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Abstract

With the increasing demand of analyzing large-scale graphs generated by the modern

applications, lots of research has been invested in distributed graph systems in order to

process massive graphs e�ciently in memory. The mainstream graph analytics systems

can be classi�ed into two classes, the vertex-centric paradigm and the linear algebra

approach, each having their own advantages and disadvantages when evaluated using

the following two criteria, the user-friendliness of the programming interface, and the

performance and scalability on distributed-memory, both of which are important for

e�ectively dealing with the massive graphs in practice. The vertex-centric paradigm

uses relatively low-level programming interface and makes the development of

distributed graph algorithms unintuitive. Even though there are high-level domain-

speci�c languages (DSLs) proposed to ease the programming, it is still di�cult for

ordinary users to choose proper optimizations to ensure high e�ciency. On contrary,

the linear algebra approach has a concise high-level programming interface using

standardized matrix and vector operations, but the optimization is much more tricky

and the e�ciency of this approach is yet not satisfactory for many graph algorithms.

In this thesis give a comprehensive overview of the existing graph analytics

systems, analyze the di�culties in achieving both user-friendliness and e�ciency, and

propose our solution for achieving both goals. Our main contribution is a vertex-

centric graph analytics framework using our domain-speci�c language (DSL) as the

programming interface with a powerful back end for e�cient graph analytics. Our

framework is built on three key techniques, a more expressive high-level DSL to ease

vertex-centric programming by hiding the message passing from users, an e�cient

vertex-centric back end that can arbitrarily combine various optimizations in the same

vertex-program, and a novel compilation technique from our DSL to the back end as
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well as the cost-based compilation technique to choose the best optimizations for a

graph algorithm. The resultant framework achieved comparable performance to the

state-of-the-art vertex-centric system.

We also made e�orts to designing user-friendly and e�cient graph analytics systems

in the language of linear algebra. We currently focus on the linear algebra graph

algorithms and their e�cient implementation, and our results include a new connected

component algorithm FastSV and Boruvka’s minimum spanning forest algorithm, both

of which outperform the state-of-the-art distributed algorithm signi�cantly with

our algorithm speci�c optimizations. In the future, we are interested in compilation

techniques to make the detection of optimizations viable under the standardized linear

algebra graph APIs.
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1
Introduction

1.1 Background

In the era of big data, a huge amount of data are generated every day from our daily

life, like the creation of web pages in the Internet, the increase of user data in web or

smartphone applications, the burst of user-generated contents on the social media, the

collection of scienti�c data and so on. In many of these areas, graphs play a very

important role in representing the data since the vertices and edges can naturally

describe many real-world structures, for example the world wide web, users and their

relations in a social network, and geography or biological information. Consequently,

there is an increasing demand of analyzing such large-scale graph data in billion or

even trillion scale, in order to extract useful information or discover valuable insights

from the data.

The need of analyzing graph data in such large scale quickly introduces a big

challenge to us that the graph size can easily exceed the memory capacity of a single

commodity computer. Considering the extremely high cost of out-of-core data access,
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lots of research has been devoted to distributed graph processing, a technique that can

analyze massive graphs using the memory space of a bunch of computation devices, in

order to make large-scale graph processing practical and e�cient. Particularly, we

assume that each device has its own physical memory and the local memory access is

e�cient, but all these devices are connected by a network so that accessing remote

data on another computer has a signi�cant communication cost. The main goals of

distributed graph computing are scalability and e�ciency: the memory requirement

can always be satis�ed by adding more computation devices, and a good speedup can

be achieved in the meantime.

However, processing massive graphs on distributed-memory is known to be

challenging, and the di�culties come from many aspects of a graph analytic task. First

of all, graph algorithms running on a distributed-memory architecture are hard to

design and implement. Due to the memory limitation, each computation node can only

store a subgraph during the computation, and all the nodes have to communicate with

each other during the graph computation to exchange necessary information for

the graph computation. The combination of the computation and communication

makes distributed graph algorithms very di�erent from the sequential algorithms, and

currently there is no straightforward solution to do this transition. We can see that

many of the graph algorithms designed for distributed-memory are more complicated

and less work-e�cient. Second, graph computations are intrinsically hard to parallel

on distributed-memory since it is usually di�cult to divide a graph computation to

small and independent tasks. A typical example is the label propagation in the form of

breadth-�rst search (BFS), which is used as a subroutine in many distributed graph

algorithms. Starting from the user-speci�ed source vertices, or we say the initial

frontier, the computation has to be divided to multiple runs each computing the next

frontier based on the current one, and the potential challenges include the limited

parallelism when the frontier is too small or load balancing problem due to some

high-degree vertices becoming the bottleneck in the parallel execution. Third, when

running a distributed graph algorithm on a cluster, there are lots of practical issues

that a�ect the reliability or the performance of the graph computation, such as the

risk of node failures, the low memory throughput issue due to the poor locality of

the graph computation, or the load balancing issue caused by the heterogeneity in

computation devices or the skewed degree distribution in practical graphs.
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In the past decade, great e�orts have been devoted to making large-scale graph

processing practical, and lots of graph analytics systems are proposed to simplify

the design and implementation of distributed graph algorithms and make the graph

computation scalable and e�cient on large clusters. The key is the computation

model that bridges the algorithmic thinking and the parallel execution. Essentially, a

computational model is an abstract machine with prede�ned APIs so that di�erent

graph computations can choose whatever APIs they need and reuse the parallel

implementation of these APIs on distributed-memory. The computational model plays

a very important role in graph processing. On one hand, it should be easy to use so

that users can really �nd it helpful in simplifying the development of large-scale graph

applications, or we say it should be user-friendly. On the other hand, the computational

model decides how the graph computation is parallelized, and the users always hope

the performance to be as high as possible, which in other words is the e�ciency.

Existing distributed graph analytics systems can be roughly categorized into two

classes based on the computational model they use, which are the systems using the

vertex-centric model and the systems using the linear algebra approach.

The most popular computational model is the “thinking like a vertex” paradigm

(a.k.a. the vertex-centric model), which is �rst proposed by the Pregel [1] system and

is quickly adopted by many graph analytics systems[2, 3]. The key idea is that, for

many graph algorithms, we can represent them using a vertex-program executed on

every vertex, and the whole graph computation is an iterative procedure consisting of

synchronous rounds, each of which performs the vertex-centric computation and the

synchronized communication phase between the vertices. Graph computation in

this form is much easier to parallelize, since in each iteration there is no dependency

between the computation on any two vertices, and a graph computation with massive

independent tasks can achieve high parallelism. We consider the vertex-centric model

a bottom-up design since a programmer �rst needs to understand how the system

works and then tries to �t the graph algorithm into the model.

The linear algebra approach is yet another e�ective solution for large-scale

graph analytics. By regarding the graph as a sparse adjacency matrix, many graph

computations can be described as an imperative program using a small set of matrix

and vector (linear algebra) operations, and the parallelization of such program has been

studied on many hardware architectures including the distributed-memory systems [4]
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and multicore CPU [5] or GPU systems [6]. Recently, GraphBLAS [5] de�nes a standard

set of linear algebra operations (and C APIs [7]) for implementing graph algorithms.

The linear algebra approach follows a top-down design: a programmer only considers

how a graph computation is composed by the linear algebra operations, and its parallel

implementation is obtained by choosing a suitable implementation on the target

architecture.

1.2 Limitations

The rapid development of the graph processing frameworks in both computational

models not only shows new ideas for improving large-scale graph analytics, but

also reveals the limitations of the existing solutions. A crucial problem at present

is that, with various sophisticated techniques proposed to improve graph analytics

frameworks, it is becoming more di�cult to have the user-friendliness and e�ciency at

the same time.

1.2.1 Vertex-centric paradigm

Pregel [1] is the most popular vertex-centric model used by the mainstream graph

processing frameworks, but implementing graph algorithms in this model is known

to be verbose and error-prone. In this model, a graph computation is split into

synchronous rounds called supersteps mediated by message passing, and within each

superstep, all the vertices execute the same user-de�ned compute() function in parallel,

which can read the messages sent to it in the previous superstep, modify its own state,

and send messages to other vertices. Global barrier synchronization happens at the end

of each superstep, delivering messages to their designated receivers before the next

superstep. This model is initially proposed to solve some rather simple algorithms

like the single-source shortest path (SSSP) and PageRank, but when the algorithm

become complicated, for example consisting of multiple stages and complicated data

dependencies [8], users need to write an exceedingly complicated compute() function

as the loop body to encodes all the stages of the algorithm.

Pregel [1] stands for a particular vertex-centric system based on the Bulk-synchronous

parallel (BSP) model [9] and inter-vertex messages passing, but some frameworks [10,
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11, 12, 13, 14, 15] propose alternative models that hide the message passing from users.

For example, in PowerLyra [12] a vertex-program by default reads the state of the

neighboring vertices in every iteration and combine their values into a single message

value, and the system is designed to reduce the communication cost for power-law

graphs by using more balanced partitioning strategy. Although using these Pregel

variations can indeed simplify the programming and even improve the e�ciency

in some scenarios, they also pose a restriction that a vertex can only communicate

with neighboring vertices, which is insu�cient to implement some useful distributed

graph algorithms like the connected component algorithm [16, 17] and the minimum

spanning tree algorithm [18]. We consider it a signi�cant drawback compared to

the original Pregel system. Some other attempts have been made to ease Pregel

programming by proposing domain-speci�c languages (DSLs), such as Green-Marl [19]

and Fregel [20], but the main issue is similar to the aforementioned systems with

a simpli�ed computation model that not all commonly used graph algorithms can

be implemented. Essentially, these DSLs do not support general remote data access,
reading or writing attributes of other vertices through references, which makes them

less expressive in practice.

In addition to the programming interface, there are actually many potential issues

in Pregel’s model that may hurt the performance, such as imbalanced workload (a.k.a.

skewed degree distribution) [11, 21, 8], redundancies in communication [22, 23, 21] and

low convergence speed [24, 25, 26], and lots of research has shown that it is important

to introduce optimizations for dealing with these problems. However, there remains

one challenge: although the usefulness of these optimizations are well demonstrated in

solving simple algorithms such as PageRank and single-source shortest path (SSSP)
1
, it

is hard to combine them together to implement complex algorithms, where we may

have to deal with multiple performance issues at the same time. A typical example is

the Shiloach-Vishkin [16] algorithm for �nding connected components which su�ers

two di�erent issues in di�erent stage of the computation (see Section 2.1.3 for more

details). Unfortunately, all the existing vertex-centric graph systems lack a modular

design and it is yet impossible for users to combine the optimizations in the same

program.

1
PageRank and SSSP are basically a loop executing a simple computation kernel.
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1.2.2 Linear algebra approach

The linear algebra approach is yet another successful programming model for large-

scale graph processing, which is considered to be more elegant than to the vertex-centric

paradigm. In particular, by using the standardized programming interface called

GraphBLAS [5], users can easily transform a graph computation from other platforms

to distributed-memory by simply using a GraphBLAS compliant library. However, the

linear algebra approach also has limitations in its programming interface and e�ciency.

Generally speaking, a linear algebra program is typically hard to optimize since the

matrix and vector operations are too generic that lacks the necessary information for

optimization.

To clearly see this problem, let us take the matrix-vector multiplication in linear

algebra as an example, which plays the central role in many graph computations. The

e�ciency of this operation in fact depends on many things such as the computation

platform, the sparsity of the graph, the data structure used in the program, the size of

the vector and so on, and there is no such an implementation that generally performs

well in every situation. For this simple operation, GraphBLAS actually provides two

versions mxv and vxm that are similar in functionality but di�erent in the order of

parameters (vxm is the vector-matrix multiplication). Users can choose either of

them in their program, but the performance of mxv and vxm are not guaranteed to

have the same performance, and in the library SuiteSparse:GraphBLAS [27] they are

implemented in di�erent ways to handle the sparse and dense vectors respectively,

while the misuse of these two functions may su�er a performance penalty. Therefore,

it is not easy for an ordinary user to implement an e�cient graph algorithm without

knowing the details of the implementation of GraphAPIs in the library.

In addition to the redundancy in the GraphBLAS API standard, tuning a graph

computation in linear algebra can be also very tricky, and the true di�culty is also in its

programming interface. There are lots of research focusing on the performance issues

in the vertex-centric paradigm, and many of them can be solved transparently since the

system designer can easily capture the necessary information (e.g. the number of active

vertices in a superstep or the degree distribution of the vertices) and optimize the

computation as a whole. However, a graph computation in linear algebra consists of

atomic operations, which at least causes to problems. First, the linear algebra operation
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cannot capture the statistical information of the whole graph. For example, it is not

possible to know the number of active vertices during the computation, because we

have no idea which vector stores the activation information. Second, the cause of

the performance issue in linear algebra is often the combination of linear algebra

operations, and it cannot be solved by optimizing individual APIs. In practice, the

most popular linear algebra library CombBLAS [4] for distributed-memory is not

GraphBLAS compliant in order to enable application-aware APIs to optimize its

performance.

1.3 Contribution

In this thesis, we basically answer the following question: how can we build a graph

analytics system that is both user-friendly and highly e�cient. Up to now, there are

already lots of graph frameworks proposed in either the vertex-centric model or the

linear algebra approach, but we believe that none of them is satisfactory. This work

reviews many of the techniques to improve the user-friendliness and e�ciency of graph

analytics system and proposes our unique solution to ful�ll both goals. In our solution,

the user’s program for graph analytics is written in a high-level domain-speci�c

language that is easy to understand, and it is the compiler’s duty to transform the

program to a graph analytics system’s low-level APIs. Furthermore, by using program

analysis techniques, the compiler can choose the best combination of optimizations

that are feasible on that graph system to maximize the performance. Although our

current results are mainly obtained in the vertex-centric paradigm, we give the �rst

practical solution that achieves user-friendliness and high e�ciency at the same time,

and we also show promising results in the linear algebra approach.

The technical contributions of this thesis are summarized as follows. For the

vertex-centric paradigm, the main contribution is the programming interface to make

it easy to use:

• First, we design and implement Palgol, a powerful DSL that supports both remote

reads and writes, and allows programmers to use a more declarative syntax

called chain access to directly read data on remote vertices. This language is

based on our new high-level model for vertex-centric computation, where the
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concept of algorithmic supersteps is introduced as the basic computation unit for

constructing vertex-centric computation in such a way that remote reads and

writes are ordered in a safe way. We demonstrate the power of Palgol by working

on a set of representative examples, and the e�ciency of Palgol is comparable

with hand-written Pregel code for many representative graph algorithms on

practical big graphs.

• Second, we provide Pregel with a channel-based programming interface, which

is a natural extension of Pregel’s monolithic message mechanism and allows

users to add new optimizations in the system in a modular way. To demonstrate

the power of the channel interface, we implement three optimizations as special

channels and show how they are easily composed to optimize complex algorithms

such as the SV algorithm. We fully implement the system and the experiment

results convincingly show the high e�ciency of our system. The channel

interface itself reduces the communication cost for complex algorithms, and the

three optimized channels improves the runtime by 3.50% for PageRank, 4.41% for

pointer jumping and 5.20% for label propagation. Specially, the composition

of di�erent optimizations makes the SV algorithm 3.39% faster than the best

implementation available now.

• Third, to transform Palgol to the e�cient but more complex system Pregel-

channel, we propose a core language SQL-core to describe various graph

computations. By using an intuitive tabular representation for graphs, we show

that a wide range of scalable graph computations can be represented as the

inner join of a series of tables followed by the �ltering and aggregation. We

show how to obtain optimal vertex-centric programs by demonstrating that two

useful optimizations [21, 28] can be easily detected in our high-level model, and

the integration of such analysis can be achieved by a simple extension of our

join-based compilation algorithm. We have fully implemented the compiler,

and the experiment results convincingly show that our compilation algorithm

achieves similar e�ciency for many representative graph algorithms on large

graph dataset.

For the linear algebra approach, we currently focus on the e�cient implementation

of various graph applications. In this thesis, two graph algorithms are newly proposed in
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the language of linear algebra and their e�cient implementation on distributed-memory

are studied. In detail,

• We develop a simple and e�cient algorithm FastSV for �nding connected

components in distributed memory, which is based on the Shiloach-Vishkin

algorithm but uses novel hooking strategies for fast convergence. We present

FastSV using a handful of GraphBLAS operations and implement the algorithm

in CombBLAS for distributed-memory platforms. We dynamically use sparse

operations to avoid redundant work and optimize MPI communication to avoid

bottlenecks. Both shared- and distributed-memory implementations of FastSV

are signi�cantly faster than the state-of-the-art algorithm LACC. The distributed-

memory implementation of FastSV can �nd CCs in a hyperlink graph with

3.27B vertices and 124.9B edges in just 30 seconds using 262K cores of a XC40

supercomputer.

• We also present a linear algebra formulation for Boruvka’s MST algorithm and

provide a message-e�cient parallelization on distributed-memory. We conduct

experiments to show that our parallelization of Boruvka’s algorithm achieves

much higher performance and outperforms the state-of-the-art MSF problems

signi�cantly. We are also the �rst to use Boruvka’s algorithm for solving the

CC problem on distributed-memory, and we show that it is even better than

the fastest linear algebraic FastSV [17] algorithm on both convergence and

performance.

The rest of the thesis is organized as follows. Chapter 2 is a review of the previous

works in the �eld of distributed graph processing. Chapter 3 discusses the vertex-centric

graph processing systems and the channel mechanism we designed to integrate

various optimizations in a compositional way. Chapter 4 presents our design of two

domain-speci�c languages (DSLs), the Palgol language to ease the vertex-centric

programming and the SQL-core language with its novel compilation technique to �nd

opportunities for deploying optimizations using our channel-based Pregel system.

Chapter 5 reviews linear algebra solution for large-scale graph processing, in which we

propose two new graph algorithms for solving the connected component problem and

the minimum spanning forest problem. Chapter 6 conclude this thesis and discuss the

future work.





11

2
Distributed Graph Processing: A Review

In this chapter, we review the two mainstream distributed graph processing system

and discuss their limitations in e�ciency and productivity.

2.1 “Thinking like a vertex” paradigm

Graph processing on distributed-memory is completely di�erent from the conventional

graph processing on a single-core or multi-core machine that has a decentralized

design pattern. Conventionally, a graph algorithm designed for a single machine

assumes that the entire in graph is randomly accessible in memory, and a centralized

computational agent processes the graph in a sequential, top-down manner [2].

However for large-scale graphs occupying terabytes or more, each machine holds only

a portion of the data and none of them can see the entire graph. This restriction poses

a big challenge to algorithm designer, because some of the standard graph operations

(e.g., depth-�rst-search) may no longer work due to the high latency of accessing data

on a remote node.
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The vertex-centric frameworks are platforms that iteratively executes a user-de�ne

vertex-program on every vertex of the graph, which can manipulate the current vertex’s

state and exchange data with the other vertices. The vertex-program is executed across

vertices of the graph synchronously or may also be executed asynchronously, and

usually the computation terminates after a �xed number of iterations or all vertices

have converged. The vertex-centric programming model is less expressive but it can

easily achieves high parallelism or scalability since in any iteration the computation

tasks assigned to all the vertices are independent.

2.1.1 The Pregel system

Google’s Pregel [1] is one of the most popular frameworks for processing large-scale

graphs. The Pregel system takes a directed graph as input (an undirected graph can be

treated as a directed graph that always has edges in both directions), where user-

speci�ed values can be associated on either vertices or edges. A Pregel computation

follows the bulk-synchronous parallel (BSP) model [9] and it consists of a series of

supersteps separated by global synchronization points. In each superstep, the vertices

compute in parallel executing the same user-de�ned function (usually the compute()

method) that expresses the logic of a given algorithm. A vertex can read the messages

sent to it in the previous superstep, mutate its state, and send messages to its neighbors

or any known vertex in the graph. The termination of the algorithm is based on every

vertex voting to halt. Each vertex is associated with a �ag indicating whether it is

active, and initially it is set to true. During the computation, a vertex can deactivate

itself by invoking a vote_to_halt() method, and it can be reactivated externally by

receiving messages

Pregel provides the message passing interface for vertex-to-vertex communication

and aggregator for global communication.

Message passing and the combiner. In Pregel, vertices communicate directly

with each other by sending messages, where each message consists of a message value

and a destination. The combiner optimization [1] is applicable if the receiver only

needs the aggregated result (like the sum, or the minimum) of all message values, in

which case the system is provided an associative binary function to combine messages

for the same destination whenever possible.
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Aggregator. Aggregator is a useful interface for global communication, where

each active vertex provides a value, and the system aggregates them to a �nal result

using a user-speci�ed operation and makes it available to all vertices in the next

superstep.

2.1.2 Domain-speci�c languages and their problems

Despite the power of Pregel, it is a big challenge to implement a graph algorithm

correctly and e�ciently [21], especially when the algorithm consists of multiple stages

and complicated data dependencies. For such algorithms, programmers need to write

an exceedingly complicated compute() function as the loop body, which encodes all the

stages of the algorithm. Message passing makes the code even harder to maintain,

because one has to trace where the messages are from and what information they

carry in each superstep.

Some attempts have been made to ease Pregel programming by proposing domain-

speci�c languages (DSLs), such as Green-Marl [19] and Fregel [20]. These DSLs allow

programmers to write a program in a compositional way to avoid writing a complicated

loop body, and provide more convenient communication primitives to avoid explicit

message passing, e.g. fetching a particular attribute from all the neighbors of a vertex.

The compiler then transforms the communication primitives to obtain a Pregel code

using the message passing interface. However, there are still several crucial problems

that are yet not addressed by these DSLs.

Limited expressiveness.

In all of the existing DSLs, there is a severe restriction on data access that each

vertex can only access data on their neighboring vertices. In other words, they do not

support general remote data access — reading or writing attributes of other vertices

through references.

Remote data access is, however, important for describing a class of Pregel algorithms

that aim to accelerate information propagation (which is a crucial issue in handling

graphs with large diameters [21]) by maintaining a dynamic internal structure for

communication. For instance, a parallel pointer jumping algorithm maintains a tree (or

list) structure in a distributed manner by letting each vertex store a reference to its

current parent (or predecessor), and during the computation, every vertex constantly
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exchanges data with the current parent (or predecessor) and modi�es the reference to

reach the root vertex (or the head of the list). Such computational patterns can be found

in algorithms like the Shiloach-Vishkin (SV) connected component algorithm [21],

the list ranking algorithm (see Section 4.1.3) and Chung and Condon’s minimum

spanning forest (MSF) algorithm [18]. However, these computational patterns cannot

be implemented with only neighboring access, and therefore cannot be expressed in

any of the existing high-level DSLs.

Lack of a global view.
The vertex-centric paradigm requires the users to explicitly describe data communi-

cation between the vertices, which is di�cult when dealing with communication

patterns that exceed a vertex’s direct neighbors. As an example, let us look at the

triangle counting problem, which re�ects a general problem in many graph algorithms.

In a directed graph, the triangle counting can be solved by counting the number of

distinct paths in the pattern of u → v → w → u, a path from vertex u to itself through

v and w . The most straightforward way is to enumerate all possible u, v and w that are

connected by the edges, where v is chosen from u’s adjacent list and w is chosen from

v’s. When doing so in the vertex-centric model, we are immediately faced with the

following questions:

• on which vertex’s perspective should we implement the compute() function;

• what data is required on each vertex; and

• what is the communication cost.

These questions do not always have an obvious answer, and it requires users to

carefully consider all the possibilities, which is in general a hard task. Existing DSLs

are unfortunately not helpful to this problem, since their high-level models lack a

global view of data communication.

No guidance for optimization.
Pregel’s message passing mechanism can easily cause performance issues in

communication. For example, in PageRank’s Pregel implementation [1], every vertex

needs to send its tentative ranking value to all the neighbors in each iteration. Such

communication pattern has to be implemented by a vertex sending individual messages

to neighbors containing the same value, which causes a redundancy problem. There are
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lots of research [23, 22, 29, 21] showing that exploring such high-level communication

patterns can lead to powerful optimizations that reduce the communication cost

signi�cantly. However, Pregel’s model does not give any hint on when and how the

users can optimize their programs. This issue can be potentially solved by program

analysis using a high-level DSL, but existing DSLs are not expressive enough for

supporting such analysis, and yet there is no such vertex-centric graph analytics

system that can support various optimizations at the same time.

2.1.3 Problem of Pregel’s monolithic message interface

Pregel is designed to support iterative computations for graphs, and it is indeed

suitable for algorithms like the PageRank or SSSP. However, it is noteworthy that

vertex-centric graph algorithms are in general complex. Even for some fundamental

problems like connected component (CC), strongly connected component (SCC)

and minimum spanning forest (MSF), their e�cient vertex-centric solutions require

multiple computation phases, each having di�erent communication patterns [21, 30].

For such complex algorithms, all the computation phases have to share Pregel’s

message passing interface, which causes the following problems:

• When di�erent message types are needed in di�erent computation phases, the

Pregel’s message interface has to be instantiated with a type that is large enough

to carry all those message values.

• Usually, we can no longer optimize any of the communication patterns in these

computation phases, since the system cannot distinguish which message is to be

optimized.

As mentioned before, these are the consequences of Pregel’s monolithic message

mechanism, which may not only increase the message size, but also prevent the

possible optimizations to be applied.

2.1.4 Vertex-centric systems other than Pregel

The vertex-centric graph analytics systems are not limited to the Pregel-like systems

and several graph processing frameworks propose di�erent vertex-centric programming
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model to deal with various issues in the graph computation. In this part, we brie�y

summarize their di�erences with Pregel and the problems.

However, the majority of them (e.g., [10, 11, 12, 13, 14, 15]) are functionally similar to

the sparse-matrix vector multiplication, while Pregel’s model is yet the only model that

can deal with both edge removal and non-neighborhood communication (analogous to

the select, assign and extract operations in linear algebra), which are necessary

for Boruvka’s algorithm and some other scalable graph computations [17, 31, 32]. We

should note that none of the existing linear algebra graph libraries [4, 33, 13] have fully

implemented these operations, and our work is the �rst linear algebra parallelization of

Boruvka’s algorithm on distributed-memory.

2.2 The linear algebra approach

The idea of using linear algebra to implement graph algorithms is based on the

duality between the fundamental operations on graphs/matrices – BFS and matrix

multiplication. The graph is regarded as a sparse adjacency matrix where each element

at the position (i, j ) is an edge connecting the vertices i and j (the vertices are indexed

from 0..n − 1). Then, the generalized matrix-vector multiplication can be considered as

a single-step label propagation where each vertex in the vector propagates its state

(the value in the vector on the corresponding position) to all the neighbors, and the

received values on every vertex are combined together and written to the output

vector. The label propagation is the most useful in many graph algorithms like the

single-source shortest path (SSSP), PageRank, connected component (CC) and so on. In

addition to the matrix-vector multiplication, we summarize the most useful linear

algebra operations in Figure 2.1

2.2.1 Merits of the linear algebra approach

Expressing graph algorithm in the language of linear algebra is attractive, and the

main advantages of the linear algebra approach is summarized as follows:

• conciseness: By treating the graph as a sparse matrix, the core operations in

many scalable graph algorithms can be presented by a small set of linear algebra

operations, and these operations are parallelized by performance experts on
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Figure 2.1: A brief summary of linear algebra APIs.

various architectures. In this sense, the linear algebra approach is particularly

preferable for distributed graph processing since it makes the communication

completely transparent to the programmers.

• scalability: The implementation of matrix and vector operations on distributed-

memory can make use of both MPI and OpenMP to maximize its scalability, and

a recent work [31] using the Combinatorial BLAS [4] library successfully solves

the connected component problem on a graph with more than 50B edges, using a

Cray XC40 supercomputer with 4K nodes (262K cores).

• portability: Recently, GraphBLAS [5] de�nes a standard set of linear-algebraic

operations for implementing graph algorithms, which makes it much easier

for programmers to transform a linear algebra graph computation from one

platform to another.
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3
A custom Pregel system with

optimizations as plug-ins

Pregel’s vertex-centric paradigm is widely adopted in many graph analytics systems,

but as mentioned in the previous chapter, this model su�ers performance issues

when dealing with graph algorithms with complex communication patterns (e.g. the

connected component algorithm and the minimum spanning forest algorithm) since

Pregel’s monolithic message mechanism cannot make use of multiple optimizations at

the same time.

In this chapter, we propose a new approach to composing various optimizations

together, by making use of the interface called channel [34] as a replacement of Pregel’s

message passing mechanism. Informally, a channel is responsible for sending or

receiving messages of a certain pattern for some purpose (such as reading all neighbors’

states, requesting data from some other vertex and so on). And by slicing the messages

by their purpose and organizing them in channels, we can characterize each channel by

high-level communication patterns, identify the redundancies or potential performance
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Table 3.1: The APIs for standard channels.

Message-Passing Channels Aggregator Channel
DirectMessage(Worker<VertexT> *w); CombinedMessage(Worker<VertexT> *w, Aggregator(Worker<VertexT> *w,

Combiner<ValT> c); Combiner<ValT> c);

void send_message(KeyT dst, ValT m); void send_message(KeyT dst, ValT m); void add(ValT v);
MsgIterator<KeyT, ValT> &get_iterator(); const ValT &get_message(); const ValT &result();

Table 3.2: The APIs for special channels targeting speci�c communication patterns.

Scatter-Combine Request-Respond Propagation (Simpli�ed)
ScatterCombine(Worker<VertexT> *w, RequestRespond(Worker<VertexT> *w, Propagation(Worker<VertexT> *w,

Combiner<ValT> c); function<RespT(VertexT)> f); Combiner<ValT> c);

void add_edge(KeyT dst); void add_edge(KeyT dst);
void set_message(ValT m); void add_request(KeyT dst); void set_value(ValT m);
const ValT &get_message(); const RespT &get_response(); const ValT &get_value();

issues, and then provide separate implementations to deal with their own issues.

The technical contributions of this work can be summarized as follows.

• First, we provide Pregel with a channel-based vertex-centric programming

interface, which is intuitive in the sense that it is just a natural extension of

Pregel’s monolithic message mechanism. To demonstrate the power of the

channel interface, we implement three optimizations as special channels and

show how they are easily composed to optimize complex algorithms such as the

above SV algorithm.

• Second, we have fully implemented the system and the experiment results

convincingly show the usefulness of our approach. The channel interface itself

contributes to an up to 76% reduction of message size especially for complex

algorithms, and the three optimized channels further improve the performance

of the algorithms they are applicable (3.50x for PageRank, 4.41x for Pointer-

Jumping and 5.20x for weakly connected components). Specially, the composition

of di�erent optimizations makes the SV algorithm 3.39x faster than the best

implementation available now.

3.1 Programming with channels

The channel mechanism is designed to help users organize the communications in

vertex-centric graph algorithms. Concretely speaking, the channels are message
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containers equipped with a set of methods for sending/receiving messages or supporting

a speci�c communication pattern (see Table 3.1 and Table 3.2 for the standard and

optimized channels; the details are in Section 3.2). In this section, we �rst introduce the

programming interface using the PageRank example, then we show how di�erent

optimizations can be easily composed via channels in a more complex algorithm called

the SV [16].

3.1.1 A standard PageRank implementation using channels

Writing a vertex-centric algorithm in our system using the standard channels is rather

straightforward for a Pregel programmer. We present a PageRank Implementation

in Figure 3.1, which is basically obtained from a Pregel program (a vertex-centric

compute() function with a parameter of received messages from the previous su-

perstep) by replacing the sending/reading of messages by one or more user-de�ned

message channel’s send/receive methods.

In the �rst 30 supersteps, each vertex sends along outgoing edges (if exists) its

tentative PageRank divided by the number of outgoing edges (lines 21–25), over a

user-de�ned message channel nbr. This channel is an instance of CombinedMessage,

which requires a combiner to be provided in its constructor (line 9). In the next

superstep, every vertex gets the sum of the message values arriving on this channel

(lines 18) and calculates a new PageRank. To avoid PageRank lost in dead ends (vertices

without outgoing edges), we need a sink node to collect the PageRank from those dead

ends and redistribute it to all nodes, which is implemented by an aggregator agg using

the addition operator (line 9). Then, in line 27, users explicitly add the PageRank of the

dead ends to the aggregator, and in the next superstep the sum is returned by the

aggregator’s result() method (line 16).

All the computation logic and the channels are written in a user-de�ned class

called PageRankWorker that inherits from the Worker class in our system. The type

of vertex ID and value type are packed in to the VertexT type and provided to the

Worker class. We leave the explanation of Worker in the next section, and users just

keep in mind that programs in our system are constructed in this way.
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1 using VertexT = Vertex<int, PRValue >;
2 auto c = make_combiner(c_sum, 0.0); // a combiner
3 class PageRankWorker : public Worker<VertexT> {
4 private:
5 // two channels are defined here
6 CombinedMessage <VertexT, double> nbr;
7 Aggregator <VertexT, double> agg;
8 public:
9 PageRankWorker():nbr(this, c), agg(this, c) {}

10

11 void compute(VertexT &v) override {
12 if (step_num() == 1) {
13 value().PageRank = 1.0 / get_vnum();
14 } else {
15 // s: the pagerank of the "sink node"
16 double s = agg.result() / get_vnum();
17 value().PageRank = 0.15 / get_vnum()
18 + 0.85 * (nbr.get_message() + s);
19 }
20 if (step_num() < 31) {
21 int numEdges = value().Edges.size();
22 if (numEdges > 0) {
23 double msg = value().PageRank / numEdges;
24 for (int e : value().Edges)
25 nbr.send_message(e, msg);
26 } else
27 agg.add(value().PageRank);
28 } else
29 vote_to_halt();
30 }
31 };

Figure 3.1: PageRank implementation using channels.

3.1.2 Channels and optimizations

In our channel-based system, we o�er a set of optimizations as special channels (in

Table 3.2), which can be regarded as more e�cient implementations (compared to

the standard message passing channels) of several communication patterns. Here,

we demonstrate how to enable the scatter-combine optimization (which deals with

the “static messaging pattern”) for PageRank. The details of this optimization will be

presented in Section 3.2.

Given a channel-based PageRank implementation in Figure 3.1, what we need to do

is simply switching the standard message channel msg to the scatter-combine channel.

First, we change the de�nition of nbr as follows:

5 // change to the scatter-combine channel

6 ScatterCombine<VertexT, double> nbr;

Then, in the compute() function, we initialize the scatter-combine channel (by
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invoking the add_edge() method) before actually sending any data, which is done in

the �rst superstep as below:

12 if (step_num() == 1) {

13 value().PageRank = 1.0 / get_vnum();

14 // provide the graph topology to the channel

15 for (int e : value().Edges)

16 nbr.add_edge(e);

17 } ...

Finally, we switch to the scatter-channel’s dedicated interface for message passing,

which is set_message() indicating a unique message value for all neighbors:

22 if (numEdges > 0) {

23 double msg = value().PageRank / numEdges;

24 // no need to specify the destination

25 nbr.set_message(msg);

26 } ...

The rest of the program remains the same. Our experiments (Section 3.3.2) show

that, by switching to the scatter-combine channel, the PageRank immediately gets 3x

faster, and all the programmer need to understand is the high-level abstraction of each

channel.

3.1.3 Composition of channels

In this part, we use a more complicated example called the Shiloach-Vishkin (SV)

algorithm [16] to show that, users can easily combine di�erent optimizations (channels)

to handle multiple performance issues in the same program.

The SV Algorithm

The SV algorithm is in general an adaptation of the classic union-�nd algorithm [35]

to the distributed setting, which �nds the connected components in undirected

graphs with n vertices in O (logn) supersteps. In the SV algorithm, the connectivity

information is maintained by a distributed tree structure called disjoint-set [35], where

each vertex holds a pointer which points to either some other vertex in the same

connected component or to itself. We henceforth use D[u] to represent this pointer

for vertex u. Following is the high-level description of the SV algorithm using a
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domain-speci�c language called Palgol [36], and it compiles to Pregel+ code
1
.

1 // initially suppose we have D[u] = u for every u

2 do

3 // enter vertex-centric mode

4 for u in V

5 // whether u’s parent is a root vertex

6 if (D[D[u]] == D[u])

7 // iterate over neighbors (D[e]: neighbor ’s pointer)

8 let t = minimum [ D[e] | e <- Nbr[u] ]

9 if (t < D[u])

10 // modify the D field of u’s parent D[u]

11 remote D[D[u]] <?= t

12 else

13 // the pointer jumping (path compression)

14 D[u] := D[D[u]]

15 end

16 until fix[D] // until D stabilizes for every u

Starting from n root nodes, the SV algorithm iteratively merges the trees together if

crossing edges are detected. In a vertex-centric way, every vertex u simultaneously

performs one of the following operations depending on whether its parent D[u] is a

root vertex:

• Tree merging (lines 7–11). If D[u] is a root vertex, u sends the smallest one of

its neighbors’ pointer (to which we give a name t ) to the root D[u] and later the

root points to the minimum t it receives (to guarantee the correctness of the

algorithm).

• Pointer jumping (line 14). If D[u] is not a root vertex, u modi�es its pointer

to its “grandfather” (D[u]’s current pointer). Since all the vertices below the

children of root perform this operation simultaneously, it halves the distance to

the current root.

The algorithm terminates when all vertices’ pointers do not change after an iteration.

Readers interested in the correctness of this algorithm can be found in the original

paper [21] for more details.

1
The Palgol code is presented here for easy understanding. It currently compiles to Pregel+ using

only the message interface, and the the performance is close to the hand-written code [36].
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Choices of Channels

In the SV algorithm, three major performance issues are identi�ed below by analyzing

the communication patterns in the algorithm.

• The load balance issue in testing whether D[u] is a root vertex or not for every u.

The standard implementation is to let each u send a request to its current parent

D[u], then the reply message is the parent’s pointer. Due to the pointer jumping,

the height of the tree will decrease and the width of the tree will increase, causing

a few vertices with very large degree to slow down the reply phase.

• The heavy neighborhood communication in calculating the minimum parent ID

of the neighboring vertices, where all vertices need to send a unique message

value to all neighbors, regardless of the vertices’ local state.

• The congestion issue in the modi�cation of parent’s pointer, due to the existence

of high-degree vertices.

We provide the solutions to all of these issues in our system as special channels,

and users just need to choose the proper channels and combine them together in

the program. For the SV algorithm, the load balance issue can be avoided by the

request-respond channel, the heavy neighborhood communication is optimized by the

scatter-combine channel, and a message channel with combiner solves the congestion

issue.

3.2 Channel implementation

In this section, we present the design of our channel mechanism and demonstrate how

three interesting channels are implemented for dealing with di�erent performance

issues.

3.2.1 Overview

Figure 3.2 shows the architecture of our channel-based system. Worker is the basic

computing unit in our system. When launching a graph processing task, multiple

instances of workers are created, each holding a disjoint portion of the graph (a subset
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Figure 3.2: The architecture of our channel-based system.

1 class Channel {
2 public:
3 // initialization function
4 virtual void initialize() {};
5 // paired (de)serialization functions
6 virtual void serialize(Buffer &buff) = 0;
7 virtual void deserialize(Buffer &buff) = 0;
8 // return true for additional buffer exchange
9 virtual bool again() { return false; };

10 };

Figure 3.3: The core functions of the base class Channel.

of vertices along with their states and adjacent lists). Workers share no memory but

can communicate with each other. Such big picture is common in all Pregel systems,

but ours has a unique hierarchy of the components inside the worker.

In our system, channels form an independent layer inside the worker between the

vertices and the raw bu�ers. Each worker has M − 1 bu�ers (where M is the number of

workers launched by the user) for storing binary message data for each other worker,

then the channels can read or write its own address space on these bu�ers. The system

simply exchanges the contents of the bu�ers pairwise using the MPI in every superstep.

Each channel independently implements a communication pattern (like messages

passing or aggregator) and exposes its own interfaces (like send_message(dst, msg)

for a message channel) to the vertex. To implement an algorithm, users should

inherit the Worker class, override the compute() function and allocate the channels

that are suitable for the algorithm according to the communication patterns it has.
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3.2.2 Design principle

The channel mechanism mainly targets (but not limited to) a class of optimizations

that handles the redundancies in communication. For example, the standard combiner

optimization [1] allows the worker to combine the messages sent to the same destination

by a user-de�ned binary operator, and the request-respond paradigm [21] merges the

requests to the same destination to avoid sending redundant copies of the same value.

In these optimizations, typically, each worker processes all the messages in batch and

sends a more compact but equally informative message list. After the messages are

delivered, the receiver worker may further process the data and dispatch the messages

to the vertices.

Having such common pattern in these communication related optimizations, our

channel mechanism tries to organize them in a modular way and make them work

perfectly with the Pregel abstraction. Essentially, each channel is a user-speci�ed

message handler that is invoked by the worker in every superstep. The vertices actually

put messages into (or fetch messages from) the channels’ local storage through each

channel’s dedicated APIs, and the message handler can access all the local data of the

channel as well as current worker’s states to implement a particular communication

pattern. Channels are registered on the worker, so the composition of channels is

actually trivial, which is accomplished by the worker carefully separating the messages

of each channel in its message bu�er.

3.2.3 The channel interface

Figure 3.3 shows the base class Channel and its core functions: initialize(),

serialize() for writing data to worker’s raw bu�er, deserialize() for reading

data from worker’s raw bu�er (after the bu�er exchange) and again() for supporting

multiple rounds of communication. All the channels in our paper are implemented as

derived classes of Channel with proper implementations of these four functions (in

particular serialize() and deserialize()).

To clearly see how the workers and channels cooperate with each other, we present

the computation logic of the worker in Figure 3.4. The worker’s computation is

organized as synchronized supersteps. In each superstep, the worker �rst calls the

compute() on every vertex, then it performs several rounds of bu�er exchanges. In
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1 load_graph()
2 foreach channel c do c.initialize()
3 foreach vertex v do v.set_active(true)
4 while (active vertex exists) // a superstep
5 foreach active vertex v do this.compute(v)
6 foreach channel c do c.set_active(true)
7 while (active channel exists)
8 foreach active channel c do c.serialize()
9 buffer_exchange()

10 foreach active channel c do
11 c.deserialize()
12 c.set_active(c.again())
13 end_for
14 end_while
15 end_while
16 dump_graph()

Figure 3.4: The computation logic of the worker for illustrating the channel mechanism.

each round, the system invokes the active channels’ serialize() and deserialize()

methods to exchange the data between the channels and the bu�ers. All channels are

set to active at the beginning, but they can deactivate themselves by returning false

in the again() function. Channels’ initialize() is invoked at the beginning of the

computation, in which the channel can access the basic information of the graph

(like graph size, number of vertices on the current worker) for initialization. While

not explicitly presented in the code, the channels can activate vertices through the

Worker’s interface by providing the vertex’s ID or local index. That is how our system

simulates the voting-to-halt mechanism of Pregel.

3.2.4 Case studies

As the last part of this section, we demonstrate how to implement three optimizations,

which target three important performance issues in vertex-centric graph processing.

Scatter-Combine Channel

The scatter-combine abstraction is a common high-level pattern appeared in many

single-phase algorithms such as PageRank, single-source shortest path (SSSP) and

connected component (CC). The communication in this model is captured by a

scatter() function on each vertex to send a unique value to all neighbors, and a

combine() function to combine the messages for each receiver. We focus on a special
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Figure 3.5: The execution logic for the scatter-combine channel.

case where every vertex needs to send a value to all of its neighbors
2

regardless of its

local state. An iterative algorithm having such static messaging pattern will waste time

repeating the same message dispatching procedure, while a proper preprocessing can

greatly reduce the computation time as well as the message size.

Figure 3.5 demonstrates the computation logic of the scatter-combine channel.

Suppose the vertices on an worker is indexed by 0..numv-1, then each local edge

is a pair (idx ,dst ) where idx refers to a local vertex and the dst can be an arbitrary

vertex in the graph. We sort the edges by dst in advance, then by scanning the array of

the sorted edge list once, we can quickly calculate for each destination a combined

message value. This is much cheaper than the normal message routine which typically

requires hashing or sorting.

The APIs for the scatter-combine channel are presented in the �rst column of

Table 3.2. Users need to initialize the channel by adding the outgoing edges of

each vertex through the add_edge() function before the �rst message sending

occurs in the execution. Then, every vertex emits an initial messages using the

send_message() interface and the combined messages for each vertex can be obtained

by the get_message() method in the next superstep.

2
In some algorithms like SSSP or WCC, only active vertices need to send messages, which is

not the case we are targeting here.
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Figure 3.6: The execution logic for the request-respond channel.

Request-Respond Channel

This is a communication pattern where two rounds of message passing (say the request

phase and respond phase) together form a conversation to let every vertex request an

attribute of another vertex. Typically, such computation contains vertices with high

degree which causes imbalanced workload in the respond phase, and the solution is to

merge the requests of the same destination on each worker. More details can be found

in the original paper [21].

Our implementation of this optimization is illustrated in Figure 3.6. A request is a

pair (idx ,dst ) where idx refers to a local requester and the dst can be an arbitrary

vertex in the graph. The worker sorts the requests by dst and sends exactly one

message containing the worker ID to each of the unique destinations. When receiving

the response values, the worker performs another scan to the sorted requests, which is

su�cient to reply to all the requesters.

The middle column of Table 3.2 shows the APIs of the request-respond channel.

When creating the channel, users need to provide a function that generates a response

value from a vertex’s state. The whole procedure is implemented in an implicit style;

A vertex invokes add_request() with the destination vertex ID; all the requests

are delivered after the request phase, and the vertices receiving any request will
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be automatically involved, and a response value is produced by the user-provided

function.

Propagation Channel

The last optimized channel is to speedup the convergence for a class of propagation-

based algorithms. In these algorithms, typically, some vertices emit the initial labels,

and in each of the following supersteps, vertices receiving the labels will perform some

computation and may further propagate a new label to their outgoing neighbors.

Since the propagation is between neighbors, such algorithms converge very slowly on

graphs with large diameters.

The design of this channel is inspired by two existing techniques for improving the

convergence speed. First, the GAS model [11] with an asynchronous execution mode

can perform the crucial updates as early as possible without waiting for the global

synchronization. Although this implementation is not feasible in our synchronous

system, the high-level abstraction is suitable for describing such kind of computation.

Second, the block-centric computation model [24, 26, 25] is an extension of Pregel

which opens the partition to users, so that users can choose a suitable partition method

and implement a block-level computation to perform the label propagation within a

connected subgraph.

Our propagation channel combines the advantages of these two techniques: it

provides a simpli�ed GAS model which naturally describes such propagation-based

computation, and its implementation works in a similar way as a block-level program

to accelerate the label propagation. Therefore, users allocate a channel to obtain a

performance gain without additional e�orts on writing the block-level program.

Figure 3.7 describes the high-level model for the propagation channel as well as the

execution logic in our implementation. Initially, each vertex is associated with a value

and is set to active. Whenever having an active vertex u in the graph, it reads each

incoming neighbors and the corresponding edges (if exists), and calculate a value ai by

a user-provided function f . Then, a combiner h updates the original vertex value u by

each neighbor’s ai and returns a new vertex value u′. If the new value u′ is di�erent

from the original value u, we activate all outgoing neighbors of u to propagate the

update, and �nally u is deactivated after being processed. The computation stops when
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Figure 3.7: The propagation channel’s high-level model and computation logic.

all the vertices are inactive. Note that we require h to be commutative, so that the

order of combining ai does not a�ect the result. Moreover, when any of the incoming

neighbors of u is modi�ed, u needs to read the modi�ed vertex to update its own value,

instead of recomputing the foldr by reading all its incoming neighbors’ values.

This computation model is implemented by each worker performing a BFS-like

traversal on the subgraph it holds. Starting from the initial setting, each worker

propagates the values along the edges as far as possible. It updates the local vertices

directly, but records the changes on remote vertices as messages. The bu�er exchange is

performed after no update is viable on any worker. After the remote updates triggered

by messages, a new round of local propagation is performed. It terminates when all

vertices have converged.

The last column of Table 3.2 shows the APIs of a simpli�ed propagation channel

without considering the edge weights (for saving space), so users provide a combiner

to calculate the new vertex value. Each vertex adds its adjacent list to the channel via

add_edge() and sets the initial value by set_value(), and in the next superstep, a

vertex invokes get_value() to get the �nal value after the propagation converges. To

make the best use of the propagation channel, users should properly partition the

graph and attach the partition IDs to the vertex IDs.
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Table 3.3: Datasets used in our evaluation

Dataset |V | |E | avg. Deg

SubDomain 99.41M 1.94B 19.52

Twitter 41.65M 1.47B 70.51

Tree
∗

1.00B 1.00B 1.00

Chain
∗

1.00B 1.00B 1.00

RMAT
∗

400M 2.00B 5.00

Wikipedia 18.27M 172.31M 9.43

datasets marked with ∗ are synthetic.

3.3 Evaluation

The experiments are conducted on an Amazon EC2 cluster of 16 nodes (with instance

type m5.2xlarge), each having 8 vCPUs and 32G memory. The connectivity between

any pair of nodes in the cluster is 10Gb. The datasets are listed in Table 5.1 including

both real-world graphs (Wikipedia
3
, Twitter

4
and SubDomain

5
) and synthesized graphs

(Chain, Tree and RMAT [37]). Graphs are converted to the required type (directed,

undirected or weighted) for each algorithm in the experiments.

We select six representative algorithms in our evaluation, including PageRank

(PR), Pointer-Jumping (PJ), Weakly Connected Component (WCC), SV algorithm (SV),

Strongly Connected Component (SCC) and Minimum Spanning Forest (MSF). For

comparison, we also present the results of our best-e�ort implementations in Pregel+

[21] and Blogel [26]. Both of them are typical Pregel implementations, where Pregel+

supports the request-respond paradigm and mirroring technique in two special modes

(reqresp mode and ghost mode respectively) and Blogel supports the block-centric

computation. All of these systems mentioned above as well as our channel-based

system are implemented in C++ on top of the Hadoop Distributed File System (HDFS).

The source code of our system can be accessed at https://bitbucket.org/zyz915/

pregel-channel.

3
http://konect.uni-koblenz.de/networks/dbpedia-link

4
http://konect.uni-koblenz.de/networks/twitter_mpi

5
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html

https://bitbucket.org/zyz915/pregel-channel
https://bitbucket.org/zyz915/pregel-channel
http://konect.uni-koblenz.de/networks/dbpedia-link
http://konect.uni-koblenz.de/networks/twitter_mpi
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
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3.3.1 Overhead of the channel mechanism

First, we evaluate the standard channels (the message passing channels and aggregator)

in our system. Basically, rewriting a Pregel program into a channel-based version is just

about replacing the matched send-receive pairs into the same channel’s send/receive

function. The message is chosen as small as possible, and we always use a combiner if

applicable. We compare both implementations to see whether there is any overhead or

bene�ts introduced by our channel mechanism.

The experiment results are presented in Table 3.4, where a straightforward rewriting

achieves a speedup ranging from 1.16x to 4.16x among all the �ve algorithms on those

datasets. For SCC and SV, we also observe a signi�cant reduction on message size

ranging from 23% to 62%.

Analysis. The channel mechanism itself can improve the performance, due to

the following two reasons. First, our system allows users to specify a combiner to a

channel whenever applicable, while in Pregel, we can specify a global combiner only

when all the messages in the algorithm can use that combiner. This di�erence makes

our SV and SCC more message-e�cient, where the inapplicability of combiner in

Pregel+ causes a 4.16x and 2.10x message size for SV and SCC respectively on Twitter.

Second, our channel-based system allows users to choose di�erent message types

for di�erent channels, while in Pregel+, a global message type is chosen to serve

all communication in the program. Then, the MSF (we refer to a particular version

here [18]) is a typical example that uses heterogeneous messages in di�erent phases of

the algorithm. The largest message type is a 4-tuple of integer values for storing an

edge, but the smallest one is just an int.

For the rest algorithms, there is no signi�cant di�erence when implemented in

two systems. Still, our system reduces the runtime of PR and WCC by up to 26%

and 35% (using the CombinedMessage class), and for PJ (using the DirectMessage

class) the number is 52%. We believe that the improvement is due to the choice of

message interface (in particular the message iterator in DirectMessage instead of

nested C++ vectors in Pregel+). Nevertheless, we show that our system implementation

is reasonably e�cient.
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Table 3.4: Comparison of the basic implementation of graph algorithms in Pregel+ and

channel-based system.

PJ

Chain Tree

pregel channel pregel channel

runtime (s) 596.99 327.86 221.76 105.70

msg (GB) 463.86 463.86 89.17 89.17

SV

RMAT SubDomain Twitter

pregel channel pregel channel pregel channel

runtime (s) 465.98 232.91 411.67 155.36 143.03 59.71

msg (GB) 212.64 112.49 298.62 71.82 115.96 28.53

PR

RMAT SubDomain Twitter

pregel channel pregel channel pregel channel

runtime (s) 509.93 417.70 308.83 236.36 235.37 194.00

msg (GB) 413.03 413.03 160.99 160.99 128.81 128.81

WCC

RMAT SubDomain Twitter

pregel channel pregel channel pregel channel

runtime (s) 65.36 42.31 54.61 41.02 22.58 17.47

msg (GB) 37.83 37.83 19.65 19.65 9.26 9.26

SCC

RMAT SubDomain Twitter

pregel channel pregel channel pregel channel

runtime (s) 266.52 116.24 345.38 382.68 99.99 56.64

msg (GB) 118.56 91.09 132.07 62.99 77.53 45.79

MSF

RMAT SubDomain Twitter

pregel channel pregel channel pregel channel

runtime (s) 547.98 319.86 200.07 138.71 138.92 119.27

msg (GB) 438.41 400.11 173.18 161.53 123.36 117.50

3.3.2 E�ectiveness of optimized channels

Here, we evaluate the e�ciency of our optimized channels against the message passing

channels using the applications that each kind of channel is applicable. In this part, we

choose rather simple algorithms, so that we can clearly see how optimized channels

can improve the performance in di�erent scenarios.
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Scatter-combine channel

PageRank is a typical graph algorithm that can be optimized by the scatter-combine

channel. We test Pregel+’s basic implementation, Pregel+’s ghost mode (a.k.a. the

mirroring technique [21]), the standard channel version (Figure 3.1) and the scatter-

combine channel version. For Pregel+’s mirroring technique, we set the threshold to 16

in all cases.

The experiment results are presented in the upper part of Table 3.5. The basic mode

of Pregel+ and our standard version are close in both execution time and message size,

while the scatter-combine channel achieves a speedup ranging from 3.39x to 3.50x and

reduces roughly one third of the message size. Pregel+’s ghost mode use less messages,

but the execution time (including the preprocessing time) is not reduced signi�cantly.

Analysis. The improvement on execution time clearly shows the e�ectiveness

of the scatter-combine channel. As explained in Section 3.2.4, it can generate the

combined messages by a linear scan of the edges, while Pregel+’s basic mode and

the CombinedMessages have to use hash table or sorting in every superstep. The

reduction on total message size is explained by the removal of redundant transmission

of vertices’ identi�ers.

All these three programs use the receiver-centric message combining (for high-degree

receiver), while Pregel+’s mirroring technique has the sender-centric message combining

to further reduce the messages. However, such method is computational intensive and

the overall computational cost is higher. We show that the computational cost in

message processing is a major problem in some algorithms, and our scatter-combine

achieves better performance than existing approaches.

Request-respond channel

We consider the pointer-jumping algorithm (which is also part of the SV algorithm)

as a minimum example that uses the request-respond paradigm. Given a (forest of)

rooted tree, each vertex initially knows its parent and tries to �nd the root of the tree it

belongs to. We test Pregel+’s basic implementation, Pregel+’s reqresp mode (which

is the original implementation of the request-respond paradigm [21]), the standard

channel version and the scatter-combine channel version. We use two types of graphs,

a randomly generated tree and a chain. Vertices are randomly assigned to workers.
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Table 3.5: Experiment results for each optimized channel.

Scatter-Combine channel using PR

Program

SubDomain Twitter

runtime message runtime message

pregel+ (basic) 308.83 160.99 235.37 128.81

pregel+ (ghost) 353.77 152.50 256.95 111.28

channel (basic) 236.36 160.99 194.00 128.81

channel (scatter) 88.18 109.12 69.46 87.31

Request-Respond channel using PJ

Program

Tree Chain

runtime message runtime message

pregel+ (basic) 221.76 89.17 596.99 463.86

pregel+ (reqresp) 342.44 29.88 4279.06 336.27

channel (basic) 105.70 89.17 327.86 463.86

channel (reqresp) 50.29 19.92 328.87 224.18

Propagation channel using WCC

Program

Wikipedia Wikipedia (P)

runtime message runtime message

pregel+ (basic) 16.96 2.85 15.31 0.49

blogel 20.39 1.11 5.10 0.11

channel (basic) 15.67 2.85 15.85 0.49

channel (prop.) 8.64 1.66 3.05 0.17

The middle part of Table 3.5 summarizes the results on the two graphs. Without

the request-respond optimization, the standard implementations in the two systems

use exactly the same number of messages, but ours runs 2.10x faster on a chain 1.82x

faster on a randomly generated tree. Contrary to our expectation, Pregel+’s reqresp
mode has a negative e�ect on the execution time, although the message size indeed

decreases. Our implementation of the request-respond paradigm shows reasonable

results, which runs faster on a randomly generated tree, and is as good as an ordinary

implementation when tree degrades to a chain. Compared to Pregel+’s reqresp mode,

our implementation constantly reduces the message size by 33%, and achieves a

signi�cant performance gain (up to 13.01x) on the Chain.

Analysis. Although sharing the same idea, the implementations of the request-

respond paradigm in our system and Pregel+ are di�erent, which we believe is the main

reason that makes our implementation better in both runtime and message size. The



38 Chapter 3. A custom Pregel system with optimizations as plug-ins

request-respond channel works better on Tree, since it easily generates high-degree

vertices during the computation. For Chain, there is actually no high-degree vertex

until the �nal stage of the algorithm, but it does not compensate the computational

overhead in the channel implementation.

We also observe that, in real algorithms like SV (Section 3.1.3), we are actually

dealing with a dynamic forest, where the �nding of the root vertex root is fused

with the tree merging. In this special case, Pregel+’s reqresp mode can still make an

improvement (see Table 3.6). Nevertheless, we verify that our implementation of the

request-respond technique is reasonably e�ective, and is faster than the one in Pregel+.

Propagation channel

We consider the HCC algorithm [38] as a suitable example for using this optimization,

which �nds the weakly connected component (WCC) of a directed graph. In this

experiment, we present both the results on the original Wikipedia graph and the

partitioned graph by METIS [39]. We also add the Blogel version here since the

block-centric model is applicable [26]. We choose METIS since it requires no additional

knowledge of the graph.

The experiment results are presented in the bottom part of Table 3.5. First, the

Pregel+ program and a standard channel version in our system are very close in both

execution time and message size. The block-centric version in Blogel works slightly

worse on the original graph, but achieves roughly 3x faster when the input graph is

properly partitioned. Our propagation channel version works consistently better than

all other implementations in terms of execution time on both graphs (1.67x faster

than Blogel). The number of messages used in the propagation channel version is the

same as the Blogel version, but the message size in Blogel is 33% less due to its special

treatment of partition information. Nevertheless, running WCC on partitioned graph is

not message intensive.

Analysis. A partitioner reduces the communication cost between the workers, but

for the standard WCCs (program 1 and 3), it still takes a large number of supersteps to

converge, so the execution time is not reduced. Both of Blogel and our propagation

channel use a block-level program to speedup the convergence and our system

outperforms Blogel slightly.
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Table 3.6: Experiment results of the SV implementations using di�erent combinations

of channels.

Program

SubDomain Twitter

runtime message runtime message

1-pregel+ (basic) 411.67 298.62 143.03 115.96

2-pregel+ (reqresp) 174.67 66.17 74.20 29.12

3-channel (basic) 155.36 71.82 59.71 28.53

4-channel (reqresp) 128.96 59.74 53.16 24.86

5-channel (scatter) 75.45 44.69 31.86 18.15

6-channel (both) 51.59 32.60 24.94 14.49

It is also noteworthy that, WCC’s standard implementation is simply an iterative

neighborhood communication that needs around 10 lines of code for the compute()

function. While the Blogel version requires users to additionally write a block-level

computation of more than 100 lines of code
6
, switching to the propagation channel in

our system is much easier. It is clear that our system achieves both conciseness and

e�ciency compared to the block-centric model.

3.3.3 Combination of channels

In this part, we verify the multiple performance issues in the SV (see discussions in

Section 3.1.3) by running the programs using di�erent combination of channels in our

system. We show that a combination of properly chosen channels can �nally lead to

much better performance. To cover all the special channels we have, we also present

the experiment results of the Min-Label algorithm [21] for �nding Strongly Connected

Components (SCCs).

The SV Algorithm

According to the previous discussion, the request-respond channel and the scatter-

combine channel are applicable in the algorithm implementation. We thus have four

SV programs in our system covering all the combination of the two optimized channels.

For comparison, we also give the result of our best-e�ort implementation in Pregel+’s

basic and reqresp modes.

6
http://www.cse.cuhk.edu.hk/blogel/code/apps/block/hashmin/block.zip

http://www.cse.cuhk.edu.hk/blogel/code/apps/block/hashmin/block.zip
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Table 3.7: Experiment results of the Min-Label algorithm

Program

Wikipedia Wikipedia (P)

runtime message runtime message

1-pregel+ (basic) 52.15 9.85 50.51 2.70

2-channel (basic) 61.89 4.98 67.84 1.29

3-channel (prop.) 31.37 4.42 13.96 1.12

The results are presented in Table 3.6. As expected, the basic version (program 3)

without using any specialized channel is the slowest, and the fully optimized version

(program 6) takes only one third of the execution time. Furthermore, using either of the

request-respond channel (program 4) or the scatter-combine channel (program 5) can

lead to a decent improvement on both graphs. Pregel+’s basic mode runs extremely

slowly, which is mainly due to the inapplicability of the combiner optimization. Then,

even with the request-respond paradigm (in which the combiner optimization is

enabled), Pregel+ is still slower than our unoptimized version on both graphs.

Analysis. The experiment clearly veri�es the multiple performance issues in the

SV implementation. Even with the request-respond optimization, the SV algorithm still

su�ers the heavy communication cost, since the redundancies in the neighborhood

communication become the major problem. Our system combines all the optimizations

and makes the algorithm work consistently well.

Min-Label Algorithm

Strongly connected component (SCC) is a fundamental problem in graph theory and it

is widely used in practice to reveal the properties of the graphs. A typical Min-Label

algorithm [21] for �nding SCCs in Pregel is already complex which is an iterative

algorithm where the main iteration contains four subroutines, including the removal of

trivial SCCs, forward/backward label propagation, SCC recognization and relabeling.

The algorithm su�ers the problem of low convergence speed.

Our system o�ers the Propagation channel for the forward/backward label

propagation, which achieves a 2x speedup on Wikipedia, and a nearly 4x faster on

partitioned Wikipedia (see Table 3.7). This optimization is not possible in any of the

existing system.
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3.4 Related work

Google’s Pregel [1] is the �rst speci�c in-memory system for distributed graph

processing. It adopts the Bulk-Synchronous Parallel (BSP) model [9] with explicit

messages to let users implement graph algorithms in a vertex-centric way. The core

design of Pregel has been widely adopted by many open-source frameworks [2, 3],

and most of them inherit the monolithic message passing interface, meaning that

the messages of di�erent purposes are mixed and indistinguishable for the system.

As an attempt for optimizing communication patterns, Pregel+ extends Pregel with

additional interfaces (in particular, the reqresp and the ghost mode), but it is less �exible

since the two modes cannot be composed and adding optimizations is inconvenient.

To support intuitive message slicing in Pregel-like systems, Telos [40] proposes a

layered architecture where interleaving tasks are implemented as separate Protocols,
each having a user-de�ned compute() function with a dedicated message bu�er.

However, it lacks an essential feature for optimization that users cannot modify the

implementation of the message bu�er. Husky [34] is a general-purpose distributed

framework with the channel interface, and it supports primitives like pull, push
and migrate and asynchronous updates to combine the strength of graph-parallel

and machine learning systems. We extend this idea for composing optimizations

in graph-parallel system and propose our optimized channels for three common

performance issues.

There has been much research studying the optimizations on Pregel-like systems,

and our optimized channels draw inspiration from this line of research, such as the

sender-side message combining (a.k.a. vertex-replication, mirroring) [23, 22, 29, 21],

the request-respond paradigm [21], the block-centric model [24, 26, 25] and so on.

In particular, our scatter-combine channel recognizes the static messaging pattern

and reduces the computational cost as well as message size by preprocessing, which

is novel and turns out to be e�ective for communication-intensive algorithms like

PageRank and SV. We also demonstrate how complex algorithms like SV and SCC can

be optimized by such technique, while most existing systems only focus on rather

simple algorithms.

Apart from Pregel, there are graph-parallel systems that use high-level models to

organize the computation and communication, which brings more opportunities for op-
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timization. For example, the Gather-Apply-Scatter (GAS) model (used by GraphLab [41],

PowerGraph [11] and PowerLyra [12]) is a typical one that describes a vertex-program

by three functions, and the scatter-combine model (used by Graphine [42]) fuses the

scatter and gather operations, resulting a more compact two-phase model. Our channel

mechanism shares the same spirit; through the channels, we can equip a system with

even more abstractions, so that users can choose whatever suitable for their algorithms.

There are also graph systems using a functional interface with high-level primitives

to manipulate the entire graph, such as GraphX [43] (a library on top of Apache

Spark [44]) and its extension HelP [45]. However, their primitives are hard to compose.

Furthermore, experiment results [34] show that they are less e�cient than other

systems even on simple algorithms like PageRank. Sparse-matrix based frameworks

(e.g. the CombBLAS [4] and PEGASUS[38]) are also popular for handling graphs which

provide linear algebra primitives, but the lack of graph semantics makes it hard for

deep optimizations.
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4
Domain-Speci�c Languages

In this chapter, we propose two domain-speci�c language for simplifying the devel-

opment of large-scale graph applications. We �rst present the Palgol language for

high-level vertex-centric programming. Compared to Pregel’s original model, we

introduce remote access – reading or writing the other vertices’ states – to hide the

error-prone message passing, resulting in a more concise and �exible language that

can express many graph algorithms. Case studies using popular graph applications are

made to show the convenience of Palgol. Second, we present the SQL-core language

which uses a relational model to present graph computations. Compared to the

vertex-centric programming model, this language remains a global view of the graph

computation, making a class of optimizations feasible to detect and apply by the

compiler. Finally, we give a picture on how these two languages can be further

combined, resulting a DSL with both user-friendly programming interface and a

compiler to enable powerful optimizations to ensure high performance.
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4.1 Palgol: the Pregel algorithmic language

We �rst introduce its programming model in which algorithm is decomposed into

atomic vertex-centric computations and high-level combinators, and a vertex can

access the entire graph through the references it stores locally. Next we present Palgol’s

syntax and semantics (Section 4.1.2). Finally we use two representative examples

— the Shiloach-Vishkin connected component algorithm (Section 4.1.3) and the list

ranking algorithm (Section 4.1.3) — to demonstrate how Palgol can concisely describe

vertex-centric algorithms with dynamic internal structures using remote access.

4.1.1 The high-level model

The high-level model we propose uses remote reads and writes instead of message

passing to allow programmers to describe vertex-centric computation more intuitively.

Moreover, the model remains close to the Pregel computation model, in particular

keeping the vertex-centric paradigm and barrier synchronization, making it possible to

automatically derive a valid and e�cient Pregel implementation from an algorithm

description in this model, and in particular arrange remote reads and writes without

data con�icts.

In our high-level model, the computation is constructed from some basic components

which we call algorithmic supersteps. An algorithmic superstep is a piece of vertex-

centric computation which takes a graph containing a set of vertices with local states

as input, and outputs the same set of vertices with new states. Using algorithmic

supersteps as basic building blocks, two high-level operations sequence and iteration
can be used to glue them together to describe more complex vertex-centric algorithms

that are iterative and/or consist of multiple computation stages: the sequence operation

concatenates two algorithmic supersteps by taking the result of the �rst step as the

input of the second one, and the iteration operation repeats a piece of vertex-centric

computation until some termination condition is satis�ed.

The distinguishing feature of algorithmic supersteps is remote access. Within

each algorithmic superstep (illustrated in Figure 4.1), all vertices compute in parallel,

performing the same computation speci�ed by programmers. A vertex can read the

�elds of any vertex in the input graph; it can also write to arbitrary vertices to modify
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· · · · · ·

· · ·

compute compute compute

· · · · · ·

input graph

output graph

intermedi-ate graph

initial/final
vertex state

field reads

local writes

remote writes

intermediate
vertex state

accumulative
operator

Figure 4.1: In an algorithmic superstep, every vertex performs local computation

(including �eld reads and local writes) and remote updating in order.

their �elds, but the writes are performed on a separate graph rather than the input

graph (so there are no read-write con�icts). We further distinguish local writes and

remote writes in our model: local writes can only modify the current vertex’s state, and

are �rst performed on an intermediate graph (which is initially a copy of the input

graph); next, remote writes are propagated to the destination vertices to further modify

their intermediate states. Here, a remote write consists of a remote �eld, a value and an

“accumulative” assignment (like += and |=), and that �eld of the destination vertex is

modi�ed by executing the assignment with the value on its right-hand side. We choose

to support only accumulative assignments so that the order of performing remote

writes does not matter.

More precisely, an algorithmic superstep is divided into two phases:

• a local computation (LC) phase, in which a copy of the input graph is created as

the intermediate graph, and then each vertex can read the state of any vertex in

the input graph, perform local computation, and modify its own state in the

intermediate graph, and

• a remote updating (RU) phase, in which each vertex can modify the states of any

vertices in the intermediate graph by sending remote writes. After all remote
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writes are processed, the intermediate graph is returned as the output graph.

Among these two phases, the RU phase is optional, in which case the intermediate

graph produced by the LC phase is used directly as the �nal result.

4.1.2 An overview of Palgol

Next we present Palgol, whose design follows the high-level model we introduced

above. Figure 4.2 shows the essential part of Palgol’s syntax. As described by the

syntactic category step, an algorithmic superstep in Palgol is a code block enclosed

by “for var in V” and “end”, where var is a variable name that can be used in the

code block for referring to the current vertex (and V stands for the set of vertices of

the input graph). Such steps can then be composed (by sequencing) or iterated until

a termination condition is met (by enclosing them in “do” and “until . . . ”). Palgol

supports several kinds of termination condition, but in this thesis we focus on only one

kind of termination condition called �xed point, since it is extensively used in many

algorithms. The semantics of �xed-point iteration is iteratively running the program

enclosed by do and until, until the speci�ed �elds stabilize.

Corresponding to an algorithmic superstep’s remote access capabilities, in Palgol

we can read a �eld of an arbitrary vertex using a global �eld access expression of the

form �eld [ exp ], where �eld is a user-speci�ed �eld name and exp should evaluate to a

vertex id. Such expression can be updated by local or remote assignments, where

an assignment to a remote vertex should always be accumulative and pre�xed with

the keyword remote. One more thing about remote assignments is that they take

e�ect only in the RU phase (after the LC phase), regardless of where they occur in the

program.

There are some prede�ned �elds that have special meaning in our language. Nbr is

the edge list in undirected graphs, and In and Out respectively store incoming and

outgoing edges for directed graphs. Essentially, these are normal �elds of a prede�ned

type for representing edges, and most importantly, the compiler assumes a form of

symmetry on these �elds (namely that every edge is stored consistently on both of its

end vertices), and uses the symmetry to produce more e�cient code.

The rest of the syntax for Palgol steps is similar to an ordinary programming

language. Particularly, we introduce a specialized pair type (expressions in the
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prog F step | prog1 . . . progn | iter
iter F do 〈 prog 〉 until �x [ �eld1, . . . ,�eldn ]
step F for var in V 〈 block 〉 end
block F stmt1 . . . stmtn
stmt F if exp 〈 block 〉 | if exp 〈 block 〉 else 〈 block 〉

| for (var ← exp) 〈 block 〉
| let var = exp
| localopt �eld [ var ] oplocal exp – local write

| remote �eld [ exp ] opremote exp – remote write

exp F int | �oat | var | true | false | inf
| fst exp | snd exp | (exp, exp)
| exp.ref | exp.val | {exp, exp} | {exp} – specialized pair

| exp ? exp : exp | ( exp ) | exp opb exp | opu exp
| �eld [ exp ] – global �eld access

| funcopt [ exp | var ← exp, exp1, . . . , expn ]
func F maximum | minimum | sum | . . .

Figure 4.2: Essential part of Palgol’s syntax. Palgol is indentation-based, and two

special tokens ‘〈’ and ‘〉’ are introduced to delimit indented blocks.

form of {exp, exp}) for representing a reference with its corresponding value (e.g., an

edge in a graph), and use .ref and .val respectively to access the reference and the

value respectively, to make the code easy to read. Some functional programming

constructs are also used here, like let-binding and list comprehension. There is also a

foreign function interface that allows programmers to invoke functions written in a

general-purpose language, but we omit the detail from the paper.

4.1.3 Case studies

Next, we use two examples to show how to use Palgol to implement graph algorithms.

The Shiloach-Vishkin Connected Component Algorithm

Here is our �rst representative Palgol example: the Shiloach-Vishkin (SV) connected
component algorithm [21], which can be expressed as the Palgol program in Figure 4.3.

A traditional HashMin connected component algorithm [21] based on neighborhood

communication takes time proportional to the input graph’s diameter, which can be

large in real-world graphs. In contrast, the SV algorithm can calculate the connected
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components of an undirected graph in a logarithmic number of supersteps; to achieve

this fast convergence, the capability of accessing data on non-neighboring vertices is

essential.

In the SV algorithm, the connectivity information is maintained using the classic

disjoint set data structure [35]. Speci�cally, the data structure is a forest, and vertices

in the same tree are regarded as belonging to the same connected component. Each

vertex maintains a parent pointer that either points to some other vertex in the same

connected component, or points to itself, in which case the vertex is the root of a tree.

We henceforth use D[u] to represent this pointer for each vertex u. The SV algorithm

is an iterative algorithm that begins with a forest of n root nodes, and in each step it

tries to discover edges connecting di�erent trees and merge the trees together. In a

vertex-centric way, every vertex u performs one of the following operations depending

on whether its parent D[u] is a root vertex:

• tree merging: if D[u] is a root vertex, then u chooses one of its neighbors’

current parent (to which we give a name t ), and makes D[u] point to t if t < D[u]

(to guarantee the correctness of the algorithm). When having multiple choices in

choosing the neighbors’ parent p, or when di�erent vertices try to modify the

same parent vertex’s pointer, the algorithm always uses the “minimum” as the

tiebreaker for fast convergence.

• pointer jumping: if D[u] is not a root vertex, then u modi�es its own pointer

to its current “grandfather” (D[u]’s current pointer). This operation reduces u’s

distance to the root vertex, and will eventually make u a direct child of the root

vertex so that it can perform the above tree merging operation.

The algorithm terminates when all vertices’ pointers do not change after an iteration,

in which case all vertices point to some root vertex and no more tree merging can be

performed. Readers interested in the correctness of this algorithm are referred to the

original paper [21] for more details.

The implementation of this algorithm is complicated, which contains roughly

120 lines of code
1

for the compute() function alone. Even for detecting whether the

parent vertex D[u] is a root vertex for each vertex u, it has to be translated into three

1
http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/svplus.zip

http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/svplus.zip
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1 for u in V
2 D[u] := u
3 end
4 do
5 for u in V
6 if (D[D[u]] == D[u])
7 let t = minimum [ D[e.ref] | e <- Nbr[u] ]
8 if (t < D[u])
9 remote D[D[u]] <?= t

10 else
11 D[u] := D[D[u]]
12 end
13 until fix[D]

Figure 4.3: The SV algorithm in Palgol

supersteps containing a query-reply conversation between each vertex and its parent.

In contrast, the Palgol program in Figure 4.3 can describe this algorithm concisely in

13 lines, due to the declarative remote access syntax. This piece of code contains

two steps, where the �rst one (lines 1–3) performs simple initialization, and the

other (lines 5–12) is inside an iteration as the main computation. We also use the

�eld D to store the pointer to the parent vertex. Let us focus on line 6, which checks

whether u’s parent is a root. Here we simply check D[D[u]] ==D[u], i.e., whether the

pointer of the parent vertex D[D[u]] is equal to the parent’s id D[u]. This expression is

completely declarative, in the sense that we only specify what data is needed and what

computation we want to perform, instead of explicitly implementing the message

passing scheme.

The rest of the algorithm can be straightforwardly associated with the Palgol

program. If u’s parent is a root, we generate a list containing all neighboring vertices’

parent id (D[e .ref]), and then bind the minimum one to the variable t (line 7). Now t is

either inf if the neighbor list is empty or a vertex id; in both cases we can use it to

update the parent’s pointer (lines 8–9) via a remote assignment. One important thing

is that the parent vertex (D[u]) may receive many remote writes from its children,

where only one of the children providing the minimum t can successfully perform

the updating. Here, the statement a <?= b is an accumulative assignment, whose

meaning is the same as a := min(a, b). Finally, for the else branch, we (locally)
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1 for u in V
2 Sum[u] := Val[u]
3 end
4 do
5 for u in V
6 if (Pred[Pred[u]] != Pred[u])
7 Sum[u] += Sum[Pred[u]]
8 Pred[u] := Pred[Pred[u]]
9 end

10 until fix[Pred]

Figure 4.4: The list ranking program

assign u’s grandparent’s id to u’s D �eld.

The List Ranking Algorithm

Another example is the list ranking algorithm, which also needs communication over

a dynamic structure during computation. Consider a linked list L with n elements,

where each element u stores a value val (u) and a link to its predecessor pred (u). At

the head of L is a virtual element v such that pred (v ) = v and val (v ) = 0. For each

element u in L, de�ne sum(u) to be the sum of the values of all the elements from u to

the head (following the predecessor links). The list ranking problem is to compute

sum(u) for each element u. If val (u) = 1 for every vertex u in L, then sum(u) is simply

the rank of u in the list. List ranking can be solved using a typical pointer-jumping

algorithm in parallel computing with a strong performance guarantee. Yan et al. [21]

demonstrated how to compute the pre-ordering numbers for all vertices in a tree in

O (logn) supersteps using this algorithm, as an internal step to compute bi-connected

components (BCC).
2

We give the Palgol implementation of list ranking in Figure 4.4 (which is a 10-line

program, whereas the Pregel implementation
3

contains around 60 lines of code).

Sum[u] is initially set toVal[u] for everyu at line 2; inside the �xed-point iteration (lines

5–9), every u moves Pred[u] toward the head of the list and updates Sum[u] to maintain

2
BCC is a complicated algorithm, whose e�cient implementation requires constructing an intermedi-

ate graph, which is currently beyond Palgol’s capabilities. Palgol is powerful enough to express the rest

of the algorithm, however.

3
http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/bcc.zip

http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/bcc.zip
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the invariant that Sum[u] stores the sum of a sublist from itself to the successor of

Pred[u]. Line 6 checks whether u points to the virtual head of the list, which is achieved

by checking Pred[Pred[u]] == Pred[u], i.e., whether the current predecessor Pred[u]
points to itself. If the current predecessor is not the head, we add the sum of the

sublist maintained in Pred[u] to the current vertex u, by reading Pred[u]’s Sum and

Pred �elds and modifying u’s own �elds accordingly. Note that since all the reads are

performed on a snapshot of the input graph and the assignments are performed on an

intermediate graph, there is no need to worry about data dependencies.

4.2 Compiling Palgol to Pregel

In this section, we present the compiling algorithm to transform Palgol to Pregel. The

task overall is complicated and highly technical, but the most challenging problem is

how to translate chain access (like D[D[u]]) into Pregel’s message passing model. We

describe the compilation of chain access in Section 4.2.1, and then the compilation of a

Palgol step in Section 4.2.2, and �nally how to combine Palgol steps using sequence

and iteration in Section 4.2.3.

4.2.1 Compiling remote reads

Our compiler currently recognizes two forms of remote reads. The �rst form is chain
access expressions like D[D[u]]. The second form is neighborhood access where a vertex

may use chain access to acquire data from all its neighbors, and this can be described

using the list comprehension (e.g., line 7 in Figure 4.3) or for-loop syntax in Palgol. The

combination of these two remote read patterns is already su�cient to express quite a

wide range of practical Pregel algorithms. Here we only present the compilation of

chain access, which is novel, while the compilation of neighborhood access is similar

to what has been done in Fregel.

De�nition and challenge of compiling:

A chain access is a consecutive �eld access expression starting from the current vertex.

As an example, supposing that the current vertex is u, and D is a �eld for storing a

vertex id, then D[D[u]] is a chain access expression, and so is D[D[D[D[u]]]] (which
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we abbreviate to D4
[u] in the rest of this section). Generally speaking, there is no

limitation on the depth of a chain access or the number of �elds involved in the chain

access.

As a simple example of the compilation, to evaluate D[D[u]] on every vertex u, a

straightforward scheme is a request-reply conversation which takes two rounds of

communication: in the �rst superstep, every vertex u sends a request to (the vertex

whose id is) D[u] and the request message should contain u’s own id; then in the

second superstep, those vertices receiving the requests should extract the sender’s ids

from the messages, and reply its D �eld to them.

When the depth of such chain access increases, it is no longer trivial to �nd an

e�cient scheme, where e�ciency is measured in terms of the number of supersteps

taken. For example, to evaluate D4
[u] on every vertex u, a simple query-reply method

takes six rounds of communication by evaluating D2
[u], D3

[u] and D4
[u] in turn, each

taking two rounds, but the evaluation can actually be done in only three rounds with

our compilation algorithm, which is not based on request-reply conversations.

Logic system for compiling chain access:

The key insight leading to our compilation algorithm is that we should consider not

only the expression to evaluate but also the vertex on which the expression is evaluated.

To use a slightly more formal notation (inspired by Halpern and Moses [46]), we write

∀u .Kv (u) e (u), where v (u) and e (u) are chain access expressions starting from u, to

describe the state where every vertex v (u) “knows” the value of the expression e (u);

then the goal of the evaluation of D4
[u] can be described as ∀u .Ku D

4
[u]. Having

introduced the notation, the problem can now be treated from a logical perspective,

where we aim to search for a derivation of a target proposition from a few axioms.

There are three axioms in our logic system:

1. ∀u .Ku u

2. ∀u .Ku D[u]

3. (∀u .Kw (u) e (u)) ∧ (∀u .Kw (u) v (u)) =⇒ ∀u .Kv (u) e (u)

The �rst axiom says that every vertex knows its own id, and the second axiom says

every vertex can directly access its local �eld D. The third axiom encodes message
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(∀u .Ku u ) ∧ (∀u .Ku D[u] ) =⇒ ∀u .KD[u] u

(∀u .KD[u] u ) ∧ (∀u .KD[u] D2
[u]) =⇒ ∀u .KD2

[u]u

(∀u .KD[u] D2
[u]) ∧ (∀u .KD[u] u ) =⇒ ∀u .Ku D2

[u]

(∀u .KD2
[u]D

4
[u]) ∧ (∀u .KD2

[u]u ) =⇒ ∀u .Ku D4
[u]

Figure 4.5: A derivation of ∀u .Ku D
4
[u]

Step 1:

Step 2:

Step 3:

Step 4:

message passing
logical inference

u knows u
u knows D[u]

D[u] knows u
D[u] knows D[D[u]]

u knows D[D[u]] D[D[u]] knows u
D[D[u]] knows D4[u]

u knows D4[u]

Figure 4.6: Interpretation of the derivation of ∀u .Ku D
4
[u]

passing: if we want every vertex v (u) to know the value of the expression e (u), then it

su�ces to �nd an intermediate vertex w (u) which knows both the value of e (u) and

the id of v (u), and thus can send the value to v (u). As an example, Figure 4.5 shows

the solution generated by our algorithm to solve ∀u .Ku D
4
[u], where each line is an

instance of the message passing axiom.

Figure 4.6 is a direct interpretation of the implications in Figure 4.5. To reach

∀u .Ku D
4
[u], only three rounds of communication are needed. Each solid arrow

represents an invocation of the message passing axiom in Figure 4.5, and the dashed

arrows represent two logical inferences, one from ∀u .Ku D[u] to ∀u .KD[u]D
2
[u] and

the other from ∀u .Ku D
2
[u] to ∀u .KD2

[u]D
4
[u].

The derivation of ∀u .Ku D
4
[u] is not unique, and there are derivations that cor-

respond to ine�cient solutions — for example, there is also a derivation for the

six-round solution based on request-reply conversations. However, when searching for

derivations, our algorithm will minimize the number of rounds of communication, as

explained below.
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The compiling algorithm:

Initially, the algorithm sets as its target a proposition ∀u .Kv (u) e (u), for which a

derivation is to be found. The key problem here is to choose a proper w (u) so that, by

applying the message passing axiom backwards, we can get two potentially simpler

new target propositions ∀u .Kw (u) e (u) and ∀u .Kw (u) v (u) and solve them respectively.

The range of such choices is in general unbounded, but our algorithm considers only

those simpler than v (u) or e (u). More formally, we say that a is a subpattern of b,

written a � b, exactly when b is a chain access starting from a. For example, u and

D[u] are subpatterns of D[D[u]], while they are all subpatterns of D3
[u]. The range of

intermediate vertices we consider is then Sub(e (u),v (u)), where Sub is de�ned by

Sub(a,b) = { c | c � a or c ≺ b }

We can further simplify the new target propositions with the following function before

solving them:

generalize(∀u .Ka(u) b (u)) =



∀u .Ku (b (u)/a(u)) if a(u) � b (u)

∀u .Ka(u) b (u) otherwise

where b (u)/a(u) denotes the result of replacing the innermost a(u) in b (u) with u. (For

example, A[B[C[u]]]/C[u] = A[B[u]].) This is justi�ed because the original proposition

can be instantiated from the new proposition. (For example, ∀u .KC[u]A[B[C[u]]] can

be instantiated from ∀u .Ku A[B[u]].)

It is now possible to �nd an optimal solution with respect to the following inductively

de�ned function step, which calculates the number of rounds of communication for a

proposition:

step(∀u .Ku u) = 0

step(∀u .Ku D[u]) = 0

step(∀u .Kv (u) e (u)) = 1 + min

w (u)∈Sub(e (u),v (u))
max(x ,y)

where x = step(generalize(∀u .Kw (u) e (u)))

y = step(generalize(∀u .Kw (u) v (u)))



4.2 Compiling Palgol to Pregel 55

It is straightforward to see that this is an optimization problem with optimal and

overlapping substructure, which we can solve e�ciently with memoization techniques.

With this compiling algorithm, we are now able to handle any chain access

expressions. Furthermore, this algorithm optimizes the generated Pregel program in

two aspects. First, this algorithm derives a message passing scheme with a minimum

number of supersteps, thus reduces unnecessary cost for launching Pregel supersteps

during execution. Second, by extending the memoization technique, we can ensure

that a chain access expression will be evaluated exactly once even if it appears multiple

times in a Palgol step, avoiding redundant message passing for the same value.

4.2.2 Compiling Palgol steps

Having introduced the compiling algorithm for remote data reads in Palgol, here we

give a general picture of the compilation for a single Palgol step, as shown in Figure 4.7.

The computational content of every Palgol step is compiled into a main superstep.

Depending on whether there are remote reads and writes, there may be a number of

remote reading supersteps before the main superstep, and a remote updating superstep
after the main superstep.

We will use the main computation step of the SV program (lines 5–12 in Figure 4.3)

as an illustrative example for explaining the compilation algorithm, which consists of

the following four steps:

1. We �rst handle neighborhood access, which requires a sending superstep that

provides all the remote data for the loops from the neighbors’ perspective. This

sending superstep is inserted as a remote reading superstep immediately before

the main superstep.

2. We analyze the chain access expressions appearing in the Palgol step with the

algorithm in Section 4.2.1, and corresponding remote reading supersteps are

inserted in the front. (For the SV algorithm, the only interesting chain access

expression is D[D[u]], which induces two remote reading supersteps realizing a

request-reply conversation.)

3. Having handled all remote reads, the main superstep receives all the values

needed and proceeds with the local computation. Since the local computational
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chain access
expressions

neighborhood
communication

∀u.Ku u

∀u.Ku D[u]

∀u.KD[u]u

∀u.KD[u]D
2 [u]

send D[u] to
all neighbors

∀u.Ku D2 [u] obtain all D[e.ref]
D[D[u]]

let t = minimum [D[e.ref]

| e <- Nbr[u]]

local computation
send the value of t to D[u]

remote D[D[u]] <?= t

receive messages of t-values
update D field with min

remote
updates

remote reading
superstep

remote reading
superstep

main superstep

remote updating
superstep

Figure 4.7: Compiling a Palgol step to Pregel supersteps.

content of a Palgol step is similar to an ordinary programming language, the

transformation is straightforward.

4. What remain to be handled are the remote assignments, which require sending

the updating values as messages to the target vertices in the main superstep.

Then an additional remote updating superstep is added after the main superstep;

this additional superstep reads these messages and updates each �eld using the

corresponding remote updating operator.

4.2.3 Compiling sequences and iterations

Finally, we look at the compilation of sequence and iteration, which assemble Palgol

steps into larger programs. A Pregel program generated from Palgol code is essentially

a state transition machine (STM) combined with computation code for each state.

Every Palgol step is translated into a “linear” STM consisting of a chain of states

corresponding to the supersteps like those shown in Figure 4.7, and the compilation of
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a Palgol program starts from turning the atomic Palgol steps into linear STMs, and

implements the sequence and iteration semantics to construct more complex STMs.

Compilation of sequence: To compile the sequence, we �rst compile the two

component programs into STMs, then a composite STM is constructed by simply

adding a state transition from the end state of the �rst STM to the start state of the

second STM.

Compilation of iteration: We �rst compile the loop body into an STM, which

starts from some state Sstart and ends in a state Send , then we extend this STM to

implement the �xed-point semantics. Here we describe a generalized approach which

generates a new STM starting from state Sstart ′ and ending in state Send ′:

1. First, a check of the termination condition takes place right before the state Sstart :

if it holds, we immediately enters a new exit state Sexit ′; otherwise we execute

the body, after which we go back to the check by adding a state transition from

Send to Sstart . This step actually implements a while loop.

2. The termination check is implemented by an OR aggregator to make sure that

every vertex makes the same decision: basically, all vertices determine whether

their local �elds stabilize during a single iteration by storing the original values

beforehand, and the aggregator combines the results and makes it available to all

vertices.

3. We add a new start state Sstart ′ and make it directly transit to Sstart . This state is

for storing the original values of the �elds, and also to make the termination

check succeed in the �rst run, turning the while loop into a do-until loop.

Optimizations: In the compilation of sequence and iteration, two optimization

techniques are used to reduce the number of states in the generated STMs and can

remove unnecessary synchronizations. Due to space restrictions, we will not present

all the details here, but these techniques share similar ideas with Green-Marl’s “state

merging” and “intra-loop state merging” optimizations [19]:

• state merging: whenever it is safe to do so, the Green-Marl compiler merges

two consecutive states of vertex computation into one. In the compilation of

sequence in Palgol, we can always safely merge the end state of the �rst STM
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Table 4.1: Datasets for performance evaluation

Dataset Type Vertices Edges Description

Wikipedia Directed 18,268,992 172,183,984 the hyperlink network of Wikipedia

Facebook Undirected 59,216,214 185,044,032 a friendship network of the Facebook

USA Weighted 23,947,347 58,333,344 the USA road network

Random Chain 10,000,000 10,000,000 a chain with randomly generated values

and the start state of the second STM, resulting in a reduction of one state in the

composite STM.

• intra-loop state merging: this optimization merges the �rst and last vertex-parallel

states inside Green-Marl’s loops. In Palgol, we can also discover such chance

when iterating a linear STM inside a �xed-point iteration.

4.3 Evaluation of Palgol

In this section, we evaluate the overall performance of Palgol and the state-merging

optimisations introduced in the previous section. We compile Palgol code to Pregel+
4
,

which is an open-source implementation of Pregel written in C++.
5

We have imple-

mented the following six graph algorithms on Pregel+’s basic mode, which are the

PageRank [1], Single-Source Shortest Path (SSSP) [1], Strongly Connected Components

(SCC) [21], Shiloach-Vishkin Algorithm (SV) [21], List Ranking Algorithm (LR) [21]

and Minimum Spanning Forest (MSF) [18]. Among these algorithms, SCC, SV, LR and

MSF are non-trivial ones which contain multiple computing stages. Their Pregel+

implementations are included in our repository for interested readers.
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Table 4.2: Comparison of execution time between Palgol and Pregel+ implementation

Dataset Algorithm 4 nodes 8 nodes 12 nodes 16 nodes

Pregel+ Palgol Pregel+ Palgol Pregel+ Palgol Pregel+ Palgol

Wikipedia

SSSP 8.33 10.80 4.47 5.61 3.18 3.83 2.41 2.85

PageRank 153.40 152.36 83.94 82.58 61.82 61.24 48.36 47.66

SCC 177.51 178.87 85.87 86.52 61.75 61.89 46.64 46.33

Facebook SV 143.09 142.16 87.98 86.22 67.62 65.90 58.29 57.49

Random LR 56.18 64.69 29.58 33.17 19.76 23.48 14.64 18.16

USA MSF 78.80 82.57 43.21 45.98 29.47 31.07 22.84 24.29

4.3.1 Overhead of the DSL

In our performance evaluation, we use three real-world graph datasets (Facebook
6
,

Wikipedia
7
, USA

8
) and one synthetic graph, and some detailed information is listed in

Table 5.1. The experiment is conducted on an Amazon EC2 cluster with 16 nodes

(whose instance type is m4.large), each containing 2 vCPUs and 8G memory. Each

algorithm is run on the type of input graphs to which it is applicable (PageRank on

directed graphs, for example) with 4 con�gurations, where the number of nodes

changes from 4 to 16. We measure the execution time for each experiment, and all the

results are averaged over three repeated experiments. The runtime results of our

experiments are summarized in Table 4.2.

Remarkably, for most of these algorithms (PageRank, SCC, SV and MSF), we

observed highly close execution time on the compiler-generated programs and the

manually implemented programs, with the performance of the Palgol programs varying

between a 2.53% speedup to a 6.42% slowdown.

For SSSP, we observed a slowdown up to 29.55%. The main reason is that the

human-written code utilizes Pregel’s vote_to_halt() API to deactivate converged

vertices during computation; this accelerates the execution since the Pregel system

skips invoking the compute() function for those inactive vertices, while in Palgol, we

check the states of the vertices to decide whether to perform computation. Similarly,

4
http://www.cse.cuhk.edu.hk/pregelplus

5
Palgol does not target a speci�c Pregel-like system. Instead, by properly implementing di�erent

back ends of the compiler, Palgol can be transformed into any Pregel-like system, as long as the system

supports the basic Pregel interfaces including message passing between arbitrary pairs of vertices and

aggregators.

6
https://archive.is/o/cdGrj/konect.uni-koblenz.de/networks/facebook-sg

7
http://konect.uni-koblenz.de/networks/dbpedia-link

8
http://www.dis.uniroma1.it/challenge9/download.shtml

http://www.cse.cuhk.edu.hk/pregelplus
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Table 4.3: Comparison of the compiler-generated programs before/after optimization

Dataset Algorithm Number of Supersteps Execution Time

Before After Comparison Before After Comparison

Wikipedia

SSSP 147 50 −65.99% 5.36 2.85 −46.83%

PageRank 93 32 −65.59% 45.57 47.66 4.58%

SCC 3819 1278 −66.54% 106.03 46.33 −56.30%

Facebook SV 31 23 −25.81% 52.37 57.49 9.78%

Random LR 77 52 −32.47% 17.54 18.16 3.51%

USA MSF 318 192 −39.62% 26.67 24.29 −8.95%

we observed a 24% slowdown for LR, since the human-written code deactivates all

vertices after each superstep, and it turns out to work correctly. While voting to halt

may look important to e�ciency, we would argue against supporting voting to halt as

is, since it makes programs impossible to compose: in general, an algorithm may

contain multiple computation stages, and we need to control when to end a stage and

enter the next; voting to halt, however, does not help with such stage transition, since

it is designed to deactivate all vertices and end the whole computation right away.

4.3.2 E�ectiveness of the fusion optimization

In this subsection, we evaluate the e�ectiveness of the “state merging” optimization

mentioned in Section 4.2.3, by generating both the optimized and unoptimized versions

of the code and executing them in the same con�gurations. We use all the six graph

applications in the previous experiment, and �x the number of nodes to 16. The

experiment results are shown in Table 4.3.

The numbers of supersteps in execution are signi�cantly reduced, and this is due to

the fact that the main iterations in these graph algorithms are properly optimized.

For applications containing only a simple iteration like PageRank and SSSP, we

reduce nearly 2/3 supersteps in execution, which is achieved by optimizing the three

supersteps inside the iteration body into a single one. Similarly, for SCC, SV and LR, the

improvement is around 2/3, 1/4 and 1/3 due to the reduction of one or two superstep in

the main iteration(s). The MSF is a slightly complicated algorithm containing multiple

stages, and we get an overall reduction of nearly 40% supersteps in execution.

While this optimization reduces the number of supersteps, and thus the number of

global synchronizations, it does not necessarily reduce the overall execution time
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since it incurs a small overhead for every loop. The optimization produces a tighter

loop body by unconditionally sending at the end of each iteration the necessary

messages for the next iteration; as a result, when exiting the loop, some redundant

messages are emitted (although the correctness of the generated code is ensured). This

optimization is e�ective when the cost of sending these redundant messages is cheaper

than that of the eliminated global synchronizations. In our experiments, SSSP and SCC

become twice as fast after optimization since they are not computationally intensive,

and therefore the number of global synchronizations plays a more dominant role in

execution time; this is not the case for the other algorithms though.

4.4 Problem of Palgol with the channel mechanism

Up to now, we have described Palgol, a domain-speci�c language to describe Pregel

algorithms in high-level based on the idea of remote access. By using a rule-based

compilation algorithm, a Palgol program can be executed on Pregel+’s basic mode, a

standard implementation of the Pregel model, and the performance is comparable

to the carefully optimized hand-written code. However, Pregel+ inherits Pregel’s

drawbacks that its monolithic message mechanism is incapable of dealing with multiple

performance issues at the same time, and for complex graph algorithms like the SV

algorithm, the execution time of a Pregel+ implementation can be 3.39× times slower

than an implementation using our channel mechanism (see Section 3.3). A natural

question here is that can we compile a Palgol program to an e�cient program in our

channel-based Pregel system? In the rest of this chapter, we discuss the challenges and

introduce our solutions to this problem.

4.4.1 The main challenges

The channel mechanism is an extension of Pregel’s message mechanism that allows

several irregular communication patterns to be implemented in more e�cient ways,

and those special implementations are encapsulated into the optimized channels

(presented in Table 3.2) and used by the programmers in their programs as plug-ins.

There is no doubt that the Pregel-channel can simulate a standard Pregel system

with its basic channels (in Table 3.1), and therefore a Palgol program can compile
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to Pregel-channel without big change in its compilation algorithm. However, such

transformation ignores the potential performance issues in the graph computation and

cannot make use of the optimizations in Pregel-channels. The real question here is

that, when compiling a Palgol program to Pregel-channel, can we choose the most

suitable optimizations (channels) in its implementation to maximize the performance?

In the original Palgol compiler, it sees a graph computation as a bunch of Palgol steps

connected by the combinators called sequence and iteration, and in each Palgol step it

is basically a piece of vertex-centric computation using remote access to represent the

communications between the vertices. More speci�cally, the Palgol compiler focuses on

transforming various remote access primitives to bulk-synchronous message passing,

which include the chain access (e.g., P[P[u]]), neighborhood access and remote writes.

A natural idea to extend the Palgol compiler is to map each remote access primitives to

every additional optimized channel, but unfortunately this straightforward approach is

not viable due to the following reasons.

• Cost estimation. In Pregel-channel, due to the existence of various channels, it

requires the compiler to be able to estimate the communication cost for every

possible transformation, which is a huge burden in design and implementation.

Moreover, in a Palgol program, we need to handle the composition of two or

more remote access primitives, making the cost estimation more complicated.

• Scalability. The one-to-one mapping from every remote access primitive to

every channel also limits the scalability of this approach since whenever we add a

new optimized channel in Pregel-channel, we need to consider the transformation

from every remote access primitive to that channel. It will signi�cantly increase

the complexity of the whole compilation procedure.

We believe that the original Palgol’s compiler cannot be easily extended to support

the Pregel-channel system. This requires us to think about a di�erent approach that

allows the compiler to properly understand the graph computation and can truly

estimate the communication cost in the implementation.
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4.4.2 A systematic solution using relational model

In this thesis, we design a SQL-style declarative language for describing graph

computations and provide a novel compilation algorithm to compile Palgol to the

Pregel-channel system. This language captures the vertex-centric graph computation

using relational queries, and for each graph query, by enumerating all possible query

plans (join orders and the type for each two-table join), we identify the plan that has

the minimum communication cost by calculating how much data need to be moved in

the query evaluation. In particular, the optimizations in Pregel-channel are regarded as

special joins of two tables, and thus can be involved in the enumeration of query plans.

The technical contributions of our new language is summarized as follows:

• We propose a relational computation model for vertex-centric graph processing.

By using an intuitive tabular representation for graphs, graph transformations

are expressed as the inner join of a series of tables followed by an aggregation,

which does not require users to explicitly specify the computation on each vertex

as well as their interactions.

• We design a SQL-like language based on the new relational computation model,

and implement it by reducing the problem of transforming the graph queries in

our language to a Pregel program, to the problem of deciding the join order for

hash-partitioned join algorithm [47]. We solve this problem by the dynamic

programming technique with our cost model to minimize the communication

cost for the query plan.

• We show how to obtain optimal vertex-centric programs by demonstrating that

two useful optimizations [21, 28] can be easily detected in our high-level model,

and the integration of such analysis can be achieved by a simple extension of our

join-based compilation algorithm.

• We have fully implemented the compiler
9
, and the experiment results convinc-

ingly show that our compilation algorithm achieves similar e�ciency for many

representative graph algorithms on large graph dataset. For the connected

component problem, our framework even outperforms the state-of-the-art

algorithm with a good margin.

9
The source code of our system can be accessed at https://bitbucket.org/zyz915/sql-core.

https://bitbucket.org/zyz915/sql-core
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4.5 SQL-core: a new compilation engine

In this section, we introduce our high-level model for graph computation, which

includes a tabular representation for graphs, and a relational computation model

for writing graph transformations as queries on the graph. It implicitly captures the

vertex-centric feature, as will be seen later.

4.5.1 A tabular graph representation

In our model, graph has a directed adjacency structure and has user-de�ned attributes

associated with each vertex and edge. Every vertex is assumed to have a unique

identi�er with integer type. Then, the graph data is represented by a collection of

tables with the following schema:

• VertexTable(id:Int, attr:a) associates each vertex id with a vertex at-

tribute having a user-de�ned type a. Users can de�ne any number of vertex

attributes in a graph computation.

• EdgeTable(src:Int, dst:Int, attr:a) stores the directed edges, each be-

ing a tuple containing the source vertex src, the destination vertex dst and an

optional edge attribute attr with user-de�ned type a. For a graph computation,

there is a unique and immutable table Edge having this schema
10

, which de�nes

the structure of the graph as well as the edge attributes.

• GlobalValue(value:a) contains a single value having a user-de�ned type a
indicating a global value. Users can use any number of global values in a graph

computation. We include this special table due to its usefulness in many graph

computations.

We restrict the tables used in the graph computation to simplify the compilation,

and it also helps us generate high performance code for our language.

10
Supporting multiple edge tables is not technically di�cult, but graph algorithms rarely require this

feature.
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4.5.2 A join-�ltering-aggregation model

In our model, graph transformation is de�ned as a relational graph query over the

tables having a restricted schema, and generates either a vertex table or a global value.

The graph query can only use a subset of relational operations (select, join, group by,

aggregation and simple predicates), and it also has additional restrictions in order to be

compiled to an e�cient vertex-centric program. Generally, a graph transformation in

our model consists of the following three steps:

• table join: �rst, we calculate the inner join of a series of tables with our de�ned

schema (except the global values) to represent a graph pattern, and we require

that for every join, the two tables have a single attribute in common, which acts

as the join attribute.

• �ltering: then, having the join result, we �lter the rows by predicates, which can

only access the values of the current row and the global values, using arithmetic

operations and comparison only.

• aggregation: �nally, the join result is converted (by a select clause) to either a

vertex table through a group by operation over a vertex id column, or a single

global value through an aggregation function.

Here, we use triangle counting as an example to see how to write graph trans-

formations in this model. Suppose the input is an edge table having the schema

Edge(src:Int, dst:Int) without the edge attribute. The idea of using relational query

for triangle counting is illustrated in Figure 4.8. We �rst enumerate all the distinct

paths u → v → w → x through table join, and after obtaining all the tuples (u,v,w,x )

connected by directed edges, we use the predicate x = u to ensure that the path

forms a triangle, and the predicates u < v and v < w are to eliminate the equivalent

permutations. Finally, the aggregation function count in the select clause counts the

number of rows, and the result is stored as a global value.

In comparison, we present a triangle counting program in the vertex-centric

message passing model. For each vertex u, we use Out (u) to represent u’s outgoing

adjacent list. Then the algorithm consists of the following three supersteps.

• Step 1: For each v ∈ Out (u), vertex u sends its own vertex id to v if u < v ;
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inner join Edge as C on B.src = C.dst

where A.src < B.src -- filtering
and B.src < C.src
and A.src = C.dst

Figure 4.8: A graph query example of triangle counting using the standard SQL syntax.

• Step 2: Every vertex v receives its incoming neighbors’ vertex id from the

message list, which is stored as a new list In(v ). Then for each u ∈ In(v ) and

w ∈ Out (v ), vertex v sends u to w if v < w ;

• Step 3: Every vertexw receives a list of vertex ids, which are the vertices that can

reach w in exactly two steps. Besides, each occurrence of u in this list indicates a

distinct path from u to w . We store the list as In2(w ). Then, for each u ∈ Out (w ),

vertex w counts the occurrence of u in In2(w ), and the sum is the number of

triangles having w as the largest vertex id.

The vertex-centric triangle counting algorithm is more complicated due to the

explicit message passing in the algorithm description. Also, we useu,v,w to distinguish

the role of the current vertex in each step to help readers understand the intended

interactions. However, this vertex-centric program and the SQL query in Figure 4.8

has a close relationship, and using our language, we can derive this vertex-centric

implementation from the graph query.

4.5.3 An overview of SQL-core

In this part, we present our language for writing graph computations in our proposed

model. This language is in general similar to SQL, but its syntax is designed to re�ect

those restrictions we made on the computation model. It is also a compositional
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language that allows users to easily perform the iteration over any kind of graph

transformations.

The syntax of the language is de�ned in Figure 4.9. As described by the syntactic

category trans, a graph transformation contains a relational query following our

high-level model, and the result table is bound to a variable. Then, such graph

transformations can be further composed or iterated as shown in the syntactic category

prog. There are two kinds of iterations in our language, the for loop and the �xed-point
iteration. The former one iterates a program by a �xed number of rounds, and the

latter one iterates a program until the speci�ed table stabilizes.

The syntactic category query de�nes the relational query in our language, which

includes Qv for generating a vertex table and Qд for producing a global value. Their

di�erences are re�ected in the select and group by clauses, while the table join and

the �ltering are the same.

The syntax of table join is special in our language to better re�ect the restrictions

in our computation model. We present two query examples in Figure 4.10, which are

part of the implementation of PageRank and triangle counting. We �rst list all the

vertices and their attributes used in a graph computation, then we assign a unique

variable to each vertex and vertex attribute and connect then via link. Each link is

essentially a table specifying the relation between two variables. In our language, we

just put the tables after the keyword from to describe such graph computation.

A valid join then requires the variables and the links to form a spanning tree.

Remember that in our computation model, we require that for each join the two tables

must have exactly one attribute in common. Here, two links can join if they share

an endpoint, and the join result is a connected subgraph. Similarly, two connected

subgraphs (intermediate join results) containing disjoint set of links can join if they

share a node. In both cases, the joint node automatically acts as the join attribute, so

there is no need to explicitly specify the join attributes in our language. We also note

that, in our language, the order of tables does not matter, since deciding the join order

is completely delegated to the compiler (details in Section 4.6.3).

The where clause contains the predicates to �lter out the unwanted tuples in the

join result. Predicates are arithmetic expressions and comparison using only the

columns in the join result, and we do not allow a predicate to contain any sub-query.

Finally, the select clause generates either a vertex table or a global value. We present
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prog F trans | prog1, . . . , progn | iter
trans F set name : sig = query
sig F vertex_table (type) | global_value (type)
type F vid | int | �oat
query F Qv | Qg
iter F do prog until �x (name)

| for var in num to num do prog end
Qv F select var, column

from table1 join . . . join tablem
where expr1 and . . . and exprr
group by var

Qg F select func (expr )
from table1 join . . . join tablem
where expr1 and . . . and exprr

table F name (var1 . . . vars )
column F expr | func (expr )
expr F num | var | expr opb expr | opu expr

| if (expr ) then expr else expr
func F max | min | count | sum | avg

Figure 4.9: The essential syntax of the query language.

both examples for Qv and Qд in Figure 4.10.

4.5.4 Case studies

In Figure 4.11 we implement the PageRank and single source shortest path (SSSP) using

our language. They are in general similar, so we just take PageRank as an example. A

PageRank computation takes a �xed number of iterations, and in each round the

vertex table Pr(u,pr) stores each vertex’s tentative pagerank and is updated based

on the previously computed result. The other tables involved are the edge table

Edge(u,v), a vertex table Degree(u,deg) storing each vertex u’s out-degree, and a

global value Size(g) storing the number of vertices in the graph. The new pagerank

for each vertex v is calculated from all the tuples (u,v,pr ,deд,д) having the same v ,

by summing up the pr/deд (to generate an intermediate table Msg in line 3) and then

performing a local computation (in line 7 by a separate query) on each vertex.
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Figure 4.10: Two query examples in our language.

PageRank

1 for i in 1 to 30 do
2 set Msg : vertex_table(float) =
3 select v, sum(pr / deg)
4 from Edge(u, v) join Pr(u, pr) join Deg(u, deg)
5 group by v
6 set Pr : vertex_table(float) =
7 select u, 0.85 * msg + 0.15 / g
8 from Msg(u, msg) join Size(g)
9 end

Single-Source Shortest Path

1 do
2 set Msg : vertex_table(int) =
3 select v, min(du + len)
4 from Edge(u, v, len) join Dist(u, du) join
5 Dist(v, d)
6 group by v
7 set Dist : vertex_table(int) =
8 select u, min(old, new)
9 from Dist(u, old) join Msg(u, new)

10 until fix(Dist)

Figure 4.11: PageRank and single-source shortest path (SSSP) implemented in our

language. The tables are assumed to be initialized.
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4.6 Compiling SQL-core to Pregel

In this section, we introduce our cost-based join algorithm for transforming a graph

query to a query plan, which is the key step in our compilation. The algorithm is

generally based on the multiprocessor hash-based join algorithm [47], but in the

domain of graph processing, the following facts make our algorithm di�erent from the

previous work:

• Usually in graph computations, the join does not produce an exceedingly large

intermediate table, making the memory consumption less a problem. Instead, we

are more concerned with the communication cost.

• In distributed-memory graph processing, optimizations play an important role

in achieving high-performance, therefore a straightforward join-based query

evaluation may su�er various kinds of performance issues. This paper also

focuses on extending the hash-join algorithm to make use of those optimizations.

We present the compilation algorithm in two parts. The basic hash-join algorithm

and our special cost model for communication cost are presented in this section, and

the extension of our compilation algorithm for supporting various optimizations will

be discussed in the next section. The whole compilation also includes other steps like

parsing and code generation, but they are either classic or uninteresting, so we can

safely skip them in this paper.

4.6.1 Distribution of tables

Processes are the basic computation unit in our graph system. They share no memory,

but can communicate with each other though the Message-Passing Interface (MPI).

Tables are horizontally partitioned across the processes in the system, and the

partitioning is decided by a hash function and a column of the table. The hash function

maps a vertex id to a process id, then for each tuple, the hash value of the chosen

column decides in which process it is stored.

The repartitioning of a table is a basic operation in our framework, which changes

the hash column to another one. When triggered, all the processes iterate over the



4.6 Compiling SQL-core to Pregel 71

tuples in the table stored on its local memory, and send each tuple to the designated

process decided by the new column.

This table distribution strategy plays a central role in our compilation algorithm,

which is the key to mapping our language to the vertex-centric execution model. We

justify our choice as follows:

• We can easily apply the multiprocessor version of the hash-based join algo-

rithms [47] to evaluate the query in parallel. In particular, if both tables are

partitioned by the join attribute, then all the tuples with the same join attribute

(which is called a bucket) will be stored on the same process, making the join

operation e�cient.

• The hash-based partitioning strategy is similar to Pregel’s design choice, which

assigns vertices to machines based on a random hash. Having this connection, we

manage to implement the query evaluation on Pregel, which avoids redundant

work.

• The hash-based partitioning does not provide the best load balancing. However, it

does not require any preprocessing, which is important to us since repartitioning

may be frequently used in the query evaluation, especially for complex joins.

• There are already lots of optimizations developed for Pregel systems, and it is

also our goal to automatically apply these optimizations in the query evaluation.

4.6.2 Inner join using vertex-centric computation

First, let us consider the join of two tables T1(a,b) and T2(a, c ) having a as the join

attribute, which is the simplest case of join. The communication cost of the join

depends on the partitioning of the two tables:

• If both tables are partitioned by the join attribute a, then it is obvious that all the

tuples with the same join attribute a in both tables are on the same process. In

this case, each bucket locally performs the join and introduces no communication

cost.

• Otherwise, suppose T1(a,b) is partitioned by b, then we perform a repartitioning

on column a by sending each tuple (a,b) in T1 to process hash(a) through
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Figure 4.12: Two di�erent join orders to evaluate T11T21T3.

message passing. We do the same thing for T2 if it is not partitioned by a. Then

we perform the local join.

To clearly describe the compilation algorithm, it is helpful to syntactically distinguish

a table’s di�erent ways of partitioning. We introduce the following notation T1(a∗,b)

with an asterisk attached to one of the columns, representing the concrete data

distribution of T1 that is partitioned by column a. Similarly, T1(a,b∗) is T1 partitioned

by column b. This notation also applies to the intermediate result of a join. For example,

we can say that the join result of T1(a∗,b) and T2(a∗, c ) is a table (a∗,b, c ). Here, the

order of the columns does not matter. The join strategy described above is our default
strategy.

4.6.3 E�cient join ordering

When joining more than two tables, di�erent join orders may result in di�erent

communication cost, and the decision of ordering is further a�ected by the subsequent

computation. To see this, consider the following example that calculates the join of

T1(a∗,b),T2(b, c∗) andT3(c∗,d ). Two di�erent query plans are presented in Figure 4.12,

where the left one joins T1 and T2 �rst, and the right one joins T2 and T3 �rst. It should

be noted that joining T1(a∗,b) and T3(b, c∗) is far too costly due to the absence of a

common attribute, so we consider it as an invalid join.
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We can see that the two query plans are likely to have di�erent communication

cost, since they use di�erent number of repartition operations. However, yet we cannot

say that the second query plan is better than the �rst one or vice versa. We should note

that (a,b, c∗,d ) and (a,b∗, c,d ) are the same table partitioned by di�erent columns.

Suppose the next join is on column c , then the second plan requires an additional

repartitioning operation, which is not re�ected in the current plan’s cost. Therefore,

just considering the cost of table generation can lead to the sub-optimal problem.

To calculate the best join order in the presence of subsequent computation, the

join algorithm should know in advance what column the solution is partitioned by.

Therefore, the input of the algorithm should is a pair (S,x ) where S contains the tables

to join, and x is the column that the result table is partitioned by. Here, x should be an

attribute of some T ∈ S , otherwise the input is not valid. For example in Figure 4.12,

we say that the query plan on the left is a solution for ({T1,T2,T3}, c ), and the query

plan on the right is a solution for ({T1,T2,T3},b).

Given a query, let S be the tables in the from clause and xs be the columns

appeared in S . For every x ∈ xs , we �nd the best query plan for the input (S,x ) using

Algorithm 4.1. This is a top-down description of the hash-join algorithm, in which we

solve a problem (S,x ) by breaking it into smaller sub-problems with the same structure.

It basically enumerates all possible query plans and selects the one with the minimum

cost. We leave the detailed explanation of the cost() function in the next subsection. To

avoid redundant computation caused by solving the same problem repeatedly, we

implement this algorithm in a bottom-up way using dynamic programming, ensuring

that each (S,x ) is evaluated exactly once.

We made the algorithm extensible by prede�ning the join strategies in a global

array in line 2. The default strategy is implemented in line 18, which is exactly the

join algorithm introduced in Section 4.6.2. Then, Algorithm 4.1 with the default join

strategy is su�cient to compile any table join to a valid query plan and then to a

vertex-program, but yet we cannot ensure the high e�ciency. We will discuss the other

join strategies in Section 4.7.3 for achieving better performance.
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Table 4.4: The estimation of the communication cost and the table size for each type of

node in the query plan.

node t cost (t ) size (t )
Leaf(t1) 0 n orm
Repar(t1) size(t1) ∗ (w − 1)/w size(t1)
Join(t1, t2) cost (t1) + cost (t2) size(t1) ∗ size(t2)/n
ReqResp(t1, t2) n ∗ (1 − e−size(t1)/n )+ size(t1)

cost (t1) + cost (t2)

4.6.4 Cost estimation

In this part, we present the implementation of cost() to complete the Algorithm 4.1.

The query plan has a tree structure where each leaf node is an input table and an

internal node represents a result table of a repartitioning or a join (see Figure 4.12 as an

example). Our cost() function applies to a node in the query plan and returns the

communication cost to generate the result table. We also need an auxiliary function

size() de�ned in the same way returning the estimated table size.

Three parameters n, m and w are used by our cost() and size() function, which

represent the number of vertices and edges in the input graph and the number of

processes launched by the user. One can also use the density (m/n) to implement these

functions, and w can be safely replaced by a large enough value. The two functions

are de�ned in Table 4.4 for each type of node in the query plan. To obtain a more

precise communication cost, we also keep track of the record size of each table (see

Section 4.7.1), but it is orthogonal to the implementation of these two functions.

4.6.5 Result table generation

Next, we brie�y go through the result table generation, which transforms the join

result to either a vertex table or a global value depending on the syntax (see Qv or Qд

in Figure 4.9).

Vertex Table

A vertex table is generated from the join result via the group by operation over one

of the columns in the table. The vertex attribute is calculated from an aggregate
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function. The following query from PageRank shows a typical example of vertex table

generation:

1 select v, sum(pr / deg)

2 from Edge(u, v) join Pr(u, pr) join Deg(u, deg)

3 group by v

The vertex table having v as the �rst column is generated from the join result

(u, v∗, deg, pr ). For each row, we �rst compute the expression inside the aggregation

function (which is pr/deд in this example), then all the rows with the same attribute v

sum up their values of pr/deд, generating a single value sum(pr/deд) associated to

vertex v . Those v’s that have not appeared in the join result are assigned with the

default value 0.

Global Value

The generation of a global value from the join result is simply implemented by all the

processes performing an all-reduce operation using MPI. In such case, the actual data

distribution of the join result does not matter, therefore we enumerate every column c

and choose the query plan (S, c ) having the minimum communication cost.

4.7 Deep optimizations for SQL-core

In this section, we present various strategies for optimizing the query plan for reducing

the computation and communication cost. Our language not only applies several

standard optimizations studied in relational database, but also makes use of graph-

speci�c optimizations in the graph system. We show that our relational model provides

abundant hints for the compiler to optimize di�erent kinds of graph transformations.

4.7.1 Filtering the table entries

The query �lters perform a straightforward task — �ltering the rows and columns of a

table — to reduce the size of intermediate tables as well as the communication cost.

The technique is intuitive and standard: rows are eliminated based on the predicates,

and columns are removed when they are not used in the consequent computation. We
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push down the �lters as early as possible. We also extend our cost-based join with an

additional attribute, the record size, to estimate the communication more precisely.

4.7.2 Improved vertex-table generation

In Section 4.6.5, the generation of a vertex table consists of two steps: (1) obtain the

join result partitioned by the vertex table’s �rst column, and (2) perform a local group
by on that column. In many cases, for example calculating the Msg table for PageRank

and SSSP in Figure 4.11, the query plan in the �rst step ends with a repartitioning

operation. Repartitioning is a relatively communication-intensive operation, since

most rows in the join result are involved. However, when the next operation is group
by, we can reduce the communication cost by shrinking the table before partitioning.

Our improved vertex-table generation consists of the following three steps: (1)

obtain the join result partitioned by some column c; (2) each process groups the

tuples on its local memory by column c and then repartition the join result by the

vertex table’s �rst column v , and (3) perform a second group by operation on v . It

generates the same table due to the associativity of the aggregation function. In the

new algorithm, we need to enumerate c and select the one that minimizes the total

communication cost. Algorithm 4.1 estimates the cost of the �rst step, and the cost of

the second step can be estimated by n(w − 1) (1 − (1 − 1/w )s/n ) by assuming a uniform

degree distribution [48], where s is the size of the join result.

4.7.3 Introduction of the optimized channels

In the last part, extend our compiling algorithm to support optimization channels.

The request-respond channel

Several graph algorithms (like Shiloach-Vishkin [16] and LACC [31]) may use an

auxiliary structure called pointer graph to keep track of the connectivity information

during the computation. The pointer graph is essentially a forest of rooted trees

consisting of all the vertices in the input graph. To store this structure, each vertex

just maintains a �eld indicating its current parent vertex in the pointer graph (a root

vertex points to itself), and communication occurs between a vertex with its parent or
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children. A common operation on this data structure is to �nd the grandparent for

every vertex, which is known to have skewed communication pattern.

We describe this operation in our language. The pointer graph can be represented

by a vertex table P(id, parent), and each vertex’s grandparent is also a vertex table

GP(id, grandparent). The following query generates the grandparent table from

the parent table:

1 select u, w

2 from P(u, v) join P(v, w)

3 group by u

The default join strategy converts P (u∗,v ) to P (u,v∗) and performs a local join on

column v , obtaining (u,v∗,w ). Then, another repartitioning is required to generate

the result table (u∗,w ). In a vertex-centric view, each vertex u sends a message to its

parent v in the �rst repartitioning, and every parent vertex v replies to its children the

w in the second one. They are exactly the request and respond steps.

In practice, there are high-degree parent vertices v due to the algorithm logic,

causing an imbalanced distribution for P (u,v∗). One solution proposed for this issue

is the request-respond paradigm [21]. After all the vertices emit the requests, the

processes will �rst merge the requests to the same parent vertex and then send out

only the distinct requests. As a result, a high-degree parent can receive at most one

request from each process instead of one request from each of its children, which

e�ectively avoid the hot spot.

The detection of this optimization is achieved by extending Algorithm 4.1 with a

new join strategy reqresp and adding a new ReqResp(t1, t2) node in the query plan. An

auxiliary function is_primary_key() is used to decide whether a column in the table is

the primary key.

The detailed implementation of this strategy is in Algorithm 4.2, and the communi-

cation cost is presented in Table 4.4 under the assumption that attribute u and v are

independent. Note that the cost function for default join does not tell anything about

the load balancing, but ReqResp plan is generally preferable when it is applicable.

The scatter-combine channel

Scalable graph computations are usually iterative, and it is a natural idea to take out

repeated computation from the iteration. Let us consider the following example, which
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is an iterative program that calculates the join of a vertex table Value (v,w ) and an

edge table Edдe (u,v ) in every iteration.

1 do

2 set T : vertex_table(int) =

3 select u, min(w)

4 from Edge(u, v) join Value(v, w)

5 group by u

6 ...

7 until fix(..)

At �rst glance, it is a request-respond pattern where each u sends a request to

every neighbor and calculates the minimum response value. However, the real issue is

not the load balancing but the heavy computation inside the iteration. In this query,

the edge table Edдe (u,v ) is immutable and there is no �lter, meaning that we will

send the vertex v’s current value w to every neighbor of u in every iteration. A graph

computation that frequently sends vertex attributes along a �xed set of edges is said to

have the static messaging pattern [28]. A conventional implementation incurs heavy

computational cost due to the sorting of the large message list, while the solution they

proposed is organizing the edges in a particular order, so that the message passing can

be implemented in a linear scan.

The requirements of this optimization is stricter than the request-respond pattern.

The query should (1) be inside an iteration, (2) have the edge table Edge(u,v ) in the

join, (3) have no �lter applicable to the current join, and (4) have u as the �rst column

and some value associated on v as the second column, or vice versa. Each step can be

easily detected by an auxiliary function, and due to the page limit, we do not present

the detailed implementation in this paper.

4.8 Evaluation of SQL-core

In this section, we evaluate the performance of our generated code, and also compares

our system with other frameworks. We select four representative algorithms in our

evaluation, including PageRank (PR) [51, 1], Shiloach-Vishkin algorithm (SV) [16, 21],

Triangle Counting (TC) and Single-Source Shortest Path (SSSP) [1]. The experiments

are conducted on Amazon EC2 cluster of 16 nodes (with instance type r4.2xlarge), each

having 8 vGPUs and 61 memory size. We use 128 processes (single-threaded) in our

evaluation, and the datasets are listed in Table 5.1 using real-world graphs.
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Table 4.5: Graph datasets used to evaluate our framework.

Graph Vertices Edges Density Description

DBpedia 18.27M 136.54M 7.47 The DBpedia hyperlink graph [49]

Queen_4147 4.15M 166.82M 40.23 3D structural problem [50]

HV15R 2.02M 283.07M 140.33 Computational Fluid Dynamics Problem [50]

uk-2005 39.45M 936.36M 23.73 2005 web crawl of .uk domain [50]

twitter7 41.65M 1.47B 35.25 twitter follower network [50]

sk-2005 50.64M 1.95B 38.50 2005 web crawl of .sk domain [50]
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Figure 4.13: Performance of the unoptimized vertex-centric programs in various

systems.

4.8.1 Performance without optimizations

We �rst evaluate the performance of our generated program using only Pregel’s

standard message passing interface. The main competitors are listed below:

• Palgol: a vertex-centric DSL on top of Pregel+ [21].

• Pregel+: the Pregel+ framework with the implementations of various Pregel

algorithms by human.

• SQL-core: our DSL that compiles to the Pregel-channel system (see Chapter 3).

• Channel: the original Pregel-channel framework with two additional optimiza-

tions (introduced in Section 4.7.3 but not used in the current experiment).
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All of these systems are implemented in C++ as a group of headers. There are also other

DSLs for Pregel implemented on other systems, like Green-Marl [19] that generates

C++ code and Fregel [20] with the Giraph [52] back end. We choose Palgol due to its

expressive power for practical Pregel algorithm and its concrete implementation for

e�ciency.

The results are presented in Figure 4.13. On all the six graphs, we observed similar

runtime for the four programs. Our language did generate the plan with the least

message size, which makes our program comparable with human written code (Pregel+

and Channel). The Palgol language also generates the code with optimal messages

size. These systems have subtle di�erences in implementation, like the choice of MPI

function, serialization methods and so on, making the runtime di�ers a bit.

This experiment mainly reveals the performance characteristics of the back end

system. In fact, our language is possible to be compiled to any of these back ends, but

we choose the current system mainly due to the powerful optimizations it supports,

which will be presented in the next subsection.

4.8.2 Performance with detected optimization

In this section, we focus on the SV and PageRank algorithm, which requires the

optimization techniques presented in Section 4.7.3 to achieve high e�ciency. The

evaluation results are presented in Figure 4.14.

The SV algorithm uses both optimizations and is presented in the upper-part, includ-

ing the unoptimized SV using our default join strategy (leftmost), and the optimized SV

with both optimization techniques detected (rightmost). The original channel-based

Pregel system also has these two optimizations, so we include it in the �gure. We

further include the linear algebra connected component (LACC) [31] algorithm here,

the state-of-the-art scalable algorithm for �nding connected components.

The compiler successfully detects the two optimizations. Compared to our unopti-

mized version, our optimized SV gains a huge speedup from 1.14× to 14.29× on all the

six datasets, and compared to the original Channel implementation, this number is on

average 2.7× (max 4.44×). For PageRank, we also observe a signi�cant performance

gain compared to unoptimized version (avg. 5.21×, max 7.45×), and it is faster than the

PageRank in the original Channel system.
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Figure 4.14: Performance of the Shiloach-Vishikin and PageRank algorithm in var-

ious systems. Both algorithm requires the optimization techniques introduced in

Section 4.7.3.
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4.9 Related work

Google’s Pregel [1] proposed the vertex-centric computing paradigm, which allows

programmers to think naturally like a vertex when designing distributed graph

algorithms. Some graph-centric (or block-centric) systems like Giraph+[24] and

Blogel [26] extends Pregel’s vertex-centric approach by making the partitioning

mechanism open to programmers, but it is still unclear how to optimize general

vertex-centric algorithms (especially those complicated ones containing non-trivial

communication patterns) using such extension.

Domain-Speci�c Languages (DSLs) are a well-known mechanism for describing

solutions in specialized domains. To ease Pregel programming, many DSLs have been

proposed, such as Palovca [53], s6raph [54], Fregel [20] and Green-Marl [19]. We

brie�y introduce each of them below.

Palovca [53] exposes the Pregel APIs in Haskell using a monad, and a vertex-centric

program is written in a low-level way like in typical Pregel systems. Since this

language is still low-level, programmers are faced with the same challenges in Pregel

programming, mainly having to tackle all low-level details.

At the other extreme, the s6raph system [54] is a special graph processing framework

with a functional interface, which models a particular type of graph algorithms

containing a single iterative computation (such as PageRank and Shortest Path) by six

programmer-speci�ed functions. However, many practical Pregel algorithms are far

more complicated.

A more comparable and (in fact) closely related piece of work is Fregel [20],

which is a functional DSL for declarative programming on big graphs. In Fregel, a

vertex-centric computation is represented by a pure step function that takes a graph as

input and produces a new vertex state; such functions can then be composed using a

set of prede�ned higher-order functions to implement a complete graph algorithm.

Palgol borrows this idea in the language design by letting programmers write atomic

vertex-centric computations called Palgol steps, and put them together using two

combinators, namely sequence and iteration. Compared with Fregel, the main strength

of Palgol is in its remote access capabilities:

• a Palgol step consists of local computation and remote updating phases, whereas

a Fregel step function can be thought of as only describing local computation,
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lacking the ability to modify other vertices’ states;

• even when considering local computation only, Palgol has highly declarative

�eld access expressions to express remote reading of arbitrary vertices, whereas

Fregel allows only neighboring access.

These two features are however essential for implementing the examples in Section 4.5.4,

especially the SV algorithm. Moreover, when implementing the same graph algorithm,

the execution time of Fregel is around an order of magnitude slower than human

written code; Palgol shows that Fregel’s combinator-based design can in fact achieve

e�ciency comparable to hand-written code.

Another comparable DSL is Green-Marl [55], which lets programmers describe

graph algorithms in a higher-level imperative language. This language is initially

proposed for graph processing on the shared-memory model, and a “Pregel-canonical”

subset of its programs can be compiled to Pregel. Since it does not have a Pregel-speci�c

language design, programmers may easily get compilation errors if they are not

familiar with the implementation of the compiler. In contrast, Palgol (and Fregel)

programs are by construction vertex-centric and distinguish the current and previous

states for the vertices, and thus have a closer correspondence with the Pregel model.

For remote reads, Green-Marl only supports neighboring access, so it su�ers the same

problem as Fregel where programmers cannot fetch data from an arbitrary vertex.

While it supports graph traversal skeletons like BFS and DFS, these traversals can

be encoded as neighborhood access with modest e�ort, so it actually has the same

expressiveness as Fregel in terms of remote reading. Green-Marl supports remote

writing, but according to our experience, it is quite restricted, and at least cannot be

used inside a loop iterating over a neighbor list, and thus is less expressive than Palgol.
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Algorithm 4.1 The cost-based join algorithm. Input: a set of tables S and a column x
by which the result is partitioned. Output: a query plan with the minimum cost.

1: . Prede�ned join strategies

2: strategies⇐ {default, reqresp, static }
3: procedure Solve(S,x )

4: . Case 1: Dealing with one table.

5: if |S |=1 then
6: T ⇐ the only table in S
7: return repartition_if_needed(Leaf(T ),x )
8: end if
9: . Case 2: Joining two tables.

10: ret ⇐ null
11: for (Sl , Sr ) ← valid_split(S) do
12: for s ← strategies do
13: p ⇐ repartition_if_needed(Join(s, Sl , Sr ),x )
14: . Cost estimation by cost()
15: if ret = null or cost(p) < cost(ret ) then
16: ret ⇐ p
17: end if
18: end for
19: end for
20: return ret
21: end procedure
22: . The default join operation on two tables

23: procedure Join(default, Sl , Sr )
24: c ⇐ common_attribute(Sl , Sr )
25: pl ⇐ solve(Sl , c)

26: pr ⇐ solve(Sr , c)

27: return Join(pl ,pr , c )
28: end procedure
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Algorithm 4.2 The reqresp join strategy. Input: two sub-queries S1 and S2 to join.

Output: a request-respond query plan or null if not applicable.

. The reqresp join operation on two tables

procedure Join(reqresp, Sl , Sr )
c ⇐ common_attribute(Sl , Sr )
if is_primary_key(Sr , c ) then

for u ← all_attributes(S) do
pl ⇐ solve(Sl ,u)

pr ⇐ solve(Sr , c)

return ReqResp(pl ,pr ,u)
end for

end if
return null

end procedure
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5
The Linear Algebra Approach

The linear algebra approach is yet another programming model for large-scale graph

processing and has gained big success in some graph problems like the breadth-�rst

search [56]. However, this approach is currently less popular than the vertex-centric

paradigm, which is probably due to the more abstract way of thinking required in the

linear algebraic programming of graph algorithms. This work tries to convince the

readers that the linear algebra approach is actually very promising which can not only

represent complex graph algorithms in an elegant way but also implement some graph

computation more e�ciently than the vertex-centric paradigm.

In this chapter, we propose two linear algebra algorithms, the FastSV algorithm

for �nding connected components in undirected graphs, and a linear algebra im-

plementation of Boruvka’s algorithm for �nding the minimum spanning forests in

undirected weighted graphs. Both algorithms are classic graph algorithms that have

numerous applications in modern areas like biological data analysis [57, 58], cancer

detection [59, 60], computer vision [61], clustering algorithms [62, 63], and scienti�c

computing. Our work not only enriches the set of problems the linear algebra approach
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Figure 5.1: Illustration of the matrix-vector multiplication for min-edge picking. In

Boruvka’s algorithm, matrix A is an undirected weighted graph and vector x encodes

both the supervertex id and the vertex’s own id. The mxv �nds for each vertex u the

minimum tuple (w, f [v],v ) among the v’s in u’s adjacency list.
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Figure 5.2: Illustration of the assign and extract operations (without a mask). In

Boruvka’s algorithm, vector f stores the supervertex of every vertex, which de�nes a

�attened tree structure for each connected component. The assign operation let every

supervertex collect the minimum value in the whole tree, and the extract operation let

every vertex see the value on the root.
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Algorithm 5.1 The SV algorithm. Input: An undirected graph G (V ,E). Output: The

parent vector f .

1: procedure SV(V ,E)

2: for every vertex u ∈ V do
3: f [u], fnext[u]← u
4: end for
5: repeat
6: . Step 1: Tree hooking

7: for every (u,v ) ∈ E do in parallel
8: if f [u] = f [f [u]] and f [v] < f [u] then
9: fnext[f [u]]← f [v]

10: end if
11: end for
12: f ← fnext
13: . Step 2: Shortcutting

14: for every u ∈ V do in parallel
15: if f [u] , f [f [u]] then
16: fnext[u]← f [f [u]]
17: end if
18: end for
19: f ← fnext
20: until f remains unchanged

21: end procedure

can handle, but also provides the most scalable connected component algorithm

and the most e�cient minimum spanning tree forest in the literature of distributed

graph computing, showing a promising future of the linear algebra approach in graph

processing.

5.1 The FastSV algorithm

In this section, we introduce four important optimizations for the simpli�ed SV

algorithm, obtaining FastSV with faster convergence.

5.1.1 A simpli�ed SV algorithm

Algorithm 5.1 describes the simpli�ed SV algorithm, which is the basis of our parallel

algorithm. Initially, the parent f [u] of a vertex u is set to itself to denote n single-vertex
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trees. We additionally maintain a copy fnext of the parent vector so that the parallel

algorithm reads from f and writes to fnext . Given a �xed ordering of vertices, each

execution of Algorithm 5.1 generates exactly the same pointer graph after the ith

iteration because of using separate vectors for reading and writing. Hence, the

convergence pattern of this parallel algorithm is completely deterministic, making it

suitable for massively-parallel distributed systems. By contrast, concurrent reading

from and writing to a single vector f still deliver the correct connected components,

but the structures of intermediate pointer graphs are not deterministic.

In each iteration, the algorithm performs tree hooking and shortcutting operations

in order:

• Tree hooking (line 6–8): for every edge (u,v ), if u’s parent f [u] is a root and

f [v] < f [u], then make f [u] point to f [v]. As mentioned before, the updated

parents are stored in a separate vector fnext so the updated parents are not used

in the current iteration.

• Shortcutting (line 11–13): if a vertex u does not point to a root vertex, make u

point to its grandparent f [f [u]].

The algorithm terminates when the parent vector remains unchanged in the latest

iteration. At termination, every tree becomes a star, and vertices in a star constitute a

connected component. The correctness of this algorithm is discussed in previous

work [64]. However, as mentioned before, without the unconditional hooking used in

the original SV algorithm, we can no longer guarantee that Algorithm 5.1 converges in

O (logn) iterations. We will show in Section 5.5 that Algorithm 5.1 indeed converges

slowly, but does not require the worst case bound O (n) iterations for the practical

graphs we considered. Nevertheless, the extra iterations needed by Algorithm 5.1

increase the runtime of parallel SV algorithms. To alleviate this problem, we develop

several novel hooking schemes, ensuring that the improved algorithm FastSV is as

simple as Algorithm 5.1, but the former converges faster than the latter.
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¬
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Figure 5.3: Two di�erent ways of performing the tree hooking. (1) the original

algorithm that hooks u’s parent f [u] to v’s parent f [v], (2) hook u’s parent f [u] to

v’s grandparent f [f [v]]. Both strategies are correct and the latter one improves the

convergence.

5.1.2 Optimizations to improve convergence

Hooking to grandparent

In the original algorithm, the tree hooking is represented by the assignment fnext[f [u]]←

f [v] (line 8 in Algorithm 5.1) requiring f [u] to be a root vertex, (u,v ) ∈ E and

f [v] < f [u]. It is not hard to see, if we perform the tree hooking using v’s grandparent

f [f [v]], saying fnext[f [u]]← f [f [v]], the algorithm will still produce the correct

answer. To show this, we visualize both operations in Figure 5.3.

Suppose (u,v ) is an edge in the input graph and f [v] < f [u]. The original hooking

operation is represented by the green arrow in the �gure, which hooks f [u] to v’s

parent f [v]. Then, our new strategy simply changes f [v] to v’s grandparent f [f [v]],

resulting the red arrow from f [u] to f [f [v]]. It is not hard to see, as long as we choose

a value like f [f [v]] such that it is in the same tree of v , we can easily prove the

correctness of the algorithm. One can also expect that any value like f k[v] (v’s k-th

level ancestor) will also work.

Intuitively, choosing a higher ancestor of v in the tree hooking will likely create

shorter trees, leading to faster convergence (all trees are stars at termination). However,

�nding higher ancestors may incur additional computational cost. Here, we choose

grandparents f [f [v]] because they are needed in the shortcutting operation anyway;

hence, using grandparents does not incur additional cost in the hooking operation.
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In this example, f [ f [v2 ]] < f [ f [u2 ]] and
f [ f [v1 ]] < f [u1 ] are assumed so that the
stochastic hooking works in this way.

Pointer Graph

Figure 5.4: The stochastic hooking strategy. Suppose there are two edges (u1,v1) and

(u2,v2) activating the hooking operation. The red arrows are the potential modi�cations

to the pointer graph due to our stochastic hooking strategy, which tries to hook a

non-root vertex to another vertex. The solid line successfully modi�es f [u2]’s pointer

to f [f [v2]], but the dashed lines do not take e�ect due to the ordering on the vertices.

Stochastic hooking.

The original SV algorithm and Algorithm 5.1 always hooked the root of a tree onto

another tree (see Figure 5.3 for an example). Therefore, the hooking operation in

Algorithm 5.1 never breaks a tree into multiple parts and hooks di�erent parts to

di�erent trees. This restriction is enforced by the equality check f [f [u]] = f [u] in line

7 of Algorithm 5.1, which is only satis�ed by roots and their children. We observed

that this restriction is not necessary for the correctness of the SV algorithm. Intuitively,

we can split a tree into multiple parts and hook them independently because these

tree fragments will eventually be merged to a single connected component when the

algorithm terminates. We call this strategy stochastic hooking.

The stochastic hooking strategy can be employed by simply removing the condition

f [f [u]] = f [u] from line 7 of Algorithm 5.1. Then, any part of a tree is allowed to

hook onto another vertex when the other hooking conditions are satis�ed. It should be

noted that after removing the condition f [f [u]] = f [u], it is possible that a tree may

hook onto a vertex in the same tree. This will not a�ect the correctness though. In this

case, the e�ect of stochastic hooking is similar to the shortcutting, which hooks a

vertex to some other vertex with a smaller identi�er.
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In this example, f [ f [v2 ]] < f [ f [u2 ]] and
f [ f [v1 ]] < f [u1 ] are assumed so that the
aggressive hooking works in this way.

Pointer Graph

Figure 5.5: The aggressive hooking strategy. Suppose there are two edges (u1,v1) and

(u2,v2) activating the hooking operation. The green arrows represent the hooking

strategies introduced so far, and the red arrows represent our aggressive hooking

strategy where a vertex may point at one of its neighbor’s grandparent. Some vertices

may have multiple arrows (like u2), and which vertex to hook onto is decided by the

ordering on the vertices.

Figure 5.4 shows an example of stochastic hooking by the solid red arrow from

f [u2] to f [f [v2]]. In the original algorithm, u2 does not modify its non-root parent

f [u2]’s pointer, but stochastic hooking changes f [u2]’s pointer to one of u’s neighbor’s

grandparent f [f [v2]]. Suppose f [u1] points to f [f [v1]] after the tree hooking, we

can see that f [u1] and f [u2] might be no longer in the same connected component

(assuming f [f [v1]] and f [f [v2]] are in di�erent trees). Possible splitting of trees is a

policy that di�ers from the conventional SV algorithm, but it gives a non-root vertex

an opportunity to be hooked. In Figure 5.4, f [u2]’s new parent f [f [v2]] is smaller than

f [u1], which can expedite the convergence.

Algorithm 5.2 presents the high-level description of FastSV using the new hooking

strategies. Here,

min

←−−− denotes a compare-and-assign operation that updates an entry of

fnext only when the right hand side is smaller. The stochastic hooking is shown in line

6–7, and the shortcutting operation in line 12–13 is also a�ected by the removal of the

predicate f [f [u]] = f [u].
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Aggressive hooking.

Next, we give a vertex u another chance to hook itself onto another tree whenever

possible. This strategy is called aggressive hooking, performed by fnext[u]
min

←−−− f [f [v]]

for all (u,v ) ∈ E. Figure 5.5 gives an example of aggressive hooking by the red arrow for

u1 and u2. Here, u1’s pointer will not be modi�ed by any hooking operation introduced

so far. Then, the aggressive hooking makes u1 point to its newest grandparents

f [f [v1]], as if an additional shortcutting is performed. We should mention that the cost

of an additional shortcutting f ′next ← fnext[fnext] is expensive due to the recalculation

of grandparents, while the aggressive hooking is essentially a cheap element-wise

operation over f by reusing some results in the stochastic hooking. We will discuss

how they are implemented Section 5.1.3.

Foru2 in Figure 5.5, it only performs the shortcutting operation fnext[u2]← f [f [u2]]

in the original algorithm, and now the aggressive hooking performs fnext[u2] ←

f [f [v2]]. Our implementation let f [u2] point to the smaller one between f [f [u2]] and

f [f [v2]], which is expected to give the best convergence for vector f .

Early termination.

The last optimization is a generic one that applies to most variations of the SV algorithm.

SV’s termination is based on the stabilization of the parent vector f , which means even

if f reaches the converged state (where every vertex points to the smallest vertex in its

connected component), we need an additional iteration to verify that. We will see in

Section 5.3.4 that for most real-world graphs, FastSV usually takes 5 to 10 iterations to

converge. Hence, this additional iteration can consume a signi�cant portion of the

runtime. The removal of the last iteration is possible by detecting the stabilization of

the grandparent f [f ] instead of f . The following lemma ensures the correctness of

this new termination condition.

Lemma 5.1 After an iteration, if the grandparent f [f ] remains unchanged, then the
vector f will not be changed afterwards.

The proof makes use of the following lemmas.

Lemma 5.2 During the whole algorithm, f [u] ≤ u holds for all vertices u.



5.1 The FastSV algorithm 95

Algorithm 5.2 The FastSV algorithm. Input: G (V ,E). Output: The parent vector f

1: procedure FastSV(V ,E)

2: for every vertex u ∈ V do
3: f [u], fnext[u]← u
4: end for
5: repeat
6: . Step 1: Stochastic hooking

7: for every (u,v ) ∈ E do in parallel

8: fnext[f [u]]
min

←−−− f [f [v]]
9: end for

10: . Step 2: Aggressive hooking

11: for every (u,v ) ∈ E do in parallel

12: fnext[u]
min

←−−− f [f [v]]
13: end for
14: . Step 3: Shortcutting

15: for every u ∈ V do in parallel

16: fnext[u]
min

←−−− f [f [u]]
17: end for
18: f ← fnext
19: until f [f ] remains unchanged

20: end procedure

Proof. Initially, f [u] = u for all vertex u and the lemma holds trivially. The the

operation

min

←−−− ensures that f can only decrease, so the lemma always holds. ut

Lemma 5.3 After an iteration, if the grandparent f [f ] remains unchanged, then every
vertex hooks onto its grandparent in the previous operation.

Proof. By contradiction. Suppose u changes its pointer to some v other than f [f [u]],

then since it overrides the shortcutting operation fnext[u]
min

←−−− f [f [u]] we know that

v < f [f [u]]. By Lemma 5.2, u’s new grandparent fnext[v] ≤ v < f [f [u]], then the

grandparent of u is changed. ut

Lemma 5.4 After an iteration, if the grandparent f [f ] remains unchanged, then every
vertex points to a root now.

Proof. By contradiction. Suppose u’s new parent v is not a root, then u’s new

grandparent is fnext[v] < v = f [f [u]] (by Lemma 5.2 and Lemma 5.3), which means

u’s grandparent has changed. ut
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Here we prove Lemma 5.1.

Proof. We show that no hooking operation will be performed if f [f ] remains

unchanged after an iteration. The aggressive hooking in the form of fnext[u]
min

←−−−

f [f [v]] is overridden by the shortcutting operation fnext[u]
min

←−−− f [f [u]] in the

previous iteration (by Lemma 5.3), meaning that f [f [u]] ≤ f [f [v]] for all (u,v ) ∈ E.

Since then, f [f ] is not changed, so the aggressive hooking will not be performed in

the current iteration either. The stochastic hooking fnext[f [u]]
min

←−−− f [f [v]] will not

be performed since for all (u,v ) ∈ E we have f [f [u]] ≤ f [f [v]]. Shortcutting will not

be performed either since every vertex points to a root now (by Lemma 5.4). Then, no

hooking operation can be performed, and the vector f remains unchanged afterwards.

ut

In practice, we found that on most practical graphs, FastSV identi�es all the

connected components before converged, and the last iteration always performs the

shortcutting operation to turn the trees into stars. In such case, the grandparent vector

f [f ] converges one iteration earlier than f .

5.1.3 A linear algebra formulation

In GraphBLAS, we assume that the vertices are indexed from 0 to |V |−1, then the vertices

and their associated values are stored as GraphBLAS object GrB_Vector. The graph’s

adjacency matrix is stored as a GraphBLAS object GrB_Matrix. For completeness, we

concisely describe the GraphBLAS functions used in our implementation below, where

the formal descriptions of these functions can be found in the API document [5]. We

use ∅ to denote GrB_NULL, which is fed to those ignored input parameters.

• The function GrB_mxv(y, ∅, accum, semiring,A, x, ∅) multiplies the matrix A
with the vector x on a semiring and outputs the result to the vector y. When the

accumulator (a binary operation accum) is speci�ed, the multiplication result is

combined with y’s original value instead of overwriting it.

• The function GrB_extract(y, ∅, ∅, x, index, n, ∅) extracts a sub-vector y from

the speci�ed positions in an input vector x . We can regard this operation as

y[i]← x[index[i]] for i ∈ [0 . . n − 1] where n is the length of the array index
and also the vector y.
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• The function GrB_assign(y, ∅, accum, x, index, n, ∅) assigns the entries from

the input vector x to the speci�ed positions of an output vector y. We can regard

it as y[index[i]] ← x[i] for i ∈ [0 . . n − 1] where n is the length of the array

index and also the vector x . accum is the same as the one in GrB_mxv.

• The function GrB_eWiseMult(y, ∅, ∅, binop, x1, x2, ∅)) performs the element-

wise (generalized) multiplication on the intersection of elements of two vectors

x1 and x2 and outputs the vector y.

• The function GrB_Vector_extractTuples(index, value, &n, f ) extracts the

nonzero elements (tuples of index and value) from vector f into two separate

arrays index and value. It returns the element count to n.

For the rest functions, we have GrB_Vector_dup to duplicate a vector, GrB_reduce

to reduce a vector to a scalar value through a user-speci�ed binary operation, and

GrB_Matrix_nrows to obtain the dimension of a matrix.

Algorithm 5.3 describes the FastSV algorithm in GraphBLAS. Before every iteration,

we calculate the initial grandparent gf for every vertex. First, we perform the stochastic

hooking in line 10–11. GraphBLAS has no primitive that directly implements the parallel-

for on an edge list (line 9 in Algorithm 5.2), so we have to �rst aggregatev’s grandparent

gf [v] to vertex u for every (u,v ) ∈ E, obtaining the vector mngf [u] = minv∈N (u) gf [v].
This can be implemented by a matrix-vector multiplication mngf = A · gf using

the (select2nd, min) semiring. Next, the hooking operation is implemented by the

assignment f [f [u]]← mngf [u] for every vertex u. This is exactly the GrB_assign

function in line 10 where the indices are the values of vector f extracted in either line

5 before the �rst iteration or line 16 from the previous iteration. The accumulator

GrB_MIN prevents the nondeterminism caused by the modi�cation to the same entry

of f , and the minimum operation gives the best convergence in practice.

Aggressive hooking is then implemented by an element-wise multiplication

f ← min( f ,mngf ) in line 13. Although it is another operation in FastSV that performs

the parallel-for on an edge list, it can reuse the vector mngf computed in the previous

step, so the aggressive hooking is actually e�cient. Shortcutting is also implemented

by an the element-wise multiplication f ← min( f , gf ) in line 15. Next, we calculate

the grandparent vector gf [u] ← f [f [u]]. It is implemented by the GrB_extract

function in line 18 where the indices are the values of f extracted in line 17.
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Algorithm 5.3 The linear algebra FastSV algorithm. Input: The adjacency matrix A
and the parent vector f . Output: The parent vector f .

1: procedure FastSV(A, f )

2: GrB_Matrix_nrows (&n,A)
3: GrB_Vector_dup (&gf , f ) . initial grandparent

4: GrB_Vector_dup (&dup, gf ) . duplication of gf
5: GrB_Vector_dup (&mngf , gf )
6: GrB_Vector_extractTuples (index, value,&n, f )
7: Sel2ndMin← a (select2nd, Min) semiring

8: repeat
9: . Step 1: Stochastic hooking

10: GrB_mxv (mngf , ∅,GrB_MIN, Sel2ndMin,A, gf , ∅)
11: GrB_assign ( f , ∅,GrB_MIN,mngf , value, n, ∅)
12: . Step 2: Aggressive hooking

13: GrB_eWiseMult ( f , ∅, ∅,GrB_MIN, f ,mngf , ∅)
14: . Step 3: Shortcutting

15: GrB_eWiseMult ( f , ∅, ∅,GrB_MIN, f , gf , ∅)
16: . Step 4: Calculate grandparents

17: GrB_Vector_extractTuples (index, value,&n, f )
18: GrB_extract (gf , ∅, ∅, f , value, n, ∅)
19: . Step 5: Check termination

20: GrB_eWiseMult (di� , ∅, ∅,GxB_ISNE, dup, gf , ∅)
21: GrB_reduce (&sum, ∅,Add, di� , ∅)
22: GrB_assign (dup, ∅, ∅, gp,GrB_ALL, 0, ∅))
23: until sum = 0

24: end procedure

At the end of each iteration, we calculate the number of modi�ed entries in gf in

line 20 – 21 to check whether the algorithm has converged or not. A copy of gf is

stored in the vector dup for determining the termination in the next iteration.

5.1.4 A distributed implementation using CombBLAS

The distributed version of FastSV is implemented in CombBLAS [4]. CombBLAS

provides all operations needed for FastSV, but its API di�ers from the GraphBLAS

standard. GraphBLAS’s collections (matrices and vectors) are opaque datatypes whose

internal representations (sparse or dense) are not exposed to users, but CombBLAS

distinguishes them in the user interface. Then, GraphBLAS’s functions often consist of

multiple operations (like masking, accumulation and the main operation) as described
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in Section 5.1.3, while in CombBLAS we usually perform a single operation at a time.

Despite these di�erences, a straightforward implementation of FastSV on CombBLAS

can be obtained by transforming each GraphBLAS function to the semantically

equivalent ones in CombBLAS, using dense vectors in all scenarios.

The parallel complexity of the main linear algebraic operations used in FastSV (the

vector variants of GrB_extract and GrB_assign, and the GrB_mxv), as well as the

potential optimizations are discussed in the LACC paper [31]. Due to the similarity

of FastSV and LACC in the algorithm logic, they can be optimized by the similar

optimization techniques. We brie�y summarize them below.

Broadcasting-based implementation for the extract and assign operations.
The extract and assign operations fetch or write data on the speci�ed locations of a

vector, which may cause a load balancing issue when there is too much access on

a few locations. In FastSV, these locations are exactly the set of parent vertices in

the pointer graph, and due to the skewed structure of the pointer graph, the root

vertices (especially those belonging to a large component) will have extremely high

workload. When using the default assign and extract implementations in CombBLAS

via all-to-all communication, several processes become the bottleneck and slow down

the whole operation signi�cantly. The solution is a manual implementation of these

two operations via the detection of the hot spots and broadcasting the entries on those

processes.

Taking advantage of the sparsity. The matrix-vector multiplication mngf =
A ·gf is an expensive operation in FastSV (see our performance pro�ling in Figure 5.2.6).

The straightforward implementation naturally chooses the sparse-matrix dense-vector

(SpMV) multiplication, since all the vectors in FastSV are dense vectors. Alternatively,

we can use an incremental implementation by computing ∆mngf = A · (∆gf ), where

∆gf = gf − gf prev containing only the modi�ed entries of gf is stored as a sparse vector,

so the multiplication is the sparse-matrix sparse-vector multiplication (SpMSpV) [65].

Depending on the sparsity of ∆gf , SpMSpV could have much lower computation and

communication cost than SpMV. We use a threshold on the portion of modi�ed entries

of gf to decide which method to use in each iteration, which e�ectively reduces the

computation time. Figure 5.2.6 presents a detailed evaluation.
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5.2 Evaluation of FastSV

In this section, we evaluate various aspects of FastSV showing its fast convergence,

shared- and distributed-memory performance, scalability and several other performance

characteristics. We compare FastSV with LACC [31] that has demonstrated superior

performance over other distributed-memory parallel CC algorithms. Table 5.1 shows a

diverse collection of large graphs used to evaluate CC algorithms. To the best of out

knowledge, the Hyperlink graph [67] with 3.27B vertices and 124.90B edges is the

largest publicly available graph.

5.2.1 Evaluation platform

We evaluate the performance of distributed algorithms on NERSC Cori supercomputer.

Each node of Cori has Intel KNL processor with 68 cores and 96GB of memory.
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Table 5.1: Graph datasets used to evaluate the parallel connected component algorithms.

Graph Vertices Edges CCs Description

Queen_4147 4.15M 166.82M 1 3D structural problem [50]

kmer_A2a 170.73M 180.29M 5353 Protein k-mer graphs from GenBank [50]

archaea 1.64M 204.78M 59794 archaea protein-similarity network [66]

kmer_V1r 214.01M 232.71M 9 Protein k-mer graphs, from GenBank [50]

HV15R 2.02M 283.07M 1 Computational Fluid Dynamics Problem [50]

uk-2002 18.48M 298.11M 1990 2002 web crawl of .uk domain [50]

eukarya 3.24M 359.74M 164156 eukarya protein-similarity network [66]

uk-2005 39.45M 936.36M 7727 2005 web crawl of .uk domain [50]

twitter7 41.65M 1.47B 1 twitter follower network [50]

SubDomain 82.92M 1.94B 246969 1st-level subdomain graph extracted from Hyperlink [67]

sk-2005 50.64M 1.95B 45 2005 web crawl of .sk domain [50]

MOLIERE_2016 30.22M 3.34B 4457 automatic biomedical hypothesis generation system [50]

Metaclust50 282.20M 37.28B 15982994 similarities of proteins in Metaclust50 [66]

Hyperlink 3.27B 124.90B 29360027 hyperlink graph extract from the Common Crawl [67]
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Figure 5.8: Performance of the parallel FastSV and LACC in SuiteSparse:GraphBLAS on

six small graphs.

All operations in CombBLAS are parallelized with OpenMP and MPI. Given p MPI

processes, we always used a square

√
p ×
√
p process grid. In our experiments, we used

16 threads per MPI process. The execution pattern of our distributed algorithm follows

the bulk synchronous parallel (BSP) model, where all MPI processes perform local

computation followed by synchronized communication rounds.

We also show the shared-memory performance of FastSV in the SuiteSparse:GraphBLAS

library [27]. These experiments are conducted on Amazon EC2’s r5.4xlarge instance

(128G memory, 16 threads).
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Figure 5.9: Strong scaling of distributed-memory FastSV and LACC using up to 16384

cores (256 nodes).

5.2.2 Speed of convergence

At �rst, we show how di�erent hooking strategies impact the convergence of SV and

FastSV algorithms. We start with the simpli�ed SV algorithm (Algorithm 5.1) and

incrementally add di�erent hooking strategies as shown in Figure 5.7. The rightmost

bars report the number of iterations needed by LACC.

Figure 5.7 shows that the simpli�ed SV without unconditional hooking can take up

to 1.57× more iterations than LACC. We note that despite needing more iterations,

Algorithm 5.1 can run faster than LACC in practice because each iteration of the

former is faster than each iteration of the latter. Figure 5.7 demonstrates that SV

converges faster as we incrementally apply advanced hooking strategies. In fact, every

hooking strategy improves the convergence of some graphs, and their combination

improves the convergence of all graphs. Finally, the early termination discussed in

Section 5.1.2 always removes an additional iteration needed by other algorithms. With

all improvements, sv5 which represents Algorithm 5.2, on average reduces 35.0%

iterations (min 20%, max 46.2%) from Algorithm 5.1. Therefore, FastSV converges as

quickly as, or faster than, LACC.
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Figure 5.10: The speedup of FastSV over LACC on twelve small datasets using 256

cores (bar chart) and each graph’s density in terms of average vertex degree (line

chart). A positive correlation between the two metrics can be observed, except for the

two outliers archaea and eukarya.

5.2.3 Shared-memory performance

To check the correctness of Algorithm 5.3, we implemented it in SuiteSparse:GraphBLAS,

a multi-threaded implementation of the GraphBLAS standard. LACC also has an

unoptimized SuiteSparse:GraphBLAS implementation available as part of the LAGraph

library [68]. We compare the performance of Figure 5.8 and LACC in this setting on an

Amazon EC2’s r5.4xlarge instance with 16 threads. Figure 5.8 shows that FastSV is

signi�cantly faster than LACC (avg. 8.66×, max 13.81×). Although both algorithms are

designed for distributed-memory platforms, we still observe better performance of

FastSV, thanks to its simplicity.

5.2.4 Distributed-memory performance

We now evaluate the performance of FastSV implemented using CombBLAS and

compare its performance with LACC on the Cori supercomputer. Both algorithms are

implemented in CombBLAS, so they share quite a lot of common operations and

optimization techniques (see Section 5.1.4), making it a fair comparison between the

two algorithms. Generally, FastSV operates with simpler computation logic and uses

less expensive parallel operations than LACC. However, depending on the structure of

the graph, LACC can detect the already converged connected components on the �y

and can potentially use more sparse operations. Hence, the structure of the input

graph often in�uences the relative performance of these algorithms.

Figure 5.9 summarizes the performance of FastSV and LACC on twelve small
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datasets. We observe that both FastSV and LACC scale to 4096 cores on all the graphs,

and for the majority of the graphs (8 out of 12), they continue scaling to 16384 cores.

The four graphs on which they stop scaling are just too small that both algorithms

�nish within 2 seconds. FastSV outperforms LACC on all instances. On 256 cores,

FastSV is 2.80× faster than LACC on average (min 1.66×, max 4.27×). When increasing

the number of nodes, the performance gap between FastSV and LACC shrinks slightly,

but FastSV is still 2.53×, 1.97× and 1.61× faster than LACC on average on 1024, 4096

and 16384 cores, respectively.

To see how the performance of FastSV and LACC are a�ected by the graph structure,

we plot the average degree (|E |/|V |) and the speedup of FastSV over LACC for each

graph (using 1024 cores) in Figure 5.10. Generally, FastSV tends to outperform LACC

by a signi�cant margin on denser graphs. This is mainly due to fewer matrix-vector

multiplications used in FastSV, whose parallel complexity is highly related to the

density of the graph. The outliers archaea and eukarya are graphs with a large number

of small connected components: they have more than 30% converged vertices detected

early. On such graphs, LACC’s detection of converged connected components provides

it with better opportunities to employ sparse operations, while such detection is not

allowed in FastSV. Nevertheless, LACC’s sparsity optimization still cannot compensate

its high computational cost in each iteration.

5.2.5 Strong scalability

We separately analyze the performance of FastSV and LACC on the two largest graphs

in Table 5.1. Hyperlink is perhaps the largest publicly available graph, making it the

largest connectivity problem we can currently solve. Since each of these two graphs

requires more than 1TB memory, it may be impossible to process them on a typical

shared-memory server. Figure 5.11 shows the strong scaling of both algorithms and the

better performance of FastSV. On the smaller graph Metaclust50, both algorithms scale

to 65, 536 cores where FastSV is 1.47× faster than LACC. On the Hyperlink graph

containing 124.9 billion edges, they continue scaling to 262, 144 cores, where FastSV

achieves an 2.03× speedup over the LACC algorithm.
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Figure 5.11: Performance of FastSV and LACC with two large graphs on CoriKNL (up

to 262144 cores using 4096 nodes).

5.2.6 Performance characteristics

In this subsection, we present more aspects of FastSV to help readers understand the

characteristics of this algorithm.

Performance breakdown.

Figure 5.12 shows the execution time of FastSV by breaking the runtime into three

parts: �nding the grandparent, matrix-vector multiplication, the hooking operations.

The time spent on checking the termination is omitted, since it is insigni�cant relative

to other operations. Each of these operations contributes signi�cantly to the total

execution time. Finding the grandparent and the hooking operations basically re�ect

the parallel complexity of the extract and assign operations, and the ratio of them

is relatively stable for all graphs. By contrast, the execution time of SpMV varies

considerably across di�erent graphs, because SpMV’s complexity depends on the

density of a graph.

Execution time reduced by the sparsity optimization.

As mentioned in Section 5.1.4, FastSV dynamically selects SpMV or SpMSpV based

on the changes in the grandparent vector gf . This optimization is particularly e�ective

for high-density graphs where SpMV usually dominates the runtime (see Figure 5.12).

Figure 5.13 explains the bene�t of sparsity with four representative graphs, where we

plot the number of vertices modi�ed in each iteration. We observe that only a small

fraction of vertices participates in the last few iterations where SpMSpV can be used
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Figure 5.12: Performance breakdown of FastSV on four representative graphs.

instead of SpMV. As shown by the red runtime lines in Figure 5.13, the use of SpMSpV

drastically reduces the runtime of the last few iterations.

5.3 Boruvka’s algorithm

5.3.1 Vertex-centric Boruvka’s Algorithm

Boruvka’s algorithm [18] is considered the easiest for parallelization among the classic

MSF algorithms [18, 69, 70]. Conventionally, its parallelization on distributed-memory

is based on the Pregel [1] model where the computation is encoded as a vertex-program
that runs on every vertex and exchanges messages with the other vertex in a bulk

synchronous way [9]. Boruvka’s algorithm proceeds in rounds, and in each round, it

picks a set of edges in a greedy manner and adds them to the �nal results. The edges

selected so far constitute a forest, in the edge of each round we contract the graph by

removing the edges inside each tree. The algorithm terminates when all the edges are

removed. It is worth noting that to quickly check whether an edge is connecting

two vertices in the same tree or not, we encode all the spanning trees in a forest as
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Figure 5.13: Percentage of vertices that participate in the SpMV (sparse matrix-vector

multiplication) operation for each iteration (bar chart), and the runtime for SpMV (line

chart). A vertex participates the SpMV if its grandparent gf is not changed in the

previous iteration.

a vector f , as shown in Figure 5.14. Each spanning tree elects a root vertex (a.k.a.

supervertex [71]), and the vector f stores the parent vector for every vertex (the root

points to itself). By �attening this structure, we have f stores each vertex’s supervertex

so that we can easily tell whether two vertices are in the same spanning tree or not.

Boruvka’s algorithm starts with n supervertices each containing a singe vertex. In

each round, we perform the following steps to construct the minimum spanning tree.

• Min-edge picking: each supervertex selects the minimum edge from the

outgoing edges of all the vertices in the spanning tree. This selected edge is then

a candidate of the �nal result
1
. This procedure is further divided into two steps:

– Step 1: every vertex u �nds the minimum ordered pair (w, f [v]) for all v

in u’s adjacency list. Then, u sends the ordered pair along with the selected

edge (u,v ) to u’s supervertex f [u].

– Step 2: every supervertex then picks the minimum ordered pair (w, f [v])

among the received edges and changes its pointer to the supervertex f [v].

1
The same edge might be picked by the supervertices of both endpoints. In this situation we only

keep one of them and add it to the �nal result.
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Figure 5.14: Encode the currently recognized connected components of a graph as a

vector. Each connected component has a unique identi�er called supervertex, and all

the vertices connect to the supervertex through a direct link or a path.

If the spanning tree is isolated, the supervertex does nothing.

• Supervertex selection: after the min-edge picking, the non-isolated superver-

tices in the graph will constitute a set of conjoined-trees [71], each being a

directed tree with a cycle of length two on the top. We identify every such cycle

(u,v ), select the smaller one of u and v as the new supervertex and make it a

new root by creating a self-loop.

• Flattening: every vertex u �nds the supervertex by repeatedly performing the

shortcutting operation f [u]← f [f [u]] until the vector f stabilizes.

• Edge cleaning: remove the edges inside each tree, which are (u,v ) ∈ E having

f [u] = f [v]. Repeat the above steps if there are still edges remained.

Figure 5.15 shows the MSF computation on a weighted graph using Boruvka’s

algorithm. Starting from the input graph, every supervertex (which has no child in the

�rst iteration) selects the minimum edge and the arrows form three conjoined-trees.

Then, the vertices 2, 3, 4 are selected as the new supervertices. The �attening operation

makes every vertex directly point to the new supervertex, and the edge cleaning

removes the edges inside each spanning tree. The graph is neither shrunk nor relabeled

in order to maintain a low computation and communication cost. From the second

iteration, the min-edge picking needs every supervertex to select the minimum

outgoing edge from the whole spanning tree, and the result is shown in the lower left

�gure. The other operations are similar to the �rst iteration, generating a spanning

tree containing all the vertices in the graph. The algorithm then terminates.
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Figure 5.15: The MSF computation using Boruvka’s algorithm, from the beginning to

the min-edge picking in the second iteration. The arrows represent the parent vector f .

The primary issue a�ecting the distributed-memory performance in Pregel-like

systems is the edge cleaning, which requires the predicate f [u] = f [v] to be evaluated

on every edge (u,v ). In these systems, vector f is an attribute associated on every

vertex, and the evaluation of f [u] = f [v] cannot be done without the message

exchange if u and v are assigned to di�erent physical nodes. By assuming a random

vertex assignment, the expected amount of messages to complete the edge cleaning is

O (E) [72]. Our evaluation results show that it is a signi�cant overhead in the MSF

computation that takes up to 81.86% of the total runtime (see Section 5.5.3).

5.3.2 A linear algebra formulation

In this section, we express Boruvka’s algorithm in the language of linear algebra. A

commonly used linear-algebraic API for graph computation is the GraphBLAS C

standard [5], but it is slightly verbose and hides the insights for distributed computing.

We therefore de�ne a set of simpli�ed APIs and then describe Boruvka’s algorithm in

our framework.

In Algorithm 5.4, we present a step-by-step implementation for Borvuka’s algorithm

using the linear algebra APIs presented before. The input is an undirected weighted
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graph represented as an adjacency matrix A and the output MSF is a submatrix of A
containing the selected edges in the �nal minimum spanning forest.

First of all, the min-edge picking is implemented on line 10–15, which aims to let

every supervertex know (a) the minimum outgoing edge in the whole tree, including

the edge weight and the supervertex id on the other side, and (b) the original edge

in matrix A in order to recover the minimum spanning forest. Most of the job is

accomplished by the multiplication of A and x shown in Figure 5.1, and by combining

the result y with every u’s own vertex id, we obtain the vector ev containing the edge

selected by every vertex. Next, every supervertex collects the minimum edge from

the whole spanning tree using the assign operation, and the idea of this operation

is illustrated in Figure 5.2 using a simpli�ed example. Finally, if es[r] , ∞ for a

supervertex r , it modi�es its entry in vector f on line 15 using the second �eld in es .

The supervertex selection on line 16–18 identi�es the pairs of vertices u and v that

point to each other (f [u] = v and f [v] = u) and selects the smaller one as the new

supervertex. By a simple substitution, we need to �nd every u having f [f [u]] = u

and let u point to itself if u < f [u]. The grandparent vector f [f ] is computed by the

extract function and is stored in the vector g, then the following two eWiseMult

operations compute all possible u’s and changes the pointer if the condition u < f [u]

is satis�ed.

The �attening operation on line 21–25 is �rst performed on the old supervertices

through the repetition of the shortcutting operation f ← f [f ] until stabilized. This

procedure takes at most O (logh) rounds where h is the maximum height of all the

spanning trees. On line 25, all the vertices (which point to an old supervertex already)

perform a single round of shortcutting to see the new supervertex.

The last step is the edge cleaning on line 27–33. We �rst pick the edges in A that

constitute the minimum spanning tree, by simply inspecting the vertices that become a

non-supervertex in this iteration. Then, on line 28–31, we count the new supervertices

(excluding the isolated supervertices in the previous step) and terminate the algorithm

instantly if there is at most one active supervertices remained. Next, by the select

operation, we remove the edges inside each spanning tree and obtain a smaller matrix

A. The algorithm terminates when A is empty.
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5.3.3 A simpli�ed algorithm for computing CCs

Boruvka’s algorithm is capable of �nding all the connected components in the graph,

since each spanning tree is exactly a connected component, and the parent vector f

stores the component identi�er for each vertex when terminated. In order to make the

CC computation more e�cient, we can remove all the unnecessary computations in

Algorithm 5.4. The tree construction on line 27 is obviously useless. Then, in the edge

picking, we no longer take the edge weight into consideration, so the supervertices

only collects the smallest neighboring supervertex id from the whole tree. We give a

reference implementation in Algorithm 5.5.

5.3.4 The guarantee of convergence

Boruvka’s algorithm terminates in log(n) rounds in the worst case for both MSF

and CC computation. Consider the number of non-isolated spanning trees in the

graph. Initially, this number is n, and in each round after the min-edge picking, all the

non-isolated supervertices constitute a set of conjoined-trees, and only one vertex in

each conjoined-tree will become a new supervertex in the next round. A conjoined-tree

has at least two vertices, so the number of new supervertices (including both isolated

and non-isolated ones) is at most half of the number of non-isolated supervertices in

the previous round. In practice, this algorithm converges very fast. Section 5.5 presents

more detailed results for di�erent types of graphs. A very useful corollary is that the

accumulated number of non-isolated supervertices during the whole computation is

O (n).

5.4 Implementation

5.4.1 Data placement for matrix and vector

The graph is represented as an n-by-n symmetric matrix A representing the adjacency

relationship of the vertices. We split the matrix by column and let each process store a

whole vertical strip, as shown in Figure 5.6. We assume that the vertices are indexed

with 0..n − 1 where n is the total number of vertices. Then, the elements stored on each

process are the edges having the destination vertex in a disjoint range of [0..n − 1]. We
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randomly permute the indices to obtain a good load balancing.

For each vector, it is either fully distributed on all the processes such that each

process holds a disjoint segment with roughly the same number of elements, or simply

replicated on all the processes. The replication of a vector obviously has higher

memory consumption, but we consider it viable since the number of vertices in a

practical graph can typically �t into the main-memory, and for some operations (like

the �attening operation we will discuss later), only in this representation it can be

�nished in reasonable time. Choosing the most suitable representation for each vector

used in Boruvka’s algorithm is important to achieve high performance.

5.4.2 Overview of the implementation

In this thesis, we implement all our linear algebraic operations using two levels of

data parallelism, one is MPI for inter-node communication and the other is OpenMP

for multithreading on each node. We mainly discuss the following operations, mxv,

assign and select, since the others are essentially element-wise operations that can

be easily parallelized. We also give a special implementation of the �attening operation

(which iteratively performs the extract operation), which makes use of the vertex

replications to avoid the high communication cost.

In our implementation, we replicate as few vectors as possible to minimize the

memory consumption. Essentially, only the vector f and es in Figure 5.6 need to be

replicated on all the processes, and it is basically an requirement for implementing the

mxv and assgin operations. For the constant vectors (such as inf , all and ind) and the

intermediate vectors x and g, even though they are involved in the element-wise

computations with f , in our implementation, we compute them on the �y so that the

actual storage is not necessary.

5.4.3 Parallelization of the linear algebra operations

In this subsections, we go through the parallel implementation for all the aforemen-

tioned linear algebra operations.

• mxv: this is the key linear algebra operation in many graph computations. In

our model, the multiplication y = xAT
(or equivalently y = Ax since we do not
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distinguish a vector with its transpose) is accomplished by replicating the vector

x on every process and computing a distributed vector y. Each element of y is

obtained by a process computing the inner product of x and the corresponding

column in AT
using the user-speci�ed operators ⊕ and ⊗. We store the matrix AT

in the compressed sparse column (CSC) format so that the OpenMP parallelism

is straightforward.

• assign: this is the key operation to let every supervertex collect the information

from all the vertices in the spanning tree. Our implementation is presented in

Figure 5.16 where the output vector y is the only vector that is initially replicated

on all the processes. To accomplish the assign operation, each process �rst

performs the local computation that modi�es its own replica of y using OpenMP

and atomic writes, then all the processes synchronize the modi�ed entries in

y. For the synchronization, the sparse vector super, playing the role of the

mask of assign, is replicated on all the processes through the MPI_Allgatherv

function, and then the speci�ed entries in y are extracted and synchronized

through the MPI_Allreduce function.

• flattening: the �attening operation (line 21–24 of Algorithm 5.4) is an iterative

procedure that performs the extract operation repeatedly to half the distance

from every vertex in super to the root. Here the boolean vector super contains the

old supervertices generated in the previous iteration. The overall computation

cost reaches O (np) (see the analysis in Section 5.4.4) but the communication cost

is completely removed, making it an e�cient solution on small clusters.

• select: in Boruvka’s algorithm, this operation removes the edges (u,v ) ∈ E

having f [u] = f [v]. Due to the replication of the vector f on all the processes,

the select operation can inspect the supervertex of both u and v without

incurring any communication cost. We implement this operation by a single-pass

scan on every edge, and we allow a vertexu to keep di�erent neighbors belonging

to the same connected component, so that an O (E) computation cost can be

ensured. The mxv operation is implemented with select to maximize the

performance.
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assign(y, mask, f, x, min)
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Figure 5.16: The implementation of the assign operation in our model. Each process

sees a disjoint portion of the input vectors x , f and mask. Then, it computes and stores

the partial results to the replicated vector y. We �rst replicate the vector mask using

MPI’s all-gather function, then all the processes synchronize the union of the modi�ed

entries in y (indicated by the parameter mask) by MPI’s all-reduce function.

5.4.4 Cost Analysis

In the end of this section, we analyze the total computation and communication cost

for our implementation of Boruvka’s algorithm. We use n and m to represent the

number of vertices and edges in the graph, and use p to represent the number of

processes. The algorithm terminates in O (logn) rounds.

First, the only communication cost in our implementation is the assign operation

where the vertices sends their selected edges to the supervertex. The total communica-

tion cost, as illustrated in Figure 5.16, is the cost of performing an MPI_Allgather to

replicate the mask on all the processes plus an MPI_Allreduce to synchronize the

values of the supervertices. We know that the accumulated number of supervertices

during the whole computation is O (n) (see Section 5.3.4), so the assign operation

requires O (np) messages in total for both operations.

For all the other operations, there is no communication cost at all. In each iteration,

mxv and select take O (m) time, and all the element-wise operations, depending on

whether the vector is replicated or not, takes either O (np) or O (n) time where p is

the replication factor. Note that an O (np) time complexity can be very huge if we
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Table 5.2: Graph datasets used to evaluate the parallel CC and MSF algorithms.

Graph Vertices Edges Description

GAP-road 23.95M 57.71M the distances of all of the roads in the USA [73]

GAP-twitter 61.58M 2.937B a crawl of Twitter’s social network in 2009 [74]

GAP-web 50.64M 3.861B a web crawl of .sk domain in 2005 [50]

GAP-kron 134.2M 4.223B a graph synthesized by the Kronecker synthetic graph generator [75]

GAP-urand 134.2M 4.295B a graph synthesized by the Erdos–Reyni model (Uniform Random) [76]
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Figure 5.17: Number of iterations Boruvka’s algorithm and FastSV take on the graphs

in the GAP benchmark.

unrestrainedly increase the number of processes p for the CC or MSF computation. In

order to achieve high performance, we use as few processes as possible in practice to

reduce the computation cost. We assume M > n where M is the memory space of a

single node, and using at most p = O (m/n) physical nodes the graph can �t into the

main-memory of the cluster.

For the �attening operation, in each Boruvka round, every process individually

performs the subgraph �attening (line 21–24) which scans the supervertices only

by at most O (logn) times. The overall time complexity is O (pn logn) where n is

the accumulated number of supervertices during the whole computation, p is the

replication factor. By summing up all the numbers above, Boruvka’s algorithm has

an O ((m + pn) logn) computation cost and O (np) communication cost. In particular,

when p = 1, there is actually no communication cost, and our parallel implementation

for Boruvka’s algorithm achieves the optimal O (m logn) time complexity.
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5.5 Evaluation of Boruvka’s algorithm

In this section, we evaluate various aspects of our linear algebraic Boruvka’s algorithm,

including the speed of convergence, distributed-memory performance, scalability

and several other performance characteristics. To make a fair comparison with

previous works, we target the minimum spanning forest problem and the connected

component problem separately, and our solution for solving each problem is named as

Boruvka-CC and Boruvka-MSF, respectively. Boruvka-CC is basically a simpli�cation

of Boruvka-MSF that only reports the number of connected components, ignoring the

edge weight and the construction of the minimum spanning tree.

For the minimum spanning forest problem, Boruvka’s algorithm is currently the only

algorithm parallelized on the distributed-memory architecture, and previous works [8,

28] all adopt the vertex-centric paradigm. We compare our linear algebraic Boruvka-MSF

with Pregel-channel [28]’s implementation, which reports the fastest runtime compared

to previous works. There are more distributed-memory algorithms [77, 78, 31, 17]

proposed for distributed-memory architecture in various models, and we compared our

Boruvka-CC with FastSV [17], which is currently the fastest and the most scalable

algorithm using the linear algebra abstraction.

We use the GAP benchmark matrices [79] (summarized in Table 5.2) to evaluate

these implementations, which include both synthetic and real-world weighted graphs

of di�erent types.

5.5.1 Evaluation platform

We evaluate the distributed-memory algorithms on Amazon EC2. Our implementation

is compared against two libraries, CombBLAS [4] and Pregel-channel [28]. CombBLAS

use both MPI and OpenMP to parallelize the graph algorithms, but it adopts a di�erent

partitioning strategy that the matrix is decomposed in a two-dimensional way and

the vectors are fully distributed on all the processes using a range-based manner.

Pregel-channel is parallelized with MPI only, in which the vertices are distributed to all

the processes in a hash-based manner and the edges are associated on the source vertex.

All these implementations follow the Bulk Synchronous Parallel (BSP) [9] model where

all MPI processes perform local computation followed by synchronized communication
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round. We set up a cluster of eight nodes with 10Gbps network bandwidth, and

each node is an r5.4xlarge instance having 16 vCPUs and 128G memory. This is the

minimum con�guration for the CombBLAS library in terms of memory space. We

compile all the programs using g++ 7.4.0 with -O3 �ag.

5.5.2 Speed of convergence

We �rst look at the speed of convergence of the Boruvka-CC and the FastSV algorithm.

FastSV’s design is based on the PRAM Shiloach-Vishkin algorithm [16] with various

optimizations to improve its convergence on distributed-memory architecture. Then,

Figure 5.17 clearly shows that Boruvka-CC takes less number of iterations than

FastSV on all our �ve graphs. The number of iterations does not directly re�ect the

performance since the complexity of each iteration matters, but later we will see the

high e�ciency of Boruvka’s algorithm’s each iteration as well. Then, computing the

minimum spanning tree using Boruvka’s algorithm generally takes more iterations,

and the main reason is the di�erent edge picking strategy of Boruvka-MSF that takes

the edge weight into consideration. There is also a vertex-centric implementation

of Boruvka’s algorithm in the vertex-centric paradigm, and we should not that it

takes exactly the same number of iterations as Boruvka-MSF, since the algorithm is

deterministic and the implementation methods will not a�ect its convergence.

5.5.3 Distributed-memory performance

Next, we evaluate the distributed-memory performance of our algorithms in solving

the connected component and the minimum spanning forest problems. The experiment

is conducted on a cluster of eight nodes using 64 cores in total.

Minimum spanning forest. We �rst compare the runtime of Boruvka’s MSF

algorithm’s vertex-centric implementation with our linear algebraic implementation.

We use Pregel-channel’s implementation [28] of Boruvka’s algorithm due to its channel

mechanism to reduce the message size and the higher performance reported in the

paper compared to the previous works. Pregel-channel’s main functionality runs in the

pure MPI mode, so we launch 64 MPI processes to make full use of the CPU cores. For

our Boruvka-MSF implementation in linear algebra, we launch 8 MPI processes, one
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Figure 5.18: Runtime of Boruvka’s algorithm on the �ve graphs in the GAP benchmark.

for each node, each using 8 threads for its local computation. Figure 5.18 presents the

results on the �ve graphs in the GAP benchmark.

Compared to Pregel-channel’s vertex-centric implementation, our linear algebraic

implementation achieves a speedup of 1.75× on the road graph and a speedup of 6.09×

to 7.03× on the other four graphs. Our implementation of Boruvka’s algorithm has

a factor of p (the number of processes) for element-wise operations on replicated

vectors. Therefore, on the planner road graph with high sparsity, our approach is not

remarkably better than a vertex-centric implementation. However, for the other graphs

where |E | is one or two magnitude larger than |V |, we can see that the linear algebraic

approach is signi�cantly faster, and the reason is our e�cient implementation of

the select operation that incurs no communication cost at all. We note that the

percentage of time spent on the edge cleaning operation in Pregel reaches 75.13% to

81.86% on the last four graphs (except the road graph), proving that the edge cleaning

is a very heavy operation in the vertex-centric model. On average
2
, our linear algebra

implementation achieves a 6.10× speedup on all the graphs in the GAP benchmark.

Connected component. We then compare the runtime of FastSV and Boruvka-

CC for �nding the connected components in each graph. FastSV is implemented in

CombBLAS [4] using its linear algebra primitives while the CombBLAS is parallelized

by MPI and OpenMP. CombBLAS’s implementation requires the number of MPI

processes p to be a square number so that the matrix is divided into

√
p×
√
p submatrices

and is evenly distributed to the process grid. We therefore run CombBLAS’s FastSV

program in two con�gurations, one with 64 MPI processes each having 1 thread, and

2
The averaged speedup is the ratio of the total time spent on all the graphs in the GAP benchmark by

the two programs.
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Figure 5.19: Number of elements in the matrix at the beginning of each iteration (bar

chart) and the number of newly selected supervertices in each iteration (line chart) for

Boruvka-CC.
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Figure 5.20: Number of elements in the matrix at the beginning of each iteration (bar

chart) and the number of newly selected supervertices in each iteration (line chart) for

Boruvka-MSF.

the other with 16 MPI processes each having 4 threads. Figure 5.18 presents the results

on the �ve graphs in the GAP benchmark.

The linear algebra Boruvka-CC is clearly faster than FastSV’s both runs on all

instances. For FastSV, running it in the pure MPI mode is faster than the hybrid

MPI+OpenMP mode in CombBLAS. Compared to FastSV’s best result using 64 processes,

our Boruvka-CC achieves a speedup of 6.98× on the road graph, and it is 2.53× to

3.29× faster on the other graphs. We have already seen that Boruvka-CC converges

faster than FastSV, but even if we compare the runtime of each iteration, Boruvka-CC

is still 3.20× faster on the road graph and is 1.56× to 1.89× on the other graphs, due to

our slightly better mxv and much better implementation of the extract and assign

operation. We present a detailed analysis in Section 5.5.4. On average, Boruvka-CC is

3.16× faster than FastSV on all the graphs in the GAP benchmark using 8 nodes and in

total 64 threads.

5.5.4 Performance characteristics

In this subsection, we present more aspects of Boruvka’s algorithm to help readers

understand the strategies used in our distributed-memory implementation.

Active edges and supervertices. In Figure 5.19 and Figure 5.20, we plot the
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Figure 5.21: Breakdown of the runtime for Boruvka-CC on eight nodes using di�erent

number of threads.
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Figure 5.22: Breakdown of the runtime for Boruvka-MSF on eight nodes using di�erent

number of threads.

number of active edges and supervertices during the execution of Boruvka-CC and

Boruvka-MSF. The active edges are the edges remained in the graph in the end of

each iteration, meaning that they are currently connecting di�erent spanning trees in

the spanning forest constructed so far. Then, the active supervertices are the newly

selected supervertices in each iteration, which decides the communication cost of the

assign operation. We use bar chart and line chart respectively to represent the active

edges and supervertices and both numbers are presented in log scale.

The number of active supervertices, as expected, decreases rapidly with the

execution of Boruvka-MSF and Boruvka-CC. The accumulated number during the

whole computation (except the �rst iteration that all vertices are supervertices), as

shown in Table 5.3, varies from 0.28% to 23.92% for Boruvka-CC and 1.35% to 41.25%

for Boruvka-MSF on di�erent types of graphs. It re�ects the actual communication

cost of the assign operation.

On the contrary, the number of active edges in each iteration may not notably

decrease during the computation. On the two synthetic graphs kron and urand, even in

the last iteration, the number of edges removed is less than 4%. Therefore, in the

worst case, Boruvka’s algorithm has an average O (E) edges in the matrix during the

whole computation. A vertex-centric implementation therefore needs O (E) messages

to perform the select operation in every iteration, while in our linear algebraic

implementation there is no communication at all. We have already seen that the edge
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Table 5.3: Accumulated number of active supervertices during the whole computation

of the Boruvka’s algorithm for CC and MSF, presented in the ratio to the graph size n.

algorithm road twitter web kron urand

Boruvka-CC 23.92% 0.71% 1.38% 0.28% 1.56%

Boruvka-MSF 41.25% 4.14% 8.09% 1.35% 31.05%

road twitter web kron urand

T
im
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Figure 5.23: Per-iteration runtime for each type of linear algebra operations in

Boruvka-CC and FastSV.

cleaning can take up to 81.86% percentage of the total execution time in a Pregel

implementation.

Scalability and performance breakdown. To see the scalability of Boruvka’s

algorithm, we change the number of threads each process can use in the CC and

MSF computation. The total number of processes is still 8 since we have 8 nodes in

the cluster. We break down the runtime of Boruvka’s algorithm into four parts, the

matrix-vector multiplication along with the select operation (they are combined into

a single operation), the assign, the extract and all the other operations. Figure 5.21

and Figure 5.22 presents our results.

The overall speedup with the OpenMP parallelism using 8 threads achieves more

than 6× for both Boruvka-CC and Boruvka-MSF on the four dense graphs. The mxv

dominates the runtime and achieves the highest speedup (more than 7.5× on average),

while assign has the lowest speedup (around 2-3×) due to the constant communication

cost. The extract and the others are element-wise operations and scale as well as mxv.

Figure 5.23 shows the per-iteration time spent on each operation for Boruvka-CC

and FastSV. On average, Boruvka-CC’s mxv is 1.66× faster and assgin is equally fast,

but the extract function (or more precisely the iterative extract in �attening) is

5.51× faster than FastSV. The main reason is the removal of the communication cost of

the extract operations in our implementation. For the mxv operation, Boruvka’s
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algorithm pays additional cost for the select operation, but on graphs like road and

web, the cost of mxv decreases dramatically in later iterations.

5.6 Related work

Finding the minimum spanning tree (or forest) in an undirected weight graph is a

well-studied problem in sequential or on shared-memory. The classic sequential

algorithms given by Boruvka [18], Prim [70] and Kruskal [69] provide O (m logn)

time complexity. Some algorithms [80, 81, 82, 83, 84, 85] have theoretically lower

time complexity, but they are either hard to parallelize or not e�cient on practical

graphs due to a big hidden factor. On multiprocessors or shared-memory systems,

Bader’s work [86] presents a new MST algorithm that combines the idea of Prim’s and

Boruvka’s algorithm, and several recent works on parallelizing Boruvka’s algorithm

include [87, 88, 89] exploits various issues on shared-memory, including the graph

representation, cache e�ect and the load balancing. Our work focuses on reducing the

communication cost on distributed-memory, but on shared-memory, it also has the

optimal time complexity O (m logn) and we demonstrate its high scalability in our

evaluation.

On distributed-memory, Boruvka’s algorithm has been parallelized and implemented

in several Pregel-like systems [90, 8, 28]. Pregel [1] stands for a particular type of

vertex-centric system based on the Bulk-synchronous parallel (BSP) model [9] and

inter-vertex messages passing. We note that the vertex-centric graph analytics systems

are not limited to the Pregel-like systems (see the surveys [91, 92]). However, the

majority of them (e.g., [10, 11, 12, 13, 14, 15]) are functionally similar to the sparse-

matrix vector multiplication, while Pregel’s model is yet the only model that can deal

with both edge removal and non-neighborhood communication (analogous to the

select, assign and extract operations in linear algebra), which are necessary for

Boruvka’s algorithm and some other scalable graph computations [17, 31, 32]. We

should note that none of the existing linear algebra graph libraries [4, 33, 13] have fully

implemented these operations, and our work is the �rst linear algebra parallelization of

Boruvka’s algorithm on distributed-memory.

Boruvka’s algorithm is intrinsically vertex-centric, and Salihoglu’s work [71]

mainly veri�ed two e�ective strategies called storing the edges at sub-vertices (SEAS)
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and edge cleaning on-demand (ECOD). Then, to optimize the communication-intensive

edge cleaning operation, Yan’s work [21] introduces an elegant and e�ective approach

called the request-respond paradigm, and later Zhang’s work [28] proposes the channel

mechanism to reduce the overall communication cost by allowing heterogeneous

messages to be used and separately optimized in the same program. However, the key

problem of high communication cost does not disappear, and it is inevitable in Pregel’s

model due to its hash-based vertex partition. Our work is the �rst attempt to use

linear algebra to parallelize Boruvka’s algorithm and we provide message-e�cient

implementations for several key operations based on our novel vertex replication

strategy.

For the connected component (CC) problem, on shared-memory there are both

theoretically e�cient algorithm using low-diameter decomposition (LLD) [93] and

empirically e�cient solutions like direction-optimized BFS [94, 95] and union-�nd

using concurrent disjoint-set data structure [96]. Compared to these works, Boruvka’s

algorithm does not provide the optimal solution. However, they are not e�cient on

distributed-memory due to the high latency of accessing data on remote nodes. A

feasible solution on distributed-memory is the multi-source parallel BFS [97] (a.k.a.

label propagation), but it converges slowly on large-diameter graphs. Then, there are

scalable CC algorithms [8, 77, 31, 17] based on the PRAM Shiloach-Vishkin (SV) [16]

and Awerbuch-Shiloach (AS) algorithm [98] with performance guarantees (empirical

or theoretical O (logn) rounds). We are the �rst to use Boruvka’s algorithm for �nding

connect components on distributed-memory. We show that Boruvka’s algorithm

converges even faster than the state-of-the-art FastSV [17] algorithm and achieves a

3.16× speedup using 64 cores.
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Algorithm 5.4 The linear algebra Boruvka’s algorithm for �nding minimum spanning

tree. Input: The adjacency matrix A. Output: The matrix MSF containing the edges

in the solution.

1: procedure BoruvkaMSF(A)

2: �ll(super, true) . non-isolated supervertex

3: �ll(inf ,∞); �ll(all, true) . constant vectors

4: �llWithIndex(ind) . vertex id (also a constant vector)

5: �llWithIndex(f ) . the initial parent vector

6: MSF← ∅ . return value

7: repeat
8: copy(f ′, all, f )
9: . Step 1: min-edge picking

10: eWiseMult(x, all, f , ind, zip) . x[u] = ( f [u],u)
11: �ll(y,∞); mxv(y,A, x, zip,min)
12: eWiseMult(ev, all, y, ind, zip) . ev[u] = (w, f [v],v,u)
13: �ll(es,∞); assign(es, super, f , ev,min)
14: eWiseMult(super, all, es, inf , not_equal_to)
15: apply(f , super, es, second)
16: . Step 2: supervertex selection

17: extract(g, super, f , f ,min)
18: eWiseMult(mask, all, g, ind, equal_to)
19: eWiseMult(f ,mask, f , ind,min)
20: . Step 3: �attening

21: extract(g, super, f , f )
22: while f , g do
23: copy(f , super, g)
24: extract(g, super, f , f )
25: end while
26: extract(f , all, f , f )
27: . Step 4: edge cleaning

28: MSF← MSF ∪ RecoverMSF(A, f ′, f , es)
29: eWiseMult(mask, all, f , ind, equal_to)
30: eWiseMult(super, all, super,mask, land)
31: reduce(active, all, super, plus, 0)
32: if (active ≤ 1) then break
33: select(A,A, λ(i, j,aij ) → { f [i] = f [j]})
34: getNVals(nvals,A)
35: until nvals = 0

36: return MSF
37: end procedure
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Algorithm 5.5 The simpli�ed edge picking operation in Boruvka’s algorithm for

�nding connected components.

1: procedure EdgePicking-CC(. . .)
2: . ev , es are vectors of supervertex id

3: �ll(ev,∞); mxv(ev,A, f , second,min)
4: �ll(es,∞); assign(es, super, f , ev,min)
5: eWiseMult(super, all, es, inf , not_equal_to)
6: copy(f , super, es)
7: end procedure
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6
Conclusions and Future Work

With the increasing demand of analyzing large-scale graphs generated by the modern

applications, lots of research has been invested in distributed graph systems in order to

processes massive graphs e�ciently in memory. This thesis gives a comprehensive

overview of the existing graph analytics systems on distributed-memory in terms of

three goals of such systems: (a) the distributed-memory performance and scalability

and (b) the ease of the programming interface, and our goal is to have a graph analytics

system that ful�ll both goals.

The mainstream graph analytics systems can be categorized into two classes,

the vertex-centric paradigm and the linear algebra approach, each having their own

drawbacks when evaluated using the two criteria. The vertex-centric paradigm is yet

the most popular and general approach for distributed graph processing, but Pregel’s

low-level programming interface including the message passing and state transition

makes it unfriendly to users. Even with the domain-speci�c languages (DSLs) to

ease Pregel programming, the high complexity in Pregel’s optimization techniques

still make it di�cult for ordinary users to quickly develop e�cient graph analytics
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applications. The linear algebra approach, on the other hand, has a concise high-level

programming interface using standardized matrix and vector operations, but the lack

of a graph abstraction as well as the use of atomic linear algebra APIs make it di�cult

to further optimize a graph computation.

In this thesis, our main contribution is a graph analytics framework following the

vertex-centric paradigm that is both user-friendly and highly e�cient. Our framework

is built on three key techniques, a more expressive high-level domain-speci�c language

(DSL) called Palgol to ease vertex-centric programming by hiding the message passing

from users, an e�cient back end that can easily combine various optimizations in the

same vertex-program, and a novel cost-based compilation technique to compile our

DSL to the back end. The resultant framework has a friendly programming interface

and achieve comparable performance to the state-of-the-art vertex-centric system .

We are also interested in improving graph analytics in the language of linear algebra.

We currently focus on the linear algebra formulation of distributed graph algorithms and

their e�cient implementation, and this thesis presents a novel connected component

(CC) algorithm called FastSV, and an e�cient linear algebraic implementation of

Boruvka’s minimum spanning forest (MSF) on distributed-memory. We show that the

linear algebra approach is capable of dealing with complex graph algorithms like

FastSV and Boruvka’s algorithm, and both of our works signi�cantly outperform the

state-of-the-art CC and MSF implementation on distributed-memory.

In the future, we are de�nitely interested in fully exploiting the capability of the

linear algebra approach, including implementing more interesting graph algorithms in

GraphBLAS and improving their e�ciency on distributed-memory. An important

question remained in linear algebra is whether we can build a GraphBLAS compliant

and highly e�cient graph analytics system for distributed-memory. We believe that

a GraphBLAS compliant graph system on distributed-memory is very bene�cial,

since it allows the same program to be executed on di�erent platforms, which can

greatly reduce the development cost of large-scale graph applications for ordinary

users. Currently, there are several linear algebra libraries [38, 4, 13] proposed for

distributed-memory but none of them is GraphBLAS compliant since the standard is

relatively new. Furthermore, there are still technical issues in achieving this, since

an e�cient graph computation on distributed-memory usually requires various

optimization techniques to reduce the communication cost, but when written in
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GraphBLAS API using atomic matrix or vector operations, those optimizations are

hard to derive due to the lack of graph semantics. We have summarized this issue in

detail in Section 1.2.2.

A possible direction to achieve our goal – ensuring high e�ciency for distributed

graph computations written in GrpahBLAS API – is to recover the graph semantics

though program analysis. A successful framework is our SQL-core language that

captures the vertex-centric graph using relational queries, and in the future we are

interested in �nding the connection between the relational model and the linear

algebra API, so that we can eventually derive an e�cient implementation of linear

algebra graph computation on top of the Pregel-channel system.
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