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With the development of information technology in recent years, there is a need

to apply machine learning to a wide range of industrial and academic fields, and

emerging services and applications have started requiring matching multiple groups

of data, namely, multiple data matching. Through the multiple data matching, we

can investigate or infer the relationship between groups of data, such as common

cluster structures or links. Furthermore, modeling the structure of the data is known

as required to construct methods in some scenarios; however, several emerging use-

cases are not well-studied, in which both modeling the structure of data and combin-

ing with new powerful functions (e.g., kernel functions and deep neural networks)

is essential to match the multiple data.

This thesis considers matching up heterogeneous groups of objects by modeling

the structures of data, involving various real-world applications. The problem sce-

narios divide into two cases: building methods to match (i) clusters, where the clus-

ter structure commonly lies in heterogeneous domains, and (ii) two heterogeneous

sets, where correct pairs are given as supervised information. This thesis focuses on

extending the problems of multiple data matching onto the two different directions

above.

(i) In the first case, we study a so-called supervised clustering to match common

clusters that exist across two different domains, using given cluster assignments on

one side of the domains as supervised information. The proposed method maxi-

mizes the similarity between the cluster structures within two domains in which

kernel mean embeddings represent each cluster as probability distribution uniquely

and nonparametrically. In the experiments, we use the datasets from meteoritics

and planetary science and investigate taxonomical matching between the meteorites

and asteroids. Here, the datasets consist of reflectance spectra of asteroids and me-

teorites, and also major chemical compositions of meteorites, where cluster assign-

ments of the meteorites are known as the abovementioned supervised information,

and the problem is to solve supervised clustering on the asteroidal domain. By com-

paring the clustering accuracy of the asteroid between with and without the guid-

ance of the meteorite, we observe that the guidance of meteorite taxonomy improves

the accuracy, either with the reflectance spectra or major chemical compositions of

meteorites. This fact serves as a piece of evidence that there is a common taxonomic

structure and links between meteorites and asteroids, implying a long-standing hy-

pothesis of the taxonomy matching.
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(ii) Second, we investigate heterogeneous set-to-set matching problem building

novel deep neural networks. In this case, we are only given paired group data

for training and inference, and the learned neural network models must classify

whether an unknown paired data matches or not in the inference. The difficulties of

the heterogeneous set-to-set matching are to extract features to match a correct pair

of different sets and also preserve two types of exchangeability required for set-to-set

matching: the pair of sets, as well as the items in each set, should be exchangeable.

In this study, we propose a deep learning architecture for heterogeneous set-to-set

matching to address the abovementioned difficulties. The proposed framework in-

cludes two novel modules: (1) a cross-set feature transformation (CSeFT) module

and (2) cross-similarity (CS) function. The former provides the exchangeable set

feature based on the interactions between two sets in intermediate layers, and the

latter performs the exchangeable set matching by calculating the cross-feature sim-

ilarity of items between two sets. Furthermore, we propose a novel loss function,

K-pair-set loss, to train our model effectively. The effectiveness of our approach is

demonstrated in two real-world applications. First, we consider fashion set recom-

mendations via matching fashion outfits, where provided examples of the outfits are

used as correct combinations of items. Since the paired sets include images of differ-

ent fashion items, we regard this case as heterogeneous set matching. Next, we eval-

uate our methods through group re-identification experiments using two datasets, a

new extension of the Market-1501 dataset (Market-1501 Group) and the Road Group

dataset. Considering group membership change, we regard group re-identification

as a heterogeneous set matching problem. In the experiment, we further introduce

the novel data augmentation method that augments paired data (set-data augmenta-

tion). In these experiments, we show that the proposed method provides significant

improvements and results compared with the state-of-the-art methods, thereby val-

idating our architecture for the heterogeneous set matching problem.
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Chapter 1

Introduction

With the development of information technology in recent years, there is a need

to apply machine learning to a wide range of industrial and academic fields, and

emerging services and applications have started requiring group-based data match-

ing, namely multiple data matching. Multiple data matching has been studied to

investigate relationships between groups of data, and we consider it an extended

variant of an ordinary data matching that serves to match two data.

Matching up two data is one of the fundamental elements of many machine

learning applications and has been investigated in various areas. Image match-

ing (Thirion, 1998; Van den Elsen, Pol, and Viergever, 1993; Gruen, 1985) is a typical

example of the leading research territories in computer vision, including person re-

identification (Zheng et al., 2015), face identification (Chopra, Hadsell, and LeCun,

2005), and object retrieval (Li, Larson, and Hanjalic, 2015). These subjects have been

well-studied and implemented as core functions in real-world applications, such as

surveillance and robot navigation systems.

Multiple data matching includes but not limited to cluster matching for network

data using infinite relational models (Iwata and Ishiguro, 2017), document match-

ing across different languages by topic models (Iwata, Hirao, and Ueda, 2017), and

latent factor models for a cross-domain recommendation (Gao et al., 2013). Further-

more, several researchers have studied matching in a view of dependence maximiza-

tion based on the Hilbert-Schmidt independence criterion (Blaschko and Gretton,

2008), mutual information criterion (Faivishevsky and Goldberger, 2010; Kimura

and Sugiyama, 2011), kernel canonical correlation (Blaschko and Lampert, 2008),

kernel maximum mean discrepancy (Li et al., 2017), and discriminative approach

using deep neural networks (Huang et al., 2019a). We can see several feature-based
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image matching methodologies that match groups of local features on keypoints un-

der geometric constraints as multiple data matching (Li, Larson, and Hanjalic, 2015;

Tolias, Avrithis, and Jégou, 2016). The abovementioned methods are studied to dis-

cover a common latent structure forming clusters or groups that exist across multiple

domains in an unsupervised manner.

In a supervised manner, several approaches for multiple data matching have

been proposed. Given paired data, stochastic models have been proposed to investi-

gate latent links between multiple entities (Chang and Blei, 2009; Airoldi et al., 2008;

Nallapati et al., 2008). In clustering-based approaches, considering auxiliary infor-

mation in a related domain as one of supervised information, several methods have

been proposed to discover common clusters (Wang, Domeniconi, and Hu, 2008; Dai

et al., 2007a), which are also related to works of literature of transfer learning (Raina,

Ng, and Koller, 2006; Dai et al., 2007b; Yang et al., 2009) and self-taught cluster-

ing (Dai et al., 2008). Furthermore, so-called multitask learning (Caruana, 1997; Ar-

gyriou et al., 2008) and semi-supervised multitask learning (Ando and Zhang, 2005)

have been developed, assuming that common labels or feature spaces exist across

different domains.

Based on the property of matching use-case in applications, the multiple data

matching scenarios can be grouped into two classes: homogeneous matching and

heterogeneous matching. In the former, the groups comprising the same instances,

such as the images of the face of the same person, are to be matched. In the example

of face matching, except for variations such as differences in illumination or pose

in the images, both groups contain similar instances. Homogeneous matching has

been investigated in several studies (Gao et al., 2018; Lu et al., 2015; Feng, Kara-

man, and Chang, 2017; Liu, Yan, and Ouyang, 2017; Liu et al., 2019b; Xie, Shen, and

Zisserman, 2018; Shakhnarovich, Fisher, and Darrell, 2002; Arandjelovic et al., 2005;

Cevikalp and Triggs, 2010; Yamaguchi, Fukui, and Maeda, 1998; Liu et al., 2019a).

In heterogeneous matching, the instances within paired groups can be considerably

different. For example, group re-identification in surveillance systems (Lisanti et al.,

2017; Xiao et al., 2018; Lin et al., 2019), which has recently started implementing a

function to track known groups of suspicious persons or criminals, is a task that
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can be simplified as heterogeneous matching, taking into account group member-

ship change, which may change membership in paired groups under noisy condi-

tion. In addition, topic models for entity matching (Yang et al., 2015), graph match-

ing for malware detection (Wang et al., 2019), and multiple-instance learning for

anomaly detection (Sultani, Chen, and Shah, 2018) have been studied for heteroge-

neous matching. We consider that heterogeneous matching is a more difficult task

and requires a strong framework to match different data.

Furthermore, modeling the structure of the data is required to construct methods

for multiple data matching in several use-cases, which have begun implementing

functions towards emerging applications or services. For example, various methods

have been proposed for representing a set of data and used to match the sets. A

vector with a fixed length, such as a histogram of local features, has been introduced

to analyze documents (Le and Mikolov, 2014) and images (Yang et al., 2007). Fur-

thermore, different studies have suggested modeling a set as a hull (Cevikalp and

Triggs, 2010; Hu, Mian, and Owens, 2011; Yang et al., 2013; Zhu et al., 2013), hyper-

planes (Vincent and Bengio, 2002; Gionis, Indyk, Motwani, et al., 1999), linear sub-

space (Yamaguchi, Fukui, and Maeda, 1998; Kim, Kittler, and Cipolla, 2007; Wang

et al., 2008; Hamm and Lee, 2008), convex cone (Sogi, Nakayama, and Fukui, 2018),

exemplars (Hadid and Pietikainen, 2004), covariance matrix (Wang et al., 2012; Cai,

Takala, and Pietikainen, 2010), Gaussian model (Shakhnarovich, Fisher, and Dar-

rell, 2002; Arandjelovic et al., 2005), and kernel mean (Muandet et al., 2017), among

others. In majority of the methods described above, specific measurements were

needed, to measure the similarity/distance between the set models; for instance,

(Peng, Zhang, and Li, 2016) requires optimizing two convex hulls on a set-to-set dis-

tance, using the Lagrangian multiplier method. Furthermore, various methods have

been proposed for building a model to match graph data (Bai et al., 2019; Li et al.,

2019; Guo et al., 2018), entities (Mudgal et al., 2018), and sequences (Si et al., 2018).

1.1 Our Goals

In various applications, I am interested in matching multiple data via modeling the

structure of the data, towards matching up heterogeneous groups of objects. Al-

though multiple data matching has been studied in a broad spectrum, as described

above, several emerging use-cases are not well-studied, in which both modeling the
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structure of data and combining with new powerful functions (e.g., kernel functions

and deep neural networks) is essential to match the multiple data. This motivation

leads to new research questions: with recent developments of (i) kernel functions,

which uniquely and nonparametrically represent distributions, or (ii) deep neural

networks, which provide powerful feature learning architecture,

• How can we extend matching problems via modeling the structure of data

using the powerful functions?

• What are the new applications?

The goal of the work presented in this thesis is to extend the problems of match-

ing multiple data by modeling the structure of data, involving various real-world

applications. This thesis focuses on extending the problems onto the following two

different directions:

1. Modeling a cluster matching method that finds matched clusters, which com-

monly lie in heterogeneous groups of data: the first goal of this thesis is to

develop kernel mean embeddings to match clusters across two different do-

mains. This problem scenario is based on assumptions that the two clusters

consist of the same cluster structures, and we can match clusters based on

calculating the similarity of distributions. Furthermore, in this scenario, we

consider that cluster assignments in one side of domains are fully given as su-

pervised information, and the remaining dataset does not contain any labels

for the classification.

2. Modeling a set-input function to match heterogeneous sets of data: we study

a problem scenario based on the situation for matching heterogeneous groups

of data, where each group is defined as a set. In this case, we consider a deep

learning-based method that learns models to discover matching between two

sets via feature spaces. We investigate an application of this setting in a set-to-

set matching task, requiring two types of exchangeability: the pair of sets, as

well as the items in each set, should be exchangeable.

1.2 Thesis Overview

This thesis contains my works on addressing the abovementioned issues, which con-

sists of two parts. The main parts of this thesis and the contributions are as follows:
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1. In Chapter 2, we propose a novel clustering and cluster matching method us-

ing kernel mean embeddings and supervised information in one-side domain.

In the experiments, we develop an application towards matching taxonomic

structure of meteorites and asteroids and investigate a well-known and long-

standing hypothesis that the links between meteorites and asteroids exist, by

comparing the results of unsupervised and supervised clustering methods.

2. In Chapter 3, we develop a novel neural network architecture and effective

learning techniques for heterogeneous set-to-set matching. We evaluate the

methods through experiments based on two industrial applications: fashion

set recommendation and group re-identification. In these experiments, we

show that the proposed method provides significant improvements and re-

sults compared with the state-of-the-art methods, thereby validating our ar-

chitecture for the heterogeneous set matching problem.

Furthermore, in Chapter 4, we summarize this thesis, and discuss the open problems

for future research.
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Chapter 2

Cluster Matching via Kernel Mean

Embeddings and Its Application to

Taxonomy Matching on Asteroid

and Meteorite Domains

2.1 Motivation

Linking meteorites to asteroidal bodies is an important subject toward a better un-

derstanding of the origin, structure and history of the Solar System (Cloutis, Binzel,

and Gaffey, 2014). It allows us to infer the property of asteroids from meteorite

information without taking the sample from the asteroid directly. For decades, re-

searchers have been discussing the relations of taxonomy classifications observed in

the reflectance spectra of asteroids and meteorites (Britt et al., 1992; Gaffey, Burbine,

and Binzel, 1993; Pieters et al., 2005). This is still challenging, however, since the

clear matching of absorbing features is not possible for various reasons including

space weathering (Noguchi et al., 2011) and diversity of terrains in asteroids. The

largest difference in the spectrum between asteroids and meteorites are a scale of

analyses. Asteroidal spectra are collected with the ground and/or space telescope

that is observing entire bodies and incident angles are not perfectly controlled. On

the other hand, meteorites are measured under controlled conditions, however, pet-

rographical and mineralogical heterogeneity are existing due to measurements are

conducted with a limited mass of meteorites. That indicates spectrum signatures of

asteroids and meteorites should not match perfectly. Therefore, to compare asteroid

and meteorites with spectrum signature, new taxonomic methods are required.
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One of the earliest links between asteroids and meteorites is seen for 4 Vesta (V-

type asteroids) and Howardite-Eucrite-Diogenite (HED) meteorites (McCord, Adams,

and Johnson, 1970). The in situ analysis by the Dawn mission confirmed this link

and provided further insights on the relations (Buratti et al., 2013). Another famous

link is seen between S-type asteroids and ordinary chondrite meteorites, which had

been predicted for long (Chapman, 1996; Hiroi et al., 1993), and was confirmed by

the analysis of the sample taken from Itokawa by the Hayabusa mission (Nakamura

et al., 2011); however, the spectrum of Itokawa are different from existent ordinary

chondrites, and the discrepancy has been thought to be caused by the space weather-

ing (Noguchi et al., 2011). Note that Gaffey et al. (Gaffey, Burbine, and Binzel, 1993)

and Hardersen et al. (Hardersen et al., 2006; Hardersen et al., 2011) have shown

that there is likely to be a significant amount of diversity in the meteorite analogs

within given asteroid taxonomic classes, and that not all S-type asteroids seem to

be corresponding to ordinary chondrite meteorites. However, the population of S-

type asteroids and ordinary chondrites are largest among asteroids and meteorites,

respectively, therefore, most of the ordinary chondrites should be linked with S-type

asteroids. We also consider that the inconsistency has not been found for all links

between S-type asteroids and ordinary chondrite meteorites, and assume that such

mismatching cases are not dominant for our datasets. Even if our datasets contain

such mismatching data, our data-driven approaches can be performed robustly tak-

ing into account the statistical trends within the clusters, based on the statistical

analysis for the well-known link between S-type asteroids and ordinary chondrite

meteorites. A less certain link is known between C-type asteroids and carbonaceous

chondrites (Busarev, 2012). Current asteroid missions, Hayabusa-2 (JAXA) is ob-

serving C-type asteroid Ryugu and spectral signatures are similar to Carbonaceous

chondrites. Other more uncertain links have been discussed also (Cloutis, Binzel,

and Gaffey, 2014). For investigating these links, there are some works that take data-

driven approaches (Britt et al., 1992); they provided a “map” to overview reflectance

spectral similarity between meteorites and asteroids by using principal component

analysis (Jolliffe, 1986). Britt et al. (Britt et al., 1992) have provided a description

that there are similarities between asteroid and meteorite spectra by observing the

visualized space of the principal components.

This chapter aims at pushing forward this line of data-driven approaches, and

develops a data analysis method for matching the taxonomies between meteorites
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and asteroids. By using the matching taxonomy system, checking whether the tax-

onomy information of meteorite improves classification for asteroid data, we ex-

amine the existence of common structure over the two domains. More precisely, the

method classifies asteroid data with guidance of the known taxa of meteorites (Weis-

berg, McCoy, and Krot, 2006), and matches the taxa between the two domains of

asteroids and meteorites. For this clustering and matching procedure, reflectance

spectral data of asteroids, recorded with the visible and near-infrared wavelength,

from 0.45 to 2.45 µm, are clustered so that the similarity between the cluster struc-

tures of the asteroids and meteorites is maximized. To represent the cluster struc-

tures, a nonlinear method is used to quantify the mutual relations among clusters.

For the teaching data to guide the clustering of asteroid data, the reflectance spectral

data and major chemical composition data of meteorites are used. As described later,

for matching the taxa, our statistical analysis does not rely on spectrum difference

between asteroids and meteorites but similarities among clusters between the two

domains, so that it does not require to compare spectrum signatures of asteroids and

meteorites.

Analysis in this chapter is asymmetric for asteroids and meteorites, as shown in

Figure 2.1: the meteorite data are used as guidance, and the asteroid data are clus-

tered so that they have similar taxonomic structures to the meteorite taxonomy. In

this sense, the analysis procedure is regarded as a supervised clustering. This super-

vised clustering approach is taken because the classification of the meteorite data is

expected to be much more reliable; the laboratory measurements have higher accu-

racy, and they are labeled with help of other features from a different perspective in

addition to chemical compositions, reflectance spectra, and petrological analysis.

To validate our approach, the resulting clusters of asteroid data are compared

with the known labeling (Tholen, 1984) provided by experts. The same asteroid

data are clustered by standard clustering methods without guidance, and the results

with and without guidance are compared. Given that the expert labeling is correct,

if the clustering with guidance shows better agreement than that without guidance,

it will give a piece of evidence that a common taxonomy structure exists and that the

asteroids and meteorites have similar cluster structures.

The analysis of this chapter is confined only to the C-, S-, and V-type for asteroids

(spectral classification), while the carbonaceous chondrites, ordinary chondrites, and

HED for meteorites (petrological classification). As already described, these classes
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Figure 2.1. Analysis of taxonomy matching. First, unsupervised
clustering finds cluster assignments of asteroids, independently for
meteorites. Second, supervised clustering finds asteroid clusters
with the expert’s knowledge of meteorite to increase the similarity,
using the unsupervised clustering results as initialized states. Third,
compare the above two clustering accuracies; it will be confirmed
that a common taxonomy structure exists if the supervised
clustering accuracy outperforms the unsupervised clustering
accuracy. Those three steps are the procedure of the taxonomy
matching. The visualized spaces are individually computed by
DeMeo’s method with principal component analysis, and PC1’ and
PC2’ are the first and second principal components, respectively.

are known to match each other more certainly than other types of asteroids and me-

teorites, and this choice is taken so that the analysis can be relatively easy for the

first step and the obtained results can be confirmed by the knowledge. Further-

more, non-hierarchical clustering is considered here to focus on the simple cluster

matching between meteorites and asteroids. The reflectance spectral data are used

for asteroids, while for meteorites each of reflectance spectra and chemical composi-

tions is served for teaching data. Note that, as explained in detail later, the nonlinear

method for data analysis utilized in this chapter enables us to handle two data sets

of different types: spectra and compositions.
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2.2 Taxonomy Matching by Cluster Matching

Our method for supervised clustering consists of two steps. In the first step or ini-

tialization, we utilize a standard clustering method to find clusters by using only the

data on domain X. In the second step, we use the domain Y data with supervised

information to guide clustering procedures on the domain X data that referred to

as the cluster matching. We also apply to the standard clustering in the first step as

unsupervised clustering in contrast with supervised clustering, as explained below.

2.2.1 Unsupervised Clustering

For the unsupervised clustering, this chapter uses the spectral clustering algorithm (Ng,

Jordan, and Weiss, 2002), a popular non-hierarchical clustering method as well as

the K-means clustering (MacQueen, 1967). Spectral clustering, in general, takes a

data-similarity-matrix as input. Each element of the matrix contains the similarity

between two data indexed by the row and column.

The similarity between two data x and y is evaluated by Gaussian kernel function

exp(− ‖x−y‖2

2σ2 ) with deviation parameter σ. This kernel extracts nonlinear similarity

between x and y. This kernel function is composed of squared distance between x

and y, a parameter 2σ2, and an exponential function exp. The parameter σ2 can be

interpreted as a variance parameter of the squared distance which is chosen by hand.

It is used for data on domain X and Y with deviation parameter σX and σM, respec-

tively. A different choice of these parameters may cause different clustering results.

The results are in fact stable over a wide range of parameters as shown in Section 2.4.

The normalized negative distance − ‖x−y‖2

2σ2 is then fed into an exponential function,

calculating the similarity between x and y. This means that if the distance between

x and y is too far, then the similarity will be exponentially small. By definition, a

range of similarity is between 0 and 1. For calculating the similarity using spectra

data, note that the squared distance between the data of x and y is not only calculat-

ing the difference of its absorption bands of x and y but also the total difference in

the spectrum.

The spectral clustering can be regarded as a relaxation of the graph cut algorithm

for which the edge weights are given by the data-similarity matrix. In the case of the

domain X data, the NX × NX data-similarity-matrix KX contains similarity between

each pair of the data on domain X, where NX is the size of the dataset, calculated
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by using kernel functions. For example, the (i, j)-component of KX shows similarity

between i- and j-th data xi and xj, calculated by exp(− ‖x−y‖2

2σ2 ). Among some vari-

ants of spectral clustering algorithms, in chapter, we use the one proposed by Ng

et al. (Ng, Jordan, and Weiss, 2002), which uses the eigenvectors of the normalized

graph Laplacian,

LX := T−
1
2

X (TX − KX) T−
1
2

X , (2.1)

where TX is the diagonal matrix TX,ii = ∑i KX,ii containing the degree of the nodes in

the graph. The algorithm further uses K-means clustering methods after projecting

the data onto the eigenspaces corresponding to the least eigenvalues. For the details,

see (Ng, Jordan, and Weiss, 2002). It is known that the results of the K-means clus-

tering depend on initialization; K-means clustering starts clustering using initialized

centers of clusters and converges to different results depending on the initial states.

To avoid this issue, we take 50 initializations, by random K points from the data set,

and take the best result in terms of the K-means objective function. We limit the

iteration number by 100.

2.2.2 Supervised Clustering

As an overview, the proposed method of supervised clustering is also based on sim-

ilarity. We can calculate the similarity of cluster structure between two domains

following two steps described below; first, data-similarity-matrix is constructed for

each of domain X and Y, and then two cluster-similarity-matrices are computed from

the respective data-similarity-matrices to represent the cluster structure in each do-

main. Second, a similarity measure between these cluster-similarity-matrices is used

for quantifying the similarity of taxonomies, serving as an objective function for clus-

tering the domain X data and matching the clusters of the two domains.

For more details, we first explain the domain X. Suppose that data-similarity-

matrix KX is already calculated in the same way of spectral clustering explained

above. The cluster-similarity matrix, representing the similarity between two clus-

ters, is then calculated by

SX = (WXDX)
T KXWXDX, (2.2)
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DX =
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(2.3)

where WX is NX × C cluster assignment matrix of dataset on domain X, C = 3 is

common cluster size on the domain X and Y, Ni
X is the number of data in the i-

th cluster Ci
X of the dataset on domain X, and DX is a normalizing term using the

number of data Ni
X. WX indicates cluster assignments of the data on domain X: each

row of WX contains only one 1 element and the others 0. If (i, j)-component of the

cluster assignment matrix is 1, then it indicates that i-th data belongs to j-th cluster.

Each data is thus assigned to only one cluster. The (i, j)-component of the cluster-

similarity-matrix SX is then equal to

SX,ij = (WX,iDX,ii)
T KXWX,jDX,jj =

1

Ni
XN j

X
∑

a∈Ci
X,b∈Cj

X

KX,ab, (2.4)

which represents the average total similarities between the data in the two clusters.

The cluster-similarity-matrix SY for the dataset on domain Y is obtained in a similar

way.

Note that different data-formats, dimensionalities, and data sizes can be handled

by the proposed similarity representations. Using any quantitative datasets, we can

calculate cluster-similarity-matrices, and then measure the similarity between them;

the datasets on domain X and Y can have different data formats to match the clus-

ters. As an example, for major chemical compositions of meteorites, we can calculate

Gaussian kernel function using the amount of chemical compositions; by calculating

the kernel function for all pairs of the composition data, we obtain data-similarity-

matrix KY. In accordance with the guidance provided by experts, we can calculate

cluster-similarity-matrices SY from KY by assigning the data to given clusters.

Since the objective is to cluster the domain X data so that they have a similar

cluster structure as the dataset on domain Y, the two cluster-similarity-matrices SX

and SY should be made similar. Note that SX is variable and SY is fixed in the super-

vised clustering discussed in this chapter; whereas SX can be changed by switching

cluster assignments for the domain X data, SY is unchanged once it is calculated by

using given parameter σM for domain Y. We can see that our objective is optimizing
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cluster assignments for the domain X data to maximize the similarity of the cluster

structure.

A standard method for measuring the similarity of two matrices is the inner

product of the matrices. We further “centerize” the matrices to compare two cluster

structures around the origin, and apply normalization with respect to the effect of

cluster assignment matrix WX. Finally, the proposed objective for our supervised

clustering is to maximize

Tr (SXHSYH)

‖ (WXDXH)T WXDXH‖F
=

Tr
(

HWT
X DXKXDXWXHSY

)
‖ (WXDXH)T WXDXH‖F

, (2.5)

where H is the centering matrix defined by Hij = δij − 1
C (Gretton et al., 2005) for

centering the matrix, and ‖M‖F denotes the standard Frobenius (Euclidean) norm

of matrix M. Note that HH = H and that Tr(ABC) = Tr(BCA) = Tr(CAB) with

symmetric matrices A, B and C.

In this chapter, to optimize WX for Eq. (2.5), a greedy search is used in a similar

way to the K-means (MacQueen, 1967) and CLUHSIC (Song et al., 2007): one row of

WX (data point) is selected and its assignment is optimized at one iteration. Before

the search, WX is initialized by the spectral clustering, WY is obtained by the label

given by experts, and the cluster order is also optimized so that Eq. (2.5) is maxi-

mized by checking all of the six cluster permutations of WX. If the number of clusters

is large, it is difficult to test all the permutations and a more efficient method such

as kernelized sorting (Quadrianto, Song, and Smola, 2009) is needed. The optimiza-

tion procedure stops if WX no longer changes or it reaches the maximum number

of iterations, or the cost function Eq. (2.5) increases less than 1e− 6 while the each

iteration. By the initialization, the greedy search usually converges quickly, and the

maximum number of iterations is set as 800.

2.3 Datasets

We use three datasets: reflectance spectra of asteroids, reflectance spectra of me-

teorites, and major chemical compositions of meteorites. In the experiments, we

consider the asteroid and meteorite domains as domain X and Y, respectively. The

datasets contain quantitative data representing features of meteorites or asteroids.
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We do not directly utilize qualitative data such as petrological data which is de-

scribed by researchers using text descriptions; however, the petrological data is in-

directly fed into the supervised clustering, serving as the petrological taxa for mete-

orites.

2.3.1 Reflectance spectra dataset of asteroids

The original dataset of reflectance spectra of asteroids contains 365 data provided by

SMASS Data Sets (Bus and Binzel, 2002; DeMeo et al., 2009; Rayner et al., 2003).

We use the reflectance spectra containing the wavelength of 0.45 to 2.45 µm from

the original dataset and utilize the spectra in the range of from 0.45 to 2.45 µm. The

wavelength is divided by 401 bins of equal size. The dataset also includes the labels

for the taxonomical types including C-, S-, V-, and others. The data were smoothed

and sampled by using spline models (Reinsch, 1967) in accordance with DeMeo’s

method (DeMeo et al., 2009) described below.

For preprocessing, we utilize DeMeo’s method (DeMeo et al., 2009), which nor-

malizes each reflectance spectra with the value at 0.55 µm, removes the slope of the

reflectance spectra, and applies principal component analysis (Jolliffe, 1986). The

principal component analysis is used to reduce the dimensionality of the data lin-

early, and to extract feature representation in the lower dimensional space. However,

it may also reduce rich feature representation, which could be embedded in higher

dimensional space; thus, we do not apply dimensionality reduction with the princi-

pal component analysis of DeMeo’s method to preserve rich information of the data,

and full dimensional information is utilized for the numerical experiments. Note

that we apply the DeMeo’s method not only to asteroid data but also to reflectance

spectra of meteorites. After applying DeMeo’s method, we extract data of only C-,

S-, and V-type asteroids for our numerical experiments. They consist of 122 data, in

which the numbers of C-, S-, and V-type asteroids are 19, 95, and 8, respectively. Note

that applying DeMeo’s method may reduce fidelity by the normalization; however,

it also may decrease the difference in spectrum within true clusters, by reducing the

scale and slope diversity, so that understanding and comparing clusters could be

easier in feature spaces.
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2.3.2 Reflectance spectra dataset of meteorites

The original dataset of reflectance spectra of meteorites (Pieters and Hiroi, 2004) con-

tains 731 data, from which 221 carbonaceous chondrites, 245 ordinary chondrites,

108 HED meteorites, 574 in total, are used for the analysis. We only use the data

which obviously belongs to those three classes and contains the wavelength of 0.45

to 2.45 µm, which is the same as the asteroid dataset. In this chapter, the carbona-

ceous chondrites are composed of C-ung, CM, CO, CR, CV, CH, and CI. The format

of data and preprocessing are the same as the asteroid data.

2.3.3 Chemical compositions dataset of meteorites

We utilize 481 chemical compositions data of meteorites, consisting of 30 carbona-

ceous, 388 ordinary and 63 HED meteorites provided by (Yanai and Kojima, 1995).

The dataset contains the amount of chemical compositions, and we utilize major 11

elements of Fe, Si, Al, Ca, Mg, Na, P, K, Mn, Ni, and Cr, and an oxide Na2O. We do

not apply any preprocessing method except the centering in the supervised cluster-

ing.

2.4 Experimental Results

2.4.1 Experiments on Synthetic Datasets

First, we experiment with synthetic data to investigate the ability of cluster match-

ing by the proposed method. We randomly generate Gaussian distributions with

dimension size 10 that commonly lie in two domains and then sample data from

it. We use the gallery function implemented in MATLAB software to generate the

covariance matrices of the Gaussian that are random 10-by-10 correlation matrices

with random eigenvalues from a uniform distribution and determine the center from

-20 to 20 randomly. The number of data sampled from each distribution in each do-

main is determined randomly from 10 to 20. Then, we decide domain X and Y and

use domain Y as supervised information. Using the supervised one, we apply our

method to execute clustering and cluster matching on the domain X. We create the

synthetic dataset 20 times and calculate an average and standard deviation of cluster

matching accuracy described as follows.
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Cluster matching accuracy. Assuming that the matching hypothesis between the

clusters of two different domains is correct, or that we know the correct correspon-

dences between the clusters on the two domains, we can define the cluster matching

accuracy. It is the average ratio of each cluster’s correct assignments on domain X,

where the corresponding cluster on domain Y gives the cluster labels. For example,

in the asteroid and meteorite experiments, if 30 data in the first cluster of the aster-

oid domain is C-type, and carbonaceous chondrite of the meteorite is matched to

that cluster, then these 30 data are regarded as “correct” matchings. The sum of such

correct matchings divided by the total size is the cluster matching accuracy. By the

definition, the cluster matching accuracy is equivalent to the degree of certainty for

the matching hypothesis.

Figure 2.2 shows the experimental results, where C indicates the number of gen-

erated clusters, and the blue, red, and green bars designate different parameter set-

tings of the sigma of Gauss kernel as 1, 5, and 9, respectively. We can see that our

model matches clusters comparably accurately with C = 3. By increasing the num-

ber of clusters, the accuracy was significantly decreased; however, it shows that we

can still obtain comparable accuracy by selecting the Gauss kernel’s optimal param-

eter.

A
cc
u
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cy

C=3 C=4 C=5 C=6 C=7

Figure 2.2. Supervised clustering results on the synthetic dataset.
The bars show cluster matching accuracy described from 0 to 1.0.
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2.4.2 Taxonomy Matching on Asteroid and Meteorite Domains

To evaluate the results of clustering and cluster matching, we use the label provided

by experts for the asteroid data and calculate the cluster purity and cluster match-

ing accuracy, described below. In this chapter, we validate the resulting clusters of

asteroid data comparing with the well-known labeling (Tholen, 1984). We consider

this asteroid letter-based taxonomic classifications are suitable for the first challenge,

because of its simplicity, clarity, and importance. Note that the asteroidal label is not

used in the clustering and cluster matching procedure, but used for evaluating the

results.

Clustering parameters. The main parameters used for the clustering are the devia-

tion parameter, σA for asteroids and σM for meteorites. We select each parameter in

the range of from 0.5 to 7.0 in steps of 0.5 and perform the two clustering methods

in sequel using the same parameters.

Cluster purity. The cluster purity of clustering is the portion of data with a dominant

type in a cluster. It is also called global purity. To illustrate, suppose that asteroids of

C-, S-, and V-type are dominant in the respective three clusters in an asteroid dataset

of size 100, and that the sum of the numbers of the dominant cluster assignments is

70. Then the cluster purity is 70%.

Random resampling. Because clustering results may change under different set-

tings, e.g., different parameters, or different datasets, statistically reliable analysis is

needed. We show the results for randomly resampled datasets obtained by the fol-

lowing method, as well as for the whole dataset. We also try to obtain guidelines for

selecting parameters showing its insensitivity. Note that the resampled datasets are

shared between the unsupervised and supervised clustering with different deviation

parameters to analyze under the same conditions (datasets).

By random resampling with a replacement for each ground-truth cluster, we in-

dependently generate 100 datasets. The sample size of each resampled dataset is

80% of the whole dataset; this is chosen to balance the randomness and a minimum

number of data in a small class of V-type asteroids (it only has 8 data). The ran-

dom resampling is performed after applying the data-preprocessing, e.g., DeMeo’s

method, to omit random effects on the preprocessing.

In the sequel, we first show the results for investigating the existence of com-

mon taxonomic structure over the meteorite and asteroid domains (datasets). As we

described above, we examine the improvement of the cluster purity, applying the
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Figure 2.3. Unsupervised clustering results of asteroid reflectance
spectra dataset without resampling. “C”, “S”, and “V” denote C-, S-,
and V-type asteroids, respectively. The circles with dashed lines
depict the clusters which are obtained by spectral clustering with
σA = 2.5. Best view in color. The visualized space is computed by
DeMeo’s method with principal component analysis, and PC1’ and
PC2’ are the first and second principal components, respectively.

supervised clustering to the results of the unsupervised clustering. Next, we inves-

tigate the links between the asteroid and meteorite, showing high cluster matching

accuracy of the supervised clustering results. Before showing the results, we explain

the pipeline for our taxonomy clustering and matching process in Figure 2.5.

2.4.3 Analysis 1: Common taxonomic structure

Here, we show the results of the clusterings for the whole dataset, without applying

the resampling. The results of the unsupervised clustering are shown in Figure 2.3.

Some of the S-type asteroids were miss-clustered with C-type, and the cluster purity

was 94.1% with σA = 2.5. Figure 2.4 shows the results of the supervised clustering

using the meteorite guidance of reflectance spectra (σA = 2.5, σM = 5.0) and the

reflectance spectra data of the meteorite used for giving the guidance are plotted in

Figure 2.6. The initial clusters for the supervised clustering were given by the unsu-

pervised clustering shown in Figure 2.3. Most of the misclassifications are corrected

appropriately, and the cluster purity are improved from 94.1% to 99.2%. The results

of the supervised clustering with the meteorite guidance of chemical compositions

(σA = 2.5, σM = 5.0) are shown in Figure 2.7. The cluster purity is improved from
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Figure 2.4. Supervised clustering results of asteroid reflectance
spectra dataset using meteorite guidance of reflectance spectra
dataset without resampling. The circles with dashed lines depict the
clusters obtained by the supervised clustering with the parameters
of σX = 2.5, σM = 5.0. Best view in color. The tags attached to the
clusters show matched clusters of meteorites; “Carbonaceous”,
“Ordinary”, and “HED” indicate carbonaceous chondrite, ordinary
chondrite, and HED meteorite, respectively. The visualized space is
computed by DeMeo’s method with principal component analysis,
and PC1’ and PC2’ are the first and second principal components,
respectively.

94.1% to 98.4%. In other examples, we found that the results of supervised cluster-

ing are almost consistently accurate than unsupervised clustering results, i.e., the

average cluster purity for different parameters is 97.4% by the supervised cluster-

ing, while by the unsupervised clustering it shown 89.3% purity on average with

0.5 ≤ σA ≤ 7.0 and 1.0 ≤ σM ≤ 3.5. In particular, the supervised clustering succeeds

when results of the unsupervised clustering were failed; the supervised clustering

recovers clustering purities from 84.4% to 93.4%, from 83.6% to 93.4%, and from

88.5% to 98.4% with σA = 0.5, 1.0 and 3.5 ≤ σA ≤ 7.0, and with 1.0 ≤ σM ≤ 3.5, re-

spectively. We consider the resulting differences are not induced by chance and the

supervised information from meteorites improves the results of unsupervised clus-

tering. We found that recovering purity from low-accurate results by the supervised

clustering is commonly found in the following results. The meteorite guidance given

by the chemical composition dataset is shown in Figure 2.8. Note that the proposed

method of supervised clustering can incorporate a different data type for guidance.

On average, using different parameters, we found that the cluster purity is 97.6%

by supervised clustering whereas the unsupervised clustering gave only 89.3% with

0.5 ≤ σA ≤ 7.0 and σM = 4.0.
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Figure 2.5. The pipeline of our clustering and matching process.
Because the actual matrices are too big, we omit it and show
examples.

In the cases of using the whole datasets above, we can see the improvements of

cluster purity owing to the guidance of the meteorite, implying the existence of the

common taxonomic structure.

Next, using the resampling, we show the average cluster purity as follows. The

bars of “Unsupervised Clustering”, “Supervised Clustering (spectra)”, and “Super-

vised Clustering (compositions)” in Figure 2.9 show respective average cluster pu-

rities with different parameter settings of σA. The purities of the unsupervised clus-

tering were at most 95.6% with σA = 1.5 or σA = 2.0, and the higher/lower pa-

rameters gave less accurate results, i.e., it was 84.5% with σA = 0.5. These results

indicate that we need to select better parameters carefully to achieve better results

of unsupervised clustering. The bars of “Supervised Clustering (spectra)” illustrate

the average cluster purities of the supervised clustering results using the meteorite

guidance of the reflectance spectra (σM is fixed as 2.0). The purities and its standard

deviations are around 99% and 0.6, respectively, with 4.0 ≤ σA ≤ 7.0. Most of the

results outperform the unsupervised clustering results under a wide range of param-

eter settings, and the maximum purity is also significantly higher than the results of

the unsupervised clustering. We also found that the supervised clustering always
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improve the average cluster purity under the parameters at least with the range of

3.0 ≤ σA ≤ 7.0 and 0.5 ≤ σM ≤ 7.0. The bars of “Supervised Clustering (composi-

tions)” in Figure 2.9 show the average cluster purities using meteorite guidance of

chemical compositions (σM is fixed as 4.0); they show that the mean and the standard

deviations are around 98.4% and 0.6, respectively, with 3.0 ≤ σA, σM = 4.0. The av-

erage purities also outperform the unsupervised clustering results except when the

parameter setting was σA = 1.5 in Figure 2.9; however, by setting σM = 4.3 and

σA = 1.5, we found that the average purity is comparably 95.6% which is the same

purity of the unsupervised clustering. We also found that the average purities are

always improved under the parameters at least 2.5 ≤ σA ≤ 7.0 and 0.5 ≤ σM ≤ 7.0.

In the results, with the random resampling, the supervised clustering improves the

results of unsupervised clustering based on the meteorite guidance given by the re-

flectance spectra or the chemical compositions, under a wide range of the parameter

settings. These results statistically support the existence of the common taxonomic

structure between the asteroid and meteorite domains.

HED
Carbonaceous

Ordinary

PC2’

P
C
1
’

Figure 2.6. Meteorite reflectance spectra dataset without
resampling. “o”, “×”, and “♦” denote carbonaceous chondrite,
ordinary chondrite, and HED meteorite, respectively. The dashed
circles indicate the clusters which are drawn by hand to separate the
data belonged to different classes. Best view in color. The visualized
space is computed by DeMeo’s method with principal component
analysis, and PC1’ and PC2’ are the first and second principal
components, respectively.
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Figure 2.7. Supervised clustering results of asteroid reflectance
spectra dataset using meteorite guidance of chemical compositions
dataset without resampling. The circles with dashed lines depict the
clusters obtained by the supervised clustering with the parameters
of σA = 2.5, σM = 5.0. Best view in color. The tags attached to the
clusters show matched clusters of meteorites; “Carbonaceous”,
“Ordinary”, and “HED” indicate carbonaceous chondrite, ordinary
chondrite, and HED meteorite, respectively. The visualized space is
computed by DeMeo’s method with principal component analysis,
and PC1’ and PC2’ are the first and second principal components,
respectively.
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Figure 2.8. Meteorite chemical compositions dataset without
resampling. “o”, “×”, and “♦” denote carbonaceous chondrite,
ordinary chondrite, and HED meteorite, respectively. The dashed
circles indicate the clusters. Best view in color. The visualized space
is computed by using principal component analysis, and PC1’, PC2’,
and PC3’ are the first and second and third principal components,
respectively.
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Figure 2.9. Cluster purities of clustering results using resampled
dataset with different parameters. Each bar shows the average and
standard deviation of the cluster purities. Each parameter of
meteorite data is fixed as σM = 2.0 for spectra data, and σM = 4.0 for
compositions data.
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(a) S-type asteroid data (solid lines) and the
misclassified V-type asteroid data (dashed
line)
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(b) V-type asteroid data (solid lines) and the
misclassified V-type asteroid data (dashed
line)
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(c) C-type asteroid data (solid lines) and the
misclassified S-type asteroid data (dashed
line)
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(d) S-type asteroid data (solid lines) and the
misclassified S-type asteroid data (dashed
line)

Figure 2.10. Reflectance spectra in the respective clusters of (a) S-
and (c) C-type asteroids estimated by the supervised clustering with
reflectance spectra of meteorite. The dashed lines and solid lines
denote the misclassified data in the respective clusters which are
labeled another type of the cluster, and the other spectra data in the
respective cluster, respectively. (b) and (d) show the respective
misclassified data comparing with the data in the “true” cluster.
Note that those reflectance spectra are obtained by applying
DeMeo’s method.

2.4.4 Analysis 2: Resultant links of the asteroid and meteorite

In this analysis, we investigate the results of the supervised clustering, specifically

the resulting links between the clusters of the asteroid and meteorite.

We show the resultant links obtained by using the meteorite guidance of the

reflectance spectra, or the chemical compositions, with the whole dataset. Figure 2.4

illustrates the former results. The tags attached to the respective asteroidal clusters in

Figure 2.4 indicate the matched cluster of the meteorite, described in Figure 2.6. Note

that the cluster matching accuracy of 99.2% indicates high certainty of the matching

results. Because the cluster matching accuracy is 99.2%, we can say these matching

results are supported with a degree of certainty of 99.2%. The same links are found
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Figure 2.11. Cluster matching accuracies of supervised clustering
results with different parameters of reflectance spectra dataset. Each
bar shows averages and standard deviations of cluster matching
accuracies of supervised clustering results. Each parameter of
meteorite data is fixed as σM = 2.0 for spectra data, and σM = 4.0 for
compositions data.

in the results of the composition guidance. The results in Figure 2.7 and Figure 2.8

show a cluster matching accuracy of 98.4%. Based on these results, the hypothesis

linking the asteroid and meteorite is supported with high certainty.

Here, for further analysis, we inspect the misclassified data observed in the above

results. Figure 2.10 depicts the reflectance spectra of the asteroid data comparing

“successfully-classified” and “misclassified” cases, and the dashed lines denote the

misclassified data. In the sequel, the asteroid clusters that match with the carbona-

ceous chondorite, ordinary chondorite, and HED, are called C-type, S-type, and V-

type clusters, respectively. We first show the details of the misclassified data ob-

tained by using the meteorite guidance of the reflectance spectra. One of the V-type

asteroids in Figure 2.4 is misclassified to the S-type cluster and the dashed line in

Figure 2.10a shows the spectrum in comparison with the successfully-classified data.

Note that, for simplicity of the visualization, we randomly selected 80 data of the S-

type asteroids. We compare the misclassified V-type asteroid (dashed line) with the

other V-type asteroids (solid lines) in Figure2.10b. The dashed line has different fea-

tures from the others: there is no absorption under 0.8 µm, and it is very flat around

1.4 µm. While it has the typical absorption bands of V-type asteroid around 0.9 and

2.0 µm, the absorption features are weak. As our asteroidal dataset has very few V-

type data, the deviated data was classified into an incorrect cluster. In addition, we

suspect that this misclassification was caused by the spectral diversity within a given
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asteroid taxonomic type; Hardersen et al. (Hardersen et al., 2014; Hardersen, Reddy,

and Roberts, 2015; Hardersen et al., 2018) show that there are varied asteroid spectra

within a given asteroid type, so this misclassified data might be one of such spectra

data. Second, we investigate the misclassified data for chemical composition guid-

ance. In Figure 2.7, we found that there are two “misclassified” asteroids; one is the

same V-type asteroid as the above, and the other is an S-type asteroid misclassified

to the C-type cluster. Its spectrum is shown in Figure 2.10c (dashed line) in com-

parison with “successfully-classified” data (solid lines). We also compare the mis-

classified S-type asteroid (dashed line) with the other S-type asteroids (solid lines) in

Figure 2.10d, in which the dashed line has very low reflectance comparing with the

solid lines, causing misclassification. We note that reflectance spectra can show dif-

ferent features, e.g., some CV-chondrite meteorites have an olivine feature (Gaffey,

1976), so treating all asteroids in a given taxonomy as spectrally or mineralogically

equivalent might cause misclassification.

Next, using the resampling, we describe the average cluster matching accuracy.

The bars of “Supervised Clustering (spectra)” in Figure 2.11 show the average match-

ing accuracies of the supervised clustering for the resampled datasets with various

parameters of σA (σM is fixed as 2.0), using the meteorite guidance of the reflectance

spectra. It shows that the average accuracies are high and stable with σA ≥ 3.5. The

“Supervised clustering (compositions)” in Figure 2.11 shows the average matching

accuracies by the chemical composition guidance for various parameters of σA (σM is

fixed as 4.0). It shows that the average accuracies are high and stable with σA ≥ 2.5.

Based on the results, the links over the asteroid and meteorite are of high certainty.

Those analyses show that the taxonomical guidance of meteorite data improves

the clustering of asteroids, implying that the common taxonomic structure exists

over the meteorite and asteroid domains. Furthermore, the results of supervised

clustering link the taxonomical clusters between the meteorite and asteroid.

2.5 Discussion

We have discussed common taxonomic structure over the asteroid and meteorite

domains by the data-driven approach. For this purpose, we checked whether the

taxonomy information of meteorite improves the classification of asteroid data. The
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numerical experiments with supervised clustering showed that the taxonomical in-

formation of meteorites, in fact, improves the accuracy of clustering results of aster-

oids, when evaluated by the standard labeling by experts; this serves as a piece of

evidence that there is a common taxonomic structure and links between these two

domains. As a first step, this chapter considers linking between the three types of

meteorites and the corresponding three types of asteroids: carbonaceous chondrite,

ordinary chondrite, and HED in meteorites, while C-, S-, and V-type in asteroids.

Note that, in addition to comparing the spectral reflectance of meteorites and as-

teroids, the chemical compositions of meteorites were also used for the supervised

clustering, showing similar results with the reflectance spectra. This implies that,

with different type of measurements, there is a common structure in an abstract

sense among the cluster structure of asteroids and meteorites, providing stronger

support for the common taxonomic structure.

In this chapter, we focus on well-known taxonomic systems having relatively

high certain links; connecting C-, S-, and V-type asteroids to carbonaceous chondrite,

ordinary chondrite, and Howardite-Eucrite-Diogenite meteorites, respectively. We

consider our matching system is applicable to another case. In the future work, we

are planning to chapter other systems, e.g., (Tholen, 1984; Bus and Binzel, 2002;

Barucci et al., 1987; Chapman, Morrison, and Zellner, 1975), and other links for

matching taxonomies.

2.6 More Details of Supervised Clustering

In this section, we give details on the proposed method of supervised clustering,

including its derivation, for the general problem of taxonomy matching for two do-

mains, X and Y. By abuse of notation, we use X and Y for datasets also. We assume

that domain X is the target domain to be clustered, and domain Y is utilized as

guidance for clustering of domain X.

To represent the features of data sufficiently, we use kernel methods (Schölkopf and

Smola, 2002), which is a popular approach for nonlinear data analysis in the machine

learning field. Suppose we have data x = {x1, x2, · · · , xNX} in domain X, where NX

is the number of data. We use a feature vector φ (xi) to extract the nonlinear feature

of data xi. Here, the feature mapping φ is defined with a positive definite kernel

k, namely, φ(x) = k(·, x). The vector φ(xi) is included in the feature space, which
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is in general infinite dimensional functional space. For the details, see a standard

textbook, e.g., (Schölkopf and Smola, 2002).

A cluster is represented by the mean of the feature vectors;

1
|Ni

X|
∑

xi∈Ci
X

φ(xi). (2.6)

Let WX is a cluster assignment matrix, which is an NX × C binary matrix with C

cluster-size. In matrix notation, the clusters can be represented by

φ (x)WXDX, s.t. WX1C = 1NX , (2.7)

where φ(x) = (φ(x1), . . . , φ(xNX )) is the matrix of feature vectors, DX is the recipro-

cal of cluster sizes as defined by Eq. (2.3), and 1d is the d-dimensional vector with

all elements 1. The constraints WX1C = 1 means that only one of the elements is 1,

indicating the selected cluster. The cluster assignment matrix WY for Y is defined

similarly, and the clusters in the feature space are represented by the vectors

ϕ (y)WYDY, s.t. WY1C = 1NY , (2.8)

where NY is data-size on domain Y, ϕ (·) is the feature map defined by a kernel ` on

domain Y.

Let µX and µY be the centroids of the C mean vectors corresponding to the clus-

ters for X and Y, respectively. The mutual relation among the C vectors in respective

feature space can be represented by the covariance matrix

SX := (DXWT
Xφ(x)T − 1CµT

X)(φ(x)WXDX − µX1C)

and

SY := (DYWT
Y ϕ(y)T − 1CµT

Y)(ϕ(y)WYDY − µY1T
C),

respectively. By using the famous kernel trick, the inner products can be computed

the Gram matrices, i.e., φ(x)Tφ(x) = (kX(xi, xj))ij and ϕ(y)T ϕ(y) = kY(yi, yj))ij.

For matching the cluster structures in the two domains, we use the similarity of

the cluster structure matrices (covariance of clusters) SX and SY; this can be done by
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considering the standard inner product of the two matrices, i.e.,

Tr[SXSY].

By introducing the C × C centering matrix Hij = δij − 1/C, the above trace can be

explicitly written by

Tr
(
(WXDX)

T KWXDXH (WYDY)
T LWYDYH

)
(2.9)

where K and L are the Gram matrices of X and Y, respectively. By normalizing

Eq. (2.9), we finally derive objective function of the supervised clustering described

in Eq. (2.5).

Remark 1: Eq. (2.6) is called kernel mean (Smola et al., 2007) in machine learning

literatures, and popularly used for expressing the distribution of data.

Remark 2: Eq. (2.9) is the similarity of the two covariance matrices of clusters, and

can be represented as

Tr (HK̄HL̄) (2.10)

where K̄ is (WXDX)
T KWXDX, and L̄ is (WYDY)

T LWYDY. This is equal to the em-

pirical HSIC (Gretton et al., 2005), which is a popular dependence measure of two

variables.

2.7 Additional Results

Analysis 1: Unsupervised Clustering of Asteroid Datasets

We show unsupervised clustering results with different deviation parameters in

Table 2.1.

Analysis 2: Supervised Clustering Results with Meteorite Guidance

With meteorite guidance of reflectance spectral dataset

Table 2.2 shows supervised clustering results using guidance of meteorite re-

flectance spectra with various parameters, without random sampling. The best clus-

ter purity was unexpectedly 100% with σA = 2.0 and σM = 0.5, so that random

sampling is needed for fair analysis. Table 2.3 shows cluster purities of supervised

clustering results with randomly sampled datasets. By comparing results of unsu-

pervised clustering and supervised clustering in Table 2.2 and Table 2.3, we can see
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that the unsupervised clustering results have been improved by the supervised clus-

tering with most of parameters.

For more analysis, we show cluster matching accuracy without random sam-

pling in Table 2.4, and with sampling in Table 2.5. Because unsupervised clustering

in itself cannot match clusters, cluster matching accuracy is shown only for the eval-

uation of supervised clustering results.

With meteorite guidance of element composites dataset

Cluster purities using meteorite guidance of element composites dataset without

and with random sampling are shown in Table 2.6 and Table 2.7, respectively. Super-

vised clustering have improved the unsupervised clustering results by using cluster

information of meteorite element composites, under various parameter settings.

Cluster matching accuracies without and with random sampling are shown in

Table 2.8 and Table 2.9, respectively.

Table 2.1. Cluster purities of spectral clustering results with
different parameters on asteroid reflectance spectra dataset. 1st
column shows different deviation parameter settings. 2nd column
shows cluster purities of unsupervised clustering results with fixed
dataset, and 3rd column shows average cluster purities and standard
deviations of unsupervised clustering results with randomly
sampled datasets.

 

𝜎A 
Cluster Purity 

(fixed) 

Cluster Purity 

(sampled) 

0.5 84.4% 84.0% ±0.6 

1.0 83.6% 84.5% ±2.9 

1.5 92.6% 92.8% ±3.8 

2.0 91.8% 91.6% ±1.5 

2.5 91.0% 90.4% ±1.9 

3.0 89.3% 89.3% ±2.5 

3.5 89.3% 88.7% ±2.6 

4.0 89.3% 88.1% ±2.6 

4.5 89.3% 87.6% ±2.6 

5.0 88.5% 87.3% ±2.6 

5.5 86.9% 87.2% ±2.6 

6.0 86.9% 87.1% ±2.6 

6.5 86.9% 86.9% ±2.5 

7.0 86.9% 86.8% ±2.5 
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Table 2.2. Cluster purities of supervised clustering results on
asteroid reflectance spectra dataset using meteorite reflectance
spectra dataset with different parameters (without random
sampling). Green color means improvements from unsupervised
clustering result (2nd column in Table 2.1), red color means vice
versa, black color means no change on cluster purity. For cluster
initialization of supervised clustering we utilized unsupervised
clustering results with the same deviation parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 82.0% 86.9% 93.4% 93.4% 93.4% 93.4% 93.4% 93.4% 93.4% 93.4% 
1.0 92.6% 92.6% 92.6% 90.2% 89.3% 89.3% 89.3% 89.3% 89.3% 89.3% 
1.5 99.2% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 
2.0 100.0% 99.2% 91.8% 83.6% 83.6% 83.6% 83.6% 83.6% 83.6% 83.6% 
2.5 99.2% 99.2% 99.2% 99.2% 91.8% 91.0% 83.6% 83.6% 83.6% 83.6% 
3.0 98.4% 98.4% 98.4% 98.4% 98.4% 95.9% 95.9% 95.9% 95.9% 95.9% 
3.5 98.4% 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
4.0 98.4% 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
4.5 98.4% 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
5.0 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
5.5 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
6.0 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
6.5 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
7.0 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 

Table 2.3. Cluster purities (average) and standard deviations of
supervised clustering results on asteroid reflectance spectra dataset
using meteorite reflectance spectra dataset with different parameters
(with random sampling). Green color means improvements from
unsupervised clustering result (3rd column in Table 2.1), red color
means vice versa, black color means no change on cluster purity. For
cluster initialization of supervised clustering we utilized
unsupervised clustering results with the same deviation parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 
86.3% 

±4.4 
89.8% 

±4.7 
91.5% 

±4.0 
92.2% 

±3.5 
92.5% 

±2.9 
92.7% 

±2.4 
92.8% 

±2.1 
92.8% 

±2.1 
92.7% 

±2.2 
92.6% 

±2.4 

1.0 
93.0% 

±0.6 
93.2% 

±1.7 
93.6% 

±0.6 
93.6% 

±0.8 
93.6% 

±0.8 
93.6% 

±0.8 
93.6% 

±0.8 
93.6% 

±0.8 
93.6% 

±0.8 
93.6% 

±0.8 

1.5 
94.8% 

±3.0 
93.6% 

±2.8 
93.9% 

±3.5 
92.9% 

±4.7 
92.0% 

±5.3 
91.4% 

±5.2 
91.0% 

±5.2 
90.7% 

±5.3 
90.5% 

±5.1 
90.6% 

±4.9 

2.0 
96.6% 

±3.4 
97.4% 

±5.3 
93.3% 

±6.7 
90.6% 

±7.4 
89.5% 

±7.1 
88.5% 

±6.7 
87.6% 

±6.0 
87.0% 

±5.7 
86.7% 

±5.6 
86.2% 

±4.9 

2.5 
98.8% 

±1.4 
98.9% 

±1.0 
97.2% 

±3.7 
94.8% 

±5.4 
92.9% 

±6.5 
92.0% 

±6.6 
91.6% 

±6.8 
91.2% 

±6.9 
91.0% 

±6.8 
90.6% 

±6.8 

3.0 
98.8% 

±0.7 
98.7% 

±0.5 
98.0% 

±1.9 
97.2% 

±2.8 
96.4% 

±3.7 
95.7% 

±4.5 
95.1% 

±5.1 
94.6% 

±5.3 
94.4% 

±5.4 
94.0% 

±5.6 

3.5 
98.6% 

±0.7 
98.6% 

±0.5 
98.3% 

±1.1 
97.9% 

±1.5 
97.6% 

±1.6 
97.3% 

±1.8 
97.2% 

±1.9 
97.0% 

±2.1 
96.8% 

±2.5 
96.7% 

±2.6 

4.0 
98.5% 

±0.8 
98.4% 

±0.6 
98.3% 

±0.8 
97.9% 

±1.1 
97.8% 

±1.3 
97.6% 

±1.4 
97.6% 

±1.3 
97.5% 

±1.4 
97.4% 

±1.5 
97.4% 

±1.5 

4.5 
98.5% 

±0.9 
98.4% 

±0.6 
98.1% 

±0.8 
98.0% 

±0.8 
97.9% 

±0.8 
97.8% 

±0.9 
97.7% 

±1.0 
97.6% 

±1.1 
97.6% 

±1.1 
97.6% 

±1.2 

5.0 
98.4% 

±0.9 
98.3% 

±0.6 
98.0% 

±0.7 
98.0% 

±0.8 
97.9% 

±0.8 
97.9% 

±0.8 
97.9% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 

5.5 
98.4% 

±0.9 
98.3% 

±0.7 
98.0% 

±0.7 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 

6.0 
98.3% 

±0.9 
98.2% 

±0.7 
98.0% 

±0.7 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 

6.5 
98.2% 

±1.0 
98.2% 

±0.7 
97.9% 

±0.8 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 

7.0 
98.2% 

±0.9 
98.2% 

±0.7 
97.9% 

±0.8 
97.9% 

±0.7 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.6 
97.8% 

±0.7 
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Table 2.4. Cluster matching accuracies of supervised clustering
results on asteroid reflectance spectra dataset using meteorite
reflectance spectra dataset with different parameters (without
random sampling). For cluster initialization of supervised clustering
we utilized unsupervised clustering results with the same deviation
parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 11.5% 44.3% 48.4% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 
1.0 48.4% 58.2% 56.6% 55.7% 54.9% 54.9% 54.9% 54.9% 54.9% 54.9% 
1.5 0.8% 45.1% 45.1% 45.9% 45.9% 45.9% 45.9% 45.9% 45.9% 45.9% 
2.0 77.9% 99.2% 91.8% 51.6% 52.5% 52.5% 52.5% 51.6% 52.5% 52.5% 
2.5 77.0% 99.2% 99.2% 99.2% 91.8% 91.0% 83.6% 82.0% 82.0% 50.8% 
3.0 77.0% 98.4% 98.4% 98.4% 98.4% 95.9% 95.9% 95.9% 95.9% 95.9% 
3.5 77.0% 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
4.0 77.0% 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
4.5 77.0% 98.4% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
5.0 77.0% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
5.5 77.0% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
6.0 77.0% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
6.5 77.0% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 
7.0 77.0% 98.4% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 

Table 2.5. Cluster matching accuracies (average) and standard
deviations of supervised clustering results on asteroid reflectance
spectra dataset using meteorite reflectance spectra dataset with
different parameters (with random sampling). For cluster
initialization of supervised clustering we utilized unsupervised
clustering results with the same deviation parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 
45.2% 

±9.0 
47.3% 

±7.4 
51.1% 

±8.9 
51.0% 

±6.4 
51.1% 

±5.3 
50.7% 

±3.6 
50.5% 

±2.0 
50.6% 

±2.0 
50.7% 

±1.7 
50.6% 

±2.0 

1.0 
41.8% 

±23.7 
43.8% 

±9.1 
44.7% 

±3.4 
45.2% 

±3.1 
45.3% 

±3.1 
45.3% 

±3.0 
45.4% 

±3.0 
45.4% 

±3.0 
45.4% 

±2.9 
45.4% 

±2.9 

1.5 
21.2% 

±24.0 
54.6% 

±19.2 
60.3% 

±21.0 
60.4% 

±20.8 
59.8% 

±19.9 
58.5% 

±18.6 
57.1% 

±17.2 
56.8% 

±16.6 
55.2% 

±14.9 
54.5% 

±14.2 

2.0 
56.4% 

±24.5 
92.1% 

±18.8 
87.3% 

±17.3 
73.8% 

±23.1 
70.1% 

±22.6 
66.7% 

±21.3 
64.6% 

±19.9 
62.9% 

±18.8 
61.8% 

±18.0 
60.3% 

±16.5 

2.5 
76.5% 

±6.0 
98.9% 

±1.0 
97.1% 

±4.2 
93.5% 

±8.7 
87.3% 

±16.8 
83.6% 

±19.5 
80.6% 

±21.2 
79.1% 

±21.6 
78.3% 

±21.6 
77.9% 

±21.4 

3.0 
77.5% 

±0.4 
98.7% 

±0.5 
98.0% 

±1.9 
97.2% 

±2.8 
96.4% 

±3.8 
95.6% 

±4.9 
94.5% 

±7.0 
93.8% 

±8.1 
93.0% 

±9.6 
92.3% 

±10.5 

3.5 
77.5% 

±0.4 
98.6% 

±0.5 
98.3% 

±1.1 
97.9% 

±1.5 
97.6% 

±1.6 
97.3% 

±1.8 
97.2% 

±1.9 
97.0% 

±2.1 
96.8% 

±2.5 
96.7% 

±2.6 

4.0 
77.5% 

±0.4 
98.4% 

±0.6 
98.3% 

±0.8 
97.9% 

±1.1 
97.8% 

±1.3 
97.6% 

±1.4 
97.6% 

±1.3 
97.5% 

±1.4 
97.4% 

±1.5 
97.4% 

±1.5 

4.5 
77.5% 

±0.4 
98.4% 

±0.6 
98.1% 

±0.8 
98.0% 

±0.8 
97.9% 

±0.8 
97.8% 

±0.9 
97.7% 

±1.0 
97.6% 

±1.1 
97.6% 

±1.1 
97.6% 

±1.2 

5.0 
77.5% 

±0.4 
98.3% 

±0.6 
98.0% 

±0.7 
98.0% 

±0.8 
97.9% 

±0.8 
97.9% 

±0.8 
97.9% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 

5.5 
77.5% 

±0.4 
98.3% 

±0.7 
98.0% 

±0.7 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 
97.8% 

±0.8 

6.0 
77.5% 

±0.4 
98.2% 

±0.7 
98.0% 

±0.7 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 

6.5 
77.5% 

±0.4 
98.2% 

±0.7 
97.9% 

±0.8 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 

7.0 
77.5% 

±0.4 
98.2% 

±0.7 
97.9% 

±0.8 
97.9% 

±0.7 
97.9% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.7 
97.8% 

±0.6 
97.8% 

±0.7 
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Table 2.6. Cluster purities of supervised clustering results on
asteroid reflectance spectra dataset using meteorite element
compositions dataset with different parameters (without random
sampling). Green color means improvements from unsupervised
clustering result (2nd column in Table 2.1), red color means vice
versa, black color means no change on cluster purity. For cluster
initialization of supervised clustering we utilized unsupervised
clustering results with the same deviation parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 82.8% 82.8% 82.8% 82.8% 82.8% 82.8% 93.4% 93.4% 86.1% 93.4% 

1.0 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 92.6% 90.2% 

1.5 92.6% 92.6% 92.6% 92.6% 100.0% 100.0% 95.1% 92.6% 92.6% 92.6% 

2.0 99.2% 99.2% 99.2% 99.2% 99.2% 99.2% 98.4% 93.4% 91.8% 83.6% 

2.5 99.2% 99.2% 99.2% 99.2% 98.4% 98.4% 98.4% 98.4% 93.4% 91.8% 

3.0 99.2% 99.2% 99.2% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 96.7% 

3.5 99.2% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 

4.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

4.5 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

5.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

5.5 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

6.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

6.5 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

7.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 97.5% 

Table 2.7. Cluster purities (average) and standard deviations of
supervised clustering results on asteroid reflectance spectra dataset
using meteorite element compositions dataset with different
parameters (with random sampling). For cluster initialization of
supervised clustering we utilized unsupervised clustering results
with the same deviation parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 
85.6% 

±4.3 

85.1% 

±3.8 

85.3% 

±3.9 

84.8% 

±3.9 

85.2% 

±3.8 

86.0% 

±4.3 

86.3% 

±4.3 

87.2% 

±4.5 

88.7% 

±4.3 

89.3% 

±4.0 

1.0 
92.2% 

±2.6 

92.1% 

±2.7 

92.4% 

±2.3 

92.7% 

±1.6 

92.9% 

±1.0 

93.0% 

±0.6 

93.1% 

±0.6 

93.2% 

±0.7 

93.1% 

±1.0 

93.1% 

±1.0 

1.5 
93.2% 

±2.5 

93.1% 

±2.4 

93.5% 

±2.8 

94.2% 

±3.3 

95.8% 

±3.9 

96.1% 

±3.9 

94.9% 

±4.4 

93.9% 

±5.3 

93.0% 

±5.5 

91.8% 

±5.4 

2.0 
96.8% 

±3.1 

98.0% 

±2.4 

98.5% 

±2.0 

98.7% 

±1.7 

98.7% 

±1.5 

98.2% 

±2.5 

96.8% 

±4.3 

94.2% 

±5.6 

91.1% 

±6.1 

88.4% 

±5.6 

2.5 
98.9% 

±1.0 

99.1% 

±0.5 

99.0% 

±0.6 

98.9% 

±0.6 

98.8% 

±0.8 

98.4% 

±1.4 

97.5% 

±2.4 

96.3% 

±3.3 

94.6% 

±4.5 

93.2% 

±5.3 

3.0 
98.9% 

±0.6 

98.9% 

±0.6 

98.9% 

±0.6 

98.8% 

±0.6 

98.7% 

±0.7 

98.5% 

±1.0 

98.2% 

±1.3 

97.4% 

±2.1 

96.7% 

±2.8 

95.7% 

±3.5 

3.5 
98.8% 

±0.7 

98.8% 

±0.7 

98.8% 

±0.7 

98.7% 

±0.8 

98.6% 

±0.7 

98.5% 

±0.6 

98.3% 

±0.8 

98.0% 

±1.3 

97.4% 

±2.1 

96.7% 

±2.5 

4.0 
98.7% 

±0.8 

98.7% 

±0.7 

98.6% 

±0.8 

98.6% 

±0.8 

98.5% 

±0.7 

98.4% 

±0.6 

98.3% 

±0.6 

98.2% 

±0.8 

97.7% 

±1.3 

97.3% 

±1.6 

4.5 
98.6% 

±0.8 

98.6% 

±0.8 

98.6% 

±0.8 

98.6% 

±0.8 

98.4% 

±0.7 

98.4% 

±0.6 

98.3% 

±0.6 

98.1% 

±0.7 

97.9% 

±1.0 

97.5% 

±1.2 

5.0 
98.5% 

±0.9 

98.6% 

±0.8 

98.5% 

±0.8 

98.5% 

±0.8 

98.4% 

±0.7 

98.4% 

±0.6 

98.3% 

±0.7 

98.1% 

±0.7 

97.9% 

±0.9 

97.6% 

±1.0 

5.5 
98.5% 

±0.9 

98.5% 

±0.9 

98.5% 

±0.9 

98.5% 

±0.8 

98.4% 

±0.7 

98.3% 

±0.6 

98.3% 

±0.7 

98.1% 

±0.8 

97.9% 

±0.8 

97.7% 

±0.9 

6.0 
98.4% 

±1.0 

98.5% 

±0.9 

98.4% 

±0.9 

98.4% 

±0.8 

98.3% 

±0.7 

98.3% 

±0.7 

98.3% 

±0.7 

98.1% 

±0.7 

97.9% 

±0.8 

97.7% 

±0.8 

6.5 
98.4% 

±1.0 

98.4% 

±0.9 

98.4% 

±0.9 

98.4% 

±0.8 

98.3% 

±0.7 

98.3% 

±0.7 

98.3% 

±0.7 

98.1% 

±0.8 

97.9% 

±0.8 

97.7% 

±0.8 

7.0 
98.4% 

±1.0 

98.4% 

±0.9 

98.4% 

±1.0 

98.4% 

±0.8 

98.3% 

±0.7 

98.3% 

±0.7 

98.2% 

±0.7 

98.1% 

±0.8 

97.9% 

±0.8 

97.7% 

±0.8 
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Table 2.8. Cluster matching accuracies of supervised clustering
results on asteroid reflectance spectra dataset using meteorite
element compositions dataset with different parameters (without
random sampling). For cluster initialization of supervised clustering
we utilized unsupervised clustering results with the same deviation
parameters.

 

 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 10.7% 10.7% 10.7% 10.7% 10.7% 10.7% 32.0% 32.0% 43.4% 32.8% 

1.0 1.6% 0.8% 0.8% 0.8% 0.8% 58.2% 58.2% 56.6% 56.6% 55.7% 

1.5 6.6% 6.6% 0.8% 0.8% 6.6% 6.6% 11.5% 49.2% 49.2% 49.2% 

2.0 99.2% 99.2% 99.2% 99.2% 99.2% 99.2% 98.4% 93.4% 91.8% 76.2% 

2.5 99.2% 99.2% 99.2% 99.2% 98.4% 98.4% 98.4% 98.4% 93.4% 91.8% 

3.0 99.2% 99.2% 99.2% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 96.7% 

3.5 99.2% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 

4.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

4.5 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

5.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

5.5 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

6.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

6.5 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 

7.0 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 98.4% 97.5% 97.5% 

Table 2.9. Cluster matching accuracies (average) and standard
deviations of supervised clustering results on asteroid reflectance
spectra dataset using meteorite element compositions dataset with
different parameters (with random sampling). For cluster
initialization of supervised clustering we utilized unsupervised
clustering results with the same deviation parameters.

 
 

 
𝜎M 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

𝜎A  

0.5 
41.0% 

±14.4 

37.9% 

±16.6 

42.1% 

±12.8 

42.8% 

±8.8 

42.4% 

±8.6 

43.5% 

±7.7 

44.1% 

±9.5 

46.0% 

±10.8 

45.7% 

±7.7 

46.8% 

±7.8 

1.0 
22.6% 

±22.5 

20.9% 

±23.0 

22.1% 

±21.2 

25.8%2 

±1.8 

30.3% 

±19.7 

37.0% 

±13.7 

37.8% 

±11.4 

38.2% 

±9.6 

39.3% 

±8.4 

38.9% 

±8.4 

1.5 
21.8% 

±24.5 

27.2% 

±28.2 

24.2% 

±30.3 

25.0%3 

±2.8 

28.2% 

±34.3 
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Chapter 3

Exchangeable Deep Neural

Networks for Set-to-Set Matching

and Learning

3.1 Motivation

Matching pairs of data is a crucial part of many machine learning tasks, including

recommendation (Sarwar et al., 2001; Rendle, Freudenthaler, and Schmidt-thieme,

2010; Le, Lauw, and Fang, 2019), person re-identification (re-id) (Zheng et al., 2015),

image search (Wang et al., 2014), face recognition (Parkhi, Vedaldi, Zisserman, et al.,

2015), as typical industrial applications.

Aside from these tasks, set-to-set matching, which is an extension of multiple

instance matching, has recently been identified as an important element in various

applications required by emerging web technologies or services. A representative

example in e-commerce is fashion recommendation, where a group of fashion items

deemed to match the collection of fashion items already owned by a user is rec-

ommended. Regarding the group as an unordered set, we can consider this task

a set-to-set matching problem, as shown in Figure 3.1. Another example is group

re-identification (group re-id) in surveillance systems (Lisanti et al., 2017; Xiao et

al., 2018; Lin et al., 2019). Other examples include image-set retrieval (Gao et al.,

2018; Feng, Karaman, and Chang, 2017), image-set classification (Lu et al., 2015),

image-set reconstruction (Liu et al., 2019a), person re-id (Liu, Yan, and Ouyang,

2017), taxonomy matching (Saito et al., 2020), cross-lingual matching (Iwata et al.,

2017), relational data matching (Iwata, Lloyd, and Ghahramani, 2015), and face ver-

ification (Liu et al., 2019b; Xie, Shen, and Zisserman, 2018). Earlier studies have also
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Figure 3.1. One of the main questions that set-to-set matching
attempts to answer is as follows: which candidate is more
compatible than others with the reference set? Here, we consider the
matching of the reference set and the respective candidate set and
then selecting the best pair.

explored face recognition as a set-to-set matching problem (Shakhnarovich, Fisher,

and Darrell, 2002; Arandjelovic et al., 2005; Cevikalp and Triggs, 2010; Yamaguchi,

Fukui, and Maeda, 1998) and next-basket recommendation (Rendle, Freudenthaler,

and Schmidt-thieme, 2010).

Set-to-set matching scenarios can be grouped into two classes: homogeneous set

matching and heterogeneous set matching as described in Chapter 1. To the best

of our knowledge, there are very few studies on constructing deep learning frame-

works for heterogeneous set matching. We consider that matching heterogeneous

sets requires a strong learning architecture to match different sets.

Furthermore, as described in Chapter 1, another fundamental difficulty in set-

to-set matching, compared with ordinary data matching, lies in the two types of

exchangeability required: exchangeability between the pair of sets and invariance

across different permutations of the items in each set. A function that calculates a

matching score should provide an invariant response, regardless of the order of the

two sets, or the permutations of the items.

The main focus of this chapter is an architecture that preserves the aforemen-

tioned exchangeability properties, and at the same time, realizes a high performance

in heterogeneous set matching tasks. In this chapter, we argue that allowing the

feature extractor and matching layer to include interactions between the two sets is

crucial to identify matching pairs among different items. We propose a deep learning

model for (1) feature extraction, named cross-set feature transformation (CSeFT), which
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iteratively provides the interactions between the pair of sets to each other in the in-

termediate layers. Our novel functions, attention- and affinity-based functions, orga-

nize the CSeFT spanning two different sets in the feature spaces, thereby improving

the feature representations. The proposed architecture also includes (2) a match-

ing layer, named cross-similarity function (CS function), that calculates the matching

score between the features of the set members across the two sets accurately. Our

model guarantees both types of exchangeability in the modules. Figure 3.2 shows

the proposed architecture.

We examine the set-to-set matching problem in a supervised setting, where ex-

amples of correctly paired sets are deployed as training data. The objective is to

train the feature extractor and matching layer in an end-to-end manner such that

the appropriate sets of features to be matched can be extracted. To train the model

efficiently, we also propose a novel training framework, K-pair-set loss. Following

training, the model is then used to find correct pairs of sets among a group of candi-

dates.

The effectiveness of our approach is demonstrated in two real-world applica-

tions. First, we consider fashion set recommendations, where provided examples of

the outfits are used as correct combinations of items (clothes). Using a large num-

ber of examples of the outfits in the form of images, we aim to match the correct

pair of defined sets through subset and superset matching tasks using the IQON

dataset (Nakamura and Goto, 2018). Since two positive sets include images of dif-

ferent fashion items, we regard this case as heterogeneous set matching. In these

tasks, taking into account combinations of items is required to fully consider fashion

compatibility (Han et al., 2017; He, Packer, and McAuley, 2016). Next, we eval-

uate our methods through group re-id experiments using two datasets, a new ex-

tension of the Market-1501 dataset (Zheng et al., 2015) (Market-1501 Group) and

the Road Group dataset (Xiao et al., 2018). The Market-1501 Group is composed of

two categories of individual person images, taken under noisy and non-noisy con-

ditions, which may change group membership in the paired sets. We also provide

experimental results on a more practical problem using the Road Group dataset.

Considering group membership change, we regard group re-id as a heterogeneous

set matching problem. In the fashion set recommendations and group re-id experi-

ments performed on the Market-1501 Group dataset, our methods show significant

improvements and better results compared with state-of-the-art methods. We also
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performed the group re-id experiment on the Road Group dataset using the data

augmentation method that we developed for the pair set (set-data augmentation);

our methods show competitive results without using any external datasets or spa-

tial layout information in each group.

The main contributions of this chapter are as follows. (i) A novel deep learning

architecture is proposed to provide the two types of exchangeability required for set-

to-set matching. (ii) The proposed feature extractors using the interactions between

two sets are shown to extract better features for heterogeneous set matching. (iii) A

new loss function, K-pair-set loss, is proposed and provide better performances in

our tasks. (iv) We introduce set-input methods into group re-id tasks (Road Group)

using a new set-data augmentation, thereby showing competitive results without

using external datasets or spatial relations. (v) The proposed models show state-

of-the-art results for the fashion set recommendation and group re-id, supporting

the claim that the interactions improve both the accuracy and robustness of the set-

matching procedure.

3.2 Preliminaries: Set-to-Set Matching

We introduce the necessary notation as follows. Let xn, ym ∈ X = Rd be feature

vectors representing the features of each individual item. Let X = {x1, ..., xN} and

Y = {y1, ..., yM} be sets of these feature vectors, where X ,Y ∈ 2X.

The function f : 2X × 2X → R calculates a matching score between the two sets

X and Y . Guaranteeing the exchangeability of the set-to-set matching requires that

the matching function f (X ,Y) is symmetric and invariant under any permutation of

items within each set.

We consider tasks where the matching function f is used to select a correct match-

ing. Given candidate pairs of sets (X ,Y (k)), where X ,Y (k) ∈ 2X and k ∈ {1, · · · , K},

we choose Y (k∗) as a correct one so that f (X ,Y (k∗)) achieves the maximum score

from amongst the K candidates. In this chapter, a supervised learning setting is con-

sidered, where the function f is trained to classify the correct pair and unmatched

pairs.
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Figure 3.2. Our model calculates a matching score between the
paired sets. Enci, CSeFT, CS, and FC indicate an (i + 1)-th
(one-layered) encoder sharing weights within the same layer,
cross-set feature transformation, cross-similarity function, and fully
connected layer, respectively. We exclude the multihead structure in
g.

3.2.1 Mappings of Exchangeability

We present a brief review on several notions of exchangeability, which are used in

building our models.

Permutation Invariance. A set-input function f is said to be permutation invariant if

f (X ,Y) = f (πxX , πyY) (3.1)

for permutations πx on {1, . . . , N} and πy on {1, . . . , M}.

Permutation Equivariance. A map f : XN × XM → XN is said to be permutation

equivariant if

f (πxX , πyY) = πx f (X ,Y) (3.2)

for permutations πx and πy, where πx and πy are on {1, . . . , N} and {1, . . . , M},

respectively. Note that f is permutation invariant for permutations within Y .

Symmetric Function. A map f : 2X × 2X → R is said to be symmetric if

f (X ,Y) = f (Y ,X ). (3.3)

Two-Set-Permutation Equivariance. Given Z (1) ∈ XN and Z (2) ∈ XM, a map f :

X∗ ×X∗ → X∗ ×X∗ is said to be two-set-permutation equivariant if

p f (Z (1),Z (2)) = f (Z (p(1)),Z (p(2))) (3.4)

for any permutation operator p exchanging the two sets, where X∗ = ∪∞
n=0X

n indi-

cates a sequence of arbitrary length such as XN or XM.
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3.3 Matching and Learning for Sets

In this section, based on the problem scenario as explained above, we describe our

set-to-set matching methods. We describe in detail the architecture of the (1) feature

extractor, cross-set feature transformation (CSeFT) in Section 3.3.1, and (2) matching

layer, cross-similarity (CS) function in Section 3.3.2. Figure 3.3 shows the model of

CSeFT. Finally, we discuss training procedures in Section 3.3.3. Figure 3.4 depicts

the framework of our K-pair-set loss.

3.3.1 Cross-Set Feature Transformation

We construct the architecture of the feature extractor, which transforms sets of fea-

tures using the interactions between the pair of sets, and extracts the desired features

to be matched in the post-processing stages (Figure 3.3).

Here, consider the transformation of a pair of set-feature vectors (X ,Y) into new

feature representations on XN × XM, using two-set-permutation equivariant func-

tions. Let i be the iteration (layer) number of the CSeFT layers. Our feature extrac-

tion then can be described as a map of (Xi,Yi)→ (Xi+1,Yi+1), where Xi+1,Xi ∈ XN ,

Yi+1,Yi ∈ XM, Xi+1 = (x(n,i+1))
N
n=1, Xi = (x(n,i))

N
n=1, Yi+1 = (y(m,i+1))

M
m=1, and

Yi = (y(m,i))
M
m=1. For example, x(n,i) ∈ X denotes the feature vector extracted by

the i-th layer representing the n-th item, xn, and y(m,i) is defined similarly. Note that

the initial feature vectors with i = 0 are found with a typical feature extractor, i.e.,

a deep convolutional neural network (CNN) for the image of each item. Then, we

construct a parallel architecture of CSeFT, with an asymmetric transformation g, as

follows:

cross-set feature transformation (CSeFT) :

 Xi+1 = g(Xi,Yi|Θi)

Yi+1 = g(Yi,Xi|Θi),
(3.5)

where g : X∗ × X∗ → X∗ is a permutation equivariant function, which transforms

the set features in the first argument into new feature representations regardless of

the order of the set features in the second argument, X∗ = ∪∞
n=0X

n, which indicates

a sequence of arbitrary length such as XN or XM, and Θi is learnable weights shared

in the same layer. Also, residual paths (He et al., 2016) may be used in Eq. (3.5) if

required. Figure 3.3 shows the model of our CSeFT.
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Figure 3.3. A diagram of CSeFT. Here, we assume |X | = 3 and
|Y| = 2. The colors indicate the respective set members.
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Figure 3.4. K-pair-set-based matching candidates. Red and blue
lines indicate correct pairs (X (k), Y (k)) and negative cross pairs
(X (k), Y (k′)) : ∀k′ 6= k, where k, k′ ∈ {1, · · · , K}, respectively.

We propose two possible feature extractors for g: an attention-based function, and

an affinity-based function. Both are constructed to assign the matched feature vectors

to the reference feature vector, taking account of interactions between the two sets.

For simplicity, we provide an explanation via the case of extracting the features for

X as follows (we can easily exchange X and Y for Y).

The attention-based function of g(Xi,Yi|Θi) maps x(n,i) → x(n,i+1) as follows:

x(n,i+1) =
1
|Yi| ∑

y∈Yi

(
l(1)i (x(n,i))

Tl(2)i (y)√
dg

)
+

l(3)i (y), (3.6)

where n ∈ {1, · · · , N}, Θi = {Θ(1)
i , Θ(2)

i , Θ(3)
i }, Θ(j)

i ∈ Rdg×d, |Yi| = M, l(j)
i denote a

linear transformation, i.e., l(j)
i (x) := Θ(j)

i x, and ()+ is a non-negative mapping, i.e.,

ReLU (Glorot, Bordes, and Bengio, 2011), which introduces nonlinear interactions

between the two elements. Here, dg = d if a multihead structure is not utilized. Our

attention-based function transforms the respective feature vectors based on attention

calculated via the inner product between set members of X and Y .
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Note that our attention-based function has a strong relation to dot-product atten-

tion (Vaswani et al., 2017; Lee et al., 2019), which has in the past been introduced to

calculate the weighted average on Y using softmax as the coefficients. However, the

softmax operation would be inconsistent with our matching objective, as through

normalization it increases the coefficients even in unmatched cases of X and Y . To

preserve non-linearity, we use instead the non-negative weighted sum and then av-

erage it using Eq. (3.6).

The affinity-based function of g(Xi,Yi|Θi) maps x(n,i) → x(n,i+1) as follows:

x(n,i+1) =
1
2

x̄(n,i) +
1
|Ȳi| ∑

ȳ∈Ȳi

(
x̄T
(n,i)ȳ√

dg

)
+

ȳ

 , (3.7)

where Θi = {Θ(1)
i , Θ(2)

i }, x̄(n,i) = l(1)i (x(n,i)), and Ȳi = {l(2)i (y(m,i))}M
m=1. Using the

two linear transformations l(1)i and l(2)i , the affinity-based function combines the re-

sembling feature vectors within different sets so that the feature vectors for X have

similar representations to the linearly transformed vectors in Y .

Other simple permutation equivariant functions of g, e.g., x(n,i+1) = x(n,i) +

1
|Yi | ∑y∈Yi

y, may be utilized. However, we consider it a function incapable of ex-

tracting appropriate enough features without any rich interactions between the two

sets to yield accurate matching for two sets.

Instead of performing g singly, we introduce a multihead structure (Vaswani et

al., 2017) to our feature extractor g, which is also a permutation equivariant function.

Denoting the output of g(Xi,Yi|Θ
(j)
i ) as g(j)

Xi
, the multihead version of g is defined

as ΘhConcat
(

g(1)Xi
, · · · , g(h)Xi

)
, where Concat indicates a concatenation for each cor-

responding set member in g(j)
Xi

, Θh ∈ Rd×hdg , and hdg = d. Note that the multihead

structure is related to recent models such as MobileNet (Howard et al., 2017), which

isolates and places the convolutional operations in parallel to reduce the calculation

costs whilst preserving the accuracy of the recognition. We assume that the multi-

head structure provides various interactions between the set members, reducing the

calculation costs as well.

3.3.2 Calculating Matching Score for Sets

We introduce a matching layer to calculate the matching score between two given

sets, mapping 2X × 2X → [0, ∞]. It is designed to calculate the inner product for
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every combination of set members across sets, so we call this cross-similarity (CS),

defined as follows:

CS(X ,Y|W) :=
1

|X ||Y| ∑
x∈X

∑
y∈Y

(
l(x|W)Tl(y|W)√

dw

)
+

, (3.8)

where x and y are feature vectors in X and Y , respectively, l is a linear function

allowing conversions into a lower-dimensional space using learnable weights W ∈

Rdw×d, i.e., l(x|W) := Wx, and dw is the number of dimensions of the lower-dimensional

space. CS can be seen as a calculation of the average similarity in the linear subspaces

created by the dimensionality reduction l, or the normalized and non-negative inner

product if both sets contain only one set member.

Instead of calculating CS singly, we utilize multiple CSs (mCS) to combine the

CSs calculated with different linear mappings. The procedure runs as follows:

mCS(X ,Y|W) = l(Concat (CS1, · · · , CSh′) |Wo), (3.9)

where W = {W1, · · · , Wh′ , Wo}, CSj = CS(X ,Y|Wj) ∈ R, and the linear function l

with learnable weights Wo maps Rh′ → R.

Because CS is permutation invariant, mCS is also permutation invariant:

Property 1. Both CS and mCS are permutation invariant.

Additionally, because CS is symmetric (definition in Eq. (3.3)), mCS is symmetric

as well:

Property 2. Both CS and mCS are symmetric.

These symmetric and permutation invariance properties entails that CS and mCS

satisfy the exchangeability criterion for the pair of sets, i.e., CS(X ,Y|W) = CS(Y ,X |W)

and mCS(X ,Y|W) = mCS(Y ,X |W), and permutations within each set.

Since CS is a symmetric and permutation invariant function, mCS is also sym-

metric and permutation invariant. Combined with the fact that CSeFT is a two-set-

permutation equivariant function, we have the following:

Proposition 1. A composition of the function CS or mCS with the cross-set transformation

CSeFT, i.e., CS ◦CSeFT or mCS ◦CSeFT, is symmetric and permutation invariant.

Proof. See Section 3.7.
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Note that we can stack CSeFTs in a way that preserves the symmetric architec-

ture, by combining with other networks that operate upon the sets or items indepen-

dently. We discuss the overall architecture in Section 3.5.2.

3.3.3 Training for Pairs of Sets

Next, to allow for comparison against the scores for other matching candidates, the

output of mCS or CS is fed into a loss function. That is, the task of maximizing the

matching score is translated into a minimization of the loss function.

We attempt to train our model efficiently using multiple correct pairs taken to-

gether. As described in the problem formulation, K candidates are provided to find

the correct one-to-one matching. Here, K candidates per reference set of X are fed

into the matching process in each training iteration. However, if we prepare K dif-

ferent candidates for each reference set of X , the calculations for data processing

would be inefficient.

To train our model efficiently, we create matching candidates from the correct

pairs (Figure 3.4). Let (X (k),Y (k)) be a correct pair of sets, where k ∈ {1, · · · , K}.

From those K-pair, by extracting allY (k), we create the set ofY (k) as Y = {Y (1), · · · ,Y (K)}.

That is, Y is composed of sets exhibiting correct relations to the respective X (k), and

Y can be used as a set of candidates for each X (k) in the training stage. We construct

positive pairs and negative cross pairs from these candidates by assuming that one

correct pair exists for the respective sets, as described in Section 3.2. Then, we train

our models using these pairs with a conventional softmax cross-entropy loss. Com-

pared with a typical mini-batch training, suppose that the set size is n on average,

the K-pair training method utilizes 2nK data (images) per training iteration; this can

be regarded as the size of the mini-batch. We consider the above training method as

a set version of N-pair loss (Sohn, 2016), so we call this K-pair-set loss.

If the quantity of set data is not large, we can use other training frameworks,

e.g., a triplet loss with the softplus function (Hermans, Beyer, and Leibe, 2017); we

can use the triplet loss for the relations among the reference set of X , the positive

candidate Y (p), and the negative candidate Y (n), where p, n ∈ {1, · · · , K}.
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3.4 Related Works

Set-Input Methods. Deep learning architecture for set data is developing and has

been well studied (Li et al., 2016; Vinyals, Bengio, and Kudlur, 2015; Lee et al., 2019;

Zaheer et al., 2017; Murphy et al., 2018; Hayat, Bennamoun, and An, 2014; Pang

et al., 2019; Bello, Yu, and Wang, 2020; Zhou et al., 2017a; Zhou et al., 2017b; Zhong,

Arandjelović, and Zisserman, 2018; Vollgraf, 2019; Wagstaff et al., 2019; Yarotsky,

2018; Sannai, Takai, and Cordonnier, 2019; Zhang, Hare, and Prügel-bennett, 2019).

In the work of Lee et al. (Lee et al., 2019), the state-of-the-art set-feature representa-

tion was introduced by applying a self-attention based Transformer (Vaswani et al.,

2017) to a set data. An encoder–decoder model, called Set Transformer, is trained

through supervised/unsupervised learning; it transforms the set data into a vec-

tor/matrix representation in the feature space, and recognizes the set feature. Zaheer

et al. (Zaheer et al., 2017) derived a condition for the property of permutation invari-

ance/equivariance in functions, and introduced an operator referred to as deep sets.

These models can manage set data that serve multiple objectives, such as set classi-

fication, calculation from images, text retrieval, etc. However, constructing a deep

learning model that can manage multiple sets has not been well studied.

Furthermore, various methods have been proposed for representing a set as de-

scribed in Chapter 1. However, these methods were mainly proposed to model ho-

mogeneous sets; they do not include feature learning schemes for paired sets.

Methods for Measuring Distributions. In the literature on statistical machine learn-

ing, matching multiple data is related to measuring the distance between two distri-

butions (Gretton et al., 2005; Muandet et al., 2017; Póczos et al., 2012; Muandet et al.,

2012; Zhang et al., 2017; Li et al., 2017). However, to the best of our knowledge, deep

learning for measuring distribution has not been well studied.

Methods for Heterogeneous data. Many studies have investigated heterogeneous

data. For example, topic models for entity matching (Yang et al., 2015), graph match-

ing for malware detection (Wang et al., 2019), multiple instance learning for anomaly

detection (Sultani, Chen, and Shah, 2018), and various methods for multi-domain

data (Liu et al., 2012; Li, Lei, and Ao, 2009; Tang and Wang, 2004; Klare and Jain,

2010; Klare, Li, and Jain, 2010; Yi et al., 2007; Lei and Li, 2009; Eitz et al., 2010; Torfi

et al., 2017; Jiang and Li, 2017; Venugopalan et al., 2015) have been proposed.

Attention models. Recently, several studies have investigated attention functions (Jain
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and Wallace, 2019; Ilse, Tomczak, and Welling, 2018; Yang et al., 2016; Hu, Shen, and

Sun, 2018; Lee et al., 2019; Vaswani et al., 2017). Compared with the above stud-

ies, our works focus on investigating and developing the application of attention

functions for set-to-set matching task.

Applications. Many fashion item recommendation studies have investigated natu-

ral combinations of fashion items, the so-called visual fashion compatibility, to rec-

ommend fashion items or outfits (Han et al., 2017; He, Packer, and McAuley, 2016;

Hsiao and Grauman, 2018; Vasileva et al., 2018). In this chapter, the main difficulties

of the subset/superset matching procedures lie in satisfying the fashion compatibil-

ity requirements of the matched sets.

In the applications of group re-id (Lisanti et al., 2017; Xiao et al., 2018; Lin et al.,

2019; Zheng, Gong, and Xiang, 2009; Cai, Takala, and Pietikainen, 2010; Huang et

al., 2019; Zhu, Chu, and Yu, 2016), multi-shot person re-id (Wang and Zhao, 2014;

Zhu et al., 2017), and tracking (Solera et al., 2016), problems of multiple instance

matching arise. One group re-id scenario has been proposed that the detection of

known groups from videos (Lin et al., 2019) is required. Also, two group re-id

datasets, the Road Group dataset, and the DukeMTMC Group dataset1 have been

constructed (Lin et al., 2019), which include bounding box annotations for each per-

son. Our experiments focus on set-to-set matching using these given cropped im-

ages.

Methods for Non-Exchangeable Data. Many powerful data-processing methods

have been proposed based on specific data structures (Bai et al., 2019; Guo et al.,

2018; Li et al., 2019; Bai et al., 2018; Zanfir and Sminchisescu, 2018; Fey et al., 2020;

Guo et al., 2018; Yoshida, Takeuchi, and Karasuyama, 2019; Mudgal et al., 2018; Si

et al., 2018; Caspi, Simakov, and Irani, 2006). In natural language processing, Devlin

et al. achieved state-of-the-art results in various tasks using the bidirectional en-

coder representations from transformers (BERT) (Devlin et al., 2018). Furthermore,

Cucurull et al. applied graph neural networks (GNNs) to predict fashion compati-

bility between related fashion items using graph structures (Cucurull, Taslakian, and

Vazquez, 2019). Although the data in those tasks are known to be non-exchangeable,

we still consider that comparing these promising models with our model is possible

and necessary.

1Note that the DukeMTMC (Ristani et al., 2016) is no longer available.
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3.5 Experiments

We conduct set-to-set matching in the three scenarios: subset/superset matching

and group re-id. We present an ablation study to show the validity of our models.

3.5.1 Baselines for Comparisons

We validate our architecture through comparison with other set-matching models.

However, to the best of our knowledge, studies using deep neural networks for

matching two heterogeneous sets are non-existent. Instead, we use extensions from

the state-of-the-art set-input method and the promising models in other related do-

mains to a set-to-set matching procedure, and consider this acceptable for the com-

parison.

We briefly explain straightforward extensions of Set Transformer (Lee et al., 2019),

BERT (Devlin et al., 2018), and GNN (Cucurull, Taslakian, and Vazquez, 2019) below.

Set Transformer. We straightforwardly extend the Set Transformer towards the two

sets matching method. The Set Transformer transforms a set of feature vectors into

a vector on Rd. Denoting the Set Transformer model ST, we perform the extension

by calculating the matching score between the two sets X and Y via the inner prod-

uct ST(X )TST(Y), sharing the weights between the two ST. This extension satisfies

the exchangeability criteria for the set-to-set matching, however, no interactions be-

tween the pair of sets are provided.

BERT. We consider a union of two sets as a set-input for the extension of BERT and

omit the individual token embedding, i.e., the position embedding. We use the seg-

ment embedding to designate items of X and Y . We use three variants; BERTBASE

is the same model described in (Devlin et al., 2018) using the first-token feature;

BERTSMALL is a smaller version of BERTBASE, which has two encoding layers and

512 channels; BERTBASE−AP is the average pooling version of BERTBASE in the last

layer. These promising models provide interactions between the items, but no ex-

changeability for sets. Also, we omit the pre-training stage of BERT to investigate

the effects of differences in the architecture. For classification, in the last layer, we

use the first-token features (Devlin et al., 2018), which is selected randomly from the

tokens in this chapter, or average pooled features of all the tokens.

GNN. We combine two sets as one input for the extension of GNN, as we did for

BERT. We use the same settings described in (Cucurull, Taslakian, and Vazquez,
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2019); three-layered graph convolutions and one-step neighbor on the adjacency

matrix are used. The training objective is to reconstruct the correct adjacency ma-

trix, in which all the connections are of 1 when the two sets are correct pair, and

otherwise of 1 within each set and 0 between different sets. Because this model is

not presented to train in an end-to-end manner with the feature extractor (Cucurull,

Taslakian, and Vazquez, 2019), we do not finetune the CNN with the GNN in sub-

set/superset matching, where pre-trained CNNs are used, and we simultaneously

train the CNN and GNN in group re-id, where we do not use the pre-trained CNN.

We use the function of compatibility prediction (Cucurull, Taslakian, and Vazquez,

2019) to score the input is correct or not. Note that we omit the context provided

from the external graphs in the evaluation stage to apply this model in the same sce-

narios of our tasks. The extension of GNN provide interactions between the items,

but do not facilitate the exchangeability of the sets.

The other processes and scenarios are the same as those in our methodology.

Also, in our first experiments, we introduce a conventional CNN, trained by

Hard-Aware Point-to-Set deep metric learning (HAP2S) (Yu et al., 2018) as a mini-

mum configuration, based on the triplet loss between the anchor point (item), which

is randomly selected from positive set X , and other sets Y (p) and Y (n), which are

a positive and negative one, respectively. Our parameter settings are the same as

(Yu et al., 2018) and we use the exponential weighting. To calculate scores, we use

a mean squared distance between the feature vectors of each item within two sets

extracted via the CNN. Here, the extension of HAP2S does not provide set-based

feature extractions.

Comparing the experimental results of our models with the results of other mod-

els serves as a performance comparison and also an evaluation for our models, pro-

viding insight into whether our architecture is valid or not.

3.5.2 Overall Architecture

In applications of our model, we use an encoder–decoder structure, inspired by

the Transformer models (Vaswani et al., 2017; Lee et al., 2019). As an example,

Vaswani et al. regarded the Transformer as an encoder–decoder model for text trans-

lation (Vaswani et al., 2017); the encoder transforms a set of features within the input

domain, and the decoder transforms the resultant set of features onto the output do-

main. Because the translation is unidirectional, the one-encoder–decoder structure is
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included in the Transformer. Meanwhile, an iterative model of the encoder–decoder,

e.g., the Stacked Hourglass model, has been proposed and demonstrates a high accu-

racy in the task of human pose estimation (Newell, Yang, and Deng, 2016). Borrow-

ing from the above architectures, we construct our overall architecture by combining

the encoder (Lee et al., 2019), which is a permutation equivariant function called a

self-attention block, with the decoder, which is a function of our CSeFT. We then re-

peat the encoder–decoder structure L times in succession. Here, the encoder is the

preprocessing layer of our decoder, serving better feature representations within a

set. Note that a function of our CSeFT does not entail interactions within a set, and

combining with the encoder or stacking CSeFTs takes account of the full interactions.

We construct our models as follows. We set both the number of CSeFT layers and

encoder layers to 2. That is, we iteratively perform the one-layered encoder and the

one-layered CSeFT two times in succession. To extract the individual feature vector

from one of the images within the set, we use the CNN.

We use two CNNs. For the task of the fashion set recommendation, we use

Inception-v3 (Szegedy et al., 2016), which is pre-trained using the ILSVRC-2012 Im-

ageNet dataset (Russakovsky et al., 2015). Using this model, we extract the fea-

ture vectors on R2048 extracted by the global average pooling layer. We linearly

transform each feature vector into R512 to provide one of the set members, and

then the two sets of collected feature vectors are fed into the set-input functions.

For the group re-id tasks, we utilize a simple four-layered CNN without any pre-

training. This CNN transforms an RGB image into the feature vector mapping

3 → 64 → 128 → 256 → 512 channels using 3 × 3 kernels, and we then apply

global average pooling so that the resultant feature vectors are on R512 as well.

The resultant set of feature vectors extracted from each encoder model is fed into

the next cross-set feature transformation (CSeFT) and also the respective residual

paths. Alongside this, we apply a feed-forward network, which comprises two-

layered linear transformations with a leaky ReLU (Maas, Hannun, and Ng, 2013) to

the first argument of each function g.

We set the numbers of multihead functions of cross-set transformation function h

and multiple cross-similarity functions (mCS) h′ to eight. The numbers of dimension

sizes dg and dw are 64. We set the number of dimension size d of the feature space

to 512 except the BERT. The dimension sizes of the feature space are on R768 for

BERTBASE and BERTBASE−AP.
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In ablation study, we replace our matching layer. We replace the mCS with

max pooling, average pooling, projection metric (Huang, Wu, and Van Gool, 2018),

covariance matrix (Wang et al., 2012; Cai, Takala, and Pietikainen, 2010), set ker-

nel (Kim et al., 2019), and cosine similarity metric (Nguyen and Bai, 2010). For pro-

jection metric, we use the inner product as described in (Huang, Wu, and Van Gool,

2018). For covariance matrix, we calculate two covariance matrices and the inner

product between the two matrices (Zhu et al., 2013). Note that we also normalize

the calculated similarities as described in (Nguyen and Bai, 2010). For set kernel, we

use Gaussian kernel and multiple kernel learning as described in (Li et al., 2017).

3.5.3 Set-Data Augmentation

In this section, we describe our set-data augmentation (set-aug) method. Algo-

rithm 1 shows the set-aug algorithm. As we described in this chapter, given pos-

itive person image pairs X and several negative person images Z, we create set pairs

randomly on each training iteration. Here, index i is the iteration number in each

epoch.

Algorithm 1: Set-Data Augmentation.

1 Data: paired-image dataset X, noise-image dataset Z, index i
2 Result: paired sets (X ,Y)
3 begin
4 //select an image-pair and create initial paired sets from i-th paired-image

in X, where |X | = |Y| = 1
5 (X ,Y)←− selectPairedImage(X, i)
6 //randomly select multiple paired images
7 (X ′,Y ′)←− randomSelectPairedImage(X)

8 X ←− X ∪X ′

9 Y ←− Y ∪ Y ′

10 //randomly drop the image(s) and use the remained set
11 X ←− randomDrop(X )

12 Y ←− randomDrop(Y)
13 //randomly select the noise image(s) (if possible, select the images

captured on the same camera of each target set)
14 X ′′ ←− randomSelectImage(Z)
15 Y ′′ ←− randomSelectImage(Z)
16 X ←− X ∪X ′′

17 Y ←− Y ∪ Y ′′
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3.5.4 Training Settings

In this section, we briefly describe the training settings. The learning settings are as

follows. We use a stochastic gradient descent method with a learning rate of 0.005, a

momentum of 0.5, and a weight decay of 0.00004. The learning rate is set to degrade

every 16 epochs by multiplying by 0.7. For fashion set recommendations, we set the

maximum number of epochs to 32, which requires a week for training on Amazon

SageMaker ml.p3.8xlarge. For group re-id, we set the maximum number of epochs

to 256, which takes a few hours. We set the numbers of matching candidates to 16,

4, and 16 for subset matching, superset matching, and group re-id, respectively. We

train both the CNN and set-matching model simultaneously (except for the GNN).

In each iteration, we randomly swap pairs of sets and items in each set, to learn all

the methods stably.

In the selection of the loss function, to develop an item category constraint be-

tween the reference and candidate sets, described in Section 3.5.5, we use the triplet

loss with softplus function (Hermans, Beyer, and Leibe, 2017) in the subset matching

problem. We use our K-pair-set loss in other tasks.

For group re-identification, we trained the models under the same noisy or non-

noisy settings for each test, to investigate the robustness of the models for the set-to-

set matching under noisy situations.

For data augmentation, we randomly flip images horizontally in our tasks and

use the set-aug on Road Group dataset using Algorithm 1. In each training itera-

tion, we choose the number of base-set-size s ∈ {3, 4} randomly, and select s − 1

paired images using randomSelectPairedImage. Furthermore, we add one noise im-

age to each set randomly with a probability of 85%, and drop an image from each

set randomly with a probability of 50%.

3.5.5 Fashion Set Recommendation

Dataset. We examine the set-to-set matching for the fashion set recommendation

using the IQON dataset (Nakamura and Goto, 2018). IQON (www.iqon.jp) is a user-

participating fashion web service sharing outfits for women. The IQON dataset con-

sists of recently created, high-quality outfits, including 199,792 items grouped into

88,674 outfits. We split these outfits into groups, using 70,997 for training, 8,842 for
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validation, and 8,835 for testing. IQON Dataset (Nakamura and Goto, 2018) contains

images with 480× 480 size.

To create our training dataset from IQON dataset, we set the maximum and min-

imum numbers of items for each outfit as eight and four, respectively; if the outfit

contains more than eight items, then we randomly select eight items from it. The

outfits contain roughly 5.5 items on average. After this operation, we created our

training datasets for subset/superset matching.

Preparing Set Pairs. To construct the correct pair of sets to be matched, we randomly

halve the given outfit O into two non-empty proper subsets X and Y as follows:

O → {X ,Y}, where X ∩ Y = ∅. We perform our experiments using these subsets,

to try to find the correct pairs in subset matching. Also, we extend the problem of

subset matching to superset matching, which presents more complex situations. We

consider the superset as a multimodal/mixture set comprising the multiple subsets,

which consists of multiple fashion styles.

We expect our model to reconstruct the original outfitsO by combining two sub-

sets/supersets, provided such an inverse mapping exists. In the reconstruction, we

assume that the desired features either remain within both the input sets or are ex-

tracted during matching. For example, we regard the desired features as the dis-

criminative features, which serve to recognize the fashion compatibility (Han et al.,

2017; He, Packer, and McAuley, 2016) or infer the visual styles of the outfits. That is,

in the matching of the two subsets/supersets, such desired features to be matched

must be obtained.

We perform our experiments using these subsets, to try to find the correct pairs.

Here, we consider matching two subsets X and Y ; we call this problem subset match-

ing. In the subset matching, K subsets {Y (1), · · · ,Y (K)} are provided as a set of

matching candidates, whilst maintaining the category restrictions for each fashion

item. That is, these K candidates only contain the same-category fashion items and

are fed into the training or testing stages. Note that without any category restric-

tions, the models tend to be trained to select the candidate Y (k) that contains non-

overlapped fashion category items, e.g., shoes, with the gallery subset X . To avoid

this situation, we introduce category restrictions to the K candidates in each train-

ing/testing iteration.

Additionally, we extend the problem of subset matching to superset matching
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which presents more complex situations. We choose K outfits {O(1), · · · ,O(K)} ran-

domly and split the respective outfits randomly in half O(i) → {X (i),Y (i)}, where

i ∈ {1, · · · , K}. Then we create two supersets {X (1), · · · ,X (K)} and {Y (1), · · · ,Y (K)}.

These two supersets serve as a correct pair for the superset matching problem. We

consider the superset as a multimodal/mixture set, which consists of multiple fash-

ion styles, such that the matching problem is one of finding similar supersets in

terms of these mixed fashion styles. Because each superset has a category overlap

of fashion items themselves, providing category restrictions to the candidates is not

necessarily required in the superset matching, so we do not give the restrictions.

Note that we used K = 4 in the training stage and selected K ∈ {2, 4} in the test

stage.

Subset/Superset Matching. We discuss the experimental results of the matching

subsets/supersets. Table 3.1 shows significantly different results between our mod-

els and the baselines. Here, Cross Attention and Cross Affinity denote our models

with the attention-based and affinity-based functions, respectively. Comparing the

performance of Cross Affinity and BERTSMALL, which is the most accurate among

the baselines, the differences in their accuracies were 9.6% and 6.1%, on average, in

subset and superset matching, respectively. Furthermore, a comparison of the re-

sults obtained using the attention- and affinity-based function is shown in Table 3.1.

It can be seen that the affinity-based function performed better in both the subset

and superset matching.

In this experiment, we consider that the components on which the comparative

effectiveness of the proposed models depended were potentially three-fold. Com-

pared with the extensions of BERT, (a) our model preserves the exchangeability in

two sets, which may ensure that the set features to be matched are accurately rep-

resented. Furthermore, (b) our model preserves two set features explicitly, whereas

BERT provides a set of features with segment embedding that may have a limitation.

Compared with the results of the Set Transformer, our models and BERT yielded ac-

curate results is made possible by (c) providing the strength of interactions between

two sets. Therefore, we conclude that these results justify the fine aspects of our

architecture.

Figure 3.5 shows the results of the subset matching in a “Top-K” ranking view,

using limited candidates up to eight. Using our models, Figure 3.5 shows that top-3
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Table 3.1. Accuracy of subset/superset matching (%). Cand and
Mix indicate the number of candidates to be matched and number of
outfits mixed in the supersets, respectively.

Subset Matching Superset Matching

Cand:4 Cand:8 Cand:4 Cand:8

Method Mix:2 Mix:4 Mix:2 Mix:4

Set Transformer 39.2 22.7 73.5 65.3 57.5 49.6
BERTSMALL 50.5 33.8 87.3 69.7 77.0 53.0
BERTBASE 50.5 33.5 86.6 66.1 76.3 50.8
BERTBASE−AP 50.0 33.5 86.4 65.4 75.7 49.5
GNN 30.3 17.3 32.4 25.5 17.5 13.4
HAP2S 29.4 16.8 36.6 32.0 20.8 17.8
Cross Attention (ours) 58.1 41.9 88.8 74.3 80.6 58.9
Cross Affinity (ours) 60.2 43.3 90.6 75.9 82.8 61.9

candidates out of eight candidates contained the correct answers in an 80% proba-

bility, which might be an acceptable level in real-world applications.
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Figure 3.5. Matching accuracy for subset matching using eight
candidates. The rank indicates the accuracy with the “Top-K”
acceptance setting for evaluation.

3.5.6 Group Re-Identification

We present the results of a group re-id on the Market-1501 Group dataset, a new

extension of a well-known person re-id dataset, Market-1501 (Zheng et al., 2015),

and the Road Group dataset (Xiao et al., 2018). The task is to identify the pairs of

sets that consist of individual images of the (mostly) same multiple persons.

Evaluation on Market-1501 Group dataset. We evaluated the accuracy using the

training/validation data, including the query/gallery splits. We regard sets of gallery

and query data as X and Y , respectively.



3.5. Experiments 57

Noise

𝒴:

𝒳:
Positive

pair

Figure 3.6. An example of a correct pair for group re-identification.
Y contains four persons, including a “non-target” person who is not
included in X . This example is corresponding to the case of ( 0

3 , 1
4 ) in

Table 3.2.

Market-1501 (Zheng et al., 2015) contains 32,668 annotated bounding boxes (im-

ages) of 1,501 identities. The image size is 64× 128. The identities were divided into

training and testing sets, containing 750 and 751 identities, respectively.

To create our dataset from Market-1501, we ignored camera information of im-

ages, owing to less number of query images. Because query data contain 2–5 images

per person in which one or zero image provided for each camera position, it is dif-

ficult to take into account camera intersections to create image sets of the query and

gallery systematically. For the experiment, we construct image sets composed of

multiple persons. Each set consists of 3–8 persons and contains three different im-

ages of each.

We investigated noise robustness through the experiments to show that our mod-

els do not over-fit on the data; here, the noise means that random persons that acci-

dentally contained into the group additionally or that the label noise (Jiang et al.,

2017) for paired sets generated based on the given noise fraction. Note that the noise

persons and label noise have some relations, e.g., a candidate set composed of only

noise persons corresponds to a set mislabelled by label noise.

To evaluate experimental results on Market-1501 Group dataset, we set the num-

ber of candidates to 5.

Table 3.2 presents the comparison results. In the non-noisy case, many mod-

els showed almost perfect accuracies; we consider that averaging feature vectors in

sets achieves high accuracy in this homogeneous case. In the case the noise person

included, the noise ratio was inversely proportional to the accuracy across all the

models; however, our models yielded more accurate results, e.g., the average accu-

racy of Cross Affinity, Set Transformer, and BERTBASE−AP was 87.0, 80.6, and 72.4%,

respectively. Because the main differences between the architectures exist in the in-

teractions for paired sets or the exchangeability, the results support the claim that
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Table 3.2. Accuracy (%) for Market-1501 Group dataset.

Non-noisy Ratio of noise persons in X ×Y Label noise frac.
Method ( 0

3 , 1
4 ) ( 1

4 , 1
4 ) ( 0

3 , 3
6 ) ( 0

3 , 5
8 ) ( 3

6 , 3
6 ) ( 5

8 , 5
8 ) 0.2 0.4 0.8

Set Transformer 99.5 95.1 89.9 85.7 80.4 65.7 48.1 99.3 98.8 95.6
BERTSMALL 94.3 77.6 69.2 83.7 64.9 49.5 24.7 99.2 98.7 79.5
BERTBASE 96.8 80.5 77.6 68.8 69.9 61.9 49.2 98.9 98.1 76.0
BERTBASE−AP 97.3 84.4 74.7 70.7 69.3 62.8 47.7 99.3 97.5 77.9
GNN 82.0 29.3 46.0 23.7 22.1 29.3 21.1 81.7 73.0 76.7
Cross Attention (ours) 99.6 96.9 94.8 91.9 90.7 72.9 56.1 99.3 99.6 95.5
Cross Affinity (ours) 99.7 96.5 92.5 94.4 92.4 72.0 61.7 99.3 99.9 98.4

considering these properties improves both the accuracy and robustness. Further-

more, in the case of label noise fraction is 0.8, the permutation invariance would be

essential to preserve high accuracy.

Evaluation on Road Group dataset. We conduct experiments on the Road Group

dataset (Xiao et al., 2018; Lin et al., 2019), which consists of 162 group pairs taken

from a 2-camera-view of a crowded road scene. One image per group for each

camera is provided, where most groups do not have the same person’s image in

common with the different group pairs. The image dataset comprises a total of 1099

pedestrians and the bounding boxes annotated by a person detector or human hands

(GT), showing large variations in spatial group layout, group membership change

in crowds, and pose transformation. Following the experimental protocol described

in (Xiao et al., 2018; Lin et al., 2019), we construct training/validation datasets, split-

ting the 162 group pairs randomly in half into two different 81 group pairs, and re-

porting the accuracies calculated by the cumulative matching characteristic (CMC)

metric (Moon and Phillips, 2001).

Because group re-id is a newly emerging task, most datasets, including the Road

Group dataset, contain a small number of groups and images, and training on such

datasets is difficult (Huang et al., 2019). Specifically, our set-to-set matching method

extracts features that rely on input set pairs, thus, the variations in the set pairs are

crucial. Considering the difference in appearances or camera parameters, however,

importing external data (Huang et al., 2019; Huang et al., 2019b) is also a challenging

task itself.

To relax the data limitation, we introduce our novel set-data augmentation (set-

aug) method that significantly enhances the learning results of the proposed set-to-

set matching modules by increasing the training data. Given positive person image

pairs and several negative person images, creating set pairs randomly on each train-

ing iteration, our set-aug effectively increases the group member variations.
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Table 3.3. Evaluation results (%) for Road Group dataset.

Method (detector-based) CMC-1 CMC-5 CMC-10 CMC-15 CMC-20

Data augmentation ablation
Cross Affinity (our baseline) 45.2 ± 3.5 77.5 ± 2.9 87.9 ± 3.8 91.9 ± 2.4 94.1 ± 2.1
Baseline + img-aug 47.7 ± 4.2 78.3 ± 3.2 87.7 ± 2.6 91.1 ± 2.4 93.3 ± 1.8
Baseline + set-aug 84.0 ± 3.6 93.8 ± 0.8 96.8 ± 0.6 97.0 ± 1.0 97.5 ± 1.1
Baseline + set-aug + img-aug 81.7 ± 1.9 94.1 ± 1.3 96.5 ± 1.1 97.0 ± 0.9 97.8 ± 0.8

Baseline + set-aug (ours) 84.0 ± 3.6 93.8 ± 0.8 96.8 ± 0.6 97.0 ± 1.0 97.5 ± 1.1
MGM w/ spatial layout (Lin et al., 2019) 80.2 93.8 96.3 97.5 97.5
MGM w/o spatial layout (Lin et al., 2019) 70.4 90.1 91.3 92.6 96.3
TSCN w/ external data (Huang et al., 2019) 84.0 95.1 96.3 - 98.8
GNN w/ external data (Huang et al., 2019b) 74.1 90.1 92.6 - 98.8

Method (GT-based) CMC-1 CMC-5 CMC-10 CMC-15 CMC-20

Baseline + set-aug (ours) 85.7 ± 3.7 96.3 ± 0.8 97.8 ± 0.5 98.3 ± 0.6 98.3 ± 0.6
MGM w/ spatial layout (Lin et al., 2019) 82.4 95.1 96.3 97.5 98.0

Table 3.3 shows the experimental results. The top block in Table 3.3 indicates

the results of our methods and three types of data augmentation: (a) the horizon-

tal flipping (Krizhevsky, Sutskever, and Hinton, 2012), which is used to train the

baseline model; (b) image-based data augmentation (img-aug), which includes both

scale augmentation (Simonyan and Zisserman, 2014; He et al., 2016) and random

erasing (Zhong et al., 2017) on images; and (c) our set-aug. Using the 81 pre-defined

groups, the baseline model was not very effective, even with img-aug. However, us-

ing the set-aug, our method exhibited significant improvements without applying

img-aug. These results imply that generating combinations on sets is very benefi-

cial to our models. The other parts in Table 3.3 show that our methods yield very

competitive results, compared with the state-of-the-art methods that utilize a large

transferred external dataset or auxiliary features such as spatial layout information

within each group. Furthermore, compared with MGM w/o spatial layout (Lin et

al., 2019), which also does not use the spatial layout information, our methods sig-

nificantly improved the accuracy of CMC-1 by 13.6%.

3.5.7 Ablation Study

In this section, we report the results of an ablation study performed to highlight the

importance of each proposed component. The top part in Table 3.4 shows the two

results obtained when our models are trained using triplet loss and the proposed

K-pair-set loss. Triplet loss triggered slight accuracy degradation, even though the

training losses converged to zero in the training stages. We believe that this might

be attributable to the nonexistence of a function for mining hard samples, such as
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Table 3.4. Ablation study. Average accuracies (%) of group re-id
(Market-1501 Group) are shown, where the seven noise patterns,
presented in Table 3.2, are included.

Method Accuracy

Training method ablation
Cross Affinity (baseline) 87.0
Baseline with triplet loss 45.5

Feature extractor ablation
Baseline with L=1 86.0
Baseline with h=1 85.9
w/o Enc 85.7
w/o CSeFT 82.8

Matching layer ablation
Single CS 86.0
w/o ReLU in mCS 85.0
Max pooling 86.1
Average pooling 85.8
Projection metric 67.0
Covariance matrix 61.1
Set kernel 53.3
Cosine similarity metric 53.1

Feature & matching layer ablation
Set Transformer 80.6
Set TransformerUNION 66.7

triplet selection (Hermans, Beyer, and Leibe, 2017). On the other hand, the pro-

posed K-pair-set loss can manage to train the models accurately, without selecting

hard set pairs. The second topmost part in Table 3.4 shows the results of ablations

in the feature extractor. Reducing the number of layers and number of multiheads

in the CSeFT, and excluding the encoder and CSeFT, the accuracies are degraded by

1.0, 1.1, 1.3, and 4.2%. In the results, our model performed well without the encoder

(1.3% degradation); however, excluding the CSeFT module significantly reduced the

accuracy (4.2% degradation). These results imply that the proposed CSeFT module

is a crucial part of the set-to-set matching model architecture. The second lower

part of Table 3.4 shows the results of ablation study performed on the matching

layer. Reducing mCS to a single CS and excluding ReLU from the CS functions re-

duced the accuracies of both models by 1.0 and 2.0%, respectively. It is interesting

to observe that the ReLU was more important than the number of CS functions; this

demonstrated the importance of nonlinearity in the matching layer. Furthermore,

replacing our mCS with max pooling, average pooling, projection metric (Huang,

Wu, and Van Gool, 2018), covariance matrix (Wang et al., 2012; Cai, Takala, and

Pietikainen, 2010), set kernel (Kim et al., 2019), and cosine similarity metric (Nguyen
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and Bai, 2010) all resulted in significant accuracy degradation implying the effective-

ness of our mCS functions. The lowermost part of Table 3.4 shows the results of abla-

tion study performed on the feature extractor and matching layer. The extension of

Set Transformer, which does not include the proposed CSeFT module and CS func-

tion, yielded significant accuracy degradation. Furthermore, Set TransformerUNION ,

which combines two sets as one input and calculates a matching score by applying

a linear layer to the resultant feature vector, also degrades accuracy. These results

show the validity of our architecture for heterogeneous set-to-set matching.

3.5.8 Weak Point Analysis

We consider that our models are promising to match a reference and candidate sets

in high accuracy, but impose more substantial calculations. For example, a one-set-

input function, i.e., the extension of Set Transformer, can transform a set of features

individually for two sets to match. Also, after the feature extractions, it does not

require calculations except the inner product in matching two vectors. Comparing

with the Set Transformer, our models and the extensions of BERT and GNN models

need additional calculation costs in matching two sets; they need paired sets for

the feature extraction. Figure 3.7 shows examples of the calculation time in a testing

stage, where |Y| indicates the number of candidate sets. The calculation time of these

models except for the Set Transformer significantly increased when the number of

candidate sets increased.

Reducing the calculation costs preserving the interactions is challenging but in-

teresting, and we leave it as future work.

3.6 Discussion

In this chapter, we investigated the heterogeneous set-to-set matching problem. We

proposed a novel architecture comprising the (1) cross-set feature transformation

(CSeFT) module and (2) cross-similarity (CS) function, in addition to a loss function

and set-data augmentation for performing set-to-set matching.

We showed that our architecture preserves the two types of exchangeability for

a pair of sets and also the items within them (Proposition 1), thereby satisfying the

requirements of set-to-set matching procedure.
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Figure 3.7. Inference time for set-to-set matching. Here, we test
each model 110 times successively and plot the median in the last
100 records. We randomly generated pseudo data for the calculation,
which are sets vectors on R512. Each set contains eight data. The
number of candidates is two. We used GeForce GTX 970 for the
calculation.

We demonstrated that our models performed well compared with the state-of-

the-art methods and baselines, which were considered as extensions of promising

models, in fashion set recommendation and group re-id experiments. Furthermore,

we validated our proposed architecture through the ablation study. These results

support the claim that the feature representations extracted with interactions be-

tween the set members of the two sets improve the accuracy and robustness of the

heterogeneous set-to-set matching.

3.7 Proof and Discussion of Proposition 1

In this section, we aim to present the proof of Proposition 1, discussing our build-

ing blocks in detail, showing that our architecture is symmetric and permutation

invariant function.

Symmetric Function. We show the proposed architecture is symmetric as follows.

Assuming that f : 2X × 2X → R and Ĝ : X∗ × X∗ → X∗ × X∗ are a symmetric

function and feature extractor, respectively, in general, we can say function Ĝ does

not preserve the symmetric property as follows:

f (Ĝ(X ,Y)) 6= f (Ĝ(Y ,X )). (3.10)

Here, Eq. 3.10 shows an unsatisfied condition for the exchangeability. On the other

hand, assuming that G : X∗ × X∗ → X∗ × X∗ is a two-set-permutation equivariant
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function, we can construct a symmetric architecture as follows:

f (G(X ,Y)) = f (G(Y ,X )), (3.11)

where Eq. 3.11 satisfies the property of exchangeability for two sets. Next, we con-

sider splitting G into two permutation equivariant functions of g : X∗ × X∗ → X∗,

where the range of g is the same shape of the first argument of g and g is also a fea-

ture extractor, which preserves the interactions between the two sets. The function

G is then described as follows:

G(X ,Y) = (g(X ,Y|ΘA), g(Y ,X |ΘB)), (3.12)

where ΘA and ΘB are learnable weights. We can exchange X and Y as follows:

G(Y ,X ) = (g(Y ,X |ΘA), g(X ,Y|ΘB)). (3.13)

Furthermore, using Eq. 3.11 and considering the fact that f is a symmetric function,

we derive the following equation:

f (g(X ,Y|ΘA), g(Y ,X |ΘB)) = f (g(X ,Y|ΘB), g(Y ,X |ΘA)). (3.14)

Here, Eq. 3.14 shows that g(X ,Y|ΘA) = g(X ,Y|ΘB) and g(Y ,X |ΘA) = g(Y ,X |ΘB)

must be held, subject to ΘA = ΘB. Note that this is the weight sharing structure that

our cross-set feature transformation must satisfy. Using the aforementioned weight

sharing structure, we can say our architecture is symmetric in property.

Permutation Invariant Function. For the permutation invariance, we consider a

composite function of a permutation equivariant function and permutation invari-

ant function, which is a permutation invariant function in property. Because the

feature extractor and matching layer in our architecture are permutation equivari-

ant and permutation invariant function, respectively, we can say our architecture is

permutation invariant.

3.8 More Details of Models

In the ablation study, we replace our mCS with max pooling, average pooling, pro-

jection metric (Huang, Wu, and Van Gool, 2018), covariance matrix (Wang et al.,
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2012; Cai, Takala, and Pietikainen, 2010), set kernel (Kim et al., 2019), and cosine

similarity metric (Nguyen and Bai, 2010). For projection metric, we use the inner

product as described in (Huang, Wu, and Van Gool, 2018). For covariance matrix,

we calculate two covariance matrices and the inner product between the two ma-

trices (Zhu et al., 2013). Note that we also normalize the calculated similarities as

described in (Nguyen and Bai, 2010). For set kernel, we use Gaussian kernel and

multiple kernel learning as described in (Li et al., 2017).
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Conclusion

In this thesis, we advance multiple data matching via introducing two types of prob-

lem scenarios and propose novel matching models, including the recent promising

frameworks: (i) matching clusters that commonly lie in heterogeneous data groups

using kernel mean embeddings and (ii) matching sets via deep neural network mod-

els.

Through this thesis, we extend matching problems via modeling the structure of

data using the powerful functions as follows:

• For the (i) cluster matching case, we have proposed the clustering method to

maximize the similarity between the cluster structures within two domains

based on the supervised information on the one-side domain. Here, the simi-

larity is calculated via the similarity of kernel means, which represent the prob-

ability distributions of each cluster uniquely and nonparametrically.

• For the (ii) set matching case, we introduced the new deep neural network that

learns matching up heterogeneous sets in feature spaces, which transform set-

feature constrained on the two types of exchangeability required: exchange-

ability between the pair of sets and invariance across different permutations of

the items in each set.

Furthermore, we have proposed the new applications as follows:

• For the (i) cluster matching case, we have proposed taxonomy matching via

multiple data matching on asteroid and meteorite datasets. In the experiments,

we investigated the links between the clusters of meteorites and asteroids.

• For the (ii) set matching case, we introduced set matching on fashion set rec-

ommendation and group re-identification. In the experiments, we have shown
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that the proposed method provides significant improvements and results com-

pared with the state-of-the-art methods in heterogeneous set matching appli-

cations.

4.1 Open Problems

We discuss some important problems for future research below.

Unsupervised Learning. Although we have proposed the models that use super-

vised information in this thesis, the unsupervised approach is also essential, and

optimizing our method in an unsupervised manner is non-trivial. For example, un-

supervised learning for our deep neural network may lead to unsupervised set-to-

set matching that would be meaningful in some use-cases.

Rejection Scheme. Our methods must respond to select one of the answers from

candidates in the matching process. In a real-world application, however, sometimes

rejections are necessary, and unmatched cases are important (Iwata and Ishiguro,

2017).

Elimination of Spurious Correlation. Our models do not include an explicit scheme

for eliminating spurious correlation; however, it is essential to discover matching

that does not rely on such a spurious correlation. Specifically, for the (i) cluster

matching case, the matching scenario requires scientific experiments towards in-

vestigating the long-standing hypothesis on meteorite and asteroid. Although our

methodology includes feature pre-processing that reduces noises on spectra data,

which decreases the spurious correlation, we further need to investigate the spuri-

ous relationship on the matching process.
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