthesis problem for discrete
event dynamic systems by allowing the controller to choose between executing
an action or letting the time pass. The problem is formulated by using timed
games, from which a strategy is built. Works mainly focus on safety [105] and
reachability [106] games, because solving a reachability-time game is known to be
already EXPTIME-complete for timed automata with at least two clocks [106].

Parametric timed automata extends timed automata with parameters to
model uncertainty of durations in the system. Parametric timed models have
been studied since the seminal work of Alur [25]. Parameters are the basis to
study robust schedulability conditions [107, 108]. There are approaches that
tackle parametric timed reachability games for fragments of parametric timed
automata [109]. Synthesis approaches for parametric timed automata are scarce
due to decidability problems. For this reason, a subclass of PTA called lower

10.3 Temporal problems and uncertainty 99

bound / upper bound automata was characterized. For this type of PTA, there are
only semi-algorithms to compute the corresponding parameter valuations. A
solution to these problems guarantees reaching a goal state, but not necessarily in
minimum time. Recent studies [61, 110] focus on the parameter synthesis problem.
A solution to this problem is to obtain a set of values for the parameters that
guarantee reaching the goal in minimal time.

Both temporal planning problems and synthesis for timed models focus on
the temporal aspects of the specification, while the focus of our approach is
on behaviour. These approaches require to model a quantitative part of the
specification because time is the focus of the study. In contrast, we solve a reactive
problem against an adversarial environment, where contingencies are a key aspect
of the problem, and time is only a preference. In our work, parameters do not
need to be specified by the user. They are inferred from the behavioural model by
using activity definitions. To the best of our knowledge, the problem of directly
comparing parametric timed automatons has not been explored. Thus, our form
of comparison based on symbolic expressions can also be a contribution to this
community.

101

11
Conclusions

In this chapter, we summarize the contributions of this thesis and its limitations.
Some of these limitations may be a good start for possible extensions.

11.1 Contributions

The main contribution of this work is building a framework to symbolically
compare makespan of controllers for safety and reachability goals. The results of
the comparison establish a dominance relation between controllers. Moreover, we
provide a qualitative definition of makespan-minimising controllers, which are
controllers that cannot be dominated by any other controller. We also present
a sound algorithm to produce a makespan-minimising controller. In addition,
we conduct experiments to compare the controllers generated by our algorithm
against the ones produced by the standard synthesis algorithm of MTSA. The
experiment shows that our algorithm removes those transitions that lead to
sequential execution from a universal controller. By removing those transitions, we

102 Chapter 11. Conclusions

can generate controllers that perform better than the ones produced by standard
qualitative synthesis algorithms. In some cases, the algorithm produces the same
solution as the standard synthesis algorithm, because in those cases the order in
which the actions are executed do not alter the makespan of the controller. The
current implementation can produce makespan-minimising controllers for small to
medium size problems, but it does not scale up to large size problems.

11.2 Limitations and potential extensions

Reachability and safety goals

Although in this work we focus on reachability goals and makespan analysis,
supporting more general goals, such as GR(1) [16], would be of interest. However,
this has a key challenge which is to deal with cycles, which are product of
uncontrollable behaviour that can be executed an unbounded number of times.

Recurrence of activities

The qualitative measure of makespan is defined in terms of the duration of the
activities. In our models, activities do not occur twice in a trace between the
initial and goal states because we are dealing with memoryless solutions. However,
if the activity occurs more than once, the same parameter will be used to model
the duration of the activity. This means that different instances of the same
activity take the same parametric duration. One alternative is to enumerate
the instances of the activities and assign a different parameter to each of them.
Another alternative is to model the duration of an activity by using parametric
intervals instead of a single parameter.

Relation between the activity durations

Currently, we make no assumption on possible relations among activity durations,
this technique can be easily extended to support symbolic constraints of activity
durations (e.g., pα1 ≤ pα2 +pα3). These constraints can be added to the comparison
framework, which would also be reflected in the algorithm. Adding this to the

11.2 Limitations and potential extensions 103

framework may also help to reduce the number of incomparable results in the
comparison, which may also improve the performance of the algorithm.

Compare standard PTAs with the comparison framework

The comparison framework is defined to compare controllers generated by qualitative
synthesis techniques. In our framework, activities must be specified to be able
to define a timed semantics for controllers, which is based on PTAs. In the
last step, the comparison framework is comparing symbolic expressions that are
genereated from PTAs. This means that it may be also possible to apply this form
of comparison directly on PTAs. However, these PTAs may need to satisfy some
conditions. For instance, it should be possible to calculate Γ. Besides, a different
form of schedulers may need to be defined, because the schedulers that are defined
in this work distinguishes the end of activity actions, other uncontrollable actions,
and controllable ones.

It would be interesting to evaluate if the comparison without the schedulers
can produce relevant results when comparing makespan of standard PTAs for
reachability. Otherwise, it might be necessary to define different type of schedulers.
One important fact to consider is that when comparing PTAs, those PTAs need to
share some parameters. Otherwise, the results of the comparison would always be
incomparable. Thorough analysis need to be done to characterize the conditions
that PTAs need to satisfy to use these framework, and the significance that may
have for this community.

Multiple qualitative preferences

In this work, we use the symbolic constraints over the parameters as a metric
of makespan. However, parameters could be given a different semantic such
as energy consumption. For example, we could have a symbolic expression
bf = (bα1 + bα2 ∨ bα3) that defines the energy consumption regarding and activities,
and another expression pf = (pα1 + pα2 ∨ pα3). This enables the possibility
of combining relations between activity durations and energy consumption.
Nonetheless, it requires to develop a way to express our main preference, and how
multiple preferences should be prioritized. Otherwise, most of the results may be

104 Chapter 11. Conclusions

incomparable.

Encoding the schedulers in the symbolic expression

The current implementation of the schedulers has shown performance issues
regarding execution time of the algorithm. Alternatively, encoding a scheduler in
the symbolic expression may reduce the time it takes to produce a controller with
our technique. However, defining an encoding for the scheduler may not be trivial,
because schedulers need to consider alternative transitions when a controller does
not have a particular controllable action enabled.

Contextual schedulers

The schedulers defined in this work are defined regarding the states of the
environment. This means that when executing two different controllers, the
environment behaves the same (or similar) in a particular state. Another option is
to define schedulers that do not depend on the states of the environment but only
on the currently running and finished activities. However, defining how to model
this type of schedulers requires thorough analysis.

105

Bibliography

[1] Axel Van Lamsweerde. Requirements engineering: From system goals to
UML models to software, volume 10. Chichester, UK: John Wiley & Sons,
2009.

[2] Orna Grumberg, EM Clarke, and Doron Peled. Model checking, 1999.

[3] Thomas Bochot, Pierre Virelizier, Hélene Waeselynck, and Virginie Wiels.
Model checking flight control systems: The airbus experience. In 2009 31st
International Conference on Software Engineering-Companion Volume, pages
18–27. IEEE, 2009.

[4] Pierre-Alain Bourdil, Bernard Berthomieu, and Eric Jenn. Model-checking
real-time properties of an auto flight control system function. In 25th IEEE
International Symposium on Software Reliability Engineering Workshops,
ISSRE Workshops, Naples, Italy, November 3-6, 2014, pages 120–123. IEEE
Computer Society, 2014.

[5] Markus Weißmann, Stefan Bedenk, Christian Buckl, and Alois Knoll. Model
checking industrial robot systems. In International SPIN Workshop on
Model Checking of Software, pages 161–176. Springer, 2011.

[6] Johan Arcile, Raymond Devillers, and Hanna Klaudel. Verifcar: a framework
for modeling and model checking communicating autonomous vehicles.
Autonomous Agents and Multi-Agent Systems, 33(3):353–381, 2019.

[7] Tichakorn Wongpiromsarn and Richard M Murray. Formal verification of an
autonomous vehicle system. In Conference on Decision and Control, 2008.

106 Bibliography

[8] Fujio Miyawaki, Ken Masamune, Satoshi Suzuki, Kitaro Yoshimitsu, and Juri
Vain. Scrub nurse robot system-intraoperative motion analysis of a scrub
nurse and timed-automata-based model for surgery. IEEE Transactions on
Industrial Electronics, 52(5):1227–1235, 2005.

[9] David Harel and Amir Pnueli. On the development of reactive systems. In
Logics and models of concurrent systems, pages 477–498. Springer, 1985.

[10] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems: Specification. Springer Science & Business Media, 2012.

[11] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 179–190. ACM, 1989.

[12] Rüdiger Ehlers, Stéphane Lafortune, Stavros Tripakis, and Moshe Y Vardi.
Supervisory control and reactive synthesis: a comparative introduction.
Discrete Event Dynamic Systems, 27(2):209–260, 2017.

[13] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Where’s
waldo? sensor-based temporal logic motion planning. In Proceedings 2007
IEEE International Conference on Robotics and Automation, pages 3116–3121.
IEEE, 2007.

[14] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-
logic-based reactive mission and motion planning. IEEE transactions on
robotics, 25(6):1370–1381, 2009.

[15] Hadas Kress-Gazit, Tichakorn Wongpiromsarn, and Ufuk Topcu. Correct,
reactive, high-level robot control. IEEE Robotics & Automation Magazine,
18(3):65–74, 2011.

[16] Nir Piterman, Amir Pnueli, and Yaniv SaâĂŹar. Synthesis of reactive (1)
designs. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, pages 364–380. Springer, 2006.

Bibliography 107

[17] L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden, J. Kramer, K. Tei,
and S. Uchitel. Assured and correct dynamic update of controllers. In
Proceedings of the 11th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’16, pages 96–107, New
York, NY, USA, 2016. ACM.

[18] PJ Ramadge and WM Wonham. Supervisory control of a class of discrete
event processes. In Analysis and Optimization of Systems, pages 475–498.
Springer, 1984.

[19] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak,
strong, and strong cyclic planning via symbolic model checking. Artificial
Intelligence, 147(1-2):35–84, 2003.

[20] Robert P. Goldman and Mark S. Boddy. Expressive planning and explicit
knowledge. In Proceedings of the Third International Conference on Artificial
Intelligence Planning Systems, Edinburgh, Scotland, May 29-31, 1996, pages
110–117, 1996.

[21] Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based
approach. J. Artif. Intell. Res. (JAIR), 4:287–339, 1996.

[22] Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, and Barbara
Jobstmann. Better quality in synthesis through quantitative objectives. In
Computer Aided Verification, pages 140–156. Springer, 2009.

[23] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.
Mean-payoff parity games. In LICS, pages 178–187. IEEE Computer Society,
2005.

[24] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

[25] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric
real-time reasoning. In Proc. of the ACM Symp. on Theory of Computing,
STOC ’93, 1993.

108 Bibliography

[26] Thomas A Henzinger. The theory of hybrid automata. Springer, 2000.

[27] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook
of Model Checking, pages 305–343. Springer, 2018.

[28] Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Sebastián Uchitel.
MTSA: the modal transition system analyser. In 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2008), 15-19
September 2008, L’Aquila, Italy, pages 475–476. IEEE, 2008.

[29] A Church. Applications of recursive arithmetic to the problem of circuit
synthesis–summaries of talks. Institute for Symbolic Logic, Cornell University,
1957.

[30] Alonzo Church. Logic, arithmetic and automata. In Proceedings of the
international congress of mathematicians, volume 1962, pages 23–35, 1962.

[31] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning -
theory and practice. Elsevier, 2004.

[32] Giuseppe De Giacomo and Moshe Vardi. Synthesis for ltl and ldl on finite
traces. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[33] Alberto Camacho, Meghyn Bienvenu, and Sheila A. McIlraith. Towards
a unified view of AI planning and reactive synthesis. In J. Benton, Nir
Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth Srivastava, editors,
Proceedings of the Twenty-Ninth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15,
2019., pages 58–67. AAAI Press, 2019.

[34] Alberto Camacho, Jorge A. Baier, Christian J. Muise, and Sheila A. McIlraith.
Finite LTL synthesis as planning. In Mathijs de Weerdt, Sven Koenig,
Gabriele Röger, and Matthijs T. J. Spaan, editors, Proceedings of the Twenty-
Eighth International Conference on Automated Planning and Scheduling,
ICAPS 2018, Delft, The Netherlands, June 24-29, 2018., pages 29–38. AAAI
Press, 2018.

Bibliography 109

[35] Nicolás D’Ippolito, Natalia RodrıÌĄguez, and Sebastian Sardina. Fully
observable non-deterministic planning as assumption-based reactive synthesis.
Journal of Artificial Intelligence Research, 61:593–621, 2018.

[36] Giuseppe De Giacomo, Paolo Felli, Fabio Patrizi, and Sebastian Sardina.
Two-player game structures for generalized planning and agent composition.
In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[37] Rune M Jensen. Des controller synthesis and fault tolerant control. Technical
report, Citeseer, 2003.

[38] Ruediger Ehlers, Stephane Lafortune, Stavros Tripakis, and Moshe Vardi.
Reactive synthesis vs. supervisory control: Bridging the gap. EECS
Department, Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2013-162, 2013.

[39] Daniel Ciolek, Víctor A. Braberman, Nicolás D’Ippolito, and Sebastián
Uchitel. Directed controller synthesis of discrete event systems: Taming
composition with heuristics. In 55th IEEE Conference on Decision and
Control, CDC 2016, Las Vegas, NV, USA, December 12-14, 2016, pages
4764–4769. IEEE, 2016.

[40] Marco Pistore and Paolo Traverso. Planning as model checking for extended
goals in non-deterministic domains. In IJCAI, volume 1, pages 479–486,
2001.

[41] Jorge A Baier and Sheila A McIlraith. Planning with temporally extended
goals using heuristic search. In ICAPS, pages 342–345, 2006.

[42] Stephen Cresswell and Alexandra Coddington. Compilation of ltl goal
formulas into pddl. In ECAI, volume 16, page 985. Citeseer, 2004.

[43] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

110 Bibliography

[44] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from
temporal logic specifications. ACM Trans. Program. Lang. Syst., 6(1):68–93,
January 1984.

[45] P Madhusudan. Control and synthesis of open reactive systems. 2009.

[46] Nicolás D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchitel.
Synthesis of live behaviour models. In Proc. of the int. symposium on
Foundations of soft. eng., FSE ’10, 2010.

[47] Nicolás D’Ippolito, Víctor A. Braberman, Nir Piterman, and Sebastián
Uchitel. Synthesis of live behaviour models for fallible domains. In Richard N.
Taylor, Harald Gall, and Nenad Medvidovic, editors, ICSE, pages 211–220.
ACM, 2011.

[48] Nicolás D’Ippolito, Víctor A. Braberman, Nir Piterman, and Sebastián
Uchitel. Synthesizing nonanomalous event-based controllers for liveness
goals. ACM Trans. Softw. Eng. Methodol., 22(1):9:1–9:36, 2013.

[49] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning
domain definition language, 1998.

[50] Blai Bonet and Hector Geffner. Planning as heuristic search: New results. In
Proceedings of the 5th European Conference on Planning: Recent Advances
in AI Planning, ECP ’99, pages 360–372, Berlin, Heidelberg, 2000. Springer-
Verlag.

[51] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial intelligence, 116(1-2):123–
191, 2000.

[52] Sven Koenig and Reid G. Simmons. Real-time search in non-deterministic
domains. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 2, IJCAI’95, pages 1660–1667, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

Bibliography 111

[53] Erann Gat. Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for controlling real-world mobile robots. In Proceedings
of the Tenth National Conference on Artificial Intelligence, AAAI’92, pages
809–815. AAAI Press, 1992.

[54] Hector Geffner and Blai Bonet. A concise introduction to models and
methods for automated planning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 8(1):1–141, 2013.

[55] Alberto Camacho, Christian J Muise, Jorge A Baier, and Sheila A McIlraith.
Ltl realizability via safety and reachability games. In IJCAI, pages 4683–4691,
2018.

[56] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008.

[57] D. Giannakopoulou and J. Magee. Fluent Model Checking for Event-Based
Systems. In ESEC/FSE, pages 257–266, Helsinki, Finland, September 2003.

[58] Michael Jackson. The world and the machine. In 1995 17th International
Conference on Software Engineering, pages 283–283. IEEE, 1995.

[59] Nicolas D’Ippolito. Synthesis of event-based controllers for software engineer-
ing. PhD thesis, Citeseer, 2013.

[60] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC /
SIGSOFT FSE, pages 109–120. ACM, 2001.

[61] Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121, 2009.

[62] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of model checking, volume 10. Springer, 2018.

[63] Emmanuel Letier and William Heaven. Requirements modelling by synthesis
of deontic input-output automata. In Proceedings of the 2013 International
Conference on Software Engineering, pages 592–601. IEEE Press, 2013.

112 Bibliography

[64] Erich Gradel and Wolfgang Thomas. Automata, logics, and infinite games: a
guide to current research, volume 2500. Springer Science & Business Media,
2002.

[65] Walter Murray Wonham. Supervisory control of discrete-event systems.
Encyclopedia of systems and control, pages 1396–1404, 2015.

[66] Wolfgang Thomas. On the synthesis of strategies in infinite games. In
STACS, pages 1–13, 1995.

[67] R. Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics., 6:679–684, 1957.

[68] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems (an extended abstract). In STACS, pages
229–242, 1995.

[69] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[70] Víctor Braberman, Nicolas D’Ippolito, Nir Piterman, Daniel Sykes, and
Sebastian Ucriitel. Controller synthesis: From modelling to enactment. In
2013 35th International Conference on Software Engineering (ICSE), pages
1347–1350. IEEE, 2013.

[71] Jeff Magee and Jeff Kramer. State models and java programs. wiley Hoboken,
1999.

[72] Z3 api documentation. http://z3prover.github.io/api/html/index.html.
Accessed: 2020-01-29.

[73] The modal transition system analyser official website. http://mtsa.dc.uba.ar/.
Accessed: 2020-01-29.

[74] Laurent Fribourg, Romain Soulat, David Lesens, and Pierre Moro. Robustness
analysis for scheduling problems using the inverse method. In Temporal

Bibliography 113

Representation and Reasoning (TIME), 2012 19th International Symposium
on, pages 73–80. IEEE, 2012.

[75] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
monitoring web service composition. In Artificial Intelligence: Methodology,
Systems, and Applications, Lecture Notes in Computer Science. 2004.

[76] Blai Bonet and Hector Geffner. Gpt: A tool for planning with uncertainty
and partial information. In In Proc. IJCAI01 Workshop on Planning with
Uncertainty and Incomplete Information, pages 82–87, 2001.

[77] Yitzhak Brave and Michael Heymann. On optimal attraction in discrete-event
processes. Information sciences, 67(3):245–276, 1993.

[78] KM Passino and PJ Antsaklis. On the optimal control of discrete event
systems. In Proceedings of the 28th IEEE Conference on Decision and
Control,, pages 2713–2718. IEEE, 1989.

[79] Vera Pantelic and Mark Lawford. Optimal supervisory control of probabilistic
discrete event systems. IEEE transactions on automatic control, 57(5):1110–
1124, 2011.

[80] Hervé Marchand, Olivier Boivineau, and Stéphane Lafortune. Optimal
control of discrete event systems under partial observation. In Proceedings of
the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228),
volume 3, pages 2335–2340. IEEE, 2001.

[81] Rong Su, Jan H Van Schuppen, and Jacobus E Rooda. The synthesis of
time optimal supervisors by using heaps-of-pieces. IEEE Transactions on
Automatic Control, 57(1):105–118, 2012.

[82] Sasinee Pruekprasert, Toshimitsu Ushio, and Takafumi Kanazawa. Quantita-
tive supervisory control game for discrete event systems. IEEE Transactions
on Automatic Control, 61(10):2987–3000, 2015.

[83] Shaull Almagor, Udi Boker, and Orna Kupferman. Formally reasoning about
quality. Journal of the ACM (JACM), 63(3):24, 2016.

114 Bibliography

[84] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy
synthesis for multi-dimensional quantitative objectives. Acta Informatica,
51(3-4):129–163, 2014.

[85] Krishnendu Chatterjee, Thomas A Henzinger, Barbara Jobstmann, and
Rohit Singh. Quasy: Quantitative synthesis tool. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages
267–271. Springer, 2011.

[86] Alberto Camacho, Meghyn Bienvenu, and Sheila A McIlraith. Finite ltl
synthesis with environment assumptions and quality measures. In Sixteenth
International Conference on Principles of Knowledge Representation and
Reasoning, 2018.

[87] Alfonso Gerevini and Derek Long. Plan constraints and preferences in pddl3.
Technical report, Technical Report 2005-08-07, Department of Electronics
for Automation âĂę, 2005.

[88] Jorge A Baier, Fahiem Bacchus, and Sheila A McIlraith. A heuristic search
approach to planning with temporally extended preferences. Artificial
Intelligence, 173(5-6):593–618, 2009.

[89] Emil Keyder and Hector Geffner. Soft goals can be compiled away. Journal
of Artificial Intelligence Research, 36:547–556, 2009.

[90] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Artificial
Intelligence Research, 11:1–94, 1999.

[91] Jorge A Baier, Sheila A McIlraith, et al. Planning with preferences. AI
Magazine, 29(4):25–25, 2008.

[92] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and
David Poole. Cp-nets: A tool for representing and reasoning withconditional
ceteris paribus preference statements. Journal of artificial intelligence
research, 21:135–191, 2004.

Bibliography 115

[93] Ronen I Brafman, Carmel Domshlak, and Solomon Eyal Shimony. On
graphical modeling of preference and importance. Journal of Artificial
Intelligence Research, 25:389–424, 2006.

[94] James P Delgrande, Torsten Schaub, and Hans Tompits. A general framework
for expressing preferences in causal reasoning and planning. Journal of Logic
and Computation, 17(5):871–907, 2007.

[95] Meghyn Bienvenu, Christian Fritz, and Sheila A McIlraith. Planning with
qualitative temporal preferences. KR, 6:134–144, 2006.

[96] Enrico Giunchiglia and Marco Maratea. Planning as satisfiability with
preferences. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON
ARTIFICIAL INTELLIGENCE, volume 22, page 987. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[97] Tran Cao Son and Enrico Pontelli. Planning with preferences using logic
programming. Theory and Practice of Logic Programming, 6(5):559–607,
2006.

[98] Ronen I Brafman and Yuri Chernyavsky. Planning with goal preferences and
constraints. In ICAPS, pages 182–191, 2005.

[99] William Cushing, Subbarao Kambhampati, Mausam, and Daniel S. Weld.
When is temporal planning really temporal? In IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, January 6-12, 2007, pages 1852–1859, 2007.

[100] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research,
20:61–124, 2003.

[101] Alessandro Cimatti, Minh Do, Andrea Micheli, Marco Roveri, and David E
Smith. Strong temporal planning with uncontrollable durations. Artificial
Intelligence, 256:1–34, 2018.

116 Bibliography

[102] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Strong temporal
planning with uncontrollable durations: A state-space approach. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., pages 3254–3260, 2015.

[103] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solving strong
controllability of temporal problems with uncertainty using smt. Constraints,
20(1):1–29, 2015.

[104] Carlo Combi, Roberto Posenato, Luca Viganò, and Matteo Zavatteri.
Conditional simple temporal networks with uncertainty and resources. J.
Artif. Int. Res., 64(1):931âĂŞ985, January 2019.

[105] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller
synthesis for timed automata. IFAC Proceedings Volumes, 31(18):447–452,
1998.

[106] Marcin Jurdziński and Ashutosh Trivedi. Reachability-time games on timed
automata. In International Colloquium on Automata, Languages, and
Programming, pages 838–849. Springer, 2007.

[107] A. Cimatti, , L. Palopoli, and Y. Ramadian. Symbolic computation of
schedulability regions using parametric timed automata. In Real-Time
Systems Symposium, RTSS’08, pages 80–89. IEEE Press, 2008.

[108] Manas Chandra Saksena. Parametric Scheduling for Hard Real-time Systems.
PhD thesis, College Park, MD, USA, 1994. UMI Order No. GAX95-14577.

[109] A Jovanović, Sébastien Faucou, Didier Lime, and Olivier H Roux. Real-time
control with parametric timed reachability games. IFAC Proceedings Volumes,
45(29):323–330, 2012.

[110] Étienne André, Vincent Bloemen, Laure Petrucci, and Jaco van de Pol.
Minimal-time synthesis for parametric timed automata. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 211–228. Springer, 2019.

	List of Figures
	Notation in Figures
	List of Tables
	List of Algorithms
	Abstract
	1 Introduction
	1.1 Formal methods in software engineering
	1.2 Qualitative controller synthesis
	1.3 Proposed approach
	1.4 Objectives
	1.5 Outline

	2 Survey of Related Areas
	2.1 Supervisory control
	2.2 Reactive synthesis
	2.3 Automated planning

	3 Background
	3.1 Event-based reactive systems
	3.2 Labeled transition systems
	3.3 Fluent linear temporal logic
	3.4 LTS control synthesis
	3.5 Parametric timed automata
	3.6 Satisfiability modulo theories

	4 Industrial Automation Example
	5 A Qualitative Approach for Makespan
	5.1 The main parts of the problem
	5.2 Defining makespan
	5.3 Measuring makespan
	5.4 Comparing makespan
	5.5 Dealing with contingencies
	5.6 Makespan-minimising controllers
	5.7 Obtaining makespan-minimising controllers

	6 Control Problems with Activities
	6.1 Industrial example as a control problem
	6.2 Understanding time in LTS control
	6.3 Modelling activities in LTSs
	6.4 Defining control problem with activities

	7 A Qualitative Comparison Framework
	7.1 Comparing under the same contingencies
	7.2 Timed semantics of LTS
	7.3 Using parameters to measure makespan
	7.4 Comparing symbolic expressions
	7.5 Beyond the horizon
	7.5.1 Motivating example
	7.5.2 Interpreting the infinity in PTA

	8 A Makespan-Minimising Controller
	8.1 Defining makespan-minimising controllers
	8.2 Synthesising makespan-minimising controllers

	9 Evaluation
	9.1 Extending MTSA
	9.1.1 MTSA
	9.1.2 Specifying control problems with activities in MTSA
	9.1.3 Implementing the comparison framework
	9.1.4 Comparing expressions with Z3

	9.2 Experiments
	9.2.1 Comparison against standard synthesis algorithm
	9.2.2 Scalability in the job scheduling example
	9.2.3 Discussion

	10 Related Work
	10.1 Quantitative approaches for preferences
	10.2 Qualitative approaches for preferences
	10.3 Temporal problems and uncertainty

	11 Conclusions
	11.1 Contributions
	11.2 Limitations and potential extensions

	Bibliography

