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WREH Sparse Regression for Correlated Variables

High dimensional data appear in many fields such as biology, economy, and industry. A
common approach for high dimensional regression is sparse regularization such as [
regularization (Lasso (Tibshirani, 1996)). Since the sparse regularization performs
both parameter estimation and variable selection simultaneously, it offers
interpretable results by identifying informative variables and effectively avoid
overfitting by discarding redundant variables. Its effectiveness has been supported

empirically and theoretically by several studies.

However, one of the most significant issues in [; regularization is that its performance
is quite sensitive to correlations among variables. Typical theoretical supports are
based on a kind of “small correlation” assumptions such as the incoherence condition
(Fuchs, 2005; Tropp, 2006; Wainwright, 2009) and the restricted eigenvalue condition
(Bickel, Ritov, and Tsybakov, 2009; Bithlmann and Van De Geer, 2011; Hastie,
Tibshirani, and Wainwright, 2015). Besides, [; regularization empirically incurs many
false-positive variables in the presence of correlated variables, resulting in large

estimation errors.

Correlated variables also hinder the interpretation of models. A standard
interpretation of a (generalized) linear model comes from regression coefficients and
effects. A single coefficient represents the degree to which an increase of its variable
by one unit increases the prediction “when all other active variables remain fixed.”
When an output model contains correlated variables, we must consider the influence
of all other correlated active variables simultaneously, which can be intractable. A
single effect represents the degree to which its variable affects the prediction “on
average.” However, the value of the effect may become misleading in the presence of
strong correlations because it is unlikely to increase a variable by one standard
deviation but not changing other correlated variables. Therefore, it is beneficial for

interpretability to construct a model with uncorrelated variables.

We address the above issues of sparse regression for correlated variables. We
theoretically relax the small correlation assumptions among variables; instead, we
impose small correlation assumptions among true active variables. Based on our

assumptions, we propose a new regularization method, “Independently Interpretable



Lasso” (IlLasso). Qur proposed regularization incurs a large penalty for selecting
correlated variables; hence the output models have low correlations among active
variables. We can intuitively interpret the output models through regression
coefficients and effects because each active variable affects the response independently
in our model. We provide a coordinate descent algorithm to find a solution of our

objective function, which is guaranteed to converge to a stationary point.

Some previous studies have taken correlations among variables into account, and some
of them have proposed sparse regression methods that exclude correlated variables.
The Uncorrelated Lasso (Chen et al., 2013) intends to construct a model with
uncorrelated variables. However, it still tends to select “negatively” correlated
variables so that the correlation problem is not resolved. The Exclusive Group Lasso
(Kong et al., 2014) is also in this line, but it is necessary to group correlated variables
beforehand, and practically it causes unstable results. Additionally, they have no
theoretical guarantees for sign recovery and estimation errors. Our method, in contrast,
does not select negatively correlated variables, is free from a specific pre-processing

such as grouping, and has favorable theoretical guarantees.

In our theoretical analyses, we reveal that the proposed method is advantageous for
its sign recovery and estimation error. We define the generalized incoherence condition
and the generalized restricted eigenvalue condition for our analyses. Then, we show
that our method achieves correct sign recovery under the generalized incoherence
condition. This condition is milder than the ordinary incoherence condition for ordinary
l; regularization for correlated variables. We also show that our method is also
beneficial for the estimation errors for correlated variables. This is because the
generalized restricted eigenvalue condition for our method is milder than the ordinary
restricted eigenvalue condition for ordinary [; regularization. Additionally, we show
that every local optimal solution achieves the same statistical error rate as the global

optimal solution, and thus is almost minimax optimal.

We extend our method to generalized linear models and analyze it theoretically. We
show that its estimation errors are almost minimax optimal. As an example of
generalized linear models, we provide a coordinate descent algorithm for logistic

regression and its estimation error bounds.

Synthetic and real data analyses indicate the effectiveness of our method. Synthetic
simulations for linear models and logistic regression models showed that our method
achieved accurate prediction and estimation with a few active variables. Real data
experiments using ten gene expression datasets also showed that our method could

estimate accurate models with small correlations.
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