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Abstract

Recent advances in AI technologies are dramatically changing the world and impacting
our daily life. The application areas are rapidly expanding, such as autonomous cars,
industrial robots, medical services, and various web services. Human users essentially
need to cooperate with AI systems to complete tasks as such technologies are never
perfect.

One key aspect of human-AI cooperation is that human users should trust AI
systems, just as humans normally do with other human partners. The presence and
absence of trust de�nitely impact human behavior and the outcome of cooperation. For
optimal performance and safety of human-AI cooperation, the human users must
appropriately adjust their level of trust to the actual reliability of AI systems. This
process is called “trust calibration”. Users often fail to calibrate their trust properly
and end up in a status called “over-trust” or “under-trust” in dynamically changing
environments in which an AI’s reliability may �uctuate. Poorly calibrated trust can be
a major cause of serious issues with safety and e�ciency.

A large number of existing studies on trust calibration emphasize the importance
of system transparency to maintain appropriate trust. They claim that appropriate
trust could be developed if an AI system provides enough information for a human
user to obtain a good understanding of the system. Their primary goal is to avoid
over-trust or under-trust, not to deal with improper trust calibration.

Trust is notoriously hard to measure as it is a psychological construct. Self-reported
scales of trust that are widely used in most trust literature are too intrusive to use
during task executions. Extensive studies have been conducted to examine the factors
in�uencing trust. Although their �ndings revealed the diversi�ed latent structures of
human trust, they suggest that it would be di�cult to control human trust intentionally
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just by manipulating these factors. Thus, both measuring and in�uencing trust are
challenging issues.

This dissertation focuses on the problem of over-trust and under-trust in human-AI
cooperation by exploring two research questions: (1) Can we detect if a user is
over-trusting or under-trusting an AI system? (2) Can we mitigate a user’s over-trust
or under-trust?

We approach the research challenges with a behavior-based trust measurement to
capture the status of calibration. Human-AI cooperation is de�ned as a series of actions
taken by a human user and an AI system working on repeated selection problems to
decide on either AI execution or manual execution for better performance. A method
of adaptive trust calibration is proposed, including a formal framework for detecting
improper trust calibration; cognitive cues called “trust calibration cues”; and a technical
architecture of human-AI cooperation with a concept called trust calibration AI.

Three empirical studies were done to evaluate the proposed method. We designed
two experimental tasks for human-AI cooperation: a pothole inspection task and a
continuous cooperative navigation task. We conducted three online experiments using
a simulated drone environment. The results of the �rst empirical study demonstrate that
our proposed method has signi�cant e�ects on changing human behavior in the case
of over-trust. The second empirical study shows that the proposed method also works
well under dynamic trust changes of ABA and BAB, where A and B mean over-trust and
under-trust. The third empirical study indicates that the proposed method is e�ective
in a continuous real-time task involving navigating a semi-autonomous drone. This
result can open the possibility of applying the proposed method to practical real-time
applications such as autonomous driving. We also discuss a possible extension to the
framework with expected utility functions to incorporate trust factors other than
performance.

The results of the empirical evaluations indicate that the proposed method could
detect and mitigate the status of improper trust calibration; therefore, we conclude that
our proposed method provides a reasonable basis for answering the two research
questions. As the proposed method is based on a simple and task-independent
framework, it could be applied to many application situations. Despite several
limitations, this dissertation contributes to providing a basic framework for managing
trust calibration, leading to better interaction designs for human-AI cooperation.
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1
Introduction

This chapter introduces the topic of this dissertation and provides an overview of it.
Section 1.1 introduces the research background and section 1.2 presents the research
questions and describes the approach. Section 1.3 gives the structure of the dissertation.

1.1 Background

AI technologies have become increasingly common in all aspects of our life. Examples
of application areas include autonomous vehicles, medical services, virtual agents, and
various web services. In such applications, it is inevitable that human users will need to
cooperate appropriately with AI systems as such technologies are never perfect. One
key aspect of human-AI cooperation is that human users should trust AI systems, just
as humans normally do with other human partners [7, 8]. The presence and absence of
trust de�nitely impacts human behavior and the outcome of cooperation [9, 10, 11].
Trust is an attitudinal judgment of the degree to which a user can rely on an agent to
achieve their goals under conditions of uncertainty [1].
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Successful cooperation between users and agents would require the users to
appropriately adjust their level of trust to the actual reliability of AI systems. This
process is called “trust calibration” [8]. While the reliability of an AI system changes
for various reasons in an environment, users often fail to calibrate their trust in an AI
system and end up in a status called “over-trust” or “under-trust.” Over-trust is poorly
calibrated trust in which the user overestimates the reliability of an AI system; it can
result in over-reliance on an AI system with the expectation that it can perform outside
of its designed capability. Over-trust sometimes leads to serious safety problems. An
o�cial report [12] on a fatal crash of an autonomous vehicle in California concluded
that one of the probable causes of the accident was the driver’s over-trust in the
vehicle’s driving automation system. Similar car accidents caused by over-trust have
also been reported [13, 14]. Under-trust is poorly calibrated trust in which the user
underestimates the AI’s reliability; it can result in an agent not being used, excessive
user workload, or deterioration in the total system performance [15].

In keeping appropriate trust, it is necessary to be able to 1) measure trust and 2)
in�uence trust if necessary. However, these two elements are still challenging issues.

Measuring trust is not easy, as trust is a latent construct. Most of the research on
trust has used self-reported trust scales; however, they are so intrusive that it is not
practical to use them during task execution. Trust questionnaires conducted at the
end of an experiment sometimes do not correctly re�ect real-time trust during the
experiment [16]. Some studies examined the e�ectiveness of physiological and neural
measures such as gaze, heart rate, and EEG. Although these are promising approaches,
further research would be necessary to clarify the correlation between trust and these
metrics.

Managing trust by manipulating factors proven to be in�uential in developing
trust would also be complicated and di�cult. Extensive research has been done
examining the factors in�uencing trust or antecedents of trust. The goal of such
research is to capture the most critical variables that might have causal links to human
trust [17, 18, 19]. Ho� and Bashir [2] reported 29 factors that are in�uential in the
development of human trust. Schaefer et al. [9] listed 31 factors. In both studies, they
demonstrated that there are many interactions among these factors and showed that
some of them are context-dependent or speci�c to human characteristics. Although
these �ndings are signi�cantly valuable in analyzing the latent structures of human
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trust, they also suggest that it would be di�cult to in�uence human trust intentionally
just by manipulating these factors.

Most of the existing research on trust calibration such as [20, 21, 5, 22, 6] emphasizes
the importance of system transparency to maintain appropriate trust. The authors
in these examples claim that appropriate trust could be developed if an AI system
provides enough information for a human user to obtain a good understanding of the
system. The categories of information necessary to provide better system transparency
are essentially inline with the factors in�uencing human trust. The primary goal is to
avoid trust miscalibration. Although recent works such as [15, 23] proposed trust
calibration models for human-robot teams, not many studies have focused on how to
detect improper trust calibration nor how to mitigate it.

1.2 Research Question and Approach

With the challenges described above in mind, this dissertation focuses on the problem
of over-trust or under-trust by exploring two research questions:

• RQ1 : Can we detect if a user is over-trusting or under-trusting an AI sys-
tem?
To address this question, �rst, it would be necessary to de�ne trust calibration in
human-AI cooperation formally. Such a de�nition should be able to describe the
status of over-trust and under-trust. Second, a method of capturing changes in
calibration status would be required. It would be desirable that such a method be
realized without directly measuring trust.

• RQ2 : Can we mitigate a user’s over-trust or under-trust?
Once human users fall into the categories of over-trust or under-trust, it might not
be easy for them to escape from the status of miscalibration. Calibration can only
occur in response to new evidence that may change the user’s awareness, while no
new evidence can be learned without changing the current behavior �rst [24]. A
method for escaping from this vicious cycle should be proposed. Such a method
should be evaluated to determine whether it can help users calibrate their trust
appropriately to improve performance in human-AI cooperation.
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In this dissertation, we de�ne human-AI cooperation as a set of repeated actions by
human users and AI systems working together to perform a common task interchange-
ably in order to achieve a better performance outcome. Examples of applications
include autonomous driving, medical diagnostic assistance, and a baggage screening
system. Among the various factors in�uencing trust, this dissertation mainly focuses
on performance-related factors. One of the fundamental goals of human-AI cooperation
is to achieve higher performance than what humans and AI can achieve independently.
Consideration of other in�uencing factors is also discussed later.

To address the research questions, we de�ned a framework for describing the
trust calibration status in human-AI cooperation, combined with a behavior-based
measurement for detecting improper trust calibration. We also examined several
types of cognitive cues for notifying users of the status of improper trust calibration.
Empirical evaluations of the proposed method were conducted as online experiments
using a semi-autonomous drone simulator, with two types of cooperative tasks and
under di�erent environmental conditions.

1.3 Outline

This dissertation is organized as follows:

Chapter 2: Related Work This chapter reviews existing trust research literature
on automation and computer-human interaction, mainly focusing on the calibration of
trust in AI or autonomous systems.

Chapter 3: Adaptive Trust Calibration. This chapter proposes a method of adap-
tive trust calibration. The proposed method consists of a formal framework for de�ning
the status of improper trust calibration and cognitive cues called “trust calibration cues”
for notifying users of the miscalibration status.

Chapter 4: Empirical Studies. In this chapter, three empirical studies done to
evaluate the proposed method are presented and discussed. First, an overview of the
empirical studies is explained. The �rst study is done to verify how the proposed
method works in a simple over-trust scenario using four types of trust calibration cues.
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The second study evaluates the proposed method in bidirectional trust changes of
ABA/BAB scenarios of under-trust (A) and over-trust (B). The target task of human-AI
cooperation in the �rst two studies is pothole inspection in which human users
check if there are holes or cracks in road images from a drone simulator. The users
may use automatic inspection or do the inspection by themselves. To examine how
e�ective the proposed method would be in real-time applications such as autonomous
driving, a third empirical study is done using a cooperative navigation task with a
semi-autonomous drone. In contrast to the fact that the �rst two empirical studies use
a set of discrete and independent tasks involving pothole inspection, the third study
evaluates the proposed method with a series of continuous and interdependent tasks
involving drone navigation.

Chapter 5: Conclusion. This chapter discusses the studies presented in the previous
chapters, highlights the contributions of this dissertation, and recommends areas for
future research.
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2
Related Work

This chapter gives the related work on trust research to provide the background of the
dissertation.

2.1 Conceptualizing Trust

Trust and its role in mediating the relationship between humans and computers
has been widely recognized. Many studies have been done in the �eld of aviation,
automation, and human computer interaction. There are many types of de�nitions of
trust due to the complexity and the multi-faceted nature of trust.

One of the accepted de�nitions can be found in organizational theory, which views
trust as an intention: “a willingness of a party to be vulnerable to the actions of another
party based on the expectation that the other will perform a particular action important
to the trustor, irrespective of the ability to monitor or control that party” [25]. In this
de�nition, trust concerns an expectancy or an attitude regarding the likelihood of
favorable responses from a trustee. A similar de�nition can be found in [26].
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Just as in interpersonal relationships, trust plays a vital role in determining humans’
willingness to rely on autonomous systems, even in situations of risk or uncertainty.
Madsen and Gregor [27] de�ne human-computer trust as “the extent to which a user is
con�dent in, and willing to act on the basis of, the recommendations, actions, and
decisions of an arti�cially intelligent decision aid." This de�nition covers both a user’s
con�dence in a system and their willingness to act on the system’s decisions and
advice. Lee and See [1], in their in�uential review of research on trust and reliance,
introduce a basic de�nition of trust: “the attitude that an agent will help achieve an
individual’s goals in a situation characterized by uncertainty and vulnerability." This
de�nition is often used in empirical studies of trust in automation, although a widely
accepted de�nition of trust is still lacking [28].

Two types of trust de�nitions are particularly relevant to this dissertation. First, we
adhere to one de�nition of trust [19], “expectation related to subjective probability
an individual assigns to the occurrence of some set of future events.” One of the
fundamental goals of human-AI cooperation is achieving better performance as a
result of successful events. Second, we are also interested in the alternative de�nition
of trust described in Adams et al. [29] to view trust as observable choice behavior. This
dissertation focuses on trust in human-AI cooperation in which human users need to
choose whether they should rely on an AI counterpart or not.

2.2 Factors In�uencing Trust

Factors in�uencing trust in autonomous systems are commonly divided into three
categories [29, 30]: human characteristics, characteristics of the autonomous system,
and environmental factors. Although some studies indicate that the characteristics
of the autonomous systems have the largest impact on trust [31, 9], human-related
factors and environmental factors are also essential to understanding the complexity of
trust formation in real-world scenarios.

Human-related Factors

• Culture
The way that a technology is accepted in culture, either as positively or negatively,
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signi�cantly a�ects how people use the technology. Related research can be
found in [32, 33]

• Age
Several studies such as [34, 35] revealed that there are age-based di�erences in
human trust. They also suggested that people of di�erent ages may di�er in their
trust assessment strategies and that the e�ects of age on trust depend on context.

• Personality
Research has shown that people with a high propensity to trust are more likely
to trust autonomous systems than those with a lower propensity, although the
e�ects of personality on trust may depend on the functions and tasks of the
autonomous systems. Related research can be found in [36, 37].

• Understanding of system, and expert knowledge
Human users may have di�erent abilities in terms of understanding how
autonomous systems work as based on prior knowledge and expectations. Balfe
et al. [38] observed real railway operators using an automated train-route setting
system. They reported that understanding the automated system was a stronger
dimension in trust development than the system’s reliability or competence. The
work of Sanchez et al. [39] demonstrated that experts with prior knowledge on a
speci�c domain often show an unwillingness to rely on automation when a
system is faulty. They argued that any error would have a stronger negative
impact on perceived reliability if expectations toward automation are higher.

• Self-con�dence
Early works [40, 41] suggested a simple relationship between trust and self-
con�dence in which automation would be used when trust was higher than
self-con�dence, and manual control would be used when self-con�dence exceeded
trust. Lewandowsky et al. [10] also suggested that the di�erence between trust
and self-con�dence was a strong predictor of a human’s reliance on automation.
They argue that self-con�dence has a stronger e�ect on human-automation
collaboration than interpersonal collaboration since a human operator would be
solely responsible for the task results in the former case while human operators
could share responsibility in the latter case.
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System-related Factors

• System reliability
A great deal of empirical research such as [42, 43, 44] shows that reliability
is closely related to trust. A higher reliability could lead to higher trust [45].
Declining system reliability over time could lead to decreasing trust [46]. The
reliability of an automated system is a strong predictor of trust in the system.

• System failure System failure, which is a form of system reliability, speci�cally
refers to discrete erroneous events within a system. Previous studies demonstrated
that system failure has a negative impact on trust in automation [29]. Once
system failure occurs, trust often decreases drastically. After a failure, the levels
of trust recover slowly and often do not return to previous levels [47]. Yu et
al. [48] revealed that system failures have a stronger e�ect on trust than system
successes. de Vires et al. [41] showed that large failures have a more negative
e�ect on trust than small failures. Muir et al. [11] demonstrated that small errors
that vary in magnitude reduced trust more than large constant failures.

• System transparency Systems transparency refers to accurate feedback con-
cerning the reliability and situational factors that can a�ect the reliability of a
system [2]. Systems that can explain their reasoning are more likely to be trusted,
as this facility can make system functioning more easily understood [49].

• System predictability Predictability will also impact trust. An autonomous
system that can be predicted to have reliable and consistent performance is more
likely to be trusted [29]. Increasing user familiarity with a system decreases the
rate of trust change during system failure [50].

• Levels of autonomy The levels of autonomy, which describe task allocation
between human and automated systems, may complicate the development
of trust in a system since higher levels of autonomy are generally harder for
humans to understand. Recent advances in arti�cial intelligence are accelerating
this issue.
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Environment-related Factors

• Risk
Risk is known to impact trust in automation [51, 16]. Trust permits a trustor to
act in a manner that puts them at considerable risk, believing that the actions
of their counterpart will mitigate that risk [52]. Reliance on automation is
moderated by the level of risk in an interaction [28].

• Workload and task
Biros et al. [53] found that users of an automated decision support system rely on
automation more in the case of high task workloads, regardless of their level of
trust. Positive correlations between trust and reliance are impacted by workload.
One of the bene�ts of introducing automation other than better performance is
that it can allow the user to perform another task. This dual-task aspect has been
well examined in autonomous driving research such as [54, 55] trying to balance
safety and convenience in performing non-driving-related tasks.

This dissertation mainly examines the trust factors related to the performance of
both human users and AI systems, such as self-con�dence, system reliability, and
system transparency.

2.3 Modeling Trust

Many theoretical and quantitative models of trust in automation or autonomous
systems have been proposed to integrate the factors in�uencing trust in autonomous
systems.

Lee and See [1] studied how the characteristics of autonomous systems and human
cognitive processes a�ect the appropriateness of trust, which guides reliance when
complexity and unanticipated situation make a complete understanding of the au-
tonomous system di�cult. They discussed trust development factors in the dimensions
used in Lee and Moray[47]: performance, process, and purpose. Performance refers to
the operation of autonomous systems such as reliability, predictability, and ability.
Process describes how appropriate the algorithms are for achieving the goals of the
system. Purpose describes the designer’s intents of the system. A conceptual model
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Figure 2.1: Conceptual model proposed by Lee and See [1]

(Figure 2.1) was proposed to integrate the various factors in the dynamic process of
trust development and reliance action. They claimed that the appropriateness of trust
depends on the information that a human can get by observing a system. This type of
information is known as system transparency, described in the following section in
this chapter.

Ho� and Bashir [2] conducted a systematic review of 127 pieces of empirical
research on trust in automation. The types of automation systems in the reviewed
research include combat identi�cation aid, a decision support system, a luggage
screening system, collision warning, and a route-planning system. Figure 2.2 shows the
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results of their review as a three-layered trust model for categorizing the factors that
in�uence trust in automation: dispositional trust, situational trust, and learned trust.
Dispositional trust represents an individual’s overall tendency to trust. Situational
trust depends on the speci�c context of an interaction. The environment has a strong
in�uence on situational trust, and human mental states can also alter situational
trust. The �nal layer, learned trust, which is knowledge on a system drawn from past
experiences or a current interaction, is further divided into two types: initial learned
trust, that is, trust prior to interacting with a system, and dynamic learned trust, that is,
trust formed during an interaction. This model covers the dynamic nature of the trust
process both prior to an interaction and during an interaction. They also presented
in their model that both initial and dynamic learned trust, which greatly in�uence
reliance on automation, are not the only contributing factors. Additional factors on the
human side, such as e�orts made to use a system, situational awareness, and physical
state, also impact the reliance decision. Figure 2.2 is a diagram of their model.

Hancock et al. [31] examined factors that a�ect trust in human-robot interaction
(HRI) by applying meta-analysis methods to existing empirical studies. They classi�ed
factors of trust development into three broad categories according to the experimental
manipulation: robot-related factors (including performance-based and attribute-based
factors), human-related factors (including ability-based and human characteristic
factors), and environment-related factors a�ecting trust (including team collaboration
and task-based factors). A meta-analysis of 27 studies with these factors provided 69
correlational and 47 experimental e�ect sizes. They found that the robot performance
and attributes were the factors most associated with trust in human-robot interaction.

Drnec, Metcalfe, and their colleagues [3, 56] insisted on the bene�t of re-framing
the trust problem space into a behaviorally de�ned one with reliance and compliance.
This would remove the need for inferencing latent constructs such as trust. Figure 2.3
is their conceptual diagram adapted from [57], which highlights three major elements
in their model: trust in automation (TiA), interaction decision, and trust outcomes or
behavior.

Bindewald et al. [4] developed a model (see Figure 2.4) to describe the relationship
between trust and reliance by showing causal links.

Several other studies [41, 58, 50] also investigated the relationships among trust,
self-con�dence, and reliance behaviors. Our proposal in this dissertation is inspired by
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Figure 2.2: Trust model de�ned in Ho� and Bashir [2]

these �ndings on the structures behind human trust behaviors.

2.4 Measuring Trust

Measuring trust is di�cult in general, as trust is a latent construct. Measuring trust is
di�cult in general, as trust is a latent construct. Most of the previous trust literature
used self-report measures such as subjective rating scales with questionnaires. Jian et
al. [59] developed a scale for measuring trust in automation, which is commonly used
in trust research literature. They conducted three empirical studies to de�ne a 7-point
scale for 12 statements. which almost correspond to three dimensions: benevolence
(purpose), integrity (process), and ability (performance). Madsen and Gregor [27]
developed a Human-Computer Trust scale that consists of �ve constructs: reliability,
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Figure 2.3: A conceptual organization of trust and human-automation interaction used
by Drnec et al. [3]

technical competence, understandability, faith, and personal attachment. A total of
25 statements is used to evaluate trust in terms of “cognitive based" and “a�ective
based." The SHAPE Automation Trust Index [60] was developed for practical use to
measure trust in air tra�c control systems. This scale consists of seven dimensions:
reliability, accuracy, understanding, faith, liking, familiarity, and robustness. Yagoda and
Gillan [61] developed the Human-Robot Interaction Trust Scale with �ve dimensions:
team con�guration, team process, context, task, and system. The disadvantages of
the self-report measures are too intrusive and cannot be used during task execution.
Questionnaires taken at the end of experiments sometimes do not correctly re�ect
real-time trust [16].

Many trust models, including the ones explained in the previous section, de�ne the
relationship between trust and behaviors of reliance or compliance. Behavioral trust
measures have a theoretical basis in such models and can be consistently used during
task execution; therefore, they can be useful in real-world applications. Behavioral
measures can also serve as a basis for modeling and prediction [3]. Behavior used
as trust measures includes selecting manual or automatic tasks [41, 62], choosing
an automation level [16], reaction time [63], and accepting advice (for reliance or
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Figure 2.4: Trust behavior model de�ned by Bindewald et al. [4]

compliance)[64, 65, 4, 66].
Hergeth et al. [67] demonstrated that there was a signi�cant negative correlation

between participants’ trust in automation and the monitoring frequency calculated
from gaze behaviors. Other types of physiological and neural measures include facial
and voice tracking [68], heart rate, and EEG. Although these measures can be used for
the dynamic tracking of trust, they usually require special hardware. Further research
would be necessary to clarify the correlation between trust and these metrics.

Instead of direct measurement, inferring trust is another approach. Lee and
Moray [47] made an early attempt. They proposed a temporal model for relating
trust in automation to task performance factors, using an auto-regressive and moving
average value regression approach. Xu and Dudek [69] proposed a trust inference
model called “OPTIMo,” which is a dynamic Bayesian network over human moment-to-
moment trust states, based on robot task performance and operator reactions over
time. Chen et al. [70] demonstrated a POMDP-based trust model to infer human trust
through interaction with a robot. Other related studies can be found in [71, 72].

Considering the challenge of measuring trust, given that it is a complex psychologi-
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Figure 2.5: Representation of trust calibration (redrawn from Lee and See [1])

cal construct, our proposal in this dissertation takes a behavior-based approach to
estimate the status of trust calibration.

2.5 Trust Calibration

Human decisions to rely on AI agents directly a�ect the total performance of human-AI
cooperation. Human users who have greater trust in an agent tend to rely more on it
than users with lower trust [47, 37, 73]. Appropriate reliance decisions depend on
how well users adjust their level of trust to an agent’s actual reliability. This process
is called trust calibration [8]. Maintaining appropriate trust is critical in avoiding
misuse and disuse [74, 75]. Over-trust is poorly calibrated trust in which the user
overestimates the reliability of the agent; it can result in misuse of an agent with the
expectation that the agent can perform outside of its designed capability. Under-trust
is poorly calibrated trust in which the user underestimates the agent’s capability;
it can result in an agent not being used, excessive user workload, or deterioration
in the total system performance. Poor trust calibration sometimes causes serious
safety issues [76, 77, 14, 13]. Figure 2.5 illustrates the relationship between trust and AI
agent reliability. The diagonal line represents the calibrated trust where the level
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of trust matches the agent reliability. Above this line means over-trust, and below
implies under-trust. Lee and See [1] suggested two additional concepts to discuss trust
calibration: resolution and speci�city. Resolution refers to how accurately a judgment
of trust discriminates di�erent levels of reliability. Speci�city means the extent to
which trust is associated with a particular component of an agent. While an agent’s
reliability changes for various reasons in an environment, users often fail to calibrate
their trust in the agent and end up over-trusting or under-trusting it. Merritt et al. [78]
also proposed three metrics for evaluating trust calibration. They distinguished trust
and perceived reliability in their study. Perceptual accuracy refers to the degree to
which the user perceives an agent’s reliability accurately. Perceptual sensitivity and
trust sensitivity re�ect how users adjust perceived reliability and trust as the agent
reliability changes over time.

One of the keys to maintaining appropriate trust calibration is the concept of system
transparency. Humans require a user interface that captures the state of an entire
system in order to interact appropriately with an agent. System transparency has been
de�ned as “the quality of an interface pertaining to its ability to a�ord an operator’s
comprehension about an intelligent agent’s intent, performance, future plans, and
reasoning process [79].” This de�nition is essentially in accordance with the factors
that in�uence human trust [1]: purpose, process, and performance. Although system
transparency reduces uncertainty in AI agents, it can also create more uncertainty
when done poorly [80].

Many attempts have been made to evaluate the e�ects of system transparency in
keeping appropriate trust. For an automated decision support system, McGuirl et al. [20]
showed that presenting continually updated system-con�dence information could
improve trust calibration and lead to better performance in a human-machine team.
Studies on visualizing a car’s level of uncertainty during autonomous driving [5, 22, 6]
have indicated that providing good transparency by constantly presenting system
information helps maintain the appropriate trust in vehicles.

Helldin et al. [5] did experiments with 59 drivers in a simulated autonomous
driving environment. They demonstrated that the drivers of autonomous vehicles who
were provided with uncertainty information (see Figure 2.6) trusted the automated
system less than those who did not receive such information, which indicates more
proper trust calibration than in the control group. The drivers with the uncertainty
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Figure 2.6: Driver’s information module (left). Indicator of car’s ability to drive
autonomously (right) (Adapted from Helldin et al. [5])

Figure 2.7: Visualization of autonomous car’s interpretation of current situation: world
in miniature (left), chau�eur avatar (middle), and display of car’s indicator (right) as
baseline (Adapted from Haeuslschmid et al. [6])

information also took control of the car faster when needed and were able to perform
tasks other than driving without risking safety. Haeuslschmid et al. [6] compared three
di�erent visualizations of an autonomous car’s interpretation of the current situation
(see Figure 2.7) ): a world in miniature, a chau�eur avatar, and a display of the car’s
indicator as the baseline. They found that the world in miniature visualization increased
trust the most. Seppelt [81, 82] examined drivers’ trust in adaptive cruise control
with or without the display of continuous information that provides information on
system behavior in real-time. They found that that continuous feedback on automation
behavior viably promotes calibrated trust and reliance. Mercado et al. [83] conducted
experiments with operators of unmanned vehicles to evaluate the impact of di�erent
levels of transparency, including information such as planned paths and goals on a map
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and verbal explanations of the rationale behind agent reasoning. Their results revealed
the bene�ts of transparency in terms of e�ective performance without additional
workload costs. Using a high-�delity simulated environment of an automated aviation
aid system, Lyons et al. [84] demonstrated that the use of logic-based explanations for
recommendations was found to promote a pilot’s trust in an automated system. Other
related studies can be found in [85, 71, 86, 75, 87].

In the research areas of arti�cial intelligence and also human-robot interaction,
there is growing interest in explainability, which is one of the components of system
transparency as described above. Complex AI systems need to explain how they work
so that users can develop appropriate trust [49]. Related studies on explainability and
trust can be found in [88, 89, 90, 91, 92, 93].

Most of the studies investigated how to maintain appropriate trust calibration by
continuously presenting system information to prevent over-trust or under-trust. Only
a few works such as [94, 15] in the literature have focused on detecting poor trust
calibration or how to recover from over-trust or under-trust swiftly.

2.6 Trust Research in Human-Robot Interaction

Many studies have been done on human-robot interaction regarding human trust in
robots [31].

Robinette et al. [77] reported that low reliability does not always mean low
trust if other factors such as robot appearance and behaviors could moderate the
e�ect of reliability in the case of an emergency. M. Siegel et al. investigated how
to build persuasive robots that can change others’ beliefs such that such robots are
trustworthy [95]. They focused on the genders of a human and a robot in HRI and
found that the e�ect was much stronger between male participants and a female robot
in establishing trust.

Sean Ye et al. [96] also investigated the e�ect that four forms of communication
have on trust with and without the presence of robot mistakes during a cooperative
task. They found that participants’ trust in a robot was better preserved when that
robot o�ered advice. A method of establishing appropriate trust on the basis of a
robot’s actions from its policy, especially in critical states, has been studied [97]. This
research asserts that if a robot shows a human what its understanding of the task’s
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critical states are, the human can make a more informed decision about whether to
deploy the policy. Sound formalization for critical states was developed with a Markov
decision process, and a demonstration in a highway driving task was shown.

Fast adaptation with meta-reinforcement learning was proposed to establish trust
between human users and assistive robots [98]. This work showed that the adaptation
of a robot was an important function for gaining a lot of trust from a human user. The
results of a simple simulation experiment supported this assertion. D. P. Losey and D.
Sadigh proposed a way to exploit human trust in a robot for e�cient human-robot
coordination [99]. Their concept of “trust” assumes that a human believes that a robot
will behave rationally toward its objective. In user studies, they showed that trusting
human models could lead to communicative robot behavior, which increased their
involvement.

Almost all of the trust studies in HRI have been done on robot’s functions for
building human trust. In contrast with these, we propose a method for detecting
over/under-trust and having humans calibrate their trust by themselves.
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3
Adaptive Trust Calibration

In this chapter, we propose a novel method of adaptive trust calibration. In section 3.2,
we de�ne a formal framework for detecting over-trust and under-trust. Cognitive
cues called “trust calibration cues” (TCCs) are also proposed section 3.3. Section 3.4
describes a method of adaptive trust calibration using the proposed framework and
TCCs.

3.1 Introduction

Many types of cooperation are possible between human users and AI in terms of roles
and responsibilities. We de�ne human-AI cooperation as a series of actions taken by a
human user repeatedly working on selection problems to decide on either AI execution
or manual execution. Both humans and AI should have the same functionality to
execute a common task with di�erent performances depending on the situation.
A human user must decide whether a task should be done by AI or humans. The
�nal responsibility for an outcome always belongs to the human user in this type of
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cooperation. Examples of this type of cooperation include autonomous driving (driver
and AI), medical diagnostic assistance (doctor and AI), and baggage screening systems
(airport clerk and AI).

We emphasize two important aspects of trust in human-AI cooperation: performance
and human behavior. Achieving better performance is one of the fundamental goals of
human-AI cooperation. Previous research showed that trust in robots is mainly a�ected
by a robot’s performance [31]. Therefore, we focus on the performance-related factors
that in�uence trust. This focus makes it possible to narrow down the de�nition of trust
as “the expectation that a task done by an AI system will be successful.” The estimated
reliability of an AI system in terms of performance can be a good index of such an
expectation. Trust also can be viewed as a human user’s behavior in choosing [29]
whether to rely on an AI system or to do each task manually. From a performance
point of view, such observable choice behavior can be considered a result of comparing
the estimated reliabilities of humans and AI.

3.2 Framework for Detecting Over-Trust and Under-

Trust

We propose a framework for detecting an inappropriate trust-calibration status with a
behavior-based approach. Suppose a user and an AI system are jointly working on a
set of tasks. The user should decide whether to rely on the system or do each task
manually. In this framework, three parameters, PA, P̂A, and PH , are de�ned as follows.

• PA: Probability that a task done by an AI system will be successful. This is called
the “reliability of the AI system.”

• P̂A: Human user’s estimation of PA. This is a user’s trust in the AI system.

• PH : Probability that a task done manually by a human user will be successful.
This is called the “capability of the user.”

PA varies depending on the conditions of the AI system. P̂A also changes accordingly
and becomes equal to PA if trust is appropriately calibrated. Over-trust occurs if
P̂A > PA, and under-trust occurs if P̂A < PA. Since measuring P̂A is di�cult, we modi�ed
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the de�nitions of over-trust and under-trust by using a third parameter PH in addition
to P̂A and PA as follows:

• Over-trust: the human user estimates that the AI system is better at a task than
the user even though the actual reliability of the AI system is lower than the
user’s capability.

(P̂A > PH ) ∧ (PH > PA) (3.1)

• Under-trust: the user estimates that they are better at a task than the AI system
even though the actual reliability of the system is higher than the user’s capability.

(P̂A < PH ) ∧ (PH < PA) (3.2)

Several studies [41, 58, 50] have demonstrated that reliance behavior can be
explained by the relationship between a user’s trust in a system and the user’s
self-con�dence in performing the task manually. Maehigashi et al. [100] found that
human users select an automation task or a manual task on the basis of their perceived
manual performance. When a user decides to rely on a system, it is reasonable to say
that this behavior indicates P̂A > PH . If the user decides to do the task manually rather
than rely on the system, it indicates that the user estimates P̂A < PH . Instead of directly
measuring P̂A or PH , the �rst terms of (3.1) and (3.2) can be estimated by observing the
user’s reliance behavior; thus, the trust calibration status can be detected if the second
terms of PH and PA can be estimated.

3.3 Trust Calibration Cue

To e�ectively notify human users of their improper trust calibration, we explore the
idea of giving cognitive cues to users when over-trust or under-trust is detected. Once
users fall into the categories of over-trust or under-trust, it might not be easy for
them to escape. This could be an example of con�rmation bias in the preservation of
trust [101]. Calibration can only occur in response to new evidence that may change the
users’ prevailing awareness, while no new evidence can be learned without changing
the current behavior �rst [29]. To solve this dilemma, which could perpetuate a status
of inappropriate trust calibration, a new trigger would be necessary for instances of
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over-trust or under-trust. This cue is expected to trigger the user to promptly notice
that something has been changed in the environment and to calibrate trust on the basis
of the new �ndings. We call this cognitive cue a “trust calibration cue” (TCC).

Several trust studies have proposed enhancing system transparency by using “cues.”
Visser et al. [21] proposed a design guideline for trust cues, which are information
elements used to make a trust assessment about autonomous systems. They classi�ed
the cues in terms of trust dimensions (intent, performance, process, expressiveness, and
origin) and trust processing stages (perception, comprehension, projection, decision,
and execution). Cai and Lin [102] examined multi-modal cues for conveying the
con�dence of a driver assistance system. Unlike our TCC, the goal of these “cues” was
to bring system information to users.

The concept of the TCC was inspired by the works done by Komatsu et al. [103],
which proposed an intuitive noti�cation methodology called “arti�cial subtle expres-
sions” (ASE). One of the design requirements is “complementary,” which means that
noti�cations should not interfere with the main communication protocol. A TCC
should also be recognized as a noti�cation through a di�erent channel than the one
being used as the system-transparency interface of an AI system. A user with improper
trust calibration is probably having di�culty in understanding the system information
of an AI system.

Speci�c designs and evaluations of TCCs are described in the next Chapter.

3.4 Method of Adaptive Trust Calibration

With the framework and TCCs described above, we propose a method of adaptive trust
calibration.

Figure 3.1 shows a conceptual diagram of human-AI cooperation, which can be
viewed as a series of actions taken by a human user working on selection problems to
decide whether a task should be done by an AI system (called a “Task-AI” in this
diagram) or the human user should do it manually. The Task-AI provides a human
user with system information through its system transparency interface. The human
user makes decisions on the basis of PH and P̂A, his/her reliability, and the estimated
reliability of the Task-AI. Each decision corresponds to the �rst inequalities in the
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Figure 3.1: Human-AI cooperation

proposed framework, (3.1) and (3.2).
To detect and mitigate improper trust calibration, we introduce a conceptual entity

in human-AI cooperation called “trust calibration AI” (TCAI). It is a meta-level entity
that manages the whole process of adaptive trust calibration. Figure 3.2 illustrates the
relationship among the human user, the Task-AI, and the TCAI.

The TCAI observes human’s choice behaviors which indicate the answers of the
selection problems. This observation is to evaluate the �rst inequalities in the proposed
framework. The TCAI also solves the selection problems by estimating PA and P̂H with
a model-based or statistical approach. These estimations correspond to evaluating the
second inequalities in the proposed framework. If the observed human behaviors
are not consistent with the TCAI’s estimations, the TCAI judges that it has detected
over-trust or under-trust according to the de�nitions of the proposed framework, and
it gives a TCC to the human user to notify an improper trust calibration status.

The TCAI can solve the selection problems with knowledge of the Task-AI
implementation and the human user’s capability for the task execution; however,
it is always the human user, not the TCAI nor the Task-AI, who makes the �nal
decisions since the human user is fully responsible for the outcomes of the human-AI
cooperation. The TCAI only suggests to the human user recalibrate trust in the Task-AI
by presenting a TCC if the human behavior signi�es the improper trust calibration.
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Figure 3.2: Human, Task-AI, and TCAI

The basic algorithm of the method of adaptive trust calibration is described in
Algorithm A0. This method aims to adaptively prompt a user to calibrate her/his trust
by presenting a trust calibration cue only when our framework detects over-trust
or under-trust by observing the user’s choice behavior. This approach is taken to
mitigate over-trust or under-trust, in contrast with the traditional approach of trying
to maintain appropriate trust calibration with continuous system transparency.

Algorithm A0 : Method of adaptive trust calibration

while Cooperative tasks exist do
Observe a user’s choice behavior.
Evaluate the second inequalities of the framework (3.1) and (3.2).
Detect improper trust calibration.
if over-trust or under-trust is detected then

Present a trust calibration cue to the user.
end if

end while
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4
Empirical Studies

This chapter presents three empirical studies done to examine how e�ective the
proposed method would be in various trust conditions with two di�erent cooperative
tasks.

Section 4.1 describes an overview of the three empirical studies. In section 4.2, the
evaluation with an over-trust scenario is presented. Section 4.3 explains the evaluation
under bi-directional trust changes. In section 4.4, the evaluation with continuous
cooperative tasks is described.

4.1 Overview

We conduct three empirical studies to evaluate the proposed methods under several
trust change scenarios with two types of cooperative tasks. All the evaluations are
done with online experiments using a web-based drone simulator. Participants are
recruited through crowdsourcing services.



30 Chapter 4. Empirical Studies

Table 4.1: Three empirical studies.

Study Evaluation Scenario Task

1 Evaluation with
four types of TCCs Over-trust scenario Pothole

inspection

2 Evaluation under
bi-directional trust changes

ABA/BAB scenarios
(A:under-trust, B:over-trust)

Pothole
inspection

3 Evaluation with continuous
cooperative tasks ABA scenario Drone

navigation

Three Empirical Studies

The �rst empirical study described in section 4.2 is done with pothole inspection
tasks to verify how the proposed method works in a simple over-trust scenario. Four
types of TCCs are evaluated to compare the extent to which each TCC can change
participants’ choice behaviors.

The second empirical study described in section 4.3 is done with pothole inspection
tasks to investigate the proposed method in bidirectional trust changes of ABA/BAB
scenarios of under-trust (A) and over-trust (B).

The third empirical study described in section 4.4 is done with drone navigation
tasks to examine how e�ective the proposed method would be in real-time applications
such as autonomous driving.

Table 4.1 summarizes the three empirical studies.

Two Cooperative Tasks

Two types of cooperative tasks are prepared for the evaluations: a pothole inspection
task and a drone navigation task. Table 4.2 compares the key characteristics of the two
cooperative tasks.

A pothole inspection task is a visual search task to check if there were any holes or
cracks in the road images from the drone. Each inspection task is executed discretely at
every checkpoint when the drone reaches one, and they are mutually independent.
This type of visual inspection can be categorized as a reconnaissance task, which is
often used in the trust research literature. Applications such as baggage inspection
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Table 4.2: Comparisons of cooperative tasks used in empirical studies.

Pothole Inspection
(in 1st and 2nd studies)

Drone Navigation
(in 3rd study)

Task Discrete
Every check point

Continuous
Every 0.12 seconds

State dependency Mutually independent
Road surface conditions

Dependent on prev. task
Drone’s positions and directions

Applications in
same category

Baggage inspection
Medical image diagnosis
Product visual inspection

Autonomous driving (Lv4)
Supervised unmanned vehicles
Telepresence robot navigation

systems, medical image diagnosis, and product visual inspection systems are in the
same category.

A drone navigation task is a real-time control task of navigating a drone to reach a
goal along a prede�ned course. This task is continuously executed by cooperative
activities between auto-pilot operated by a Task-AI and manual-pilot done by a
human user. The state of each navigation task is dependent on the result of the
previous navigation task, in terms of the drone position and the direction. Practical
applications such as autonomous driving (SAE level 4), supervised unmanned vehicles,
and telepresence robot navigation fall into the same category as this task.

Four types of TCCs

We designed four di�erent types of TCCs: a visual TCC, audio TCC, verbal TCC, and
anthro. TCC.

Cowell et.al [104] discussed the �ve non-verbal behaviors of an embodied conversa-
tional agent. Waytz et.al [105] demonstrated that anthropomorphism increases trust in
an autonomous vehicle. Laughert et al. [106] examined three important objectives in
e�ective warnings: attract attention, elicit knowledge, and enable compliance behavior.
Based on these pieces of literature, we designed and evaluated the four types of TCCs
(Fig 4.1) in our experiment.

The visual TCC was designed as a red warning sign in the shape of an upside-down
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Figure 4.1: Four types of TCCs.

triangle, which is considered to be one of the most common alerting signs according
to [107, 106]. The audio TCC uses a sound with a frequency that decreases from 400
Hz to 250 Hz as a negative message [103]. Verbal TCC is a tooltip balloon with the
warning message “This choice might not be a good idea.” The anthropomorphic TCC is
an animated drone image with a cartoon-like unhappy face. All of the four TCCs were
designed not to be messages with speci�c system information, but to be noti�cations.

4.2 Evaluation with an Over-trust Scenario

This section presents our �rst empirical study to verify how the proposed method
works in a simple over-trust scenario. Four di�erent types of trust calibration cues
(TCCs) are evaluated.

4.2.1 Introduction

We conducted an online experiment with a web-based drone simulator to evaluate the
our method’s e�ectiveness in an over-trust scenario. The participants of the experiment
performed a pothole inspection task [108] to check if there were any holes or cracks
in the road images from the drone. Participants chose to use the drone’s automatic
inspection or to check the road image manually. The proposed framework judged the
trust calibration status by observing the participants’ choice behavior and presented
TCCs when over-trust was detected. We measured behavioral changes to see if our
adaptive method could e�ectively restore an appropriate status of trust calibration.

We expected users to change their choice behavior if TCCs were adaptively
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presented when the framework detected inappropriate trust calibration. If our method
could e�ectively mitigate the over-trust or under-trust, the following are hypothesized:

[H1-0] the manual choice rates increase in cases of over-trust or decrease in cases of
under-trust.

[H1-1] the users with TCCs perform better than the users without TCCs.

4.2.2 Method

All studies were carried out in accordance with the recommendations of the Ethical
Guidelines for Medical and Health Research Involving Human Subjects provided by the
Ministry of Education, Culture, Sports, Science and Technology and Ministry of Health,
Labor, and Welfare in Japan with written informed consent from all participants. All
participants gave written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the ethics committee of the National Institute
of Informatics.

Participants

We recruited participants online through a crowdsourcing service provided by
Macromill, Inc. Regarding online experiments in general, Crump et al. [109] showed that
the data collected online using a web-browser seemed mostly in line with laboratory
results, so long as the experiment methods were solid.

194 participants joined the experiment online. They were between 20 to 69 years
old (M = 44.35, SD = 14.10). 96 participants were male and 98 were female.

Apparatus and Materials

We developed a 3D drone simulator based on an open-source JavaScript WebGL library
CesiumJS [110] and the Bing Map API [111]. A screenshot of the simulator running on
a Chrome browser is shown in Fig 4.2.1

1All map images in this section are from Geospatial Information Authority of Japan (CC BY 4.0). The
images are similar but not identical to the original ones used in the experiments due to a copyright
reason.
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Time Left:
8 min 7 SecPhase [Main] 22 checkpoints left

checkpoints nearby

Figure 4.2: Online drone simulator.
Operating the simulator was relatively easy, with two cursor keys for controlling the
direction of the drone and mouse buttons for making choices.

Pothole Inspection Tasks

A route with 30 checkpoints (CKPs) was de�ned in the simulated environment. Each
CKP was located in the center of a rectangular area that was to be inspected to see if
there were any potholes in it. Out of the 30 CKPs, 10 had potholes in the corresponding
areas while the other 20 did not. CKPs on the route were shown as small yellow circles
on the screen. When the drone came close enough to one of the CKPs on the route, a
message popped up (Fig 4.3) in which the drone asked the participants to make a
choice.

The indicator at the bottom left area of the screen always showed the reliability of
the automatic pothole inspection (Fig 4.4). This continuous display helped to increase
the system transparency in terms of the reliability.

If the participants selected the “Auto” button, an automatic-inspection result was
shown for three seconds with a road image of the area around the CKP. This feedback
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Auto Manual

Check point No. 3

Auto or Manual?
Checkpoint No. 3

Time Left:
7 min 59 Sec

Phase [Main]

Figure 4.3: Popup message asking the participants for choice.

information helped the participants understand how well the automatic inspection
performed, thereby increasing the system transparency [8, 79]. If the “Manual” button
was selected, a road image was displayed, and the participants had to make a pothole
report manually. Popup windows of both cases are as shown in Fig 4.5. Potholes were
arti�cially rendered as irregular shapes in a dark brown color on a road image in the
popup window.

Four TCCs

We evaluated the four di�erent types of TCCs (see Figure 4.1) in a scenario that was
designed to incur the user’s over-trust. TCCs were presented to the participants when
the framework detected the over-trust status: the audio TCC was played once, and
other TCCs were displayed on the screen close to the “Auto” button for two seconds.

Manipulation

The parameter PA was manipulated to evaluate our method in an over-trust scenario.
The performance of the automatic pothole inspection was con�gured based on signal
detection theory(SDT) [112]. The SDT describes the detection of signals in noisy
environments.The noise and the signal are represented as two overlapping density
distributions. The distance between the two curves represents the sensitivity d′ of the
system.
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Figure 4.4: Reliability Indicator at the bottom left area of the screen.
Showing a higher reliability (left) and a deteriorated reliability (right).

In this experiment, the underlying base rate of potholes was 0.3. Under good weather
conditions, PA and the corresponding sensitivity d′ were 90% and 1.8 respectively,
indicating a pretty good discriminating ability of the system. Under bad weather
conditions, PA dropped to 50% and the corresponding sensitivity d′ became 0.1, meaning
the reliability of the automatic pothole inspection had greatly deteriorated. Fig 4.6
illustrates the manipulation of PA and its relationship with P̂A and PH .

Participants were expected to reach at least the 15th CKP in this experiment.

Assumption

The images of the potholes were carefully designed so that the average success rate of
manual inspection would be more than 75%. Although machine image recognition
has advanced remarkably with deep neural networks [113], several studies including
[114, 115] demonstrated that human object recognition outperforms the top-performing
deep neural networks under image degradation, such as Gaussian blur and additive
Gaussian noise. Humans are better at generalizing across a wide variety of changes
in an input image distribution, such as across di�erent illumination conditions and
weather types.

These �ndings could be applied to the estimation of the inequalities of PH and
PA in the experiment because the pothole inspection became an image recognition
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Automatic Pothole Inspection Manual Inspection

A pothole was found.
Any potholes on the road ?

Found Not found

Figure 4.5: Popup windows of the pothole inspections.
Automatic inspection result window (left) . Manual inspection window (right) . Both
images contain potholes as dark brown spots in the upper road areas.

task with dark and foggy road images when the weather conditions turned worse.
Therefore, we assumed that PA would �uctuate more widely than PH under changing
weather conditions. On the basis of this assumption, we calculated the inequality
relationship between PA and PH in the experiment; the inequality PA > PH was true
during the good weather period and false during the bad one.

Procedure

Participants were randomly assigned to one of �ve groups with the corresponding
TCCs: NoTCC group (without TCCs), visual group (with the visual sign TCC), audio
group (with the audio TCC), verbal group (with the verbal TCC), and anthro. group
(with the anthropomorphic TCC). The NoTCC group was the control group in this
experiment.

The experiment was completed online in three phases. In the instruction phase,
the participants were given instructions stating the goal of the experiment was to
inspect 22 CKPs out of 30 CKPs on a test route within a time limit. The participants
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Algorithm A1 : Over-trust detection
Initialize:
Total number of check points(CKPs): M = the number of CKPs.;
Over-trust �ag list: OT[1], ..., OT[M] are initialized with zero;
The number of current CKP: i ⇐ 1;

while i 5 M and not time-over do
if the drone reached a CKP then
if choice behavior is AUTO and Pman > Pauto then
OT [i] ⇐ 1;
if i = 3 and (OT [i − 2] +OT [i − 1]]) = 1 then

Over-trust is detected and TCC is presented to the user;
end if

end if
i ⇐ i + 1;

end if
end while

learned they could inspect CKPs by checking the road image manually or by relying on
the drone’s automatic pothole inspection capability. They were told that the average
success rate of manual pothole inspection was 75% so that they could adjust their
initial self-con�dence P̂man accordingly. They also learned that the reliability of the
automatic pothole inspection was very high, although it could �uctuate depending
on the conditions of the weather and sunshine. At the end of the instructions, the
participants were guided to adjust the sound volume level by listening to a 400 Hz beep
sound. Next, in the training phase, the participants started to �y the simulated drone
in the training mode. They learned how to operate the drone and how to inspect the
CKPs with on-screen guides. When the �rst three CKPs were inspected, the training
mode was �nished and the main phase was started. The reliability of the drone’s
pothole inspectionPA was arti�cially manipulated by changing the conditions of the
weather and sunshine in the simulated environment. Initially, the weather was good,
andPA was set to 90%. The �ne weather continued until the drone visited six CKPs in
the main phase. This period of six CKPs was intended for the participants to calibrate
their trust toward the drone with a higher reliability of automatic inspection under the
good weather conditions. Immediately after the 6th CKP was inspected, sounds of a
thunderstorm began. The visibility of the �eld also became very low, and thePA was
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Figure 4.6: Relationship between the three parameters under changing weather
conditions

decreased from 90% to 50%, which changed the sign of PH − PA. During this period,
the participants were expected to over-trust the drone due to carry-over from the
previous weather condition. The proposed framework was evaluated in this period.
When the participants clicked the “Auto” button for automatic inspection and the
framework detected the over-trust status using the over-trust detection algorithm A1,
the corresponding TCC was presented at the timing right after the button was selected.
Note that a simple moving average of three CKP windows was used in the algorithm.
The following information was available to the participants during the experiment:

• Simulated weather information with visibility changes, brightness changes, and
the sounds of a thunderstorm.

• A reliability indicator to continuously show the reliability of the automatic
inspection.

• An enlarged photo images of each CKP.

• The result of the drone’s automatic inspection when AUTO was chosen.

• A TCC when the proposed framework detected over-trust.

The experiment ended if the 22nd CKP was inspected or the time limit was reached.
We established a time limit of 8.5 minutes (510 seconds) based on pre-trials with this
test route, and we expected a single automatic inspection to take 10 seconds, one
manual inspection to take 15 seconds, and reaching the next CKP to take 10 seconds.
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Dependent Measures

The dependent variables of interest in this experiment were a TCC presentation
rate(hereinafter, called TCC rate), a manual choice rate(hereinafter, called manual rate),
sensitivity d′, and accuracy of the task results. TCC rates mean how often the proposed
framework detected over-trust. Changes in manual rates indicate how the participants
changed their behaviors as a result of trust calibration. Both sensitivity d′ and accuracy
indicate the performance of the human-AI cooperation.

All keyboard inputs and mouse clicks were recorded and used to calculate these
variables.

4.2.3 Results

One hundred sixteen participants successfully inspected 15 CKPs or more within the
time limit. Seventy eight participants unintentionally moved the drone far from the
area where the CKPs were located, and they failed to complete the tasks within the
time limit. As for the successful participants, their ages ranged from 20 to 69 years old
(M = 43.25, SD = 14.01), 66 participants were male and 50 were females. 28 were in
the NoTCC group, 18 in the visual group, 22 in the audio group, 29 in the verbal group,
and 19 in the anthro. group. They inspected the total of 1,740 CKPs from the 1st CKP
to the 15th CKP, and the results of 1,282 inspections were correct, making the correct
answer rate 0.74. Automatic inspection was selected 1,236 times (the choice rate = 0.71).
The participants did the manual inspection 504 times (the choice rate = 0.29). Table 4.3
shows the TCC rates at each CKP. Note that TCCs were not presented in the period
from the 7th CKP to the 9th CKP, since the sliding window of three CKPs was used in
the detection algorithm. Means and standard errors of the other dependent measures
can be found in Table 4.4. Hereinafter, we call the period from the 1st visited CKP to
6th CKP “the good weather period” and the period with possible TCC presentations
from the 10th CKP to 15th CKP “the bad weather period”.

TCC Rates

TCC rates in the verbal TCC group were higher in the early part of the period and
gradually decreased. This indicates that over-trust decreased during this period. The
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Table 4.3: Means of TCC rates at each CKP.

group CKP9 CKP10 CKP11 CKP12 CKP13 CKP14 CKP15

Visual 0.78 (0.10) 0.67 (0.11) 0.56 (0.12) 0.67 (0.11) 0.67 (0.11) 0.50 (0.12) 0.56 (0.12)

Audio 0.55 (0.11) 0.64 (0.10) 0.45 (0.11) 0.50 (0.11) 0.50 (0.11) 0.50 (0.11) 0.50 (0.11)

Verbal 0.48 (0.09) 0.45 (0.09) 0.28 (0.08) 0.31 (0.09) 0.34 (0.09) 0.38 (0.09) 0.07 (0.05)

Anthro. 0.53 (0.11) 0.47 (0.11) 0.37 (0.11) 0.53 (0.11) 0.47 (0.11) 0.74 (0.10) 0.63 (0.11)

Standard errors in parentheses.

Table 4.4: Means of the other dependent measures

Manual rate Sensitivity d’ Accuracy

Group GW BW GW BW GW BW

NoTCC 0.15 (0.04) 0.22 (0.06) 1.36 (0.09) 0.38 (0.14) 0.86 (0.04) 0.60 (0.04)

Visual 0.11 (0.06) 0.37 (0.09) 1.35 (0.13) 0.52 (0.15) 0.87 (0.05) 0.62 (0.04)

Audio 0.20 (0.06) 0.42 (0.08) 1.62 (0.10) 0.61 (0.15) 0.94 (0.03) 0.65 (0.04)

Verbal 0.17 (0.05) 0.63 (0.04) 1.39 (0.10) 0.92 (0.14) 0.87 (0.04) 0.72 (0.04)

Anthro. 0.20 (0.06) 0.37 (0.07) 1.40 (0.15) 0.54 (0.15) 0.88 (0.05) 0.62 (0.04)

Standard errors in parentheses.
“GW” means the good weather period and “BW” means the bad weather period.

visual and audio TCC groups also showed a similar trend, while TCC rates in the
anthro. TCC group did not follow the decreasing trend.

Manual Rates

TCCs were presented multiple times per participant in most cases. The e�ects of
presenting TCCs might be accumulated and did not always appear immediately after
presentation. In the current study, we evaluated the TCC e�ects by comparing the
six-CKP mean values of the manual rates both for the good and bad weather periods,
so that we could also capture the accumulated e�ects in each period. We conducted a



42 Chapter 4. Empirical Studies
M

an
ua

l R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NoCUE Visual Audio Verbal Anthro

**

*

***

**

TCC Group

NoTCC

* p<0.05, ** p<0.01, *** p<0.001

Good weather Bad weather

Figure 4.7: Manual rates over time

two factor mixed ANOVA with the TCC groups (NoTCC, visual, audio, verbal, and
anthro.) as between subjects and CKP periods (the good weather period and the bad
weather period) as within subjects. The analysis revealed a signi�cant main e�ect for
the CKP periods [F (1, 111) = 51.69, p < 0.01, η2p = 0.32]. The participants changed
their choice behavior as the weather conditions deteriorated. A signi�cant interaction
was found between the two factors [F (4, 111) = 4.86, p < 0.01, η2p = 0.15].

In the good weather period, there was no simple e�ect for the TCC groups, meaning
that the manual rates of each TCC group were not signi�cantly di�erent from each
other [F (4, 111) = 0.47,p = 0.76,η2p = 0.02]. The NoTCC group did not show a simple
e�ect for the CKP periods [F (1, 27) = 1.23,p = 0.28,η2p = 0.04] indicating the manual
rates of the NoTCC group were not signi�cantly di�erent between the two CKP
periods. In contrast with this, all of the groups with TCCs showed signi�cantly higher
manual rates in the bad weather period than in the good weather period [Visual TCC,
F (1, 17) = 9.20, p < 0.01, η2p = 0.35; Audio TCC, F (1, 21) = 5.54, p = 0.03, η2p = 0.21;
Verbal TCC, F (1, 28) = 62.9, p < 0.001, η2p = 0.69; Anthro TCC, F (1, 18) = 8.55, p < 0.01,
η2p = 0.32]. Fig 4.7 shows how the manual rates changed over two CKP periods.

Holm–Bonferroni-adjusted post hoc comparisons were also conducted to investigate
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Figure 4.8: Manual rates for each TCC during the bad weather period

the e�ects of TCCs. For the bad weather period, the verbal group showed a signi�cantly
higher manual rate than both the NoTCC group (t(111) = 4.77,adj .p < 0.01) and the
anthro. group (t(111) = 2.74,adj .p = 0.04). No other di�erences between the groups
were found to be signi�cant. Although the e�ectiveness among TCCs di�er, these
results support H1-0.

Performance : Sensitivity and Accuracy

The same ANOVA with the TCC groups and the CKP periods revealed that the
sensitivity d′ in the bad weather period was signi�cantly lower than in the good
weather period [F (1, 111) = 107.22,p < 0.01,η2p = 0.49]. In the bad weather period,
post-hoc comparisons indicated that the sensitivity d′ of the verbal group, which was
the highest (0.92 (SE 0.14) among all the groups, was signi�cantly higher than the
sensitivity d′ of the NoTCC group [t(111) = 2.97,adj .p = 0.04,Cohen’s d = 0.75]. In
terms of sensitivity d′, hypothesis H1-1 is supported.

Accuracy, the rate of the correct inspection, also signi�cantly declined in the bad
weather period[F (1, 111) = 87.58,p < 0.01,η2p = 0.46], but there was no signi�cant
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Table 4.5: 3-CKP mean values of PH

Good weather period Bad weather period

CKPs 1 to 3 4 to 6 7 to 9 10 to 12 13 to 15

PH 0.81 (0.05) 0.80 (0.06) 0.85 (0.04) 0.86 (0.03) 0.90 (0.03)

Standard errors in parentheses.

di�erence among the �ve groups[F (4, 111) = 1.62,p = 0.18,η2p = 0.06]. Hypothesis
H1-1 is not supported regarding accuracy; however, the verbal group showed the
highest mean value (0.72 (SE 0.04)), and other groups with TCCs also had better
accuracy values (0.6 (SE 0.04)) than the NoTCC group.

Regarding the accuracy of the manual inspections which corresponds to PH ,
Table 4.5 shows the 3-CKP mean values of PH . Although the mean values of PH
slightly increased, a Welch’s t-test indicated that there was no signi�cant di�erence
between PH in the good weather period and in the bad one [t(114) = −1.08, p = 0.28,
Cohen’s d = 0.16]. This result indicates that PH did not degrade under the change
in weather conditions. One-sample t-tests showed that PH in the good weather
period was signi�cantly smaller than PA= 0.90 [Mean = 0.81, t(71) = −2.17, p = 0.03,
Cohen’s d = 0.26] and that PH in the bad weather period was signi�cantly larger than
PA= 0.50 [Mean = 0.86, t(200) = 17.79, p < 0.01, Cohen’s d = 1.25].

4.2.4 Discussion

E�ects of TCCs to Change the Participants’ Behavior

The groups with visual, verbal, and anthro. TCCs showed signi�cantly higher manual
rates for the bad weather period than for the good weather period (Fig 4.7). The audio
TCC that used an audio ASE that decreased in frequency seemed promising, as it
could convey the low level of con�dence in the system [103]. The result, however,
showed that its manual rate was not signi�cantly larger than the one of NoTCc group.
One possible reason is that other sounds were also being played in the simulated
environment, such as the drone �ying and the thunderstorm, which may have reduced
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the e�ect of this audio TCC. The e�ect of the anthro. TCC was not as large as we
originally expected; it was signi�cantly smaller than the e�ect of the verbal TCC
(Fig 4.8). The manual rate of the visual TCC were also smaller than other TCCs. It was
obvious that the participants recognized these visually impressive TCCs; however, the
results suggested that just being salient on the screen was not enough for some of the
participants to change their choice behavior [116, 106]. The verbal group had the
highest manual rate (Fig 4.8). Only the verbal TCC referred to the purpose by using the
word “choice,” while the other TCCs were implemented just as a caution or warning.
Reading this word might have helped the participants proceed more easily to the latter
stages of the trust calibration process.

Based on these results, our tentative guideline for designing TCCs is that TCCs
should be reasonably noticeable in the task environment and should contain con-
notations that can link the user to the next possible actions in the collaborative
task.

If the participants wanted to complete the scan tasks quickly, they could have
used the automatic inspection, which was faster. However, the participants promptly
increased the manual choices after recognizing TCCs despite the longer completion
time. This result indicates that the possible automation bias caused by the di�erence
in the task completion times did not critically impact the decision-making of the
participants in the experiment.

These results indicated that adaptively presenting TCCs strongly a�ected the
choice behavior of the participants who otherwise failed to �nd opportunities to
change their tendency to rely on the automation.

Performance

The results of the manual accuracy were consistent with our assumption to estimate
PH and PA in this experiment.

While the mean values of sensitivity d′ in each group were dropped in the bad
weather period, the verbal group showed a signi�cantly higher sensitivity d′ than
the NoTCC group, and three other groups with TCCs also had better values than
the NoTCC group. The results showed that all the groups with TCCs showed higher
discriminating performance in the bad weather period than the NoTCC group. Though
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there was no statistical di�erence in accuracy among the groups, all the groups with
TCCs also showed better accuracy than the NoTCC group.

These results indicated that adaptively presenting TCCs promoted appropriate
trust calibration leading to the better performance in the bad weather period.

Adaptive Method vs. Continuous Method

The manual rate of the NoTCC group did not signi�cantly change over the two periods.
When the participants were exposed to the bad weather, the weather change was
made very noticeable with the screen visibility and the sound e�ects. The reliability
indicator showed a big performance degradation of the system due to the poor visibility.
Nevertheless, the participants of the NoTCC group continued to rely on the drone’s
automatic pothole inspection, which had less reliability than the actual manual success
rate. Thus, the participants over-trusted the automatic inspection despite the system
information indicating the reliability becoming worse. This result is not in line with
the previous studies [82, 78, 20] that emphasized the e�ectiveness of the continuous
trust calibration with system transparency. A possible explanation for the result could
be made by discussing models for the trust process[117, 1, 21]. Miring et al.[118]
de�ned a model with four stages: perception, understanding, prediction, and adaption.
Although the reliability indicator continuously displayed the deterioration of the
reliability, the participants in the NoTCC group might not fully acquire the knowledge
to move beyond the perception stage. They would have behave di�erently if the
experiment had continued longer enough for them to understand the relationship
between the indicator change and the performance of the system. In contrast to this,
the participants in other groups with TCCs could successfully reached the adaptation
stage and change their behaviors in this experiment. We believe that the results
demonstrated the e�ectiveness of the adaptive method. TCCs were given right after
the behavior only if the participants were judged to over-trust, so that it would be
easier for the participants to understand the implication of the cues and to move
forward in the trust calibration process.
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Applicability in Real-world Situations

Although providing a model to estimate the second inequalities of PH and PA in the
proposed framework is beyond the scope of this study, we believe that they could be
estimated as follows. PA, which represents the reliability of an AI system, could be
calculated with the sensor models and algorithms used to implement the AI system.
PH , which is a human capability index, could be estimated by using the parameters of a
target task and environmental conditions. The results of the previous studies [114, 115]
are such examples that provide a basis for estimating the second inequalities. A
top-down approach is considered a better way to build a model using prior knowledge
about the cooperative task’s features and structure. It is also useful to use a bottom-up
approach that utilizes the data from task executions if an appropriate estimation model
for PH is not available. For example. trial operations can be performed to collect the
necessary data to estimate PH empirically. In practical situations, it is quite common
for users of a system to practice how to operate the system in advance. The second
inequalities could be estimated even in a real-time situation. The �rst inequalities in
the proposed framework could be estimated by observing users’ choice behaviors,
without measuring P̂A and P̂man directly. Although a pop-up dialogue was used to
observe the behaviors in the current experiment, continuous measurements of the
behaviors could also be used with the proposed framework. For example, a driver’s
intention to use automatic driving could be inferred with a touch sensor on a steering
wheel to check if the driver’s hands are on the wheel. Similarly, a switch button
to turn automation on and o� at any time could provide necessary information on
humans’ reliance on the automation. The �rst inequality in the framework could be
calculated with the information from these continuous methods that could work well
with real-time tasks. Therefore, we believe that our proposed framework can be applied
to real-time applications that require human-AI cooperation. Our third empirical study
described in section 4.4 evaluates the proposed method with a real-time task.

Feedback Information

The feedback information given for each inspection was very important for the
participants to make decisions. The pothole inspection task in the experiment is
a remote sensing task, and it would be quite di�cult for the system to know the
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correct answer (ground truth) at the time of each inspection in practical situations
because the only information available is the image data and the results of automatic
recognition. Therefore the correct answer for each inspection was not presented
to the participants in the experiment. The result of the automatic inspection was
shown to the participants when they selected automatic inspection, not when they did
the inspections manually. Although this was to simplify the conditions and focus
on evaluating the e�ect of presenting TCCs, further study should consider possible
combinations of feedback information and evaluate their e�ects.

In this experiment, we focused on evaluating an over-trust case, which often has
more serious adverse e�ects in actual situations [14, 13]. The second empirical study
described in section 4.3 evaluates with bi-directional trust change scenarios to evaluate
both cases of over-trust and under-trust.

4.2.5 Conclusion

The overall results demonstrated that adaptively presenting TCCs strongly a�ected
whether the choice behavior of the participants would change, while continuously
presenting the reliability information did not help the participants change their bias to
rely on the automation. The better task performances were also achieved with the
behavior changes triggered by TCCs, whose presentation timing was decided by the
proposed framework. Previous studies emphasized the importance of the system
transparency for proper trust calibration. Our results indicated that they are not always
su�cient to recover from over-trust, and our method of adaptive trust calibration
signi�cantly helped the participants change their behavior and recover from the
over-trust. Among the four TCCs tested in the experiments, the verbal TCC had the
strong e�ect in changing the user behavior, although other TCCs also showed the
e�ectiveness to calibrate trust. Despite several limitations, this study has demonstrated
the e�ectiveness of presenting cognitive cues at the time of over-trust.

4.3 Evaluation under Bi-directional Trust Changes

This section presents our second empirical study to evaluate the proposed method
under the bi-directional changes of trust conditions.
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4.3.1 Introduction

In order to evaluate our proposed method both in bidirectional trust changes, we
de�ned ABA/BAB scenarios of under-trust(A) and over-trust(B) by manipulating
the weather conditions. We conducted an on-line experiment with the same drone
simulator and the same common task with the scenarios as the �rst empirical study
described in the previous section 4.2.

We expected users to change their choice behavior if TCCs were adaptively
presented when the framework detected inappropriate trust calibration. If our method
could e�ectively mitigate the over-trust or under-trust, the following are hypothesized:

[H2-0] the manual choice rates increase if TCCs are presented in cases of over-trust
or decrease if TCCs are presented in cases of under-trust.

[H2-1] the users with TCCs perform better and more robustly than the users without
TCCs.

[H2-2] adaptively presenting TCCs could trigger the trust calibration process more
e�ectively than continuously maintaining system transparency.

4.3.2 Method

Verbal Cue as a TCC

We used a verbal TCC in this experiment as it showed the most signi�cant e�ect to
change users’ behaviors in the �rst empirical study. The screen image of the verbal TCC
is shown in Figure 4.9. If the proposed framework detected over-trust or under-trust
from a participant choice, this TCC was presented right after the choice action(pushing
a button).

Participants and Scenarios

A total of seventy participants (51 male, 19 female) took part in the experiment online.
Their ages ranged from 25 to 75 years old (M = 44.2, SD = 10.3). The participants were
recruited through a cloud-sourcing service provided by Yahoo! Japan.

The purpose of the main experiment was to evaluate our framework for both
bidirectional environmental changes. We de�ned the ABA/BAB scenarios of under-trust
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Auto Manual

Check point No. 3
Auto or Manual?

This choice might not be a good idea.

Figure 4.9: Verbal TCC

(A) and over-trust (B) by manipulating the weather conditions. The performance of
the automatic pothole inspection PA was con�gured on the basis of signal detection
theory (SDT) [112]. SDT describes the detection of signals in noisy environments.
Noise and signals are represented as two overlapping density distributions. The
distance between the two curves represents the sensitivity d′ of a system. In the A
condition, the weather conditions were set to be good in the simulated environment,
andPA and the corresponding sensitivity d′ were manipulated to be 0.88 and 2.35,
respectively, indicating that the agent has a very high discrimination ability. In contrast,
the weather conditions were bad in the B condition, andPA dropped to 0.50, and the
corresponding sensitivity d′ became 0.1, meaning that the reliability of the automatic
pothole inspection had greatly deteriorated.

If the participants failed to calibrate their trust properly, the possibility of under-
trust in the A condition or over-trust in the B condition would be higher. In the ABA
scenario, the weather conditions of the experiment started as A, then changed to B, and
�nally went back to A. The same applies to the BAB scenario. Each condition continued
until eight CKPs were inspected. Participants were randomly assigned to one of four
groups: the NoTCC-ABA group (without TCC in the ABA scenario), TCC-ABA (with a
verbal cue in the ABA scenario) group, NoTCC-BAB group, and TCC-BAB group. The
NoTCC-ABA/BAB groups were control groups in this experiment.
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Procedures

The online experiment started with an instruction phase. The participants were
given an instruction stating that the goal of the experiment was to inspect 24 CKPs
within 20 minutes. They were told that the average success rate of manual pothole
inspection was 75%. The drone’s automatic inspection was explained as “The reliability
is almost perfect, close to 100%,” for the participants of the two groups in the ABA
scenario and “The automatic inspection is accurate” for the participants of the two
groups in the BAB scenario. These sentences were meant to help the participants
calibrate their initial trust properly in the �rst period. They also learned that the
reliability of the automatic inspection could �uctuate depending on the weather
conditions. This instruction was given to help the participants calibrate their trust
properly when the condition changed. In this instruction phase, the participants were
also guided to adjust the sound volume level by listening to a 400-Hz beep sound.

Next, in the training phase, the participants started a practice �ight of the drone
and learned how to inspect the CKPs. This phase was �nished after the �rst three CKPs
were inspected, and the main phase of the experiment was started. The main phase
�rst started with either condition A or B depending on the scenario of the group. In
the A condition, the weather was good, and the visibility in the simulated environment
was high. Therefore, the drone’s automatic inspection functioned very well. In the B
condition, it was dark and rainy with the sound e�ects of a thunderstorm.

The reliability of the automatic inspection deteriorated due to the low visibility
in the environment. Each condition continued until the participants completed the
inspection of eight CKPs. The 1st CKP, the 9th CKP, and the 17th CKP were the �rst
CKPs of the three conditions. Figure 4.11 illustrates the manipulation of PA with the
weather conditions and the expected changes of PH .

If the participants completed the 24th inspection or the elapsed time exceeded 20
minutes, the main phase of the experiment was �nished. After the experiment, the
participants were asked to �ll out a post-experiment questionnaire.

The algorithm A2 “Adaptive Trust Calibration” based on the proposed method was
applied in the experiment. This algorithm is essentially the same as the one used in
the �rst empirical study except that this includes the part to detect the under-trust.
A simple moving average of three CKPs was used in the algorithm to capture the
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Algorithm A2 : Adaptive trust calibration
Initialize:
Total number of check points(CKPs): M = the number of CKPs.;
Over-trust �ag list: OT[1], ..., OT[M] are initialized with zero;
Under-trust �ag list: UT[1], ..., UT[M] are initialized with zero;
The number of current CKP: i ⇐ 1;

while i 5 M and not time-over do
if the drone reached a CKP then
if choice behavior is AUTO and PH > PA then
OT [i] ⇐ 1;
if i = 3 and (OT [i − 2] +OT [i − 1]]) = 1 then

Over-trust is detected and TCC is presented to the user;
end if

else if choice behavior is MANUAL and PH < PA then
OU [i] ⇐ 1;
if i = 3 and (OU [i − 2] +OU [i − 1]]) = 1 then

Under-trust is detected and TCC is presented to the user;
end if

end if
i ⇐ i + 1;

end if
end while

participants’ behavior changes in each condition with eight CKPs.
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Please find the potholes on the road with the drone.
• Your goal is to inspect 24 checkpoints displayed as yellow/red circles.
• The time limit is 20 minutes.
• Your score will be decided by the completion time and the correctness.

Instruction

Scanned
Area

Drone

Cursor Keys

Left Right

Operation Guide

Choices
to Make

Drone
Operation

Manual

Mouse

Check
point

Auto

• This drone has an automatic pothole inspection function. The reliability is
almost perfect, close to 100%, but it may change due to the weather conditions.

• The average correct rate for manual inspection would be around 75%.

Direction Speed

Reliability indicator of the drone’s automatic
pothole inspection function

Information area at the bottom of the screen

I found
a pothole No pothole

7 min 59 sec

Figure 4.10: The instruction screen
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Figure 4.11: PA and PH in the ABA scenario
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Assumption

The same assumptions are made as in the �rst empirical study described in the previous
section 4.2. As the pothole inspection tasks are mainly image recognition tasks,
we assumed that PA would �uctuate more widely than PH under changing weather
conditions. On the basis of this assumption, we calculated the inequality relationship
between PA and PH in the experiment; the inequality PA > PH was true during the
good weather period and false during the bad one.

As a pre-experiment, we measured the manual success rates (PH ) with the prepared
CKP data to verify our assumptions on PH . Thirty-two participants (25 male, 7 female)
were recruited through a cloud-sourcing service provided by Yahoo! Japan. Their
ages ranged from 25 to 65 years old (M = 42, SD = 12). None of them joined the main
experiment. They manually inspected the prepared CKPs in accordance with the same
procedure of the main experiment, except that there was no automatic inspection
available. Half of them were in the A condition, and the other were in the B condition.
The results indicated that the mean of the manual success rates and the sensitivity d’
was 0.83 (SD = 0.15) and 1.85 for the A condition and 0.79 (SD = 0.15) and 1.69 for the
B condition. As already explained, the performance of the automatic inspection in the
main experiment was manipulated so that the success rates and the sensitivity d’
were 0.88 and 2.35 for condition A and 0.50 and 0.00 for condition B. One sample
t-test showed that the manual success rate was smaller than the automatic success
rate for the A condition [t(47) = −2.26,p = 0.01,Cohen′sd = 0.33] and larger than the
automatic success rate for the B condition [t(47) = −13.66,p < 0.01,Cohen′sd = 1.97].
Therefore, we concluded that our assumption on PH was valid with the prepared CKP
data for the main experiment.

The Dependent Variables

In this experiment, TCC presentation rates (hereinafter called “TCC rates”), manual
choice rates (hereinafter called “manual rates”), and the sensitivity d′ were measured as
the dependent variables. TCC rates are the rates of the frequency at which TCCs were
presented to the participants at each CKP, indicating how our method was working
during the experiment. Manual rates are the mean values of the manual choice ratio
for each condition, showing how the participants relied (or did not rely) on the drone’s
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Figure 4.12: TCC rates of TCC-ABA group

automatic inspection and therefore indicating their trust status. The sensitivity d′

demonstrates the performance of human-AI collaborative tasks.

4.3.3 Results

Seventy participants completed all 24 CKPs within the time limit. Of the seventy
participants, 17 were in the NoTCC-ABA group, 18 in the TCC-ABA group, 21 in the
NoTCC-BAB group, and 14 in the TCC-BAB group. The average time taken to �nish
the main phase of the experiment was 9 minutes 5 seconds, which means 22.5 seconds
per CKP.

TCC Rates

Figure 4.12 and Figure 4.13 illustrate the TCC rates at each CKP of the TCC-ABA group
and the TCC-BAB group. Table 4.6 shows 3-CKP means of TCC rates in each condition.
C1, C2, and C3 mean A, B, and A for the ABA groups, B, A, and B for the BAB groups.
‘i-j’ indicates the mean value of the TCC rates from CKP i to CKP j. Standard errors are
in parentheses.
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Figure 4.13: TCC rates of TCC-BAB group

ABA groups: The mean of the TCC rates from CKP 3 to 5 [hereinafter referred to
as TR (3-5)] for the �rst A condition (C1) was low at 0.15 and slightly decreased to 0.13
for TR (6-8). We did a paired t-test that revealed that there was no signi�cant di�erence
between TR (3-5) and TR (6-8). For the B condition (C2), the TCC rate went up to the
maximum at CKP 11. TR (11-13) was 0.48 and quickly decreased after that. A paired
t-test showed that TR (14-16) was signi�cantly lower than TR (11-13) [t(17)=4.53,
one-tailed, p<0.01, Cohen’s d = 0.99]. For the second A condition (C3), the TCC rates
were at the almost same level as the �rst A condition. The di�erence between TR
(19-21) and TR (22-24) was not statistically signi�cant.

BAB groups: The TCC rate for the �rst B condition (C1) started from the highest
value among the conditions at CKP 3 and then decreased with some �uctuations. A
paired t-test revealed that TR (6-8) was signi�cantly lower than TR (3-5) [t(13)=1.84,
one-tailed, p=0.04, Cohen’s d = 0.43]. For the A condition (C2), a paired t-test revealed
that TR (14-16) signi�cantly decreased from TR (11-13) [t(13)=1.99, one-tailed, p=0.03,
Cohen’s d = 0.53] in the TCC-BAB group. For the second B condition (C3), there was
no signi�cant di�erence between TR (19-21) and TR (22-24), although TCC rates
slightly decreased during the condition.
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Table 4.6: 3-CKP means of TCC rates in each condition

C1 C2 C3

CKPs 3-5 p 6-8 11-13 p 14-16 19-21 p 22-24

TCC-
ABA

0.15
(0.08)

0.13
(0.07)

0.48
(0.11) ** 0.19

(0.08)
0.19

(0.08)
0.11

(0.07)
TCC-
BAB

0.50
(0.13) * 0.33

(0.13)
0.24

(0.11) * 0.07
(0.07)

0.21
(0.11)

0.12
(0.09)

∗p < 0.05, ∗ ∗ p < 0.01

Table 4.7: Means of the manual rates and the sensitivity d′

Manual rate Sensitivity d′

Condition C1 C2 C3 C1 C2 C3

NoTCC-ABA 0.23 (0.08) 0.28 (0.09) 0.26 (0.07) 1.67 (0.05) 1.12 (0.14) 1.74 (0.10)

TCC-ABA 0.19 (0.06) 0.50 (0.06) 0.22 (0.07) 1.46 (0.12) 1.25 (0.10) 1.80 (0.04)

NoTCC-BAB 0.46 (0.08) 0.32 (0.08) 0.63 (0.09) 0.53 (0.21) 1.39 (0.12) 0.67 (0.26)

TCC-BAB 0.45 (0.09) 0.22 (0.08) 0.71 (0.06) 0.88 (0.20) 1.47 (0.10) 0.73 (0.21)

In summary, the TCC rates for all conditions showed a similar trend in which the
values were initially higher and then decreased along the CKP series, except for the
�rst A condition of the TCC-ABA group. Higher TCC rates were observed for the B
conditions than the A conditions. This indicates that over-trust detections in the bad
weather were more frequent than under-trust detections in the good weather.

The Manual Rate

The change in manual rates indicates how the participants changed their trust in the
automatic inspection. Building trust is an accumulating process [1], and TCCs might
need some time to have an e�ect on changing manual rates and also might be presented
more than once per participant. Therefore, we evaluated the proposed method by
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comparing the eight-CKP mean values of the manual rates for each condition so that
we could capture the accumulated e�ects of presenting TCCs. Table 4.7 shows the
means of the manual rates and the sensitivity d′ for each condition. C1, C2, and C3 are
either condition A or B, depending on the groups. Standard errors are in parentheses.
We conducted a one-way ANOVA (within-subjects design; independent variable: the
scenario conditions of three levels, A, B, and A (B, A, and B), dependent variable:
manual rate) for each group. All post-hoc analysis was done using the Holm-Bonferroni
method. Figure 4.14 illustrates the manual rates for each condition of each groups.

ABA groups: The result of the ANOVA for the NoTCC-ABA group did not
show any signi�cant di�erence in the manual rates among the three conditions
[F (2, 32) = 0.20, p = 0.82, η2p = 0.01]. In comparison, the ANOVA for the TCC-ABA
group revealed a signi�cant di�erence in the manual rates among the conditions
in the ABA scenario [F (2, 34) = 6.50, p < 0.01, η2p = 0.28]. The post-hoc analysis
indicated that the manual rate for the B condition signi�cantly increased from the
�rst A condition [t(17) = 3.56, adjusted .p < 0.01]. The manual rate for the second A
condition also signi�cantly decreased [t(17) = 2.45, adjusted .p = 0.03] from the B
condition, and the manual rates for the �rst A condition and second A condition were
not signi�cantly di�erent [t(17) = 0.79, adjusted .p = 0.79].

BAB groups: The ANOVA analysis for the NoTCC-BAB group revealed that there
was a signi�cant di�erence in the manual rates [F (2, 40) = 6.41, p < 0.01, η2p = 0.24].
The post-hoc analysis showed that the rate for the B condition was not signi�cantly
changed from that for the �rst A condition [t(20) = 1.46, adjusted .p = 0.16], while the
manual rate for the second B condition signi�cantly increased from the A condition
[t(20) = 3.14, adjusted .p = 0.02], and it was also signi�cantly larger than for the
�rst B condition [t(20) = 2.84, adjusted .p = 0.02]. The ANOVA analysis for the
TCC-BAB group showed that there was a signi�cant di�erence in the manual rate
[F (2, 26) = 14.48, p < 0.01, η2p = 0.53]. The post-hoc analysis indicated that the manual
rate for the A condition signi�cantly decreased from the �rst B condition [t(13) = 2.65,
adjusted .p = 0.02]. For the second B condition, the manual rate increased signi�cantly
from the A condition [t(20) = 4.47, adjusted .p < 0.01].



60 Chapter 4. Empirical Studies

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
* * ** * *

*

Rate

NoTCC-ABA TCC-ABA NoTCC-BAB TCC-BAB

BA B B B BA A A A A B

Figure 4.14: Manual rates
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Performance

We conducted the same one-way ANOVA with the sensitivity d′ of each group.
Figure 4.15 illustrates the sensitivity d′ for each condition of each groups.

ABA groups: For the NoTCC-ABA group, the main e�ect of the sensitivity d′ was
found to be signi�cant [F (2, 32) = 14.8, p < 0.01, η2p = 0.48]. The post-hoc analysis
indicated that the mean value of d′ signi�cantly decreased from the �rst A condition
to the B condition [t(16) = 5.26, adjusted .p < 0.01] and then signi�cantly increased
from the B condition to the second A condition [t(16) = 4.05, adjusted .p < 0.01]. For
the TCC-ABA group, the main e�ect of the sensitivity d′ was found to be signi�cant
[F (2, 34) = 7.52, p < 0.01, η2p = 0.31]. The post-hoc analysis indicated that the mean
value of d′ signi�cantly increased from the B condition to the second A condition
[t(17) = 5.44, adjusted .p < 0.01] and also showed a signi�cant increase from the �rst
A condition to the second A condition [t(17) = 2.61, adjusted .p = 0.04].

BAB groups: For the NoTCC-BAB group, the main e�ect of the sensitivity d′ was
found to be signi�cant [F (2, 40) = 7.45, p < 0.01, η2p = 0.27]. The post-hoc analysis
revealed that the mean value of d′ signi�cantly increased from the �rst B condition to
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the A condition [t(20) = 3.76, adjusted .p < 0.01] and signi�cantly decreased from
the A condition to the second B condition [t(20) = 2.98, adjusted .p = 0.01]. For the
TCC-BAB group, the main e�ect of the sensitivity d′ was found to be signi�cant
[F (2, 26) = 4.75, P = 0.02, η2p = 0.27]. The post-hoc analysis indicated that the mean
value of d′ for the A condition marginally increased from that for the �rst B condition
[t(13) = 2.46, adjusted .p = 0.06]. The mean value of d′ for the second B condition
signi�cantly decreased from that for the A condition [t(13) = 3.13, adjusted .p = 0.02].

4.3.4 Discussion

ABA scenario: For the �rst A condition, the TCC rates of both the NoTCC-ABA
group and the TCC-ABA group were low. The manual rates were also low for both.
This suggests that the participants in both groups properly calibrated their trust in
the high reliability of the automatic capability of the drone under the good weather
conditions, probably on the basis of their knowledge on the reliability of the automatic
inspection acquired in the initial instruction phase. For the B condition, the status of
trust in the previous condition was clearly carried over, so the TCC rates were initially
very high. This suggests that most of the participants were initially over-trusting
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the drone’s automatic capability even when its reliability became very low under
the bad weather conditions. The TCC rates drastically dropped for the TCC-ABA
group. The manual rates signi�cantly increased for this group, while that for the
NoTCC-group remained the same as in the previous condition. The sensitivity d′ for
the B condition was kept high for the TCC-ABA group, while that for the NoTCC-ABA
group signi�cantly dropped under the bad weather conditions. These results indicate
that presenting TCCs in the B condition greatly impacted how participants behaved in
making choices, and the results also suggest that they could properly calibrate their
trust. Consequently, their task performance did not deteriorate despite the bad weather.
For the second A condition, the manual rates of the TCC-ABA group signi�cantly
decreased from the previous condition, while those of the NoTCC-ABA group did not
change at all. It is not explicitly clear whether the participants in the NoTCC groups
properly calibrated their trust for this condition; however, the task performance of the
NoTCC groups was slightly worse than that in the TCC-ABA group.

BAB scenario: For the �rst B condition, the TCC rates were high at the begin-
ning. This was probably caused by the instruction given to the participants regarding
the high reliability of the automatic inspection. After the initial high period, the TCC
rates showed a statistically signi�cant decrease for this condition. Although the mean
values of manual rates both for the NoTCC-BAB group and the TCC-BAB group
were almost similar in this condition, the sensitivity d′ indicates that the TCC-BAB
group performed better than the NoTCC-BAB group. For the A condition, the TCC
rates started at a slightly higher level than those observed for the other A conditions
in the ABA scenario. The rates steadily decreased and reached the lowest levels
among all conditions in the experiment. The manual rates of the TCC-BAB group
showed a statistically signi�cant drop from the previous condition, while that of the
NoTCC-BAB group did not. The performance of the TCC-BAB group was kept higher
than that of the NoTCC-BAB group. These results demonstrate the e�ectiveness of
presenting TCCs to a�ect the behaviors of the participants for whom the status of
trust was under-trust and suggest that trust calibration done to mitigate under-trust
was successfully promoted by the proposed method. For the second B condition,
the TCC rates decreased toward the end of this condition with some �uctuations.
The manual rates of both groups signi�cantly increased to the highest values in the
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experiment. One possible interpretation would be that the 16 tasks before the second B
condition would be enough for most of the participants to learn the system and the
environment so that the participants in the NoTCC-BAB group could calibrate their
trust better in the second B condition. Similar learning e�ects might also be behind the
low manual rates in the second A condition of the ABA scenario.

The TCC groups signi�cantly changed their choice behaviors over the �rst two
conditions both in the ABA and in the BAB scenarios, while the TCC groups did not.
These results clearly support hypothesis H2-0. Regarding the performance, the results
of the sensitivity d′ con�rm hypothesis H2-1, except for the case that the mean value
of d′ for the A condition of the TCC-ABA group was slightly smaller than that of the
NoTCC-ABA group of which the participants probably calibrated the trust properly.

The weather changes from the A condition to the B condition or vice versa were very
noticeable in terms of screen visibility and sound e�ects. Nevertheless, the participants
of the NoTCC-ABA group did not signi�cantly change their choice behaviors and
they were over-trusting or under-trusting the drone’s automatic inspection. The
reliability information continuously displayed at the reliability indicator did not
help the participants to properly calibrate the trust. This results support the result
observed in the over-trust scenario of the �rst empirical study. In contrast to this,
the participants in the TCC groups successfully altered their choice behaviors at the
�rst weather changes. We believe that the results demonstrate the e�ectiveness of
the adaptive method and con�rmed hypothesis H2-2. TCCs were given right after
the behavior only if the participants were judged to be in a state of over-trust or
under-trust, so it would be easier for the participants to understand the implication of
the cues and to move forward in the trust calibration process.

Although we observed the under-trust status in the A condition of the BAB scenario,
the over-trust status was more obviously observed in the B condition of the ABA
scenario. One of the reasons would be that the instruction of the experiment made the
participants expect the higher relatability of the automatic inspection. Existing studies
also demonstrated the human tendency toward the automation called automation
bias[20] or perfect automation schema [78].

Several limitations of our study suggest the need for further experiments. In the
proposed detection algorithm, a binary decision is made with a simple moving average
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value of three CKPs. Future research should involve exploring a di�erent way of
representing the over-trust or under-trust status, such as de�ning the status as a
probability depending on the degree of miscalibration of trust. The current study
mainly dealt with dynamic learned trust [2]. Future studies should investigate other
factors of trust, such as dispositional trust [1] and situational trust to gain a deeper
understanding of trust calibration.

We used a pothole inspection task in the experiment, which is often categorized
as a reconnaissance task in the trust research literature [50]. This type of tasks are
performed independently and discontinuously.

4.3.5 Conclusion

The results of the experiment found clear support for the e�ectiveness of adaptively
presenting a simple cue in changing the participants’ reliance on autonomous systems
in both cases of over-trust and under-trust. Even in the conditions where the continuous
system transparency did not work well to help the participants properly calibrate
their trust, the proposed method could assist the participants change their choice
behaviors. Despite several limitations, the current study has demonstrated that the
proposed method successfully promoted trust calibration in the case of both over-trust
and under-trust caused by environmental changes. With the results of the �rst two
empirical studies, we concluded that the proposed method could be a �rst step to
answer the two research questions in section 1.2.

4.4 Evaluation with Continuous Cooperative Tasks

This section presents the third empirical study to evaluate the proposed method with
continuous cooperative tasks.

4.4.1 Introduction

We designed a cooperative control task of navigating a drone to reach a destination
along a prede�ned course. The navigation can be done either by the drone’s automatic
capability or by a manual control. In contrast to the pothole inspection tasks used in
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the �rst two empirical evaluations, the participants’ selection decisions and operations
must be made quickly enough to control the drone smoothly. The goal of the study
was to evaluate the e�ectiveness of the proposed method in a real-time application
environment.

4.4.2 Method

To apply the proposed method to human-AI cooperation with continuous cooperative
tasks, we modi�ed the behavior measurement to capture users’ choice behaviors.

The �rst terms of (3.1) and (3.2) can be evaluated by observing the user’s behaviors.
As describe before, the reliance behaviors of a user can be explained by the user’s
perception of the reliability of a system and the user’s own capability. When a user
decides to rely on a system, it is reasonable to say that this behavior indicates P̂A > PH .
If the user decides to do a task manually, it means P̂A < PH . If a cooperative task is not
continuous, the evaluations are self-explanatory since each task involves a single
choice behavior.

Modi�ed Behavior Measurement

In the case of a continuous cooperative task where both the systems and the users can
take over the control at any time during the task execution, the �rst terms can be
evaluated as follows.

Let bi be a sampled behavior at a timing i (0 ≤ i ≤ N ), where bi = {1 : reliance, 0 :
no reliance}, and N is the maximum sampled timing of the task. Let Bt be a moving
average of bi at a timing t (t ≥ w).

Bt =
1
w

t∑
i=t−w

bi (4.1)

, where w (0 ≤ w ≤ N ) is the size of the time window de�ned in accordance with the
characteristics of the cooperation task.

Let K be a speci�ed threshold. If Bt > K , it means P̂A > PH . Otherwise, it indicates
P̂A < PH .

The second terms of (3.1) and (3.2), PA could be calculated with the sensor models
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Figure 4.16: Online semi-autonomous drone simulator

and algorithms used to implement the system, and PH could be estimated by using the
parameters of a target task and environmental conditions. Therefore, the second terms
can be also estimated.

Apparatus and Materials

We added an auto-pilot function to the drone simulator used in the previous experiments.
Figure 4.16 shows a new screen image of the simulator running in the Chrome browser.

The participants performed a task in which they �ew a drone along a course that
was displayed on a screen until the drone reached the goal of the course. A 10-km
course was prepared with an average altitude of 214 meters. The course consisted of
three 3.3-km parts (see Figure 4.17) with the exactly same trajectory in terms of curve
and height. The width of the course was 10.4 meters. The participants had to control
the drone so that it stayed on the course until the goal. The drone could be �own by
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Starting point

3.3 km

Figure 4.17: The �rst part of the course

autonomous navigation. This type of control is hereinafter called “auto-pilot.” The
auto-pilot was implemented with a PID control over the heading direction and the
pitch of the drone to minimize cross-track error (see Figure 4.18), which is the shortest
distance between the drone and the center line of the prepared course. The reliability
of the auto-pilot was always shown on the indicator displayed at the bottom area of
the screen.

The participants could take over the navigation of the drone at any time with
the left or right cursor keys. This control is hereinafter called “manual-pilot.” The
manual-pilot period expired after 1.5 seconds unless any further key inputs occurred.
In this experiment, the pitch control was always under auto-pilot, and the roll of the
drone was �xed �at to make the manual-pilot easier. The level of automation in the
experiment corresponded to Level 4 of the autonomous driving [119], meaning that the
auto-pilot could �y the drone at all times, and participants could take over the control
if they wanted to, but they were not required to do so.

The verbal TCC was presented in front of the drone (see Figure 4.19) when over-trust
and under-trust were detected by the framework. The message was intentionally
indirect so as to encourage the participants to re-consider their decisions rather than
blindly follow a cue.

Participants and Scenarios

A total of 36 on-line participants (30 male, 6 female) were recruited a cloud-sourcing
service provided by Yahoo! Japan. Participants were randomly assigned to one of two
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Cross-track Error

Figure 4.18: Cross-track error

groups: the NoTCC group (without TCC) and the TCC group (with TCC). Four of the
male participants failed to complete the experiment due to large deviations from the
course. This left us 32 participants whose ages ranged from 22 to 70 years old (M =
46.6, SD = 11.4). They were recruited through a cloud-sourcing service provided by
Yahoo! Japan.

We de�ned two scenarios of under-trust (A) and over-trust (B) by manipulating
the reliability of the auto-pilot. In the A condition, good weather conditions were
simulated. The screen brightness was 100%, and there were no sound e�ects except for

Choosing AUTO / MANUAL
might not be appropriate

Figure 4.19: Verbal TCC
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the sound of the drone �ying. The parameters of the PID control were con�gured so
that PA became 0.93 and 0.91 in the A1 condition and the A2 conditions respectively,
which means the drone with auto-pilot �ew accurately along the course. In the B
condition, a thunder storm was simulated with a blurred and dark (40% brightness)
screen and with sound e�ects. The cross-track errors, which were inputs to the PID
control, were arti�cially distorted to simulate the deteriorated sensing accuracy under
the bad weather conditions. This made PA deteriorate to 0.69, and the drone with
auto-pilot would thus often be o� course. The participants were expected to take over
the control of the drone (called “disengagement” in autonomous driving) when they
saw the drone with auto-pilot fail to stay on course.

Procedures

The online experiment started with an instruction phase. The participants were
given an instruction stating that the goal of the experiment was to �y the drone
along the 10-km course within 15 minutes. They were told that the score would be
better if the �ight was more accurate. They learned that the reliability of the drone’s
auto-pilot, which was continuously displayed on the indicator, was very high, although
it could �uctuate depending on the weather conditions. Next, the training phase
started. The participants started a practice �ight of the drone and experienced both
the auto-pilot and the manual-pilot with some guidance on the screen. The speed of
the drone was automatically adjusted according to the performance of the PC of each
participant to equalize the conditions of the experiment. This phase was �nished when
the drone reached the end of the 3-km training course, and the main phase of the
experiment was started with the A condition. The proposed detection framework was
applied during this phase. The �rst A condition (hereinafter, called the A1 condition)
changed to the B condition followed by the second A condition (hereinafter, called
the A2 condition). Each condition lasted for 3.3 km. When the drone reached the
goal of the 10-km main course or the elapsed time exceeded 15 minutes, the main
phase was �nished. After the experiment, the participants were asked to �ll out a
post-experiment questionnaire.
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Algorithm A3 : Adaptive trust calibration with continuous cooperative task
Initialize:
W ⇐ 100; K ⇐ 0.5:

while the drone is not reached the goal and not time-over do
Get SampledBehavior ; /* 1:Auto or 0:Manual */
Estimate PH and PA;

if MovinдAve(SampledBehavior ,W ) > K then
Behavior ⇐ AutoPilot ;

else
Behavior ⇐ ManualPilot ;

end if
if Behavior = AutoPilot and PH > PA then

Over-trust is detected and TCC is presented to the user;
else if Behavior = ManualPilot and PH < PA then

Under-trust is detected and TCC is presented to the user;
end if

end while

Evaluation of the Framework in the Experiment

The algorithm A3 “Adaptive Trust Calibration with Continuous Cooperative Task”
based on the proposed method was applied in the experiment. The while loop in the
algorithm was implemented as a timer-event handling loop in the experimental system.
The timer-event was �red every 0.12 second.

First terms. The moving average of the participants behavior were calculated at
each timer-event. The window size was 12 seconds, which was suitable for capturing
the changes in trajectory for the prepared course. Second terms. Although providing
a general estimation model of PH is beyond the scope of this paper, we estimated
the second terms under the conditions of the current experiment in the basis of the
robustness of human capability compared with that of recognition algorithms. We
assumed that the drone’s auto pilot would utilize a visual SLAM algorithm in the real
situations to locate its position. Although the robust algorithms are proposed, low-
illumination scenes still remains challenging tasks [90]. Moreover, the work of [114]
demonstrated that human image recognition is still better than the top-performing
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deep neural networks in the case of image degradation such as Gaussian blur or
additive Gaussian noise. These pieces of work could provide a basis for estimating
the second terms of the proposed framework in the experiment. We assumed that
PA would �uctuate more widely than PH under changing weather conditions, and
we estimated that the inequality PA > PH was true during the good weather period
and false during the bad one. We did a pre-experiment to measure PH by asking the
participants to �y the drone with the manual-pilot only. Twenty participants [17 male,
3 female, mean age 40.0 (SD=12.0)] were recruited through a cloud-sourcing service
provided by Yahoo! Japan. They performed the manual navigation tasks in accordance
with the same procedure of the main experiment. The results indicated that the mean
of the success rates of the manual-pilot were 0.79, 0.80, 0.81 for the A1 condition,
the B condition and the A2 condition, respectively. One-sample t-tests revealed that
PA > PH in the A1 condition [t(19) = −3.04,p < 0.01,Cohen′sd = 0.68] and also in the
A2 condition [t(19) = −2.19,p = 0.04,Cohen′sd = 0.52]. Another one-sample t-test
indicated that PA < PH in the B condition [t(19) = 2.31,p = 0.03,Cohen′sd = 0.49].
These results indicated that our assumptions were valid in the current experiment.

Dependent Variables and Hypotheses

In this experiment, three things were measured as the dependent variables. TCC
rates are the rates of the frequency at which TCCs were presented to the participants,
indicating how our method was working during the experiment. Manual-pilot rates
are the mean values of the manual-pilot ratio for each condition, showing how the
participants relied (or did not rely) on the drone’s auto-pilot and therefore indicating
their trust calibration status. The means of cross-track errors indicates the task
performances or how well the collaborative �ight tasks between auto-pilot and
manual-pilot were done.

If our method can e�ectively mitigate over-trust or under-trust, the following are
hypothesized:

[H3-1] the manual-pilot rates increase if TCCs are presented in cases of over-trust or
decrease if TCCs are presented in cases of under-trust.

[H3-2] the users with TCCs perform better than the users without TCCs.
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Figure 4.20: TCC rates

[H3-3] adaptively presenting TCCs could trigger the trust calibration process more
e�ectively than continuously maintaining system transparency in a conventional
way.

4.4.3 Results

Of the 32 participants, 17 were in the NoTCC group and 15 were in the TCC group.
The average time taken to �nish the main phase of the experiment was XX minuets YY
seconds.

TCC Rates

Figure4.20 illustrates TCC rates for each conditions in the TCC group. TCCs were
presented when under-trust was detected in the A1 condition and A2 condition, and
when over-trust was detected in the B condition. The result of a one-way ANOVA
showed that the e�ect of the ABA conditions on the TCC rates was signi�cant
[F (2, 28) = 6.41, p < 0.01, η2p = 0.31]. The post-hoc analysis using the Holm-Bonferroni
method showed that TCC rates for the A1 condition was signi�cant larger than that
for the B condition [t(14) = 2.77, adj .p = 0.045] and the A2 condition [t(14) = 2.72,
adj .p = 0.045]. TCC rates for the B condition was signi�cant smaller than that for A2
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Figure 4.21: Manual-pilot rates

condition [t(14) = 2.17, adj .p = 0.048].

Manual-pilot Rates

Figure4.21 shows the manual rates in each group. The result of the one-way ANOVA
for the NoTCC group did not show any signi�cant di�erence in the manual rates
among the three conditions [F (2, 32) = 1.60, p = 0.22, η2p = 0.09]. On the other
hand, the one-way ANOVA for the TCC group revealed the e�ect of the conditions
[F (2, 28) = 32.6, p < 0.001, η2p = 0.70]. Post-hoc analysis using he Holm-Bonferroni
method showed that the manual rates for the B condition was signi�cantly larger
than those for the A1 condition [t(14) = 6.68, adj .p < 0.001] and for the A2 condition
[t(14) = 5.72, adj .p < 0.001].

Cross-Track Errors

Figure4.22 illustrates the mean values of the cross-track errors. To evaluate perfor-
mances of collaborative tasks between auto-pilot and manual-pilot, the cross-track
errors of the NoTCC group and the TCC groups are compared with that of the
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Figure 4.22: Cross-track errors

manual-pilot only group measured in the pre-experiment, and also with that of
the auto-pilot only. Although the one-way ANOVA for the cross-track errors did
not showed the signi�cant di�erence among the groups, the multiple comparisons
using the Holm-Bonferroni method indicated that the di�erence between the NoTCC
group and the TCC group was close to signi�cance [t(25.3) = 2.49, adj .p = 0.06,
Cohen′s d = 2.77].

4.4.4 Discussion

The results of the TCC rates indicate that the proposed framework detected the
under-trust and presented TCCs in the A1 and A2 conditions. The framework also
detected the over-trust and presented TCCs in the B condition. The manual-pilot rates
signi�cantly increased from the A1 condition to the B condition, and signi�cantly
decreased from the B condition to A2 condition. As there were no such changes among
the conditions observed in the NoTCC group, the hypothesis H3-1 was supported.
Note that the di�erences in the TCC rates among the ABA conditions indicate that the
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task setting used in the experiment induced under-trust more than over-trust.
Although the di�erence was close to signi�cant, the mean of cross-track errors for

the TCC groups was smaller than that for the NoTCC group. Therefore, we consider
that the hypothesis H3-2 was partially con�rmed. The TCCs worked as triggers to
promote trust calibration and helped the participants improve the task performances
by changing their choice behaviors.

In the NoTCC group, the manual-pilot rates were high even when the indicator
showed high reliability of the auto-pilot in the A1 and A2 conditions. The strong
tendency of under-trust was observed. Possible interpretation would be that the
participants tended to intervene the auto-pilot when they noticed the drone was not
heading along the course direction, even if the indicator displayed a high reliability
of the auto-pilot. According to the post-experiment questionnaire results, forty
percent of the participants answered that they selected the manual-pilot when they
thought the drone was about to go out of the course. This preventive action taken by
the participants suggested that the drone’s behaviors had a greater impact on the
participants’ trust than the reliability indicator. In the TCC group, TCCs adaptively
presented at the time of over-trust/under-trust was able to change the participants’
behaviors. Therefore, these results supported the hypothesis H3-3.

We used a verbal TCC in this experiment, and its calibration e�ect was milder than
in the �rst two experiments. This result may be due to a mental workload of reading
the text message of verbal TCC during the real-time navigation task. The e�ects of
visual TCC or audio TCC could be greater as they are more intuitive or with a di�erent
modality.

Several limitations in the current study suggest the necessity of the further research.
The system transparency was realized in a rather simple way with the reliability
indicator, the further study should consider how to improve the system transparency
with the information on the intent, plans and processes of the autonomous systems [83].
The single task setting was examined in the current study, however, the bene�ts of the
auto-pilot could include not only achieving a better performance but also doing other
tasks during the navigation. Further experiment should include a secondary task with
the extension of the framework described in subsection 5.1.3 to accommodate the
factors that in�uence the choice behavior, other than performance. The future study
should consider the participants’ characteristics, such as propensity to trust or attitude
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towards robots.

4.4.5 Conclusion

By examining the proposed method with the semi-automatic drone navigation, we
demonstrated that our framework with TCCs could promote the trust calibration in the
continuous real-time task. The task performance was also improved as a result of the
proper trust calibration. Adaptively presenting TCCs was able to change the behaviors
of the participants in the situations where the indicator of auto-pilot’s reliability failed
to maintain the participants’ trust for the auto-pilot.
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5
Conclusion

5.1 General Discussion

The results of the three empirical studies were obtained with two types of cooperative
tasks: discrete and continuous. The overall results indicated that the proposed method
could successfully detect and mitigate improper trust calibration.

In this section, we �rst revisit the applicability of the proposed method in terms of
the requirements that possible applications must satisfy. Then, we discuss the Trust
Calibration AI (TCAI) regarding its concept and implementation. Finally, we propose
an extension to the proposed framework to take care of the trust factors other than
performance.

5.1.1 Applicability of Proposed Method

As already described in section 3.2, the applications of the proposed method must
meet the following conditions: interchangeability, repeated selection problems, and a
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performance-centric view of trust.

(1) Interchangeability

The human user and the AI system should be functionally interchangeable in performing
cooperative tasks. Although this requirement may sound too restrictive, there are
many real applications for this form of cooperation, including autonomous driving
(SAE Level 4) and diagnosis assistance systems. The performance of human users and
AI systems varies depending on the tasks and environmental conditions. Despite
recent progress on AI technology that exceeds human performance in some tasks [120],
humans still outperform AI in many areas that require generalization [114], creativity,
and ambiguity. If humans and AI cooperate by understanding the relative strengths
and weaknesses of each, the performance of human-AI cooperation would be better
than what they could achieve by themselves. The proposed method does not cover
classes of applications such as fully autonomous driving (SAE level 5) or AI doctors
replacing human doctors. In these applications, the target tasks are performed by AI
agents only, and what human users can do is accept or reject the results of the tasks
done by the AI agents.

(2) Repeated Selection Problems

Human-AI cooperation should be executed as a series of actions taken by a human
user and AI system repeatedly working on selection problems to decide on either AI
execution or manual execution. Applications such as visual inspection, cooperative
decision making, and cooperative vehicle navigation can be naturally decomposed into
such repeated selection problems. This conceptualization is essentially equivalent to a
dynamic two-armed bandit problem, which has a wide variety of applications involving
making a choice between two alternatives. The system transparency interface of an
AI system, which discloses information on AI systems, can help human users solve
selection problems. Although both a human user and an AI system can execute a
cooperative task, the selections are always decided by the human user who must take
�nal responsibility for the outcome of the cooperation.
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(3) Performance-centric View of Trust

As described in Chapter 2, there are many factors in�uencing trust. In the proposed
framework, we focus on trust factors related to system performance, as achieving
higher performance is one of the most important goals of human-AI cooperation. If we
can assume that a human user will act rationally and deterministically according to the
estimated performance, trust can be viewed as the observable human behavior of
selecting a better performance agent.
There are two types of performance for a human user and AI system to estimate: their
performance and the partner’s performance. Regarding the self-estimation of one’s
performance, previous research [121] indicated that human users could appropriately
judge their own manual performance, which corresponds to PH . The TCAI knows how
the Task-AI works, so it could use the system information to calculate the Task-AI
performance, PA. Regarding a partner’s performance, P̂H could be estimated by the
TCAI with a model-based or statistical approach using data collected beforehand
or on-the-�y during the cooperation. However, the estimation of P̂A by a human
user could be more complicated even if the trust is decided only on the basis of
performance-related factors because humans are known to be prone to cognitive biases.
If the factors other than performance-related ones are in�uencing trust decisions, the
extended framework with utility functions described in section 5.1.3 would be required
to solve such problems.

As a summary of the discussion of the three requirements, Table 5.1 shows the
typical applications of human-AI cooperation. The �rst three applications satisfy the
three requirements described above. In the last two applications, humans and AI
have di�erent roles, and they are not functionally interchangeable; therefore, these
applications are beyond the scope of the proposed method.

5.1.2 Role of Trust Calibration AI

As described in Chapter 3, the Trust Calibration AI (TCAI) is a conceptual entity that
monitors the human user’s choice behaviors and issues a trust calibration cue (TCC) if
the result estimated by the TCAI does not match the user’s selection decision.

To illustrate the characteristics of the TCAI, we discuss comparisons with the
cooperation frameworks proposed in previous studies on human-agent teaming.
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Table 5.1: Typical applications and their compliance with requirements

Requirements
Typical Applications Human’s

Role (1) Interchangeability (2) Selection problems (3) Performance-centric
view of trust

Security Inspections Inspector Yes Auto or Manual Yes

Cooperative Medical Diagnosis Doctor Yes Accept or Manual Yes

Autonomous Driving (Lv4) Driver Yes Auto or Manual Yes

AI Doctor Patient No
(Task done by AI only) Accept or Reject N/A

Autonomous Driving (Lv5) Passenger No
(Task done by AI only) Accept or Stop N/A

Vecht et al. [122, 123] proposed a concept of social AI modules that serve as intelligent
middleware aiming to transform task-oriented AI components and humans into a
coherent human-agent team. One of the key functionalities of the social AI modules
is to mediate high-level communication between humans and AIs. In their model,
task-oriented AI components are designed to perform a speci�c task optimally but
may not be optimized for human interaction. A pair of a task-oriented AI and a
corresponding social AI module is equivalent to our Task-AI concept, which is designed
to provide task-dependent information through its system transparency interface.
Their model does not directly address trust calibration issues, which are the main
target of our proposed method with the TCAI.
Cummings et al. [124] discussed three distinct roles in the cooperative decision-making
process: the moderator, generator, and decider. The moderator in their process model
is the agent that keeps the decision-making process moving forward. The generator is
the agent that generates candidates of feasible solutions, and the decider is the agent
that makes the �nal decision. In our proposed method, which focuses on managing the
trust calibration process in human-AI cooperation, the TCAI plays a similar role as the
moderator and generator in their model. In addition to such functions, the TCAI
encourages human users to recalibrate their trust by issuing TCCs so that the user
could make better selections, thus achieving higher cooperation performances. Note
that the decider in our method is always the human user.

The TCAI is designed to not have any identity observable by human users. Thus,
there is no trust issue with the TCAI itself because users are not aware that it exists.
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Figure 5.1: Three categories of factors in�uencing trust decisions

5.1.3 Extension to Framework

We discuss an extension to the proposed framework with expected utility functions to
incorporate trust factors other than performance-related ones.

Other Factors In�uencing Trust Decisions

The proposed framework focuses on performance-related factors to detect over-trust
and under-trust. The reliability of human users and AI systems is compared to identify
better selection that might lead to higher performance. However, there are other
factors in�uencing trust decisions in human-AI cooperation, which would make the
resulting behaviors for selection problems di�cult to understand within the scope of
the proposed method de�ned in Chapter 3. As described in Chapter 2, there are three
major categories of trust in�uencing factors: system-related, human-related, and
environment-related. Factors related to performance can be found in the system-related
category and also in the human-related category (see Figure 5.1).

Trust decisions could be in�uenced by the factors classi�ed in the human-related
category such as culture, personal traits, and prior knowledge about the AI systems.
For example, if a human user has a strong tendency to trust in AI or “automation
bias” [125], the selection decision would be inclined toward the use of the Task AI,
even when its performance is lower than that of the user.
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Task-related factors are included in the environment-related category. For example,
one of a driver’s motivations for selecting autonomous driving mode could be a
possible engagement in non-driving related tasks. Naujoks et al. [126] discussed the
desire to engage in non-driving-related tasks during autonomous driving, which
requires the workload of the driving task to be lighter and causes the driver to select
autonomous mode. Large et al. [127] reported that participants in experiments with a
simulated autonomous driving carried out a wide variety of non-driving related tasks
such as reading books, engaging in social networking, watching movies, or browsing
the web. Even if the reliability of autonomous driving is not higher, a driver may want
to engage in a non-driving task and trust autonomous driving just enough to succeed.

Extension with Utility Function

To integrate the other decision factors described above, we consider an extension to
the proposed framework based on utility theory [128]. Suppose we have a selection
problem S as a set of selections s1:n. If r1:n is a set of outcomes and p1:n are their
associated probabilities, then a selection s in the selection problem S is written as
s = [r1 : p1; . . . ; rn : pn], and an expected utility is given by the following.

EU (s) =
n∑
i=1

U (ri) · pi

A utility functionU (x) is a real-valued function that represents the degree of desirability
of di�erent outcomes ri .

The selection problem SAI−human in the proposed method described in section 3.2
has two selections: SAI−human = {sAI , shuman}. Suppose that we have n outcomes a1:n
and h1:n in sAI and shuman, respectively.

sAI = [a1 : pa1 ; . . . ;an : pan ] (5.1)

shuman = [h1 : ph1 ; . . . ;an : phn ] (5.2)

We can re-de�ne the second inequalities in the proposed framework (3.1) and (3.2) by
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replacing PA and PH with EU (sAI ) and EU (shuman), respectively.

EU (sAI ) > EU (shuman) (5.3)

EU (sAI ) < EU (shuman) (5.4)

, where EU (sAI ) =
∑n

i=1U (ai) · pai and EU (shuman) =
∑n

i=1U (hi) · phi .
The outcomes can be de�ned by whether the task done by AI or human is done

successfully or not. Let a1 be a successful outcome and a2 be a failed one due to the AI.
Similarly, let h1 and h2 be a successful outcome and a failed one due to human users,
respectively. Now, sAI and shuman are

sAI = [a1 : pa1 ; a2 : pa2] = [a1 : PA; a2 : (1 − PA)] (5.5)

shuman = [h1 : ph1 ; h2 : ph2] = [h1 : PH ; h2 : (1 − PH )] (5.6)

, where PA and PH are the same as de�ned in section 3.2. The second inequalities of the
proposed framework (3.1) and (3.2) are given as special cases of (5.3) and (5.4) in which
n = 2 and U (a1) = U (h1) = 1 and U (a2) = U (h2) = 0.

Although further research and empirical evaluations should be done to justify this
extension concept, it would enable the framework to take into account other factors
than performance in human-AI cooperation.

Application Examples

With the extended version of the proposed method (5.3) and (5.4), we show three
application examples in the area of autonomous driving (SAE Lv4). The �rst one is in
the human-related category, and the other two are in the environment-related category.

Fun to drive (personal preference): Some drivers show a marked preference for
manual driving. A higher value of utility functions U (hi) can express the situation in
which drivers select manual driving mode even if the reliability of autonomous driving
PA is higher than that of manual driving PH .

No autonomous driving zone (tra�c regulation): Tra�c situations such as
road work, geofences, or accidents are often de�ned as no-autonomous-driving zones,
which prevents autonomous vehicles from staying in autonomous driving mode.
Drivers must follow the signal sent from a tra�c control system to change from
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autonomous to manual driving. The utility functions U (ai) for the selections of the AI
should become zero if the vehicle enters a no-autonomous-driving zone.

Non-driving related task (secondary task): Suppose a driver of an autonomous
vehicle would not manually drive because he or she wants to do a secondary task
(denoted as t ) such as texting on a mobile phone. A new selection s′AI is necessary to
represent a situation in which the AI does the driving and the driver does texting. Let
t1 be a successful outcome, and t2 be a failed one of the secondary task execution by
the driver. s′AI has four possible outcomes depending on the successes of the AI task
and the secondary task by the driver.

s′AI = [a
′
1 : pa′1 ; a′2 : pa′2 ; a′3 : pa′3 ; a′4 : pa′4] (5.7)

= [a1, t1 : pa1t1 ; a1, t2 : pa1t2 ; a2, t1 : pa2t1 ; a2, t2 : pa2t2]; (5.8)

The expected utility is EU (s′AI ) =
∑4

i=1U (a
′
i) · pa′i . The expected utility is EU (s′AI ) =∑4

i=1U (a
′
i)·pa′i . Now, we can de�ne a new selection problem, S′

AI−human
= {sAI , s

′
AI , shuman},

and the rational selection would be the selection with the highest value in terms of the
expected utility among EU (sAI ), EU (s

′
AI ), and EU (shuman).

5.2 Conclusion

This dissertation focused on the problem of over-trust and under-trust in human-AI
cooperation by exploring two research questions: RQ1: Can we detect if a user is
over-trusting or under-trusting an AI system? RQ2: Can we mitigate a user’s over-trust
or under-trust? To address these questions, we �rst examined the related trust literature
with a particular focus on trust calibration and factors in�uencing trust. Measuring
trust is essential to detecting miscalibration. To mitigate over-trust or under-trust,
in�uencing trust is necessary. Both measuring trust and in�uencing trust are di�cult
because trust is a latent and multi-faceted construct.

We approached the research challenges with a behavior-based trust measurement to
capture the status of calibration and a concept of cognitive cues called “trust calibration
cues.” A formal framework is proposed so that the status of miscalibration can be
de�ned and detected through the observation of human behavior. Four types of
trust calibration cues were designed and evaluated. Three empirical studies were



5.2 Conclusion 85

done to evaluate the proposed method. We created two sample tasks for human-AI
cooperation: an image screening task and a continuous cooperative navigation task.
We conducted three online experiments using a simulated drone environment. We
observed both the status of over-trust and the under-trust for the participants of all
three experiments. The results of the �rst empirical study demonstrated that our
proposed method had signi�cant e�ects on changing human behavior in the case of
over-trust. A verbal cue showed the largest e�ect amongst the other cues of visual,
audio, and anthropomorphic. The second empirical study showed that the proposed
method also worked well under dynamic trust changes of ABA and BAB, where A
and B mean over-trust and under-trust. For the image screening task, the level of
over-trust was higher than that of under-trust. The third empirical study indicated
that the proposed method was e�ective in a continuous real-time task involving
navigating a semi-autonomous drone. This result can open the possibility of applying
the proposed method to practical real-time applications such as autonomous driving.
We also discussed a possible extension to the framework with utility functions to
incorporate trust factors other than performance.

The recent proposal of Trust Engineering for human-AI teaming by Ezer et al. [129]
insisted that there are still many challenges in managing trust in AI systems that are
increasingly complex and work within imperfect information environments. They
proposed six conceptual components in Trust Engineering: adaptability, communication,
explainability, training/knowledge, assessment, and security. This dissertation’s results
contribute to the �rst three components, which are mainly related to interactions
between humans and AI.

The results of our empirical evaluations indicated that the proposed method
could detect and mitigate the status of improper trust calibration; therefore, we
conclude that our proposed method provides a reasonable basis for answering the
two research questions, RQ1 and RQ2. As the proposed method is based on a simple
and task-independent framework, it could be applied to many application situations.
Despite several limitations, we believe that our proposed method could contribute to a
baseline design of trustworthy systems for better human-AI cooperation.
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5.3 Future Work

As described in Chapter 2, Lee and See [1] proposed three categories of factors
in�uencing trust: performance, purpose, and process. Ho�man et al. [31, 9] also
studied three categories: human-related, robot-related, and environment-related. This
dissertation discussed trust calibration with a particular focus on performance aspects of
human-AI cooperation. There are many other factors in�uencing trust to be considered
in future research. Human characteristics such as age, gender, and propensity to trust
should be examined. Trust could also be signi�cantly impacted by attributes of AI
systems or autonomous robots such as appearance and anthropomorphism. Further
evaluation of the proposed method with di�erent types of robots and tasks should be
conducted.

Although we have learned some lessons in the empirical study indicating that the
TCCs were more e�ective than a simple reliability indicator in the case of miscalibration,
further research on the interactions between human users and AI systems is required
to evaluate the concept of TCCs. Regarding the TCAI, which is a conceptual entity in
our proposed method, implementing an explicit interface/appearance for the TCAI
would be interesting to explore. Although this might bring about new issues such as
regarding trust in the TCAI, it would help us to acquire a better understanding of the
trust calibration mechanism in human-AI cooperation.
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