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Sparse regularization, such as `1 regularization, is a quite effective technique
for high dimensional learning problems. Its effectiveness has been supported
empirically and theoretically. However, one of the most significant issues in `1

regularization is that its performance is quite sensitive to correlations among
variables. Typical theoretical supports are based on a kind of small correlation
assumptions including the incoherence condition and the restricted eigenvalue
condition. Besides, `1 regularization empirically incurs many false-positive vari-
ables, resulting in large estimation errors and low interpretability. In this thesis,
we propose a new regularization method, “Independently Interpretable Lasso”
(IILasso). We mitigate small correlation assumptions among variables; instead,
we impose small correlation assumptions among true active variables. Our pro-
posed regularizer incurs a large penalty for selecting correlated variables, hence
the output models have low correlations among active variables. We can intu-
itively interpret regression coefficients in our model because each active variable
affects the response independently. In our theoretical analyses, we show that
our method achieves correct sign recovery under the generalized incoherence
condition, which is milder than the ordinary incoherence condition. Addition-
ally, we show that our method is beneficial for its estimation error for correlated
design because our generalized restricted eigenvalue condition is milder than the
ordinary restricted eigenvalue condition. Furthermore, we extend our method
and its theoretical results to generalized linear models. Synthetic and real data
analyses indicate the effectiveness of our method.
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Chapter 1

Introduction

1.1 Sparse Regression: Strengths and Weaknesses

High dimensional data appear in many fields such as biology, economy, and
industry. A common approach for high dimensional regression is a sparse reg-
ularization strategy such as the Lasso (Least absolute shrinkage and selection
operator) (Tibshirani, 1996). Since the sparse regularization performs both
parameter estimation and variable selection simultaneously,

1. it offers interpretable results by identifying informative variables,

2. and it can effectively avoid overfitting by discarding redundant variables.

Because of these properties, the sparse regularization has had huge success in
a wide range of data analysis in science and engineering. In addition, several
theoretical studies have been developed to support the effectiveness of sparse
regularization, and several optimization methods also have been proposed so
that sparse learning is efficiently executed.

One of the significant issues, however, is its performance in the presence of cor-
related variables. Its performance is theoretically guaranteed only under “small
correlation” assumptions that variables are not much correlated with each other.
Actually, typical theoretical supports are based on a kind of small correlation
assumptions including the incoherence condition (Fuchs, 2005; Tropp, 2006;
Wainwright, 2009) and the restricted eigenvalue condition (Bickel, Ritov, Tsy-
bakov, et al., 2009; Bühlmann and Van De Geer, 2011; Hastie, Tibshirani, and
Wainwright, 2015). Besides, the Lasso empirically incurs many false-positive
variables in the presence of correlated variables, resulting in large estimation
errors.

Correlated variables also hinder the interpretation of models. A standard inter-
pretation of a (generalized) linear model comes from regression coefficients and
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effects (products of regression coefficients and standard deviations). A single
coefficient represents the degree to which an increase of its variable by one unit
increases the prediction “when all other active variables remain fixed”. When
an output model contains correlated variables, we must consider the influence
of all other correlated active variables simultaneously, which can be intractable.
A single effect represents the degree to which its variable affects the prediction
“on average”. However, the value of the effect may become misleading in the
presence of strong correlations because it is unlikely to increase a variable by one
standard deviation but not changing other correlated variables. Similar prop-
erties were described as disadvantages of linear models in Section 4.1 in Molnar
et al. (2018). This kind of interpretability was also referred to as “decompos-
ability” in Lipton (2018), which means the ability of whether we can decompose
a model into some parts and interpret each component independently. In this
sense, correlated variables degrade the decomposability of the model. There-
fore, it is beneficial to construct a model with uncorrelated variables for both
estimation error and interpretability.

1.2 Research for Correlated Variabes

Several methods have been proposed to resolve the problem induced by corre-
lations among variables.

One line of research taking correlations among variables into account is based
on a strategy in which correlated variables are either all selected or not selected
at all. Examples of this line are the Elastic Net (Zou and Hastie, 2005), Pairwise
Elastic Net (Lorbert, Eis, Kostina, Blei, and Ramadge, 2010), and Trace Lasso
(Grave, Obozinski, and Bach, 2011). These methods select not only impor-
tant variables but also unimportant variables that are strongly correlated with
important variables. Although these methods often give stable generalization
error, this strategy makes it hard to interpret the model. This is because the
output model incorporates many correlated variables, and their coefficients and
effects receive large influence from the number of correlated variables and the
degree of correlations.

Another line of research, including ours, is proposed based on the strategy in
which uncorrelated variables are selected. The Uncorrelated Lasso (Chen, Ding,
Luo, and Xie, 2013) intends to construct a model with uncorrelated variables.
However, it still tends to select “negatively” correlated variables, and hence
the correlation problem is not resolved. The Exclusive Group Lasso (Kong,
Fujimaki, Liu, Nie, and Ding, 2014) is also in this line, but it is necessary to
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group correlated variables beforehand. They suggest grouping variables whose
correlations are higher than a certain threshold. However, determination of
the threshold is not a trivial problem, and practically it causes unstable results.
Moreover, these methods are lack of theoretical support, including sign recovery
and estimation errors.

1.3 Our Contribution

We address the issue that the performance of sparse regression is degraded when
the correlation among variables is high. Existing theoretical support is based
on “small correlation” assumptions such as incoherence condition and restricted
eigenvalue condition. There are many false-positive variables empirically, and
it results in large estimation errors in the presence of correlated variables.

We theoretically mitigate “small correlation” assumptions among variables; in-
stead, we impose “small correlation” assumptions among true active variables.
Under this assumption, we propose a new regularization method, “Indepen-
dently Interpretable Lasso” (IILasso). Our proposed regularizer incurs a large
penalty for selecting correlated variables; hence the output models have low
correlations among active variables. Each active variable affects the response
independently in our model so that we can interpret regression coefficients in-
tuitively. Our method offers efficient variable selection, which does not select
negatively correlated variables and is free from a specific pre-processing such as
grouping.

To support the effectiveness of our proposal, we give the following contributions:

• We show a necessary and sufficient condition for the sign consistency of
variables selection. We show that our method achieves the sign consis-
tency under a milder condition than the Lasso for correlated design.

• The convergence rate of the estimation error is analyzed. We show that
our estimation error achieves the almost minimax optimal rate and has
an advantage over the Lasso.

• We propose a coordinate descent algorithm to find a local optimum of
the objective function, which is guaranteed to converge to a stationary
point. Additionally, we show that every local optimal solution achieves
the same statistical error rate as the global optimal solution and thus is
almost minimax optimal.
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• We extend linear models to generalized linear models and derive its con-
vergence rate.

1.4 Outline

The rest of the thesis is organized as follows: In Chapter 2, we review sparse
regression methods. In Chapter 3, we propose a new regularization method for
linear models and introduce its optimization method and theoretical results.
In Chapter 4, we extend the IILasso to generalized linear models. In Chapter
5, both synthetic and real-world data experiments, including ten microarray
datasets, are illustrated. In Chapter 6, we summarize our thesis.

1.5 Notations

Let v ∈ Rp. Let Diag(v) ∈ Rp×p be the diagonal matrix whose j-th diagonal
element is vj. Let |v| be the element-wise absolute vector whose j-th element is
|vj|. Let sgn(v) be the sign vector whose elements are 1 for vj > 0, −1 for vj < 0,
and 0 for vj = 0. Let supp(v) be the support set of v, i.e., {j ∈ {1, · · · , p}|vj 6=
0}. Let ‖v‖q be the `q-norm, i.e., ‖v‖q = (

∑p
j=1 |vj|q)1/q.

Let M ∈ Rn×p. We use subscripts for the columns of M , i.e., Mj denotes the
j-th column. Let ‖M‖q be the operator norm (induced norm), i.e., ‖M‖q =

supv∈Rp ‖Mv‖q/‖v‖q. Specifically, ‖M‖2 = supv∈Rp ‖Mv‖2/‖v‖2 is the spectral
norm (the largest singular value of M), and ‖M‖∞ = maxi

∑
j |Mij| is the

maximum absolute column sum norm. Let ‖M‖max be the max norm, i.e.,
‖M‖max = maxij |Mij|.

Let M ∈ Rp×p. Let M � O and M � O denote positive semi-definite matrix
and positive definite matrix, i.e., v>Mv ≥ 0 for ∀v ∈ Rp and v>Mv > 0 for
∀v ∈ Rp and v 6= 0, respectively.

Let S be a subset of {1, · · · , p}. Let |S| be the number of the elements in S. Let
Sc be the complement subset of S, i.e., Sc = {1, · · · , p}\S. Let vS be the vector
v restricted to the index set S. Let MS1S2 be the matrix whose row indexes are
restricted to S1 and column indexes are restricted to S2.
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Chapter 2

Sparse Regression

2.1 Problem Setting

Consider a problem of predicting a response y ∈ Rn, given a design matrix
X ∈ Rn×p, assuming a linear model

y = Xβ + ε, (2.1)

where β ∈ Rp is a regression coefficient, and ε ∈ Rn is a noise. We assume
that the variables are standardized such that Σn

i=1Xij = 0, Σn
i=1X

2
ij/n = 1 and

Σn
i=1yi = 0.

The usual least-squares estimator is based on minimizing the squared-error loss

min
β

1

2n
‖y −Xβ‖2

2.

If p < n and X is full column rank, the unique solution is

β̂ = (X>X)−1X>y.

The estimation error of the squared-error estimator is known to O(p/n).

On the other hand, if p > n, the least-squares estimators are not unique, and
there is an infinite set of solutions.

2.2 The Lasso

The Lasso (Tibshirani, 1996) is a standard method for high-dimensional (n < p)
data to estimate a sparse model. The Lasso optimizes

min
β

1

2n
‖y −Xβ‖2

2 + λ‖β‖1, (2.2)
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where λ = λn is a regularization parameter, which is typically determined by
cross-validation. We also write λ = λn as we explicitly express its dependence
of n. The formulation (2.2) has several attractive properties as follows:

Convexity. The objective function is convex. Convexity also holds for the
penalty ‖β‖qq where q ≥ 1. Simple greedy algorithms converge to a global
optimum.

Sparsity. The solution is sparse, that is, a large λ causes some of the coefficients
to be exactly zero. Sparsity also holds for the penalty ‖β‖qq where q ≤ 1.

Interpretability. Sparse (generalized) linear models are easy to interpret.

Algorithm Efficiency. Efficient optimization algorithms are available such as
the coordinate descent algorithm.

Statistical Property. Several theoretical analyses support the Lasso. The
incoherence condition guarantees sign recovery. The `2 estimation error
is O(s log(p)/n), where s is the number of true active variables, under the
restricted eigenvalue condition. It is almost minimax-optimal.

We explain the above properties.

2.2.1 Convexity

Another form for the Lasso (2.2) is

min
β

1

2n
‖y −Xβ‖2

2,

s.t. ‖β‖1 ≤ t. (2.3)

The constraint region is a convex set, and the objective function is a strongly
convex function, so the Lasso is a convex problem. Because the convex problem
has no local minima, simple greedy algorithms converge to a global optimum.

The penalty ‖β‖qq for q > 1 is also convex. Ridge regression is an example using
squared-`2 penalty:

min
β

1

2n
‖y −Xβ‖2

2 + λ‖β‖2
2,

where λ is a regularization parameter. The solution is easily obtained as

β̂ = (X>X + λI)−1X>y.
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Ridge regression shrinks the estimate to zero, but does not induce sparsity.

The penalty ‖β‖qq for q < 1 is nonconvex. It is hard to optimize nonconvex
problems because there exists a local minimum. Best subset selection can be
seen as a limit case of q → 0 so that it is called `0 penalty. This optimization
is challenging because of its nonconvexity and discontinuity.

2.2.2 Sparsity

The Lasso solution is sparse. To see this, we consider the `1 geometry. The
constraint region of the Lasso (2.3) is a square, and the contours of the objec-
tive function is an ellipse. If their contours hit the corner of the square, the
corresponding component of the solution equals to zero, which indicates the
sparse solution.

The penalty ‖β‖qq for q < 1 also induces sparsity, because its constraint region
is sharp on each component. On the other hand, the penalty ‖β‖qq for q > 1

does not induce sparsity, because their constraint regions are not sharp for any
directions.

The importance of sparsity relies on estimation error and interpretability. Under
the assumption that the true signal is sparse, the Lasso can recover the true
signal. Besides, it can estimates coefficients as if we know true active variables in
advance. Additionally, the output model is easy to interpret because the Lasso
eliminates uninformative variables and selects only a few informative variables.

2.2.3 Interpretability

Interpretability is the degree to which a human can understand the cause of
a decision (Miller, 2019). It has received much attention from the machine
learning community in recent years (Doshi-Velez and Kim, 2017; Miller, 2019;
Molnar, 2020). There are many reasons why interpretability matters. One
representative reason is that problem formulation using a single metric, such as
a risk function, is not enough to describe the original real-world problem. Thus,
we need to understand the behavior of the model for cofirming safety, detecting
bias, social acceptance, debugging, and auditing for example.

Methods for interpretability can be classified as intrinsic methods and post
hoc methods. Intrinsic methods refer to exploiting interpretable models due
to their simple structure, while post hoc interpretation methods refer to the
application of interpretation methods to complicated trained models. Intrinsic
methods are effective especially for scientific knowledge discovery because there
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is almost no gap between the model and interpretation (scientific discovery).
Intrinsic methods includes linear regression models, logistic regression models,
generalized linear models, general additive models, decision trees, k-nearest
neighbors, rule based learners, and Bayesian models.

The Lasso is an intrinsically interpretable model and has some superiorities
in its model transparency. First, the Lasso has high simulatability, that is,
it is easy to simulate a model by a human. This is because the model is a
linear function and it includes only a small number of variables. Second, it
has decomposability, that is, each of the parts of a model can be interpreted.
This is because its coefficients represents the association between variables and
responses. However, this is not the case under high correlations between active
variables, as described in Chapter 3.2 and our proposed method mitigates this
drawback. Third, it also has algorithmic transparency, that is, the optimization
algorithms are intuitive and easy to interpret because it converges to a unique
solution.

2.2.4 Optimization

Several optimization algorithms can solve the Lasso problem. In this subsection,
we introduce four algorithms: proximal gradient descent, coordinate descent,
LAR, and ADMM.

Proximal Gradient Descent

Proximal gradient descent is a basic algorithm for nondifferentiable function
optimization. Let an objective function can be decomposed as f = g+ h where
g is convex and differentiable, and h is convex but nondifferentiable. Then,
proximal gradient descent update forms

βt+1 ← argminβ

{
g(βt) + 〈∇g(βt), β − βt〉+

1

2st
‖β − βt‖2

2 + h(β)

}
,

where st is a stepsize. The stepsize can be either taken any small fixed constant
or chosen by backtracking line search. Taking g = ‖y−Xβ‖2

2/2n and h = λ‖β‖1,
we have the proximal descent update for the Lasso (Daubechies, Defrise, and
De Mol, 2004) as

βt+1
j ← S

(
βtj + st

1

n
X>j (y −Xβt), stλ

)
,
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for j = 1, . . . , p, where S(z, γ) is a soft thresholding function

S(z, γ) : = sgn(z)(|z| − γ)+

=


z − γ if z > 0 and γ < |z|,

z + γ if z < 0 and γ < |z|,

0 if |z| ≤ γ.

(2.4)

Furthermore, Nesterov’s acceleration scheme (Nesterov, 2013) can be used as

βt+1 ← S
(
θt + st

1

n
X>(y −Xθt), stλ

)
,

θt+1 ← βt+1 +
t

t+ 3
(βt+1 − βt).

This is essentially equivalent to FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) (Beck and Teboulle, 2009).

Coordinate Descent

For high-dimensional data, simultaneous update for all components of coeffi-
cients needs high computation cost. The coordinate descent algorithm (Fried-
man, Hastie, Höfling, Tibshirani, et al., 2007; Friedman, Hastie, and Tibshirani,
2010) updates a single coordinate at a single iteration. Specifically, the cyclic
coordinate descent algorithm forms for j = 1, . . . , p, 1, . . . , p, . . . ,

βt+1
j ← argminβjf(βt1, . . . , β

t
j−1, βj, β

t
j+1, . . . , β

t
p),

βt+1
k ← βtk for k 6= j.

For the Lasso, differentiating the objective function (2.2) with respect to βj

yields

− 1

n
X>j (y −X−jβ−j) + βj + λsgn(βj),

where β−j denotes β without the j-th component, and X−j denotes X without
j-th column. Hence, we obtain the update rule as

βj ← S
(

1

n
X>j (y −X−jβ−j) , λ

)
,

where S(z, γ) is a soft thresholding function (2.4). Several implementation tech-
niques are effective for the computational cost, including covariance updating,
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warm-start, active-set convergence, strong-set convergence, and safe screening.
See (Hastie, Tibshirani, and Wainwright, 2015) for example.

LAR

Least angle regression (LAR) (Efron, Hastie, Johnstone, Tibshirani, et al., 2004)
is a specific algorithm for the Lasso with squared-error loss. It can provide
exact entire solution paths for regularization parameters. At first step, it finds
the variable most correlated with the response. Then, it moves its coefficient
continuously to the least-squares estimate. When another variable catches up
in terms of correlation with the residual, it enters the active set, and move
together to the least-squares estimate keeping their correlations equally. This
process is continued until it ends at the full least-squares estimate.

ADMM

The alternating direction method of multipliers (ADMM) (Boyd, Parikh, Chu,
Peleato, Eckstein, et al., 2011) is an augmented Lagrangian based approach.
It is applicable to a wide range of optimization problems, including the Lasso.
Consider an optimization problem such that

min
β,θ

f(β) + g(θ), s.t. Aβ +Bθ = c,

where f : Rm → R and g : Rn → R are convex functions, and A ∈ Rn×d, B ∈
Rn×d, and c ∈ Rd. Then, the augmented Lagrangian is

Lρ(β, θ, µ) := f(β) + g(θ) + 〈µ,Aβ +Bθ − c〉+
ρ

2
‖Aβ +Bθ − c‖2

2.

The ADMM algorithm forms

βt+1 ← argminβLρ(β, θ
t, µt)

θt+1 ← argminθLρ(β
t+1, θ, µt)

µt+1 ← µt + ρ(Aβt+1 +Bθt+1 − c).
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Taking f = ‖y −Xβ‖2
2/2n and g = λ‖β‖1, we have the ADMM algorithm for

the Lasso as

βt+1 ← (X>X + ρI)−1(X>y + ρθt − µt)

θt+1
j ← S

(
βt+1
j +

µt

ρ
,
λ

ρ

)
for j = 1, . . . , p

µt+1 ← µt + ρ(βt+1 − θt+1).

2.2.5 Theoretical Properties

The Lasso has a large amount of theoretical support. In this subsection, we
review two primary theoretical results; sign recovery and estimation error. Con-
sider a linear model (2.1) and the Lasso (2.2).

Sign Recovery

Sign recovery refers to whether estimators can estimate correct signs (posi-
tive/zero/negative) for all coefficients. The Lasso has a simple condition for
correct sign recovery. This result follows straightforwardly from optimality con-
ditions for convex programs (Wainwright, 2009).

Theorem 1. Assume X>SXS/n is invertible. Then, there exists a solution β̂

of (2.2) with correct sign recovery sgn(β̂) = sgn(β∗) if and only if the following
two conditions hold:

sgn

(
β∗S −

(
1

n
X>SXS

)−1(
λsgn(β∗S)− 1

n
X>S ε

))
= sgn(β∗S),∣∣∣∣∣ 1nX>ScXS

(
1

n
X>SXS

)−1(
λsgn(β∗S)− 1

n
X>S ε

)
+

1

n
X>Scε

∣∣∣∣∣ ≤ λ,

where both of these vector inequalities are taken elementwise.

Furthermore, the Lasso yields correct sign recovery with high probability under
the assumption of sub-Gaussian noise (Assumption 1 in Section 3.5). This
result is the same as (Wainwright, 2009), although the parameterizations of the
following are different from the original one. Our theoretical results include the
result as a particular case.

Definition 1 (Incoherence Condition and beta-min Condition). We say that the
incoherence condition holds if there exists some incoherence parameter κ ∈ (0, 1]
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such that ∥∥∥∥∥ 1

n
X>j XS

(
1

n
X>SXS

)−1
∥∥∥∥∥

1

≤ 1− κ,

for ∀j ∈ Sc. We say that the beta-min condition holds if

β∗min := min
j∈S
|β∗j | > λn

(∥∥∥∥∥
(

1

n
X>SXS

)−1
∥∥∥∥∥
∞

+
4σ
√
ϕ

)
.

Theorem 2. Suppose that Assumptions 1 (sub-Gaussian noise) and Defini-
tion 1 (the incoherence condition and the beta-min condition) with a constant
κ ∈ (0, 1] are satisfied. Suppose that there exists a constant ϕ > 0 such that
1
n
X>SXS � ϕI. Suppose that the regularization parameter satisfies

λn ≥ max

{
1

4
,
2σ

κ

}√
2 log(2p/δ)

n
.

Then, there exists a solution β̂ of (2.2) with correct sign recovery sgn(β̂) =

sgn(β∗) with probability at least 1− 2δ.

Estimation Error

Estimation errors refer to the distances between estimates and true coefficients.
There are various conditions for estimation errors. The following is one of the
most straightforward conditions.

Definition 2 (Restricted Eigenvalue Condition). Let a set of vectors B(S,C)

be

B(S,C) :=
{
v ∈ Rp : ‖vSc‖1 ≤ C‖vS‖1

}
.

We say that the restricted eigenvalue condition holds if we have φRE > 0 where

φRE = φRE(S,C) := inf
v∈B(S,C)

v> 1
n
X>Xv

‖v‖2
2

.

`2 error of the Lasso is bounded by parameters s, λn, and φRE with high proba-
bility. This result is essentially the same as the existing results (Bickel, Ritov,
Tsybakov, et al., 2009; Bühlmann and Van De Geer, 2011). Our theoretical
results include the result as a particular case.
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Theorem 3. Suppose that Assumption 1 is satisfied. Suppose that the regular-
ization parameters satisfy

λn ≥ 3σ

√
2 log(2p/δ)

n
,

and that Assumption RE(S, 2) (Definition 2) is satisfied. Then, it holds that

‖β̂ − β∗‖2
2 ≤

64sλ2
n

9φRE(S, 2)2
,

with probability at least 1− δ.

Different constants give different statements. For example, we can obtain

‖β̂ − β∗‖2
2 ≤

9sλ2
n

φRE(S, 3)2
,

with probability at least 1− δ, assuming

λn ≥ 2σ

√
2 log(2p/δ)

n
,

and Assumption RE(S, 3) (Definition 2).

We note that the convergence rate is roughly evaluated as

‖β̂ − β∗‖2
2 = Op

(
s log(p)

n

)
,

by taking λn = Op(
√

log p/n), which is almost the minimax optimal rate
(Raskutti, Wainwright, and Yu, 2011).

2.3 Beyond the Lasso

These theoretical analyses, as well as empirical results, show the strengths and
weaknesses of the Lasso. We point out three major issues of the Lasso.

1. The Lasso has estimation bias induced by the `1-norm. Some methods
have been proposed to aim at low bias estimators. The examples in-
clude SCAD (Fan and Li, 2001), MCP (Zhang et al., 2010), Adaptive
Lasso (Zou, 2006), relaxed Lasso (Meinshausen, 2007; Hastie, Tibshirani,
and Tibshirani, 2017), and others.

2. The Lasso is unstable in the presence of correlations among features. Sev-
eral stable estimators have been proposed, such as Elastic Net (Zou and
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Hastie, 2005), Pairwise Elastic Net (Lorbert, Eis, Kostina, Blei, and Ra-
madge, 2010), and Trace Lasso (Grave, Obozinski, and Bach, 2011).

3. The Lasso typically includes many active variables, which results in many
false positives. Some methods take correlations among variables into ac-
count to obtain more sparse solutions. These include Exclusive Group
Lasso (Kong, Fujimaki, Liu, Nie, and Ding, 2014), Uncorrelated Lasso (Chen,
Ding, Luo, and Xie, 2013), and our proposed method in this paper.

Various methods for high-dimensional data have been motivated by these issues.
We introduce them in the following subsections.

2.3.1 Low Bias Estimators

The Lasso has estimation bias because it imposes `1 norm as a penalty of the
objective function. An ideal alternative is `0 norm; that is, the penalty propor-
tional to the number of active variables. This is also called best subset selection.
In general, `0 minimization problems are known to be NP-hard (Natarajan,
1995), so that the computational cost is problematic. There are several heuris-
tic approaches, such as forward (Efroymson and Ray, 1966; Draper and Smith,
1966), or backward selection, but they do not converge to a global optimum.
Recently, best subset selection via a mixed integer optimization problem has
been proposed (Bertsimas, King, and Mazumder, 2016). This method can solve
a global optimum efficiently, but it is still too slow for thousands or more vari-
ables (Hastie, Tibshirani, and Tibshirani, 2017).

An intermediate formulation between `0 and `1 norm is `q penalty with 0 < q <

1:

min
β

1

2n
‖y −Xβ‖2

2 + λ‖β‖qq.

Although this is nonconvex, some greedy algorithms have been proposed such
as Iteratively Reweighted `1 minimization (Gasso, Rakotomamonjy, and Canu,
2009; Zou and Li, 2008), Iteratively Reweighted Least Squares (Rao and Kreutz-
Delgado, 1999; Gorodnitsky and Rao, 1993; Gorodnitsky and Rao, 1997), and
Iteratively Thresholding Method (She et al., 2009).

Some clipped penalties are proposed to reduce estimation bias. SCAD (Fan and
Li, 2001) uses a smoothly clipped penalty with a linear, quadratic, and constant
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term as

min
β

1

2n
‖y −Xβ‖2

2 +

p∑
j=1

ρ(βj;λ, γ),

ρ(θ;λ, γ) =



λθ if θ ≤ λ

2λγθ − θ2 − λ2

2(γ − 1)
if λ ≤ θ ≤ γλ

λ2(γ2 − 1)

2(γ − 1)
if θ ≥ γλ.

Similarly, MCP (Zhang et al., 2010) uses a quadratic and constant term as

min
β

1

2n
‖y −Xβ‖2

2 +

p∑
j=1

ρ(βj;λ, γ),

ρ(θ;λ, γ) =


λθ − θ2

2γ
if β ≤ γλ

1

2
γλ2 if β ≥ γλ.

SCAD and MCP are also nonconvex, but some greedy algorithms have been pro-
posed such as (Breheny and Huang, 2011; Loh and Wainwright, 2015). More-
over, estimation errors for every local minimum are theoretically quantified (Loh
and Wainwright, 2015).

There are many other low bias estimator such as Relaxed Lasso (Meinshausen,
2007; Hastie, Tibshirani, and Tibshirani, 2017), capped-`1 (Zhang, Zhang, et
al., 2012), and Adaptive Lasso (Zou, 2006).

2.3.2 Stable Estimators

If there are strong correlations among variables, the Lasso solutions tend to
be unstable. In particular, identical variables lose the uniqueness of the Lasso
solution; if β̂ is a Lasso solution and Xj = Xk, then β̂′ is another solution of
the Lasso objective function, where

β̂′ =


β̂l if l 6= j and l 6= k

(β̂j + βk)u if l = j

(β̂j + βk)(1− u) if l = k,

for any u ∈ [0, 1]. This fact implies that high correlations flatten the Lasso ob-
jective function around minimizer, and the optimal solution can vary drastically
with a small noise.
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Elastic Net (Zou and Hastie, 2005) is a representative method that yields both
sparse and stable solutions. The objective function is constructed by squared
`2 penalty in addition to `1 penalty:

min
β
‖y −Xβ‖2

2 + λ1‖β‖1 + λ2‖β‖2
2.

Elastic Net is stable because it has a grouping effect. Formally, it is shown that
the estimate of Elastic Net β̂ satisfies

|β̂j − β̂k| ≤
‖y‖1

λ2

√
2(1−X>j Xk/n).

Hence, if the variables Xj and Xk are strongly correlated tending to be 1, then
estimates of βj and βk get closer. This effect contributes to stable solutions.

There is some research in this direction. Pairwise Elastic Net (Lorbert, Eis,
Kostina, Blei, and Ramadge, 2010) is

min
β
‖y −Xβ‖2

2 + λ
(
‖β‖2

2 + (1− γ)‖β‖2
1 − (1− γ)|β|>R|β|

)
, Rjk =

1

n
|XjXk| .

An appropreate choice of γ yields the convexity of the problem. Trace Lasso (Grave,
Obozinski, and Bach, 2011) is

min
β
‖y −Xβ‖2

2 + λ ‖XDiag(β)‖∗ ,

where M∗ denotes the trace norm, that is, the sum of the singular values of
the matrix M . This formulation is also convex. Pairwise Elastic Net and Trace
Lasso take advantage of the correlations among variables to add strong convexity
exactly in the directions where needed, while Elastic Net blindly adds squared
`2 norm in every direction.

One of the problems, when we use these kinds of stable methods, is that they
tend to include many correlated variables, and each coefficient no longer indi-
cates an independent variable contribution to the response. As a result, it is
hard to understand which variables are truly active and how variables affect the
objective variable.

2.3.3 Low Correlation Estimators

The Lasso typically includes many active variables for correlated data, which
results in many false positives. Some methods take correlations among variables



Chapter 2. Sparse Regression 17

into account to exclude redundant variables.

The Uncorrelated Lasso (ULasso) (Chen, Ding, Luo, and Xie, 2013) aims to
reduce correlations among active variables. It optimizes the following objective
function:

min
β
‖y −Xβ‖2

2 + λ1‖β‖1 + λ2β
>Rβ, (2.5)

where R ∈ Rp×p with each element Rjk = ( 1
n
X>j Xk)

2. Although they intended
to exclude correlated variables, we found that the ULasso does not necessarily
select uncorrelated variables. For example, consider the case X = [X1, X2]. The
last term of (2.5) is λ2(β2

1 + β2
2 + 2R12β1β2). If R12 6= 0, then the term R12β1β2

encourages |β1β2| larger with β1β2 < 0. This example implies that the ULasso
tends to select correlated variables and set coefficients to the opposite sign. In
particular, X1 and X2 are strongly correlated, then it reduces λ2(β1 + β2)2,
which induces β1 = −β2. It is not a significant problem when X1 and X2 are
positively correlated but is a significant problem when X1 and X2 are negatively
correlated.

The Exclusive Group Lasso (EGLasso) (Kong, Fujimaki, Liu, Nie, and Ding,
2014) is also the same direction of exclusive selection. It optimizes the following
objective function:

min
β
‖y −Xβ‖2

2 + λ1‖β‖1 + λ2

K∑
k=1

‖β(k)‖2
1, (2.6)

where β(k) consists of the variables of β within a group of predictors gk ⊂
{1, · · · , p} and K is the number of groups. The last `1/`2 penalty term acts
on exclusive variable selection. For example, when p = 3, g1 = {1, 2} and
g2 = {3}, then the last term becomes λ2((|β1| + |β2|)2 + |β3|2). This penalty
enforces sparsity over each intra-group. They suggest putting highly correlated
variables into the same group to select uncorrelated variables. They use |rij| > θ

with θ ≈ 0.90 as a threshold.

The idea of uncorrelated variable selection is widely used in a feature selection
framework. For example, mRMR (Ding and Peng, 2005) selects variables by
maximizing relevance between Xj and y and minimizing redundancy among
Xj’s. They used mutual information instead of correlation, but the idea is
quite similar.

We note that the authors above did not refer to the aspect of interpretability
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and theoretical properties. From the viewpoint of interpretability, we claim
that we can easily interpret the model with an uncorrelated model. From the
theoretical viewpoint, we can relax other assumptions, including the incoherence
condition and the restricted eigenvalue condition, in exchange for the additional
assumption that the true active variables are uncorrelated.
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Chapter 3

Independently Interpretable Lasso

3.1 Proposed Method

One of the significant issues of sparse regularization is its performance and inter-
pretability in the presence of correlated variables, as described in the introduc-
tion. To overcome this problem, we propose a new regularization formulation
as follows:

min
β

1

2n
‖y −Xβ‖2

2 + λ
(
‖β‖1 +

α

2
|β|>R|β|

)
=: L(β), (3.1)

where α > 0 is a regularization parameter for the new regularization term, and
R ∈ Rp×p is a symmetric matrix whose component Rjk ≥ 0 is a monotonically
increasing function of the absolute correlation rjk = 1

n
|X>j Xk| for j 6= k. Some

concrete definitions of R are described later. The last term (λα/2)|β|>R|β| =

(λα/2)
∑p

j=1

∑p
k=1 Rjk|βj‖βk| is an additional term to the Lasso. Since Rjk

represents the similarity between Xj and Xk, correlated variables are hard to
be selected simultaneously in our formulation. In particular, when Xj and Xk

are strongly correlated, the squared error does not change under the condition
that βj + βk is constant, but the penalty Rjk|βj||βk| strongly induces either
βj = 0 or βk = 0. On the contrary, if Xj and Xk are uncorrelated, i.e., Rjk is
small, then the penalty of selecting both βj and βk is negligible, and it reduces
to the ordinary Lasso formulation. Hence, our formulation has exclusive effect
only on correlated variables.

We can consider some definition variations of the similarity matrix R. One
of the natural choices is Rjk = r2

jk. R is positive semidefinite in this case
because the Hadamard product of positive semidefinite matrices is also positive
semidefinite. Hence, the problem (3.1) turns to be convex and easy to solve the
global optimal solution. However, it may not reduce correlations enough. Yet
another choice is Rjk = |rjk|, which reduces correlations more strongly. Another
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Figure 3.1: Contours of IILasso regularization terms.

effective choice is Rjk = |rjk|/(1−|rjk|) for j 6= k, and Rjk = 0 for j = k. In this
case, if a correlation between two certain variables becomes higher, i.e., rjk → 1,
then the penalty term diverges infinitely, and the IILasso cannot simultaneously
select both of them. We use the last one in our numerical experiments, because
it is favorable from theoretical studies.

Constraint regions corresponding to our regularization term indicate how our
method incurs exclusive effect. Figure 3.1 illustrates the constraint regions of
‖β‖1 + |β|TR|β|/2 for the case p = 2. As diagonal elements of R increases
(from the top to the bottom panel), the contours become smooth at the axes
of coordinates. Because of this, the solution tends to select both variables if
two variables are strongly correlated. This is the grouping effect of the Elastic
Net, as we will describe later. On the other hand, as off-diagonal elements of R
increase (from the left to the right panel), the contours become pointed at the
axes of coordinates, and the solution tends to be sparser. This is the exclusive
effect for correlated variables. The `q (0 < q < 1) penalty, SCAD (Fan and Li,
2001), MCP (Zhang et al., 2010), and other methods also have the exclusive
nature among variables to obtain sparse solutions, as their contours are pointed
at the axes; however, the contours of the IILasso is adaptive for correlations
among variables, so that our penalty achieves both sparse and stable solutions.

We show contours of various regularization terms in Figure 3.2 including the
SCAD (Fan and Li, 2001), MCP (Zhang et al., 2010), `q-norm, log penalty (Can-
des, Wakin, and Boyd, 2008), and ordered weighted `1-norm (Bogdan, Van Den
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Berg, Sabatti, Su, and Candès, 2015; Figueiredo and Nowak, 2016; Zeng and
Figueiredo, 2014). We compare them with the IILasso (Figure 3.1) and sum-
marize their properties as follows:

• The shapes of the SCAD and MCP are similar to each other; they behave
like the Lasso for large γ or small magnitude of β, while the contours are
pointed at the axes and parallel to the axes for small γ and large magni-
tude of β. Their shapes are adaptive for the magnitude of β depending on
their hyper-parameter γ, but they are not adaptive for correlations among
variables in contrast to the IILasso.

• The shapes of `q-norm for 0 < q < 1 are pointed at the axes so that they
resemble that of the IILasso for correlated variables.

• The log penalty looks similar to `q-norm for 0 < q < 1, as well as the
IILasso for correlated variables.

• The ordered weighted `1-norm is similar to the Elastic Net, but its con-
tours are pointed at |β1| = |β2|, resulting in grouping effect.

The exclusive effect among correlated variables offers great advantages. First, it
produces uncorrelated models that are easy to interpret, as described in the next
section. Second, it is favorable for sign recovery and estimation error under the
assumption that the truth is “well interpretable” as described in our theoretical
and numerical analyses.

3.2 Interpretability

A linear model looks as if it could be perfectly interpreted, but it is not always
the case. Here, we discuss the difficulties of linear model interpretation and the
advantages of our proposed method. It is noted that similar difficulties were
referred to in (Lipton, 2018) and Section 4.1 in (Molnar et al., 2018), but they
did not offer any workaround.

One usually understands a linear model through its regression coefficients and
effects. A single coefficient represents how strongly a unit change of a variable
affects the prediction under the condition that “when all other active variables
remain fixed”. A single effect is calculated by a regression coefficient times a
standard deviation of each variable so that it represents the degree to which a
variable affects the prediction “on average.” Coefficients and effects coincide if
variables are standardized in advance.
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Figure 3.2: Contours of various regularization terms.

Correlated variables in an output model make interpretation of coefficients and
effects harder. We must simultaneously consider the influence of all other corre-
lated active variables when the model contains correlated variables. Neglecting
other active variables may lead to misinterpretation because increasing a vari-
able by one standard deviation but not changing others can be counterfactual.
On the other hand, when the model does not contain correlated variables, the
footnote that “when all other active variables remain fixed” is a reasonable as-
sumption.

As an example, Figure 3.3 shows scatter plots of uncorrelated and correlated
variables in output models. Two variables X1 and X2 are mean 0 and stan-
dard deviation 1 in both cases, but correlations among them differ from each
other. In the uncorrelated case, increasing X1 by 1 (standard deviation) but not
changing X2 is reasonable, because fixing X2 does not affect the range of X1.
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Figure 3.3: Standard deviations for uncorrelated variables
(left) and correlated variables (right).
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Figure 3.4: Uncorrelated model (A) versus correlated model
(B)

On the other hand, in the correlated case, fixing X2 strongly affects the range
of X1. Thus, increasing X1 by 1 but not changing X2 falls into an unrealistic
(counterfactual) setting, that is, it gets out of the support of the distribution.
For this reason, the effect no longer represents the average influence on the
response fixing others in the correlated case. This example implies that correla-
tions among active variables hinder the interpretation of linear models and leads
to misinterpretation. These difficulties are mitigated in our proposed method
by inducing low correlations.

Moreover, even when we have a moderately interpretable correlated model, it
might be possible to obtain an uncorrelated model with refined interpretabil-
ity. Let us consider a simple example with p = 3. Specifically, suppose
X = [X1, X2, X3] ∈ Rn×3 is standardized, X1 and X2 are orthogonal, and
X3 = (X1 + X2)/

√
2. Consider two models: (A) y = 2X1 + X2 and (B)

y = X1 +
√

2X3. Figure 3.4 illustrates Xj’s and y. Both models output the
same prediction. However, it seems that the model (A) is more interpretable
than (B). This is because, in (A), active variables (X1 and X2) are uncorrelated,
hence we can decompose the model (2X1 +X2) into each component (2X1 and
X2) and interpret each coefficient as independent variable contribution from
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each variable to the response. On the other hand, in (B), active variables (X1

and X3) are correlated; hence each coefficient is no longer independent variable
contribution. For example, imagine an example of predicting traffic congestion
using three variables ‘X1 : Saturday’, ‘X2 : Sunday’, and ‘X3 : Weekend.’ We
can interpret the model with ‘Saturday’ and ‘Sunday’ more intuitively than
that of ‘Saturday’ and ‘Weekend’ because ‘Weekend’ includes ‘Saturday.’ Of
course, we can easily interpret the ‘Saturday’ and ‘Weekend’ model since their
relationship is clear. However, in general, it is not easy to unravel complicated
interactions among correlated variables since they might imply confounders,
mediators, or cause-effect relationships. The Lasso selects (B) because `1 norm
of its coefficients is small; while the IILasso tends to select (A) because our reg-
ularization term excludes correlations. This perfectly collinear example is not
merely an extreme case, because it was reported that there were many good so-
lutions (solutions which have almost the same error) around the Lasso solution
in real applications (Hara and Maehara, 2017) so that severe collinearity often
occurs in high-dimensional data.

3.3 Optimization

We introduce Coordinate Descent Algorithm (CDA) to solve the IILasso prob-
lem (3.1), which was originally proposed for the Lasso (α = 0 for the IILasso)
(Friedman, Hastie, Höfling, Tibshirani, et al., 2007; Friedman, Hastie, and Tib-
shirani, 2010). It is a simple and efficient algorithm, particularly for high di-
mensional data. CDA follows simply: For each j ∈ {1, · · · , p}, we optimize the
objective function with respect to βj with the remaining elements of β fixed at
their most recently updated values.

To derive the update equation, when βj 6= 0, differentiating L(β) with respect
to βj yields

∂βjL(β) = − 1

n
X>j (y −X−jβ−j) + (1 + λαRjj) βj + λ (1 + αRj,−j|β−j|) sgn(βj),

where β−j denotes β without the j-th component, X−j denotes X without j-th
column and Rj,−j denotes the j-th row vector without j-th column of R. Solving
∂βjL(β) = 0, we obtain the update rule as

βj ←
1

1 + λαRjj

S
(

1

n
X>j (y −X−jβ−j) , λ (1 + αRj,−j|β−j|)

)
, (3.2)



Chapter 3. Independently Interpretable Lasso 25

Algorithm 1 CDA for the IILasso
for λ = λmax, · · · , λmin do
initialize β
while until convergence do
for j = 1, · · · , p do
βj ← 1

1+λαRjj
S
(

1
n
X>j (y −X−jβ−j) , λ (1 + αRj,−j|β−j|)

)
end for

end while
end for

where S(z, γ) is a soft thresholding function

S(z, γ) : = sgn(z)(|z| − γ)+

=


z − γ if z > 0 and γ < |z|,

z + γ if z < 0 and γ < |z|,

0 if |z| ≤ γ.

The whole algorithm for solving the IILasso is described in Algorithm 1. We
search several λ from λmax to λmin. β is initialized at each λ in some ways such
as (i) zeros for all elements, (ii) the solution of previous λ, or (iii) the solution
of the ordinary Lasso.

In Algorithm 1, the objective function monotonically decreases at each update,
and the estimate converges a stationary point.

Proposition 4. Let {βt}t=0,1,··· be a sequence of β in Algorithm 1. Then, every
cluster point of {βt}t≡(p−1)modp is a stationary point.

Proof. The proof is based on Theorem 4.1 in (Tseng, 2001). First, we can
see that the level set {β|L(β) ≤ L(β0)} is compact and L(β) is continuous.
Moreover, L(β) has a unique minimum with (3.2) in terms of βj. Therefore,
every cluster point of {βt}t≡(p−1)modp is a coordinatewise minimum point. In
addition, since L(β) can be seen as a locally quadratic function in any directions,
L(β) is regular at the cluster point. Hence, Theorem 4.1 (c) in (Tseng, 2001)
concludes the assertion.

3.4 Related Work

IILasso looks similar to exclusive selection methods such as Uncorrelated Lasso
and Exclusive Group Lasso.
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The Uncorrelated Lasso (ULasso) (Chen, Ding, Luo, and Xie, 2013) aims to re-
duce correlations among active variables. Although the ULasso quite resembles
our formulation, there exists a critical difference that they use β instead of |β|
in the objective function (2.5). We found that the ULasso does not necessarily
select uncorrelated variables. For example, consider the case X = [X1, X2].
The last term of (2.5) is λ2(β2

1 + β2
2 + 2R12β1β2). Minimizing R12β1β2 makes

β1β2 < 0 and |β1β2| larger if R12 6= 0. This implies that the ULasso tends to se-
lect correlated variables and set coefficients to the opposite sign. In particular,
X1 and X2 are strongly correlated, then it reduces λ2(β1 + β2)2, which induces
β1 = −β2. It is not a major problem when X1 and X2 are positively correlated,
but is a significant problem when X1 and X2 are negatively correlated. This
problem is overcome in our method. Therefore, the difference between their
ULasso and our IILasso is essential and crucial.

The Exclusive Group Lasso (EGLasso) (Kong, Fujimaki, Liu, Nie, and Ding,
2014) is also the same direction of exclusive selection. EGLasso can be seen
as a particular case of the IILasso. Let R be a group indicator matrix such
as Rjk = 1 if Xj and Xk belong to the same group and Rjk = 0 otherwise.
Then the IILasso is reduced to EGLasso. For the above example, if we define
similarity matrix R = [1, 1, 0; 1, 1, 0; 0, 0, 1], then the last term of the IILasso
objective function (3.1) becomes λ (β2

1 + 2|β1‖β2|+ β2
2 + β2

3), which is the same
as the last term of (2.6). As we see, EGLasso needs to determine the threshold
θ and group variables beforehand, which causes severely unstable estimation.

3.5 Theoretical Properties

In this section, we show the sign recovery condition and the estimation error
bound of the IILasso for linear models. These results explain the effectiveness
of the IILasso in terms of interpretability and estimation error. Moreover, we
show the property of a local minimum, which implies that every local optimal
solution achieves the same statistical error rate as the global optimal solution.
In this chapter, let β∗ denote the true parameter. Let S denote the true active
sets, i.e., S = supp(β∗) = {j ∈ {1, · · · , p}|β∗j 6= 0} and s = |S|.
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3.5.1 Sign Recovery

First, we give a necessary and sufficient condition of sign recovery. We define

U :=
1

n
X>SXS + λαDiag(sgn(β∗S))RSSDiag(sgn(β∗S)),

w :=sgn(β∗S) + αDiag(sgn(β∗S))RSSDiag(sgn(β∗S))β∗S.

Theorem 5. Assume U is invertible. Then, there exists a critical point β̂ of
(3.1) with correct sign recovery sgn(β̂) = sgn(β∗) if and only if the following
two conditions hold:

sgn

(
β∗S − U−1

(
λw − 1

n
X>S ε

))
= sgn(β∗S), (3.3)

∣∣∣∣ 1nX>ScXSU
−1

(
λw − 1

n
X>S ε

)
+

1

n
X>Scε

∣∣∣∣
≤ λ

(
1 + αRScS

∣∣∣∣β∗S − U−1

(
λw − 1

n
X>S ε

)∣∣∣∣) , (3.4)

where both of these vector inequalities are taken elementwise.

The proof is given in 3.6.1. The sign recovery condition is derived from the stan-
dard conditions for optimality. We note that α = 0 reduces the condition into
the ordinary Lasso condition in (Wainwright, 2009). The invertible assumption
of U is not restrictive because it is true for almost all λ if X>SXS is invertible,
which is the same assumption as standard analysis of the Lasso.

According to Theorem 5, the IILasso has the advantage in sign recovery for cor-
related design compared to the Lasso, as long as the truth is “well interpretable”,
that is, the true non-zero components are independent. This is because, when
RSS is small enough, (3.3) is the same as the Lasso and (3.4) is easier to be
satisfied unless αRScS = 0. Besides, the condition gets milder as RScS gets
large.

We note that Theorem 5 is not the condition of a global optimal solution.
However, if global optimal solutions are finite, they must be a critical point.
Hence, there exists a global optimal solution with correct sign recovery only if
(3.3) and (3.4) hold.

Next, we give a sufficient condition for sign recovery. The following theorem
clarifies the sign recovery conditions on the design matrix X and the true pa-
rameter β∗ since it does not depends on the realization of the noise ε. We
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prepare some assumptions and definitions.

Assumption 1 (Sub-Gaussian). The noise sequence {εi}ni=1 is an i.i.d. sub-
Gaussian sequence with parameter σ > 0, i.e., E[exp(tεi)] ≤ exp(σ2t2/2) for
∀t ∈ R.

We give sub-Gaussian properties in section 3.6.2 for our theoretical analyses.

Assumption 2. There exists a constant D > 0, ϕ > 0, and ψ such that
1 + λnαψ > 0,

‖RSS‖max ≤ D,
1

n
X>SXS � ϕI,

(
1

n
X>SXS

)−1/2

Diag(sgn(β∗S))RSSDiag(sgn(β∗S))

(
1

n
X>SXS

)−1/2

� ψI.

(3.5)

We note that ψ is not necessarily positive, but is larger than ψ > −1/λnα. The
condition (3.5) is satisfied if RSS � ψRI, X>SXS/n � ϕmaxI, ψR/ϕ ≥ ψ, and
ψR/ϕmax ≥ ψ.

Definition 3 (Generalized Incoherence Condition). We say that the generalized
incoherence condition holds if there exists some incoherence parameter κ ∈ (0, 1]

such that ∥∥∥∥ 1

n
X>j XSU

−1

∥∥∥∥
1

≤
(

1 + α‖RSj‖1∆min

1 + αD‖β∗S‖1

)
(1− κ), (3.6)

for ∀j ∈ Sc, where β∗min := minj∈S |β∗j | and

∆min := β∗min − λn
(

(1 + αD‖β∗S‖1) ‖U−1‖∞ +
4σ

√
ϕ(1 + λnαψ)

)
> 0.

The generalized incoherence condition (Definition 3) is a generalized notion
of the incoherence condition (Fuchs, 2005; Tropp, 2006; Wainwright, 2009).
The generalized incoherence condition reduces to the ordinary incoherence con-
dition when α = 0. The ordinary incoherence condition is quite restrictive
and is much stronger than the restricted eigenvalue condition. For example,
if we have X>SXS/n = I, the ordinary incoherence condition requires that
maxj∈Sc

∑
k∈S |

∑
iXijXik/n| < 1. This condition is hard to be satisfied if

there are correlations between informative and uninformative variables.



Chapter 3. Independently Interpretable Lasso 29

On the other hand, the generalized incoherence condition offers a great ad-
vantage because the right-hand side of (3.6) is not upper bounded by 1 when
α 6= 0. Specifically, consider a case where the true model is “well interpretable”,
i.e., RSS = O. The generalized incoherence condition reduces to∥∥∥∥∥ 1

n
X>j XS

(
1

n
X>SXS

)−1
∥∥∥∥∥

1

≤ (1 + α‖RSj‖1∆min) (1− κ), (3.7)

for ∀j ∈ Sc, where

∆min := β∗min − λn

(∥∥∥∥∥
(

1

n
X>SXS

)−1
∥∥∥∥∥
∞

+
4σ

√
ϕ(1 + λnαψ)

)
> 0.

This condition is milder than the ordinary incoherence condition since the right-
hand side of (3.7) is larger than 1− κ.

Now, we fix any 0 < δ < 1 and define γn as

γn = γn(δ) := σ

√
2 log(2p/δ)

n
. (3.8)

Then, we obtain a sufficient condition for sign recovery.

Theorem 6. Suppose that Assumptions 1 and 2 and Definition 3 (generalized
incoherence condition) with a constant κ ∈ (0, 1] are satisfied. Suppose that the
regularization parameter satisfies

λn ≥ max

{
1

4σ
,

2

κ
,

(
λnαψ

1 + λnαψ

)2
2

κ

}
γn, (3.9)

with γn in (3.8). Then, there exists a critical point β̂ of (3.1) with correct sign
recovery sgn(β̂) = sgn(β∗) with probability at least 1− 2δ.

The proof is given in section 3.6.3. We note that α = 0 reduces to the result
of ordinary Lasso (Wainwright, 2009). When α 6= 0, our method has much ad-
vantage for sign recovery as long as the true model is “well interpretable”, i.e.,
RSS = O. This is because (i) the generalized incoherence condition (Definition
3) for the IILasso is milder than that for the ordinary Lasso as described above,
and (ii) Assumption 2 and (3.9) reduces to the ordinary Lasso condition. Var-
ious classes of X satisfy the incoherence condition (Meinshausen, Bühlmann,
et al., 2006; Zhao and Yu, 2006). This implies that the generalized incoherence
condition also holds in various situations as long as RSS is small enough.
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3.5.2 Estimation Error

We give an estimation error bound of approximately global minimum solutions
of our method. Before we give the statement, the assumption and definition are
prepared.

Definition 4 (Generalized Restricted Eigenvalue Condition for Linear Models
(GRE(S,C,C ′))). Let a set of vectors B(S,C,C ′) be

B(S,C,C ′) :=
{
v ∈ Rp : ‖vSc‖1 +

C ′α

2
|vSc |>RScSc |vSc|

+ C ′α|vSc |>RScS|vS + β∗S| ≤ C‖vS‖1

}
.

We say that the genelarized restricted eigenvalue condition holds if we have
φGRE > 0 where

φGRE = φGRE(S,C,C ′) := inf
v∈B(S,C,C′)

v> 1
n
X>Xv

‖v‖2
2

.

The generalized restricted eigenvalue (GRE) condition (Definition 4) is a gen-
eralized notion of the restricted eigenvalue (RE) condition (Bickel, Ritov, Tsy-
bakov, et al., 2009; Bühlmann and Van De Geer, 2011) tailored for our reg-
ularization. One can see that, if α = 0 or C ′ = 0, then φGRE(S,C,C ′) is
reduced to the ordinary restricted eigenvalue (Bickel, Ritov, Tsybakov, et al.,
2009; Raskutti, Wainwright, and Yu, 2010) for the analysis of the Lasso.

The GRE condition is not restrictive. Since there are additional terms related
to |β|>R|β|, the set B(S,C,C ′) is smaller than that for the ordinary restricted
eigenvalue if the same C is used. In particular, the term |βSc|>RScS|βS + β∗S|
strongly restricts the amplitude of coefficients for unimportant variables (es-
pecially the variables with large RScS). Hence, Assumption GRE(S,C,C ′) is
milder than Assumption RE(S,C). Because the RE(S,C) condition is satisfied
in general class of Gaussian design (Raskutti, Wainwright, and Yu, 2010), the
GRE condition also holds in general class of Gaussian design.

Then, we obtain the convergence rate of approximately global minimum solution
of the IILasso as follows.

Theorem 7. Suppose that Assumption 1 is satisfied. Suppose R satisfy

‖RSS‖max ≤ D, (3.10)
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for some positive constant D, and the estimator β̂ of (3.1) is approximately
minimizing the objective function so that

L(β̂) ≤ L(β∗). (3.11)

Suppose that the regularization parameters satisfy

3γn ≤ λn and α ≤
1

4D‖β∗S‖1

, (3.12)

with γn in (3.8). Suppose that Assumption GRE(S, 3, 3/2) (Definition 4) is
satisfied. Then, it holds that

‖β̂ − β∗‖2
2 ≤

16sλ2
n

φ2
GRE

,

with probability at least 1− δ.

The proof is given in 3.6.4. The obtained convergence rate is roughly evaluated
as

‖β̂ − β∗‖2
2 = Op

(
s log(p)

n

)
,

by taking λn = Op(
√

log p/n), which is almost the minimax optimal rate
(Raskutti, Wainwright, and Yu, 2011).

We compare the convergence rate of the Lasso and IILasso. For comparison,
we have a little bit stricter bound

‖β̂ − β∗‖2
2 ≤

(
8
3

+ 5αD‖β∗S‖1 + 3
4
(αD‖β∗S‖1)2

)2
sλ2

n

φ2
GRE

,

under Assumption GRE(S,C, 3/2) (Definition 4) where C = 2+15αD‖β∗S‖1/4+

9(αD‖β∗S‖1)2/16, with high probability. The proof is given in 3.6.5. We can
easily see that when α = 0, then the convergence rate analysis is reduced to
the standard one for the ordinary Lasso (Bickel, Ritov, Tsybakov, et al., 2009;
Bühlmann and Van De Geer, 2011). We note that our theorem includes the
additional assumption (3.10) compared to the ordinary Lasso theorem, and
instead relaxes the restricted eigenvalue condition. This indicates that our
theorem holds under the milder condition in terms of correlations among all
variables, in exchange for the additional condition of the true active variables.
Under “well interpretable” cases where the true non-zero components S are
independent, i.e., RSS = O, the error bounds for the Lasso and IILasso are the
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same except for the term φGRE. Since RScS and RScSc shrink the set of vectors
B(S,C,C ′) in Definition 4, φGRE of the IILasso is larger than that of the Lasso.
Therefore, our approximately global minimum solution has a better error bound
than the ordinary `1 regularization in this situation. Besides, our method has
more advantageous when the variables are correlated between informative and
non-informative variables.

3.5.3 Local Optimality

The objective function of the IILasso is not necessarily convex in exchange for
better statistical properties, as observed above. Our next theoretical interest is
about the local optimality of our optimization algorithm (Algorithm 1). Since
our optimization method is greedy, there is no confirmation that it achieves the
global optimum. However, as we see in this chapter, the local solution achieves
almost the same estimation error as the global optimum satisfying (3.11). For
theoretical simplicity, we assume the following a little stronger condition.

Assumption 3. There exists φ > 0 and qn ≤ p such that, for all V ⊂ {1, . . . , p}
satisfying |V | ≤ qn and V ∩ S = ∅, it holds that

1

n
X>S∪VXS∪V � φI.

Moreover, there exists D̄ such that the maximum absolute value of the eigenvalue
of R is bounded as

sup
u∈RS∪V

u>(RS∪V,S∪V )u ≤ D̄‖u‖2
2.

Then, we obtain the convergence rate of local minimum solutions of IILasso as
follows.

Theorem 8. Suppose Assumptions 1 and 3 are satisfied. Suppose that β̂ is a
local optimal solution of (3.1) satisfying | supp(β̂)| ≤ |S| + qn. Let the regular-
ization parameters satisfy

γn < λn and α < min

{ √
s

2D̄‖β∗‖2

,
φ

2D̄λn

}
,

with γn in (3.8). Then, β̂ should satisfy

‖β̂ − β∗‖2
2 ≤

25sλ2
n

φ2
,
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with probability at least 1− δ.

The proof is given in 3.6.6. Theorem 8 indicates that every local optimal solution
achieves the same convergence rate with the ideal optimal solution. In other
words, there is no local optimal solution with sparsity level |S|+ qn far from the
true vector β∗.

3.6 Proofs

3.6.1 Proof of Theorem 5

Proof. By standard conditions for optimality, β̂ is a critical point if and only if
there exists a subgradient ẑ ∈ ∂‖β̂‖1 := {ẑ ∈ Rp|ẑj = sgn(β̂j) for β̂j 6= 0, |ẑj| ≤
1 otherwise} such that ∂β̂L(β) = 0. Because ∂β 1

2
|β|>R|β| = Diag(R|β|)z, the

condition ∂β̂L(β) = 0 yields

− 1

n
X>(y −Xβ̂) + λẑ + λαDiag

(
R|β̂|

)
ẑ = 0. (3.13)

Substituting y = Xβ∗ + ε in (3.13), we have

− 1

n
X>(X(β∗ − β̂) + ε) + λẑ + λαDiag

(
R|β̂|

)
ẑ = 0. (3.14)

Let the true active set S = {1, · · · , s} and inactive set Sc = {s + 1, · · · , p}
without loss of generality, then (3.14) is turned into

1

n
X>SXS

(
β̂S − β∗S

)
+

1

n
X>SXSc β̂Sc −

1

n
X>S ε+ λẑS + λαDiag

(
RSS|β̂S|

)
ẑS = 0,

(3.15)
1

n
X>ScXS

(
β̂S − β∗S

)
+

1

n
X>ScXSc β̂Sc −

1

n
X>Scε+ λẑSc + λαDiag

(
RScS|β̂S|

)
ẑSc = 0.

(3.16)

Hence, there exists a critical point with correct sign recovery if and only if there
exists β̂ and ẑ such that (3.15), (3.16), ẑ ∈ ∂‖β̂‖1 and sgn(β̂) = sgn(β∗). The
latter two conditions can be written as

ẑS = sgn(β∗S), (3.17)

|ẑSc| ≤ 1, (3.18)

sgn(β̂S) = sgn(β∗S), (3.19)

β̂Sc = 0. (3.20)
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The condition (3.17) and (3.20) yield

1

n
X>SXS

(
β̂S − β∗S

)
− 1

n
X>S ε+ λ sgn(β∗S)

+λαDiag
(
RS·|β̂|

)
sgn(β∗S) = 0, (3.21)

1

n
X>ScXS

(
β̂S − β∗S

)
− 1

n
X>Scε+ λẑSc + λαDiag

(
RSc·|β̂|

)
ẑSc = 0. (3.22)

Since

Diag(RSS|β̂S|) sgn(β∗S) =Diag(sgn(β∗S))RSS|β̂S|

=Diag(sgn(β∗S))RSSDiag(sgn(β∗S))β̂S,

(3.21) can be rewritten as

U(β̂S − β∗S) + w − 1

n
X>S ε = 0,

where

U :=
1

n
X>SXS + λαDiag(sgn(β∗S))RSSDiag(sgn(β∗S)),

w := λ sgn(β∗S) + λαDiag(sgn(β∗S))RSSDiag(sgn(β∗S))β∗S.

If we assume U is invertible, we obtain

β̂S = β∗S − U−1

(
w − 1

n
X>S ε

)
. (3.23)

Substituting this in (3.22), we have

1

n
X>ScXS

(
−U−1

(
w − 1

n
X>S ε

))
− 1

n
X>Scε+ λẑSc

+ λαDiag

(
RScS

∣∣∣∣β∗S − U−1

(
w − 1

n
X>S ε

)∣∣∣∣) ẑSc = 0,

that is, (
1 + αDiag

(
RScS

∣∣∣∣β∗S − U−1

(
w − 1

n
X>S ε

)∣∣∣∣))λẑSc
=

1

n
X>ScXSU

−1

(
w − 1

n
X>S ε

)
+

1

n
X>Scε. (3.24)

Combining (3.18), (3.19), (3.23) and (3.24), we concludes the assertion.



Chapter 3. Independently Interpretable Lasso 35

3.6.2 Sub-Gaussian Tail Bounds

We briefly summarize the definition and properties of sub-Gaussian since it plays
a key role in our non-asymptotic analyses. See (Wainwright, 2009; Rigollet and
Hütter, 2015) for details for example. Let ε be a zero-mean random variable.
We say that ε is a sub-Gaussian variable with parameter σ > 0 if it holds for
∀t ∈ R

E[exp(tε)] ≤ exp

(
σ2t2

2

)
. (3.25)

By applying the Chernoff bound to (3.25), we have a sub-Gaussian tail bound
for ∀z > 0

P (|ε| > z) ≤ 2 exp

(
− z2

2σ2

)
. (3.26)

We obtain the following lemma for a sequence of sub-Gaussian variables. This
is useful for our theoretical analyses of sign recovery.

Lemma 9. Let {εi}ni=1 be i.i.d. zero-mean sub-Gaussian variables with a pa-
rameter σ. Then, we have for ∀a ∈ Rn and ∀z > 0,

P

(∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ > z

)
≤ 2 exp

(
− z2

2‖a‖2
2σ

2

)
.

Proof. From the definition of sub-Gaussian, we have

E

[
exp

(
t

n∑
i=1

aiεi

)]
=

n∏
i=1

E [exp (taiεi)]

≤
n∏
i=1

exp

(
a2
iσ

2t2

2

)
= exp

(
‖a‖2

2σ
2t2

2

)
.

Therefore, the sub-Gaussian tail bound (3.26) concludes the assertion.

In addition, we prepare the following collorary using Lemma 9. This is useful
for our theoretical analyses of estimation error and local optimality.
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Corollary 10. Suppose that Assumption 1 and
∑n

i=1X
2
ij/n ≤ 1 for ∀j =

1, . . . , p are satisfied. For ∀δ > 0, define γn := γn(δ) as (3.8). Then, we have

P

(∥∥∥∥ 1

n
X>ε

∥∥∥∥
∞
≥ γn

)
≤ δ.

Proof. Notice that

P

(∥∥∥∥ 1

n
X>ε

∥∥∥∥
∞
≥ γn

)
= P

(
max
1≤j≤p

∣∣∣∣∣ 1n
n∑
i=1

Xijεi

∣∣∣∣∣ ≥ γn

)

= P

( ⋃
1≤j≤p

{∣∣∣∣∣ 1n
n∑
i=1

Xijεi

∣∣∣∣∣ ≥ γn

})

≤
p∑
j=1

P

(∣∣∣∣∣ 1n
n∑
i=1

Xijεi

∣∣∣∣∣ ≥ γn

)

≤ p max
1≤j≤p

P

(∣∣∣∣∣ 1n
n∑
i=1

Xijεi

∣∣∣∣∣ ≥ γn

)

≤ 2p max
1≤j≤p

exp

(
− n2γ2

n

2σ2‖Xj‖2
2

)
≤ exp

(
−nγ

2
n

2σ2
+ log(2p)

)
,

where we used Lemma 9 in the fifth line. Since we set δ = exp (−nγ2
n/2σ

2 + log(2p)),
we concludes the assertion.

3.6.3 Proof of Theorem 6

Proof. We derive sufficient conditions for (3.3) and (3.4) in Theorem 5.

In terms of (3.3), it is sufficient if

β∗min >

∥∥∥∥U−1

(
λnw −

1

n
X>S ε

)∥∥∥∥
∞
.

By the triangular inequality, we have∥∥∥∥U−1

(
λnw −

1

n
X>S ε

)∥∥∥∥
∞
≤ λn

∥∥U−1w
∥∥
∞ +

∥∥∥∥U−1 1

n
X>S ε

∥∥∥∥
∞
. (3.27)

The first term on the right-hand side of (3.27) is bounded as

λn
∥∥U−1w

∥∥
∞ ≤ λn (1 + αD‖β∗S‖1) ‖U−1‖∞.
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Consider the j-th element of random variable of the second term on the right-
hand side of (3.27),

Tj := e>j U
−1 1

n
X>S ε,

where ej ∈ Rs represents a unit vector with 1 for the j-th element and 0 for
others. From Lemma 9, we have for ∀t > 0,

P (|Tj| > t) ≤ 2 exp

(
− t2n2

2σ2 ‖XSU−1ej‖2
2

)
.

Using Assumption 2, we have(
1

n
X>SXS

)−1/2

U

(
1

n
X>SXS

)−1/2

= I + λnα

(
1

n
X>SXS

)−1/2

Diag(sgn(β∗S))RSSDiag(sgn(β∗S))

(
1

n
X>SXS

)−1/2

� (1 + λnαψ)I

⇒U
(

1

n
X>SXS

)−1

U

=

(
1

n
X>SXS

)1/2
((

1

n
X>SXS

)−1/2

U

(
1

n
X>SXS

)−1/2
)2(

1

n
X>SXS

)1/2

� ϕ(1 + λnαψ)2I

⇒‖XSU
−1ej‖2

2 = e>j U
−1X>SXSU

−1ej ≤ n/ϕ(1 + λnαψ)2

Hence, we obtain

P

(
max
j∈S
|Tj| > t

)
≤ 2s exp

(
−t

2nϕ(1 + λnαψ)2

2σ2

)
.

Setting t = 4λnσ/
√
ϕ(1 + λnαψ), we have

P

(
max
j∈S
|Tj| >

4λnσ√
ϕ(1 + λnαψ)

)
≤ exp

(
−8λ2

nn+ log(2s)
)
.

Therefore, if it holds ∆min > 0 where

∆min := β∗min − λn
(

(1 + αD‖β∗S‖1) ‖U−1‖∞ +
4σ

√
ϕ(1 + λnαψ)

)
,

then (3.3) is satisfied with probability at least 1− exp (−8λ2
nn+ log(2s)).
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In terms of (3.4), it is sufficient if for ∀j ∈ Sc,∣∣∣∣λnn X>j XSU
−1w

∣∣∣∣+

∣∣∣∣ 1nX>j
(
I − 1

n
XSU

−1X>S

)
ε

∣∣∣∣
≤ λn (1 + α‖RSj‖1∆min) , (3.28)

since we have now ∣∣∣∣β∗S − U−1

(
λw − 1

n
X>S ε

)∣∣∣∣ > ∆min > 0.

The first term on the left-hand side of (3.28) is bounded as∣∣∣∣λnn X>j XSU
−1w

∣∣∣∣ ≤ λn
n

(1 + αD‖β∗S‖1)
∥∥X>j XSU

−1
∥∥

1
.

Consider the random variable

Zj :=
1

n
X>j

(
I − 1

n
XSU

−1X>S

)
ε,

in the second term on the left-hand side of (3.28). From Lemma 9, we have for
∀zj > 0

P (|Zj| > zj) ≤ 2 exp

(
−

n2z2
j

2σ2
∥∥X>j (I − 1

n
XSU−1X>S

)∥∥2

2

)
.

Since U � ϕ(1 + λnαψ)I � O, we have

I − 1

n
XSU

−1X>S � I. (3.29)

In addition, we have

I − 1

n
XSU

−1X>S

=I −XS

(
X>SXS

)−1/2

((
1

n
X>SXS

)−1/2

U

(
1

n
X>SXS

)−1/2
)−1 (

X>SXS

)−1/2
X>S

�I − 1

1 + λnαψ
XS(X>SXS)−1X>S

�
(

1− 1

1 + λnαψ

)
I, (3.30)
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where we used the fact that XS(X>SXS)−1X>S is the projection matrix to the
image of X>S in the last line. (3.29) and (3.30) give

∥∥∥∥I − 1

n
XSU

−1X>S

∥∥∥∥2

2

≤ max

{
1,

(
λnαψ

1 + λnαψ

)2
}

=: ν2

Hence, we obtain

P

(⋃
j∈Sc
{|Zj| > zj}

)
≤
∑
j∈Sc

2 exp

(
−

nz2
j

2σ2ν2

)
.

Setting zj = λn(1 + α‖RSj‖1∆min)κ/2, we have

P

(⋃
j∈Sc
{|Zj| > λn(1 + α‖RSj‖1∆min)κ/2}

)

≤2
∑
j∈Sc

exp

(
−nλ

2
nκ

2(1 + α‖RSj‖1∆min)2

8σ2ν2

)
≤2(p− s) exp

(
−nλ

2
nκ

2

8σ2ν2

)
= exp

(
−nλ

2
nκ

2

8σ2ν2
+ log(2(p− s))

)
.

Therefore, the generalized incoherence condition (Definition 3) yields the con-
dition (3.4) with probability at least 1− exp(−nλ2

nκ
2/8σ2ν2 + log(2(p− s))).

Overall, the conditions (3.3) and (3.4) hold with probability at least 1−exp (−8λ2
nn+ log(2s))−

exp(−nλ2
nκ

2/8σ2ν2+log(2(p−s))). Since we set λn and δ as λn ≥ max{1/4σ, 2ν/κ}γn
and δ = exp(−nγ2

n/2σ
2 + log(2p)), the probability is bounded by 1− 2δ.

3.6.4 Proof of Theorem 7

Proof. By L(β̂) ≤ L(β∗) and y = Xβ∗ + ε, it holds that

1

2n
‖X(β̂ − β∗)‖2

2 + λn

(
‖β̂‖1 +

α

2
|β̂|>R|β̂|

)
≤ 1

n
ε>X(β̂ − β∗) + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
. (3.31)

By Corollary 10, it holds that

P

(∥∥∥∥ 1

n
X>ε

∥∥∥∥
∞
> γn

)
≤ δ.
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Hereafter, we assume that the event {
∥∥ 1
n
X>ε

∥∥
∞ ≤ γn} is happening.

Then, if γn ≤ λn/3, by (3.31),

1

2n
‖X(β̂ − β∗)‖2

2 + λn

(
‖β̂‖1 +

α

2
|β̂|>R|β̂|

)
≤ 1

n
‖ε>X‖∞‖β∗ − β̂‖1 + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
≤γn‖β∗ − β̂‖1 + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
≤1

3
λn‖β∗ − β̂‖1 + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
. (3.32)

Since

‖β̂ − β∗‖1 = ‖β̂S − β∗S‖1 + ‖β̂Sc − β∗Sc‖1 = ‖β̂S − β∗S‖1 + ‖β̂Sc‖1,

and

|β∗S|>RSS|β∗S| − |β̂S|>RSS|β̂S|

≤
∑

(j,k)∈S×S

Rjk|β∗jβ∗k − β̂jβ̂k|

=
∑

(j,k)∈S×S

Rjk|β∗jβ∗k − (β̂j − β∗j + β∗j )(β̂k − β∗k + β∗k)|

≤2
∑

(j,k)∈S×S

Rjk|β∗j (β∗k − β̂k)|+
∑

(j,k)∈S×S

Rjk|(β∗j − β̂j)(β∗k − β̂k)|

=2|β∗S|>RSS|β∗S − β̂S|+ |β∗S − β̂S|>RSS|β∗S − β̂S|

≤2‖RSS|β∗S|‖∞‖β∗S − β̂S‖1 +D‖β∗S − β̂S‖2
1,



Chapter 3. Independently Interpretable Lasso 41

we obtain that

1

2n
‖X(β̂ − β∗)‖2

2 + λn

‖β̂S‖1 + ‖β̂Sc‖1 +
α

2
|β̂S|>RSS|β̂S|+

α

2

∑
(j,k)/∈S×S

Rjk|β̂jβ̂k|


≤ 1

3
λn(‖β̂S − β∗S‖1 + ‖β̂Sc‖1) + λn

(
‖β∗S‖1 +

α

2
|β∗S|>RSS|β∗S|

)
⇒ 1

2n
‖X(β̂ − β∗)‖2

2 + λn

2

3
‖β̂Sc‖1 +

α

2

∑
(j,k)/∈S×S

Rjk|β̂jβ̂k|


≤ 1

3
λn‖β̂S − β∗S‖1 + λn

(
‖β∗S‖1 − ‖β̂S‖1 + α‖RSS|β∗S|‖∞‖β∗S − β̂S‖1 +

αD

2
‖β∗S − β̂S‖2

1

)

⇒ 1

2n
‖X(β̂ − β∗)‖2

2 + λn

2

3
‖β̂Sc‖1 +

α

2

∑
(j,k)/∈S×S

Rjk|β̂jβ̂k|


≤ λn

(
4

3
‖β̂S − β∗S‖1 + α‖RSS|β∗S|‖∞‖β∗S − β̂S‖1 +

αD

2
‖β∗S − β̂S‖2

1

)
. (3.33)

On the other hand, (3.32) also gives

‖β̂S‖1 + ‖β̂Sc‖1 ≤
1

3
(‖β̂S − β∗S‖1 + ‖β̂Sc‖1) + ‖β∗S‖1 +

α

2
|β∗S|>RSS|β∗S|

⇒ 2

3
‖β̂S − β∗S‖1 +

2

3
‖β̂Sc‖1 ≤ 2‖β∗S‖1 +

α

2
|β∗S|>RSS|β∗S|

⇒ ‖β̂S − β∗S‖1 ≤ 3‖β∗S‖1 +
3

4
α|β∗S|>RSS|β∗S|

⇒ ‖β̂S − β∗S‖1 ≤
(

3 +
3

4
α‖RSS|β∗S|‖∞

)
‖β∗S‖1.

Therefore, (3.33) gives

2

3
‖β̂Sc‖1 +

α

2

∑
(j,k)/∈S×S

Rjk|β̂jβ̂k|

≤
(

4

3
+ α‖RSS|β∗S|‖∞ +

3

2
αD‖β∗S‖1

(
1 +

α

4
‖RSS|β∗S|‖∞

))
‖β̂S − β∗S‖1.

(3.34)

The second term of the left side is evaluated as∑
(j,k)/∈S×S

Rjk|β̂jβ̂k| =
∑

j∈Sc,k∈Sc
Rjk|β̂jβ̂k|+ 2

∑
j∈S,k∈Sc

Rjk|(β̂j − β∗S + β∗S)β̂k|

=|β̂Sc|>RScSc |β̂Sc|+ 2|β̂Sc |>RScS|β̂S − β∗S + β∗S|.
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Hence, (3.34) gives

2

3
‖β̂Sc‖1 +

α

2
|β̂Sc |>RScSc |β̂Sc |+ α|β̂Sc |>RScS|β̂S − β∗S + β∗S|

≤
(

4

3
+ α‖RSS|β∗S|‖∞ +

3

2
αD‖β∗S‖1

(
1 +

α

4
‖RSS|β∗S|‖∞

))
‖β̂S − β∗S‖1

⇒ ‖β̂Sc‖1 +
3

4
α|β̂Sc |>RScSc |β̂Sc |+

3

2
α|β̂Sc |>RScS|β̂S − β∗S + β∗S|

≤
(

2 +
15

4
αD‖β∗S‖1 +

9

16
(αD‖β∗S‖1)2

)
‖β̂S − β∗S‖1. (3.35)

If α ≤ 1
4D‖β∗S‖1

, we have

‖β̂Sc‖1 +
3

4
α|β̂Sc|>RScSc |β̂Sc|+

3

2
α|β̂Sc |>RScS|β̂S − β∗S + β∗S| ≤ 3‖β̂S − β∗S‖1.

Therefore, we can see that

v̂ ∈ B(S,C,C ′),

where v̂ = β̂ − β∗, C = 3 and C ′ = 3
2
. By applying the definition of φGRE to

(3.33), it holds that

φGRE

2
‖β̂ − β∗‖2

2 ≤ λn

(
4

3
+

5

2
αD‖β∗S‖1 +

3

8
(αD‖β∗S‖1)2

)
‖β̂S − β∗S‖1.

Because ‖β̂S − β∗S‖2
1 ≤ s‖β̂S − β∗S‖2

2, we have

‖β̂ − β∗‖2 ≤
(

8
3

+ 5αD‖β∗S‖1 + 3
4
(αD‖β∗S‖1)2

)√
sλn

φGRE

⇒ ‖β̂ − β∗‖2
2 ≤

(
8
3

+ 5αD‖β∗S‖1 + 3
4
(αD‖β∗S‖1)2

)2
sλ2

n

φ2
GRE

≤ 16sλ2
n

φ2
GRE

. (3.36)

This concludes the assertion.

3.6.5 Corollary of Theorem 7

For comparison with the IILasso and Lasso, we use the following a little bit
stricter bound.

Corollary 11. Suppose the same assumption of Theorem 7 except for Assump-
tion GRE(S, 3, 3

2
). Instead, suppose that Assumption GRE(S,C, 3

2
) (Definition
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4) where C = 2 + 15
4
αD‖β∗S‖1 + 9

16
(αD‖β∗S‖1)2 is satisfied. Then, it holds that

‖β̂ − β∗‖2
2 ≤

(
8
3

+ 5αD‖β∗S‖1 + 3
4
(αD‖β∗S‖1)2

)2
sλ2

n

φ2
GRE

,

with probability at least 1− δ.

Proof. This is derived basically in the same way as Theorem 7. From (3.35),
we can directly see that

v̂ ∈ B(S,C,C ′),

where v̂ = β̂ − β∗, C = 2 + 15
4
αD‖β∗S‖1 + 9

16
(αD‖β∗S‖1)2, and C ′ = 3

2
. This and

(3.36) concludes the assertion.

From this corollary, we compare the IILasso with RSS = O and Lasso.

• If α = 0, we have

‖β̂ − β∗‖2
2 ≤

64sλ2
n

9φ2
GRE

,

with B(S,C,C ′) where C = 2 and C ′ = 0. This is a standard Lasso result.

• If D = 0, we have

‖β̂ − β∗‖2
2 ≤

64sλ2
n

9φ2
GRE

,

with B(S,C,C ′) where C = 2 and C ′ = 3
2
. Since φGRE is the minimum

eigenvalue restricted by B(S,C,C ′), φGRE of the IILasso is larger than
that of the Lasso.

3.6.6 Proof of Theorem 8

Proof. Let

β̌ := arg min
β∈Rp:βSc=0

‖y −Xβ‖2
2.

That is, β̌ is the least squares estimator with the true non-zero coefficients. Let
β̃ be a local optimal solution. For 0 < h < 1, letting β(h) := β̃+h(β̌− β̃), then
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it holds that

L(β(h))− L(β̃) =
h2 − 2h

2n
‖X(β̃ − β̌)‖2

2 −
h

n
(Xβ̌ − y)>X(β̃ − β̌)

+ λn(‖β(h)‖1 − ‖β̃‖1) +
λnα

2
(|β(h)|>R|β(h)| − |β̃|>R|β̃|).

(3.37)

First we evaluate the term 1
n
(Xβ̌ − y)>X(β̃ − β̌) = 1

n
(Xβ̌ − y)>XS(β̃S − β̌S) +

1
n
(Xβ̌ − y)>XSc(β̃Sc − β̌Sc) as follows:

(1) Since β̌ is the least squares estimator and 1
n
X>SXS is invertible by the

assumption, we have

β̌S = (X>SXS)−1X>S y, β̌Sc = 0.

Therefore,

1

n
X>S (Xβ̌ − y) =

1

n
X>S (XS(X>SXS)−1X>S − I)y.

Here, I −XS(X>SXS)−1X>S is the projection matrix to the orthogonal comple-
ment of the image of X>S . Hence,

1
n
(Xβ̌ − y)>XS(β̃S − β̌S) = 0.

(2) Noticing that

1

n
X>Sc(Xβ̌ − y) = − 1

n
X>Sc(I −XS(X>SXS)−1X>S )y

= − 1

n
X>Sc(I −XS(X>SXS)−1X>S )(XSβ

∗
S + ε)

= − 1

n
X>Sc(I −XS(X>SXS)−1X>S )ε,

where we used (I − XS(X>SXS)−1X>S )XSc = 0 in the last line. Because (I −
XS(X>SXS)>X>S ) is a projection matrix, we have ‖(I−XS(X>SXS)−1X>S )Xj‖2

2 ≤
‖Xj‖2

2. This and Corollary 10 gives∥∥∥∥ 1

n
X>Sc(Xβ̌ − y)

∥∥∥∥
∞
≤ γn,

with probability 1− δ. Hence, let V := supp(β̃)\S, then we have∣∣∣∣ 1n(β̃Sc − β̌Sc)>X>Sc(Xβ̌ − y)

∣∣∣∣ ≤ γn‖β̃Sc − β̌Sc‖1 = γn‖β̃V ‖1.

where we used the assumption V ⊆ Sc and β̌V = 0.
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Combining these inequalities, we have that∣∣∣∣ 1n(Xβ̌ − y)>X(β̃ − β̌)

∣∣∣∣ ≤γn‖β̃V ‖1. (3.38)

As for the regularization term, we evaluate each term of λn(‖β(h)‖1 − ‖β̃‖1) +
λn
2

(|β(h)|>R|β(h)| − |β̃|>R|β̃|) in the following.

(i) Evaluation of ‖β(h)‖1−‖β̃‖1. Because of the definition of β(h), it holds that

‖β(h)‖1 − ‖β̃‖1 = ‖β̃ + h(β̌ − β̃)‖1 − ‖β̃‖1

= ‖β̃S + h(β̌S − β̃S)‖1 − ‖β̃S‖1 + ‖β̃V + h(β̌V − β̃V )‖1 − ‖β̃V ‖1

= ‖β̃S + h(β̌S − β̃S)‖1 − ‖β̃S‖1 + (1− h)‖β̃V ‖1 − ‖β̃V ‖1

≤ h‖β̌S − β̃S‖1 − h‖β̃V ‖1. (3.39)

(ii) Evaluation of |β(h)|>R|β(h)| − |β̃|>R|β̃|. Note that

|β(h)j|Rjk|β(h)k| − |β̃j|Rjk|β̃k|

= |(1− h)β̃j + hβ̌j|Rjk|(1− h)β̃k + hβ̌k| − |β̃j|Rjk|β̃k|

≤ (1− h)2|β̃j|Rjk|β̃k|+ h(1− h)(|β̌j|Rjk|β̃k|+ |β̃j|Rjk|β̌k|)

+ h2|β̌j|Rjk|β̌k| − |β̃j|Rjk|β̃k|

= −2h|β̃j|Rjk|β̃k|+ h(|β̌j|Rjk|β̃k|+ |β̃j|Rjk|β̌k|) +O(h2)

= h[(|β̌j| − |β̃j|)Rjk|β̃k|+ |β̃j|Rjk(|β̌k| − |β̃k|)] +O(h2). (3.40)

If j, k ∈ S, then the right hand side of Eq. (3.40) is bounded by

h(|β̌j − β̃j|Rjk|β̌k − β̃k|+ |β̌j − β̃j|Rjk|β̌k − β̃k|)

+ h(|β̌j − β̃j|Rjk|β̌k|+ |β̌j|Rjk|β̌k − β̃k|) +O(h2).

If j ∈ V and k ∈ S, then the right hand side of Eq. (3.40) is bounded by

h|β̃j|Rjk(|β̌k| − |β̃k|) +O(h2) ≤ h|β̃j|Rjk|β̌k − β̃k|+O(h2).

If j ∈ V and k ∈ V , then the right hand side of Eq. (3.40) is bounded by

0 +O(h2) = O(h2).
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Based on these evaluations, we have

|β(h)|>R|β(h)| − |β̃|>R|β̃|

≤2h
(
|β̌S − β̃S|>RSS|β̌S − β̃S|+ |β̌S − β̃S|>RSS|β̌S|+ |β̃V |>RV S|β̌S − β̃S|

)
+O(h2)

≤2h
(
|β̌ − β̃|>R|β̌ − β̃|+ |β̌S − β̃S|>RSS|β̌S|

)
+O(h2)

≤2hD̄(‖β̌ − β̃‖2
2 + ‖β̌‖2‖β̌S − β̃S‖2) +O(h2).

Here, we will show later in Eq. (3.42) that ‖β̌ − β∗‖2 ≤
√
sλn/φ, and thus it

follows that

‖β̌‖2 ≤ ‖β∗‖2 +
√
sλn/φ.

Therefore, we obtain that

|β(h)|>R|β(h)| − |β̃|>R|β̃|

≤2hD̄
(
‖β̌ − β̃‖2

2 + (‖β∗‖2 +
√
sλn/φ)‖β̌S − β̃S‖2

)
+O(h2). (3.41)

Applying the inequalities (3.38), (3.39) and (3.41) to (3.37) yields that

L(β(h))− L(β̃)

≤h
{
− 1

n
‖X(β̌ − β̃)‖2

2 + λn‖β̃S − β̌S‖1 − (λn − γn)‖β̃V ‖1

+ λnαD̄[‖β̌ − β̃‖2
2 + (‖β∗‖2 +

√
sλn/φ)‖β̌S − β̃S‖2]

}
+O(h2)

≤h
{
− φ‖β̌ − β̃‖2

2 + λn‖β̃S − β̌S‖1

+ λnαD̄[‖β̌ − β̃‖2
2 + (‖β∗‖2 +

√
sλn/φ)‖β̌S − β̃S‖2]

}
+O(h2)

≤h

{(
−φ+ λnαD̄

)
‖β̌ − β̃‖2

2

+ λn

(
‖β̃S − β̌S‖1 + αD̄(‖β∗‖2 +

√
sλn/φ)‖β̌S − β̃S‖2

)}
+O(h2),

where we used the assumption λn > γn in the second inequality.

Since we have assumed α < min
{ √

s
2D̄‖β∗‖2 ,

φ
2D̄λn

}
, the right hand side is further

bounded by

h

{
−φ

2
‖β̌ − β̃‖2

2 + 2λn
√
s‖β̌S − β̃S‖2

}
+O(h2).
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Because of this, if ‖β̌ − β̃‖2 >
4
√
sλn
φ

, then the first term becomes negative, and
we conclude that, for sufficiently small η > 0, it holds that

L(β(h)) < L(β̃),

for all 0 < h < η. In other word, β̃ is not a local optimal solution. Therefore,
we must have

‖β̌ − β̃‖2 ≤
4
√
sλn
φ

Finally, notice that ‖β̃ − β∗‖2
2 ≤ (‖β̃ − β̌‖2 + ‖β∗ − β̌‖2)2 and

‖β̌ − β∗‖2
2 = ‖(X>SXS)−1X>S y − β∗S‖2

2 = ‖(X>SXS)−1X>S (XSβ
∗
S + ε)− β∗S‖2

2

= ‖(X>SXS)−1X>S ε‖2
2 ≤ φ−2‖ 1

n
X>S ε‖2

2 ≤ φ−2sγ2
n ≤ φ−2sλ2

n, (3.42)

which concludes the assertion.
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Chapter 4

Extensions to Generalized Linear
Models

4.1 Method for GLMs

The idea of the IILasso is not restricted in linear models with quadratic loss. In
this chapter, we extend the method and theory to a more general setting, espe-
cially for generalized linear models (GLMs) with general loss without assuming
the truth is included in GLMs.

Consider independent and identically distributed data {(Xi, Yi)}ni=1 with (Xi, Yi) ∈
X × Y where Xi is a fixed covariable in some space X and Yi is a response
variable in some space Y ⊂ R. Note that we suppose Xi’s are determin-
istic variables. Let F be the space of the whole measurable functions. Let
ρf : X × Y → R be a general loss function for a model f ∈ F . We
also denote ρf (x, y) := ρ(f(x), y). Typical examples of loss functions include
quadratic loss ρf (x, y) = ρ(f(x), y) = (y − f(x))2 for y ∈ R, and logistic loss
ρf (x, y) = ρ(f(x), y) = −yf(x) + log(1 + exp(f(x))) for y ∈ {0, 1}. Consider a
generalized linear model subspace

F :=

{
fβ(x) :=

p∑
j=1

βjψj(x) : β ∈ Rp, x ∈X

}
⊂ F .

Here, the map x 7→ (ψ1(x), . . . , ψp(x))> ∈ Rp is an arbitrary measurable feature
map from the space X to the space Rp. We define the population mean risk

Pρf :=
1

n

n∑
i=1

EYi|Xi [ρf (Xi, Yi)|Xi] ,



Chapter 4. Extensions to Generalized Linear Models 49

and the empirical average risk

Pnρf :=
1

n

n∑
i=1

ρf (Xi, Yi).

We further define the target as the minimizer of the theoretical mean risk

f 0 := arg min
f∈F

Pρf . (4.1)

Note that we allow model misspecification, in other words, it may hold f 0 /∈ F .
In this setting, our interest is to estimate GLMs close to the target (4.1). IILasso
for GLMs forms

β̂ = arg min
β
Pnρfβ + λ

(
‖β‖1 +

α

2
|β|>R|β|

)
=: L(β),

where λ > 0 and α > 0 are regularization parameters, and R ∈ Rp×p is a
symmmetric matrix whose component Rjk ≥ 0 is typically a monotonically
increasing function of the absolute correlation rjk = |

∑
i ψj(Xi)

>ψk(Xi)|/n for
j 6= k and rjk = 0 for j = k.

4.2 Theoretical Properties for GLMs

We introduce some additional notations. Let ‖f‖∞ be L∞-norm, i.e., ‖f‖∞ =

supz |f(z)|. Let ‖f‖ be L2(Qn)-norm with Qn the empirical measure of {zi}ni=1,
i.e., ‖f‖ := ‖f‖n :=

√∑n
i=1 f

2(zi)/n. We denote S as an arbitrary variable
index set and Sβ := supp(β). Note that we do not use S as the true active
variables in this chapter, because it may hold f 0 /∈ F . We define the excess
risk as

E(f) := P (ρf − ρf0).

Next, we prepare some key assumptions and definitions.

Assumption 4. We assume the loss function is a Lipschitz loss with L, i.e.,

|ρ(a, y)− ρ(a′, y)| ≤ L |a− a′| , ∀a, a′, y.
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Definition 5 (Quadratic Margin Condition). We say that the quadratic margin
condition holds with κ for Fη := {f ∈ F : ‖f − f 0‖∞ ≤ η}, if we have

E(f) ≥ κ
∥∥f − f 0

∥∥2
, ∀f ∈ Fη.

Definition 6 (Generalized Restricted Eigenvalue Condition for GLMs (GRE
(S,C,C ′))). Let a set of vectors B(S,C,C ′) be

B(S,C,C ′) :=
{
v ∈ Rp : ‖vSc‖1 +

C ′α

2
|vSc |>RScSc |vSc|

+ αC ′|vSc |>RScS|vS + β∗S(S)| ≤ C‖vS‖1

}
.

where β∗(S) := arg minβ:Sβ=S E(fβ). We say that the generalized restricted
eigenvalue condition for GLMs holds with a set of vectors B(S,C,C ′), if we
have φGRE > 0 where

φGRE = φGRE(S,C,C ′) := inf
v∈B(S,C,C′)

‖fv‖2

‖v‖2
2

.

Definition 7 (Oracle). Let S be a collection of variable index sets. We define
the oracle β∗ as

β∗ = β∗(S ) := arg min
β:Sβ∈S

{
3E(fβ) +

9λ2
n|Sβ|

κφ∗GRE

}
, (4.2)

where φ∗GRE = φGRE(S ) := infS∈S φGRE(S,C,C ′).

These assumptions and definitions are based on (Bühlmann and Van De Geer,
2011) and tailored for our proposed method. The quadratic margin condition
(Definition 5) means that the excess risk for every model f near the target f 0

is bounded below by a quadratic function of ‖f − f 0‖. The GRE condition
for GLMs (Definition 6) is a natural extension of the GRE condition for linear
models. The oracle β∗ (Definition 7) represents an ideal solution because it
minimizes the sum of the excess risk and the penalty in proportion to the
number of selected variables.

Now, we derive an estimation error bound for GLMs.

Theorem 12. Let Assumption 4 with a constant L be satisfied. Suppose that
‖ψj‖ ≤ 1 for ∀j. Let S be an arbitrary collection of variable index sets. For
every variable index set S ∈ S , suppose that assumption GRE(S, 3, 1) (Defini-
tion 6) is satisfied. Define the oracle β∗ as (4.2) (Definition 7) for S and some
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constant κ > 0. Fix any 0 < δ < 1, define

γn = γn(δ) := 2L

(
4

√
2 log 2p

n
+

√
2 log(1/δ)

n

)
, (4.3)

M∗ :=
1

γn

(
3E(fβ∗) +

9λ2
n|Sβ∗ |

κφ∗GRE

)
.

Suppose the quadratic margin condition (Definition 5) holds with κ for Fη. In
addition, assume fβ ∈ Fη for all ‖β − β∗‖1 ≤ M∗, as well as fβ∗ ∈ Fη. Let
β̂ be an approximately minimizer of the IILasso such that L(β̂) ≤ L(β∗) and
L(tβ̂+ (1− t)β∗) ≤ L(β∗) for t = M∗/(M∗+ ‖β̂−β∗‖1). Let the regularization
parameters satisfy

α ≤ 1

12D‖β∗‖1

and 20γn ≤ 3λn,

where D := ‖RS∗S∗‖max and S∗ := supp(β∗). Then, we have

‖β̂ − β∗‖2
2 ≤

22E(fβ∗)

κφ∗GRE

+
60λ2

n|S∗|
κ2φ∗2GRE

,

with probability at least 1− δ.

The proof is given in 4.4.1. The obtained covergence rate in Theorem 12 is
roughly evaluated as

‖β̂ − β∗‖2
2 = OP

(
|S∗| log(p)

n

)
,

under E(fβ∗) = op(1), φ∗GRE = Op(1), and λn = Op(
√

log p/n), which is almost
the minimax optimal rate (Raskutti, Wainwright, and Yu, 2011). If D = 0,
then φ∗GRE gets larger as RSc∗S∗ and RSc∗S

c
∗ become large. Hence, the IILasso for

general loss with quadratic margin is preferable when true active variables are
not correlated and others are strongly correlated.

The collection of variable index sets S is arbitrary. Taking S as specific
definitions yields the following corollaries.

Corollary 13. Define the best linear approximation

β0
GLM := arg min

β
Pρfβ .



Chapter 4. Extensions to Generalized Linear Models 52

Take S = {S0
GLM} := {supp(β0

GLM,j)}. Then, under the same assumptions as
in Theorem 12, we have β∗ = β0

GLM and

‖β̂ − β0
GLM‖2

2 ≤
22E(fβ0

GLM
)

κφGRE(S0
GLM, 3, 1)

+
60λ2

n|S0
GLM|

κ2φGRE(S0
GLM, 3, 1)2

.

Proof.

β∗ = arg min
β:Sβ=S0

GLM

{
3E(fβ) +

9λ2
n|S0

GLM|
κφ∗GRE

}
= β0

GLM,

and φ∗GRE = φGRE(S0
GLM, 3, 1) concludes the assertion.

Corollary 14. Suppose the true model is linear, i.e.,

f 0 = fβ0 and E(fβ0) = 0.

Take S = {S0} := {supp(β0)}. Then, under the same assumptions as in
Theorem 12, we have β∗ = β0 and

‖β̂ − β0‖2
2 ≤

60λ2
n|S0|

κ2φGRE(S0, 3, 1)2
.

Proof.

β∗ = arg min
β:Sβ=S0

{
3E(fβ) +

9λ2
n|S0|

κφ∗GRE

}
= β0,

and φ∗GRE = φGRE(S0, 3, 1) concludes the assertion.

Corollary 13 shows that the error between the IILasso estimate and the best
linear approximation is bounded by the excess risk of the best linear approx-
imation, the number of active variables in the best linear approximation, and
some constants depending on n and p. Also, Corollary 14 shows that the error
between the IILasso estimate and the true linear model (if exists) is bounded
by the number of true active variables and some constants depending on n and
p.

4.3 Extension to Logistic Models

We examine logistic regression models as an illustration. Consider data {(Xi, Yi)}ni=1

with (Xi, Yi) ∈ Rp×{0, 1}. Define π(x) := P (Y = 1|X = x). The logistic model
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is

log

(
π̂(x)

1− π̂(x)

)
= f(x) = µ+

p∑
j=1

βjxj,

and the logistic loss is

ρf (x, y) = ρ(f(x), y) := −yf(x) + log(1 + exp(f(x))).

We take a target as

f 0(x) := log

(
π(x)

1− π(x)

)
,

because it minimizes EY |X [ρf (X, Y )|X = x].

We derive coordinate descent algorithm of the IILasso for logistic regression.
The objective function is

L(β) = − 1

n

∑
i

(
yiX

iβ − log(1 + exp(X iβ))
)

+ λ
(
‖β‖1 +

α

2
|β|>R|β|

)
,

where X i is the i-th row of X = [1, X1, · · · , Xp] and β = [β0, β1, · · · , βp]. Form-
ing a quadratic approximation with the current estimate β̄, we have

L̄(β) = − 1

2n

n∑
i=1

wi(zi −X iβ)2 + C(β̄) + λ
(
‖β‖1 +

α

2
|β|>R|β|

)
,

where

zi = X iβ̄ +
yi − p̄(X i)

p̄(X i)(1− p̄(X i))
,

wi = p̄(X i)(1− p̄(X i)),

p̄(X i) =
1

1 + exp(−X iβ̄)
.
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Algorithm 2 CDA for Logistic IILasso
for λ = λmax, · · · , λmin do
initialize β
while until convergence do
update the quadratic approximation using the current parameters β̄
while until convergence do
for j = 1, · · · , p do
βj ← 1

1
n

∑n
i=1 wiX

2
ij+λαRjj

S
(

1
n

∑n
i=1 wi (zi −Xi,−jβ−j)Xij, λ (1 + αRj,−j|β−j|)

)
end for

end while
end while

end for

To derive the update equation, when βj 6= 0, differentiating the quadratic ob-
jective function with respect to βj yields

∂βj L̄(β) =− 1

n

n∑
i=1

wi(zi −X iβ)Xij + λ
(
sgn(βj) + αR>j |β| sgn(βj)

)
=− 1

n

n∑
i=1

wi (zi −Xi,−jβ−j)Xij +

(
1

n

n∑
i=1

wiX
2
ij + λRjj

)
βj

+ λ (1 + αRj,−j|β−j|) sgn(βj).

This yields

βj ←
1

1
n

∑n
i=1wiX

2
ij + λαRjj

S

(
1

n

n∑
i=1

wi (zi −Xi,−jβ−j)Xij, λ (1 + αRj,−j|β−j|)

)
.

These procedures amount to a sequence of nested loops. The whole algorithm
is described in Algorithm 2.

We obtain the following estimation error bound.

Corollary 15. Suppose that for some constant 0 < ε0 < 1,

ε0 < π(x) < 1− ε0,

for ∀x ∈ X . Suppose that ‖Xj‖ ≤ 1 for ∀j. Suppose that assumption GRE(S, 3, 1)

(Definition 6) is satisfied for every variable index set S ∈ S . Define the oracle
β∗ as (4.2) (Definition 7) with κ = 1/(exp(η)/ε0 + 1)2. Fix any 0 < δ < 1 and
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η > 0, define

γn := γn(δ) :=2

(
4

√
2 log 2p

n
+

√
2 log(1/δ)

n

)
,

M∗ :=
1

γn

(
3E(fβ∗) +

9(exp(η) + ε0)2λ2
n|Sβ∗|

ε2
0φ
∗
GRE

)
.

Let the regularization parameters satisfy

α ≤ 1

12D‖β∗‖1

and
20γn

3
≤ λn ≤ Tγn

for some constant T . In addition, suppose that

T 2(exp(η) + ε0)2γn|Sβ∗|
ε2

0φ
∗
GRE

≤ η

27
, ‖f ∗ − f 0‖∞ ≤

η

3
, and

E(f ∗)

γn
≤ η

9
.

Let β̂ be an approximately minimizer of the IILasso such that L(β̂) ≤ L(β∗)

and L(tβ̂ + (1− t)β∗) ≤ L(β∗) for t = M∗/(M∗ + ‖β̂ − β∗‖1). Then, we have

‖β̂ − β∗‖2
2 ≤

22(exp(η) + ε0)2E(fβ∗)

ε2
0φ
∗
GRE

+
60(exp(η) + ε0)4λ2

n|Sβ∗|
ε4

0φ
∗
GRE

2 ,

with probability at least 1− δ.

The proof is given in 4.4.2.

4.4 Proofs

4.4.1 Proof of Theorem 12

Proof. In the proof, we use the short-hand notation S∗ := Sβ∗ . Let c1, c2, . . .

be some constants, which are defined concretely at the end of the proof. Define
the empirical process as

vn(β) := (Pn − P )ρfβ ,

and let

ZM := sup
‖β−β∗‖1≤M

|vn(β)− vn(β∗)|.

First, we prepare the following lemma.
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Lemma 16. Let Assumption 4 hold. Suppose ‖ψj‖ ≤ 1 for ∀j. Then, we have
P ({ZM ≤ γnM}) ≥ 1− δ where γn is defined as (4.3).

Proof. See example 14.2 in section 14.8 (Bühlmann and Van De Geer, 2011) in
details.

Following the lemma, we have ZM∗ ≤ γnM
∗ with high probability, where

M∗ :=
1

γn

(
c1E(fβ∗) +

c2λ
2
n|S∗|

κφ∗GRE

)
,

with some positive constants c1 and c2. Hereafter, we assume this holds. If
‖β̂ − β∗‖1 ≤M∗, which we will show later, then we have

E(fβ̂) + λn

(
‖β̂‖1 +

α

2
|β̂|>R|β̂|

)
≤−

(
vn(β̂)− vn(β∗)

)
+ E(fβ∗) + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
≤ZM∗ + E(fβ∗) + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
≤γnM∗ + E(fβ∗) + λn

(
‖β∗‖1 +

α

2
|β∗|>R|β∗|

)
.

Substituting β = βS∗ + βSc∗ , we have

E(fβ̂) + λn

(
‖β̂S∗‖1 + ‖β̂Sc∗‖1

+
α

2
|β̂S∗|>RS∗S∗|β̂S∗|+ α|β̂Sc∗ |

>RSc∗S∗|β̂S∗|+
α

2
|β̂Sc∗|

>RSc∗S
c
∗ |β̂Sc∗ |

)
≤γnM∗ + E(fβ∗) + λn

(
‖β∗S∗‖1 +

α

2
|β∗S∗|

>RS∗S∗|β∗S∗|
)
. (4.4)

Using this inequality, we can evaluate E(fβ̂) + λn‖β̂ − β∗‖1 as

E(fβ̂) + λn‖β̂ − β∗‖1

=E(fβ̂) + λn‖β̂S∗ − β∗S∗‖1 + λn‖β̂Sc∗‖1

≤γnM∗ + E(fβ∗) + λn

(
2‖β∗S∗‖1 +

α

2
|β∗S∗|

>RS∗S∗|β∗S∗|
)
. (4.5)

To obtain a tighter bound, we need to use quadratic terms of β̂. Hereafter, we
reparameterize v̂ := β̂ − β∗. Then, we have, from (4.4),

E(fβ̂) + λn

(
‖v̂Sc∗‖1 + α|v̂Sc∗|

>RSc∗S∗|v̂S∗ + β∗S∗|+
α

2
|v̂Sc∗|

>RSc∗S
c
∗ |v̂Sc∗|

)
≤γnM∗ + E(fβ∗) + λn

(
‖v̂S∗‖1 +

α

2

(
|β∗S∗|

>RS∗S∗|β∗S∗| − |β̂S∗ |
>RS∗S∗|β̂S∗|

))
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We can evaluate the last two terms as

|β∗S∗|
>RS∗S∗|β∗S∗ | − |β̂S∗|

>RS∗S∗ |β̂S∗|

=|β∗S∗|
>RS∗S∗|β∗S∗ | − |β

∗
S∗|
>RS∗S∗ |β̂S∗|+ |β∗S∗|

>RS∗S∗|β̂S∗| − |β̂S∗|>RS∗S∗|β̂S∗|

≤|β∗S∗|
>RS∗S∗ |β∗S∗ − β̂S∗|+ |β̂S∗ − β

∗
S∗ |
>RS∗S∗|β̂S∗|

≤|β∗S∗|
>RS∗S∗ |β∗S∗ − β̂S∗|+ |β̂S∗ − β

∗
S∗ |
>RS∗S∗(|β∗S∗|+ |β

∗
S∗ − β̂S∗ |)

≤(2|β∗S∗ |+ |β
∗
S∗ − β̂S∗|)

>RS∗S∗ |β∗S∗ − β̂S∗|

≤2‖RS∗S∗|β∗S∗ |‖∞‖v̂S∗‖1 +D‖v̂S∗‖2
1

where D := ‖RS∗S∗‖max. Hence, we obtain

E(fβ̂) + λn

(
‖v̂Sc∗‖1 + α|v̂Sc∗ |

>RSc∗S∗|v̂S∗ + β∗S∗ |+
α

2
|v̂Sc∗|

>RSc∗S
c
∗ |v̂Sc∗|

)
≤γnM∗ + E(fβ∗) + λn

(
‖v̂S∗‖1 + α‖RS∗S∗ |β∗S∗|‖∞‖v̂S∗‖1 +

αD

2
‖v̂S∗‖2

1

)
.

(4.6)

We further characterize this bound deviding into 2 cases.

(i) If λn
(
‖v̂S∗‖1 + α‖RS∗S∗|β∗S∗ |‖∞‖v̂S∗‖1 + αD

2
‖v̂S∗‖2

1

)
≤ γnM

∗, then the in-
equality (4.6) reduces to

E(fβ̂) + λn

(
‖v̂Sc∗‖1 + α|v̂Sc∗ |

>RSc∗S∗|v̂S∗ + β∗S∗ |+
α

2
|v̂Sc∗ |RSc∗S

c
∗ |v̂Sc∗|

)
≤2γnM

∗ + E(fβ∗).

Hence, we obtain

E(fβ̂) + λn‖v̂‖1 = E(fβ̂) + λn‖v̂Sc∗‖1 + λn‖v̂S∗‖1

≤ 3γnM
∗ + E(fβ∗)

= (3c1 + 1)E(fβ∗) +
3c2λ

2
n|S∗|

κφ∗GRE

,

where we use λn‖v̂S∗‖1 ≤ γnM
∗ in the second line.

(ii) If λn
(
‖v̂S∗‖1 + α‖RS∗S∗|β∗S∗|‖∞‖v̂S∗‖1 + αD

2
‖v̂S∗‖2

1

)
≥ γnM

∗, we need the
compatibility condition and the margin condition. In this case, the inequality
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(4.6) reduces to

E(fβ̂) + λn

(
‖v̂Sc∗‖1 + α|v̂Sc∗|

>RSc∗S∗ |v̂S∗ + β∗S∗|+
α

2
|v̂Sc∗|RSc∗S

c
∗|v̂Sc∗ |

)
≤γnM∗ + E(fβ∗) + λn

(
‖v̂S∗‖1 + α‖RS∗S∗ |β∗S∗ |‖∞‖v̂S∗‖1 +

αD

2
‖v̂S∗‖2

1

)
≤
(

1 +
1

c1

)
γnM

∗ + λn

(
‖v̂S∗‖1 + α‖RS∗S∗ |β∗S∗|‖∞‖v̂S∗‖1 +

αD

2
‖v̂S∗‖2

1

)
≤
(

2 +
1

c1

)
λn

(
‖v̂S∗‖1 + α‖RS∗S∗|β∗S∗|‖∞‖v̂S∗‖1 +

αD

2
‖v̂S∗‖2

1

)
≤
(

2 +
1

c1

)
λn

(
1 + α‖RS∗S∗|β∗S∗|‖∞ +

αD

2
‖v̂S∗‖1

)
‖v̂S∗‖1. (4.7)

Hence, we obtain

E(fβ̂) + λn‖v̂‖1

=E(fβ̂) + λn‖v̂Sc∗‖1 + λn‖v̂S∗‖1

≤λn
((

3 +
1

c1

)
+

(
2 +

1

c1

)
α‖RS∗S∗|β∗S∗ |‖∞ +

(
2 +

1

c1

)
αD

2
‖v̂S∗‖1

)
‖v̂S∗‖1.

(4.8)

To characterize ‖v̂S∗‖1 in parentheses, we can see from (4.5)

λn(‖v̂S∗‖1 + ‖v̂Sc∗‖1)

≤γnM∗ + E(fβ∗) + λn

(
2‖β∗S∗‖1 +

α

2
|β∗S∗|

>RS∗S∗|β∗S∗|
)

≤
(

1 +
1

c1

)
γnM

∗ + λn

(
2‖β∗S∗‖1 +

α

2
|β∗S∗|

>RS∗S∗|β∗S∗|
)
. (4.9)

We further devide into 2 cases.

(ii-a) If λn
(
2‖β∗S∗‖1 + α

2
|β∗S∗ |

>RS∗S∗|β∗S∗ |
)
≤ 2γnM

∗, then (4.5) reduces to

E(fβ̂) + λn‖v̂‖1 ≤ 3γnM
∗ + E(fβ∗)

≤ (3c1 + 1) E(fβ∗) +
3c2λ

2
n|S∗|

κφ∗GRE

.
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(ii-b) If λn
(
2‖β∗S∗‖1 + α

2
|β∗S∗|

>RS∗S∗ |β∗S∗|
)
≥ 2γnM

∗, then the inequality (4.9)
reduces to

λn(‖v̂S∗‖1 + ‖v̂Sc∗‖1) ≤ 1

2

(
3 +

1

c1

)
λn

(
2‖β∗S∗‖1 +

α

2
|β∗S∗|

>RS∗S∗|β∗S∗|
)

≤ 1

2

(
3 +

1

c1

)
λn

(
2 +

α

2
‖RS∗S∗|β∗S∗|‖∞

)
‖β∗S∗‖1,

which indicates

‖v̂S∗‖1 ≤
1

2

(
3 +

1

c1

)(
2 +

α

2
‖RS∗S∗ |β∗S∗ |‖∞

)
‖β∗S∗‖1. (4.10)

Hence, incorporating (4.8) and (4.10) yields,

E(fβ̂) + λn‖v̂‖1

≤λn
((

3 +
1

c1

)
+

(
2 +

1

c1

)
α‖RS∗S∗|β∗S∗|‖∞

+
1

2

(
2 +

1

c1

)(
3 +

1

c1

)
αD

2

(
2 +

α

2
‖RS∗S∗|β∗S∗|‖∞

)
‖β∗S∗‖1

)
‖v̂S∗‖1

≤λn
((

3 +
1

c1

)
+

1

2

(
2 +

1

c1

)(
5 +

1

c1

)
αD‖β∗‖1

+
1

8

(
2 +

1

c1

)(
3 +

1

c1

)
(αD‖β∗‖1)2

)
‖v̂S∗‖1.

If we take α′ such that α ≤ α′

D‖β∗‖1 and define

c3 :=

(
3 +

1

c1

)
+

1

2

(
2 +

1

c1

)(
5 +

1

c1

)
α′ +

1

8

(
2 +

1

c1

)(
3 +

1

c1

)
α′2,

we have

E(fβ̂) + λn‖v̂‖1 ≤ c3λn‖v̂S∗‖1. (4.11)



Chapter 4. Extensions to Generalized Linear Models 60

On the other hand, we can restrict the feasible region for v by (4.7) and (4.10)
as

‖v̂Sc∗‖1 + α|v̂Sc∗|
>RSc∗S∗|v̂S∗ + β∗S∗|+

α

2
|v̂Sc∗ |

>RSc∗S
c
∗|v̂Sc∗ |

≤
(

2 +
1

c1

)(
1 + α‖RS∗S∗|β∗S∗|‖∞

+
αD

2

1

2

(
3 +

1

c1

)(
2 +

α

2
‖RS∗S∗|β∗S∗ |‖∞

)
‖β∗S∗‖1

)
‖v̂S∗‖1

≤
(

2 +
1

c1

)(
1 +

1

2

(
5 +

1

c1

)
αD‖β∗S∗‖1 +

1

8

(
3 +

1

c1

)(
αD‖β∗S∗‖1

)2
)
‖v̂S∗‖1

≤
(

2 +
1

c1

)(
1 +

1

2

(
5 +

1

c1

)
α′ +

1

8

(
3 +

1

c1

)
α′2
)
‖v̂S∗‖1.

If we take c and α′ satisfying(
2 +

1

c1

)(
1 +

1

2

(
5 +

1

c1

)
α′ +

1

8

(
3 +

1

c1

)
α′2
)
≤ 3,

then we have v̂ ∈ B(S∗, 3, 1) where

B(S∗, 3, 1)

=
{
v : ‖vSc∗‖1 + α|vSc∗ |

>RSc∗S∗|vS∗ + β∗S∗|+
α

2
|vSc∗ |

>RSc∗S
c
∗|vSc∗ | ≤ 3‖vS∗‖1

}
.

Hence, we have only to impose the restricted eigenvalue condition for the set
B(S∗, 3, 1).

According to the restricted eigenvalue condition, we have

‖v‖2
2 ≤
‖fv‖2

φ∗GRE

, ∀v ∈ B(S∗, 3, 1).

Incorporating ‖v̂S∗‖1 ≤
√
|S∗|‖v̂S∗‖2 ≤

√
|S∗|‖v̂‖2, we have

‖v̂S∗‖1 ≤
√
|S∗|‖fv̂‖√
φ∗GRE

.
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Hence, from (4.11), we have

E(fβ̂) + λn‖v̂‖1 ≤ c3λn

√
|S∗|‖fβ̂ − fβ∗‖√

φ∗GRE

≤ 4c3λ
2
n|S∗|

κφ∗GRE

+
c3κ

16
‖fβ̂ − fβ∗‖

2

≤ 4c3λ
2
n|S∗|

κφ∗GRE

+
c3κ

16

(
‖fβ̂ − f

0‖+ ‖fβ∗ − f 0‖
)2

≤ 4c3λ
2
n|S∗|

κφ∗GRE

+
c3κ

8
‖fβ̂ − f

0‖2 +
c3κ

8
‖fβ∗ − f 0‖2

≤ 4c3λ
2
n|S∗|

κφ∗GRE

+
c3

8
E(fβ̂) +

c3

8
E(fβ∗),

where we use the restricted eigenvalue condition in the first line, uv ≤ 4u2 +

v2/16 in the second line, the triangular inequality in the third line, (u + v)2 ≤
2(u2+v2) in the fourth line, and the margin condition with fβ̂ ∈ Fη and fβ∗ ∈ Fη

in the last line. This implies

(
1− c3

8

)
E(fβ̂) + λn‖v̂‖1 ≤

c3

8
E(fβ∗) +

4c3λ
2
n|S∗|

κφ∗GRE

,

hence we obtain

E(fβ̂) + λn‖v̂‖1 ≤
c3

8− c3

E(fβ∗) +
32c3λ

2
n|S∗|

(8− c3)κφ∗GRE

.

where we assume c3 < 8, which is satisfied by taking appropreate c1 and α′.

Incorporating the case (i), (ii-a) and (ii-b), we have shown that

E(fβ̂) + λn‖v̂‖1 ≤ c4γnM
∗, (4.12)

where

c4 := max

{
3 +

1

c1

,
c3

c1(8− c3)
,

32c3

c2(8− c3)

}
.

On the other hand, we have

E(fβ̂) ≥ κ‖fβ̂ − f
0‖2

≥ 1

2
κ‖fβ̂ − fβ∗‖

2 − κ‖fβ∗ − f 0‖2

≥ 1

2
κφ∗GRE‖β̂ − β∗‖2

2 − E(fβ∗),
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where we used (u + v)2 ≤ 2(u2 + v2) in the second line, and the generalized
restricted and margin conditions in the last line. Therefore, we have

1

2
κφ∗GRE‖β̂ − β∗‖2

2 ≤ (c1c4 + 1)E(fβ∗) +
c2c4λ

2
n|S∗|

κφ∗GRE

,

that is,

‖β̂ − β∗‖2
2 ≤

2(c1c4 + 1)

κφ∗GRE

E(fβ∗) +
2c2c4λ

2
n|S∗|

κ2φ∗GRE
2 ,

This concludes the assertion.

Now, we show ‖β̂ − β∗‖1 ≤M∗. Define

β̃ := β∗ + t(β̂ − β∗), t :=
M∗

M∗ + ‖β̂ − β∗‖1

.

Then it holds ‖β̃ − β∗‖1 ≤ M∗. Because L(β̃) ≤ L(β∗) by the assumption, all
the above inequalities hold substututing β̂ into β̃. In particular, (4.12) implies

‖β̃ − β∗‖1 ≤ c4
γn
λn
M∗ ≤ M∗

2
,

for which we assume c4
γn
λn
≤ 1

2
. Because ‖β̃ − β∗‖1 = t‖β̂ − β∗‖1, we have

M∗

M∗ + ‖β̂ − β∗‖1

‖β̂ − β∗‖1 ≤
M∗

2
,

hence we obtain ‖β̂ − β∗‖1 ≤M∗.

Finally, we take c1 = 3, c2 = 9, and α′ = 1/12, which satisfy all the aforemen-
tioned assumptions.

4.4.2 Proof of Corrolary 15

Proof. We can see that the logistic loss is Lipschitz with a Lipschitz constant
1, because it holds that∣∣∣∣ ∂∂f l(f, y)

∣∣∣∣ =

∣∣∣∣−y +
exp(f)

1 + exp(f)

∣∣∣∣ ≤ 1.
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Next, we show that the logistic regression satisfies the quadratic margin condi-
tion. For f ∈ Fη,

∂2

∂f 2
l(f, ·) =

exp(f)

(1 + exp(f))2

≥ exp(|f 0|+ η)

(1 + exp(|f 0|+ η))2

≥ 1

(1 + exp(|f 0|+ η))2

=
1

(1 + exp(η) max
{

π
1−π ,

1−π
π

}
)2

≥ 1

(1 + exp(η)1−ε0
ε0

)2

≥ 1

(exp(η)/ε0 + 1)2
.

Hence, the quadratic margin condition holds with κ := (exp(η)/ε0 + 1)−2.

On the other hand, we have

‖fβ − f 0‖∞ ≤ ‖fβ − fβ∗‖∞ + ‖fβ∗ − f 0‖∞.

For ‖β − β∗‖1 ≤M∗, it holds that

‖fβ − fβ∗‖∞ = ‖(β − β∗)X‖∞
≤ ‖β − β∗‖1‖X‖max

≤M∗

=
1

γn

(
3E(fβ∗) +

9(exp(η)/ε0 + 1)2λ2
n|Sβ∗|

φ∗GRE

)
.

Since we assume

‖fβ∗ − f 0‖∞ ≤
η

3
, E(fβ∗)/γn ≤

η

9
, and

T2(exp(η)/ε0 + 1)2γn|Sβ∗|
φ∗GRE

≤ η

27
,

with λn ≤ Tγn, we obtain

‖fβ − f 0‖∞ ≤ η.

From the above, all of the assumptions in Theorem 12 have been verified.
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Chapter 5

Numerical Experiments

5.1 Synthetic Data Experiments for Linear Models

First, we validated the effectiveness of the IILasso for linear models. We con-
sidered the case in which the true active variables are uncorrelated and many
inactive variables are strongly correlated with the active variable. If all of the
active and inactive variables are uncorrelated, it is easy to estimate which is
active or inactive. On the other hand, if the inactive variables are strongly cor-
related with the active variables, it is hard to distinguish which one is active.
We simulate such a situation.

We generated a design matrix X ∈ Rn×p from the Gaussian distribution of
N (0,Σ) where Σ = Diag(Σ(1), · · · ,Σ(b)) was a block diagonal matrix whose
element Σ(l) ∈ Rq×q was Σ

(l)
jk = 0.95 for j 6= k and Σ

(l)
jk = 1 for j = k. We set

n = 50, p = 100, b = 10 and q = 10. Thus, there were 10 groups containing 10
strongly correlated variables. Next, we generated a response y by the true active
variables X1, X11, X21, · · · , X91, such that y = 10X1 − 9X11 + 8X21 − 7X31 +

· · · + 2X81 −X91 + ε, with a standard Gaussian noise ε. Each group included
one active variable. We generated three datasets for training, validation, and
test as above procedures independently.

Then, we compared the performance of the Lasso, SCAD (Fan and Li, 2001),
MCP (Zhang et al., 2010), EGLasso (Kong, Fujimaki, Liu, Nie, and Ding,
2014), and IILasso. Evaluation criteria are prediction error (mean squared er-
ror), estimation error (`2 norm between the true and estimated coefficients)
and model size (the number of non-zero coefficients). The SCAD and MCP
are representative methods of folded concave penalty, so their objective func-
tions are non-convex, which are the same as our method. They have a tun-
ing parameter γ; we set γ = 2.5, 3.7, 10, 20, 100, 1000 for the SCAD and γ =

1.5, 3, 10, 20, 100, 1000 for the MCP. The EGLasso has a parameter λ2; we set
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Table 5.1: Results of synthetic data for linear models

prediction estimation model
error error size

Lasso (ncvreg) 2.67(0.05) 4.44(0.06) 34.1(0.46)
SCAD (ncvreg) 1.52(0.02) 1.79(0.04) 14.6(0.23)
MCP (ncvreg) 1.53(0.02) 1.79(0.04) 14.6(0.24)
MCP (sparsenet) 2.41(0.11) 3.15(0.13) 13.4(0.28)
EGLasso 2.60(0.04) 4.36(0.05) 33.3(0.32)
IILasso (ours) 1.45(0.02) 1.40(0.04) 13.5(0.23)

λ2/λ1 = 0.01, 0.1, 1, 10, 100, 1000. For the EGLasso, we used the true group in-
formation beforehand. We used R packages ncvreg (Breheny and Huang, 2011)
for the Lasso, SCAD and MCP, and sparsenet (Mazumder, Friedman, and
Hastie, 2011) for MCP. One can solve MCP using either ncvreg or sparsenet;
they differ in their optimization algorithms and ways of initialization. For
the IILasso, we defined Rjk = |rjk|/(1 − |rjk|) for j 6= k and Rjk = 0 for
j = k. Hence, RSS takes small values if active variables are independent, and
RSSc and RScSc take large values if inactive variables are strongly correlated
with other variables, which is favorable from the theoretical results. We set
α = 0.01, 0.1, 1, 10, 100, 1000. We tuned the above parameters using validation
data and calculated errors using test data. We iterated this procedure 500 times
and evaluated the averages and standard errors.

Table 5.1 shows the performances with their standard error in parentheses. The
IILasso achieved the best prediction and estimation among all of them. This
was because our penalty term excluded the correlations and avoided overfitting.
Moreover, the model size of the IILasso was much less than those of the Lasso
and EGLasso and comparable to MCP. As a whole, the IILasso could estimate
the most accurate model with a few variables.

In our experiments, we employed cross validation for tuning the regularization
parameters. We could use our theoretical results such as (3.12) to find appro-
preate parameters, although it requires some knowledges such as ‖β∗‖1 and D
in advance.

5.2 Synthetic Data Experiments for Logistic Models

Next, we validated the performance of the IILasso for logistic regression models.
We generated a response y by Bernoulli(π(x)) where log-odds of π(x) is defined
by 10X1 − 9X11 + 8X21 − 7X31 + · · · + 2X81 − X91. For the rest setting, we
used the same parameters and procedures as Section 5.1, except that n = 100

instead of n = 50. This is just because it is difficult for all method to estimate
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Table 5.2: Results of synthetic data for logistic models

negative misclassification estimation model
log-likelihood error error size

Lasso (ncvreg) 0.484(0.006) 0.107(0.002) 16.8(0.06) 22.9(0.14)
SCAD (ncvreg) 0.486(0.007) 0.105(0.002) 16.00(0.10) 18.8(0.25)
MCP (ncvreg) 0.489(0.007) 0.106(0.002) 16.7(0.10) 18.1(0.26)
EGLasso 0.477(0.006) 0.104(0.002) 16.7(0.06) 25.7(0.18)
IILasso (ours) 0.471(0.009) 0.096(0.002) 14.4(0.14) 12.3(0.20)

Table 5.3: Abstract of microarray data

data # samples # dimensions # positive labels
alon 62 2000 22
chiaretti 111 12625 10
gordon 181 12533 150
gravier 168 2905 111
pomeroy 60 7128 21
shipp 77 7129 58
singh 102 12600 50
subramanian 50 10100 33
tian 173 12625 137
west 49 7129 25

logistic regression models with small samples. The Lasso, SCAD, and MCP for
logistic regression is supported by ncvreg (sparsenet does not support logistic
regression). The EGLasso and the IILasso for logistic regression can be solved
by CDA. We evaluated the negative log-likelihood, misclassification error (the
rate of misclassification), estimation error, and model size.

Table 5.2 shows the performances with their standard error in parentheses. The
IILasso outperformed other methods significantly in terms of misclassification
error and estimation error. Besides, the IILasso presented a much smaller model
size than other methods. Therefore, the IILasso could efficiently estimate the
accurate logistic models with a few variables.

5.3 Real Data Experiments: Gene Expression Data

We applied our method to various gene expression data to validate its ef-
fectiveness for real applications. We used the following 10 datasets: ‘alon’
(Alon, Barkai, Notterman, Gish, Ybarra, Mack, and Levine, 1999) (colon can-
cer), ‘chiaretti’ (Chiaretti, Li, Gentleman, Vitale, Vignetti, Mandelli, Ritz,
and Foa, 2004) (leukemia), ‘gordon’ (Gordon, Jensen, Hsiao, Gullans, Blu-
menstock, Ramaswamy, Richards, Sugarbaker, and Bueno, 2002) (lung can-
cer), ‘gravier’ (Gravier, Pierron, Vincent-Salomon, Gruel, Raynal, Savignoni,
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Figure 5.1: Results of 10 microarray datasets

De Rycke, Pierga, Lucchesi, Reyal, et al., 2010) (breast cancer), ‘pomeroy’
(Pomeroy, Tamayo, Gaasenbeek, Sturla, Angelo, McLaughlin, Kim, Goum-
nerova, Black, Lau, et al., 2002) (central nervous system disorders), ‘shipp’
(Shipp, Ross, Tamayo, Weng, Kutok, Aguiar, Gaasenbeek, Angelo, Reich,
Pinkus, et al., 2002) (lymphoma), ‘singh’ (Singh, Febbo, Ross, Jackson, Manola,
Ladd, Tamayo, Renshaw, D’Amico, Richie, et al., 2002) (prostate cancer),
‘subramanian’ (Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette,
Paulovich, Pomeroy, Golub, Lander, et al., 2005) (miscellaneous), ‘tian’ (Tian,
Zhan, Walker, Rasmussen, Ma, Barlogie, and Shaughnessy Jr, 2003) (myeloma),
‘west’ (West, Blanchette, Dressman, Huang, Ishida, Spang, Zuzan, Olson, Marks,
and Nevins, 2001) (breast cancer). All of these data are provided by R package
datamicroarray. The abstract of these datasets is described in Table 5.3. All
datasets are small-sample high-dimensional DNA microarray data. Since the
response is binary, logistic regression was applied. We used the same settings
on regularization parameters, as described in Chapter 5.1. We evaluated the
negative log-likelihood, misclassification error, model size, and max correlation
among active variables, using twenty-fold cross validation.
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Figure 5.2: Results of ‘subramanian’ and ‘west’ along with the
sequences of λ

The results are given in Figure 5.1. In terms of negative log-likelihood, 8 out
of 10 datasets gave similar performances among all methods, and the rest two
datasets ‘subramanian’ and ‘west’ showed the smallest negative log-likelihood
by the IILasso. The MCP was comparable to the IILasso but fell behind the
IILasso. We can see similar tendencies of misclassification errors. The IILasso
won in 8 out of 10 cases, including 5 ties. Although numbers of selected variables
of the IILasso were inferior to the MCP (the IILasso won in 5, including 3 ties;
the MCP won in 6, including 2 ties), max correlations among active variables
were superior to others (the IILasso won in 8, including 5 ties; the MCP won
in 5, including 5 ties). As a whole, the IILasso could construct accurate models
with small correlations.

We further investigated the influences of regularization parameters for the datasets
‘subramanian’ and ‘west’ because they showed a clear difference among meth-
ods. Figure 5.2 shows the results of the Lasso, MCP, and IILasso. Compared
with the Lasso, the IILasso mitigated overfitting even when λ was small, and
hence achieved low negative log-likelihood and misclassification error. More-
over, the IILasso suppressed its model size and correlations among active vari-
ables. The MCP rapidly decreased negative log-likelihood as λ decreased, and
overfitting occurred early. The sequences of the MCP were broken because its
algorithm iterations reached a maximum number defined in ncvreg.
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Chapter 6

Conclusion

In this thesis, we proposed a new regularization method, “IILasso”. The IILasso
reduces correlations among the active variables; hence it is easy to decompose
and interpret the model. We showed that the sign recovery condition of the
IILasso is milder than that of the Lasso for correlated design as long as the true
important variables are uncorrelated with each other. The convergence rate
of the IILasso also has a better performance compared to that of the Lasso.
Moreover, we extend the IILasso to the GLMs, and its convergence rate is also
analyzed. Finally, we verified the effectiveness of the IILasso by synthetic and
real data analyses using ten gene expression data, and we showed that the
IILasso was superior in many cases on high-dimensional data.
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