K e

FAL (B 24y BF)

¥R F S

pill

PN GO A AF

FALR G DR

AL Fm 30 H

i X HEAEZER

Yongzhe Zhang

1 (1)

b K H & 2188 5

2020 29 A 28H

User—friendly and Efficient Distributed Graph Processing

¥ & B AW EA
i mAH BZR
By g sk

Bh# G iz

¥ OB ORIC
JEm K

(Form 3)

Summary of Doctoral Thesis

Name in full Yongzhe Zhang

Title User-friendly and Efficient Distributed Graph Processing

Nowadays, graphs play a very important role in representing the data in our daily life,
such as the world wide web, users and their relations in a social network, geography or
biological information. With the increasing demand of analyzing large-scale graphs
generated by the modern applications, lots of research has been invested in distributed
graph systems, a technique that can make use of the memory space of a bunch of
computation devices, in order to make large-scale graph processing practical and
efficient. However, analyzing graphs on distributed-memory is known to be challenging,
and the difficulties come from many aspects of a graph analytic task including the high
complexity in distributed graph algorithms, the limited parallelism in many graph
computations, and all kinds of practical issues like the fault tolerance, load balancing,
cache effect and so on.

In the past decade, great efforts have been devoted to making large-scale graph
processing practical, and the key is the computational model that bridges the
algorithmic thinking and the parallel execution. The mainstream graph analytics
systems can be classified into two classes based on their computation model, the
systems using the vertex-centric paradigm and the systems using the linear algebra
abstraction, both trying to provide users with user-friendly programming interface and
high efficiency. The most popular vertex-centric paradigm is based on the Bulk-
synchronous (BSP) model with message passing. In this model, to implement a graph
algorithm, A user-specified vertex-program is executed on every vertex, and the whole
graph computation is an iterative procedure consisting of synchronous rounds, each of
which performs the vertex-centric computation and the synchronized communication
phase between the vertices. Then, the linear algebra approach is also drawing attention.
It uses standardized matrix and vector operations to describe graph computation and
can be implemented on many kinds of hardware architectures. Such clear separation of
algorithm design and implementation makes this technique more portable on various
frameworks.

The rapid development of the graph processing frameworks in both computational
models not only shows new ideas for improving large-scale graph analytics, but also
reveals the limitations of the existing solutions. A crucial problem at present is that,
with various sophisticated techniques proposed to improve graph analytics frameworks,
it is becoming more difficult to have the user-friendliness and efficiency at the same

time.

In the vertex-centric paradigm, a big problem is that the programming interface is not
user-friendly. For example, the Shiloach-Vishkin (SV) algorithm for solving the
connected component problem is very complicated due to the need of frequent state
transition and low-level message passing mechanism. Even though there are domain-
specific languages (DSLs) proposed for simplifying the programming in the vertex-
centric model, the main issue is that not all commonly used graph algorithms can be
implemented. Essentially, these DSLs do not support general remote data access,
reading or writing attributes of other vertices through references, making them less
expressive in practice. In addition to the programming interface, there are also many
potential issues in the vertex-centric model that may hurt the performance. Lots of
research has proposed effective optimizations for dealing with these problems, but these
optimizations do not compose, which means for some complex algorithms requiring
multiple optimizations they can only choose which problem to solve but cannot enjoy
all the optimizations.

For the linear algebra approach, it also has severe limitations in both user-friendliness
and efficiency on distributed-memory. First of all, a graph computation may have
different implementations using the linear algebra approach, and for ordinary users it is
not easy to know which one runs faster on a particular architecture. A typical example
is the connected component problem which can be solved by the traditional label
propagation algorithm (a.k.a. parallel BFS), ParConnect, LACC, FastSV and so on.
Then, in addition to the different choices of algorithms, even the same algorithm can be
implemented in different ways in GraphBLAS API due to the redundancies in the
standard. For example, GraphBLAS distinguishes the matrix-vector multiplication
with the vector-matrix multiplication despite their similarity in functionality, and in
some libraries their performance can differ a lot depending on which graph format is
used. Therefore, although developing a linear algebra graph algorithm is not difficult,
tuning a program can be very tricky. The linear algebra approach also has limitations in
dealing with performance issues. Unlike the vertex-centric paradigm that the system
designer can use any optimization that works for the graph computa‘tion, in linear
algebra, many of those optimizations are not easy to apply. The reason is that, in the
vertex-centric graph frameworks, many kinds of external information are used to trigger
the optimizations (e.g. the number of active vertices, the vertices' degree distribution
and so on), but in linear algebra such information is not captured in the semantics of
the APIs in the GraphBLAS standard. In practice, none of the linear algebra libraries
on distributed-memory are GraphBLAS compliant in order to use more powerful
optimizations for some graph algorithms.

In this thesis give a comprehensive overview of the existing graph analytics systems,
analyze the difficulties in achieving both user-friendliness and efficiency, and propose
our solution for achieving both goals. Our main contribution is a vertex-centric graph
analytics framework using our domain-specific language (DSL) as the programming

interface with a powerful back end for efficient graph analytics. Our framework is built
on three key techniques, a more expressive high-level DSL to ease vertex-centric
programming by hiding the message passing from users, an efficient vertex-centric back
end that can arbitrarily combine various optimizations in the same vertex-program, and
a novel compilation technique from our DSL to the back end as well as the cost-based
compilation technique to choose the best optimizations for a graph algorithm. The
resultant framework achieved comparable performance to the state-of-the-art vertex-
centric system. We also made efforts to designing user-friendly and efficient graph
analytics systems in the language of linear algebra. We currently focus on the linear
algebra graph algorithms and their efficient implementation, and our results include a
new connected component algorithm FastSV and Boruvka's minimum spanning forest
algorithm, both of which outperform the state-of-the-art distributed algorithm
significantly with our algorithm specific optimizations. In the future, we are interested
in compilation techniques to make the detection of optimizations viable under the
standardized linear algebra graph APIs.

r "(%;_;t »‘é |-'=| %nlj%ﬁsia)u t

Results of the doctoral thesis screening

B XEEER

ull

NEE: j“ﬂ: Yongzhe Zhang

E"Tﬁ‘ﬁij{%ﬁlﬁu User-friendly and Efficient Distributed Graph Processing

/

AL, KRR Z 7 7 28BNC0BT 572005 7a I v 727 VICET5
LDOTHD, REBEZ I 700z LT, RENREF 70 rZ I FEFAE, HR
FHROZFZUFHAET NV ERBRBICESSEFIHAETTAOZ 255, LrL, Z
NOEDETAMIE MENWRLTE] & HRE] oEmIZBWTKERMERDS, BAERFD
IS 7HFHAEETNME, T BEORENEM THRMREERE LY, —F., BE
RECESSEFIFRET VI, —BEXHL2 b0, BESECHEZFH L 2hRA
REZEFEIDORY, KRIIE, KRS Z 70828 RT5-00REBRBSHEORE
EFLWREEFEORRBCLIBBEOMRFEEZE 2, AFREOFTERmMIT (D V=
— T/ ERAZBRCRBTELIR/KESZ 7HFN T 0 ST I EFE Palgol OFREHL
EHR, (2 channel T X527 —FHEEZRELTI>FEORELER, B) EELREAL
HRAODENREELZNICXLZ /I 7LBTAITY ZADOFEE, LW0WH5ZLTHB,

AmXix, FECTREEATEY, 26ENLEHRENLTVAS,
%1%&? Thd, MMEOER, MMEEN., BEFEMEORBES, RFIEDZE 2B,
M eHRoERERRTHS,

EoEIEBABOBNTH D, SIS 7RBOREL L EFME, EAXE0s 57

WHIHBEET v, BEARKICESSEFHBEET L, BEFRICOVTERL TV D,

BIETIX, BAEEFED T 7HINFHEET)V Pregel I2% L T, channel %8 A4 5 =
CEBT -/ BEEZRELTOIFELERT O L LI, T0EALE, ER, FMz
ARLTW3,

EABETIE, BEIEOWNENR Pregel b riz, VE— 77 AZHARCERTE
ZEAKRES T TWHI T T I/ ERE Palgol ZEE L, Palgol 7R A0 5 SQL %
EHLEO LW Pregel 72 /7 A2 ART H2FHEERLTVWS, . T0F0M%2 R
e ERFAEZBL THEAL TS,

WHEETIX, MEMES DML RNEBERAMBELE NS 22007777 4FY X A2 L
T, MERBICLLIMRERLERNOENRREFZBFEEZEZ, WThLEFOEE
LV bEEaNICKESNDEZ EERST,

WOEIRLDELDESBOBBETH 5,

FBELSIZEWT, HEAFRKAK S 7 7082 ERTIHIN 0 /S50 77 10—07
— 7 DBEEIZOVWT, A0 DATA FRERLEAWOHOERIEEZ Lo TiThbhiz, 254
FoORERRTIEH, RENRTe /S0 72T E LT, BRERorS 7 MHEET L
EMERBICESSWIFRERETVOWEE R, MBEVLT) & TRE] ofimns A
HIBEA, KRR 7 70ABRERRT ALDORFERKSHEORF EH LV EELFED

RBICLLZMEOMR L2 EVEBRLISHHASh L 20D EFEFER L OHEBRGEEZIT W,
Hfe 2B &N 72 Ehi,

UED LS, A@mX T, KREZZ7mMToXs s3I0 77 —L0—00
WEIZOWT, BRTET TR EBRMNRBRICBITAARHFROBRA KEV, 2B, A
ROKRIZ1IHED by 7EBESHER X (IPDPS 2019) . 2 o EBESBR T (PP 2020,
APLAS 2017), 3#0#EHRIX CHOV Yy —FAWwmX e 1 HFOEBESEMI) LW ¥
MEDPTTWDB, ¥k, BBLEVAT ALV CTABLERK Y YV yu—FTEB L
N> TVD, UEOHBIZEY, BEZESIL, ARXBFMLOBEIZET S & W
L'e,

