
Learning-based Adaptive Video
Streaming

by

Xiaolan Jiang

Dissertation

submitted to the Department of Informatics
in partial ful�lment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

September 2020

iii

Abstract

In recent years, video streaming tra�c has been increasing signi�cantly. To satisfy and
attract more users, video applications not only struggle with delivering high-quality
videos over the Internet, but also develop new types of video streaming scenarios. Recent
advances of hardware and network technology have made two new video streaming
scenarios, live and 360-degree video streaming, become tremendously popular among
users. However, new streaming scenarios are making it more challenging to provide
higher user perceived quality of experience (QoE).

In live streaming scenarios, high video quality and low latency are two main
requirements. Unlike on-demand video streaming services where only bitrate decisions
need to be made by the applications, a live streaming application needs to make more
complicated options (e.g. target bu�er level, latency limit) to achieve low latency.
Moreover, future video chunks’ information are unknown in live streaming services, and
it leads to a more di�cult task to make decisions.

Challenges for streaming high-quality 360-degree videos mainly comes from its
excessive need of network bandwidth. To prevent the delivery of entire 360 videos from
adversely a�ecting QoE, tile-based viewport adaptive streaming that divides 360 video
chunks into tiles and conveys streams with di�erentiated quality levels to viewport and
non-viewport areas has been regarded as a promising solution. Existing works have been
devoted to the design of viewport prediction (VPP) to predict users’ viewport orientation
due to head movements, as well as tile bitrate selection (TBS) to determine tile-based
bitrates for viewport and non-viewport areas. These two parts are still an open challenge
for the research community due to unpredictable user head rotation patterns and large

iv Chapter 0. Abstract

action space.
Our key insight is that learning-based methods can see human-invisible network

and user patterns well through a large amount data traces. This allows us to apply
learning-based schemes to tackle the challenges in live and 360-degree video streaming
scenarios. We formulate the live streaming task as a reinforcement learning problem with
discrete-continuous hybrid action spaces, then propose a novel deep reinforcement
learning (DRL) algorithm to train an neural agent which can take hybrid actions.

For 360-degree video streaming, we use part of non-viewport areas to help resist
prediction errors, and divide all tiles into three areas: viewport, adjacent and out areas.
Then we train a TBS agent with DRL to determine bitrate for each tile area. To predict
future viewport more accurately, we propose a sinusoidal viewport prediction system
which leverages the sinusoidal values of rotation angles for orientation prediction on
~0F direction, and utilize the correlation between predictions errors and head movement
velocity as well as prediction time window to handle the potential prediction error.

To evaluate the performance of the proposed schemes we conduct extensive simula-
tions based on various categories of videos, and real-world bandwidth and user head
motion datasets. Simulation results demonstrate that the proposed schemes achieve
better QoE than comparison schemes.

The key contribution of this dissertation is to improve user-perceived QoE by
learning-based approaches in both live and 360-degree video streaming scenarios. More
speci�cally, in live video streaming scenario, we design a novel DRL algorithm to take
hybrid actions which outperforms many standard DRL algorithms. For 360-degree video
streaming, we �nd that utilizing sinusoidal values of rotation angles as features can
signi�cantly reduce viewport prediction error and design a system based on this �nding,
and we apply DRL to train a neural TBS agent which achieves better performance than
heuristic-based methods.

v

Acknowledgement

First and foremost, I would like to express a lot gratitude to my supervisor Prof. Yusheng
Ji. During my �ve-year research career, she has acted as a tireless mentor, counselor, and
co-author. Prof. Ji has o�ered me many insightful advises to my study, and every meeting
I recall with her ended being inspired and encouraged. I was deeply indebted to her
for allowing and supporting me change my research topic from network caching to
learning-based video streaming, and this will have a signi�cant in�uence in my future
career life. Besides research, she has shared her wisdom and experiences in life and
career to me. She is a nice, generous, and patient person in my eyes, and my personality
has been inevitably by her throughout the years. I am extremely lucky to have her as my
supervisor in the past �ve years.

I am very thankful to my sub-advisors, Prof. Kensuke Fukuda and Prof. Shunji Abe,
and other members of my committee, Prof. Megumi Kaneko, Prof. Takashi Kurimoto, and
Prof. Jiro Katto. I am grateful to my co-authors, Dr. Yi-Han Chiang, Dr. Zhi Liu, Mr. Si
Ahmed NAAS, Prof. Ying Cui, Dr. Lei Zhong, and Prof. Stephan Sigg, as well as other
members in Prof. Ji’s lab, for their helpful suggestions and in-depth discussions. Yi-Han
was a postdoctoral researcher in NII and now an assistant professor at Osaka Prefecture
University. He is good at theorem proving and writing, and he has given me great help
on proofreading my research paper. At the early years in my research, Zhi has given
me many suggestions to my research topic and provided me great help and guidance
in writing a research paper. Ahmed contributed some implementation to part of my
dissertation. Ying, Lei, and Stephan has given me comments on improving the quality of
my research paper. Without them, I would have had a harder research life.

vi Chapter 0. Acknowledgement

Finally, I would like to express my earnest gratitude to my parents for their constant
support and love. Without them, all of my current achievements would have been
impossible.

vii

Contents

Abstract iii

Acknowledgement v

List of Figures 1

1 Introduction 1
1.1 Background for Adaptive Video Streaming 2

1.1.1 Live Video Streaming . 3
1.1.2 360-degree Video Streaming . 4

1.2 QoE Metrics for Video Streaming . 6
1.2.1 Subjective QoE Metric. 7
1.2.2 Objective QoE Metric. 7

1.3 Challenges . 9
1.3.1 Universal Challenges for Video Streaming 10
1.3.2 New Challenges for Live Video Streaming 10
1.3.3 New Challenges for 360-degree Video Streaming 11

1.4 Learning as a Solution for Video Streaming 11
1.5 Organization . 14

2 Related Work 15
2.1 Live Video Streaming . 15

2.1.1 ABR algorithms for VoD services 15

viii Contents

2.1.2 ABR algorithms for Live streaming 16
2.2 360-degree Video Streaming . 19
2.3 Viewport Prediction . 20

3 Learning-based Live Video Streaming 25
3.1 Overview . 25
3.2 System Design . 26

3.2.1 Reinforcement Learning for Live Streaming 26
3.2.2 HD2: Dueling DQN with Hybrid Action Space 29
3.2.3 HD3: Distributed HD2 . 30

3.3 Evaluation . 32
3.3.1 QoE De�nition . 32
3.3.2 Dataset Analysis . 33
3.3.3 Comparison Schemes . 35
3.3.4 Implementation . 35
3.3.5 Results Analysis . 36

3.4 Summary . 40

4 Learning-based 360-Degree Video Streaming 41
4.1 Overview . 41
4.2 System Design . 42

4.2.1 VPP – The Prediction of Viewport 43
4.2.2 TBS – The Bitrate Selection of Tiles 45

4.3 Evaluation . 49
4.3.1 Parameter Settings . 49
4.3.2 Datasets . 50
4.3.3 360 Video Player Simulator Design 52
4.3.4 Comparison Metrics . 53
4.3.5 QoE Metrics . 54
4.3.6 Reward function design . 55
4.3.7 Result Analysis . 56

Contents ix

4.4 Summary . 57

5 Sinusoidal Viewport Prediction for 360-Degree Video Streaming 59
5.1 Overview . 59
5.2 Sinusoids versus Prediction Accuracy . 63

5.2.1 Prediction Error Analysis . 63
5.2.2 Conversion of Degrees to Sinusoid 63
5.2.3 Why sinusoid is better? . 64

5.3 System Design . 66
5.3.1 Orientation Prediction . 66
5.3.2 Error Handling . 67
5.3.3 Tile Probability Normalization . 68

5.4 Evaluation . 71
5.4.1 Simulation Settings . 71
5.4.2 Viewport Prediction Accuracy . 73
5.4.3 Video Quality Assessment . 74

5.5 Summary . 84

6 Conclusion 85
6.1 Contributions . 85
6.2 Discussion . 86

6.2.1 Limitations . 86
6.2.2 Lessons Learned . 88

6.3 Future Perspective . 89
6.3.1 New networking challenges solvable by learning 89
6.3.2 Integrating heuristics with reinforcement learning 90

Bibliography 93

1

List of Figures

1.1 An overview of HTTP adaptive video streaming. 3

1.2 The mapping of a spherical surface into a plane. 5

1.3 The main contribution of this dissertation is to develop three learning-
based solutions (bottom) to address the key challenges (middle) exposed
by live and 360-degree video streaming scenarios (top). 14

3.1 The Work�ows of RL. 27

3.2 HD2 Architecture . 28

3.3 CDF of Bandwidth in Four Network Conditions. 33

3.4 GOP sizes of di�erent bitrates from the same video 34

3.5 Ratios of GOP sizes between adjacent bitrates from the same video . . . 34

3.6 Comparing HD3 with several state of the art DRL algorithms on four
kinds of network environments (high, medium, low, oscillating) in live
streaming scenarios. Results are normalized against the performance of
HD3. 36

3.7 Analyzing performance of di�erent DRL algorithms on di�erent granular-
ity of discretization of latency limit value on High bandwidth scenario.
Results are normalized against the performance of HD3 which outputs a
continuous latency limit value. 38

2 List of Figures

3.8 Analyzing performance of di�erent DRL algorithms on di�erent granular-
ity of discretization of latency limit value on Medium bandwidth scenario.
Results are normalized against the performance of HD3 which outputs a
continuous latency limit value. 38

3.9 Analyzing performance of di�erent DRL algorithms on di�erent granular-
ity of discretization of latency limit value on Low bandwidth scenario.
Results are normalized against the performance of HD3 which outputs a
continuous latency limit value. 39

3.10 Analyzing performance of di�erent DRL algorithms on di�erent granu-
larity of discretization of latency limit value on Oscillating bandwidth
scenario. Results are normalized against the performance of HD3 which
outputs a continuous latency limit value. 39

4.1 The architecture of Plato. 43
4.2 LSTM based predictor. 44
4.3 Division of tile areas. 45
4.4 The work�ows of RL. 46
4.5 An illustration of A3C algorithm. 48
4.6 CDF of bandwidth . 51
4.7 sample of 4G bandwidth . 53
4.8 Average QoE . 56
4.9 Comparing Plato with existing algorithms by analyzing their performance

on the individual components in the general QoE de�nition 57

5.1 An illustration of tile-based streaming for 360-degree videos in VoD and
live scenarios. 61

5.2 The prediction errors with respect to various time window lengths on the
AV dataset (see Sec. 5.4.1). 62

5.3 Head movement trace on yaw direction. The angle is represented by
degree, and cosine/sine of the angle. 64

5.4 An illustration of predicted values of models trained with both the degrees
and the sinusoidal values. 64

List of Figures 3

5.5 An illustration of the SVP system, which consists of three stages: ori-
entation prediction, error handling, and tile probability normalization.
The SVP system predicts based on head rotations collected by an HMD,
and �nally outputs viewing probability for each tile to the ABR model
(corresponding to Figure 5.1). 69

5.6 The relationship between prediction errors, time window lengths and
head movement velocities in the AV dataset. 70

5.7 The prediction errors on yaw direction in 1-, 3-, 5-sec time window. . . . 77
5.8 The prediction errors on pitch direction in 1-, 3-, 5-sec time window. . . . 78
5.9 Tile prediction accuracy on di�erent datasets. 79
5.10 E�ective bitrate comparison (�xed bandwidth, 3-sec bu�er threshold). . . 80
5.11 E�ective bitrate comparison (dynamic bandwidth, 3-sec bu�er threshold). 81
5.12 E�ective bitrate comparison (dynamic bandwidth, 6-sec bu�er threshold). 82
5.13 E�ective bitrate improvement by each stage of SVP (dynamic bandwidth,

3- and 6-sec bu�er thresholds). 83

5

List of Abbreviations

A3C Asynchronous Advantage Actor Critic

ABR Adaptive Bitrate

CDN Content Delivery Network

CNN Convolutional Neural Network

DASH Dynamic Adaptive Streaming over HTTP

DQN Deep Q Network

DRL Deep Reinforcement Learning

FC Fully Connected

FoV Field of View

GOP Group of Pictures

HD3 Hybrid Distributed Dueling DQN

HMD Head Mounted Displays

HTTP Hypertext Transfer Protocol

LinSVR Linear Support Vector Regression

LR Linear Regression

6 List of Abbreviations

LSTM Long Short Term Memory

MOS Mean Opinion Score

MPC Model Predictive Control

MPD Media Presentation Description

PSNR Peak Signal-to-Noise Ratio

PSPNR Peak Perceptible-Noise Ratio

QoE Quality of Experience

SSIM Structural Similarity Index

SVP Sinusoidal Viewport Prediction

TBS Tile Bitrate Selection

VMAF Video Multimethod Assessment Fusion

VoD Video on Demand

VPP Viewport Prediction

VR Virtual Reality

1

1
Introduction

As the development of hardware technology, more and more people are holding one or
several smart devices which are accessible to the Internet. To attract users and increase
the revenues, many applications have been developed to provide services to the Internet
users for various purposes (e.g., video, gaming, �le sharing, etc). The ever-increasing
numbers of Internet users and applications have triggered the explosive growth of the
global IP tra�c. By 2022, global IP tra�c will increase to nearly 11 times more than all IP
tra�c generated in 2012, reaching an annual rate of 4.8 zettabytes per year. Among
numerous Internet applications, video streaming has contributed the largest share of the
global Internet tra�c. The video tra�c is expected to account for 82% of the global
Internet tra�c by 2022, up from 73% in 2017. Furthermore, live videos will increase
15-fold and reach about 17% of the total video tra�c, and virtual reality (VR) tra�c will
increase 12-fold by 2022 [1].

The huge demand for Internet videos (short, long, 360-degree, live videos) has made

2 Chapter 1. Introduction

video streaming a popular yet competitive service, content providers need to provide
better quality of experience (QoE) to attract more users to increase their revenues. One of
the latest de�nitions of QoE is [2]:

QoE is the degree of delight or annoyance of the user of an application or service.
It results from the ful�llment of his or her expectations with respect to the
utility and/or enjoyment of the application or service in the light of the user’s
personality and current state.

However, it’s non-trival to design video streaming systems to achieve high QoE due
to various challenges caused by dynamic network conditions and speci�c requirements
from di�erent video streaming scenarios. Users may quickly quit a video session if the
video quality is insu�cient or there are frequent rebu�erring events. Dynamic network
conditions and limited bandwidth prevent content providers from delivering high-quality
videos to the users.

In the following, we’ll �rst introduce the background for adaptive video streaming
scenarios and talk about the corresponding challenges. Then we give a brief introduction
to our proposed learning-based solutions to tackle the challenges of live and 360-degree
video streaming scenarios.

1.1 Background for Adaptive Video Streaming

To overcome the dynamic network issue, many video content providers have deployed
HTTP-based adaptive streaming (standardized as DASH [3]) system in their applications.
In DASH systems, a video is temporally partitioned into multiple segments, each of
which is then encoded at several bitrate levels, where a higher bitrate represents a higher
video quality and thus larger segment size. During video streaming, a video player can
adaptively select an appropriate bitrate for each segment based on the estimate of the
future network bandwidth. Video segments are stored on HTTP servers along with a
manifest �le (i.e. MPD �le) describing video’s information.

A typical end-to-end video-on-demand (VoD) streaming process is shown in Figure
1.1. At the beginning, a video player embedded in a client application �rst requests the

1.1 Background for Adaptive Video Streaming 3

Throughput
Predictor

Playback
Buffer

ABR
Controller

Buffer
Occupancy

Throughput
Estimate

Video Player

SegmentSegmentSegment

SegmentSegmentSegment

SegmentSegmentSegment

Media Content

Internet

MPD
<xml>

 quality
 size

</xml>

HTTP Server
HTTP GET
Quality q

Video Segment

Figure 1.1: An overview of HTTP adaptive video streaming.

MPD �le from the HTTP server. Then at each adaptation step, the player requests next
video segment at quality @ according to an adaptive bitrate (ABR) algorithm. These
algorithms take various inputs (e.g., throughput estimation, playback bu�er level, etc.) to
make the bitrate decision for next segment. As segments are downloaded, they will be
stored in the bu�er and then played back to the client. It is noted that playback of a given
segment cannot start until the downloading process for the entire segment has been
�nished.

With the development of technology and network, two new video scenarios: 1) live
video streaming and 2) 360-degree video streaming are becoming popular nowadays. In
the following, we’ll give an overview of these two promising scenarios.

1.1.1 Live Video Streaming

In recent years, live video streaming has become tremendously popular [4,5]. Many video
applications (e.g., Twitch, Facebook Live, Kwai, Douyu) has been developed to allow users
to broadcast real-time videos over the Internet, and interact with their viewers. To satisfy
the users, live video streaming services have to meet two requirements: high quality of
videos and low latency due to the real-time interaction between the broadcasters and
viewers.

A typical live video streaming scenario can be considered as follows. There is a user

4 Chapter 1. Introduction

captures and produces a video in real-time at anywhere with any device (mobile phone or
PC). The lively recorded video stream is uploaded to the server where the same video will
be transcoded into multiple quality or bitrate levels. All quality levels of videos are then
delivered to CDN (content delivery network) nodes, which are located at the edge of the
network and near to the end users. The viewers send requests to the CDN nodes to
prefetch one speci�c quality level of video based on their own network conditions.

Unlike VoD streaming services where only bitrate decisions need to be made by the
clients, there are more options for the client in a live streaming scenario described as
above. Speci�cally in this live streaming grand challenge [6], a client needs to make three
decisions of 1) deciding which bitrate to prefetch to increase the video quality while
avoiding rebu�ering and bitrate �uctuating, given its own network condition, 2) selecting
target bu�er level to decide whether slowing down its playback to reduce the rebu�ering
time or speeding up to reduce the end-to-end delay, and 3) adjusting the value of latency
limit to decide when to skip the remaining frames in current video segment to reduce
the latency. How to make these decisions under stochastic network conditions and
with unknown future video information is a fundamental challenge for live streaming
applications.

1.1.2 360-degree Video Streaming

Recent advances in the computing resources of machines have prompted interactive
applications (e.g., virtual reality) to be viable service types to users. The interaction of
these types of applications makes use of head mounted displays (HMD) device to enable
360 video players to act immersively. To approach high-level quality of experience (QoE)
for users, it is envisaged that the provisions of high-resolution and 360-degree (or 360 for
brevity) videos are essential features. By the fact that conventional video providers (e.g.,
YouTube) deliver entire video contents to users could generate video tra�c up to 40
Mbps [7] , how 360 videos can be conveyed to users with high QoE under constrained
network bandwidth determines the futurity of interactive applications.

For fear that the delivery of huge video tra�c over the Internet leads to network
congestion and QoE degradation, adaptive streaming that adjusts video qualities according

1.1 Background for Adaptive Video Streaming 5

Equirectangular
projection

sphere plane

Figure 1.2: The mapping of a spherical surface into a plane.

to users’ viewports (i.e., �elds of view) is capable of adapting to time-varying network
bandwidth. In viewport adaptive streaming, high-quality streams are delivered to
viewport areas while reduced qualities are provided to non-viewport ones, since each
user can only have relatively narrow �elds of view of a 360 video. With the knowledge of
users’ viewports, the streaming qualities can then be di�erentiated, thereby saving video
tra�c from downplaying non-viewport areas [8–10].

Using tiles in viewport adaptive streaming for 360 videos o�ers a high level of
granularity over the projected1 plane and thus attracts much research attention in the
past few years. Each tile is a spatial fragment of a video segment, and it is typically
represented by its horizontal and vertical degrees (as depicted in Figure 1.2). In addition,
tiles can be encoded by various quality levels according to their respective positions. For
instance, we can encode tiles of viewports with high bitrates and reduce video tra�c for
non-viewport areas. Therefore, tile-based viewport adaptive streaming admits elastic
control of the quality levels of tiles for 360 videos, thereby enhancing QoE for users.

To facilitate tile-based viewport adaptive streaming for 360 videos with high QoE,

1Each 360 video surrounds a spherical surface, which can be projected onto a two-dimensional plane via
a projection method [11] (e.g., equirectangular, cubemap, pyramid projections). In the projected plane,
existing video coding that were designed for planar areas becomes applicable, making the design of
viewport adaptive streaming for 360 videos much easier than handling spherical surfaces directly.

6 Chapter 1. Introduction

there are two key issues to be addressed: viewport prediction (VPP) and tile bitrate
selection (TBS). The goal of VPP is to predict viewports for the upcoming segments based
on head movements, since the interactive applications may guide users to change their
facing directions rapidly. Without high-accuracy VPP, severe QoE drops may take place.
On the other hand, the mission of TBS is to determine tile bitrates, since the availability
of network bandwidth is hightexty dynamic. Large variation among the quality levels
of tiles within a viewport can also a�ect QoE adversely, and hence the smoothness of
inter-tile quality levels is another concern. Clearly, how to tackle the VPP and TBS issues
plays a vital role in the success of tile-based viewport adaptive streaming for 360 videos.

1.2 QoE Metrics for Video Streaming

Investigating the in�uencing factors for QoE should be the �rst step to build high quality
video streaming services. Commonly, these in�uencing factors can be classi�ed into four
categories [12]:

• System level includes the factors that function in the technical perspective.
These factors are related to the characteristics of network (delay, packet loss),
terminal devices (operating system, hardware, screen size), and the video streaming
applications (ABR scheme design, transmission protocol).

• User level factors consider the psychological or physical state of human. These
factors consist of gender, age, the interest of users, users’ browsing history (whether
watched the same or similar video before), and hour of the day.

• Content level factors are mainly the basic properties of a video �le/sequence such
as encoding format, framerate, resolution, encoding rate, duration, type of video,
content quality, language used in the video, etc.

• Context level considers the impact of the environment of users’ QoE. This kind of
factors could be the location of the user (�ying plane, running train, quite room), or
the purpose of watching videos (e.g., education, interview, chatting, entertainment),
etc.

1.2 QoE Metrics for Video Streaming 7

This thesis focus on proposing solutions to design better ABR algorithms since
ABR strategy (system level factor) is one of the most important technically controllable
in�uencing factors for QoE of video streaming services. Moreover, better ABR algorithms
lead to positive in�uences on several controllable content level factors (e.g., resolution,
encoding rate). In the following parts, we introduce several common QoE metrics
to measure the performance of ABR algorithms from the subjective and objective
perspective.

1.2.1 Subjective QoE Metric.

The most direct way to assess QoE during a video streaming session is to ask a limited
number of human subjects to watch videos in a controlled environment and give opinion
scores based on their experience. The opinion score is de�ned as "value on a prede�ned
scale that a subject assigns to his opinion of the performance of a system" by The
International Telecommunication Union (ITU) [13]. The mean opinion score (MOS)
is the average of these opinion scores which are commonly rated on a 5-point scale:
[1 : 103, 2 : ?>>A, 3 : 5 08A, 4 : 6>>3, 5 : 4G24;;4=C] [14]. A better ABR algorithm should be
able to achieve higher MOS ratings across di�erent users.

MOS has been the most popular subjective QoE metric for video quality assessment.
However, MOS might be user biased, since the rating of a user might be in�uenced
by many personal factors such as gender, age, psychological status, interest on video
content, etc. In this case, utilizing MOS as the metric is di�cult to fairly evaluate di�erent
ABR algorithms. Moreover, the measurement of MOS is slow (waiting for subjects to
�nish watching video sessions) and unscalable (impractical to test on all kinds of network
conditions or video sequences). In addition, MOS cannot provide the exact criteria to
guide the design of a better ABR scheme.

1.2.2 Objective QoE Metric.

A promising way to quantify QoE is to use objective metrics which can not only
re�ect users’ subjective perceptions and satisfactions but also be unbiasedly and easily
obtained [15, 16]. In practice, most existing ABR algorithms for video streaming scenarios

8 Chapter 1. Introduction

have been designed and evaluated based on several common QoE metrics, that are
common across di�erent video applications and have been proven to be critical for the
measurement of user perceived quality as well as user engagement: [17–19].

• Video quality: The average per-segment quality over the whole video streaming
session. Many existing works have represented video quality with the values of
bitrate [20–22], which is the number of bits per second and generally determines
the size and quality of a video. Another classic metric is Peak Signal-to-noise
Ratio (PSNR), which is calcualted as the ratio between the maximum possible
power of a signal and the power of corrupting noise that a�ects the �delity of its
representation. There are also other metrics to be used to assess video quality, such
as Peak Signal-to-Perceptible-Noise Ratio (PSPNR) 2 [23], Structural Similarity
Index Measure (SSIM) 3 [24], and Video Multimethod Assessment Fusion (VMAF)
4 [25]. The choice among these metrics usually depends on their calculation
simplicity, application scenario, and video types, etc.

• Temporal quality smoothness: Also know as quality �uctuations. This tracks the
magnitude of the quality changes from one segment to the next one. Smoother
quality changes gives viewers better experience.

• Rebu�ering ratio: For each segment rebu�ering occurs when the transmission time
is longer than the playback bu�er occupancy level. Frequent rebu�ering events
may make users easily abandon watching the current video stream thus leading to
a revenue decrease for the content providers.

Di�erent video streaming scenarios aim to provide di�erent kinds of services, thus
requiring di�erent sets of QoE metrics and inconsistent preferences on optimizing
di�erent QoE metrics. We’ll introduce some common QoE metrics for two typical video
streaming scenarios (live and 360 video streaming) in the following.

2PSPNR is designed to improve PSNR by �ltering out the quality distortions that are not perceived by
viewers.

3 SSIM estimates video’s quality by measuring the structural similarity between the received video
sequences and the original undistorted ones.

4 VMAF predicts subjective quality based on the received video sequences and the original undistorted
ones with machine learning models.

1.3 Challenges 9

QoE Metrics for Live Streaming Besides the three QoE metrics (video quality, tempo-
ral bitrate smoothness, rebu�ering ratio) already designed in the VoD services, new QoE
metrics need to be considered for live streaming services due to their strict requirement
for low latency. In the live streaming grand challenge [6], another two QoE metrics
are de�ned: the latency penalty and the frame skipping penalty. The latency penalty
quanti�es the in�uence of the latency on the user perceived quality. Although skipping
several frames can reduce the latency, but skipping too many frames may result in
discontinuous playback of the video content or losing important information. In this
hence, the skipping frame penalty is used as another QoE metric to balance the latency
and content completeness. As a summary, an ABR algorithm designed for live streaming
scenarios needs to optimize a QoE function consisting �ve QoE elements.

QoE Metrics for 360-degree Video Streaming 360-degree video streaming applica-
tions usually consider four QoE metrics: video quality, temporal quality smoothness,
rebu�ering ratio, as well as spatial quality smoothness. Since the users can only watch
the video content in the viewport area of the whole sphere, the de�nitions of video
quality and temporal quality smoothness will be modi�ed to represent the average
per-segment quality of content in the viewport area across all video segments, and the
quality variation of the content of the viewport areas between adjacent video segments.
A new QoE element, spatial quality smoothness, is proposed for tile-based 360-degree
video streaming. The new term represents the quality smoothness of tiles in the viewport
area in per-segment, higher quality di�erences among adjacent tiles will make users see
edges of each tile thus leading to bad QoE.

1.3 Challenges

To design systems that optimize QoE in various video streaming scenarios, one should
address the challenges exposed by each scenario. In the following, we �rst introduce two
universal challenges that are faced in all video streaming scenarios, then identify the new
challenges exposed by live and 360-degree video streaming applications respectively.

10 Chapter 1. Introduction

1.3.1 Universal Challenges for Video Streaming

The policies employed by ABR algorithms heavily in�uence video streaming performance.
However, these algorithms face two primary practical challenges:

• Network dynamics. Network conditions may vary signi�cantly over time while
streaming a video. For example, on cellular links where sudden �uctuation may
often happen, it’s impossible to predict future bandwidth accurately, thus leading
to underutilized networks (lower video quality) or large transmission delays
(rebu�ering). To address this, ABR algorithms should be robust to the inaccurate
future bandwidth prediction and make bitrate decisions in the long term run.

• QoE con�icts. ABR policies need to handle the trade-o� among several QoE
metrics such as optimizing video quality (i.e., highest possible bitrate), minimizing
rebu�ering rates (i.e., scenarios where the client’s bu�er is empty and playback
stops), and reducing video quality �uctuations (i.e., avoiding bitrate changes
between adjacent video segments). However, many of these goals may intrinsically
con�ict with each other. For example, on networks with limited bandwidth, keeping
rebu�ering at a low rate leads to consistently requesting segments encoded at
lower bitrate which will sacri�ce quality; on the other hand, maximizing the quality
by downloading highest possible bitrate will inevitably result in more rebu�ering
events. Moreover, on varying networks, greedily selecting the highest bitrate based
on estimated available bandwidth may lead to substantial quality �uctuations.

1.3.2 New Challenges for Live Video Streaming

Besides dynamic network environment and con�icting QoE goals, live video streaming
applications exposes two new technical challenges:

• Hybrid actions. To satisfy the strict latency requirement, a live video player have
more complicated actions to make than on-demand video player. For example, as
introduced in [6], a live video players needs to make three decisions: 1) bitrate, 2)
target bu�er level, and 3) latency limit. The action space is larger and actions may
have in�uences among each other.

1.4 Learning as a Solution for Video Streaming 11

• Unknown future video information. Unlike on-demand video streaming ser-
vices where videos where videos are pre-recorded and videos’ information (e.g.
sizes of all video segments) can be pre-fetched from the server, videos are generated
on the run in live video streaming scenarios. Video segment sizes are changing
along time and can vary largely across di�erent video contents. It’s challenging to
estimate future video segment sizes for each bitrate level, and inaccurate video
segment size predictions can lead to bad video quality or large latency.

1.3.3 New Challenges for 360-degree Video Streaming

To reduce bandwidth consumption, tile-based 360-degree video streaming method is
proposed, which exposes two new challenges:

• Unknown future viewport. Di�erent users have di�erent head rotation prefer-
ences on di�erent video contents. Many factors can in�uence which part of the
video users will watch in the future. For example, users may prefer to explore the
video at the beginning then feel tired and keep stable; users may move his head to
follow a player or the ball while watching a football game. It’s di�cult to predict
accurately where a user will rotate his head in the future, and inaccurate viewport
prediction will decrease the QoE of the users.

• Large action space. For regular video, the ABR policy only needs to choose an
approriate bitrate level for one video segment. However, for tile-based 360-degree
video, tile bitrate decisions need to be made for each tile in a video segment,
di�erent tiles may have di�erent bitrate levels. For a streaming scenario where
there are # tiles in one video segment and " available bitrate levels for each tile,
the action space will be "# .

1.4 Learning as a Solution for Video Streaming

Inspired by the reality that machine learning techniques have been successfully applied
in many research �elds (e.g. robotics, computer games, VoD video streaming), this

12 Chapter 1. Introduction

dissertation develops learning-based solutions to tackle the challenges in various video
streaming scenarios. The core advantages of machine learning techniques are that they
can learn latent patterns underlying the large amount of data traces (network throughput,
head motion, video), and make accurate prediction or good decisions based on the learned
data patterns. Next, we brie�y introduce the three solutions proposed in this dissertation.

• Learning-based Live Video Streaming (Chapter 2). Existing learning- [20] or
heuristic-based work [21, 22] on VoD video streaming scenarios cannot take hybrid
actions and lacks the component for future video information prediction. Prior
work on live video streaming [26–28] are based on human heuristics and unable to
appropriately handle the dynamics of network and video and trade-o� among
di�erent QoE metrics. To address the challenges with the power of machine
learning, we propose HD3 (Distributed Dueling DQN with discrete-continuous
Hybrid action spaces), a novel deep reinforcement learning (DRL) algorithm which
makes both discrete (bitrate and target bu�er level) and continuous (latency limit
value) actions. In detail, we use HD3 to train a neural network agent to make
decisions based on environment states (e.g. past network throughputs, current
bu�er level, historical video frames’ sizes) to optimize users’ QoE (i.e., high video
quality and low end-to-end delay). We did extensive simulations on real-world
video datasets and various network conditions, the reuslts show that the proposed
scheme HD3 can outperform other state-of-the-art DRL schemes in di�erent
network conditions and video scenes.

• Learning-based 360-degree Video Streaming (Chapter 3). Either learning or
heuristic-based studies on VoD video streaming services are designed for a small
action space and lacks a well-designed QoE function, which make them not
applicable in tile-based 360-degree video streaming. Existing studies [29–32]
on 360-degree video streaming are designed based on heuristics which cannot
perform well under dynamic environments and multiple con�icting QoE goals. To
leverage of power of learning to address the challenges, we �rst divide the tiles
into several classes to reduce the action space, then utilize a state-of-the-art DRL
algorithm-A3C [33] to train a neural TBS agent to map the environment states (e.g.

1.4 Learning as a Solution for Video Streaming 13

past network throughputs, current bu�er level, future video tile sizes) to the bitrate
for each tile class. We did extensive simulation on real-world network, video, and
head motion datasets, and the results demonstrate that the proposed scheme can
achieve better QoE than the comparing schemes.

• Sinusoidal Viewport Prediction for 360-degree Video Streaming (Chapter 4).
To improve viewport prediction accuracy, existing studies are in a trend of utilizing
more information (e.g. video content [34, 35], or other users’ motions traces [30])
or designing more complicated models ([36]). However, these approaches will
potentially give rise to excessive computational overhead and latency. To achieve
both high accuracy and low overhead, we propose a sinusoidal viewport prediction
(SVP) system which leverages sinusoidal values of rotation angles to predict
orientation, and utilizes the relationship between prediction errors, prediction time
window and head movement velocities to further improve the system performance.
Based on the simulations conducted on multiple real-world bandwidth, head motion,
and video datasets, we show that the proposed scheme outperforms state-of-the-art
comparison schemes under various bu�er thresholds and bandwidth settings in
terms of viewport prediction accuracy and video quality.

The key contribution of this dissertation is a suite of learning-based systems to
optimize users’ QoE in both live and 360-degree video streaming scenarios (a quick
overview can be found in Figure 1.3). In particular, we identify key challenges to
QoE optimization, tackle these challenges by novel system and algorithm designs that
leverage deep reinforcement learning for time-series decision and other machine learning
techniques for prediction, and perform extensive simulations on real-world datasets to
demonstrate that our proposed solutions can substantially improve the QoE in both live
and 360-degree video streaming scenarios.

14 Chapter 1. Introduction

Challeges for
Live

Video Streaming

Challeges for
VoD

Video Streaming

Challeges for
360-degree

Video Streaming

Hybrid
Actions

Unknown
Video

Information

QoE
Conflicts

Network
Dynamics

Unknown
Future
Viewport

Large
Action
Space

Chapter 2
A novel DRL scheme to
handle hybrid actions

Chapter 3
A DRL-based system to
determine tile bitrates

Chapter 4
Accurate prediction with

sinusoidal features of angles

Figure 1.3: The main contribution of this dissertation is to develop three learning-based
solutions (bottom) to address the key challenges (middle) exposed by live and 360-degree
video streaming scenarios (top).

1.5 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the of
existing ABR schemes for live streaming and 360-degree video streaming, as well as
related work for viewport prediction systems. Chapter 3, 4, and 5 describe three important
components of this dissertation: (1) The learning-based system optimizes user QoE in live
video streaming scenario by designing distributed Dueling DQN algorithm to solve hybrid
discrete and continuous action space problem; (2) A learning-based system optimizes
users’ QoE in 360-degree video streaming scenario by applying DRL algorithm to train a
neural agent to select bitrates for each tile; (3) The sinusoidal viewport prediction system
predicts future viewport by utilizing sinusoidal values of head rotations.

Chapter 6 summarizes the contributions of the dissertation, discusses the lessons
learned and limitations of the proposed solutions, and ends with several future perspec-
tives.

15

2
Related Work

2.1 Live Video Streaming

In this part, we �rst introduce the existing ABR algorithms for VoD streaming, then
introduce the related work in live streaming. Although the ABR algorithms designed
for VoD streaming cannot be directly applied for live streaming, the idea behind these
schemes have inspired the design of ABR and latency control algorithms in live streaming.

2.1.1 ABR algorithms for VoD services

Existing ABR algorithms for VoD applications can be primarily categorized into three
classes: rate-based, bu�er-based, and quality-based. The rate-based approach FESTIVE
[37] �rst predicts future bandwidth by the harmonic mean of the past measured
throughputs, then select the highest possible bitrate the bandwidth can support.

16 Chapter 2. Related Work

Conversely, bu�er-based methods [22, 38] make bitrate decisions for future segments
solely based on the client’s playback bu�er level. The goal of these schemes is to keep the
bu�er occupancy at a target level which balances video quality and rebu�ering. BBA [38]
maps client’s bu�er level to bitrate through a pre-con�gured piece-wise linear function.
BOLA [22] formulates the ABR problem as an optimization problem and solve it with the
Lyapunov function.

Quality-based schemes [20, 21] try to optimize users QoE by making bitrate decisions
based on both estimated future bandwidth and current bu�er level. MPC [21] applies
model predictive control approaches which utilize both bandwidth estimations and bu�er
level information to make appropriate bitrate decisions to maximize QoE over a horizon
of several future segments. Pensieve [20] leverages DRL to train an neural ABR agent to
optimize QoE using multiple input useful signals including past measured bandwidths
and bu�er level.

All algorithms above are designed for VoD services which cannot be directly be
applied to tackle the new challenges exposed by live video streaming scenarios. More
speci�cally, these algorithms do not encode latency into their QoE optimization function
thus leading to high latency in live streaming services. Moreover, they are not designed
to take only bitrate actions and it’s di�cult to extend them to take more actions (e.g.
bitrate level, target bu�er level, latency limit).

2.1.2 ABR algorithms for Live streaming

Many existing works [26–28, 39–41] for live streaming have utilized techniques of
playback control or frame dropping to reduce latency. Earlier schemes are mainly
designed based on human heuristics. Li et al. [26] utilize the Group of Pictures based
cumulative average jitter to determine the playback threshold. In [27, 28] the technique of
frame dropping is utilized by heuristic-based methods. However, there is still space to
reduce latency beyond these schemes.

Recently, Yi et al. [39] held a live streaming grand challenge which encourages
researchers to apply machine learning algorithms to design e�cient ABR algorithms and
latency control schemes based on both the technique of playback control (by making

2.1 Live Video Streaming 17

decisions among several discrete target bu�er levels) and frame skipping (controlled
by setting a continuous latency limit value). To tackle the problem proposed in this
challenge, several solutions has been proposed and published. Hong et al. [41] applied
Deep Deterministic Policy Gradient, a popular DRL algorithm on continuous tasks, to
train an ABR agent which can output only continuous values, then map some of these
actions to discrete values for making bitrate decision and determining target bu�er
level for playback control. Peng et al. [40] proposed a hybrid control scheme based on
heuristic playback rate control, latency-constrained bitrate adaptation and QoE-oriented
frame dropping. This scheme will �rst discretize the continuous latency limit values into
multiple discrete values, then choose the best one from the discretized values.

The schemes introduced above is summarized in Table 2.1. The learning-based
schemes can usually outperform heuristic-based schemes by better adapting to the
network dynamics. On the other hand, learning-based algorithms often lead to higher
overhead. The two recent work [40, 41] cannot output hybrid (discrete and continuous)
actions. To tackle the same challenge, we have proposed a novel DRL-based scheme HD3
(see Chapter 3) [42] which are designed based on the Dueling DQN algorithm and can
output hybrid actions.

18 Chapter 2. Related Work

Table 2.1: Summary of Related Work on Live Video Streaming

Work Algorithm Latency Control Action Adaptivity
to Dynamics

Overhead

VoD video streaming

[37] Heuristic - Discrete Low Low
[38] Heuristic - Discrete Low Low
[21] MPC - Discrete Medium Medium
[22] Optimization - Discrete Medium Medium
[20] DRL (A3C) - Discrete High High

live video streaming

[27] Heuristic frame skipping Discrete Low Low
[26] Heuristic playback control Discrete Low Low
[28] Heuristic frame skipping Discrete Low Low
[40] MPC playback control &

frame skipping
Discrete Medium Medium

[41] DRL (DDPG) playback control &
frame skipping

Continuous High High

2.2 360-degree Video Streaming 19

2.2 360-degree Video Streaming

Tile-based viewport adaptive 360 video streaming has been an emerging method in the
research society. Many researchers have been proposing their schemes. Graf propose
three tile based schemes to compare their performance [43]. Their schemes are called full
delivery basic, full delivery advanced and partial delivery. For full delivery basic, they
assign the highest possible bitrate for the tiles in the viewport area, and the lowest bitrate
for the other tiles. For full delivery advanced, they still try to give the viewport tiles a
highest possible bitrate, give the other tiles a lower but not lowest bitrate. For partial
delivery, they only download the viewport tiles at a highest bitrate, but leave all the
other tiles blank. Their approaches are based on very trival heuristic. [44] proposes a
scheme which split the tiles into three areas: viewport, adjacent, and outside areas. Then
try to assign the highest bitrate to the tiles at the order of viewport, adjacent, outside
areas within the available bandwidth budget. However, all their schemes are based on
�xed heuristics, can not get good performance under the varying network conditions.
However, these methods only considers video quality but ignores the other QoE goals
such as spatial and temporal tile bitrate smoothness, and rebu�erring.

Recently, more advanced algorithms [29–32,45–47] are proposed. He et al. [45] design
a MPC-based optimization framework which optimizes the QOE of multiple segments in
a future time window. Zhang et al. [47] apply DRL to train a LSTM based neural agent to
determine the bitrate for only the viewport tiles. Zhang et al. [46] utilize Beam search
optimization to allocate rates for tiles to optimize QoE.

Other researches [29–32] design tile-based steaming schemes in a two-step form.
These algorithms �rst determine a total bitrate budget for the next segment based on
available information (e.g., bandwidth estimation, current bu�er level), then allocate
bitrates for each tile in the next segment to optimize QoE. In [29–31], authors utilize
simple heuristics to calcualte the total bitrate budget for next segment, while in [32] Guan
et al. use MPC based method to get the bitrate budget. Then to allocate rates for tiles, [30]
proposes a Multiple-Choice Knapsack based solution, [31] performs exhaustive search
after classifying tiles into several classes, [32] design a simple heuristic based method.

All the schemes introduced above is summarized in Table 2.2. These schemes can

20 Chapter 2. Related Work

Table 2.2: Summary of Related Work on 360-degree Video Streaming

Work Algorithm Adaptivity
to Dynamics

Prediction
Error
Handling

Quality Smoothness Overhead

[43] Heuristic Low No - Low
[44] Heuristic Low Yes - Low
[29] Optimization Medium Yes Spatial Medium
[30] Heuristic Low Yes - Low
[45] MPC Medium No Spatial & Temporal Medium
[31] MPC Medium Yes Spatial & Temporal Medium
[47] DRL (A3C+LSTM) High No Spatial & Temporal High
[32] MPC Medium Yes Spatial & Temporal Medium
[46] Beam Search Medium Yes Spatial & Temporal Medium

be compared between each other in terms of their adaptivity to the dynamic network
conditions, whether they have explicitly handled the possible viewport prediction error,
whether their scheme can achieve spatial or temporal quality smoothness, as well as the
overhead of the models. We have proposed a DRL based ABR scheme (see Chapter 4) for
360-degree video streaming, the core di�erence between our shceme and a recently
proposed DRL-based algorithm ([47]) is that our proposed system can handle possible
viewport prediction error by dividing tiles into three areas and selecting bitrates for each
area.

2.3 Viewport Prediction

Viewport prediction is an important technique that can be utilized by various applications,
e.g. augmented reality (AR), virtual reality (VR) and volumetric video streaming [48, 49].
Viewport prediction can be categorized into two classes: trajectory- and content-based
methods. Trajectory-based methods predict future viewport either with user’s own
(single-user) or other users’ (cross-user) historical head rotations. Single-user methods
usually estimate the user’s future head rotations by solving a regression problem. Qian

2.3 Viewport Prediction 21

et al. [50] use logistic regression to predict future viewport. Lan et al. [29] propose a
probabilistic model assuming the prediction error follows a Gaussian distribution. Jiang
et al. [51] apply a long short term memory (LSTM) based model to predict future head
rotations. Zhang et al. [36] utilize an ensemble of three LSTM models to further improve
the prediction accuracy. However, all these methods are not accurate in the yaw direction
due to the periodicity issue.

Cross-user methods assume that users have similar region-of-interest (ROI) when
watching the same video, and hence that it is possible to exploit multi-users’ ROI behavior
to predict viewport. Lan et al. [30] group users with density-based spatial clustering of
applications with noise (DBSCAN) in the server, then on the client end, classify the user
to the corresponding cluster with a support vector machine (SVM) classi�er, and �nally
obtain the viewing probability from the cluster. Ban et al. [52] �rst predict future �xations
with LR, then utilize K-Nearest-Neighbor (KNN) to �nd the K nearest �xations of other
users around the LR result to improve accuracy. Petrangeli et al. [53] �rst identify user
clusters with a kind of spectral clustering algorithm, then �t a regression model for each
cluster, �nally predict with the regression model from the user’s corresponding cluster.
Nasrabadi et al. [54] �rst cluster users based on their quaternion rotations, then classify
the target user to the corresponding cluster and estimate the future �xation as the cluster
center. If no available cluster for the target user, the last sample will be used as the future
viewport. Although these methods can have relatively high accuracy in the long term, it
cannot be deployed in a live streaming scenario where no other users have watched the
same video before. Moreover, cross-user methods can perform worse than single-user
methods on short term prediction.

To improve the prediction accuracy, content-based methods utilize both rotations and
video contents as features. Zhang et al. [35] proposed a generative adversarial network
(GAN) to generate multiple future frames conditioned on the single current frame and
then anticipates corresponding future gazes in the upcoming few seconds. Xu et al. [55]
proposed a deep reinforcement learning (DRL) based approach to better model the users’
attention with video contents. Many works [34, 56–58] design a hybrid architecture of
CNN and LSTM models. They use a convolutional neural network (CNN) to extract video
content features from the saliency maps or the original images, and use LSTM to extract

22 Chapter 2. Related Work

motion patterns from history rotations. Then, they predict the future viewport based on
CNN and LSTM features. Recently, some works are conducted to design content-based
methods for live virtual reality (VR) video streaming. Feng et al. [59] utilize optical
�ow and Gaussian mixture model (GMM) for motion detection and feature tracking,
then predict user’s future viewport by leveraging a dynamic user interest model. Feng
et al. [60] leverage CNN based model to predict future viewport in live streaming by
modifying the training/testing process and the work�ow of the CNN application. To
further improve the prediction accuracy, Feng et al. [61] employ a hybrid deep learning
model which involves both CNN and LSTM models. All these methods would have
a burden to the practical deployment in a real system since they consume excessive
computing resources.

We summarize the existing schemes in Table 2.3. High overhead or cross users based
prediction make the models di�cult to be deployed in live streaming scenarios (where
quick prediction is needed) or at mobile devices (where computational resources are
limited). To overcome the above issues, we proposed a sinusoidal prediction system (see
Chapter 5) which has low overhead and high prediction accuracy.

2.3 Viewport Prediction 23

Table 2.3: Summary of Related Work on Viewport Prediction

Work Algorithm Available on
Mobile Devices

Available for
Live Streaming

Overhead Accuracy

Trajectory-based Single-user (with periodicity issue)

[50] LR Yes Yes Low Low
[29] LR Yes Yes Low Low
[51] LSTM Yes Yes Medium Low
[36] LSTM Ensemble Yes Yes Medium Low

Trajectory-based Cross-user (with diverse interest and periodicity issue)

[30] Clustering No No Low Low
[52] Clustering No No Low Low
[53] Clustering No No Low Low
[54] Clustering No No Low Low

Content-based (with exceeding computational overhead issue)

[55] DRL No No High High
[34] CNN & LSTM No No High High
[35] GAN No No High High
[56] CNN & LSTM No No High High
[57] CNN & LSTM No No High High
[58] CNN & LSTM No No High High
[59] GMM No Yes High High
[60] CNN No Yes High High
[61] CNN & LSTM No Yes High High

25

3
Learning-based Live Video Streaming

3.1 Overview

Live streaming applications are becoming increasingly popular recently, and it exposes
new technical challenges compared to regular video streaming. High video quality and
low latency are two main requirements in live streaming scenarios. A live streaming
application needs to make bitrate and target bu�er level decisions as well as sets a
continuous latency limit value to skip video frames.

In this chapter, we propose HD3 (Distributed Dueling DQN with discrete-continuous
Hybrid action spaces), a novel deep reinforcement learning (DRL) algorithm which
makes both discrete (bitrate and target bu�er level) and continuous (latency limit value)
actions, to achieve high video quality and low end-to-end delay. In detail, we use HD3 to
train a neural network agent to make decisions based on environment states (e.g. past
network throughputs, current bu�er size, historical video frames’ sizes) to optimize users’

26 Chapter 3. Learning-based Live Video Streaming

QoE. The agent is trained and evaluated with various network environments and video
scenes. The simulation results demonstrate that our scheme can generate a single agent
which can obtain good performance under all di�erent network conditions. In addition,
HD3 can converge in a relatively short time with multiple processes, and that will be
extremely helpful for the industry to save training time where millions of data traces
exist. The main contributions of this work can be summarized as follows:

• We design a novel DRL algorithm-HD3 which can solve problems with discrete-
continuous hybrid action spaces.

• Our scheme generates a single agent which can perform well under various network
conditions.

• The distributed scheme can converge fast and be applied at scale.

3.2 System Design

3.2.1 Reinforcement Learning for Live Streaming

In this part, we �rst give an overview of reinforcement learning framework, then
introduce how we formulate the live streaming problem into the reinforcement learning
framework.

Our scheme utilizes reinforcement learning to generate a neural network agent
from the observations instead of designing �xed rules based on heuristics. Figure 3.1
shows how the agent will interact with a live video player. At each time step C , the agent
takes an action 0C based on the state (e.g., past network throughputs, current bu�er size,
historical video frames’ sizes) observed from the environment (live video player). Then
the environment transits to the next state BC+1, calculates the reward based on the QoE
metrics and sends a reward signal AC to the agent. The goal of RL is to maximize the
sum of discounted reward E

[∑=
C=0 W

CAC
]
, where W ∈ (0, 1] is a discounting factor. The RL

algorithms train and update the parameters of the neural network agent to achieve this
goal. Next, we explain how we design the state, action space and reward function in
detail.

3.2 System Design 27

Agent DNN

State
Live	Video	Player

0.5,	2.0s,	500Mps

(Possible	Actions)

Environment	states:	bandwidth,	buffer	size,	next	video	sizes,	etc.

Action

Reward	(QoE)

1,	4.0s,	1850Mps

1,	1.1s,	1200Mps

Figure 3.1: The Work�ows of RL.

State: After downloading each GOP (group of pictures) segment, the agent observes
the state BC (see Figure 3.2) from the environment and takes it as input to the neural
network, where BC = (®GC , ®gC , ®2 5C , ®B:C , ®B<, 1C , AC , 1 5C , 2C). In time step C , we use GC , gC , B:C to
represent the total throughput, delay, skip time in the last GOP segment. For the past :
GOP segments, the historical information of throughput, delay and skip time are denoted
by ®GC , ®gC and ®B:C , respectively. ®2 5C is the cdn bu�er �ags in the past : frames which may
re�ect the network status of remote server or video broadcaster. 1C denotes current bu�er
size and AC represents the bitrate in last downloaded GOP segment. 15C is local bu�er �ag
indicating whether the video player is rebu�ering, and 2C is bu�er size in the CDN server.

For the next GOP segment, B1, B2, ..., B< denotes the GOP size for each available bitrate
respectively. However, the future video size might not be directly observed from the CDN
bu�er, then we need to estimate. After downloading each GOP segment of bitrate A with
size BA , we �rst estimate the next GOP segment’s size of bitrate A as BA . Then we calculate
the GOP segments’ sizes of other bitrate based on �xed ratios between di�erent bitrates.
By analyzing the video dataset (on Section 3.3.2), we �nd that the GOP sizes for any two
di�erent bitrates at all time steps have almost �xed proportion with little variance.

Action: In this task, we need to take hybrid actions including both discrete and
continuous actions. More speci�cally, we need to set a continuous scalar value for the

28 Chapter 3. Learning-based Live Video Streaming

State st
Past	throughput

XXt-k+1 XXt-k+2 XXt
Past	GOP	delay

X𝜏t-k+1 X𝜏t-k+2 X𝜏t
Past	CDN	flags

Xcft-k+1 Xcft-k+2 Xcft
Past	GOP	skip	time

Xskt-k+1 Xskt-k+2 Xskt
Next	GOP	sizes

Xs1 Xs2 Xsm

Xbt
Current	buffer	size

Xrt
Last		bit	rate

Xbft
Current	buffer	flag

Current	CDN	buffer	size
Xct

1D-CNN

1D-CNN

1D-CNN

1D-CNN

1D-CNN

Merge

FC

FC

FC

FC

FC

FC

FC

FC

FC

FC

A(st,	cat)

V(st,	cat)

cat

DQ(st;𝜃)

CQ(st;𝜔)

Figure 3.2: HD2 Architecture

latency limit and make choices from two sets of discrete available bitrate levels and target
bu�er levels. The hybrid action space makes this problem more challenging than other
problems where only discrete or continuous actions need to be considered. The settings
for the three actions can be set based on the application scenario and user preference.
The implementation of these actions in this work is shown on Section 3.3.4.

Reward: The de�nition of reward (QoE) function needs to take all the QoE metrics
(e.g. video quality, latency, bitrate �uctuation) into consideration. The equation of reward
function is shown on Section 4.3.5.

3.2 System Design 29

Algorithm 3.1 HD2
Initialize function �& with random weights;
Set the capacity of replay memory D as # ;
for episode = 1, M do

Set live video player state as B1
for t = 1, T do

With probability n select random actions 30C and 20C ;
Otherwise select 20C = �& (BC ;l), and 30C = max30 (�& (BC , 30;\)) ;
Take action (20C , 30C) in simulator, obtain reward AC and collect video player
information BC+1 ;
Store transition (BC , 20C , 30C , AC , BC+1) in D ;
Sample random minibatch of transitions (B 9 , 20 9 , 30 9 , A 9 , B 9+1) from D ;

~ 9 =

{
A 9 B 9+1 = C4A<8=0;

A 9 + W max30 �& (B 9+1, 30;\) >Cℎ4AF8B4.

Compute gradient based on (~ 9 − �& (B 9 , 30 9 ;\))2 according to equation 2, and
update \ ;

end
end

3.2.2 HD2: Dueling DQN with Hybrid Action Space

Now, we will introduce our proposed scheme HD2 in detail. The conventional Dueling
DQN [62] scheme can only tackle the problem with discrete action spaces. To cope for
the live streaming task which have hybrid action spaces, we design a new network
architecture (as shown in Figure 3.2) based on the conventional one. Next we will �rst
explain a typical DQN scheme, then introduce the architecture design of dueling DQN
with hybrid action spaces.

After downloading a GOP video segment, the agent will get a reward AC from the
simulator. The goal of a RL algorithm is to select the best action sequences which can
maximize the sum of received rewards. DQN [63] utilizes a neural network to construct a
discrete action value function �& (B, 0;\) to estimate the return (or long term rewards)
the agent can receive under any state action pairs. Then in any state B , the agent will
select the action 0 which yields the largest value.

30 Chapter 3. Learning-based Live Video Streaming

To achieve an optimal discrete action value function �& (B, 0;\), the agent needs to
observe a sequence of state and action pairs, and store them into a replay memory D,
then get the loss function based on the experiences (BC , 0C , AC , BC+1) randomly sampled
from the replay memory D as follows:

!(\) = EB,0 [(~ − �& (B, 0;\))2] (3.1)

where ~ = EB ′ [A +W<0G0′�& (B′, 0′;\ ′)] is the target for �& (B, 0;\). Then we can compute
the gradient by di�erentiating the loss function above:

∇\!(\) = EB,0 [(~ − �& (B, 0;\))∇\�& (B, 0;\)] (3.2)

HD2 architecture (as shown in Figure 3.2) is designed based on Dueling DQN
architecture [62], where the �nal layer �& (B, 0;\) is produced by three sequences of
fully connected (FC) layers �& (B ;l), �(B, 20, 0;\), + (B, 20;\). First the FC layer �& (B ;l)
generate the value 20 as the continuous action , then the other two FC layers �(B, 20, 0;\)
(denoting the advantage function of state action pairs) and + (B, 20;\) (denoting the value
function of state) take both the state B and continuous action value 20 as input. Finally,
we can get the discrete action layer �& (B, 20, 0;\) as follows:

�& (B, 0;\) = + (B, 20;\) + (�(B, 20, 0;\) − 1
|A|

∑
0′
�(B, 20, 0′;\)) (3.3)

Since l is subset of \ , while updating \ the value of l will also be updated to generate a
better continuous action. The pseudocode of HD2 is shown in Algorithm 3.1. The design
of HD2 is inspired by [64], however, HD2 poses a single network architecture (instead of
two as in [64]) which leads to much smaller computation load and can perform better in
live streaming task.

3.2.3 HD3: Distributed HD2

To accelerate the training phase and make our scheme be able to be applied at scale, we
propose HD3-a distributed architecture for HD2. The basic idea of HD3 is to collect

3.2 System Design 31

Algorithm 3.2 HD3-Actor
for episode = 1, M do

Initialize video player information B1 ;
for t = 1, T do

Follow the same �ow as in HD2, get transition (BC , 20C , 30C , AC , BC+1) and save it in
local bu�er !� ;
if LB.Size() > LB.Capacity then

Send transitions in LB to Learner ;
Clear local bu�er LB ;
Obtain latest network parameters from Learner ;

end
end

end

Algorithm 3.3 HD3-Learner
Initialize function �& with random weights ;
Set the capacity of replay memory D as # ;
while Training do

Obtain transitions) from each available Actor ;
for each transition C in) do

Store C into replay memory D ;
Sample random minibatch of transitions from D ;
Calculate loss and update \ with the same method as in HD2 ;

end
Send updated network parameters to each Actor ;

end

more experience data by distributing the generation of experience traces into multiple
Actor agents, and use one Learner agent to compute the gradient of the neural network
parameters based on the collected experiences from the Actor agents. The pseudocode of
Actor and Learner agents is described in Algorithm 3.2 and Algorithm 3.3 respectively.
The distributed algorithm is inspired by [65, 66].

32 Chapter 3. Learning-based Live Video Streaming

3.3 Evaluation

3.3.1 QoE De�nition

In order to evaluate the proposed ABR and latency control algorithms, Gang et al. [6]
consider �ve QoE metrics: three commonly used metrics (video quality, rebu�ering
time, smoothness), and two newly introduced metrics (latency and frame-skipping time)
which are particularly for live streaming. Since live streaming has strict requirement on
latency, then latency is the most important QoE metric in live streaming scenarios. Using
frame-skipping time as a new metric is to handle the trade-o� between reducing latency
and keeping the continuity of the playback.

Reward Function. The reward function is given as follows:

&>� =

#∑
==1

"∑
<=1
(V'=,< − W)=,< − X!=,< − \(=,<) −

#−1∑
==1

U |'=+1 − '= | (3.4)

where # is the number of GoPs; " is the number of frames in each GoP. '=,<,)=,<, !=,<
and (=,< mean the bitrate, rebu�ering time, latency and frame-skipping time of frame m
in GoP n, respectively.

To decide the values of V,W, X, \, U , Gang et al. [6] run multiple experiments to evaluate
several simple ABR algorithms with di�erent combinations of values of these coe�cients.
Then they choose the combination under which the performance of these ABR algorithms
can best re�ect their performance in the production system, or in other words, if algorithm
� is better than � in the production system, then algorithm � should remain better (or
even by similar gap) than � under the evaluation with a good combination of values of
the coe�cients. Finally, they set the coe�cients as follows: (i) V , is set to be the playout
time of each frame; (ii) W , is set to be the max bitrate level (1.850 Mbps); (iii) X is 0.005
when delay is lower than 1 second, otherwise, X is set as 0.01; (iv) \ is set to be the lowest
bitrate level (0.5 Mbps). Thus, the penalty of frame-skipping is lower than rebu�ering; (V)
U is set as 0.02.

3.3 Evaluation 33

0 2 4 6 8
Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

High
Medium
Low
Oscillating

Figure 3.3: CDF of Bandwidth in Four Network Conditions.

3.3.2 Dataset Analysis

Network: The network traces are provided by the grand challenge [6]. There are
four kinds of network conditions: high, medium and low throughput, and oscillating
conditions (or the mix of high, medium and low conditions). In the dataset, the throughput
is recorded every 0.5s. Figure 3.3 shows the CDF of throughput in four types of network
conditions. It will be challenging to train a single model which can operate well under so
di�erent network environments.

Video: Videos are also given by the competition [6]. Video traces are from three live
streaming scenarios: room, game and sports. Each video is encoded into 4 bitrates in the
range of [0.5, 0.85, 1.2, 1.85] Mbps. Each video �le records the type and size of each frame,
and the frame’s arriving time at the CDN server.

By analyzing the video datasets in detail, we observe some interesting video’s
properties which are helpful for predicting future video size in Section 3.2.1. We plot the
�rst 200 GOP sizes of four bitrates from one video in Figure 3.4, where we �nd that
di�erent bitrates of videos have similar changing patterns of GOP sizes along the time.
Figure 3.5 more clearly shows the GOP sizes’ ratios between adjacent bitrates. Now we
can get one insight that ratios between any two bitrates are almost stable with little
variance. To further verify this hypothesis, we compute the GOP size’s ratios between

34 Chapter 3. Learning-based Live Video Streaming

0 50 100 150 200
Video GOP Count

2

4
GO

P
Si

ze
 (M

b)

0.5 0.85 1.2 1.85

Figure 3.4: GOP sizes of di�erent bitrates from the same video

0 50 100 150 200
Video GOP Count

1.4

1.6

1.8

Ra
tio

1.85 / 1.2 1.2 / 0.85 0.85 / 0.5

Figure 3.5: Ratios of GOP sizes between adjacent bitrates from the same video

adjacent bitrates from all the videos in all di�erent scenarios, and �nd that the ratios
are all around 1.7, 1.5, 1.4 respectively. Then in Section 3.2.1, we utilize this insight to
estimate the GOP sizes of other bitrates based on the size of downloaded bitrate.

3.3 Evaluation 35

3.3.3 Comparison Schemes

Now we introduce several state-of-the-art DRL algorithms which we have used as the
baseline schemes in this grand challenge.

• A3C [66]: A general framework consisting of actor and critic networks. A3C uses
the technique of policy gradient to update the agent’s parameters. It has been
applied to train an ABR agent in other video streaming tasks such as in [67–69].
A3C can only handle problems with discrete action spaces.

• DQN [63]: A popular Deep Q Learning algorithm which has achieved good
performance on Atari games. It trains a neural network to learn the optimal Q
function based on the technique of Bellman equation.

• DDQN [70]: Double DQN, a variant of DQN, has been shown to be able to achieve
better performance than DQN in some scenarios. Here we want to try whether
DDQN can lead to better performance in a live streaming task.

3.3.4 Implementation

We follow the same settings as [6] for the three actions considered in our work. The
latency limit value should be within the range of [0B, 20B], the set of available bitrate
levels is [0.5"1?B, 0.85"1?B, 1.2"1?B, 1.85"1?B], and the set of available target bu�er
levels is set as [0.5B, 1.0B].

The parameter settings and other implementing details are as follows. We set : = 16
to collect the past 16 GOPs’ information as input. In the neural network, the 1D-CNN has
128 �lters, each has size of 4 (except the one taking video sizes as input whose �ler size is
3) with stride 1, and all the other full connected layers have hidden size as 128. The
learning rate is set as 0.0001, the capacity of replay memory is 10000, and the batch size is
128. We use 12 actors to collect experience on multiple CPU cores, and 1 learner to
compute gradients on GPU. It takes about 3 hours to converge with 12 actors, and more
than 20 hours with 1 actor. We train the model with all kinds of network and video
datasets mixed, since our goal is to generate one single model that can perform well on
all scenarios.

36 Chapter 3. Learning-based Live Video Streaming

High Medium Low Oscillating0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Re
wa

rd

A3C DQN DDQN HD3

Figure 3.6: Comparing HD3 with several state of the art DRL algorithms on four kinds
of network environments (high, medium, low, oscillating) in live streaming scenarios.
Results are normalized against the performance of HD3.

3.3.5 Results Analysis

Normalized QoE. Figure 3.6 shows the normalized reward of A3C, DQN and DDQN
against HD3 under four network scenarios: high, medium, low, and oscillating. We
have trained a single model with each DRL algorithm on a mixed dataset consisting of
these four kinds network traces. In each network condition, every model is tested with
20 throughput traces and 3 video traces. It’s clear that our proposed scheme HD3 can
generate a single model to achieve the best performance in all four network conditions.

The reasons that HD3 performs better than others might come from two perspectives:
the proposed dueling DQN based architecture can better handle variance in the mixed
training data traces, and the comparing model can only output discretized latency limit
values which makes it possible for the comparisons to miss the optimal latency limit
values.

Hybrid Vs. Discretization. To better understand how di�erent granularity levels
of discretization of the latency limit value will in�uence the �nal performance, we
conducted extensive experiments by uniformly discretizing the latency limit value range

3.3 Evaluation 37

[0, 20] into 5 kinds of sets consisting of 5, 15, 25, 35, and 45 discrete values. To show why
HD3 with hybrid action can outperform other models with only discrete actions, we also
implemented the discrete version of HD3 (Dueling DQN) which can only output discrete
actions.

Figure 3.7, Figure 3.8, Figure 3.9, and Figure 3.10 show the results of HD3 and other
schemes on di�erent granularity levels of discretization of latency limit value on high,
medium, low, and oscillating bandwidth scenarios. From these �gures, we can �nd that,
when the granularity is in a low degree (5), then performance of the schemes is now high;
when the degree of granularity becomes higher (from 5 to 15, 25 or 35), the performance
may also become better. The reason for this is that, while the granularity level is higher,
there will be more possible discrete latency limit values, thus making the models more
possible to make better decisions. However, we can also �nd that, while the degree of
granularity becomes too large (45), the performance will be worse. The reason for this
phenomenon is that, when the granularity level of latency limit value is large, the total
amount of possible candidate of action combinations will also become large, this will
make it more di�cult to train a model to converge to an optimal point or even a good
point. The proposed scheme HD3 can outperform all the other schemes because it outputs
a continuous value which makes it theoretically possible to �nd the optimal latency limit,
and it does not increase the number of possible discrete action combinations which make
it practically possible to converge to the optimal point or a relatively good point.

38 Chapter 3. Learning-based Live Video Streaming

5 15 25 35 45 Continuous
Granularity of Discretization of Latency Limit Value

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

A3C DQN DDQN Discrete HD3 HD3

Figure 3.7: Analyzing performance of di�erent DRL algorithms on di�erent granularity of
discretization of latency limit value on High bandwidth scenario. Results are normalized
against the performance of HD3 which outputs a continuous latency limit value.

5 15 25 35 45 Continuous
Granularity of Discretization of Latency Limit Value

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

A3C DQN DDQN Discrete HD3 HD3

Figure 3.8: Analyzing performance of di�erent DRL algorithms on di�erent granularity
of discretization of latency limit value on Medium bandwidth scenario. Results are
normalized against the performance of HD3 which outputs a continuous latency limit
value.

3.3 Evaluation 39

5 15 25 35 45 Continuous
Granularity of Discretization of Latency Limit Value

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

A3C DQN DDQN Discrete HD3 HD3

Figure 3.9: Analyzing performance of di�erent DRL algorithms on di�erent granularity of
discretization of latency limit value on Low bandwidth scenario. Results are normalized
against the performance of HD3 which outputs a continuous latency limit value.

5 15 25 35 45 Continuous
Granularity of Discretization of Latency Limit Value

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

A3C DQN DDQN Discrete HD3 HD3

Figure 3.10: Analyzing performance of di�erent DRL algorithms on di�erent granularity
of discretization of latency limit value on Oscillating bandwidth scenario. Results are
normalized against the performance of HD3 which outputs a continuous latency limit
value.

40 Chapter 3. Learning-based Live Video Streaming

3.4 Summary

To address the challenges exposed in live video streaming scenarios, we proposed a novel
DRL algorithm HD3, which can take discrete-continuous hybrid actions. Over four kinds
of network environments and three kinds video streaming scenarios, we �nd that HD3
can generate a single model which can perform better than all the other comparing
state-of-the-art DRL algorithms in all scenarios. HD3 can also be applied to solve other
problems with hybrid action spaces.

41

4
Learning-based 360-Degree Video

Streaming

4.1 Overview

In this chapter, we investigate tile-based viewport adaptive streaming for 360 videos, and
propose the Plato system to leverage machine learning to address the inherent VPP and
TBS issues. For VPP, Plato uses the long short term memory (LSTM) [71] based neural
network model to predict users’ future viewport orientation. Since the prediction errors
of users’ orientation can be harmful to QoE, we propose the concept of non-viewport to
opportunistically cover actual areas that are slightly outside the predicted viewport
areas. For TBS, Plato is equipped with a TBS agent that maps environment states (e.g.,
bandwidth, bu�er size, tile sizes) to bitrate decisions for viewport and non-viewport areas
to optimize the QoE, where the TBS agent is trained by the A3C algorithm [33] – a

42 Chapter 4. Learning-based 360-Degree Video Streaming

state-of-the-art reinforcement learning algorithm [72].

To show how Plato performs with real data sets, we employ the real-world traces of
user viewport and 4G bandwidth to train the neural networks, and our simulation results
demonstrate that Plato outperforms existing schemes in terms of average QoE (including
bitrate in viewport areas, rebu�ering time, coe�cient variation and smoothness).The
contribution of this paper can be summarized as follows:

• We design a DRL architecture to determine tile bitrates for tile-based 360-degree
video streaming.

• We propose the system – Plato, in which VPP and TBS agents are trained to predict
viewport areas and select tile bitrates, respectively.

• We use real-world traces of viewport motions and network bandwidth, and our
simulation results assert that Plato achieves signi�cant improvement on QoE.

4.2 System Design

The architecture of Plato deployed within an HMD (worn by a 360 video player) is as
depicted in Figure 4.1. There are several key components: state bu�er, VPP and TBS
agents. The state bu�er collects information from the HMD and provides them to the
agents. The VPP agent predicts future viewport based on the information of historical
viewports from the state bu�er. Considering potential viewport prediction errors, the
VPP agent divides tiles into viewport, adjacent, and outside areas. In this way, the TBS
agent can select high bitrates for actual viewport areas if the viewport prediction is not
accurate (e.g. user’s head is moving too fast). Finally, the TBS agent selects bitrate for
each tile based on the state bu�er information, including historical throughput, historical
viewport prediction accuracy, and current bu�er size. In the following, we are going to
introduce how the VPP and TBS agents work in Plato.

4.2 System Design 43

State	
Buffer

Tiles
Bitrate
Selection
(TBS)

Viewport	Prediction	(VPP)

Orientation	
Prediction

Prediction	
Error	

Handling	

History	throughput
History	HMP	accuracy
Size	of	tiles
Empty	buffer	size

Actual	viewport	of	N past	frames
Per-tile
bitrate	
decision

Tile	area	
map

Status	of	HMD

Figure 4.1: The architecture of Plato.

4.2.1 VPP – The Prediction of Viewport

In this part, we apply the LSTM based model to predict user’s head orientation, and
meanwhile discuss how we deal with the potential prediction errors.

Orientation prediction

We design a LSTM based model to predict future viewport, and illustrate its architecture in
Figure 4.2. The LSTM layer takes the orientations [-C−<+1, ..., -C] of< past video frames
as inputs, where -C is the array of (~0F , ?8C2ℎ, A>;;) normalized to [−1, 1]. Then, the
transform layer converts the output ~ of LSTM layer to normalized predicted orientation
$C . The equation of transform layer can be expressed as follows:

tanh(,~ + 1) = 4,~+1 − 4−(,~+1)

4,~+1 + 4−(,~+1) (4.1)

The network can predict future orientation of only one video frame now, but we can

44 Chapter 4. Learning-based 360-Degree Video Streaming

LSTM LSTM LSTM

m

tanh(W*y+b)

Xt-m+1 Xt-m+2 Xt Input

LSTM	layer

Transform	layer

y

Ot Predicted	orientation

Figure 4.2: LSTM based predictor.

easily predict the next = orientations by making the last prediction as inputs. Then, we
can calculate the viewport area according to the collected orientations in one segment
length. Although the LSTM based model can predict at a relatively high accuracy,
prediction errors may also take place, especially when the prediction window is long.
Next, we will introduce how we handle the potential prediction error of (~0F, ?8C2ℎ, A>;;).

Prediction error handling

We handle the potential prediction errors of head orientations by virtually enlarge the
viewport range. In practice, the angles on a spherical surface can be de�ned by ~0F
and ?8C2ℎ values (in degrees), both of which are discretized and mapped to pixels on a
rectangular image with

G =
F83Cℎ · (~0F + 180)

360
, ~ =

ℎ486ℎC · (90 − ?8C2ℎ)
180

. (4.2)

Here, we consider the size of the equirectangular image to beF83Cℎ · ℎ486ℎC , the center of
the equirectangular image is at < ~0F = 0, ?8C2ℎ = 0 >, and the pitch angle increases in
the upward direction.

We assume the standard vertical and horizontal FoVs of 90 and 110 degrees. We �rst
mark the tiles covered by the actual FoV as viewport area. To handle the potential error
we will mark the tiles covered by the FoVs from 90 to 90 ++ degrees in vertical, and
from 110 to 110 + � in horizon as the adjacent area, then all the remaining tiles will

4.2 System Design 45

Chunk	1 Chunk	2

Viewport	tiles: Adjacent	tiles: Out	tiles:

Time

Figure 4.3: Division of tile areas.

be marked as outside area. The values of �,+ should depend on the accuracy of the
viewport predictor and the length of the prediction interval. Figure 4.3 illustrates the
three areas: viewport area (yellow tiles), adjacent area (green tiles), and outside area (gray
tiles). More detailed parameter settings are referred to section ??. In the next part, we will
introduce how we make the bitrate decisions for each area.

4.2.2 TBS – The Bitrate Selection of Tiles

Reinforcement Learning

In existing schemes, the TBS policy is typically generated by �xed heuristics, and our
approach is to apply RL to generate it from observations. Figure 4.4 illustrates how the
TBS agent interacts with a 360 video player. At each time step C , the TBS agent makes an
action 0C according to its observed state BC . After the action is made, the state transitions
to BC+1 and the TBS agent will receive a reward AC . The objective of RL is to maximize the
expected cumulative discounted reward E

[∑=
C=0 W

CAC
]
, where W ∈ (0, 1] is a discounting

factor since the values of later time steps are less in�uential.

46 Chapter 4. Learning-based 360-Degree Video Streaming

TBS	agent DNN

State
360	video	player

4k,	2k,	720p
2k,	2k,	720p

2k,	720p,	360p

Tile	bitrates

Environment	states:	bandwidth,	buffer	size,	tile	sizes,	etc.

Action

Reward	(QoE)

Figure 4.4: The work�ows of RL.

In fact, the TBS policy can be interpreted as a neural network (see Figure 4.4). The
TBS agent �rst acquires a set of state information (e.g., history bandwidth, current bu�er
size, next video tile sizes) from a 360 video player, feeds these values to policy (neural)
network, and outputs bitrate selections for each tile area of the next chunk. Then, the
environment collects the resulting QoE metrics and sends them to the TBS agent as a
reward. With such a reward information, the TBS agent can then train and improve the
policy neural network.

Training algorithm

In this section, our aim is to show how we train the TBS agent using RL. For this, we
introduce the inputs needed in the training phase, explain the neural network architecture
that we use for the TBS agent, and show how A3C trains the TBS agent.

Inputs: After the download of each chunk C , the TBS agent the state BC as its input to
its neural network, where

BC = (®GC , ®gC , ®E?<, ®03<, ®>DC<, 1C , AC , A0C8>E?, A0C8>03 , A0C8>>DC). (4.3)

For the past : 360 video chunks, the network throughput and the download time are

4.2 System Design 47

represented by ®GC and ®gC , respectively. For the next 360 video chunk, ®E?<, ®03<, ®>DC< are
the vectors of< available sizes for viewport, adjacent, and outside areas, respectively.
1C is the current bu�er size and AC is the average bitrate of the tiles among the actual
viewport in the last downloaded video chunk. A0C8>E? , A0C8>03 and A0C8>>DC refer to the
percentage of actual viewport tiles that are predicted as viewport, adjacent, and outside
tiles, respectively.

Policy: Given the state BC , the TBS agent takes the action 0C (i.e., bitrate selections for
three tile areas) in the next video chunk. In practice, each state may have more than one
action choice. Therefore, the TBS agent makes its action decision based on the policy
c : (BC , 0C) → [0, 1]. In other words, the TBS agent in state BC chooses the action 0C with
the probability c (BC , 0C). Here, we use a neural network to obtain the policy c\ (BC , 0C),
where \ are the parameters of the neural network. The actor network in Figure 4.5
illustrates how Plato uses an NN to represent an TBS policy. The speci�c architecture of
the neural network will be explained later. The critic network in Figure 4.5 is merely used
to help train the actor network, we will introduce its function in next part.

Training Algorithm: Now, we are going to introduce the state-of-the-art actor-critic
method A3C [33] as our training algorithm, which involves training of two neural
networks. In the following, we provide detailed explanation of how A3C works.

Whenever the TBS agent downloads a video chunk, it will receive a reward AC from
the simulated environment. Since the goal of the TBS agent is to maximize the expected
cumulative discounted reward, we set the reward based on the speci�c QoE metrics (see
Sec. 4.3.5) to re�ect the performance of TBS policy.

To maximize the expected cumulative discounted reward, A3C �rst needs to estimate
the policy gradient of the expected total reward by observing the history state and action
pairs. Given the policy network parameters \ , the gradient can be computed by

∇\Ec\ [
=∑
C=0

W CAC] = Ec\ [∇\;>6c\ (B, 0)�c\ (B, 0)], (4.4)

where �c
\
(B, 0) is the advantage function, indicating the di�erence between the expected

reward Ec\ (B) for actions based on policy c\ and the expected total reward when we

48 Chapter 4. Learning-based 360-Degree Video Streaming

State st
Past	chunk	throughput

XXt-k+1

Actor	network

Critic	network

Policy:	𝜋𝜃(st,	at)

Value:	v𝜋𝜃(st)	

XXt-k+2 XXt
Past	chunk	download	time	

X𝜏t-k+1 X𝜏t-k+2 X𝜏t
Next	viewport	area	sizes

Xvp1 Xvp2 Xvpm
Next	adjacent	area	sizes

Xad1 Xad2 Xadm
Next	out	area	sizes

Xout1 Xout2 Xoutm

Xbt
Current	buffer	size

Xrt
Last	chunk	bit	rate

Xratiovp
Last	viewport	area	ratio

Last	adjacent	area	ratio

Last	out	area	ratio
X

X

ratioad

ratioout

1D-CNN
1D-CNN
1D-CNN
1D-CNN
1D-CNN

1D-CNN
1D-CNN
1D-CNN
1D-CNN
1D-CNN

Figure 4.5: An illustration of A3C algorithm.

deterministically choose an action 0 in state B .

In practice, the agent will empirically estimate an unbiased �c\ (BC , 0C) as �(BC , 0C) by
sampling a trajectory of tile bitrate selection. The actor network parameters can then be
updated with the learning rate U as follows:

\ = \ + U
∑
C

∇\;>6c\ (BC , 0C)�(BC , 0C). (4.5)

The output of the critic network is used to estimate the expected total reward Ec\ (B),
and A3C uses Ec\ (B) to estimate the advantage �(BC , 0C). A3C updates the parameters of

4.3 Evaluation 49

the critic network as follows:

\E = \E − UE
∑
(AC + W+ c\ (BC+1;\E) −+ c\ (BC ;\E))2, (4.6)

where+ c\ (·;\E) is the output by the critic network, UE is the learning rate for the critic, AC
is the reward at time step C . The pseudocode of A3C can be found in [33]. More detailed
parameter settings are referred to Sec. 4.3.1.

4.3 Evaluation

To evaluate the QoE performance of Plato, we develop a 360 video player simulator with
real traces. We �rst introduce the parameter settings of Plato and real-world traces
we used in the simulator and then give a detailed explanation of the 360 video player
simulator. Next, we introduce the comparison schemes and QoE metrics. Finally, we
show the simulation results and give some analysis.

4.3.1 Parameter Settings

We implement both LSTM based predictor and RL algorithm with pytorch [73], which is a
popular open source machine learning framework. The detailed parameter settings in
each part are as follows.

VPP settings. For LSTM based viewport predictor, we use one layer LSTM with
hidden size of 128. For the error handling part, we set the values of � and + to 30 and 60,
respectively.

TBS settings. For the actor network (see Figure 4.5), Plato passes : = 8 past
throughputs, chunk download times to two identical 1D convolutional layers (CNN) with
128 �lters, each of size 3 with stride 1. The sizes of next viewport, adjacent, outside areas
are passed to other three 1D-CNNs with the same shape. The current bu�er size, last
chunk bitrate, the percentage of actual viewport tiles that are predicted as viewport,
adjacent, and outside tiles are passed into �ve linear layers each with 128 neurons. The
outputs from these layers are then passed to a linear layer with # neurons, where # is

50 Chapter 4. Learning-based 360-Degree Video Streaming

the size of action space – the number of meta selections for the three tile areas. The critic
network uses the same NN architecture, but its �nal output is only one neuron. During
training, we set the discount factor W = 0.99. The learning rates for the actor and the
critic are both set to 0.0001.

4.3.2 Datasets

Video Preparation

A 360 video with the duration of 237 sec [74] is considered. The raw 3840×2016 video is
extracted from the original clip and re-encoded using the kvazaar encoder [75], which is
an open source software for H.265. The video is available in a 1-sec segment version, tiled
as 12x6. Bitrate is in the range of [40, 16, 8, 5, 2.5, 1] Mbps according to the recommended
settings from Youtube [76].

Viewport Motion

The dataset [74] includes data collected from 59 users watching video 70-sec 360 videos
on the Razer OSVR HDK2 HMD. The selected videos span a wide range of 360 contents
for which di�erent viewers involvement (e.g., navigation patterns) could be expected.

The log �les in the datasets record the unit quaternion1 (@0, @1, @2, @3) of the HMD
device in each timestamp. The unit quaternion (@0, @1, @2, @3) represents the rotations
of an object in 3D space. For each object such as the HMD device in this coordinated
system, the rotation vector (~0F, ?8C2ℎ, A>;;) can be calculated from the unit quaternion
as follows2: 

~0F

?8C2ℎ

A>;;

 =


atan2(2(@3@0 + @1@2), 1 − 2(@0@0 + @1@1))

asin(2(@2@0 − @3@1))
atan2(2(@3@2 + @0@1), 1 − 2(@1@1 + @2@2))

 . (4.7)

We preprocess all the log �les according to (4.7), and then randomly select 80% users’
processed log �les for all videos as the training dataset, and the remaining users’ log �les

1https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
2https://stackover�ow.com/questions/5782658/extracting-yaw-from-a-quaternion

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://stackoverflow.com/questions/5782658/extracting-yaw-from-a-quaternion

4.3 Evaluation 51

0 20 40 60 80 100 120

Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

((a)) CDF of Belgium Bandwidth (test set)

0 50 100 150 200

Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

((b)) CDF of Scaled Norway bandwidth (train set)

Figure 4.6: CDF of bandwidth

for all videos as the testing dataset. It’s important to note that, the tests of VPP and TBS
use the di�erent viewport motion datasets.

Network Throughput

The test bandwidth dataset (Figure 4.6) we use contains the 4G networks traces along
several routes in and around the city of Ghent, Belgium, from 2015-12-16 to 2016-02-
04 [77]. All bandwidth logs are recorded based on the type of transportation: car, train,
tram, bus, bicycle and foot. Given the high throughput observed (in some cases up to 95
Mbps) and the occasional switching to 3G, the logs have a relatively limited duration
ranging from 166 to 758 sec. A total of 40 logs were collected, covering 5 hours of active
monitoring.

[78] contains logs from TCP streaming session in Telenor’s 3G/HSDPA mobile
wireless network in Norway. In each test, video streams are downloaded at maximum
speed. We reformatted the 3G dataset to have a 4G bandwidth by scaling the original
bandwidth log �le by a random number between [10, 25], and we use the new cooked
dataset as the training dataset.

52 Chapter 4. Learning-based 360-Degree Video Streaming

4.3.3 360 Video Player Simulator Design

In this paper, we design a 360 video player simulator for training the TBS agent by RL
and testing all the other comparison schemes. In fact, emulating the standard 360 video
streaming is very slow, because the algorithm needs to wait until the chunks of a video
is really downloaded before updating its neural network model. Therefore, we use a
simulator to run the training algorithm alternatively. Next, we introduce the details of
the simulator design.

We assume the client has the same behavior as HTTP/2, which can request all the
tiles in a video segment at one time. We set the packet payload, RTT, and bu�er size to
95%, 80 msec, 3 sec, respectively. In the simulator, we try to faithfully model the dynamics
of 360 video streaming with real client applications. The simulator records the playback
bu�er usage information while streaming the 360 video. Before downloading, we will
predict the future viewport with our proposed VPP agent using the real viewport motion
traces. After the bitrate for each tile is decided, the simulator begins downloading the
chunk. For each downloaded chunk, the simulator calculates the download time that is
solely based on the chunk’s size and the real-world network bandwidth traces. The
simulator will then reduce the equal time video from playback bu�er. The rebu�ering
events are carefully recorded while the bu�er occupancy status changes, i.e., situations
where download time is too long. In situations where the playback bu�er is full, the
simulator pauses requests for 500 msec before retrying3. After each chunk download,
the simulator will calculate the real viewport from the input viewport motion traces,
calculate the average bitrate of the tiles in the real viewport, and then pass the bitrate
information and several other state observations to the RL agent for processing: the
current bu�er size, rebu�ering time, chunk download time, size of the next tiles (at all
bitrates), and the number of the remaining chunks in the video. Using this chunk-level
simulator, Plato can “experience” 10 hours of video downloads in only 1 minute.

3This is the default request retry rate used by DASH players.

4.3 Evaluation 53

0 100 200 300 400 500

Time (sec)

0

10

20

30

40

50

60

T
h
ro
u
g
h
p
u
t
(M

b
p
s
)

Real bandwidth

EWMA estimation

Figure 4.7: sample of 4G bandwidth

4.3.4 Comparison Metrics

• MM [43]: video chunks are split into tiles, and all tiles are logically divided into
three areas: viewport, adjacent, and outside areas. According to their algorithm,
the lowest quality is assigned to all the tiles of the video �rst. This initial allocation
guarantees that all the tiles of the video are streamed to the user. Then, the available
bandwidth budget is computed as the di�erence between the available bandwidth
and the total bitrate allocated to the tiles. Next, the highest possible quality is
assigned to the tiles, given the bandwidth budget, starting from viewport tiles, then
adjacent tiles, �nally outside tiles.

• FDA [44]: video chunks are split into tiles, and all tiles are logically divided into
two parts: viewport and outside. The strategy is similar to MM, the lowest quality
is assigned to all the tiles of the video �rst, then update the budget. Next assign the
highest possible bitrate to tiles, starting from viewport tiles.

54 Chapter 4. Learning-based 360-Degree Video Streaming

Standard throughput prediction method

Exponentially weighted moving average (EWMA) is used in Dash player and HLS player.
EWMA is an exponentially weighted mean of previous throughput, as the following
equation:

�BC8<0C4C+1 = U'40;C + (1 − U)�BC8<0C4C (4.8)

We reimplement the EWMA predictor as the industry Dash player [79] with the
same parameter settings. In Figure 4.7, the red line shows the prediction performance of
EWMA on one log �le in the test dataset. We use EWMA for the comparison schemes
MM and FDA.

4.3.5 QoE Metrics

Existing tile-based 360-degree video adaptive studies [29, 31, 45] have proposed the
following QoE metrics to optimize:

1. Video quality: the quality of all tiles in the users’ real viewport. Existing studies have
utilized di�erent metrics to re�ect the quality of tiles, the authors in [31], [29], [45]
have chosen average bitrate level, PSNR, and SSIM in their evaluation experiments
respectively. These three metrics correlates positively with each other, that is,
higher average bitrate level always means higher SSIM [45] and PSNR [80] values
or vice versa. Here we choose average bitrate level rather than PSNR or SSIM, since
it can be more easily calculated during both the training and evaluation phases.

2. Rebu�ering time: the playback continuity which calculates the percentage of the
duration of stall over the total video streaming .

3. Smoothness: average bitrate di�erence of viewport tiles between the adjacent time
steps. Higher smoothness makes higher QoE.

4. Viewport spatial quality variance: If the quality of the content is not smooth, it will
decrease the users’ QoE, and we calculate this value according to the coe�cient of
variation (CV) of quality of content in the viewport.

4.3 Evaluation 55

4.3.6 Reward function design

To train a neural agent with DRL algorithms, we need to design a reward function �rst.
During each training step, Following [20], we de�ne a reward function based on the
above four metrics as:

&>� =

#∑
==1

@('=) − `
#∑
==1

)= − _
#∑
==1

2E −
#−1∑
==1
|@('=+1) − @('=) | (4.9)

For a video with # chunks, '= is the average bitrate in the viewport of chunk =, and
@('=) maps the bitrate to the quality perceived by the users.)= means the rebu�ering
time, while the third term penalizes video quality changes to favor smoothness. The �nal
term also penalize the bitrate di�erence among tiles in the viewport to favor a consistent
quality in a viewport.

The implementation of reward function plays a vital role on the performance of the
neural agent trained by DRL. Speci�cally in our work, we need to design the quality
function @('=) and decide the values of coe�cients `, _. The objective is to �nd an
implementation which leads to an agent performing well on video quality, rebu�ering and
smoothness (and, ideally outperforming existing schemes in all dimensions). Considering
giving the low bitrate with a low score and a high bitrate with a high score [20], we
de�ne the @('=) as follows:

@('=) =



1, for 0 < '= ≤ 1.5
2, for 1.5 < '= ≤ 3
3, for 3 < '= ≤ 6
6, for 6 < '= ≤ 10
9, for 10 < '= ≤ 20
12, for 20 < '= ≤ 40


We manually tuned the values of ` and _ based on the principle that optimizing one
metric (by tuning the coe�cients) diminishes the performance on other metrics (e.g.
tuning up ` can reduce rebu�ering time, meanwhile, result in lower video quality). The
tuning process is basically a combination of random and binary search. We �rst evaluated

56 Chapter 4. Learning-based 360-Degree Video Streaming

FDA MM Plato

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

R
e
w
a
r
d

Figure 4.8: Average QoE

several randomly selected combinations of ` and _ to decide their upper and lower
bounds, then utilize binary search algorithm to �nd a value of ` yielding high video
quality with low penalty of rebu�ering, and �nally decide the value of _ in a similar way.
In our simulation, ` and _ are set as as 43 and 5.3 respectively.

4.3.7 Result Analysis

Figure 4.8 shows the average QoE that each scheme achieves on our entire test datasets
based on the QoE metric de�ned in 4.3.5. Since the penalty for rebu�ering time, and CV
is relatively large, the value the reward of all schemes are negative values. But we can
also �nd that with considering all the four metrics together, our TBS agent can achieve
the highest reward.

To better understand the QoE gains obtained by Plato, we analyzed Plato’s performance
on the individual terms in our general QoE de�nition. Speci�cally, Figure 4.9 compares
Plato with the comparison schemes in terms of the the average bitrate in the actual
viewport, the penalty from rebu�ering, the coe�cient of variance (CV) and smoothness.
From the �gure, we �nd that Plato can achieve the best average bitrate among all schemes,
with less rebu�ering time penalty than other two schemes. The reason is that our

4.4 Summary 57

Average bitrate Rebuffering penalty CV penalty Smoothness penalty
0

1

2

3

4

5

A
v
e
ra
g
e
v
a
lu
e

FDA MM Plato

Figure 4.9: Comparing Plato with existing algorithms by analyzing their performance on
the individual components in the general QoE de�nition

de�nition of QoE function favors high quality video, assigning the highest utility to the
top three bitrates available for our test video. Since the penalty of rebuferring time is also
large, Plato also does not receives much rebu�ering time. Here, we can say that Plato can
achieve much higher video quality and similar rebuferring time than other scheme. Plato
also outperform MM in term of CV and smoothness, the reason is that by learning from a
trace, the TBS agent can have some foresight to achieve less smoothness and low CV. FDA
is better than Plato in terms of CV, because FDA only needs to select bitrate for two areas,
but Plato need to select bitrate for three areas, this makes Plato have higher CV penalty.

It’s important to note that the tile-based 360 video streaming is for achieving higher
quality for the user under limited bandwidth. The results show that The learning based
scheme can achieve much higher performance gain in terms of video quality, with less or
similar rebuferring penalty, smoothness penalty, and CV penalty.

4.4 Summary

In practice, delivering entire 360 videos over the Internet could be prohibitive due to the
limited available network bandwidth. To resolve this problem, we propose the Plato
system to facilitate tile-based viewport adaptive streaming for 360 videos. In Plato, LSTM
based neural network model is applied to predict users’ future viewport orientation. To

58 Chapter 4. Learning-based 360-Degree Video Streaming

be resilient to potential prediction errors, Plato delivers streams to part of non-viewport
areas. In addition, Plato applies the A3C algorithm for training the TBS agent that maps
environment states to bitrate decisions for both viewport and non-viewport areas. To
compare Plato with existing schemes, we run simulations based on real traces of user
viewport and 4G bandwidth usage, and our results demonstrate that Plato outperforms
the comparison schemes in terms of various QoE metrics.

59

5
Sinusoidal Viewport Prediction for

360-Degree Video Streaming

5.1 Overview

The ever-increasing demand of immersive multimedia experience has stimulated content
providers (e.g. YouTube and Vimeo) to roll out 360-degree video streaming. To fully
embrace the panoramic and high-resolution multimedia experience, the unavailability of
network bandwidth is an unsolved challenge. Streaming 360-degree videos requires
unprecedentedly high bitrates when compared to video streaming of �xed viewing
directions. Therefore, the ability to adaptively stream 360-degree videos in accordance
with the dynamics of network bandwidth is decisive for its wide spread.

Commercialized 360-degree video streaming services mostly deliver entire 360-degree
videos at constant quality. Since a user focuses on the so-called �eld of view (FoV) or

60 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

viewport of a sphere at a time, delivering the entirety of 360-degree video results in
a waste of network bandwidth. Tile-based streaming1 [29, 50, 81, 82] can resolve this
issue by partitioning temporal video segments as spatially independent tiles and then
associating viewport and non-viewport tiles with di�erent qualities. Network bandwidth
can thus be more e�ciently utilized to facilitate 360-degree video streaming.

Smooth 360-degree video streaming requires a certain amount of video segments
bu�ered for continuous playback. Existing solutions [29, 30, 34–36, 50–52, 55] suggest to
pre-fetch all tiles of each segment, with tiles in the predicted viewport pre-fetched at a
higher quality. Viewport prediction algorithms can be categorized into trajectory- and
content-based methods as follows.

- Trajectory-based [29, 30, 36, 50–54, 83, 84]: existing methods predict future viewport
based on a trajectory of either his own (single-user) or other users’ (cross-user)
historical rotations. Single-user methods predict future viewport based on user’s
past head rotation trajectory. Cross-user methods assume that di�erent users
have similar viewing behaviors on the same video, and determine the tile viewing
probabilities of each individual user based on historical �xations of other users
who have watched the same video. However, a trajectory-based prediction could
be inaccurate due to its angle periodicity (e.g. -180◦ and 180◦ indicate the same
direction). Moreover, cross-user algorithms cannot be deployed in live streaming
scenarios which, by de�nition, lack historical information (FIGURE 5.1). Also,
accuracy degrades with diversity in interest (viewing angle) for cross-user methods.

- Content-based [34, 35, 55–61]: existing algorithms typically use a saliency map [85]
or a �ow net [86] to extract image-features from the video content �rst, and then
use a complicated model to predict future viewport with image-features and past
rotations. Although content-based methods may yield a higher accuracy, the
computational overhead of these algorithms exceeds the resources in practical
deployments on mobile devices. Even if content-based algorithms can be deployed
on the server, they may encounter scalability issues when there are millions of

1In practice, tile-based streaming has been standardized as part of dynamic adaptive streaming over
HTTP (DASH) [3].

5.1 Overview 61

Internet

Segment
t

Segment
t+N

Other users' info collected,
Cross-user method available.

No other users' info on this video.
Cross-user method unavailable.

VoD for 360 Streaming Live 360 Streaming

Viewport
Prediction

Bandwidth
Estimation

ABR Model

Client

Media Server

Transcoding Server

Videos are generated
on the run

Different Qualities

Tile 1
Tile 4

Tile 2 Tile 3
Tile 5 Tile 6

Different Qualities

Tile 1
Tile 4

Tile 2 Tile 3
Tile 5 Tile 6

Different Qualities

Tile 1
Tile 4

Tile 2 Tile 3
Tile 5 Tile 6Segment

t

Figure 5.1: An illustration of tile-based streaming for 360-degree videos in VoD and live
scenarios.

users watching millions of videos at the same time. In addition, VR video streaming
systems already consume much computational power on encoding/decoding and
rendering the 360 videos, a heavy viewport prediction model may make the whole
experience worse than a lightweight model.

To address the above trajectory-based (inaccuracy and inapplicability to live streaming)
and content-based (excessive computational overhead) concerns, we are motivated to
improve the trajectory-based single-user method to build up a practical and accurate
viewport prediction system applicable to both video on demand (VoD) and live streaming
scenarios. To this end, we conduct data analysis on several datasets and �nd out that the
angle periodicity issue on yaw (i.e. horizontal) direction can be avoided by converting

62 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

0 50 100 150
Error (Degree)

0.0

0.5

1.0

C
D
F

1 sec

2 sec

3 sec

4 sec

5 sec

((a)) on yaw direction

0 20 40 60
Error (Degree)

0.5

1.0

C
D
F

1 sec

2 sec

3 sec

4 sec

5 sec

((b)) on pitch direction

Figure 5.2: The prediction errors with respect to various time window lengths on the AV
dataset (see Sec. 5.4.1).

degrees to the corresponding sinusoidal values.
Motivated by this observation, we design the sinusoidal viewport prediction (SVP)

system for 360-degree video streaming in three stages: 1) orientation prediction, 2) error
handling, and 3) tile probability normalization. First, we use linear regression (LR) least
square method to predict the sinusoidal values of rotation angles. Next, we train a linear
support vector regression (LinSVR) model to estimate the potential prediction errors
to virtually enlarge the viewport area to cover more actual viewport tiles. Finally, we
calculate the normalized viewing probability of tiles to improve adaptive bitrate (ABR)
streaming performance. Overall, the contributions of this paper are:

• We identify that using sinusoidal values of rotation angles on yaw direction can
improve the smoothness and linearity, thereby reducing prediction errors.

• We further improve the prediction accuracy by observing that head movement
velocity and prediction time window positively correlate with prediction errors.

• We normalize viewing probabilities of tiles to improve the streaming performance
of ABR.

5.2 Sinusoids versus Prediction Accuracy 63

5.2 Sinusoids versus Prediction Accuracy

Viewport prediction is critical in implementing tile-based 360 video streaming. Under-
standing why current models cannot predict future orientation accurately is important
in order to design a better model. We conduct a study to understand the origin of the
orientation prediction error, and propose a method to improve prediction accuracy.

5.2.1 Prediction Error Analysis

Figure 5.2 shows the CDF of the prediction error of both yaw and pitch for 1-5 secs.
Prediction errors on the yaw axis are larger than towards pitch direction. One intuitive
reason is that people move more in horizontal direction and remain steady in the vertical
direction. Larger movement results in larger prediction error. Another reason is the angle
periodicity issue (where −180◦ = 180◦) in yaw direction. As shown in Figure 5.3, the
black line (motion curve represented in degrees) shows a signi�cant change when the
head moves only a little, from slightly smaller than 180◦ to slightly larger than −180◦ or
inversely. A model trained by degrees may be inaccurate due to such a problem caused by
the periodicity.

5.2.2 Conversion of Degrees to Sinusoid

Representing angles with Cosine and Sine avoids the periodicity issue. In Figure 5.3,
observe that while user’s head is moving between 180◦ and −180◦, the cosine (red dashed
line) and sine (blue dotted line) of the angle remain stable.

Figure 5.4 shows the predicted values of models trained with both the degrees and the
sinusoidal values. Here, we use Frame 85 to 95 as the input to predict the future yaw
degrees in the next 20 frames. We can �nd that model trained with sinusoidal values (red
dashed line) can avoid the periodicity issue and get much less error than the model
trained with degrees (green dotted line).

64 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

0 50 100 150

Frame

−180

−90

0

90

180

D
e
g
re
e

−1.0

−0.5

0.0

0.5

1.0

C
o
s
/S
in

Degree Cos Sin

Figure 5.3: Head movement trace on yaw direction. The angle is represented by degree,
and cosine/sine of the angle.

85 90 95 100 105 110 115

Frame

−180

−90

0

90

180

D
e
g
re
e

Real Sinusoidal Pred Degree Pred

Figure 5.4: An illustration of predicted values of models trained with both the degrees
and the sinusoidal values.

5.2.3 Why sinusoid is better?

Converting degree to sinusoidal values can render the trained model more accurate.
Assume two metrics – smoothness and linearity to measure the data trace, because a
smooth and linear curve can be more easily learned and results in a more accurate model.

5.2 Sinusoids versus Prediction Accuracy 65

Dataset Metric Degree Cos Sin

AV
Smoothness 10.34 21.21 20.04
Linearity 0.069 0.197 0.115

THU
Smoothness 5.61 7.86 14.06
Linearity 0.037 0.065 0.081

UT
Smoothness 7.27 8.30 13.98
Linearity 0.036 0.087 0.0045

Table 5.1: Smoothness and linearity of degree, cosine and sine on yaw direction of the
head motion datasets (see Sec. 5.4.1).

For a data trace - = [G1, ..., G#], to obtain smoothness, we �rst derive the di�erence
trace as � = [31, ..., 3#−1]; 38 = G8+1 − G8 ; 3̄ = 1

#−1
∑#−1
8=1 38 . We de�ne the smoothness as

the inverse of the standard deviation of � .

Smoothness(-) = 1√
1

#−1
∑#−1
8=1

(
38 − 3̄

) . (5.1)

We use the absolute value of Pearson correlation coe�cient between - and a linear
vector . = [~1, ..., ~#] as the linearity of - , that calculated as:

Linearity(-) =
∑#
8=1 | (G8 − Ḡ) (~8 − ~̄) |√∑#

8=1(G8 − Ḡ)2
√∑#

8=1(~8 − ~̄)2
, (5.2)

where Ḡ = 1
#

∑#
8=1 G8 and ~̄ = 1

#

∑#
8=1~8 .

A larger absolute coe�cient value relates to higher linearity, and a larger smoothness
value corresponds to a smoother curve. Table 5.1 shows the smoothness and linearity of
normalized degree, cosine, and sine on three head motion datasets. By representing
degree with cosine and sine, the smoothness of data traces can increase to 99.5%, 95.4%,
and 53.2%, while the linearity can improve to 126.1%, 97.3%, and 27.1%, for the AV, THU
and UT datasets, respectively.

66 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

5.3 System Design

To incorporate the concept of sinusoidal viewport prediction into 360-degree video
adaptive streaming, we propose the SVP system (as depicted in Figure 5.5) which consists
of three stages: orientation prediction, error handling, and tile probability normalization.
The SVP system �rst predicts future head rotations for each frame based on the collected
historical head motion traces. Considering potential viewport prediction errors, the
error handling module then divides tiles into viewport (VP), adjacent (AD) and outside
(OUT) areas. Since the orientation prediction error is dependent on prediction time
window length2 and head movement velocity, we train a LinSVR [87] model to predict
the orientation prediction error, thereby determining the size of adjacent areas. For each
frame, we set a tile viewing probability for each tile, where VP tiles have the highest
probability and OUT tiles get the lowest one. In the �nal stage, we normalize the tile
probabilities in the next segment (containing " video frames) based on the viewing
probabilities of tiles in the " frames. In the following, we are going to give more detailed
descriptions of these three stages.

5.3.1 Orientation Prediction

The orientation prediction process is depicted on the left part in Figure 5.5. After
collecting head rotations [~0FC−#+1, ..., ~0FC] and [?8C2ℎC−#+1, ..., ?8C2ℎC] of # past video
frames, we convert them to cosine and sine vectors and then we apply linear regression
(Least Square Method) to predict the cosine and sine values of both yaw and pitch in the
next frame. Finally, we get yaw degree according to the equation below (same for pitch):

~0FC+1 = 0A2C0=2
(

sin (~C+1)
cos (~C+1)

)
. (5.3)

Although this model can only be used to predict the future orientation of one video
frame from now, we can easily predict rotations in the next " frames by taking the last
prediction results as inputs. Then, we can determine the viewport areas according to the

2The prediction time window length refers to the duration of playback time of video segments prefetched
in the bu�er.

5.3 System Design 67

collected orientations in one segment length. Even though this method can predict at
relatively high accuracy, prediction errors may also take place, especially when the
prediction time window is too long or the user’s head movement is too fast. Therefore, in
the following, we will introduce how we handle the potential prediction errors on both
yaw and pitch directions.

5.3.2 Error Handling

We handle the potential prediction errors of head orientations by virtually enlarging the
viewport range. In practice, the angles on a spherical surface can be de�ned by yaw
and pitch values (in degrees), both of which are discretized and mapped to pixels on a
rectangular image in accordance with

G =
F83Cℎ · (~0F + 180)

360
, ~ =

ℎ486ℎC · (90 − ?8C2ℎ)
180

, (5.4)

whereF83Cℎ and ℎ486ℎC refer to the dimension of the equi-rectangular image, whose
center is located at (yaw, pitch) = (0, 0), and the pitch angle increases in the upward
direction.

The middle part on Figure 5.5 illustrates the three areas: VP area (in yellow), AD
area (in green), and OUT area (in gray). Consider that a typical setting of vertical and
horizontal FoVs (i.e. red rectangles) are 90 and 110 degrees [50, 51, 88], respectively. We
�rst mark the tiles covered by the actual FoV as the VP area. To handle the potential
errors, we mark the tiles covered by the FoVs from 90 to 90 ++ degrees on pitch direction,
and from 110 to 110 +� on yaw direction as the AD area. Then, all the remaining tiles
will be viewed as OUT areas.

In fact, the values of � and + are dependent on the accuracy of the orientation
prediction. By testing the prediction model on a real-world dataset, as shown in Figure 5.6,
we found that the prediction error is highly positively correlated with prediction window
length and current head movement speed. For both yaw and pitch directions, the
prediction error increases when the prediction window interval is longer or the motion
velocity is larger. Based on this observation, we use the LinSVR model to estimate

68 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

the prediction error � (yaw) and + (pitch) based on head movement velocity and time
window length as shown in Figure 5.5. The LinSVR model is a widely used method with
enough high performance and low computational complexity.

Since we are trying to assign higher quality for viewport and adjacent areas and
lower quality for outside area, we set the viewing probability for tiles in each area of per
frame as follows: ?1 for VP tiles, ?2 for AD tiles, and ?3 for OUT tiles, with ?1 > ?2 > ?3.
Next, we will introduce how to get the normalized tile viewing probability in one video
segment which contains " frames.

5.3.3 Tile Probability Normalization

After error handling, the viewing probability of each tile in the next video segment is
determined based on the tile probs in each frame. The right part in Figure 5.5 illustrates
the viewing probability of one video segment in a 8 × 6 tilling manner as an example. We
denote the viewing probability for the 8-th tile in the :-th frame as E:8 . Therefore, the total
viewing probability for the 8-th tile in the next video segment is calculated as:

Ē8 =

"∑
:=1

E:8 , (5.5)

based on which the normalized viewing probability of the 8-th tile can be obtained as

?8 =
Ē8∑"
8=1 Ē8

. (5.6)

5.3 System Design 69

ya
w

t-N
+1

...

ya
w

t

LR
co

s(
y)

co
s(

y t
+1

)

pi
tc

h t
-N

+1
...

pi
tc

h t

ya
w

t+
1

(F
ra

m
e t

+M
)

St
ag

e
3:

Ti
le

 P
ro

ba
bi

lit
y

N
or

m
al

iz
at

io
n

co
s(

y t
-N

+1
)

 ..
.

co
s(

y t
)

si
n(

y t
-N

+1
)

...

si
n(

y t
)

LR
si

n(
y)

si
n(

y t
+1

)

pi
tc

h t
+1

VP
 ti

le
O

U
T

til
e

A
D

 ti
le

N
or

m
al

iz
ed

 ti
le

vi

ew
in

g
pr

ob
ab

ili
ty

 in
 S

eg
t+

1

N
or

m
al

iz
in

g
Ti

le
 P

ro
ba

bi
lit

y
in

 S
eg

t+
1

H
ig

he
r

Pr
ob

ab
ili

ty

St
ag

e
1:

O

rie
nt

at
io

n
Pr

ed
ic

tio
n

P 3
P 2

P 1
P 1

P 3
P 2

P 2
P 2

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

P 2
P 2

P 3
P 3

P 3
P 2

P 1
P 1

P 1
P 2

P 3
P 3

P 1
P 2

P 3
P 3

P 3
P 2

P 1
P 1

P 1
P 2

P 3
P 3

Li
nS

VR
y

Li
nS

VR
p

tim
e

w
in

do
w

le
ng

th

Ve
lo

ci
ty

pi
tc

h

Ve
lo

ci
ty

ya
w

Er
ro

r P
re

di
ct

io
n

St
ag

e
2:

Er
ro

r H
an

dl
in

g

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

P 1
P 3

P 3
P 3

P 3
P 2

P 1
P 1

P 1
P 3

P 3
P 3

P 3
P 2

P 1
P 1

P 1
P 3

P 3
P 3

P 3
P 2

P 1
P 1

P 2
P 3

P 3
P 3

P 3
P 2

P 2
P 2

P 3
P 3

P 3
P 3

P 3
P 3

P 3
P 3

(F
ra

m
e t

+1
)

co
s(

y t
-N

+1
)

 ..
.

co
s(

y t
)

si
n(

y t
-N

+1
)

...

si
n(

y t
)

LR
co

s(
y)

LR
si

n(
y)

co
s(

y t
+1

)

si
n(

y t
+1

)

St
an

da
rd

 F
oV

En
la

rg
ed

 F
oV

Fi
gu

re
5.

5:
A

n
ill

us
tr

at
io

n
of

th
e

SV
P

sy
st

em
,w

hi
ch

co
ns

is
ts

of
th

re
e

st
ag

es
:o

ri
en

ta
tio

n
pr

ed
ic

tio
n,

er
ro

rh
an

dl
in

g,
an

d
til

e
pr

ob
ab

ili
ty

no
rm

al
iz

at
io

n.
Th

e
SV

P
sy

st
em

pr
ed

ic
ts

ba
se

d
on

he
ad

ro
ta

tio
ns

co
lle

ct
ed

by
an

H
M

D
,a

nd
�n

al
ly

ou
tp

ut
sv

ie
w

in
g

pr
ob

ab
ili

ty
fo

re
ac

h
til

e
to

th
e

A
BR

m
od

el
(c

or
re

sp
on

di
ng

to
Fi

gu
re

5.
1)

.

70 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

0 1 2 3 4 5 6 7 8

Velocity (degrees/frame)

0

5

10

15

20

25

30

E
rr
o
r
(D

e
g
re
e
)

((a)) Velocity-Error (yaw)

0 1 2 3 4

Velocity (degrees/frame)

0

5

10

15

20

25

30

E
rr
o
r
(D

e
g
re
e
)

((b)) Velocity-Error (pitch)

1 2 3 4 5

Time (seconds)

10
25

50

75

100

E
rr
o
r
(D
e
g
re
e
)

((c)) Time-Error (yaw)

1 2 3 4 5

Time (seconds)

10

25

50

75

100

E
rr
o
r
(D
e
g
re
e
)

((d)) Time-Error (pitch)

Figure 5.6: The relationship between prediction errors, time window lengths and head
movement velocities in the AV dataset.

5.4 Evaluation 71

5.4 Evaluation

In this section, we evaluate the proposed viewport prediction system under various head
motion datasets in terms of prediction error and accuracy. Then, we show how the
proposed system can improve video quality under both �xed and dynamic bandwidth
settings.

5.4.1 Simulation Settings

Experimental Setup

To validate user perceived quality under the proposed SVP system, we utilize a trace-
driven emulation environment where a large corpus of network traces and viewport
motion traces can be tested [51]. For each prediction, 10 past frames’ rotations are
used. In addition, the exact tile probabilities ?1, ?2 and ?3 for VP, AD and OUT tiles,
respectively, should be obtained according to the design of ABR algorithms. In our
experiments, we set ?1, ?2 and ?3 to 1.0, 0.5, 0.0, respectively, for simplicity.

Viewport Motion Datasets

We test the performance on three open viewport motion datasets. Di�erent datasets are
collected by di�erent hardware, software and group of people and videos.

• AV [89]: 48 users watching 20 di�erent entertaining omnidirectional videos on an
HTC Vive HMD.

• THU [90]: A head tracking dataset composed of 48 users (24 males and 24 females)
watching 18 sphere videos from 5 categories of contents.

• UT [91]: The authors gathered and produced 28 videos based on the taxonomy, and
recorded viewport traces from 60 participants watching the videos.

As to the training and testing in our performance evaluation, we �rst evenly sample
10 frames per segment for all three datasets. To evaluate SVP’s performance on unseen
videos and users, we select 70% videos in the AV dataset for training, and remaining 30%

72 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

videos in the AV dataset and all videos in the dataset of THU and UT for testing. In the
experiments of comparison scheme CLS, 90% of the users are randomly selected in each
video for training, while the remaining 10% of users are used for testing.

Network Trace Dataset

The test bandwidth dataset we use contains the 4G networks traces along several routes
in and around the city of Ghent, Belgium [77]. All bandwidth logs are recorded based on
the types of transportation: car, train, tram, bus, bicycle and foot. A total of 40 logs were
collected, covering a 5-hour active monitoring.

Video Dataset

A 360-degree video with a 237-sec duration [92] is employed for our simulations.
The raw 3840×2016 video is extracted from the original clip and re-encoded using
the kvazaar encoder [75], which is an open-source software for H.265. The video is
available in a 1-sec segment version, tiled as 12x6 for each segment. According to the
recommended settings [76], we consider six levels of qualities, corresponding to the
bitrates of {1, 2.5, 5, 8, 16, 40} Mbps.

Comparison schemes

• LR-G [93]: Linear regression model trained by gradient descent method.

• LSTM [51]: Long short term memory neural network, which is commonly used for
time series prediction.

• MLP [94]: Multi-layer perception neural network.

• LR [50]: This tile-based streaming uses linear regression (Least Square Method)
to predict future viewport, and then divides the tiles into three areas: viewport,
adjacent, and outside areas. Each tile in the same area will be assigned the same
quality [?].

5.4 Evaluation 73

• CLS [30]: group users with density-based spatial clustering of applications with
noise (DBSCAN) in the server, then on the client end, classify the user to the
corresponding cluster with a support vector machine (SVM) classi�er, and �nally
obtain the viewing probability from the cluster.

• TJ [53]: �rst identify user clusters with a kind of spectral clustering algorithm, then
�t a regression model for each cluster, �nally predict with the regression model
from the user’s corresponding cluster.

• CUB [52]: �rst predict future �xations with LR, then utilize K-Nearest-Neighbor
(KNN) to �nd the K nearest �xations of other users around the LR result to improve
accuracy.

• LC [54]: �rst cluster users based on their quaternion rotations, then classify the
target user to the corresponding cluster and estimate the future �xation as the
cluster center. If no available cluster for the target user, then predict future �xation
as the last sample.

5.4.2 Viewport Prediction Accuracy

Prediction Accuracy of Orientation

Here, we show how the prediction performance is improved by replacing degrees with
their sinusoidal values on both yaw and pitch directions.

Figure 5.7 shows the mean prediction errors in yaw direction for 1- to 5-sec prediction
time windows. First, prediction errors of all methods with sinusoidal values (i.e. in
red bars) are lower than that with degrees (i.e. in blue bars) for all prediction time
windows. In particular, we see that the prediction errors of LR-G, LSTM, MLP and
LR with sinusoidal values (i.e. in red bars) can be reduced by 31%∼47%, 13%∼28%, and
5%∼22%, in Figure 5.7(a), 5.7(b) and 5.7(c), respectively. This is because sinusoidal values
can e�ectively avoid the periodicity issue on yaw direction. In addition, LR can always
achieve the least prediction errors, which motivates us to design the orientation prediction
part of the SVP system based on linear regression as in LR.

74 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

Prediction errors on pitch direction are shown on Figure 5.8. Since there is no
periodicity issue on pitch direction, we cannot anticipate the performance improvement
for all comparison schemes. However, we can observe that LR with sinusoidal values
achieves the least prediction errors. Note that the prediction errors on yaw direction
are more pronounced (than pitch direction), which requires more accurate viewport
prediction designs in practice.

Prediction Accuracy of Tiles

We evaluate the tile prediction accuracy here and de�ne tile prediction accuracy as the
percentage of actual viewport tiles that are predicted as viewport tiles. As LR-G, LSTM
and MLP yield much higher prediction errors than LR, we simply compare SVP with CLS,

CUB, LC, and TJ in the following.
Figure 5.9 shows the average accuracy of these methods on three datasets in 1-,

2-, 3-, 4-, and 5-sec prediction time windows. Obviously, we see that, on all datasets,
SVP outperforms CLS, CUB, LC and TJ in small time window lenghts (i.e. 1∼3 sec)
thanks to its accurate prediction of orientation. In larger time windows (i.e. 4∼5 sec),
the tile prediction accuracy of SVP reduces due to the accumulated prediction errors
of orientation. This is because inaccurate viewport prediction of the previous frames
inevitably leads to larger prediction errors of the next frame. Nevertheless, SVP remains
comparable with respect to the cross-user methods CLS, CUB, LC and TJ. Note that the
tile prediction accuracy of CLS is insensitive to time window lengths since CLS does not
rely on previous frames for predicting the next frame.

5.4.3 Video Quality Assessment

To evaluate the proposed SVP system, we employ the target bu�er-based bitrate selection
algorithm in [29], where we modify the bitrate selection method by the following two
steps: we �rst allocate the lowest quality to all tiles, and then assign the highest quality
(within the estimated bandwidth budget) to tiles one by one in descending order of
viewing probabilities.

In 360-degree video streaming, viewport prediction in�uences the bitrate allocation

5.4 Evaluation 75

of tiles and perceptual quality of contents in viewport. Since only a portion of each
video is viewed by the user, the perceptual quality is decided by the tiles in the viewport.
Therefore, we de�ne the performance metric of e�ective bitrate as the sum bitrates of the
tiles in the viewport.

Fixed Bandwidth Settings

E�ective bitrates under �xed bandwidth settings. Figure 5.10 shows the CDF of an
e�ective bitrate of di�erent methods during streaming sessions for all three viewport
motion trace datasets. Apparently, SVP yields higher e�ective bitrate than CLS, TJ, LC

and CUB for all bandwidth settings as it achieves higher tile prediction accuracy. In
particular, at the bandwidth setting of 30Mbps, SVP outperforms CLS, CUB, LC, and
TJ by around 25.4%, 12.5%, 23.6% and 17.7%, respectively; at the bandwidth setting of
40Mbps, SVP outperforms CLS, CUB, LC, and TJ by around 13.6%, 4.0%, 12.9% and 15.7%,
respectively. That is, the performance of SVP is more pronounced when the available
bandwidth goes insu�cient.

Dynamic Bandwidth Settings

To further evaluate the performance under various network conditions, we conduct a
series of experiments under real-world network conditions. To make the simulation
results repeatable, we employ the bandwidth trace of the 4G dataset collected at Belgium
(see Sec. 5.4.1 for detailed description). In addition, we evaluate two bu�er thresholds to
see the variation of e�ective bitrates, where each bu�er threshold serves as the upper
limit of time window lengths.

Figure 5.11 shows the CDF of e�ective bitrates of di�erent methods on real-world
network throughput with the 3-sec bu�er threshold. Evidently, SVP performs better than
CLS, CUB, LC, TJ in that it achieves higher tile prediction accuracy. Speci�cally, SVP can
outperform CLS, CUB, LC, TJ by 8.6%∼14.6%, 3.2%∼10.7%, 4.7%∼14.5%, and 10.0%∼16.4%
respectively, across the datasets (described in Sec. 5.4.1). On the other hand, when the
bu�er threshold goes larger (i.e. 6-sec), the prediction time window length will be longer.
However, large bu�er thresholds can result in inaccurate prediction, which reduces the

76 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

e�ective bitrate of SVP as well as its performance gain over the comparisons as shown in
FIGURE 5.12. Since live and VoD 360-degree video streaming usually require small bu�er
thresholds, revealing the applicability of SVP in practice.

To see how much performance gain can be brought by the stages of the SVP system,
we denote SVP-= as the SVP system from stage 1 to stage =, where = ∈ {1, 2, 3}. In
Figure 5.13, we see that SPV-1 outperforms LR by 1.5%∼13.1% thanks to the accurate
orientation prediction. For SPV-2 and SPV-3, the performance gains will be further
increased by 2.0%∼4.8% and 2.8%∼7.4%, respectively, revealing that the proposed error
handling and tile probability normalization are both e�ective in elevating e�ective
bitrates.

5.4 Evaluation 77

LR-G LSTM MLP LR
0

10

20

30

40

50

60

70

A
v
e
ra
g
e
E
rr
o
r
(D
e
g
re
e
)

Degree Sinusoid

((a)) 1-sec time window

LR-G LSTM MLP LR
0

10

20

30

40

50

60

70

A
v
e
ra
g
e
E
rr
o
r
(D
e
g
re
e
)

Degree Sinusoid

((b)) 3-sec time window

LR-G LSTM MLP LR
0

10

20

30

40

50

60

70

A
v
e
ra
g
e
E
rr
o
r
(D
e
g
re
e
)

Degree Sinusoid

((c)) 5-sec time window

Figure 5.7: The prediction errors on yaw direction in 1-, 3-, 5-sec time window.

78 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

LR-G LSTM MLP LR
0

5

10

15

20

25

30

35

A
v
e
ra
g
e
E
rr
o
r
(D
e
g
re
e
)

Degree Sinusoid

((a)) 1-sec time window

LR-G LSTM MLP LR
0

5

10

15

20

25

30

35

A
v
e
ra
g
e
E
rr
o
r
(D
e
g
re
e
)

Degree Sinusoid

((b)) 3-sec time window

LR-G LSTM MLP LR
0

5

10

15

20

25

30

35

A
v
e
ra
g
e
E
rr
o
r
(D
e
g
re
e
)

Degree Sinusoid

((c)) 5-sec time window

Figure 5.8: The prediction errors on pitch direction in 1-, 3-, 5-sec time window.

5.4 Evaluation 79

1 2 3 4 5
Time Window Length (Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Ac

cu
ra

cy

CLS TJ LC CUB SVP

((a)) The AV dataset

1 2 3 4 5
Time Window Length (Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Ac

cu
ra

cy

CLS TJ LC CUB SVP

((b)) The THU dataset

1 2 3 4 5
Time Window Length (Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Ac

cu
ra

cy

CLS TJ LC CUB SVP

((c)) The UT dataset

Figure 5.9: Tile prediction accuracy on di�erent datasets.

80 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((a)) Bandwidth = 30Mbps

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((b)) Bandwidth = 35Mbps

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((c)) Bandwidth = 40Mbps

Figure 5.10: E�ective bitrate comparison (�xed bandwidth, 3-sec bu�er threshold).

5.4 Evaluation 81

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((a)) The AV dataset

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((b)) The THU dataset

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((c)) The UT dataset

Figure 5.11: E�ective bitrate comparison (dynamic bandwidth, 3-sec bu�er threshold).

82 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((a)) The AV dataset

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((b)) The THU dataset

0 10 20 30
Effective Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F CLS

CUB
LC
SVP
TJ

((c)) The UT dataset

Figure 5.12: E�ective bitrate comparison (dynamic bandwidth, 6-sec bu�er threshold).

5.4 Evaluation 83

3-sec Buf. Thold. 6-sec Buf. Thold.
0

3

6

9

12

15

E
ff
e
c
ti
v
e
B
it
ra
te

(M
b
p
s
)

LR SVP-1 SVP-2 SVP-3

((a)) The AV dataset

3-sec Buf. Thold. 6-sec Buf. Thold.
0

3

6

9

12

15

E
ff
e
c
ti
v
e
B
it
ra
te

(M
b
p
s
)

LR SVP-1 SVP-2 SVP-3

((b)) The THU dataset

3-sec Buf. Thold. 6-sec Buf. Thold.
0

3

6

9

12

15

E
ff
e
c
ti
v
e
B
it
ra
te

(M
b
p
s
)

LR SVP-1 SVP-2 SVP-3

((c)) The UT dataset

Figure 5.13: E�ective bitrate improvement by each stage of SVP (dynamic bandwidth, 3-
and 6-sec bu�er thresholds).

84 Chapter 5. Sinusoidal Viewport Prediction for 360-Degree Video Streaming

5.5 Summary

Tile-based streaming has emerged as a promising way to deliver high-quality 360-degree
videos with limited bandwidth. In this paper, we propose the 3-stage SVP system to
predict orientation, handle prediction errors and normalize viewing probabilities. By
interpreting original rotations as sinusoidal values, the SVP system can e�ectively
reduce prediction errors on yaw direction. We conduct simulations based on several
real-world datasets, and our simulation results show that the SVP system can achieve
better prediction accuracy and video quality than other comparison schemes under
various bu�er thresholds and bandwidth settings.

85

6
Conclusion

In this chapter, we �rst conclude the dissertation by summarizing its main contributions
in Section 6.1, then discuss the limitations of our proposed schemes and the lessons we’ve
learned in Section 6.2.1 and 6.2.2 respectively. Finally, Section 6.3 identi�es the key future
research topics that embrace learning-based approaches to challenges in the networking
community.

6.1 Contributions

Our main contributions are developing learning-based systems to tackle challenges
exposed by the live and 360-degree video streaming services. More speci�cally, we
formulate the live streaming task as a reinforcement learning problem with discrete-
continuous hybrid action spaces, then design a novel DRL algorithm-HD3 to solve it. The
simulation results show that our scheme can generate a single neural agent which can

86 Chapter 6. Conclusion

perform well under various network and video traces. Moreover, this distributed scheme
can converge fast and be applied at scale in practice.

To address challenges exposed in the 360-degree video streaming scenarios, we
develop two learning-based system for tile bitrate selection and viewport prediction
respectively. We tackle the large action space issue in 360-degree video streaming, we
divide the tiles into three classes, then apply a DRL algorithm to learn a neural agent to
select bitrates for each tile class. We evaluate the proposed scheme-Plato in real-world
traces of viewport motion and network bandwidth, and the results show that Plato
achieves signi�cant QoE improvement.

To more accurately predict future viewport, we propose a sinusoidal viewport
prediction (SVP) system to overcome the periodicity issues on yaw direction. Moreover,
we �nd that prediction errors positively correlate with head movement velocities
and prediction time window, and utilize this �nding to further improve the system
performance. Simulation results demonstrate that the SVP system can achieve higher
prediction accuracy thus leading to better video quality than comparison schemes.

6.2 Discussion

6.2.1 Limitations

This part examines the limitations of our work.

QoE metrics for 360 video streaming. There is no unique agreement on what is the
best set of QoE metrics for 360-degree video streaming. In our work, we have chosen QoE
metrics (also used in [29, 31, 45]) which can be easily obtained in simulations. However,
the current chosen QoE metrics might not perfectly represent the subjective user QoE.
Recently, some novel QoE metrics has been proposed. Yu et al. [32] presented 360JND-
based PSPNR (360 Just Noticeable Di�erence based Peak Singla-to-Perceptible-Noise
Ratio), which models the impact of viewport-moving speed, luminance change, and
the di�erence in depth-of-�eld on the user perceived video quality. It is shown that
360JND-based PSPNR can estimate MOS more accurately than traditional video quality

6.2 Discussion 87

metrics (e.g. PSNR). Marta et al. [25] has recently validated the application of another
robust metric, VMAF, to 360 videos. Although, the QoE metrics we’ve chosen are able to
show the e�ciency of the proposed scheme to some degree, it will be more convincing to
also conduct evaluations on these new metrics.

Reward function design. In current work, we have heuristically tuned the coe�cient
values of the reward function for 360-degree video streaming. However, we were not able
to �nd an optimal value setting generating an model outperforming existing schemes
in all dimensions. Our current heuristic-based searching method has missed many
good combinations. To overcome this issue, a promising approach should be Bayesian
optimization [95, 96]. Its general idea is to �t a function (usually a Gaussian process
(GP) [97]) to map the evaluated combinations of coe�cient values to the �nal QoE
(video quality, rebu�ering time, quality smoothness), and then sample the next test
coe�cient settings based on this function with the consideration of exploring unevaluated
coe�cients and exploiting the knowledge of best observed coe�cient settings.

Simulator design. Another limitation comes from the simulator which is used for
training the ABR agents. Although we have designed the simulators in segment level and
carefully followed the same mechanisms from a real video player, it cannot perfectly
emulate the system dynamics and in�uence of congestion control policy to the video
streaming experience. It is worthy to build an simulation environment consisting of a
frame (or packet) level video player simulator and a fully functioned network emulator.

Overhead, generality, interpretability of deep neural models. There are some
limitations for learning-based approaches. Although the DRL trained neural agents
can achieve better performance than heuristic-based schemes, the deep neural models
usually consumes much more computational resources and power, thus leading to larger
overhead. This makes it often unpractical to install deep neural models in mobile devices.
Another common issue for learning-based methods is their generality. There is no strict
guarantee that the trained models can still make good bitrate decisions on unseen video
sequence and network conditions, or predict accurately on new users and videos. In

88 Chapter 6. Conclusion

addition, the DRL trained neural agents are black-box whose mechanism cannot be fully
understood, thus makes engineers di�cult to correct the model when a wrong bitrate
decision is made. To overcome these limitations, a promising way might be combining
human heuristics and machine intelligence to design a robust, e�cient and reliable
system.

6.2.2 Lessons Learned

In this dissertation, we have developed learning-based systems for two decision making
tasks and one prediction task. Here we summarize our lessons in terms of these two
kinds of tasks.

Lessons from learning-based decisionmaking. DRL algorithms are very promising
for time series control problems. However, it’s not naive to successfully apply DRL algo-
rithms to solve real-world problems. Through our implementations of DRL-based system,
we �nd that reward function design can signi�cantly in�uence the �nal performance.
Researchers should carefully tune the coe�cients in the reward function to suitably
handle the trade o� among di�erent QoE metrics. Other two hyper-parameters, learning
rate and exploration rate, are also worth being noted by the engineers. Best learning rate
and exploration rate should depend on the problem settings and datasets. Moreover, a
distributed version of DRL converges much faster, which will allow the researchers to
have more time to �nd good designs of reward functions and better hyper-parameter
settings.

Lessons from learning-based prediction. Sometimes, utilizing more information or
fancier neural network architectures may not increase the prediction accuracy for simple
data traces. Moreover, this usually results in more complicated model which makes
it unpractical to be deployed in mobile devices. To improve the prediction accuracy,
another promising way should be analyzing the dataset and �nding out the reasons for
prediction errors, then utilizing feature engineering to overcome the issue.

6.3 Future Perspective 89

6.3 Future Perspective

The application of learning-based approaches in networking systems is vast. There
will be tremendous opportunities for machine learning techniques for replace human
labor with machine intelligence. Next we give two broad research directions to design
learning-based networking systems.

• Applying learning-based approaches to solve adaptive control problems in new
networking applications.

• Integrating heuristics with learning for robust and e�cient systems.

6.3.1 New networking challenges solvable by learning

Adaptive Volumetric Video Streaming Recent advances in the computing resources
of machines have promoted interactive applications (e.g., virtual reality) to be viable
service types to users. Most existing contents for these applications are 360-degree
videos which provide users three degrees of freedom (3DoF) to freely rotate his/her head.
However, people never stop their journey towards a more immersive, interactive, and
expressive media. Recently, a new type of video, volumetric videos, which o�er six
degrees of freedom (6DoF) by allowing a viewer to freely change both the rotation (yaw,
pitch, roll) and the position (X, Y, Z), have gained increased interest from the researcher
community [98–104].

Volumetric videos are usually recorded by multiple cameras with depth sensors.
Multiple cameras can capture all directions of a scene which allows the rotational freedom,
and depth information of objects can be utilized to provide the transitional freedom.
Volumetric videos can be represented by the technique of Point Cloud (PtCl) where
each video frame contains multiple points or voxels. More speci�cally, each frame of
volumetric videos contains a list of 3D points, and each point consists of its position
and color information. This makes volumetric video streaming consumes much larger
bandwidth than even 360-degree video streaming.

Viewport and rate adaptive approaches seems promising to overcome the aforemen-
tioned issue. However, it will be much more challenging to do viewport prediction and

90 Chapter 6. Conclusion

rate adaptation in volumetric video streaming than in 360-degree video streaming. More
speci�cally, in volumetric video streaming, both future rotation and positition values need
to be predicted; and rate control needs to consider more information such as distances for
each point cloud [99]. Besides these challenges, there lacks an agreed QoE function
design for volumetric video streaming [100,104], researchers still need to �nd appropriate
QoE metrics to represent user-perceived quality while watching volumetric videos.

Learning-based approaches can be applied to solve the above challenges. To predict
future head rotation and body position, various machine learning techniques can be
utilized. Besides, DRL can still be considered as a promising approach to make rate
decisions for di�erent point clouds or part of the video on each adaptation step.

Adaptive Video Streaming for Analytics Unlike our previous work where videos
are streamed for watching by human, videos can also be streamed for analyzing by
machine. With the advances of computer vision techniques, many cities and companies
have installed thousands of cameras in their streets or buildings for various video-analytic
applications, such as face detection, tra�c monitoring and control. In a typical tra�c
control application, cameras are installed along the street, and need to stream the recorded
video frames back to the server for analysis over wireless links in real time. Then the
deep neural networks (e.g., Yolo [105], VGG, [106]) deployed in the server conduct the
object detection and classi�cation tasks. To save bandwidth and reduce transmission
latency, the applications need to re-size (change video resolution) and sample video
frames [107]. However, a low resolution and sampling rate may decrease the inference
accuracy. There are mainly two challenges for this kind of applications: con�icting QoE
goals (latency, inference accuracy), and dynamic network conditions. To tackle these
challenges, based on our lessons learned, it is very promising to leverage DRL to learn a
neural agent to adaptively control the resolution and sampling rate of video frames.

6.3.2 Integrating heuristics with reinforcement learning

Most existing solutions for networking applications are designed either based on heuristics
or machine learning techniques. Neither is perfect in practice, heuristic-based schemes

6.3 Future Perspective 91

are usually simple but di�cult to handle trade-o� among multiple con�icting QoE goals
and hard to adapt to various environment dynamics. While learning-based methods can
often achieve better performance by overcoming the challenges of QoE con�icts and
environment dynamics, they are di�cult to be interpreted and their performance cannot
be guaranteed for unseen (extreme) conditions during the training phases. Moreover,
many reinforcement learning based systems are designed in a end-to-end way, which
makes it impossible for the engineers to encode rarely happening cases directly into the
system.

Recently, several works [108–113] have considered designing hybrid approaches by
integrating heuristics (or physics) with learning to improve the performance. However,
most of them focus on fusing heuristics with learning for prediction task, rather than
decision making task which can be found in most networking applications. A promising
way to fuse human heuristics with reinforcement learning for decision making, is to
�rst design a framework containing several controlling parameters based on heuristics,
then utilize reinforcement learning to learn a neural agent to adaptively control these
parameters. In this case, all the rare happening cases and good heuristics in existing work
can be manually encoded into the framework. Finally, we can get a system which can
achieve high performance with high interpretability and robustness.

93

Bibliography

[1] 2018 Cisco Complete VNI Forecast and Trends Update. Available at
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/
digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_
SERVICES_CKN_PDF.pdf.

[2] Kjell Brunnström, Sergio Ariel Beker, Katrien De Moor, Ann Dooms, Sebastian
Egger, Marie-Neige Garcia, Tobias Hossfeld, Satu Jumisko-Pyykkö, Christian
Keimel, Mohamed-Chaker Larabi, et al. Qualinet white paper on de�nitions of
quality of experience. 2013.

[3] Iraj Sodagar. The mpeg-dash standard for multimedia streaming over the internet.
IEEE MultiMedia, 18(4):62–67, 2011.

[4] Ericsson Mobility Report. Available at https://www.ericsson.com/en/
mobility-report/.

[5] Chang Ge, Ning Wang, Wei Koong Chai, and Hermann Hellwagner. Qoe-assured
4k http live streaming via transient segment holding at mobile edge. IEEE Journal
on Selected Areas in Communications, 36(8):1816–1830, 2018.

[6] ACM Multimedia 2019 Grand Challenge-(Live Video Streaming). Available at
https://www.aitrans.online/MMGC/.

[7] Huawei Virtual Reality/Augmented Reality White Paper. Available at http:
//www-�le.huawei.com/-/media/CORPORATE/PDF/ilab/vr-ar-en.pdf.

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.ericsson.com/en/mobility-report/
https://www.ericsson.com/en/mobility-report/
https://www.aitrans.online/MMGC/
http://www-file.huawei.com/-/media/CORPORATE/PDF/ilab/vr-ar-en.pdf
http://www-file.huawei.com/-/media/CORPORATE/PDF/ilab/vr-ar-en.pdf

94 Bibliography

[8] Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip De
Turck. An http/2-based adaptive streaming framework for 360 virtual reality
videos. In Proceedings of the 2017 ACM on Multimedia Conference, MM 2017, pages
306–314, 2017.

[9] Mengbai Xiao, Chao Zhou, Yao Liu, and Songqing Chen. Optile: Toward optimal
tiling in 360-degree video streaming. In Proceedings of the 2017 ACM on Multimedia
Conference, pages 708–716. ACM, 2017.

[10] Mohammad Hosseini and Viswanathan Swaminathan. Adaptive 360 vr video
streaming: Divide and conquer. In Multimedia (ISM), 2016 IEEE International
Symposium on, pages 107–110. IEEE, 2016.

[11] Matt Yu, Haricharan Lakshman, and Bernd Girod. A framework to evaluate
omnidirectional video coding schemes. In Mixed and Augmented Reality (ISMAR),
2015 IEEE International Symposium on, pages 31–36. IEEE, 2015.

[12] Tobias Hoßfeld, Raimund Schatz, Ernst Biersack, and Louis Plissonneau. Internet
video delivery in youtube: From tra�c measurements to quality of experience. In
Data Tra�c Monitoring and Analysis, pages 264–301. Springer, 2013.

[13] ITUT Rec. P. 10: Vocabulary for performance and quality of service, amendment 2:
New de�nitions for inclusion in recommendation itu-t p. 10/g. 100. Int. Telecomm.
Union, Geneva, 2008.

[14] Robert C Streijl, Stefan Winkler, and David S Hands. Mean opinion score (mos)
revisited: methods and applications, limitations and alternatives. Multimedia
Systems, 22(2):213–227, 2016.

[15] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and
Hui Zhang. Developing a predictive model of quality of experience for internet
video. ACM SIGCOMM Computer Communication Review, 43(4):339–350, 2013.

[16] M-N Garcia, Francesca De Simone, Samira Tavakoli, Nicolas Staelens, Sebastian
Egger, Kjell Brunnström, and Alexander Raake. Quality of experience and http

Bibliography 95

adaptive streaming: A review of subjective studies. In 2014 Sixth International
Workshop on Quality of Multimedia Experience (QoMEX), pages 141–146. IEEE, 2014.

[17] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. ACM SIGCOMM Computer Communication Review, 41(4):362–373,
2011.

[18] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,
and Hui Zhang. A quest for an internet video quality-of-experience metric. In
Proceedings of the 11th ACM workshop on hot topics in networks, pages 97–102, 2012.

[19] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld,
and Phuoc Tran-Gia. A survey on quality of experience of http adaptive streaming.
IEEE Communications Surveys & Tutorials, 17(1):469–492, 2014.

[20] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video
streaming with pensieve. In ACM SIGCOMM 2017, 2017.

[21] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, pages
325–338, 2015.

[22] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9. IEEE, 2016.

[23] Chun-Hsien Chou and Yun-Chin Li. A perceptually tuned subband image coder
based on the measure of just-noticeable-distortion pro�le. IEEE Transactions on
circuits and systems for video technology, 5(6):467–476, 1995.

[24] Zhou Wang, Ligang Lu, and Alan C Bovik. Video quality assessment based on
structural distortion measurement. Signal processing: Image communication,
19(2):121–132, 2004.

96 Bibliography

[25] Marta Orduna, César Díaz, Lara Muñoz, Pablo Pérez, Ignacio Benito, and Narciso
García. Video multimethod assessment fusion (vmaf) on 360vr contents. IEEE
Transactions on Consumer Electronics, 66(1):22–31, 2019.

[26] Mingfu Li, Chien-Lin Yeh, and Shao-Yu Lu. Real-time qoe monitoring system for
video streaming services with adaptive media playout. International Journal of
Digital Multimedia Broadcasting, 2018, 2018.

[27] Konstantin Miller, Abdel-Karim Al-Tamimi, and Adam Wolisz. Qoe-based low-delay
live streaming using throughput predictions. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 13(1):1–24, 2016.

[28] Yueshi Shen, Ivan Marcin, Josh Tabak, Abhinav Kapoor, Jorge Arturo Villatoro, and
Je� Li. Bu�er reduction using frame dropping, July 3 2018. US Patent 10,015,224.

[29] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 360prob-
dash: Improving qoe of 360 video streaming using tile-based HTTP adaptive
streaming. In Proceedings of the 2017 ACM on Multimedia Conference, MM, 2017.

[30] Lan Xie, Xinggong Zhang, and Zongming Guo. CLS: A cross-user learning based
system for improving QoE in 360-degree video adaptive streaming. In Proc. ACM
MM, Oct. 2018.

[31] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking,
pages 99–114, 2018.

[32] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang.
Pano: Optimizing 360 video streaming with a better understanding of quality
perception. In Proc. ACM SIGCOMM, Aug. 2019.

[33] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. CoRR, abs/1602.01783, 2016.

Bibliography 97

[34] Yanyu Xu, Yanbing Dong, Junru Wu, Zhengzhong Sun, Zhiru Shi, Jingyi Yu, and
Shenghua Gao. Gaze prediction in dynamic 360 immersive videos. In Proc. IEEE
CVPR, Jun. 2018.

[35] Mengmi Zhang, Keng Teck Ma, Joo Hwee Lim, Qi Zhao, and Jiashi Feng. Deep
future gaze: Gaze anticipation on egocentric videos using adversarial networks. In
Proc. IEEE CVPR, Jul. 2017.

[36] Yuanxing Zhang, Yushuo Guan, Kaigui Bian, Yunxin Liu, Hu Tuo, Lingyang Song,
and Xiaoming Li. EPASS360: QoE-aware 360-degree video streaming over mobile
devices. IEEE Trans. Mobile Comput., pages 1–1, 2020.

[37] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, e�ciency, and
stability in http-based adaptive video streaming with festive. In Proceedings of the
8th international conference on Emerging networking experiments and technologies,
pages 97–108, 2012.

[38] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A bu�er-based approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM, pages
187–198, 2014.

[39] Gang Yi, Dan Yang, Abdelhak Bentaleb, Weihua Li, Yi Li, Kai Zheng, Jiangchuan
Liu, Wei Tsang Ooi, and Yong Cui. The acm multimedia 2019 live video streaming
grand challenge. In Proceedings of the 27th ACM International Conference on
Multimedia, pages 2622–2626, 2019.

[40] Huan Peng, Yuan Zhang, Yongbei Yang, and Jinyao Yan. A hybrid control scheme
for adaptive live streaming. In Proceedings of the 27th ACM International Conference
on Multimedia, pages 2627–2631, 2019.

[41] Ruying Hong, Qiwei Shen, Lei Zhang, and Jing Wang. Continuous bitrate & latency
control with deep reinforcement learning for live video streaming. In Proceedings
of the 27th ACM International Conference on Multimedia, pages 2637–2641, 2019.

98 Bibliography

[42] Xiaolan Jiang and Yusheng Ji. Hd3: Distributed dueling dqn with discrete-
continuous hybrid action spaces for live video streaming. In Proceedings of the 27th
ACM International Conference on Multimedia, pages 2632–2636, 2019.

[43] Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip
De Turck. An http/2-based adaptive streaming framework for 360 virtual reality
videos. In Proceedings of the 2017 ACM on Multimedia Conference, pages 306–314.
ACM, 2017.

[44] Mario Graf, Christian Timmerer, and Christopher Mueller. Towards bandwidth
e�cient adaptive streaming of omnidirectional video over http: Design, imple-
mentation, and evaluation. In Proceedings of the 8th ACM on Multimedia Systems
Conference, pages 261–271. ACM, 2017.

[45] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. Rubiks:
Practical 360-degree streaming for smartphones. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services, pages
482–494, 2018.

[46] Yuanxing Zhang, Yushuo Guan, Kaigui Bian, Yunxin Liu, Hu Tuo, Lingyang Song,
and Xiaoming Li. EPASS360: QoE-aware 360-degree video streaming over mobile
devices. IEEE Trans. Mobile Comput., pages 1–1, 2020.

[47] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin Liu, Lingyang Song, and
Xiaoming Li. Drl360: 360-degree video streaming with deep reinforcement learning.
In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages
1252–1260. IEEE, 2019.

[48] Tan Xu, Bo Han, and Feng Qian. Analyzing viewport prediction under di�erent
vr interactions. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 165–171, 2019.

[49] Bo Han, Yu Liu, and Feng Qian. Vivo: visibility-aware mobile volumetric video
streaming. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–13, 2020.

Bibliography 99

[50] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing 360 video
delivery over cellular networks. In Proc. ATC, Oct. 2016.

[51] Xiaolan Jiang, Yi-Han Chiang, Yang Zhao, and Yusheng Ji. Plato: Learning-based
adaptive streaming of 360-degree videos. In Proc. IEEE LCN, Oct. 2018.

[52] Yixuan Ban, Lan Xie, Zhimin Xu, Xinggong Zhang, Zongming Guo, and Yue Wang.
Cub360: Exploiting cross-users behaviors for viewport prediction in 360 video
adaptive streaming. In 2018 IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6. IEEE, 2018.

[53] Stefano Petrangeli, Gwendal Simon, and Viswanathan Swaminathan. Trajectory-
based viewport prediction for 360-degree virtual reality videos. In 2018 IEEE
International Conference on Arti�cial Intelligence and Virtual Reality (AIVR), pages
157–160. IEEE, 2018.

[54] Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash. Viewport prediction
for 360° videos: a clustering approach. In Proceedings of the 30th ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video, pages 34–39,
2020.

[55] Mai Xu, Yuhang Song, Jianyi Wang, MingLang Qiao, Liangyu Huo, and Zulin
Wang. Predicting head movement in panoramic video: A deep reinforcement
learning approach. IEEE Trans. Pattern Anal. Mach. Intell., 41(11):2693–2708, 2018.

[56] Qin Yang, Junni Zou, Kexin Tang, Chenglin Li, and Hongkai Xiong. Single and
sequential viewports prediction for 360-degree video streaming. In 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2019.

[57] Xiao Li, Siyi Wang, Chen Zhu, Li Song, Rong Xie, and Wenjun Zhang. Viewport
prediction for panoramic video with multi-cnn. In 2019 IEEE International Sympo-
sium on Broadband Multimedia Systems and Broadcasting (BMSB), pages 1–6. IEEE,
2019.

100 Bibliography

[58] Xinwei Chen, Ali Taleb Zadeh Kasgari, and Walid Saad. Deep learning for content-
based personalized viewport prediction of 360-degree vr videos. IEEE Networking
Letters, 2(2):81–84, 2020.

[59] Xianglong Feng, Viswanathan Swaminathan, and Sheng Wei. Viewport prediction
for live 360-degree mobile video streaming using user-content hybrid motion
tracking. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(2):1–22, 2019.

[60] Xianglong Feng, Zeyang Bao, and Sheng Wei. Exploring cnn-based viewport
prediction for live virtual reality streaming. In 2nd IEEE International Conference on
Arti�cial Intelligence and Virtual Reality, AIVR 2019, pages 183–186. Institute of
Electrical and Electronics Engineers Inc., 2019.

[61] Xianglong Feng, Yao Liu, and Sheng Wei. Livedeep: Online viewport prediction for
live virtual reality streaming using lifelong deep learning. In 2020 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR), pages 800–808. IEEE, 2020.

[62] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[64] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo
Fu, Tong Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning:
Reinforcement learning with discrete-continuous hybrid action space. arXiv
preprint arXiv:1810.06394, 2018.

[65] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado Van Hasselt, and David Silver. Distributed prioritized experience replay.
arXiv preprint arXiv:1803.00933, 2018.

Bibliography 101

[66] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937, 2016.

[67] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video
streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 197–210. ACM, 2017.

[68] Xiaolan Jiang, Yi-Han Chiang, Yang Zhao, and Yusheng Ji. Plato: Learning-based
adaptive streaming of 360-degree videos. In 2018 IEEE 43rd Conference on Local
Computer Networks (LCN), pages 393–400. IEEE, 2018.

[69] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng Sun. Qarc: Video quality
aware rate control for real-time video streaming based on deep reinforcement
learning. arXiv preprint arXiv:1805.02482, 2018.

[70] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Thirtieth AAAI Conference on Arti�cial Intelligence, 2016.

[71] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[72] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[73] Pytorch. Available at https://pytorch.org/.

[74] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 360-degree video
head movement dataset. In ACM MMSys 2017, number EPFL-CONF-227447, 2017.

[75] kvazaar: An open-source hevc encoder. Available at http://github.com/ultravideo/
kvazaar.

[76] Recommended upload encoding settings, youtube. Available at https://support.
google.com/youtube/answer/1722171?hl=en.

https://pytorch.org/
http://github.com/ultravideo/kvazaar
http://github.com/ultravideo/kvazaar
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en

102 Bibliography

[77] Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Rafael Huysegems,
Patrice Rondao Alface, Tom Bostoen, and Filip De Turck. Http/2-based adaptive
streaming of hevc video over 4g/lte networks. IEEE Communications Letters,
20(11):2177–2180, 2016.

[78] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. Commute
path bandwidth traces from 3g networks: analysis and applications. In Proceedings
of the 4th ACM Multimedia Systems Conference, pages 114–118. ACM, 2013.

[79] DASH Player Source Code. Available at https://github.com/Dash-Industry-Forum/
dash.js/blob/development/src/streaming/rules/ThroughputHistory.js.

[80] Bruno Zatt, Marcelo Porto, Jacob Scharcanski, and Sergio Bampi. Gop structure
adaptive to the video content for e�cient h. 264/avc encoding. In 2010 IEEE
International Conference on Image Processing, pages 3053–3056. IEEE, 2010.

[81] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang.
Pano: Optimizing 360 video streaming with a better understanding of quality
perception. In Proc. ACM SIGCOMM, Aug. 2019.

[82] Xavier Corbillon, Alisa Devlic, Gwendal Simon, and Jacob Chakareski. Optimal set
of 360-degree videos for viewport-adaptive streaming. In Proc. ACM MM, Oct. 2017.

[83] Chenge Li, Weixi Zhang, Yong Liu, and Yao Wang. Very long term �eld of view
prediction for 360-degree video streaming. In 2019 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), pages 297–302. IEEE, 2019.

[84] Joris Heyse, Maria Torres Vega, Femke De Backere, and Filip De Turck. Contextual
bandit learning-based viewport prediction for 360 video. In 2019 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR), pages 972–973. IEEE, 2019.

[85] Ziheng Zhang, Yanyu Xu, Jingyi Yu, and Shenghua Gao. Saliency detection in 360
videos. In Proc. ECCV, Sep. 2018.

https://github.com/Dash-Industry-Forum/dash.js/blob/development/src/streaming/rules/ThroughputHistory.js
https://github.com/Dash-Industry-Forum/dash.js/blob/development/src/streaming/rules/ThroughputHistory.js

Bibliography 103

[86] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. FlowNet 2.0: Evolution of optical �ow estimation with deep
networks. In Proc. IEEE CVPR, Jul. 2017.

[87] Linearsvr: Linear support vector regression. Available at https://scikit-learn.org/
stable/modules/generated/sklearn.svm.LinearSVR.html,

[88] Shahryar Afzal, Jiasi Chen, and KK Ramakrishnan. Characterization of 360-degree
videos. In Proceedings of the Workshop on Virtual Reality and Augmented Reality
Network, pages 1–6, 2017.

[89] Stephan Fremerey, Ashutosh Singla, Kay Meseberg, and Alexander Raake. AV-
track360: an open dataset and software recording people’s head rotations watching
360◦ videos on an HMD. In Proc. ACM MMSys, Jun. 2018.

[90] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. A dataset for exploring
user behaviors in vr spherical video streaming. In Proc. ACM MMSys, Jun. 2017.

[91] Afshin Taghavi Nasrabadi, Aliehsan Samiei, Anahita Mahzari, Ryan P McMahan,
Ravi Prakash, Mylène CQ Farias, and Marcelo M Carvalho. A taxonomy and
dataset for 360◦ videos. In Proc. ACM MMSys, Jun. 2019.

[92] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 360-degree video
head movement dataset. In Proc. ACM MMSys, Jun. 2017.

[93] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747 [cs.LG], Jun. 2017.

[94] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
Nov. 2016.

[95] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings
of the IEEE, 104(1):148–175, 2015.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html

104 Bibliography

[96] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

[97] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer
School on Machine Learning, pages 63–71. Springer, 2003.

[98] Mohammad Hosseini and Christian Timmerer. Dynamic adaptive point cloud
streaming. In Proceedings of the 23rd Packet Video Workshop, pages 25–30, 2018.

[99] Jeroen van der Hooft, Tim Wauters, Filip De Turck, Christian Timmerer, and
Hermann Hellwagner. Towards 6dof http adaptive streaming through point
cloud compression. In Proceedings of the 27th ACM International Conference on
Multimedia, pages 2405–2413, 2019.

[100] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. Toward practical
volumetric video streaming on commodity smartphones. In Proceedings of the
20th International Workshop on Mobile Computing Systems and Applications, pages
135–140, 2019.

[101] Alexander Clemm, Maria Torres Vega, Hemanth Kumar Ravuri, Tim Wauters,
and Filip De Turck. Toward truly immersive holographic-type communication:
Challenges and solutions. IEEE Communications Magazine, 58(1):93–99, 2020.

[102] Serhan Gül, Dimitri Podborski, Thomas Buchholz, Thomas Schierl, and Cornelius
Hellge. Low latency volumetric video edge cloud streaming. arXiv preprint
arXiv:2001.06466, 2020.

[103] Christian Timmerer and Ali C Begen. A journey towards fully immersive media
access. In Proceedings of the 27th ACM International Conference on Multimedia,
pages 2703–2705, 2019.

[104] Bo Han, Yu Liu, and Feng Qian. Vivo: visibility-aware mobile volumetric video
streaming. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–13, 2020.

Bibliography 105

[105] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Uni�ed, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[106] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[107] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, pages
253–266, 2018.

[108] Elvis A Eugene, Xian Gao, and Alexander W Dowling. Learning and optimization
with bayesian hybrid models. arXiv preprint arXiv:1912.06269, 2019.

[109] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar.
Integrating physics-based modeling with machine learning: A survey. arXiv
preprint arXiv:2003.04919, 2020.

[110] Prashanth Pillai, Anshul Kaushik, Shivanand Bhavikatti, Arjun Roy, and Virendra
Kumar. A hybrid approach for fusing physics and data for failure prediction.
International Journal of Prognostics and Health Management, 7(025):1–12, 2016.

[111] Alexander Y Sun, Bridget R Scanlon, Zizhan Zhang, David Walling, Soumendra N
Bhanja, Abhijit Mukherjee, and Zhi Zhong. Combining physically based modeling
and deep learning for fusing grace satellite data: Can we learn from mismatch?
Water Resources Research, 55(2):1179–1195, 2019.

[112] Rahul Rai and Chandan K Sahu. Driven by data or derived through physics? a
review of hybrid physics guided machine learning techniques with cyber-physical
system (cps) focus. IEEE Access, 8:71050–71073, 2020.

[113] Tianchi Huang, Rui-Xiao Zhang, Xin Yao, Chenglei Wu, and Lifeng Sun. Being
more e�ective and interpretable: Bridging the gap between heuristics and ai for

106 Bibliography

abr algorithms. In Proceedings of the ACM SIGCOMM 2019 Conference Posters and
Demos, pages 12–14, 2019.

	Abstract
	Acknowledgement
	List of Figures
	1 Introduction
	1.1 Background for Adaptive Video Streaming
	1.1.1 Live Video Streaming
	1.1.2 360-degree Video Streaming

	1.2 QoE Metrics for Video Streaming
	1.2.1 Subjective QoE Metric.
	1.2.2 Objective QoE Metric.

	1.3 Challenges
	1.3.1 Universal Challenges for Video Streaming
	1.3.2 New Challenges for Live Video Streaming
	1.3.3 New Challenges for 360-degree Video Streaming

	1.4 Learning as a Solution for Video Streaming
	1.5 Organization

	2 Related Work
	2.1 Live Video Streaming
	2.1.1 ABR algorithms for VoD services
	2.1.2 ABR algorithms for Live streaming

	2.2 360-degree Video Streaming
	2.3 Viewport Prediction

	3 Learning-based Live Video Streaming
	3.1 Overview
	3.2 System Design
	3.2.1 Reinforcement Learning for Live Streaming
	3.2.2 HD2: Dueling DQN with Hybrid Action Space
	3.2.3 HD3: Distributed HD2

	3.3 Evaluation
	3.3.1 QoE Definition
	3.3.2 Dataset Analysis
	3.3.3 Comparison Schemes
	3.3.4 Implementation
	3.3.5 Results Analysis

	3.4 Summary

	4 Learning-based 360-Degree Video Streaming
	4.1 Overview
	4.2 System Design
	4.2.1 VPP – The Prediction of Viewport
	4.2.2 TBS – The Bitrate Selection of Tiles

	4.3 Evaluation
	4.3.1 Parameter Settings
	4.3.2 Datasets
	4.3.3 360 Video Player Simulator Design
	4.3.4 Comparison Metrics
	4.3.5 QoE Metrics
	4.3.6 Reward function design
	4.3.7 Result Analysis

	4.4 Summary

	5 Sinusoidal Viewport Prediction for 360-Degree Video Streaming
	5.1 Overview
	5.2 Sinusoids versus Prediction Accuracy
	5.2.1 Prediction Error Analysis
	5.2.2 Conversion of Degrees to Sinusoid
	5.2.3 Why sinusoid is better?

	5.3 System Design
	5.3.1 Orientation Prediction
	5.3.2 Error Handling
	5.3.3 Tile Probability Normalization

	5.4 Evaluation
	5.4.1 Simulation Settings
	5.4.2 Viewport Prediction Accuracy
	5.4.3 Video Quality Assessment

	5.5 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Discussion
	6.2.1 Limitations
	6.2.2 Lessons Learned

	6.3 Future Perspective
	6.3.1 New networking challenges solvable by learning
	6.3.2 Integrating heuristics with reinforcement learning

	Bibliography

