
Multi-Relational Embedding

for Knowledge Graph

Representation and Analysis
by

Hung Nghiep Tran

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

September 2020





Committee

Advisor Dr. Atsuhiro TAKASU
Professor of National Institute of Informatics/SOKENDAI

Subadvisor Dr. Akiko AIZAWA
Professor of National Institute of Informatics/SOKENDAI

Subadvisor Dr. Kenro AIHARA
Professor of National Institute of Informatics/SOKENDAI

Examiner Dr. Seiji YAMADA
Professor of National Institute of Informatics/SOKENDAI

Examiner Dr. Yusuke MIYAO
Professor of The University of Tokyo





Abstract

Multi-relational data, such as knowledge graphs, bibliographic data, and information net-
works are prevalent in real-world datasets. Managing, exploring, and utilizing these large
and complex datasets effectively are challenging. In recent years, multi-relational embed-
ding methods have emerged as a new effective approach to model multi-relational data by
representing both the entities and the relations as embedding vectors in semantic space.
On knowledge graphs, multi-relational embedding methods aim to model the interactions
between these embedding vectors to predict the relational link between entities. These
knowledge graph embedding methods solve the important inherent task of link prediction
for knowledge graph completion, but also provide the embedding representations that
have various potential applications. The goal of this thesis is first to study multi-relational
embedding on knowledge graphs to propose a new embedding model that explains and
improves previous methods, then to study the applications of multi-relational embedding
in representation and analysis of knowledge graphs.

For the first part of the thesis, we study the theoretical framework of knowledge graph
embedding methods to explain and improve them. We review and analyze the popular
class of semantic matching knowledge graph embedding methods, with a focus on the
state-of-the-art trilinear-product-based models such as ComplEx. Based on our analysis,
we identify two fundamental complementary aspects that a knowledge graph embedding
model needs to address, that is, computational efficiency and model expressiveness. Pre-
vious trilinear-product-based models use specially designed interaction mechanisms to
manually provide a trade-off between the two aspects. However, their interaction mech-
anisms are specially designed and fixed, potentially causing them to be suboptimal or
difficult to extend. In this thesis, we propose the multi-partition embedding interaction
(MEI) model with block term format to systematically address this problem. MEI di-
vides each embedding into a multi-partition vector to efficiently restrict the interactions.
Each local interaction is modeled with the Tucker tensor format and the full interaction
is modeled with the block term tensor format, enabling MEI to control the trade-off be-
tween expressiveness and computational cost, learn the interaction mechanisms from data
automatically. The model combines advanced tensor representation formats and modern

i



deep learning techniques to achieve state-of-the-art performance on the link prediction
task. The theoretical framework of the MEI model is then used as a general mechanism
of knowledge graph embedding to analyze, explain, and generalize previous models. We
also draw the connections to word embeddings and language modeling to provide some
new insights and generalizations.

For the second part of the thesis, we study how to apply multi-relational embedding in
representation and analysis of knowledge graphs. Unlike word embedding, the semantic
structures such as similarity and analogy structures in knowledge graph embedding space
are not well-studied, and thus not usually utilized for data representation and analysis.
To demonstrate the application of multi-relational embedding, we formalize a framework
for data representation and analysis by semantic queries on the multi-relational embed-
ding space. We build a knowledge graph from scholarly data and show how various tasks
on the original datasets can be approximated by appropriate semantic queries, which are
multi-linear algebraic operations on the multi-relational embedding spaces. We also the-
oretically study the entity analogy reasoning task in multi-relational embedding space,
which can be formulated as an open-relational query by examples task, doing relational
query on unseen relations. Using the above mathematical connections between knowl-
edge graph embeddings and word embeddings, we analyze the semantic structures in the
knowledge graph embedding space and propose potential solution to the above entity
analogy reasoning task. The goal of this endeavor is to explore potential applications of
recent advancements in multi-relational embedding to data representation and analysis,
especially to improve its effectiveness on scholarly data.

ii



Acknowledgements

First, I would like to thank my advisor Professor Atsuhiro Takasu for his research guidance
that have helped me navigate the long and challenging Ph.D. road, and for his constant
supports that have given me the opportunity to stay focused and push my research for-
ward. I also would like to thank all professors in my defense committee for their kind and
valuable feedback that has helped me improve my research in many aspects, including
Professor Akiko Aizawa and Professor Kenro Aihara who are also my subadvisors, and
Professor Seiji Yamada and Professor Yusuke Miyao.

Second, I would like to thank people who have supported me during my Ph.D. study.
I want to thank Takenaka-san, our lab secretary and also a friend, for her supports and
accompanies in years. I want to thank NII and SOKENDAI staffs, NII Graduate Office,
NII Library, and all other people who work behind the scene to keep the system run
smoothly. I also want to thank Japan Government and MEXT Scholarship for financial
and official supports so that I could come to study in Japan. My Ph.D. study would not
have been filled with as good experiences without you.

Third, I would like to thank my friends, lab mates, and colleagues in NII, SOKENDAI
for the time and experiences we had together. Especially I thank those who have helped
me in the last stage of my study program, especially Van, my lab mate and also a friend,
for her accompanies and supports in improving my presentation. I also want to thank
the Vietnamese community in NII that have given me valuable advices on various aspects
of life and research. I also want to thank my past teachers and mentors in Vietnam and
other countries. Also thank everyone else for leaving me 10000 hours all to myself to focus
on research and acquire the expertise.

I want to thank the books that I have read and learned most important things, the
internet that has given me access to most resource I need, the musics that have kept me
sane and joyful, and God that has kept me calm in some of the most depressing time.

Finally, I am grateful for my family, Mom and Dad, Sisters and Brothers, and others,
together with my hope in science, for giving me reasons to try my best in all these years,
belief, duty, honor, and courage.

iii



iv



Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Research problems and approaches . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Generalizing and improving knowledge graph embedding methods . 2
1.1.2 Exploring and utilizing multi-relational embedding space . . . . . . 3

1.2 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multi-Relational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Knowledge graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Textual data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Network data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Multi-relational embedding methods . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Knowledge graph embedding . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Text embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Network embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Tensor contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 The n-mode tensor product with a matrix . . . . . . . . . . . . . . 13
2.4.4 The n-mode tensor product with a vector . . . . . . . . . . . . . . . 13

2.5 Tensor representation formats . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 CP format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

v



2.5.2 Tucker format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3 Block term format . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17
3.1 Multi-relational embedding methods . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Knowledge graph embedding methods . . . . . . . . . . . . . . . . 17
3.1.2 Text embedding methods . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Network embedding methods . . . . . . . . . . . . . . . . . . . . . 25

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Knowledge graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Information networks . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Scholarly data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Applications of embedding methods . . . . . . . . . . . . . . . . . . . . . . 28

4 Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding 29
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The multi-partition embedding interaction model . . . . . . . . . . . . . . 31

4.2.1 Fundamental principles and concepts . . . . . . . . . . . . . . . . . 31
4.2.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3.1 Tucker format and block term format . . . . . . . . . . . . 33
4.2.3.2 Parameterized bilinear format . . . . . . . . . . . . . . . . 33
4.2.3.3 Dynamic neural network format . . . . . . . . . . . . . . . 34

4.2.4 Model constraints and variants . . . . . . . . . . . . . . . . . . . . 34
4.2.4.1 Core tensor: non-shared core vs. shared core . . . . . . . . 35
4.2.4.2 Matching matrix: max rank and the orthogonality constraint 35

4.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Multi-partition embedding interaction . . . . . . . . . . . . . . . . 36

4.3.1.1 Sparse modeling . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1.2 Multiple interactions and the ensemble boosting effect . . 37
4.3.1.3 Vector-of-vectors embedding and the meta-dimensional transforming–

matching framework . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Computational analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2.2 Parameter efficiency . . . . . . . . . . . . . . . . . . . . . 38

vi



4.4 Revisiting knowledge graph embedding models . . . . . . . . . . . . . . . . 42
4.4.1 Connections to specially designed interaction mechanisms . . . . . . 42

4.4.1.1 Multi-partition embedding interaction patterns of trilinear-
product-based models . . . . . . . . . . . . . . . . . . . . 42

4.4.1.2 Core tensors for reproducing trilinear-product-based models 43
4.4.2 Connections to other knowledge graph embedding models . . . . . . 45

4.4.2.1 Tensor representation formats in knowledge graph embed-
ding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2.2 Semantic matching models . . . . . . . . . . . . . . . . . . 46
4.4.2.3 Translation-based models . . . . . . . . . . . . . . . . . . 46

4.4.3 Advantages of MEI over previous knowledge graph embedding models 47
4.5 Revisiting word embedding models . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Connections between CPh and word2vec skipgram . . . . . . . . . . 48
4.5.2 Connections between knowledge graph embedding and language

modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.3 Explaining some intriguing phenomena in embedding space . . . . . 51

4.5.3.1 The global calibration matrix of bag-of-word embeddings . 51
4.5.3.2 The Hadamard product for edge features in Node2Vec . . 52

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.1 Contribution and impact discussions . . . . . . . . . . . . . . . . . 54
4.6.2 Scopes and future work . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Multi-Partition Embedding Interaction: Learning and Evaluation 57
5.1 Learning problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Learning the interaction patterns . . . . . . . . . . . . . . . . . . . 57
5.1.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2.1 Binary cross-entropy loss . . . . . . . . . . . . . . . . . . . 58
5.1.2.2 Full softmax cross-entropy loss . . . . . . . . . . . . . . . 59

5.1.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Link prediction for knowledge graph completion experiments . . . . . . . . 61

5.2.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2.1 Link Prediction Performance Compared to Traditional Base-
lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2.2 Link Prediction Performance of Small Models with Mod-
ern Training Techniques . . . . . . . . . . . . . . . . . . . 65

vii



5.2.2.3 Model Constraints and Variants . . . . . . . . . . . . . . . 67
5.2.2.4 Optimal Parameter Efficiency . . . . . . . . . . . . . . . . 68

5.2.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3.1 Parameter Scale Comparison . . . . . . . . . . . . . . . . 68
5.2.3.2 Parameter Trade-off Analysis . . . . . . . . . . . . . . . . 69
5.2.3.3 The Effects of Hyperparameters . . . . . . . . . . . . . . . 69

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Multi-Relational Embedding: Applications 71

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Semantic query on knowledge graph embedding space . . . . . . . . . . . . 73

6.2.1 Semantic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Semantic queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 The semantic query framework . . . . . . . . . . . . . . . . . . . . 74
6.2.4 Representation and Analysis Tasks . . . . . . . . . . . . . . . . . . 76

6.2.4.1 Task 1: Data visualization . . . . . . . . . . . . . . . . . 76
6.2.4.2 Task 2: Similarity query . . . . . . . . . . . . . . . . . . . 76
6.2.4.3 Task 3: Relational query . . . . . . . . . . . . . . . . . . . 77

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 Experimental results and discussion . . . . . . . . . . . . . . . . . . 80

6.3.2.1 Task 1: Data visualization . . . . . . . . . . . . . . . . . . 80
6.3.2.2 Task 2: Similarity query . . . . . . . . . . . . . . . . . . . 81
6.3.2.3 Task 3: Relational query . . . . . . . . . . . . . . . . . . . 83

6.4 Beyond word analogy: entity analogy reasoning in multi-relational embed-
ding space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 Entity analogy reasoning as the open-relational query by examples

task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 Semantic analogy structures in the multi-relational embedding space 87

6.4.2.1 General semantic analogy structure . . . . . . . . . . . . . 88
6.4.3 Towards a solution for entity analogy reasoning on multi-relational

embedding space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5.1 Contribution and impact discussions . . . . . . . . . . . . . . . . . 90
6.5.2 Scopes and future work . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



7 Conclusion 93
7.1 Contribution and impact discussions . . . . . . . . . . . . . . . . . . . . . 94
7.2 Scopes and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99

A Publications 109

ix



x



List of Figures

3.1 Example of a bibliographic knowledge graph. . . . . . . . . . . . . . . . . . 27

4.1 Architecture of the multi-partition embedding interaction model . . . . . . 32

6.1 Architecture of the semantic query framework. . . . . . . . . . . . . . . . . 75
6.2 Visualization of embedding spaces using PCA. . . . . . . . . . . . . . . . . 81
6.3 Visualization of embedding spaces using UMAP. . . . . . . . . . . . . . . . 82
6.4 Visualization of conference similarity based on word2vec. . . . . . . . . . . 83
6.5 Visualization of conference similarity based on CPh. . . . . . . . . . . . . . 83
6.6 Visualization of conference similarity based on MEI. . . . . . . . . . . . . . 84

xi



xii



List of Tables

3.1 Some popular bibliographic datasets. . . . . . . . . . . . . . . . . . . . . . 26

4.1 Core tensors for reproducing specially designed interaction mechanisms. . . 44

5.1 Datasets statistics of the link prediction benchmarks. . . . . . . . . . . . . 62
5.2 Link prediction results on WN18 and FB15K. . . . . . . . . . . . . . . . . 64
5.3 Link prediction results on WN18RR and FB15K-237. . . . . . . . . . . . . 65
5.4 Link prediction results of small models tuned with recent training techniques. 66
5.5 Parameter scaling on FB15K-237. . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Parameter trade-off analysis on FB15K-237. . . . . . . . . . . . . . . . . . 69

6.1 Data statistics of MAG and the curated bibliographic dataset. . . . . . . . 78
6.2 Data statistics of the KG20C knowledge graph. . . . . . . . . . . . . . . . 79
6.3 Link prediction results on KG20C. . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Link prediction results on KG20C filtered by entity types. . . . . . . . . . 85
6.5 Detailed relational query results with MEI on KG20C. . . . . . . . . . . . 85

xiii



xiv



Chapter 1

Introduction

Multi-relational data store information about the entities and multiple relationships be-
tween them, for example, knowledge graphs, bibliographic networks, and information
networks. Large multi-relational data are prevalent in real-world datasets, such as knowl-
edge graphs, including WordNet [58] representing English lexical knowledge, and Freebase
[7] and Wikidata [88] representing general knowledge; and bibliographic datasets, includ-
ing MAG1 [70] and CORE2 [45], which include millions of papers, authors, venues, and
the relationships between them.

The knowledge graph is a popular and standard data representation format for multi-
relational data. The main part of a knowledge graph is a collection of triples, with each
triple (h, t, r) denoting the fact that relation r exists between head entity h and tail entity
t [77]. This can also be formalized as a labeled directed multigraph where each triple
(h, t, r) represents a directed edge from node h to node t with label r. Given this general
format, it is straightforward to represent other multi-relational data in the knowledge
graph standard, such as (AuthorA, Paper1, write) and (Paper1, Paper2, cite) triples
in scholarly data. Knowledge graphs have become one of the cornerstones of modern
semantic web technology. They have been used by large companies such as Google to
provide semantic meanings into many traditional applications, such as semantic search
engines, semantic browsing, and question answering [69]. Recently, knowledge graphs
have also found applications in recommender systems, where they are used to integrate
multiple sources of data and incorporate external knowledge [11] [96]. However, managing,
exploring, and utilizing these large and complex datasets effectively are a challenging task.

In recent years, multi-relational embedding methods have emerged as a new effective

1 Microsoft Academic Graph: https://academic.microsoft.com/
2 Open access publications: https://core.ac.uk/

1

https://academic.microsoft.com/
https://core.ac.uk/


Introduction Chapter 1

approach to model multi-relational data by representing both the entities and the relations
as embedding vectors in semantic space. On knowledge graphs, multi-relational embed-
ding methods aim to model the interactions between these embedding vectors to compute
a score that predicts the existence of each triple. These knowledge graph embedding
methods solve the important inherent task of link prediction for knowledge graph comple-
tion, but also provide the embeddings as a useful representation of the whole knowledge
graph that may enable various potential applications of knowledge graphs in artificial
intelligence tasks [78].

The goal of this thesis is first to study multi-relational embedding on knowledge graphs
to propose a new embedding model that explains and improves previous methods, then
to study the applications of multi-relational embedding, especially the knowledge graph
embedding space, in representation and analysis of knowledge graphs.

1.1 Research problems and approaches

In this thesis, we address two main problems. The first problem is about the theoretical
framework of knowledge graph embedding methods to explain, generalize, and improve
them. The second problem is about studying the semantic structures in knowledge graph
embedding space and its applications in representation and analysis of knowledge graphs.

1.1.1 Generalizing and improving knowledge graph embedding

methods

Most previous works treat embedding as a whole and model the interaction between the
whole embeddings. For example, the bilinear model RESCAL [60] and the recent model
TuckER [3] can model very general interactions between every entry of the embeddings,
but they cannot scale to large embedding size. One approach to this problem is to design
special interaction mechanisms to restrict the interactions between only a few entries, for
example, DistMult [95] and recent state-of-the-art models HolE [61], ComplEx [80], and
SimplE [41] [47]. However, these interaction mechanisms are specifically designed and
fixed, which may pose questions about optimality or extensibility on a specific knowledge
graph.

In this thesis, we approach the problem from a different angle. We explicitly model
the internal structure of the embedding by dividing it into multiple partitions, enabling us
to restrict the interactions in a triple to only entries in the corresponding embedding par-
titions of head, tail, and relation. The local interaction in each partition is modeled with

2



Chapter 1 Introduction

the classic Tucker format [82] to learn the most general linear interaction mechanisms, and
the score of the full model is the sum score of all local interactions, which can be viewed
as the block term format [14] in tensor calculus. The result is a multi-partition embedding
interaction (MEI) model with block term format that combines advanced tensor represen-
tation formats and modern deep learning techniques to provide a systematic framework
to control the trade-off between expressiveness and computational cost through the parti-
tion size, to learn the interaction mechanisms from data automatically through the local
Tucker core tensors, and to achieve state-of-the-art performance on the link prediction
task using popular benchmarks.

The framework of the MEI model is then used as a general mechanism to analyze,
explain, and generalize previous knowledge graph embedding models. We also draw some
connections to word embedding methods and provide some insights and new explanations
to some intriguing phenomena in word embedding and network embedding.

1.1.2 Exploring and utilizing multi-relational embedding space

In the case of word embedding methods such as word2vec, embedding vectors are known
to contain rich semantic information that enables them to be used in many semantic
applications [57]. However, knowledge graph embedding vectors are usually only used
for the inherent task of knowledge graph completion, but not for semantic applications.
One of the reasons is that the semantic structures in knowledge graph embedding is not
well-understood because of the vast diversity of the interaction mechanisms in knowledge
graph embedding methods.

In this thesis, we first try to formalize a general framework for multi-relational data
exploration and analysis using semantic queries on knowledge graph embedding space.
The main component in this framework is the conversion templates from data exploration
and analysis tasks on the original data to semantic queries, which are the multi-linear
algebraic operations between the embedding vectors, that exploits the semantic structures
of the embedding space to solve queries such as similarity query and relational query. We
then build a scholarly knowledge graph and demonstrate how some important representa-
tion and analysis tasks on the original data can be efficiently approximated by semantic
queries.

We also review the entity analogy reasoning on multi-relational embedding space task,
which can be seen as an open-relational query by examples task. Towards solving this
task, we study the semantic structures in the knowledge graph embedding space based on
the connections between knowledge graph embedding methods and language modeling, in

3



Introduction Chapter 1

particular, between CPh [47] and word2vec skipgram [56]. We propose a generalized linear
structure that extends the simple semantic direction structure in word2vec embedding
space, namely king −man = queen − woman, to multi-relational embedding space. We
then outline a potential solution to the above task.

1.2 Research contributions

The main contributions of this thesis are described as follows.

Theoretical aspects

• We introduce a new approach to knowledge graph embedding, the multi-partition
embedding interaction, which models the internal structure of the embeddings and
systematically controls the trade-off between expressiveness and computational cost.
In this approach, we propose the standard multi-partition embedding interaction
(MEI) model with block term format, which learns the interaction mechanism from
data automatically through the Tucker core tensors and empirically show that MEI
is efficient and can achieve state-of-the-art results using the popular and standard
link prediction benchmarks.

• We theoretically analyze the framework of MEI to explain its intuitions and mean-
ings. In addition, we are the first to formally study the parameter efficiency problem
and derive a simple optimal trade-off criterion for MEI. We apply the theoretical
framework of MEI to provide new intuitive explanations for the specially designed
interaction mechanisms in several previous knowledge graph embedding models and
show the advantages of MEI over previous models.

• We also draw the connections to word embeddings and language modeling to pro-
vide new insights and generalizations for both knowledge graph embedding and word
embedding. We propose to view knowledge graph embedding from a language mod-
eling perspective and vice versa, view language modeling from a knowledge graph
embedding perspective. These connections enable us to provide new explanations
to some intriguing phenomena in word embedding and network embedding.

Practical aspects

• We formalize a general framework for multi-relational data exploration and analysis
using semantic queries on knowledge graph embedding space. The main component

4



Chapter 1 Introduction

in this framework is the conversion templates from data exploration and analysis
tasks on the original data to semantic queries, which are the multi-linear algebraic
operations between the embedding vectors on the embedding space.

• We build a knowledge graph from scholarly data and demonstrate how some impor-
tant representation and analysis tasks on the original data can be solved by semantic
queries using the formalized framework.

• We also review the entity analogy reasoning on multi-relational embedding space
task, which can be seen as an open-relational query by examples task. Towards solv-
ing this task, we study the semantic structures in the knowledge graph embedding
space, propose a general semantic analogy structure in multi-relational embedding
space, then outline a potential solution to the above task.

1.3 Thesis organization

The remaining chapters in this thesis are organized as follows:

• In Chapter 2, we introduce the background knowledge of our studies, including
the notations, general concepts and definitions that we use in this thesis. We first
present the multi-relational data as a general data format and review related data
formats in real-world datasets. We then summarize embedding methods and review
tensor representation formats.

• In Chapter 3, we review the literature that is most relevant to our research. We first
survey various embedding methods including text embedding, network embedding,
and knowledge graph embedding for multi-relational data. In particular, we focus
on the class of trilinear-product-based models, which includes the state-of-the-art
models that are important objects of our study. We then review popular multi-
relational datasets including knowledge graphs and scholarly datasets. We also
review the applications of knowledge graph embedding methods in multi-relational
data representation and reasoning.

• In Chapter 4, we present the main theoretical contributions of the thesis, namely the
multi-partition embedding interaction model. This proposed model and the accom-
panying concepts provide a new perspective and general mechanism for knowledge
graph embedding. We start with introducing the new concepts and perspectives of
multi-partition embeddings and local partition interactions. We then propose the

5



Introduction Chapter 1

multi-partition embedding interaction (MEI) model to generalize previous models
and systematically address their drawbacks. We also show how MEI provides con-
crete advantages over previous embedding models, generalizes and explains their
mechanisms, as well as explains some surprising phenomena in word embeddings.

• In Chapter 5, we evaluate the proposed knowledge graph embedding model using
popular benchmarks. We first discuss the learning problem of the model. We then
evaluate the performance of the model on the link prediction task, which is the
standard benchmark of knowledge graph embedding method and can be seen as a
simple data query task with a single predicate.

• In Chapter 6, we study and present various practical applications of knowledge graph
embeddings, towards efficient multi-relational data analysis using semantic queries
on knowledge graph embedding space. We first formalize a framework for data
visualization, browsing, and querying applications using semantic queries, which are
multi-linear algebraic operations on the embedding space and demonstrate some
tasks on scholarly data. We also review the entity analogy reasoning in multi-
relational embedding space task, study the semantic structures in the knowledge
graph embedding space, and outline potential solution to the above task.

• Finally, in Chapter 7, we summarize the main results of in this thesis, discuss
some important insights and lessons learned from our research, and list some open
questions for future work.

6



Chapter 2

Background

In this chapter, we introduce the background knowledge of our studies, including the
notations, general concepts and definitions that we use in this thesis. We first present the
multi-relational data as a general data format and review related data formats in real-
world datasets. We then summarize embedding methods and review tensor representation
formats.

2.1 Notation

In general, we denote scalars by normal lower case such as a, vectors by bold lower case
such as a, matrices by bold upper case serif such as M , and tensors by bold upper case
sans serif such as T unless otherwise specified. A triple is denoted as a tuple of three
scalars such as (h, t, r) corresponding to the indices of the head entity, tail entity, and
relation. We also denote the collection of triples in a knowledge graph as D, the set of all
entities as E , and the set of all relations as R.

2.2 Multi-Relational Data

In this thesis, multi-relational data refer to the data about the entities and relation-
ships between them, where there could be multiple relationships between two entities.
Multi-relational data are a general data format that can represent various types of data.
Therefore, multi-relational data are prevalent in real-world datasets, such as knowledge
graphs, text corpora, and information networks. In the following, we review some popular
data formats and show that they are special cases of multi-relational data.

7



Background Chapter 2

2.2.1 Knowledge graph

In the context of semantic web, multi-relational data are knowledge bases or knowledge
graphs in the Resource Description Framework (RDF) format [20]. Knowledge graph has
recently become a standard multi-relational data format for representing knowledge about
the relationships between entities [69].

A knowledge graph is a collection of triples D, with each triple denoted as a tuple
(h, t, r), such as (UserA, Movie1, Like), where h and t are head and tail entities in the
entity set E and r belongs to the relation set R. A knowledge graph can be modeled as a
labeled-directed multigraph, where the nodes are entities and each edge corresponds to a
triple, with the relation being the edge label. A knowledge graph can also be represented
by a third-order binary data tensor G ∈ {0, 1}|E|×|E|×|R|, where each entry ghtr = 1 ⇔
(h, t, r) exists in D [79].

In addition, each entity and relation could have attributes and accompanying text. The
attributes can also be represented as triple, where the attribute names become relation
types and the attribute values become entities. For example, I am 30 years old can be
represented as (I, age, 30). Therefore, knowledge graph is a general format and can
represent many types of data.

2.2.2 Textual data

Text corpora are a very popular data format that represents sequences of words. This
format is fundamentally different from graph format and cannot be directly matched one-
to-one to multi-relational data. However, if we allow information loss, we can capture
some crucial information in textual data by defining an appropriate graph structure over
the sequences of words. The general idea is that, each unique word corresponds to an
entity and the absolute or relative positions of words in the text corpora can be encoded
as relationships between them. For example, we can define the relation in-context to
capture information about the co-appearance of words in a context. More extensively,
we can define relations same-sentence, appear-before, and appear-after to capture more
information about relative positions between words.

Theoretically speaking, when the number of defined relation types approaches infinity,
we can capture all information in the text corpora and represent them as multi-relational
data. Although this scenario is theoretical and unrealistic, defining an single implicit
relation in-context [78] has been the primary tool that make neural word embedding
methods work and achieve great success such as in word2vec [57]. Thus, it is possible and
beneficial to model textual data as multi-relational data.

8



Chapter 2 Background

2.2.3 Network data

Network data refer to information networks such as co-author network, paper citation
network, and drug-protein interaction network. These networks are usually non-labeled
simple graphs with no loops and no parallel edges, which make them a direct special case
of multi-relation data. When multiple related networks are merged together, there could
be induced edge labels, loops, and parallel edges between nodes.

2.3 Multi-relational embedding methods

Embedding methods aim to learn the representations of data in low dimensional vector
space. In this thesis, we consider the embedding methods on multi-relational data, specif-
ically knowledge graph. We will then show that the embedding methods on other data
formats can be reproduced as special cases of knowledge graph embedding methods.

2.3.1 Knowledge graph embedding

Link prediction in knowledge graphs

Real-world knowledge graphs are usually incomplete. Knowledge graph completion is
the task that aims to predict new triples given the existing triples in the knowledge
graph. The task of link prediction in knowledge graphs can refer to predicting all missing
relational links between head and tail entities, that is, predicting all possible r given
(h, t, ∗). However, in practice, it usually refers to predicting all possible tail entities t
given (h, ∗, r) and all possible head entities h given (∗, t, r).

Knowledge graph embedding models

Knowledge graph embedding models usually take a triple of the form (h, t, r) as input and
predict the existence of that triple. They represent entities and relations as embedding
vectors in low dimensional spaces, then model the interactions between these embedding
vectors to compute matching scores S(h, t, r). They usually model the existence of each
triple by a Bernoulli distribution and use the standard logistic function σ(·) to compute
its existence probability as:

P (1|h, t, r) = σ(S(h, t, r)). (2.1)

9



Background Chapter 2

Note that the triple (h, t, r) is ordered, that is (h, t, r) is different from (t, h, r). There-
fore, the score S(h, t, r) can be different from S(t, h, r), and thus their existence proba-
bilities can be different.

Knowledge graph embedding models have the following general three-component ar-
chitecture [77].

1. Embedding lookup: linear mapping from the input sparse high-dimensional discrete
one-hot vectors to the dense low-dimensional continuous embedding vectors. A one-
hot vector is a sparse discrete vector representing a discrete input, e.g., the first
entity can be represented as [1, 0, . . . , 0]>. A triple can then be represented as a
tuple of three one-hot vectors corresponding to h, t, and r, respectively. An em-
bedding vector is a dense low-dimensional continuous vector, which enables efficient
distributed representations [32] [33].

2. Interaction mechanism: modeling the interactions between embedding vectors to
compute the matching score of a triple. This is the key component of a knowledge
graph embedding model and differentiates between different models.

3. Link prediction: using the matching score to predict the existence of each triple.
Usually a higher score means that the triple is more likely to be existent. In training,
the prediction results are compared with the true data to optimize the embedding
vectors and the interaction mechanisms.

Fully expressiveness

Knowledge graph embedding is a very active research topic and thus there are many
competing models. Traditionally, a desired property of a model is fully expressiveness,
that is, there exists a model configuration that can represent any ground truth dataset.
Here we formally define the fully expressiveness property.

Definition 2.1. (Knowledge graph) A knowledge graph D is a set of true triples.

Definition 2.2. (Data tensor) A data tensor is a representation of a knowledge graph
D by a third-order binary tensor G ∈ {0, 1}|E|×|E|×|R|, where ghtr = 1 if and only if (h, t, r)

exists in D and 0 otherwise.

Definition 2.3. (Ground truth) A ground truth G over an entity set E and a relation
set R is a full assignment of truth values to all triples that can be composed from these
entities and relations.

10



Chapter 2 Background

Definition 2.4. (Positive ground truth, negative ground truth, non-positive
ground truth, non-negative ground truth) A positive ground truth is a ground truth
with all triples evaluated as positive. A negative ground truth is a ground truth with all
triples evaluated as negative. A non-positive ground truth is a ground truth with at least
one triple evaluated as negative. A non-negative ground truth is a ground truth with at
least one triple evaluated as positive.

Definition 2.5. (Fully expressiveness) A model is fully expressive if and only if for
any ground truth, there exists an assignment of values to the model’s parameters such
that the scores of all true triples are either strictly larger or strictly smaller than the
scores of all false triples. When a model is shown to be fully expressive with respect to a
ground truth, we say that the model accurately represents that ground truth.

Fully expressiveness is an important property of knowledge graph embedding models
because if a model is not fully expressive, it cannot model some particular patterns in
a knowledge graph, and thus, is inherently flawed. However, as we will discuss in Sect.
4.3.2, in practice, we care more about the model’s ability to efficiently capture complex
patterns in a knowledge graph, instead of the parameter upper bound for fully expressive.

2.3.2 Text embedding

Text embedding models, particularly word embedding models, are usually language mod-
els that take a context C, such as a sequence of context-words c1, . . . , cm, as input and
predict the target-word w [4], that is, predict the probability:

P (w|c1, . . . , cm). (2.2)

Context-words are usually defined by using a sliding window through the sequence of
words. Target-words are usually either the next word or the center word in the sliding
window. Some efficient models such as word2vec skipgram predict multiple context-words
given the target-word instead [56].

More generally, text embedding models may take as input sequences of words, that is,
documents. Each input word could be represented by a one-hot vector [1, 0, . . . , 0]>, thus
input are sequences of one-hot vectors. The output usually depends on specific tasks,
such as predicting the next word in language modeling [39], predicting target-word in
word2vec [57], and predicting the next sentence in skip thought [44].

Note that for the above text embedding models, they can be seen as special cases of
knowledge graph embedding with a single implicit relation for each type of model. For

11



Background Chapter 2

example, triples become pairs of words in word2vec, or pairs of sentences in skip thought,
or tuple of document and word in doc2vec. This connection is mathematically analyzed
in more details in Section 4.5.1.

2.3.3 Network embedding

Network embedding was originally developed based on text embedding, with DeepWalk
[63] using random walks on the network to sample sequences of nodes, which are then
used in the same manner as sequences of words in word2vec to learn the node embeddings.

Several later methods improved this approach by either changing the sequence sam-
pling strategy, or restrict the sampling neighborhood. Some other methods use deep
models like convolutional neural networks on the graph. They all share the same problem
with text embedding, i.e., they do not model explicit relations, thus they cannot capture
different semantic meanings of nodes in different relational contexts.

These models take as input a network, usually represented by an adjacency matrix or
adjacency list denoting edges between pairs of nodes. Note that when data is a heteroge-
neous graph, meaning there are many edge types, it is usually represented by a collection
of adjacency matrix or adjacency list, each one for each edge type instead of using edge
labels as in knowledge graph. The output is usually predicting neighbor nodes. Note
that there is no edge embedding, because there is only one edge type implicitly. Even
for heterogeneous graph, they do not fully utilize different edge types and do not learn
different edge embeddings.

2.4 Tensor

In this section, we review the mathematical background about tensor. Tensor is a gen-
eralization of vector and matrix to arbitrary orders [46]. A vector is a special case of
first-order tensor with one lower index. A matrix is a special case of second-order tensor
with one lower and one upper indices. A tensor can be viewed as a multi-dimensional
array, where each entry is specified by multi-indices. For example, ti,j,k is the scalar entry
at “row” i, “column” j, and “tube” k of the third-order tensor T. In this thesis, we concern
the finite-dimensional tensor.

12



Chapter 2 Background

2.4.1 Tensor product

The tensor product of two tensors is a new tensor whose entries are the products of every
pair of entries from the two input tensors. Because of multiplying every pair of entries,
the tensor product of two finite-dimensional tensors has dimension equal to the product
of the dimensions of the two input tensors. We denote the tensor product as ×.

2.4.2 Tensor contraction

Tensor contraction is a generalization of trace in the case of matrix to the case of tensor.
Tensor contraction refers to the process of summing over a pair of same indices, thus
reduces the order of a tensor by 2. Tensor contraction can be applied to any tensor or
tensor product, with the duplicate indices be summed over in the Einstein notation.

2.4.3 The n-mode tensor product with a matrix

The n-mode tensor product of a tensor with a matrix is a new tensor with the same order
but different dimension to the input tensor. The mode n entries of the resulting tensor
are computed by dot product of each mode n tube of the input tensor and each column
of the input matrix. We denote the n-mode tensor product as ×n.

2.4.4 The n-mode tensor product with a vector

The n-mode tensor product of a tensor with a vector is similar to the n-mode tensor
product with a matrix; however, the mode n with dimensionality 1 in the resulting tensor
is contracted, and thus reduces the order of the resulting tensor by 1. We denote the
n-mode tensor product with a vector as ×̄n.

2.5 Tensor representation formats

There are different ways to write the tensor as product of other tensors. These are called
tensor representation formats. We will review some most important and relevant formats.

2.5.1 CP format

CP format is the common name for CANDECOMP, PARAFAC, or the tensor rank format.
This is the most popular and simplest format, which was independently rediscovered many
times under different names [46]. The tensor rank format represent a rank R tensor as a

13



Background Chapter 2

sum of R rank 1 tensors, in an analogy to the matrix rank format. A rank 1 nth-order
tensor is a tensor such that it can be written as the tensor product of n 1-order tensors.

Entry-wise, we can write the rank R third-order tensor U in tensor rank format as:

uijk = 〈ai, bj, ck〉, (2.3)

=
R∑

r=1

airbjrckr, (2.4)

where

• 〈·, ·, ·〉 denotes the trilinear product, which is an extension of dot product to more
than two vectors,

• ai, bj, ck ∈ RR are the factor vectors corresponding to the entry uijk,

• air, bjr, and ckr are the scalar elements of the factor matrices.

The rank of a tensor as presented here is the smallest number R that the tensor rank
format using R rank-1 tensors can exactly represent it. Tensors have different definitions
of rank and the concept is still not well understood, in opposite to the case of matrix
rank. In general, finding the rank of a tensor is an NP-hard problem [31].

2.5.2 Tucker format

The Tucker format [82] is a more general and flexible format than the CP format. The
Tucker format represents an nth-order tensor by the n-mode tensor product of a core
tensor with factor matrices on each mode.

For example, the Tucker representation format of a third-order data tensor U ∈
RI×J×K [46] is:

U = W ×1 A×2 B ×3 C, (2.5)

where

• W ∈ RX×Y×Z is the third-order core tensor,

• A ∈ RI×X ,B ∈ RJ×Y , and C ∈ RK×Z are the factor matrices,

• ×n is the n-mode tensor product with a matrix.

14



Chapter 2 Background

More intuitively, each scalar element uijk of the tensor U can be written in the n-mode
tensor product with vectors format [46] and in the summation format [82] as:

uijk = W ×̄1 ai ×̄2 bj ×̄3 ck, (2.6)

=
X∑

x=1

Y∑
y=1

Z∑
z=1

wxyzaixbjyckz, (2.7)

where

• ai ∈ RX , bj ∈ RY , and ck ∈ RZ are the factor column vectors corresponding to the
rows of the factor matrices A,B, and C, respectively,

• ×̄n is the n-mode tensor product with a column vector, which makes the final result
uijk a scalar,

• wxyz is a scalar element of the core tensor W,

• aix, bjy, and ckz are the scalar elements of the factor matrices.

The factor matrices are usually constrained to have orthonormal column vectors, which
make Tucker decomposition a form of higher order SVD [82] [46]. These orthonormal
columns of the factor matrices can be thought of as the principle components that capture
the most variance in data in each mode. The core tensor W consists of the weights of
the interactions between these principle components and usually used as the compressed
version of the input tensor. The Tucker format is the basic building block in tensor
calculus that appears in many other formats [28], such as the block term format [14].

2.5.3 Block term format

Block term format [13] [14] [15] is a recent tensor representation format that generalizes
the CP format to be more flexible as the Tucker format but still keeps the uniqueness
property of CP format, instead of the lack of uniqueness in Tucker format.

Block term format represents each nth-order tensor as the sum of T nth-order tensors,
where each of them is represented by Tucker format. For example, the block term format
of a third-order data tensor U ∈ RI×J×K , entry-wise, is:

uijk =
T∑
t=1

(Wt×̄1 ai,t×̄2 bj,t×̄3 ck,t) , (2.8)

15



Background Chapter 2

These tensor representation formats have wide applications in many domains. The
ideas of CP and Tucker formats was introduced in the work of Hitchcock in 1927 [34] but
have only become popular in psychometrics in 1960s after the work of Tucker [82], whom
the Tucker format was named after. Since then, these tensor formats have been being
used increasingly in other domains such as signal processing [68], computer visions [85],
and recommender systems [74].

These tensor representation formats are usually used for data analysis and finding
latent factors that explain the data tensor. Traditional methods to solve the tensor
decomposition under these tensor representation formats are usually alternating least
squared error method for unbounded continuous values input tensors. There are other
methods for representing and analyzing higher-order tensor data. However, in this thesis,
we will show that these tensor representation formats are interesting and useful both
theoretically and computationally to explain and compute knowledge graph embeddings.

16



Chapter 3

Related Work

In this chapter, we review the literature that is most relevant to our research. We first
survey various embedding methods including text embedding, graph embedding, and
knowledge graph embedding for multi-relational data. In particular, we focus on the class
of trilinear-product-based models, which includes the state-of-the-art models that are im-
portant objects of our study. We then review popular multi-relational datasets including
knowledge graphs and scholarly datasets. We also review the applications of knowledge
graph embedding methods in multi-relational data representation and reasoning.

3.1 Multi-relational embedding methods

Knowledge graph is a universal data format that can represent both textual and graph
data, thus knowledge graph embedding methods can be seen as a generalization of other
embedding methods.

3.1.1 Knowledge graph embedding methods

Knowledge graph embedding is an active research topic with many different methods
[89]. Based on the interaction mechanisms used in the second component of the general
architecture, most popular knowledge graph embedding models can be categorized into
three main categories [79]:

1. Semantic matching models are based on similarity measures between the head and
tail embedding vectors such as bilinear map or trilinear product.

2. Neural-network-based models are based on using neural networks as universal ap-
proximators to compute the matching score for each triple.

17



Related Work Chapter 3

3. Translation-based models are based on the geometric view of relation embeddings
as translation vectors between the head and tail entity embeddings.

Semantic matching models

RESCAL [60] is a general model that uses a bilinear map to model the interactions
between the whole head and tail entity embedding vectors, with the relation embedding
being used as the matching matrix, such that

S(h, t, r) = h>Mrt, (3.1)

where h, t ∈ RD are the embedding vectors of h and t, respectively, andMr ∈ RD×D is the
relation embedding matrix of r, with D being the embedding size. However, the matrix
Mr grows quadratically with embedding size, making the model expensive and prone to
overfitting. TuckER [3] is a recent model extending RESCAL by using the Tucker format
[82]. However, it also models the interactions between the whole head, tail, and relation
embedding vectors, making the core tensor in the Tucker format grow cubically with the
embedding size, and also quickly becomes expensive.

One approach to reducing computational cost is to design special interaction mecha-
nisms that restrict the interactions between a few entries of the embeddings. For example,
DistMult [95] is a simplification of RESCAL in which the relation embedding is a diagonal
matrix, equivalently a vector r ∈ RD, such that Mr = diag(r). Its score function can
also be written as a trilinear product

S(h, t, r) = 〈h, t, r〉 =
∑

i hitiri, (3.2)

which is an extension of the dot product to three vectors.
DistMult is fast but restrictive and can only model symmetric relations. Most recent

models focus on designing interaction mechanisms that aim to be richer than DistMult
while achieving a low computational cost. For example, HolE [61] uses a circular corre-
lation between the head and tail embedding vectors; ComplEx [80] uses complex-valued
embedding vectors, h, t, r ∈ CD, and a special complex-valued vector trilinear product;
and SimplE [41] [47] represents each entity as two role-based embedding vectors and
augments an inverse relation embedding vector. In our previous work [77], we analyzed
knowledge graph embedding methods from the perspective of a weighted sum of trilin-
ear products to propose a more advanced Quaternion-based interaction mechanism and
showed its promising results, which were later confirmed in a concurrent work [97]. How-

18



Chapter 3 Related Work

ever, these interaction mechanisms are specially designed and fixed, potentially causing
them to be suboptimal or difficult to extend.

In this work, we propose a multi-partition embedding interaction framework to auto-
matically learn the interaction mechanism and systematically control the trade-off between
expressiveness and computational cost.

Semantic matching models are related to tensor decomposition methods where the
embedding model can employ a standard tensor representation format in tensor calculus
to represent the data tensor, such as the CP tensor rank format [34], Tucker format [82],
and block term format [14]. However, when applied to knowledge graph embedding, there
are some differences, such as changing from continuous tensor to binary tensor, relaxation
of constraints for data analysis, and different solvers [46]. We analyze the connections to
the related tensor decomposition methods in Section 4.2.3.

The trilinear-product-based models In this thesis, we focus on this class of trilinear-
product-based models, including DistMult, CP, SimplE, and ComplEx. To facilitate
further analysis, we review them in details. These models compute their scores by using
the trilinear product between head, tail, and relation embeddings, with relation embedding
playing the role of matching weights on the dimensions of head and tail embeddings:

S(h, t, r) = 〈h, t, r〉

= h>diag(r)t

=
D∑

d=1

(h� t� r)d

=
D∑

d=1

hdtdrd

(3.3)

where

• h, t, r are embedding vectors of h, t, and r, respectively,

• diag(r) is the diagonal matrix of r,

• � denotes the element-wise Hadamard product,

• D is the embedding size and d is the dimension for which hd, td, and rd are the
scalar entries.

DistMult [95] embeds each entity and relation as a single real-valued vector. DistMult
is the simplest model in this category. Its score function is symmetric, with the same

19



Related Work Chapter 3

scores for triples (h, t, r) and (t, h, r). Therefore, it cannot model asymmetric data for
which only one direction is valid, e.g., asymmetric triples such as (Paper1, Paper2, cite).
Its score function is:

S(h, t, r) = 〈h, t, r〉, (3.4)

where h, t, r ∈ RD.

CP [34] is similar to DistMult but embeds entities as head and as tail differently. Each
entity e has two embedding vectors e and e(2) depending on its role in a triple as head or
as tail, respectively. Using different role-based embedding vectors leads to an asymmetric
score function, enabling CP to also model asymmetric data. However, experiments have
shown that CP’s performance is very poor on unseen test data [47]. Its score function is:

S(h, t, r) = 〈h, t(2), r〉, (3.5)

where h, t(2), r ∈ RD.

A recent extension of CP was independently discovered under the name SimplE [41]
and CPh [47]. Its heuristic augments the training data by making an inverse triple
(t, h, r(a)) for each existing triple (h, t, r), where r(a) is the augmented relation correspond-
ing to r. With this heuristic, CPh significantly improves CP, achieving results competitive
with ComplEx. Its score function is:

S(h, t, r) = 〈h, t(2), r〉

and 〈t,h(2), r(a)〉,
(3.6)

where h,h(2), t, t(2), r, r(a) ∈ RD.

ComplEx [80] is an extension of DistMult that uses complex-valued embedding vectors
that contain complex numbers. Each complex number c with two components, real a and
imaginary b, can be denoted as c = a + bi. The complex conjugate c of c is c = a − bi.
The complex conjugate vector t of t is form from the complex conjugate of the individual
entries. Complex algebra requires using the complex conjugate vector of tail embedding in
the inner product and trilinear product [1]. Thus, these products can be antisymmetric,
which enables ComplEx to model asymmetric data [80] [81]. Its score function is:

S(h, t, r) = Re(〈h, t, r〉), (3.7)

20



Chapter 3 Related Work

where h, t, r ∈ CD and Re(c) means taking the real component of the complex number c.

As an extension of ComplEx, we proposed the more advanced Quaternion-based em-
bedding model from the perspective of the weighted sum of trilinear products in our
previous work [77], which were later confirmed in a concurrent work [97]. Several works
have shown the benefit of using complex, quaternion, or other hyper-complex numbers in
the hidden layers of deep neural networks [26] [59] [62]. To the best of our knowledge,
we are the first to motivate and use quaternion numbers for the embedding vectors of
knowledge graph embedding.

Quaternion numbers are extension of complex numbers to four components [40] [24].
Each quaternion number q, with one real component a and three imaginary components
b, c, d, could be written as q = a+ bi+ cj + dk where i, j,k are fundamental quaternion
units, similar to the imaginary number i in complex algebra. As for complex conjugates,
we also have a quaternion conjugate q = a−bi−cj−dk. An intuitive view of quaternion al-
gebra is that each quaternion number represents a 4-dimensional vector (or 3-dimensional
vector when the real component a = 0) and quaternion multiplication is rotation and
scaling of this vector in 4- (or 3-)dimensional space. Compared to complex algebra, each
complex number represents a 2-dimensional vector and complex multiplication is rotation
and scaling of this vector in 2-dimensional plane [1]. The multiplication of the quater-
nion p with the quaternion q is a pure rotation of p by q when q has unit module, that
is, q = a + bi + cj + dk,

√
a2 + b2 + c2 + d2 = 1. Restricting the relation embedding to

unit quaternions for pure rotation is an effective regularization for the quaternion-based
embedding model in practice.

Quaternion multiplication is noncommutative, thus there are multiple ways to multiply
three quaternion numbers in the trilinear product. Here, we choose to write the score
function of the model as:

S(h, t, r) =Re(〈h, t, r〉), (3.8)

where h, t, r ∈ HD.

By expanding this formula using quaternion algebra [40] and mapping the four com-
ponents of a quaternion number to four embeddings in the multi-embedding interaction
model [77], respectively, we can write the score function in the notation of the multi-

21



Related Work Chapter 3

embedding interaction model as:

S(h, t, r) = Re(〈h, t, r〉)

= 〈h(1), t(1), r(1)〉+ 〈h(2), t(2), r(1)〉

+〈h(3), t(3), r(1)〉+ 〈h(4), t(4), r(1)〉

+〈h(1), t(2), r(2)〉 − 〈h(2), t(1), r(2)〉

+〈h(3), t(4), r(2)〉 − 〈h(4), t(3), r(2)〉

+〈h(1), t(3), r(3)〉 − 〈h(2), t(4), r(3)〉

−〈h(3), t(1), r(3)〉+ 〈h(4), t(2), r(3)〉

+〈h(1), t(4), r(4)〉+ 〈h(2), t(3), r(4)〉

−〈h(3), t(2), r(4)〉 − 〈h(4), t(1), r(4)〉,

(3.9)

where h, t, r ∈ HD.

Neural-network-based models

These models use a nonlinear neural network to compute the matching score for a triple:

S(h, t, r) = NN(h, t, r), (3.10)

where

• h, t, r are the embedding vectors of h, t, and r, respectively,

• NN is the neural network used to compute the score.

One of the simplest neural-network-based model is ER-MLP [17], which concatenates
the input embedding vectors and uses a multi-layer perceptron neural network to com-
pute the matching score. NTN [71] is a neural network extension of RESCAL that uses
nonlinear neural network on top of the bilinear layer. Recent models such as ConvE [16]
use convolution networks instead of fully-connected networks.

These models aim to learn a neural network, to automatically model the interaction.
These models are usually complicated because they use neural networks as a black-box
universal approximator to compute the matching score, which usually make them compu-
tational expensive and difficult to understand. Recent models using convolutional neural
networks such as ConvE [16] can achieve good results by sharing the convolution weights.

22



Chapter 3 Related Work

However, they are restricted by the input format to the neural network [16], and the
operations are generally less expressive than direct interactions between the entries of the
embedding vectors [61]. We will empirically compare with them.

Translation-based models

These models translate the head entity embedding by summing with the relation embed-
ding vector, then measuring the distance between the translated images of head entity
and the tail entity embedding, usually by L1 or L2 distance:

S(h, t, r) = − ||h+ r − t||p

= −

(
D∑
d

|hd + rd − td|p
)1/p

,
(3.11)

where

• h, t, r are embedding vectors of h, t, and r, respectively,

• p is 1 or 2 for L1 or L2 distance, respectively,

• D is the embedding size and d is the dimension for which hd, td, and rd are the
scalar entries.

TransE [8] was the first model of this type, with score function basically the same as
the above equation. There have been many extensions such as TransR [53], TransH [92],
and TransA [93]. Most extensions are done by linear transformation of the entities into a
relation-specific space before translation [53].

The main advantages of these models are their simple and intuitive mechanism with the
relation embeddings as the translation vectors [8]. However, it has been shown that they
have limitations in expressiveness because of over-strong assumptions about translation
using relation embedding [41]. Therefore, they are unable to model some forms of data
such as symmetric relation [91]. The recent model TorusE [18] improves the translation-
based models by embedding in the compact torus space instead of real-valued vector space
and achieves good results. We will also empirically compare with them.

3.1.2 Text embedding methods

Text embedding methods were developed independently of knowledge graph embedding.
In this thesis, we restrict to the shallow text embedding models such as word2vec [57]

23



Related Work Chapter 3

[56] and fastText [6] [38], that have achieved great success due to large training data and
lots of engineering efforts from the community. They are a crucial ingredient in modern
natural language processing and text mining systems.

The early models were usually based on language modeling of the form predicting
the next word given context-words [4]. Since then, word embedding models have be-
come more effective and computationally efficient. The most popular word embedding
models in recent years are word2vec variants such as skipgram [57] [56]. The word2vec
skipgram model define a context of m context-words, then predicts the context-words
ci, i = 1, . . . ,m given the target-word w, that is:

P (ci|w),

i = 1, . . . ,m.
(3.12)

Computing these multinoulli distributions requires the expensive softmax function. In
practice, word2vec skipgram avoids this by approximating them with negative sampling
and solve for the Bernoulli distributions:

P (1|ci, w),

i = 1, . . . ,m,
(3.13)

which can be computed efficiently by using the standard logistic function σ:

P (1|ci, w) = σ(u>civw),

i = 1, . . . ,m,
(3.14)

where uci is the context-embedding vector of context-word ci and vw is the word-embedding
vector of target-word w.

The resulted word embedding vectors, w, have been shown to capture the syntactic
and semantic information in the original text data [57], which enable them to be used as
the pretrained feature vectors for various tasks such as name entity recognition, text clas-
sification, and question answering. Especially, it has been observed that the embedding
space has the linear semantic structure, notably with the example king - man ≈ queen -
woman [57] [52].

Later text embedding models are also log-bilinear model as word2vec but can integrate
subword information such as fastText [6] [38]. For document embedding, one of the most
popular model is doc2vec [48], which extends word2vec to additionally learn the document
embedding by predicting words in the document. An extension of doc2vec is session2vec

24



Chapter 3 Related Work

[54], which also learn the embeddings for sessions that contain multiple documents. There
are also several works on computing document embedding by averaging bag-of-word-
embeddings such as [37] that use a deep multi-layer perceptron neural network on top of
the bag-of-word-embeddings for document classification.

There are recent works on deep learning for text embeddings using long-short term
memory (LSTM) [35] [64], convolutional neural network (Temporal CNN) [22], and Trans-
former [86] to compute contextual word embeddings at a higher computational cost. How-
ever, these models are outside the scope of this thesis.

3.1.3 Network embedding methods

There are many approaches for computing representations of a network. In this thesis,
we restrict to the class of shallow network embedding models that are based on random
walks and the skipgram model of word2vec.

The most popular models of this type is DeepWalk [63], which was directly developed
based on word2vec. They use random walks on the network to sample sequences of
nodes and use them in a similar manner to sequences of words in word2vec to learn
node embeddings. A closely related model to DeepWalk is Node2Vec [25], where they
introduced a strategy to balance between depth-first-search and breadth-first-search for
the random walk. Another related model is LINE [75] where they limit the neighborhood
to at most two-step away from each node.

There are recent works on deep learning for graph neural networks such as mes-
sage passing using graph convolutional networks (GCN) [43], message passing using
aggregation–readout functions (GraphSAGE, GIN) [29] [94], attention-based message
passing (GAT) [87] that try to learn contextual representations of nodes and networks at
a higher computational cost. However, these models are outside the scope of this thesis.

3.2 Datasets

3.2.1 Knowledge graphs

Knowledge graphs have become more popular in recent years and many knowledge graphs
have been built to store many different type of data. Specialized knowledge graphs about
a domain, such as Wordnet [58] about lexical information. Large real-world knowledge
graphs, such as Freebase [7] and Wikidata [88].

25



Related Work Chapter 3

3.2.2 Information networks

There are many networks of interests that have driven the researches and developments
in network data mining over the years. For example, social networks [51] and especially
biomedical networks, such as drug-protein interaction networks [98].

3.2.3 Scholarly data

Scholarly data is a large and important type of multi-relational data. They contain two
types of data, bibliographic knowledge graphs and scientific knowledge graphs.

There exist several large scale bibliographic datasets thanks to the recent trend in
open science and open access publishing. The popular ones are listed in Table 3.1. Out
of them, the MAG dataset is the most complete and official [70]. MAG was used in some
online challenges like KDD challenge 20161, WSDM challenge 20162.

Table 3.1: Some popular bibliographic datasets.

Dataset Source Scope Notes

DBLP https://dblp.
uni-trier.de/ Computer Science

The first open bibliographic
dataset.
Lacking some important infor-
mation: paper abstract, full-
text, citation, etc.

MAG
Online at https:
//academic.
microsoft.com/

Multidisciplinary

Having full relational informa-
tion, but lacking text content
like paper abstract, fulltext.
One of the most complete and
official dataset.

MAS
http://academic.
research.
microsoft.com/

Computer Science
Old version of MAG.
Having paper abstract.
Crawled in 2011-2012.

ArnetMiner
https://aminer.
org/open-
academic-graph/

Multidisciplinary Similar to MAG, less complete.

CORE
https://core.
ac.uk/services#
dataset

Multidisciplinary

Collection of open-access pa-
pers, no closed-access papers.
Having fulltext content of
about 10% of its papers.

arXiv https://arxiv.
org/

Some quantitative
fields: Computer
Science, Physics,
Maths, etc.

Pre-print.
Having fulltext content.

Bibliographic knowledge graphs

Bibliographic knowledge graphs contain information about the bibliographic data or meta-
data of the papers, such as authorship, publishing venue, citations. They can be con-
structed directly using the network structure of bibliographic data. Bibliographic data
1 https://kddcup2016.azurewebsites.net/Data/
2 http://www.wsdm-conference.org/2016/wsdm-cup.html

26

https://dblp.uni-trier.de/
https://dblp.uni-trier.de/
https://academic.microsoft.com/
https://academic.microsoft.com/
https://academic.microsoft.com/
http://academic.research.microsoft.com/
http://academic.research.microsoft.com/
http://academic.research.microsoft.com/
https://aminer.org/open-academic-graph/
https://aminer.org/open-academic-graph/
https://aminer.org/open-academic-graph/
https://core.ac.uk/services#dataset
https://core.ac.uk/services#dataset
https://core.ac.uk/services#dataset
https://arxiv.org/
https://arxiv.org/
https://kddcup2016.azurewebsites.net/Data/
http://www.wsdm-conference.org/2016/wsdm-cup.html


Chapter 3 Related Work

have an inherent multi-relational structure. For example, the Microsoft Academic Graph
dataset [70] has scholarly entities such as paper, author ; the relation types such as paper-
cites-paper, author-writes-paper ; and entity attributes such as paper-title, author-name.

There have been several attempts to build bibliographic knowledge graphs in recent
years. The approaches include either adopting the bibliographic network structure di-
rectly [90], or derive the knowledge graph from some similarity measures [83] [66], or
constructing the knowledge graph from survey paper [21]. Figure 3.1 show an overview
of a bibliographic knowledge graph that is directly constructed from the bibliographic
network structure.

Figure 3.1: Example of a bibliographic knowledge graph (source [90]).

Scientific knowledge graphs

Scientific knowledge graphs contain information about scientific concepts and knowledge.
Traditionally, they can be manually constructed by experts and scientists in a scientific
domain. Recently, scientific knowledge graphs have been automatically constructed from
the content of scientific papers using named entity recognition and integrated with other
sources of data. For example, chemical knowledge graphs such as Chematica3 include
organic chemical compounds as entities and chemical reactions as relations, respectively.
The triples in such knowledge graphs represent the existing reactions. The tasks of link
prediction or relational querying would be useful for discovering new reaction routes,
optimizing existing reactions, or avoiding hazardous by-products.

There are several scientific knowledge graphs, including biomedical knowledge graphs
such as drug–protein interaction networks, protein–protein interaction networks, drug–
drug side effect networks [98].

3 https://neo4j.com/news/the-chemical-knowledge-graph/

27

https://neo4j.com/news/the-chemical-knowledge-graph/


Related Work Chapter 3

3.3 Applications of embedding methods

Large real-world knowledge graphs, such as Freebase [7] and Wikidata [88] have found
important applications in many artificial intelligence tasks, such as question answering,
semantic search, and recommender systems. Google acquired the Freebase and make it
their own knowledge graphs [69].

Knowledge graph embedding methods perform link prediction for knowledge graph
completion [79]. These models also provide the embeddings as a useful representation of
the whole knowledge graph that can be used for data visualization and analysis. They
may also boost applications of knowledge graphs in artificial intelligence tasks such as
explicit reasoning on knowledge graph embedding space [30] and implicit reasoning on
knowledge graph embedding space with query by examples [78].

In this thesis, we concern the applications of knowledge graph embedding methods
and the knowledge graph embedding space for scholarly data analysis and reasoning.
Especially on the bibliographic knowledge graphs of COVID-19 papers and the scientific
knowledge graphs of COVID-19 medical terms, drugs, and diseases.

28



Chapter 4

Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge
Graph Embedding

In this chapter, we present the main theoretical contributions of the thesis, namely the
multi-partition embedding interaction model. This proposed model and the accompanying
concepts provide a new perspective and general mechanism for knowledge graph embed-
ding. We start with introducing the new concepts and perspectives of multi-partition
embeddings and local partition interactions. We then propose the multi-partition embed-
ding interaction (MEI) model to generalize previous models and systematically address
their drawbacks. We also show how MEI provides concrete advantages over previous
embedding models, generalizes and explains their mechanisms, as well as explains some
surprising phenomena in word embeddings.

4.1 Motivation

Knowledge graphs are a popular data format for representing knowledge about entities
and their relationships as a collection of triples, with each triple (h, t, r) denoting the fact
that relation r exists between head entity h and tail entity t. Large real-world knowl-
edge graphs, such as Freebase [7] and Wikidata [88] have found important applications in
many artificial intelligence tasks, such as question answering, semantic search, and recom-
mender systems, but they are usually incomplete. Knowledge graph completion, or link
prediction, is a task that aims to predict new triples based on existing triples. Knowledge
graph embedding methods perform this task by representing entities and relations as em-

29



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

beddings and modeling their interactions to compute a score that predicts the existence
of each triple. These models also provide the embeddings as a useful representation of the
whole knowledge graph that may enable new applications of knowledge graphs in artificial
intelligence tasks [78].

In a knowledge graph embedding model, the matching score is computed based on
the interaction between the entries of embeddings. The interaction mechanism is the
function that computes the score from the embedding entries. The interaction pattern
specifies which entries interact with each other and how; thus, it can define the interaction
mechanism in a simple manner. For example, in DistMult [95], the interaction pattern
is the diagonal matching matrix between head and tail embedding vectors, as detailed in
Section 3.1.1.

Most previous works treat embedding as a whole and model the interaction between
the whole embeddings. For example, the bilinear model RESCAL [60] and the recent
model TuckER [3] can model very general interactions between every entry of the em-
beddings, but they cannot scale to large embedding size. One popular approach to this
problem is to design special interaction mechanisms to restrict the interactions between
only a few entries, for example, DistMult [95] and recent state-of-the-art models HolE
[61], ComplEx [80], SimplE [41] [47], and Quaternion embedding model [77] [97]. How-
ever, these interaction mechanisms are specifically designed and fixed, which may pose
questions about optimality or extensibility on a specific knowledge graph.

In this work, we approach the problem from a different angle. We explicitly model the
internal structure of the embedding by dividing it into multiple partitions, enabling us to
restrict the interactions in a triple to only entries in the corresponding embedding parti-
tions of head, tail, and relation. The local interaction in each partition is modeled with
the classic Tucker format [82] to learn the most general linear interaction mechanisms, and
the score of the full model is the sum score of all local interactions, which can be viewed
as the block term format [14] in tensor calculus. The result is a multi-partition embedding
interaction (MEI) model with block term format that combines advanced tensor represen-
tation formats and modern deep learning techniques to provide a systematic framework
to control the trade-off between expressiveness and computational cost through the parti-
tion size, to learn the interaction mechanisms from data automatically through the local
Tucker core tensors, and to achieve state-of-the-art performance on the link prediction
task using popular benchmarks [79].

30



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

4.2 The multi-partition embedding interaction model

In this section, we first identify two fundamental concepts in our model, namely multi-
partition embedding and modeling the interaction patterns. We then propose the multi-
partition embedding interaction model and discuss its details.

4.2.1 Fundamental principles and concepts

Based on our analysis of previous work, we identify two fundamental aspects that a
knowledge graph embedding model needs to address as follow.

1. Restricting the interaction of embedding entries for sparsity and high computational
efficiency.

2. Designing special interaction patterns between embedding entries for high expres-
siveness.

Most previous models focus on either one of the aspects and neglect the other one. In
RESCAL and TuckER, they model the full interactions between the embedding vectors.
Thus, they can maximize the second aspect but have low computational efficiency. In
trilinear-product-based models, they use specially designed interaction mechanisms to
impose special architectural bias on the interaction patterns. However, their interaction
patterns are specially designed and fixed, limiting their expressiveness, potentially causing
them to be suboptimal or difficult to extend.

In the MEI model, we address both aspects and construct MEI with following two
corresponding fundamental concepts.

1. Multi-Partition Embedding Interaction: Each embedding vector v ∈ RD is divided
into K partitions, and the interactions in each triple are restricted to only entries
in the corresponding partitions vk:. For simplicity, we assume all partitions have
the same size C, then v can be denoted conveniently as a matrix V ∈ RK×C , where
D = KC, each row vector vk: is called a partition, and each column vector v:c is
called a component.

2. Modeling the Interaction with Block Term Format: The local interaction is modeled
with the Tucker format [82], which is the most general linear model that computes
the weighted sum of all entry product combinations in the interacting partitions.
The block term format [14] emerges from the sum score of all local interactions.

31



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

K

Ce=3 Ce=3 Cr=3

hk:

tk:
h t r

rk:

Local	score	at	k	=	1

Local	score	at	k	=	K

hk: tk:

MW,r,khk: tk:
Full	MEI	score

Tucker	format Parameterized	bilinear	format Neural	network	format
Wk

Multi-partition	embedding

×1

×2 ×3

Local	MEI	score

						MW,r,k 
= Wk ×3 rk:

Figure 4.1: MEI architecture: multi-partition embedding vectors that interact only
between the corresponding partitions. This figure illustrates a MEI model with block
term format in three different views for the local-partition interaction: Tucker format,

parameterized bilinear format, and neural network format.

Note that the concept of multi-partition embedding interaction is highly general and
intuitive, as discussed in Section 4.3.1. For simplicity, we specifically adopt the Tucker
and block term tensor formats to realize a simple yet general standard MEI model.

4.2.2 Model definition

The MEI model architecture is illustrated in Fig. 4.1. In each triple (h, t, r), the entities
and relations embedding vectors h, t ∈ RDe , and r ∈ RDr are divided into multiple
partitions conveniently denoted as the multi-partition embedding matricesH ,T ∈ RK×Ce ,
and R ∈ RK×Cr , respectively. Note that the embedding sizes of entity and relation are
not necessarily the same.

Formally, the score function of MEI is defined as the sum score of K local interactions,
with each local interaction being modeled by the Tucker format,

S(h, t, r;θ) =
K∑
k=1

(Wk×̄1hk:×̄2tk:×̄3rk:) , (4.1)

where θ denotes all parameters in the model; Wk ∈ RCe×Ce×Cr is the global core tensor
at partition k; hk:, tk:, and rk: are the corresponding partitions k; and ×̄n denotes the n-
mode tensor product with a vector [46], which contracts the modes of the resulting tensor
to make the final result a scalar. The tensor product can be expanded as the following
weighted sum

S(h, t, r;θ) =
K∑
k=1

(
Ce∑
x=1

Ce∑
y=1

Cr∑
z=1

wxyz,khkxtkyrkz

)
, (4.2)

where wxyz,k is a scalar element of the core tensor Wk and hkx, tky, and rkz denote the

32



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

entries in the local partitions k.

4.2.3 Model details

Let us analyze the details of MEI, with a focus on the local interactions in MEI, called
local MEI, which are the building blocks of the full MEI model.

4.2.3.1 Tucker format and block term format

We choose to model the local interaction at each partition by the Tucker format [82] of
third-order tensor

Sk(h, t, r;θ) = Wk×̄1hk:×̄2tk:×̄3rk: (4.3)

because the Tucker format provides the most general linear interaction mechanism be-
tween the embedding vectors, and its core tensor totally defines the interaction mecha-
nism. With local interactions in Tucker format, the full MEI model computed by summing
the scores of all local MEI models is in block term format [14]. Both Tucker format and
block term format are standard representation formats in tensor calculus. When applied
in knowledge graph embedding, there are some important modifications, such as the data
tensor contains binary instead of continuous values, which change the data distribution
assumptions, guarantees, constraints, and the solvers. In our work, we express the model
as a neural network and use deep learning techniques to learn its parameters as detailed
below.

We use the Tucker format and block term format to construct a simple and efficient
model that realizes our ideas of multi-partition embedding interaction. In addition, they
provide an elegant mathematical framework that facilitates the theoretical analysis of
our model. This MEI model with block term format is an advanced development of
our earlier preliminary work on analyzing knowledge graph embedding methods from a
multi-embedding interaction perspective [77].

4.2.3.2 Parameterized bilinear format

To better understand how the core tensor defines the interaction mechanism in local MEI,
we can view the local interaction in Eq. 4.3 as a parameterized bilinear model, by rewriting

33



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

the tensor products as

Sk(h, t, r;θ) = Wk×̄1hk:×̄2tk:×̄3rk:

= (Wk×̄3rk:)×̄1hk:×̄2tk: (4.4)

= h>k:(Wk×̄3rk:)tk: (4.5)

= h>k:MW,r,ktk:, (4.6)

where MW,r,k ∈ RCe×Ce denotes the matching matrix of the bilinear model. Note that
MW,r,k defines the interaction patterns of the bilinear map between hk: and tk:, but itself
is defined by Wk×̄3rk:. Specifically, each element mW,r,kxy of the matching matrixMW,r,k

is a weighted sum of the entries in rk:, weighted by the mode-3 tube vector wxy:,k of
Wk. Therefore, the core tensor Wk defines the interaction patterns or the interaction
mechanisms at partition k.

Compared with the standard bilinear model RESCAL, local MEI is more flexible
and efficient because its matching matrices are generated from the relation embedding
vectors. Moreover, the global core tensors enable information sharing between all entities
and relations, which is particularly useful when the data are sparse.

4.2.3.3 Dynamic neural network format

For parameter learning, we express the Tucker format as a neural network to employ
standard deep learning techniques such as dropout [72] and batch normalization [36] to
reduce overfitting and improve the convergence rate. Specifically, Eq. 4.6 can be seen as
a linear neural network, where hk: is the input of the network,MW,r,k is the weight of the
hidden layer, h>k:MW,r,k is the output of the hidden layer, tk: is the weight of the output
neuron, and Sk is the output of the network.

Note that the weight of the hidden layer,MW,r,k, can be seen as the output of another
neural network, where rk: is the input and the core tensor Wk is the weight. This type of
network architectures is usually known as hypernetworks in the neural network literature
[27]. Under this format, there are four layers to apply dropout and batch normalization:
rk:, MW,r,k, hk:, and h>k:MW,r,k, which are tuned as hyperparameters.

4.2.4 Model constraints and variants

The MEI model architecture and its fundamental concepts are general. Here we consider
some most important constraints and model variants.

34



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

4.2.4.1 Core tensor: non-shared core vs. shared core

As we discussed in Section 4.2.3, the core tensors help the model learn the interaction
patterns between the embedding vectors. In general, each local MEI model in different
partitions have different core tensors and can learn different interaction patterns. However,
if we assume that each dataset has some specific interaction patterns, it makes sense to
reuse the core tensors across different partitions. We consider the the most simple case,
where all local MEI models share a single core tensor:

W = W1 = · · · = WK . (4.7)

This shared core constraint has several benefits. First, it reduces the number of learn-
able parameters in the core tensors. A MEI model with K partitions of size C will have
KC3 parameters in its core tensors. On the other hand, sharing core tensor will reduce
the number of parameters in the core tensor to only C3, that is, independently from the
number of partitions. Second, it can act as a regularization constraint to avoid over-
fitting and improve generalization. We will empirically compare its performance in the
experiments.

4.2.4.2 Matching matrix: max rank and the orthogonality constraint

The relational matching matrixMW,r,k linearly transforms the head embedding partition
hk: before matching it to the corresponding tail embedding partition tk:. A general linear
transformation can be of many different types, such as rotation, reflection, translation,
scale, or shear. When a matrix is not full rank, in other words, when it is singular
or degenerate, the transformation result will lose information. In the MEI model, this
may become a more critical issue when the matching matrix is parameterized by a small
relation embedding partition.

To counter this issue, we can use a max rank constraint to influence the matching
matrix to have as large rank as possible. A particularly interesting constraint that have
this effect is the soft orthogonality constraint, expressed by the following loss.

Lortho =
K∑
k=1

||M>
W,r,kMW,r,k − I||22, (4.8)

where I ∈ RCe×Ce is the identity matrix.
This constraint is equivalent to enforcing the linear transformation to be a rotation

with a potential reflection when the determinant equal minus 1. The soft orthogonality

35



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

constraint has several benefits, such as being simple and computationally feasible, being
easily integrated into the loss function as an additional loss term, and the orthogonal
transformation preserving the norm of the embedding and the distance in the embedding
space thus making the matching scores more stable. This constraint influences the match-
ing matrix to be full rank and can be important to avoid overfitting, especially when the
relation embedding is small.

4.3 Theoretical analysis

In this section, we discuss the theoretical foundations, intuitions, and insights of MEI,
then we study the optimal parameter efficiency.

4.3.1 Multi-partition embedding interaction

There are several reasons why Multi-Partition Interaction is superior and preferable to
Local-Partition Interaction. Here, we present some interpretations of the full MEI model
to explain its properties.

4.3.1.1 Sparse modeling

The full MEI model can be seen as a special form of sparse parameterized bilinear models,
which are the bilinear models whose matching matrices are sparse block-diagonal matrices
parameterized by the core tensors and the relation embeddings. The matching matrix of
the full MEI model is constructed by the direct sum of the matching matrices of all local
MEI models, and the result is a sparse parameterized block-diagonal matrix

M
(s)
W,r =


MW,r,1 0 · · · 0

0 MW,r,2 · · · 0
...

...
. . .

...

0 0 · · · MW,r,K

 . (4.9)

The score function of the full MEI model can then be written as a bilinear model

S(h, t, r;θ) = h>M
(s)
W,rt, (4.10)

where h, t, and r are the original embedding vectors before dividing into K partitions.
Similarly, we can view MEI in the form of a special sparse Tucker model, where the sparse
core tensor W(s) of MEI is constructed by the direct sum of the K local core tensors

36



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

W1, . . .WK and the score function is written as

S(h, t, r;θ) = W(s)×̄1h×̄2t×̄3r. (4.11)

This view provides a concrete explanation for the interaction mechanism in the MEI
model, as it can be seen as imposing a sparsity constraint on the core tensor, or equiva-
lently the matching matrices, to make the model efficient.

4.3.1.2 Multiple interactions and the ensemble boosting effect

An intuitive explanation of MEI is that it models multiple relatively independent inter-
actions between the head and tail entities in a knowledge graph. These interactions
correspond to the separate local partitions of the embedding vectors and together define
the final matching score.

Technically, MEI forms an ensemble of K local interactions by summing their scores,
as seen in Eq. 4.1, similarly to ensemble averaging. However, we argue that MEI works as
an ensemble boosting model in a similar manner to gradient boosting methods because the
summing operation is done in training and all local MEI models are optimized together.
This view intuitively explains the success of MEI when each local interaction is very
simple, such as when the partition size is only 1 or 2. It also suggests the empirical
benefit of the ensemble boosting effect in MEI with K > 1 over the vanilla Tucker.

4.3.1.3 Vector-of-vectors embedding and the meta-dimensional transforming–
matching framework

An important insight of MEI is that the embedding can be seen as a vector of vectors,
which means a meta-vector where each meta-dimension corresponding to a local partition
contains a vector entry instead of a scalar entry. Compared to scalar entry, a vector entry
contains more information and allows more expressive yet simple transformation on each
entry.

By using this notion of vector-of-vectors embedding, we can viewMEI as a transforming–
matching framework, where the model simply transforms each meta-dimensional entry of
head embedding then matches it with the corresponding meta-dimensional entry of tail
embedding. This framework can serve as a novel general design pattern of knowledge
graph embedding methods, as we show in Section 4.5 how it can explain the previous
specially designed models.

37



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

4.3.2 Computational analysis

4.3.2.1 Complexity

For simplicity, we consider the same embedding size D = De = Dr and same partition size
C = Ce = Cr for both entity and relation, such that D = KC. The parameters in a MEI
model include the embedding vectors of all entities, all relations, and the core tensors. On
a knowledge graph with |E| entities and |R| relations, the number of parameters in MEI
is O(|E|D + |R|D +KC3) = O(|E|D + |R|D +D3/K2). In this paper’s experiments, we
restrict them to the simplified case of one single shared-core tensor for all K partitions, so
the number of parameters in this case is O(|E|D+|R|D+C3) = O(|E|D+|R|D+D3/K3).

We note a few interesting observations. First, the core tensor size of the vanilla Tucker
(when K = 1) is much larger than the sparse core of MEI, up to K2 times in non-shared-
core MEI and K3 times in shared-core MEI. These factors can become crucial in practice;
for example, with D = 1000 and K = 10, C = 100, the vanilla Tucker core has 1 billion
parameters, making it infeasible on most GPUs, while shared-core MEI has only 1 million
parameters in the core tensor. Second, the partition size C can be set independently
from the embedding size D. Therefore, the core tensor sizes can be considered as growing
linearly with K in the case of non-shared-core MEI, and as a constant in the case of
shared-core MEI.

4.3.2.2 Parameter efficiency

By using Tucker format for local interactions, MEI with block term format is fully ex-
pressive. However, in practice, we usually do not care about the parameter upper bound
for fully expressiveness of the model. The more interesting property of the model is its
ability to efficiently capture complex patterns in the knowledge graph. In this regard, we
define the criteria to measure the expressiveness and parameter efficiency of the model.
To the best of our knowledge, we are the first to formally study the parameter efficiency
in knowledge graph embedding.

From the interpretation of MEI as a transforming–matching framework in Section
4.3.1, where the model first transforms each head embedding partition then simply matches
it with the corresponding tail embedding partition, we see that the ability to capture com-
plex patterns depends totally on the transformation system.

Definition 4.1. (Expressiveness) The expressiveness of the MEI model is measured
by the degrees of freedom of the model provided by its transformation system.

38



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

For example, a linear transformation in a 3-dimensional space has 9 degrees of freedom:
3 for translation, 3 for rotation, and 3 for scaling. For a MEI model with two partitions
of size C = 3, the sum score of two local interactions has 9 + 9 = 18 degrees of freedom.

As mentioned earlier, the vanilla Tucker model can become excessively expensive when
the embedding size is large, in which case, it is necessary to use a MEI model with a smaller
partition size. To compare fairly across models, we define the parameter efficiency.

Definition 4.2. (Parameter efficiency) The parameter efficiency of a model is mea-
sured by the ratio of its expressiveness and the number of parameters.

The size of a MEI model depends on the number of partitions and the partition
size. Changing any of them affects the parameter count of the model, its expressiveness,
and its parameter efficiency. The effect is rather complicated; when the partition size is
small, the expressiveness and model size depend mainly on the number of entities and
relations; however, when the partition size becomes large enough, the effects of the core
tensor outweigh that of the embeddings. Interestingly, we show that the optimal partition
size can be determined on any dataset with mild assumptions as stated in the following
theorem.

Theorem 4.1. (Optimal parameter efficiency) Given any MEI model that represents
an arbitrary knowledge graph over |E| entities and |R| relations, it is optimal in terms of
maximizing the parameter efficiency P if and only if the partition size

C = min(b
√
|E|+ |R|e

P
, D),

where b·eP denotes the special rounding function that selects the floor or ceiling values
depending on where P evaluates to a larger value.

Proof. Consider an arbitrary knowledge graph over |E| entities and |R| relations, where
|E|, |R| ∈ Z+ fixed for this knowledge graph, and an arbitrary MEI model representing
the given knowledge graph with partition size C, number of partitions K, and embedding
size D = KC, where C,K,D ∈ Z+. The total parameter count is

T = |E|D + |R|D +KC3 = |E|D + |R|D +DC2.

There are |R| distinct matching matrices corresponding to the number of relations, each
of which include K local interactions, so the total expressiveness of the model is

E = |R|KC2 = |R|DC.

39



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

The parameter efficiency of the model as defined in Definition 4.2 is P = E
T
. For simplicity,

consider its inverse,
P−1 = T

E
= |E|+|R|

|R|C + C
|R|

and assume its continuous extension by interpolation1. Noting that P−1 only depends on
C, we can take its first derivative w.r.t. C as

d
dC

[P−1] = − |E|+|R||R|C2 + 1
|R| ,

which evaluates to 0 when C =
√
|E|+ |R|. The second derivative of P−1 w.r.t. C is

d2

dC2 [P−1] = 2 |E|+|R||R|C3 ,

which is positive everywhere.
(⇐) By the derivative tests, C =

√
|E|+ |R| is the global maximum of the unimodal

parameter efficiency function P ; thus, the optimal partition sizes must be its floor or
ceiling values, which are selected depending on P evaluations, that is, C = b

√
|E|+ |R|e

P
.

When the embedding size D < b
√
|E|+ |R|e

P
, we use the largest possible partition size;

thus, the optimal C = min(b
√
|E|+ |R|e

P
, D), as required.

(⇒) By Fermat’s theorem on stationary points, all local maxima occur at critical points.
C =

√
|E|+ |R| is the only feasible critical point; thus, C = min(b

√
|E|+ |R|e

P
, D) must

be the only possible optimal partition sizes, as required.

Theorem 4.1 predicts that on WN18 and WN18RR with ≈ 40, 000 entities and re-
lations, the optimal partition size would be ≈ 200. On FB15K and FB15K-237 with
≈ 15, 000 entities and relations, the optimal partition size would be ≈ 122. When C

increases, P increases and is maximized at the optimal partition sizes and then starts
decreasing. Thus, when the computational budget is high enough for a large embedding
size D = KC, it is more parameter efficient to keep the partition size C close to the
optimal value and increase the number of partitions K. These predictions are empirically
verified in Section 5.2.2, where we show that models with partition sizes that are closer
to the predicted optimal values usually achieve better results.

There are some limitations in using the proposed criterion. First, we assume the same
partition size for both entity and relation, that is, C = Ce = Cr; and the same partition
size for all partitions, that is, C = C1 = · · · = CK . These restrictions are only for
theoretical analysis purpose. In practice, the MEI model can use different partition sizes

1 Not to be confused with analytic continuation of analytic functions.

40



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

flexibly, which can be tuned by cross-validation similar to other hyperparameters. Second,
the predicted optimal partition size can be seen as a pessimistic prediction when assuming
no special patterns in the data, that is, the data tensor entries are distributed uniformly
at random. When there exist special patterns in the data, the amount of information to
be encoded is reduced, and thus the optimal partition sizes may be smaller. Therefore,
the proposed criterion only provides a general guideline for choosing model size, but there
are other detailed factors that can affect the model performance in practice, such as data
sparsity, data distribution, and the ensemble boosting effect. In practice, we observed that
when the dataset is very large, sparse, and unevenly distributed, it may be preferable to
restrict the partition size C to a small value such as from 10 to 100 and use multiple
partitions K ≥ 3, to keep the model sparse and try to maximize the empirical benefit of
the ensemble boosting effect on multiple small local MEI models for practical purpose.

Comparison to other model selection indices In statistical learning, model selec-
tion is the problem of selecting the best model in a set of models given the training dataset
by estimating the true test performance [49]. Popular methods for estimating the true
test performance include k-fold cross validation and using model selection indices, such as
Mallow’s Cp, Akaike information criterion (AIC), Bayesian information criterion (BIC),
and modified R2 [9].

Cross validation is usually the most general and practical approach to estimate the
true test performance. This is done by randomly dividing the training data into k separate
subsets, then keeping each subset for evaluation and training on the rest k − 1 subsets.
However, cross validation is expensive because each model needs to be trained and eval-
uated k times corresponding to k folds. The model selection indices aim to estimate the
true test performance by adjusting the training set performance according to the model
size to account for the overfitting issue. However, they need to train and obtain the train-
ing set performance for each model, which is still expensive when the number of models
is large.

The proposed optimal parameter efficiency criterion can be seen as a model selection
index specifically developed for the MEI model. It offers two main advantages. First, it
accounts for the specific architecture of the MEI model instead of general linear models
as in the above model selection indices. Second, it directly estimates the capacity of the
model on the dataset, which avoids the excessive cost of training and obtaining training
set performance for every model configuration, especially with the very large number of
possible MEI model configurations. However, there are some limitations in using the
proposed optimal parameter efficiency criterion as a model selection index. First, it only

41



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

concerns the relationship between the partition size and the number of partitions; thus,
other hyperparameters are still needed to be tuned using cross-validation similarly to
other embedding models. Second, it only address the problem of parameter efficiency,
which aims to best fit the data given a fixed amount of parameters. This does not
address the overfitting issue and thus cannot be used to estimate the test performance
directly. Therefore, in practice, the partition size may still need to be fine-tuned using
cross-validation.

Similarly to our use of the degrees of freedom, there is the related Vapnik–Chervonenkis
dimension (VC dimension) that aims to directly estimate the capacity of a model [84].
Traditional usage of VC dimension in predicting test performance is usually restricted to
the case that the VC dimension is much smaller than the training set size. In addition,
VC dimension is defined in a specific way that can be difficult to apply to the MEI model.
We measure the capacity of the model using the degrees of freedom in the MEI model,
which is more natural and intuitive for the MEI architecture.

4.4 Revisiting knowledge graph embedding models

In this section, we revisit knowledge graph embedding methods to provide a new gener-
alization and explanation for previous model, reproduce them, and show the advantages
of MEI.

4.4.1 Connections to specially designed interaction mechanisms

There exist a few generalizations of previous embedding models that include DistMult,
ComplEx, and SimplE; such as [41] explaining them using a bilinear model, [3] using a
vanilla Tucker model, and [77] using a weighted sum of trilinear products. However, these
generalizations consider the embedding as a whole, here we present a new generalization
that considers the embedding as a multi-partition vector to provide a more intuitive
explanation of these models and their specially designed interaction mechanisms.

4.4.1.1 Multi-partition embedding interaction patterns of trilinear-product-
based models

We first construct the multi-partition embedding vector for these models. DistMult is
trivial with C = 1 and D = K. For ComplEx and SimplE, C = 2 and D = 2K. In
ComplEx, each partition k consists of the real and imaginary components of the entry k

42



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

in a ComplEx embedding vector. In SimplE, each partition k consists of the two entries
k in the two role-based embedding vectors. With this correspondence, these previous
models can be written in the sparse bilinear model form of MEI in Eq. 4.9 and Eq. 4.10.
For DistMult, each matching blockMW,r,k is just a scalar entry of the relation embedding
vector. More interestingly, for ComplEx, each matching block is a 2× 2 matrix with the
rotation pattern, parameterized by the relation embedding vector,

MW,r,k =
[
Re(rk) −Im(rk)

Im(rk) Re(rk)

]
.

For SimplE, each matching block is a 2 × 2 matrix with the reflection pattern, parame-
terized by the relation embedding vector,

MW,r,k =
[

0 rk

r(a)k 0

]
,

where r(a) is the augmented inverse relation embedding vector. CP [34] is similar to
SimplE, but missing r(a), making the matching matrix lose the geometrical interpretation,
which is probably the reason why CP does not generalize well to new data, as reported
in [77].

The interaction mechanisms of these models are totally characterized by the simple
and fixed patterns in their matching blocks MW,r,k, which also specify the interaction
restriction between the entries in the same partition k. These properties express two basic
ideas of previous models, restricting the interaction of entries for sparsity and efficiency,
and designing special interaction patterns for expressiveness. Note that they use the same
interaction pattern for all partitions and all datasets.

The MEI model addresses both ideas and systematically improves them. First, the
sparsity and efficiency is achieved by restricting the interaction to corresponding local
partitions, which can be adapted for each dataset by setting the partition sizes. Second,
the interaction patterns are modeled by the core tensors, which can be different for each
dataset and each partition, and automatically learned from data.

4.4.1.2 Core tensors for reproducing trilinear-product-based models

Here we derive the core tensor to reproduce the above specially designed interaction
mechanisms. We use a single shared core tensor for all partitions and let the partition
size Ce = Cr = 1 in the case of DistMult, Ce = Cr = 2 in the case of ComplEx, CP,
and SimplE (CPh). These models can be reproduced from MEI exactly by setting the
core tensor following the core tensor column in Table 4.1. They can also be seen as the
weighted sum of the trilinear products of the column embedding vectors by setting the
weights following the weighted terms column in Table 4.1 [77].

43



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

Table 4.1: Core tensors for reproducing specially designed interaction mechanisms.

Core
tensor

Weighted
terms

DistMult ComplEx ComplEx
equiv. 1

ComplEx
equiv. 2

ComplEx
equiv. 3

CP CP
equiv.

CPh CPh

equiv.
w111 〈h:1, t:1, r:1〉 1 1 1 0 0 0 0 0 0
w112 〈h:1, t:1, r:2〉 – 0 0 1 1 0 0 0 0
w121 〈h:1, t:2, r:1〉 – 0 0 -1 1 1 0 1 0
w122 〈h:1, t:2, r:2〉 – 1 -1 0 0 0 0 0 1
w211 〈h:2, t:1, r:1〉 – 0 0 1 -1 0 1 0 1
w212 〈h:2, t:1, r:2〉 – -1 1 0 0 0 0 1 0
w221 〈h:2, t:2, r:1〉 – 1 1 0 0 0 0 0 0
w222 〈h:2, t:2, r:2〉 – 0 0 1 1 0 0 0 0

For DistMult, we can see the equivalence directly. For ComplEx, we need to expand
its score function following complex algebra [1]:

S(h, t, r) = Re(〈h, t, r〉)

= 〈Re(h),Re(t),Re(r)〉+ 〈Re(h), Im(t), Im(r)〉

−〈Im(h),Re(t), Im(r)〉+ 〈Im(h), Im(t),Re(r)〉,

(4.12)

where

• h, t, r ∈ CD,

• Re(c) and Im(c) mean taking the real and imaginary components of the complex
vector c, respectively.

Mapping Re(h) to h:1, Im(h) to h:2, Re(t) to t:1, Im(t) to t:2, Re(r) to r:1, and Im(r)

to r:2, we can rewrite the score function of ComplEx as:

S(h, t, r) = Re(〈h, t, r〉)

= 〈h:1, t:1, r:1〉+ 〈h:1, t:2, r:2〉

−〈h:2, t:1, r:2〉+ 〈h:2, t:2, r:1〉,

(4.13)

which is equivalent to the weighted sum using the weight vectors in Table 4.1. Note that
by the symmetry between h and t, we can obtain the equivalent weight vector ComplEx
equiv. 1. By symmetry between the embedding components, we can obtain the equivalent
weight vectors ComplEx equiv. 2 and ComplEx equiv. 3.

For CP, note that the two role-based embedding vectors for each entity can be mapped
to two-embedding vectors in our model and the relation embedding vector can be mapped
to r:1. For CPh, further note that its data augmentation is equivalent to adding the score
of the original triple and the inverse triple when optimizing the likelihood using stochastic

44



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

gradient descent (SGD):

S(h, t, r) = 〈h, t(2), r〉

+〈t,h(2), r(a)〉.
(4.14)

We can then map r(a) to r:1 and rewrite the score function of CPh as:

S(h, t, r) = 〈h:1, t:2, r:1〉+ 〈t:1,h:2, r:2〉

= 〈h:1, t:2, r:1〉+ 〈h:2, t:1, r:2〉,
(4.15)

which is equivalent to the weighted sum using the weight vectors given in Table 4.1. By
symmetry between h and t, we can obtain the equivalent weight vector CP equiv. and
CPh equiv.

Similarly, the score function of the quaternion-based embedding model [77] can also
be reproduced by the core tensor of MEI. Note that when representing these models in
the MEI framework, it is natural to multiply the head embedding with the relation-based
transformation matrix first, then multiply the result with all the tail embeddings. This
operation order is more efficient if the number of tail entities is large compared to the
number of relations.

4.4.2 Connections to other knowledge graph embedding models

4.4.2.1 Tensor representation formats in knowledge graph embedding

Note that the Tucker format is the basic building block of tensor calculus, similar to
the role of multi-layer perceptron in neural networks. The Tucker format can be used in
different ways and appear in different models, similarly to multi-layer perceptron appears
in convolutional neural networks. Multi-layer perceptron is general but expensive, whereas
convolutional neural networks are more efficient and work better for specific use cases.
Therefore, for a new embedding model that includes the Tucker format, it is important
to notice how the Tucker format is used and what advantages it provides.

Recently, the Tucker format has been used in knowledge graph embedding models inde-
pendently to our work. However, they apply the Tucker format directly on the embedding
vector as a whole [3], and thus this vanilla Tucker model suffers from the scalability prob-
lem when the embedding size increases. We use the Tucker format as a building block
for modeling the local interactions in our model, which implements our ideas of multi-
partition embedding interaction and essentially aims to solve the scalability problem. The

45



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

application of vanilla Tucker format is a special case of MEI when K = 1. When K > 1,
the MEI model is sparse and can be more efficient.

In addition, the multi-partition embedding interaction framework is general approach
towards knwledge graph embedding, which is not tied to the Tucker or block term formats.
The MEI framework can be used to explain previous embedding models, as discussed in
Section 4.3.1 and extended to other model variants, as discussed in Section 4.2.4.

4.4.2.2 Semantic matching models

The standard semantic matching models such as RESCAL [60] compute a bilinear map be-
tween the head and tail embedding vectors. The connection to semantic matching models
is apparent when we notice that the matching matrices in RESCAL can be parameterize
arbitrarily by the core tensor and the relation embedding vectors. Considering only one
local MEI model by setting the number of partition to K = 1 and one-hot vectors as
the relation embedding vector r, each matching matrix Mr is a third mode slice of the
core tensor W. Hence, for any RESCAL model, there exists a local MEI model that can
reproduce it exactly. When K > 1, MEI is a sparse block-diagonal bilinear model where
each block is parameterized by a shared core tensor making MEI more parameter efficient
than RESCAL.

One important advantage of MEI compared to RESCAL is that the matching matrices
are parameterized by the core tensors and the relations embedding vectors. Apparently,
MEI has fewer parameters and is less expensive when the number of relations is large.
More importantly, the core tensor parameters are shared between all relations, which fa-
cilitates learning embeddings of rare relations. In addition, the core tensors have intuitive
meaning as they define the interaction patterns in the model.

4.4.2.3 Translation-based models

The connection to translation-based models such as TransE [8] is apparent when we notice
that the translation transformation in n-dimensional space can be represented as a linear
transformation in (n+ 1)-dimensional space using a specific format of the transformation
matrix. Local MEI is a parameterized bilinear model that can specify any format of the
transformation matrix Mr. Hence, for any TransE model with embedding size n, there
exists a local MEI model with embedding size n+ 1 that can reproduce it exactly.

When K > 1, MEI can model the sum of multiple local translation interactions, which
is not different from the single partition translation in TransE . However, when we consider
the translation-based model extensions such as TransR, which uses linear transformation

46



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

before translation, MEI can provide benefits similarly to that in the case of RESCAL.
Generally speaking, MEI suggests that any extension of translation-based models should
be done on multi-partition embedding vector instead of the full vector. Therefore, the
approach of MEI can be applied to all previous translation-based model extensions.

4.4.3 Advantages of MEI over previous knowledge graph embed-

ding models

We have discussed the general advantages of MEI over previous knowledge graph em-
bedding models, including its generality and flexibility, its theoretical framework, and its
applications in explaining and extending previous models. In addition, here we discuss
in more details the concrete advantages of MEI over specific models. In particular, we
concern two cases, first the vanilla Tucker model ; and second a variant of the ComplEx
model called RotatE [73].

Regarding the vanilla Tucker model, it is equivalent to MEI when K = 1. The MEI
model has two major advantages, parameter efficiency and practical flexibility. First, the
vanilla Tucker model only has one embedding partition and one core tensor that model
the interactions on this partition. The core tensor grows cubically to the embedding size
and the model becomes inefficient when the embedding size is larger than the optimal
partition size. Second, in practice, depending on the applications we may want to obtain
highly informative embedding vectors. In the vanilla Tucker model, increasing the size of
the embedding vectors comes at a large cost due to the size of the core tensor. Moreover,
we may assume that a large part of the information captured by the model is stored
in the core tensor instead of the embedding vectors. In this case, MEI can provide a
practical trade-off between the embedding vectors and the core tensor, and thus may be
more suitable for such applications.

Regarding RotatE, it is a variant of the ComplEx model where each relation partition
is normalized to unit norm, that is, Ce = Cr = 2 and each relation partition satisfies
||rk,:||2 = 1,∀k ∈ [1, K]. Recall in Section 4.4.1, we show that ComplEx has the rotation
pattern on each block of the matching matrix. However, the block is not normalized
to orthogonal so the transformation is not exactly rotation but a rotation with scaling.
RotatE makes the transformation exactly rotation to make it easier to optimize and avoid
overfitting. Here we state a simple result about the parameter efficiency advantage of MEI,
and provide an example about the expressiveness advantage of MEI.

Corollary 4.1.1. (More expressive than trilinear-product-based models) In real-

47



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

world datasets with more than 4 entities and relations, given an arbitrary number of
parameters, there exists a MEI model that is more expressive than the previous trilinear-
product-based models including DistMult, CP, SimplE, and ComplEx.

This result follows directly from the Theorem 4.1. When |E| + |R| > 4, we have
optimal C > 2. Because the listed previous trilinear-product-based model has C = 1 or
C = 2, they are suboptimal compared to MEI. Therefore, for an arbitrary fixed number
of parameters, MEI is more expressive than previous trilinear-product-based models.

To give a concrete example of how MEI is more expressive than previous model, we will
show the limit of the RotatE model, and to some extent, the ComplEx model. We first
notice that rotation in 2-dimensional space is non-commutative. Therefore, the models
that use a rotation in 2-dimensional space such as RotatE cannot differentiate between
different orders of the relations, as shown in [10].

Example 4.1. (Limitation of RotatE) Considering two relations ’s son and ’s wife.
There are two different order combinations, namely A’s son’s wife and A’s wife’s son. It
is clearly that different orders of the relations can result in different meanings. However,
the RotatE model cannot differentiate the different orders of the relations.

MEI provides a general approach to increase the expressiveness of the model enabling
it to solve this example. In particular, MEI with C ≥ 2 can solve this problem, because
rotation in 3-dimensional space and above is non-commutative, thus, it can differentiate
the different orders of the relations.

4.5 Revisiting word embedding models

We revisit word embedding and language modeling to provide a broader connection that
potentially benefits the research and development in both knowledge graph embedding
and word embedding domains [78].

4.5.1 Connections between CPh and word2vec skipgram

Word2vec skipgram is well-studied both theoretically and empirically [57] [52]. Its word
embedding vectors contain rich information and have application in various tasks. CPh is a
recent state-of-the-art knowledge graph embedding models. We will show the theoretical
connections between them to better understand and use both these models and their
embedding vectors.

48



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

Let us look at Eq. 3.14 of the word2vec skipgram model and consider only one context-
word c for simplicity. We can write the probability in proportional format as:

P (1|c, w) ∝ exp
(
u>c vw

)
, (4.16)

where uc is the context-embedding vector of context-word c and vw is the word-embedding
vector of target-word w.

We now note that the pair of context-word c and target-word w is ordered because
word2vec skipgram use different role-based embedding vectors for each word when it is
a context-word or a target-word. Also note that in word2vec skipgram, the target-word
is the central word in the sliding window, e.g., wi is the target-word and wi−k, . . . , wi−1,
wi+1, . . . , wi+k are context-words. Therefore, the roles in each pair of words are symmetric.
Each word can be either a target-word or a context-word of each other when the sliding
window slides through the text. When maximizing the likelihood by stochastic gradient
descent, we can write the approximate probability of unordered pair of words as:

P (1|c, w;w, c) ∝ exp
(
u>c vw + u>wvc

)
, (4.17)

where

• uc and vc are the context-embedding and word-embedding vectors of c, respectively,

• uw and vw are the context-embedding and word-embedding vectors of w, respec-
tively,

The dot product in the right hand side of Eq. 4.17 can be expanded as:

P (1|c, w;w, c) ∝ exp

(
D∑

d=1

ucdvwd +
D∑

d=1

uwdvcd

)
, (4.18)

where ucd, vcd, uwd, and vwd are the scalar entries of context-embedding and word-embedding
vectors.

We now return to Eq. 3.6 of CPh score function. We can also write the knowledge
graph embedding probability in Eq. 2.1 in proportional format and expand the trilinear

49



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

product according to Eq. 3.3 as:

P (1|h, t, r) ∝ exp (SCPh
(h, t, r)) (4.19)

∝ exp
(
〈h, t(2), r〉+ 〈t,h(2), r(a)〉

)
(4.20)

∝ exp

(
D∑

d=1

hdt
(2)
d rd +

D∑
d=1

tdh
(2)
d r

(a)
d

)
, (4.21)

where

• h,h(2), t, t(2), r, r(a) are knowledge graph embedding vectors ∈ RD,

• hd, h(2)d , td, t
(2)
d , rd, r

(a)
d are the scalar entries.

Comparing Eq. 4.18 of word2vec skipgram and Eq. 4.21 of CPh, we can see they have
essentially the same format. Except that in CPh, each embedding dimension is weighted
differently for each relation r, by the corresponding entry of the relation embedding vec-
tors. Note that the embedding vectors in word2vec skipgram are learned by aligning each
target-word to different context-words and vice versa. This mechanism is essentially the
same for CPh by aligning each tail entity to different head entities in different triples and
vice versa, with regards to the different dimension weightings by different relations. Given
these equivalence, we will state the following duality.

Word2vec skipgram from CPh perspective Word2vec skipgram is a special case of
CPh where there is only one relation and the the relation embedding is the identity vector.
In word2vec skipgram, there is a single implicit relation that capture the information about
the context defined by the sliding window. The technique of using a sliding window to
define the context words and the target words can be seen as a simple method to construct
a knowledge graph with a single relation from the textual data. Because there is only
one relation, its true embedding can be implicitly absorbed into the word embeddings,
resulting in the identity relation embedding vector as we see. This observation will be
used to explain some recent phenomena in word embedding space below.

CPh from word2vec skipgram perspective CPh is a generalization of word2vec
skipgram to model multi-relational data. Note that the basic foundation of CPh is the
CP tensor rank format, but the reverse relation heuristics is not theoretically justified
and still an open question [47]. From the connection to word2vec skipgram, we can see
that the reverse relations stem from the equivalent role of the head and tail entities in the

50



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

knowledge graph, similarly to the equivalent role of the context-word and the target-word
in the corpora. The relation embedding vectors have the role of the weight vectors that
scale the dimensions of the embedding space between two entity embeddings.

4.5.2 Connections between knowledge graph embedding and lan-

guage modeling

More generally, we extend the above connections to between knowledge graph embedding
and language modeling.

Knowledge graph embedding as a language modeling task In this perspective,
knowledge graph embedding is similar to language modeling that learns to predict the
target-entity given the context-entity and the additional relational contexts, with the
target-entity being either the head entity or the tail entity in each triple. In regard to the
MEI framework in Section 4.3.1, the model learns to transform the context-entity using
a relation-based transformation, then match it with the target-entity by the dot product.

Language modeling as a knowledge graph embedding task In this perspective,
we will construct the knowledge graph for the corpora by defining the relations that cap-
ture the useful information including semantic and syntactic cues, such as co-occurrence
of words in sliding windows, relative position between words, or absolute position of words
in a sentence. After that, we can use knowledge graph embedding methods to model the
constructed knowledge graph and solve the language modeling task.

4.5.3 Explaining some intriguing phenomena in embedding space

4.5.3.1 The global calibration matrix of bag-of-word embeddings

Word embeddings are well-developed and well-studied, however, there are still some un-
known phenomena in the word embedding space. In a recent paper [2], the authors show
that in the word embedding space obtained by word2vec skipgram and related models
such as Glove, there exists a single global matrix, namely the “calibration” matrix, that
maps the average of the context-embedding of context words to the word-embedding of
the target word. Formally speaking:

vw ≈ A
∑

c∈context of w

uc, (4.22)

51



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

There are two important and surprising properties [2]:

• First, the average of uc do not approximate or proportionate to uw, despite their
seemingly relationship in the word2vec skipgram Equation 3.14.

• Second, the “calibration” matrix A is the same for all words and context words in a
given dataset.

The authors justified the matrix A by proposing a random walk model. Here we
provide a new explanation using the connections between knowledge graph embedding and
word embedding in Section 4.5.1. Following the above connections, there is an implicit
relation that capture the information about co-occurrence of words in the sliding windows.
The embedding of this relation is absorbed into the word embeddings.

We note that the Equation 4.22 can be written as:

vw ≈
∑

c∈context of w

Auc, (4.23)

where A can be seen as a new relation-based transformation matrix that match the
context words to the target words.

About the first property, the average of uc cannot be used directly to approximate
vw because the relation defined in the post process of computing context-embedding is
different from and the relation defined in sampling, weighting, and training of word2vec
skipgram and Glove models. The matrix A accounts for the difference between the two
relations. About the second property, the relation is fixed on a dataset, thus the matrix A
is global for a given dataset. This also suggests that if the relation is defined differently,
such as extending the sliding window context or including the position information, the
matrix A will be different.

This observation solidifies our ideas that language modeling could be viewed as a
knowledge graph embedding task, and the ideas about extensions to other type of relation
in textual data.

4.5.3.2 The Hadamard product for edge features in Node2Vec

In the context of network analysis, there are tasks such as edge labeling that require the
edge features, which are the features of a pair of nodes. However, network embedding
methods such as DeepWalk and Node2vec only learn the node features. A surprisingly
effective method to compute the edge features from the node features is to compute the

52



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

element-wise Hadamard product between them. However, this technique is not theoreti-
cally justified and this is a long-standing question in network embedding [25].

Here we provide an explanation for this technique using the proposed connections
in Section 4.5.1. Note that DeepWalk and Node2Vec are graph embedding extensions
of word2vec skipgram. The models sample random walks of node sequences and use
word2vec skipgram to compute the node embeddings. Following the above connections,
there is an implicit relation that capture the information about co-occurrence of nodes on
the random walks. The embedding of this relation is absorbed into the node embeddings.
The technique using Hadamard product can be seen as approximately reconstructing the
implicit relation embedding vector from the node embedding vectors. Formally speaking:

Edge features f(h, t) = h� t. (4.24)

For simplicity, we first assume the case that each entity has only one embedding vector,
similarly to the DistMult embedding model. The edge features between two nodes h and
t are:

Edge features f(h, t) = h� t ≈ Z � r, (4.25)

where � denotes element-wise division, such that each entry i of the edge features is

fi = (h� t)i = hiti ≈ Z/ri, (4.26)

r is the implicit relation, and Z is a global scalar value for a given dataset. The extracted
edge features f(h, t) contain information about the implicit relation r between the two
nodes h and t, and thus can be used for the tasks on the pair of nodes.

Now we return to the actual case of Node2Vec and DeepWalk as graph embedding
extensions of word2vec skipgram, where each entity has two role-based embedding vectors.
The edge features that capture the information of the implicit relation between h and t
are:

Edge features f(h, t) = concat
(
h� t(2),h(2) � t

)
≈ concat

(
Z � r, Z � r(a)

)
, (4.27)

where r and r(a) are the relation embedding vectors of the implicit relation in the dataset.

The Node2Vec edge feature extraction function in Eq. 4.24 is similar to the simple
case of single embedding vector in Eq. 4.25. It can be seen as an approximation of Eq.
4.27 because it does not account for the two role-based embedding vectors. To facilitate

53



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

further analysis, we assume an arbitrary context node c that appears in the contexts
of both h and t. The Node2Vec edge features between h and t can be written as the
element-wise extraction from their embedding vectors through their connections to the
context-embedding vectors of the context node c. Formally speaking:

Edge features f(h, t) = h� t (4.28)

≈
(
Z �

(
r � c(2)

))
�
(
Z �

(
c(2) � r(a)

))
(4.29)

≈ Z2 �
(
r � c(2) � c(2) � r(a)

)
. (4.30)

Because c is arbitrary, the extracted edge features capture the information about
the element-wise product of the relation embedding vectors r � r(a) and thus contain
information about the implicit relation r between two nodes h and t.

4.6 Summary

4.6.1 Contribution and impact discussions

In general, the main contributions and impacts of our work are as follows.

• We analyze and identify two fundamental complementary aspects in knowledge
graph embedding, namely computational efficiency and model expressiveness. We
then address both aspects by introducing a new approach to knowledge graph
embedding, the multi-partition embedding interaction, which models the internal
structure of the embeddings and systematically controls the trade-off between ex-
pressiveness and computational cost. About the impact, although our work is not
the first one to try to trade-off between the computational efficiency and model
expressiveness in knowledge graph embedding, most previous works address this
problem in a manual or heuristic way. To the best of our knowledge, we are the first
to systematically address this problem by proposing the new multi-partition embed-
ding interaction approach, that generalizes previous methods. Therefore, our work
potentially present a conclusive hindsight to some recent researches in knowledge
graph embedding.

• To realize our approach, we propose the standard multi-partition embedding in-
teraction (MEI) model with block term format, to control the trade-off between
computational efficiency and model expressiveness through the partition size, and
to learn the interaction mechanisms from data automatically through the local

54



Chapter 4
Multi-Partition Embedding Interaction:

A General Mechanism for Knowledge Graph Embedding

Tucker core tensors. We empirically show that MEI is efficient and effective, as
it can achieve state-of-the-art results using the popular and standard link predic-
tion benchmarks. About the impact, the MEI model presents a combination of
advanced tensor representation formats and modern deep learning techniques for
knowledge graph embeddings, that can provide advantages over previous models.
This approach of combination may potentially be a promising direction for future
research in knowledge graph embeddings.

• We theoretically analyze the framework of MEI to explain its intuitions and mean-
ings. In addition, we are the first to formally study the parameter efficiency problem
and derive a simple optimal trade-off criterion for the model size of MEI. We apply
the theoretical framework of MEI to provide intuitive explanations for the specially
designed interaction mechanisms in several previous knowledge graph embedding
models. About the impact, MEI is not just a model, but an approach and theoret-
ical framework to knowledge graph embedding. There are many potential variants
and extensions that can improve the model, of which some variants have been dis-
cussed above. The theoretical framework of MEI may serve to assist in analyzing
previous models and may be readily applied to improve them.

• We also draw the connections from knowledge graph embedding to word embeddings
and language modeling to provide some new insights and generalizations. About
the impact, these connections may potentially benefit the research and development
in both domains of representation learning.

In comparison to previous work, the proposed model systematically control the trade-
off between computational efficiency and model expressiveness instead of manually design-
ing interaction mechanisms in previous models. The proposed model is highly efficient
compared to non-sparse models RESCAL [60] and TuckER [3], and highly expressive
compared to previous state-of-the-art trilinear-product-based models ComplEx [80], CPh

[47], and SimplE [41].
In addition, our analysis also provides another framework to analyze knowledge graph

embedding models, specifically generalizing trilinear-product-based models, and provide
intuitive explanation for their mechanisms and suggestions for their extensions.

4.6.2 Scopes and future work

The proposed MEI framework provides a general approach towards knowledge graph
embedding, which can be used to explain some previous embedding models and extend

55



Multi-Partition Embedding Interaction:
A General Mechanism for Knowledge Graph Embedding Chapter 4

them to new effective variants, in particular, the recent state-of-the-art trilinear-product-
based models. A limitation of MEI is that it does not generalize some other knowledge
graph embedding models, such as complicated neural-network-based models. However,
complicated models are usually outperformed by MEI and other simpler models on the
link prediction for knowledge graph completion task. Further investigation to find more
effective but simple embedding models is an important direction for future work.

Another main limitation of the proposed method as well as most previous knowledge
graph embedding methods is that they are transductive learning methods, that is, they
can only learn the embeddings for the entities and relations that are existing in training.
Therefore, one big future direction is to extend the proposed method to inductive learning
approach, where it can compose embedding for new unseen entities and relations.

56



Chapter 5

Multi-Partition Embedding Interaction:
Learning and Evaluation

In this chapter, we evaluate the proposed knowledge graph embedding model using popu-
lar benchmarks. We first discuss the learning problem of the model. We then evaluate the
performance of the model on the link prediction task, which is the standard benchmark
of knowledge graph embedding method and can be seen as a simple data query task with
a single predicate.

5.1 Learning problem

We have so far examined in details the theoretical aspects of the MEI model, including its
operations, properties, and meanings. In this section, we discuss the problem of learning
the parameters in MEI, which includes the embedding vectors and the core tensors.

5.1.1 Learning the interaction patterns

One of the main advantages of MEI compared to previous embedding models is that it can
learn the interaction patterns in the matching matrices automatically from data. The core
tensors Wk play an important role in MEI because they define the interaction patterns.
In the MEI model, we learn the core tensors together with the embedding vectors.

We treat this learning problem as a neural-network optimization problem by viewing
each local MEI model as a dynamic neural network as discussed in Section 4.2.3. This
treatment enables us to combine advanced tensor representation formats and modern deep
learning optimization and regularization techniques. Specifically, the model is divided into

57



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

layers enabling us to use modern weight initialization approaches such as Xavier initial-
ization [23], layer-wise dropout [72] and batch normalization [36] to improve convergence
rate and generalization performance. Negative sampling technique [56] [8] [16] enables
tractable and effective optimization of the loss function defined over the output layer of
the neural network. The learning of the model is in an end-to-end fashion using mini-
batch stochastic gradient descent with modern adaptive learning rate algorithms such as
Adam [42].

5.1.2 Loss function

The loss function is an important part of a model and usually crucial to its performance.
Here we discuss the main loss functions of knowledge graph embedding that we will use
in our experiments, including the binary cross-entropy and the full softmax cross-entropy
loss functions.

5.1.2.1 Binary cross-entropy loss

Traditionally, the learning problem in knowledge graph embedding methods can be mod-
eled as the binary classification of every triple as existence and nonexistence. Because
the number of nonexistent triples w.r.t. a knowledge graph is usually very large, we only
sample a subset of them by the negative sampling technique [56], which replaces the h or
t entities in each existent triple (h, t, r) with other random entities to obtain the locally
related nonexistent triples (h′, t, r) and (h, t′, r) [8]. The set of existent triples is called
the true data D, and the set of nonexistent triples is called the negative sampled data D′.

Note that convergence rate and generalization performance depends on the quality
of negative samples, which in turn depends on the noise distribution Q used to sample
invalid triples. Usually, the uniform distribution is used for sampling [8]. Some researches
use uni-gram frequency to the power of 3

4
to scale down frequent words such as in word2vec

[56]. Some other researches reduce false negative samples by modifying the distribution
based on the cardinality of the relation [92].

To construct the binary cross-entropy loss function, we first define a Bernoulli distri-
bution over each entry of the binary data tensor G to model the existence probability of
each triple as

p̂htr = ghtr, (5.1)

where ghtr is the entry of the observed knowledge graph data tensor.

58



Chapter 5 Multi-Partition Embedding Interaction: Learning and Evaluation

The predicted probability of the model is computed by using the standard logistic
function on the matching scores as

phtr = σ(S(h, t, r;θ)) =
eS(h,t,r;θ)

eS(h,t,r;θ) + 1
. (5.2)

We can then learn both the embeddings and the core tensor from data by minimizing
the binary cross-entropy loss:

L(D,D′;θ) = −
∑

(h,t,r)∈D∪D′

(
p̂htr log phtr

+(1− p̂htr) log(1− phtr)
)
,

(5.3)

where p̂ = 1 in D and 0 in D′.
More concisely, by defining the class label Y(h,t,r) = 2p̂(h,t,r) − 1, that is, labels of

positive triples are 1 and negative triples are −1, this loss can be rewritten in the softplus
format as:

L(D,D′;θ) =
∑

(h,t,r)∈D∪D′

log(1 + e−Y(h,t,r)S(h,t,r;θ)) (5.4)

with D is true data, D′ is negative sampled data.

5.1.2.2 Full softmax cross-entropy loss

Some recent works have found that the full softmax cross-entropy loss can greatly improve
the performance of previous models over the binary cross-entropy loss [47] [12]. In this
case, the learning problem in knowledge graph embedding methods can be modeled as the
multi-class classification of existent triples among nonexistent triples. Specifically, each
existent triple (h, t, r) is classified among all negative-tail triples {(h, t′, r)|t′ ∈ E \ t} and
among all negative-head triples {(h′, t, r)|h′ ∈ E \ h}, which are negative sampled triples
constructed by replacing the h or t entities with all other entities in the knowledge graph
to obtain the locally related nonexistent triples [47] [12]. The set of existent triples is
called the true data D, and the set of nonexistent triples is called the negative sampled
data D′.

To construct the full softmax cross-entropy loss function, we first define a categorical
distribution over each triple (h, t, r) and its negative-tail and negative-head sampled triples
to model the existence probability of each triple. There are two approaches to defining
this distribution. The first one is called 1-vs-all, that considers each existent triple (h, t, r)

59



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

separately, defines its probability as 1 and all of its negative samples’ probabilities as 0.

p̂htr = 1,

p̂ht′r = 0,

p̂h′tr = 0.

(5.5)

where (h, t, r) ∈ D, t′ ∈ E \ t, and h′ ∈ E \ h.
The second approach is called k-vs-all, that considers all existent triples that share

the entity and relation pair together, that is, in the tail direction with all {(h, ṫ, r)|ṫ ∈ E}
together, and in the head direction with all {(ḣ, t, r)|ḣ ∈ E} together. Note that the
probabilities of each triple have different values for the tail direction and the head direction
due to different normalization factors.

p̂hṫr =
ghṫr∑
ṫ∈E ghṫr

,

p̂ḣtr =
gḣtr∑
ḣ∈E gḣtr

,
(5.6)

where ghtr is the entry of the observed knowledge graph data tensor, ghtr = 1 ⇐⇒
(h, t, r) ∈ D and ghtr = 0 otherwise.

The predicted probability of the model is computed by using the softmax function on
the matching scores. We also compute different probabilities in the tail and in the head
directions.

phṫr =
eS(h,ṫ,r;θ)∑
ṫ∈E e

S(h,ṫ,r;θ)
,

pḣtr =
eS(ḣ,t,r;θ)∑
ḣ∈E e

S(ḣ,t,r;θ)
,

(5.7)

We can then learn both the embeddings and the core tensor from data by minimizing
the full softmax cross-entropy loss at both the tail and head directions:

L(D, E ;θ) = −
∑

(h,t,r)∈D

(∑
ṫ∈E

p̂hṫr log phṫr

+
∑
ḣ∈E

p̂ḣtr log pḣtr

)
.

(5.8)

5.1.3 Optimization

The loss function can be optimized by stochastic gradient descent (SGD) on mini-batch
data. The implementation is detailed in Section 5.2.2. Instead of using traditional meth-

60



Chapter 5 Multi-Partition Embedding Interaction: Learning and Evaluation

ods for solving tensor decompositions, we solve it using modern deep learning optimization
techniques, which is important because the learning problem is an approximation prob-
lem, which is prone to overfitting and requires very good regularization. The blend of
traditional mathematical models and modern deep learning optimization techniques is
useful in two ways. First, the mathematical models provide solid background and intu-
ition for the embedding models. Second, modern deep learning techniques helps to solve
the embedding models to a satisfied level of success, that is unobtainable using traditional
methods otherwise.

In particular, we use negative sampling to obtain training data and approximate the
true data distribution in training. The loss function is modified for discrete data instead
of continuous data in traditional tensor decompositions. The model use dropout and batch
normalization for regularization and improve the dynamics of model training. Training
is done by mini-batch stochastic gradient descent using adaptive learning rate optimizer
with momentum.

5.2 Link prediction for knowledge graph completion ex-

periments

In this section, we present the experiments and analyses to evaluate the performance and
efficiency of MEI on the link prediction task. We describe the experimental settings for
the link prediction task on four popular benchmarks. We then present and analyze the
results of MEI and other previous state-of-the-art models.

5.2.1 Experimental Settings

Tasks

Link prediction task is the standard and most useful task for knowledge graph embedding
methods [8]. In this task, for each true triple (h, t, r) in the test set, we replace h and t
by every other entity to generate corrupted triples (h′, t, r) and (h, t′, r), respectively [8].
The goal of the model now is to rank the true triple (h, t, r) before the corrupted triples
based on the predicted score S.

Datasets

We use four popular benchmark datasets for link prediction, as shown in Table 5.1. WN18
[8] and WN18RR [16] are subsets of WordNet [58], which contains lexical relationships

61



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

Table 5.1: Datasets statistics of the link prediction benchmarks.

Dataset |E| |R| Train Valid Test
WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071
WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466

between words. FB15K [8] and FB15K-237 [76] are subsets of Freebase [7], which contains
general facts. WN18 and FB15K were popular datasets but have been shown to be
suffering from data leakage [76] [16]. WN18RR and FB15K-237 are recent datasets that
have the above problem fixed and have become more standard benchmark datasets for
this task.

Evaluations

We evaluate and analyze MEI on the link prediction task [8]. In this task, for each true
triple (h, t, r) in the test set, we replace h and t by every other entity to generate corrupted
triples (h′, t, r) and (h, t′, r), respectively. The goal of the model is to rank the true triple
(h, t, r) before the corrupted triples based on the score S. We compute popular evaluation
metrics including MRR (mean reciprocal rank, which is robust to outlier rankings) and
H@k for k ∈ {1, 3, 10} (Hits at k, which is how many true triples are correctly ranked
in the top k) [80]. The higher MRR and H@k are, the better the model performs. To
avoid false-negative error, i.e., some corrupted triples are actually existent, we follow the
protocols used in other works for filtered metrics [8]. In this protocol, all existent triples
in the training, validation, and test sets are removed from the corrupted triples set before
computing the rank of the true triple.

Baselines

To evaluate the prediction on the optimal parameter efficiency, we compare MEI1×200
(vanilla Tucker model) and MEI3×100. The aim is to show that the model with optimal
parameter efficiency can achieve better results with even fewer parameters. We also
evaluate MEI against several strong baselines including classic models such as TransE,
RESCAL, DistMult, and recent state-of-the-art models such as ComplEx, SimplE, and
ConvE. In addition, we also compare MEI with models that use new expensive settings
and techniques, such as TorusE that uses larger embedding size; ComplEx at K = 400

that was retuned with N3 weight decay, reciprocal relation, and full softmax loss; and

62



Chapter 5 Multi-Partition Embedding Interaction: Learning and Evaluation

RotatE that uses larger embedding size without the adversarial sampling technique as
this technique is not subjected to a specific model.

Implementations

We trained MEI using mini-batch stochastic gradient descent with Adam optimizer [42]
with AMSGrad variant [65]. We followed the 1-N scoring procedure in [16] for nega-
tive sampling of (h, t, r), where negative samples are reused multiple times for compu-
tation efficiency and the number of negative samples is different for each triple. The
results of MEI1×200 are reproduced from the vanilla Tucker model in [3]. All hyper-
parameters in our experiments are tuned by random search [5], including batch size
∈ {32, 64, 128, 512, 1024}, learning rate ∈ {1e-2, 5e-3, 3e-3, 1e-3, 5e-4}, exponential decay
rate ∈ {0.99, 0.995, 0.9975, 1.0 (no learning rate decay)}, dropout rate ∈ {0.0 (no dropout),
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}, and batch normalization
on each layer or not. Preliminary results show that for all models, the best batch size is
128, the best batch normalization is on h and h>M . Trainings were early stopped by
checking the filter MRR metric on the validation sets. Reported results are the median
results regarding filtered MRR on the validation set selected from three independent runs
with different random seeds.

Note that in the main experiments to compare with the baselines, we only use the
binary cross-entropy loss function to be comparable with previous work. In the new
experiments for small MEI model, we use the new full softmax cross-entropy loss function,
which have been shown to greatly improve the link prediction performance of previous
models.

The best hyperparameters for MEI1×200 are learning rate 5e-3, exponential decay rate
0.995, drop rates 0.1 onM , 0.2 on h, 0.2 on h>M , label smoothing 0.1 on WN18; learning
rate 3e-3, exponential decay rate 0.99, drop rates 0.2 on M , 0.2 on h, 0.3 on h>M on
FB15K; learning rate 1e-2, drop rates 0.2 onM , 0.2 on h, 0.3 on h>M , label smoothing
0.1 on WN18RR; learning rate 5e-4, drop rates 0.4 on M , 0.3 on h, 0.5 on h>M , label
smoothing 0.1 on FB15K-237.

The best hyperparameters for MEI3×100, shared core are learning rate 1e-3, drop rates 0.3
on r, 0.3 on M , 0.5 on h, 0.5 on h>M on WN18; learning rate 1e-3, exponential decay
rate 0.995, drop rates 0.1 on r, 0.1 on M , 0.3 on h, 0.3 on h>M on FB15K; learning
rate 1e-3, drop rates 0.6 on h, 0.6 on h>M on WN18RR; learning rate 3e-3, exponential
decay rate 0.9975, drop rates 0.65 on h, 0.6 on h>M on FB15K-237.

The best hyperparameters for MEI3×100, non-shared core are learning rate 1e-3, drop rates

63



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

0.5 on h, 0.5 on h>M on WN18; learning rate 1e-3, exponential decay rate 0.995, drop
rates 0.1 on r, 0.1 on M , 0.35 on h, 0.35 on h>M on FB15K; learning rate 1e-3, drop
rates 0.65 on h, 0.6 on h>M on WN18RR; learning rate 3e-3, exponential decay rate
0.9975, drop rates 0.65 on h, 0.6 on h>M on FB15K-237.

Table 5.2: Link prediction results on WN18 and FB15K. † are reported in [61], ‡ are
reported in [80], other results are reported in their papers. Best results are in bold,

second-best results are underlined, best baseline results are in italic.

WN18 FB15K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE [8] † 0.495 0.113 0.888 0.943 0.463 0.297 0.578 0.749
TransR [53] † 0.605 0.335 0.876 0.940 0.346 0.218 0.404 0.582
ER-MLP [17] † 0.712 0.626 0.775 0.863 0.288 0.173 0.317 0.501
R-GCN [67] 0.814 0.686 0.928 0.955 0.651 0.541 0.736 0.825
ConvE [16] 0.943 0.935 0.946 0.956 0.657 0.558 0.723 0.831
RESCAL [60] † 0.890 0.842 0.904 0.928 0.354 0.235 0.409 0.587
CP [34] ‡ 0.075 0.049 0.080 0.125 0.326 0.219 0.376 0.532
DistMult [95] ‡ 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
ComplEx [80] 0.941 0.936 0.945 0.947 0.692 0.599 0.759 0.840
SimplE [41] 0.942 0.939 0.944 0.947 0.727 0.660 0.773 0.838
TorusE [18] 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832
ComplEx new tuning [50] – – – – 0.790 – – 0.872

MEI1×200 0.953 0.949 0.955 0.958 0.795 0.741 0.833 0.892
MEI3×100, shared core 0.950 0.946 0.952 0.957 0.806 0.754 0.843 0.893
MEI3×100, non-shared core 0.950 0.946 0.953 0.956 0.809 0.756 0.845 0.898

5.2.2 Main Results

5.2.2.1 Link Prediction Performance Compared to Traditional Baselines

Most previous models reported results using traditional settings and training techniques,
specifically the binary cross-entropy loss function. We first report the link prediction per-
formance using the same traditional settings and training techniques for fair comparison
write reported baselines.

Tables 5.2 and 5.3 show the main results of the MEI model on comparable model sizes
and experimental settings with the baseline models. In general, MEI strongly outperforms
the baselines, including translation-based models, neural-network-based models, and se-
mantic matching models. MEI and ConvE both aim to learn the interaction between the
embedding vectors, and interestingly, the multi-partition embedding interaction used in
MEI can achieve better results than the convolutional neural networks used in ConvE.

64



Chapter 5 Multi-Partition Embedding Interaction: Learning and Evaluation

Table 5.3: Link prediction results on WN18RR and FB15K-237. † are reported in [19], ‡
are reported in [16], other results are reported in their papers. Best results are in bold,

second-best results are underlined, best baseline results are in italic.

WN18RR FB15K-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE [8] † 0.182 0.027 0.295 0.444 0.257 0.174 0.284 0.420
R-GCN [67] – – – – 0.248 0.153 0.258 0.414
ConvE [16] 0.43 0.40 0.44 0.52 0.325 0.237 0.356 0.501
DistMult [95] ‡ 0.43 0.39 0.44 0.49 0.241 0.155 0.263 0.419
ComplEx [80] ‡ 0.44 0.41 0.46 0.51 0.247 0.158 0.275 0.428
TorusE [19] 0.452 0.422 0.464 0.512 0.305 0.217 0.335 0.484
RotatE w/o adv [73] – – – – 0.297 0.205 0.328 0.480

MEI1×200 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544
MEI3×100, shared core 0.458 0.426 0.470 0.521 0.359 0.266 0.395 0.544
MEI3×100, non-shared core 0.457 0.422 0.470 0.521 0.361 0.269 0.397 0.545

MEI also outperforms the general bilinear model RESCAL and other recent state-of-the-
art bilinear models DistMult, ComplEx, and SimplE, which is explained by the fact that
they are special cases of MEI with specific interaction patterns, as shown in Section 4.3.1.

Compared with TorusE, which uses a simple and efficient interaction mechanism, en-
abling it to use very large embedding size D = 10000, MEI can still achieve better results
across all datasets and metrics. These results show that an expressive interaction mech-
anism can help a smaller model outperform a much larger model. There are some recent
techniques that help to improve the performance of old models, but we show that MEI can
still outperform ComplEx and RotatE that use new and expensive techniques. Moreover,
note that MEI is highly general compared to previous models and potentially preferable
for more sophisticated datasets and difficult benchmarks.

5.2.2.2 Link Prediction Performance of Small Models with Modern Training
Techniques

In real-world applications, the knowledge graphs are usually very large compared to the
benchmark datasets, with millions to billions of entities. To make training and inference
feasible, practical embedding models need to use relatively small embedding sizes com-
pared to the data sizes. Here we simulate such scenarios on the benchmark datasets by
restricting the embedding size to a small value D = 100. The goal is to examine the
state-of-the-art performance of relatively small embedding models on large data.

Small model sizes enable us to expand our hyperparameter search space and tune

65



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

Table 5.4: Link prediction results of small MEI10×10 models variants tuned with recent
training techniques. ComplEx results were tuned by [47] and reported at their github

page1, representing previous state-of-the-art results of small models. RotatE results were
reported in [73], provided as a reference for recent state-of-the-art results of large

models. Best results of small models are in bold. Best results of large models are in bold
and italicized if they are best overall results.

Param. H@
count MRR 1 3 10

RotatE500×2 40.961M 0.949 0.944 0.952 0.959

WN18

ComplEx50×2 4.098M 0.950 0.940 0.950 0.950
MEI10×10, shared core 4.099M 0.950 0.945 0.953 0.957
MEI10×10, non-shared core 4.108M 0.950 0.946 0.952 0.956
MEI10×10, non-shared core, orthogonal 4.108M 0.951 0.946 0.953 0.960

RotatE1000×2 32.592M 0.797 0.746 0.830 0.884

FB15K

ComplEx50×2 1.630M 0.780 0.730 0.810 0.860
MEI10×10, shared core 1.631M 0.790 0.746 0.817 0.870
MEI10×10, non-shared core 1.640M 0.798 0.757 0.820 0.874
MEI10×10, non-shared core, orthogonal 1.640M 0.800 0.757 0.823 0.878

RotatE500×2 40.954M 0.476 0.428 0.492 0.571

WN18RR

ComplEx50×2 4.097M 0.460 0.430 0.470 0.520
MEI10×10, shared core 4.098M 0.468 0.434 0.482 0.531
MEI10×10, non-shared core 4.107M 0.477 0.442 0.489 0.543
MEI10×10, non-shared core, orthogonal 4.107M 0.481 0.446 0.494 0.550

RotatE1000×2 29.556M 0.338 0.241 0.375 0.533

FB15K-237

ComplEx50×2 1.502M 0.340 0.250 0.370 0.520
MEI10×10, shared core 1.503M 0.347 0.256 0.380 0.531
MEI10×10, non-shared core 1.512M 0.349 0.257 0.383 0.533
MEI10×10, non-shared core, orthogonal 1.512M 0.350 0.258 0.385 0.533

1 https://github.com/facebookresearch/kbc

more extensively the loss function, optimizer, and regularization on feasible computational
resource. The small model sizes also enable us to use more advanced recent training
techniques, including the full softmax cross-entropy loss function, which have been found
to greatly improve link prediction performance in some recent works [47] [12]. This loss
function has not been traditionally used by most previous baseline work, including our
reported results of MEI in Section 5.2.2.

The previous state-of-the-art results for small model (D = 100) were set by ComplEx50×2
model, tuned by [47]. They used recent training techniques, notably the new full softmax
cross-entropy loss function, inverse relation, and L3 weight decay. We will report their

66

https://github.com/facebookresearch/kbc


Chapter 5 Multi-Partition Embedding Interaction: Learning and Evaluation

results as the baselines. We also report the results of RotatE [73], provided as a reference
for recent state-of-the-art results of large models. We use an improved model variant of
MEI with small embedding size MEI10×10, which makes the model sizes of MEI roughly
the same to the baseline ComplEx50×2 model.

Table 5.4 shows the link prediction performance of small MEI10×10 models, tuned with
recent training techniques on the four standard benchmark datasets. We first notice that
the results of the small MEI models improve significantly thanks to the recent training
techniques and our new tuning, especially the results on WN18 and WN18RR, which
outperforms larger MEI models trained with traditional techniques. The MEI10×10 models
strongly outperform ComplEx50×2 models on equivalent settings and set new state-of-
the-art performance record for small models with embedding size D = 100 on the four
benchmark datasets.

Notably, the small MEI10×10 models can even outperform the recent state-of-the-art
results of large RotatE models on most metrics, using only a fraction of the parameter
counts. These results support our argument that MEI models with larger partition sizes
are more expressive than previous embedding models using fixed smaller partition sizes.
This is in line with a recent group-theoretic analysis [10] showing some examples of limi-
tations of RotatE, which our MEI model provides a general framework to systematically
address. In general, the results demonstrate one of the key advantages of the MEI model,
that is, being both efficient and expressive.

5.2.2.3 Model Constraints and Variants

Tables 5.2, and 5.3 also show the results of different model constraints and variants,
including shared core and non-shared core tensor, for MEI3×100 with traditional training
techniques. On simple datasets, WN18 with only 18 relations and WN18RR with only
11 relations, the performance of non-shared core and shared core variants are mostly
close to each other with some small differences. On more difficult datasets, FB15K and
FB15K-237, the non-shared core variant usually has slightly better results. The reason
is probably that on the simpler datasets, the model is more easily to get overfitting and
the shared core constraint is beneficial. On more difficult datasets, the model may be
more difficult to get overfitting; therefore, non-shared core has an advantage because the
shared core constraint decreases the capacity of the model. These results suggest that
shared core tensor is a simple yet effective regularization constraint for MEI, that reduces
the model size and may even achieve better results.

Table 5.4 shows the results of different model constraints and variants for MEI10×10

67



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

with recent advanced training techniques. For shared core and non-shared core tensor
variants, the differences in performance become more notable, with non-shared core vari-
ants usually achieve better results. However, the shared core tensor variant still performs
comparably and slightly better on WN18.

For the orthogonality variants, the results on WN18 and WN18RR significantly im-
prove, especially on the H@10 metric, probably because the orthogonality constraint is
suitable for the WordNet knowledge graph. On FB15K and FB15K-237, the orthogo-
nality variants decrease the link prediction results, probably because the orthogonality
constraint is not suitable for the FreeBase knowledge graph.

5.2.2.4 Optimal Parameter Efficiency

Empirical results agree with the predictions of Theorem 4.1 on the optimal parameter
efficiency. On WN18 and WN18RR, MEI1×200 is closer to the optimal partition size than
MEI3×100 and the latter has more parameters. On FB15K and FB15K-237, the relative
model sizes are reversed due to different numbers of entities and relations. MEI1×200 has
two times more parameters than MEI3×100 but the latter is closer to the optimal partition
size.

On WN18 and WN18RR, MEI1×200 consistently outperforms MEI3×100 using fewer
parameters as predicted. On FB15K, MEI3×100 consistently outperforms MEI1×200 as
predicted. On FB15K-237, MEI3×100 outperforms MEI1×200 most of the time, although
not by a large margin, but uses only half the number of parameters. These results are
particularly interesting because they suggest that when the embedding size D is large
enough, MEI with K > 1 can both scale to larger embedding sizes and have better results
than MEI with K = 1.

5.2.3 Analyses

5.2.3.1 Parameter Scale Comparison

Table 5.5 compares the performance of MEI with that of ConvE [16], which aims to
learn interaction mechanisms by a neural network, at different parameter scales. The
results show that MEI achieves better results than ConvE at the same parameter count.
Moreover, the small MEI model at 0.95M parameters remarkably outperforms the other
model at 1.89M parameters. These results suggest that MEI is an effective framework to
utilize the parameters of the model and to learn the interaction mechanisms automatically
for knowledge graph embedding.

68



Chapter 5 Multi-Partition Embedding Interaction: Learning and Evaluation

Table 5.5: Parameter scaling on FB15K-237.

Param. Emb. H@
Model count size MRR 1 3 10
ConvE 1.89M 96 .32 .23 .35 .49
ConvE 0.95M 54 .30 .22 .33 .46
MEI 1.89M 3×40 .34 .25 .38 .53
MEI 0.95M 3×20 .33 .24 .36 .51

Table 5.6: Parameter trade-off analysis on FB15K-237.

Emb. Param. W H@
size count size MRR 1 3 10

12×11 1.95M 1K 0.335 0.247 0.367 0.514
6×21 1.87M 9K 0.339 0.249 0.371 0.518
3×40 1.84M 64K 0.344 0.253 0.378 0.527
1×82 1.76M 551K 0.344 0.255 0.378 0.522

5.2.3.2 Parameter Trade-off Analysis

There are two kinds of parameters in the MEI model, the embeddings and the core tensors.
Theorem 4.1 provides a guideline to trade-offs between them. For example, on FB15K-
237, the parameter efficiency increases when the partition size increases up to C ≈ 122.
However, there are other factors affecting this trade-off, such as the ensemble boosting
effect that favors larger K and smaller C. We argue that due to this effect, MEI with
K > 1 has an empirical advantage compared with MEI with K = 1. To evaluate this
claim, we analyze the performance of MEI models with approximately the same parameter
counts but different core-tensor sizes on FB15K-237. To disambiguate the effects of larger
core tensor, we made sure that the models with larger core tensors would have smaller
parameter counts. Table 5.6 shows that the models with larger core tensor consistently
achieve better results with even fewer total parameters, once again agreeing with Theorem
4.1. Interestingly, MEI with K = 3 achieves competitive results compared with MEI with
K = 1, which suggest that the ensemble boosting effect provides additional advantages
for MEI with K > 1, as we argued.

5.2.3.3 The Effects of Hyperparameters

About the the effects of hyperparameters, we observed that the full softmax cross-entropy
loss function significantly improves the link prediction performance compared to the tra-
ditionally used binary cross-entropy loss function, confirming observations in recent works

69



Multi-Partition Embedding Interaction: Learning and Evaluation Chapter 5

[47] [12]. We also note that standard deep learning techniques such as dropout [72] and
batch normalization [36] played an important role in both the convergence rate and the
final results of our model. The inverse relation heuristics [47] helped to much improve
convergence rate in training but did not affect final results much. The k-vs-all negative
sampling procedure [16] that we adopted also helped to speed up each epoch training and
improved final results. Interestingly, small mini-batch was important in training using bi-
nary cross-entropy loss as it helped the model converge much faster and tended to achieve
higher results than with large batch size in general. Small mini-batch also achieved better
results when training small models using the full softmax cross-entropy loss. However,
large mini-batch achieved better results when training large models using the full softmax
cross-entropy loss.

5.3 Summary

In this chapter, we present the learning problem and empirical evaluation of the MEI
model. We first discussed how to learn the embeddings and the core tensors together
by treating the problem as neural network optimization and using modern deep learning
optimization techniques. We then showed that MEI model and its variants can achieve
state-of-the-art results on the link prediction task using popular benchmarks. Especially,
MEI outperforms previous state-of-the-art models using less parameters, which demon-
strates the key advantage of MEI, that is, being both efficient and expressive.

Further analyses showed that MEI provides good parameter efficiency in comparision
to neural-network-based models. We also showed that the optimal parameter efficiency is a
simple yet effective criterion to choose model size configurations for MEI. The extending
variants of MEI are also shown to be effective and help the model to further improve
performance.

70



Chapter 6

Multi-Relational Embedding:
Applications

In this chapter, we study and present various practical applications of knowledge graph
embeddings, towards efficient multi-relational data analysis using semantic queries on
knowledge graph embedding space. We first formalize a framework for data visualiza-
tion, browsing, and querying applications using semantic queries, which are multi-linear
algebraic operations on the embedding space and demonstrate some tasks on scholarly
data. We also review the entity analogy reasoning in multi-relational embedding space
task, study the semantic structures in the knowledge graph embedding space, and outline
potential solution to the above task.

6.1 Motivation

In recent years, digital libraries have moved towards open science and open access with
several large scholarly datasets being constructed. Most popular datasets such as MAG1

[70] and CORE2 [45] include millions of papers, authors, venues, and other information.
Their large size and heterogeneous contents make it very challenging to effectively manage,
explore, and utilize these datasets.

These bibliographic datasets contain multi-relational information and can be efficiently
represented in a knowledge graphs format. The main part of a knowledge graph is a col-
lection of triples, with each triple (h, t, r) denoting the fact that relation r exists between
head entity h and tail entity t. This can also be formalized as a labeled directed multi-

1 Microsoft Academic Graph: https://academic.microsoft.com/
2 Open access publications: https://core.ac.uk/

71

https://academic.microsoft.com/
https://core.ac.uk/


Multi-Relational Embedding: Applications Chapter 6

graph where each triple (h, t, r) represents a directed edge from node h to node t with
label r. Therefore, it is straightforward to build knowledge graphs for scholarly data by
representing natural connections between scholarly entities with triples such as (AuthorA,
Paper1, write) and (Paper1, Paper2, cite). There have been several attempts at building
and using knowledge graphs for scholarly data [90] [66] [83].

Another advantage of knowledge graph is that, it enables the application of knowledge
graph embedding methods to model the dataset as a low dimensional semantic space and
operations on this space. Knowledge graph embedding is an emerging research topic with
various new and effective methods [89] [77]. These methods were originally developed to
solve the link prediction for knowledge graph completion task, but they also provide the
embedding representations of the data. The data representations may enable new, more
efficient, and effective data representation and analysis applications.

In the case of word embedding methods such as word2vec, embedding vectors are
known to contain rich semantic information that enables them to be used in many semantic
applications [57]. However, knowledge graph embedding vectors are usually only used for
the inherent task of knowledge graph completion, but not for semantic applications. One
of the reasons is that the semantic structures in knowledge graph embedding is not well-
understood because of the vast diversity of the interaction mechanisms in knowledge graph
embedding methods. Therefore, the knowledge graph embedding space remains absent
in the toolbox for data representation and analysis, although they have the potential to
enable very effective and efficient application. In this chapter, we address these issues by
providing a theoretical understanding of knowledge graph embedding space and proposing
a general framework for their applications.

We first try to formalize a general framework for multi-relational data exploration
and analysis using semantic queries on knowledge graph embedding space. The main
component in this framework is the conversion templates from data exploration and anal-
ysis tasks on the original data to semantic queries, which are the multi-linear algebraic
operations between the embedding vectors, that exploits the semantic structures of the
embedding space to solve queries such as similarity query and relational query. For ex-
ample, the framework can solve the related paper recommendation task by running the
semantic similarity query between the paper entity embedding on a bibliographic knowl-
edge graph embedding space. We then build a scholarly knowledge graph and demonstrate
how some important representation and analysis tasks on the original data can be effi-
ciently approximated by semantic queries.

We also review the entity analogy reasoning on multi-relational embedding space task,

72



Chapter 6 Multi-Relational Embedding: Applications

which can be seen as an open-relational query by examples task. Towards solving this
task, we study the semantic structures in the knowledge graph embedding space. Based
on the discussed connections between knowledge graph embedding methods and language
modeling, as discussed in Section 4.5.1, we propose a general semantic analogy structure
that extend the simple semantic direction structure in word2vec embedding space, namely
king −man = queen− woman, to multi-relational embedding space. We then outline a
potential solution to the above task.

6.2 Semantic query on knowledge graph embedding space

In this section, we define semantic query and formalize the semantic query framework on
knowledge graph embedding space.

6.2.1 Semantic structure

When an embedding model is trained on a dataset, semantic information in that dataset,
such as similarity or analogy relationships, may be encoded by the resulting embedding
space. A structure on the embedding space can be seen as an operation, relation, or metric
on the embedding vectors. The structure is a semantic structure if it can be assigned with
a semantic meaning, such as similarity or analogy.

Definition 6.1. (Semantic structure) A semantic structure on an embedding space
is a mathematical structure (such as operation, relation, or metric) on the embedding
vectors that was assigned with a semantic meaning.

The advantage of such semantic structures is that we can use the mathematical op-
erations on the embedding space to represent and model some semantic relationships on
the original dataset. For example, the semantic similarity structure on the entity embed-
ding vectors represents the similarity relationship between the entities. In regard to the
MEI model and most other embedding model, the matching between embedding vectors
is simply by a dot product. Therefore, we can define the semantic similarity structure
between two entity a and b as:

sim(a, b) = a>b. (6.1)

73



Multi-Relational Embedding: Applications Chapter 6

6.2.2 Semantic queries

We define the semantic query and semantic query on a knowledge graph embedding space
as following.

Definition 6.2. (Semantic query) A semantic query is a precise relational-type oper-
ation that explicitly uses the relational information to perform a data representation and
analysis task.

Definition 6.3. (Semantic query on the knowledge graph embedding space) A
semantic query on the knowledge graph embedding space is defined as the multi-linear
algebraic operations on that knowledge graph embedding space to approximate a given
data representation and analysis task.

For example, data visualization, similarity query, and question answering are some
important tasks that can be solved by semantic queries. Semantic structures can be seen
as more basic building blocks that can be used for specific operations in a semantic query.
We will discuss them in details in Section 6.2.4.

6.2.3 The semantic query framework

To facilitate the application of multi-relational embedding in data representation and
analysis tasks, we formalize the steps of semantic queries in a semantic query framework
[78]. Figure 6.1 illustrates the overall architecture of the proposed framework using the
symbols loosely based on Yourdon and Coad’s data flow diagram convention. There are
three main components, namely data processing, task processing, and query processing.

Component 1: Data processing include two steps, constructing the knowledge graph
from multi-relational data and learning the knowledge graph embeddings. These can be
done only once for a scholarly dataset as the resulted knowledge graph embeddings are
reused for multiple queries.

• Constructing the knowledge graph for multi-relational data: we can build the knowl-
edge graph by directly using entities and relations in the multi-relational dataset.
For example, on a scholarly dataset such as Microsoft Academic Graph (MAG),
the entities mainly include authors, papers, venues ; the relations mainly include
author-write-paper, paper-cite-paper, paper-publish-in-venue. Note that the knowl-
edge graph can be extended by including other natural or augmented nodes and
edges to extensively integrate information from the original data.

74



Chapter 6 Multi-Relational Embedding: Applications

1. Data Processing

2. Task Processing
3. Query 
Processing

Multi-
Relational

Data

1.1
Construct

Knowledge
Graph

1.2
Learn

Embedding

2.1
Convert

Task

3.1
Run

Semantic
Query

Semantic Query

Knowledge 
Graph Embeddings

Knowledge 
Graph

Semantic Query
Result

Task
Conversion
Template

Data Analysis
Task

Figure 6.1: Architecture of the semantic query framework. Three main components
include Data Processing, Task Processing, and Query Processing. Notations based on

Yourdon and Coad’s data flow diagram convention, with circle denoting process,
cylinder denoting database, open rectangle denoting data store, rectangle denoting

external input and output.

• Learning the knowledge graph embeddings: we learn the embedding vectors by knowl-
edge graph completion. The procedure can be found in [47] and [77].

Component 2: Task processing converting data analysis tasks to algebraic oper-
ations on the embedding space. The task conversion can be done by following some
templates for specific tasks. Some important tasks and their conversion templates are
discussed in Section 6.2.4.

Component 3: Query processing executing semantic query on the embedding space
and return results. Note that the algebraic operations on embedding vectors are linear
and can be performed in parallel. Therefore, the semantic query is very efficient.

Note that the proposed semantic query framework aims to be general. It makes no as-
sumption on the specific knowledge graph embedding models and the induced embedding
spaces. Any embedding space that contains rich semantic information can be applied in
this framework with an appropriate query processing method. We study some typical
tasks and their corresponding semantic queries below.

75



Multi-Relational Embedding: Applications Chapter 6

6.2.4 Representation and Analysis Tasks

In the following, we present some specific semantic query tasks. Based on the analysis in
Section 6.4.2, we are interested in three main tasks on the knowledge graph embedding
space, (1) data visualization, (2) similarity query, and (3) relational query. For each task,
we propose a conversion template for converting it to appropriate multi-linear algebraic
operations on the embedding space to perform semantic query.

6.2.4.1 Task 1: Data visualization

Tasks Given a multi-relational dataset, visualize its entities and identify semantic clus-
ters of the entities.

Examples This task can give an intuitive overview of a multi-relational dataset such
as the bibliographic data or biomedical data. The semantic clusters of the entities give
hints about the potential interesting information and can be used for further processing.

Solution We can solve this task by first learning the multi-relational embedding of the
dataset, for example using a knowledge graph embedding method such as MEI. After that,
we can use a dimension reduction method such as PCA or t-SNE to reduce the dimension
of the entity embeddings to 2 or 3-dimensional space. Assuming the embedding space
captures some semantic information in the dataset, it is expected that semantically related
entities will be close to each other in the embedding space and the visualization. Moreover,
following the analysis of the semantic structures in knowledge graph embedding space,
entities with different types will form large semantic clusters corresponding to the entity
types, which means the embedding space provide some concrete semantic information
about entity types. However, this may be an advantage in some applications and a
disadvantage in some other applications. In the latter case, we need to use more advanced
semantic queries, that is, multi-linear algebraic operations, to overcome the separation of
embedding by entity types.

6.2.4.2 Task 2: Similarity query

Tasks Given an entity e, find other entities that are similar to e.

Examples In a bibliographic dataset, find papers that are related to a given paper
based on its references and citations. In a COVID-19 biomedical network, find drugs that
are similar to a given drug based on its chemical interactions.

76



Chapter 6 Multi-Relational Embedding: Applications

Solution We first note that this task only make sense when querying in the same entity
type. For example, a paper is not similar to some authors directly, but a paper’s author
can be similar to some authors. Thus, when querying, we need to restrict the type of the
candidate entities.

We can solve this task by finding the entities with the top largest similarity to the
given entity e as measure by the semantic similarity structure in Eq. 6.1. The most
similar entity to e is:

Result = arg max
ei∈E\e

sim(ei, e) (6.2)

= arg max
ei∈E\e

e>i e. (6.3)

6.2.4.3 Task 3: Relational query

Tasks Given an entity e and relation r, find the entities that are related to e through r.

Examples In a bibliographic dataset, find papers that are potentially cited by an au-
thor. In this case, the entity e is the author, the relation r is citing. In a COVID-19
biomedical network, find all drugs that can potentially act as inhibitor of a specific en-
zyme. In this case, the entity e is the enzyme, the relation r is being inhibited.

Solution To solve this task, we notice that when the entity e and the relation r exist in
the training data, even if there is no triple that contains e and r, we can still treat it as
a link prediction task on the embedding space. Thus, when querying, we need to restrict
the type of the candidate entities.

We can solve this task by transforming the entity embedding e using the relation-
based transformation Tr(·), then finding most similar entities as measure by the semantic
similarity structure in Eq. 6.1. The most related entity to e through r is:

Result = arg max
ei∈E

sim(ei, Tr(e)) (6.4)

= arg max
ei∈E

e>i Tr(e), (6.5)

where Tr(·) is the relation-based transformation depending on the specific embedding
space.

77



Multi-Relational Embedding: Applications Chapter 6

6.3 Experiments

In this section, we present how we implemented the semantic query framework and con-
ducted the experiments for the three discussed tasks, (1) data visualization, (2) similarity
query, and (3) relational query.

6.3.1 Experiment settings

Here we will describe the procedure to implement the semantic query framework, including
the source datasets, their multi-relational data format, and the embedding learning.

Data For experiments, we use a popular bibliographic dataset to construct a scholarly
knowledge graph.

Bibliographic dataset We use a subset of the popular MAG dataset3 [70], which
is one of the largest and most complete bibliographic datasets. We constructed a curated
subset of influential computer science papers published in top conferences between 1990
and 2010. The top conference list are based on the 2018 CORE ranking4 A* conferences.

We removed conferences with less than 300 publications because they are likely in-
complete data. We also remove papers with less than 20 citations recorded in MAG. The
final bibliographic dataset, namely MAG20C, includes papers from 20 top conferences,
sorted alphabetically, including AAAI, AAMAS, ACL, CHI, COLT, DCC, EC, FOCS,
ICCV, ICDE, ICDM, ICML, ICSE, IJCAI, NIPS, SIGGRAPH, SIGIR, SIGMOD, UAI,
and WWW. Data statistics of MAG and the curated subset are shown in Table 6.1.

Table 6.1: Data statistics of MAG and the curated bibliographic dataset.

Dataset Paper Author Affiliation Conference Journal Domain Year
MAG 123,056,983 114,698,044 19,843 1,283 23,404 53,834 1800–2017
MAG20C 5,047 8,680 692 20 0 1,923 1990–2010

Knowledge graph construction We represent the bibliographic dataset in a knowl-
edge graph format by defining the entities, the relations, and constructing the triples. We
use five intrinsic entity types including Paper, Author, Affiliation, Venue, and Domain. We
also use five intrinsic relation types between the entities including author_in_affiliation,
author_write_paper, paper_in_domain, paper_cite_paper, and paper_in_venue.
3 Microsoft Academic Graph: https://academic.microsoft.com/
4 http://portal.core.edu.au/conf-ranks/

78

https://academic.microsoft.com/
http://portal.core.edu.au/conf-ranks/


Chapter 6 Multi-Relational Embedding: Applications

We then split the triple dataset uniformly at random into the training, valid, and test
sets. We made sure that no triple is duplicate in these splits. The five relation types are
intrinsic, so that no relation is directly implied by another relation. Hence, the data are
not redundant, that is, no triple can be easily implied by other triples. This property is
similar to how the recent standard benchmark datasets WN18RR and FB15K-237 for link
prediction are constructed, which constitutes a difficult benchmark. We also made sure
that all existing entities and relations appear in the training set so that their embeddings
can be learned in training and used in evaluation. The statistics of the resulted knowledge
graph, namely KG20C, are shown in Table 6.2.

Table 6.2: Data statistics of the KG20C knowledge graph.

Dataset |E| |R| Training Validation Test
KG20C 16,362 5 48,213 3,670 3,724

Learning the knowledge graph embedding We learn the embedding space using
two knowledge graph embedding methods, our MEI model and the CPh model as a multi-
relational embedding baseline. We also learn the embedding space using word2vec skip-
gram as a single-relational embedding baseline.

Similarly to the experiments in Chapter 5, we trained the models using mini-batch
stochastic gradient descent with Adam optimizer [42]. We use the full softmax cross-
entropy loss and try both 1-vs-all and k-vs-all negative sampling [16] [47] [12]. For
simplicity, after preliminary experiments, we fix the batch size at 128, learning rate at
1e-3, batch normalization on h and h>M . We also fix the embedding size of MEI to
10 × 10, and CPh and word2vec skipgram to 50 × 2 so that they have similar model
sizes and embedding sizes. These embedding sizes are relatively small compared to the
size of the dataset, however, they enable faster training and evaluating and thus more
extensive hyperparameter tuning. The small embedding sizes also make our analyses and
demonstrations more tractable. Note that we do not use a larger partition size for MEI
because larger partitions will result in larger number of parameters in the core tensors
and thus smaller embedding size to keep the model size unchanged. In our experiments,
we want to keep both the model sizes and embedding sizes of MEI, CPh, and word2vec
skipgram at similar values.

All other hyperparameters in both models are tuned by random search [5], including L3

regularization ∈ {1, 3e-1,1e-1, 3e-2,1e-2, 3e-3,1e-3, 3e-4,1e-4, 0.0 (no weight decay)} and
dropout rate ∈ {0.0 (no dropout), 0.05, 0.1, 0.2, 0.3, 0.4}. The best hyperparameters for

79



Multi-Relational Embedding: Applications Chapter 6

word2vec are full softmax cross-entropy loss with k-vs-all negative sampling, L3 weight
decay with strength 3e-1; for CPh are full softmax cross-entropy loss with k-vs-all negative
sampling, L3 weight decay with strength 1e-1; and for MEI are full softmax cross-entropy
loss with k-vs-all negative sampling, non-shared core tensor, drop rates 0.4 on h, 0.4 on
h>M , and no weight decay.

Trainings were early stopped by checking the filter MRR metric on the validation sets
and the embedding spaces at the best epoch are used. Reported results are the median
results regarding filtered MRR on the validation set selected from three independent runs
with different random seeds.

6.3.2 Experimental results and discussion

6.3.2.1 Task 1: Data visualization

In this task, we will visualize the semantic cluster of the entity types on each embedding
space learned by word2vec, CPh, and MEI. This task will provide an overview of the
embedding space, its basic semantic structures, and some comparisons between the em-
bedding methods. In the embedding space, the embedding vectors may form clusters. A
natural question is what these clusters stand for, or in other words, whether there is any
semantic information represented by these clusters. The following results try to answer
this question is some extent.

Semantic clusters of entity types To visualize the embedding space, we need to
reduce its dimension, for example by using principal component analysis (PCA). However,
PCA is a linear method and cannot visualize complex structures. Therefore, we also use
UMAP [55], which is a non-linear dimension reduction and visualization method based
on k-NN. Figures 6.2 and 6.3 show the 2-dimensional projections using PCA and UMAP
of the entity embeddings obtained by random vectors (for simple baseline reference),
word2vec, CPh, and MEI, respectively.

Between the PCA visualizations, we see that word2vec can capture the entity infor-
mation to some extents. Word2vec does this by using the co-occurrence information of
the entities, not the relations between them. CPh can more strongly separate the entities
of different types because it can infer the entity types using the relations. Surprisingly,
MEI seems not able to separate the entity types in the PCA visualization. To further
investigate this problem, we look at the UMAP visualizations.

We observe that UMAP can more clearly visualize the structure of the embedding
spaces. The general results are similar to what we saw in PCA visualization, word2vec

80



Chapter 6 Multi-Relational Embedding: Applications

Figure 6.2: PCA visualization of embedding spaces obtained by random vectors
(top–left), word2vec (top–right), CPh (bottom–left), and MEI (bottom–right), with

authors, papers, domains, affiliations, and conferences.

can separate the main entity types including paper and author, but fails to separate other
entity types. CPh can more strongly separate the entity types. Especially, MEI can clearly
separate the entity types almost perfectly.

In Task 3 relational query we will quantitatively show that the ability to capture
and encode the entity type information is an important advantage of multi-relational
embedding methods.

6.3.2.2 Task 2: Similarity query

In this task, we will present the case study of similarity query between conferences on the
embedding spaces.

Case study: conference similarity query We consider the 20 top conferences in
the KG20C dataset. We will measure the similarity between each of them in the embed-

81



Multi-Relational Embedding: Applications Chapter 6

Figure 6.3: UMAP visualization of embedding spaces obtained by random vectors
(top–left), word2vec (top–right), CPh (bottom–left), and MEI (bottom–right), with

authors, papers, domains, affiliations, and conferences.

ding spaces obtained by word2vec, CPh, and MEI, by the semantic similarity structure
defined in Eq. 6.1. We can expect that semantically similar conferences will be close
to each other and vice versa. Figures 6.4, 6.5, and 6.6 visualize the similarity matrices
between every pair of conferences on the embedding spaces obtained by word2vec, CPh,
and MEI, respectively. The similarities in each row are normalized to L1 unit norm.

We first observe that the similarities on the word2vec embedding space are mostly
lower than those on the CPh and MEI embedding spaces, as shown in generally darker
color squares. This is expected because multi-relational embedding can more easily recog-
nize that the conferences are of the same type and similar to each other. The similarities
results on CPh and MEI are mostly similar and manually inspection shows that their
results agree to intuition.

82



Chapter 6 Multi-Relational Embedding: Applications

Figure 6.4: Similarity matrix of conferences based on word2vec embeddings, computed
using cosine (left) and dot product (right).

Figure 6.5: Similarity matrix of conferences based on CPh embeddings, computed using
cosine (left) and dot product (right).

6.3.2.3 Task 3: Relational query

This is one of the most important tasks in semantic query. We will quantitatively evaluate
the relational query performance on the embedding spaces of random guess, word2vec,
CPh, and MEI in details.

Standard link prediction benchmark Link prediction is a relational query task
given a relation and the head or tail entity to predict the corresponding tail or head
entities. We first evaluate the using standard metrics on the link prediction task. Table
6.3 shows the standard link prediction results for random guess, word2vec, CPh, and MEI,
respectively.

83



Multi-Relational Embedding: Applications Chapter 6

Figure 6.6: Similarity matrix of conferences based on MEI embeddings, computed using
cosine (left) and dot product (right).

We first observe that random guess completely fails on this task. This demonstrates
that the task and the benchmark dataset are very difficult. The second important ob-
servation is multi-relational embedding methods significantly outperform single-relational
embedding methods such as word2vec. In addition, we see that MEI strongly outperforms
the CPh method because MEI is more expressive and parameter efficient.

The standard link prediction task is equivalent to evaluating relational query using
all the queries on all relations in the test set triples and averaging the results, with no
restriction on predicted entity types. In real world, we usually know the types of each
entity and which types are compatible with each query. For example, the answer to the
query (author, ?, write) should be of type paper. Therefore, we also provide evaluation
results filtered by the predicted entity types for each relation in KG20C in Table 6.4.

Interestingly, we see that filtering by the entity types significantly improves the results
of word2vec, whereas the results of CPh and MEI are only improved very slightly. This
can be explained by the fact that word2vec cannot capture the information about entity
types well, thus explicitly providing this information is crucial for the word2vec model.
On multi-relational embedding methods, the entity type information is well captured and
encoded, thus the additional filter does not much affect the results. Note that although
the result of word2vec improves with the explicit entity type filter, it is still lower than
the results of multi-relational embedding methods.

Detailed analysis Here we will evaluate the detailed performance of the MEI model
on each relational query. We express 10 relational queries for 5 relations in KG20C in
human language form. For example, the triple (author, paper, write) is corresponding

84



Chapter 6 Multi-Relational Embedding: Applications

Table 6.3: Link prediction results on KG20C.

Models MRR Hit@1 Hit@3 Hit@10
Random 0.001 < 5e-4 < 5e-4 < 5e-4
Word2vec 0.068 0.011 0.070 0.177
CPh 0.215 0.148 0.234 0.348
MEI 0.230 0.157 0.258 0.368

Table 6.4: Link prediction results on KG20C filtered by entity types.

Models MRR Hit@1 Hit@3 Hit@10
Random 0.011 0.003 0.008 0.025
Word2vec 0.203 0.137 0.221 0.330
CPh 0.216 0.148 0.235 0.350
MEI 0.231 0.157 0.259 0.369

to two queries (author, ?, write) and (?, paper, write), which can be expressed in nat-
ural language as What papers may this author write? and Who may write this paper?,
respectively. The results are shown in Table 6.5 and demonstrate a good performance on
situations simulating real-world contexts.

Table 6.5: Detailed relational query results with MEI on KG20C.

Queries MRR Hit@1 Hit@3 Hit@10
Who may work at this organization? 0.299 0.221 0.342 0.440
Where may this author work at? 0.626 0.562 0.669 0.731
Who may write this paper? 0.247 0.164 0.283 0.405
What papers may this author write? 0.273 0.182 0.324 0.430
Which papers may cite this paper? 0.116 0.033 0.120 0.290
Which papers may this paper cite? 0.193 0.097 0.225 0.404
Which papers may belong to this domain? 0.052 0.025 0.049 0.100
Which may be the domains of this paper? 0.189 0.114 0.206 0.333
Which papers may publish in this conference? 0.148 0.084 0.168 0.257
Which conferences may this paper publish in? 0.693 0.542 0.810 0.976

6.4 Beyond word analogy: entity analogy reasoning in

multi-relational embedding space

In this section, we review the entity analogy reasoning task as an extension of the word
analogy reasoning task on multi-relational embedding space. We first define the task, give
examples, and provide an new equivalent definition for it in multi-relational embedding

85



Multi-Relational Embedding: Applications Chapter 6

space as the open-relational query by examples task. We then study the semantic analogy
structures in multi-relational embedding space. Finally we propose a potential solution
based on the studied semantic structures.

6.4.1 Entity analogy reasoning as the open-relational query by

examples task

Word analogy is a popular concept introduced by the word2vec paper [57]. Its typical
example has the form A is to B as C is to ?, for example, king is to man as queen is to
woman. Extending this task directly to multi-relational data, we define the entity analogy
reasoning task as follows.

Definition 6.4. (Entity analogy reasoning task) Given an entity e and some entity
pairs X = {(ai, bi)|i = 1 . . . n}, where there is an analogical relationship such that ai is to
bi as aj is to bj, i = 1 . . . n, j = 1 . . . n. Find the entity e′ such that ai is to bi as e is to e′,
i = 1 . . . n.

In multi-relational data format, there are explicit relationship information between
entities, we can state the analogical relationship as an explicit relation. This enables
us to treat the task as an open-relational query task, where the open relations can be
specified by some example pairs (ai, bi), i = 1 . . . n at the query time. Specifically we
define the equivalent Open-relational query by examples task as follows.

Definition 6.5. (Open-relational query by examples task) Given an entity e and
some examples of the form X = {(ai, bi)|i = 1 . . . n}, where there is a new unseen relation
r between the entities in each pair (ai, bi). Find the entity e′ such that e′ is the result of
relational query (e, ?, r).

This task enables the possibility to query open and arbitrary relationship on a multi-
relational dataset, which can be very useful because a multi-relational dataset cannot store
all possible relationships between the entities. For example, in a bibliographic dataset,
the knowledge graph format may only include direct bibliographic relations and not the
co-author relation. We can query co-authorship after obtaining the fixed pretrained em-
bedding space by solving this task. We can also query other types of relationship, such
as who is the editors, the reviewers, or the supervisor of an author.

Below, we will show that the formulation of entity analogy reasoning task as open-
relational query by examples task is essential in studying the semantic analogy structure
in the multi-relational embedding space.

86



Chapter 6 Multi-Relational Embedding: Applications

6.4.2 Semantic analogy structures in the multi-relational embed-

ding space

The semantic analogy structure in the word embedding space is formulated as the semantic
directions by vector difference between word embedding vectors. Specifically, the analogy
A is to B as C is to D is represented by the structure

vA − vB = vC − vD. (6.6)

This structure was made popular by the word2vec model, where they showed the intriguing
relationship between the word embedding vectors such as king−man = queen−woman.
This simple semantic direction structure does not necessarily hold in multi-relational
embedding space such as the knowledge graph embedding space. In this section, we will
explain why and propose a new general semantic analogy structure for multi-relational
embedding space.

First, we explain why the simple semantic direction structure does not necessarily hold.
In regard to the MEI transforming and matching framework, the relationship between
two entities in a triple is modeled by a relation-based linear transformation. Because
linear transformation are composable, the relationship between any two entities in the
knowledge graph can also be modeled by a linear transformation. Considering a linear
transformation T that models the gender relationship, so that T (king) = Z · queen and
T (man) = Z · woman, where Z is a scalar value accounting for the different scale in the
matching step. Note that linear transformations preserve linear combinations, so we can
write

T (king −man) = T (king)− T (man) (by linearity of T) (6.7)

= Z · queen− Z · woman (by definition of T) (6.8)

= Z · (king −man) (by claiming the simple linear structure). (6.9)

Therefore, the simple semantic direction structure as in the word embedding space
only holds when the linear transformation T is the identity transformation up to a scale
by Z, such that T (king−man) = Z · (king−man). Such an identity relation embedding
is present in single-relational embedding methods such as word2vec and was discussed in
Section 4.5.1. In general multi-relational embedding space, there are multiple different
linear transformations so the simple semantic direction structure does not hold.

87



Multi-Relational Embedding: Applications Chapter 6

6.4.2.1 General semantic analogy structure

Now, we define the general semantic analogy structure in multi-relational embedding
space. As we have discussed above, the entity analogy reasoning task is equivalent to the
open-relational query by examples task, where the analogical relationship is denoted as
an unseen relation r. Intuitively, the general semantic analogy structure can be defined
based on the embedding of this relation r, which can be computed based on a general
linear map between a and b. Denote the general semantic analogy structure between two
entities a and b as sem(a, b), we can then write sem(king,man) = sem(queen, woman).
The function sem(·, ·) can be seen as an edge feature extractor or a relation embedding
reconstructor for r.

The detailed definition of the function sem(·, ·) depends on the specific multi-relational
embedding methods used to obtain the embedding space. In the general case of the MEI
model,

sem(a, b) = concatKk=1 (Z � (Wk×̄1ak:×̄2bk:)) , (6.10)

where � denotes element-wise division, Z is a global scalar value for a given dataset, and
Wk are the global core tensors given a dataset. In the specific case, for example CPh,

sem(a, b) = concat (Z � (a1: � b2:) , Z � (a2: � b1:)) , (6.11)

where � denotes element-wise division and Z is a global scalar value for a given dataset.

6.4.3 Towards a solution for entity analogy reasoning on multi-

relational embedding space

In this section, we outline a potential solution of semantic query, that is, multi-linear alge-
braic operations on multi-relational embedding space, to approximate the entity analogy
reasoning task.

Note that the analogy reasoning task cannot be solved as a relational query task
directly, because the analogical relation is absent from the training data, and thus un-
available in the pretrained multi-relational embedding space. Therefore, to treat it as a
relational query task, we need an efficient method to obtain the relation-based transfor-
mation function of the new relationship from the existing knowledge graph embedding
space. In addition, the information about the analogical relation is usually very scarce,
including only a few example. Therefore, it is difficult and inefficient to use the few data

88



Chapter 6 Multi-Relational Embedding: Applications

points in the examples to fine-tune the existing embedding space.

To solve this problem, one potential approach is to use the general semantic analogy
structure proposed in Section 6.4.2. The essence here is to compute the general semantic
analogy structure between the entities in the example pairs and use them to construct
the relation-based transformation function to use in relational query. Here we outline the
solution on the embedding space obtained by the MEI model. For simplicity, we consider
a local MEI model with a single partition to omit k and concat(·) in the notation.

We first compute the average generalized linear structure between the example entities:

semX =
1

n

∑
i=1...n

sem(ai, bi) (6.12)

=
1

n

∑
i=1...n

Z � (W×̄1ai×̄2bi) . (6.13)

We then use the computed generalized linear structure semX to reconstruct the
relation-based transformation matrix of the new relationship:

MX = W×̄3semX . (6.14)

Finally we use MX to construct the relation-based transformation function:

TX(e) =
(
e>MX

)> (6.15)

= M>
Xe (6.16)

= (W×̄3semX)> e (6.17)

At this step, we have converted the open-relational query task to the known relational
query task and thus can reuse the known solution for the remaining steps. The most
related entity to e through the open relationship given by X is:

Result = arg max
ei∈E

sim(ei, TX(e)) (6.18)

= arg max
ei∈E

e>i TX(e), (6.19)

where TX(·) is the new open relation-based transformation computed above.

Note that after acquiring the generalized linear structure semX , we can use the few
data points in the examples to continue fine-tuning it using the standard knowledge graph
embedding training procedure.

89



Multi-Relational Embedding: Applications Chapter 6

6.5 Summary

6.5.1 Contribution and impact discussions

In general, the main contributions and impacts of our work are as follows.

• We formalize a general framework for multi-relational data exploration and analysis
using semantic queries on knowledge graph embedding space. The main component
in this framework is the conversion templates from data representation and analysis
tasks on the original data to semantic queries, which are the multi-linear algebraic
operations between the embedding vectors on the embedding space. About the
impact, although the framework is conceptually simple, to the best of our knowledge,
we are the first to formalize such a framework. Our work potentially facilitates the
applications of multi-relational embedding in data representation and analysis.

• We build a knowledge graph from scholarly data and demonstrate how some impor-
tant representation and analysis tasks on the original data can be solved by semantic
queries using the formalized framework. About the impact, we empirically demon-
strate how the proposed framework and concepts can be realized on a real world
bibliographic dataset. Our implementation can serve as a reference and example for
further development of similar applications in practice.

• We also review the entity analogy reasoning on multi-relational embedding space
task, which can be seen as an open-relational query by examples task. Towards solv-
ing this task, we study the semantic structures in the knowledge graph embedding
space, propose a general semantic analogy structure in multi-relational embedding
space, then outline a potential solution to the above task. About the impact, we
explore a new aspect in multi-relational embedding application by extending the
analogy reasoning task from word embedding space to multi-relational embedding
space. The outline potential solution and theoretical analysis may potentially influ-
ence future research.

To the best of our knowledge, in comparison to previous work, the proposed framework
is the first formalization and demonstration of a general framework for multi-relational
embedding applications in data representation and analysis. It was designed as a simple
and extensible framework that can be adopted for applications on new data or new tasks.

In addition, we review the entity analogy reasoning task, express it as a new relational
query task on the open relations defined by examples. The analysis led to a potential

90



Chapter 6 Multi-Relational Embedding: Applications

analogy structure in multi-relational embedding space and a potential solution to the
entity analogy reasoning task.

6.5.2 Scopes and future work

The proposed semantic query framework aims to be general, such that it can be extended
to new embedding spaces and new analysis tasks. However, the main limitation of this
framework is that, for each task and each embedding space, we need to use an appropriate
multi-algebraic operation. For example, the operation for similarity query is different from
the operation for relational query, and the operation on translation-based embedding
space is different from the operation on semantic matching embedding space. Therefore,
one important direction for future work that may have practical impact is to study the
appropriate semantic queries for different tasks and different embedding spaces.

The entity analogy reasoning task and the general semantic analogical structure in
multi-relational embedding space are intriguing problems. However, in this work we stop
at theoretical analysis and outlining the potential solution. We plan to go into more
detailed analysis and implementation in future work.

91



Multi-Relational Embedding: Applications Chapter 6

92



Chapter 7

Conclusion

Multi-relational data, such as knowledge graphs, bibliographic data, and information net-
works are prevalent in real-world datasets. Managing, exploring, and utilizing these large
and complex datasets effectively are challenging. In recent years, multi-relational embed-
ding methods have emerged as a new effective approach to model multi-relational data by
representing both the entities and the relations as embedding vectors in semantic space.
On knowledge graphs, multi-relational embedding methods aim to model the interactions
between these embedding vectors to predict the relational link between entities. These
knowledge graph embedding methods solve the important inherent task of link prediction
for knowledge graph completion, but also provide the embedding representations that
have various potential applications. The goal of this thesis is first to study multi-relational
embedding on knowledge graphs to propose a new embedding model that explains and
improves previous methods, then to study the applications of multi-relational embedding
in representation and analysis of knowledge graphs.

For the first part of the thesis, we study the theoretical framework of knowledge graph
embedding methods to explain and improve them. We review and analyze the popular
class of semantic matching knowledge graph embedding methods, with a focus on the
state-of-the-art trilinear-product-based models such as ComplEx. Based on our analysis,
we identify two fundamental complementary aspects that a knowledge graph embedding
model needs to address, that is, computational efficiency and model expressiveness. Pre-
vious trilinear-product-based models use specially designed interaction mechanisms to
manually provide a trade-off between the two aspects. However, their interaction mech-
anisms are specially designed and fixed, potentially causing them to be suboptimal or
difficult to extend. In this thesis, we propose the multi-partition embedding interaction
(MEI) model with block term format to systematically address this problem. MEI di-

93



Conclusion Chapter 7

vides each embedding into a multi-partition vector to efficiently restrict the interactions.
Each local interaction is modeled with the Tucker tensor format and the full interaction
is modeled with the block term tensor format, enabling MEI to control the trade-off be-
tween expressiveness and computational cost, learn the interaction mechanisms from data
automatically. The model combines advanced tensor representation formats and modern
deep learning techniques to achieve state-of-the-art performance on the link prediction
task. The theoretical framework of the MEI model is then used as a general mechanism
of knowledge graph embedding to analyze, explain, and generalize previous models. We
also draw the connections to word embeddings and language modeling to provide some
new insights and generalizations.

For the second part of the thesis, we study how to apply multi-relational embedding in
representation and analysis of knowledge graphs. Unlike word embedding, the semantic
structures such as similarity and analogy structures in knowledge graph embedding space
are not well-studied, and thus not usually utilized for data representation and analysis.
To demonstrate the application of multi-relational embedding, we formalize a framework
for data representation and analysis by semantic queries on the multi-relational embed-
ding space. We build a knowledge graph from scholarly data and show how various tasks
on the original datasets can be approximated by appropriate semantic queries, which are
multi-linear algebraic operations on the multi-relational embedding spaces. We also the-
oretically study the entity analogy reasoning task in multi-relational embedding space,
which can be formulated as an open-relational query by examples task, doing relational
query on unseen relations. Using the above mathematical connections between knowl-
edge graph embeddings and word embeddings, we analyze the semantic structures in the
knowledge graph embedding space and propose potential solution to the above entity
analogy reasoning task. The goal of this endeavor is to explore potential applications of
recent advancements in multi-relational embedding to data representation and analysis,
especially to improve its effectiveness on scholarly data.

7.1 Contribution and impact discussions

For the first part of the thesis, the main contributions and impacts of our work are as
follows.

• We analyze and identify two fundamental complementary aspects in knowledge
graph embedding, namely computational efficiency and model expressiveness. We
then address both aspects by introducing a new approach to knowledge graph

94



Chapter 7 Conclusion

embedding, the multi-partition embedding interaction, which models the internal
structure of the embeddings and systematically controls the trade-off between ex-
pressiveness and computational cost. About the impact, although our work is not
the first one to try to trade-off between the computational efficiency and model
expressiveness in knowledge graph embedding, most previous works address this
problem in a manual or heuristic way. To the best of our knowledge, we are the first
to systematically address this problem by proposing the new multi-partition embed-
ding interaction approach, that generalizes previous methods. Therefore, our work
potentially present a conclusive hindsight to some recent researches in knowledge
graph embedding.

• To realize our approach, we propose the standard multi-partition embedding in-
teraction (MEI) model with block term format, to control the trade-off between
computational efficiency and model expressiveness through the partition size, and
to learn the interaction mechanisms from data automatically through the local
Tucker core tensors. We empirically show that MEI is efficient and effective, as
it can achieve state-of-the-art results using the popular and standard link predic-
tion benchmarks. About the impact, the MEI model presents a combination of
advanced tensor representation formats and modern deep learning techniques for
knowledge graph embeddings, that can provide advantages over previous models.
This approach of combination may potentially be a promising direction for future
research in knowledge graph embeddings.

• We theoretically analyze the framework of MEI to explain its intuitions and mean-
ings. In addition, we are the first to formally study the parameter efficiency problem
and derive a simple optimal trade-off criterion for the model size of MEI. We apply
the theoretical framework of MEI to provide intuitive explanations for the specially
designed interaction mechanisms in several previous knowledge graph embedding
models. About the impact, MEI is not just a model, but an approach and theoret-
ical framework to knowledge graph embedding. There are many potential variants
and extensions that can improve the model, of which some variants have been dis-
cussed above. The theoretical framework of MEI may serve to assist in analyzing
previous models and may be readily applied to improve them.

• We also draw the connections from knowledge graph embedding to word embeddings
and language modeling to provide some new insights and generalizations. About
the impact, these connections may potentially benefit the research and development

95



Conclusion Chapter 7

in both domains of representation learning.

For the first part of the thesis, the main contributions and impacts of our work are as
follows.

• We formalize a general framework for multi-relational data exploration and analysis
using semantic queries on knowledge graph embedding space. The main component
in this framework is the conversion templates from data representation and analysis
tasks on the original data to semantic queries, which are the multi-linear algebraic
operations between the embedding vectors on the embedding space. About the
impact, although the framework is conceptually simple, to the best of our knowledge,
we are the first to formalize such a framework. Our work potentially facilitates the
applications of multi-relational embedding in data representation and analysis.

• We build a knowledge graph from scholarly data and demonstrate how some impor-
tant representation and analysis tasks on the original data can be solved by semantic
queries using the formalized framework. About the impact, we empirically demon-
strate how the proposed framework and concepts can be realized on a real world
bibliographic dataset. Our implementation can serve as a reference and example for
further development of similar applications in practice.

• We also review the entity analogy reasoning on multi-relational embedding space
task, which can be seen as an open-relational query by examples task. Towards solv-
ing this task, we study the semantic structures in the knowledge graph embedding
space, propose a general semantic analogy structure in multi-relational embedding
space, then outline a potential solution to the above task. About the impact, we
explore a new aspect in multi-relational embedding application by extending the
analogy reasoning task from word embedding space to multi-relational embedding
space. The outline potential solution and theoretical analysis may potentially influ-
ence future research.

7.2 Scopes and future work

The proposed MEI framework provides a general approach towards knowledge graph
embedding, which can be used to explain previous embedding models and extend to
new effective variants. However, the main limitation of the proposed method as well as
most previous knowledge graph embedding methods is that they are transductive learning

96



Chapter 7 Conclusion

methods, that is, they can only learn the embeddings for the entities and relations that
are existing in training. Therefore, one big future direction is to extend the proposed
method to inductive learning approach, where it can compose embedding for new unseen
entities and relations.

The proposed semantic query framework aims to be general, such that it can be
extended to new embedding spaces and new analysis tasks. However, the main limitation
of this framework is that, for each task and each embedding space, we need to use an
appropriate multi-algebraic operation. For example, the operation for similarity query is
different from the operation for relational query, and the operation on translation-based
embedding space is different from the operation on semantic matching embedding space.
Therefore, one important direction for future work that may have practical impact is to
study the appropriate semantic queries for different tasks and different embedding spaces.

The entity analogy reasoning task and the general semantic analogical structure in
multi-relational embedding space are intriguing problems. However, in this work we stop
at theoretical analysis and outlining the potential solution. We plan to go into more
detailed analysis and implementation in future work.

97



Conclusion Chapter 7

98



Bibliography

[1] L. V. Ahlfors. Complex Analysis: An Introduction to the Theory of Analytic Func-
tions of One Complex Variable. New York, London, page 177, 1953.

[2] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. Linear Algebraic Structure of
Word Senses, with Applications to Polysemy. Transactions of the Association for
Computational Linguistics, 6(0):483–495, 2018.

[3] I. Balažević, C. Allen, and T. M. Hospedales. TuckER: Tensor Factorization for
Knowledge Graph Completion. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing, pages 5185–5194, 2019.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A Neural Probabilistic Language
Model. Journal of Machine Learning Research, 3(Feb):1137–1155, 2003.

[5] J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimization.
Journal of Machine Learning Research, 13:281–305, 2012.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. FastText: Enriching Word Vec-
tors with Subword Information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

[7] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A Collabo-
ratively Created Graph Database for Structuring Human Knowledge. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pages
1247–1250, 2008.

[8] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating
Embeddings for Modeling Multi-Relational Data. In Advances in Neural Information
Processing Systems, pages 2787–2795, 2013.

[9] K. P. Burnham and D. R. Anderson. Practical Use of the Information-Theoretic
Approach. In Model Selection and Inference, pages 75–117. Springer, 1998.

99



Bibliography

[10] C. Cai. Group Representation Theory for Knowledge Graph Embedding. In
arXiv:1909.05100 [Cs, Math], 2019.

[11] W. Carrer-Neto, M. L. Hernández-Alcaraz, R. Valencia-García, and F. García-
Sánchez. Social Knowledge-based Recommender System. Application to the Movies
Domain. Expert Systems with Applications, 39(12):10990–11000, Sept. 2012. ISSN
0957-4174.

[12] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You CAN Teach an Old
Dog New Tricks! On Training Knowledge Graph Embeddings. In Proceedings of the
International Conference on Learning Representations, page 20, 2020.

[13] L. De Lathauwer. Decompositions of a Higher-Order Tensor in Block Terms—Part
I: Lemmas for Partitioned Matrices. SIAM Journal on Matrix Analysis and Appli-
cations, 30(3):1022–1032, 2008.

[14] L. De Lathauwer. Decompositions of a Higher-Order Tensor in Block Terms—Part
II: Definitions and Uniqueness. SIAM Journal on Matrix Analysis and Applications,
30(3):1033–1066, 2008.

[15] L. De Lathauwer and D. Nion. Decompositions of a Higher-Order Tensor in Block
Terms—Part III: Alternating Least Squares Algorithms. SIAM Journal on Matrix
Analysis and Applications, 30(3):1067–1083, 2008.

[16] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2D Knowl-
edge Graph Embeddings. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pages 1811–1818, 2018.

[17] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge Vault: A Web-Scale Approach to Probabilistic
Knowledge Fusion. In Proceedings of the 20th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 601–610, 2014.

[18] T. Ebisu and R. Ichise. TorusE: Knowledge Graph Embedding on a Lie Group. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages 1819–1826,
2018.

[19] T. Ebisu and R. Ichise. Generalized Translation-based Embedding of Knowledge
Graph. IEEE Transactions on Knowledge and Data Engineering, 32(5):941–951,
2019.

100



Bibliography

[20] L. Ehrlinger and W. Wöß. Towards a Definition of Knowledge Graphs. In Proceedings
of the Posters and Demos Track of the 12th International Conference on Semantic
Systems, pages 1–4, 2016.

[21] S. Fathalla, S. Vahdati, S. Auer, and C. Lange. Towards a Knowledge Graph Rep-
resenting Research Findings by Semantifying Survey Articles. In Proceedings of the
21st International Conference on Theory and Practice of Digital Libraries, pages
315–327, 2017.

[22] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
Sequence to Sequence Learning. arXiv:1705.03122 [cs], 2017.

[23] X. Glorot and Y. Bengio. Understanding the Difficulty of Training Deep Feedforward
Neural Networks. In Proceedings of the 13rd International Conference on Artificial
Intelligence and Statistics, volume 9, pages 249–256, 2010.

[24] R. Goldman. Rethinking Quaternions. Synthesis Lectures on Computer Graphics
and Animation, 4(1):1–157, Oct. 2010. ISSN 1933-8996.

[25] A. Grover and J. Leskovec. Node2vec: Scalable Feature Learning for Networks. In
Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 855–864, 2016.

[26] N. Guberman. On Complex Valued Convolutional Neural Networks.
arXiv:1602.09046 [cs.NE], Feb. 2016.

[27] D. Ha, A. M. Dai, and Q. V. Le. HyperNetworks. In Proceedings of the International
Conference on Learning Representations, page 18, 2016.

[28] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Number 42 in
Springer Series in Computational Mathematics. Springer Science & Business Media,
2012.

[29] W. Hamilton, Z. Ying, and J. Leskovec. Inductive Representation Learning on Large
Graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, pages 1024–1034, 2017.

[30] W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Embedding Log-
ical Queries on Knowledge Graphs. In Advances in Neural Information Processing
Systems, pages 2026–2037, 2018.

101



Bibliography

[31] C. J. Hillar and L.-H. Lim. Most Tensor Problems Are NP-Hard. Journal of the
ACM, 60(6):1–39, 2013.

[32] G. E. Hinton. Learning Distributed Representations of Concepts. In Proceedings of
the Annual Conference of The Cognitive Science Society, pages 1–12, 1986.

[33] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed Representations.
In Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume 1, pages 77–109. MIT Press, 1984.

[34] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products.
Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[35] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[36] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In Proceedings of the 32nd International
Conference on Machine Learning, pages 448–456, 2015.

[37] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep Unordered
Composition Rivals Syntactic Methods for Text Classification. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing, pages 1681–1691,
2015.

[38] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. FastText: Bag of Tricks for
Efficient Text Classification. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics, pages 427–431, 2017.

[39] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the Limits
of Language Modeling. arXiv:1602.02410 [cs], 2016.

[40] I. L. Kantor and A. S. Solodovnikov. Hypercomplex Numbers: An Elementary Intro-
duction to Algebras. Springer, 1989.

[41] S. M. Kazemi and D. Poole. SimplE Embedding for Link Prediction in Knowledge
Graphs. In Proceedings of the 32nd Conference on Neural Information Processing
Systems, pages 4289–4300, 2018.

102



Bibliography

[42] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proceed-
ings of the International Conference on Learning Representations, 15, 2014.

[43] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the International Conference on Learning Representa-
tions, page 14, 2017.

[44] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. Skip-Thought Vectors. In Advances in Neural Information Processing
Systems, pages 3294–3302, 2015.

[45] P. Knoth and Z. Zdrahal. CORE: Three Access Levels to Underpin Open Access.
D-Lib Magazine, 18(11/12):1–13, 2012.

[46] T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM
Review, 51(3):455–500, 2009.

[47] T. Lacroix, N. Usunier, and G. Obozinski. Canonical Tensor Decomposition for
Knowledge Base Completion. In Proceedings of the 35th International Conference on
Machine Learning, pages 2863–2872, 2018.

[48] Q. V. Le and T. Mikolov. Distributed Representations of Sentences and Docu-
ments. In Proceedings of the 31st International Conference on Machine Learning,
pages 1188–1196, 2014.

[49] H. Leeb and B. M. Pötscher. Model Selection and Inference: Facts and Fiction.
Econometric Theory, 21(1):21–59, 2005.

[50] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich.
PyTorch-BigGraph: A Large-scale Graph Embedding System. In Proceedings of the
2nd SysML Conference, page 12, 2019.

[51] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collec-
tion. http://snap.stanford.edu/data/index.html, June 2014.

[52] O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic Regularities in Sparse and Ex-
plicit Word Representations. In Proceedings of the Eighteenth Conference on Com-
putational Natural Language Learning, pages 171–180, 2014.

103



Bibliography

[53] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning Entity and Relation Embeddings
for Knowledge Graph Completion. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pages 2181–2187, 2015.

[54] P. Liu, K. K. Wu, and H. Meng. A Model of Extended Paragraph Vector for Docu-
ment Categorization and Trend Analysis. In Proceedings of the International Joint
Conference on Neural Networks, pages 2400–2406, 2017.

[55] L. McInnes and J. Healy. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. arXiv:1802.03426 [cs, stat], Feb. 2018.

[56] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Rep-
resentations in Vector Space. In Workshop Proceedings of the 2013 International
Conference on Learning Representations, page 12, 2013.

[57] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed Repre-
sentations of Words and Phrases and Their Compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013.

[58] Miller, George A. WordNet: A Lexical Database for English. Communications of
the ACM, 38(11):39–41, 1995.

[59] T. Minemoto, T. Isokawa, H. Nishimura, and N. Matsui. Feed forward neural network
with random quaternionic neurons. Signal Processing, C(136):59–68, 2017. ISSN
0165-1684.

[60] M. Nickel, V. Tresp, and H.-P. Kriegel. A Three-Way Model for Collective Learning
on Multi-Relational Data. In Proceedings of the 28th International Conference on
Machine Learning, pages 809–816, 2011.

[61] M. Nickel, L. Rosasco, and T. Poggio. Holographic Embeddings of Knowledge
Graphs. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pages
1955–1961, 2016.

[62] T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, C. Trabelsi, R. D. Mori, and
Y. Bengio. Quaternion Recurrent Neural Networks. In Proceedings of the Interna-
tional Conference on Learning Representations, 2019.

[63] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online Learning of Social Rep-
resentations. In Proceedings of the 20th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 701–710, 2014.

104



Bibliography

[64] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. Deep contextualized word representations. In Proceedings of the 17th Annual
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2018.

[65] S. J. Reddi, S. Kale, and S. Kumar. On the Convergence of Adam and Beyond. In
Proceedings of the International Conference on Learning Representations, page 23,
2018.

[66] A. Sadeghi, C. Lange, M.-E. Vidal, and S. Auer. Integration of Scholarly Communi-
cation Metadata Using Knowledge Graphs. In Proceedings of the 21st International
Conference on Theory and Practice of Digital Libraries, pages 328–341, 2017.

[67] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling.
Modeling Relational Data with Graph Convolutional Networks. In The Semantic
Web, Lecture Notes in Computer Science, pages 593–607. Springer International Pub-
lishing, 2018.

[68] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos. Tensor Decomposition for Signal Processing and Machine Learning.
IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[69] A. Singhal. Official Google Blog: Introducing the Knowledge Graph: Things, Not
Strings. https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-
things-not.html, 2012.

[70] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang. An Overview
of Microsoft Academic Service (MAS) and Applications. pages 243–246, 2015.

[71] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng. Reasoning With Neural Tensor
Networks for Knowledge Base Completion. In Proceedings of the 27th Conference on
Neural Information Processing Systems, pages 926–934, 2013.

[72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

[73] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. RotatE: Knowledge Graph Embed-
ding by Relational Rotation in Complex Space. In Proceedings of the International
Conference on Learning Representations, page 18, 2019.

105



Bibliography

[74] P. Symeonidis. Matrix and Tensor Decomposition in Recommender Systems. In
Proceedings of the 10th ACM Conference on Recommender Systems, pages 429–430,
2016.

[75] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-scale
Information Network Embedding. In Proceedings of the 24th International Conference
on World Wide Web, pages 1067–1077, 2015.

[76] K. Toutanova and D. Chen. Observed versus latent features for knowledge base
and text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space
Models and Their Compositionality, pages 57–66, 2015.

[77] H. N. Tran and A. Takasu. Analyzing Knowledge Graph Embedding Methods from
a Multi-Embedding Interaction Perspective. In Proceedings of the Data Science for
Industry 4.0 Workshop at EDBT/ICDT, page 7, 2019.

[78] H. N. Tran and A. Takasu. Exploring Scholarly Data by Semantic Query on Knowl-
edge Graph Embedding Space. In Proceedings of the 23rd International Conference
on Theory and Practice of Digital Libraries, pages 154–162, 2019.

[79] H. N. Tran and A. Takasu. Multi-Partition Embedding Interaction with Block Term
Format for Knowledge Graph Completion. In Proceedings of the European Conference
on Artificial Intelligence, page 8, 2020.

[80] T. Trouillon, J. Welbl, S. Riedel, Eric Gaussier, and Guillaume Bouchard. Complex
Embeddings for Simple Link Prediction. In Proceedings of the 33rd International
Conference on Machine Learning, pages 2071–2080, 2016.

[81] T. Trouillon, C. R. Dance, É. Gaussier, J. Welbl, S. Riedel, and G. Bouchard. Knowl-
edge Graph Completion via Complex Tensor Factorization. The Journal of Machine
Learning Research, 18(1):4735–4772, 2017.

[82] L. R. Tucker. Some Mathematical Notes on Three-Mode Factor Analysis. Psychome-
trika, 31(3):279–311, 1966.

[83] S. Vahdati, G. Palma, R. J. Nath, C. Lange, S. Auer, and M.-E. Vidal. Unveiling
Scholarly Communities over Knowledge Graphs. In Proceedings of the 22nd Interna-
tional Conference on Theory and Practice of Digital Libraries, pages 103–115, 2018.

[84] V. Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business
Media, 2013.

106



Bibliography

[85] M. A. O. Vasilescu and D. Terzopoulos. Multilinear Analysis of Image Ensembles:
TensorFaces. In Proceedings of the 7th European Conference on Computer Vision,
pages 447–460, 2002.

[86] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention Is All You Need. In Proceedings of the 31st Conference
on Neural Information Processing Systems, June 2017.

[87] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
Attention Networks. In International Conference on Learning Representations, 2018.

[88] D. Vrandečić and M. Krötzsch. Wikidata: A Free Collaborative Knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

[89] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge Graph Embedding: A Sur-
vey of Approaches and Applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743, 2017.

[90] R. Wang, Y. Yan, J. Wang, Y. Jia, Y. Zhang, W. Zhang, and X. Wang. AceKG: A
Large-scale Knowledge Graph for Academic Data Mining. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pages
1487–1490, 2018.

[91] Y. Wang, R. Gemulla, and H. Li. On Multi-Relational Link Prediction with Bilinear
Models. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages
4227–4234, 2018.

[92] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge Graph Embedding by Trans-
lating on Hyperplanes. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence, pages 1112–1119, 2014.

[93] H. Xiao, M. Huang, Y. Hao, and X. Zhu. TransA: An Adaptive Approach for Knowl-
edge Graph Embedding. arXiv:1509.05490 [cs.CL], 2015.

[94] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph Neural Net-
works? In Proceedings of the International Conference on Learning Representations,
2019.

[95] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding Entities and Relations
for Learning and Inference in Knowledge Bases. In Proceedings of the International
Conference on Learning Representations, page 12, 2015.

107



Bibliography

[96] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative Knowledge Base
Embedding for Recommender Systems. In Proceedings of the 22nd ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 353–362, 2016.

[97] S. Zhang, Y. Tay, L. Yao, and Q. Liu. Quaternion Knowledge Graph Embedding. In
Advances in Neural Information Processing Systems, pages 2735–2745, 2019.

[98] M. Zitnik, R. Sosic, S. Maheshwari, and J. Leskovec. BioS-
NAP Datasets: Stanford Biomedical Network Dataset Collection.
http://snap.stanford.edu/biodata/index.html, Aug. 2018.

108



Appendix A

Publications

International conference papers (in the top conference list):

• Hung Nghiep Tran and Atsuhiro Takasu, “Multi-Partition Embedding Interaction
with Block Term Format for Knowledge Graph Completion,” in Proceedings of the
European Conference on Artificial Intelligence (ECAI 2020), June 2020, page 8.
(Full paper, top conference list: No. 113)

International conference papers (other refereed conferences):

• Hung Nghiep Tran and Atsuhiro Takasu, “Analyzing Knowledge Graph Embedding
Methods from a Multi-Embedding Interaction Perspective,” in Proceedings of the
International Workshop on Data Science for Industry 4.0 at EDBT/ICDT 2019 Joint
Conference (DSI4 2019), March 2019. (Full paper)

• Hung Nghiep Tran and Atsuhiro Takasu, “Exploring Scholarly Data by Semantic
Query on Knowledge Graph Embedding Space,” in Proceedings of the 23rd In-
ternational Conference on Theory and Practice of Digital Libraries (TPDL 2019),
September 2019, pp. 154–162. (Short paper)

109


	Abstract
	Acknowledgements
	Introduction
	Research problems and approaches
	Generalizing and improving knowledge graph embedding methods
	Exploring and utilizing multi-relational embedding space

	Research contributions
	Thesis organization

	Background
	Notation
	Multi-Relational Data
	Knowledge graph
	Textual data
	Network data

	Multi-relational embedding methods
	Knowledge graph embedding
	Text embedding
	Network embedding

	Tensor
	Tensor product
	Tensor contraction
	The  n -mode tensor product with a matrix
	The  n -mode tensor product with a vector

	Tensor representation formats
	CP format
	Tucker format
	Block term format


	Related Work
	Multi-relational embedding methods
	Knowledge graph embedding methods
	Text embedding methods
	Network embedding methods

	Datasets
	Knowledge graphs
	Information networks
	Scholarly data

	Applications of embedding methods

	Multi-Partition Embedding Interaction: A General Mechanism for Knowledge Graph Embedding
	Motivation
	The multi-partition embedding interaction model
	Fundamental principles and concepts
	Model definition
	Model details
	Tucker format and block term format
	Parameterized bilinear format
	Dynamic neural network format

	Model constraints and variants
	Core tensor: non-shared core vs. shared core
	Matching matrix: max rank and the orthogonality constraint


	Theoretical analysis
	Multi-partition embedding interaction
	Sparse modeling
	Multiple interactions and the ensemble boosting effect
	Vector-of-vectors embedding and the meta-dimensional transforming–matching framework

	Computational analysis
	Complexity
	Parameter efficiency


	Revisiting knowledge graph embedding models
	Connections to specially designed interaction mechanisms
	Multi-partition embedding interaction patterns of trilinear-product-based models
	Core tensors for reproducing trilinear-product-based models

	Connections to other knowledge graph embedding models
	Tensor representation formats in knowledge graph embedding
	Semantic matching models
	Translation-based models

	Advantages of MEI over previous knowledge graph embedding models

	Revisiting word embedding models
	Connections between CP h  and word2vec skipgram
	Connections between knowledge graph embedding and language modeling
	Explaining some intriguing phenomena in embedding space
	The global calibration matrix of bag-of-word embeddings
	The Hadamard product for edge features in Node2Vec


	Summary
	Contribution and impact discussions
	Scopes and future work


	Multi-Partition Embedding Interaction: Learning and Evaluation
	Learning problem
	Learning the interaction patterns
	Loss function
	Binary cross-entropy loss
	Full softmax cross-entropy loss

	Optimization

	Link prediction for knowledge graph completion experiments
	Experimental Settings
	Main Results
	Link Prediction Performance Compared to Traditional Baselines
	Link Prediction Performance of Small Models with Modern Training Techniques
	Model Constraints and Variants
	Optimal Parameter Efficiency

	Analyses
	Parameter Scale Comparison
	Parameter Trade-off Analysis
	The Effects of Hyperparameters


	Summary

	Multi-Relational Embedding: Applications
	Motivation
	Semantic query on knowledge graph embedding space
	Semantic structure
	Semantic queries
	The semantic query framework 
	Representation and Analysis Tasks
	Task 1: Data visualization 
	Task 2: Similarity query
	Task 3: Relational query


	Experiments
	Experiment settings
	Experimental results and discussion
	Task 1: Data visualization
	Task 2: Similarity query
	Task 3: Relational query


	Beyond word analogy: entity analogy reasoning in multi-relational embedding space
	Entity analogy reasoning as the open-relational query by examples task
	Semantic analogy structures in the multi-relational embedding space
	General semantic analogy structure

	Towards a solution for entity analogy reasoning on multi-relational embedding space

	Summary
	Contribution and impact discussions
	Scopes and future work


	Conclusion
	Contribution and impact discussions
	Scopes and future work

	Bibliography
	Publications

