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Abstract

In the last five years, Advanced LIGO and Advanced Virgo detectors have al-
ready made several groundbreaking scientific discoveries. These detectors recently
terminated the third observation run and are now undergoing an upgrade phase to
further improve their sensitivity. Up to now, more than seventy gravitational wave
candidates were detected, allowing to study various unknown systems, such heavy
mass black hole binary systems, neutron star - black hole systems and add further
information to know stellar systems such as binary neutron star systems. KAGRA,
the Japanese gravitational wave detector, has terminated the construction phase
last year and has recently joined the network.

In the third observation run, LIGO and Virgo started using frequency indepen-
dent squeezing. This technology, already in use at GEO600 since 2010, allowed for
a substantial improvement of the detectors’ sensitivity, reducing the impact of the
quantum noise. In particular, the way frequency independent squeezing was used
in LIGO and Virgo, allowed for a reduction of mainly the shot noise component
of the quantum noise, at the expense of an increase of the radiation pressure noise
component. The increase of the radiation pressure noise was not an issue so far,
since it was not one of the dominating noises, up to the last observation run. It was
in fact reported by LIGO that the low frequency radiation pressure noise started to
limit the detection range of interferometer during the third observation run. This
makes the frequency independent squeezing not optimal anymore. Luckily, the use
of a frequency dependent squeezing allows to circumvent this limitation, allowing
for a broadband reduction of the detector’s quantum noise.
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Abstract

My work aims to develop such frequency dependent squeezing source, which can
be used to achieve a broadband quantum noise reduction for advanced gravitational
wave detector. The project started in 2015 and takes places in the former TAMA300
facility, at the National Astronomical Observatory of Japan. The project’s goal is
to measure a 9dB frequency independent squeezing in the gravitational detector
frequency bandwidth (10Hz-10kHz) and measure between 4dB to 6dB of frequency
dependent squeezing. When I joined this project in 2017, the construction of the
filter cavity (a 300m long Fabry-Perot optical cavity) was already finished and its
characterization was ongoing. I contributed to it and measured its optical losses, a
key parameter which define the limitation for the achievable frequency dependent
squeezing level. I mainly worked on the development of a frequency independent
squeezed vacuum source which is capable of producing 6dB of squeezing down to
10Hz. Around the world, very few laboratories can achieve squeezing at so low
frequency and our project is the first group to demonstrate this technique within the
KAGRA collaboration. By combining the filter cavity to the frequency independent
squeezed vacuum source, we were able to perform the first measurement of frequency
dependent squeezing with sub-shot noise in the whole gravitational wave detectors’
frequency band.

This result is of paramount importance, not only because it is the first demon-
stration, but also because it shed light on the future implementation of frequency
dependent squeezing in advanced gravitational wave detectors and pave the way for
its use even in future generation gravitational wave detectors.
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Introduction

Gravitational-wave (GW) astronomy started in 2015 with the detection of a binary
black hole coalescence by the two Advanced LIGO detectors. Advanced Virgo came
online in 2017 and recently also the Japanese detector KAGRA joined the gravi-
tational wave detectors network. The detection of gravitational waves provides an
innovate and unique insight to understand the Universe, bringing important results
for fundamental physics, astrophysics, nuclear physics, astronomy and cosmology.
Nowadays, Earth-based gravitational-wave detectors can reach events at a redshift
smaller than 1. The increase of their detection ability will bring more scientific ben-
efit to all the relevant research fields. Therefore, the improvement of their sensitivity
is of great importance.
Current and future gravitational-wave detectors are limited by quantum noise in a
large part of their spectrum. Quantum noise in interferometers is caused by quantum
fluctuations of the vacuum field entering their output port. Recently, gravitational-
wave detectors have introduced the so-called squeezing, as a mitigation strategy.
This technique consisted in replacing the standard vacuum field with manipulated
vacuum states whose amplitude and phase uncertainties (which are equal in ordi-
nary vacuum) were respectively increased and reduced. For such states, referred to
as squeezed states, the Heisenberg uncertainty principle makes amplitude and phase
uncertainties not possible to be reduced simultaneously. Squeezed states are usually
represented as an ellipse in the quadrature plane. If the reduced-noise quadrature
is aligned with the GW signal, the result is a reduction of the quantum noise. How-
ever, since the opto-mechanical coupling of the laser light with the interferometer
test masses induces a rotation of the squeezing ellipse, by injecting a simple squeez-
ing, known as frequency independent squeezing (where the ellipse orientation does
not depend on the frequency) only one part of the quantum noise can be reduced.
A quantum noise reduction in the whole spectrum can be obtained by inject-
ing a squeezed vacuum with a frequency dependence able to counteract the ro-
tation caused by the interferometer so to keep GW signal always aligned with the
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Introduction

reduced-noise quadrature. Such frequency dependence can be achieved by reflecting
a frequency-independent squeezed state off a detuned optical cavity with the ap-
propriate bandwidth. This cavity is known as filter cavity. Obtaining a rotation at
low frequency is particularly demanding, as it needs a filter cavity with high stor-
age time. A rotation at a frequency smaller than 100 Hz, as required for advanced
detectors, corresponds to a cavity storage time of more than 2 ms.
My PhD research focused on an experiment which managed to realize a source of
frequency dependent squeezed vacuum, suitable for broadband quantum noise re-
duction of advanced GW detectors. To this purpose, a 300 m long filter cavity,
has been installed in an arm of the former TAMA300 at NAOJ and a source of
frequency independent squeezing has been developed. When I joined this project,
the filter cavity integration and control were already achieved. I work on the cavity
characterization, on the realization of the frequency independent squeezing source
and on the coupling of the squeezing into the cavity which allowed to obtain the final
results: a frequency dependent squeezed state with ellipse rotation at frequencies
lower than 100 Hz.
Filter cavity characterization and losses measurement: optical losses in the
filter cavity are one of the main limitations to the achievable squeezing level. In par-
ticular, what is important are the losses per unit length and therefore, in order to
reduce such losses two approaches can be used: reduce the overall losses themselves,
or increase the length of the filter cavity. Our 300m long filter cavity significantly re-
lax the losses requirement with respect to shorter cavities, but nevertheless requires
high-quality mirrors. Since this parameter is so crucial, we spent a considerable
effort to fully characterize it. The measurement is performed obtaining a set of on
and off resonance measurements of the reflected power. By comparing the amount
of light promptly reflected by the cavity and the one reflected after circulating in
it we could obtained the amount of power lost inside it and computed the cavity
optical losses. The measurement result is in agreement with the expectation and
has been published on PRD [1] and I am one of the author of this paper.
Development of a squeezer for gravitational wave detectors: a frequency
independent squeezed vacuum source is a complex optical system based on a para-
metric down conversion process inside a non-linear crystal. I gave a major contri-
bution in the construction of this system which includes four optical cavities (two
of which contains non-linear crystals which require thermal stabilization), a Mach-
Zehnder interferometer, two optical phase lock loops, two optical phase shifter, and
eleven control loops. Our squeezer can generate 6 dB of squeezing in the whole
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gravitational-wave detector frequency band (from 10Hz to 100kHz). NAOJ is now
one of the few laboratories in the world that can produce low-frequency squeezing
suitable for GW application and it is the first within the KAGRA collaboration.
Frequency dependent squeezing measurement: in order to produce frequency
dependent squeezing, we coupled the frequency independent squeezed vacuum into
the filter cavity. The matching is obtained by a telescope composed of two curved
mirrors, hosted in-vacuum. The filter cavity is also in vacuum and the mirrors are
suspended to reduce the effect of seismic noise. The reflection from the filter cavity
is characterized by a balanced homodyne detector. A squeezing level of more that
3 dB above the rotation frequency was measured, along with a squeezing level of at
least 1 dB at the rotation frequency and below. Our result is crucial for the gravi-
tational wave community as we could demonstrate a key technology that allows to
improve quantum noise in the whole detection bandwidth. Moreover, since we are
using a full-scale filter cavity prototype, we developed a useful experience for future
implementation in GW detectors. The paper presenting this result, of which I’m
first author, has been published on PRL [2].
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Chapter 1

Gravitational waves: theory and
scientific payoff from their
detection

Gravitational waves (GW) are generated by any object with time-varying quadrupole
momentum of masses. The amplitude of such effect is so small that at present only
astrophysical sources (fast moving, very compact and with large mass) can generate
detectable gravitational waves. Several information about the astrophysical sources
can be extracted from the GW waveform. Gravitational-wave detectors has recently
”allowed us to listen” to these new messengers bringing important new results in
fundamental physics, astrophysics and cosmology.

In this chapter I will review how GWs are generated and detected and I will
briefly describe the scientific payoff of their detection. A much more complete review
on GWs’ theory, experiment and data analysis can be found in the book written by
Creighton and Anderson [3].

1.1 Gravitational waves theory

Gravitational waves are predicted by the theory of general relativity [4][5]. They
propagate at the speed of light deforming the space-time. The first direct detection
of a gravitational-wave was done in 2015 by two earth-based large scale laser interfer-
ometers (LIGO Hanford and LIGO Livingston) [6]. Since then, there have been tens
of GW events detected [7], which opened the exciting new field of gravitational-wave
astronomy.
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Chapter 1

A key feature of gravitational waves is that the induced spacetime change can
transfer energy from the waves to the objects they pass by. However, this energy
transfer is so small that the induced motion of objects is very difficult to be detected.
This is also beneficial since gravitational waves are almost not influenced by their
interaction with matter.

1.1.1 Gravitational Waves From General Relativity

The theory of general relativity (GR) is a generalization of the theory of special
relativity, which postulates the principle of relativity and invariance of the speed
of light. Special relativity is built on lots of inertial coordinates which exist with
various velocities and orientations. The transformation among them is done with
Lorentz transformation and physics keeps invariant. As a result, this transformation
builds a close relation between space and time, which breaks our usual view of them.

To extend the principle of relativity to the principle of general covariance, there
is the demand to have no preferred coordinate system. Besides, we can always
find locally inertial frame in the vicinity of any space-time point because of the
principle of equivalence. Similarly, manifold locally resembles Euclidean space near
each point. So general relativity is formulated on manifolds.

The following is an excerpt from Carroll’s book [8]. For a more complete review
of general relativity, refer to the book. Let’s start with the definition of distance

ds2 = gµνdx
µdxν (1.1)

where ds is a sufficiently small distance between two points, gµν is the metric tensor
which contains the geometry information of space-time, dx represents an infinitesi-
mal change in one of the spatial indices’ dimension. The indices µ and ν stand for
the dimension of spacetime and, according to the Einstein summation convention,
we need to run over all of them, for example, in our flat spacetime we have {t, x, y, z}
dimensions and metric takes the form

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.2)
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after we run over η00dx0dx0, η01dx0dx1, η02dx0dx2, η03dx0dx3, η10dx1dx0... until
η33dx

3dx3, we have the distance between two points in flat spacetime as

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2 (1.3)

The transformation between two coordinates is to induce a change of metric as

gαβ = gµν
∂xµ

∂xα
∂xν

∂xβ
(1.4)

The change of coordinate actually translate to a modification of the metric. Thanks
to this equation, we can freely define any coordinate systems. This is called gauge
freedom.

As we said at the beginning, manifold locally resembles flat space. So the cur-
vature comes from how do we put these sufficiently small and flat space together.
How we can connect them translates on how we can parallel transport a vector from
one point to another. In differential geometry, any vector is a directional derivative.
Directional derivative is not a derivative along ’x’ direction or a partial derivative,
but a derivative along a direction described by the combination of all dimensions.
Parallel transport means that such vector doesn’t change direction

0 = lim
∆t→0

vα(t+∆t)− vα(t)

∆t
=
dvα

dt
=: uµ∇µv

α (1.5)

this equation represents a vector vα parallel transport along the curve u. The
connection ∇µ doesn’t always take the form of ∂

∂xµ , however, we can always find a
transformation to a new coordinates to make it be an ordinary derivative. In this
case, we can find connection coefficient

Γγ
αβ :=

∂xγ

∂x′µ

∂2x
′µ

∂xα∂xβ
(1.6)

also called Christoffel symbol. From the fact that the inner product of two vectors
will remain the same if they are parallel transported, we can have

Γγ
αβ =

1

2
gγδ(

∂

∂xα
gβδ +

∂

∂xβ
gδα − ∂

∂xδ
gαβ) (1.7)

In this way we connect the metric to the Christoffel symbol. The parallel transporta-
tion for motion is a straight line in Newtonian mechanics. However, in a curved space
time, the ”straight” lines are represented by geodesics. Following the same principle

7
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with equation 1.5, we can construct an equation for motion with tangent vector u

uµ∇µu
α =

dxµ

dt

∂

∂xµ
(
dxα

dt
) + Γα

µν

dxµ

dt

dxν

dt
= 0 (1.8)

For the middle part of above equation, it’s important to notice that the first term
actually is the acceleration of a particle. Besides, the connection coefficient will
vanish if the spacetime is flat. So we see how the connection coefficient contains the
information of the gravitational field.

The curvature of our spacetime is determined by the parallel transportation of
vectors. If a vector is transported in a closed circle and return to its original point
with different orientation, we say spacetime is curved in the vicinity of that point.
By following this method, we could define Riemann tensor as

Rδ
αβγ = − ∂

∂xα
Γδ
βγ +

∂

∂xβ
Γδ
αγ − Γδ

αµΓ
µ
βγ − Γδ

βµΓ
µ
αγ (1.9)

By using the fact that metric gµν can be used to raise or lower indices and the same
upper and lower index will compose Kronecker delta, we can get another two useful
tensors from Riemann tensor

Rαβ := Rµ
αµβ and R := gµνRµν (1.10)

which are usually called Ricci tensor and Ricci scalar or scalar curvature. After
considering the contracted Bianchi identity, we can get Einstein tensor

Gαβ := Rαβ −
1

2
gαβR (1.11)

Based on the fact that geometry of spacetime is decided by matter (stress-energy
tensor Tαβ), the Einstein field equation have the form

Gαβ =
8πG

c4
Tαβ (1.12)

For cases far from gravitational force sources or where the gravity potential is low,
like our solar system, we can take following approximation for the metric close to us

gαβ = ηαβ + hαβ (1.13)

where hαβ ≪ 1. By combining this linearized metric and trace-reversed metric per-
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turbation expression and Lorenz gauge, we can have a simplified version of Einstein
equation

−□h̄αβ =
16πG

c4
Tαβ (1.14)

This is a wave equation where □ = −(1/c2)∂2t +∇2 implies that gravity perturba-
tions, also said GWs, travel at the speed of light and the matter stress-energy tensor
acts as a source to generate gravitational waves. We will set the right hand side of
the above equation to be zero when we consider the propagation of GWs. This is
because the universe is close to vacuum on average. [9]

1.1.2 Propagation of gravitational waves and its effect

As said at the end of last part, the propagation of GWs satisfy

□h̄αβ = 0 (1.15)

and from the Lorenz gauge condition, ∂h̄αβ

∂xα
= 0, we can easily find hαβkβ = 0 and

this means that the wave oscillation must be orthogonal to its propagation direction.
This indicates the wave is transverse. Considering the property of wave operator, we
also have hαα = 0 and hαβu

β = 0. The first equation indicates the wave is traceless
and the second equation tells hα0 = 0. So the only non-vanishing components are

h11 = −h22 (1.16)

h12 = h21 (1.17)

Recall that Riemann tensor can be represented by the two derivatives of the
metric from equation 1.7 and 1.9. So we can relate the non-vanishing terms to the
ones in Riemann tensor.

R0101 = −R0202 = −1

2

∂2

∂t2
h11 := −1

2
ḧ+ (1.18)

R0102 = R0102 = −1

2

∂2

∂t2
h12 := −1

2
ḧ× (1.19)

So the non-vanishing components in Riemann tensor prove that GWs are not an
artificial effect from the choice of gauge.

Now that the theory of GWs has been intruduced, let’s have a look into the ef-
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fect of GWs on the space-time. When GWs pass by, they will change the curvature
of spacetime. Let’s imagine there are two nearby freely falling particles separated
by ξ(sinθcosϕx̂ + sinθsinϕŷ + cosθẑ), the passing by GWs will cause them to fol-
low different geodesics. This tidal effect causes a relative acceleration of these two
particles, which can be derived from the definition of acceleration and from the
Riemann tensor. The result of this tidal acceleration for weak field slow motion is
aj = −R0i0jξ

j. The induced motion of particles in different directions can be written
as

ax = −R0x0xξ
x −R0y0yξ

y =
1

2
ḧ+ξsinθcosϕx̂+

1

2
ḧ×ξsinθsinϕŷ (1.20)

ay = −R0y0yξ
y −R0y0xξ

x = −1

2
ḧ+ξsinθsinϕx̂+

1

2
ḧ×ξsinθcosϕŷ (1.21)

az = 0 (1.22)

where we have fixed the GW traveling direction to be the z direction. The equation
above tells us the position dependent motion on the plane of θ = π/2. Figure 1.1
shows why we put subscript ’+’ and ’×’ for the two degree of freedoms of linearized
metric which correspond to the two polarization of GWs. Two different motion styles
are related to the non-vanishing linearized metric sign, location of particles on x-y
plane (sign of cosϕ or sinϕ) and base vector (final direction is the combination of
âx and ây). For example, for the first quadrant of plus polarization, the sign for âx
is positive (positive metric and cosϕ is positive in the first quadrant) and sign for
ây is negative (negative metric and sinϕ is positive in the first quadrant). Following
the same principle, we can compute the moving trend in each quadrant for two
polarization motions. For plus polarization, the combination of particles motion
in different quadrants is squeezing y direction and stretching x direction. Due to
the oscillation of h, the squeezing and stretching will change with the frequency of
gravitational wave signal. In the end, this plus polarization forms a motion style
like a ’plus’ shape. On the other hand, for cross polarization, the squeezing and
stretching exchanges along ’y = x’ and ’y = −x’ direction. As a result, it forms a
motion style like a ’cross’ shape. This is a differential motion and is crucial for the
detection principle of gravitational waves.

Then at any point on the θ = π/2 plane, a combination of ax and ay forms
the geodesic deviation acceleration vector. After the integration over time, the
separation of two nearby points can be written as
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Figure 1.1: Particles motion caused by plus/cross-polarized GWs.

ξ(t) = ξ(0)

(
1 +

1

2
h+sin

2θcos2ϕ+
1

2
h×sin

2θsin2ϕ

)
(1.23)

For θ = 0 or θ = π, ξ(t) will vanish which means the GW will not change the
relative distance between particles. This is due to the GWs is transverse and also
causes the loss of detector’s sensitivity along those directions. For θ = π/2, the
separation effect is maximized. This is one of the reasons why we need a global GW
detector network prepare for GWs coming for all sky directions.

1.1.3 Generation of gravitational waves

From the propagation of GWs, we understand the spatial dependence of its signal.
However, the time dependence of this signal, which is h+ and h× in equation 1.23,
originates from the GW’s source behavior. From the last section, we could see that
the wave equation for gravitational field has a quite similar form compared to the
electromagnetic wave. However, the gravitational wave is different in the aspect of
generation. For example, as we know, once a charged particle has acceleration, it
will radiate energy which is usually called dipole radiation [10]. While, in the case
of gravitational wave, the second derivative mass dipole moment is

D̈ =
∑
i

miẍi = ṗ (1.24)

It is obvious that gravitational wave can not be generated from this mass dipole
moment because of the conservation of momentum. Instead, GWs are generated
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from quadrupole moment. The solution of equation 1.14 is

h̄ij(t, x) ≃ 2G

c4r
Ï ij(t− r/c) (1.25)

where I ijis the quadrupole moment witch takes the form

I ij =

∫
(xixj − 1

3
r2δij)ρd3x (1.26)

By using the above equations 1.25 and 1.26, we can do some simple estimation based
on the amplitude of GWs. Let’s consider a rotating bar with mass M , length l and
spinning with angular frequency ω, then we have I ∼MR2 and Ï ∼Mv2 =Mω2l2.
Assuming all the parameters of the bar to be order of 1 (M = 1kg, l = 1m, etc.)
and considering the distance should be much farther than the wavelength of GW
(r ≫ c/ω), we will have h≪ 10−53 which leads to a non-measurable deformation of
space-time. However, if we have a binary neutron star system with equal mass of
3M⊙ and is located in the 20Mpc distance Virgo cluster, it will generate GW with
magnitude of 10−21 at the time of the merge. By comparing above two estimation
with the current generation GW detectors, we can understand why the focus of GWs
detector are GWs from astronomical sources.

The generated signal amplitude is estimated as above, and the time evolution
clearly depends on the change of quadrupole moments according to equation 1.25.
For the well-investigated compact binary coalescence (CBC) process, the frequency
of gravitational wave signal is twice the frequency of orbital frequency. The orbital
frequency increases with the evolving of the system, and it is related with chirp mass
M = (m1m2)3/5

(m1+m2)1/5
(m1 and m2 are the two masses of the binary system) and time of

coalescence t as [11]

f
−8/3
GW (t) =

(8π)8/3

5

(
GM

c3

)5/3

(tc − t) (1.27)

This equation shows the frequency is inversely proportional to mass and time to
coalescence. For example, the first detection GW150914 is a CBC of two ∼ 35M⊙

black holes which gives final instantaneous frequency of ∼ 200Hz. This frequency
is located in the most sensitive part of aLIGO.
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1.1.4 Astronomical sources for GWs

As discussed in the last section, the generation of gravitational wave signal depends
on the evolution of the quadrupole momentum of its source. The characteristics of
the source and its dynamic behavior determine the amplitude and the frequency of
the emitted gravitational wave. This is the reason why the astrophysical sources
are usually classified by their characteristic frequency. Gravitational-wave detection
focus on four frequency bands: the extremely low frequency band (10−15 to 10−18

Hz), the very low frequency band (10−7 to 10−9 Hz), the low frequency band (10−4

to 1 Hz) and the high frequency band (1 to 104 Hz) [12]
This classification of frequencies corresponds to different gravitational wave sources

and detection methods as the following introduction:
High frequency sources (1 to 104 Hz):

1. Binary neutron stars (BNS) and binary black holes (BBH) (1M⊙ −
103M⊙): A number of astrophysical scenarios can produce such binary sys-
tems. Gravitational waves are generated during the entire inspiral phases of
the system.

2. Core-Collapse supernovae: With the evolution of stellar (initial mass of
8M⊙ − 70M⊙), gravitational collapse happens when core mass exceeds the
maximum supportab

le by electron degeneracy pressure. Gravitational waves are generated from
this process and subsequent explosion.

3. Neutron Stars: Gravitational waves can be generated from coalescing neu-
tron stars, which evolves for different stages of binary neutron stars coalesence.
Continuous gravitational waves are expected from spinning neutron stars with
small ’mountains’. Burst gravitational wave is also expected from magnetar
giant flares and pulsar glitches.

4. Stochastic gravitational wave backgrounds: It may come mainly from
astrophysical sources, which is the superposition of a large number of unre-
solved sources of gravitational waves from BBH and BNS [13].

Low frequency sources (10−4 to 1 Hz): supermassive black hole binaries (
103M⊙ − 109M⊙), extreme mass ratio inspirals, dwarf/white dwarf binaries, astro-
physical stochastic gravitational wave backgrounds.
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Very low frequency sources (10−7 to 10−9 Hz): supermassive black hole
binaries (109M⊙) and the stochastic gravitational wave backgrounds from it.

Ultra low frequency sources (10−15 to 10−18 Hz): cosmological stochastic
gravitational wave backgrounds

1.2 Detection of gravitational waves

As shown in figure 1.1, GWs cause the relative motion of nearby particles. Since
the GWs modulate the distance between objects, a direct way to measure them
is to continuously monitor such distance. Since the velocity of the light is always
constant, we can use it as a ruler to perform this measurement.

The Michelson interferometer as schematically shown in Fig. 1.2 was firstly
developed by Michelson for the famous Michelson-Morley experiment [14]. Such
instrument is capable of measuring the differential change in the length of its two
arms. A laser light (originally Michelson used yellow light from a sodium flame for
alignment and white light for the actual observations) is injected into interferometer
and it is separated in two part by a 50:50 beamsplitter. Each part is sent along one
of the interferometer arms. The two beams are reflected back to the beamsplitter
and they recombine. A differential change in the arm length results in a change of
the relative phase of the two beams, thus producing a change in the power reaching
the output photodetector. As shown in Figure 1.2, the fields reflected from each end
mirror in an interferometer with arm length L can be expressed as 1

2
E0e

2ik(L+x1) and
1
2
E0e

2ik(L+x2) respectively. Where E0 is the modulus of electric field and k is the
wavenumber. These two electric fields carry the information of mirror movement x1
and x2. At the beamsplitter, they interfere with each other and propagate to output
port as

Eoutput =
1

2
E0e

2ikL(e2ikx1 − e2ikx2) (1.28)

Poutput = P̄ sin2(k(x1 − x2)) (1.29)

GWs cause differential arm length change and this information is magnified by
interferometer and gives output as equation 1.28. As shown in figure 1.3, the inter-
ferometer output power is different for different working points. To limit the impact
of many noises, detectors are usually operated close to dark fringe.

The arm length difference x1 − x2 induced by GWs is not a constant. If we
assume a GW coming from z direction with one polarization and have a wavelength
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Figure 1.2: Scheme of a Michelson interferometer. A laser light (originally
Michelson used yellow light from a sodium flame for alignment and white
light for the actual observations) is injected into interferometer it arrives to
a 50:50 beamsplitter, where it is separated in two parts. Each part is sent
along one of the interferometer arms. After the reflection from end mirrors,
the light beam will carry information of each end mirror’s motion x1 and x2.
Interference happens when the two beams come back to the beamsplitter
and recombine. A differential change in the arm length results in a change
of the relative phase of the two beam, thus producing a change in the power
reaching the output photodetector.

Figure 1.3: Operating point of Michelsone interferometer. Interferometer
works close to dark finge to make output signal insensitive to common mode
noises, like input power fluctuations.
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larger than the arm of interferometer, we can get the relative phase change between
two arms

∫∞
−∞H(ω)h+(ω)e

iωtdω, where H(ω) is the frequency dependent response
of interferometer [15]

H(ω) =
Ωlaser

ω
sin γe−iγ (1.30)

As seen in the last section, the frequency of the gravitational wave signals will be
basically less than several tens of kHz for many astronomical sources. The phase
term in the above equation tells us the maximum response, which indicates hundreds
of kilometers arm is appreciable for simple Michelson interferometer but we know
that such instruments are impossible to realize on Earth.

Nowadays, kilometric GW detectors based on this principle are used to detect
gravitational wave signals in the region between few tens of Hz to few kHz. Such
detectors (as Advanced LIGO [16] and Advanced Virgo [17]) are enhanced by sev-
eral leading-edge techniques which will be introduced in the next chapter. They
have already detected many GW signals [7], including the first direct detection of
gravitational wave done by two LIGO detectors [6] in 2015.

In addition to ground-based laser interferometers, there are other projects aiming
to detect gravitational waves in a different frequency regions. A summary of their
expected sensitivities and frequency range can be appreciated in Fig. 1.4.

The low-frequency terrestrial detectors such as torsion bar antenna [18] and atom
interferometers [19] take advantage of either novel arrangement of torsion bars or the
nature of atomic clouds to beat low frequency noise such as seismic noise, suspension
noise and so on. However, recent results on the newtonian noise makes it necessary
to reexamine the noise influence of this type of detectors.

At the same low frequency region, there is also proposed space detector DECIGO
[20] and BBO [21]. The test mass of these detectors are separated by 1000km so
that the their frequency response is optimal for 0.1 to 10Hz. They will fly along an
earth-like heliocentric orbit. So that the gravity field change from earth is negligible.
Due to the high sensitivity design, the primordial gravitational wave background is
highly possible to be detected.

The Laser interferometer space antenna (LISA) [22] is a space detector which
aims for frequency range from 20µHz to 1Hz. It uses 2.5 million kilometers away
spacecrafts to measure the gravitational wave induced laser phase change between
them. Three spacecrafts are used and forms triangular shape. One important dif-
ference relative to ground based detector is that LISA uses heterodyne laser inter-
ferometer. These low frequency gravitational waves will give information about the
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formation of binary systems in the Milky Way, about the verification binaries, about
the early stage of coalenscence which could be detected by ground based detectors
and about the early Universe at TeV energy scales.

GW at very low frequencies (10−7 ∼ 10−9Hz) are currently under-investigation
by pulsar timing arrays (PTA) [23]. PTA uses a network of millisecond pulsars. The
passage of GWs are imprinted on the measured pulse arrival times. Up to now, no
detection is announced from PTA, but stochastic background of supermassive black
hole merger is the most promising source.

A GWs background originated less than ∼ 10−20s after the Big Bang was pre-
dicted, which could be detectable with CMB method at ultra low frequency region
(10−15 ∼ 10−18Hz). During the inflation, quantum fluctuations of the spacetime met-
ric gave rise to both the observed primordial density perturbations and a potentially
observable background of GWs. The GWs may show up as a B mode in the cos-
mic microwave background polarization. The detection of inflationary(cosmological)
GWs is of great interest for cosmology. Unfortunately, the Planck experiment shown
that the B-mode polarization detected by BICEP2 is due to the polarized emission
from dust in our own galaxy. However, there is still plan to upgrade to BICEP3,
which may give a detection. [24]

1.3 Science benefit of gravitational wave detection

From detections obtained during the first and second observation run (for a total
of about 12 months of observation time), it was possible to extract several major
scientific results. According to the expected improvement of detector’s sensitivity,
a deeper and wider universe will be explored in the future.

1.3.1 Highlights of science from the detected gravitational
wave signals

In the first gravitational wave transient catalog (GWTC-1), ten BBH and one BNS
mergers were announced [7]. At 90% confidence level, merger rate are inferred as
110 − 3840Gpc−3y−1 for binary neutron stars, 9.7 − 101Gpc−3y−1 for binary black
holes. An upper limit at 90% confidence level for neutron star - black hole merger
rate is determined as 610Gpc−3y−1. The merger rate is larger for BNS but the
number of detections is lower because the generated signal is weaker than the BBH
one. During the third observation run detection rate of one signal per week was
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Figure 1.4: Sensitivity curves of different detection methods (marked in
black) and different estimated magnitude of GWs [25].

achieved, thanks to the improvement in the detector sensitivity.

Black holes

A completely new class of BHs is discovered, which is much heavier than those
detected through the observation of X-ray binaries. This provides the most robust
evidence for the existence of heavy stellar-mass BHs, which leads to a re-evaluation
of the models of stellar evolution in binary systems [26].

The generation of gravitational wave from the nearly last moment of compact
binary coalescence inherently involves the physics beyond Newtonian gravity. The
detection of GW150914 provides moderate SNR (signal to noise ratio) of 24 to
test non-linear conservative and dissipative effects which are not accessible from
binary pulsars. The estimation of waveform coefficients provides information for
corresponding general relativity values. By analysing GW150914, no violations of
general relativity was found [27].

Neutron stars

The neutron star equation of state (EoS) is measured according to the constraints of
GW170817 on the tidal effects of the coalescing bodies [28]. However, the constrain
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is too weak to discriminate between realistic models. Especially the post merger
part is missing due to insufficient sensitivity at several kHz region.

GW170817 was observed together with gamma-ray burst (GRB) GRB170817A
[29]. The probability of near-simultaneous observation of them by chance is 5.0 ×
10−8. BNS is confirmed to be one of the progenitors of short GRBs. It proves that
BNS mergers contribute for the formation of heaviest elements through r-process.
The time delay between these two observations confirmed that the speed of GW is
the same as the speed of light to about a part in 1015.

The multi-messenger observation of GW170817 allows it to be used as a standard
siren. Without using the traditional ’distance ladder’, GW170817 provides an inde-
pendent measurement of Hubble constant to be 70.0+12.0

−8.0 km s−1 Mpc−1 (maximum
a posteriori and 68% credible interval) [30].

1.3.2 Expected science from next-generation gravitational
wave detectors

In the future, the sensitivity of the next generation of GWs detectors will be increased
by an order of magnitude with respect to the current ones. Besides, a broaden
detection frequency band is also expected. The science of next-generation detectors
can be found in many documents such as [31, 32].

For all the events similar with the detected ones, higher SNR will be obtained.
This is of great importance for the test of GR and the test of neutron star EoS.
Although these scientific pay-offs have already been realized by O1 and O2, we
are just at the beginning of many relevant research topics. Higher sensitivity will
also increase the possibility of detecting core-collapse supernovae, which were not
detected up to now. The test of gravity models will also benefit from higher SNR.

Higher sensitivity will enable the detection of signals with large redshift, allowing
to test several cosmology theory. In this way, an independent way for estimating
Hubble parameter, modified gravity and dark energy EoS will be provided.

Larger detection rates will be achieved, which is important for statistical research
about BH formation/evolution, NS formation/evolution, heavy elements formation,
Hubble parameter estimation and much more.
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Quantum noise limited
earth-based gravitational wave
detectors

The current operating earth-based GW detectors are all based on Michelson inter-
ferometer principle. After almost 50 years of investigation and development, several
additional techniques were added to the basic Michelson interferometer. Some of
such improvements are for example arm Fabry-Perot cavities, power recycling cav-
ities and signal extraction cavities. Such new configurations have been proven to
increase the response magnitude or bandwidth of GW interferometers. The inter-
ferometer configuration which achieved the first detection is usually called Dual-
Recycled-Fabry-Perot Michelson interferometer (DRFPMI) [33].

Several types of noises limit the sensitivity of GW detectors. They mainly act by
inducing spurious moments of the test masses or decreasing the precision of the in-
terferometric readout. Among them, the ones which are the most impactful are the
Newtonian or gravity gradient noise, the coating and suspension thermal or Brow-
nian noises and the quantum noise. After reaching the design sensitivity, advanced
LIGO, advanced Virgo and KAGRA are expected to be limited by quantum noise
at almost the entire detection bandwidth.

In this chapter, I will introduce the main noise sources for advanced gravita-
tional wave detectors as well as explain the DRFPMI configuration focusing on the
KAGRA case.
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2.1 KAGRA

The first generation of kilometer-scale GW detectors (LIGO and Virgo) was devel-
oped in the early 2000s and was unsuccessful in detecting GWs. The interferometer
advanced LIGO (aLIGO) and advanced Virgo (adVirgo) are usually addressed as
second generation gravitational wave detectors. aLIGO achieved the first detection
in 2015 and was joined by adVirgo in 2017.

KAGRA is the first 2.5 generation gravitational wave detector. In Figure 2.1
(left) the schematical optical layout of KAGRA, which is similar to that of aLIGO.
What differentiates KAGRA from the 2G detectors are two innovative features: it
operates underground and the test masses, made of sapphire, are cooled down to a
cryogenic temperature of about 20K. Such features are of key importance to reduce
the impact of several noises and are expected to be used in 3G detectors, therefore
KAGRA has a key role, not only as additional GW detector in the 2G network but
also as a technological benchmark to help bridging the gap between second and third
generation detectors.
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Figure 2.1: Left side shows the optical layout of KAGRA which is similar
with the DRFPMI configuration of aLIGO. Right side shows the suspension
for test masses which isolate them from ground motion (note that the height
is not in-scale and the 5 stages outside cryogenic shield are much longer).
The accumulated heat in the test mass is transferred through sapphire fibers
and heat links (high purity aluminum cable) to maintain 20K cryogenic
temperature. The marionette, the intermediate mass (IM) and the test
mass (TM) are surrounded by their respective recoil mass for position and
alignment control [34] .
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In Japan, the research aiming for gravitational wave detection started in the
1980s. One important milestone was the construction of TAMA300, a Michelson
interferometer with 300m long arm cavities, which started in 1995 and reached its
best sensitivity of 5 × 10−21/

√
Hz in 1998. The operation of TAMA [35] played

an important role in the science and technology development of gravitational wave
detection. The operation of TAMA300 was stopped after the Tōhoku earthquake of
2011. Almost at the same time, KAGRA was funded and tunnel excavation started
in 2012. KAGRA collaboration announced the completion of KAGRA construction
in 2019. The construction of KAGRA was amazingly fast despite the fact that it
required to face several new challenges and implement novel techniques.

Figure 2.2: KAGRA is about 1000m underground, here it shows one of the
3km arms inside KAGRA tunnel

In 2020, KAGRA has finished its first observation run. The best binary neutron
range achieved was around 1Mpc during this observation run. A simultaneous obser-
vation was done together with GEO, which has a similar sensitivity with KAGRA.

As said before, one of the main features of KAGRA is underground operation.
In the underground site of KAGRA, the seismic noise from 1Hz to 100Hz is almost
two order of magnitude lower than other GW detectors’ sites (see 2.6.1). Moreover,
the Newtonian noise caused by seismic surface wave is reduced in the condition of
underground operation (see 2.6.2). However, underground operation will not relax
the requirement of micro-seismic motion control. Although this motion is not located
in the frequency band of gravitational wave observation but around 0.1 to 0.2 Hz,
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its control is necessary for the stable operation of the whole interferometer.
The other main innovative feature of KAGRA is cryogenic temperature of test

masses. Low temperature helps to reduce all type of thermal noise. Moreover,
the high thermal conductivity of sapphire (the material of which the test masses are
made) makes thermal lensing effect quite small. Therefore, wave front aberration will
also be negligible in KAGRA. However, the absorbed heat needs to propagate away
from the test masses through the suspension sapphire fibers. Since the thermal noise
of the suspension increases proportionally to the fiber diameter and we would like
to reduce such noise, while the thermal conductivity also increases proportionally
to the fiber diameter and we would like to maximize it, a trade-off between this
two processes must be found. Sapphire has also very good mechanical parameters
at cryogenic temperatures compared to other materials like fused silica. This is
beneficial for the reduction of thermal noise. Unfortunately, the formation of an ice
ad-layer was reported during the cryogenic operation of KAGRA [36]. The growth
of this layer changes the reflectivity of mirror and affects the perfomances of the
interferometer.

Figure 2.3: Expected KAGRA sensitivity. Data for each curve is available
on KAGRA document website (JGWdoc) [37]. The calculation of binary
neutron star range is based on a python code inspiral range master [38].

Apart from features of underground and cryogenic, KAGRA has folded recycling
cavities (see PR2-PR3 and SR2-SR3 mirrors in Fig. 2.1 left panel), which is bene-
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ficial for a stable optical design of the interferometer. This is provide a convenient
solution for injecting auxiliary control laser beams through PR2 and SR2. These
auxiliary lasers are used to achieve the initial arm length stabilization before using
the main laser to lock them [39]. The arms of KAGRA contains Fabry-Perot cavi-
ties with higher finesse (approx. 1500) compared with LIGO/Virgo (approx. 450).
This choice was done to reduce the circulating power inside power recycling cavity,
therefore reducing the power inside input mirror substrate. This helps to relax the
requirement of mirror absorption, which is crucial for a cryogenic detector. The arm
cavity circulating power will be 400kW. Since different mirrors have different angu-
lar/displacement noise requirement, KAGRA is also featured to have four different
suspension systems.

As shown in figure 2.3, KAGRA sensitivity is expected to be limited by mainly
the suspension thermal noise at low frequency, by the mirror thermal noise in the
middle frequency and by quantum noise at higher frequency.

Underground and cryogenic operations help to reduce seismic and thermal noise.
The most promising technique to reduce the quantum noise of GW detector is the
injection of squeezed vacuum states into the dark port of the interferometer. The
implementation of frequency independent squeezing is equivalent to increase arm
cavity power. It will either increase shot noise or radiation pressure noise. Only
frequency dependent squeezing can have broadband squeezing. The realization of
a full-scale source of frequency dependent squeezing suitable for the broadband
reduction of quantum noise in GW detectors is the goal of my thesis.

2.2 Laser and Gaussian beam

In this section I will briefly introduce the laser system used in current GW detectors
and some theory related to lasers. A more comprehensive discussion can be found
in [40, 41, 42]

2.2.1 GW detectors’ lasers and injection system

The laser system used for all the current gravitational wave detectors consists of a
1064nm source able to provide several tens of Watt of power in a single spatial mode
and with very narrow linewidth (few Hz). Since there are no commercial solution
that can achieve all the mentioned features, the laser sources of the current GW
detectors are all custom made [43, 44, 45]. For most of them, the initial source
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is a monolithic non-planar ring-oscillator (NPRO) Nd:YAG crystal to provide few
Watt output 1064nm laser beam with a linewidth of few Hz. Then, the laser coming
out from laser source usually goes through medium power amplifier, mode cleaner
cavities, several telescopes and its frequency is locked to a reference cavity and to
the suspended mode cleaners. After passing through an injection telescope, the laser
is finally injected into the interferometer.

2.2.2 Gaussian beam

The laser beam coming out from laser source is called Gaussian beam and the
corresponding electromagnetic field satisfies wave equation. The solution of this
wave equation is a plane-wave evolving with time and spatial axis, which gives a
usual phase term kz − ωt. At the same time, it has also a transverse spatial mode
described by U(r). So it has the form

U(r, t) = U(r)ei(kz−ωt) (2.1)

The transverse mode is described by the cylindrical equation

U(r) = A0
ω0

ω(z)
exp
(

−r2

ω(z)2

)
exp
(
−ik r2

2R(z)
+ iϕ(z)

)
(2.2)

where A0 is the amplitude of this field. ω0 is the beam size at the waist (where the
beam has its minimum size) and ω(z) is the size of the beam at a distance z from
the waist position. e

−r2

ω(z)2 shows that the power is maximized in the beam center and
decreases with beam radius with a Gaussian profile. This term describes the energy
distribution of cross section of the beam at a position z. Using it we can calculate
how much energy goes through an aperture of radius of r as follow:

R = 1− exp
(
−2r2

ω(z)2

)
(2.3)

When the above percentage take value of 86.5%, the corresponding r is defined as
the radius of beam. This parameter is crucial to define the amount of energy which
is transmitted through different apertures. In typical optical setups such apertures
can be electro-optic modulators (EOM),acousto-optic modulators (AOM), Faraday
isolators, photodiodes, etc. When we consider the use of these devices, we need to
pay attention to two aspects. The first is the beam size with respect to the aperture
dimension. Through the calculation of percentage R, we will have 99.97% of energy
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transmission when the aperture is twice the size of beam. A larger aperture will be
usually since the beam may not centered in the real case. Second thing to consider
is the power density ρpower, and the damage threshold of the component. A good
approximation of this power density can be written as [46]

ρpower =
250

d2
× P (2.4)

Note that the unit for power density is W/cm2 while the unit for beam diameter
d is mm. Here P is the total power and its unit is W . Another important term of
equation 2.2 is e−ik r2

2R(z) which shows that the Gaussian beam is actually not a plane
wave and its wavefront depends on position and beam radius. The last term ϕ(z)

is the Gouy phase, which equals to arctan(z/z0). It introduces an additional phase
shift of π at an infinity distance from the waist. The mentioned beam size can be
written as function of z as

ω(z) = ω0

√
1 + (

z

zR
)2 (2.5)

where zR is called Rayleigh range, defined as

zR =
πω2

0

λ
(2.6)

and it is the position where the beam cross section is doubled. From the above
equation, we can see that a beam will diverge fast if the beam waist is small. On
the contrary, a larger beam will be more collimated. The radius of curvature for
a Gaussian beam reaches its minimum at the position of Rayleigh range and it is
infinity at waist. The formula describes this is

R(z) = z +
z2R
z

(2.7)

2.2.3 Propagation of Gaussian beam

The solution of wave function can also be written as a function of q [40] where

1

q
=

1

R
− j

λ

πω2
(2.8)

The introduction of this parameter is very useful since it is easy to demonstrate that
the q parameter has its real part to vanish at the waist position and can be written
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as

q0 = j
πω2

0

λ
(2.9)

We can use the ABCD transfer matrices for paraxial optics to compute how the q
parameter evolves after beam propagation or after interacting with different optics.
Such ABCD matrices can be found in many textbook, for example[41]. Using this
technique we can write the total transfer matrix as the product of a sequence of
matrices, following the usual matrix product rules. The q′ parameter of the final
beam can be calculated as

q′ =
Aq0 +B

Cq0 +D
(2.10)

where A,B,C,D are the components of the ABCD transfer matrix and q0 is the q
parameter of the initial beam.

2.3 Fabry-Perot cavity

A Fabry-Perot cavity, like the one shown in Figure 2.4, is an optical resonator
composed by two reflecting surfaces. It was invented in 1899 by Charles Fabry and
Alfred Perot [42]. We define the amplitude reflection/transmission coefficient as
r1, ıt1 for the input mirror (where laser is injected) and r2, ıt2 for the end or output
mirror. The imaginary unit for transmission coefficient is used to indicate the phase
change of field. This phase change is necessary to have the determinant of the matrix
associate to each mirror to be one. There are other possibilities to achieve the same
condition, but this was the choice for this thesis. The square of the amplitude
reflection/transmission coefficient is usually called reflectivity/transmissivity. To
describe a cavity, other important parameters are the cavity length L and input/end
mirror radius of curvature R1, R2.

2.3.1 Mathematical description of Fabry-Perot cavity

To derive the relationship between the field in different position (as in Figure 2.4),
we need to consider the effect of the input and output mirrors on the input electric
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Figure 2.4: Fabry-Perot cavity. Different arrow marked with alphabet ’a’
to ’g’ indicates different fields amplitude. These fields are electric fields, the
square of them corresponds to power. We could also see that the red line
which represents the laser light is thicker inside the cavity which means the
light is stored inside the cavity and the power is enhanced.

field. The relationship between the input and output beams is as follows

b = a · ıt1 + e · r1
c = b · eıkL

d = c · r2 (2.11)

e = d · eıkL

f = a · r1 + e · ıt1
g = c · ıt2

This is a set of equation which can be solved to obtain respectively the amplitude
transmissivity, reflectivity and gain of the cavity. The amplitude reflectivity is

f

a
= r1 −

r2t
2
1e

2ıkL

1− r1r2e2ıkL
(2.12)

The cavity amplitude gain1 is

b

a
=

ıt1
1− r1r2e2ıkL

(2.13)

and the amplitude transmittivity is

g

a
=

−t1t2eıkL

1− r1r2e2ıkL
(2.14)

1The cavity power gain for a resonant cavity can be written as gP =
t21

(1−r1r2)2
. If r2 can be

approximated to be 1, the cavity power gain can be written as g =
t21

(1−r1)2
. If t1 is small, We

can also have following approximation r1 =
√

1− t21 ≈ 1− t21
2 . In the end, the power gain can be

written as gP = 4
T1

in this special case.
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These three values allow us to predict how much power we will have in trans-
mission and in reflection and how much power we can expect inside the cavity, for
a given input power.

As introduced in section 2.3.1, the phase term ıkL is usually the only term we
can dynamically change for a certain optical set up (the reflectivities and radii of
curvatures are generally fixed and cannot be easily change in most of the cases).
This phase term can be changed if the laser frequency f or the cavity length L

are changed. By monitoring cavity transmission and/or reflection field as function
of laser frequency or cavity length, lots of information about the cavity can be
extracted. The action of changing the laser frequency or cavity length is called
cavity scan.

Resonance condition of a Fabry-Perot cavity

Figure 2.5: Cavity circulating field while cavity scan. This plot is the spe-
cific case of the KAGRA power recycling cavity, for which the transmission
coefficient for two mirrors are 0.05 and 0.1 and the cavity length is 65m.
The scan parameter for this plot is the frequency of the laser.

Let’s take the practical example of the circulating field during a cavity scan 2.13.
The condition for which the circulating power is maximized is called ’on-resonance’.
When the circulating field about zero, the cavity is said to be ’off-resonance’.

The physical meaning of the empirical definition of ’on-resonance’ condition can
be understood from equation 2.13. The ’on-resonance’ condition is achieved when
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the phase term of the equation is equal to an integer number of 2π. By visually
representing the electric field of a laser light, the resonant condition can be described
as figure 2.6.

Figure 2.6: Resonance can be achieved in several different conditions. The
different resonant condition corresponds to a length difference of half wave-
length, which corresponds to a round trip difference of one wavelength. Note
that this picture works just for the fundamental mode of a cavity.

2.3.2 Fabry-Perot cavity parameters

Several useful parameters are commonly used to describe the main properties of FP
cavities. Some of them are reported below:

The free spectral range describes the frequency/length change necessary to
move from one resonance to the next resonance condition. As shown in figure 2.6
(a linear cavity), this means that the cavity length must be related with wavelength
in the following way

2L = N × λ (2.15)

This equation is equivalent with

f = N × c

2L
(2.16)

The frequency change from one resonance to the next is defined as free spectral
range (FSR) as follows

FSR = c/2L (2.17)

Correspondence between frequency and length is important since some-
times we need to convert them between each other. As mentioned, frequency and
length change are equivalent for what concerns the cavity scan. From figure 2.6 and
the definition of free spectral range, we have

δf

δL
=
FSR

λ/2
(2.18)
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The full width half maximum (FWHM), also called cavity linewidth is used
to characterize the width of the resonant peak. To derive its value, we can use the
square of equation 2.14,

Atra =
T1T2

(1− r1r2e2ıkL)2
(2.19)

Then by using some basic trigonometric formulas and Euler equation, equation 2.19
becomes

Atra =
T1

(1− r1r2)2 + 4r1r2 sin2(kL)
(2.20)

The half maximum will be reached when the following condition is satisfied

(1− r1r2)
2 = 4r1r2 sin2(ı∆ϕ) (2.21)

Then we have
∆ϕ = arcsin

(
1− r1r2
2
√
r1r2

)
(2.22)

To convert phase into frequency, we can use the relationship ∆f/2∆ϕ = FSR/π.
The frequency difference becomes

FWHM = FSR
2

π
arcsin

(
1− r1r2
2
√
r1r2

)
(2.23)

Half of FWHM is called half width half maximum (HWHM) or cavity pole. This
means we can use FP cavities as a filters for light field.

The Finesse is defined as the ratio between FSR and FWHM

F =
FSR

FWHM
=

π

2 arcsin ( 1−r1r2
2
√
r1r2

)
(2.24)

For a high finesse cavity, which means r1 and r2 are close to 1, the equation can be
approximated as

F =
π
√
r1r2

1− r1r2
(2.25)

The finesse is independent of cavity length and is proportional to the number of
’bounces’ the photons perform inside the cavity.

The storage time of FP cavity is defined as

τ =
2L

πc
F (2.26)

and it is inversely proportional to the FWHM. When the injection power to cavity is
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suddenly removed, cavity transmission light power PT leaking from cavity decreases
exponentially with time constant τring−down according to PT = P0e

−t/τring−down . Cav-
ity storage time is two times τring−down.

The Airy function [47] is the mathematical formulation of the cavity transmis-
sion/reflection/circulating power when cavity is being scanned. After introducing
finesse and FSR, equation 2.20 can be written as

Atra =
a

1 + 4(F
π
)2 sin2(π(t−t0)

FSR
)

(2.27)

where the parameter a depends on the gain of photodetector and t0 depends on
the starting point of scan. Therefore, equation 2.27 can be used directly to fit
the measurement of cavity transmission and finesse and FSR information can be
extracted.

Under/over coupled cavity and impedance matched cavity

Depending on the relation of transmissivity for input and end mirror (under the
assumption that they are much larger than the optical losses), optical cavities can
be classified into three different kinds:

• Under-coupled cavity (T1 < T2): For the same finesse, under-coupled cav-
ities have lower circulating power because the laser power coupled into cavity
is smaller. Compared with other types, the phase change in reflection is small.

Figure 2.7: Reflection/transmission/circulating power and relative phase
for an under-coupled cavity with finesse of around 7 (T1 = 0.2, T2 = 0.5).

• Over-coupled cavity (T1 > T2): Over-coupled cavities have larger circulat-
ing power compared to under-coupled cavities. But the reflection and trans-
mission are the same for both over-coupled and under-coupled cavities. We
will see later in section 2.3.3 that the situation for a high-finesse cavities where
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the losses play a much larger role will be different. An example of over-coupled
cavities are the GW interferometers arm cavities as seen by the carrier light.

Figure 2.8: Reflection/transmission/circulating power and relative phase
for an over-coupled cavity with finesse of around 7 (T1 = 0.5, T2 = 0.2).

• Impedance matched cavity (T1 = T2): Impedance matched cavities have
cavity transmission equals to 100%. The cavities introduced at the beginning
of this chapter for laser injection are all designed to transmit as much power
as possible and therefore aim to be impedence matched cavities.

Figure 2.9: Reflection/transmission/circulating power and relative phase
for an impedance matched cavity with finesse of around 7 (T1 = 0.36, T2 =
0.36).

2.3.3 Optical losses

In the previous sections, the optical losses of mirrors or optical components were
considered negligible. In this section, we will address how to treat optical losses
when they cannot be neglected. We will use L to describe optical losses. This is not
to be confused with the cavity length L. Since both those terms rarely appear in the
same equation, no confusion is expected. Due to energy conservation, we can write
the following relationship

R + T + L = 1 (2.28)
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where R is the reflectivity of the mirror/component and T is the transmissivity of
the mirror/component.

There are severla different sources of losses. For example, the diffraction losses
caused by the finite size of mirror, the absorption of the mirror, the scattering from
the mirror coating and substrate defects. For mirrors used in optical metrology,
minimizing the optical losses is a huge deal. Optical losses for large mirrors are hard
to reduce and as it is difficult to have a homogeneous distribution over very large
surfaces.

Here I list some of the effects of optical losses related to my experiment:

• In the case of an impedance matched cavity previously defined, due to optical
losses in the propagation, the interference happening at input mirror is not
totally destructive. Therefore, some power is reflected and some power is lost.
This effect is especially visible for a high finesse cavities.

• Optical losses degrades squeezing. This will be discussed in chapter 4.

• Over-coupled and under-coupled cavity introduced in the last section have the
same reflection and transmission when losses are negligible. However, in the
presence of optical losses inside the cavity, a portion of the circulating light
will be lost and this will result in a smaller amount of reflected light in the
case of an over-coupled cavity. This can be seen in figure 2.10. In the case of
gravitational wave detector, this optical losses put fundamental limitation for
sensitivity [48]. We will see later that filter cavity introduced in this thesis is
an over-coupled cavity and suffers from optical losses, which causes the drop
of reflected power.

2.4 Gaussian beams in cavities
We introduced Gaussian beams and optical cavities in the previous sections. In
this section we will discuss how the geometrical properties of optical component
can affect the beam shape. For example, the use of lens can change laser beam
parameters, including beam waist and waist position. To couple a laser beam into
an optical cavity means to make the beam waist size to be the same as the cavity
waist size and make the beam waist position overlap with the cavity waist position.
An excellent review of this was done by Kogelnik and Li [40]. However, since this
knowledge is crucial for understanding my work about squeezing and filter cavity, I
will summarize few important formulas here.
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Figure 2.10: Comparison of reflection for an over-coupled and an under-
coupled cavity for high finesse (around 1500). The optical losses of 50ppm
causes the reflection power to drop for the over-coupled cavity while it has
no effect on the under-coupled one.

2.4.1 Fundamental mode of cavity

In order to match a Gaussian beam into a cavity, the first thing to know is the target
beam parameters which corresponds to the fundamental mode of cavity. The calcu-
lation of cavity fundamental mode relies on ABCD matrices introduced in equation
2.10. In order to have a stable cavity, we need to ensure that the beam properties
are unchanged after one round-trip. This mathematically means to require the input
beam to be equal to the beam after one propagation through the ABCD matrix of
the cavity. With this method we can compute, for example, the beam size at input
mirror, end mirror and waist as follows

ω4
input = (λR1/π)

2R2 − d

R1 − d

d

R1 +R2 − d
(2.29)

ω4
end = (λR2/π)

2R1 − d

R2 − d

d

R1 +R2 − d
(2.30)

ω4
0 = (λ/π)2

d(R1 − d)(R2 − d)(R1 +R2 − d)

(R1 +R2 − 2d)2
(2.31)

A similar approach can be done to compute the beam waist position inside an optical
cavity, as shown in [40].
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2.4.2 Preparation of a proper beam

Figure 2.11: An example of the use of JamMt for designing a telescope.

Based on ABCD matrix, we can choose the place to put lenses and other optical
components to have correct beam parameters to match into a cavity. At the same
time, we need to pay attention to some practical issues. For example, we should
try to use lens with a longer focal length, because astigmatism has a smaller effect
in this case. During the practical implementation, we should always try to make
beam as flat as possible and go through optics at their center. Besides, telescopes
sometimes are realized by using a set of curved mirrors, which is beneficial to reduce
loss. In this case, it’s better to reduce the incident angle on this mirror to avoid
astigmatism. To design a proper telescope, we often use the software JamMt (Just
another mode matching tool) [49].

In our experiment, the initial beam parameters are obtained from measurements
done with BeamMaster USB Knife-Edge Based Beam Profiler, which is based on
the measurement of the integral of Gaussian function - erf function [50]. Sometimes,
we perform the basic Knife-Edge scanning when the beam is too dim. The re-
construction of Gaussian beam with the measurement of beam size at different
position gives us the waist size and waist position of initial beam.

The choice of available lens is, of course, limited in real life. In order to have a
realistic simulation, we need to provide several parameters to the program. Main
parameters are material’s Sellmeier coefficients [51], lens thickness and lens surface
radius of curvature.

By taking in input the initial beam parameters, the target beam parameters
and the available lenses, the mode matching assistant of JamMt will automatically
calculate possible telescope solutions. In figure 2.11, we could see an example of the
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use of JamMt to find a proper telescope. We used this tool for most of the telescope
we implemented. Of course, as the name of the software suggests, this is just another
mode matching tool, and the same result can be obtained with a variety of different
simulation programs or analytical computation.

2.4.3 Misalignment and mode mismatch

In the case where the real beam and the target one have different beam parameters,
we have misalignment or mode mismatch. The paper from Dana Z. Anderson [52]
is a very comprehensive summary of both misalignment and mode mismatch. Both
issues make laser power couple to not only fundamental mode but also to other
modes called higher order modes. When the input axis is not aligned to the cavity
axis, we have misalignment, and the corresponding coupled modes are described
by Hermite-Gauss modes. If the waist size or waist position is not matched to the
cavity ones, this causes mode mismatch, and the corresponding coupled modes are
described by Laguerre-Gaussian modes.

Hermite-Gaussian mode

Any misalignment can be defined as a linear combination of an axis shift and a tilt
(for each direction). This causes power to couple to Hermite-Gaussian modes. The
HG modes are labeled using m and n to indicate the order of the mode, for example
TEMmn. Here TEM means transverse electromagnetic mode. And m always stands
for yaw (horizontal) higher order mode, while n stands for pitch (vertical) higher
order mode. The mathematical equation for its complex amplitude is

U(r) = (2n+m−1n!m!π)−1/2 1

ω(z)
Hm

(√
2x

ω(z)

)

Hn

(√
2y

ω(z)

)
exp

(
−r2

ω(z)2
− ık

r2

2R(z)
+ ı(m+ n+ 1)ϕ(z)

)
(2.32)

Here ω(z) is usually taken to be ω0 to simplify calculation, since the wavefront radius
of curvature will be infinity in this case. Then we can neglect the phase term related
to R(z) in calculation. This means computing the complex amplitude at the waist
position.
Since the equation is symmetric for m and n exchange, we can limit the discussion
to only one of them, in particular let’s have a look to yaw. The lower order mode is
for m = 1 and n = 0. Hermite polynomials have different values for different order.
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For example, H0(x) = 1 and H1(x) = x. By using this last two into the previous
equation, we can express the relationship between the fundamental mode and the
first high order mode as

U1 =
2x

ω0

U0 (2.33)

Then let’s see how a beam shift in yaw changes the power coupling into different
modes.
When there is a translation of beam position x0, the corresponding changed term is
the phase term responsible for power Gaussian distribution. This corresponds to a
change in coordinate system from x to x− x0. Therefore we have

exp
(
−(x− x0)

2

ω2
0

)
= exp

(
(−x2 − x20 + 2x · x0)

ω2
0

)
(2.34)

If we assume x0 to satisfy x0/ω0 ≪ 1, the terms containing second order of x0 can
be neglected. Then the phase term in equation 2.34 becomes

exp
(
−x2 + 2xx0

ω2
0

)
(2.35)

Using Maclaurin series, exponential function ex can be approximated as 1 + x and
then we have phase term as

exp
(
2xx0
ω2
0

)
exp
(
−x2

ω2
0

)
=

(
1 +

2xx0
ω2
0

)
exp
(
−x2

ω2
0

)
(2.36)

Using the expression of fundamental mode and first higher order Hermite-Gaussian
mode, we can express the transverse field function as

Utranslation = U0 +
x0
ω0

U1 (2.37)

The last equation shows how a shift of the beam can be represented as a linear
combination of zero- and first-order TEM where the coupling factor is x0/ω0.
The effect of beam tilt requires some schematic to start with. We have already
realized that in the case of beam shift misalignment introduces phase change. For
a laser beam, the phase is represented by wavefront and shown like the left side of
2.12. So for a small angle change, the phase of this beam is changed by an amount
of p as shown on the right side of 2.12.

This translates in a phase change introduced by a beam tilt α. This phase change
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Figure 2.12: Beam propogates in z direction. For the beam part which is
close to beam waist, we can consider it as plane wave. The left side shows
the overall beam tilt around the waist position. The dashed lines represent
the wavefront. The right side shows a zoom of two dashed lines taken from
left side, and the induced phase change is indicated as p = a×x.

can be written as
ϕ(x) =

2παx

λ
(2.38)

So the beam tilt will make the transverse field be

Utilt = U0 exp
(
ı
2παx

λ

)
= U0 +

πıαω0

λ
U1 (2.39)

where we used again the Maclaurin series to expand the exponential and express the
field as function of zero- and first-order modes. In this case the coupling factor is
πıαω0/λ. It is interesting to notice that this time the coupling factor is imaginary,
while for tilt it was a real number. This translates into a π/2 phase difference be-
tween the high order modes a shift and a tilt couple to, making them distinguishable
by a properly designed alignment system.

To avoid these higher order Hermite-Gaussian modes, several auto-alignment
methods were developed in the past. Among them there are dither alignment [53]
(currently used to maintain our filter cavity alignment), differential wavefront sens-
ing in reflection [54, 55] (planned to be used for our filter cavity), differential wave-
front sensing in transmission [52],etc.

Laguerre-Gaussian mode

Laguerre-Gaussian modes are used to describe mode mismatch of the beam incident
on a cavity. Laguerre-Gaussian modes is another full set for the description of
eigenmodes of a cavity, as much as the Hermite-Gaussian modes set was. This set
is defined in cylindrical coordinates and can be written as
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Up,l(r, ϕ, z) =
1

ω(z)

√
2p!

π(|l|+ p)!
exp((2p+ |l|+ 1)Φ(z))

×

(√
2r

ω(z)

)|l|

L|l|
p

(
2r2

ω(z)2

)
exp
(
−k r2

2q(z)
+ lϕ

)
(2.40)

where p and l are radial and angular mode numbers. Since there is a factor of 2
in front of p, the first higher order Laguerre-Gaussian mode is actually second order.
By taking into p = 1 and l = 0, we will have

U10 =

(
1− 2r2

ω2
0

)
U00 (2.41)

If the mismatched beam size ω′
0 can be written as function of the correct beam size

ω0 as ω′
0 = ω0(1 + ϵ) where ϵ≪ 1, then the phase term in equation 2.40 will be

exp
(
−r2

ω2
0

)
−→ exp

(
−r2

ω2
0

(1 + ϵ)2
)

(2.42)

By using the Maclaurin expansion for the exponential and also considering the
change of beam size parameter in the equation of Laguerre-Gaussian mode, we have

Usize = U00 + ϵU10 (2.43)

In the case of waist position mismatch, the transverse field will be

Uposition = U00 + ı
λb

2πω2
0

U10 (2.44)

where b is the waist position mismatch.

The problem of mode mismatch is usually tackled by fine tuning the position of
lens/curved mirrors. However, in the case of laser interferometer, with hundreds of
Watt of circulating power inside cavities, the mode matching will change as function
of injection power. Nowadays, there are thermal compensation systems to sense the
matching condition and correct the radii of curvature of mirrors using high power
CO2 lasers [56]. There is also another technique under investigation in the Univer-
sity of Padova, which uses an electro-optic lens to generate Laguerre-Gaussian mode
sidebands and use them to sense the mode matching condition [57].
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2.4.4 Cavity lock and PDH technique

Pound-Drever-Hall (PDH) technique [58] is an ubiquitous technique used to stabilize
the length of an optical cavity to the input laser wavelength or vice versa. Practically
speaking, locking a cavity means to stop the scan at a certain point, usually when
the transmission reaches the top of the resonance peak, and hold it.

In order to stabilize the length of a cavity, we need an error signal. The difference
of cavity field for all the possible frequencies/length with respect to the condition of
resonance can be used as error signal. However, not every error signal is suitable for
cavity lock. Let’s look back to figure 2.8. We could think to use the cavity trans-
mission or reflection as error signals and keeping the cavity locked by maintaining
them at a fixed level. This error signal could work well on the shoulder of the Airy
function, but is not a good error signal for the resonance condition since at that
point it has the first derivative equal to zero. The phase seems a much better error
signal around the resonance condition, however it does not have a linear response,
which is very much advisable property when deciding which error signal to use. The
PDH technique used as an error signal is the beat between the carrier and the side-
bands. We will show in the following as this particular error signal is very suitable
to stabilize a cavity around the resonance condition. For a more comprehensive
description of the PDH technique we refer to [58].

The beat between the carrier and sidebands contains the information on the
phase, and, for the case of cavity reflection after the demodulation, we can write it
as

Serror = 2
√
PcPs Im[f(ω)f ∗(ω + Ω)− f ∗(ω)f(ω − Ω)] (2.45)

where Pc is the power of carrier, Ps is the power of sideband, ω is the frequency of
carrier field and Ω is the frequency difference between the sidebands and the carrier.
Function f is taken from equation 2.12, and it is the frequency dependent reflectivity
of a cavity. By using real cavity parameters, we can plot the error signal as shown
in figure 2.13.

Let’s analyze some general properties of the PDH error signal and have a look
on how this signal is a good error signal for cavity length control:

• PDH signal shape: the three peaks represent the frequency spacing of side-
bands or carrier in frequency space. When the scanning of frequency crosses
the frequencies of sidebands or carrier, the error signal will have a very steep
linear response crossing zero. These two features, linear response and zero
crossing, are very good properties of this error signal.
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Figure 2.13: PDH signal for cavity reflection/transmission with different
demodulation phase. The sidebands frequency is at 25MHz.

• Use PDH signal to lock cavity: the crossing line’s slope has opposite sign
for sidebands and carrier. This allows us to discriminate when locking on the
carrier or on the sideband by looking on the sign of the control loop.

• Demodulation phase of the PDH signal: in the real case, PDH signal
doesn’t take exactly the form of equation 2.45. The PDH signal depends on
the phase of local oscillator used for the demodulation. Thus it will be a
combination of real and imaginary part of the beat term in equation 2.45. We
use this additional degree of freedom to carefully chose the best shape/highest
linear gain for our error signal.

• PDH signal for cavity reflection and transmission: The transmitted
error signal will be always smaller than reflection. This is due to the fact that
the sidebands are usually located outside the linewidth of cavity and mostly
reflected. As a result, the use of error signal in reflection of cavity is generally
preferred. However, for some specific case where the reflection is not available,
we can also use the error signal from the cavity transmission.

2.4.5 Mode spacing

Higher order modes have different Gouy phase depending on the mode order. There-
fore they will have different resonant condition inside a cavity. For the case of a not
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symmetric linear cavity, the Gouy phase ϕG for higher order mode is [40]

ϕG = (m+ n+ 1) arccos
√
(1− d/R1)(1− d/R2) (2.46)

where m and n represent the numbersused to characterize the order of higher order
modes. (For example, the sum of m and n is 1 for TEM01, and it is 2 for LG10.)
Using this relationship, we can compute where the higher order modes will appear
in the cavity scan.

2.5 Cavity enhanced Michelson interferometer

As discussed in chapter 1, the GW interferometers which performed the first de-
tection where an upgraded version compared to the Michelson interferometer. The
main enhancement are three different type of cavities applied to the basic Michelson
interferometer. They are Fabry-Perot cavity enhanced arms, power recycling cavity
and signal extraction cavity. In the following I will describe how the sensitivity of
a GW interferometer is enhanced by this three additional type of cavity.

2.5.1 Fabry-Perot enhanced arm cavity

The phase difference induced by GWs between two arms is proportional to the
arm length. This means that having the arm length of hundreds of kilometers
could drastically improve the sensitivity of GW detectors. Unfortunately this is not
possible yet on earth. An alternative way to increase the effective arm length is
to make photons bounce inside each arm for many times before recombining at the
beamsplitter. This can be realized by replacing a normal arm with a Fabry-Perot
cavity. As shown in [15], an arm cavity modifies the response by a factor

acav
1− r1r2e−2ikL

with acav =
t21r2

1−r1r2
and r1, r2 the reflectivities of the input and output mirror of

the arm cavity. In figure 2.14, it is shown how the response of a simple Michel-
son interferometer with arm length of 300 km can be obtained using a Michelson
interferometer with 3 km Fabry-Perot arm cavities with a finesse of approximately
160.
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Figure 2.14: The response to GW for a simple Michelson interferometer
with 3 km arm length (organge), for a 300 km arm length (blue) and for
a Michelson interferometer with 3 km long FP arm cavities with finesse of
160 (green). The latter two curves shows very similar response to GWs.
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2.5.2 Power recycling cavity

The quantum noise, which includes shot noise and radiation pressure noise, will be
introduced in section 2.6.5. There we will show how the shot noise is proportional
to the square root of the input power. Since the signal response to GW is linearly
proportional to the input power, the signal to noise ratio of the shot noise improves
when increasing the input power. This may indicate that a larger input power could
be beneficial, therefore new laser technology needs to be pursue to increase the laser
power. Unfortunately, building a more powerful laser source is not trivial, since we
don’t want to introduce additional intensity or frequency noise. A solution is to use
power recycling technique.

When the interferometer is operated in the dark fringe condition, almost all the
power injected goes back to the laser system. This is provided that the arm cavities
are strongly over-coupled with almost perfect reflecting mirrors as end test masses,
which for GW detectors is always the case. In this condition, adding an additional
mirror in between the beam splitter and the injection system (see figure 2.1) will
allow us to recycle a portion of the injected light and enhance the circulating power.
Such mirror is called power recycling mirror (PRM). When the interferometer is
locked, we can imagine the two arm cavities as a single FP cavity and the PRM as
the mirror of an additional coupled cavity. This coupled cavity is made as close as
a trans-impedance cavity which means that most of the power goes to arm cavity
and few goes back to main laser side. When the optical losses inside power recycling
cavity equals the transmission of power recycling mirror, the power recycling gain is

GPR ≃ FPRC

π
(2.47)

where FPRC is the finesse of the power recycling cavity. This gain is around 10
in the case of KAGRA. Which means that the circulating power is enhanced by
approximately one order of magnitude with respect to the Fabry-Perot Michelson
interferometer.

2.5.3 Signal extraction cavity

When the interferometer is locked in the dark fringe condition, only signals that
create a differential variation of the arm length can reach the output detector. By
adding a partially reflective mirror between the beam splitter and the output de-
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tector (see figure 2.1), we can create a cavity which affects only such signals. This
mirror is called signal recycling mirror (SRM) and the cavity is called signal recy-
cling or extraction cavity (SRC or SEC). As well as for the PRC, this cavity will
create a coupled cavity together with the arm cavity of the interferometer.

The effect of this cavity on the GW response of the interferometer depends on
the detuning condition of the cavity. If the detuning is zero, which means that the
SEC is on resonance with respect to the carrier, the reflectivity of the equivalent
mirror composed by the SRM and the input mirror of the FP arm cavity will be
reduced. Therefore the finesse of this compound cavity will be smaller compared to
the initial FP cavity, which will lead to a broadened frequency response, at the cost
of a smaller gain at low frequency. The opposite situation will happen for detuning
equal to π/2, which means that the SEC is in the anti-resonance condition for the
carrier. In this case the equivalent reflectivity will be maximized, increasing the
finesse of the equivalent cavity, therefore reducing the bandwidth but increasing
the low frequency response. For intermediate detuning conditions, the bandwidth
and the low frequency gain will have intermediate value with respect to the 0 or
π/2 condition, and a peak in the response will appear at frequencies related to the
detuning condition.

The detuning parameter of the SEC can be arbitrarily changed, allowing for a
fine tuning of the sensitivity if specific frequencies need to be investigated. In the
case of aLIGO, (AdV did not installed the SRM so far), a broadband configuration
was preferred and the SEC is operated with a detuning equal to zero.

2.6 Noise sources for advanced detectors

The noises that affect the GWs detection can act directly by moving the test mass
or reducing the precision of the interferometric measurement. The differential arm
length change in equation 1.28 can be expressed as

∆L = (xcl1 − xcl2) + (xq1 − xq2) + Lh (2.48)

where we highlighted a differential arm length fluctuation coming from classical
noise, quantum noise and the last term represents the real gravitational wave signal.
The basic idea is to reduce these noise sources until the GW signal is the dominant
one. To achieve this goal, we need to reduce these noise sources and the first thing
is to know where are they from and how we can reduce them. This section is aimed
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to answer these questions and particularly for the case of KAGRA.
Classical noise (from mirror motion)

• Seismic noise: it is caused by ground vibration which couples into the test
mass.

• Newtonian noise: it is caused from the gravitational field change around test
mass.

• Suspension thermal noise [59]: it comes from the mechanical loss of the sus-
pension material, which stems from the imaginary part of its Young’s modulus.

• Coating Brownian noise [60]: it is caused by the mechanical loss of dielectric
coatings.

• Coating thermo-optic noise [61]: it is caused by thermal dissipation via the
thermoelastic and thermorefractive mechanisms.

• Substrate Brownian noise: it comes from the mechanical loss inside test mass
substrate.

• Substrate thermo-elastic noise [62]: it comes from statistical temperature fluc-
tuation.

• Excess gas noise: it is caused from the test mass motion scattered by some
residual gas.

Classical noise (from optical carrier)

• Power and frequency fluctuation of the carier: as we see from equation 1.28, the
signal reaching the interferometer output port is proportional to P0, the carrier
power, and the differential arm length change is multiplied by the carrier wave
number k. These two terms contain noise from the optical carrier, namely the
main laser intensity noise and frequency noise.

Quantum noise This is the term xq1 − xq2 in equation 2.48. A more detailed
picture will be given in section 2.6.5, while here the semiclassical interpretation of
this noise is provided.

• Radiation pressure noise: in the semiclassical picture, this noise comes from
the momentum exchange between the photon and the test masses. This noise
is proportional to the amount of photons hitting the test masses.

48



Chapter 2

• Shot noise: the photon reaching the detector have a random arrival time,
described by Poissonian distribution. This random arrival time translates into
power fluctuation which can be mistaken for GWs.

There are also other noise which is related to the operation of interferometer and
scattering light. They are also important noise sources and are usually addressed as
technical noises (e.g. control noise, scattering noise, etc.).

2.6.1 Seismic noise and its attenuation

To detect gravitational wave, the test mass should behave as a free mass in the
detection frequency (from 10 to 10kHz). However, the seismic motion can cause
optics’ vibration, which will be in general uncorrelated if optics are far away from
each other. The seismic noise is always separated into three different frequency
regions

• At frequencies smaller than 1 mHz, the seismic noise comes from tidal defor-
mation of ground.

• At frequencies between 0.1 and 0.5 Hz, the seismic noise, usually called micro-
seismic noise, comes from ocean waves and large water mass movements.

• At frequencies above 1 Hz, seismic noise comes from weather condition or
human activity and is proportional to f−2.

In the case of KAGRA, the underground feature makes the seismic noise much lower
compared to other GWs detectors’ sites in the region above 1Hz. Figure 2.15 shows
the seismic noise in TAMA, VIRGO and KAGRA during day and night. We could
also see that the day/night difference is even smaller in the case of KAGRA.

The requirement of seismic noise for gravitational wave detection at 10Hz is
on the order of 10−20m/

√
Hz. This means that the ground motion needs to be

reduced by approximately 10 order of magnitudes. To achieve this suppression, the
pendulum principle is used. For a mass m object suspended by a l long wire, a
force mẍobj = −mg(xobj − xseis)/l will be applied. The Fourier transform 2 of this
force equation gives us the transfer function from the suspension point to object
xobj/xseis = 1/(1 − ω2

ω2
0
). It is easy to see that one stage of pendulum offers a

f−2 attenuation above resonant frequency ω0 =
√
g/l. Note that in the case of

KAGRA, the Type-A suspension has height of 13.5m which is aimed to have a
2The Fourier transform relation of F{dnf(t)

dtn } = (iω)nf(ω) is used.
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Figure 2.15: Seismic noise comparison for KAGRA (light green-day,
purple-night), VIRGO (dark green-day, yellow-night) and TAMA (blue-day,
orange-night)

smaller value for resonant frequency
√
g/l. Accumulated stages of pendulum offers

accumulated attenuation. But at the same time, mechanical resonance should be
damped carefully. The mechanical resonances are damped by actuators controlled by
an active feedback loop working at the mechanical resonance frequencies. Therefore
high frequency noise will not be introduced by these actuators. The details of
KAGRA actuators are summarized in [63].

2.6.2 Newtonian noise and its cancellation

Newtonian noise comes from gravity field fluctuations around the test mass and
limits the sensitivity below around 30Hz. The sources can be divided into following
items

• Seismic body waves which propagate through media in all directions, includ-
ing shear waves and compression waves. As shown in [64], these waves be-
come much more dominant when gravitational wave detector go further un-
derground.

• Seismic surface waves which propagate on surfaces of homogeneous media.
This noise is the main limitation for interferometer built on the ground [65].

• Atmospheric gravity perturbations including pressure (sound or wind), tem-
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perature and humidity. The infrasound is investigated in [66] to be a limiting
noise for Advanced Virgo and needs to be paid attention for future generation
gravitational wave detectors.

• Moving objects including motion with constant speed, oscillating and rotating
objects. For example, traffic nearby the site of GWs detector, or in the case
of KAGRA, water bodies moving inside the mountain or on top of it (snow).

The Newtonian noise can be calculated from seismic spectra as explained in
[67]. Rayleigh waves seemed to be the main limitation for LIGO, therefore the
measurement of vertical displacement by seismometer provides information for the
calculation of Newtonian noise. This noise is proportional to f−4 and will become
smaller for longer arm length.

The Newtonian noise is difficult to reduce because we can not shield gravity field.
But there are still ways to avoid or mitigate it. The easiest way to passively reduce
these noise is to go to underground and select a good location for the infrastructure.
In addition, an experiment taking advantage of seismic metamaterials was shown to
be able to shield the noise from surface waves. This passive way was test at frequency
of 50Hz and achieved a factor of 2 reduction [68]. The active way to mitigate this
noise is to do realtime/offline data processing. The spectrum measurement provided
by sensor (seismometers, accellerometers or microphones) is used to estimate the
coherence from this noise to signal, then to be subtracted. For the third generation
gravitational wave detectors, the low frequency requirement is very challenging and
the mitigation of this noise will be essential.

2.6.3 Thermal noise

All the thermal noises are related to mechanical or thermal dissipation. In the work
of Callen and Welton [69], this process is explained as an energy transfer from a
periodic motion to a random fluctuation caused by system internal losses. The ran-
dom fluctuating force in one degree of freedom is given as < F 2

x >= (2/π)kTη
∫
dω

where η is the real part of the impedance, which is equivalent to

< F 2
x >= 4kTη (2.49)

where k is the Boltzman constant and T is temperature. The above theorem is
usually called Fluctuation dissipation theorem (FDT). For a mechanical system, the
mechanical impedance is a measure of how much a structure resists motion when
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subjected to a force. The definition is F = Zv where F is the force, Z is the
impedance and v is velocity. By considering the Fourier transform from velocity to
displacement, we can get the power spectrum of random fluctuation displacement
as

Sx(f) =
kT

π2f 2
Re{Y (f)} (2.50)

This random fluctuation power spectrum is proportional to the temperature of the
system. In the case of KAGRA, its cryogenic operation aims for the reduction
of thermal noise and especially the coating thermo-optic noise which is the main
limitation in the mid-frequency region for aLIGO and AdV.

Suspension thermal noise

The suspension system is subjected to perturbation coming from the excitation of
seismic motion, then the mechanical loss inside the suspension material makes the
system absorb energy and induces suspension thermal noise.
Compared with a simple one-stage pendulum introduced in the section of seismic
noise, the equation of motion will include an additional dissipative term γẋ which
represents the viscous force due to mechanical loss. Once we have the equation of
motion, we can have the admittance and spectrum of thermal noise. In the case
of KAGRA, this particular noise is expected to be one of the main limitation in
the GW sensitivity. This is not the case for aLIGO and AdV. The sapphire fibers
suspending the test masses are, compared to the fused silica fibers of the other GW
detectors, much shorter and thicker. This is to maximize the heat transfer from the
mirror to the suspension, but at the cost of increasing the suspension thermal noise.

Coating and substrate Brownian noise

Different from the case of suspension thermal noise, for all the thermal Brownian
noise related to mirror coating/substrate, the excitation of mirror motion is from
radiation pressure noise. This radiation pressure, together with the test-mass inter-
nal elastic forces and internal dissipation, will lead to a time evolution x(t) of the
observable x. The connection of them is provided by Levin as [70]

|Re[Y (f)]| = 2Wdiss

F 2
0

(2.51)

where Wdiss = 2πfUmaxϕ(f) with Umax = 1
2
|F ||x(f)|. Here we need to notice that

the response x(f) to the excitation needs to consider thematerial loss angle, which
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is expressed as [60] x(f) = |x(f)| exp(−iϕ) ≈ |x(f)|(1 − ıϕ). The loss angle is
composed with loss from substrate and coating and weighted by the different elastic
energy U stored.

ϕ =
1

U
(Usubsϕsubs + Ucoatϕcoat) (2.52)

For the elastic energy U , a detailed explanation can be found in the appendix of [70].
For coating, the elastic energy is discussed in [71]. Without considering anisotropic
layer structure of the coating, thermal noise can be expressed as

Sx(f) =
2kT

π3/2f

1− σ2

ωY
ϕsubs +

2√
π

1− 2σ

1− σ

d

ω
ϕcoat (2.53)

where ω is the beam radius, Y is Young’s modulus, σ is Poisson’s ratio and d is
the thickness of coating. From this equation, we can see how to reduce this noise:
we can reduce temperature, increase stiffness of the material, reduce the thickness
of coating or increase the beam size. In the case of KAGRA, cryogenic operation
reduces the temperature and the use of sapphire mirror increase the stiffness relative
to fused silica. The coating Brownian noise is one of the main limitations for aLIGO
and AdV, while, thanks to the mentioned choice, it is expected not to be a main
limitation for KAGRA sensitivity.

Coating and substrate thermo-elastic noise

For coating, there is also thermal dissipation apart from mechanical dissipation.
The temperature dependent quantity will experience fluctuation due to thermal
dissipation, for example the refractive index and coating thickness. The thermal
fluctuation was calculated by Levin [72] based on the injection of periodic entropy,
tracking all thermal relaxation processes in the system and FDT theorem.

ST =
2
√
2

π

kT 2

ω2
√
2πfκC

(2.54)

where k is Boltzmann’s constant, T is temperature, ω is beam radius, κ is thermal
conductivity, C is heat capacity per volume, f is frequency. Considering the thermal
expansion and temperature dependent refractive index, the thermal optic noise is
[61]

Sx = ST (ᾱCd− β̄λ− ᾱsd
Cc

Cs

) (2.55)

where ᾱC is the effective coefficient of thermal expansion of the coating, d is the
coating thickness, β̄ is the effective thermorefractive coefficient, λ is the beam wave-
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length, ᾱs is the effective coefficient of thermal expansion of the substrate. The first
two terms represents the coating thermal-optic noise while the last term represents
substrate thermo-elastic noise.

2.6.4 Excessive gas noise

The vacuum level for gravitational wave detectors needs to reach level around
10−9Pa to have negligible influence of residual gas. The power spectrum density
is expressed as [73]

Sgas =
(4πα)2ρ

v0L2

∫ L

0

exp[−2πfω(z)/v0]

ω(z)
dz (2.56)

where α is the polarizability, ω is the beam radius, L is the interferometer arm
length, ρ is the number density, v0 is the most probable speed for the particle.

2.6.5 Quantum noise in semi-classical picture

Quantum noise comes from the quantum nature of light. In this chapter I will in-
troduce it in a semi-classical way. I will describe the quantum picture in chapter 3.
As stated before the quantum noise is usually divided into shot noise, which comes
from the random arrival time of the photons on the photodetector, and into radia-
tion pressure noise, coming from the momentum exchange of the photons with the
mirrors. There are two semi-classical methods to understand them, one is the so-
called sidebands picture while another is from Schottky shot-noise formula. There
have been already lots of thesis and papers describing this noise, for example [74].
I will discuss this noise based on Schottky formula in this section.

Shot noise

The semi-classical shot noise of light comes from the shot noise formula of electrical
devices developed by Walter Schottky [75]. This shot noises are all caused by the
random arrival of particles which can be described by Poisson distribution. In the
case of a photodetector, the formula which gives the shot noise power spectral density
is

SI(f) = 2eĪ (2.57)

with e the electron charge and Ī the mean photo current. To calculate the inter-
ferometer shot noise, we need to rewrite the last equation in terms of light power.
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Assuming a perfect response from the photo diode, we can have the relation between
Ī and P̄ as

Ī = e× N̄ = e× P̄

h̄ω
(2.58)

where h̄ is the reduced Planck constant and ω = 2πf with f the frequency of the
light. The unit of one-sided power spectral density for current is A2Hz−1. To
calibrate it to optical power unit W 2Hz−1, the transformation SP = SI(h̄ω/e)

2

derived from equation 2.58 is required. Then we can have

SP (f) = 2eĪ × (h̄ω)2

e2
= 2e× e

P̄

h̄ω
× (h̄ω)2

e2
= 2h̄ωP̄ (2.59)

P̄ is the power from the signal port of interferometer, which has already been de-
scribed as in equation 1.28. If the differential motion of the two interferometer
arms is small and the interferometer is operated at the dark fringe, we can approx-
imate the output power as P = P0 × k2∆x2. Then we can have the response of
interferometer as

dP

dx
= 2P0k

2∆x (2.60)

Taking the above response into equation 2.59, we can calibrate it into length.

Sx(f) = 2h̄ωP̄ × 1

4P 2
0 k

4∆x2
=

h̄ω

2P0k2
=

h̄c2

2P0ω
(2.61)

The square root of the above equation is the shot noise in unit of m
√
Hz

−1, which
is

∆LSN = c

√
h̄

2ωP0

(2.62)

The last equation shows a white spectrum which scales with the inverse of the square
root of the input power.

Radiation pressure noise

Radiation pressure noise comes from the same principle of shot noise which is the
random arrival of photons. To translate the photon counting fluctuation into differ-
ential length fluctuation, we need to consider two additional steps which are from
optical power to radiation pressure and from force to displacement. The spectrum of
radiation pressure caused by a beam with power P (Ω) has already been investigated
[76] and we can write it as

F (Ω) =
2P (Ω)

c
(2.63)
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where Ω is the sideband frequency with respect to the carrier. As shown at the be-
ginning of this chapter, we can consider the test masses as a free mass for frequencies
above the mechanical resonance frequency of the suspension system. The equation
of motion for a free mass M is F =Mẍ, and considering its Laplace transformation
we can write it in the frequency domain as

x(Ω) = −F (Ω)
MΩ2

(2.64)

Combining equation 2.59, 2.63 and 2.64, we get the power spectral density of differ-
ential arm length due to radiation pressure noise, which can be written as

SRPN(Ω) =
8h̄ωP0

M2Ω4c2
(2.65)

The square root of this PSD is the amplitude spectrum density

∆LRPN =
2
√
2h̄ωP0

MΩ2c
(2.66)

This spectrum decreases as 1/Ω2 due to its dynamical feature. Moreover, it is
proportional to the square root of the optical power.

Total quantum noise spectrum

By adding shot noise and radiation pressure noise together, we can get the total
quantum noise spectrum as shown in figure 2.16 for the case of a simple Michelson
interferometer.

To change the shape of quantum noise spectrum, three parameters can be ad-
justed in the shot noise and radiation pressure noise equations. Apart from that,
squeezing technique can also reduce it. They are summarized as following:

• Interferometer arm length: increasing the arm length will amplify the GW
signal response, therefore, since neither shot noise or radiation pressure noise
depends on the arm length, the total sensitivity will be improved.

• The mass of mirror (test mass): increasing mirror mass the radiation pressure
noise will be reduced.

• Arm power: changing the arm power, the quantum noise will be modified as
figure 2.17. As seen in the previous two paragraph, the shot noise spectrum
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Figure 2.16: Quantum noise without considering the effect of arm cavity
filtering and signal extraction cavity. The arm cavity power is assumed to
be 400kW, arm length to be 3km and mirror mass to be 20kg.

is proportional to P
−1/2
0 while the radiation pressure noise spectrum is pro-

portional to P 1/2
0 , therefore by increasing the power, for example, the effect of

the radiation pressure noise will be larger, while the one of the shot noise will
be reduced.

Figure 2.17: Quantum noise for different arm power. All the other param-
eters are the same with figure 2.16.

• Squeezed state of light: quantum noise can be reduced using squeezing tech-
nique. The production and characterization of squeezed states of light is the
main topic of this thesis and the related theory will be explained in detail in
the next chapter.
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By considering all the mentioned effects, we can conclude that the ideal con-
figuration could be: longer arm interferometer with higher arm power and heavier
test mass with respect to the current ones. Unfortunately, such enhancements are
not easily achievable, therefore, the use of squeezed light technique is of paramount
importance to reduce the impact of the quantum noise in GW detectors.
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Quantum states and their
manipulation to reduce quantum
noise for gravitational wave
detector

Although the semi-classical picture of quantum noise is easier to understand, a
quantum picture is necessary if we want to fully understand quantum noise of an
interferometer and its reduction using squeezing. About forty years ago, Caves
developed such quantum noise picture to prove that the this noise is the vacuum
fluctuation entering from the output port of interferometer [77]. Just one year later,
he proposed the idea of replacing such vacuum state with a squeezed vacuum state
[78]. This work paved the way to the application of squeezed state in gravitational
wave detector.

In 1985, the first squeezing observation was achieved through a four-wave mixing
process [79]. One year later, a squeezing observation was achieved through a para-
metric down conversion process [80]. In 1987, the first reduction of shot noise by
using squeezed vacuum was achieved [81, 82]. After that, strong efforts were made
to achieve higher squeezing level and push down the squeezing bandwidth toward
the low frequency. Up to now, the highest achieved squeezing level is 15dB in the
MHz region [83]. For audio band (down to ∼ 10 Hz), a squeezing level of 12dB has
been realized [84]. The implementation of frequency independent squeezed vacuum
source into gravitational-wave detectors was first realized in 2010 in GEO600 [85].
In the last joint observation run of LIGO and Virgo, frequency independent squeez-
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ing was also introduced and its use improved the sensitivity at high frequency of
more than 3dB [86, 87].

However, at the time Caves proposed the use of squeezed state, the interferometer
didn’t have any cavity. The low power inside interferometer arm makes radiation
pressure noise almost negligible. After introducing Fabry-Perrot cavities in the arm,
the radiation pressure increased consistently. For this reason, frequency dependent
squeezing, which can be used to reduce both radiation pressure noise and shot noise,
has been proposed by Kimble twenty years ago [88]. In the same paper, Kimble re-
derived the quantum noise by following the method proposed by Caves in the case
of a Fabry-Perot Michelson interferometer. Almost at the same time, a work done
by Buonanno and Chen completed the calculation of quantum noise for the full
configuration of current generation gravitational-wave detectors [89].

The implementation of frequency independent squeezing is equivalent to increase
the input laser power. For example, 10dB squeezing can reduce shot noise by a fac-
tor of 10 (

√
10 in the case of amplitude spectrum density), which can also be realized

increasing 10 times the arm cavity power. Both LIGO and Virgo use less than half
of their design input power due to the problems related with high power. There-
fore, frequency independent squeezing is a suitable alternative to meet the current
requirement. Usually the limiting factors which prevent a laser power increase [90]
are uniform absorption, radiation pressure changing alignment plants, parametric
instability, laser reliability, beam jitter, inhomogeneous absorption and radiation
pressure driven instability. Both LIGO and Virgo are putting efforts to solve these
problems in order to increase the laser power. Since the radiation pressure noise
starts to be relevant for the sensitivity of LIGO, the use of frequency dependent
squeezing starts to become crucial.

In this chapter, the concept of quantum states, generation of squeezed states,
characterization of squeezed states, quantum noise in the quantum picture and its
reduction by using squeezing are revisited. This is an essential background for
understanding the necessity of developing a frequency dependent squeezed vacuum
source.

3.1 Quantum states and their quantum uncertainty

Vacuum states and their fluctuations are introduced in this section. Two well-
known properties from quantum mechanics that we need to remember throughout
this chapter are:
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1. A light vacuum state has a non-zero energy of h̄ω/2 (which we will demonstrate
later on), and

2. Non commuting operators of position and momentum satisfy Heisenberg un-
certainty principle ∆x∆p ≥ h̄/2

Since the light vacuum state has energy, its fluctuation is present and causing quan-
tum noise. We will see in this section that the vacuum can be squeezed by applying
a squeeze operator. As a result, vacuum fluctuation can be reduced. However,
due to Heisenberg uncertainty principle, the reduction of vacuum fluctuation in one
quadrature (corresponding to one operator) leads to the increase of vacuum fluctua-
tion in the other quadrature. More information about the subjects presented in this
section can be found for example in [91, 92, 93, 94].

3.1.1 Quantum harmonic oscillator

The theory of quantum optics develops from the theory of quantum harmonic oscilla-
tor. For an harmonic oscillator, annihilation operator â and its Hermitian conjugate
â† (creation operator) are defined as

â =
1

(2mh̄ω)1/2
(mωx̂+ ip̂) (3.1)

â† =
1

(2mh̄ω)1/2
(mωx̂− ip̂) (3.2)

from the commutator [x̂, p̂x] = ih̄, [â, â†] = 1 can be derived. Here, â is called
annihilation operator because

Ĥâψn = (En − h̄ω)âψn (3.3)

where Ĥ = h̄ω(â†â + 1
2
) is the Hamiltonian of our system and Ĥψ(x) = Eψ(x)

its Schrödinger equation. The application of the annihilation operator â causes the
eigenenergy En of state ψn to decrease by h̄ω.
To prevent the energy from going negative, we need to have âψ0 = 0. So Ĥψ0 =

h̄ω(â†â+ 1
2
)ψ0 =

1
2
h̄ωψ0, which tells us that the zero-point energy is

E0 =
1

2
h̄ω (3.4)
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The state ψ0 is called vacuum state and usually written as |0⟩. The energy for state
ψn is

En = E0 + nh̄ω =

(
n+

1

2

)
h̄ω (3.5)

These results can be extended to physical systems whose Hamiltonian is equivalent
to an harmonic oscillator.

From the fourth Maxwell equation, the change of magnetic field in space equals
to the change of electric field in time. This property makes these two field have
phase difference of 90 degrees, which is the same phase difference between displace-
ment x and momentum p of an harmonic oscillator. Therefore, the Hamiltonian of
electromagnetic wave can be written in the form of harmonic oscillator and above
results can be applied to electromagnetic waves. The quantized electric field can be
expressed as [95]

Ê(z, t) = ε0 sin(kz)(âe−ıωt + â†eıωt) (3.6)

where ε0 is the amplitude of the field. This formula will be used many times in this
chapter.

Coherent state

Coherent state is defined by ”displacing” a vacuum state,

|α⟩ = D(α) |0⟩ (3.7)

Here D(α) = exp
(
αâ− α∗â†

)
is called displacement operator. The average photon

number of coherent state is

n̄ = ⟨α| n̂ |α⟩ = |α|2 (3.8)

A coherent state can be expressed as a combination of photon number states |α⟩ =
Σncn |n⟩ with cn = exp(−|α|2/2) ∗αn/

√
n!. The probability of measuring n photons

is the square of cn and this shows that the photon statistic of a coherent state follows
the Poission distribution.

Squeezed state

A squeezed state is generated by applying a squeeze operator on a vacuum state:

|ξ⟩ = S(ξ) |0⟩ (3.9)
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The squeeze operator is defined as S(ξ) = exp
(
1
2
(ξ∗â2 − ξ(â†)2)

)
. The squeeze

parameter ξ is defined as r exp(ıθ) where r is squeeze magnitude and θ is squeeze
angle.

3.1.2 Quadrature operators and phasor diagrams

The introduction of quadrature operators helps to understand the physical mean-
ing of quantum state and related quantum uncertainty. Quadrature operators are
defined as

X̂ =
1

2
(â† + â)

Ŷ =
ı

2
(â† − â)

(3.10)

From [â, â†] = 1, [X̂, Ŷ ] = ı
2

can be derived. Considering equation 3.10, equation
3.6 can be rewritten using quadrature operators as

Ê(z, t) = 2ε0 sin(kz)(X̂ cos(ωt) + Ŷ sin(ωt)) (3.11)

These two quadrature operators represent the real and imaginary part of electric
field. A plane-polarized electromagnetic monochromatic wave within a cavity may
be written as

E(z) = ε0(z)e
ıϕ = ε0(z) cosϕ+ ıε0(z) sinϕ (3.12)

where ε0(z) = ε0 sin(kz). A phasor diagram is a 2-D plot where the x-axis is the
real-axis and y-axis is the imaginary-axis (as shown in figure 3.1). The electric
field can be shown in the phasor diagram as an arrow. The length of the arrow
is the amplitude of electric field, while the phase is the angle between the arrow
and the x-axis. Although the reference frame for amplitude and phase changes with
the evolution of the electric field, amplitude and phase axis are always orthogonal
with each other. Therefore, the quadrature plane is also called amplitude-phase
quadrature plane.

3.1.3 Quantum uncertainty of vacuum states

The variance of a measured value X is defined as

(∆X)2 =
⟨
X2
⟩
− ⟨X⟩2 (3.13)
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Figure 3.1: Phasor diagram for an electric field. The red point represents
the value (amplitude and phase) of the field and its uncertainty.

Here ⟨ ⟩ represents the average of the repeated result of a measurement (correspond-
ing to the operator X) on a state. We remark that if the operators X and Y have a
commutator [X,Y ] which is not zero, they cannot be measured simultaneously with
arbitrary precision. Their variances follow the Heisenberg uncertainty principle

(∆X)2(∆Y )2 ≥ |[X̂, Ŷ ]|2/4 (3.14)

Recalling the expression of the commutator for quadrature operators, we can obtain

(∆X)2(∆Y )2 ≥ 1

16
(3.15)

For vacuum or coherent state, the two quadrature (phase and amplitude) have a
phase difference of 90 degrees and they have equal minimum quantum uncertainty
of

∆X = ∆Y = 1/2 (3.16)

This vacuum fluctuation of 1/2 is usually referred to as coherent vacuum fluctu-
ation and it is the minimum fluctuation achievable without using squeezing tech-
nique. This minimum uncertainty is the same for vacuum and coherent states.
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Figure 3.2: Representation of a vacuum state (left) and a squeezed vacuum
states (right) in a phasor diagram.

3.1.4 Quantum uncertainty of squeezed vacuum states

According to the squeeze (characterized by r) and rotation (characterized by ϕ)
operation for a vector in quadrature space, squeeze operator S can be written in
matrix form as [96]

S(r, ϕ) = R(ϕ)S(r, 0)R(−ϕ) = RϕSrR†
ϕ

=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
er 0

0 e−r

)(
cosϕ sinϕ
− sinϕ cosϕ

)
(3.17)

which, after computing the matrix product, becomes

S(r, ϕ) =
(

cos2 ϕer + sin2 ϕe−r cosϕ sinϕ(er − e−r)

cosϕ sinϕ(er − e−r) sin2 ϕer + cos2 ϕe−r

)
(3.18)

So when we apply the squeeze operator to a vacuum state, its quadrature fluc-
tuations become:(

∆X ′

∆Y ′

)
=

(
cosh(r) + sinh(r) cos 2ϕ sinh(r) sin 2ϕ

sinh(r) sin 2ϕ cosh(r)− sinh(r) cos 2ϕ

)(
∆X

∆Y

)
(3.19)
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and they can be explicitly written as:

(∆X ′)2 =
1

4
(cosh2 r + sinh2 r + 2 sinh r cosh r cosϕ) (3.20)

(∆Y ′)2 =
1

4
(cosh2 r + sinh2 r − 2 sinh r cosh r cosϕ) (3.21)

When ϕ = 0, we have (∆X ′)2 = 1
4
e2r and (∆Y ′)2 = 1

4
e−2r. The quantum uncertainty

for squeezed vacuum in two different quadratures is then

∆Xs =
1

2
er (3.22)

∆Ys =
1

2
e−r (3.23)

We see that the Heisenberg uncertainty principle is still verified and that squeezed
vacuum can be represented as an ellipse in the phasor diagram.

Besides, the change of phase ϕ causes the rotation of squeezing ellipse.

3.1.5 Photon statics

Different quantum states have been introduced and we mentioned that coherent
state photon statistics satisfies Possonian distribution. We will see that photon
statistic distribution is an important feature for different quantum states.

For a totally random arrival time of photons, the photon statistic is given by
the binomial distribution. When the photon number is large, it becomes a Poisson
distribution. This corresponds to the case of coherent states.

For a thermal coherent state of light, the spectrum follows Planck’s law and is
described by a Bose-Einstein distribution. When it has the same average photon
number of a coherent state, it has a much larger variance. This corresponds to a
super-Poissonian distribution.

If, as in the case of a squeezed state, the arrival time of photons is more regular
than for a coherent state, the distribution will becomes sub-Poissonian distribution.
The observation of this kind of distribution is a signature of the quantum properties
of light.

In figure 3.3, the photon static case of coherent, thermal coherent and squeezed
states with the same average Fock number are plotted.
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Figure 3.3: The photon static for coherent state, thermal coherent state and
squeezed state when they have the same average photon number. They show
Poissonian, super-Poissonian and sub-Possonian distribution, respectively.
The plot is done using Python quantum toolbox QuTiP [97]

3.2 Generation of squeezed vacuum state and its
detection

Before talking about the application of the squeezing in interferometers, let’s have
a look at how squeezed vacuum states are generated and detected.

3.2.1 Generation of squeezed vacuum state

The generation of squeezed vacuum is based on the interaction between a funda-
mental and a second harmonic field. In our case the fundamental field is vacuum
and the second harmonic field is a high power pump light. If the fundamental field
is a bright field, the so-called parametric amplification/de-amplification process will
be observed.

If there is only linear interaction, waves at different frequencies cannot interfere.
So squeezing generation relies on the use of a non-linear crystal. Optical non-
linear processes that lead to squeezing generation are for example parametric down-
conversion, four-wave mixing and Kerr effect.

For a parametric down-conversion process, we consider a vacuum field with an-
nihilation operator â at frequency ω and a pump field with annihilation operator b̂
at frequency ωp = 2ω. The interaction between these two fields takes place thanks
to a second order polarization χ(2)E2, which corresponds to an Hamiltonian [95]

Ĥ = h̄ωâ†â+ h̄ωpb̂
†b̂+ ıh̄χ(â2b̂† − â†2b̂) (3.24)

In most of the cases (including ours), the pump can be treated classically and its
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depletion can be neglected. Then Hamiltonian in interaction picture becomes

ĤI = ıh̄χ(βeıωpt(âe−ıωt)2 − βe−ıωpt(âe−ıωt)†2) (3.25)

Since ωp = 2ω, the time evolution part cancels out, correspondingly, the time-
evolution operator is

ÛI(t) = e−ıĤI t/h̄ = eχβ
∗tâ2−χβtâ†2 (3.26)

This time-evolution operator has the same form of the squeeze operator introduced
in section 3.1.1, which indicates that parametric down conversion can generate
squeezed state. Besides, term 2χβt reveals that the squeezing magnitude is pro-
portional to pump field strength β and to the interaction time t.

3.2.2 Detection of squeezed vacuum state

There are several ways to detect squeezed light vacuum states. Since the squeezed
vacuum state has too few photons, a bright field is usually required to amplify it. One
way is shown in figure 3.4, squeezed vacuum state is injected into an interferometer
and will be amplified by the carrier field of interferometer. In the end, the squeezed
vacuum state is measured with a single photo detector. The other way is shown in
figure 3.5, the squeezed vacuum state is amplified by the local oscillator of homodyne
detector. In the end, the squeezed vacuum state is measured by two photo detectors.
These two cases, extensively discussed in [98] are briefly summarized in the following.

Measurement by a photodiode

We already mentioned that a large part of GW detector spectrum is limited by quan-
tum noise. Nowadays, interferometers operate close to dark fringe with squeezing
injection, so the output light is actually a bright squeezing state with annihilation
operator as â = ⟨â⟩+ δâ. The corresponding photon-number operator will be

n̂ = (⟨a⟩∗ + δâ†)(⟨â⟩+ δâ)

= |α|2 + 2|α|δX̂ϕ + δâ†δâ (3.27)

where α is the expected value of bright squeezed field while ϕ is its phase. δX̂ϕ is
the fluctuation term of the quadrature operator X̂ϕ along the direction of α. The
last term δâ†δâ can be neglected since it is the second order of small number.

When this field hits a photodiode, the variance (the square of the second term in

68



Chapter 3

Figure 3.4: Squeezing injection and detection through interferometer.
Squeezed state is generated from squeezer and injected through a Fara-
day isolator. The squeezed field is represented as a dashed line. In the end,
the measurement of squeezing is done on a single photo detector.

equation 3.27) can be minimized by adjusting the relative phase between squeezing
and interferometer carrier light θ, having

Var(n̂) = |α|2e−2r (3.28)

For a comparison, in the case of no squeezing injection the output field of the
interferometer is just a coherent state and its variance will be

Var(n̂coh) = |α|2 (3.29)

We remark that in the two cases the noise level is proportional to carrier power |α|2

but not to the carrier quantum noise properties.

Measurement by balanced homodyne detector

In order to suppress noises other than quantum noise, balanced homodyne detector
(BHD) is often used in table-top quantum optics experiments. A schematic version
of a BHD is shown in figure 3.5, where the left side is the optical configuration and
the right are two possible electronic configuration. In contrast with hetoerodyne
detection, this technique is called homodyne as the squeezing (SQZ) and the local
oscillator (LO) have the same frequency.[99]. For signal to be measured, LO serves
as a frequency reference which causes the signal to change frequency after a mixing
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process.

Balanced homodyne detector is crucial for the measurement of quantum limited
states. Squeezed states easily covered by classical noises, for example, the amplitude
noise can sometimes dominate the noise spectrum until the MHz region. Especially
at lower frequency, which is important for gravitational-wave detection, there are
many noises such as beam pointing, non-stationary events and parasitic interference
[100] which can mask the effect of squeezing. Proper operation of BHD and a careful
design of the optical/electrical system help to push down these classical noises in
order to reveal the quantum nature of light.

As discussed in [100], the electronic design shown by the middle scheme in figure
3.5, which is usually called variable gain design, is inevitably affected by flicker noise
and gain unbalances. This will lead to a non perfect suppression of the common
mode noises. The right side scheme in figure 3.5, which is usually called ”current
subtracting design”, is more commonly used. Balanced homodyne aims for a current
subtraction to have a zero DC output. In this case, all the common mode classical
noises are cancelled and the measurement becomes quantum noise limited.

If we assume signal field to be â and local oscillator to be b̂, after their combi-
nation at the beamsplitter, the output ĉ and d̂ will be(

ĉ

d̂

)
=

1√
2

(
1 −1

1 1

)(
â

b̂

)
=

(
1√
2
(â− b̂)

1√
2
(â+ b̂)

)
(3.30)

The fields ĉ and d̂ will, at the photodiode level, induce the photo-currents < îc >

and < îd > which will than be subtracted to suppress the common mode noises.

Figure 3.5: Left: BHD optical layout in our experiment. Middle: variable
gain BHD. Right: current subtracting BHD.
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The result of the subtraction will be

< îc > − < îd >∝< n̂c > − < n̂d >=< ĉ†ĉ− d̂†d̂ >=< â†b̂+ b̂†â > (3.31)

When measuring the quantum properties of a squeezed state or a vacuum state in
general, the local oscillator is assumed to be much more powerfull, therefore can be
treated as a classical field and be written as βeiϕ, where ϕ is its phase difference
with respect to the signal. So the photo-current difference becomes

< îc > − < îd >∝ |β| < â†eiϕ + âe−iϕ > (3.32)

From the last formula it is clear that by changing the relative phase, different quadra-
tures can be measured. Moreover the output of a BHD is proportional to the am-
plitude of the local oscillator field but not affected by its quantum properties.

3.2.3 Quantum noise in quantum picture for a GW inter-
ferometer

Although the full configuration GW detector has different quantum noise compared
with simple Michelson configuration, we can use this simple case to explain the
calculation mechanism. We start with the configuration shown in figure 3.6. Note
that we don’t consider mirror motion caused by classical noise in this section.

As shown in figure 3.6, the carrier field combines with vacuum fluctuation enter-
ing from the output port. Due to the motion of mirrors, the phase of these fields get
modulated. Considering the effect of beamsplitter from equation 3.30 and mirror
motion, the fields in the two arms (before recombining at the BS) are:

E1(t) =
1√
2

[
ε0 cosω(t− 2x1(t)

c
) + Ev

]
(3.33)

E2(t) =
1√
2

[
ε0 cosω(t− 2x2(t)

c
)− Ev

]
(3.34)

Where Ev represents the vacuum field εv(X̂ cosωt+ Ŷ sinωt), its phase dependence
induced from the mirror motion is neglected since it is small. Using trigonometry
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Figure 3.6: Scheme for interferometer’s quantum noise. The carrier is a
coherent state and enters interferometer’s input port with the convention
of cosine wave. The vacuum state enters interferometer’s output port with
the form of equation 3.11.
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relations, we can expand the cosine term and get

E1(t) =
1√
2

[
ε0 cos (ωt)− ε0 sinωt2ωx1(t)

c
+ Ev

]
(3.35)

E2(t) =
1√
2

[
ε0 cos (ωt)− ε0 sinωt2ωx2(t)

c
− Ev

]
(3.36)

The field at the interferometer’s output port will be the difference between E1 and
E2 as the interferometer is operated in the so-called ”dark fringe” state. Term by
term what will happen is:

• the subtraction of the first terms cancel out the carrier at the output port,

• the subtraction of the second term contains the information of mirror differen-
tial motion which is caused by the gravitational-wave signal and the radiation
pressure noise. Note that this term is proportional to sinωt, which means
that gravitational wave signal and radiation pressure noise are in the phase
quadrature,

• the subtraction of the third term shows that the vacuum field entering the
output port is totally reflected. So fluctuations in both amplitude and phase
quadrature are present in the output signal.

We can write the output fluctuations as a function of the input fluctuation of the
amplitude quadrature ∆Xin and phase quadrature ∆Yin:

∆Xout = ∆Xin

∆Yout = ∆Yin −KX̂in −
√
Pω

h̄c2
Lh(Ω) (3.37)

where P is the input power, ω is the laser angular frequency, L is the arm length,
h(Ω) is the GW signal and Ω the GW frequency. The second term of the phase fluc-
tuation comes from radiation pressure noise, which originates from vacuum fluctua-
tion in amplitude quadrature. This fluctuation beats with the carrier field creating
the radiation pressure noise. The factor K takes the form of

K =
4Pω

c2MΩ2
(3.38)

where M is the mirror mass. The frequency dependence appearing in K is caused
by the frequency response of a free falling test mass. The third term of the phase
fluctuation comes from gravitational wave signal.
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Figure 3.7: Quantum noise modified by 10dB frequency independent squeez-
ing.

3.3 Reduction of quantum noise

We have seen that gravitational wave signal, shot noise and radiation pressure noise
are in the phase quadrature and that these two noise components originates from
the two quadrature of vacuum fluctuation.

It is straightforward that we can reduce quantum noise by reducing vacuum
fluctuation. However, the vacuum fluctuations cannot be reduced simultaneously in
both quadrature due to Heisenberg principle. This means that in order to achieve a
broadband quantum noise reduction, squeezing must have a frequency dependence
[88].

3.3.1 Quantum noise reduction using squeezing technique

If the vacuum state is replaced by an ordinary frequency independent squeezed
vacuum, we can have the quantum noise reduction/enhancement as shown in figure
3.7. As we can see, it has the same effect as changing the arm power.

Based on the fact that phase quadrature fluctuation dominates quantum noise
at high frequency and amplitude quadrature fluctuation dominates low frequency,
we need to have a squeezed vacuum state which rotates with frequency in the same
way as the quantum noise change. This means the squeezing rotation given by
interferometer needs to be compensated by a rotation provided by an external device.
Therefore, this rotation angle needs to be

θfds = arctan(K) (3.39)

According to the design of advanced gravitational wave detectors, this rotation needs
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to happen below 100 Hz. With the injection of this frequency dependent squeezed
state, the quantum noise will be reduced as in figure 3.8. In this case, broadband
quantum noise reduction can be achieved.

3.3.2 Frequency dependent phase change of squeezed states

The squeezing generated from parametric down conversion process is frequency in-
dependent. This squeezed vacum state can be modified to have frequency depen-
dence in many ways. Some of them are: the use of filter cavity [101, 94, 2, 102],
electromagnetically induced transparency in atomic vapors [103, 104], the use of
opto-mechanical induced transparency (OMIT) [105] and EPR entanglement [106].
The result of these experiments shows that optical losses could be much smaller
through the use of filter cavity and OMIT suffers from practical issue of mechanical
quality factor. Therefore, the most promising technique for the production of fre-
quency dependent squeezed states for quantum noise suppression in GW detectors
is the use of a filter cavity.

A detuned filter cavity modifies the phase of upper and lower sidebands relatives
to interferometer’s carrier in a non symmetric way. By exploiting this effect, the
squeezing ellipse is rotated and a frequency dependence is imprinted. Here, ’detuned’
means that the filter cavity is not resonant for carrier field but has a frequency offset.
Figure 3.9 shows the magnitude and phase of a filter cavity reflection with detuning
of 50Hz. The rotation angle θR of squeezing ellipse is defined as

θR =
ϕref (Ω) + ϕref (−Ω)

2
(3.40)

where ϕref (Ω) and ϕref (−Ω) are the filter cavity reflection phase at upper and lower

Figure 3.8: Quantum noise modified by 10dB frequency dependent squeez-
ing.
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Figure 3.9: The reflectivity and phase response of a suitable filter cavity for
GWs detector. X axis represents sidebands frequencies.

sidebands and Ω is the distance in frequency between the sideband and carrier
frequency.

Considering a lossless filter cavity, to achieve the rotation defined in equation
3.39, the HWHM (i.e. the cavity pole) of filter cavity γfc needs to be [96]

γfc =
ΩSQL√

2
(3.41)

for current generation GWs detectors, a suitable HWHM should be around 50Hz.
The optimal detuning ∆ωfc

for this lossless filter cavity needs to be the same with
its HWHM, which means ∆ωfc

= γfc. The real case, where the filter cavity losses
play an important role in defining the bandwidth of the filter cavity as well as other
parameter, is more complex. A comprehensive derivation the theory behind it can
be found in [96].
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Development of frequency
independent squeezing source for
gravitational wave detectors

The use of squeezing started with the theoretical work of Yuen [107]. There are many
physical processes that can be used to generate squeezed state of light. The system
to generate squeezing is called squeezed vacuum source (or simply squeezer). After
many years of development of the squeezing production technique, it is nowadays
widely used in many different research fields either to help go beyond quantum
limit or to be used to carry information. They include the enhancement of the
resolution for bioimaging techniques [108], quantum computing and memory [109,
110], continuous-variable quantum key distribution [111] and quantum teleportation
[112]. The development of squeezing for its implementation in a large scale laser
interferometer took more than 20 years before its use in GEO600 interferometer.
The squeezing techniques [113, 114] used or developed by GEO’s team is of great
importance for the whole GW community. During this project, we followed their
scheme and developed our own squeezed vacuum source.

In the first section of this chapter, the overall working principle of the squeezer
used in my experiment is reviewed. After that, the opto-mechanical design and
characterization for each component of the squeezer is given. In the second section,
the degradation sources and their influence on our squeezer are summarized. In the
third section, the performances of the squeezer are given, including the measurement
of squeezing with its degradation sources’ characterization. In the last section,
the application of frequency independent squeezing in the second generation GW
detectors is reviewed.
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4.1 Experimental setup

The goal of frequency independent squeezed vacuum source is to realize the measure-
ment of 9dB squeezing. In this section, the set-up to realize this goal is introduced.

The squeezed vacuum source is constructed on a standard, in-air optical bench
(size: 1.8m× 1.2m). The optical scheme is shown in figure 4.1. In order to suppress
the acoustic noise coupling, the whole optical bench is covered with thick phono-
absorbing boards and, to limit the impact of scattering due to air pollution, the
optical bench is hosted inside a class 1000 clean room.

The in-air squeezed vacuum source has been assembled specifically for this ex-
periment from scratch, following the design of the GEO600 squeezer. The core
part is the optical parametric oscillator (OPO): a linear hemilithic cavity hosting
a PPKTP (Periodically Poled Potassium Titanyl Phosphate) crystal in which the
squeezed vacuum is produced through a parametric down-conversion process. This
requires a pump beam at twice the squeezing frequency, which is produced by in-
jecting a 1064 nm laser into a second harmonic generator cavity (SHG). The main
laser, a 2-W 1064-nm Nd:YAG laser, is used to pump the SHG and produce green
light (with a wavelength of 532 nm) and as a local oscillator for the balanced ho-
modyne detector, used to characterize the squeezing. A mode cleaner cavity and a
Mach-Zehnder interferometer (MZ) are installed respectively to spatially clean and
to stabilize in power the green pump beam before it enters the OPO. Two auxil-
iary lasers, frequency offset locked with the main laser, are also used. The first one
(AUX1), injected into the OPO with a different polarization (p-pol) with respect
to the produced squeezed beam (s-pol), is used to control the OPO length,and it
is usually referred to as ”p-pol laser”. The second one (AUX2) is also injected into
the OPO and co-propagates with the squeezed vacuum beam up to the homodyne
detector, to track the squeezing phase and lock it with respect to the local oscillator,
this phase control loop, detailed in the following, is known as ”coherent control loop”
and for this reason the AUX2 laser is also called ”CC laser”. A part of the green
beam produced by the SHG is used for the control of the filter cavity described in
the next chapter. When I joined the experiment in October 2017 only the SHG was
installed. I was responsible for the integration, characterization and operation of all
the other components and thanks to this we could produce frequency independent
squeezing. In the following a detailed description and the work relative to each
component is reported. The performances of the frequency independent squeezing
source are finally presented.
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Figure 4.1: Upper: Detailed optical scheme for squeezed vacuum source.
Lower: Simplified optical scheme for the whole experiment. SHG: generate
pump beam. GRMC: spatially clean pump beam. MZ: stabilize pump
power. OPO: generate frequency independent squeezing. AOM: detune
filter cavity. Filter cavity: make frequency independent squeezing have
frequency dependent rotation. IRMC: spatially clean local oscillator. PLL:
phase lock auxiliary lasers to main laser. Phase shifter: stabilize squeezing
phase and homodyne measurement phase.
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4.1.1 Laser sources

The laser sources used in our experiment are 1064nm Nd:YAG Mephisto lasers
from Coherent Inc. The main laser provides up to 2W of power, while the two
auxiliary laser can provide up to 500mW of power. The characteristic NPRO design
provides excellent intensity and frequency stability as well as polarization cleanness.
Moreover, an internal noise eater is also present to provide an active amplitude noise
suppression of the piezoelectric ceramic (PZT) resonances. The main oscillation
frequency was characterized to be 310kHz for the ’CC’ laser in our system. This
high frequency noise usually does not create major problems since we focus on lower
frequency ranges, however it is important to know its existence when looking into
the high frequency parts of the spectra. Due to the thermal lensing effect of NPRO,
the best performance is guaranteed by the constructor only for high power operation.
In this section, some measurement and setting of our laser sources are introduced.

Laser power and its characterization

The laser power can be set by a pump diode current knob on the front panel of laser
control box. For every laser, if the pump diode current doesn’t go above a threshold,
there is no laser output. In the case of the main laser in our lab, this threshold is
around 0.7A. When the pump diode current is above this threshold, the laser power
increases linearly with the increase of pump diode current. The characterization of
power stability is shown in figure 4.2, which is measured under situations of laser
switching on, laser power change and no change after a long period of time. The
characterization shows that at least half an hour is required for laser source to be
well stabilized.

Apart from the low frequency laser power change caused by thermal effects, there
are also lots of higher frequency intensity noise caused by PZT resonance. The noise
eater can get rid of them. However, notice that this noise eater can be only engaged
when the laser power is close to full power.

In order to control the laser output frequency, the NPRO crystal temperature
can be finely tuned by means of a knob or an external voltage control and there is
also the possibility to modulate the frequency output by acting on the laser PZT.

Laser frequency and mode hops

In our experiment, the main laser frequency needs to be locked to the filter cavity
resonant condition. The frequency of auxiliary lasers needs also to be locked with
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Figure 4.2: Output power change for three different situations: (1) laser
just turned on - fluctuation = 1.1% (2) after three hours of operation -
fluctuation = 0.11% and (3) after a change in the pump diode current
- fluctuation = 0.45%. It is clear from the relative fluctuation value of
these measurement as the lasers need some warm up time as well as some
stabilization time after sudden power changes.

respect to main laser frequency by means of the phase locked loops.
To achieve frequency lock by acting on laser, Mephisto provide two control op-

tions: a temperature control and a laser PZT control. For the main laser, a PDH
signal from our 300m filter cavity actuates on its PZT to achieve the frequency stabi-
lization. While for auxiliary lasers, an optical phase lock loop controls the auxiliary
lasers frequencies actuating both on laser’s PZT and temperature.

All the laser sources used in the experiment shows the presence of mode hops.
This makes two fundamental modes with different frequencies appear at the output
of the laser which creates many problems with the cavity length controls and PLLs.
We must avoid this problem.

The whole frequency range of Mephisto is about 30GHz. As shown in the spec-
ification of Mephisto, several mode-hops appear within this range. Both the tuning
of pump diode current and temperature influences mode hops. According to the
requirement of experiment, the pump diode current is fixed as table 4.1.

Main laser Auxiliary laser(p-pol) Auxiliary laser(CC)
1.832 A 1.338 A 1.185 A

Table 4.1: Set up of pump diode current

After fixing laser diode current, the crystal temperature is the only parameter
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which needs to be adjusted to avoid mode hops. Usually mode hops are not difficult
to be avoided. However, considerations about the limitation of PLL locking fre-
quency and circuit bandwidth make the choice of three lasers’ crystal temperature
to be coordinated. The details of these limitations will be introduced in section 4.1.5
and section 4.1.7 separately. In the end, the temperature of each laser sources are
fixed as summarized in table 4.2.

Main laser Auxiliary laser(p-pol) Auxiliary laser(CC)
23.10 ◦C 32.49 ◦C 38.15 ◦C

Table 4.2: Set up of crystal temperature

Laser PZT characterization

To design optical PLL, it’s necessary to characterize the transfer function of laser
PZT. PLL aims for a bandwidth of several tens of kHz, which means the bandwidth
of PLL will be limited by PZT oscillation. Besides, the gain of PZT is also an
important parameter to be used in the design of servo. From the specification, the
gain of this PZT is 1MHz/V . But there is no information of resonant peaks, which
is important information and needs to be investigated.

By looking at the beat note of two laser sources and exciting the PZT of one
of them, we could get a broaden beat note. By taking the width of beat note
for different frequencies, we could construct a transfer function for each PZT. The
broaden beat note and the result of this characterization is shown in figure 4.3.
The gain of PZT below 70kHz is 1.8MHz/V . The resonance starts to appear
after around 70kHz, and strong resonance appears above 100kHz. Note that this
characterization process assumes that the linewidth of the laser is negligible with
respect to the broadening of the peak. All the three lasers PZT response have been
characterized and they all shows the same response with the a flat gain of about
2MHz/V and resonances features above 100kHz.

4.1.2 Second harmonic generator

Although the second harmonic generator (SHG) has already been constructed be-
fore I joined the project, I worked on the improvement and maintenance of this
cavity. Due to the environmental temperature change and reported low conversion
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Figure 4.3: Left: The broaden beat note due to excitation sent to one of
laser’s PZTs. Right: main laser PZT transfer function.

efficient, I worked on the adjustment of temperature control, PDH locking improve-
ment and matching improvement. Related background information and practical
measurement are reported in this section.

Second harmonic generation process uses the second order electric polarization of
a material and mixes two photons of a certain wavelength into one of half the wave-
length. The classical theory of SHG is based on Maxwell’s equation and non-linear
polarization, which can be found, for example, in [115, 116]. This theory is the basic
for both SHG and optical parametric oscillator (OPO), the two non-linear compo-
nents used in our squeezed vacuum source. Therefore, I will summarize it briefly
here. After that the the opto-mechanical design of SHG and its characterization is
reported.

Second order non-linear optics

This section answers the question about how second harmonic field are generated
from non-linear optical process. This section also tells us how non-linear crystal
plays a role in this process.

Maxwell’s equation tells us the relationship among electric fieldEEE, magnetic field
BBB and electric displacement DDD:

∇×EEE = − ∂

∂t
BBB (4.1)

∇×BBB = µ
∂

∂t
DDD (4.2)
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where µ is the magnetic permeability. Taking the curl of equation 4.1, we have
∇×∇×EEE = − ∂

∂t
∇×BBB. Taking equation 4.2 into account, we arrive at ∇×∇×

EEE = −µ ∂2

∂2t
DDD. Then considering ∇ × ∇ × EEE = ∇(∇ · EEE − ∇2EEE), the definition

of electric displacement DDD = ϵ0EEE + PPP and the definition of electric polarization
PPP = ϵ0χ

(1)EEE + ϵ0χ
(2)EEE2 + ϵ0χ

(3)EEE3 + . . . (where χ is the non-linear susceptibility),
we can get

∇2EEE −∇(∇ ·EEE)− µϵ
∂2

∂t2
EEE = µ

∂2

∂t2
PPP (2) (4.3)

where ϵ is electric permittivity and PPP (2) is the second order electric polarization.
Note that the electric polarization is considered only up to the second order and the
first order ϵ0χ(1)EEE was absorbed into ϵ0EEE. The second term ∇(∇ ·EEE) becomes zero
since there are no free charges inside the non-linear crystal. For a field propagating in
the z direction written as EEE(z, t) = 1

2
[EEE(z, ω)ei(ωt−kz)+c.c.], the left side of equation

4.3 becomes A ∗EEE(z, ω)ei(ωt−kz) + c.c. with

A =
1

2

∂2

∂z2
− ik

∂

∂z
− 1

2
k2 +

1

2
µϵω2 (4.4)

After using the slowly varying envelope approximation |∂2EEE
∂z2

| ≪ |k ∂EEE
∂z
| and consider-

ing µϵω2 = k2, a simple result is achieved as A = −ik ∂
∂z

.
For the right side of equation 4.3, the property of the non-linear crystal needs to be
considered. In this case, the second order electric polarization formula needs to be
generalized as

P
(2)
i = ϵ0Σj,kχ

(2)
ijkεjεk (4.5)

Here, χ(2)
ijk is generalized second order non-linear susceptibility and εj(ork) represents

an electric field. To achieve the SHG process, the frequency of electric field needs
to be identical. Each index runs over x, y, z dimensions, but when index j or k
exchange, the summation is the same. So the non-linear susceptibility has 3(i =

x, y, z)×6(jk = xx, yy, zz, xy/yx, xz/zx, yz/zy) = 18 components (the components
can be reduced to 10 for a lossless medium which will not be considered here). So
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the second order electric polarization is usually expressed as


P

(2)
x

P
(2)
y

P
(2)
z

 =


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36





εxεx

εyεy

εzεz

2εxεy

2εxεz

2εyεz


(4.6)

In different crystal systems, some nonlinear susceptibilities vanish and additional
permutation symmetries are allowed according to the crystal symmetries. In our
SHG, we use lithium niobate, the corresponding nonlinear susceptibility tensor is
given by 

0 0 0 0 d31 −d22
−d22 d22 0 d31 0 0

d31 d31 d33 0 0 0

 (4.7)

In the case of z-polarized SHG output, in type-1 (ooe) phase matching, the effective
nonlinearity is given by

deff = d31 sin(θ)− d22 cos(θ) sin(3ϕ) (4.8)

where θ is the polar angle between z-axis and the wave vector and ϕ is the azimuthal
angle. In our case, θ = 90◦, the effective nonlinearity is d31. This value is measured
to be 4.4pm/V by Shoji [117]. However, d33 of this material has a much higher value
of 25.3pm/V , which could be used in a quasi-phase matching condition.

Phase matching

The phase matching condition defines the optimal conditions, in our case the optimal
temperature, to maximize the efficiency of the non-linear process.

Let’s take equation 4.6, 4.8 and the approximation of equation 4.4 into equation
4.3, so we get

dεεε2ω
dz

=
µ0ω

2

2ik
deff ∗ εεε2ωe−i(k2ω−2kω)z (4.9)

The phase matching condition is achieved when the exponential part on the right
side of above equation vanishes, which means that ∆k = k2ω − 2kω = 0 needs to be
satisfied. Only in this case, the integral of right part can have non-zero result. The
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solution of this equation is

εεε2ω = −iωdeff
c0n

εεε2ω(0) · z · ei∆kz/2 · sinc(∆kz/2) (4.10)

In the case of a double-pass scheme, the second-harmonic electric field has an ad-
ditional term caused by the phase shift between the first and second harmonics
[118, 119]. Then equation 4.10 will be multiplied by a term cos2(ϕ+∆kL

2
). The same

equation can be used to describe the behaviour of a standing wave SHG cavity, as
it is in our case. The characterization of the phase matching condition as function
of the non-linear crystal temperature is reported in figure 4.4. As expected, the
behaviour is not described by a simple sinc function, as in the case of a single pass.

Periodic poling technique is widely used to achieve higher conversion efficiency
by exploiting the quasi-phase matching (QPM) condition. Due to this technique,
the use of high nonlinearity d33 becomes viable. In the case of QPM, the type 1
(eee) phase matching condition can be written as

k2ω − 2kω −KQPM = 0 (4.11)

k depends on refractive index as k = nω/c, while the refractive index depends on
temperature according to Sellmeier equation [120]

n2
e = a1 + b1f +

a2 + b2f

λ2 − (a3 + b3f)2
+
a4 + b4f

λ2 − a25
− a6λ

2 (4.12)

The formula is the same for o-ray but the coefficients are different. The temperature
parameter f of the previous equation is defined as

f = (T − 24.5)(T + 570.82) (4.13)

note that the unit for wavelength is µm and for temperature is ◦C. The parameter
of KQPM is adjusted up by manufacturer by tuning the period of the periodically
poling of the non-linear crystal.

The temperature control loop consists of temperature sensor (Thermistor 103
JT-025), Peltier heater and a temperature controller (Thorlabs TED200C), which
will be introduced in the section of OPO. The stability of temperature should be
less than 5mK [121].
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Figure 4.4: Measurement of SHG generated power as function of the crystal
temperature. The upper axies shows the resistance of thermistor. Note that
the phase matching temperature also depends on the real-time environmen-
tal temperature. For example, the optimal temperature is quite different
between summer and winter season.

Figure 4.5: Schematic cross section of SHG cavity. The Lithium Niobate
crystal is hosted in between a macor and a copper holder. The temperature
is stabilized with a Peltier cell and monitored with a thermistor. The cavity
length is optimized thanks to a PZT element which acts on the position of
the input meniscous mirror. The locking error signal is obtained from a
photodiode in transmission.
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Opto-mechanical property of SHG

The conversion efficiency from infrared light into green light is not only influenced
by phase matching condition but also by how much infrared light we can couple
into the SHG cavity. This is called the mode matching condition. Mode matching
includes both injection beam alignment and injection beam size mismatch. For very
high matching condition and good beam alignment, the main laser power was found
to be unstable. This was due to the back reflection from the SHG to main laser.
Therefore, a new Faraday isolator was installed to prevent this power instability.
To maximize the matching condition, the injection telescope was optimized several
time. In this part, the SHG opto-mechanical parameters are reviewed.

name value
crystal material MgO : LiNbO3 (LN)
dimension (mm) 2×2.5×6.5

flat surface curvature ∞
flat surface reflectivity < 0.1% both IR and GR

curved surface curvature 12mm
curved surface reflectivity 0.9995(IR) 0.998(GR)

meniscus curvature 20mm (outside), 25mm (inside)
meniscus reflectivity 0.92(IR) 0.02(GR)

FSR 4GHz
finesse 75
FWHM 53MHz

Table 4.3: Opto-mechanical parameters for SHG cavity [122]. The FSR,
finesse and FWHM are given for IR.

The optical length of SHG is 37.5mm, so the g factor g = 1−L/R could be derived
from the information of optical length and mirror surface radius of curevature.

Note that, to compute the g factor inside the LN crystal, the effective radius
of curvature needs to take into account the LN refractive index which is 2.2336 at
532nm.
The waist size is calculated from the g-factors as

ω2
0 =

λL

π

√
g1g2(1− g1g2)

|g1 + g2 − 2g1g2|
(4.14)
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Figure 4.6: Left: the mode matching measurement for the SHG. The mode
matching level is estimated by taking the ratio of two red point (offset is
removed) since there are no other visible high order modes. Right: the
higher order mode corresponding to the lower red dot in the measurement
on the left is captured by putting a camera in the transmission of SHG. The
existence of this shape can be due to either astigmatism of incident beam
or non-spherical symmetric configuration of crystal/meniscus.

so the waist size (for 532nm) of SHG is calculated as 44 µm. The waist position is

z = L
(1− g1)g2

|g1 + g2 − 2g1g2|
(4.15)

which gives result of 20mm from the meniscus and inside the cavity. These informa-
tion are necessary to infer the incident beam parameters. Since the meniscus works
as a lens, a simulation of software JamMt was done to get the final result of incident
beam parameters. The incident beam needs to have 48µm beam waist while the
waist position is 21mm from the meniscus. This result was used to design telescope
and improve the mode matching of SHG. After the improvement of mode matching,
the efficiency of SHG was improved. The SHG conversion efficiency was improved
from 13% to 35%. The mode matching measurement is shown in figure 4.6.

After improving the matching condition, the stability of main laser power was
monitored. The power fluctuation became negligible after the addition of the second
Faraday isolator.
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SHG length lock

All the cavities in our experiment are locked by using the PDH technique (introduced
in section 2.4.4). Since this is the first time a practical PDH loop is described, some
crucial components of the loop, which are common to all the PDH loops in our
experiment will be introduced.

• Opto-mechanical set-up (SHG case): as shown in figure 4.5, infrared
laser is injected through a dichroic mirror, which reflects infrared laser and
transmit green laser. The RF signal is taken from the transmission of SHG
(this is reasonable since the sidebands frequency is located well within the
FWHM of the SHG).

• Photo detectors: two kinds of photo detectors (PDs) are used in our set-up:
transimpedance type and resonant type. In the case of SHG, a resonant PD
was used with resonant frequency band between 14.9MHz and 15.5MHz and
Q factor of 23.

• Resonant electro-optic phase modulator (EOM): the sidebands neces-
sary for PDH control are created by means of an EOM. The modulation depth
m defined in ei(ωt+m sin (Ωt)) is used to quantify the sidebands magnitude. The
modulation depth is proportional to the amplitude of the applied RF signal
multiplied by the EOM modulation depth parameter which is 0.15rad/V for
infrared and 0.28rad/V for green in our set-up. A general output from our RF
signal source is 12.6dBm. Therefore, if we use full RF signal, the modulation
depth we can achieve are 0.143rad for infrared and 0.267rad for green.

• Demodulation electronics: in order to obtain the PDH error signal, the
reflection/transmission signal needs to be demodulated at the sideband fre-
quency. Moreover, to optimize the error signal shape and gain, the phase of
the local oscillator (LO) can be optimized digitally. The optimization process
usually requires to finely tune the LO phase to make the PDH signal flat and
then flip the phase by 90 degree. In order to suppress higher harmonics after
demodulation, a low pass filter is implemented after every demodulation stage.

• Opto-mechanical transfer function: to design proper filters for control
loop, the measurement of opto-mechanical transfer function is crucial. The
frequency position of mechanical resonance peaks and the low frequency gain
are important information. With such information, stable control loops can be
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designed. Even if all such information could be obtained by FEM analysis of
the cavity mechanics, for most of the cases in our setup was easier to measure
the transfer functions instead of simulate them. The opto-mechanical transfer
function of the SHG is shown in figure 4.7 left panel.

4.1.3 Green and infrared mode cleaners (GRMC/IRMC)

Both green mode cleaner (GRMC) and infrared mode cleaner (IRMC) are triangular
travelling wave cavities. With respect to a linear cavity, triangular cavities offer an
additional advantage which is polarization filtering. However, astigmatism, coming
from the non-zero incident angle on the curved top mirror, could be an issue. A
careful design needs to be done in order to avoid it [123].

The mechanical design of mode cleaners was done in collaboration with the
University of Trento and the Advanced Technological Center of NAOJ. It is shown
in the left side of figure 4.8. In order to minimize the astigmatism the length of the
mode cleaner is chosen to be much bigger than its lateral dimension. However, it
must also be not too long to keep the first longitudinal mode at frequencies higher
than the control bandwidth. A simple estimation of the first longitudinal mode
frequency can be done using the model of an elastic bar of length l with both ends
free, then the resonant frequency f0 will be

f0 =
1

2l

√
E

ρ
(4.16)

where E is the Young’s Modulus of the material, ρ is its density and l is the length
of the bar. For Invar36 which is the material of which the mechanics of our mode
cleaners is made, Young’s Modulus and density are 137Gpa and 8050kg/m3 respec-
tively. Therefore, the resonant frequency is 7330Hz. In order to get a more precise
result, a FEM simulation would be needed. In figure 4.9 the opto-mechanical trans-
fer function of GRMC shows some mechanical resonance around 10kHz. This could
be compatible with the rough estimation of the first longitudinal resonance mode.
The monolithic design make the mode cleaner very stable with respect to alignment
drifts and thanks to the material chosen, due to its low thermal expansion coefficient,
it is very stable with respect to room temperature fluctuations.

The optical parameters of GRMC and IRMC are listed in table 4.4.
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Figure 4.7: Left: Opto-mechanical transfer function for SHG. Several struc-
ture are visible above 7kHz. Those are likely related to mechanical reso-
nances of the cavity mechanics and are a limitation for the actuation band-
width. At low frequency the response is flat. Right: a photo of the SHG
cavity.

Figure 4.8: Left: mechanical design of green and infrared mode cleaners.
Right: optical configuration of green and infrared mode cleaners. Number
are expressed in millimeter. The mechanical design is the same for green
and infrared mode cleaners, but the coating of mirrors are different. Note
that the location of waist is indicated to be in the middle of two bottom
mirrors.

92



Chapter 4

Figure 4.9: Left: the opto-mechanical transfer function of GRMC. Right: a
picture shows the input port of green mode cleaner.

GRMC IRMC
top mirror ROC 1m 1m

bottom mirrors ROC ∞ ∞
top mirror code CVI(Y2-1025-0-1.00CC) CVI(Y1-1025-0-1.00CC)

top mirror reflectivity 99.9%(0◦AOI) 99.9%(0◦AOI)
bottom mirrors reflectivity 99.2% (s-pol) 99.2% (s-pol)

nominal transmissivity 93% 93%
FSR 533MHz 533MHz

FWHM 1.36MHz 1.36MHz

Table 4.4: Mechanical and optical parameter of green and infrared mode
cleaners.

Optical property of GRMC/IRMC

According to the mirror optical parameters, the nominal transmission of mode
cleaner without considering optical losses is 93%.

The measured transmission of GRMC is only about 60% which is considered to
be due to the existence of optical losses, green beam non-perfect shape and sidebands
power. In the experiment, we have observed that the green light coming from the
SHG has interference fringes, which was figured out to be due to a beam clipping
effect.

The measured transmission of IRMC is about 80%. This is closer to the nominal
value compared to the GRMC and it is suspected to be due to a better beam shape.
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Opto-mechanical property of GRMC/IRMC

Based on the opto-mechanical design, we could calculate the beam waist for GRMC/IRMC.
The calculation of beam waist is different from SHG because of different cavity ge-
ometry. Let’s first remind the ROC of Gaussian beam R and its Rayleigh range zR
is

R = z(1 + (zR/z)
2), zR = πω2

0/λ (4.17)

To calculate the waist size inside mode cleaner, we need to consider the right side
of figure 4.8. As is indicated in the figure, the waist is located in the middle of two
bottom mirrors. This can be easily understood due to the symmetry properties of
the mode cleaners. To have a stable cavity, the ROC of top mirror should match
the ROC of beam. By considering this relation, we derive the waist size ω0 as

ω0 =

√
λ
√
R · z − z2

π
(4.18)

where R is the ROC of top mirror, z is the propagation distance of beam from waist
to top mirror and λ is the wavelength. As we see on the right side of figure 4.8,
the beam hits the top mirror at an angle θ = 11/(11 +

√
112 + 2812). Based on the

formula derived by Massey and Siegman [124], the effective horizontal and vertical
ROC are

Rh = R/ cos θ, Rv = R cos θ (4.19)

The computed beam waist inside the mode cleaners are ω0 = 380µm for the IRMC
and ω0 = 270µm for GRMC.

Another way to calculate the optical properties of a triangular cavity is provided
by Raab [123]. Both in the work of Massey and Raab, the horizontal direction is
called transverse direction and the vertical direction is called sagittal direction. The
phenomenon caused by different beam ROC in different direction is usually called
astigmatism. Two problems can be caused by this astigmatism: mode splitting and
non-circular mode shape. Based on the introduction in chapter 2, the discussion
about these problems in GRMC/IRMC is given.

Mode splitting

The mode spacing of an optical cavity was introduced with equation 2.46. For a
triangular cavity, the FSR is a bit different from the one defined in equation2.17.
This is because a mode needs to return to its original state by travelling twice cavity
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length in a linear cavity, but only one cavity length in a travelling wave triangular
cavity. In a travelling wave cavity, the FSR corresponds to a phase change of 2π.
Based on this, the mode spacing in a triangular cavity from the fundamental mode
can be expressed as

fms(travelling) = arccos (1− d/R)× FSR

2π
(4.20)

So the mode splitting can be expressed as

fms1 − fms2 =
FSR

2π
× (arccos (1− d/Rh)− arccos (1− d/Rv)) (4.21)

By taking into account the parameters of our mode cleaners, the mode splitting
frequency is 0.05MHz. Comparing this splitting frequency to the FWHM reported
in table 4.4, it is clear that we can completely ignore this effect.

Mismatch due to non-circular mode shape

Another issue caused by triangular cavity is mode mismatch between ideal circular
mode and non-circular mode shape. The overlap ratio O between a circular mode
and an astigmatic mode can be expressed as [44]

O = (
zR

√
zRhzRv

|q(z)|2|q(z)hq(z)v|
)2| 1

( 1
2qh(z)

− 1
2q
)( 1

2qv(z)
− 1

2q
)
|2 (4.22)

Here q is defined in section 2.2.3. By taking into account all the parameters, the
overlap ratio is more than 99.9999%. THerefore, the astigmatism effect is totally
negligible thanks to the design of GRMC/IRMC.

Beam pointing noise mitigation

As shown in figure 4.1, IRMC is very close to the BHD. Apart from reducing phase
noise and cleaning mode shape, IRMC plays an important role to reduce the beam
pointing noise [125]. In our case, a large phase difference exists between the squeez-
ing and local oscillator. This is due to the fact that the squeezing coming from
OPO will travel a long distance to the FC and hit at least three suspended mirrors.
Since these mirrors are far away from each other and each has an individual sus-
pension system, their motion can be considered uncorrelated. To correct this large
phase difference between squeezing and local oscillator, the phase shifter needs to
be driven with a large dynamic range. This phase shifter acts on the local oscillator
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beam path length and this will certainly cause a problem of beam pointing noise.
However, since we put this phase shifter as close as possible with IRMC, the

beam pointing noise is suppressed by the IRMC. Due to the property of cavity,
when IRMC is locked, mostly TEM00 is transmitted, and the high order mode
coming from input beam misalignment are rejected. In this case, IRMC works as a
filter for beam pointing noise. This is assuming that the induced beam pointing is
small enough to neglect its coupling to the transmitted power. This is true for fast
correction, however is not verified for long term actuation, where the full travelling
range is exploited. In such cases the shot noise reference may vary and could be
necessary to be measured again. Up to know, this problem was never encounter
since the time scale of the measurement is much smaller than the one which induces
this problem.

4.1.4 Mach-Zehnder interferometer

The Mach-Zehnder (MZ) interferometer is used to reduce the green laser intensity
noise and adjust the green power level sent to OPO.

Optical design of MZ

As we can see on the right side of figure 4.10, MZ is designed to be a very compact
device. In the middle, a large 50/50 beam splitter is used to both split and recombine
the beams. After splitting, the two laser beams go separately to two mirrors. One
mirror is fixed while the other is attached to a PZT. After the reflection from these
two mirrors, they recombine on the large 50/50 beam splitter. In this configuration,
the PZT moves one mirror changing the MZ arm length, therefore changing the
interference condition, from bright to dark fringe. In this way, we can control the
laser power. Due to the compact design, this system has a stable alignment. Unless
some strong oscillation is excited, the alignment can be kept for several weeks.

As we can see in figure 4.1, the GRMC is located just after the MZ. This layout
not only helps to reduce the beam jittering from the MZ but also help the alignment
of the MZ. The alignment of the MZ can be done by taking advantage of GRMC
and using it as a reference cavity. The strategy is to block one path in MZ and align
the other path to GRMC as the first step. Then exchange the blocked paths, align
again to GRMC. After these two steps, the combination of two paths will overlap
very well.

A portion of the green beam transmitted from the GRMC is collected from a
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Figure 4.10: Left: the opto-mechanical transfer function of the MZ. Right:
a picture of the MZ used in our experiment

photodetector. This signal is used as an error signal for the MZ PZT control to
stabilize the green power reaching the OPO.

Offset lock for MZ

To control the MZ an offset lock is performed. The signal taken from GRMC
transmission is sent to servo and compare to a fixed offset. The servo actuates on
the MZ PZT to keep the difference between the GRMC transmission and the offset
to zero. By changing the offset value, we can change the operating point of the MZ,
changing therefore the amount of green reaching the OPO. Due to the very large
visibility of the MZ which is almost 100%, the green power can be controlled in a
very large linear region, as shown on the right side of figure 4.11.

4.1.5 Optical parametric oscillator

The optical parametric oscillator (OPO) is the device where squeezed vacuum is
generated. Compared with the combination of two photons in SHG, OPO is operated
to make one photon separate into two photons. In the OPO, a photon with frequency
of 2ω converts into two photons with frequency of ω. Due to this spontaneous down
conversion process, this device sometimes is also called ’SPDC’. It follows the same
phase matching condition with SHG since all the frequency components are the
same. The only difference in our experiment is the use of a different non-linear
crystal, different cavity geometry and different operating pump power condition
(below/above threshold). The parameters of OPO is summarized in table 4.5.

97



Chapter 4

Figure 4.11: Left: the optical scheme of MZ. Right: the change of green
power injected to OPO according to the offset of MZ. Here, the offset is
provided by a potentiometer inside the servo control.

Figure 4.12: OPO optical scheme. Pump, coherent control and length con-
trol fields are injected into OPO. Squeezing and a new coherent control field
are generated inside the cavity.
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The main difference between SHG and OPO is the non-linear crystal. As re-
ported in [126], a PPKTP crystal has comparable non-linear coefficient with PPLN.
More importantly, PPKTP has poling losses much lower than PPLN. Moreover,
the damage threshold, resistance to photo-refractive damage, resistance to thermal
lensing are all higher. All these features makes the use of PPKTP crystals favorable
for squeezing generation.

As shown in figure 4.12, two additional fields are injected into OPO which are
not directly related with squeezing. To make optical situation more clear, a general
introduction of light field related to the OPO is given as follows and shown in figure
4.13:

• Vacuum is permeated everywhere in spacetime. Therefore it must exist in
the fundamental mode of OPO.

• Pump light is sent to OPO to drive the non-linear process.

• Squeezing (squeezed vacuum) is a squeezed vacuum field generated from
optical parametric oscillation process.

• Length control (p-pol) is an infrared beam in p polarization provided by an
auxiliary laser. It is used to lock the cavity length. Its frequency is carefully
chosen to make s polarization also resonant at the same time.

• Coherent control (CC) is an infrared beam in s polarization provided by
another auxiliary laser. It is used to sense the phase change of squeezing.

• Bright alignment beam (BAB) is an infrared beam which is not shown in
figure 4.12 and is not injected into the OPO in normal operation. However,
when alignment and matching operation are required downstream the OPO,
this beam is injected and used to track the OPO cavity mode.

This section will concentrate on the detailed introduction of these fields and
related characterization.

Opto-mechanical property of OPO

Mirrors curvature and distance are listed in table 4.5. By using the same formula
used for SHG, the beam waist ωOPO of OPO is calculated as

ωOPO = 25.5µm (4.23)
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Figure 4.13: Optical and control scheme around OPO

The beam position zOPO relative to meniscus is

zOPO = 13.1mm (4.24)

The desired waist size becomes 20.66µm and 11.1mm due to the presence of the
meniscus. This result was used to match OPO. As we can see from table 4.5, OPO
is resonant for infrared beam but not for green. For green beam, the in-coupling
mirror reflectivity of 20% helps to amplify green power insider OPO by a factor of
1/(1−

√
0.2) ≃ 2.

For an infrared beam, the nominal transmission of the OPO is 1%. However, we
measured only about 0.2%. This difference could be easily explained by a higher
reflectivity of crystal HR coating. For example, a reflectivity of 99.995% of crystal
HR side will give a result compatible with the measurement.

A simulation of PDH signal was also done to compare the situation of taking
the error signal from OPO transmission or reflection. The simulation is done with
simulation tool finesse. According to the simulation, the OPO PDH error signal is
obtained in transmission.

Optical phase lock loop

Two additional beams from two auxiliary lasers are injected into OPO. These two
laser fields need to be phase locked to main laser. The control loop which allow us
to phase lock the field is called phase locked loop (PLL) [127]. I was responsible for
the implementation and maintenance of this system. The principle of PLL and its
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Figure 4.14: Simulation of OPO PDH signal in reflection and transmission
of the cavity.

Figure 4.15: Optical phase lock loop optical scheme. The beat between two
laser beams provides error signal for phase lock loop. The beat note shown
on spectrum analyzer is used as a monitor and provides information on the
locking status.
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name value
crystal material PPKTP
dimension (mm) 1×1.5×9.3

flat surface curvature ∞
flat surface reflectivity < 0.3% for both IR and GR
curved surface ROC 8mm

curved surface reflectivity > 99.975% (IR) > 99.975% (GR)
meniscus curvature 20mm (outside), 25mm (inside)
meniscus reflectivity 92% (IR) 20% (GR)

FSR 4GHz
finesse 75

Table 4.5: Opto-mechanical parameters of OPO cavity. The FSR and finesse
are given for IR.

characterization is reported in this part.
As shown in figure 4.15, the beat of main laser and auxiliary laser is realized

in the fiber BS system. This beat contains information of phase difference between
the two fields. This beat note is an RF signal sensed by a high speed, fiber coupled
photo detector. A phase-frequency detector (ADF4002) is used to compare this beat
note to a fixed local oscillator (LO). Then the phase difference between beat note
and LO is fed back to the auxiliary lasers. In the end, the auxiliary laser phase
follows the phase of main laser with a fixed frequency difference.

Characterization of PLL phase noise

PLL locks the beat note of two laser to a fixed frequency reference. To character-
ize how well the lock is performed, the monitor channel is used. This channel is
connected to another phase detector and compared with the same LO signal. The
characterization of phase noise is based on the principle of phase detector.

Let’s assume the beat note Vbeat and the local oscillator VLO takes the form

Vbeat = A1 sinω0t+ ϕ1, VLO = A2 sinω0t+ ϕ2 (4.25)

After sending them to a mixer, the beat of these two signals Vb will be

Vb =
KmixA1A2

2
(cos (ϕ1 − ϕ2) + cos (2ω0t+ (ϕ1 + ϕ2))) (4.26)
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The phase ϕ can be expressed as ϕ̄ +∆ϕ. The mixer’s output is attached to a low
pass filter. In our case, we use mini-circuits ’BLP-1.9+’, which has a passband of
’DC-1.9MHz’. In this case, only the DC signal and the low frequency sideband can
pass. So the signal will become

Vb =
KmixA1A2

2
cos (ϕ̄1 − ϕ̄2) + (∆ϕ1 −∆ϕ2) (4.27)

The phase difference of these two signals can be set to be 90◦. We can check this
phase difference by looking at the mixed signal on an oscilloscope. When the signal
is around zero, the phase difference is 90◦. In this case, the mixed signal will become

Vb =
KmixA1A2

2
cos (π/2 + (∆ϕ1 −∆ϕ2)) (4.28)

=
KmixA1A2

2
sin (∆ϕ1 −∆ϕ2) ≃

KmixA1A2

2
(∆ϕ1 −∆ϕ2) (4.29)

The output signal is directly proportional to phase difference between beat note of
PLL and LO. If LO is a stable signal, this phase difference is the phase noise of PLL.
The spectrum of this mixed signal is the square of the above equation, and can be
expressed as

Sb = (
KmixA1A2

2
)2 × Sϕ (4.30)

To calibrate the measured power spectrum into phase noise spectrum, a measure-
ment of coefficient KmixA1A2

2
can be done when we change LO frequency by for

example 100Hz and measure the pk-pk value Apk−pk of the induced oscillation. So
in the end the phase noise power spectrum is

Sϕ =
Sb

A2
pk−pk

(4.31)

If the measurement is amplitude spectrum, the calibration factor becomes Apk−pk.
The measurement result of PLL phase noise is shown in figure 4.16. At high fre-
quency, the phase noise comes mainly from the frequency noise of the servo. How-
ever, the low frequency phase noise is dominated by the length fluctuation of filter
cavity. This is due to the fact that the main laser is frequency locked to the filter
cavity. At frequencies higher than 10Hz, the FC is a much more stable frequency
reference compared to the laser itself, however, at lower frequencies, where the me-
chanical resonances of the suspension are present, it actually introduces noise in
the main laser frequency, which is reflected into the PLL noise. In order to limit
this effect, the low frequency portion of the FC length error signal is fed back to
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the cavity mirror actuators, while the high frequency part is fed back to the main
laser. This is clear when looking at the PLL performances when this type of hybrid
actuation is chosen with respect to fully actuating on the main laser: in the first
case the residual PLL noise is almost a factor of two smaller than in the latter case.
More on the locking strategy for the FC will be explained in the next chapter.

OPO cavity assembly and cavity scan

OPO cavity has a similar mechanical configuration with SHG. The assembly of OPO
starts from putting PPKTP crystal inside the housing. As shown in figure 4.12, for
the crystal side of OPO housing, different parts are listed from lowest one to highest
one as following:

• Peltier. Peltier can transfer heat from one side to the other side with the
consumption of electrical energy. So it has a cold and hot side. Since we need
to heat up PPKTP, the hot side is upside.

• Indium. A 0.1mm indium sheet is placed on top of Peltier to ensure a good
thermal contact. This is also applied to one side of PPKTP holders which are
in contact with PPKTP.

• Copper ’L’ shape holder. This is used as a buffer for the heat coming from
Peltier and a holder for PPKTP crystal.

• Thermistor. Thermistor (103 JT-025) is attached to the shorter vertical side
of copper holder with a retainer. This is the sensor for thermal control.

• PPKTP. PPKTP needs to be put in the corner of holder and longitudinally
in the middle. A marker indicates the HR side of crystal.

• Macor ’L’ shape holder. It is used to fix crystal position and for thermal
isolation. Two screws, acting on X or Y direction, provide pressure to fix the
crystal.

After the assembly and alignment of the OPO, the optical characterization was
performed by doing a cavity scan. By fitting the Airy function, the information
of FSR or finesse can be derived. Especially, by increasing modulation depth on
purpose, the sidebands of 87.6MHz can appear in the spectrum of cavity scan. By
using this information, the estimation of FSR becomes more accurate. The fit result
is shown in figure 4.17.
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Figure 4.16: PLL phase noise for difference FC control actuation. When
the low frequency part of the FC control is offloaded to the cavity mirror,
the reduction of the PLL noise is clear. .

Figure 4.17: The measurement of OPO transmission when OPO is scanned.
The ramp signal sent to PZT is also shown to prove that a good scan region
was chosen
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Figure 4.18: Left: OPO opto-mechanical transfer function. We could see
that it is flat until 10kHz. Right: the OPO cavity on bench when green
pump is injected into it.

OPO length control

The PDH lock sensing beam is chosen as p polarization because it will otherwise
interact with the squeezed field. The opto-mechanical transfer function for OPO
cavity is shown in figure 4.18, the servo filters are designed according to this mea-
surement.

As introduced, this beam is provided by an auxiliary laser phase locked to main
laser. PLL needs to set a frequency difference between two lasers. Due to the
birefringence effect of PPKTP, two polarization have different resonant frequencies.
Therefore, the LO frequency of PLL needs to be tuned carefully to make the two
polarization co-resonant.

The frequency difference depends on temperature, because temperature can
change crystal length and crystal refractive index. Note that this temperature de-
pendence doesn’t depend only on the crystal temperature controlled by the temper-
ature control. Both the different green power and the resonance of infrared light
can influence the internal temperature of crystal. These temperature influences were
observed in the lab and are not negligible.

At beginning of this chapter, we introduced the set-up of laser diode’s current
and crystal temperature. Apart from the mode hops introduced at that moment,
this co-resonance is the other requirement which needs to be met.

Although there are many factors which influence the p and s polarization co-
resonance condition, it was observed that the frequency offset is dominated by the
pump power level.
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Figure 4.19: The relationship between LO angle and homodyne angle. The
larger the parametric gain, the more non-linearity it has.

Coherent control

The coherent control (CC) technique [113] provides the phase information of squeez-
ing and a stable phase is crucial for the stable operation of squeezer. The coherent
control field comes from an auxiliary laser source which is phase locked to main laser
with a frequency offset of 7MHz. The injection of this frequency offset field doesn’t
influence squeezing measurement, but we need to take care of the relative power
between the CC sidebands and the homodyne LO. In particular, the power in the
sidebands needs to be small compared to the one in the LO so the contribution to
the shot noise of the first one is small compared to the latter.

As shown in figure, it is a scheme for coherent control in quadrature plane.
Coherent control can also be conceived as a control for the squeezing ellipse. Since
the frequency difference between CC sidebands and squeezing is small compared to
the two field overall frequency, we can assume that CC field will experience the same
phase noise with respect to the squeezing. Moreover, all the optics will have the
same property for these two fields due to small frequency difference. Therefore, the
influence of pump beam phase change is sensed by coherent control field. By sensing
this field, the error signal can be used to control pump phase and LO phase.

In section 3.1.4, the squeeze operator was introduced with its effect on a vac-
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Figure 4.20: Coherent control scheme. Coherent control field represents the
phase of squeezed vacuum field. By stabilize the phase difference of upper
and lower sidebands of the coherent control field, the phase of squeezed
vacuum field is also stabilized. This can be conceived as the stabilization
of phase ϕ, this control loop is usually called ’CC1’ in this experiment.
After the lock of ’CC1’, a quadrature plane of red color is constructed. The
measurement of squeezed vacuum field relies on the phase difference between
’CC1’ and the phase of ’LO’. The loop to stabilize their phase difference is
called ’CC2’ in this experiment.
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uum state. For CC field, it has a frequency offset of Ω relative to carrier. So the
annihilation operators for upper and lower sidebands are

< â+ > ≡ < â(ω0 + Ω) >= αΩ (4.32)

< â− > ≡ < â(ω0 − Ω) >= 0 (4.33)

When it is expressed as quadrature operator, it takes form

â1 =
1√
2
(â+ + â†−) (4.34)

â2 =
1

i
√
2
(â+ − â†−) (4.35)

By taking the squeeze operator from section 3.1.4 and acting on the above quadra-
ture operator, we will have a ’squeezed’ CC field. By adding a term eiΩt for the
corresponding term, the signal can be expressed in time space domain as [91]

E ∝ 1 + g√
2g

αΩ cos(ω0t+ Ωt)

− 1− g√
2g

αΩ cos(ω0t− Ωt− 2ϕ) (4.36)

Notice that the second sideband at −Ω is created inside the OPO due to the non-
linear interaction of the crystal. The first CC loop is used to stabilize the phase
term of 2ϕ in the above equation by acting on the green pump phase. By feeding
this signal back to a phase shifter acting on pump phase, this phase is controlled to
be zero. Then when this field arrives at the homodyne detector, it will beat with
local oscillator field cosω0t+ Φ. To measure squeezing, the phase difference between
them needs to be stabilize as well. As derived in [128], the low frequency component
of beat B(t) between LO and above equation will be

B(t) ∝ (1 + g) cos (Ωt+ Φ)− (1− g) cos (−Ωt+ Φ− 2ϕ) (4.37)

Using cos (a+ b) = cos a cos b− sin a sin b, the above equation can be separated into
cosine and sine part of an oscillation field. The inverse trigonometric phase angle of
this signal is the ratio of sine part coefficient and cosine part coefficient. It can be
expressed as

Φmeasure = arctan −(1 + g) sin (Φ)− (1− g) sin (Φ− 2ϕ)

(1 + g) cos (Φ)− (1− g) cos (Φ− 2ϕ)
(4.38)
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This measured phase is the error signal we use for the second CC loop. It is also
referred as homodyne angle, which is defined as 0◦ for squeezing while 90◦ for anti-
squeezing. The relationship between Φ and Φmeasure is shown in figure 4.19. This the
non-linearity of the relation results in a small range of LO phase which corresponds
to squeezing.

To actively control phase of squeezing or the measurement phase, both pump
phase ϕ and LO phase Φ need to be controlled. The actuator is a mirror driven
by a PZT. To have the desired opto-mechanical response, the post for mirror was
modified from a commercial one to a monolithic one. The opto-mechanical transfer
function for different set-up is measured and shown in figure 4.21, 4.22 and 4.23. We
could see the continuous improvement we got by upgrading the mechanics of this
devices.

Bright alignment beam

Since squeezing field has too few photons, lots of OPO characterization cannot be
done with it. The injection of a bright field will help to characterize OPO and its
matching to other cavities. We call this field bright alignment beam (BAB). When a
cavity is on resonance, all the transmission of cavity comes from the resonant mode.
So when OPO is locked with BAB on TEM00, the geometry of OPO transmission is
the same as the geometry of the vacuum/squeezing field from it1. As a result, BAB
is used to align and match OPO cavity with other cavities or light beams. We need
to note that this beam should come directly from main laser. For example, CC field
is also bright, but it has a frequency offset so it cannot be used. The usage of BAB
is summarized as following in our experiment:

1. aligning filter cavity,

2. measuring filter cavity locking accuracy for squeezing,

3. aligning homodyne and checking its visibility,

4. measuring parametric gain and

5. aligning green pump into OPO.
1It is necessary to make sure the BAB is matched as well as possible into OPO. Although higher

order modes are usually not considered to be transmitted, there is very little percentage actually
transmitted. So to make sure BAB represents a good geometry, a good matching between BAB
and OPO is necessary.
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Figure 4.21: The first version phase shifter by using a commercial mirror
mount. Left: the opto-mechanical transfer function. Right: the set-up of
phase shifter

Figure 4.22: The second version phase shifter by using a modified com-
mercial mirror mount. Left: opto-mechanical transfer function. Right:
modifications done by putting rubber under mirror mount and around the
spring part
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Figure 4.23: The third version phase shifter by using a customized mirror
mount. Left: opto-mechanical transfer function. Right: a monolithic post
with PZT glued on it, while a half inch diameter mirror glued on PZT.

Figure 4.24: Left: the first measurement point of green beam generated
from OPO with the method of knife cutting. Right: the fit of beam size in
different to find green beam waist size and waist position.
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As we see the listed usages of BAB are mainly related with alignment. The first
four usages will be introduced later, here I will introduce the alignment of green
pump beam into OPO. As we said at the beginning of the subsection, OPO has very
similar configuration with respect to the SHG. If we send a bright infrared beam
into OPO, green beam will be generated. However, since the infrared power is not
large, we have very weak generated green (0.3µW ) from OPO. So the measurement
of beam parameter was done in a knife edge cutting method. A beam propagating
along z-direction has Gaussian intensity profile I(x, y) as

I(x, y) = I0e
−2x2/ω2

xe−2y2/ω2
y (4.39)

where ωx is the beam radius in x direction. Then the total power Pt can be expressed
as

Pt = I0

∫ ∞

−∞
e−2x2/ω2

xdx

∫ ∞

−∞
e−2y2/ω2

ydy =
π

2
I0ωxωy (4.40)

In the real case, we cut beam only along one direction at a time, then the power
P (x) at different cut position will follow

P (x) = Pt/2−
√
π

2
I0ωy

∫ X

0

e−2x2/ω2
xdx (4.41)

So in the actual case we need to use an erf function to fit data. The variable in erf
function, we set it as

√
2(x−x0)/ω. Then the fit result of ω gives directly the beam

radius. One example of this fit is shown on the left side of figure 4.24. After taking
all the points, we fit with a Gaussian beam propagation function and found beam
waist is 23.6 + /− 1.4µm and waist position is −1.2 + /− 2.2cm.

We then align and match this generated green beam into GRMC. Although this
beam is very weak, both camera and photo detector are sensitive enough to see it.
This represent just a preliminary alignment for this process. The dark noise of photo
detector is a bit high. In order to refine the alignment of the green field into the OPO,
we used the OPO parametric gain measurement. In fact, the maximum parametric
gain for a fixed green pump power is the final criteria for a good alignment.

Thermal control

A stable temperature is essential for maintaining a good phase matching for squeez-
ing production. The control loop is composed of a Thorlab temperature controller
(TEC200C), a Peltier cell (CP0.8-31-06L) and two thermistors (103JT-050).
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Figure 4.25: Left upper corner: Peltier. Left lower corner: thermistor.
Upper middle: 9-pin layout for TEC200C. (connection assignment: 2-
thermistor +, 3-thermistor -, 4-Peltier +, 5-Peltier -) Right: TEC200C
front panel

A Peltier cell (or just Peltier) is a voltage controlled thermal transformer. The
relationship between voltage and thermal difference is almost linear. This ensure
its good performance in the application to the thermal control loop. The direction
of thermal transfer depends on the direction of current, so we can easily change it
from a cooler to a heater by changing the current direction. A Peltier is usually
composed of many P-type and N-type semiconductors. Each P and N are placed
in parallel while they are electrically connected in series. The Peltier has maximum
current and voltage value which can tolerate. For our CP0-8-31-06L, the maximum
current is 2.1A while the maximum voltage is 3.75V.

Our thermistor is a temperature dependent resistor where the change of resistor
is inversely proportional to the change of temperature. By knowing the temperature
and resistor relation in advance, the real temperature can be derived. The relation
is

T =
B ∗ T0

B + T0 ∗ log R
R0

(4.42)

where T0 is the nominal temperature of 298.15K, B is the energy constant provided
by manufacture of thermistor, R0 is the resistor at nominal temperature provided
by manufacture. Two thermistors are used in the set-up (103JT-025). One is used
to provide real-time temperature for control loop. Another thermistor is used as a
monitor.

The servo used for temperature control is Thorlab TED200C. Some important
functions on the panel are listed as following:

• Sensor (TH 20kΩ): This means that TED200C measures resistance from 0
to 20kΩ. There is another option which is 200kΩ. Difference between them
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determines the resolution of resistance measurement.

• Display (TSET and TACT ): Since we are using thermistor, these two tell us
the resistor of the thermistor. There is a knob on the panel, which is used to
change the value of TSET .

• Set up (PID): Knobs for adjusting PID parameters.

• TEC ON: this is the switch to open or close the loop.

From picture 4.25, we have the pin layout of the servo connector. Since ther-
mistor is only a resistor, it doesn’t matter which side is connected to positive or
negative. However, polarity is very important for Peltier. The polarity can be
checked by testing if the temperature can be stabilized after closing loop.

This thermal control loop provides control precision of 4mK and control stability
of less than 2mK within 24 hours.

OPO phase matching condition

As we did for the SHG, also in the case of the OPO we measured the phase matching
condition. In order to perform this measurement we injected the BAB, changed the
crystal temperature of the OPO and measured the green production as function of
the temperature. The result can be seen in figure 4.26. The optimal temperature is
around 34◦C, but it has a quite large peak of about 1◦C.

Parametric gain measurement

The non-linear effect of OPO can be described by the formalism developed by Gar-
diner and Collet [129]. A summary of this theory was done in [127]. As long as
there is any non-linear interaction happening inside the OPO, the energy will go
from pump to signal and interfere with the original signal field [130]. But depend-
ing on different phase of pump, the interference amplifies or de-amplifies the signal
field. This is the parametric amplification/deamplification effect. The amplifica-
tion/deamplification of signal field power Ps is related with pump field power B and
OPO threshold power Bth as

Ps

Ps|g=0

=
(1 + B

|Bth|
)2

(1− |B|2
|Bth|2

)2
(4.43)
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Figure 4.26: By changing OPO temperature, we characterize the phase
matching condition of OPO. The operation temperature is also decided to
be where the maximum green power is achieved. As we can see, there is
also the effect of pump field double pass[119]

So in our case, we send BAB to OPO and measure the amplification or deamplifi-
cation by scanning green pump phase. The measurement result is shown in figure
4.27.

With the information of OPO threshold, the squeezing level without considering
any degradation for different pump power can be predicted by the formula [132]

V∓ = 1∓
4
√
Ppump/Pthreshold

(1±
√
Ppump/Pthreshold)2

(4.44)

where Ppump is the pump power, Pthreshold is the OPO threshold power derived from
the parametric gain measurement. For the case of the OPO used in this experiment,
the predicted squeezing level for different pump power is shown in figure 4.28.

4.1.6 Balanced homodyne detector

The balanced homodyne detector (BHD) used in our experiment was developed in
collaboration with the Albert Einstein Institute (Hannover - DE) and it provides a
DC output and an on-board demodulation of RF signal. The on-board demodulation
then provides error signal for controlling the homodyne angle using the coherent
control. The principle of homodyne detection is introduced in the last chapter. In
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Figure 4.27: The measurement of parametric gain for OPO. The points are
measurement result. The plot line is the fit result. The threshold shown in
the legend is around 80mW, the error comes from fitting by using python
package [131]

Figure 4.28: The squeezing level as function of pump power inside the OPO
or without considering any degradation.
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practice, the operation of BHD needs careful balancing. In this section, the optical
balancing method and its characterization is reported.

Homodyne optical balancing

According to our BHD design, we are using a current subtracting method, there-
fore the balancing must be done optically. This is crucial for the performance of
BHD. Before doing the optical balancing, the response of separate photodiode was
characterized to be almost the same. In this experiment, the balance was only
done by adjusting the angle of beamsplitter. The procedure of this adjustment is as
following:

1. Choose a stable beam splitter: we procured beam splitter from several different
companies and characterized the angle dependence of the power splitting. Due
to the space limitation, an even splitting with angle close to 45 degrees is
preferred. But a more important requirement is the stability against angle
change. An unstable BS usually requires lots of efforts to realign.

2. Balance of local oscillator (LO): balance by adjusting horizontal angle of BS
while looking at the transmitted beams power ratio. This is just a rough
balance, which is done to mainly find a good position to put BS.

3. Align LO into alignment mode cleaner (AMC). AMC is located in the upper
right corner in figure 4.1. This step needs to be done before the final balancing
because this alignment will influence the balancing of BS. As shown in the
figure 4.1, this step is done by adjusting two steering mirrors between IRMC
and BS of BHD.

4. Fine alignment of LO into BHD. The criteria for this alignment will be intro-
duced later.

5. Align BAB into AMC. Now it is clear why we call the triangular cavity as
AMC, since it is used for the alignment of BHD. When both LO and BAB are
aligned into AMC as well as possible, the detection of squeezing can be done.
The influence of this alignment for squeezing will be introduced in section
4.2.1.

The criteria to evaluate balancing is called common mode rejection ratio(CMRR).
By either modulating main laser amplitude or IRMC PZT, a peak can be produced
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in the spectrum of BHD. The CMRR is the peak height ratio when one of the photo
detectors is blocked and open. To maximize CMRR, the angle of honodyne’s BS
needs to be adjusted. In the end, the CMRR was measured to be around 60dB for
LO while around 30dB for signal. A high CMRR for LO is important because LO
power is much higher. Since the coherent control field has power of only around
11.5 µW , its CMRR is less important.

A high level of CMRR ensures the measurement of shot noise, which otherwise is
covered by common mode noises. To measure shot noise, the signal port needs to be
blocked with beam dump properly. Any shiny surface may cause the measurement
to be contaminated by back scattering noise. The LO is a coherent state and it has
equal fluctuation in two quadrature. So according to equation 3.32, no matter what
the LO’s phase is, the homodyne output is a constant value. The measurement of
this shot noise is shown in figure 4.29.

After a good balancing, BHD is ready for the measurement of squeezing.

4.1.7 Digital synthesis of radio frequencies

All the RF signals are generated from a Direct Digital Synthesizer (DDS) system
with the use of AD9959 chip from Analog Devices. These signals are summarized in
appendix A. A DDS synthesis RF signal based on the down sampling of a very high
frequency clock. The frequency of this reference clock in our system is 500MHz. So
the generated signal always has a frequency lower than the frequency of clock. The
frequency of generated signal can be expressed as

νout =
N

D
νref (4.45)

where N is the frequency tuning word, which tells how many samples the system
takes for one period of a reference clock, D = 2p is the resolution of the sampling
while p is the number of bits for the system. So it’s easy to get the frequency
resolution of our system is 500MHz/232 = 0.116Hz. This process is similar to an
aliasing effect.

The detailed working principle is well explained in the thesis of Marco Vardaro
[127], all the discussion in this part is based on his work. Here we mention an
important phenomenon of spurs. It can be caused by quantization or truncation.
The quantization will give a flat noise floor from 0 to half the clock frequency. The
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Figure 4.29: Characterization of BHD shot noise after optical balancing.
The measurement of shot noise is flat down to 10Hz. The clearance between
shot noise and dark noise is more than 15dB. Some of the features initially
present in the homodyne dark noise are no longer present in the shot noise
spectrum. This was due to a improvement campaign done to remove power
source related peaks. In particular the 100Hz peak, which is the largest
one present in the dark noise, was removed by switching off the ambient
illumination.
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noise level NDAC is
NDAC =

4

3

1

22qνref
(4.46)

In the case of our 500MHz clock, the noise level is −170dBc/Hz. This noise causes
the generation of high frequency spur components in the output spectrum.

Truncation happens because the numbers of bits for sampling and DAC are
different. So some less significant bits is removed. Then spurs appear in the output
spectrum.

The output power of the DDS is 10dBm and the phase of each channel can be
changed with a precision of 0.005◦. The output can be changed from full power
to 1/2, 1/4 or 1/8 digitally. Usually this feature is not used in daily lab since it
induce an increase of the noise in the output. In place of this digital control, analog
attenuators are used.

4.1.8 Customized automatic analogue servo

In order to lock all the cavities and the MZ described before, a multi-purpose analog
servo was developed in collaboration with the laboratory of Astroparticles and Cos-
mology (APC) in France. A general description of our customized analogue servos
will be given in this section.

Some advantages of the developed servo are listed in the following.

1. Robustness. Once the circuit is made, the loop configuration is fixed. No
limitation from computer related issues. This is both an advantage as well as
a disadvantage since the fixed configuration limits the flexibility of the servo.
However, thanks to a clever design, we can digitally control several switches
on the board to remotely change the servo transfer function.

2. Good frequency spectrum performance. There is no ADC or DAC process, so
the problem of digitalization can be well avoided. Moreover, large bandwidth
can be achieved since no delay due to digitalization processes is introduced.

Filters design

The principle for designing the servo filters are: providing a phase margin of 30
degrees and gain margin of 10dB in an open-loop transfer function.

For each servo, we can have two low pass filters, an inverter, a differentiator,
an integrator (can be switched between 1/f and 1/f3) and a gain (can be changed
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by a potentiometer). Individual filter configuration is different and decided by each
loop’s opto-mechanical transfer function. An example of this filter design is given
in appendix A.

Servo introduction

Our locking servo has two servo control modes:

1. Auto mode. In auto mode, the lock state of the loop will be decided by a
logic circuit. As we know, the transmission or reflection of a cavity will go
across a peak/dip when the PZT scan through the resonance. The logic circuit
compares this signal to a threshold, which can be set by a potentiometer, and
simultaneously check the sign of the error signal. If both conditions (presence
of pick/dip and good error signal sign) are satisfied, the circuit automatically
lock the device.

2. Manual mode. In manual mode, lock state of the loop is decided by the
operator.

3. Scan mode. In scan mode, the output of servo will send out a ramp signal
(the ramp signal amplitude and period can be changed by two potentiometers)
and the loop is open.

A hierarchy locking scheme enables locking in sequence and makes the whole
system work within one minute. A remote control is also available. Many channels
are available for many other functions, including the measurement of many transfer
functions, the trigger for oscilloscope and servo test.

4.2 Degradation of squeezing

The measurement of squeezing needs special attention since there are many factors
which can cause the degradation of the squeezing level. They can either degrade the
total squeezing level or introduce some unwanted frequency components in squeezing
spectrum. The degradation factors are introduced following the formalism used in
the following works [98, 127, 133, 91]. This part is dedicated to analyze the individual
degradation factors in this experiment.
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4.2.1 Optical losses

Optical losses can be explained using a beam splitter model. The input of this
beamsplitter are vacuum fluctuation Vvac and squeezed vacuum fluctuation V−. They
are mixed at beamsplitter with the ratio of power reflectivity R and losses L (which
includes transmission and scattering). This relationship can be expressed as(

V ′
vac

V ′
−

)
=

(
R −L
L R

)(
Vvac

V−

)
(4.47)

Since R + L = 1, R will be replaced by 1− L. Then the original squeezing V− will
be affected by optical losses as

V ′
− = L · Vvac + (1− L) · V− (4.48)

This model shows how the output squeezing is a mixture between the input one and
the vacuum state. The effect of optical losses on squeezed state can be seen in figure
4.30. In the following, several individual losses processes will be introduced.

Escape efficiency of OPO

The escape efficiency of OPO is expressed as

ηesc =
T

T + L
(4.49)

Here T is the transmissivity of in-coupling mirror, L is the round trip power losses
coming from crystal HR surface transmissivity, crystal AR surface reflectivity and
crystal absorption.

In this experiment, the transmissivity of in-coupling mirror is 8%. L are the
intra-OPO round trip losses, which can be estimated as 2 ∗ 0.3% + 0.005%. Here,
0.3% comes from the reflectivity of PPKTP crystal AR coating and 0.005% is the
transmissivity of PPKTP crystal HR coating. PPKTP AR coating parameter rep-
resents the higher limit of coating reflectivity provided by the manufacturer. Even
if should be better, the measured finesse of 70 for OPO, confirms the reflectivity to
be close to 0.3%. This gives OPO escape efficiency of 93% therefore a 7% of overall
optical losses.
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Figure 4.30: Effect of optical losses on squeezed state with different initial
squeezing level. It is very clear that the optical losses affect mostly the
squeezing while the anti-squeezing is less affected by the optical losses.
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Propagation losses

Propagation losses refer to losses caused by the non-perfect reflectivity of HR mir-
rors, the AR coating reflectivity of lenses, the power losses from Faraday isolator
and so on. By doing power measurement, this is measured to be around 5%.

Balanced homodyne detector’s detection efficiency

The BHD works with the principle of interference between local oscillator and
squeezing. So if there is any mode mismatch between the local oscillator and the
squeezing, it can be considered as a source of losses. To achieve the alignment of
BHD and measurement of visibility, bright alignment beam needs to be used.

To align homodyne and match LO and BAB, we used a triangular cavity as a
reference. As shown in figure 4.1, there is a flipping mirror on the homodyne optical
path. When this mirror is in place, the homodyne can be used to do measurement.
But if it is taken away, the light beam will go to a triangular cavity. If both BAB
and LO match to this triangular cavity, the overlap between BAB and LO at the
level of the homodyne is automatically ensured. Since this additional triangular
cavity is used for the alignment of BHD, it is usually called alignment mode cleaner
(AMC) in our experiment.

The BAB and LO have different power levels. For an interferometric interference
between two beams with different power, a perfect interference V can be expressed
as

V =
2
√
P1P2

P1 + P2

(4.50)

Here P1 and P2 are the power of BAB and LO. In the real case, the visibility will
be always smaller than this value or at most equal. The measurement of visibility
Vmea relies on the interference fringe and it can be written as

Vmea =
Vmax − Vmin

Vmax + Vmin

(4.51)

The ratio between Vmea and V is the visibility V IS of BHD. The detection efficiency
is defined as

ηBHD = V IS2 (4.52)

In this experiment, BHD detection efficiency is measured to be 98%.
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Quantum efficiency of photo diode

The quantum efficiency of photo diode represents the detection efficiency of photons
by a photo diode. Nowadays, quantum efficiency can reach levels as high as 99.5%
[83]. The quantum efficiency is usually specified by the manufacture and it can be
also calculated from the photo diode responsivity as [93]

ηpd =
h̄ω

e
× i

P
(4.53)

where i is photo current and P is incident light power. Usually this ratio is called
responsivity and provided by manufacture. In this experiment, the photo diode
quantum efficiency is larger than 99%.

4.2.2 Classical noise

As pointed out by Appel [134], dark noise is equivalent to optical losses in the
measurement of squeezing. Schreiber [98] further pointed out that the classical
noise can be considered as a frequency independent noise and increase shot noise
and squeezing spectrum with the same level. Then the observed squeezing level Robs

−

will be
Robs

− =

(
1− Vclass

V obs
vac

)
R− +

Vclass
V obs
vac

(4.54)

By comparing this equation with equation 4.48, we see that the ratio between clas-
sical noise level and observed vacuum level Vclass

V obs
vac

2 is equivalent to term L.

As we see from figure 4.29, dark noise is 15dB lower than shot noise level, so
L = (10( − 15/10))2 = 0.09%.

Another classical noise may come from the coherent control field because it is a
bright field. As mentioned, coherent control field has power of 11.5µW . This will
bring a shot noise contribution approximately 20dB lower than the one from the local
oscillator. The equivalent optical losses will be L = (10( − 20/10))2 = 0.01%. This
is very small and it seems we can further increase coherent control field. However,
as we mentioned in the section of BHD, the CMRR for the LO and for the signal
is different. Since we can only make sure to have a large CMRR for LO, a smaller
CMRR for coherent control field may cause low frequency classical noise to couple
in the measurement. Therefore the coherent control field needs to be kept small to
compensate the drawback of smaller CMRR for the signal side.
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4.2.3 Phase noise

Phase noise comes from both pump phase fluctuation and local oscillator/squeezing
phase fluctuation. These fluctuations cause the mixing of the two quadrature [135,
136]. In this experiment, these two sources of phase noise are controlled by two
coherent control loops. Even under control, phase noise still exists. These phase
fluctuations influence squeezing measurement in two different ways according to
the frequency of the fluctuations [137]. When phase fluctuations occur faster than
the measurement time, the measured squeezing level decreases. But when they are
slower than the measurement time, the measurement long term stability will not be
ensured.

Due to the presence of the coherent controls, phase fluctuations can be considered
as a normal distribution with average value to be zero. If the root-mean-square
(RMS) deviation is small (i.e. < 100mrad), the induced squeezing level change can
be approximated as [138]

V± ≃ V± cos 2θRMS + V∓ sin 2θRMS (4.55)

The sources of phase noise can be originated from two kinds: laser phase locking
electronics and unsuppressed noise at frequencies above unity gain of the electronic
control loops [84]. They include OPO length noise, coherent control sensor noise,
OPO/SHG length control sidebands, crystal temperature fluctuations, local oscilla-
tor sidebands.

By using equation 4.55, the degradation caused only by phase noise for differ-
ent squeezing level can be plotted. As shown in figure 4.31, phase noise degrade
squeezing much more than anti-squeezing. Anti-squeezing is basically not changed
by phase noise while squeezing can even become anti-squeezing if the phase noise
is large enough. In future GW detectors, higher levels of detected squeezing will
be required. This will lead to very stringent requirements on phase noise. Such
requirements can be achieved in a table top experiment [84]. However, the phase
noise in a real interferometer is much larger [86, 87] and was estimated to be at least
15mrad.

4.2.4 Back scattered noise

Back scattered noise dominates low frequency noise spectrum for balanced homodyne
detection. The light coming from local oscillator which is scattered can propagates
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Figure 4.31: Squeezing degradation caused by phase noise for different ini-
tial squeezing level. For small value of phase noise, the anti-squeezing is
unchanged, while the squeezing is heavily affected, at the level that, for
high phase noise, the squeezing becomes anti-squeezing. It is interesting to
notice that the larger the initial squeezing level, the larger the impact of
the phase noise.
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along the inverse direction of the squeezing. As already pointed out [139], the light
scattered by a moving surface will interfere with local oscillator and cause back
scattered noise.

4.3 Measurement of frequency independent squeez-
ing and its characterization

Once all the previous devices are operated properly, squeezing can be measured.
In this section, several squeezing measurement are presented and as well as the
characterization of the produced squeezed state in term of losses and phase noise.

4.3.1 Zero span measurement

Even if the phase of the squeezing and BHD angle are not fixed, squeezing can be
also characterized. This was the first step of squeezing measurement we performed.
The first measurement of frequency independent squeezing was obtained with a zero
span measurement at 200kHz. Zero span means the spectrum analyzer only checks
around one frequency component of the signal and focus on its time series. The
bandwidth of this check is called resolution bandwidth (RBW). RBW was set to
be 1kHz for that measurement. The video bandwidth (VBW) was set to be 30Hz.
The local oscillator was scanned with a ramp signal of 2Hz. The peak to peak value
applied to PZT was 900mV. And the pump power was 30mW. As shown in figure
4.32, around 5dB anti-squeezing and 3dB squeezing was observed.

This first measurement shows the importance of phase noise stabilization since
several fluctuation are visible in figure 4.32 which are caused by uncontrolled phase
noise.

4.3.2 Measurement of squeezing spectrum

Compared to the zero span measurement, spectrum measurement requires the phase
to be stabilized. Before the final measurement of frequency independent squeezing,
several upgrade steps were performed:

1. Mode matching improvement for BHD. Between the first measurement of
squeezing and recent ones, the mode matching between OPO transmission
and IRMC transmission was improved from 95% to 99.5%. Since the detection
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Figure 4.32: Zero span squeezing measurement at 200kHz (RBW = 1kHz,
VBW = 30Hz) while homodyne angle is scanned. A flat line is shown in the
figure to indicate shot noise level, which represents the vacuum fluctuation
entered from singal port of homodyne. After injecting squeezed vacuum into
signal port of homodyne, while homodyne is scanned, the squeezed vacuum
fluctuation is measured in quadrature plane and shown as an oscillating
line. The highest point of this oscillating line indicates anti-squeezing level
( 5dB) while the lowest point of this line indicates squeezing level ( 3dB).

Figure 4.33: Measurement of 6dB squeezing level and 14dB anti-squeezing
with a flat spectrum starting from 10Hz. The pump power is 30mW.
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efficiency is the square of visibility, this means an improvement of detection
efficiency from 90% to 99%.

2. Optical balancing improvement for BHD. During the first measurement, the
common mode rejecting ratio was not good. Aligning BHD beam splitter was
not easy at the beginning. Although the beam splitter can be easily tuned to
make BHD balance, the balance cannot be kept for a long time. Later, we
figure out this may relate with the angle dependence of BS. We procured a
new BSs and characterized their reflectivity’s angle dependence. The result
shows the old BS was much more sensitive to angle change with respect to the
new ones.

3. Noise eater for coherent control laser. As we discussed in section 4.1.6, the op-
tical balancing requirement sets a limitation for coherent control field power.
Therefore we reduced the CC laser power as much as possible. However, we
found a very large peak around 300kHz in the squeezing spectrum measure-
ment. By investigating the laser source manual, we found this peak may come
from laser source amplitude noise. After increasing the CC laser current above
1.2A, this peak disappeared due to the engagement of the laser noise eater.

4. Phase shifter mechanical design improvement. A better mechanical design of
the phase shifters allowed for a higher unity gain frequency of the coherent
control loops, which was increased from below hundred Hertz to above one
kilo Hertz.

5. Installation of additional Faraday isolator. To isolate the OPO from back
scattered light, an additional Faraday isolator was installed.

6. Replacement of lenses with super-polished lenses. To reduce optical losses and
back scattered light sources.

After all those improvements, the achieved squeezing measurement is shown in
figure 4.33. A level of 6dB of squeezing and 14dB of anti-squeezing are measured.
The pump power was 30mW, the measured anti-squeezing level is consistent with
figure 4.28. Due to the reliability of our system and the mentioned upgrades, the
presented result shows a squeezing spectrum that we can easily obtain everyday in
the laboratory. This is a remarkable result.
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Figure 4.34: Upper: Squeezing and anti-squeezing level for different optical
losses. Lower: Squeezing and anti-squeezing level for different phase noise

4.3.3 Squeezing degradation characterization

To understand the whole system and further improve squeezing performance, the
estimation of each degradation factor is necessary. The total optical losses and phase
noise can be estimated by measuring squeezing and anti-squeezing level for different
pump power.

Totally nine measurement of squeezing for different pump power are shown in
figure 4.35. The squeezing and anti-squeezing levels shown in the legend of each
plot are calculated by comparing level at frequency region higher than 60kHz. As
we can see, with the increasing of pump power, more and more structure appear
for the squeezing spectrum at low frequency region. This is supposed to be from
phase noise and back scattering noise. The maximum squeezing level is achieved
with 40mW pump power.

By combining equation 4.48 and 4.55, the squeezing degradation formula can be
expressed as

Rl,θ
± = (1− l)(R± cos 2θ +R∓ sin 2θ) + l (4.56)

where l are the total optical losses, θ is total RMS phase noise. Here we need to
note that the sequence of applying optical losses and phase noise is not important.
Mathematically, firstly applying phase noise or optical losses are the same. Equation
4.56 for different values of optical losses and phase noise is shown in figure 4.34.

According to the nine measurement shown in figure 4.35, we can obtain the
information of squeezing and anti-squeezing levels. Equation 4.56 can be expressed
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Figure 4.35: Measurement of squeezing and anti-squeezing for different
pump power.
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as

R =

R+−l
1−l

+
√

(R+−l
1−l

)2 − 4 cos 2θ(1− cos 2θ)

2 cos 2θ
(4.57)

where R is the squeezing ratio without any degradation, R+ is the measured anti-
squeezing level, l are the optical losses and θ is the RMS phase noise. Then the
squeezing level can be expressed as

R− = (1− l)

(
1

R
cos 2θ +R sin 2θ

)
+ l (4.58)

Through the above two equations, we can extract the optical losses and phase noise
estimation from the nine measurement of figure 4.35. The result is shown in figure
4.36. From the fit shown in this figure we obtain a total optical losses level of 26±3%
and a phase noise of 22± 7mrad.

Comparing the measured optical losses of 26 ± 3% to the one obtained from
separate measurement showing total losses of around 15% (7% from OPO escape
efficiency, 5% from optical propagation losses, 2% from BHD detection loss, 1% from
PD detection loss), there is discrepancy of about 10%. This discrepancy is considered
to come from OPO escape efficiency. Therefore, the OPO escape efficiency should be
only around 83%. This is motivated by the measurement of the OPO transmission
which is also not compliant with the expectation but can be explained by an excess
of losses inside the cavity.

4.3.4 Target reduction of optical losses and phase noise

Our goal is to measure a frequency independent squeezing with level of 9dB. As
shown in figure 4.37, to achieve the goal of 9dB of squeezing, we need to have phase
noise of less than 30mrad and about 9% of optical losses. Considering the current
phase noise of around 20mrad, the reduction of phase noise is not necessary at the
moment. However, the optical losses level must be reduced.

We suspect that additional losses may come from the OPO cavity, therefore a
new design will be implemented in the future to tackle this problem and reduce the
optical losses.
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Figure 4.36: Estimation of optical losses and phase noise from squeezing
and anti-squeezing measurements. The total optical losses are 26± 3% and
the phase noise is 22± 7mrad.

Figure 4.37: Left: The optimal measured squeezing level for different optical
losses and phase noise values. Right: The optimal generated squeezing level
(before any degradation) for different optical losses and phase noise. This
plot shows the optimal generated squeezing level is decided only by phase
noise.
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4.4 Application of frequency independent squeez-
ing to laser interferometry

Since the first demonstration of squeezing generation, lots of experiments have
demonstrated its ability to reduce shot noise. In this section, the steps taken to
transit from its first demonstration to the application to GW detectors are reviewed.

4.4.1 Application in small scale experiment

The application of squeezing to a real gravitational wave detector was done step
by step. The first application was done in 1987 on Mach-Zehnder [82] and po-
larization [81] interferometers. After that in 2002, a squeezing enhanced power
recycling Michelson interferometer [140] was demonstrated. In 2005, a squeezing
enhanced dual-recycling Michelson interferometer [141] was realized. After those
demonstration, the squeezing technology was applied to GW interferometer proto-
types [142]. In 2010, a squeezing enhanced Sagnac interferometer was realized [143].
Frequency independent squeezing has already been continuously used in GEO600
[85] for around ten years so far. All these efforts made the application of squeezing
in gravitational wave detectors successful. Figure 4.38 shows some examples of the
squeezing application we mentioned: in the left panel, we can see how signals cov-
ered by quantum noise are revealed by the application of squeezing, while on the
right side, we can see how squeezing improves the SNR of signals.

4.4.2 Application to the third observation run of LIGO/Virgo

Since last year, frequency independent squeezing was used during the third observa-
tion runs of advanced LIGO [86] and advanced Virgo [87]. According to the losses
and phase noise information from LIGO/Virgo squeezing paper, the squeezing and
anti-squeezing level relation can be derived. All these information and operating
points are summarized in figure 4.39.

It’s important to notice that especially LIGO could have a significantly higher
squeezing level by increasing the parametric gain. However, with the increase of
parametric gain, radiation pressure noise will be increased. As reported in [86],
unsqueezed radiation pressure noise is not a dominant noise, but in the presence of
injected squeezing, it becomes relevant and degrades detector’s detection range. As
a result, a parametric gain of 2.9 is used in the case of LIGO.
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Figure 4.38: Left: Squeezing helps to reveal signals buried in the quantum
noise (image from [143]). Right: Squeezing improves the SNR of signals
(image from [142]).

Figure 4.39: Predicted squeezing and anti-squeezing level with the infor-
mation of LIGO/Virgo optical losses and phase noise. The points are the
squeezing/anti-squeezing level reported in the paper during their third ob-
servation (O3) run.
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A further increase of parametric gain will make radiation pressure noise even
more relevant. This made the observation of radiation pressure noise in a large scale
experiment possible. The radiation pressure noise was observed [144] by using a
parametric gain of 4.4. This indicates that in order to use higher level of squeezing,
a mitigation of the radiation pressure noise is mandatory. Fortunately, frequency
dependent squeezing can solve this problem and it has been recently demonstrated
[2] by our group. This is the main topic of the next chapter.

4.5 Summary of the frequency independent squeezed
vacuum source

In this chapter, I introduced the set-up of frequency independent squeezed vacuum
source realized in the facility of TAMA300. The achieved measurement of squeezing
level is 6dB and it suits well for the detection band of KAGRA. Around the world,
there are few labs can realize this type of squeezer.

However, there is still 3dB improvement needs to be done to achieve the goal
of 9dB squeezing. To achieve that, I found that the main limitation is the optical
losses of this system. Besides, the longest time with stable operation of this squeezer
last for around ten hours.

This squeezer is the first realized squeezer suitable for the stable implementation
of squeezing technique for KAGRA inside KAGRA collaboration. Therefore, it can
be a candidate for improving the sensitivity of KAGRA in the future. Besides,
this squeezer is also a crucial component for the final measurement of frequency
dependent squeezing, which will be introduced in the next chapter.

138



Chapter 5

Realization of squeezing rotation
around 90Hz by using 300m filter
cavity

Frequency dependent squeezing (FDS) with rotation below hundred Hertz are pro-
posed to reduce the quantum noise of gravitational wave detectors broadband. Pre-
viously frequency dependent rotation was realized at MHz[101] and kHz[145] region
by using a detuned Fabry-Perot cavity (usually called filter cavity).

The generation of FDS below hundred Hertz is more challenging and require
the use of a long filter cavity to reduce the effects of squeezing degradation due
to cavity losses and thus preserve the squeezing below the rotation frequency. In
this experiment, a 300m filter cavity was used to rotate the squeezed vacuum state
around 90Hz. Its measurement was also realized and shows to be the best record
around the world up to now.

A general introduction of the experimental setup is given in the first section. In
the second section, several degradation mechanisms affecting FDS measurement are
introduced. After that, a detailed analysis and characterization of each degradation
source is given. The requirement on each degradation source is listed in figure 5.8.
Finally, the measurement method and results are presented. Besides, there is also
discussion about this result and a summary of measured degradation sources which
is listed in table 5.3.
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5.1 Experimental setup

The whole experimental scheme is shown in figure 5.1. The experiment is composed
by an in-air and in-vacuum part. The in-air part provides a 532 nm (green) control
beam and 1064 nm (IR) squeezed vacuum beam, which was introduced in the chapter
4. The in-vacuum part is composed by a filter cavity and a telescope to match the
in-air beam into it. Four mirrors are suspended in vacuum, corresponding to the
four big mirrors in the figure. Their motion is sensed by optical levers, composed by
a set of laser diode and position-sensitive detectors (PSD), and controlled by a set of
coils and magnet glued on the mirrors. The filter cavity is controlled by locking the
main laser frequency on its length. The PDH error signal is taken from the reflected
auxiliary green beam extracted using a Faraday isolator. The squeezing is overlapped
with the green control beam through a dichroic mirror. The detuning (frequency
difference from resonance) of squeezing is set by shifting the laser frequency with
an Acousto-optic modulator in the green beam path. The squeezed beam reflected
by the filter cavity is extracted through an in-vacuum Faraday isolator. After that,
squeezing is sent to a balanced homodyne detector, where frequency dependent
squeezing is measured.

5.1.1 Necessity to use a long filter cavity

The use of 100-m scale filter cavities is planned for advanced gravitational wave
detectors and even longer (km scale) filter cavities were proposed for next generation
gravitational wave detectors [146]. This is due to following reasons:

1. Since the linewidth of the filter cavity is fixed by the detector design, a longer
filter cavity requires a lower finesse. This will relax the requirements on the
mirror quality, which are usually very strict.

2. A lower finesse will ease the control of the cavity.

3. The effect of detuning fluctuation inducing frequency dependent phase noise
is reduced in longer cavities.

4. Long filter cavity can be used as a frequency reference in the future[147].
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Figure 5.1: The optical scheme for the generation of frequency dependent
squeezing. A 532nm/green beam and 1064nm/infrared squeezing is sent
from in-air bench to filter cavity. The green beam is used as a control beam
for the control of the filter cavity. The reflected squeezing has frequency
dependent rotation and is characterized with a balanced homodyne detector.
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5.1.2 Optical properties of filter cavity

Two different wavelength beams are sent to filter cavity. The 532nm/green beam is
used to control the length of filter cavity/the frequency of main laser. Besides, it
will also be used for filter cavity auto-alignment in the future. For 1064nm/infrared
squeezing, filter cavity is used to induce a frequency dependent rotation. The two
mirrors composing the filter cavity have dichroic coating with different reflectivity
for the green and infrared beam.

For the infrared squeezing beam, the main requirement is that the linewidth
needs to be below 100 Hertz and the round trip losses have to be small. The
linewidth requirement, introduced in chapter 3, decides the frequency at which the
rotation takes place. On the other hand, the optical losses limit the achievable
squeezing ratio in the low frequency region. On top of that, frequency dependent
squeezing is taken from the reflection of filter cavity and its phase needs to be
modified. Therefore, an over-coupled configuration is compulsory.

For the green control beam, a larger linewidth is preferred since it will make lock
acquisition easier.

Some parameter for the filter cavity are reported below:

1. Cavity length: 300m

2. Input mirror: Roc is 436.7m, transmissivity (1064nm) is 0.136%, transmis-
sivity (532nm) is 0.7%, optical losses is 40ppm

3. End mirror: Roc is 445.1m, transmissivity (1064nm) is 3.9ppm, transmis-
sivity (532nm) is 2.9%, optical losses is 40ppm

According to these information, there are properties of filter cavity calculated from
the formula introduced in section 2.3.2. They are listed in table 5.1.

Infrared 1064nm Green 532nm

FWHM 116Hz FWHM 2908Hz
finesse 4313 finesse 172

storage time 2.7ms storage time 0.1ms
beam waist 16.82mm beam waist 11.89mm

beam size (input) 20.92mm beam size (input) 14.79mm
beam size (end) 20.50mm beam size (end) 14.50mm

FSR 500kHz
intra-cavity round trip losses ∼ 80ppm

Table 5.1: Cavity parameters (the parameters related with beam size is
diameter)
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According to the basic parameters of filter cavity (length and mirror reflectivities)
, the cavity power reflectivity/transmissivity/gain can be calculated according to the
formulas introduced in section 2.3.1. These are shown in figure 5.2.

To match the squezzed beam into the filter cavity, a mirror based telescope was
designed. As shown in figure 5.1, this telescope is composed by two mirrors with
radius of curvature of -0.6m and 6m respectively.

5.1.3 Operation of filter cavity

As already said, there are four suspended mirrors in this experiment. According to
the hitting sequence of the injection beam, they are named as PR, BS input mirror
and end mirror. The name PR and BS has no connection with their function, but
they are named like this because they are hosted in the vacuum chamber which were
used for former power recycling (PR) and beamsplitter (BS) in TAMA300.

To make filter cavity work for the generation of frequency dependent squeezing,
several different systems need to be operated. These systems are introduced in
foloowing. In addition, the case of suspended cavity alignment in this experiment
is introduced.

Vacuum system

Suspended mirrors need to be operated in vacuum system, otherwise the acoustic
noise and air current will bring noise.

Vacuum chambers and vacuum system originally belonging to TAMA300 were
used in this experiment. The vacuum level is kept around 10−7 mbar during the
operation.

Mirror suspension system

The filter cavity suspension system is the same with KAGRA type C suspension
system. It is a double pendulum placed on a vibration-isolation 3-stage stacks
[148]. A detail introduction of the suspension system can be found in the thesis of
E.Capocasa [44].

As introduced in chapter 2, mirror suspension system helps to filter the mirror
motion above the resonant frequency of suspension system. This mirror motion can
be detected by an optical lever system. As shown in figure 5.1, each suspended mirror
in this experiment is equipped with this optical lever, which is composed by a laser
diode and a position-sensitive detector (PSD). Therefore, the mirror motion changes
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Figure 5.2: Left: The comparison of infrared/green cavity power reflec-
tivity/transmissivity/gain when frequency is scanned from -1kHz to 1kHz.
Right: To see clearly transmission/reflection case, the circulating case is
removed and shown on the right side.
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Figure 5.3: BS pitch motion with local control loop open/closed, measured
with an optical lever.

the reflected light direction which is detected by the PSD. This signal can be feedback
to the coil driver which applies a force on the magnets fixed on mirrors. In this way,
the mirror motion caused by suspension system resonance can be counteracted. This
control loop is usually called mirror local control. An example of motion reduction
obtain with this local control is given in figure 5.3.

In the experiment, a camera is set in the transmission of filter cavity and is
used to monitor the cavity transmission light. Without mirror local control loop
closed, an obvious beam pointing jitter is usually observed. After the loop is closed,
the reduction of beam pointing jitter is observed. This is in agreement with the
reduction of mirror motion.

Error signals are acquired and digitally filtered using a digital control system
(DGS) of the same kind used in KAGRA.

Filter cavity alignment

In suspension system, the position of suspended mirror changes according to the
temperature change, earthquake or tidal effect. These effects can be found in figure
5.4. In this figure, by neglecting the mirror sudden motion, it is quite obvious that
BS follows the trend of temperature change. At the same time, input mirror and
PR follow the anti-trend of temperature change. Therefore, alignment needs to be
done to operate the filter cavity.
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Figure 5.4: A monitor of mirror long time drift together with temperature
change. Without considering mirror position sudden change, BS follows the
same trend of temperature change and PR/input mirror follow the anti-
trend of temperature change.
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The quality of cavity alignment can be easily checked after the cavity lock.
As introduced in chapter 2, a better alignment makes more power coupled into
fundamental mode. Therefore, the best alignment condition corresponds to the
highest filter cavity transmission.

Filter cavity and main laser locking system

In order to produce FDS filter cavity need to be stably locked. As introduced in
chapter 2, this lock can be obtain either acting on the cavity length or laser frequency.
Usually laser frequency is more stable at low frequency and mirror suspension is more
stable at high frequency, which was proven to be the same for filter cavity in this
experiment[44]. PDH error signal is fedback to the laser frequency which thus follows
the cavity length. We also have the possibility to off-load the correction sent to the
laser by feeding back the low frequency part of the error signal to the end mirror of
the filter cavity . This locking scheme is shown in figure 5.5. The locking servo is
similar to the ones designed for on-bench cavities. It has auto-locking functions and
can be controlled remotely.

Having five integrators, the gain is quite large at low frequency. As shown in
figure, control loop hasa unity gain frequency located at around 14kHz. A higher
unity gain frequency compared with on-bench cavities is due to the fact that main
resonant peak of laser PZT is higher. As characterized in chapter 4, laser PZT
resonance starts to appear around 100kHz.

Filter cavity detuning system

As mentioned in chapter 3, the frequency dependent rotation required filter cavity
to be detuned from resonance. Therefore, a detuning set-up system is required.

Figure 5.5: Filter cavity frequency lock scheme.
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Figure 5.6: Open loop transfer function for filter cavity frequency lock. The
unity gain frequency is 14kHz and phase margin is 52◦.

As shown in figure 5.1, there is a beam splitter, which splits green beam to OPO
and filter cavity. An acousto-optic modulator (AOM) is put after this beam splitter
and along the beam path towards filter cavity. It is used to set detuning frequency
of squeezing relative to resonance frequency.

RF signal is sent to AOM to drive PZT, so sound wave is generated inside
AOM. The sound wave works as an optical grating, therefore the laser goes through
it will be diffracted. In this experiment, the first order diffraction used. Therefore,
the frequency and amplitude of laser can be changed by changing the applied RF
signal to AOM. Since green laser is locked to the filter cavity, the frequency change
caused by AOM is compensated by the frequency change of main laser. Therefore,
the frequency change also happens in SHG. The frequency changed squeezing is
generated accordingly. In this way, the detuning frequency can be set.

5.2 Degradation of frequency dependent squeez-
ing for gravitational wave detector with the
use of filter cavity

In chapter 3 we shown how vacuum fluctuation is coupled into the interferometer,
generating quantum noise. It was also discussed that frequency dependent squeezing
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(FDS) can make broadband reduction for quantum noise. However, this reduction
is calculated with an ideal FDS, which is non-degraded and whose rotation angle
optimized.

In the real case of FDS realized by filter cavity, there are several degradation
sources which can influence the final quantum noise reduction performance. The
theoretical description of these degradation sources was done by Kwee et. al. [96].
Based on his work and on the related code written by E. Capocasa [149], the achiev-
able quantum noise reduction in a realistic case is presented. This is done by ana-
lyzing the contribution of each degradation source to the final achievable FDS level.
The scheme for this theory is shown in figure 5.7.

Note that the quantum noise calculation introduced in this section is normalized
to shot noise. Therefore, the result can be directly applied to quantum noise of
different detectors.

5.2.1 Interferometer quantum noise calculation with filter
cavity and squeezer

In this theory, vacuum is described by an identity matrix v. Each optical element
or system is described by a 2 × 2 transfer matrix T . The output is described by a
vector bζ , which depends on homodyne angle ζ.

The final quantum noise level is composed by the combination of three vacuum
fluctuation fields. As shown in the scheme 5.7, vacuum 1 is the vacuum fluctua-
tion which pass through squeezer and finally arrives at photo detector. During the
propagation of vacuum 1, vacuum 2 and vacuum 3 couples in due to optical losses.
Vacuum 2 and vacuum 3 degrade the squeezing level. The goal is to reduce the
coupling of them to a low enough value. These vacuum fluctuations have different
contribution for the final quantum noise level, and it can be expressed as

N(ζ,∆ωfc
) = |bζ · T1(∆ωfc

) · v1|2 + |bζ · T2(∆ωfc
) · v2|2 + |bζ · T3 · v3|2 (5.1)

In addition to vacuum 2 and 3, the phase noise follows Gaussian-distribution with
average to be zero, which will further degrade squeezing level and make quantum
noise to be
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Figure 5.7: A simplified scheme for frequency dependent squeezing enhanced
gravitational wave detector. Vacuum 1 is squeezed, rotated by filter cavity,
entering GWs detector and in the end detected by photo detector. However,
with the propagation of Vacuum 1, there are some degradation. They are
represented by the coupling of vacuum 2 and 3. The coupling is shown
in a beam splitter model, but they are more complicated. The details are
introduced in this section.

Ntot ≃
N(ζRMS, 0) +N(−ζRMS, 0)

2
+
N(0,∆ωfcRMS

) +N(0,−∆ωfcRMS
)

2
−N(0, 0)

(5.2)
Here, vector bζ (homodyne angle) takes form

bζ =

(
cos ζ
sin ζ

)
(5.3)

and vacuum v takes form

v =

(
1 0

0 1

)
(5.4)

There are three transfer matrix T in equation 5.1, they are defined as

T1(∆ωfc
) = τroTifo(t00Tfc(∆ωfc

) + Tmm)Tinj (5.5)

T2(∆ωfc
) = τroTifo

√
1− (|τ2(+Ω)|2 + |τ2(−Ω)|2)

2
(5.6)

T3 =
√

1− τ 2ro (5.7)

They represent the modification of each vacuum field until the photodetector.
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Details are introduced in the next section. Here τ2 is defined as

τ2(Ω) = (t00rfc(Ω(∆ωfc
)) + tmm)τinj (5.8)

5.2.2 Transformation matrix for different optical component

T1 contains all the optical transformation that vacuum 1 experienced. It includes
transformation of squeezer (OPO), injection optical losses, filter cavity, interferom-
eter, readout losses and mode matching. The transformation due to squeezer and
injection optical losses is described by Tinj as

Tinj = τinjS(σsqz, ϕsqz) (5.9)

the definition of τinj is τinj =
√
1− Linj. Here, Linj is injection optical losses.

S(σsqz, ϕsqz) is squeezer operator defined in equation 3.17, remind that eσsqz is the
squeezing ratio and ϕ is the squeezing angle. The squeezing ratio is usually ex-
pressed in dB, with RdB = σ× 20 log10 e. Note that Tinj doesn’t have any frequency
dependence.

After the transformation of Tinj, vacuum 1 arrives at filter cavity. If there is a
mismatching, the part matched to filter cavity t00 will experience frequency depen-
dent rotation Tfc, the mode-mismatched part experiences transformation Tmm. The
mode matching parameters are expressed as

t00 = a0b
∗
0 (5.10)

tmm = c0 − t00 (5.11)

Tmm = |tmm|R(arg(tmm)) (5.12)

Here a0 is mode-matching between squeezing and filter cavity, b0 is mode-matching
between local oscillator and filter cavity, c0 is mode-matching between squeezing and
local oscillator. R is rotation matrix which is part of squeeze operator, and defined
as

R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
(5.13)

The frequency dependent rotation matrix Tfc is defined as

Tfc = eiαmRαp(ρpI − iρmRπ/2) (5.14)
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the definition of αm, αp, ρm and ρp are

αm =
αfc(Ω)− αfc(−Ω)

2
(5.15)

αp =
αfc(Ω) + αfc(−Ω)

2
(5.16)

ρm =
ρfc(Ω)− ρfc(−Ω)

2
(5.17)

ρp =
ρfc(Ω) + ρfc(−Ω)

2
(5.18)

Here, the ρfc is the modulus of filter cavity reflectivity, so ρfc = |rfc(Ω)|. αfc is
the phase of filter cavity reflectivity, so αfc = arg(rfc(Ω)). The reflectivity of filter
cavity is defined as equation 2.12, but the phase term of this equation needs to be
replaced as

Φ(Ω) = (Ω−∆ωfc)
2Lfc

c
(5.19)

Here Ω is the sideband frequency, ∆ωfc is the detuning of filter cavity, Lfc is the
length of filter cavity.

Then the squeezed vacuum 1 gets frequency dependent rotation and is sent to
interferometer. The interferometer transfer matrix Tifo is introduced in chapter 3
and can be expressed as

Tifo =

(
1 0

−K 1

)
(5.20)

Here K indicates how the amplitude quadrature vacuum fluctuation is converted by
interferometer to the phase quadrature vacuum fluctuation. And it is defined as

K = (
ΩSQL

Ω
)2

γ2ifo
Ω2 + γ2ifo

(5.21)

Here γifo is the interferometer signal linewidth, ΩSQL is the frequency where shot
noise equals to radiation pressure noise. For a broadband signal extraction configu-
ration DRFPMI, they can be expressed as

γifo ≃
Tarmc

4Larm

× 1 + rsr
1− rsr

(5.22)

ΩSQL ≃ 8

c

√
Parmω0

mTarm
× tsr

1 + rsr
(5.23)

Here Tarm is the arm cavity transmissivity, Larm is arm cavity length, Parm is the
arm cavity circulating power, ω0 is the optical carrier frequency, m is the mass of
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test mass, rsr is the amplitude reflectivity of signal extraction mirror and tsr is the
amplitude transmissivity of signal extraction mirror.

Finally, vacuum 1 experiences readout losses. The definition of readout trans-
formation is τro is τro =

√
1− Lro. Here Lro is the readout optical losses.

For vacuum 2 and vacuum 3, they experience different transformation processes,
describes by combination of transfer matrices introduced above.

According to the model introduced in this section, an estimation for the ex-
pected frequency dependent squeezing realized by a 300m filter cavity was done by
E.Capocasa [149]. The filter cavity losses estimation depends on the quality of the
mirrors (which is the same of the initial Virgo test masses). The result is shown in
figure 5.8.

5.3 Frequency dependent squeezing degradation
sources characterization

As described in the previous section, the main squeezing degradation sources affect-
ing our system are: mode mismatch, non-optimal locking accuracy, optical
propagation losses, phase noise, filter cavity round trip losses. Besides,
there are other technical issues as the instability of the detuning and the backscat-
tering, which are also discussed in this section.

5.3.1 Mode mismatch

In order to characterize the mode mismatch, a bright alignment beam (BAB) was
sent from squeezer to filter cavity. Then two matching were characterized as follow-
ing:

1. Mode-mismatch between squeezer and filter cavity: By changing the
detuning frequency, higher order modes can be resonant. By taking the ratio of
higher order modes and fundamental mode, the mode mismatch was evaluated.

2. Mode-mismatch between filter cavity and Homodyne local oscillator
(LO): The BAB reflected from filter cavity and sent to alignment mode cleaner
(AMC) was used for this characterization. As introduced in chapter 4, an AMC
was used to characterize the overlap between LO and squeezing. Since LO is
matched very well into AMC, the mismatched power between BAB to AMC
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Figure 5.8: Expected frequency dependent squeezing level and degradation
from our project. The degradation sources requirement is listed as follow-
ing: filter cavity round trip losses are 80ppm, propagation losses are 0.1,
mode mismatch between squeezer and filter cavity is 0.02, mode mismatch
between squeezer and local oscillator is 0.05, filter cavity locking accuracy
is 0.3pm. The degradation comes from individual degradation source is
presented as color lines. The total degradation from 9dB squeezing to the
final measured frequency dependent squeezing is shown as the dark line.
According to these degradation sources, 4dB squeezing is expected below
and around the rotation frequency while 6dB squeezing is expected above
rotation frequency. [149]
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will be the total mode mismatch. This mode mismatch was evaluated to be
around 2 percent.

The mode mismatch between squeezer and filter cavity is more complicated to char-
acterize in practice and a detailed explanation is given as following.

As already explained we can use AOM to change the auxiliary beam frequency
and scan the cavity, which will also induce a change in the main laser frequency when
the cavity is locked. Note that since AOM is set along green laser the frequency
change is actually two times the frequency change of main laser. For example if we
want to scan a whole FSR (which is 500 kHz) with the IR beam we need to change
the AOM driving frequency of 1 MHz.

For an effective search of higher order modes it is convenient to know before
what is their expected resonance frequency.

According to the equation 2.46 introduced in chapter 2, the mode spacing for
fundamental and higher order modes can be written as

P (L) = Σi
pi

1 + (2F/π)2 sin2 (−2πL/λ+ iϕG)
(5.24)

power percentage P change with cavity length L, i is the order of modes and starts
from zero, pi is the power percentage for order-i mode which depends on the cavity
misalignment/mismatching, F is cavity finesse, λ is laser wavelength, ϕG is Gouy
phase defined in equation 2.46. According to this equation we see that consecutive
modes have a frequency separation of about 200kHz. This has been experimentally
confirmed.

In our the experiment, only first and second higher order modes can be observed.
By taking the ratio of higher order modes and total power, we estimate about 6%
of mismatch

Mode mismatch includes beam/cavity axes mismatch (also called misalignment)
and beam/cavity waist mismatch.

In our case the misalignment is due to the residual fluctuation of mirror position.
The power transferred on HOM, Lmm, can be related to the RMS of the beam axis
shift and tilt as follows:

Lmm = (
θRMS

θ0
)2 + (

xRMS

ω0

)2 (5.25)

Here θRMS and xRMS is the RMS value of cavity axis angular and displacement
fluctuation. θ0 is the divergence of gaussian beam, which is defined as θ0 = λ

πω0
. ω0
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is the beam waist.
The value of θRMS and xRMS can be derived from cavity mirrors angular fluctu-

ation and cavity geometry. The angular fluctuation of cavity axis can be written as
[41]

θRMS =
(1− g2)θ1 − (1− g1)θ2

1− g1g2
(5.26)

where g1 and g2 are defined in 2.46. The fluctuation of cavity axis displacement can
be written as −zθRMS, here z is the distance between cavity mirror and cavity waist
(which is different for each mirror if the waist is not in the center of the cavity)
[98]. The mode mismatch caused by mirror angular fluctuation is simulated with
FINESSE [150]. The power coupled to higher order modes caused by mirror angular
fluctuation is shown in figure 5.9. The finesse code for this simulation can be found
in appendix C.

As introduced in the last section, the angular motion of suspended mirrors is
reduced with local controls, but even in this case, the angular motion can reach
about 6µrad. This angular fluctuation origins a misalignment which is around 6%.

5.3.2 Locking accuracy measurement

As already mentioned, the cavity lock is done by using the green auxiliary beam.
The infrared beam is overlapped on the green one and the lock condition is decided
with the AOM. Due to the dichroic coating of the mirrors, the beam experiences
different cavity poles and in general, their lock accuracy will be different.

As shown in figure 5.10, the high frequency locking performance is quite similar
for green and infrared beam while at low frequency they are different. This is
also due to the fact that the measurement of the green lock accuracy is an in-loop
measurement, while the IR one is an out-of-loop measurement.

Locking accuracy is measured taking the calibrated PDH error signal used for
the lock. IR lock accuracy is measured by injecting a Bright alignment beam, which
is a pick off of the main laser and is modulated at 15.2MHz. The PDH signal used
to estimate the lock accuracy is obtained by demodulating the reflected IR beam.

5.3.3 Stability of the detuning

Detuning determines the frequency at which the rotation takes place. The stability
of the detuning is crucial to obtain an optimal quantum noise reduction when the
squeezing is injected into the interferometer.
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Figure 5.9: Power coupled to higher order modes due to mirror angular
fluctuation

Figure 5.10: Left: locking accuracy measurement for green laser. Right:
locking accuracy measurement for green beam
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As introduced, this detuning is set by an AOM. The non-optimal overlap between
green control beam and infrared squeezing beam can induce a drift in the detuning.

In order to asses the stability of the detuning we monitored the PDH signal from
the BAB as shown in figure 5.11.

From figure 5.11, we can see that alignment condition influences the detuning.
Even when filter cavity is kept locked, the detuning has a drifts. This is possibly
due to the fact that auto-alignment is done using the green beam. This is a very
important issue, which needs to be further investigated.

5.3.4 Filter cavity round trip losses

As we can see from the estimation of expected frequency dependent squeezing in
figure 5.8, filter cavity round trip losses is one of the main limitation for the ex-
pected squeezing level. Therefore, its characterization is important for evaluate its
contribution to the squeezing degradation.

The estimation in work [149] is based on the derivation of round trip losses from
mirror map. Therefore, a measurement after the implementation of these mirrors is
necessary to confirm these losses.

Cavity round trip losses can be derived from the measurement of cavity reflec-
tivity. This work has been published in [1] and is summarised in this section. We
remark that losses can be also extracted from the finesse and the decay time of he
cavity but the precision of these measurements is limited by the uncertainty on the
input mirror transmissivity while the technique used here has a weak dependence
on this quantity.

The reflectivity from a cavity is the square of equation 2.12. When the cavity is
on resonance, it can be expressed as

R = (
r1 − r2
1− r1r2

)2 (5.27)

here r1 and r2 are mirror amplitude reflective coefficient for input and end mirror.
Remind the definition of optical losses in equation 2.28, r2 can be expressed as
√
1− T2 − L2. Here L2, T2 is end mirror optical losses and transmissivity.

Optical losses can be considered numerically equivalent to an increase in the end
mirror transmissivity (which in this case is below 5 ppm). Therefore, the cavity
round trip losses can be expressed as

Lcav = 1−R2 (5.28)
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Figure 5.11: The first figure shows filter cavity green transmission, which
is basically stable. The second figure shows filter cavity correction signal,
which is also stable during each locked period. The third is filter cavity
infrared transmission, which is barely stable. The forth figure is filter cavity
infrared detuning.
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here R2 is the end mirror reflectivity. By taking equation 5.28 into equation 5.27,
cavity reflectivity can be expressed as

R =

(
r1 −

√
1− L

1− r1
√
1− L

)2

(5.29)

by solving this equation, optical losses can be expressed as

L = 1−

( √
R + r1√
Rr1 + 1

)2

(5.30)

or it can be approximated as
L ≃ T1

2

1−R

1 +R
(5.31)

In either equation 5.30 or 5.31, to know optical losses, the information of input
mirror reflectivity/transmissivity and cavity reflectivity are required.

The cavity reflectivity can be measured when filter cavity is set on/off resonance.
As shown in figure 5.12, the ratio of upper (around 0.3) and lower (around 0.25)
level is cavity reflectivity.

The input mirror reflectivity/transmissivity is provided by the manufacturer
within an error of one percent. As we see from equation 5.31, optical losses is linearly
proportional to input mirror transmissivity T1. So the optical losses measurement
error induced by input mirror transmissivity is within one percent as well, which is
small enough.

Besides, non-perfect mode matching and sidebands influence cavity reflectivity,
which was considered in the calculation and extensively discussed in [1].

The measurement of the cavity reflectivity was performed many times with dif-
ferent alignment condition. The optical losses is calculated for each measurement
and shown in figure 5.13.

As discussed in the paper [1] the difference for each measurement result is con-
sidered to be due to slightly different surface quality seen by the beam when hitting
the mirror in different points due to different alignment conditions

New measurement of cavity reflectivity

The filter cavity round trip losses reported in the last section was characterized at
the beginning of 2018. There were some new measurement done at the beginning
of 2020. The measurement result is shown in table 5.2. These measurements give
an estimation of filter cavity round trip losses as 123(±20)ppm. Compared with
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Figure 5.12: Filter cavity reflected power measurement when filter cavity is
repeatedly set on/off resonance

Figure 5.13: Optical losses measured for different alignment condition, the
error bar comes from the power RMS deviation
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figure 5.13, all the measured values are larger than two years ago. During these two
years, the vacuum chambers were opened several times and contamination could
have happened. Anyway this larger level of losses was not the liming factor in the
achievable frequency dependent squeezing.

measurement day round trip losses
2019.10.24 100ppm
2020.01.23 148ppm
2020.02.07 122ppm

Table 5.2: Measurement of filter cavity round trip losses on different days

5.3.5 Propagation losses and phase noise

The propagation losses and phase noise was characterized by measuring squeezing
and anti-squeezing level at high frequency(10kHz to 100kHz) for different green
pump power. The principle of this measurement was introduced in section 4.3.3. The
experimental set-up of this measurement is the same with the measurement of FDS
(measurement procedure is introduced in appendix D). Therefore, this measurement
can tell the information of propagation losses and phase noise for FDS measurement.

The measurement results are plotted in figure 5.14 together with a fit. Comparing
with the similar measurement done for frequency independent squeezing measure-
ment, the beam passes through many more optics and some of them are suspended.
Therefore propagation losses and phase noise are increased, as expected.

The measured propagation losses is about 40%, which includes about 4% of
losses coming from the mode mismatch between squeezing field and local oscillator.
Therefore, total propagation losses used for squeezing degradation estimation will
be 36% including 1% of error.

The phase noise is taken directly from the fit result, which is 30mrad, with error
of 5mrad.

5.3.6 Back scattering noise measurement

As mentioned in chapter 4, back scattering noise can contaminate low frequency
measurement. It was also pointed out that the back scattering noise comes from
vibrating mirror surface.
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Figure 5.14: Optical losses and phase noise characterization for frequency
dependent squeezing measurement.

We observed that back scattering noise varies depending on alignment and ampli-
tude of the mirror motion. A statistic, as shown in figure 5.15, shows back scattering
noise varies up to 10dB. The shaded region is the sum of shot noise and a 1/f 2 noise.
In the best condition, we could measure frequency dependent squeezing above 50Hz
without contamination of back scattering.

5.4 Measurement of frequency dependent squeez-
ing

As already discussed frequency dependent squeezing is created by reflecting a fre-
quency independent squeezing off a filter cavity and it is then characterized by a
balanced homodyne detector. The procedure of this measurement is described in
appendix D. Other details of this measurement and results are given in this section.

5.4.1 Frequency dependent squeezing characterization with
balanced homodyne detector

Balanced homodyne detector can measure different angle of a squeezed state by
setting different local oscillator phase. However, during the measurement, local os-
cillator needs to be fixed. Therefore, several different measurements are necessary to
characterize a frequency dependent squeezed vacuum. Different fixed local oscillator

163



Chapter 5

Figure 5.15: Statistic of back scattering noise for frequency dependent
squeezing measurement.

phase corresponds to different homodyne angle.
As introduced in chapter 3, frequency dependent squeezing has different squeez-

ing ellipses orientation for different frequencies. This means that when homodyne
angle is fixed, it measures the ellipse length (the quatum noise) along this direction
at all the frequency. The measurement result will not be flat and the lowest point
indicates the highest squeezing level for this homodyne angle.

By using the theoretical model introduced in section 5.2, measurement result
can be predicted. In this case, the calculation can be done by using the same
equations and setting the transfer matrix of interferometer to be 1. Based also
on the characterization done in the last section, the level of squeezing can be also
predicted.

An illustration scheme is shown in figure 5.16. A prediction of measurement
result is shown in this figure. The lower boundary indicates how much quantum
noise can be reduced when this squeezed vacuum source is used in the GW detector.

5.4.2 Frequency dependent squeezing measurement with large
detuning

At the beginning, the FDS measurement was done with a large detuning. In fact,the
low frequency spectrum is easily covered by classical noise. To confirm the phase
changing effect of the filter cavity, a measurement at high frequency is easier. Since
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Figure 5.16: Upper: Prediction of frequency dependent squeezing mea-
surement in current system with squeezing injection of 8.3dB. Detuning is
assumed to be fixed at 90Hz and back scattering noise is not considered.
Lower: Scheme of the homodyne projection measurement of the squeezing
ellipse. Here ∆ϕ is phase fluctuation direction, ∆ε0 is amplitude fluctua-
tion direction. The colored line on squeezing ellipses represent the direction
along with the squeezing is measured.
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Figure 5.17: The first measurement of frequency dependent squeezing with
detuning frequency around 50kHz.

we are sure that high frequency region is quantum noise limited, the fit of measure-
ment result in figure 5.17 will tell us precise information on our system performances.

5.4.3 Frequency dependent squeezing measurement with de-
tuning around 90Hz

After the optimization of the system, we were able to perform the measurement at
lower detuning frequency obtaining a rotation frequency at about 90 Hz, as shown in
5.18. A squeezing level of 3.4± 0.4 dB above the rotation frequency was measured,
along with a squeezing level of at least 1 dB at the rotation frequency and below.

Discussion about detuning and homodyne angle

The values of detuning and homodyne angle shown in figure 5.18 are the result of the
fit for each curve. One issue is that detuning of squeezing field is different between
each measurement. As already introduced in section 5.3.3, detuning changes when
alignment condition is changed and it has a slow drift. These can be explained by
the not perfect overlap of green control beam and infrared squeezing field.

In fact a relative misalignment of the squeezed beam with respect to the green
beam will not be corrected, as the cavity is locked and kept aligned with respect to
the green auxiliary beam. The mechanisms which couple a variation of the alignment
with a detuning change are still under investigation. In order to solve these problems,
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our team is studying an alternative strategy which uses the already present coherent
control field for both length and angular control. [151]. A similar strategy has also
been tested in[102].

Discussion about degradation sources

The independent characterization of degradation sources was used to compute the
expected measurements plotted as dashed lines in the figure 5.18. The predicted
measurement and the real measurement are in very good agreement, which validates
the measurement of FDS and the degradation sources characterization.

A summary of degradation sources is shown in table 5.3. For the current sys-
tem, contribution from different degradation sources can be evaluated from model
introduced in section 5.2. The result is shown in figure 5.19. This plot tell us
that squeezing level is mainly limited by optical losses at high frequency and mode
mismatch at low frequency.

Squeezing degradation parameter Value
Filter cavity round trip losses 120 ± 30ppm

Propagation losses 36% ± 1%
Mode-mismatch squeezer-filter cavity 6% ± 1%

Mode-mismatch squeezer-local oscillator 2% ± 1%
Filter cavity locking accuracy (rms) 6 ± 1pm

Phase noise 30 ± 5mrad
Produced squeezing 8.3 ± 0.1 dB

Table 5.3: Degradation sources characterization for FDS measurement
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Figure 5.18: Measurement of frequency dependent with different homodyne
angle. The dashed line is predicted frequency dependent squeezing level
with separately measured system parameters.

Figure 5.19: Plot of current FDS measurement and contribution of different
degradation sources. The top black line indicates the lower bound of FDS
measurement at different homodyne angles.
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Frequency dependent squeezing
source improvement and its
application to gravitational wave
detectors

In this chapter, the future improvements of the current frequency dependent squeezed
vacuum source will be discussed. In the second part of the chapter, the benefits of
the use of this technology in KAGRA will be highlighted.

6.1 On-going improvement for current frequency
dependent squeezed vacuum source

A measurement of FDS, which is able to reduce broadband quantum noise in ad-
vanced GW detectors was done with the current set-up in TAMA. However, several
improvement are planned in order to increase the squeezing level and the stability of
the system making it mature for the actual integration in the KAGRA. A summary
of the planned improvements is reported below.

6.1.1 Auto-alignment system

Auto alignment system is a widely used technique to maintain the alignment for
suspended cavities. It is especially present in advanced gravitational wave detec-
tors where the alignment degree of freedom of several suspended cavities must be
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controlled simultaneously. With this system, the injected beam axis and suspended
cavity axis will be kept aligned. Currently, a dithering auto-alignment was used in
our experiment. This type of control has very low control bandwidth, and therefore
is used to compensate mainly long term drifts.

As mentioned in chapter 5, the detuning of the filter cavity depends on its align-
ment condition. To have stable detuning, an auto-alignment system is necessary.
Using wave front sensors (such as position sensitive detector or quadrant photo-
diodes) to get the alignment error signal will allow for larger control bandwidth
compared to the current dithering system and it is expected to solve the problem of
power stability and detuning drift of our filter cavity.

6.1.2 Reduction of optical losses

The escape efficiency of OPO is estimated to be around 83% in section 4.3.3. The
additional losses compared to the design value are likely due to a non-perfect pol-
ishing and coating of the PPKTP crystal. Currently, spare crystals are sent to be
polished and coated again. In the future, an improvement of about 15% is expected.

In addition, the in-vacuum Faraday isolator was measured to have about 10%
round trip optical losses. The best reported Faraday isolator can have optical losses
as low as 1.5% [152]. The realization of a custom Faraday isolator is planned, and
a reduction of about 7% of the optical losses is expected.

6.1.3 Filter cavity new locking scheme

A new filter cavity locking scheme for this experiment was proposed by our team
[151]. This control use as error signal the CC sidebands also used for the control of
the squeezing phase.

According to chapter 4, upper and lower coherent control sidebands (CCSBs)
have fixed phase relation due to coherent control loop 1. They propagate together
with squeezing beam and arrive at filter cavity. The frequency difference of two
CCSBs can be precisely tuned to be double the desirable detuning. In this case, the
filter cavity length error signal can be obtained as the beat between the two CCSBs
and can be used to lock the filter cavity with the desired detuning.

This locking scheme is expected to be more reliable compared the current locking
scheme since CCSBs propagate together with squeezing, therefore it doesn’t rely on
the overlap between green and infrared beams.
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6.1.4 Expected improvement for frequency dependent squeez-
ing

The expected FDS measurement, considering the improvements just discussed, is
shown in figure 6.1. Up to 3dB of squeezing at low frequency and 6dB at high
frequency are expected. Moreover, a more stable detuning is also expected.

6.2 Potential sensitivity improvement for KAGRA
According to the expected squeezing performances of the filter cavity [149], the
improvement in KAGRA sensitivity has been computed, along with the binary neu-
tron star range (using python package inspiral range master [38, 153]). The result
is shown in figure 6.2. With the use of FDS, KAGRA can have an improvement of
its detection rate for binary neutron stars up to 70%. This correspond to a 5 times
improvement of the detection rate (which scales as the detection volume which is the
cube of the detection range). In this calculation, only the effect of quantum noise
reduction has been considered, while other noises are those expected to achieve the
target sensitivity.
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Figure 6.1: Expected degradation budget for future FDS measurement.
The black line shows expected FDS measurement. At low frequency 3dB of
squeezing and at high frequency 6dB of squeezing are expected.
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Figure 6.2: Potential sensitivity improvement for KAGRA by using fre-
quency dependent squeezing, the BRSE configuration is assumed. The bi-
nary neutron star range of 125.6Mpc is expected to be increased thanks to
the use of frequency dependent squeezing up to 212.7Mpc. This is an im-
provement of 70%. All the noise sources, with the exception of the quantum
noise, are kept the same for the two plot.
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Conclusion

The era of quantum noise-limited gravitational wave detectors has arrived. To beat
this limitation, a frequency dependent squeezed vacuum source using 300m filter
cavity was realized and presented in this thesis. My work included the character-
ization of the filter cavity, the realization of the frequency independent squeezed
vacuum source, the injection of the squeezed vacuum into the filter cavity and the
consequent measurement of frequency dependent squeezing. A squeezing level of
more than 3 dB above the rotation frequency was measured, along with a squeezing
level of at least 1dB at the rotation frequency and below. This frequency dependent
squeezed vacuum source is best record around the world up to now.

Degradation sources are well understood and the path to increase the squeezing
level and its stability is clear. In the near future, FDS will be implemented in
advanced gravitational wave detectors, including advanced LIGO, advanced Virgo
and KAGRA. In the case of KAGRA, this upgrade is expected to improve the BNS
range by 70%.

Even for the next generation GW detectors, frequency dependent squeezing re-
alized with a filter cavity is still the best candidate to reduce quantum noise in the
entire detection bandwidth. A requirement of broadband 10dB squeezing is envis-
aged, which will require an intensive work to reduce squeezing degradation sources
and improve the stability of the system.
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In this appendix, I give an example about the filter design and characterization.
A general procedure is to first measure opto-mechanical transfer function, then

design filters. By modifying corner frequencies of different filters, the requirement
of phase margin and gain margin can be fulfilled.

Filters designed for each control servo include several different components. They
are

1. Integrator: transfer function is Hint = 1 + (1/j)(f1/f) with f1 as the fre-
quency of zero.

2. Double integrator: transfer function isHint2 = 1+(1/j)(f2/f)+[(1/j)(f2/f)]
2

with f2 as the frequency of zero.

3. Low pass filter: transfer function is Hlp = 1/(1 + j ∗ f/f3) with f3 as the
frequency of pole.

4. Notch filter: transfer function is is Hnotch = [1+(j∗f/f4)2]/[1+j/Q∗f/f4+
(j ∗ f/f4)2] with f4 as the frequency of poles and zeros.

A matlab code called virgo2zpk was used in the design of filters. In the code, all
filters are described together with their frequency of zero (z), pole (p), gain(k) and
quality factor. The plot of opto-mechanical transfer function and the filters overall
design is shown in figure 6.3.

After implementing the designed filters in circuit, the open loop transfer function
was measured as figure 6.4. This measurement agrees with the simulation done with
designed filters.

In the actual implementation, the loop gain can vary a bit around the optimal
point. This variation can be due to a power change, for example GRMC is locked
to different power according to different application requirement. The gain margin
is designed to be 10dB. Therefore, the variation of loop gain should be smaller than

177



Appendix A

Figure 6.3: Left: measured opto-mechanical transfer function and designed
filter for green mode cleaner. Right: the multiplication of left two curves to
simulate open loop transfer function.

Figure 6.4: Measured open loop transfer function of green mode cleaner
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this value. Otherwise, the loop gain needs to be adjusted to maintain the system to
be in a stable region.
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All RF signals used in the experiment is summarized as following:

• Two 15.2MHz channels: One channel is used to drive EOM SHG/IRMC
in figure 4.1, which is located just after main laser. The modulated sidebands
is used to get the phase information of laser frequency relative to SHG/IRMC
cavity length. Beside, it is also used for characterizing filter cavity locking
accuracy. The other channel is used as LO for phase detector, which is for the
demodulation of RF signals. Although we have at least two channels need to
be demodulated, a RF singal power splitter is used to have enough channels.

• Two 87.6MHz channels: One channel is used to drive EOM OPO in figure
4.1, which is located after p-pol laser. The modulated sidebands is used to get
the phase information of light frequency relative to OPO length. The other
channel is used for the demodulation of this signal.

• Four 78MHz channels: One channel is used to drive EOM FC/GRMC in
figure 4.1, which is located after SHG. The modulated sidebands is used to
get the phase information of light frequency relative to filter cavity length and
GRMC length. Another two channels are used to do demodulation. Especially,
since filter cavity control servo doesn’t have phase shifter, the inherent function
of phase shifter is used to adjust demodulation phase and have optimal PDH
for filter cavity lock. The last channel will be used for wave front sensing
technique to achieve filter cavity auto-alignment.

• Two 7MHz channels: One channel is used as a local oscillator for CC optical
PLL(actually 21MHz). The other is used to do demodulate the beat RF signal
between CCSB and homodyne’s LO.

• One 14MHz channel: It is used to demodulate the beat RF signal between
two CCSBs. Since this channel is used for demodulating the second harmonic
of 7MHz, it needs to be in the same board with 7MHz channel.

181



Appendix B

• One variable channel (change from 32MHz to 56MHz): This channel
is used as a local oscillator for p-pol optical PLL.
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The FINESSE code used for simulating power loss due to cavity mirror angular
fluctuation is as following:

#laser injection
l laser 0.024 0 n1
s s1 .5 n1 n1a
mod eom1 88M 0.15 2 pm n1a n1b #modulation depth is 0.15
s s2 .5 n1b nbsin
bs BS 0.5 0.5 0 45 nbsin dump nfc nbsout
s s3 1 nfc n2

#TAMAFC
m ITM 0.993 0.007 0 n2 n3 #input mirror optical property
s sfc 300 n3 n4
m ETM 0.971 0.029 0 n4 n5 #end mirror optical property
attr ITM Rc -436.7 #input mirror geometry
attr ETM Rc 445.1 #end mirror geometry
cav cavfc ITM n3 ETM n4 #define cavity

#PDr
s sr .5 nbsout npdr
pd ref npdr
pd1 ref1 88M 43.2 npdr

#PDt
s st .5 n5 npdt
pd tra npdt

#lock filter cavity
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set err ref1 re
lock z $err 3 10n
put ETM phi $z

#change cavity mirrors angle
xaxis ITM xbeta lin -8u 8u 100
x2axis ETM xbeta lin -8u 8u 100

#set maximum mode order to be 3
maxtem 3
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Detailed procedure to perform frequency dependent squeezing measurement.

1. Lock SHG and confirm that green power sent to filter cavity is the usual value
(about 12mW).

2. Engage filter cavity suspension local control. Align filter cavity, lock it and
finally engage dithering auto-alignment system.

3. Make sure p-pol beam is sent to OPO and lock OPO.

4. Choose p-pol PLL locking frequency according to the temperature of OPO
crystal. Lock p-pol PLL.

5. Make sure BAB is sent to OPO and check BAB power sent to filter cavity
is around 400µW . Tune AOM frequency to make BAB on resonance. Check
BAB transmission level, which should be around 440 counts. If not, align
BAB to reach this level.

6. Check LO alignment into the alignment mode cleaner (AMC).

7. Make sure the signal port is blocked by a beam dump. Lock IRMC and check
the shot noise level is the one expected and flat down to 10Hz. If not, align
BS of homodyne.

8. Detune BAB by the required detuning frequency (note that frequency change
for AOM is the twice of change for detuning. Check BAB alignment relative
to AMC and maximize it.

9. Replace BAB with CC and lock CC PLL.

10. Lock Mach-Zehnder and GRMC. After this, green beam is sent to OPO. Usu-
ally this alignment is stable since related cavities are fixed on bench. If mis-
aligned, follow the procedure introduced in chapter 4 and realign green pump
into OPO.
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11. Change p-pol PLL locking frequency by maximizing CC1 error signal. This
step can be also used to check if previous steps are done well. The usual CC1
error signal level means squeezing level should be also the same.

12. After locking CC1 and CC2 loop, the frequency dependent squeezing can be
measured.
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In this appendix, the alignment procedure for OPO and fiber PLL is presented.
Procedure to assembly of the whole OPO cavity:

1. Prepare a beam with a correct beam waist. Make sure the beam is flat both
horizontally and vertically. Set a camera to monitor this beam and make a
circle on the screen as a reference.

2. Take the crystal part and make light go through this crystal. The crystal part
needs to be put on a tilt aligner (Newport 9071). By adjusting the whole
crystal part, we need to make sure two things: beam hit the same position on
the screen and the injection to crystal HR side needs to overlap with reflection.

3. Put the in-coupling mirror in position and set a photo detector to monitor
transmission. While scanning the PZT, adjust the position of the in-coupling
mirror. When it is in a good position, the transmission shows a good spectrum.
After fixing in-coupling mirror in this good position, the assembly of OPO is
finished.

The fiber BS used for mixing main laser and auxiliary laser fields were chosen
due to space limitation. The method to couple one laser light into an optical fiber
is summarized as follows:

• The incident beam needs to be in a good size, usually the size is provided by
manufacture, but needs to be checked by measuring the beam size exciting
from fiber collimator.

• The alignment of fiber starts with a large load impedance for fiber photo
detector.

• Use multi-mode fiber to align laser into collimator and fiber. Reduce load
impedance when there is saturation from PD and then continue to align and
maximize transmission.
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• After maximizing transmission for multi-mode fiber, replace multi-mode fiber
with single-mode fiber.

• While aligning beam into single-mode fiber, there will be several local max-
imum. Needs to try to find most of local maximum to make sure the real
maximum is reached. Usually, the next local maximum of the real maximum
is much smaller.

• A half wave plate should be placed in front of the collimator. Rotate half-wave
plate to maximize transmission. In the end, the power coupling efficiency
reached around 40%.

• After combining beam from main laser and auxiliary laser into fiber BS, there
will be beat signal. The optical layout is shown in figure4.15. Fiber BS has
two output. One output is used for PLL loop and another is used to monitor
beat note on a spectrum analyzer.
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