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Abstract

One of the important goals in computational photography is to capture and
represent how lights interact with real scenes. To overcome the limitations
of ordinary cameras, techniques such as combining imaging and data-driven
computation to simulate optical processes have attracted a great deal of attention.
This thesis are going to explore two essential parts of optical properties: light
spectral properties and light transport properties, and we aim to infer them
with an image taken by ordinary cameras. The two representations of these
optical properties is hyperspectral image and global/direct illumination.

Hyperspectral imaginary and global/direct illumination imaginary is costly
and requires complex hardware setting. For direct and global illumination,
capturing them requires modulated active light and multiple images. To cap-
ture hyperspectral image, Hyperspectral Imaging Systems (HISs) with complex
hardware setting is required. For a normal RGB three channels image taken by
ordinary camera, reconstruct these two optical properties by RGB is ill-posed.
The three channels dimensions image is a many-to-three mapping: for direct/-
global separation is six to three, for spectral reflectance is a number of spectral
bands to three. This image is a subspace of the two high dimension space, and
back-projection mapping is highly ill-posed. Several machine learning and deep
learning methods were proposed, but their performance is not satisfying. The
major limitation of deep learning is transparency. We proposed a framework,
by encoding physical optical process into a deep learning network, the acqui-
sition and analysis process is jointly learned. We carefully designed the loss
and structure of deep learning architecture to get better results, and hardware
implemented the first layer of network to capture three channels image for
inference. By replacing complex hardware setting with our proposed deep
learning network, the computation and acquire cost is reduced greatly.

This thesis propose the first method to analyze global and direct components
from a single RGB image without any hardware restriction. My method is a
novel generative adversarial network (GAN) based networks which impose the
prior physics knowledge to force a physics plausible component separation. In
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the experiments, my method has achieved satisfactory performance on images
from our own testing set with global and direct component and hyperspectral
analysis public datasets.

Furthermore, to analyze the hyperspectral image, as existing RGB cameras
are tuned to mimic human trichromatic perception, we optimize a new spectral
response that is necessary for hyperspectral reconstruction. We learn the op-
timized camera spectral response functions (to be implemented in hardware)
and a mapping for spectral reconstruction by using an end-to-end network.
Our core idea is that since camera spectral filters act in effect like the convo-
lution layer, their response functions could be optimized by training standard
neural networks. We propose four types of designed filters: a three-chip setup
without spatial mosaicing, a single-chip setup with a Bayer-style 2x2 filter ar-
ray, a non-invasive filter learning approach combined with existing camera
response functions, and a jointly learned camera sensor coded spatial pattern
and response function. Numerical simulations verify the advantages of deeply
learned spectral responses over existing RGB cameras. More interestingly, by
considering physical restrictions in the design process, we are able to realize
the deeply learned spectral response functions by using modern film filter
production technologies and thus construct data-inspired multispectral cam-
eras for snapshot hyperspectral imaging. Finally, we simultaneously learn the
camera spectral response (CSS) functions and a material classification network.
We show that the proposed method has higher overall accuracy than existing
cameras due to CSS optimization.



Acknowledgements

When I was a high school student, my dream was to get in one of the top
universities in China and find a decent job. After entering the University of
Science and Technology of China, my alumni who are top researchers around
the world gave me a huge impression about their pure passion of pursing the
truth and discovering unknown knowledge. I want to be one of them, then I
went to Tokyo where I stayed three years for pursing my own truth.

I am especially grateful to Professor Imari Sato for her delicate supervision
of my research. Before I joined the Programming Research Lab, I have no
experience of doing research. Professor Imari Sato patiently guided me to
survey the related works and finally find the key research problem. She always
gives me wise suggestions and strong support, she taught me how to write a
good research paper hand by hand, she cared about me even more than myself,
she is a role model for me not only in research but also how to behave.

I must thank Dr. Lin Gu, a tallent project researcher in our lab. Dr. Lin Gu
gives me a lot of useful advices and always asks important questions during my
presentation to ensure I am really clear about the technical detail. Dr. Lin Gu
carefully introduces basic knowledge such as image processing and machine
learning for me to start my research life. He always check my drafts seriously
to make sure I do not have any misunderstanding and gives me a lot of useful
suggestions. We have so much fun time during coffee break and he is really
good at playing Civilization V.

I must also thank our Prof. Yingiang Zheng. He is really an extremely
excellent researcher and very productive. Even he is not one of my supervisors,



vi Acknowledgements

but he really did a lot of work in helping me sort out my research, giving
advices, and guiding me.

I would like to thank the members of my dissertation committee, Professor
oyama, Professor Shinichi Satoh, Professor sugimoto, and Professor yqzheng
for giving insight comments.

I would like to thank all other members in our lab, Mihoko Shimano, Lixiong
CHEN, Art SUBPA-ASA, Yuta Asano, Shin Ishihara for having a great research
life together. Some of them are co-author for my publications. And to all the
intern students that helped me a lot through the journey.

Lastly, I would like to thank my parents, my girlfriend Chunmiao Li sup-
porting me all the time, without your support I could not go so far.

Shijie Nie National Institute of Informatics & Tokyo, 2020



Contents

List of Figures xi
List of Tables xvii
1 Introduction 1
1.1 Overview . . . . . . . e 1
1.2 Physical-based Deep Learning . . ... ... ............ 3

1.3 Impose Physical Inverse Loss for Indirect/direct Illumination
Component Separation . . . . .. ....... ... ......... 5

1.4 Impose Physical Based CNN structure for Spectral Reflectance
Reconstruction and Hardware Design . . . . ... ... ... ... 7

1.5 Impose Physical Based CNN structure for Spectral Reflectance
Classification and Filter Design . . . . . ... ... ......... 9
1.6 Smooth Constraint for Physical Possible Hardware Implementation 9
1.7 ThesisOutline . . . . . ... .. ... ... 11
1.8 Contribution . . . . . . ... ... 11
2 Related Work 13

Vil



viii Contents
2.1 Conventional Machine Learning in Optical Analysis . ... ... 13
22 DeepLearning . . .. ... ... ... ... ... 0 0oL 17
2.3 Global and Direct Separation . . . ... ... ............ 19
24 Hyperspectral Recovery and Analysis . . . ... .......... 21
241 Spectral reconstruction. . . .. ... ... o 0L 21
242 Spectral Classification and Segmentation . . . .. ... .. 22
2.43 Spectral Response Functions Optimization . . . .. .. .. 23

3 Physical-Based Constraints in Network Loss for Global Direct Sepa-

ration 25
31 OVerview . . . . . . .. 25
3.1.1 Network Architecture . . ... ... ... ... ....... 26
3.1.2 Network Design for Components Separation . . . . . . . . 28
3.2 Benchmark Dataset . . . .. ... ... ... ............. 29
32.1 DataCollection . . . ... ... ... ... .. ... ..... 29
33 Evaluation . .. ... ... ... .. 30
33.1 ExperimentSetting . . .. ... ... ... ....... .. 30
3.3.2 Visual Quality Evaluation . . . . ... ............ 31
3.3.3 Quantitative Result . . . . . . ... ... ... ........ 33
3.4 Image Editing by Enhancing Direct and Global Components . . . 36
35 Conclusion . . . ... .. L 37

Physics-Based Design in Network Architecture for Hyperspectral Re-

covery 39

4.1

Filter Design and Spectral Reconstruction . . . . . ... ... ... 39



Contents iX

41.1 Spectral Reconstruction Network . . . . .. ... ... ... 39
41.2 Add a Physical Based Inverse Loss for Rgb to Spectrum
Network . ... ... ... ... ... . 42
41.3 Filter Spectral Response Design . . . .. ... ....... 43
414 Nonnegative and Smooth Response . . . . ... ... ... 47
4.2 Reconstruction Experiment Results Using Synthetic Data . . . . . 438
421 Training Data and Parameter Setting . ... ... ... .. 48
422 Results on 3 Channel Multiple-Chip Setting . .. ... .. 51
4.3 Experiment Results on Harvard Datasets . . .. ... .... ... 55
4.4 Experiment Results of Real-world Examples . . . ... ... ... 55
441 Comparision Between Backbone Networks . . . . . .. .. 58
442 Filter Array Design for Single Chip Setting . . . . . .. .. 59
443 Non-Invasive Filter Design . . ... ... ... ....... 61
4.5 Data-Inspired Multipectral Camera for Reconstruction . . . . . . 64
46 Computational Need . . . ... ... ... ... ... ... .. 66
4.7 Joint Optimize Camera Spectral Response Selection, Sensor Mul-
tiplexing, and HSI Recovery . . . . ... ... .. ... ....... 68
47.1 Black-white Pattern . . . . ... ... ... ... .. . ... 68
472 ColorPattern . ... ... ... ... ... ... . ... 70
473 AblationStudy . ... .. ... ... 0L, 72
48 Conclusion . . .. ... .. ... L 73
5 Physics-Based Constraints for Hyperspectral Classification 75
5.1 Hyperspectral classification . . . .. ... ... ... ........ 75

5.2 Spectral Classification Network . . . . ... ............. 76



X Contents

521 Network Structure . . .. ... ... ... o0 76

522 Smooth Constraint Using Fourier Basis . . . ... ... .. 78

5.3 Dataset and Experiment Results . . . .. ... ... ........ 79
53.1 Cave Real and Fake Pepper . . . . ... ........... 79

53.2 Remote Sensing Dataset . . . . ... ... .......... 81

54 Conclusion . . . . ... ... L 84

6 Conclusion 89
7 Publications 93

Bibliography 95



List of Figures

1.1

1.2

Schematic diagram of the thesis concept. Hyperspectral image
and global/direct illuminations are optical properties shown in
blue arrows. RGB images taken by ordinary camera are shown
in black arrows. As optical properties contain rich information
and RGB are easy to capture, recovering the optical properties
from RGB is proposed. The focus for this thesis is to embedding
domain-specific information of camera acquisition process shown
in black arrows into deep learning neural network. The aim of
this thesis is to enhance the analysis of optical properties shown
in yellow arrows. Note the material classification is an essential
application of hyperspectral analysis and can be improved using
ourmethod. . . ... ... ... ... .. Lo

(1): The captured radiance of the scene is due to directional
illumination (A) from source and global illumination (B + C +
D). The global illumination may arise from volumetric scattering
(B), subsurface scattering (C) and subsurface scattering (D). (2):
A scene lit by a single light source. (3) Direct component directly
from the light source (4) Global component arising from complex
global illumination effects. . . . . .. .. .. .. .. .. .. .. ...

xi



xii

List of Figures

1.3

3.1

3.2
3.3
34

Our proposed design-realization-application framework for data-
inspired spectral imaging hardware. The design stage (marked
with blue arrow) is data-driven. It includes an end-to-end net-
work to simultaneously learn the filter response and spectral
reconstruction mapping. The learned spectral response function
on CAVE dataset is also shown. On the realization stage (marked
with a red arrow), the learned response functions are realized by
using film filter production technologies, and a data-inspired mul-
tispectral camera is constructed. In the online application stage,
the captured multispectral image is imported into the already
trained spectral reconstruction network to generate hyperspectral
images. This framework is illustrated using the multi-chip setup
with three channels. . . ... ... ... ... ... ... ...

Our models contains three functions: a generator (G), a linear
mapping layer (L), a discriminator (D). For a scene X, we concate-
nate global and direct component image together as Y. We add a
linear mapping layer to regularise prediction Y to the physical
constraint [95]: X = w1 * Y; + w2 * Y, and add Loss; = L1(X, X)
to the final loss function. . . . . . ... ... ... ... ......

The exemplar components separation of real scattering materials..

The exemplar components separation on food. . . . . . ... ...

The first row shows the comparision of our method and pix2pix
for direct generation, the second row shows the comparision on
global generation. Note that pix2pix sometimes provides striped
distortion as shown in (a,b,d) and more blurry result as shown in

(c). We adjust the brightness and contrast for better visualization.

34



List of Figures Xiii

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

49

Left-hand part: We test our method to separate global and di-
rect components in images from CAVE dataset [153]. From left
to right: input single RGB scene under neutral illumination,
predicted direct component, predicted global component. The
right-hand part is shape from shading result compared with
baseline. . . ... ... ... ... L L 36

Image editing with direct and global enhancement. The ap-
pearance of objects changes according to different linear mixing
applied to direct and global components. the weights (direct,
global) used for (a) and (b) are (0.9, 0.1); (0.6, 0.4); (0.3, 0.7) from
left to right. In (c) the weight used are (0.8, 0.2); (0.5, 0.5); (0.2,
0.8) fromlefttoright. . . . . ... ... ... ... ... .. ... 38

Similarity between the 1x1 convolution and the filter spectral
TESPONSE. . . . vt i e e e e e e e e e e e e e 41

The typical Bayer filter array setup and our special convolution
kernel for the Bayer-style 2x2 filter array design. . . ... .. .. 44

RMSE of each epoch of our designed and existing spectral re-
sponse function on the CAVE dataset [154]. . . . . ... ... ... 46

System framework for joint designing filter illumination response. 47
Sample Results from the CAVE Database [154] . . ... ... .. 49

The reconstructed spectra samples for randomly selected pixels
in the CAVE and Harvard Natural and Mixed datasets [154, 15].
Each row corresponds to its respective dataset. . . . . . ... ... 50

RMSE vs. Noise Level and Non-physical solutions for learned
FESPOMISES. . . v v v v i e e e e e e e e e e e 51

MAE of HSI reconstruction over six possible j in final loss term.
Performance is the best when p=1.0. . . . ... ... ... .... 53

Learned optimal spectral response function trained on CAVE
dataset[154]. Y axis stands for the amplitude. . . . . . . . ... .. 53



Xiv

List of Figures

4.10 Optimal spectral response of filter array trained on CAVE dataset[154].

The corresponding array is shown in Fig4.2. Y axis stands for the
amplitude. . . . ... ... oo

411 Sample Results from the Harvard Natural Database [15] . . . . .
4.12 Sample Results from the Harvard Mixed Database [15] . . . . . .

4.13 Results on flower and checkerboard from our multispectral cam-
era. (a,b) The captured images of filters 1 and 2, respectively. (c

to h) The reconstructed spectra of randomly selected single pixels.

4.14 Results on books from our multispectral camera. (a,b) The cap-
tured images of filters 1 and 2, respectively. (c to h) The recon-
structed spectra of randomly selected single pixels. . . . ... ..

4.15 Results of single pixels spectra on color checker from our multi-
spectral camera. . . . .. ... L Lo Lo

4.16 Learned camera response and filter response without constraint.

x axis stands for channels number and y axis stands for amplitude.

4.17 Learned camera response and filter response with smooth con-
straint. x axis stands for channels number and y axis stands for

amplitude. . . . . ... Lo

4.18 The realization of our multispectral camera. (a) The measured
spectral response of our designed filter trained on CAVE [154].
Circles indicate the actual response while the solid lines are
the designed spectral response function. (b) Our multispectral
imaging system setup. (c) Filter of (a)’s red curve. (d) Filter of
(@’sbluecurve. . . ... ...

4.19 Results from our multispectral camera. (a,b) The captured images
of filter 1 and 2, respectively. (c,d) The reconstructed spectra of
randomly selected pixels. . . . ... ... ... ... ... ... .

4.20 Evolution of binary pattern learning from epoch from 1 to 35. . .

55

58

59

62

63

65

69



List of Figures XV

4.21

4.22

51
52
53
54

55

5.6

57

5.8

Sofxmax(x,0) vs. max(x,0). As the temperature parameter of

softmax increase, it converges to hardmax function. . . . . . . . . 71
Learned multiplexing pattern . . . . . . ... ... ......... 72
RGB classificationnet. . . . . ... ... ..o Lo 77
Hyper classificationnet . . .. ... ... ... ........... 77
Our proposednet . . . .. ... ... ... L oL 77

Camera spectral response with cut-of frequency, n=15. This is a
more strong constraint than 12 norm.. . . . . ..... ... .. .. 79

Generated camera spectral response with 12 norm regularization.
Response function is jagged and physically implausible . . . . . 80

Predicted segmentation mask for real and fake pepper. Yellow
label stands for fake label and blue one stands for real label. The
first and second row stands for the corresponded mask for real
and fake pepper image input. Each column stands for: (1) rgb
input image as lower bound. (2) first layer (camera response
layer) initialized by canon 600D and freezed during training. (3)
proposed method to set all the weights trainable to design camera
response. (4) hyperspectral input image as upper bound. (5) same
setting as (2), but to learn the linear combination parameters of
fourier basis. . . . . . ... 82

The AVIRIS sensor calibration information taken from Purdue
University Research Repository (PURR): 220 Band AVIRIS Hy-
perspectral Image Data Set: June 12, 1992 Indian Pine Test Site

Using resampling method from AVIRIS sensor calibration infor-
mation on canon 600D response. This is used for generating RGB
image of remote sensing datasets. . . .. ... ........... 84



xvi List of Figures

5.9 Classification result in Salinas Data Set. From left to right stands
for ground truth, hyperspectral input, hyperspectral input with
filter learning, RGB input respectively. . . . . . ... ... ... .. 85

5.10 Classification result in Indian Data Set.From left to right stands
for ground truth, hyperspectral input, hyperspectral input with
filter learning, RGB input respectively. . . . . ... ... ... ... 86

5.11 Classification result in Pavia University Data set.From left to right
stands for ground truth, hyperspectral input, hyperspectral input
with filter learning, RGB input respectively. . . . ... ... .. .. 86



List of Tables

3.1

3.2

3.3

4.1

4.2

4.3

44

4.5

4.6

SSIM,SI for direct component reconstruction. Superscript * stands
for the result of pix2pix baseline. . . . . . ... ... ........ 35

SSIM,SI for global component reconstruction. Superscript *
stands for the result of pix2pix baseline. . . . . . . ... ... ... 35

Quantitative results of global and direct separation on our dataset. 35

The B in physical based inverse loss in equation 4.2 vs. MAE,
the smaller is better. f = 0 stands for a normal unidirectional
inference with U-net network loss. B = 1.0 achieve the best
evaluationresult. . . . ... ... ... ... . o L 0L 52

Average and Variance of RMSE of reconstruction on the hyper-
spectral databases [154,15,54]. . . . . ... .. ... ... ... .. 54

RMSE for different backbone network: Unet and HSCNN. Per-
formace evaluated under three datasets: CAVE, Harvard Natural
and Mixed [154,15,54]. . . . . . . . .. .. ... 60

Average and Variance of RMSE of reconstruction with filter array
on CAVE dataset [154]. . . . . . . . . . . . . .. . ... ... ... 61

RMSE on CAVE dataset for different settings. Smaller value leads
to a better performance . . ... ... ... L 0oL 64

Time Consumption for training and testing on different hyper-
spectral datasets. . . .. ... ... ... .. . L o L. 67



xviii List of Tables
4.7 loss on validation set between learned pattern and all one (panchro-

matic) pattern . . . . ... oL o 69

4.8 loss on validation set for learning multiplexing pattern. . . . . . 71

49 PSNR, SSIM, MSE loss, RMSE of different settings in test set. . . 73

5.1 Opverall Accuracy in three public hyperspectral datasets . . . . . 87



Chapter 1

Introduction

This chapter contains three sections. First, a general overview of this thesis is
proposed. Then, the detailed methods for connecting each optical component
with physical-based deep learning are discussed. Finally, the thesis objective
and main contribution are described.

1.1 Overview

Light interacts with the real scene in many ways, for example, absorption,
reflection, diffusion, dispersion, etc. In this thesis, we discussed two major
representations of optical processes: hyperspectral image and global/direct
illumination. The conventional method to capture them requires complex hard-
ware settings, for example, high-frequency patterns, spatial scanner, spectral
scanner, and so on. After the capturing process, analyzing process was applied
to extract discriminative features and infer the important information of real
scene that cannot be easily inferred from RGB image. For instance, the direct
component gives us the information of how the material properties of a scene
point interact with the source and camera. The global components gives us the
information of how photon interact between different objects and media in the
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scene [95]. This information can be used for computer vision and graphics field
such as image editing, rendering and shape from shading. The hyperspectral
images also contains extra information of light wavelength axis. It is shown to
be beneficial for remote sensing, medical diagnosis, industrial detection, and
so on [25, 84]. For example, the tumor margin, invisible to the surgeon’s eyes,
could be better visualized in hyperspectral images. Cases of leaked invisible
gas may also be obvious using spectral signals.

Since it is hard to capture these optical features and its attractive applications,
recovering and analyze them through ordinary cameras has attracted much
attention in the computer vision community. Given the same exposure time and
sensor scale, an RGB image captured by latest imaging has much higher resolu-
tion and signal-to-noise ratio than a hyperspectral captured by hyperspectral
sensors. If we get global and direct components from one image, the resolution
is also reduced [95]. To overcome the limitations for acquisition of optical
properties, traditional methods attempt to reconstruct optical properties using
machine learning and deep learning methods, such as support vector machine
(SVM), convolution neural network (CNN), generative adversarial network
(GAN), etc. However, the majority of them did not consider the optical process
as prior knowledge of machine learning methods, and their performance is
limited.

Deep learning has been recently thriving in many research fields: from
recognition objects in images [114, 44, 119], transformations between text and
sound [43, 135], to accelerate medical research by predicting potential drug
molecules, DNA mutation on gene [148], or even master the Go game [27]
etc. Nearly in every field, deep learning-based methods achieve state-of-the-art
performance than conventional methods. However, the No-Free-Lunch theorem
[123, 47, 51, 142, 143] indicates that "Roughly speaking, we show that for both
static and time dependent optimization problems, the average performance
of any pair of algorithms across all possible problems is exactly identical.”,
quote as in [143]. In other words, each algorithm has a set of applicable
problems, and efficiency of it should be slower than random search for other
methods. According to this theorem, we believe that embedding domain-
specific knowledge into models would largely compress the assumption space
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and achieve more beneficial results for a specific problem. Optical properties,
which define how objects interact with light, obeys several physical models. As
shown in Fig. 1.1, the aim of this thesis is to improve performance for analyzing
optical properties of real scenes shown in yellow arrows. The focus of this
thesis is to combine optical process and its features with deep learning neural
network in black arrows. More specifically, this thesis raised three principal
problems: 1) How to recover global and direct components from a single RGB
image. 2) How to analysis hyperspectral data from a single image taken from
an optimized camera. 3) How to combine camera acquisition process with deep
learning network structures. I will precise the objectives of this thesis work in
the following sections.

1.2 Physical-based Deep Learning

The major limitation of deep learning models is it might be difficult to un-
derstand what is going on inside. Without relying on scientific knowledge,
deep learning model is a “black-box”, only from trial and test on data. How-
ever, scientific problems are always under physical constraints. For example,
fluid dynamic obeys Navier-Stokes equations, and Lagrangian mechanics obeys
Euler-Lagrange equations, computational acoustics obeys the Helmholtz equa-
tion. To solve these ordinary differential equations (ODE) and Partial differ-
ential equations (PDE), traditional off-the-shelf models are using numerical
analysis and require a large number of computational resources. As a more
efficient and derivable optimizing structure, deep learning modules intuitively
proposed to describe these physical processes by encoding a differential equa-
tion. By concatenating these modules with existing generic deep learning
models, researchers developed many end-to-end networks for various tasks
[83, 90, 140, 107, 138, 156, 161, 125, 39, 49, 81, 126, 87,76, 59, 162, 64, 65, 167, 147].
The proposed end-to-end network amplifies information from training examples
and converge much faster, provide more accurate results, and simultaneously
ensuring physical plausibility. Following previous practice on applications of
encoding physics before deep learning, we impose optically properties con-
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Spectral feature

A

Light source

Direct

Global

—
Wavelength
v

Recover

RGB image
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Figure 1.1 Schematic diagram of the thesis concept. Hyperspectral image and glob-
al/direct illuminations are optical properties shown in blue arrows. RGB images taken
by ordinary camera are shown in black arrows. As optical properties contain rich
information and RGB are easy to capture, recovering the optical properties from RGB
is proposed. The focus for this thesis is to embedding domain-specific information of
camera acquisition process shown in black arrows into deep learning neural network.
The aim of this thesis is to enhance the analysis of optical properties shown in yellow
arrows. Note the material classification is an essential application of hyperspectral

analysis and can be improved using our method.
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straint into three deep learning networks: a generative adversarial network,
a convolutional neural network for material reconstruction and classification.
Experiments show that our algorithm is highly effective and has outperformed
state-of-the-art method generic deep learning and traditional machine learning
algorithms without any optical properties constraints. These methods focus on
solving three optical feature analysis problems: recovering indirect/direct illu-
mination components proprieties from a single RGB image, recovering spectral
reflectance, and spectral reflectance classification.

1.3 Impose Physical Inverse Loss for Indirect/direct

Illumination Component Separation

When there is a light source, the radiance captured by a camera is the sum
of both direct and global components. The direct component is the direct
reflectance of the light from the source on the surface (Fig 1.2.(3)). The global
component is the indirect lighting from complex phenomena such as inter-
reflection, subsurface scattering, volumetric scattering, and diffuse (Fig 1.2.(4)).
Measuring these two components has attracted wide attention by both computer
vision and graphic community.

Traditionally, separating above two components requires multiple images
taken under specific setting such as high-frequency light patterns [96, 37, 1, 124,
102, 103, 68]. In this thesis, I separate the two components directly from a single
image without any hardware constraints and also present a dataset including
100 scenes with their direct and global components.

Our method is a novel generative adversarial network (GAN) based networks
which imposes the physical inverse loss to force a physics plausible component
separation. Since each separated component carries much information about
both the scene and the environment, our method and the dataset would benefit
both computer vision and graphic community. For example, the direct compo-
nent conveys the information about the interaction between material properties,
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geometry, and lights. Obtaining pure direction component would enhance the
computer vision task, such as material recognition [80], depth recovery [42],
shape reconstruction [91] and colour constancy [134]. For the global component,
it plays an important role in rendering realistic scenarios [21]. This knowledge
would also endow us a better image manipulation algorithm [10]. What is more,
since global component reflects complex interaction amid the environment,
separating it could also reveal the surrounding environment [34] by treating the
foreground object as a complexly shaped and far-from-perfect mirror.

Predict
(4) Global Component
B+C+D

Figure 1.2 (1): The captured radiance of the scene is due to directional illumination

1

1
Our dataset]

1

1
Participating medium 1 !
— ) (B . —

r
I
v

Training |
Source

% (3) Direct Component
A

—

(1) Hlustration (2) Scene Our network

(A) from source and global illumination (B + C + D). The global illumination may arise
from volumetric scattering (B), subsurface scattering (C) and subsurface scattering (D).
(2): A scene lit by a single light source. (3) Direct component directly from the light

source (4) Global component arising from complex global illumination effects.
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1.4 Impose Physical Based CNN structure for Spec-
tral Reflectance Reconstruction and Hardware De-
sign

Hyperspectral imaging captures detailed light distribution along the wavelength
axis. It is shown to be beneficial for remote sensing, medical diagnosis, industrial
detection, and so on [25, 84]. For example, the tumor margin, invisible to the
surgeon’s eyes, could be better visualized in hyperspectral images. Cases of
leaked invisible gas may also be obvious using spectral signals.

Most existing devices to capture hyperspectral images are scanning based,
that is, either to drive a line slit along one spatial dimension (pushbroom scan)
or to continuously change narrow bandpass filters in front of a grayscale camera
(filter scan). The key drawback is that scanning is slow, which prevents their
application to dynamic scenes. Thus scanning-free, snapshot hyperspectral
devices have been developed, by using for example, fiber bundles [88] and
random/regular aperture masks [136, 33, 11]. Unfortunately, these devices are
extremely limited in spatial resolution.

A computational hyperspectral reconstruction method for a single RGB
image is promising in overcoming the drawbacks of the devices mentioned
above, as evidenced in recent research on RGB-to-Spectrum reconstruction
[97, 111, 5, 54, 32, 4, 151]. However, existing RGB cameras, either using the
three-chip beam-splitting prism technique or single-chip Bayer filter array, are
designed to mimic human color perception [56], thus their spectral response
functions are not necessarily optimal for computer vision tasks, i.e. hyper-
spectral reconstruction. Very recently, Arad and Ben-Shahar [6] identified the
dependence of hyperspectral reconstruction accuracy on the camera’s spectral
response. In [6], they find the best filter combination among a finite set of can-
didate filters via brute force search and hit-and-run evolutionary optimization.
We learn the optimized camera spectral response functions (to be implemented
in hardware) and a mapping for spectral reconstruction by using an end-to-end
network. This is achieved by modifying the behavior of convolution neural
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End-to-End Filter Design and Reconstruction Network

Hyperspectral 1x1 Convolution Layer Hyperspectral
Image with Three Kernels Spectra Reconstruction Network ‘3 Image
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Learned Spectral Response on CAVE

Hardware Implementation

Figure 1.3 Our proposed design-realization-application framework for data-inspired
spectral imaging hardware. The design stage (marked with blue arrow) is data-driven. It
includes an end-to-end network to simultaneously learn the filter response and spectral
reconstruction mapping. The learned spectral response function on CAVE dataset is
also shown. On the realization stage (marked with a red arrow), the learned response
functions are realized by using film filter production technologies, and a data-inspired
multispectral camera is constructed. In the online application stage, the captured
multispectral image is imported into the already trained spectral reconstruction network
to generate hyperspectral images. This framework is illustrated using the multi-chip

setup with three channels.
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network layer.

1.5 Impose Physical Based CNN structure for Spec-

tral Reflectance Classification and Filter Design

A typical application for hyperspectral image is material classification and
remote sensing. Previous work [116, 163, 9] showed a different illumination
would influence the accuracy, and it can be optimized for a specificated task.
Lam et al. [70] proposed a method using basis lights derived from the camera
response function witch uses Independent component analysis and nonnegative
linear model analysis, their method does not require nonnegative constraints
and shows that negative lights could be physically possible captured in real
scenes. In recent years, machine learning-based methods [116, 131, 159, 160, 85,
60, 166, 35, 57, 141, 62] are applied in multispectral image segmentation. With
these methods, the accuracy of public datasets is largely improved. However,
capturing the hyperspectral image is slow and costly, and all the methods
did not consider jointly learning hyperspectral acquiring and classification.
With our method, inputs can be replaced with an RGB image using learned
camera spectral response. This method leads to a faster inference and easier
hyperspectral image acquisition for a specific task.

1.6 Smooth Constraint for Physical Possible Hard-

ware Implementation

The latest film filter production technologies have allowed us to implement
image sensors with any nonnegative and smooth spectral response functions.
Therefore, rather than selecting filters from existing ones, in this thesis, we aim
to directly learn optimized spectral response functions in the infinite space of
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nonnegative and smooth functions. We then manufacture our learned filter,
based on this data-driven approach to construct a multispectral camera for
snapshot hyperspectral imaging (Sec. 4.5).

Based on our observation that camera spectral filters act in effect, like the
convolution layer in neural networks (details in Sec. 4.1.3), we can optimize
them by using deep learning techniques. We simultaneously learn the opti-
mized filter response functions and the mapping for spectral reconstruction and
classification via a high-resolution end-to-end network. Inspired by existing
RGB cameras, we consider a three-chip setup without spatial mosaicing and
a single-chip setup with a Bayer-style 2x2 filter array. Numerical simulations
on publicly available datasets verify the advantages of deeply learned camera
spectral responses over existing RGB cameras.ASP Vision by Chen et al. [18] also
provides evidence that the first layer of the CNN network can be implemented
in hardware.With the deeply learned filters, we propose our data-inspired mul-
tispectral camera for snapshot hyperspectral imaging. The brute force search
and random evolutionary optimization strategies in [6] are no longer feasible
since the searching space is tremendously huge, and not implausible, especially
for network-based methods.

Our contribution is regarding the camera spectral filter as the hardware
implementation of the convolution layer in neural network, which will be
detailed in Sec 4.1.3. With this could act in effect like the convolution operation.
Thus their response functions can be automatically optimized by using the
deep learning algorithms powered by a bundle of network architectures and
computational hardware. More interestingly, by considering the CCD/CMOS
sensor spectral response in the design process, we practically produced the
tilters bearing the deeply learned response functions using interference filter
technology. With the designed filters, we propose a data-inspired multispectral
camera for snapshot hyperspectral imaging.
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1.7 Thesis Outline

The remaining parts of this thesis are organized as follows. In Chapter 2,
we provide a literature review of previous work related on application of
machine learning algorithm on analysis optical features and there limitations.
In Chapter 3, we designed a physical-based framework to separate direct and
global component based on a generative adversarial network. In Chapter
4 includes our end-to-end network for simultaneous learn filter design and
hyperspectral reconstruction. Chapter 5 shows our proposed method jointly
learned filter selection and material segmentation network. Finally, we conclude
our research in Chapter 6 and discussed possible future research.

1.8 Contribution

In this dissertation, our contributions can be summarized as follows:

1. We explore ways to capture and analysis optical properties using images
contain three channels or less. We propose a framework to optical property
analysis from one single three dimensions image. We train our proposed
network using hyperspectral and global/direct images and using only
RGB image for inference.

2. We impose physical inverse loss into a novel generative adversarial net-
work (GAN) based algorithms and achieves satisfactory results on our
global/direct illumination dataset and public hyperspectral dataset.

3. We build the connection between camera spectral response function and
the convolution layer of neural networks. We find that the camera spectral
response can be regarded as a hardware implementation of the convolution
layer. By simulating the camera response as a convolution layer and ap-
pending onto the spectral reconstruction network, we can simultaneously
learn the optimized response functions and hyperspectral reconstruction

mapping.
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4. We propose four setups for optimized filter design: a three-chip setup
without mosaicing, a single-chip setup with a Bayer-style 2x2 filter ar-
ray, a non-destructive filter learning in conjunction with existing camera
response, optimize sensor pattern spatial multiplexing and spectral re-
sponse. We demonstrate that the deeply learned response functions are
better than standard RGB responses in a specific computer vision task,
spectral reconstruction.

5. We realize the deeply learned filters by using interference film production
technologies and construct a snapshot hyperspectral imaging system.

6. We extend our method to the hyperspectral classification network and get
superior performance.



Chapter 2

Related Work

In this chapter, I will provide an introduction of related work of traditional
machine learning and deep learning based methods for analyzing optical

property.

2.1 Conventional Machine Learning in Optical Anal-
ysis
In this section, I will provide an introduction of conventional machine learning

methods such as SVM, PCA and NNMF in optical analysis.

Support Vector Machine (SVM)

Support Vector Machine (SVM) [26] a widely used machine learning method for
image classification, segmentation and other tasks [17, 35, 58, 116, 131, 60, 29, §,
62]. SVMs construct a margin separator which finds a hyperplane maximum
the distance between features. Taking a hyperspectral image (HSI) for example,

13
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we extract per-pixel HSI for training and testing. The objective function of input
HSI fi is:

1 n
min[- )~ max(0,1 - y;(@- ¥ + b)) + Al ]}, 2.1)
« i=1

where w, b is the weight and bias, y; is the label.

The supporting vector is the two hyperplanes obey 1 — y;(& - X; + b) = %1,
which is based on the assumption that feature space is linearly separable.
However, existing experiment data are always no-linear with higher dimensional
space. To find a hyperplane that can separate them, the kernel trick was
proposed. The kernel trick stands for the inner product to transform data to
linear separable space; most used kernel functions are polynomial, Gaussian
kernel, and Radial basis function (RBF) kernel. We rely on scikit-learn, a python
machine learning library built on LibSVM [17] to implement proposed models.

In the literature, different SVM based algorithms were applied for hyper-
spectral image classification. Kavitha et al. [60] proposed a method doing
Remote Sensing dataset classification using SVM classifier, with Gabor wavelet
as pre-processing method. Moreover, multiple SVM system was proposed
for hyperspectral classifier image using Naive Bayes as a classifier fusion [8].
Markov random fields (MRFs) are a common practice for integrating spatial
context into the classifier. In the MRF framework, the maximum a posteriori
(MAP) decision rule is typically formulated as the minimization of a suitable
energy function, and a combination method of SVM and MRF was proposed
[131] to improve classification accuracy. Another widely used segmentation
method is statistical region merging (SRM). By introducing a hierarchical ver-
sion of statistical region merging (SRM) into the MRF and SVM based model,
the segmentation maps can be built into different scales [35]. Saragadam et al.
[116] proposed a method Using SVM to learn a coded illumination for spectrum
feature extraction. Fauvel et al. [29] proposed a morphological transformations
based method to do dimension reduction and boundary feature extraction.
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Principal Component Analysis (PCA)

PCA is a standard method used in machine learning algorithms for data dimen-
sion reduction and produces a compact representation. Technically speaking,
PCA wuses an orthogonal transformation to convert a set of possibly related
variables to a linearly unrelated variables called principal components. The
first principal component has the largest possible variance, and each succeed-
ing component has the highest variance and orthogonal to the preceding one.
By preserving first n components, the data set size is reduced, and the most
significant features that contribute to variance is preserved. PCA can be done
by eigenvalue decomposition of a data covariance matrix or singular value
decomposition (SVD) of the data matrix. Tipping et al. [132] implemented the
PCA model based on a probability model and determine principal axes through
maximum likelihood in latent variable space. As a common unsupervised
method, PCA does not require similar training labels, but the classification
accuracy deteriorates compared to similar method Linear discriminant analy-
sis (LDA), theoretical and experimental evidence by [109]. However, PCA is
still a common practice for data pre-processing in illumination and reflectance
estimation [149], surface and material classification [9], hyperspectral image
super-resolution [157], hyperspectral image classification [141], hyperspectral
image band selection [16], and as baseline for several hyperspectral analysis
methods [149, 164, 159, 45, 63, 58].

Non-Negative Matrix Factorization (NNMF)

Non-negative matrix factorization (NMF) has become a widely used instrument
for analyzing high-dimensional data because it automatically extracts sparse
and meaningful features from a set of non-negative data vectors. NMF is an
algorithm to approximate a matrix X with a low-rank matrix approximation
such as X ~ WH. where W € RP*" and H € R"*". r is much smaller than p
and n. The interpretation of W is that each column is a basic element. By basis
element, we mean some component that crops up again and again in all of the
n original data points. These are the fundamental building blocks from which
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we can reconstruct approximations to all of the original data points.

The interpretation of H is that each column gives the 'coordinates of a
data point” in the basis W. In other words, it tells how to reconstruct an
approximation to the original data point from a linear combination of the
building blocks in W. A popular way of measuring how good the approximation
WH is the Frobenius norm (denoted by the F subscript you may have noticed).
The Frobenius norm is:

|X — WH|[2 = Z(x — WH);. (2.2)

L

The assumption of NMF is to extract sparse and easily nonnegative factors
mechanically. It is considered that matrix elements such as user purchases
or visits from different stores are all positive values, so non-negativity needs
to be considered when reducing dimensions, and NMF non-negative matrix
factorization just meets this kind of problem. In image processing, a face image
can be squash into several basis images by NMF. The W can be treated as
collection of images, and H tells the parameters to sum them up. This idea is
similar to the PCA method. However, each basis images in PCA will produce
a whole face, while NMF is a parts-based representation. Another difference
is weights of NMF is nonnegative. When it comes to hyperspectral image, a
hyperspectral image usually has 30 to 200 wavelength bands, which shows
the corresponded incident light reflected by the pixel, which contains a large
amount of data redundancy. To make data dimension reduction, NMF provides
basis vectors and spectral signatures of vectors as where. Kawakami et al. [61]
proposed a method for using NMF to provide an unmixing algorithm and
estimate a basis representations. In the inference stage, these representations
are used in conjunction with RGB input to produce the desired output of
the hyperspectral image. Coupled nonnegative matrix factorization (CNMF)
[155] is proposed to fusion hyperspectral data. This method takes Low-spatial-
resolution hyperspectral and high-spatial-resolution multispectral data into
account and unmixing them separately. By sharing the weight of two bases,
this method can produce high-quality fused data. NMF is also applied for
illumination and reflectance spectral separation of hyperspectral image. Zheng
[164] proposed a Low-Rank Matrix Factorization with nonnegative constraint
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due to the physical restrictions of illumination and reflectance spectra. The idea
of coupled matrix factorization can be applied for fuse RGB and hyperspectral
image, using high resolution RGB image and low resolution hyperspectral [71].

2.2 Deep Learning

In this section, I will provide a review of deep learning based methods and its
applications for analyzing optical properties. As a new area of machine learning
study, deep learning has been proposed to be closer to artificial intelligence.
Deep learning mainly concerns learning multiple layers of representation and
abstraction, which help to explain different data formats, such as images, text,
and sound. Deep learning is a combination of many techniques, including
hierarchical probabilistic models, neural networks, and various supervised and
unsupervised feature learning algorithms.

The development of neural networks comes from the idea of constructing a
system that can simulate the human brain. McCulloch and Pitts [89] proposed
that neurons, a name for interconnected basic cells, can be used by human
brain to generate highly complex patterns. They created a model called an
MCP model, which has a significant influence on the research of artificial neural
networks. Some milestones in the field, such as LeNet [73], which opens the
door to Convolutional Neural Networks (CNNs), and Long Short-Term Memory
(LSTM) [48], has sped up the occurrence of “era of deep learning”. In 2006,
Hinton et al. [46] presented the Deep Belief Network, which trains only one
layer one time in an unsupervised way. That work is seen as a significant
breakthrough in the deep learning field.

Two essential factors to the boost of deep learning are the vast, high-quality
labeled datasets, and the strong parallel GPU computational power, which
move the CPU-based training to GPU-based training. Both push forward the
significant acceleration of training on deep models.
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Deep Learning in Vision

Deep learning has been applied in computer vision research field for many
years and facilitates the rapid development of many problems, such as human
pose estimation (e.g., [19, 133]), motion tracking (e.g., [24, 23]) and object
detection (e.g., [22, 104] ).

The mainly used deep learning techniques involved in computer vision
include:

* Perceptron is a binary classifier for supervised learning [31], which decide the
input vector belongs to a specific class. As a linear classifier, the representation
ability is limited. A single layer perception is even impossible to solve an
XOR function. However, as a simplified model of neural network, it is the
basis of Multilayer perception (MLP), Convolutional neural network (CNN),
and other modern models. Definition of perception is an algorithm for binary
classification with a threshold function, which maps input x to an output

value f(x).

f(x) = ! W*X+,b>0 (2.3)
0 otherwise

¢ Multilayer perceptron (MLP) An MLP can be seen as an N-layer network,
also can be named as ”Artificial Neural Networks” (ANN). MLP overcomes
the limitation of the perceptron, which requires input vector linear separable.
MLP could be modeled as a collection of neurons (or units) that are connected
in an acyclic directed graph and using a back propagation algorithm to learn
it. The non-linear activation function like sigmoid, tanh function gives MLP
the nonlinear expression ability. The most common type of MLP is a fully-
connected layer in which neurons between two adjacent layers are fully
pairwise connected, but neurons within a single layer share no connections.

e Convolutional neural networks (CNNs)
LeNet starts the era of Convolutional Neural Networks [73]. Although
the structure of this net only includes three convolutional neural networks,
one max-pooling layer, and one fully-connected layer, this works well on
the MNIST handwriting digits dataset. The convolution layer can capture
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the spatial and temporal dependencies, which perform a better fitting to
the image dataset. Given the different weights for the convolution kernel,
Convolutional neural networks (CNN) layers can extract high-level features
like edges, colors, orientations. Padding and pooling layers are the plugins
of CNN layers to control the spatial size. Max-pooling layers also suppress
noise.

* Generative Adversarial Networks (GANSs)

Ian Goodfelllow et al. first proposed generative Adversarial Networks [36].
GAN is called the "the most interesting idea in the last ten years in ML” by
Yann LeCun. Compared with the discriminative algorithm, which typically
works on classification problem, GAN tries to learn the distribution of in-
put data x and generate a continuous probabilities of P(y—x). This feature
indicates that GAN is suitable for generative tasks like face and sound gener-
ation, image style transfer, pose predictions. The GAN has to components:
generator and discriminator. Generator tried to generate fake images that are
similar to ground truth image, measured by L1 or L2 loss. The discriminator
tried to distinguish whether the output image is real or fake. Both networks
are trying to optimize a different loss function and confusing each other.

2.3 Global and Direct Separation

The very first approach [96] separates the direct and global components by
capturing multiple images under high-frequency light patterns and compare
the pixel with or without the light. Assuming neighboring points share the
same direct and global components, this approach could work on a single image
at the cost of lower resolution. This is also sensitive to the violation assumption,
such as sharp depth or color variance.

Guet al. [37] reduce the number of required images to three by simulta-
neously projecting multiplex sinusoid light patterns. Achar et al. [1] allows
images captured by the human held device by compensating the small motion.
By synchronizing illumination and project defocus, Gupta et al. [42] separate
the global component before recovering the depth. Similarly, with the coaxial
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camera setup, O’Toole et al. [145] also proposes a system to modulate both
the light and the camera to probe the light transport matrix selectively. Gupta
et al. , Reddy et al. [40, 110] further separate the global component into near
range and far range by projecting multiple binary [40] or sinusoid patterns
[110]. Recently, Subpa-asa et al. [124] propose a method for separating global
and direct components on a single image without any resolution loss but still
rely on high-frequency lighting.

Noted that the above methods treat the subsurface scattering as a whole
rather than decompose it into more details [144]. Some recent efforts focus
on the light transport subsurface scattering. By analyzing the side slice of the
surface illuminated with high-frequency light source, Mukaigawa et al. [93]
manage to image n-bounce subsurface scattering. Tanaka [130] decomposes
the appearance of a surface seen from above into a few layers at various
depths. Apart from the subsurface scattering, there are more researches on
other components such as volumetric fluid [41], translucent object [92, 94].

Apart from the reflectance phenomenon discussed above, there is a group
of algorithms which attempt to separate the foreground reflectance before the
glass and the transmitted background after the glass. Most of these algorithms
either require multiple images [28, 75, 152] or user interactions [74]. Recently, a
new benchmark [137] for a single-image based method on this task has been
proposed. However, the physic foundation of reflectance removal is totally
different from our direct and global component separation task. The reflectance
and transmission of former occurs on the glass-air interface while later is more
complex than involves the volumetric scattering, inter-reflectance, subsurface
scattering, and translucency etc.

According to the fact that SR models can often help other vision tasks, eval-
uating reconstruction performance by means of other tasks is another effective
way for IQA. Specifically, researchers feed the original and the reconstructed
HR images into a trained model and evaluate the reconstruction quality by
comparing the impacts on the prediction performance. The vision tasks used
for evaluation include object recognition, face recognition face alignment and
parsing, etc.
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To resolve the speed bottleneck of scanning based hyperspectral cameras,
scanning-free devices have been proposed by using, for example, fiber bundles
[88] and aperture masks with randomly [136, 33] or regularly [11] distributed
light windows. The major drawback of such snapshot devices lies in their
limited spatial resolution. There are also a number of fusion-based super-
resolution algorithms to boost the spatial resolution by using a high-resolution
grayscale [55, 171] or RGB [12, 61, 2, 69, 72, 3] image.

2.4 Hyperspectral Recovery and Analysis

2.4.1 Spectral reconstruction

Rather than making a hyperspectral imager directly, approaches for increasing
the spectral resolution of a single RGB image has recently attracted much
attention. The key in hyperspectral reconstruction is to find a mapping between
the RGB value and the high-dimensional spectral signal, which is obviously an
ill-posed problem, and requires proper priors for reconstruction. In [97], Nguyen
et al. tried to eliminate the illumination effect via a white balancing algorithm,
and learn the mapping from illumination-free RGB values to reflectance spectra
on the basis of a radial basis function (RBF) network. Robles-Kelly [111] aimed
at the same problem and proposed to learn a representative dictionary using
a constrained sparse coding method. Arad and Ben-Shahar [5] focused on
hyperspectral images of natural scenes and developed an RGB-to-spectrum
mapping method using sparse coding. Very recently, Jia et al. [54] examined
the intrinsic dimensionality of natural hyperspectral scenes and proposed a
three-dimensional manifold based mapping method for spectral reconstruction.

In contrast to sparse coding and shallow neural networks, deep learning
has recently been applied to RGB based hyperspectral reconstruction. Galliani
et al. [32] first introduced a convolutional neural network for spectral recon-
struction from a single RGB image. They adapted the Tiramisu network and
reported favorable results over the dictionary-based method [5] and the shallow
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network [97]. Alvarez-Gila et al. [4] applied a conditional generative adversarial
framework to better capture spatial semantics. Xiong et al. [151] proposed a
unified convolutional neural network for hyperspectral reconstruction from
RGB images and compressively sensed measurements. Compared with pixel-
wise operations [97, 111, 5], the imagewise operations in deep learning based
methods [32, 4, 151] are more likely to incorporate spatial consistency in the
reconstruction.

2.4.2 Spectral Classification and Segmentation

Recognizing materials, objects, land cover classes in the hyperspectral image
can be viewed as a classification or segmentation task, which is widely studied
for a long time. The used techniques can be divided into two parts: traditional
methods and deep learning based methods. Concerning that data dimensions
of hyperspectral is always too large and information redundant, the majority
of existing traditional methods consist of feature extraction, e.g., PCA and
kernel-based classifier and support vector machines (SVM) [8, 131, 29, 60, 35].
To integrate spatial context into consideration, probabilistic models like Markov
random fields (MRF) are used [131, 35]. Meysam et al. [29] use morphological
information to extract spatial relations in original data. Compared to conven-
tional framework, deep learning methods [77] can lean the hierarchy of features
automatically and shown promising results for hyperspectral classification. Wei
Hu et al. [57] proposed 1-D deep convolution networks with a full connection
layer to have better results than traditional methods.

Makantasis et al. [85] proposed a unified framework, which combines
spectral and spatial information in 2D. Roy et al. [113] proposed a method
using 3D and 2D convolution for hyperspectral image classification. Zhu et al.
[170, 165] proposed a generative adversarial network for this task.
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2.4.3 Spectral Response Functions Optimization

All the research above simulated RGB images using typical response functions
from commercial RGB cameras. Very recently, Arad and Ben-Shahar [6] rec-
ognized the accuracy of the hyperspectral reconstruction is dependent on the
filter response and tried to find the best filter combination among a finite set
of candidate filters via brute force search and hit-and-run evolutionary opti-
mization. In this paper, we further expand the search domain to the infinite
space of nonnegative and smooth curves. Leveraging powerful deep learn-
ing techniques, we simultaneously learn an optimized filter response and the
spectral reconstruction mapping. Interestingly, our hardware implementation
of optimized filter responses has parallels with ASP vision [18], which uses
custom CMOS diffractive image sensors to directly compute a fixed first layer
of the CNN to save energy, data bandwidth, and CNN FLOPS. However, in the
case of ASP vision, their aim is to hard code a pre-defined edge filtering layer
that is common to CNNs and the v1 layer of the human visual cortex. Then
[18] uses it in solving various tasks such as recognition efficiently. Our aim is
to leverage the CNN and deep learning framework to optimize camera filter
design. To our knowledge, we are the first to achieve this and demonstrate
accurate hyperspectral reconstruction from our designed filters.
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Chapter 3

Physical-Based Constraints in
Network Loss for Global Direct

Separation

3.1 Overview

In this chapter, we show how to separation global/direct components, which
is one of the optical properties, by adding physical based constraint in the
tinal loss of Generative Adversarial Network. Generative adversarial network
(GAN) [36] has achieved impression result in image generation such as image
reconstruction [4], biological image synthesis [101], image style transfer [52],
shadow detection [98], and future video frame prediction [79]. In this paper,
we propose a novel GAN based network architecture for recovering the direct
and global component from a single image. Inspired by cycleGAN [168], as
illustrated in Fig 3.1, our network introduces an inverse operation that imposes
prior physical knowledge to enforce a physically plausible separation.

Instead of treating neural networks as ‘black box’, more and more research

25
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[123, 30, 59, 99] attempted to embed domain knowledge in deep learning models.
This would not only help to compress ample parameter searching space but
also provide meaningful results. For example, by assuming an object is moving
at a constant velocity, Stewart et al. [123] proposed a method to supervise a
convolutional neural network to detect and track objects without any label.
Video frames could be predicted by forcing pixels with physics dynamics
[30]. Another example is to embed relationships between density, depth, and
temperature of the lake with known physical equations in a physics-guided
neural network [59].

Since our mapping from direct/global components to input image is defined
by physical Equation 3.3, we replace the G, of standard cycleGAN [168] that
maps domain Y to domain X with a linear mapping layer as shown in Fig 3.1.
This architecture allows us to reduce complexity needs and get a realistic
solution for components separation. Our architecture is shown in Fig 3.1 for
single-image components separation.

The input is a single RGB image X and output Y is a concatenation of global
component Y; and direct component Y;: Y = Yi||Y;. Let the G, D denote a
generator(G) and a discriminator(D) respectively for the sake of simplicity. For
our specific problem, we introduce a linear mapping layer L and encourages
L(G(x)) ~ x to force the generated global and direct component to follow the
physics model of Eq3.3.

3.1.1 Network Architecture

Our network module is formed as follows: 2D convolution-BatchNorm-Relu.
The generator takes scene image of size 256 X256 x3 as input and finally pro-
duces the corresponding global and direct images of size 256 x256x6. Let Ck
denote a convolutional block including one convolutional layer with k filters, one
leakyReLU activation layer, one BatchNormalization layer. The convolutional
layer in each Ck has 3x3 sized kernels with stride 2. The downsampling factor
is 2, with proper zero paddings to edges. The x parameter in the leakyReLU
layer is set to 0.2. CDk denotes the same block as Ck, except that the convolution
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Figure 3.1 Our models contains three functions: a generator (G), a linear mapping
layer (L), a discriminator (D). For a scene X, we concatenate global and direct component
image together as Y. We add a linear mapping layer to regularise prediction Y to the
physical constraint [95]: X = wl %Yy + w2 *Y; and add Loss; = L1(X, X) to the final

loss function.
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layer is replaced by the deconvolution layer, which upsamples the input by a
factor of 2. A dropout layer with 50% dropout rate is added after each block.
The generator architecture is composed as C64-C128-C256-C512-C512-C512-
C512-CD512-CD512-CD512-CD256-CD128-CD64-CDé6.

Compared to a standard U-net, we modify its final layer from 3 channels to
6 channels. The discriminator takes 256256 X9 as an input image, which is the
concatenation of generator input and output. The final layer of discriminator
adopts active sigmoid function. The structure is composed as: C9-C64-C128-
C256-C512-C1.

3.1.2 Network Design for Components Separation
The objective of traditional GAN is defined as:

Lossgan(G, D) = Ey.p,,.(x,y)[logD(X,Y)]

FEx Py (x),2~P,(2)[l08(1 — D(X, G(X, Z)))],
where Z is a noise vector.

(3.1)

Pix2pix, a generic GAN method [52] found that mixing Lossgan (G, D) with
generator loss Lossy; would be beneficial as L1 produces less blurring results:

Loss11(G) = Ex,ympy(x,v),z~pP,2)[|1Y = G(X, Z)[1h]. (3.2)

The generator loss requires G not only to fool discriminators D but also
to provide more traditional loss, in order to get similar images compared to
ground-truth images. In the current setting, we find L1 distance would deliver
more clear result.

However, Lossgan(G, D) and Loss;1(G) does not consider the physics rela-
tion between global image Y; and direct image Y>. According to [95], the input
image X is under the linear relation:

X =w1Y] +wY, (3.3)
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where wy, w, is the weight of two components. Therefore, we add this prior
knowledge by defining a linear mapping layer L(Y) = Y2_; w,Y;,. We propose
the inverse cost to impose the physics regulation:

Lossi(G,L) = Ex y~p,,,(x,Y)z~P,(2)[|1X = L(G(X, Z))|]1] (3.4)

Finally, the objective function of network is defined as:
Loss = arg ngn max Lossgan(G,D) + AqLossp1(G) + ApLoss;(G, L) (3.5)

Where A; controls the relative importance of reconstruction loss while A
determines the weight of inverse loss. In this paper, we set the A; and A, to 100.

3.2 Benchmark Dataset

For this research, we collect a dataset of 100 controlled indoor scenes along with
their direct and global components. the captured scenarios cover a wide range
of daily-life objects including plastic, food, and sweets (fresh fruits, vegetables,
bread), synthetic fabrics and wooden object efc. There are 13 translucent
items among 100 items, including common objects such as ceramic, jade, glass,
various minerals, and candy etc. Each scene is of a triplet of images: 1. Scene
image (Fig 1.2.(2)), 2. Direct component (Fig 1.2.(3)) and 3. Global component
(Fig 1.2.(4)). In all, our dataset contains 3 x 100 = 300 images.

3.2.1 Data Collection

The data capture setup involves one projector, one camera, and a scene of one or
multiple objects. For each scene, we collect the data in two steps: 1, We at first
capture the scene image using a white background projected by the projector. 2.
Then we measure the direct and global components in the way of [95].

As Nayar et al. [95] suggested, each scene was lit using a checkerboard
pattern projected by the projector when calculating the global and direct com-
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ponent. A checker pattern size of 8 x 8 pixels was used for the experiment with
a shift of 2 pixels 8 times in each of the two dimensions.

We denote LT as the image under a high-frequency illumination that half
of the image is lit. L™ is the image under the complementary illumination.
For any pixel i lit in L™ and deactivated in L, as proved in [95], it should
follow L*[i] = Lyli]+ (1+b)5% and L[] = bLy[i] + (1 + )25, where
L4[i] is the direct component and Lgli] is the global one. b represents the
deactivated source element brightness on the pixel i. In theory, two images
are sufficient to calculate the separation if digital projector is able to project
an ideal high-frequency pattern. In practise [96, 37, 1], capturing more images
would significantly relieve this issue. For each pixel i, we use the minimum
and maximum measured brightness L,,;,[i], Lmax[i] instead of L™ [c,i], L™ [c, ]
to compute the separated components. For each scene, we captured 64 images
to ensure the reliable separation of direct and global components.

Throughout the data collection, two projectors and two cameras were utilized
to simulate various capture settings. For example, we use BenQ PJ projector
for half of the scene and DLP Light Commander for the remainder. Similarly,
the Nikon 40S camera was used to capture half of the scene regardless of the
selection of the projector, while the rest were captured by Grasshopper 3. To
maximize diversity, we change the position of projectors, the camera, and the
target objects for each scene.

3.3 Evaluation

3.3.1 Experiment Setting

In this evaluation, the whole dataset was randomly split into training/testing
set. The training set includes 80 scenes while the testing set takes the rest 20.
During the training, we at first resize each image into 1500*1500. Then, it was
randomly cropped into 256*256 patches with affine transform, rotation, and
shearing as data augmentation. The rotation range is -20 degree to 20 degree
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while the shearing range is -10 degree to 10 degree.

During the testing process, we at first crop the input scene image into
overlapping 256*256 patches before feeding into the trained generator. The
overlapping part of each patch is 200 pixels in horizontal and vertical direction
separately. When knitting the patches back into images, we calculate the pixel
value of the overlapping part by taking an average of corresponded image
pieces.

3.3.2 Visual Quality Evaluation

We compare our separated components with the groundtruth in Fig 3.2, 3.3.
The comparison shows that our method successfully separates most details of
components from a single image.

We also compare our result with the baseline pix2pix [52] that works without
physical constraints. As shown in Fig 3.4, the baseline method pix2pix2 often
delivers striped distortion or blurry results, especially at the object boundary
and background area. However, with our proposed network, these artifacts are
avoided, as shown in Fig 3.4.

With the proposed dataset, our method can work on the general images
without a strict capture setting requirement. As illustrated in Fig 3.5, we also
apply our trained model on the images in public dataset such as CAVE [153].
The images in the CAVE are captured under a neutral daylight illuminant (CIE
Standard Illuminant D65). The image size are of 512*512 resolution, and it was
cropped into 256*256 pieces to feed into our pre-trained network. The output is
tilled with 100 pixels to fit the original input size. Fig 3.5 shows our method
could achieve reasonable performance even for images captured under different
setting from that of the training set. We also tested our method in improving
the computer vision application, such as shape from shading (SFS) [108]. One
example is given in Fig. 3.5. Our global component SFS results are more in
accordance with real geometry by removing the specular part in the direct
component.
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(a) Input (b) Global (c) Predicted (d) Direct (e) Predicted

Groundtruth Global Groundtruth Direct

Figure 3.2 The exemplar components separation of real scattering materials..
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(a) Scene (b) Global (c) Predicted  (d) Direct (e) Predicted

Groundtruth  Global Groundtruth  Direct

Figure 3.3 The exemplar components separation on food.

3.3.3 Quantitative Result

In this analysis, we adopted three metrics when comparing recovered global
and direct component image with provided ground-truth: structural similarity
(SSIM) [139], structure index (SI) [127], Inception Score (IS) [115]. We did not
use the evaluation metrics such as L2 (RMSE), L1, or PSNR because they prefer
a blurring result rather than the one with highly accurate textures [53, 106, 158].
Mean pixel-wise Euclidean distance is minimized when result averages all
plausible outputs. Therefore, we select SI, SSIM, Inception score, which are
more widely used for quality assessment of generative model application such
as [38, 100, 7, 86].

SSIM [139] evaluates the human visual perception of luminance, contrast,
and structure. However, this does not consider correlations between pixels,
which carries structure information of an object in a scene. Thus, we also

suggest structure index (SI) [127] which only focus on structure relation between
20 I, I* “+c

(r%—i—(rlz* +c’
where o7, 07+ stands for the variance of I, I*, o7 ;+ stands for the covariance of 1

recovered image I and groundtruth I*. The SI is defined as: SI =
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GroundTruth (a) Ours (a) Pix2pix (a) GroundTruth (b) QOurs (b) Pix2pix (b)

Direct

Global

Figure 3.4 The first row shows the comparision of our method and pix2pix for direct
generation, the second row shows the comparision on global generation. Note that
pix2pix sometimes provides striped distortion as shown in (a,b,d) and more blurry

result as shown in (c). We adjust the brightness and contrast for better visualization.

and I*. c is a constant. The higher SSIM and SI score indicates less structure
distortion and better quality.

The Inception Score (IS) is a metric for evaluating the quality of image
generative models [115], which used an Inception v3 network [129] pretrained
in ImageNet [114]. IS was shown to correlate well with the human judgment of
realism [115]. A high score means a better result.

We report the baseline, which is the result of our proposed method compared
with pix2pix [52] of SSIM, SI, IS on the test set of this dataset as shown in Table
3.3. We also report quantitative result for individual image in Table 3.1,3.2.

On all of the three metrics, our methods outperform pix2pix. This is in
accordance with our observation in Fig 3.4 that the components separated by
our method are with less structure distortion and of more natural looking.
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number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SSIM(@0.) 79 50 9.0 82 93 95 88 92 94 93 93 85 87 7.8 9.0
SSIM*(0.) 81 53 88 79 94 93 83 91 92 91 91 80 85 77 84
SI(0.) 96 9.2 98 9.0 98 99 95 94 99 98 9.7 96 9.7 95 9.7
SI*(0.) 95 91 99 89 98 99 95 95 99 99 9.7 96 9.6 95 95

Table 3.1 SSIM,SI for direct component reconstruction. Superscript * stands for the

result of pix2pix baseline.

number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SSIM(@0.) 9.0 82 57 84 91 93 55 96 85 91 66 94 75 53 8.1
SSIM*(0.) 9.1 82 55 87 9.0 93 55 97 88 89 63 95 75 52 80
SI(0.) 98 92 96 95 98 99 60 99 94 96 82 99 90 57 94
SI*(0.) 98 91 95 96 98 99 60 99 94 96 81 99 90 57 92

Table 3.2 SSIM,SI for global component reconstruction. Superscript * stands for the

result of pix2pix baseline.

Method Ours Pix2pix[52]
SSIM  0.823 0.812
SI 0.924 0.922
IS 2.24 2.21

Table 3.3 Quantitative results of global and direct separation on our dataset.
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Scene Predicted Direct Predicted Global

Input RGB

SFS from
. RGB

SFS from
o our Global

Figure 3.5 Left-hand part: We test our method to separate global and direct
components in images from CAVE dataset [153]. From left to right: input single RGB
scene under neutral illumination, predicted direct component, predicted global

component. The right-hand part is shape from shading result compared with baseline.

3.4 Image Editing by Enhancing Direct and Global

Components

Nayar et al. [96] showed that linearly mixing direct and global components
with different weights is effective for image editing. In this paper, we further
explore physically plausible material editing by manipulating our direct/global
separation results with different linear weights.

Fig 3.6 shows image editing by manipulating the weights of direct and
global components separated by our approach from the single input image. We
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can see that object impression changes according to the weight. For instance,
we show a hard-to-soft transition in Fig.3.6 (a): as we increase the weight
of the global components, the objects look softer. Metallic / non-metallic
transition in (b) where objects look more metallic with higher weights of direct
components. Interestingly, the visual freshness of food can also be controlled
with different weights in Fig.3.6(c). The proportion of specularity due to its
subsurface scattering seems to be essential for us to recognize food freshness.

3.5 Conclusion

In this chapter, we propose the first method to separate direct and global
components from a single image without hardware constraints. This model
embeds substantial prior knowledge into the GAN based network to achieve
single-image components separation. To train and evaluate this model, we also
present the first dataset, which comprises of 100 scenes with their groundtruth
direct and global components. Our method has been shown to work successfully
on our own testing set and general images from the public dataset. Finally, we
demonstrate how the separated components could be used for realistic image
editing.

Unlike previous research relies on specific capture setting, we focus on
extracting components from a single image with a simple capture request. Our
dataset contains various indoor scenes with different capturing settings. Based
on this dataset, we also propose the first method to estimate the direct and
global components from a single image. We also illustrate some potential
application of this separation in modifying the image in a physically plausible
way.
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(a) Hard to Soft

(b) Metallic to Non-Metallic

(c) Freshness of food

Figure 3.6 Image editing with direct and global enhancement. The appearance of
objects changes according to different linear mixing applied to direct and global
components. the weights (direct, global) used for (a) and (b) are (0.9, 0.1); (0.6, 0.4); (0.3,
0.7) from left to right. In (c) the weight used are (0.8, 0.2); (0.5, 0.5); (0.2, 0.8) from left

to right.



Chapter 4

Physics-Based Design in Network
Architecture for Hyperspectral

Recovery

4.1 Filter Design and Spectral Reconstruction

In this section, the details on the end-to-end network for simultaneous filter
response design and spectral reconstruction will be given. We will start with
the spectral reconstruction network, and later append a special convolution
layer based on physical process of camera imaging onto it to learn the filter
response functions as well.

4.1.1 Spectral Reconstruction Network

Noted that arbitrary end-to-end network could be used for our spectral recon-
struction. Here, for the sake of generality, we compare two networks spectral

39
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reconstruction network: Unet and HSCNN]J[118].

Unet as Backbone Network

The well-known U-net [112] architecture, which has been widely used for image-
to-image translation applications, such as pix2pix [52], CycGAN [169], Semantic
Segmentation [117] and hyperspectral reconstruction [4].

In recent years, deep convolutional neural network (CNN) has shown its
power in the computer vision field. Although CNN has been proposed in
1989 [73], but due to the size of datasets and networks, the success is limited.
However, due to the development of the Graphics Processing Unit (GPU),
academics can build broader and deeper networks recently. When it comes to
deep learning, the pioneering work was done by Krizhevsky et al. [67], with
eight layers and training on the ImageNet dataset with 1000 classes. After that,
VGG net [120] has been proposed and finally won the 2014 ImageNet Challenge.

The previous networks have outperformed the state of art methods in im-
age classification problems. However, in many visual tasks like bioimage
segmentation, each pixel should be assigned a label. The is the limitation of
traditional deep learning image segmentation methods such as Fully Convolu-
tional Network (FCN) [117]. Base on FCN, U-net [112] was proposed to give
more precious segmentation. The critical contribution of U-net is to propose
an elegant structure: skip-connections, which will allow information flow to
be copied and concatenated in deeper layer. This method will avoid informa-
tion loss during down-sampling operation, such as max-pooling. The idea of
skip-connection has also been applied to image classification, such as Densely
Connected Convolutional Networks (DCCN) [120], the difference is, every layer
is connected to other layer to ensure maximum information flow. Also, the idea
of skip connection has been used in Highway networks [122], ResNet [44], and
SO On.

Many previous encoder-decoder networks [105] pass the input through a
series of down-sampling operations, such as max-pooling, until a bottleneck
layer before reversing the process. Passing the information through these layers
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Figure 4.1 Similarity between the 1x1 convolution and the filter spectral response.

would inevitably sacrifice much of low-level details in the high-resolution input
grid. Therefore, in the image-to-image application, the skip connection structure
would allow low-level information to be directly shared across layers. Basically,
the skip connection allows information to reach deeper layers as applied in
[50, 44, 27]. This structure can mitigate the issue with vanishing/exploding
gradients when the model is “very deep” [44]. What is more, U-net also works
well on small-sized training datasets [117]. As our dataset is limited in size, this
suits our application particularly well as existing hyperspectral datasets are still
limited in scale.

We use modules formed as follows: 2D convolution-BatchNorm-Relu. The
network takes images of size 256 X256 x 3 as input and finally produces the cor-
responding spectral images of size 256256 x31. Let Ck denote a convolutional
block, including one convolutional layer with k filters, one leakyReLU activation
layer, one BatchNormalization layer. The convolutional layer in each Ck has
3x3 sized kernels with stride 2. The downsampling factor is 2, with proper
zero paddings to edges. The a parameter in the leakyReLU layer is set to 0.2.
CDk denotes the same block as Ck, except that the deconvolution layer replaces
the convolution layer. It upsamples the input by a factor of 2 as well. A dropout
layer with 50% dropout rate is added after each block. The whole architecture
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is composed as C64-C128-C256-C512-C512-C512-C512-CD512-CD512-CD512-
CD256-CD128-CD64-CD31.

Compared to a standard U-net, we modify the last layer of the U-net from
3 channels to 31 channels and change the loss function from cross-entropy to
Mean Squared Error (MSE).

HSCNN as backbone net

Inspired by a previous paper that won the NTIRE2018 spectral reconstruction
challenge [118], we use HSCNN comprised of residual blocks as a backbone
network. Residual blocks, also called Resnet, first proposed by He et.al [44],
this architecture makes deep learning network easier to train and also have
great performance in image classification Inception-v4 net [128], image super-
resolution [146], hyperspectral classification [166], manifold learning [78] etc.
Based on Resnet, Huang [50] proposed a densely connected convolutional net-
work (DenseNet) and get a competitive result on image recognition benchmark
datasets. HSCNN is based on DenseNet and ResNet to produce state-of-art
results and increased computational complexity.

4.1.2 Add a Physical Based Inverse Loss for Rgb to Spectrum

Network

In order to keep RGB images consistent to the groundtruth, inspired by similar
work [13], which makes predicted RGB image from a grayscale input image.
We applied the same optical-based loss as global direct separation network, as
a weighted sum of output (hyperspectral multiply existing camera). Suppose
we have three color matching functions (R,G,B) for each channel, which will
be write as f,(A), fo(A), and f,(A) for any output hyperspectral image g =
{g(A1),g(A2),...,g(Ai) } and input rgb image i = {iy, 1,13} , the corresponding
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rgb image will be:
rsb(s) = (L A3, LA DA} @

To keep the rgb subspace of generated hyperspectral image consistent with
input rgb, we need to add an additional L1 loss as a controller to make sure
rgb(g) =~ i

Lossp1(G) = B(l[rgb(g) —ilf) (4.2)
With this additional physical-based loss, the network encourages the input to
be similar to a weighted sum of output.

4.1.3 Filter Spectral Response Design

one key novelty of this thesis is in drawing the connection between camera
color imaging formulation and a convolutional layer. This allows us to optimize
the spectral imaging parameters by using existing network training algorithms
and tools. For simplicity, we will assume that the CCD/CMOS sensor has an
ideal flat response temporarily, and will address this factor when constructing
a real system.

Given the spectral radiance L(x,y, A) at position (x, y), the recorded intensity
by a linear sensor coupled with a color filter is given by

I(x,y) = /A Sc(A)L(x, y, A)dA, 4.3)

where A is the wavelength and S.(A) is the spectral response function of the
color filter. In most commercial cameras, there are red-green-blue trichromatic
filters, i.e.c € {R, G, B}, so as to mimic the human color perception.

In practice, the above equation could be discretely approximated as

N
Ic(x'y) = 2 Sc()\n)L(x;y//\n); (44)
n=1

where the filter response is in the form of a vector S¢ = [S¢(A1),Sc(A2), -+, Sc(AN)]
at sampled wavelengths, and N is number of spectral channels.



44 Physics-Based Design in Network Architecture for Hyperspectral Recovery

2x2 kernel with stride 2

Figure 4.2 The typical Bayer filter array setup and our special convolution kernel for

the Bayer-style 2 x2 filter array design.

An interesting observation is that Eq. 4.4 is identical to the convolution
operation of a 1x1 convolution kernel in forwarding propagation. By regarding
the filter spectral response function, S. as the weight of 1x1 convolution kernel,
as shown in Fig. 4.1, the intensity I.(x,y) could be interpreted as the output
activation map of a convolution, which is actually the dot product between
entries of the convolution kernel (color filter) and input (incident light) L(x,y).

With this observation, as shown in Fig. 3.1, we now add a 1x1 convolution
layer with three convolution kernels, which act like the three color filters in
a three-channel camera. With the appended layer, we train this end-to-end
network with the N-channel hyperspectral images as input. With this strategy,
we can obtain the optimized spectral responses from the learned weight of the
1x1 convolution kernel.
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Multi-chip Setup without Mosaicing

Some commercial RGB cameras adopt the multi-chip setup, that is, to have
a separate color filter for each CCD/CMOS sensor. They use the specialized
trichroic prism assembly. Without spatial mosaicing, they are usually superior
in color accuracy and image noise than the Bayer filter array assembly in a
single-chip setup. One alternative is to combine beam splitters and color filters,
as illustrated in Fig. 3.1, which is suitable for constructing multi-channel camera
prototypes.

In this multi-chip setup, it is apparent that we can directly obtain the filter
spectral response functions, as described above.

Single-chip Setup with a 2x2 Filter Array

The majority of commercial RGB cameras have a single CCD/CMOS sensor
inside and use the 2x2 Bayer color filter array to capture RGB images with
spatial mosaicing. A demosaicing method is needed to obtain full-resolution
RGB images.

Our strategy could also be extended to this single-chip scenario. Inspired by
the spatial configuration of the Bayer filter array, we consider a 2 x2 filter array
with three independent channels and design their spectral response functions
through our end-to-end network.

As illustrated in Fig. 4.2(a), in the Bayer filter array pattern, in each 2x2
cell, there are only one blue pixel, one red pixel, and two green pixels. We
could directly simulate them with a 2x2 convolution kernel of stride 2, which
is shown in Fig. 4.2(b). This would transform the 2x2 convolution kernel to
a 1x1 convolution at a specific position. In our implementation, for the ‘red’
and ‘blue’ channels, we manually freeze 75% of the weights of the convolution
filter to zero. For the ‘green’ channel, we only freeze half the weights to zero.
Since the Bayer pattern requires two ‘green’ filters to share the same spectral
response function, we approximate the shared spectral response function with
the average anti-diagonal weight of the convolution kernel.
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Figure 4.3 RMSE of each epoch of our designed and existing spectral response func-

tion on the CAVE dataset [154].

Non-destructive Filter Design

As hardware implement of designing CCD is costly and we want to investigate
whether it is possible by simply depose a monochrome filter in front of camera
lens to improve the hyperspectral reconstruction result.

In the experiment setting, if an input hyperspectral image is Xy c, stands
for height, width, channels separately, the filter sensitivity S; ¢ is learned
during training, the rest network is N(X), the final objective of autoencoder
is L = |I[N(X oS) — X||p, where o stands for hadamard product, which is
element-wise multiplication.
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L2 regularization can be derived from this assumption: layer weights obey
Gaussian prior distribution. However, it does not ensure smoothness at any
time; it only forces weight to choose smaller value and approach zero. In image
processing, Gaussian blur is widely used as a low pass filter to smooth image.
So we try to use 1D convolution with a fixed kernel like discrete Gaussian
kernel. In our experiment setting, window length of that kernel is set to 3, and
stand deviation is 1.

The framework function is shown in Fig. 4.4

End-to-End Filter Design and Reconstruction Network

1x1 Convolution Layer Hyperspectral
with Three Kernels - ) I Spectra Reconstruction Network Y Image

SRS |

Gaussian kernel convolution
on designed filter

[
[AYAVA
AKX

Fixed commercial camera
response

Figure 44 System framework for joint designing filter illumination response.

4.1.4 Nonnegative and Smooth Response

Physical restrictions require that the filter response function should be non-
negative. Also, existing film filter production technologies can only realize
smooth response curves with high accuracy. Therefore, we have to consider
these constraints in the numerical design process.

Smooth Constraint Using L2 Norm Regulizer

There are various regularizers in the convolutional neural network, which
were originally designed to penalize the layer parameters during training.
Interestingly, our nonnegativity and smoothness constraints on the spectral
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response functions could be easily enforced by borrowing those regularizers.,
nonnegative regularizer, and L1 norm.

To achieve nonnegative responses, we enforce a nonnegative regularizer on
the kernel in our filter design convolution layer, such that S.(A) > 0. As for
the smoothness constraint, we use the L2 norm regularizer, which is commonly
used to avoid over-fitting in deep network training. Specifically, we introduce

a regularization term 17\/ YN (Sc(An))?, where 7 controls the smoothness.
Throughout the experiment, 7 is set to 0.02.

In the subset of CAVE dataset, including real and fake objects, due to the
limitation of dataset size, 12 norm can not produce a smooth spectral response.
Thus, we propose a Fourier based method for a more strong constraint. We also
implemented them into a network, as shown in subsection 5.2.2.

4.2 Reconstruction Experiment Results Using Syn-

thetic Data

Here, we conduct experiments on synthetic data to demonstrate the effectiveness
of our method. We evaluate our method on the dataset comprising of both
natural and indoor scenes [154, 15].

4.21 Training Data and Parameter Setting

The CAVE [154] dataset is a popular indoor hyper-spectral dataset with 31
channels from 400nm to 700nm at 10nm steps. Each band is a 16-bit grayscale
image with size 512*512. The Harvard dataset [15] is a real-world hyperspectral
dataset, including both outdoor and indoor scenarios. The image data are
captured from 420nm to 720nm at 10nm steps. For the sake of clarity, we label
50 images under natural illumination the “Harvard Natural Dataset” and call
the rest of the 27 images under mixed or artificial illumination the “Harvard
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Mixed Dataset”.
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Figure 4.5 Sample Results from the CAVE Database [154]

In the training stage, we apply random jitter by randomly cropping 256 x 256
input patches from the training images. We trained our algorithm with a batch
size of 2 and 50 iterations for each epoch. We trained the network with the Adam
optimizer [66] with an initial learning rate of 0.002 and B; = 0.5, B2 = 0.999. All
of the weights were initialized from a Gaussian distribution with a mean 0 and

a standard deviation 0.02.

We run our proposed algorithms on an NVIDIA GTX 1080 GPU. Our server
is equipped with an Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz and 128GB of
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Figure 4.6 The reconstructed spectra samples for randomly selected pixels in the
CAVE and Harvard Natural and Mixed datasets [154, 15]. Each row corresponds to its

respective dataset.

memory. The training time for the CAVE [154], Harvard Natural and Mixed
[15] datasets take 1.84,8.88 and 8.52 hours, respectively. The average time to
reconstruct spectra from an individual image takes about 5.83 seconds.

Throughout the experiment, we choose the root mean square error (RMSE)
as our evaluation metric. For each dataset, we reconstruct the hyperspectral
image for all of the testing data and then calculate the average and variance of
the RMSE between the reconstructed hyperspectral image and the ground truth.
For the sake of consistency, we re-scale all of the spectra into range of [0, 255].
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Figure 4.7 RMSE vs. Noise Level and Non-physical solutions for learned responses.

4.2.2 Results on 3 Channel Multiple-Chip Setting

At first, we evaluate the multi-chip setup described in Sec. 4.1.3. In this section,
we evaluate the performance of the multi-chip setup with three sensors. The
optimal spectral response function for the CAVE dataset [154] is given in Fig.
3.1.

Influence of Noise and Constraint

Specifically, we also simulated sensor noise by adding Gaussian noise to the data
from the CAVE dataset and report the RMSE of the hyperspectral reconstruction,
as shown in Fig . 4.7. The non-physical solutions for responses in Fig. 4.8. As
expected, the non-physical responses are not smooth, and some portions are
even negative, so they cannot be directly realized in film filters.

Influence of Inverse Camera Loss

We add an extra 11 loss as shown in Sec. 4.1.2, we evaluated the influence of
in equation 4.2. The evaluation metric is normalized L1 loss (Mean Absolute
Error), as shown in Tab. 4.1

We exam the network performance with different § settings of the physical
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Table 4.1 The B in physical based inverse loss in equation 4.2 vs. MAE, the smaller
is better. f = 0 stands for a normal unidirectional inference with U-net network loss.

B = 1.0 achieve the best evaluation result.

B MAE

0.0 0.786561
02 0.757819
04 0.735643
0.6 0.782672
0.8 0.711089
1.0 0.693925

inverse loss term. Specifically, when we fix the parameter p = 1.0, the per-
formance is significantly improved. It suggests a 12% improvement of MSE.
Additionally, the MAS vs. B is not monotonically decreasing, when B = 0.6,
there is no apparent difference between none physical-based inverse loss. We
conclude that physical-based inverse loss for mapping output hyperspectral and
compress to RGB keep the consistency with input RGB and select the weight
for the loss term in the final loss is also essential.

The average and variance of the RMSE are shown in Table 4.2, which was
compared with three baseline methods: [5], [97] and [54]. The RGB inputs of
three baseline methods are generated from the spectral response function of
Canon 600D. This table shows that the RMSE of our method outperforms the
alternative methods in spectral reconstruction in all three datasets.

The learned spectral response function is shown in Fig4.9.

We also demonstrate the spatial consistency of the recovered hyperspectral
images from CAVE datasets in Fig. 4.5, which shows images at seven different
wavelengths.
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Influence of parameter to control weight of physical inverse term
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Figure 4.8 MAE of HSI reconstruction over six possible 8 in final loss term. Perfor-

mance is the best when g = 1.0.
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Figure 4.9 Learned optimal spectral response function trained on CAVE dataset[154].

Y axis stands for the amplitude.
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Table 4.2 Average and Variance of RMSE of reconstruction on the hyperspectral
databases [154, 15, 54].

CAVE[154] Harvard Natural[15] Mixed[15]

Our 4484297 7.57 £4.59 8.88 £4.25
[5] 8.84+7.23 14.89 +13.23 9.74 +7.45
[97] 14.91 +11.09 9.06 +£9.69 15.61 = 8.76
[54] 7.92+3.33 8.72 £7.40 9.50 £ 6.32

We also represent the recovered spectra for random points from three
datasets in Fig. 4.6, which shows that our method is consistently better than the

alternatives.

To demonstrate the efficacy of our spectral response function, we also train
and test our spectral reconstruction network on the RGB images generated by
existing types of cameras. Here we compare the average RMSE on the testing
set for each training epoch in Fig. 4.3.

As shown in Fig. 4.3, the reconstruction error of our method rapidly con-
verges as the epoch increases compared to other spectral reconstruction net-
works based on existing camera types. Our method also shows superior perfor-
mance at epoch 60.

We also discuss the robustness of our method in the supplementary material.
Specifically, we first report performance in the case of added Gaussian noise.
Then we report the response function trained without physical constraints. We
also simulate sensor noise by the data from the CAVE dataset and report the
RMSE of hyperspectral reconstruction. As expected, the non-physical responses
are not smooth, and some portions are even negative, so they cannot be directly
realized in film filters.
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400 450 500 550 600 650 700
Wavelength

Figure 4.10 Optimal spectral response of filter array trained on CAVE dataset[154].

The corresponding array is shown in Fig4.2. Y axis stands for the amplitude.

4.3 Experiment Results on Harvard Datasets

Here, we compare the experimental results on the Harvard Nature and Har-
vard Mixed Datasets [15]. Comparisons between the generated hyperspectral
images and ground truth are shown in Figure 4.11 and Figure 4.12 at different
wavelengths. The error maps of the RMSE show our method is competitive
with the alternatives. The recovered spectra of random samples are given in the
main papet, in Figure 6, in the last two rows.

4.4 Experiment Results of Real-world Examples

In this section, we show more results taken by our multispectral camera using
two channels with our optimized response functions. We conduct experiments
on three indoor scenarios. The captured images and reconstructed spectra are
shown in Figures 4.13, 4.14, and 4.15. Results show that our method achieves
reasonably accurate performance.
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Figure 4.11 Sample Results from the Harvard Natural Database [15]
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Figure 412 Sample Results from the Harvard Mixed Database [15]
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Figure 4.13 Results on flower and checkerboard from our multispectral camera. (a,b)
The captured images of filters 1 and 2, respectively. (c to h) The reconstructed spectra

of randomly selected single pixels.

4.4.1 Comparision Between Backbone Networks

We evaluate performance between a more recent network HSCNN [118, 150],
and Unet. We concatenate a response design layer in front of an HSCNN model.
As the HSCNN model does not provide a pre-trained model for CAVE dataset,
we trained our network from scratch. During the experiment, we found it is
hard to propagate gradient to optimize the camera design layer because of the
network depth, so we decrease the original block number from 9 to 3.

The input image is cropped into 64*64 pieces to do data augmentation.
Moreover, the train/test split is the same as CAVE official website. Network is
optimized with Adam optimizer with learning rate 0.001, and 1 and B2 is set
to 0.5 and 0.999. All of the weights were initialized from a Gaussian distribution
with a mean 0 and a standard deviation 0.02. The RMSE of Unet or HSCNN as
a backbone network are shown in Tab. 4.3

Compared to skip connection in Unet, the performance by HSCNN is
significantly improved, due to the residual block and densely connected network



4.4 Experiment Results of Real-world Examples 59

(a) Ima

e of Filter 1(b) Image of Filter 2 (c) Sample 1 (d) Sample 2

-
\
|

400 500 600 700400 500 600 700

(e) Sample 3 (f) Sample 4 (g) Sample 5 (h) Sample 6
'p\‘ ;g[l(:undtru(h I :glrj(;undtrulh /- | ","‘\‘ ;g[l(:undtru(h A ;g::undtruth

\
N

400 500 600 700 400 500 600 700400 500 600 700

Figure 4.14 Results on books from our multispectral camera. (a,b) The captured
images of filters 1 and 2, respectively. (c to h) The reconstructed spectra of randomly

selected single pixels.

to minimize the loss of information flow.

4.4.2 Filter Array Design for Single Chip Setting

We also demonstrate our performance in designing the filter array (Sec. 4.1.3).
When compared with the alternatives, we simulate the single-chip digital camera
by encoding the image in a Bayer pattern. We then perform gradient-corrected
linear interpolation, a standard demosaic method, to convert the Bayer-encoded
image into the color image before conducting the comparison.

We present our quantitative analysis of 3 channel single-chip settings on
the CAVE dataset in Table 4.4. The optimal spectral response function is given
in 3.1, where the corresponding position of each spectral response function
is illustrated in Fig. 4.2. Note that, similar to the Bayer Pattern, the spectral
response colored in green covers 50% of chip. Our method maintains sufficient
accuracy under the array setting where the performance of existing methods
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Figure 4.15 Results of single pixels spectra on color checker from our multispectral

camera.

RMSE for different backbone network: Unet and HSCNN. Performace

Table 4.3
evaluated under three datasets: CAVE, Harvard Natural and Mixed [154, 15, 54].

Unet HSCNN
CAVE 448 2.23
Harvard Natural 7.57 2.155
8.88 2.69

Mixed
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Table 4.4 Average and Variance of RMSE of reconstruction with filter array on CAVE
dataset [154].

Our [5] [97]

473 +3.12 13.25+13.88 18.13£9.33

deteriorates under the demosaicing process in the single chip setting.

4.4.3 Non-Invasive Filter Design

As shown in Table. 4.5, we use four different settings: (1) input is RGB image as
lower bound; (2) Input is hyperspectral, and output is hyperspectral, network
has response design layer; (3) Input is hyperspectral, and output is hyperspectral,
network has response design layer and filter design layer. Canon 600D CSS
function was initialized into the response design layer and keep frozen during
training. (4) Input is hyperspectral, and output is hyperspectral as upper
bound. We also report the relative improvement among RGB to hyperspectral
reconstruction. Each of them is tested in three times with different random seed
and take the average.

The learned camera response function after 300 epochs is shown in Fig. 4.16

As it is not physically plausible to implement CSS function and illumination
response in Fig. 4.16, We add a smooth constraint during training. As the RMSE
evaluation metric is shown in Table. 4.5

They demonstrate that smooth constraint has slightly suppressed the RMSE
performance of CSS design and increased the performance of illumination
design.

The learned CSS function and filter is shown in 4.17. Gaussian kernel smooth
constraint is applied to smooth filter response.
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Table 4.5 RMSE on CAVE dataset for different settings. Smaller value leads to a better

performance
Method Without constraint With constraint
RGB input 2.560 -
Response design 2.235 2.293
Filter design 2.468 2.408
Hyper input 1.006 -

Fig. 4.17 shows the learned response for fourier basis constraint.

4.5 Data-Inspired Multipectral Camera for Recon-
struction

Here, we aim to construct a multispectral camera for image capture and hy-
perspectral reconstruction. We use the FLIR GS3-U3-1555M camera to capture
images, which collects light in the spectral range from 300nm to 1100nm. To
block out UV and NIR sensitivity, we add a visible bandpass filter onto the
camera lens. Since the multi-sensor setup is easier to implement than a filter
array, we conduct the design operation as in Sec. 4.2.2. When evaluated on
the CAVE dataset [154], the average RMSE of a two-channel optimized filter
is 5.76, slightly higher than the three-channel setup 4.48. We note both our
results are still far better than the alternative algorithms based on three-channel
input. Due to the expensive cost in customizing filters, here we choose to
realize the designed filters in the case of two channels, whose response func-
tions are shown in Fig. 4.18(a). We turned to a leading optics company to
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(a) Measured Spectral Response

~ (b) Whole System

Grayscale Camera
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— : 8
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(c) Realized Filter 1

Figure 4.18 The realization of our multispectral camera. (a) The measured spectral
response of our designed filter trained on CAVE [154]. Circles indicate the actual
response while the solid lines are the designed spectral response function. (b) Our
multispectral imaging system setup. (c) Filter of (a)’s red curve. (d) Filter of (a)’s blue

curve.

implement the designed response functions. The realized film filters are of
size 50mm x50mm x Imm (see 4.18(c,d)), and the measured spectral response
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(a) Image of Filter 1(b) Image of Filter 2 (c) Sample 1 (d) Sample 2
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Figure 4.19 Results from our multispectral camera. (a,b) The captured images of filter

1 and 2, respectively. (c,d) The reconstructed spectra of randomly selected pixels.

functions are shown in Fig. 4.18(a) (Solid line indicates designed response and
circles indicate actually measured response). The film filter is an interference
filter consisting of multiple thin SiO2 and Nb2O5 layers. With the interference
effect between the incident and reflected lights at thin layer boundaries, the
designed film filter endows us spectral response functions that are very close
to our design. We use a 50-50 beamsplitter to construct a coaxial bispectral
camera and align two FLIR GS3-U3-1555M cameras properly, as illustrated in
Fig. 4.18(b). Sample images captured through two filters are shown in Fig.
4.19(a,b). We also report the reconstructed spectra via our system compared to
the ground truth. Consistent with the previous simulations, our reconstructions
are reasonably accurate, as shown in Fig. 4.19(c,d).

4.6 Computational Need

We run our proposed algorithms on NVIDIA GTX 1080 GPU. Our server is
equipped with Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz and 128GB memory.
The training and test costs are shown in Table 4.6

As PyTorch version 0.4 distributed training does not entirely support parallel
training on four GPU cards in one machine, the time is analyzed on one single
GPU. The DataParallel in PyTorch contributes to an unbalanced load, which
will cause GPU 0 to memory overflow. The reason for the occurrence of load
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Table 4.6 Time Consumption for training and testing on different hyperspectral

datasets.

CAVE Harvard Natural Mixed

Training time  1.84 8.88 8.52
(hours)
Testing time  5.40 6.04 6.06

per image

(secs)

unbalancing is: GPU 0 is the host worker for distribute and gather gradient;
this will occupy a considerable amount of memory. Our workstation provides
4 GPUs for parallel training, and third party packages are proposed recently.
We suggest a distributed training framework names horovod by Uber for speed
up training and an mix precision method apex to reduce GPU memory usage.
Apex is a plugin for PyTorch developed by NVIDIA, which has an advantage
of adaptive adjusting precision in the neural network. For example, the input
image will be converted to floatl6 type instead of default float32 type to save
space. However, when the final loss is gathered and prepare for gradient
propagation, the precision is float32 to keep accuracy. This function is designed
for tensor core in Volta architecture GPU like NVIDIA V100. If someone needs
to implement this method in a production environment, please consider buying
Volta architecture GPU and using distributed training packages mentioned
above.
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4.7 Joint Optimize Camera Spectral Response Selec-

tion, Sensor Multiplexing, and HSI Recovery

In our previous work, we presented a method for simultaneous learn camera
spectral response and hyperspectral image reconstruction using an autoencoder
like structure. In this section, we proposed an add-on layer that can also learn
sensor patterns through training iterations. This layer is utilized to generate the
best sensor measurements that are fed into a tail reconstruction network.

4.7.1 Black-white Pattern

Just like Coded aperture snapshot spectral imaging (CASSI), which encode the
3D hyperspectral image (HSI) into a 2D compressive image, we proposed our
learned patterns, which is different at every channels. The learned pattern size
is 8*8 and is repeated eight times each dimension to fit image size 64*64.

The image capturing process is supposed to be: setting a prism after an HSI
cube and each channel was masked by its corresponding pattern, then using
lens group to gather lights after that pattern and sum them together into a 2D
compressive image. By feeding this image into a reconstruction network, the
output is the original HSI cube

By encoding this process into a deep learning network, the critical challenge
is to learn the binary pattern. We use a binaryConnect method [20], which
helps deep learning networks to train binary weight during propagations. The
critical idea of binaryConnect is only binarize the weights during the forward
and backward propagations but not during the parameter update.

The learned pattern are shown in Fig. 4.20
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Epoch 20 Epoch 28 Epoch 35

Figure 4.20 Evolution of binary pattern learning from epoch from 1 to 35.

Table 4.7 loss on validation set between learned pattern and all one (panchromatic)

pattern

Panchromatic (x1073) Learned Pattern (x1073)

5.731 2.642




40 Physics-Based Design in Network Architecture for Hyperspectral Recovery

4.7.2 Color Pattern

Previous work [14] shows designed sensor multiplexing has better performance
than Bayer Pattern in raw image reconstruction. However, camera response
on each sensor was constrained to be one of ['Red’, ‘Green’, ‘Blue’]. In our
experiments, we also learned the color matching functions for C channels.

The key challenge of learning the color pattern layer lies in choosing proper
receptors among C different candidates using hard non-differentiable decision
between C possibilities. To solve this challenge, despite of using softmax
function directly, we use a training time dependent parameter a; to constrain
gradient of softmax function. Moreover, the designed sensor pattern layer has
different behavior between training and testing stages [121]. In the training
stage, the activation I(n) is defined as:

I(n) = Softmax|a;w(n)] (4.5)

Where w,, € R is a learnable parameter for each location n of multiplexing
pattern. In the testing stage, the I(n) was replaced with a binary version as
I°(n) =1 for

¢ = argmax w*(n)
C

and 0 otherwise. The output channel ¢ = softargmax(ax) = I(n)x(n)

The difference between soft argmax(ax,0) (i.e softmax(ax,0)) and max(x,0)
is shown in Fig.4.21:

when learning the sensor pattern, we set the softmax parameter according
to a quadratic schedule as a; = 1+ (¢t)?> where ¢ = 2.5 x 1072 The results
on CAVE dataset was shown in Table. 4.8. We observe that our method
outperforms the white sensor significantly.

The learned 8*8 pattern in show in Fig. 4.22
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y = softmax(x,0) vs. y = max(x,0)
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softmaz(ax, ()

__________ mazx(z,0)

Figure 4.21 Sofxmax(x,0) vs. max(x,0). As the temperature parameter of softmax

increase, it converges to hardmax function.

Table 4.8 loss on validation set for learning multiplexing pattern.

White Sensor (x10~%) Multiplexing Sensor (x10~%)

56 9.3
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Figure 4.22 Learned multiplexing pattern

4.7.3 Ablation Study

To evaluate the effectiveness of our proposed method of joint design pattern
and CSS response, we have experimented with doing these settings individually.
The upper left of the Table. 4.9 shows PSNR that CSS function and pattern are
all frozen into Canon 600D and Bayer Pattern. The lower right shows the PSNR
of joint learn pattern and CSS response. The other part of that table is freezing
one and learn another.

We can see that joint learn patterns and response can effectively improve the
reconstruction results.

Relative MSE Loss vs. MSE Loss

Previous experiment on EBA Japan data provides us some insights about choos-
ing proper object function for the network. In EBA Japan Dataset, hyperspectral
images were taken from the outdoor scene where illuminate level varies sig-
nificantly, which makes network focus on learning highlight part, for example,
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sky. To solve this, Relative MSE was introduced and had better performance
on that dataset. Similar observations are provided in Z. et al. [118]. However,
in CAVE dataset, an indoor scene dataset, most images were taken in front of
the black background; using Relative MSE will force the network to focus on
leaning black part, which is negligible. During the training part, we found it is
hard for network to converge, and final loss is much more significant than one
using MSE loss.

Table 4.9 PSNR, SSIM, MSE loss, RMSE of different settings in test set.

Bayer_600D Bayer_learn Learn 600D Lean_Learn

PSNR 32.0723 32.4156 33.3676 33.4827
SSIM 0.9493 0.9341 0.9538 0.9479
val loss(E-5) 9.9 9.03 6.51 6.28
RMSE 0.03141 0.2995 0.02538 0.02491

4.8 Conclusion

In this chapter, we have shown how to learn the filter response functions in
the infinite space of nonnegative and smooth curves by using deep learning
techniques. We appended a specialized convolution layer onto the U-net based
reconstruction network, and successfully found better response functions than
standard RGB responses, in the form of three separate filters and a Bayer-
style 2x2 filter array. For building a real multispectral camera, we have also
incorporated the camera CCD included responses into the design process. We
successfully designed/implemented two filters, and constructed a data-inspired
bispectral camera for snapshot hyperspectral imaging.

At the very beginning of this research, we were speculating that, given a
proper dataset, the deeply learned responses should finally converge to the
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color matching function of human eyes, since the latter has been “optimized” in
the long history of evolution. However, we observed in our current experiments
that the learned response functions might vary significantly from one training
dataset to another. We will leave the collection of a comprehensive database as
our future work. Meanwhile, we also extend this work to optimize the camera
for a broader range of vision tasks such as classification [9].

We also jointly learn a non-destructive filter, a coded pattern for hyper-
spectral reconstruction. To learn a coded pattern, we inspired by binary deep
learning networks and adjust the slope of softmax function during training.
Ablation study shows our method outperforms Bayer patterns in hyperspectral
reconstruction.



Chapter 5

Physics-Based Constraints for

Hyperspectral Classification

In this chapter, I will show the problem definition and our solutions in Sec-
tion 5.1. Then, the network details is proposed in Section 5.2. Moreover, the
dataset processing and experiments results are presented in Section ??. Finally,
the conclusion of this chapter is discussed.

5.1 Hyperspectral classification

The hyperspectral classification problem can be described as the following: Take
an input B-bands hyperspectral cube, which can be formulated as a set of n
pixels vectors X = {x]- € R8,j=1,2,3,..n}. Let Q = {wy, wy, ws, ..., wk} be
a set of information classes in the scene. Classification consists of assigning
each pixel of the scene to one of the K classes of interest. A typical information
class of a remote sensing is (snow, water, wheat, trees, roof, etc.). Intuitively,
one may believe that spectrum for each pixel could represent the sufficient
information for corresponding class. However, as I mentioned in Chapter 2,

75
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the analysis of hyperspectral image suffers from the curse of dimensionality,
prevent robust statistical estimations. Therefore, to take full advantage of the
rich information and get rid of redundant information, researcher developed
many algorithms. For example, hyperspectral bands selection, PCA analysis
and related algorithms are proposed to do dimension reduction. However, these
methods are not designed for the classification task. For instance, the optimal
object of PCA analysis is designed for finding the components which contribute
most to the variance of original spectrum. The limitation is the optimal object of
PCA is not for classification. Inspired by this, the aim of this chapter is to find
a proper mapping, which project the original spectrum to three components.
The optimal object is classification defined and constrained by a hyperspectral
classification network. As RGB camera acquisition is designed to mimic the
human eye, I will show the superior performance of our method than RGB
image in the following sections.

5.2 Spectral Classification Network

5.2.1 Network Structure

Most image classification method works on RGB image shown in Fig 5.1 that
takes the image of three channels (red, blue, and green) as input. On the
contrary, the input of hyperspectral classification, as shown in Fig 5.2, is the
hyperspectral image with multiple channels. Though hyperspectral images
contain much more spectral information than RGB images, capturing it is much
more expensive and inconvenience than RGB images.

To explore information conveyed in hyperspectral images, we propose a
novel network in Fig 5.3 whose input is mere RGB image. As described
in Chapter 3, the physical process of camera response function converts the
multiple bands of hyperspectral imaging into RGB channels. We can embed this
process into a 1x1 convolution layer with three kernels. Therefore, in the training
stage, our training input is hyperspectral imaging, which would be projected
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into three-channel images. In the actual testing stage, we could directly capture
this three-channel image with specifically designed CCD filter. We then can
treat it as an RGB image with a standard RGB classification network.

RGB classification Network

% Real
g g eoce <
Fake

Figure 5.1 RGB classification net

Hyperspectral Hyperspectral classification network

Image
e
—> [N ) <
Fake

Figure 5.2 Hyper classification net

Our proposed network

3 channels

Hyperspectral 1x1 Convolution Layer

Image with Three Kernels RGB classification network

Figure 5.3 Our proposed net

Noted that arbitrary end-to-end network could be used for our spectral clas-
sification. In the previous reconstruction network, we use a well-known U-net
[112], which has been widely used for image-to-image translation applications,
such as pix2pix, CycGAN, Semantic Segmentation [117], and hyperspectral
reconstruction [4]. However, existing classification net-like VGGnet [119] de-
signed for normal RGB image is too large for 31 input channels. Theoretically
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speaking, the depth of VGGnet is too large to be a proper choice for small
datasets. Inspired by the structure design of a generative adversarial network
for hyperspectral image classification [170] which has shallow net layers, we
propose network as shown in Fig5.3. We use modules formed as follows: 2D
convolution-Relu. The network takes images of size nxnx3 as input and finally
produces the corresponding spectral images of size nxnx31. Let Ck denote a
convolutional block including one convolutional layer with k filters, one ReLU
activation layer. We removed the batchNormalization layer and got a better
performance. The a parameter in the leakyReLU layer is set to 0.2.

All the convolutional layers are set to 3*3 kernel size, stride 1, with max-
pooling factor 2, and proper zero paddings to edges. The network structure
is C31-C3(1*1 convolution)-C64-C16-D32-D16-D8-D1. D stands for the dense
layer. Specifically, the first layer is the embedded bottle-neck layer that embeds
camera response function.

5.2.2 Smooth Constraint Using Fourier Basis

During the training stage, we observed that the smoothness of designed camera
response is not sufficient even with 12 regularization, as shown in Fig. 5.5.
This would increase the cost of manufacturing the actual filter. To further
impose the smoothness, we proposed a method to learn a combination of
orthogonal basis. By using cut-off frequency, we could control the smooth-
ness of learned weight. A typical set of orthogonal basis is Fourier series
{1, sin x, cos x, sin 2x, cos 2x, ..., sin nx, cos nx }. By assuming camera response
f(x) is a linear combination of these basis, we have:

N

2mtnx . 2mnx

fx)=ao+ ) {an cos( P ) + by, sin( 3 )} (5.1)
n=1

We use gradient descent method to optimize a,, and b,, the maximum

frequency was constrained to N/P. By encoding this Fourier Series into our

network, the learned camera spectral response is shown in Fig. 5.4, details of

learning is show in section 5.
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Figure 54 Camera spectral response with cut-of frequency, n=15. This is a more

strong constraint than 12 norm.

As a potential application, we can also learn the filter that is mounted on
existing cameras with known spectral response function.

5.3 Dataset and Experiment Results

5.3.1 Cave Real and Fake Pepper

As far as we know, there is no public dataset of labeled hyperspectral segmen-
tation dataset in visible wavelength range. However, we found there is one
image in CAVE described in sec. 4.2.1; the experiment was conducted on that
image. In this image, a real pepper and a false pepper are put in front of a black
background. We extract the foreground and analyze the appearance. As the
dataset size is too small, we split original images into several patches; Yan et al.
also used this approach in remote sensing segmentation [82]. The patches are
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With L2 norm smooth constraint
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Figure 5.5 Generated camera spectral response with 12 norm regularization. Response

function is jagged and physically implausible

split into train and test sets with ratio 0.7. The patch size is 128*128 with stride
1. Another challenge is small dataset size leads to a jagged learned response
even if 12 constraint is applied. Thus we use a more strong constraint using
Fourier basis described Equation 4.4. Parameter n in that equation is set to 15.

As shown in Fig 5.6, we compared our method with five settings:

1. Input is an RGB image, network structure is C3-C64-C16-D32-D16-D8-D1.

2. Input is a hyperspectral image, and the weights in the filter design layer
are frozen to commercial camera spectral response. Network structure is
C31-C3(1*1 convolution)-C64-C16-D32-D16-D8-D1.

3. Input is a hyperspectral image, filter design layer is trained without
constraint. Network structure is C31-C3(1*1 convolution)-C64-C16-D32-
D16-D8-D1.

4. Input is a hyperspectral image, with no filter design layer as bottleneck
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layer. Network structure is C31-C64-C16-D32-D16-D8-D1.

5. Input is a hyperspectral image; filter design layer is trained with smooth
constraint using Fourier basis to control maximum frequency. This makes
trained response physically plausible for manufacturers. Network struc-
ture is C31-(Fourier layer)-C64-C16-D32-D16-D8-D1.

Intuitively, in this dataset, classification accuracy by hyperspectral image works
much better than RGB image and using our learned response, accuracy is
largely improved. However, due to the dataset size, learned response is jagged
shown in Fig 5.5 and cannot be smoothed using 12 norm. To make a trade-off
between smoothness and final accuracy, a Fourier basis is introduced. The
learned response is shown in Fig 5.4.

5.3.2 Remote Sensing Dataset

India Pines [113] dataset is gathered by Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in northwestern Indiana. This dataset has 220
spectral channels from 400 nm to 2499 nm include visible and infrared spec-
trum. To make a fair comparison, we discard infrared wavelength and generate
three channels image with re-sampling on existing camera response. The same
sensor of India Pines collected the Salinas dataset at the place of Salinas Val-
ley, California. As there are so many bands in original data, and wavelength
range between each band is not fixed, calibration information and resam-
pling the camera response function using 3-order B-spline interpolation are
applied as a pre-processing method to get a 30 bands multispectral image
in visible wavelength range. The AVIRIS sensor calibration information is
from Purdue University Research Repository (PURR) !. Documnet name is
Calibration_Information_for_220_Channel Data_Band_Set.txt. We plot the center
wavelength (nm) in this document shown in Fig. 5.7 and using this information
to resampling the camera response function shown in Fig. 5.8. After we got

https:/ /purr.purdue.edu/publications /1947 /supportingdocs /1



82 5 Physics-Based Constraints for Hyperspectral Classification

Figure 5.6 Predicted segmentation mask for real and fake pepper. Yellow label stands
for fake label and blue one stands for real label. The first and second row stands for
the corresponded mask for real and fake pepper image input. Each column stands for:
(1) rgb input image as lower bound. (2) first layer (camera response layer) initialized by
canon 600D and freezed during training. (3) proposed method to set all the weights
trainable to design camera response. (4) hyperspectral input image as upper bound. (5)

same setting as (2), but to learn the linear combination parameters of fourier basis.
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the resampled weight of AVIRIS sensor, we can get the '/RGB’ image of remote
sensing dataset for comparing the final results with our proposed method.

Calibrated Camera AVIRIS sensor
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Figure 5.7 The AVIRIS sensor calibration information taken from Purdue University
Research Repository (PURR): 220 Band AVIRIS Hyperspectral Image Data Set: June 12,
1992 Indian Pine Test Site 3.

The overall accuracy is shown in Table. 5.1. Experiments result show that
the proposed method is significantly improved compared to traditional RGB
image.

Pavia University

Pavia Univ dataset was acquired using ROSIS (Reflective Optics System Imaging
Spectrometer) over the Pavia University.It has 610*340 pixels and 103 bands,
wavelength from 0.43 to 0.86um. This dataset has ten classes. The training and
testing set was randomly separated, with a ratio of 7:3. The visible wavelength
band is top 68 channels. Note that the calibration information is missing
compared to AVIRIS sensor. So we assume that the narrow-bands images are
taken in wavelengths with same intervals.
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Interpolation of Canon 600D response
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Figure 5.8 Using resampling method from AVIRIS sensor calibration information
on canon 600D response. This is used for generating RGB image of remote sensing

datasets.

Classification result are shown in Fig. 5.11. Filter was learned using the
top 68 channels, and the RGB image is calculated using the interpolation of
Canon 600D. Note that the Response design and RGB results are generated
from visible wavelength in original spectrum. In our design, we have about 3 %
overall accuracy improvement using response design on the India Pines dataset
and 10 % improvement on the Salinas dataset. Classification result is shown in
Fig. 5.9. and Fig. 5.10

5.4 Conclusion

We build a framework for material classification, in the training stage, our
training input is hyperspectral imaging which would be projected into 3 channel
images. In the actual testing stage, we could directly capture this 3 channel
image with specifically designed CCD filter. We then can treat it as an RGB
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Ground Truth Hyper Res Design  RGB image

Figure 5.9 Classification result in Salinas Data Set. From left to right stands for

ground truth, hyperspectral input, hyperspectral input with filter learning, RGB input

respectively.
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Ground Truth Hyper Res Design  RGB image

Figure 5.10 Classification result in Indian Data Set.From left to right stands for
ground truth, hyperspectral input, hyperspectral input with filter learning, RGB input

respectively.

Figure 5.11 Classification result in Pavia University Data set.From left to right stands
for ground truth, hyperspectral input, hyperspectral input with filter learning, RGB

input respectively.
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Table 5.1 Overall Accuracy in three public hyperspectral datasets

OA(Overall Accuracy) Hyper RGB  Response design Random

India Pines 0.7616 0.5609 0.5907 0.0571
Salinas 0.8660 0.6250 0.7296 0.0587
Pavia University 0.7549 0.4974 0.6598 0.1023

image with a standard RGB classification network. With this setting, we can
build a snapshot hyperspectral classification system. During the training stage
on CAVE pepper dataset, we observed that 12 regularization is no sufficient for
controlling smoothness in this small dataset. To further impose the smoothness,
we propose a fourier basis layer in classification network and learn the parameter

of Fourier series.
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Chapter 6

Conclusion

This thesis propose a new physical-based deep learning framework for ana-
lyzing optical properties for real scenes. Optical property has two essential
parts: global/direct separation and hyperspectral reconstruction. For recovering
global and direct illuminations, we add a physical constraint as a term on the
network loss. For recovering and analyzing pixel spectral reflectance, we add a
smooth constraint using 12 norm and Fourier basis as a term on the network
loss in conjunction with particular designed convolution neural network layer.

In Chapter 1, I explain the drawback of current approaches for optical
property analysis. Firstly, separating direct and global components requires
multiple images taken under a specific setting, such as high-frequency light
patterns. Most existing devices to capture hyperspectral images are scanning
based, that is, either to drive a line slit along one spatial dimension (pushbroom
scan) or to continuously change narrow bandpass filters in front of a grayscale
camera (filter scan). Unfortunately, these devices are extremely limited in
spatial resolution. To analyzing optical properties, several deep learning and
machine learning based methods were proposed, but the transparency of deep
learning method is lacking, which is highly parameter fitting. We build the
connection between camera sensor spectral /spatial distribution and convolution
layer of neural network. By simulating the camera response as a convolution

89
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layer and tailed with network for analyzing, the performance is better than
state-of-the-art.

In Chapter 2, I provide a literature review of previous works related on the
application of machine learning algorithms on optical properties analysis and
their limitations.

In Chapter 3, I design a physical-based framework to separate direct and
global component, which is an important part of optical property analysis. We
propose the first method to separate direct and global components from a single
RGB image without hardware constraints. This model embeds physical prior
knowledge into the GAN based network to achieve single-image components
separation. To train and evaluate this model, we also present the first dataset,
which comprises of 100 scenes with their ground truth direct and global com-
ponents. Our method has been shown to work successfully on our own testing
set and general images from the public dataset. Finally, we demonstrate how
the separated components could be used for realistic image editing.

In Chapter 4, I discuss how to impose physical prior constraints to spectral
reconstruction, which is anather important task of optical preperty analysis.
For RGB to hyperspectral reconstruction, although previous work can recover
spectral reflectance using input RGB image [97, 111, 5, 54, 32], and shows
camera spectral spectral is important for hyperspectral reconstruction [6]. At
tirst, we feed RGB image into a network and add a new physical inverse
loss as a weighted sum of output hyperspectral image, where weights are
equivalent to existing cameras. After adding this loss into the final objective
function, the reconstruction error is reduced. By considering searching for the
best filter response function, we build and end-to-end network simultaneously
learn the optimized filter response functions and the mapping for spectral
reconstruction and classification. With the designed filters, we propose a data-
inspired multispectral camera for snapshot hyperspectral imaging.

We also jointly learn a non-destructive filter, a coded pattern for hyper-
spectral reconstruction. To learn a coded pattern, we inspired by binary deep
learning networks [14] and adjust the slope of softmax function during train-
ing. Ablation study shows out the method outperforms Bayer patterns in
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hyperspectral reconstruction.

In Chapter 5, I explore the application of optical property analysis such as
material classification. In the training stage, our training input is hyperspectral
imaging which would be projected into 3 channel images. In the actual testing
stage, we could directly capture this 3 channel image with specifically designed
CCD filter. We then can treat it as an RGB image with a standard RGB clas-
sification network. With this setting, we can build a snapshot hyperspectral
classification system, and significantly improve the performance.
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Chapter 7

Publications

1. SNie, L Gu, Y Zheng, A Lam, N Ono, I Sato. (2018). Deeply Learned Filter
Response Functions for Hyperspectral Reconstruction. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (pp. 4767-4776).

2. S Nie, L Gu, A Subpa-Asa, I Kacher, K Nishino, I Sato. ”A Data-Driven
Approach for Direct and Global Component Separation from a Single
Image.” Asian Conference on Computer Vision. Springer, Cham, 2018.
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