|--|

学位(専攻分野) 博士(理学)

- 学 位 記 番 号 総研大甲第 2172 号
- 学位授与の日付 2020年9月28日
- 学位授与の要件 物理科学研究科 構造分子科学専攻 学位規則第6条第1項該当
- 学位論文題目 Anion arrangement and H⁻ conductivity in layered perovskite-type oxyhydrides Ba₂MHO₃(M = Sc, Y)

論文審查委員 主 查 教授 横山 利彦

准教授 小林 玄器 教授 山本 浩史 准教授 杉本 敏樹 教授 菅野 了次 東京工業大学 科学技術創成研究院 准教授 青木 芳尚 北海道大学 大学院工学研究院

Summary of Doctoral Thesis

Haq Nawaz

Anion arrangement and H⁻ conductivity in layered perovskite-type oxyhydrides Ba_2MHO_3 (M = Sc, Y)

Hydride ion is an emerging charge carrier with exciting properties such as monovalence, suitable size, and large polarizability. The interest in hydride ion (H⁻) conducting materials has reawakened since Kobayashi *et.al.* realized pure hydride ion conductivity in La_{2-x-y}Sr_{x+y}LiH_{1-x+y}O_{3-y} (LSLHO) family of oxyhydrides[1]. The phenomenon established layered perovskites as potential ionic framework with flexible cationic and anionic sublattices which can be tuned to optimize ion conducting properties. The anionic arrangement in these oxyhydrides follow Pauling's electrostatic valence rule according to which highly charged anion is surrounded by highly charged cations resulting in preferential occupation of hydride ions at the equatorial site. As the fast O²⁻ conduction via apical sites in isostructural oxides Ln₂NiO_{4+δ}, is already known[2,3], the 1st phase of the project was focused to exploit the electrostatic valence rule to synthesize oxyhydrides with preferred anionic arrangement.

In addition, materials design with anion sublattices having preferred occupation is crucial for fast hydride ion conduction, since less mobile oxide ions inhibit hydride conduction. Nevertheless, the "immobile" ions facilitate the conduction process by forming the crystal frameworks with suitable diffusion pathways for conduction of the mobile ions. Compared to anionic conductors which are single-anion systems, this phenomenon is prevalent in some cationic conductors with multiple cations such as NASICON[4] and LGPS[5]. In the second phase of the project we further explored oxyhydrides as anion conductors to study the effect of mobile H⁻ and immobile O²⁻ ions towards design of anionic sublattices and eventually ion conduction properties.

The new Sc based oxyhydride Ba₂ScHO₃[6] reported in this work adopted a K₂NiF₄-type structure with preferred apical H⁻ ions. As a result of placement of a highly charged Sc⁺³ ion at *B* site, the ionic arrangement altered and hydride ion preferentially occupied the apical position, enabling the ionic conduction through the rock salt layer. Ba₂ScHO₃ exhibited superior H⁻ ion conductivity to that of an ideal perovskite BaScO₂H. First principal calculations regarding point defect formation and conduction mechanism revealed hydride ions as predominant charge carriers. The Sc based oxyhydride showed a superior H⁻ ion conductivity to that of an ideal perovskite BaScO₂H. The as shown non-dependence of conductivity on H₂/Ar towards EIS measurement revealed absence of any electronic conduction. In comparison to La₂LiHO₃ with similar carrier concentration, the conductivity of the two oxyhydrides

despite different conduction pathways was not much different. This could be due to the co-occupancy of larger immobile O^{2-} ions at the same sites which partially impeded the conduction path way.

Figure 1 (a) Crystal structures of (a) La₂LiHO₃, (b) Ba₂ScHO₃ and (c) Ba₂YHO₃ showing different anionic arrangements (b) Arrhenius plot of ionic conductivities of Ba₂YHO₃ in comparison with La₂LiHO₃, LaSrLiH₂O₂ and Ba₂ScHO₃

The Y based oxyhydride Ba₂YHO₃, also adopted a K₂NiF₄-type structure but with complete H^{-}/O^{2-} anion ordering to form [Ba₂H₂] rock-salt layers. Such a hydride ion ordering lowered the symmetry of Ba₂YHO₃ to *P*4/*nmm* as compared to its Sc analogue which crystallized in high symmetry *I*4/*mmm* space group as indicated by the structural analysis by both SXRD and ND data. First principles calculations also outlined the higher stability of the structure with complete ordering as compared to other metastable structures. The H⁻ conductivity sought a reasonable improvement in comparison to both La₂LiHO₃ and Ba₂ScHO₃ which have [LiHO] and [Ba₂HO] diffusion layers respectively. The higher observed conductivity, compared with those in related compounds (Fig. 1b) suggested the potential of rock-salt layers for H⁻ diffusion even in compositions with relatively low hydrogen content.

Layered oxyhydride are composed of alternate stacks of perovskite and rock salt layers where both layers are capable of ionic diffusion separately. Previously in LSLHO oxyhydrides, the conduction occurred dominantly through perovskite layers as indicated by the theoretical calculations. Current study of rock salt ordered Sc and Y based oxyhydrides helped to validate the idea of tuning the site selectivity of H⁻ according to the electrostatic valence rule and potential of rock salt layers in order to design the H⁻ diffusion pathway in layered oxyhydrides. The study revealed that within the rock salt layers, anion order/disorder plays a crucial role for smooth hydride ions diffusion. The anion disorder at apical sites in Ba₂ScHO₃ prevented the facile diffusion of hydride ions through Ba₂HO rock salt layers. Consideration of larger Y cation at B site with tolerance factor further away from unity helped to form a K₂NiF₄-type structure with lowered symmetry resulting in a complete rock salt ordering to form hydride rich Ba₂H₂ layers. As a result, the hydride ion conductivity of Ba₂YHO₃ enhanced five times as compared to its predecessor Ba₂ScHO₃. The Sc and Y based layers oxyhydride based compositions can be fine-tuned by introduction of vacancies or the addition of hydrogen into the interstitial sites within the layer to further optimize the conductivity.

References

- [1] G. Kobayashi et.al., Science, **351**, 1314 (2016).
- [2] S. J. Skinner, J. A. Kilner, Solid State Ionics, 135, 709 (2000).
- [3] D. Lee, H. N. Lee, *Materials (Basel)*, **10**. 368 (2017).
- [4] T. Takahashi et. al., Solid State Ionics, 1, 163 (1980).
- [5] N. Kamaya et. al., Nat. Mat, 10, 682 (2011).
- [6] F. Takeiri et. al., Inorg. Chem, 58, 4431(2019).

Forms: Separate sheet (様式8・別紙1)

Results of the doctoral thesis screening

博士論文審查結果

Name in Full 氏名 Haq Nawaz

論文題首 Anion arrangement and H⁻ conductivity in layered perovskite-type oxyhydrides $Ba_2MHO_3(M = Sc, Y)$

水素は電荷自由度を持ち、物質の構成元素や構造、即ち結合状態の違いに応じてプロトン(H+)、水素原子(H0)、ヒドリド(H-)など、多様な状態をとることができる。イオン導電材料においては、H+が導電種となる物質がセラミックス、高分子、錯体など材料系を問わず数多く存在し、燃料電池やセンサーへの応用を目指した研究が長年にわたり盛んに行われている。一方、近年では、H-を導電種とする物質が開発され、H-導電体が固体イオニクスの新たな研究対象として注目されている。H-は一価で適度なイオン半径と大きな分極率を有し、高速イオン導電に適した特徴をもつだけでなく、Mgと同程度の強力な還元力をもつことから、蓄電・発電デバイスや物質変換への応用が期待できる。現段階では、300~400°Cの中温域で優れた H-導電性を示す物質が報告されているが、H-導電体の物質開発は発展途上にあり、デバイス応用に向けてより低温で高い導電率を示す物質の開発が求められている。以上の背景に基づき、出願者は、ペロブスカイト層と岩塩層が交互に積層したK2NiF4型構造の酸水素化物を対象にした物質探索を行い、新規 H-導電体 Ba2MHO3 (M = Sc, Y)を開発した。本博士論文においては、Ba2MHO3の合成、構成元素に依存した結晶構造の変化、イオン導電率に与える影響について報告している。

第一章の序論、第二章の実験項に引き続き、第三章では Ba₂ScHO₃の物質開発について 報告している。Ba₂ScHO₃ は高圧合成によって作成し、結晶構造は中性子回折と放射光X 線回折により決定した。Ba₂ScHO₃ は既報の K₂NiF₄ 型酸水素化物である Ln₂LiHO₃ と同 じ対称性(*I*4/*mmm*)の構造をとるが、Li系酸水素化物の H-が LiX₆ (X = O, H)八面体の面 内(ペロブスカイト層内)を選択的に占有するのに対し、Ba₂ScHO₃では H-が八面体の頂 点(岩塩層内)を選択的に占有し、岩塩層内の H/O は不規則配列していることが明らかに なった。出願者は、この構成元素によるアニオン配列の違いの起源をポーリングの静電電 荷則から説明した。即ち、価数の低い H-は O²-よりも価数の低いカチオンと結合する配位 環境を好んで占有する傾向があり、Ln₂LiHO₃ではペロブスカイト層内に[LiHO]面が形成 され、Ba₂ScHO₃では Sc³⁺よりも価数の低い Ba²⁺と[Ba₂HO]層を形成したと解釈すること ができる。両者のイオン導電率は同程度であり、300°C で 10⁻⁶~10⁻⁵ S·cm⁻¹であった。

第四章では、 Sc^{3+} よりもイオン半径の大きい Y^{3+} が八面体中心を占有する Ba_2 YHO₃について報告している。Sc 系酸水素化物と同様に、中性子回折と放射光 X 線回折から結晶構造を調べ、 Ba_2 YHO₃の H-が岩塩層内を選択的に占有し、かつ、H/O が規則配列した構造をとることを明らかにしている。つまり、 Ba_2 YHO₃は空間群が *P4/nmm* となり、ペロブスカイト層が非等価な岩塩層([Ba2H2]層と[Ba2O2]層)で挟まれた積層構造となる。出願者は、この Sc 系と Y 系のアニオン配列の違いをトレランスファクター*t* から説明した。Y 系

では、Ba とのイオン半径差が小さいため、Ba₂ScHO₃ と比較して tが理想的な立方晶ペロ ブスカイトを意味する t=1 から大きく逸脱し、ひずみの大きい構造であることが分かり、 このひずみが H/O の規則配列化によって緩和されたと結論づけた。Ba₂YHO₃ のイオン導 電率は 350 °C で 10⁻⁴ S · cm⁻¹に達し、Ba₂ScHO₃ より 5 倍高い値を示した。これは、岩塩 層内における H/O の規則配列によって導電に寄与しない O²-が存在しない[Ba₂H₂]層が形 成されたことで、O²-による H-の長距離拡散が阻害されなくなったことに起因すると結論 づけた。

第五章は、本論文の総括が記載されている。本学位論文の研究を通して、K2NF4型構造 の岩塩層を選択的に H-が占有する新規 H-導電体 Ba2*M*HO3 (*M* = Sc, Y)が開発され、これ 岩塩層を H-が拡散する物質設計が可能になったことが述べられている。さらに、本章では、 *MX*6 八面体中心を占有する *M*のイオン半径と価数を制御することで酸水素化物における アニオン配列が制御できること、さらには、H/O が規則化して H-濃度の高い拡散層が形成 することで導電率を向上させることができることが言及されている。これらの知見は、今 後の H-導電体の物質開発において重要な物質設計指針となり、学術的意義は非常に高い と認められる。

以上の理由により、審査委員会は、本論文が学位の授与に値すると審査員全員一致で判断 した。