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Abstract

Thank the Open Data movement, a large number of tabular data have been published
on the Web and Open Data Portals. Such tabular data contains valuable information
and could be potentially useful in various �elds, such as health, food security, climate
change, resource management, smart cities and so on. Additionally, our society has
become data-driven, where more and more data expected to grow in the near future
from large volume, variety, and velocity, as a result, it is promising for establishing
transparency, improving the quality of human life, and inspiring business opportunities.

Although these tabular data o�ers huge potential, these data are di�cult to use due
to fragmentation, heterogeneous schema, missing or incomplete metadata. Therefore,
the usability of tabular data is an open question and should be exploited. There are
several works have been made on improving the usability of tabular data such as
establishing standard policies for data providers, or performing automatic reconstruct
semantic meaning for tabular data. The �rst solution on standard policies takes a lot of
time, and e�ort and di�cult to scale, while the second solution is more promising to
automation, and scale-up.

This thesis focuses on the automatic reconstruct semantic meaning for tabular data.
The methodology is to assign the elements of tabular data into semantic concepts in
knowledge bases. As a result, the meaning of tabular data could be interpreted or
inferred by knowledge base concepts, therefore, it is easy to use in other downstream
applications.

In this thesis, we �rstly review the table data annotation for data interoperability
including matching tasks, challenges, possible applications. Additionally, we identify
potential limitations of tabular data annotation: 1) common text-based approaches
are less e�ective in annotating numerical attributes; 2) entity lookup on one search
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engine is imperfect on the general and multi-language text. Then, we introduce the
novel solutions to address these limitations of tabular data annotation. We introduce
distribution-based similarities (DBS), and a deep similarity metric (EmbNum+) for
numerical attribute annotation to address the �rst limitations, and MTab which is a
general framework for tabular data annotation for the limitations 1 and 2.

The following describes the details of these methods.
First, we present a lightweight solution on semantic annotation called DBS for

numerical attributes. Existing approaches rely on the ? value of a statistical hypothesis
test as a metric to estimate the similarity between numerical attributes, and then assign
unknown attribute by the labeled attributes. However, the ? value-based metrics
strongly depend on assumptions about distributions and data domain. In other words,
they are unstable for general cases, when such knowledge is unde�ned. We present
e�ective metrics called distribution-based similarities (DBS) to address the limitations
of ? value-based metrics.

Second, we present an e�ective and e�cient method called EmbNum+ which is an
end-to-end system to learn a similarity metric directly from numerical attributes.
EmbNum+ was inspired by deep metric learning approaches with which both rep-
resentations and a similarity metric are learned without making any assumption
regarding data; hence, enabling EmbNum+ to be more generalized with a variety of
data types and distributions. Evaluations on many datasets of various domains show
that EmbNum+ consistently outperformed other approaches in terms of e�ectiveness
and e�ciency.

Third, we present a general framework for tabular annotation called MTab. MTab
combines the voting algorithm and the probability models to tackle bottleneck problems
of tabular data annotation. Additionally, we also adopt more signals from table elements
and introduce a novel scoring function to estimate the uncertainly from ranking.
This system got the �rst prize for entity annotations (CEA), type annotations (CTA),
and relation annotations (CPA) at the Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching, the 18th International Semantic Web Conference 2019.
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In this chapter, we begin with the motivation of tabular data annotation in Section
1.1 and thesis objectives in Section 1.2. After that, we summarize our contributions as
well as our published works in Section 1.3. Finally, the organization of the entire
dissertation is described in Section 1.4

1.1 Motivation

Tabular data is semi-structured data, widely used for many aspects of human life such
as reports, notes, books, media, software, and many other places. It is an e�ective and
e�cient way to store and represent data for human consumption since its compact
representation re�ects the logical relation between columns, rows, and cells. In the era
of computers and the Internet, tabular data is the most popular structure for relational
databases, Web tables, spreadsheets, and Open Data.

Nowadays, with the vision of Open Data 1, a large number of tabular data have
been published on the Web and Open Data Portals. Such tabular data contains valuable
information and could be potentially useful in various �elds, such as health, food
security, climate change, resource management, smart cities and so on. Additionally,
our society has become data-driven, where more and more data expected to grow in
the near future from large volume, variety, and velocity. As a result, it is promising for
establishing transparency, improving the quality of human life, and inspiring business
opportunities.

Although these tabular data o�ers huge potential, these data are di�cult to use due
to fragmentation, heterogeneous schema, missing or incomplete metadata.

• Fragmentation: Since tabular data is designed for human consumption, data
usually present in small tables with limited space as the use in documents,
reports, books, websites. The fragmentation of tabular data becomes an immerse
issue for data interoperability where metadata missing or incomplete. If tabular
data contains only a small number of rows and columns, it is di�cult to �nd the
correct correspondences, which can lead to insu�cient matching results.

• Heterogeneous schema: Each data resource is independently constructed by
di�erent people with di�erent backgrounds, purposes, and contexts. Therefore,

1Open Data Vision: https://opendatabarometer.org

https://opendatabarometer.org
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the use of vocabulary and schema structures might di�er across various data
resources. For example, one table attribute uses“population” as the table
header label and another table attribute uses a“number of people.” Do these
two attributes labels share the same or di�erent meanings? This“semantic
heterogeneity” may lead to the propagation of misinformation in the data
integration process.

• Missing or incomplete metadata: Metadata is structured information that
contains semantic annotation for tabular data. It plays a crucial role in data
interoperability since it helps to �nd, access, inter-operate and reuse on such
tabular data. Unfortunately, many tabular data do not contain metadata, or many
of them are missing or not using the standard concepts.

Regarding those issues, the usability of tabular data is an open question and should be
exploited.

There are several works have been made on improving the usability of tabular data
such as establishing standard policies for data providers [3], or performing automatic
reconstruct semantic meaning for tabular data. The �rst solution on standard policies
takes a lot of time, and e�ort and di�cult to scale, while the second solution is more
promising to automation, and scale-up.

This thesis focuses on the second direction: automatic reconstruct semantic
meaning for tabular data by matching table elements of tabular data into semantic
concepts into standard knowledge bases. Readers might interested in the review
paper of Farber et al. [4] on the most common knowledge bases as DBpedia, Freebase
(discontinued since 2015), OpenCyc, Wikipedia, and Yago.

Figure 1.1 illustrate an example of tabular data annotation where table elements are
automatically matched to the corresponding concepts in standard knowledge bases. As
a result, the meaning of tabular data could be interpreted or inferred by knowledge
base concepts, therefore, it is easy to use in other downstream applications.

Prior studies on semantic annotation for tabular data focus on the data model of
relational table type (a table has a core attribute where cell values in this attribute
could be matched into entities of knowledge bases, and the relations between the core
attribute and other attributes could be matched into predicates or properties) where
table attributes could be mapped into ontologies or existing schema of knowledge
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Metadata

Rank
1
2

Country
China
India

2019 population

3 U.S
4 Indonesia
5 Brazil 204,596,442

1,420,062,022
1,368,737,513
329,093,110
269,536,482

Country

US

Brazil

Figure 1.1: Illustration of tabular data annotation with knowledge graph matching

bases. These approaches �rst �nd the entity candidates from knowledge bases with
table cell values, and then, rely on a relational data model to select the best entity
candidates, and infer types, and relation candidates.

However, many tabular data cannot �nd candidates as the �rst step since table cell
values are missing, ambiguous, or multi-languages, so that, entity candidates cannot be
found directly using linguistic approaches. Moreover, many tables contain numerical
attributes and numerical values which is di�cult to �nd the relevant concepts in
knowledge bases. According to an observation experiment on Open Data tables of
Neumaier et al., 28% tables have missing headers, and many headers could be mapped
using BabelNet2 services (a multilingual lookup service) [5]. As a result, the problem of
semantic annotation for such tables still an open question and need to be addressed.

1.2 Objectives

The objectives of this thesis �rstly review the background of tabular data annotation
for data interoperability including matching tasks, challenges, possible applications.
Second, we identify potential limitations of tabular data annotation: 1) common
text-based approaches are less e�ective in annotating numerical attributes; 2) entity
lookup on one search engine is imperfect on general, multi-language text. Then,
we aim to provide novel methods to improve semantic annotation for tabular data

2BabelNet Link: https://babelnet.org/

https://babelnet.org/
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(MTab), in particular, the treatment of numerical attribute is the main focus (DBS, and
EmbNum+).

Structure Semantic
Table Type

Table Header

Data Type

Core Attribute

Holistic Matching

Entity Matching

Type Matching

Relation Matching

Textual Values

Numerical Values

Tabular Data Annotation

DBS

EmbNum+

MTab

Figure 1.2: Objectives of the thesis

Figure 1.2 depicts the tabular data annotations tasks, and the main focus of this
thesis. Regarding the �rst limitation, we introduce distribution-based similarities
(DBS), and EmbNum+ for semantic labeling of numerical attributes. Then, we present
the MTab system, which is a general framework for tabular data annotation which
addresses limitations 1 and 2.

DBS is a lightweight solution on semantic annotation for numerical attributes.
Existing approaches rely on the ? value of a statistical hypothesis test as a metric
to estimate the similarity between numerical attributes, and then assign unknown
attribute by the labeled attributes. However, the ? value-based metrics strongly depend
on the assumptions about the distribution and data domain. In other words, they are
unstable for general cases, when such knowledge is unde�ned. We present e�ective
metrics called Distribution-based Similarities (DBS) to overcome the limitations of ?
value-based metrics.

EmbNum+ is an e�ective and e�cient method designed for the task of semantic
labeling for numerical attributes. EmbNum+ was inspired by deep metric learning
approaches with which both representations and a similarity metric are learned
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without making any assumption regarding data; hence, enabling EmbNum+ to be
more generalized with a variety of data types and distributions. Evaluations on many
datasets of various domains show that EmbNum+ consistently outperformed other
approaches in terms of accuracy and e�ciency.

Third, we present a general framework for tabular annotation called MTab. MTab
combines the voting algorithm and the probability models to tackle bottleneck problems
of tabular data annotation. Additionally, we also adopt more signals from table elements
and introduce a novel scoring function to estimate the uncertainly from ranking.

1.3 Contributions and Published Works

This thesis provides the following contributions:

1. We introduce DBS [6] 3 which is a lightweight solution on semantic annotation
for numerical attributes. DBS tackles the problems of ? value-based metrics for
the task of semantic labeling for numerical attributes.

2. We introduce EmbNum+ [7] which is an end-to-end deep metric learn directly
from numerical attributes. As our experiments show that EmbNum+ outper-
formed other state-of-the-art systems in terms of e�ectiveness, e�ciency, and
robustness in all tested datasets.

3. We provide three new numerical attributes datasets which enables rigorous
evaluation for numerical attribute matching: two synthesis datasets, e.g., DBpedia
numerical knowledge bases (NKB), and Wikidata NKB, and one real-world
dataset, e.g., Open Data (extracted from �ve Open Data Portals) 4. These datasets
cover a wide range of challenges then they enabled a more rigorous analysis on
the task of semantic annotation for numerical attributes.

4. We introduce MTab [8] which is a general framework for tabular data matching
to knowledge bases. MTab is a novel method tackle two bottleneck problems of
tabular data annotation. Additionally, we also adopt more signals from table

3DBS demo: https://github.com/phucty/dbs
4Datasets: https://github.com/phucty/embnum

https://github.com/phucty/embnum
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elements and introduce a novel scoring function to estimate the uncertainly from
the ranking of lookup results.

1.4 Thesis Outline

This dissertation is organized as follows.

• Chapter 1 describe the thesis motivation of tabular data annotation and the
objectives so that we address in this thesis. We also provide a summary of the
thesis contributions and our published works.

• Chapter 2 presents an overview of the problem of tabular data annotation
including motivation, and possible downstream applications, use-cases. This
section also provides the formal de�nition as well as the notation about the
annotation tasks. We also present an overview of the state-of-the-art techniques,
and we also discuss their limitations in this section.

• In Chapter 3, we present a lightweight solution on semantic annotation for
numerical attributes. Existing approaches rely on the ? value of a statistical
hypothesis test as a metric to estimate the similarity between numerical attributes,
and then assign unknown attribute by the labeled attributes. However, the ?
value-based metrics strongly depend on the assumptions about the distribution
and data domain. In other words, they are unstable for general cases, when such
knowledge is unde�ned. We present e�ective metrics called Distribution-based
Similarities (DBS) to overcome the limitations of ? value-based metrics.

• In Chapter 4, we present an e�ective and e�cient method called EmbNum+
which is an end-to-end system to learn a similarity metric directly from data.
EmbNum+ was inspired by deep metric learning approaches with which both
representations and a similarity metric are learned without making any assump-
tion regarding data; hence, enabling EmbNum+ to be more generalized with a
variety of data types and distributions. Evaluations on many datasets of various
domains show that EmbNum+ consistently outperformed other approaches in
terms of accuracy and e�ciency.
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• In Chapter 5, we present a general framework for tabular annotation called
MTab. MTab combines the voting algorithm and the probability models to tackle
bottleneck problems of tabular data annotation. Additionally, we also adopt
more signals from table elements and introduce a novel scoring function to
estimate the uncertainly from ranking.

• Chapter 6 concludes the thesis and discuss some direction of our future work.
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Tabular Data Annotation Background
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This chapter is organized as follows. Section 2.1 describes the two potential
problems tabular data annotation. The following Section 2.2 provide some de�nitions
of fundamental concepts of tabular data annotation. Section 2.3 summary the previous
studies on the annotations tasks. In Section 2.4, we provide potential application for
tabular data. Finally, we discuss about the limitations and and introduce the focus tasks
in this thesis in Section 2.5.

2.1 Background

Over the last decade, we have seen tabular data being populated more and more on
the Internet such as Web Tables, or Open Data Portals. Such tabular data usually do
not have a machine-understandable capability, it means that the data do not come
with fully annotated metadata. Tabular data could be indexed, and retrieved with
keyword-based techniques, but it does not allow for a higher-level understanding of
context or semantics of data. To unlock this potential, it is important to match elements
of tabular data into knowledge bases, which contains a prede�ned knowledge about a
speci�c domain or general knowledge of the world. It enables other downstream
applications to access the content of tabular data without understanding the structure
or context.

The current approaches on tabular data annotation focus on relational tables,
where table cells could be matched into entities in knowledge bases. However, there
are a lot of tabular data which do not contain textual content (or contains but can not
be matched into knowledge graphs), but they have a large number of numerical values.
Many methods ignore those tabular data, as a result, it leads to mispropagation in the
annotation process. In this thesis, we proposed two methods to address the semantic
annotation for numerical values in tables. It could be used in di�cult tables where
there are no matching entities but contains numerical values (DBS [6], EmbNum+[7])
or it also provides useful information to enhance the annotation performances in
general tabular data (MTab [8]).

Moreover, the representation of table cells is complicated, since it could be in
multiple-language, with strange encoding. Previous approaches performed lookup
those table cells directly on knowledge bases (Elastic Search, DBpedia lookup or,
Spotlight) then lead to no retrieval results. In this thesis, we proposed the MTab
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framework for solving this problem. We perform language detection on table cells and
lookup with language parameters on multiple-lookup services which yield really
promising performances in entity lookup.

2.2 De�nitions

In this section, we de�ne fundamental concepts will be used in the entire of this thesis.

De�nition 2.1 (Tabular data). Tabular data is data structured into tables.

De�nition 2.2 (Table). A table (denoted as ) ) is a two-dimensional tabular structure
consisting of an ordered set of # rows and" columns.

De�nition 2.3 (Row). A row (denoted as = 9 ) is a row of table where 8 = 1...# ).

De�nition 2.4 (Column). A column (denoted as< 9 ) is a column of table where 9 = 1..." .

De�nition 2.5 (Cell). A cell (denoted as)8, 9 is an intersection between a row and column,
with its values (denoted as 28, 9 ) as a number, string or an empty value.

According to Nishida et al., there are six table types, i.e., vertical and horizontal
relational tables, vertical and horizontal entity tables, matrix tables, and other tables
[1]. The following de�nitions are on the table types.

De�nition 2.6 (Genuine tables). A genuine table is a table which contains semantic
triples of knowledge graph in a from of <subject, predicate, object>

De�nition 2.7 (Relational table). A relational table is a genuine table which contains a
core attribute where other attributes are other predicate information of this core attribute.

De�nition 2.8 (Vertical relational table). A vertical relational table is a relational table
that the core attribute present in one column.

An example of a vertical relational table is shown in Figure 2.1.

De�nition 2.9 (Horizontal relational table). A horizontal relational table is a relational
table that the core attribute present in one row.
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A. Prior New Zealand 1969
A. Drews Uetersen 1935

name place death

Figure 2.1: Example of a vertical relational table

A. Prior
New Zealand
1969

A. Drews
Uetersen
1935

name
place
death

Figure 2.2: Example of a horizontal relational table

An example of a horizontal relational table is shown in Figure 2.2.

De�nition 2.10 (Entity table). A entity table is a table where describe properties for
single entity. It also have the vertical entity table, and horizontal entity table.

Examples of entity tables are shown in Figure 2.3a (vertical entity table) and Figure
2.3b (horizontal entity table).

place
death 1969

New Zealand

(a) Vertical Entity Table

place death
1969New Zealand

(b) Horizontal Entity Table

Figure 2.3: Examples entity tables: Vertical 2.3a, and Horizontal 2.3b

De�nition 2.11 (Matrix table). A matrix table does not contain information about
context, or name of the attributes. It is mostly used to provide statistics.

An example of a matrix table is shown in Figure 2.4.
The following de�nitions are on the elements inside tables.

De�nition 2.12 (Table attribute). A table attribute is a column of a vertical relation
table, row of a horizontal relation table or a row (column) of a matrix table.



16 Chapter 2. Tabular Data Annotation Background

country
Japan

2019
126

2015 2010
127 128

US 330 321 310

Figure 2.4: Example of a matrix table

A. Prior New Zealand 1969
A. Drews Uetersen 1935

name place death A. Prior
New Zealand
1969

A. Drews
Uetersen
1935

name
place
death

country
Japan

2019
126

2015 2010
127 128

US 330 321 310

Figure 2.5: Examples of table attributes

Examples of table attributes are shown in Figure 2.5.

De�nition 2.13 (Textual attribute). A textual attribute is a table attribute where all
values of this attribute are textual.

De�nition 2.14 (Entity attribute). An entity attribute is a table attribute where the cell
values of this attribute could be matched into entities in knowledge graphs.

De�nition 2.15 (Numerical attribute). A numerical attribute is a table attribute where
all values of this attribute are numerical.

2.3 Annotation Tasks

This section introduces the tasks and previous methods of tabular data annotation.
These include the annotation tasks on table structure and table semantic as Figure 2.6.
The annotation of table structure include classi�cation of tabular data into di�erent
table types (Section 2.3.1), recognition of table headings (Section 2.3.2) or data type of
table attributes, table cells (Section 2.3.3), and detection of a subject column or the core
attribute where all cells could be matched into entities of knowledge bases 2.3.4. In
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Structure Semantic
Table Type

Table Header

Data Type

Core Attribute

Holistic Matching

Entity Matching

Type Matching

Relation Matching

Textual Values

Numerical Values

Tabular Data Annotation

Figure 2.6: Tabular data annotation tasks

Section 2.3.5, holistic matching is described. The semantic annotation tasks where
table elements are matched into knowledge bases will be introduced as entity matching
(Section 2.3.6), type matching (Section 2.3.7), and relation matching (Section 2.3.8).

2.3.1 Table Type Classi�cation

In this section, we introduce the task of table type classi�cation for tabular data. The
goal of this task is to assign a table type to a given tabular data. These types allow us
to distinguish between whereas tables used for layout purposes or containing data,
horizontal or vertical, entity or relational. There are many studies on understanding
table type taxonomy, in this thesis, we adopt the table types taxonomy mentioned in
Nishida et al. [1].

Figure 2.7 depicts the hierarchy of table types. In genuine type, the table contains a
semantic form of <subject, predicate, object>. The relational type have a table core
attributes, where relational vertical is that the core attribute present in one columns
(Figure 2.1), and relational horizontal is that the core attribute present in one row
(Figure 2.2). The entity type is a table type where describe the attribute for single
entity. Figure 2.3b, and Figure 2.3b are the examples of entity vertical, and entity
horizontal tables. The matrix types usually do not contain the information about
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Genuine

Others

Relational

Entity

Matrix

Horizontal

Vertical

Horizontal

Vertical

Figure 2.7: Table type hierarchy (Adapted from Nishidata et al. [1])

context, or the names of attributes (predicates) (Figure 2.4). Such matrix tables are used
to present the statistics. The other types are those table types used for layout purposes,
or other genuine types [9] mentioned enumeration, calendar, and form.

Several approaches used heuristics to classify table types such as if the size of
tables is too small, tables contain other tables in their cells or the value in one cell
are too long, they are considered as other types [9, 10, 11]. To recognized the other
types, the supervised classi�cation is used to classify the table types with handcrafted
features [9, 10, 11] or neural networks [1].

There are many novel supervised methods, however, such training datasets usually
do not make published. Therefore, the comparability and benchmark of these studies
are limited.

2.3.2 Table Headings Detection

Table headings contain the names of table attributes. These names contain schema
information, and they need to be annotated di�erently from the other content of tables
(data). Usually, the problem of table headings detection is performed before doing
data matching. Due to the heterogeneous table schema, table headers could have
complicated structures. Headers could available or not available. Headers could have a
hierarchy structure, as a result, it could present in one row or multiple rows. Figure 2.8
depicts an example of table headings where they are located at the beginning of the
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table and having a hierarchy structure.

人口の

都道府県別

割合(%)

人口密度

（1k㎡

当たり）

平 成 22 年

2010

平 成 17 年

（組替）

実      数

Number

率 (%)

 Rate

Percentage of
total 

population

Population
density
(per k㎡)

平 成 22 年

2010

平 成 17 年

（組替）

(readjusted) 1) (readjusted)

Japan 128,056,026 127,767,994 288,032 0.2 100.0 343 51,951,513 49,566,305

市部 All  shi 116,153,998 115,503,691 650,307 0.6 90.7 537 47,672,722 45,360,720

郡部 All  gun 11,902,028 12,264,303 -362,275 -3.0 9.3 76 4,278,791 4,205,585

01 北海道 Hokkaido 5,507,456 5,627,737 -120,281 -2.1 4.3 70 2,424,073 2,380,251

02 青森県 Aomori-ken 1,373,164 1,436,657 -63,493 -4.4 1.1 142 513,311 510,779

地            域

人           口
 Population

平成17年～22年の

人口増減（－は減少）
Population change,

2005-2010 (- decrease)

世     帯     数
Households

Area

全国

Figure 2.8: Example of table headings

Most studies used heuristics to detect table headings. The simplest heuristic is that
headers are located in the �rst row of table [10, 12, 13]. Another heuristic is that the
header rows have a di�erent format with other parts of tables, therefore, we can use
background color, or font formatting to recognize headers [14, 15, 16, 17]. Changing
the data type from column cells also is a good signal to recognize table headers.

Yoshida et al. used a set of term examples in tables to distinguish header and
non-header content [18]. Wang et al. use Probase 1 as external knowledge bases to
query table headers [17].

In summary, the most common approaches use the position or table format, cell
data type, or external knowledge to recognize the table headers.

2.3.3 Table Data Type Detection

Data type detection for table cells is an important task in tabular data annotation since
the results might help to improve the performances of other tasks. Table cell values are
encoded as strings, therefore it has some problem of understanding non-textual values
which can be presented as various formats. Date presentation, for example, is one of
this problem, it could be presented as "16 November 2019" or "2019/11/16".

There are several studies on data type detection for tabular data. Mulwad et al. use
regular expressions to distinguish objects or literals [19]. Ritze et al. distinguish three
di�erent types such as date, string and numeric using a cascading strategy (parse

1Probase link: https://www.microsoft.com/en-us/research/project/probase/

https://www.microsoft.com/en-us/research/project/probase/
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each value in one speci�c type, and continues other types if it fails) [13]. Kim and
Lee proposed 15 di�erent data types such as image, form, time, date, month, day,
string, number blank, temperature, voltage, weight, currency, percentage, and postal
code [20]. The authors used prede�ned textual patterns and keywords to recognize
the data types. Zhang [21] used regular expressions to determine data types such as
empty, named entity, number, date, long text, and others. The �nal data type for table
attributes is voted by majority data types of all cell values in these attributes.

Duckling Tool (Wit.ai) 2 is an open-source project for data type parser. Duckling
used a probabilistic context-free grammar as their main technique for data parsing, and
it can handle multi-languages. The 13 data types that ducking can handle are time,
temperature, number, ordinal, distance, volume, amount-of-money, duration, email,
URL, and phone number.

In summary, data type detection is important for a correct interpretation of table
values. In the MTab system, we used the Duckling Tool to predict data types for
table cells, and also using majority voting to re-estimate the �nal data type for table
attributes which is similar to Zhang approach [21].

2.3.4 Core Attribute Detection

In this section, we describe the core attribute detection which is a task of �nd subject
column (vertical type) or subject row (horizontal type) in the relational tables. However,
most studies focus on the subject column in the vertical relational tables as the core
attribute. A simple heuristic is used so that the left-most column is the core attribute
[10, 12].

Venetic et al. extended this heuristic so that the column data types are not numeric
or date, the number of unique values in column [13, 22]. Wang et al. [17] perform
entity linking which lookup all cells in the same columns to get corresponding entities
from a knowledge base. The largest matched entities are the core attribute. Zhang [21]
used hand-draft features of table columns to recognize the core attributes such as the
fraction of empty or unique cell values, the index of column (left-most), acronyms, IDs
available or not, the overlapping rate between column headers and surrounding text.

In summary, common approaches in the core attribute detection used column

2Duckling Tool Link: https://github.com/facebook/duckling

https://github.com/facebook/duckling
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position, uniqueness, or matched entities to predict whereas a column is the core
attribute or not. The results of this task are really helpful for other tasks especially for
the task of knowledge base population. The core attribute assumes that all cell values
of a core attribute could be matched into entities in knowledge bases, if some cells
cannot be matched, they are new entities and could be added into the knowledge bases.

2.3.5 Holistic Matching

Holistic matching is a task of merging tabular data with the assumption that there is a
shared schema between tables. This task is especially helpful for those fragmented
tables where a big table is separated into many small tables for the presentation
purpose (limited space, for human consumption, papers, documents, or websites).

Ling et al. �rst proposed the problem of unioning tables with identical schemas [23].
The authors augment the union table with new attributes to guarantee the semantic
consistent. Lehmberg and Bizer extended Ling et al. work using schema-based and
instance-based matching techniques [24].

2.3.6 Entity Annotation

In this section, we describe the entity annotation task which is a task of matching table
cells into corresponding entities in a knowledge base.

Previous approaches on entity annotation �rstly perform the lexical similarity
on the table cell value or other cell values in the surrounding context to �nd entity
candidates. Sekhavat et al. used exact lexical matching to �nd entity candidates [25],
while other approaches used other string similarity metrics [13, 16, 19, 26, 27, 28, 29].

Zhang considers table cell value, and other neighbor cells (same row or column) to
estimate contextual similarity [21]. There were several studies lookup di�erent sources
such as Wikipedia to �nd entity candidates [19, 26], Mulwad et al. also considers
the popularity of Wikipedia pages of entities such as PageRank. Recently, there has
been an increasing interest in using entity embedding to �nd entity candidates [29],
however, the performances of embedding approaches are still limited in comparison
with lookup or similarity matching.

As tabular data is a semi-structured data where table elements have shared relations
of <subject, predicate, object>, it is helpful to use the results from other tasks such as
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type annotation or relation annotation to improve the result of entity annotation.
Common approaches model the interaction between the three tasks of entities, types,
and relations annotation [13, 16, 19]. The annotation of entities in the same column
usually has the same type annotations or relation annotations. Another approaches
based on iterative matching where the sub-sampling (rows) of tables is �rst matched in
turn then updated each iteration until the type annotations are converged [21].

2.3.7 Type Annotation

Type annotation is a task of matching table attributes into classes in knowledge bases.
The result could be a single value (the exacted matched class) or multiple values (the
exacted matched classes and these ascendance classes). In the relational table, �nding a
type for the core attribute could be considered as the type for the whole table.

Most studies in type annotation used the similarity metric between table headers
and knowledge base classes [16, 30] or use directly the knowledge base lookup service
as [17]. Other approaches used column values to �nd the corresponding types in
knowledge bases by collective similarity measures [13, 28, 30, 31]. In particular, the
metric as TF-IDF or cosine similarity could be used on all concatenated values of the
table columns and knowledge base classes. Fan et al. proposed a hybrid machine-
crowdsourcing system where a machine learning approach is used in easy cases and
di�cult cases are annotated by a crowdsourcing service[31].

Several studies used the entity annotation as the input for the problem of type
annotation. Zhang used the union of all entities classes as the type annotation [21],
majority voting on entity class in a column is used [13, 19, 27], or measure the hierarchy
distance between entity classes and candidate classes [16]. Entity embedding also used
to predict table attribute types [32, 33].

2.3.8 Relation Annotation

In this section, we describe the task of relation annotation using textual values and
numerical values.

Regarding textual information, the relations between the core attribute and other
attributes are matched into predicates (properties) in knowledge bases. In data-based
approaches, each pair of core attribute and cell values is compared with the pairs of a
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subject, object in knowledge bases triples (subject, predicate, object>, then the relation
is aggregated from matched predicate using majority voting [21]. The other is that
table headers are used to �nd the corresponding property labels in knowledge bases
using string similarity metrics [21, 30]. The relation annotation result could be inferred
from the result of type annotation with "Domain" and "Range" relation of property in
knowledge bases [30], or majority voting of properties by entity pairs of two columns
[16, 19, 21, 28, 34].

The numerical information is quite di�erent from textual information because of
numerical value representation. It is di�cult to �nd the corresponding meanings
since 1) the numerical representation of knowledge base value could be represented
in a di�erent ways (such as scaling meter or centimeter), di�erent values (such as
population of this year, and next year), or 2) the di�erent meaning numerical values in
knowledge bases are very similar with the query numerical values (such as population
and areaLand).

Most of the studies on semantic annotations for numerical attributes consider
these numerical values as a collection or a bag of numbers and search it on numerical
knowledge bases (extracted from knowledge bases) in terms of similarity metrics.
The authors used the ? value of statistical hypothesis tests to estimate the similarity
between numerical values [2, 5, 35, 36]. Neumaier et al. created a numeric background
knowledge base from DBpedia [5] with hierarchy clustering approach, the background
knowledge base allows inferring detail contexts of numerical attributes such as city
temperate, building height, the height of a human, and so on.

Overall, these studies in relation annotation rely on an assumption that table
attributes could be matched into prede�ned types or properties of knowledge graphs.
However, the real-world knowledge graphs have a problem of incompleteness, and it is
not easy to match if the table attributes are not available in knowledge graphs.

2.4 Applications of Tabular Data Annotation

In this section, we present some possible applications of tabular data annotation. Most
use cases of tabular data annotation are on information retrieval and knowledge
management.

Annotation data could be used as a fact searching [37] or to enhance the current
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searching engines enable them to be retrieved table data. Google Fusion Table 3 is
a public service allows users to �nd, merge, visualize, and share tabular data [27].
Another application is on knowledge exploration as Chirigati et al. [38], where the
authors proposed a method to explore IS-A and HAS-A relationships from Web tables.

Tabular data could be used in the problem of table extension when we want to
extend a table with additional rows, or columns. InforGather relies on a collection
of related tables on the Web to populate tables in terms of entity attribute names
or attribute values of entities [39]. Bhagavatula et al. search for matching tables in
WikiTables and then perform join techniques to extend the input table [26]. Lehmberg
et al. introduce the Mannheim Search Join Engine which focuses on large scale
heterogeneous tabular data sources [40].

Tabular data could be used to construct or extend knowledge bases such as DBpedia,
Wikidata, Freebase, YAGO and so on. Many studies proposed annotation methods for
semantic interpretation which are matching table elements into knowledge bases, and
complete missing values in knowledge bases [17, 21, 25, 41, 42, 43]. In TableNet, the
Wikipedia tables could be interlinked with IS-A and HAS-A relations to construct a
knowledge graph [44].

Finally, such tabular data could be used for question answering system, for example,
answering factual user questions [37, 45], or quantitative questions [46].

2.5 Current Limitations of Tabular Data Annotation

Most approaches rely on textual information which could be found in tabular data.
However, tabular data contains not only in English, but it could also be represented in
other languages, which currently approaches just focus on processing English tabular
data. For example, DBpedia lookup which is one of the most popular lookup services
for �nding DBpedia concepts is indexed in English. As a result, when we look up tables
in a di�erent language, we can not get the answers. In this thesis, the problem of entity
lookup is addressed by �rstly, recognizing the languages used in tabular data, then,
lookup in many services with language parameters to �nd corresponding entities.
We will introduce it in MTab which yields promising performances in entity lookup

3Google Fusion Table Link: https://fusiontables.google.com/

https://fusiontables.google.com/
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(Section 5).
Another problem is that table values do not usually have rich textual descriptions

or cannot be matched into knowledge bases using linguistic approaches, speci�cally
where tables contain many numerical attributes. Those numerical attributes are
missing or ambiguous headers such as ID, code, abbreviation. According to mapping
on 1200 tables of Neumaier et al. [5], only 20% header labels could be mapped into
knowledge bases. Therefore, the problem of annotation for numerical attributes is an
open problem, and need to be addressed.

Most studies on semantic annotations for numerical attributes used the ? value
of hypothesis test as a similarity metric however, such metric are strongly depend
on assumption about data type, and data distribution. As a result, it is not robust
in general data, or unknown data where prior data knowledge is unknown. In this
thesis, we proposed two methods to address the semantic annotation for numerical
values in tables. On the one hand, it could be used in di�cult tables where there are no
matching entities but contains numerical values (DBS [6], EmbNum+[7]). On the
other hand, it also could be used to enhance the annotation performances in general
frameworks (MTab [8]).
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In this section, we �rst present the background of semantic labeling for numerical
values in Section 3.1, and related work in Section 3.2. Section 3.3 introduces the novel
distribution based methods derived from the norms of the inverse transform sampling
of attribute distributions to estimate the similarity between numerical attributes.
Section 3.4 describes the experiments of DBS in comparison with other ? value-based
approaches. Finally, we conclude with Section 3.5.

3.1 Introduction

In recent years, there has been an increasing interest in numerical semantic labeling for
tabular data where numerical values from table columns are matched to the semantic
labels in knowledge bases. It enable integrated numerical data and hence could be
potentially useful for other applications such as table search [47, 48], table extension
[49], completion[50], or knowledge base construction as used in DBpedia [51], YAGO
[25], and Freebase [52].

A common work-�ow is the retrieval setting in which the label of a query column is
assigned by that of the most relevant columns in labeled data with respect to a speci�c
similarity or distance metric. However, how to select a good similarity or distance
metric for numerical attributes is a di�cult challenge because of several reasons.

Issue 3.1 The numerical values of attributes rarely have the same set of values as the
relevant values in knowledge bases.

Issue 3.2 The size of attributes could vary from a few to millions of numbers. It is hard
to use directly apply the normalized vector spaces as similarity metrics.

Issue 3.3 In general cases, we do not have the prede�ned knowledge about distribution
and type of data.

Previous approaches used the ? value of a statistical hypothesis test as a metric to
measure the similarity between numerical attributes [2, 5, 36]. The ? value-based
similarity address the �rst (Issue 3.1) and second issue (Issue 3.2), however it cannot
be used in the third issue (Issue 3.3). In fact, a statistical hypothesis test strongly
depends on assumptions regarding the distribution and type of data. For instance,
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these data attributes have to be drawn from a speci�c form of distribution (e.g.,
normal distribution or uniform distribution) or data types (e.g., continuous or discrete).
However, determining the form of distributions and data types of unknown numerical
attributes is a di�cult challenge. As a result, a proper hypothesis test cannot be easily
selected when we do not have such prede�ned information.

Moreover, there is controversy when using ? value as a similarity [6, 53, 54, 55].
Other baselines de�ne the null hypothesis �0 is that the two numerical attributes
are similar in terms of semantic meaning. The ? values from hypothesis tests are
interpreted as metrics to measure the level of similarity. In other words, the p-value
measures the probability of �0 is correct. However, this use of ? value is revealed
as misuse by many statisticians [54, 55]. Overall, it is open to doubt whether the ?
value-based metrics are suitable for the problem of semantic labeling for numerical
attributes.

To address these limitations, we propose distribution-based similarities (DBS) which
is a method to estimate the similarity between numerical attributes without using
p-value based metrics. In particular, DBS metrics are calculated from the empirical
cumulative distribution of numerical attributes without making any assumption about
data type and data distribution.

We evaluate the performance of DBS against two baseline approaches SemanticTyper
[2], and DSL [36] on City Data and Open Data. The overall results show that DBS
outperforms the baselines in a large margin. A demo of semantic annotation for
numerical attributes between DBS and other baselines are available at this link1.

3.2 Related Work

In this section, we present the previous approaches for semantic labeling with textual
information (Section 3.2.1) and numerical information (Section 3.2.2).

3.2.1 Semantic Labeling with Textual Information

Several attempts have been made to assign semantic labels to for table attributes using
the information on header labels and textual values [13, 51, 56]. The most common

1DBS demo: https://github.com/phucty/dbs

https://github.com/phucty/dbs
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approaches use entity linkage for mapping textual values of attributes to entities in a
knowledge base. The schema of entities is then used to �nd the semantic concept for
table attributes. Additional textual descriptions of tables have also been considered to
improve the performance of the labeling task [17, 22, 57]. However, it is not easy to
apply these approaches are to numerical attributes because the unknown attribute
rarely has the same set values with knowledge-base values [2]. To build an e�ective
integrated system, taking into account semantic labeling using numerical information
is necessary.

3.2.2 Semantic Labeling with Numerical Information

Most researchers on semantic labeling with numerical information use statistical
hypothesis tests as similarity metrics to compare the similarity of numerical attributes.
Stonebraker et al. proposed a method for schema matching using decisions from
four experts [35]. One decision used the t-test statistic of the Welch’s t-test [58] to
measure the probability that two numerical attributes were drawn from the same
distribution. The t-test value is calculated based on the means and variances of two
numerical attributes, which have to follow a normal distribution. However, numerical
attributes do not always follow a normality assumption; therefore, applying a t-test as
a similarity metric is not appropriate for the non-normality numerical attributes.

To address the limitations of the t-test, Ramnandan et al. proposed SemanticTyper
to �nd a better statistical hypothesis test [2]. They tested on the Welch’s t-test [58],
the Mann-Whitney U test [59], and the Kolmogorov Smirnov test (KS test) [58]. The
authors reported that using the ? value of the KS test archived the highest performance
in their experiments than the two other tests. However, the Mann-Whitney U test and
the KS test are used assuming that the two tested numerical attributes are continuous.
Therefore, these tests are often not very informative when the distribution of tested
attributes are assumed to be discrete.

Minh Pham et al. extended SemanticTyper (called DSL) by proposing a new
similarity metric that is a combination of the KS test and two other metrics: the Mann-
Whitney test (MW test) and the numeric Jaccard similarity [36]. Their experiments
showed that using this combined metric provided better results over using only a KS
test. However, performing multiple hypothesis tests is computationally intensive and it
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is not easy to learn a robust metric when we only have a small number of training data.
Neumaier et al. created a numeric background knowledge base from DBpedia

[5]. Given an unknown numerical attribute, they also used the ? value of the KS
test as a similarity metric to compare with each labeled attribute in the numeric
background knowledge base. In fact, the size of attributes varies from a few numerical
values to a few hundred thousand numerical values. Therefore, keeping the original
numerical values of attributes in background knowledge bases is memory intensive.
Moreover, it is very time-consuming to conduct the KS test between the unknown
numerical attributes with all attributes in the background knowledge base since the
computational overheads of the KS test are strongly based on the size of compared
attributes.

Overall, the similarity metrics used with these approaches are hypothesis tests,
which are conducted under a speci�c assumption regarding data type, and data
distribution. In contrast to these approaches, we propose the new distribution-based
similarities calculated from the empirical cumulative distribution of numerical attributes
without making any assumption about data type and data distribution.

3.3 Distribution-based Similarities Approach

In this section, we introduce the new categories of similarity metrics, called Distribution-
Based Similarities (DBS). The similarities are derived from a norm of the inverse
transform sampling of numerical attributes.

The overall framework of semantic labeling with DBS shows in Figure 3.1. The
framework consists of two phases. The �rst phase involves data preparation and
knowledge base construction while the second phase is semantic labeling.

In the �rst phase, given labeled numerical attributes, the attribute transformation
converts these labeled attributes from numerical values into distribution presentations
(Section 3.3.1). Then, these distribution presentations are stored in the knowledge base
for future similarity comparison.

In the second phase, the numerical values of an unknown attribute are standardized
with attribute transformation. Then the similarity search module is used to calculate
the similarities between these distribution representations. In this section, we consider
three typical distance of the Minkowski distance: the Manhattan distance (called ��(1),
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Figure 3.1: Semantic labeling framework for numerical attributes with DBS

the Euclidean distance (called ��(2), and the Chebyshev distance (called ��(∞). After
the similarity searching process, we have a ranking list of semantic labels ordered by
their corresponding similarity scores.

Figure 3.2 illustrate the DBS metrics. Intuitively, DBS metrics are average distances
between the sampling CDF of the two attributes attribute. Overall, DBS address all the
three mentioned issues: Issue 3.3, 3.1, 3.2.

1. Issue 3.1: The similarity is derived from distributions of numerical attributes,
therefore it is not necessary the assumption that the values of numerical attributes
have the same set of values.
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Figure 3.2: Illustration of DBS metrics

2. Issue 3.2: In DBS, we introduce an attribute transformation (Section 3.3.1) to
transform the list of numerical values to a distribution representation as well as
standardize the input size of numerical attributes. Therefore, after transformation,
the numerical attribute has a representation as a vector with ℎ size.

3. Issue 3.3: DBS is derived from the empirical distribution of numerical attributes
without the need to make any assumption regarding data type or data distribution.

3.3.1 Attribute Transformation

In this section, we describe the transformation of numerical attributes to standardize
the input size, for the representation learning. Attribute transformation is an important
module because the representation learning requires a standardized input size, and the
size of numerical attributes could vary from a few to thousands of values.

We use inverse transform sampling [60] (Section 3.3.1) to standardize the input
size and transform numerical values into forms of distribution presentations. This
technique is chosen because it retains the original distribution of a given list of
numerical values. In Section 3.3.1, we empirically showed that the output from the
inverse transform sampling is better than the usual random-choice sampling technique.



3.3 Distribution-based Similarities Approach 35

After transformation, the list of numerical values is sorted in a speci�c order to
leverage the capability of the CNN network to learn representations from distribution
presentations.

Given an attribute 0 having numerical values +0 = [E1, E2, E3, ..., E=], the objective of
attribute transformation is the CA0=B (+0) function, which is de�ned as follows.

G = CA0=B (+0) = G823 5 (3.1)

The transformation function CA0=B (·) converts +0 into G , where G ∈ Rℎ. The list of
values G823 5 ∈ Rℎ is obtained by the transformation using the inverse transform
sampling (Section 3.3.1) on numerical values. The inverse transform sampling is
described as follows.

Inverse Transform Sampling

Let 0 be an attribute with numerical values +0 = [E1, E2, E3, ..., E=]. We treat +0 as a
discrete distribution so that the CDF of E ∈ +0 is 23 5+0 (E) and expressed as follows.

23 5+0 (E) = % (+0 ≤ E), E ∈ +0, 23 5+0 : R→ [0, 1] (3.2)

where % (+0 ≤ E) represents the probability of values in +0 less than or equal to E .
The inverse function of 23 5+0 (·) takes the probability ? as input and returns E ∈ +0 as
follows.

823 5+0 (?) = 23 5 −1+0
(?) =<8={E : 23 5+0 (E) > ?}, ? ∈ [0, 1] (3.3)

We select ℎ numbers (Section 4.4.3) from+0 where each number is the output of the
inverse distribution function 823 5+0 (?) with probability ? ∈ P = { 8

ℎ
|8 ∈ {1, 2, 3, ..., ℎ}}.

For example, when the input size ℎ = 100, then we have P = {0.01, 0.02, 0.03, ..., 1}. For
each attribute 0 ∈ �, we have a list of values G823 5 = {E1, E2, E3, ..., Eℎ} that correspond
to the given list of probabilities P.

Transformation Analysis

To understand how well the samples of the inverse transform sampling �t the original
data, we analyzed two attributes in City Data using the inverse transform sampling and
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the random-choice sampling technique, which generates a uniform random sample
from a given list of numerical values.
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Figure 3.3: Analysis of inverse CDF and random-choice sampling technique on the
decRainDays (3.3a) and the aprHighF (3.3b) properties of City Data.

Figure 3.3 depicts the transformation results of two techniques on the decRainDays
and the aprHighF properties of City Data. The distribution using the inverse transform
sampling (blue curve) better �ts the original distribution (red circles) than the random-
choice sampling technique (green curve). Therefore, the inverse transform sampling is
better to simulate the original distribution.

3.3.2 Distribution Similarities

In this section, we describe the similarities used for transformed distributions in the
previous step. In particular, we use Minkowski distance as the following equation.

��(? (01, 02) = | |G01 − G02 | |
1
? (3.4)

Where 01 and 02 are two attributes, ? is a rational number. In our experiments, we
test the ? on the list of [1, 2,∞] since these metrics correspond to popular similarity
metric as Manhattan, Euclidean, and Chebyshev distance.
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When ? = 1 the ��(1 metric corresponds to the Manhattan distance.

��(1(01, 02) = | |G01 − G02 | |1 (3.5)

When ? = 2 the ��(2 metric corresponds to the Euclidean distance.

��(2(01, 02) = | |G01 − G02 | |2 (3.6)

When ? = ∞ the ��(∞ metric corresponds to the Chebyshev distance.

��(∞(01, 02) = | |G01 − G02 | |∞ (3.7)

After the similarity searching process, we have a ranking list of semantic labels
ordered by their corresponding similarity scores.

3.4 Evaluation

In this section, we �rst describe the benchmark datasets (Section 3.4), evaluation
metrics (Section 3.4.1), compared baseline approaches (Section 3.4.2), experimental
setting (Section 3.4.3), and experimental results (Section 3.4.4).

Benchmark Datasets

To evaluate DBS metrics, we used two datasets i.e., City Data, Open Data. City Data is
the standard data used in the previous studies [36], [2] while Open Data is newly built
datasets extracted from Open Data portals. We make the datasets available in this link2.

Table 3.1: Statistical description on numerical values per semantic label of City Data
and Open Data

Dataset < =
# values of each labels

all min max med avg
City Data 30 300 192,820 40 22,510 1,130 6,427
Open Data 50 500 7,329,815 120 1,671,455 12,506 146,596

2EmbNum+ dataset: https://github.com/phucty/embnum

https://github.com/phucty/embnum
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The detailed statistics of each dataset are shown in Table 3.1. The number of
semantic labels in a dataset is denoted as<. The number of columns in a dataset is
denoted as =. In each dataset, each semantic label has 10 columns in the same semantic
labels. The columns of City Data is randomly generated using 10 partitions splitting,
while the columns of Open Data are the real table columns from Open Data Portals.
The number of semantic labels of the new datasets is larger than City Data, enabling
rigorous comparisons between DBS and other baseline approaches.

3.4.1 Evaluation Metric

We used the mean reciprocal rank score (MRR) to measure the e�ectiveness of semantic
labeling. The MRR score was used in the previous studies [2], [36] to measure the
probability correctness of a ranking result list. Intuitively, MRR metric measures the
probability of correctness of the given & query.

MRR =
1
|& |

|& |∑
8=1

1
rank8

(3.8)

where rank8 is the �rst correct position rank in the ranking result list.

3.4.2 Baselines

We evaluate the performance of ��(1, ��(2, ��(∞ with two baseline approaches
Semantic Typer [2], and DSL [36]. Semantic Typer used the KS test as the similarity
metric for numerical attributes [2]. DSL used a new metric with a combination of KS
Test, U Test, and the numeric Jaccard similarity.

3.4.3 Experimental Setting

In this section, we describe the detail experimental setting to evaluate the semantic
labeling task. We follow the evaluation setting of Semantic Typer [2] and DSL [36].
This setting is based on cross-validation but it was modi�ed to observe how the number
of numerical values in the knowledge base will a�ect the performance of the labeling
process. The detail of the experimental setting is described as follows.
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Suppose a dataset ( = {B1, B2, B3, ..., B3} has 3 data sources. One data source was
retained as the unknown data, and the remaining 3 − 1 data sources were used as the
labeled data. We repeated this process 3 times, with each of the data sources used
exactly once as the unknown data.

Additionally, we set the number of sources in the labeled data increasing from
one source to 3 − 1 sources to analyze the e�ect of an increment of the number of
labeled data on the performance of semantic labeling. We obtained the MRR scores and
labeling times on 3 × (3 − 1) experiments and then averaged them to produce the 3 − 1
estimations of the number of sources in the labeled data.

Table 3.2 depicts the semantic learning setting with 10 data sources. From 1BC

experiment to 8Cℎ experiment, B1 is assigned as the queries of unknown sources, the
remaining sources are considered as the labeled sources in the knowledge base. We
conducted a similar approach for the remaining experiments. Overall, we performed 90
experiments on the 10 sources of a dataset.

Table 3.2: Semantic labeling setting with 10 data sources
Experiment 1 2 3 4 5 6 7 8 9 ... 90

Queries B1 B1 B1 B1 B1 B1 B1 B1 2 ... B9

Knowledge Base B2 B2 B2 B2 B2 B2 B2 B2 B1 ... B1

B3 B3 B3 B3 B3 B3 B3 ... B2

B4 B4 B4 B4 B4 B4 ... B3

B5 B5 B5 B5 B5 ... B4

B6 B6 B6 B6 ... B5

B7 B7 B7 ... B6

B8 B8 ... B7

B9 ... B8

3.4.4 Experimental Results

The results of semantic labeling for numerical values in the MRR score on City Data
and Open Data is shown in Figure 3.4.
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Figure 3.4: Semantic labeling results in the MRR score on City Data, Open Data

The MRR scores obtained by three methods steadily increase along with the number
of labeled sources. It suggests that the more labeled sources in the database, the more
accurate the assigned semantic labels are. DSL outperformed Semantic Typer in City
Data (Figure 3.4a) and Open Data (Figure 3.4b) because it used the information from
multiple testing results.

The similarity metric based on a speci�c hypothesis test, which was used in
Semantic Typer and DSL, is not optimized for semantic meanings with various data
types and distributions in general cases. The DBS metrics without using ? value-based
metrics outperform all baseline approaches on the two datasets (City Data and Open
Data). It could be explained that in DBS metrics take consider all the di�erences
between the empirical distribution of numerical attributes, therefore allow it more
generalized than other ? value metrics.

In three tested DBS metrics, the ��(1 (Manhattan distance) achieved the highest
performance in the two datasets. The level of di�erences between DBS metrics and
other approaches is stable across the increasing number of labeled sources in training
data.

The experimental results of semantic labeling systems are di�erent on City Data
and Open Data. On the City Data, all the systems achieve higher performance than the
experiments on Open Data. The reason for the di�erences could be explained that
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the Open Data contains semantic labels in multiple scaling which is more di�cult
than Open Data (which is extracted from normalized attributes in DBpedia). Despite
the di�erences in di�culty level across datasets, DBS metrics also outperform other
approaches.

3.5 Conclusion

In this section, we �rst point out the limitation of the ? value based similarities, as a
result, these are unstable for general cases. Then, we introduce DBS, a category of
similarities derived from the norms of the inverse transform sampling of numerical
attributes. The experimental results showed that ��(1 (Manhattan distance) achieved
the best performance for the task of semantic labeling for numerical values.

The current limitation of DBS is that the system can not recognize the new semantic
attributes which are not available in the knowledge base. In the next section, we
will describe the more advanced method called EmbNum+ to address this issue.
Moreover, EmbNum+ which is a numerical attribute semantic annotation using deep
metric learning achieve higher performance than DBS in the semantic annotation for
numerical attributes.
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In this section, we introduce EmbNum+; a deep similarity metric for numerical
attribute annotation. EmbNum+ also addresses the problem of the ? value-based
similarities in other baseline approaches, and it improves the performance of the
metric by allowing training directly on numerical attributes. Evaluations on many
datasets of various domains con�rmed that EmbNum+ consistently outperformed other
state-of-the-art approaches in terms of accuracy. Furthermore, attribute-augmentation
can be used to enhance the robustness and unlock the portability of EmbNum+, making
it possible to be trained on one domain but applicable to many di�erent domains.

We �rst introduce the problem and Embnum+ in Section 4.1. In Section 4.2, we
de�ne the terms, concepts, and common notations used entirely this section as well as
the semantic labeling problem for numerical attributes. We present the EmbNum+
approach in Section 4.3. In Section 4.4, we describe the details of our evaluation, and
experimental settings then present the results. Finally, we summarize and discuss the
future direction in Section 4.5.

4.1 Introduction

Thanks to the Open Data movement, a large number of table data resources have
been published on the Web or Open Data portals. For example, 233 million tables
were extracted from the July 2015 version of the Common Crawl1 [61]. Additionally,
200,000 tables from 232 Open Data portals were analyzed by Mitlohner et al. [62].
These resources could be integrated, and enabling them to be potentially useful for
other applications such as table search [47, 48], table extension [49], completion[50], or
knowledge base construction as used in DBpedia [51], YAGO [25], and Freebase [52].

However, these data resources are very heterogeneous. Each data resource is
independently constructed by di�erent people with di�erent backgrounds, purposes,
and contexts. Therefore, the use of vocabulary and schema structures might di�er
across various data resources. For example, one table attribute uses “population" as the
table header label and another table attribute uses “number of people." Do these two
attributes labels share the same or di�erent meanings? This “semantic heterogeneity"
may lead to the propagation of misinformation in the data integration process.

1Common Crawl link: http://commoncrawl.org/

http://commoncrawl.org/
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To provide a uni�ed view of the heterogeneous resources, one of the possible
solutions is to assign a semantic label for each attribute in unknown resources. We
categorize these semantic labeling approaches into three groups with respect to the
data type: textual-based, numerical-based, and hybrid, which is a combination of the
results of textual-based and numerical-based semantic labeling. The main focus of this
section is numerical-based approaches.

The most common approaches for semantic labeling use textual information,
such as header labels, textual values, or table description. Previous studies used
text-based entity linkage to search for similar concepts and entities in knowledge
bases [13, 17, 22, 51, 56, 57]. Then, semantic labels can be inferred by using rich lexical
and semantic information of matched concepts and entities in the knowledge base.
However, many attributes do not have overlapping entity labels with knowledge
bases. Even when overlapped, many entity labels do not have similar representation
with the entities in knowledge bases because these are expressed as IDs, codes, or
abbreviations [5]. Additionally, the numerical values of attributes rarely have the same
set of values as the relevant values in knowledge bases; therefore, it is ine�ective to
straightforwardly apply linguistic approaches into these numerical attributes.

In a study on pro�ling Open Data portals, Mitlohner et al. showed that 50 % of
the table data extracted from Open Data portals contain numerical columns with
missing or ambiguous headers [62]. Therefore, annotating semantic labels for these
numerical columns is an important task in the data-integration procedure. Prior
studies proposed general work-�ows based on a retrieval setting where the label
of an unknown attribute is assigned by the label of the most relevant attribute in
labeled data with respect to a speci�c similarity metric [2, 5, 35, 36]. The most common
approach is using the ? value of statistical hypothesis tests as a metric to measure the
similarity between lists of numerical attributes.

We argue that these ? value-based metrics have a critical issue that needs to be
addressed. The issue is how to choose the appropriate statistical test for hypothesis
testing. In fact, the statistical hypothesis tests depend on the distribution and type
of data being analyzed. For instance, these data attributes have to be drawn from a
speci�c form of distribution (e.g., normal distribution or uniform distribution) or data
types (e.g., continuous or discrete). However, determining the form of distributions
and data types of unknown numerical attributes is a di�cult challenge. As a result,
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a proper hypothesis test cannot be easily selected when we do not know the data
distribution and data type.

In recent years, deep metric learning has achieved considerable success in extracting
useful representations of data and a similarity metric directly from data [63, 64, 65, 66,
67, 68]. Inspire from their success, we propose a neural numerical embedding approach,
called EmbNum+, to learn a similarity metric directly from numerical attributes
without the need of making an assumption regarding data type and data distribution.
In particular, we use a combination of a CNN network and the triplet network, to
jointly learn representations and a metric to measure the similarity between numerical
attributes. Di�erent from image data, EmbNum+ models the discrimination features
from the distribution presentations of numerical attributes.

Overall, we address the limitations of prior approaches based on three dimensions:
e�ectiveness, e�ciency, and robustness.

E�ectiveness - EmbNum+ was inspired by deep metric learning approaches with
which both representations and a similarity metric are learned without making any
assumption regarding data. In particular, we used a representation network consisting
of a triplet network and convolutional neural network (CNN) to map numerical
attributes into feature vectors in an embedding space. The “semantic similarities" of
numerical attributes are calculated on these feature vectors. In other words, the CNN
network learns discriminate features from numerical attributes. The triplet network
approximates the goal of similarity-metric learning, which involves pulling numerical
attributes with the same semantic labels into nearby positions while pushing numerical
attributes with di�erent labels apart. The distance metric is directly learned from data
without the need to make any assumption regarding data type or data distribution;
hence, enabling EmbNum+ to be more generalized with a variety of data types and
distributions.

E�ciency - E�ciency is an important factor to take into account the task of semantic
labeling because of data velocity, and data volume in the current interest in the Open
Data movement. We need a lightweight approach to support real-time and large-scale
semantic labeling. EmbNum+ has two advantages in terms of e�ciency compared with
other approaches. First, EmbNum+ is promising for e�cient data storage and memory
usage since all numerical attributes are stored by their representations derived from
the embedding model. In fact, the size of these attributes could be very large; up to
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a million of numerical values; hence, keeping entire numerical values is memory
intensive. Second, EmbNum+ reduces computational overheads using the fast similarity
calculation on these representations.

We also introduced an inverse transform sampling [60] to deal with the issues of
varying input size of table numerical attributes. The representation network required a
�xed size as the input, but the size of numerical attributes could vary from a few
numerical values to thousands of them [62]. The sampling technique can capture the
original distribution of numerical attributes, thereby overcoming the issue of varying
the size of the input attributes. Moreover, the sampling technique also helps to speed
up data processing since a small number of data values is considered instead of the
entire values of attributes.

Robustness - To learn a robust EmbNum+, we introduce an attribute-augmentation
technique, which is automated to generate more training data from available data. Our
experiments showed that EmbNum+ is robust in all tested datasets and it can be used
to learn discriminant representations and a similarity metric from a single domain data
and uses across multiple domains.

Additionally, We introduce the attribute augmentation technique to generate more
training data, therefore, it makes EmbNum+ more robust to over-�tting. EmbNum+
can recognize whether a query numerical attribute is a new semantic label or not.
In particular, we introduce a lightweight relevance-learning approach to model the
relevant information between the labeled numerical attributes. Using the relevance
model can help to �lter the retrieval-ranking results. If the size of the ranking result is
zero, it means that the query numerical attribute is a new semantic label.

We evaluated the performance of EmbNum+ against two baseline approaches, i.e.,
Semantic Typer [2], and DSL [36] on four datasets: one standard dataset, e.g., City Data
[2], two synthesis datasets, e.g., DBpedia Numerical Knowledge Base (NKB), WikiData
NKB, and one real-world dataset, e.g., Open Data extracted from �ve Open Data Portals.
The overall results show that EmbNum+ outperformed all other approaches in all
experimental settings in terms of e�ectiveness, e�ciency, and robustness.
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4.2 De�nitions and Notations

In this section, we de�ne the mathematical notations (Section 4.2.1), then describe the
problem statement of semantic labeling for numerical attributes (Section 4.2.2).

4.2.1 Notations

We refer to Table 4.1 as the mathematical notations frequently used in this section.

4.2.2 Problem De�nition

The problem of semantic labeling for numerical values is de�ned as follows. Let
� = {01, 02, 03, ..., 0=} be a list of = numerical attributes and . = {~1, ~2, ~3, ..., ~<} be
a list of< semantic labels. Given (1) an unknown attribute 0@ , and (2) a numerical
knowledge base � = {(08, ~ 9 ) |08 ∈ �,~ 9 ∈ . }, where (08, ~ 9 ) is a data sample of a pair
of a numerical attribute and its corresponding semantic label, the objective of semantic
labeling is to identify the list of relevant semantic labels in � where these attributes are
most likely closed to the unknown attribute 0@ with respect to a numerical similarity
metric.

4.3 EmbNum+ Approach

In this section, we present the overall framework of EmbNum+ in Section 4.3.1. The
detail of each component is described from Section 4.3.2 to Section 4.3.5.

4.3.1 Framework

Figure 4.1 depicts the semantic labeling task with EmbNum+. The general work-�ow is
composed of four phases: representation learning, relevance learning, semantic labeling
o�ine, and semantic labeling online.

The overall work-�ow of semantic labeling starts with the representation learn-
ing as shown in Figure 4.1 (a) (Section 4.3.3) that jointly learn the discriminative
representations and a similarity metric across numerical labeled attributes. Given
numerical labeled attributes, new labeled data samples are �rst generated with the
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Table 4.1: List of frequently mathematical notations in Chapter 4
Symbol Description

(08, ~ 9 )
a pair of numerical attribute and its corresponding semantic label,

(08, ~ 9 ) ∈ �
08 a numerical attribute, 08 ∈ �
0@ a unknown attribute

� a list of numerical attributes

0 a numerical attribute

� a numerical knowledge base

4<1 (G) the embedding function for a tensor G , 4<1 (G) ∈ R:

ℎ the output size of attribute transformation

: the output size of embedding model

< the number of semantic labels

= the number of numerical attributes

? the percentage probability

23 5 (E) the cumulative distribution functions (CDF) of a numerical value

823 5 (?) the inverse cumulative distribution functions of a probability ?

)8, 9 a table cell

) a table

CA0=B (+0) the transformation for list of numerical values +0
+0 a list of numerical values of the attribute 0

E a numerical value

G a tensor of numerical attributes, G ∈ Rℎ

~ 9 a semantic label, ~ 9 ∈ .
. a list of semantic labels

attribute augmentation (Section 4.3.2). Second, attribute transformation (The details of
attribute transformation was described in Section 3.3.1) converts these augmented
labeled attributes from numerical values into distribution presentations. Third, these
distribution presentations will be used as the input for representation learning. Finally,
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Semantic Labeling: Offline (c) and Online (d)

Representation Learning (a) and Relevance Learning (b)
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Figure 4.1: Semantic labeling framework for numerical attributes with EmbNum+
comprised of (a) representation learning, (b) relevance learning, (c) semantic labeling
o�ine, and (d) semantic labeling online.

the output of the representation learning is an embedding model which is used as the
feature extraction module in the later phases.

To determine whether a query attribute is a new semantic label, we introduced the
relevance learning as shown in Figure 4.1 (b) (Section 4.3.4). Speci�cally, we used the
logistic regression to learn a relevance model that predicts the relevance probabilities
from pair-wise similarities of the labeled attributes. To calculate the pair-wise similarity
of the labeled attributes, the attribute augmentation, and the attribute transformation
are also carried out and feature extraction is done to derive the feature vectors using
the embedding model learned in the representation-learning phase. The pair-wise
similarities are calculated on those feature vectors. The relevance model will be used
to �lter the ranking results in the semantic-labeling-online phase. If the size of the
ranking results is zero after �ltering, the query attribute is a new semantic label.

As mentioned above, there are two semantic-labeling phases as shown in Figure
4.1 (c) (Section 4.3.5): o�ine and online (hereafter, o�ine phase and online phase,
respectively). The o�ine phase involves data preparation while the online phase is
actually semantic labeling for an unknown attribute. In the o�ine phase, labeled
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attributes are standardized with attribute transformation and derived feature vectors
with feature extraction. These feature vectors are stored in the knowledge base for
future similarity comparison.

In the online phase of semantic labeling as shown in Figure 4.1 (d), the �rst two steps
are similar to those of the o�ine phase where an unknown attribute is standardized
with attribute transformation and feature vectors are derived with feature extraction.
Then, the similarity searching module is used to calculate the similarities between the
feature vector of the unknown attribute with all the feature vectors in the knowledge
base. After this process, we have a ranking list of semantic labels ordered by their
corresponding similarity scores. Then, the relevance model is used on this ranking list
to select only the relevant semantic labels based on these scores. Finally, the output is a
ranking list of the most relevant attributes.

In the following sections, we describe the details of each component in the overall
work-�ow starting with the attribute augmentation, then, attribute transformation, the
two learning phases: representation learning and relevance learning, and the two
semantic-labeling phases: online and o�ine. Readers may refer to Section 4.2.1 for the
explanation of mathematical notations and equations.

4.3.2 Attribute Augmentation

In this section, we introduce a technique for augmenting attributes from originally
labeled attributes to create more labeled attributes for learning. In principle, we need
many labeled attributes to learn a robust embedding model and relevance model;
however, the lack of labeled data is a common problem with this task. The size of
datasets for this task is not so large, for example, the City Data [2] contains 300
numerical columns with 30 semantic labels, and the Open Data [69] contains 500
numerical columns with 50 semantic labels. The reason for this issue is that it is
very time consuming and costly to manually assign the semantic labels for table data.
Therefore, we need to augment existing data to increase data size.

To address this issue, we introduced an attribute-augmentation technique based
on the intuition that the semantic label of an attribute does not change whether we
have several or thousands of numerical values. Therefore, we can generate samples
by changing the size of attributes and randomly choosing the numerical values in



4.3 EmbNum+ Approach 53

the original attributes. While using the attribute-augmentation technique for an
attribute, the distribution of augmented attributes slightly di�erent than the original
one. Therefore, it increases the variety of attribute distribution and addresses the issue
of lacking training data.

Figure 4.2 depicts an example of attribute augmentation for the attribute height.
The input is the original attribute (Left), and the output is the augmented attributes
(Right). We use all data (original and augmented attributes) during the training process.

1.7
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2.2

1.65

1.9
1.9

1.65

Original Attribute

1.65
1.9

1.65

Augmented Attributes

1.8
1.65

1.71.9

height height

height

Figure 4.2: Illustration of augmentation on a numerical attribute.

The attribute-augmentation technique is described as follows. Given (1) an attribute
0 having = numerical values +0 = [E1, E2, E3, ..., E=], and (2) a number of new data
samples 0D6_B8I4 , this attribute-augmentation technique �rst randomly determines a
new size =′ ∈ [<8=_B8I4, =] for the new sample, then randomly selects =′ values from
+0 to+ ′0 , where+ ′0 ⊆ +0 . The process is repeated 0D6_B8I4 times to create new 0D6_B8I4
samples for 0.

Figure 4.3 illustrates an example of attribute augmentation for the numerical
attribute of areaLandSqMi in City Data [2]. The blue line represents 8327 original
values, and dotted lines represent the augmented samples from original values. The
�gure depicts the probability distribution of the original values of areaLandSqMi (blue
line) and �ve augmented samples (dotted lines). The �ve augmented samples vary in
terms of attribute size and shape, increasing the variety of training data, and reducing
the over�tting for representation learning and relevance learning.
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Figure 4.3: Attribute augmentation of attribute of areaLandSqMi in City Data [2].

4.3.3 Representation Learning

In this section, we describe the representation-learning phase (Figure 4.4) to learn the
embedding models.

Embedding model
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Figure 4.4: Representation-learning architecture
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Given an list of = transformed attribute - = {G1, G2, G3, ..., G=} and their< semantic
labels . = {~1, ~2, ~3, ..., ~<}, we �rst performed triplet sampling to create a list of
triplets. A triplet (G, G+, G−) with (G, G+, G− ∈ - ) is a combination of an anchor G where
the semantic label is ~, a positive attribute G+ where the semantic label is ~, and a
negative attribute G− where the semantic label is not ~. In the Figure 4.4, the blue
square, and green square indicate the semantic label ~1 and the semantic label ~2,
respectively, where ~1 ≠ ~2. We used the hard negative sampling method [67] (negative
samples close to anchor) to select triplets for training. This method involves choosing
the closest sample to an anchor among the dissimilar attributes in a mini-batch of
learning and helps the training process to converge faster.

We used the triplet network and CNN to learn a mapping function 4<1 (·) for
numerical attributes of triplets into an embedding space so that the distance between a
positive pair must be less than that between a negative pair 34<1 (G, G+) < 34<1 (G, G−)
[67]. Recall a numerical attribute G , 4<1 (G) is the output of a representation learning
network to convert G into a : dimensions embedding space 4<1 (G) ∈ R: . We used
the two-dimensional Euclidean plane as the embedding space because it is the most
common space used in the literature. It is noticed that we also can use any of other
spaces as the embedding space. The distance between two numerical attributes G8 and
G 9 is calculated by using the Euclidean distance between 4<1 (G8) and 4<1 (G 9 ):

34<1 (G8, G 9 ) = 3 (4<1 (G8), 4<1 (G 9 )) = | |4<1 (G8) − 4<1 (G 9 ) | |22 (4.1)

The triplet loss function for the triplet network is de�ned as follows.

! =<0G (0, U + 34<1 (G, G+) − 34<1 (G, G−)) (4.2)

where U is a hyper-parameter that regularizes between positive pair distance and
negative pair distance.

Embedding model with CNN architecture We use a CNN architecture to learn
the embedding model since it can capture latent features directly from data. Instead of
designing a CNN architecture from scratch, we adopted the popular CNN architectures
such as VGG [70] and ResNet [71] architectures. Since the input data were one-
dimensional, we modi�ed the convolutional structure to be one-dimensional on the
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convolutional, batch normalization, and pooling layers. The output of the CNN is a
vector with : dimensions (Section 4.4.3).

Table 4.2 depicts a comparison of di�erent CNN architectures on model size, and
model depth of the adapted VGG and ResNet (one-dimensional data). Intuitively, the
more layers of the network have, the better information capacity model can carry [71].
Finally, we came up with the ResNet 18 since it requires fewer parameters but deeper
comparing to other networks. It is noticed that we adopted the Resnet 18 as a practical
reason, we can use other CNN architectures instead. The optimal designing CNN
architectures are left as future work.

Table 4.2: Comparison of CNN architectures in terms of size, and depth
CNN Networks # parameters # layers

ResNet 18 3,854,164 18

ResNet 34 7,228,500 34

ResNet 50 15,995,220 50

ResNet 101 28,302,676 101

ResNet 152 38,441,300 152

VGG 11 34,628,436 11

VGG 13 34,690,452 13

VGG 16 36,463,764 16

VGG 19 38,237,076 19

4.3.4 Relevance Learning

In this section, we describe the relevance-learning architecture in details. Figure 4.5
illustrates the procedure of relevance learning.

Given the list of = transformed attributes- = {G1, G2, G3, ..., G=} and their< semantic
labels . = {~1, ~2, ~3, ..., ~<}, we �rst used the learned embedding model to derive
the feature vectors for those attributes (apply mapping function 4<1 (·) on each
transformed attribute G ∈ - ). We then carried out the pair-wise similarities (all
combination) across attributes with the Euclidean distance on their embedding vectors
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Figure 4.5: Relevance learning architecture

(Equation 4.1). Each pair-wise similarity is used as an input variable, while its output
label (relevance or non-relevance) is determined by the semantic labels. If two attributes
have the same semantic label, the data label of the pair-wise similarity is relevance,
else the label is non-relevance. All pairs of input variables and output labels are used as
training data for the relevance model.

We used the logistic regression (binary classi�cation) to learn the relevance model.
It is noticed that we can use other binary classi�cation algorithms. Regarding the
logistic regression, a sigmoid function is used to map the pair-wise similarities to
probabilities as Equation 4.3.

f (3) = 1
1 + 4−(F1∗3+F0)

(4.3)

whereF1,F0 are the learning parameters for logistic regression model, 3 is a pair-wise
similarity. We used \ as the decision boundary parameter. If the probability f ≥ \ , the
prediction is relevance, else the prediction is non-relevance.

4.3.5 Semantic Labeling

The semantic labeling have two phases: o�ine and online. The o�ine phase involves
data preparation while the online phase involves actual semantic labeling for an
unknown attribute.
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O�line phase

In the o�ine phase, labeled attributes are standardized with attribute transformation
(Section 3.3.1) and feature vectors are derived with feature extraction (Section 4.3.3).
These feature vectors are stored in the knowledge base for future similarity comparisons.
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Figure 4.6: O�ine-semantic-labeling architecture

Figure 4.6 depicts an example of semantic labeling for an unknown attribute.
Given labeled attributes and their semantic labels {(01, ~1), (02, ~2), (03, ~3), ..., (0=, ~<)},
the data is �rst transformed into {(G1, ~1), (G2, ~2), (G3, ~3), ..., (G=, ~<)} using
the attribute-transformation module. After that, the mapping function
4<1 (.) is used to map all the labeled data into the embedding space
{(4<1 (G1), ~1), (4<1 (G2), ~2), (4<1 (G3), ~3), ..., (4<1 (G=), ~<)}. These data are stored
in a knowledge base � for the next comparison in the semantic-labeling online phase.

Online phase

In this section, we describe the Online phase of semantic labeling for unknown
attributes. Figure 4.7 depicts the process of the online phase. Given an unknown
attribute 0@ , the two �rst steps are similar to those of the o�ine phase where an
unknown attribute is standardized to G@ with attribute transformation (Section 3.3.1)
and 4<1 (G@) features are derived with feature extraction (Section 4.3.3). Then, the
similarity-searching module is used to calculate the similarities (Equation 4.1) between
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the feature vector of the unknown attribute with all the feature vectors in the knowledge
base � . After this process, we have a ranking list of semantic labels ordered by their
corresponding similarity scores. Then, the relevance model is used on those similarity
scores to predict the semantic labels is relevance or non-relevance using Equation 4.3
(Section 4.3.4). Then, we remove all the non relevance semantic labels from the ranking
list. Finally, the output is a ranking list of the most relevant attributes.

4.4 Evaluation

In this section, we �rst describe the benchmark datasets in Section 4.4.1 and evaluation
metrics in Section 4.4.2. Next, we present the implementation details and experiment
settings in Section 4.4.3. Finally, we explain the results and detail analysis on semantic
labeling for numerical values and of in Section 4.4.4.

4.4.1 Benchmark Datasets

To evaluate EmbNum+, we used four datasets i.e., City Data, Open Data, DBpedia
NKB, and Wikidata NKB. City Data is the standard data used in the previous studies
[36], [2] while Open Data, DBpedia NKB, and Wikidata NKB are newly built datasets
extracted from Open Data portals, DBpedia and Wikidata, respectively. The datasets
are available at https://github.com/phucty/embnum.

The detailed statistics of each dataset are shown in Table 4.3. < denotes the number

https://github.com/phucty/embnum
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Table 4.3: Statistical description of numerical values per semantic label on City Data,
Open Data, Wikidata NKB, and DBpedia NKB

Dataset < =
# values of each labels

all min max med avg

City Data 30 300 192,820 40 22,510 1,130 6,427.33

Open Data 50 500 7,329,815 120 1,671,455 12,506 146,596.3

Wikidata NKB 169 1690 5,762,389 55 1,535,812 1,055 34,096.98

DBpedia NKB 203 2030 4,467,716 56 955,957 1,632 22,008.45

of semantic labels in a dataset. = denotes the number of columns in a dataset. In each
dataset, each semantic label has 10 columns in the same semantic labels. The columns
of City Data, DBpedia NKB, and Wikidata NKB are randomly generated using 10
partitions splitting, while the columns of Open Data are the real table columns from
Open Data Portals. The number of semantic labels of the new datasets is larger than
City Data, enabling rigorous comparisons between EmbNum+ and other baseline
approaches.

Table 4.4 reports the overall quantile ranges of the four datasets. DBpedia NKB is
the most complex dataset in terms of the largest semantic labels (206 semantic labels)
as well as the range of numerical values (the range of [−10e10, 10e16]). Moreover, the
overlapping rate of numerical attributes in DBpedia NKB is also higher than in other
datasets.

DBpedia NKB and City Data have the same source of data as DBpedia. Therefore,
there is a high overlapping of attributes between these data. The two other datasets of
Wikidata NKB and Open Data are di�erent from DBpedia NKB and City Data. Wikidata
NKB is constructed from Wikidata; it is an independent project manually annotates
by the community. The source of Wikidata NKB is di�erent from Wikipedia where
DBpedia extracted from, therefore Wikidata NKB and DBpedia NKB are di�erent.
Open Data extracted from �ve Open Data Portals which are di�erent about the domain
of data with other datasets.
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Table 4.4: Quantile ranges of City Data, Open Data, DBpedia NKB, and Wikidata NKB
Dataset from to

City Data −10e2 10e8

Open Data −10e6 10e14

Wikidata NKB −10e5 10e12

DBpedia NKB −10e10 10e16

City Data

City Data [2] has 30 numerical properties extracted from the city class in DBpedia. The
dataset consists of 10 sources; each source has 30 numerical attributes associated with
30 data properties. The Figure 4.8 is shown the distributions of quantile ranges of
numerical attributes of City Data.

Open Data

Open Data has 50 numerical properties extracted from the tables in �ve Open Data
Portals. We built the dataset to test semantic labeling for numerical values in the open
environment.

To build the dataset, we extracted table data from �ve Open Data portals, i.e., Ireland
(data.gov.ie), the UK (data.gov.uk), the EU (data.europa.eu), Canada (open.canada.ca),
and Australia (data.gov.au). First, we crawled CSV �les from the �ve Open Data portals
and selected �les whose size is less than 50 MB. Then, we analyzed tables in CSV �les
and selected only numerical attributes. After that, we created attribute categories based
on the clustering of the numerical attributes with respect to the textual similarity
of column headers. A category contains many numerical columns with the same
semantic labels. We got 7,496 categories in total.

We manually evaluated these categories with two criteria: (1) The �rst criterion
was to pick up categories with a certain frequency. By examining the collection of data,
we found that high-frequency and low-frequency categories are often unclear on their
semantics. We decided to pick up the categories with ten attributes by following the
setting of City Data. (2) The second criterion was removing the categories where
column headers had too general meanings such as “ID," “name," or “value."
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Figure 4.8: Quantile range distribution of numerical attributes in City Data

Finally, we chose 50 categories as semantic labels; each semantic label had ten
numerical attributes. Following the guideline of City Data, we also made 10 data
sources by combining each numerical attribute from each category.

Figure 4.9 is shown the distributions of quantile ranges of numerical attributes of
Open Data.

Wikidata NKB

The Wikidata NKB was built from the most frequently used numerical properties of
Wikidata. At the time of processing, there were 477 numerical properties 2 but we only
selected 169 numerical properties which are used more than 50 times in Wikidata.

2Wikidata query service: https://query.wikidata.org/

https://query.wikidata.org/
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Figure 4.9: Quantile range distribution of numerical attributes in Open Data.

Figure 4.10 is shown the distributions of quantile ranges of numerical attributes of
Wikidata NKB.

DBpedia NKB

To build the DBpedia NKB, we collected numerical values of the 634 of DBpedia
properties directly from their SPARQL query service3. Finally, we obtained 206 of the
most frequently used numerical properties of DBpedia where each attribute has at least
50 values.

Figure 4.11 is shown the distributions of quantile ranges of numerical attributes of
DBpedia NKB.

3DBpedia query service: http://live.dbpedia.org/sparql

http://live.dbpedia.org/sparql
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Figure 4.10: Quantile range distribution of numerical attributes in Wikidata NKB

4.4.2 Evaluation Metric

We used the mean reciprocal rank score (MRR) to measure the e�ectiveness of semantic
labeling. The MRR score was used in the previous studies [2], [36] to measure the
probability correctness of a ranking result list. To measure the e�ciency of EmbNum+
over the baseline methods, we evaluated the run-time in seconds of the semantic
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Figure 4.11: Quantile range distribution of numerical attributes in DBpedia NKB
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labeling process.

4.4.3 Implementation and Settings

We have di�erent interests in each dataset to evaluate the performance of EmbNum+.
The DBpedia NKB is the most complex and complete dataset with the largest semantic
labels as well as a wide range of values. It provides a discriminative power to train the
representation model as well as the relevance model EmbNum+. Therefore, we use the
DBpedia NKB dataset for these two learning modules. The details of the learning
settings are described in Section 4.4.3. We use City Data as the standard data to fairly
compared with other existing approaches. The Wikidata NKB is challenging in terms
of large scale and transfer capacity setting where the embedding model is learned from
DBpedia NKB. Finally, Open data is used to evaluate the real-world setting where
numerical attributes are extracted from the �ve Open Data Portals.

Representation and Relevance Learning

To train EmbNum+, we used the numerical attributes of DBpedia NKB as the training
data. We randomly divided DBpedia NKB into two equal parts: 50% for the two
learning tasks and 50% for evaluating the task of semantic labeling. The �rst part
was used for the representation learning of EmbNum+. It is noticed that we made
using the attribute augmentation technique to generate training samples. Therefore,
the actual training data is not the same as the original data. We also use this part to
train the relevance model by using the pair-wise distance between these original
training samples. This data was also used to learn the similarity metric for DSL. We
followed the guideline that using logistic regression to train the similarity metrics
where training samples are the pairs of numerical attributes [36].

We used PyTorch 4 to implement representation learning. The network uses the
recti�ed linear unit (ReLU) as a non-linear activation function. To normalize the
distribution of each input feature in each layer, we also used batch normalization [72]
after each convolution and before each ReLU activation function. We trained the
network using stochastic gradient descent (SGD) with back-propagation, a momentum
of 0.9, and a weight decay of 1e−5. We started with a learning rate of 0.01 and reduced

4PyTorch link: http://pytorch.org

http://pytorch.org
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it with a step size of 10 to �nalize the model. We set the dimension of the attribute
input vector ℎ and the attribute output vector : as 100.

We trained the EmbNum+ with 20 iterations. In each iteration, we used the
attribute-augmentation technique to generate a 0D6_B8I4 of 100 samples for each
semantic label. The numerical values of the augmented samples are randomly selected
from the list of numerical values of the attributes. The size of each augmented sample
ranges from<8=_B8I4 of 4 to the size of its original attribute. Then, the representation
learning was trained with 100 epochs. After each epoch, we evaluated the task of
semantic labeling on the MRR score using the original training data. We saved the
learned model having the highest MRR score. All experiments ran on Deep Learning
Box with an Intel i7-7900X-CPU, 64 GB of RAM, and three NVIDIA GeForce GTX 1080
Ti GPU.

The training time of EmbNum+ is 29,732 seconds while the training time of DSL is
2,965 seconds. It is clear that EmbNum+ uses the deep learning approach and needs
more time to train the similarity metric than DSL, which uses logistic regression.
However, the similarity metric is only needed to train once, and it could be applied
to other domains without retraining. The details experimental result on EmbNum+
robustness is reported in Section 4.4.4.

Semantic Labeling

In this section, we describe the detail experimental setting to evaluate the semantic
labeling task. We follow the evaluation setting of Semantic Typer [2] and DSL [36].
This setting is based on cross-validation but it was modi�ed to observe how the number
of numerical values in the knowledge base will a�ect the performance of the labeling
process. The detail of the experimental setting is described as follows.

Suppose a dataset ( = {B1, B2, B3, ..., B3} has 3 data sources. One data source was
retained as the unknown data, and the remaining 3 − 1 data sources were used as the
labeled data. We repeated this process 3 times, with each of the data sources used
exactly once as the unknown data.

Additionally, we set the number of sources in the labeled data increasing from
one source to 3 − 1 sources to analyze the e�ect of an increment of the number of
labeled data on the performance of semantic labeling. We obtained the MRR scores and
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labeling times on 3 × (3 − 1) experiments and then averaged them to produce the 3 − 1
estimations of the number of sources in the labeled data.

Unseen Semantic Labeling

In this section, we describe the setting of unseen semantic labeling. We split data to 3
partitions and used the setting of 3-fold cross-validation for evaluation. To analyze the
changing of EmbNum+ performance regarding the number of unseen semantic labels,
we linearly increased the percentage of unseen semantic labels from 0 % to 90% of all
labels in knowledge bases. For details, Table 4.5 depicts the number of unseen semantic
labels of City Data, Open Data, DBpedia NKB, and Wikidata NKB.

Table 4.5: Unseen semantic labeling setting on DBpedia NKB, City Data, Wikidata
NKB, and Open Data
Dataset 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBpedia NKB 0 20 40 60 81 101 121 142 162 182

City Data 0 3 6 9 12 15 18 21 24 27

Wikidata NKB 0 16 33 50 67 84 101 118 135 152

Open Data 0 5 10 15 20 25 30 35 40 45

The performance is evaluated with the MRR score on the four datasets. When a
query is an unseen attribute, the reciprocal rank (RR) is 1 if the ranking result is empty,
and 0 otherwise.

Ablation Study

We also conducted ablation studies to evaluate the impact of the representation leaning
and the attribute-augmentation on the task of semantic labeling. For the setting of
EmbNum+ without using the representation learning, we created three methods that
ignore the representation leaning: #D<_;1, #D<_;2, and #D<_;∞. The similarities
between numerical attributes are directly calculated from the CA0=(.) without using
the embedding model. The #D<_;1 used the Manhattans distance, #D<_;2 used
the Euclidean distance, and #D<_;∞ used Chebyshev distance. For the setting of
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EmbNum+ without using the attribute-augmentation, we call this method as EmbNum+
NonAu.

We conducted this ablation study based on 3-fold cross-validation. Given a dataset
with 3 data sources. One data source was retained as the query set, and the remaining
3 − 1 data sources were used as a knowledge base. We conducted semantic labeling for
the query set on the knowledge base. We repeated this process 3 times, with each of
the data sources used exactly once as the unknown data.

4.4.4 Experimental Results

In this section, we report the experimental results of semantic labeling in terms of
e�ectiveness, robustness (Section 4.4.4), and e�ciency (Section 4.4.4). Section 4.4.3
reports the experimental result of the setting of unseen semantic labeling. Finally, we
report the result of the ablation study in Section 4.4.3.

Semantic Labeling: E�ectiveness

We tested Semantic Typer [2], DSL [36], and EmbNum+ on the semantic labeling task
using the MRR score to evaluate the e�ectiveness. The results are shown in Table 4.6
and Figure 4.12.

The MRR scores obtained by three methods steadily increase along with the number
of labeled sources. It suggests that the more labeled sources in the database, the more
accurate the assigned semantic labels are. DSL outperformed Semantic Typer in City
Data and Open Data but was comparable with Semantic Typer in DBpedia NKB and
Wikidata NKB. In the DBpedia NKB and Wikidata NKB, there are more semantic labels
as well as a high level of range overlapping between numerical attributes, therefore,
these features (KS Test, numerical Jaccard, and MW test) proposed by DSL become less
e�ective.

EmbNum+ learned directly from the empirical distribution of numerical values
without making any assumption on data type and data distribution, hence, outperformed
Semantic Typer and DSL on the four datasets. The similarity metric based on a speci�c
hypothesis test, which was used in Semantic Typer and DSL, is not optimized for
semantic meanings with various data types and distributions in DBpedia NKB and
Wikidata NKB.
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Figure 4.12: Semantic labeling results in the MRR score on City Data, Open Data,
DBpedia NKB, and Wikidata NKB
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EmbNum+ performance is slightly better than other approaches when the number
of labeled sources in training data is small (S1) than the full sources of labeled data (S9).
The reason for di�erences could be explained as EmbNum+ adopt the augmentation
technique to learn a better generalize similarity between numerical attributes. It means
that EmbNum+ could be useful in practice when we do not have many samples in the
labeled dataset.

The performance of semantic labeling systems is di�erent according to datasets. In
particular, semantic labeling on City Data, DBpedia NKB, and Wikidata NKB yields
higher performance than Open Data. The performance di�erences occur because of
data quality. The City Data, DBpedia NKB, and Wikidata NKB are synthesis data,
where each numerical values of attributes are normalized in terms of data scaling.
Open Data is the real-world data where we usually do not know the meaning of
attributes, therefore it is di�cult to do normalization operation. It means that Open
Data is more di�cult than the other three datasets. Despite the di�erences between
datasets, EmbNum+ results consistently outperform other approaches.

Although, EmbNum+ was trained on 50% of DBpedia NKB, the performance of
EmbNum+ consistent yield the best performance in the four datasets, especially the
two di�erent datasets: Wikidata NKB, and Open Data. It means that EmbNum+ is
promising for semantic labeling in a wide range of data domains.

To understand whether EmbNum+ does signi�cantly outperform Semantic Typer
and DSL, we performed a paired sample t-test on the MRR scores between EmbNum+
and Semantic Typer, DSL. Table 4.7 show the result of the paired t-test on City
Data, Open Data, DBpedia NKB, and Wikidata NKB. We set the cuto� value for
determining statistical signi�cance to 0.01. The results of the paired t-test revealed that
EmbNum+ signi�cantly outperforms Semantic Typer and DSL on all four datasets (all
the ?_E0;D4B < 0.01).

Semantic Labeling: E�ciency

In this experiment, we also used the same setting with the previous experiment but the
e�ciency is evaluated by the run-time of semantic labeling. Table 4.8 and Figure 4.13
depict the run-time of semantic labeling of Semantic Typer, DSL, and EmbNum+ on the
four dataset: DBpedia NKB, Wikidata NKB, City Data, and Open Data.
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Table 4.7: Paried sample t-test between EmbNum+ and Semantic Typer, DSL on
DBpedia NKB, City Data, Wikidata NKB, and Open Data

Dataset Semantic Typer DSL

DBpedia NKB 3.46e−6 1.40e−4
City Data 2.21e−5 5.99e−5
Wikidata NKB 1.31e−5 2.25e−4
Open Data 9.10e−9 4.27e−8

The run-time of semantic labeling linearly increases with the number of labeled
sources. The run-time of DSL was extremely high when the number of labeled data
sources increased because three similarity metrics were needed to be calculated. The
run-time of Semantic Typer was less than DSL because it only used the KS test as
a similarity metric. Semantic labeling with EmbNum+ is signi�cantly faster than
Semantic Typer (about 17 times), and DSL (about 46 times). EmbNum+ outperforms
the baseline approaches in run-time since the similarity metric of EmbNum+ was
calculated directly on extracted feature vectors instead of all original values.

Unseen Semantic Labeling

In this section, we report the experiment results of unseen semantic labeling. Table 4.9
and Figure 4.14 report the MRR score of EmbNum+ when using (EmbNum+) and not
using (EmbNum+ NonRe) relevance model. When the number of unseen semantic
labels increases, the performance of semantic labeling decreases if we do not use the
relevance model. When we use the relevance model, the performance of EmbNum+
changes considerably.

Interestingly, the trend of MRR score changed from decreasing to increasing at 80 %
unseen semantic labels in knowledge bases. This result is promising in practice since
we usually do not have so many labeled data. Detecting unseen semantic labels assists
domain experts in terms of simplifying and reducing the time for the manually labeling
process.
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(c) Wikidata NKB
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Figure 4.13: Semantic labeling results of run-time in seconds on DBpedia NKB, City
Data, Wikidata NKB, and Open Data

4.4.5 Ablation study

Table 4.10 reports the ablation study of EmbNum+ on City Data, Open Data, DBpedia
NKB, and Wikidata NKB.

The method of #D<_;1, #D<_;2, #D<_;∞ are EmbNum+ without using the repre-
sentation learning. Among these methods of EmbNum+ without using representation
learning, #D<_;1 outperforms #D<_;2, #D<_;∞. It indicates that the Manhattan
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Figure 4.14: Semantic labeling results of unseen setting in the MRR score on DBpedia
NKB, City Data, Wikidata NKB, and Open Data
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Table 4.10: Ablation study result of EmbNum+ on City Data, Open Data, DBpedia NKB,
and Wikidata NKB
Methods City Data Open Data DBpedia NKB Wikidata NKB

#D<_;1 0.9320 0.6972 0.9026 0.8934

#D<_;2 0.9225 0.6891 0.8964 0.8919

#D<_;∞ 0.9090 0.6721 0.8879 0.8985

EmbNum+ NonAu 0.9412 0.6998 0.9165 0.9085

EmbNum+ 0.9518 0.7093 0.9483 0.9175

distance has more advantages than Euclidean and Chevshcesh distance. By removing
the representation learning, we can see the MRR score is signi�cantly reduced in
the four datasets. This validates our assumption that the representation leaning is a
necessary module in the semantic labeling procedure.

EmbNum+ NonAu is a system of EmbNum+ without using the attribute-
augmentation module. The performance of EmbNum+ higher than the EmbNum+
NonAu, therefore we verify that the module of attribute-augmentation is necessary for
our proposed approach.

4.5 Conclusion

In this section, we introduces EmbNum+, a semantic labeling method that annotates
semantic labels for numerical attributes of tabular data. EmbNum+ advances other
baseline approaches in many ways. First, EmbNum+ learns directly from numerical
attributes without making any assumption regarding data, therefore it is particularly
useful to apply on general data when we do not have any knowledge about data domain
and distribution. Second, EmbNum+ signi�cantly boosts the e�ciency against other
baseline approaches because all the calculations are performed on the representation
of numerical attributes. Third, EmbNum+ can recognize the unseen query which
is extremely helpful in practice. Additional, we also introduced two new synthesis
datasets i.e., Wikidata NKB and DBpedia NKB, and one real-world dataset i.e., Open
Data. These datasets will be useful to evaluate the scalability as well as the robustness
of semantic labeling for numerical values.
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In future work, we plan to extend our work in the two directions. The �rst direction
is to extend the similarity metric to interpret multiple scales. In this study, we assumed
that two numerical attributes are similar when they are expressed on the same scale.
In fact, two attributes with the same meaning could be measured using di�erent
scales. For instance, the numerical attributes “human height" could be expressed in
“centimeters" or “feet." The second direction is to extend the metric to interpret the
hierarchical representation of numerical data. The current presentation using the
Euclidean distance cannot re�ect the hierarchical structure. Building a similarity
metric that is hierarchy-aware can help to make a more �ne-grained semantic labeling.
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5
MTab: Semantic Annotation for Tabular

Data

In Section 5.1, we describe the task of semantic annotation for tabular and information
about the challenges. Section 5.1.1 provides de�nitions as well as notation for the three
tasks. We make some assumptions about MTab system in Section 5.1.2. The details of
MTab are described in Section 5.2. The evaluation setting, results, and analysis of MTab
is reported in Section 5.3. The detail description of other participant are summarized in
Section 5.4. Finally, we conclude MTab in Section 5.5 including discussion on limitation,
and future work.

5.1 Introduction

Tabular data annotation is the task of labeling table elements into standard concepts to
gain a semantic understanding of data. As a result, such annotation could be useful for
other downstream applications such as data integration, learning, mining, machine
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learning, and knowledge management and discovery. The annotation tasks are di�cult
due to the heterogeneous of tabular data. The use of vocabulary and schema are
di�erent in di�erent data sources, moreover, these data usually missing, or incomplete
metadata or ambiguous, non-standard vocabulary.

A possible solution is to match table elements into the general knowledge graph
such as DBpedia, Wikidata, YAGO. The semantic annotation could enhance a wider
range of applications such as information retrieval, knowledge management, and
construction. Due to the di�erences in benchmark settings, datasets as well as target
matching knowledge bases in the literature, there is a need for a general benchmark
for tabular data matching tasks to promote a comparison of annotation systems.

Tabular Data to Knowledge Graph Matching (SemTab 2019)1 is a challenge on
matching table elements into knowledge graph (KG) concepts, especially DBpedia. Fig.
5.1 depicts the three sub-tasks for SemTab 2019. Given a table data, CTA (Fig. 5.1a) is
the task of assigning a semantic type (e.g., a DBpedia class) to a column. In CEA (Fig.
5.1b), a cell is linked to an entity in KG. The relation between two columns is assigned
to a property or predicate in KG in CPA (Fig. 5.1c).

Class (dbo:)
(a) CTA

Entity (dbr:)
(b) CEA

Property
(c) CPA

Figure 5.1: Tabular Data Matching to Knowledge Graph (DBpedia)

Figure 5.2 depict an example of semantic annotation for tabular data.
dbr:Authur_Drews is an entity annotation table cell "A. Drews". The type annotations
for the column "col1" are dbo:PopulatedPlace, dbo:Place. dbo:deadYear is the annotation
for the relation between column "col0" and column "col2".

The SemTab 2019 challenge contains four round, each round came with a di�erent
dataset for each annotation task. In detail, round 1 data is extracted from the T2Dv2
dataset, round 2 is a combination of Wikipedia tables and automatically generated
tables from DBpedia, round 3, and round 4 datasets also were automatically generated

1SemTab 2019 link: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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A. Prior New Zealand 1969
A. Drews Uetersen 1935

col0 col1 col2

dbr:Arthur_Drews
dbo:PopulatedPlace,
dbo:Place

dbo:deathYear

Figure 5.2: Example of semantic annotation for tabular data

from DBpedia. The challenge attached a lot of attention from many research teams, we
had seven stable systems across the four-round and annotation tasks. Figure 5.1 depicts
number of participants in SemTab 2019.

Table 5.1: Number of participants in SemTab 2019
Number of Round 1 Round 2 Round 3 Round 4

Paticipants 17 11 9 8

CTA 13 9 8 7

CEA 11 10 8 8

CPA 5 7 7 7

We introduce MTab which is a general framework to address all the three tasks of
SemTab 2019. MTab combines the voting algorithm and the probability models to solve
critical problems of the matching tasks. The results of MTab got the �rst prize for
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab
2019).

5.1.1 Problem De�nitions

We denotes DBpedia as a knowledge graph � = (�,) , '), where �,) , ' are the set of
entities, the set of types (or classes), and the set of relations (or predicates) respectively.
4 is an entity 4 ∈ �, C4 is the type of an entity C4 ∈ ) , and A is a relation of entity-entity
or entity-literal A ∈ '.

Let a table ( be a two-dimensional tabular structure consisting of an ordered set
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of # rows, and " columns. =8 is a row of table (8 = 1...# ),< 9 is a column of table
( 9 = 1..."). The intersection between a row =8 and a column< 9 is 28, 9 is a value of the
cell (8, 9 .

The tabular to KG matching problems could be formalized the three sub-tasks as
follows.

• CEA: matching a cell value 28, 9 into a relevance entity 4 ∈ �.

28, 9
CEA−−−→ � (5.1)

• CTA: matching a column< 9 into a exact relevance type and its ancestors.

< 9

CTA−−−→ ) (5.2)

• CPA: matching the relation between two columns< 91 and< 92 ( 91, 92 ∈ [1, "], 91 ≠
92) into a relation A ∈ '.

A< 91 ,< 92

CPA−−−→ ' (5.3)

5.1.2 Assumptions

In MTab, we adopt the following assumptions:

Assumption 1 MTab is built on a closed-world assumption. It means that the target KG
is completed and corrected.

Assumption 2 The type of input table is vertical relational table.

Assumption 3 Input tables are independence, it means there is no sharing information
between input tables.

Assumption 4 Column cell values have the same entity types and data types.

Assumption 5 The �rst row of table (=1) is table header. The �rst cell of column is
header of this column, 21, 9 ∈< 9 .
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In practice, table headers could have more complicated structures. Headers could
available or non-available, be located at the beginning of the table or not, have one
rows or multiple rows. In this work, we omit those issues and assume that the table
header is located at the �rst row.

5.2 MTab Approach

MTab is built on the joint probability distribution of many signals inspired by the
graphical probability model-based approach [16] and the signal (or con�dence)
propagation fashion between table elements of T2K [13]. However, MTab improves the
matching performance by solving two major problems:

• Entity lookup: We found that using only DBpedia lookup (the most popular
service) does not usually get relevance entities for non-English queries. Therefore,
we perform entity lookup on multiple services (with language parameter) to
increase the possibility of �nding the relevance entities.

• Literal matching: We found that mapping cell values to corresponding values in
a KG are less e�ective because the corresponding value in KG is rarely equal
with a query value. Therefore, with Assumption 4, we adopt literal columns
matching to �nd a relevance relation (property) and aggregate these signals to
enhance MTab performance.

Additionally, we also adopt more signals from table elements, introduce a scoring
function to estimate the uncertainly from ranking. Note that, the probabilities in this
section could be interpreted as subjective con�dences.

5.2.1 Framework

We design our system (MTab) as 7-steps pipeline (Fig. 5.3). Step 1 is to pre-process a
table data ( by decoding textual data, predicting languages, data type, entity type
prediction, and entity lookup. Step 2 is to estimate entity candidates for each cell. Step
3 is to estimate type candidates for columns. Step 4 is to estimate relationship between
two columns. Step 5 is to re-estimate entity candidates with con�dence aggregation
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Language Prediction

Data Type Prediction

Entity
Candidate
Estimation

Step 2

Entity Type Prediction

Type
Candidate
Estimation

Step 3

Relation
Candidate
Estimation

Input Step 4

Output CTA
Class Candidates

CEA
Entity Candidates

CPA
Property Candidates

Entity
Candidate

Re-
Estimation

Type
Candidate

Re-
Estimation

Relation
Candidate

Re-
Estimation

Step 5 Step 6 Step 7

Step 1
Text Decoding

Entity Lookup

Figure 5.3: MTab framework for tabular data matching

from step 2, step 3, and step 4. Step 6, and Step 7 are to re-estimate type and relation
candidates with results from Step 5, respectively.

The following are the detail explanations on each step of the framework.

5.2.2 Step 1: Pre-processing

We perform �ve processes as follows.

• Text Decoding: Reading table data has a problem of textual encoding where
some characters are loaded as noisy sequences. Loading incorrect encoding
might strongly a�ect the lookup performance, therefore, we used the ftfy tool
[73] to �x all noisy textual data in tables.

• Language Prediction: We used the pre-trained fasttext models (126 MB) [74]
to predict the languages for tables (concatenate all table cell values) and each cell
in the table. Since table data is not only written in English but also in other
languages, determining the language of the input query helpful for the lookup
tasks.

• Data Type Prediction: Next, we perform data type prediction to predict 13
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pre-de�ned data types of duckling 2 for each cell value in a table 28, 9 . Those
types are about numerical tags, email, URL, or phone number. If there is no tag
assigned, we assign this cell type as a text tag.

• Entity Type Prediction: For each cell value in a table 28, 9 , we also perform
entity type prediction with the pre-trained SpaCy models [75] (OntoNotes 5
dataset) to predict 18 entity types. If there is no tag assigned, this cell type is
assigned to a text tag. We also manually map from those textual entity types (11
entity types) OntoNotes 5 to some DBpedia classes.

• Entity Lookup: We search the relevance entity on many services including
DBpedia Lookup3, DBpedia endpoint4. Also, we search relevant entities on
Wikipedia and Wikidata by redirected links to DBpedia to increase the possibility
of �nding the relevant entities. We use the language information of the table and
cell values as the lookup parameters. If there is any non-English lookup URL,
it is redirected to the corresponding English URL. We use U 5 as the limit of
lookup results. The search query could be each cell value in a table 28, 9 , or other
neighbor cells in the same rows 8 .

5.2.3 Step 2: Entity Candidate Estimation

In this section, we explain how we estimate the entity candidates. Given a cell value
28, 9 , we have a set of ranking result lists from lookup services &28, 9 . @ is a list of ranking
of entities ordered by degree of relevance of a lookup service, where @ ∈ &28, 9 . In MTab,
we adopted the four services as DBpedia lookup, DBpedia Endpoint, Wikidata lookup,
and Wikipedia lookup. However, we can use any services as long as their output is a
ranking list of relevance entities.

Denote �&28, 9
is a set of relevance entities in &28, 9 , B

@
4 is a con�dence score of an

entity 4 where 4 ∈ �&28, 9
. The con�dence score of entity 4 is calculated as

B
&
4 =<0G (B@4 ) (5.4)

2Duckling link: https://github.com/facebook/duckling
3DBpedia Lookup, link: https://wiki.dbpedia.org/Lookup
4DBpedia Endpoint link: https://dbpedia.org/sparql
5In MTab, we set U = 100

https://github.com/facebook/duckling
https://wiki.dbpedia.org/Lookup
https://dbpedia.org/sparql
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B
@
4 is the con�dence score of entity 4 in @.

B
@
4 = U − A0=:4 (5.5)

where A0=:4 is the ranking index of entity in @. We normalize those entity con�dence
score to [0, 1], where %A (�&28, 9

|&28, 9 ) = 1,

%A (4 |&28, 9 ) =
B
&
4∑

4∈�&28,9
B
&
4

(5.6)

and associate those scores as the potential probability of entities given lookup results.

5.2.4 Step 3: Type Candidate Estimation

Regarding Assumption 4, we categorize table columns to entity columns and literal
columns. We aggregate the data type (Duckling Tags and SpaCy Tags) from each cell in
a column using majority voting. If the majority tag is text or entity-related, the columns
is an entity column, else a numerical column. Regarding numerical columns, we
perform semantic labeling with EmbNum+ method [7] to annotate relations (DBpedia
properties) for numerical columns 6. Then, we infer types (DBpedia classes) from those
relations.

Numerical Column

The set of numerical columns in table ( is "=D< . Given a numerical column< 9 , we use
re-trained EmbNum+ model on DBpedia [7] to derive embedding vector for the list of
all numerical values of the column and then search the corresponding relations from
the database of labeled attributes 7. The result @< 9

is a ranking of relevance numerical
attributes in terms of distribution similarity. We also use U as the limit for ranking
result. The con�dence score of a relation A is calculated as the following equation.

B
< 9

A = U − A0=:A (5.7)

6We only use EmbNum+ for those columns have at least 10 numerical values
7We used all numerical attributes of DBpedia as the labeled data
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where A0=:A is the ranking index of A . These scores are also normalized to a range
of [0,1] to associate the probability of potential of relation for numerical columns
%A (A |< 9 ).

Next, we use DBpedia endpoint to infer the classes (types) from those relations as
Figure 5.4. )@<9

is a set of inferred types, C denotes a type C ∈ )@<9
. Those types will be

used for entity columns. The con�dence score of types is estimated as the following
equation.

BAC =<0G (B"=D<
A ) (5.8)

Then, we normalized those scores to [0,1] so that %A ()@"=D<
) = 1, those con�dence

scores are associated as the probabilities of type potential %A (C |"=D<) given "=D< .

oclc finalPublicationYear

numerical column

EmbNum

PeriodicalLiteratureWrittenWork

WrittenWork

DBpeida Ontology: Domains

DBpeida Ontology: Subclass of

textual column

Relation Candidates

Type Candidates

Figure 5.4: Property lookup with EmbNum

Entity Column

Given a set of entity columns in table ( is "4=C , we consider these signals from

1. %A (C |"=D<): the probabilities of type potential from numerical columns

2. %A (C |< 9 , &< 9
): the probabilities of type potential aggregated from the types of

entity lookup for the all cells in column< 9 .

%A (C |< 9 , &< 9
) =

∑
28, 9∈< 9

%A (C |&28, 9 ) (5.9)
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We normalized these aggregated potentials and associates these as potential
probabilities.

3. %A (C |< 9 , (?0�~< 9
): the probabilities of type potential aggregated from SpaCy

entity type prediction for the all cell in column< 9 . We used majority voting and
normalized these voting values to [0,1]. Then, we associate those normalized
voting value type potential probabilities.

4. %A (C |21, 9 ): the probabilities of type potential given header value of the column
< 9 . We associate the normalized Levenshtein distance as potential probability
that a type (DBpedia class) correspond with a header value.

The probabilities of type potential is derived from the four signals as the following
equation.

%A (C |< 9 ) = F1%A (C |"=D<)F2%A (C |< 9 , &< 9
)F3%A (C |< 9 , (?0�~< 9

)F4%A (C |21, 9 ) (5.10)

whereF1,F2,F3,F4 are learnable weights. Note that, some probabilities of signals
might be 0 or too small, and aggregate those might add too much noise to the �nal
aggregation. Therefore, if any signal probabilities less than V8, we omit those signals.
After aggregation, we also perform normalization for %A (C |< 9 ) to a range of [0,1] so
that %A ()< 9

|< 9 ) = 1.

5.2.5 Step 4: Relation Candidate Estimation

Given two columns< 91 and< 92 , we estimate the probabilities of relation potential of
%A (A |< 91,< 92). We consider two type of relation between two columns: Entity column
to Entity column and Entity column to non-Entity column. To be simple, we associate
the �rst entity column is< 91 . If the second column is entity column, we denote it as
<4=C
92

, else<=>=−4=C
92

.

Entity - Entity columns %A (A |< 91,<
4=C
92
):

Given 28, 91 is a cell value of the column< 91 and the row A8 , 28, 92 is a cell value of the
column<4=C

92
. We assume that there is a relation between entity candidates of 28, 91

8In MTab, V = 0.5
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Figure 5.5: Illustration of entity candidate re-ranking between two column cells

and 28, 92 , therefore we use DBpedia endpoint to �nd how many links (relations or
properties) between entity candidates of 28, 91 and 28, 92 . The con�dence score of relation
is calculated as the following equation. B28, 91 ,28, 92A = 1 if there is any relation between
entity candidates of two columns. Then, we aggregate those scores of all rows to get
the candidate score for two columns as the following equation.

B
< 91 ,<

4=C
92

A =
∑

8∈[1,# ]
B
28, 91 ,28, 92
A (5.11)

Then, we normalize those score to a range of [0,1] so that %A ('< 91 ,<
4=C
92
|< 91,<

4=C
92
) = 1

and associate it as the probability of relation potential of Entity and Entity Columns
%A (A |< 91,<

4=C
92
).

Figure 5.5 illustrate the re-ranking between the two entity candidates from two-
column cells in the same row.

Entity - Non-Entity columns %A (A |< 91,<
=>=−4=C
92

):

Given 28, 91 is a cell value of the column< 91 and the row A8 , 28, 92 is a cell value of the
column <=>=−4=C

92
. We estimate the relevance ratio between entity candidates and

non-entity value 28, 92 . Given an entity candidate 4 have pairs of relation(A4 )-values(E4 ),
we compare the non-entity value 28, 92 with all attribute values E4 . We select those pairs
have ratio larger than V . We only compare two values of 28, 91 and E4 based on there data
types (textual type or numerical type).

• For textual values: We use the normalized Levenshtein distance to estimate the
relevance ratio between E4 and 28, 92 as B (E4, 28, 92).
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• For numerical values: the relevance ratio is calculated as the following equation.

B (E4, 28, 92) =


0, if<0G ( |28, 92 |, |E4 |) = 0 and |28, 92 − E4 | ≠ 0

1, if<0G ( |28, 92 |, |E4 |) = 0 and |28, 92 − E4 | = 0

1 − |28, 92−E4 |
<0G ( |28, 92 |,|E4 |)

, if<0G ( |28, 92 |, |E4 |) ≠ 0

(5.12)

We aggregate all relevance ratio with respect to relations. Then we normalize
those aggregated ratio to [0,1], and associate this as probability of relation potential.
%A (A |< 91,< 92). If the column of < 92 is numerical columns, we also aggregate the
re-calculated probability from %A (A |< 92) (step 3) as the following equation.

%A (A |< 91,< 92,< 92 is numerical) = F5%A (A |< 91,< 92)F6%A (A |< 92) (5.13)

whereF5,F6 are learnable parameters.

5.2.6 Step 5: Entity candidate Re-Estimation

In this step, we present a method to re-estimate the probabilities of entity candidates
%A (4 |(). Given a cell (8, 9 containing a cell value 28, 9 at row =8 , and column < 9 , we
consider these signals from:

• %A (4 |&28, 9 ): The entity candidate probabilities given look up results.

• %A (4 |< 9 ): The probabilities of entity candidates given their type’s probabilities
(Step 3). This can be estimated as the following equation.

%A (4 |< 9 ) =<0G (%A (C4 |< 9 , &< 9
)) (5.14)

where C4 is a type of the entity 4 .

• %A (4 |28, 9 ): The probabilities of entity candidates given the cell value 28, 9 . We get
the mean ratio of the normalized Levenshtein distance, heuristic abbreviation
rules (�rst character of words, titles, dates, time).

• %A (4 |=8,< 91): The probabilities of entity candidates given cell values in a row
28, 9 ∈ =8 . We do the same procedure as Step 4 to compare all entity values with a
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cell value, and compute the mean probability for all cell value in a row as the
following equation.

%A (4 |=8,< 91) =<40=(%A (4 |< 91,< 92)) (5.15)

where 91 ≠ 92.

Overall, the equation is as follows.

%A (4 |() = F7%A (4 |&28, 9 )F8%A (4 |< 9 )F9%A (4 |28, 9 )F10%A (4 |=8,< 91) (5.16)

whereF7,F8,F9,F10 are learnable parameters.

5.2.7 Step 6, 7: Re-Estimate Types and Relations

We select the highest probabilities of entity candidates in Step 5 for each cell (8, 9 to
re-estimate types and relations with majority voting.

5.3 Evaluation

In this section, we �rst report the detail about benchmark datasets in Section 5.3.1,
evaluation metrics in Section 5.3.2. The overall results are reported in Section 5.3.3.
The detail error analysis, and improvement are described in Section 5.3.4. Finally, we
provide detail an ablation study on the contribution of EmbNum+ in MTab system
(Section 5.3.5).

5.3.1 Benchmark Datasets

The SemTab 2019 challenge contains four rounds, each round came with a di�erent set
of tables as well as the targets of matching for each annotation task. In detail, round 1
data is extracted from the T2Dv2 dataset, round 2 is a combination of Wikipedia tables
and automatically generated tables from DBpedia, round 3, and round 4 datasets also
were automatically generated from DBpedia. To generate the tabular data, �rst a list of
classes and properties are gathered, then for each class, the generator selects groups of
properties and using them to create "realistic" tables using SPARQL queries. Finally,
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these "realistic" tables were added noise into the surface textual of table cells or remove
"easy" matches cells.

Table 5.2 reports the statistic about the SemTab 2019 dataset [76]. Round 1 dataset
was extracted from the T2Dv2 dataset which is a standard dataset in tabular data
annotation. Round 2 dataset is the biggest and most complex one since it was combined
from two di�erent datasets of Wikipedia tables and DBpedia generated tables. Round
3 and Round 4 are generated tables, but in Round 4, the easily matched cells were
removed.

Table 5.2: SemTab 2019 dataset
# Table # Target CEA # Target CTA # Target CPA

Round 1 70 8,418 120 116

Round 2 11,925 463,773 14,561 6,762

Round 3 2,162 406,827 5,762 7,575

Round 4 818 107,352 1,732 2,747

5.3.2 Evaluation Metrics

There are four di�erent metrics used to evaluate tabular data annotation:
F1-score is a harmonic mean of precision and recall. It is used as the primary score

to measure the the performance of entity annotations (CEA - all rounds), relation
annotations (CPA - all rounds), and type annotation (CTA - round 1). The F1 metric is
calculated as follows.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(5.17)

where Precision, and Recall are calculated as follows.

Precision =
# correct annotations

# annotations
(5.18)

Recall =
# correct annotations
# target annotations

(5.19)
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The Precision scores was also used as the secondary score in entity annotations
(CEA - all rounds), relation annotations (CPA - all rounds), and type annotation (CTA
- round 1).

Regarding the type annotation CTA task, there are two metrics designed to measure
the hierarchical of class annotations (Average Hierarchical - AH) and perfect class
annotations (Average Perfect - AP). The AH score is used as the primary score, while
AP score is used as the secondary score for round 2, 3, 4 of CTA task.

Denote that the list of target columns is ) . A column annotation is denoted as 0,
and the number of perfect annotations denotes as ?0, the number of OK annotation
denotes as >0 , and the number of the wrong annotation denote asF0 . The equations of
the AH score and AP score are described as follows.

AH =

∑
0∈)

?0 + 0.5 ∗ >0 −F0

|) | (5.20)

AP =

∑
0∈)

?0∑
0∈)

?0 + >0 +F0
(5.21)

5.3.3 Experimental Results

Table 5.3 (CEA9), Table 5.4 (CTA10), Table 5.5 (CPA 11) reports the overall results of
MTab for three matching tasks in the four rounds of SemTab 2019. Overall, these
results show that MTab achieves the best performance performances for all the three
matching tasks in all of the rounds.

The MTab performance might be explained in part by tackle the two major problems
of the three matching tasks. MTab performed language prediction and lookup with
the language parameter. Moreover, MTab built on top of multiple lookup services,
therefore, it increases the possibility of �nding the relevant entities. Additionally,
MTab adopted many new signals (literal) from table elements and use them to enhance

9CEA full results: https://www.aicrowd.com/challenges/iswc-2019-cell-entity-annotation-cea-challenge/
leaderboards

10CTA full results: https://www.aicrowd.com/challenges/iswc-2019-column-type-annotation-cta-challenge/
leaderboards

11CPA full results: https://www.aicrowd.com/challenges/iswc-2019-columns-property-annotation-cpa-challenge/
leaderboards

https://www.aicrowd.com/challenges/iswc-2019-cell-entity-annotation-cea-challenge/leaderboards
https://www.aicrowd.com/challenges/iswc-2019-cell-entity-annotation-cea-challenge/leaderboards
https://www.aicrowd.com/challenges/iswc-2019-column-type-annotation-cta-challenge/leaderboards
https://www.aicrowd.com/challenges/iswc-2019-column-type-annotation-cta-challenge/leaderboards
https://www.aicrowd.com/challenges/iswc-2019-columns-property-annotation-cpa-challenge/leaderboards
https://www.aicrowd.com/challenges/iswc-2019-columns-property-annotation-cpa-challenge/leaderboards
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matching performance.

Table 5.3: Entity annotation results in F1 score for the four rounds of SemTab 2019 (7
stable systems)

CEA Round 1 Round 2 Round 3 Round 4

MTab 1.000 0.911 0.970 0.983

CSV2KG - 0.883 0.961 0.907

Tabularisi 0.884 0.808 0.751 0.803

MantisTable 1 0.614 0.618 0.973

LOD4ALL 0.852 0.757 0.828 0.648

ADOG - 0.742 0.911 0.835

DAGOBAH 0.897 0.713 0.689 0.578

Table 5.4: Type annotation results in AH score for the four rounds of SemTab 2019 (7
stable systems)

CTA Round 1 (F1) Round 2 Round 3 Round 4

MTab 1.000 1.414 1.956 2.012

CSV2KG 0.833 1.376 1.864 1.846

Tabularisi 0.825 1.099 1.702 1.716

MantisTable 0.929 1.049 1.648 1.682

LOD4ALL 0.925 0.893 1.442 1.071

ADOG 0.908 0.713 1.409 1.538

DAGOBAH 0.644 0.641 0.745 0.684

5.3.4 Error Analysis and Improvement

In this section, we analyze the error cases of entity matching (Section 5.3.4), type
matching (Section 5.3.4), and relation matching (Section 5.3.4) of MTab system. We
report the analysis results on Round 2, 3, 4 dataset due to the larger number of tables,

11https://github.com/phucty/MTab
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Table 5.5: Relation annotation results in F1 score for the four rounds of SemTab 2019 (7
stable systems)

CPA Round 1 Round 2 Round 3 Round 4

MTab 0.987 0.881 0.844 0.832

CSV2KG - 0.877 0.841 0.83

Tabularisi 0.606 0.79 0.827 0.823

MantisTable 0.965 0.46 0.518 0.787

LOD4ALL - 0.555 0.545 0.439

ADOG - 0.459 0.558 0.75

DAGOBAH 0.415 0.713 0.519 0.398

as well as variety table size [76]. The Round 1 dataset is a subset of a T2Dv2 dataset,
this dataset is used as a demo sample data about the annotation tasks.

CEA: Entity Matching

Regarding entity matching ground truth, we found that many samples are incon-
sistently URI encoded and decoded representation. For example An entity URI of
dbr:Angélica_Rivera could be encoded as "dbr:Ang%C3%A9lica_Rivera" and decoded as
"dbr:Angélica_Rivera". The ground truth of CEA contains a mixture between encoded
URI and decoded URI. According to URI encoding of DBpedia, the encoding URI
(percent-encoding) is not encouraged 12. We verify how many samples do not have
decoded URI in CEA ground truth in Table 5.6. Note that, we only focus on the large
dataset such as Round 2, 3, 4.

Table 5.6: Number of none decoded URI samples in CEA ground truth in SemTab 2019
Ground Truth # Samples # No decode samples

Round 2 463,773 12,200 (2.63%)

Round 3 406,827 3,273 (0.8%)

Round 4 107,352 174 (0.16%)

12DBpedia URI encoding: https://wiki.dbpedia.org/uri-encoding
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To make the URI consistency, we provide the encoded and decoded URI for each
URI in the original CEA ground truth. Then, we measure the MTab performance on the
new ground truth called EDCEA_GT (Encoded and Decoded CEA ground truth). In
Table 5.7, the performance of MTab slightly improve when testing on EDCEA_GT.

Table 5.7: Comparison of MTab performance in the original CEA ground truth
(CEA_GT) and the new CEA ground truth (EDCEA_GT)

CEA_GT EDCEA_GT

Round 2 0.911 0.916

Round 3 0.970 0.978

Round 4 0.983 0.984

CTA: Type Matching

In this section, we provide a detailed analysis of the evaluation metrics of CTA tasks as
well as error analysis on the incorrect annotations of the MTab system.

Evaluation metrics Regarding evaluation metrics of CTA, the AH, and AP scores
are di�cult to be interpreted because we do not know the maximum and minimum
values of those scores (the scoring equations are based on reward 1 point perfect types,
0.5 points for OK types and penalty -1 point for wrong types).

We propose two new scoring functions based on the AH and AP scores, but we
normalize these scores to the range of [0,1], so that could be easy to compare between
di�erent datasets. Denote that the list of target columns is ) . A column annotation is
denoted as 0, and the number of perfect annotations denotes as ?0 , the number of OK
annotation denotes as >0 , and the number of the wrong annotation denote asF0 . The
new equations of NAH (Normalized Average Hierarchical) score and NAP (Normalized
Average Perfect) score are described as follows.

#�� =

∑
0∈)

<0G (0, ?0+>0−F0

?0+>0+F0
)

|) | (5.22)
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#�% =

∑
0∈)

?0

|) | (5.23)

Table 5.8 reports the maximum bound of annotations using two old scoring AH,
AP, and two normalized scores NAH, and NAP. In this experiment, we use the ground
truth to simulate the situation of getting perfect annotations. The maximum score
of AH and AP score vary in di�erent datasets, as a result, it is di�cult for concrete
comparisons, while the normalized scores could do this purpose.

Table 5.8: Comparison between normalized metrics NAH, NAP and the original AH,
AP score of CTA tasks on the perfect annotations

CTA AH AP NAH NAP

Round 2 2.254 0.285 1.000 1.000

Round 3 2.444 0.257 1.000 1.000

Round 4 2.232 0.289 1.000 1.000

Table 5.9 depicts the comparison using MTab between result of MTab in CTA tasks
on the old metrics (AH, AP) and new metrics (NAH, NAP) using MTab.

Table 5.9: Comparison between normalized metrics NAH, NAP and the original AH,
AP score of CTA tasks using MTab

CTA AH AP NAH NAP

Round 2 1.412 0.276 0.837 0.767

Round 3 1.956 0.261 0.897 0.924

Round 4 2.012 0.300 0.973 0.963

Error analysis In this section, we report two types of CTA errors of MTab system:
incorrect type annotations, and incorrect branch annotations. The incorrect type
annotations are those annotations be assigned in di�erent type such as the annotation
is [dbo:TelevisionShow, dbo:Work] where the ground truth is [dbo:Person]. The
incorrect branch annotations are those annotations that be assigned in the same
abstract type but di�erent subtypes such as the annotation are [dbo:Writer, dbo:Person]
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where the ground truth is [dbo:Person]. In this case, the annotation of dbo:Writer is
incorrect but the abstract type dbo:Person is correct.

Table 5.10: Error analysis of MTab on CTA tasks
Errors Type Branch Total

Round 2 697 (40.96%) 1005 (59.04%) 1702

Round 3 72 (14.94%) 410 (85.06%) 482

Round 4 20 (35.71%) 36 (64.29%) 56

Table 5.10 reports the details statistic of total errors and two error types of MTab
for CTA tasks. The incorrect branch annotation has a larger number of errors than the
type annotations. The number of error annotations in Round 4 is the smallest one.
It could be explained as the majority voting on entity types rely on the CEA entity
annotation tasks, the CEA results also got the highest performance in the Round 4
dataset. Improving the entity annotations (CEA) could improve the performance of
type annotations (CTA).

CPA: Relation Matching

Regarding relation matching, we found that the ground truth annotations do not have
the equivalent relations. For example, the relation of dbo:team has its equivalent relation
as dbo:club. The direct equivalent properties in DBpedia endpoint are (dbo:team,
dbo:club), (dbo:language, dbo:deFactoLanguage, dbo:jureLanguage), and (dbo:area,
dbo:landArea, dbo:waterArea). We add those direct equivalent properties into the
ground truth (CPA_GT) and associate the new ground truth as DECPA_GT (Direct
Equivalent CPA Ground Truth).

Table 5.11 reports a comparison between MTab performance in the original CPA_GT
and the new ground truth DECPA_GT. The performance of MTab on CPA signi�cant
improve when tested in DECPA_GT.

Due to the incompleteness of DBpedia, we found that there are other indirect
equivalent relations in DBpedia. For example, dbo:deathCause and dbo:causeOfDeath
have the same equivalent property of wikidata:P509 (cause of death). The problem of
knowledge graph completion is not the main focus of this work, but we can expect the
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Table 5.11: Comparison between MTab performance in the original CPA_GT and the
new ground truth DECPA_GT

CPA
# Errors F1 score

CPA_GT DECPA_GT CPA_GT DECPA_GT

Round 2 1,090 388 0.839 0.888

Round 3 1,208 939 0.844 0.875

Round 4 457 301 0.833 0.890

improvement of relation annotations when the completeness of DBpedia is improved.

5.3.5 Ablation study: Contributions of EmbNum+ in MTab

In this section, we provide an ablation study to understand the contribution of
EmbNum+ in the MTab system. We create model MTab- where the signals from
numerical columns (Step 3) do not take consideration in the joint probability of entity
columns. Then, we test MTab- on the original ground truth of the three tasks CEA,
CTA, and CPA.

Table 5.12: Annotations of MTab- on CEA, CTA, and CPA tasks
MTab- CEA (F1) CTA (AH) CPA (F1)

Round 2 0.891 (-2.1%) 1.271 (-10.1%) 0.831 (-5.7%)

Round 3 0.954 (-1,7%) 1.725 (-11.8%) 0.839 (-0.6%)

Round 4 0.955 (-2.8%) 1.703 (-15.4%) 0.831 (-0.1%)

Table 5.12 report the results of MTab- on the primary scores (F1-score in CEA and
CPA tasks, AH score in CTA task). We observe that MTab- where the EmbNum+ does
not take into account, achieves a lower performance than MTab. These results validate
that EmbNum+ is a necessary module in the MTab system.
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5.4 Related Work in SemTab 2019

In this section, we describe the six other systems frequently participants for all rounds
of SemTab 2019 challenges.

In general, all of the participants start with generate entity candidates by lookup
table cell values or searching those values in local index with Elastic Search in DBpedia,
Wikidata. The details about the lookup services are reported in Table 5.13. Then, the
type candidates and relation candidates are estimated using the entity candidates.
Then, re-estimate the entity candidates with the type and relation candidates.

CSV2KG (IDLAB) �rst search on DBpedia lookup and DBpedia Spotlight to generate
entity candidates [77]. The type candidates and relation annotations are estimated using
majority voting approaches based on entity candidates. Then, the entity annotations
are estimated using the information of relation candidates. Finally, type annotations
are estimated using entity annotations.

Tabular ISI approach �rst generates entity candidates with Wikidata API, and
Elastic Search on entity labels of Wikidata, DBpedia. Second, the authors use the
heuristics TF-IDF approach and machine learning (neural network ranking) model to
select the best candidate for the entity annotation task [78]. The type annotations
are estimated with the results from entity annotations with hierarchy searching
on common classes. The relation annotations are estimated by �nding the relation
between entity candidates of the primary and secondary columns or value matching
between the primary entity candidates and the value of the secondary columns.

Mantis Table performs column analysis including predicting name entity columns,
literal columns, and subject column, then mapping between columns into concepts in
DBpedia [79]. Then the relationships between the main column and other columns
are estimated based on predicate context and predicate frequency of column value
and candidate predicates. Finally, entity linking is performed using the results from
previous steps for cell value disambiguation. The relation annotations are estimated by
getting the maximum frequency of relation candidates in the entity linking phase. To
estimate type annotations, the authors calculate the hierarchical path score of entity
types from entity annotations. Then type annotations are estimated on the maximum
of the path score.

DAGOBAH performs entity linking with a lookup on Wikidata and DBpedia as
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well as voting mechanisms [80]. The authors used Wikidata entity embedding to
estimate the entity type candidates with the assumption that entities in the same
column should be closed in the embedding spaces as they share semantic meanings.

LOD4ALL uses a combination of direct search (SPARQL ASK on dbr:"query"),
keyword search (Abbreviation of Human name) and Elastic Search to �nd entity
candidates [81]. The entity candidates will be used to estimate type and relation
candidates.

ADOG focuses on the task of entity annotation with Elastic Search on an integrated
ontology (DBpedia sub-graph) using ArangoDB [82]. The results of type and relation
annotations are estimated from entity annotations.

In summary, all these methods focus on lookup services of DBpedia, Wikidata, but
such services do not usually return relevance entities for non-English queries. In MTab,
we address the problem of non-results entities at the lookup step by predicting the
language used in a table, and lookup on multiple services using language parameters.
The aggregation on these lookup results increases the possibility to �nd relevance
entities for general tabular data.

Moreover, these tabular data contain many numerical attributes that are helpful
if we use the results from semantic labeling for numerical attributes. In MTab, we
aggregate signal from the result of semantic labeling for numerical attributes (columns)
using EmbNum+ [7] (deep metric for distribution similarity calculation)

5.5 Conclusion

In this chapter, we present MTab for the tabular data matching into Knowledge Base -
SemTab 2019. MTab is built on top of multiple lookup services, therefore, it increases
the possibility of �nding the relevant entities. Additionally, MTab adopted many new
signals (literal) from table elements and use them to enhance matching performance.

5.5.1 Limitations

Since MTab is built on the top of lookup services, therefore, the upper bound of
accuracy strongly relies on the lookup results. In MTab, it is computation-intensive
because of aggregating the con�dence signals from many parts of the table. Therefore,
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MTab is not suitable for the real-time application, where we need to get the result
as fast as possible. MTab could be modi�ed to match only some parts of the table
to reduce the processing time as Table Miner+ [21]. However, we �nd that this is a
trade-o� between e�ectiveness and e�ciency when using Table Miner+ [21] method.
A concrete analysis of the trade-o� issue is left as our future investigation.

5.5.2 Future Works

MTab could be improved in many dimensions such as e�ectiveness, e�ciency, and
generality. Regarding e�ciency, MTab could be modi�ed as parallel processing
fashion, since the lookup steps and these probability estimations in Step 2, 3, and 4 are
independence. Regarding e�ectiveness, MTab performance could be improved by
relaxing our assumptions:

• Assumption 1: The closed-world assumption might not hold in practice. Improv-
ing the completeness and correctness of knowledge graphs might improve MTab
performance.

• Assumption 2: Classify table types before matching could help to improve MTab
performance [1].

• Assumption 3: In reality, some tables could have shared schema. For example,
tables on the Web could be divided into many web pages, therefore we can
expect improving matching performance by stitching those tables on the same
web page (or domain) [24], [42]. Therefore, performing holistic matching could
help improve MTab performance.

• Assumption 5: Correctly recognize table headers could help to improve MTab
performance.

Moreover, to evaluate the generality of MTab, it is necessary to test MTab perfor-
mance on the full version of standard data of tabular data annotation such as T2Dv2 13,
WDC [61], and Wikipedia Tables [29].

13T2Dv2 Dataset link: http://webdatacommons.org/webtables/goldstandardV2.html

http://webdatacommons.org/webtables/goldstandardV2.html
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This chapter summaries our contributions of this thesis including research impact
in Section 6.1, limitation, and future direction in Section 6.2.

6.1 Contributions and Research Impact

The tremendous increasing of tabular data on the Web and Open Data Portals over
the past decade creates a huge potential for accessibility, transparency, innovation.
Integrating those tabular data into standard knowledge bases enables those data
useful for other downstream applications such as information retrieval, knowledge
management.

The current approaches on tabular data annotation focus on relational tables,
where table cells could be matched into entities in knowledge bases. However, there
are a lot of tabular data which do not contain textual content (or contains but can not
be matched into knowledge graphs), but they have a large number of numerical values.
Many methods ignore those tabular data, as a result, it leads to incorrect propagation
in the annotation process. In this thesis, we proposed two methods to address the
semantic annotation for numerical values in tables. On the one hand, it could be used
in di�cult tables where there are no matching entities but contains numerical values
(DBS [6], EmbNum+[7]). On the other hand, it also could be used to enhance the
annotation performances in general frameworks (MTab [8]).

Common approaches in the semantic annotation for numerical values used ?
value-based metrics to estimate the similarity between numerical attributes. However,
there are several issues (Section 3.1) about ? values so that these metrics are not robust
in general cases. We �rst proposed distribution-based metrics DBS [6] to solve these
issues of ? value-based metrics. The experiments on City Data and Open Data shows
that DBS outperform other baselines methods (Semantic Typer [2] and DSL [36]) in a
large margin.

EmbNum+ is a deep metric approach learned directly from numerical attributes
which are a combination between convolutional neuron network and triplet network
[7]. EmbNum+ is built on the top of DBS which learns vector representations for
distributions while the similarity metric is calculated directly from two distributions in
DBS. The experimental results show that EmbNum+ consistent outperform other bases
line approaches. EmbNum+ achieve a higher 1.7%-5.1% performance result than DBS in
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the four datasets.
One of the other problems in tabular data matching is that the representation of

table cells is complicated since it could be in multiple-language, with strange encoding.
Previous approaches performed lookup those table cells directly on knowledge bases
(Elastic Search, DBpedia lookup or, Spotlight) then lead to no retrieval results. In
this thesis, we proposed the MTab framework solving this problem [8]. We perform
language detection on table cells and lookup with language parameters on multiple-
lookup services which yield promising performances in entity lookup. Additionally,
MTab adopts many new signals (literal) from table elements and uses them to enhance
matching performances. Overall, MTab consistently achieves the best performance
in the three matching tasks e.g, entity annotation, type annotation, and relation
annotation in the Semantic Web Challenge in Tabular Data to Knowledge Graph
Matching (SemTab 2019).

6.2 Limitations and Future Works

This section provides the discussions on thesis limitations and the future direction for
the tasks of semantic tabular data annotation.

A future direction for semantic annotation for numerical attributes is to increase
the metric coverage for multiple scaling of data. Due to the heterogeneous data
representation, numerical attributes could be represented in di�erent scaling in
di�erent data resources. One possible solution is on increasing the variety in data
scaling of numerical knowledge bases. For instance, one numerical attribute of "height
in meter" could be augmented into many other numerical attributes in di�erent
scalings, such as "height in millimeter", "height in kilometer" and so on. However,
the increasing variety and volume of numerical attributes could lead to increasing
complexity in similarity metric learning. The details of learning a metric that could be
interpreted multiple data scaling will be left as our future work.

One interesting direction is on interpreting the hierarchical semantic representation
of numerical attributes. Neumaier et al. [5] introduces a numerical knowledge base
structured from DBpedia ontology (classes) with unsupervised clustering. Nickel et al.
[83] proposes a method to embed entities into hyperbolic spaces in terms of their type
relationships. In EmbNum+, we used Euclidean space to estimate similarity which
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is cannot re�ect hierarchical structure. Learning a metric could be represented the
hierarchical information between numerical attributes is one of our future work.

Regarding the general framework for tabular data matching, the main focus
of this thesis is on semantic annotation (MTab), however, the other tasks on table
structure annotations also need to be addressed such as table type prediction, table
heading prediction, data type parsing, core attribute prediction, and holistic matching.
The e�ciency of MTab could be improved with parallel processing or embedding
techniques, while the MTab e�ectiveness could be improved with relaxing MTab
assumptions. We also plan to evaluate the MTab performance in other domains such as
tables in documents, or academic articles.

Structure Semantic
Table Type

Table Header

Data Type

Core Attribute

Holistic Matching

Entity Matching

Type Matching

Relation Matching

Textual Values

Numerical Values

Tabular Data Annotation

DBS

EmbNum+

MTab

MTab+

Figure 6.1: MTab+: Tabular Data Annotations

Current approaches on table annotations or interpretations focus on the relational
table types, there other table types like matrix types, or entity types are still as open
questions, and need to be addressed in the future. MTab achieves very promising
performance on the SemTab 2019 dataset, however, it is built on a speci�c assumption
that the input tables are vertical relational tables. The general table data could be
represented in di�erent table types, therefore, it is more challenging for tabular data
annotation in general cases. The long term direction is to build a general tabular data
annotations (MTab+ Figure 6.1). In particular, the problems of structure annotations
and semantic annotations could be addressed in a uni�ed system.
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One of the other future directions is on document understanding where natural
language text and data in document tables are both taken considered to improve
document understanding. For example, the task of information retrieval on scienti�c
publications is limited with keywords searching, and it is less useful for table searching
(�nding relevant tables contains a speci�c value). Or another application such as leader
board summarization where studies methods and evaluation results from academic
papers are automated processed and integrated into online leaderboard 1.

1https://paperswithcode.com/task/question-answering
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