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Summary

Speech synthesis is the technology of generating speech from an input. While

the term is commonly used to refer to text-to-speech (TTS), there are many

types of speech synthesis systems which handle di↵erent input interfaces such as

voice conversion (VC), which converts speech of a source speaker to the voice

of a target, or video-to-speech, which generates speech from an image sequence

(video) of facial movements.

This thesis focuses on the voice cloning task which is the developing of a speech

synthesis system with an emphasis on speaker identity and data e�ciency. A voice

cloning system is expected to handle circumstance of having less than ideal data

for a particular target speaker. More specifically, when we not have control over

the target speaker, recording environment, or the quality and quantity of speech

data. Such systems will be useful for many practical applications which involve

generating speech with desired voices. However, it is also vulnerable to misuse

which can cause significant damage to society by people with malicious intentions.

By first breaking down the structures of conventional TTS and VC systems into

common functional modules, we propose a versatile deep learning based voice

cloning framework which can be used to create a unified speech generation system

of TTS and VC with a target voice. Given such unified system, which is expected

to have consistent performance between its TTS and VC modes, we can use it to

handle many application scenarios that are di�cult to tackle by just one or the

other, as TTS and VC have their own strengths and weaknesses.

As this thesis is dealing with two major research subjects, which are TTS

and VC, to provide a comprehensive narrative its content can be considered as

comprising of two segments which tackle two di↵erent issues: (1) developing a

versatile speaker adaptation method for neural TTS systems. Unlike VC in which

existing voice cloning methods are capable of producing high-quality generated

speech, existing TTS adaptation methods are lacking behind in performance and

scalability. The proposed method is expected to be capable of cloning voices using

either transcribed or untranscribed speech with varying amounts of adaptation
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data while producing generated speech with high quality and speaker similarity;

(2) establishing a unified speech generation system of TTS and VC with highly

consistent performance between two. To achieve this consistency, it is desirable

to reduce the di↵erences between the methodology and use the same framework

for both systems. In addition to convenience, such system also has the ability to

solve many unique speech generation tasks, as TTS and VC are operated under

di↵erent application scenarios and complement each other.

On the first issue, by investigating the mechanism of a multi-speaker neural

acoustic model, we proposed a novel multimodal neural TTS system with the

ability to perform crossmodal adaptation. This ability is fundamental for cloning

voices with untranscribed speech on the basis of the backpropagation algorithm.

Comparing with existing unsupervised speaker adaptation methods which only

involve a forward pass, a backpropagation-based unsupervised adaptation method

has significant implication on performance as it allows us to expand the speaker

component to other parts of the neural networks beside the speaker bias. This

hypothesis is tested by using speaker scaling together with speaker bias, or the en-

tire module as adaptable components. The proposed system unites the procedure

of supervised and unsupervised speaker adaptation.

On the second issue, we test the feasibility of using the multimodal neural

TTS system proposed previously to bootstrap a VC system for a particular tar-

get speaker. More specifically, the proposed VC system is tested on standard

intra-language scenarios and cross-lingual scenarios with the experiment evalua-

tions showing promising performance in both. Finally given the proof-of-concept

provided by earlier experiments, the proposed methodology is incorporated with

relevant techniques and components of modern neural speech generation systems

to push performance of the unified TTS/VC system further. The experiments

suggest that the proposed unified system has comparable performance with ex-

isting state-of-the-art TTS and VC systems, at the time this thesis was written,

but higher speaker similarity and better data e�ciency.

At the end of this thesis, we have successfully created a versatile voice cloning

system which can be used for many interesting speech generation scenarios. More-

over, the proposed multimodal system can be extended to other speech generation

interfaces or enhanced to provide controls over para-linguistic features (e.g., emo-

tions). These are all interesting directions for future works.
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Chapter 1

Introduction

1.1 Voice cloning

Speech synthesis is the technology of generating speech from an input. In its nar-

row sense, speech synthesis is used to refer to text-to-speech (TTS) [1], which play

an essential role in spoken dialog systems as a way for machines to communicate

with humans. In its broader definition, speech synthesis can refer to all kinds of

speech generation interfaces like voice conversion (VC) [2], video-to-speech [3, 4],

et cetera [5]. Recent state-of-the-art (SOTA) speech synthesis systems can gen-

erate speech with natural sounding quality, some of which are indistinguishable

from recorded speech [6]. Deep neural networks are used for various components

of these speech synthesis systems such as acoustic models and neural vocoders.

Many use a sequence-to-sequence (seq2seq) model to unfold a compact phoneme

sequence to acoustic features in TTS [6, 7] or to handle the mismatch alignment

of acoustic sequences in VC [8, 9, 10]. A neural vocoder which generates wave-

forms sample-by-sample [11, 12, 13] is also a staple of many high quality speech

generation recipes [6, 14]. Generally speaking, a deep learning approach achieves

high performance when training on a lot of data. For speech generation models,

it means we need many hours of speech from a target speaker to train the model.

This limits the ability to scale the technology to many di↵erent voices.

The term voice cloning is used to refer to a specific speaker adaptation sce-

nario of TTS with untranscribed speech in several works [15, 16]. However in

pop culture, it is loosely used to describe the technology which resembles VC. To

decouple this confusion we can use voice cloning as an umbrella term to indicate

any type of system which generates speech imitating the voice of a particular

speaker. The main di↵erence between voice cloning and speech synthesis is that

the former puts an emphasis on the identity of the target speaker [17] while the
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latter sometimes disregards this aspect for the naturalness [18]. Given this defi-

nition, a voice cloning system can be TTS, VC, or any type of speech generation

system [4, 5].

The performance of a voice cloning system is judged on many aspects. As a

speech generation system, the naturalness and the similarity to target speakers

are important [6]. As a computer system, small memory footprint [19] and fast

computing time [15, 20] are desirable for practical reasons. However, the defining

property of a voice cloning system compared with a generic speech synthesis is

its data e�ciency as this would dictate the scalability [21]. While data e�ciency

can be casually interpreted as using as little data as possible [19], a better voice

cloning system should not only work with extremely limited data situation but

should also be able to take advantages of abundant speech data [21] when they

become available and whether they are transcribed or not [22].

While TTS and VC are two systems functioning under di↵erent scenarios,

they share a common goal of generating speech with a target voice [23]. If we de-

fine the TTS as a synthesis system generating speech using linguistic instructions

obtained from written text [24], then the VC can be defined as a synthesis system

generating speech using linguistic instructions extracted from a reference utter-

ance. Given the similarity in objective but di↵erence in operation contexts, TTS
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and VC complement each other and have their unique role when dealing with a

particular speech generation task. If we can unite their methodology and create

a versatile system with high consistence, it would greatly reduce the methodolog-

ical complexity as well as potentially be used for many unique scenarios. This is

also a main objective of this thesis.

1.2 Thesis outline

As illustrated in Figure 1.2, the chapters in this thesis tackle di↵erent aspects of

two major issues. Chapter 2 and 3 give general background about deep learning,

speech generation and establishing the basis of the multi-speaker neural TTS

system as well as the supervised speaker adaptation based on it. Chapter 4,

5, and 6 tackle di↵erent aspects of the development of a novel versatile speaker

adaptation method. Chapter 7, and 8 improve upon the methodology established

in Chapter 6 to create a unified self-consistent voice cloning system for both TTS

and VC. The content of each chapter in more details follows:

Chapter 2 provides the background of TTS and VC systems in the context of

voice cloning. The general information about deep learning that is most relevant

to the thesis is also explained.

Chapter 3 establishes the multi-speaker acoustic model which is the basis

of novel methodology proposed in later chapters. It provides the fundamental

information on speaker-adaptive acoustic models and supervised adaptation.

Chapter 4 proposes a novel unsupervised speaker adaptation model by per-

forming crossmodal adaptation with multimodal neural TTS. The methods used

to train such multimodal neural networks are also explained.

Chapter 5 introduces di↵erent types of speaker components, like speaker-

dependent scaling and bias codes, and evaluates the their e↵ect on performance

of multi-speaker and speaker adaptation tasks.

Chapter 6 uses the observations presented in Chapter 4 and 5 to propose fur-

ther enhancements inspired by variational autoencoder to increase the robustness

and performance of the multimodal speaker-adaptive neural TTS.

Chapter 7 provides proof-of-concept that the same methodology presented in

Chapter 6 is applicable for creating non-parallel VC systems in both standard

intra-language as well as cross-lingual scenarios.

Chapter 8 incorporates the proposed method with functional components of

SOTA speech generation systems to push the performance of the unified TTS/VC

system on native and non-native speaker voice cloning scenarios.
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Chapter 2

Background

This chapter provides general background of TTS and VC in the context of cloning

voices and introduces several related prior works. The information is framed in

a way to highlight the similarity and complementary relation between TTS and

VC. The fundamental deep learning methods that are most relevant to the work

in this thesis are also explained in this chapter.

Section 2.1 and 2.2 review the prior work on TTS and VC respectively. Sec-

tion 2.3 introduces the general deep learning techniques, while Section 2.4 puts

them in the context of speech synthesis systems. Section 2.5 presents the objec-

tive and subjective metrics that are used throughout this thesis to evaluate the

performance of speech generation systems.

2.1 Text-to-speech as voice cloning system

2.1.1 Text-to-speech system

A TTS system takes a text input and generates a speech utterance that conveys

the information contained in the given words. Conceptually, a TTS system can

be described as a transformation function (or a chain of functions as seen on

Figure 2.1) which is defined by its parameters ⇥tts. The function takes in a text

(or linguistic) input x and produces the speech (or acoustic) output ỹ which is

an approximation of the natural speech y of the target speaker:

ỹ = TTS(x;⇥tts) (2.1)

A conventional pipeline of a TTS system is illustrated in Figure 2.1. The

main challenge of TTS model is modeling the transformation of a compact text

representation to a very dense speech waveform. Each module in the pipeline
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Figure 2.1: A conceptual representation of the conventional TTS pipeline.

transforms its input into an intermediate representation which helps bridging the

gap between text and speech. More details about modules of the TTS system are

explained in Section 2.4 together with that of the VC system. For a generic TTS

system, the naturalness and the intelligibility of generated speech are the most

important aspects as they directly a↵ects the way the information is absorbed by

listeners. While the speaker identity of generated utterances is also important,

it is sometimes disregarded for the naturalness. For example, when the target

language has limited resources [18] and the main goal is creating a serviceable

TTS system.

A TTS system is typically trained on dozens of hours of transcribed speech

[6, 25] of a particular target speaker. Due to the high requirement in quantity and

quality, a professional voice actor is commonly commissioned to record such data

in a controlled environment. This makes the conventional approach ill-fitting

for voice cloning task in which we do not have control over the target speaker,

recording environment, or the amount of available data.

2.1.2 Speaker adaptation for TTS systems

Cloning voices with a TTS system essentially means we want to create new voices

using a small amount of data from the target speakers. With limited transcribed

speech samples, we can adapt a pretrained model in a supervised manner. The

initial model can be trained on data of a single speaker [26] or data pooled from

multiple speakers [27, 28]. A simple fine-tuning produces a high quality model

when the amount of data of the target speaker is small but su�cient (e.g. one

hour) [21]. When data is extremely limited (e.g. one minute), we can restrict

the tuning to a certain speaker component to prevent overfitting [28, 29, 21] or

deploy additional regularization methods [30] to prioritize the reliable quality over

speaker similarity. In summary, speaker adaptation methods transfer knowledge

learned from abundant data of one or multiple speakers to reduce the data demand

from a particular target speaker.
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The costly part of a voice cloning process with the TTS system is data collect-

ing stage, especially the transcript of speech. Theoretically speaking, the speaker

characteristic should be self-contained in the utterances, so cloning voices with

untranscribed speech should be a possibility. One practical approach is obtaining

automatically annotated transcript using a SOTA automatic speech recognition

(ASR) system [31]. However ASR-predicted transcripts contain wrong annota-

tions which a↵ects the performance of the adaptation process. Moreover this

approach assumes a well-trained ASR system is obtainable for the target lan-

guage which makes it impractical for low-resource languages [18] or performing

cross-language speaker adaptation [32, 16]. Given the disentanglement ability of

deep learning, another approach is training a speaker-adaptive acoustic model

conditioned on a speaker representation extracted from speech [15, 19, 33]. The

speaker representation can be i-vector [34], d-vector [35, 19], or x-vector [36] which

are all byproducts of speaker recognition systems. This approach has computing

advantage as it does not involve an optimization loop [15]. But its drawback is

the low data scalability, in other words the similarity to the target speaker seems

to stop improving when using more than a few seconds of speech [21].

2.1.3 Supervised adaptation with HMM-based TTS

Speaker adaptation for TTS systems is a long standing problem which has been

developed along with advancements of the conventional data-abundant TTS prob-

lem. For traditional statistical parametric speech synthesis (SPSS) systems based

on Hidden Markov Model (HMM), the speaker adaptation methods generally in-

volve using a function to transform a single-speaker or an average-voice model

to the adapted model which is better at explaining target speaker’s limited tran-

scribed speech data. Even though this thesis focuses on deep learning based

systems, looking into the traditional framework provides a systematic overview

about the motivations and the developments of speaker adaptation methods that

are still relevant for contemporary systems.

An HMM is defined by its parameters which consist of initial state probabili-

ties, the state transition probabilities and the output probability distributions as

illustrated in Figure 2.2. Given an HMM-based acoustic model [37] with its pa-

rameter � and a linguistic input sequence x1:T , the problem of generating speech

from the acoustic model [38] is essentially obtain an acoustic feature sequence

ỹ1:T which maximizes the output probability,

ỹ1:T = argmax
y1:T

p(y1:T |x1:T ;�). (2.2)
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Figure 2.2: A three-state left-to-right HMM.

For speech synthesis, a continuous distribution is generally used for the out-

put probabilities of HMM states. Specifically, a Gaussian distribution is nor-

mally used as the probability density function for both acoustic state output

and duration state output. To generate sophisticated speech units which vary

depending on text content, the acoustic model does not use phoneme but uses

triphone/quinphone as well as augmenting linguistic contexts and prosody infor-

mation as the input. However, it is impossible to have data to cover all possible

linguistic contexts as there are too many variations some of which rarely occur

in real-life situations. A decision tree which asks linguistic questions is used to

cluster these variations and reduce the amount of parameters [39, 40].

Due to the fragmented nature of decision tree and the large amount of pa-

rameters, training an HMM-based acoustic model is not an option for speakers

whose data is limited. In these cases, we can apply adaptation techniques to

create an adapted model for target speakers by using a pretrained model of a dif-

ferent speaker with abundant data or an average-voice model trained on data of

multiple speakers. In the other words, the fundamental of adaptation method is

using a small amount of adaptation data of a target speaker to estimate a trans-

formation function, which is applied to an initial model, instead of training the

model’s parameters themselves. A popular technique for speaker adaptation with

HMM-based acoustic model is estimating a linear regression function to transform

the initial model. The expressive power of the transformation function is one of

the factor that has big impact on the performance of the adaptation method.

Many works focused on tackling this aspect of speaker adaptation methods, for

example:
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Maximum likelihood linear regression (MLLR): [41] given the mean

µi 2 Rd and covariance ⌃i 2 Rd⇥d of the i-th multivariate output distribution

of the initial model, MLLR adaptation technique transforms this distribution to

one of the target speaker using an a�ne function:

µ̂i = A(k)µi + b(k), (2.3)

here A(k) 2 Rd⇥d and b(k) 2 Rd belong to speaker k-th. Generally, these speaker-

dependent parameters are estimated in maximum likelihood (ML) fashion with

transcribed speech data of the target speaker.

Constrained MLLR (CMLLR): [42, 43] the above MLLR technique only

alters the mean of the distribution which restrict its performance. Therefore,

many works proposed the CMLLR technique which changes both the mean and

the covariance of the distribution:

µ̂i = A(k)µi + b(k) (2.4)

⌃̂i = A(k)⌃iA
(k),>. (2.5)

This technique is equivalent to applying the transformation on feature vectors

themselves, thus it is also referred as feature-space MLLR (fMLLR) [44]. De-

pend on data situation of target speaker, we can estimate one transformation

function for each distribution or a single function for the entire model to reduce

the amount of adaptation parameters. For a more sophisticated technique, we
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can cluster distributions using tree structure [45, 30] to drastically reduce the

amount of adaptation parameters as illustrated in Figure 2.3. The main incen-

tive for proposing novel HMM-based speaker adaptation methods at that time

was improving the balance between performance and overfitting resistance. For

example, maximum a posterior (MAP) [46, 47] can be used instead of ML to re-

duce overfitting. The prior in MAP acts as an auxiliary regularization to prevent

the adapted model from straying too far from the initial.

2.1.4 Unsupervised adaptation with d-vector

Unsupervised speaker adaptation in the context of TTS systems refers to methods

that use untranscribed speech of target speakers to clone their voices. For deep

learning based TTS systems, one prominent approach for unsupervised speaker

adaptation with a small amount of speech data is using speech-encoded speaker

embedding. This approach is dependent on the ability to decouple speaker char-

acteristics from the linguistic model of the neural acoustic model. It works on the

assumption that the speaker characteristic can be represented by a fixed-length

embedding vector which is extracted from speech signal.

For example, Jia et. al. [19] proposed a speaker-adaptive TTS system which

is capable of cloning voices with a few speech samples, which consists of three

modules trained independently: a seq2seq TTS model, a neural vocoder, and a

speaker encoder network as illustrated in Figure 2.4. The performance of this

approach is dependent on two main assumptions. First, the speaker encoder is

trained on a large-scale dataset with thousands of speakers. Second, the acoustic

model has su�cient expressive power to decouple speaker characteristics and

contain them in the speaker embedding. The results reported in [19] suggested

that we can only enforce both of these two elements to some extent which makes

10



the similarity of unseen target speakers to be worse than that of speakers in the

initial training set.

The fact that the speaker encoder is trained independently from the TTS

model makes its neural structure irrelevant. In the other words, the speaker

encoder can be any type of system that takes the speech waveform and produces

a respectable speech-encoded speaker embedding. The important part is that the

embedding produced by the speaker encoder is “good” for the speaker-adaptive

model, however there is no direct way to judge the quality of the embedding

without trial and error on the neural TTS model itself. Many other works have

evaluated similar systems with other types of speech-encoded speaker embedding

[34, 35], with some types of embedding seeming to work better than others [35, 36]

although the di↵erence in performance is moderate in general.

2.2 Voice conversion as voice cloning systems

2.2.1 Voice conversion systems

A VC system modifies a utterances spoken by a source speaker to make it sound

like it is spoken by a di↵erent target speaker while preserving the linguistic in-

formation [2, 48]. Similar to TTS, a VC system can also be described as a

transformation function which is defined by its parameters ⇥vc. The function

takes in speech of a source speaker ysrc and produces the speech with a target

voice ỹtar while maintaining the linguistic content:

ỹtar = V C(ysrc;⇥vc) . (2.6)

A generic VC system by itself is complied with all requisite conditions of a voice

cloning system defined in Section 1.1, in the other words speaker identity of

generated utterances is the most important objective of VC. So a good voice

cloning system for VC is the one that can generate high quality speech and use

available data of the target e�ciently.

The conventional VC approach is text-dependent, i.e. it expects the training

data to be parallel utterances of source and target speakers [49, 50]. Given these

utterances, VC can be modeled as a transformation from a deterministic speech

input to a deterministic speech output. A conventional pipeline of a parallel VC

system is illustrated in Figure 2.5 with several modules conceptually identical

to that of the TTS system (see Figure 2.1). More details about each module is

explained in Section 2.4. As both the input and output of VC system are speech,
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Figure 2.5: A conceptual representation of the conventional VC pipeline.

the main challenge is misalignment of two utterances in the training stage. The

“aligner” module in this case can be techniques such as dynamic time warping

(DTW) [51] or a seq2seq network [8, 9]. In the conversion stage, the aligner is not

mandatory as we could use duration of source utterance directly. However, by

doing so we miss the chance to further improve the speaker similarity by making

the speaking rate of the generated utterance to be more similar to the target

speaker [8, 52, 9]. It is dependent on the application scenarios to include or not

include a duration/prosody converter.

As it is labor-intensive, and therefore expensive, to prepare parallel utterances,

the parallel VC systems commonly have to build with as little as five minutes

of speech data from a speaker [53]. This is inconvenient and also limits the

performance of the VC systems in general.

2.2.2 Non-parallel VC systems

Many have worked on methodologies to train VC systems with non-parallel ut-

terances to reduce the data demanding [54]. One approach is handling voice

cloning at model-level by formulating a transformation function to adapt from

pretrained models [55, 56] similar to the speaker adaptation of HMM-based TTS

model described in Section 2.1.3. With the deep learning approach, the funda-

mental for non-parallel VC is learning a disentangled linguistic representation

either implicitly or explicitly. For the implicit cases, Hsu et al. [57] used varia-

tional autoencoder (VAE) while Kameoka et. al. [54] used generative adversarial

network (GAN) to train a many-to-many non-parallel VC system. These methods

use multi-speaker data, conditional labels, and various forms of regularization to

encourage the model to decouple linguistic content from speaker characteristics

via a self-supervised training process. For the explicit cases, Sun et al. [58] used

phonetic posteriorgrams (PPG) obtained from a SOTA ASR model to train an

any-to-one non-parallel VC system. As an ASR model is speaker-independent,

a PPG-based VC system can theoretically convert speech of arbitrary source
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Figure 2.6: Variational autoencoder based acoustic model for VC.

speakers to the target speaker.

Even though a typical VC system is only trained on speech data, recent works

have suggested that using transcriptions of training data can further improve

quality of generated samples [59, 10]. Having a solution in place to take advantage

of additional resources whenever they become available provides a robust system

which could tackle many diverse voice cloning scenarios.

2.2.3 Non-parallel VC with variational autoencoder

One of the main challenges for training a VC system is obtaining alignment

between source and target speakers’ utterances due to the duration and prosody

mismatches. It is also the reason that non-parallel VC is more challenging than

parallel VC as there is no alignment at all between utterances of source and target

speakers. One deep learning based approach is using self-supervised training

to learn a speaker-disentangled latent representation. A self-supervised neural

network is trained with the same utterance used as input and output, so it does

not have to deal with misalignment between source and target utterances.

The VAE-based VC system is one realization of this approach [57]. The

general structure of the system is illustrated in Figure 2.6. In summary, the

VAE-based acoustic model contains two modules, an encoder and a decoder. The

encoder Enc, defined by its parameter �, is designed to be independent from

speakers and able to convert the speech input into a speaker-disentangled latent

variable z, or a distribution of it due to variational structure:

z ⇠ Enc(y;�) = q(z|y) . (2.7)

On the other hand, the decoder Dec, defined by its parameters ✓, takes the latent

variable and a speaker representation s(k) to reconstruct the speech input of the
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same k-th speaker in the training stage:

ỹ = Dec(z, s(k); ✓) . (2.8)

In the conversion stage, we use a reference utterance of a source speaker but

speaker embedding of the target to produce speech with same content as the

reference but in the voice of the target speaker.

The viability and performance of the VAE-based VC system rely on two as-

sumptions. First, the encoder can discard all speaker information while retaining

the linguistic content even though no explicit constraint for such objective is de-

ployed in the training stage. Second, a single speaker embedding is enough for the

decoder to reconstruct speaker characteristics from a speaker-disentangled latent

feature. In the fashion of vanilla VAE, we assume the latent variable has a simple

prior distribution likes isotropic normal distribution which limits the expressive-

ness of latent space. This assumption acts as a regularization which forces the

encoder to remove unnecessary information from speech, which we expect to be

speaker characteristics as the decoder is already provided with such information

through the speaker embedding.

The limitation of VAE-based systems is that we have to indirectly shape the

latent space through regularization and constraints, such as putting a simple prior

on the latent space, without the supervision of hard label or paired data. There-

fore, we cannot be sure what kind of information the encoder discarded or what

kind of information it retained. This is a basic property of self-supervised training

method as it is dependant on the model to figure things out by themselves. To

improve the self-supervised training, we can explicitly use an auxiliary speaker

classifier to force the model to focus more on speaker characteristics [60], or in-

corporated GAN [61] and adversarial loss in general [54] to avoid the assumption

of a simplistic prior distribution over the latent space.

2.2.4 Non-parallel VC with phonetic posteriorgram

The main principle of the VAE-based VC system described previously is that the

model is somehow able to discover a speaker-disentangled latent feature contain-

ing linguistic information by itself. Based on this observation, instead of using a

latent linguistic feature implicitly, we can use an explicit frame-based linguistic

representation.

One of the most successful methods for building non-parallel VC systems is

using PPG as a frame-based phonetic feature and training a TTS-like acoustic
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Figure 2.7: A conceptual representation of the PPG-based VC pipeline.

model [58]. The PPG, produced by a ASR system which is trained to classify

words, phonemes or senones, contains phonetic and alignment information. Given

the speaker-independent characteristic of ASR model, it is expected to generalize

to unseen speakers and, therefore, able to be used for speakers who are not

included in the training of ASR model.

Figure 2.7 illustrates the general pipeline of PPG-based VC systems. PPG is

used to train a TTS-like acoustic model which transforms phonetic information

extracted from an arbitrary source speaker’s utterance to acoustic features with

the target voice. In a way, PPG-based VC system is essentially a TTS model

stacked on the top of an ASR model, but instead of text, an intermediate phonetic

representation is used as text proxy. Auxiliary techniques that are generally

used for TTS to improve the performance are also applicable to PPG-based VC

systems. For examples, we can use a multi-speaker corpus to train an average

model then adapt it to the target speaker to reduce data demand [62] or train

a speaker-aware acoustic model by augmenting the PPG input with a speaker

representation embedding [63].

Given a ASR model trained with thousands of hours of transcribed speech, the

PPG-based approach produces high quality generated speech [14] and is able to

maintain high consistency even when used for cross-lingual scenarios [64]. How-

ever, training SOTA ASR models is not an option for many languages due to

the scarcity of speech data, especially transcribed speech. Moreover, a linguistic

feature extractor, which is the ASR model in this case, trained independently

from the acoustic model would prevent further improvement on performance, as

many recent works have shown that an integrated and jointly trained model is

the key for boosting performance with deep learning methods [65].
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2.3 Deep learning

2.3.1 Neural network

The goal of neural network, or multilayer perceptron, is to approximate a function

F*, which maps an input x to an output y by using a neural network F which

is defined by its parameters ⇥:

ỹ = F(x;⇥) . (2.9)

The neural network F is a composition of L neural layers stacked on top of each

others. A simple feedforward layer takes the input and transforms it into a latent

feature using a non-linear transformation function:

h1 = f (1)(W 1x + c1) , (2.10)

where W 1 and c1 are weight and bias of the first hidden layer, and f (1)(.) is a non-

linear activation function, such as sigmoid, hyperbolic tangent (tanh), rectified

linear unit (ReLU), etc, used for the first layer. To increase expressive power of

the model, we stack multiple hidden layers on the top of each others. The output

of the current hidden layer is used as the input of the next layer:

hl = f (l)(W lhl�1 + cl) , (2.11)

for l 2 [2, L � 1]. The last layer is responsible for mapping to the designated

output. For a classifier, the output y is a category; while for a generator, the
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output is a desired target feature (e.g., image, speech, and video):

ỹ = f (L)(W LhL�1 + cL) . (2.12)

As the output of the neural network, ỹ, is an approximation of the true target, y;

we want it to be as close to the true target as possible. This can be achieved by

adjusting the network’s parameters ⇥ to better explain the training data using

an optimization scheme. This is referred to as the training process of a neural

network model. In general we refer to a feedforward neural network by using

Equation 2.11. For advanced topics on neural network, please refer to the Deep

Learning book [66].

2.3.2 Gradient descent and backpropagation algorithms

The neural network is trained with gradient descent algorithm. It iteratively

adjusts the model’s parameters to minimize a designated cost function:

E = Cost(ỹ,y) (2.13)

As the weights and biases of the network are the adjustable components, we

calculate their gradients with respect to E:

5 E = (
@E

@W1,1
,
@E

@c1,1
,

@E

@W1,2
,
@E

@c1,2
, ...,

@E

@Wl,j
,
@E

@cl,j
, ...,

@E

@WL,j
,
@E

@cL,j
) (2.14)

Each parameter is updated with an increment as follow:

4Wl,j = ��
@E

@Wl,j
(2.15)

where � represents a learning rate which dictates the changing intensity in each

training step. For classic (or batch) gradient descent, the gradient is calculated on

the cost of all available training examples. However for a modern system which

is trained on enormous amount of data, stochastic gradient descent (SGD) and

mini-batch gradient descent, which use one or several examples in each step, are

more popular approaches.

To calculate gradients for parameters which sit in lower layers of the network,

we use the backpropagation algorithm. It applies the chain rule to calculate

derivative of composite functions. Specifically, let x be a real number, and both f

and g are real-valued functions. Suppose that z = f (1)(x) and y = f (2)(f (1)(x)) =
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f (2)(z) then chain rules states that:

@y

@x
=

@y

@z

@z

@x
(2.16)

By applying the chain rule to neural networks, we are able to propagate the

error from the output layer to hidden layers and calculate their corresponding

gradients. Even though, in general, gradient descent and backpropagation are

used together to train a neural network by jointly optimizing all parameters

at each step, we can use them to adjust only certain parts of network while

making the other parameters immutable. This is also fundamental for many

backpropagation-based speaker adaptation methods based on neural models.

2.4 Deep learning for speech synthesis systems

Most of the recent advancements in te development of speech synthesis systems

were achieved by replacing modules in the conventional pipelines (Figure 2.1 and

2.5) with neural-based counterparts trained with the backpropagation algorithm

[6]. This approach reduces the methodology di↵erence of each module and opens

up the possibility to jointly optimize the entire system in an end-to-end (E2E)

fashion which is important for boosting the performance [65]. This section de-

scribes the incorporation of deep learning into the speech synthesis pipeline.

2.4.1 Linguistic and acoustic analyzers

As text is a discrete and compact representation which lacks sophisticated lin-

guistic information for speech generation while a speech waveform is high local

temporal feature which contains thousands of data point per seconds, the linguis-

tic and acoustic analyzer are used to transform the initial representations of text

and speech into the ones that are better suited for the tasks at hand.

Linguistic analyzer

Traditionally, the linguistic analyzer of a TTS system extracts a set of hand-

picked language-dependent linguistic information which is deemed relevant for

the text-to-speech mapping by experts. A linguistic toolkit, or front-end of TTS

system, is developed to normalize and extract the information from the input text

[67, 68]. However, recent works have shown that by letting the neural models fig-

ure out the relevant information by themselves we can improve the naturalness of

the generated utterances [69, 65]. Figure 2.4 shows an example of this approach
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with the linguistic analyzer absorbed into a seq2seq TTS model. The text rep-

resentation used in these model is normalized text or phonemes which greatly

reduces the complexity of building a front-end system for a particular language.

However, for certain languages (e.g., Japanese) augmenting the text representa-

tion with linguistic information which is deemed di�cult to extract from text

(e.g. pitch accent) seems to improve the performance [70, 71].

Most of the experiments in this thesis using o↵-the-shelf hand-crafted linguis-

tic features of English and Japanese (details in Appendix B) to test the focused

hypothesis of each chapter. In the very end, specifically the experiments in Chap-

ter 8, phoneme input and a neural-based linguistic analyzer is used to boost the

performance and move the system toward an end-to-end setup.

Acoustic analyzer

The type of acoustic used is dependent on the speech processing task. Generally,

the speech signal is represented by prosodic and acoustic features but we do not

always used both of them. For example, many ASR systems use exclusively mel-

frequency cepstral coe�cients (MFCC) as the acoustic input as pitch information

is deemed irrelevant for English ASR systems. However, fundamental frequency

(F0) seems to improve the recognition performance of many pitch-accented lan-

guages such as Vietnamese [72] and Cantonese [73]. For speech synthesis, Mel-

generalized cepstral coe�cient (MGC) and F0 are two main acoustic features

for speech synthesizing. With recent end-to-end setup, it is desirable to use a

single representation for both prosodic and acoustic features, so many have used

spectrogram or mel-spectrogram [6] as the representation of speech.

Most of the experiments in this thesis use a parametric vocoder to synthesize

speech with F0 and MGC acoustic features. For the experiments that synthesize

speech with WaveNet vocoder, the mel-spectrogram is used as the acoustic fea-

ture. For the speech input of STS stack, either raw waveform or mel-spectrogram

is used as the speech representation.

2.4.2 Sequence aligner and seq2seq model

One of the challenges of training a speech synthesis system is the misalignment

of input and output sequences, it is relevant to both TTS and VC. As seen on

Figure 2.1 and 2.5, we need an “aligner” module to handle this problem. In

the inference stage, the aligner is used to determine the duration of generated

speech in the case of TTS; while the in case of VC, generated speech can use the

duration of the reference utterance, although a duration model dependent on the
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Figure 2.9: A conceptual representation of a seq2seq TTS pipeline.

target speaker might boost the speaker similarity further. The two main ways to

approach the duration modeling is treat it as an model separated from the rest

of the speech synthesis system or as an integrated model right from the start.

Separated duration modelling approach

In the conventional setup of neural speech synthesis models, we use an external

duration model to align the input and output sequences. This duration model can

be human annotations or automatic systems. In the case of TTS, we can use an

HMM-based acoustic model to force align the linguistic and acoustic sequences.

In the case of VC, we use Dynamic Time Warping (DTW) to align parallel utter-

ances of source and target speakers. For the inference we can train a separated

duration model to produce the necessary prosody information for generation or

use duration of a reference utterances. Modeling duration information separately

increases the complexity of the speech synthesis system but provides more con-

trol over prosody of generated speech. The separated duration approach is used

throughout this thesis.

Integrated duration modelling approach (seq2seq model)

Many recent works have pushed forward an integrated neural speech synthesis

model to reduce the complexity of the system. Specifically, many use seq2seq

model to integrate the duration model into the acoustic model which is convenient

and significantly reduces the complexity of the speech generation systems. For

TTS, the linguistic analyzer is generally integrated into the seq2seq model [69].

The system described in Section 2.1.4 is an example (Figure 2.4). Although, the

main problem solved by the seq2seq model is the misalignment between input

and output so an integrated linguistic analyzer is not an obligation [65] as shown

in Figure 2.9. For VC, a seq2seq model can help transform the speaking rate

(duration) to that of the target along with the acoustic feature which further
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improves the similarity to the target speaker [8, 52]. In general, the development

direction of deep learning approaches is replacing all the modules with neural-

based components which simplify the setup and unify the methodology.

2.4.3 Neural acoustic model

The major part of this thesis focuses on improving the acoustic model of TTS and

VC systems. Generally speaking, the acoustic model is the module which add

the speaker characteristic of the target speaker from either a speaker-independent

linguistic features or a source-speaker-dependent acoustic features. Most of the

chapters will evaluate a particular aspect of a simple acoustic model while using

o↵-the-shelf setups for other modules. Chapter 8 is where all proposed techniques

are presented in conjunctions with relevant components of a modern speech syn-

thesis system. The use of deep learning for acoustic models is straightforward

when the input and output of it are assumed to be aligned sequences thanks to

the prior and the subsequent modules in the pipeline. The neural acoustic model

is essentially a trainable function which uses neural networks to model the target

transformation [74, 75]. The parameters of the neural networks, ⇥tts and ⇥vc, are

trained with labeled or paired speech samples using gradient descent and back-

propagation in a supervised fashion as described in Section 2.3.2. By framing the

acoustic model of TTS and VC systems this way, they are no di↵erent from any

other neural networks so it is easier to take advantage of available knowledge on

representation learning and deep learning as a whole to tackle the voice cloning

task.

2.4.4 Waveform generation

For a speech synthesis system, the outputs of the acoustic model are acoustic

features instead of raw waveforms to reduce the complexity of the text-to-speech

(or speech-to-speech) transformations, as a waveform is a high frequency and

high temporal correlation feature. To synthesize waveforms from these features,

a module referred as a “vocoder” is used. There are two main approaches for syn-

thesizing speech waveforms from acoustic features, the conventional parametric

approaches and data-driven neural vocoders.

Parametric vocoders

Parametric vocoders are designed based on an assumption (e.g., source-filter

model). Given a acoustic feature sequence, contains F0 and spectral features, the
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parametric vocoder generates a segment of a waveform using a spectra frame then

overlaps and adds all segments based on F0 information. Two commonly used

vocoders for speech synthesis are STRAIGHT [76] and WORLD [77]. Parametric

vocoders can be considered as an immutable and data-independent module.

Neural vocoders

With recent advances in deep learning, many works have tried to replace each

component with a neural network based counterpart. One breakthrough of this

trend is the proposal of neural vocoder system which is capable of generating

waveforms one sample at a time. Leading in this field is WaveNet model [11]

proposed by DeepMind, followed by many systems proposed to tackle similar

systems like WaveGlow [12] and neural-source-filter (NSF) [13]. Neural vocoders

can generate speech with better naturalness than the parametric vocoders thanks

to their ability to generate sample-by-sample. However as a trained model, the

performance of neural vocoders are dependant on their training data as any deep

learning model.

2.5 Speech synthesis evaluation metrics

Speech generation systems are generally evaluated subjectively with human per-

ception. However subjective measurements are expensive and take a very long

time to prepare, so objective metrics are used as a complement to provide a quick

feedback for the experiment developments.

2.5.1 Objective metrics

Depending on the setup of the speech synthesis model, the suitable objective

metrics vary from experiment to experiment.

Mel-cepstral distortion (MCD)

For the acoustic model which outputs mel-cepstral features, we use mel-cepstral

distortion [78] as an objective evaluation. The generated and the natural se-
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quences are presumed to be aligned (i.e., same length):

MCD(y, ỹ) =
↵

|S|

TX

t=1
t2S

vuut
DX

d=s

(ydt � ỹdt )2 (2.17)

where ↵ =
10
p

2

ln 10
⇡ 6.14185 and s 2 [1, 2] (2.18)

The expression t 2 S keeps speech segments while excluding silence frames from

the calculation. In our experiments, the speech or silence frame is decided by

linguistic information. The first dimension of mel-cepstral can be included or

excluded. We set s = 2 which excludes the first dimension from the calculation.

F0 root mean squared error (F0 RMSE)

Fundamental frequency is another relevant feature that could provide information

about similarity between generated and natural speech. We calculate F0 RMSE

and use it as another point of reference when the two sequences are presumed to

be aligned:

RMSE(y, ỹ) =

vuuut
1

|V |

TX

t=1
t2V

(yt � ỹt)2 (2.19)

As the mismatch between unvoiced frames of generated and natural F0 sequences

can make the F0 RMSE unreliable, we only calculate the errors on frames which

are marked as voiced by both sequences (t 2 V ).

Mean squared error (MSE)

Mean squared error is used as loss function to train many acoustic model. For

these cases we can also use MSE for objective evaluation. Specifically, we use

MSE as an objective metric for two aligned mel-spectrogram sequences:

MSE(y, ỹ) =
1

T

TX

t=1

DX

d=1

(ydt � ỹdt )
2 (2.20)

Optionally we can calculate MSE only on speech segments similar to MCD to

produce more focused results.
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Word error rate (WER)

Previous objective measurements presume aligned feature sequences, which limits

their usage on experiment scenarios. We could use an ASR system to calculate

the word error rate of the generated speech given the text reference:

WER(reference, hypothesis) = 100
#substituted + #deleted + #inserted

#reference
(2.21)

The assumption here is that a generated speech sample with smaller word error

has better pronunciation than the one with bigger error. While this might be true

to some extent, we need to consider the training nature of ASR models. Even

though they are trained on large-scale multi-speaker corpora, these ASR models

are far from universal. Therefore, they might bias to certain setups of speech

generation systems. So we need to treat the WER as a reference point instead of

ultimate goal, the same for other objective metrics.

2.5.2 Subjective metrics

As the sole point of speech synthesis systems is communicating with human,

human perception is the most important metric to evaluate speech synthesis

systems. However, human perception is subjective and a↵ected by the relative

context so for each experiment the subjective test needs to be carefully prepared.

The perceptive survey conducted in my thesis consists of mean opinion score

(MOS) measure, in which participants have to give a rating in the range of 1 to

5 (or 4 in some cases), and AB questions, in which participants have to choose a

superior option between choices.

Quality evaluation

All quality questions given in subjective survey of this thesis are evaluating a

very generic sense of quality. The participants are asked to judge the naturalness

in a general sense without providing any further instruction or scenario con-

text. This ignored the nuance of human perception but allows a uniform frame-

work across multiple experiments. For the MOS question, listeners are asked to

judge a presented speech sample in 5-point scale: 1=”Completely unnatural”,

2=”Mostly unnatural”, 3=”Equally natural and unnatural”, 4=”Mostly natu-

ral”, and 5=”Completely natural”. For the AB question, listeners are asked to

pick the more natural one out of two speech samples presented.
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Similarity evaluation

Similar to the quality evaluation, generic similarity questions are used throughout

this thesis even though, in some cases, the scenario context is extremely relevant

(e.g., cross-language, non-native speaker). For the MOS question, listeners are

asked to rate their confidence that two presented samples are spoken by the

same speaker on a 4-point scale: 1=”Di↵erent (sure)”, 2=”Di↵erent (not sure)”,

3=”Same (not sure)”, and 4=”Same (sure)”. For certain experiments, a 5-point

scale is used for similarity which inserts 3=”Can’t decide” into the scale. For the

AB question, listeners are asked to pick one between two presented samples which

has higher chance to be spoken by the same speaker as a reference utterance.
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Chapter 3

Supervised adaptation with

speaker-adaptive neural TTS

This chapter establishes the basics of the multi-speaker neural acoustic model

and speaker adaptation method. Several experiments were conducted to provide

initial observations about the fundamentals of these tasks. The content in this

chapter is based on the paper [79] that I published before the start of the PhD

program, but it is necessary to include in this thesis to provide the context and

motivations for the other chapters.

Section 3.1 presents the fundamentals of the multi-speaker acoustic model

based on neural network. Section 3.2 explains the supervised speaker adaptation

method by tuning with the backpropagation algorithm. Section 3.3 introduces

di↵erent types of speaker embedding which can be used as the speaker component

in a multi-speaker neural acoustic model. Section 3.4 describes the experiments

and highlights the relevant observations as well as remaining challenges which are

the foundations for hypothesises that are tackled in later chapters.

3.1 Multi-speaker TTS with bias codes

3.1.1 Motivation for multi-speaker model

When the available data of a target speaker is insu�cient to train a high qual-

ity speaker-dependent neural TTS system, we can combine data from multiple

speakers and train a multi-speaker TTS model instead [28, 80]. The multi-speaker

model can generate more stable speech waveforms than those of the speaker-

dependent model [28, 81] when the amount of the target speaker’s data is limited

[19]. The multi-speaker TTS is especially important for low-resource languages
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Figure 3.1: Multi-speaker neural acoustic model.

in which it is di�cult to gather a large quantity of data from a single speaker [18].

In general, simply combining all available data of all speakers is su�cient, how-

ever, many works have shown that complement data pruning policy [82, 83, 84] or

techniques to handle data imbalance [81, 85] can further improve the naturalness

of generated speech for all training speakers.

3.1.2 Modeling multi-speaker model with bias codes

By augmenting the conventional linguistic inputs of DNN-based acoustic mod-

els with auxiliary features, collectively referred to as input codes, which include

speaker codes as well as encodings of other labelled attributes, such as gender

and age, we can train a multi-speaker model from a speech corpus comprised

of hundreds of di↵erent speakers, each contributing as little as ten minutes of

speech. The training process of a neural multi-speaker model is identical to its

single-speaker model with gradient descent and backpropagation algorithm.

A simple realization with feedforward layers of the neural multi-speaker model

is illustrated in Figure 3.1. Basically, we append a speaker embedding sb,(k) 2
RQ⇥1 which represents k-th speaker into every frames of the linguistic input x.

This also creates additional weight parameters in the first hidden layer. Com-

paring with the regular hidden layer described by Equation 2.10, the first hidden

layer of neural multi-speaker model can be written as follow:

h1 = f (1)(W 1x + c1 + W bsb,(k)) , (3.1)

where W b 2 Rm⇥Q is the additional weight created by the augmenting of the

27



speaker embedding. Within a single utterance, the linguistic information changes

every frame while the speaker embedding remains the same which makes W bsb,(k)

frame-independent. This essentially means all parameters of the network are

shared among the training speakers except the bias of the first hidden layer. The

first layer can be rewritten as follows:

h1 = f (1)(W 1x + c1 + b(k)) (3.2)

h1 = f (1)(W 1x + c(k)
1 ) , (3.3)

where b(k) = W bsb,(k) is a speaker-specific bias projected from the embedding

vector. In the speech generation stage, we use the speaker embedding vector

of the desired speaker to change the bias of the first hidden layer. This, in

turn, changes the entire transformation modeled by neural network su�ciently

to change the voice of generated speech. The method is simple yet e↵ective and

does not depend on the network architecture [80, 86].

3.2 Adaptation with transcribed speech

Similar to the multi-speaker model, the motivation of supervised speaker adap-

tation is creating a TTS system with voices of target speakers whose data is

limited. The di↵erence between the multi-speaker task and the adaptation task

is that the latter is expected to create models for speakers who are not included in

the training set, which is faster than training a multi-speaker model from scratch

as it only needs to fine-tune with a limited amount of data of the target.

While there are many di↵erent methods of supervised adaptation proposed

which tackle di↵erent aspects of the adaptation process, they all share the same

principle which is using transcribed speech and the backpropagation algorithm

to optimize the model to better explain the new data at hand. The supervised

adaptation methods with neural model can be categorized into two main types,

we either tune all the network’s parameters or just a specific part of it.

3.2.1 Adapting by fine-tuning a pretrained network

This approach is exactly as its name suggests, we simply optimize a pretrained

model using the new data of the target speaker [87]. The basic concept is that

even though the voice of target speaker is di↵erent from the ones used to train

the initial model, the network can still transfer the knowledge it learned about

linguistics to the target. The initial model can be trained on data of a single

28



speaker [26] or data pooled from multiple speakers [27, 28]. This fine-tuning

approach produces a high quality model when data of target speaker is su�cient

but becomes overfitting easily when the amount of data is limited. The main

research incentive for this approach is to develop novel techniques to balance

improvement of speaker similarity and model overfitting, which causes unstable

performance. For example, we can deploy some form of regularization [88] or a

tactic to stop the adaptation process early [21]. This approach is not the focus

of this chapter, but will be revisited later in Scenario B of the experiment section

in Chapter 8.

3.2.2 Adapting by estimating new speaker embedding

When data is extremely limited (e.g. one minute), we can restrict the tuning to a

certain part of the network to prevent overfitting [28, 89]. This approach can be

seen as a type of regularization applied to the adaptation process. By limiting the

amount of adaptable parameters, we essentially discourage the adapted model to

stray too far from the initial model. More elaborate discussion on this subject is

presented in Chapter 5. Specifically, given the multi-speaker model described in

Section 3.1.2, we can use transcribed speech and backpropagation to estimate a

new speaker embedding for an unseen target speaker. The multi-speaker model

shows that changing the speaker embedding input can change the voice of the

generated utterances, which suggests the feasibility of this method. While the

intuition is clear, there are several concerns about this premise. First, the back-

propagation is an optimizing algorithm and it can be stuck at a local maximum

so the best performance is not guaranteed. Second, while the embeddings of

the speakers in the training set produce speech with consistent linguistic content

and speaker characteristics, it is not a given for the unseen embedding as this

assumes a continuity and completeness characteristic of the speaker embedding

space. This approach is the main focus of this chapter. The objective is not

create a high performance voice cloning method for TTS yet but to understand

the mechanism and nature of speaker-adaptive neural acoustic model.

3.3 Speaker embedding types

To understand the nature of speaker embedding space we use di↵erent types of

embedding vectors as speaker codes and observe their e↵ects on the performance

of multi-speaker and adaptation tasks.
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Figure 3.2: Di↵erent types of speaker embedding.

3.3.1 One-hot vector

The most simple speaker embedding type is one-hot vector. It is defined as

follows: If there are N speakers in the training set, the one-hot vector for the

k-th speaker is sb,(k) = (sb,(k)
1 , sb,(k)

2 , ..., sb,(k)
N ) where each value sb,(k)

i is 0 when

i 6= k and 1 when i = k. Figure 3.2a illustrates a simple speaker one-hot vector

used in a multi-speaker model. As speaker bias b(k) of the first hidden layer is

projected from the embedding b(k) = W bsb,(k), a one-hot vector would make the

speaker biases of training speakers independent from each other. For this reason,

we refer to one-hot vector based speaker embedding as speaker (full) bias for the

rest of this thesis.

3.3.2 Random vector

To understand the speaker latent space of the multi-speaker model, we can use

a randomized vector as the speaker embedding. Speaker random vector is a

vector with predetermined dimension Q. The random vector for the k-th speaker

is sb,(k) = (sb,(k)
1 , sb,(k)

2 , ..., sb,(k)
Q ) where sb,(k)

i are non-zero random values. This

scheme is also a simple method to reduce or expand the size of the speaker

code. The random vector is used to test several hypotheses. First, whether

or not a unique but meaningless vector can be used for a multi-speaker model.

Second, how forcing the speaker biases to share a latent space (due to non-zero,

continuous values) would a↵ect the performance of the multi-speaker and the

speaker adaptation tasks.
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3.3.3 Discriminant condition code

While a random vector is convenient for testing the underlining nature of the

embedding space, we do not expect it to produce high performance as the random

vector is meaningless therefore lacks useful information about speaker. A more

sophisticated approach is training a continuous speaker embedding along the

the model, which is referred to as discriminant condition code (DCC) in several

literature [90, 91]. Watts et al. [92] uses a similar ideal to distinguish between

sentences. Figure 3.2b shows a simple representation of the multi-speaker model

with speaker discriminant condition code. Discriminant codes constitute hidden-

unit activation obtained by projecting one-hot speaker codes into Q dimensions

using a matrix W dcc 2 RQ⇥N . This means that the continuous speaker vector

sb,(k) is jointly trained and “stored” in the DCC matrix W dcc. The discriminant

code approach can also be interpreted as a bottleneck layer which forces the model

to learn a dense and compact latent space. For this reason, we refer to it simply

as (speaker) bias code for the rest of this thesis.

3.3.4 Speech-encoded vector

Instead of jointly training the speaker embedding along with the acoustic model,

we can use an external module to extract the speaker representation. Specifically,

we want a speaker encoder which is capable of extracting the speech-encoded

speaker vector from a given speech sample. Section 2.1.4 described a specific

realization of this approach. Speaker recognition systems are generally used as the

speaker encoder module as we expect them to produce a meaningful vector with

relevant information about speaker characteristics [34, 36]. The main advantage

of speech-encoded speaker embedding is its ability to perform speaker adaptation

with untranscribed speech. This speaker embedding type is not evaluated in this

chapter, but will be revisited in the experiment section of Chapter 8.

3.4 Experiments

To establish the basic understanding about the speaker-adaptive neural acoustic

model, we first examine the performance of multi-speaker and adaptation tasks of

the speaker-adaptive acoustic model using di↵erent types of speaker embedding.

The main goal of the following experiments is establishing the relative perfor-

mance gap between the multi-speaker and adaptation rather than the absolute

performance of speech synthesis systems. Therefore, a simple feed-forward neural
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(a) Multi-speaker task
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Figure 3.3: The e↵ect of the speaker bias code size on the objective measurement
of the multi-speaker and adaptation tasks.

network with five non-linear layers is used for the multi-speaker acoustic model.

The speaker embedding is added at the input layer along with the linguistic fea-

tures. More details about the model configuration can be found in the Appendix

C.1. Japanese linguistic input and the dynamic multi-task acoustic features for

the STRAIGHT vocoder are used in this experiment.

The experiments are conducted with the Japanese voice bank corpus (JVB,

Appendix A). The train and test sets of jvb.small.base are used to train the multi-

speaker model and evaluate the multi-speaker task. The jvb.small.target sets are

used for evaluating the adaptation task. The corpus also includes age and gender

information of speakers which are used as auxiliary input in the experiment.

These information can be controlled to manipulate the speaker characteristics.

However, only multi-speaker and adaptation tasks are discussed in this section.

The information for the speaker, age, and gender manipulation task can be found

in the original paper [79].

3.4.1 E↵ect of speaker embedding size on performance

The advantage of discriminant bias code over a simple one-hot vector is its ad-

justable size. By concentrating the speaker parameters into a small size vector, it

potentially can be used for disentangling and manipulating speech characteristics

[79]. To have understanding about the relation between the bias codes and the

acoustic model we observe the e↵ect of its size on the objective performance of

an acoustic model.
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Table 3.1: Objective evaluations of multi-speaker and adaptation tasks for model
trained with di↵erent types of speaker embedding.

Task Embedding type Speaker code MCD F0 RMSE
bias 100 utt. 100 utt.

multi-AVG average vector 112 7.64 52.06
multi-OHV one-hot vector 112 5.58 23.43
multi-RND112 random vector 112 5.60 23.48
multi-RND008 random vector 8 5.60 23.06
multi-DCC112 discriminant code 112 5.60 23.18
multi-DCC008 discriminant code 8 5.62 22.88
adapt-AVG average vector 112 7.49 53.90
adapt-OHC one-hot vector 112 6.01 23.54
adapt-RND112 random vector 112 6.46 24.98
adapt-RND008 random vector 8 6.49 29.44
adapt-DCC112 discriminant code 112 6.03 24.77
adapt-DCC008 discriminant code 8 6.43 27.18

Figure 3.3a shows the objective performance of the multi-speaker task. The

general trend that can be seen is that a bigger vector gives better MCD than

a smaller one, while it is more complicated in case of F0 RMSE. However, the

improvement over MCD is slowing down pretty quickly. The most interesting

observation here is that a 2-unit or 8-unit bias code seems to be enough to create

multi-speaker acoustic model with 112 di↵erent voices. Figure 3.3b shows the

objective performance of the speaker adaptation task. Generally speaking, both

measurements benefit from bigger bias codes. However comparing with the multi-

speaker task, the adaptation is generally not as good. These results suggest that

the amount of adaptable parameters is highly relevant to performance of the

adaptation.

Observation 1. The size of the bias code does a↵ect the performance of speaker-

adaptive model and bigger is generally better. However, the improvement on

multi-speaker task is marginal and unsteady, while it is more notable in the case

of the speaker adaptation task.

3.4.2 E↵ect of speaker embedding type on performance

This experiment evaluates performance of the first three types of speaker em-

bedding, described in Section 3.3, on objective performance of multi-speaker and

adaptation tasks. The experiment setting details and objective results are listed

in Table 3.1. The size of the one-hot vector depended on the amount of speakers

in the training set, which is 112 in this scenario. The size of other embedding
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types are either set at 112, to remove the mismatch with one-hot vector, or 8,

representing a small speaker embedding vector.

The average vector is essentially the one-hot vector model with the value of

each unit set at 1
N , with N = 112 in this scenario. The average model (average

voice) provides a naive anchor point to check if the multi-speaker and adaptation

tasks with the speaker embedding are working correctly by observing the objective

measurement. Interestingly, neither the embedding type nor the size of speaker

vector has a significant impact on the multi-speaker task. This suggests that

neural model able to compensate for the meaningless speaker vector by using the

rest of its parameters. However, in the adaptation case, the models trained with

random vectors and 8-unit discriminant code have significantly worse objective

evaluations than the rest. One hypothesis for this phenomenon is that as the

adaptation stage does not have the rest of the network’s parameters at its disposal

like the training stage, the usefulness of the speaker embedding is critical for its

performance.

Observation 2. Neither the size nor the embedding type of the speaker code has

a significant impact on objective evaluations of the multi-speaker task. However,

the adaptation task greatly benefits from a bigger and better (meaningful) speaker

representation.

Between multi-speaker and speaker adaptation tasks, the latter is worse than

the former as expected. Balancing between the resistance to overfitting and

overall performance is one of the most important aspects of speaker adaptation

method, which is also a recurring theme throughout this thesis.

3.4.3 Manipulating speaker characteristic

The multi-speaker and adaptation tasks can be interpreted as speaker manipula-

tion with a very specific agenda, which is producing a generated voice close to a

target speaker by using a respectable speaker embedding vector. To further test

the ability to manipulate speaker characteristics we can interpolate the speaker

embedding from the value of one speaker to another within a single utterance.

This experiment is not evaluated but only observed. The speech samples for such

manipulation can be found at www.hieuthi.com/papers/icassp2017/. Inter-

estingly, the generated utterances maintain the desired linguistic content with

the speaker characteristic smoothly transitioning from one speaker to another.

This suggests that the speaker embedding space is a continuous latent space.
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Observation 3. Given a speaker embedding space jointly trained with the acoustic

model, gradually changing speaker code values produces a fictitious voice while

maintaining the linguistic content. It suggests that the speaker embedding space

is continuous, consistent and somewhat complete.

While speaker manipulation is an interesting experiment by itself, the above

observation has an important implication on the speaker adaptation methodology

introduced in this chapter. If the speaker latent space is continuous and complete

then there is no ‘wrong’ embedding. In the other words every embedding in this

space guarantees generated speech samples with consistent quality. So for speaker

adaptation tasks, the remaining problem is finding the embedding which produces

speeches sounds most similar to the voice of target speaker.
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Chapter 4

Unsupervised speaker adaptation

with multimodal neural TTS

This chapter proposes a novel speech synthesis system using multimodal neural

network architectures. The multimodal structure allows the system to perform

unsupervised speaker adaptation with untranscribed speech by utilizing its cross-

modal adaptation ability. By carefully factorizing and training the initial model,

the unsupervised adapted model can generate speech with high speaker similarity

and marginal di↵erence in performance compared to a supervised adapted model.

Section 4.1 explains the motivation of speaker adaptation using untranscribed

speech and introduces existing approaches. Section 4.2 describes the novel mul-

timodal neural TTS and explains the mechanism for performing unsupervised

speaker adaptation. Section 4.3 introduces strategies for training multimodal

neural structures to achieve designated goals. Section 4.4 presents the experi-

ments which test the feasibility of the proposed method.

4.1 Adaptation with untranscribed speech

Between supervised speaker adaptation and multi-speaker tasks, the former is a

faster process as we do not train the entire model from scratch. However, it do not

provide any additional benefits in terms of data e�ciency as both tasks require

transcribed speech from the target speaker. Practically speaking, speech of a

speaker can be collected passively, but its transcriptions require high attention

to create which makes its collection process labour-intensive.

In theory, as speaker characteristics are self-contained within speech utter-

ances we should be able to adapt without using transcription. The speaker adap-

tation methods that work with untranscribed speech, which are referred as un-
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supervised speaker adaptation, will able to clone thousands of voices quickly and

cheaply. Moreover removing the transcription obligation will greatly increase the

amount of data of the target speaker which is usable for the adaptation process.

As unsupervised speaker adaptation, for a neural TTS model in particular, is a

rewarding task, there are many methods proposed to tackle this problem. At the

start of my PhD research, the existing methods could be grouped into two main

approaches which will be briefly explained next.

4.1.1 Adapting with ASR-predicted transcription

One simple and practical approach to tackle an unsupervised speaker adapta-

tion task is obtaining automatically annotated transcriptions using a SOTA ASR

system [31]. Given ASR-predicted transcriptions, the speaker adaptation can be

performed in the same fashion as the transcribed case (see Section 3.2). However

ASR-predicted transcriptions are expected to contain more wrong annotations

than manually-annotated one, which would certainly a↵ect the performance of

the adaptation process. Moreover this approach assumes that a well-trained ASR

is obtainable for the target language, which is impractical for many low-resource

languages [18]. It also removes the possibilities of performing cross-language

speaker adaptation [32, 16].

4.1.2 Adapting with text-independent speaker embedding

Given the disentanglement ability of deep learning, another approach for un-

supervised speaker adaptation is training a speaker-adaptive model conditioned

on a speaker representation extracted from speech [15, 33]. The speaker repre-

sentation can be i-vector [34], d-vector [35, 19], or x-vector [36], which are all

byproducts of speaker recognition systems. Section 2.1.4 describes in details a

particular realization of this approach. This approach has the computational ad-

vantage as it does not involve the optimization loop [15]. The drawback is that

it does not scale with the amount of adaptation data. In the other words, the

speaker similarity seems to stop improving when using more than a few seconds

of speech [21].

4.2 Multimodal speech synthesis system

The unsupervised speaker adaptation with ASR-predicted transcription (Section

4.1.1) is more versatile as it does not assume the structure of the speaker compo-
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nent and the speaker transformation. Therefore, we want a novel unsupervised

adaptation method which has similar advantages but without any of its draw-

backs mentioned above.

The key di↵erence between the approach described in Section 4.1.1 and the

approach described in Section 4.1.2 is that the adaptation process of the former is

performed with the backpropagation algorithm, the same as supervised adapta-

tion, while the latter only involves the forward pass. The multimodal neural TTS

system is proposed based on this observation. The problem that it addresses is

“can we have a method with similar traits to the ASR-based approach but skip-

ping the text generating step and performing adaptation directly to reduce the

limitations of ASR-based approach?”. The main idea is to jointly train an ASR-

like module with the acoustic model using the same multi-speaker corpus. At

the same time we published our multimodal neural TTS system [93], Karita et.

al. [94] proposed a similar structure for E2E ASR. However, the motivation and

the specific method are quite di↵erent as they use multimodal structure to enable

the semi-supervised training instead of unsupervised speaker adaptation as in our

case.

4.2.1 Interchangeable text and speech encoders

Given the multi-speaker model described in Section 3.1.2, its mechanism can be

described as follows: the speaker component (speaker bias in this case) alters the

function modeled by neural layers to transform speaker-independent linguistic

features to speaker-dependent acoustic features with the voice of a particular

target. In other words, the hidden features before the speaker component are

speaker-independent while the hidden features after it are speaker-dependent.

Based on this assumption we can split the acoustic model into two modules: a text

encoder and a speech decoder. The underlining network structure is unchanged,

only the theoretical description is revised.

The original acoustic model is now described as the text-to-speech stack which

comprises of the text encoder and the speech decoder. Output of the text en-

coder, z, is called latent linguistic embedding (LLE) from now on. The new TTS

transformation can be written as follows:

zT = TEnc(x;�T ) (4.1)

ỹT = SDec(zT ; ✓S/core, ✓S/spk,(k)) (4.2)

The text encoder TEnc encodes a text/linguistic sequence x to a continuous
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Figure 4.1: The multimodal speaker-adaptive speech synthesis system.

latent representation z. The text encoder is a neural network structure defined

by its parameter �T which is speaker-independent and shared among all training

speakers. The speech decoder SDec consumes the LLE sequences produced by the

text encoder and transforms it into speech/acoustic sequences with characteristics

of the target speaker. A speech decoder is defined by its parameters ✓S/core and

✓S/spk,(k), which are the speaker-independent and speaker-dependent parameters

(e.g. speaker bias), respectively. By changing the speaker-dependent parameters

✓S/spk,(k) we change the voice of the generated utterances. This is a factorized

and generalized mathematical description of the multi-speaker model described

in Section 3.1.2. As the TTS stack is just a typical neural acoustic model, it

can be trained by optimizing a designated loss function between generated and

natural speech features:

losstts = Cost(ỹT ,y) . (4.3)

Next, we introduce a new speaker-independent module, the speech encoder

SEnc, which is defined by its parameters �S, that can extract LLE from a given

utterance. Its purpose is to be used as substitute for text encoder and to create

a speech-to-speech (STS) stack:

zS = SEnc(y;�S) (4.4)

ỹS = SDec(zS; ✓S/core, ✓S/spk,(k)) . (4.5)

The speech encoder can be interpreted as an ASR model, but instead of text
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or phonemes it extracts an unobservable/hidden linguistic representation. Typi-

cally we can train such STS model in a self-supervised manner by optimizing a

designated cost function just like the TTS stack:

losssts = Cost(ỹS,y) . (4.6)

However, if we train the STS stack separated from the TTS stack, we cannot

guarantee a consistent latent space between the two which is the main objective

of the multimodal neural TTS. The remaining challenge of the proposed method

is how to train all modules to create a consistent latent space. The training

methods are discussed in Section 4.3.

4.2.2 Crossmodal adaptation with untranscribed speech

Assuming that we able to obtain a well-trained multimodal multi-speaker model

as illustrated in Figure 4.2.1, we are then able to use the STS stack to perform

unsupervised speaker adaptation with backpropagation. Specifically, the STS

stack is used to estimate a new set of speaker-dependent parameter ✓S/spk,(r) of

the unseen r-th target speaker. It is essentially the same as supervised adaptation

approach described in Section 3.2.2 which is evaluated in the previous chapter.

lossadapt = losssts . (4.7)

The obtained speaker-dependent parameter ✓S/spk,(r) is then used in the TTS stack

to generate speech with the voice of the new target. The main hypothesis is that

if the linguistic latent space of the TTS and STS stacks are consistent with each

other, we can reuse the parameter “found” (with backpropagation) in one stack

for the other, hence the name crossmodal adaptation.

4.2.3 Autoencoder for shaping latent space

The STS stack has a structure similar to an autoencoder, which transforms a

speech utterance y to itself. Autoencoder [66] is a neural network trained to

copy its input to its output. However generally we are not interested in the

copying task but hope the training process will create a latent feature z that

has useful properties. Specifically in our case, we want z to contain linguistic

information but none of the speaker characteristic. To achieve this, we can use

an undercomplete autoencoder by make z have smaller dimensions than y or

deploy auxiliary regularization in the training stage.
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Figure 4.2: Latent and acoustic spaces of the multimodal TTS.

However the proposed multimodal system as a whole is technically not an

autoencoder, as the “auto” part in its name implies the network is trained in a

self-supervised manner which is not the case. The proposed multimodal learning

methods, which will be described in the next section, use both speech and its

transcription to train all modules of the system. In the other words, the entire

network is still trained in a supervised fashion, it is just that both speech and

text are unconventionally placed at the input. Nevertheless, due to the loose use

of these terminologies, the jointly training method, which will be explained in

the following, can also be interpreted as a regularization method for autoencoder

model.

The main objective for using a multimodal structure is that we want to train

a speech-encoded latent space that approximates the text-encoded latent space

as illustrated in Figure 4.2. To achieve this goal we want to ensure the continuity

of the latent space. In the other words, we want the speech decoder to be able to

transform latent points which are close in the latent space into acoustic features

which are close in the acoustic space. This is one motivation for the development

of multimodal learning methods introduced in the following section.

4.3 Multimodal learning methods

This section describes several multimodal learning methods which are techniques

used to train neural structures with multiple interchangeable encoders. The term
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multimodal is used to di↵erentiate with multitask which is a neural structure with

multiple decoders (or output features). However, similar to many deep learning

concepts, these terms are used loosely unless they are important to the context.

Most of the methods introduced next were used in several other works without

being given a name or emphasis on the multimodal structure. This section is an

attempt to provide a systematic and consistent overview on the subject.

4.3.1 Step-by-step training

A simple strategy for training a multimodal neural structure is optimizing one

stack until convergence then switching to the other. Specifically for our case,

we first train the TTS stack using losstts, then replace the text encoder with the

speech encoder and train the speech encoder using losssts while freezing parame-

ters of the speech decoder. As our objective is to obtain the speech encoder that

can substitute the text encoder, we want to train the text encoder first. The

orders of training and the immutable parameters are dependent on the particular

task [95]. Although this strategy is reasonable, we do not expect it to lead to

su�cient results as it treats the speech encoder as an afterthought.

4.3.2 Stochastic training

The step-by-step training method creates an order of importance for each stack

as only the first stack has all parameters at its disposal. To remove this order

we can train all modules stochastically [96]. Specifically, we train all the modules

concurrently by randomly switching input data, encoders, and the optimizing loss

functions [97, 98]. The switching of modules in each training step changes the

optimizing landscape constantly which makes it harder for the model to converge,

or it might not converge at all. Although this strategy would work for our task,

due to the large number of factors to be compared in our experiment, it is not

investigated in this thesis.

4.3.3 Joint-goal training

Given the limitations of previous training methods, we want a method that can

jointly train all modules together in each step which is the main motivation for

joint-goal method. Specifically, we treat the TTS and STS stacks as two separated

networks which share the parameters of the speech decoder as illustrated in Figure

4.3a. To recreate a priority order for the optimizing objective we can use weighting
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Figure 4.3: The joint-goal and tied-layer multimodal learning methods.

hyperparameters to emphasize or de-emphasize a particular goal:

losstrain = losstts + ↵ losssts (4.8)

where ↵ is a weighting parameter for the loss function of the less important or

less reliable goal. The joint-goal training strategy functions similarly to multitask

learning [99]. By weighting the sum of the losses while sharing the weights of the

common layers, we expect that the models are aware of the additional but less

important goal of the second stack. This acts as a method of regularization to

help preserve some weights in the common layers to process the secondary input.

This training strategy assumes that by forcing the output of two stacks to

approximate the same target, the network will automatically discover a shared

latent space with the continuity characteristic.

4.3.4 Tied-layer training

As the joint-goal method only focuses on the output of the entire stacks, we

should consider putting constraints on the hidden layers as well. In particular

we want to the hidden layers that are common between TTS and STS stacks to

generate latent features that are close to each other as illustrated in Figure 4.3b.

For this purpose, we use a “distance” function to measure the di↵erences:

losstrain = losstts + � losstie , (4.9)
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where � is a weighting parameter of the latent tying loss which forces the hidden

layers of the two stacks to be close to each other. For the tied-layer loss, losstie,

we can decide which layer and how many layers we want to put this constraint

on. The optimal setup is dependent on each particular task:

losstie =
LX

l=1
l2F

distance(htts
l ,hsts

l ) , (4.10)

where L is the number of hidden layers, h represents the outputs of a hidden

layer, and F is the set of the layers that we want to includes in the tied-layer

loss, it could be a single layer or all shared hidden layers between the two stacks.

The “distance” functions can be cosine distance or Euclid distance.

In contrast with the joint-goal strategy, this strategy assumes that by forcing

the latent spaces to be close to each other the outputs of the TTS and STS stacks

will also become similar to each other.

4.3.5 Joint-goal and tied-layer training

The main purpose of multimodal learning methods is training the speech encoder

to approximate the text encoder. To achieve this we want to enforce the continuity

of shared latent space as discussed in Section 4.2.3. Interestingly, the joint-goal

and tied-layer strategies focus on di↵erent aspect of this problem and they are

complementary to each other:

losstrain = losstts + ↵ losssts + � losstie . (4.11)

The above loss function explicitly describes what we referred to as the continuity

of shared latent space. Specifically, the tied-layer loss (losstie) forces the speech-

encoded latent feature to be close to the text-encoded latent feature, while the

goal losses (losstts and losssts) make sure these latent points will produce the

same/similar acoustic features.

4.4 Experiments

The purpose of following experiments is to test the feasibility of using the mul-

timodal neural TTS for unsupervised speaker adaptation. A 5-layer feedforward

network similar to the previous chapter is used for the acoustic model, with the

first two hidden layers assigned to text encoder and the rest are assigned to speech
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Table 4.1: Acoustic models trained with di↵erent multimodal learning methods.

Model Method Speaker-aware Loss weights
↵ �

VL vanilla all layers - -
SS step-by-step last 2 layers - -
JG joint-goals last 2 layers 0.5 -
TL tied-layers last 2 layers - 1.0
JT JG+TL last 2 layers 0.2 0.2

Table 4.2: Objective evaluations of multimodal TTS on multi-speaker task.

Strategy Speaker code MCD F0 RMSE
bias ⇠400 utt. ⇠400 utt.

multi-VL 128 5.85 15.1
multi-SS 128 5.71 15.0
multi-JG 128 5.57 14.6
multi-TL 128 5.79 15.3
multi-JT 128 5.63 14.8

decoder. The speech decoder take raw waveform input instead of acoustic features

to avoid the complication with multiple acoustic features output. Details can be

found in Appendix C.1. The English linguistic input used in these experiments

is described in Appendix B. Table 4.1 described the configuration for multimodal

neural TTS. For the tied-layer loss, constraint is only put on first common hidden

layer. For the speaker modeling, a single speaker embedding is shared between

multiple layers instead of using one for each.

The voice cloning toolkit English corpus (VCTK, Appendix A) is used for

experiments. The train and test sets of vctk.small.base are used for training and

evaluating the multi-speaker models, respectively. The vctk.small.target are used

for the adaptation task. The experiments also test the e↵ect of augmenting a

single bias code on multiple speaker-aware layers.

4.4.1 E↵ect of multimodal learning methods

Even though the multimodal setup does not change the essential components of

the TTS acoustic model (the stack comprising text encoder and speech decoder),

it does alter the training process. This experiment evaluates the e↵ect of di↵erent

training methods on the performance of the original multi-speaker acoustic model.

Table 4.2 shows objective evaluation of the multi-speaker task. The multi-speaker

models of VL and SS are trained with the same conventional TTS loss (Equation

4.3), with the only di↵erence coming from their speaker-aware layers. The ob-
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Table 4.3: Objective evaluations of multimodal TTS on supervised and unsuper-
vised speaker adaptation tasks.

Task Adaptation Speaker code MCD F0 RMSE
bias 10 utt. 320 utt. 10 utt. 320 utt.

VL-su supervised 128 6.48 6.23 13.88 12.32
SS-su supervised 128 6.15 6.04 13.30 13.47
JG-su supervised 128 6.03 5.89 13.63 12.74
TL-su supervised 128 6.12 6.00 12.93 11.59
JT-su supervised 128 6.05 5.90 13.73 13.69
SS-un unsupervised 128 6.30 6.24 13.40 13.83
JG-un unsupervised 128 6.17 6.10 13.72 12.58
TL-un unsupervised 128 6.13 6.10 15.36 12.21
JT-un unsupervised 128 6.16 6.00 13.73 12.90

jective results show no significant di↵erence between their performance. In fact,

di↵erences between all training methods are all marginal. This suggests that the

proposed multimodal training methods do not hurt performance of multi-speaker

task, but enhances them slightly in certain cases.

Observation 4. Given a complementary network setup, the multimodal learning

method able to create an extra functional module without a↵ecting negatively on

performance of the original multi-speaker task. In several cases, it even improves

the performance of the original task.

It is concluded that the multimodal training method does not have negative

impact on the initial multi-speaker model, and provides an auxiliary speech en-

coder that could be used for performing unsupervised speaker adaptation. The

behavior of multimodal learning is quite similar to multitask learning, in the

sense that by jointly optimizing multiple relevant objectives, it seems to improve

performance of all objectives involved.

4.4.2 Performance of crossmodal speaker adaptation

Given the extra speech encoder, we can now perform unsupervised speaker adap-

tation by using untranscribed speech to estimate a new speaker bias code for

the unseen target speaker (see Section 3.2.2). The same multimodal system can

perform adaptation with transcribed and untranscribed speech, as the text and

speech encoders are expected to be interchangeable.

Table 4.3 shows the objective evaluations of adaptation tasks. VL-su and SS-

su are essentially the supervised adaptation method investigated in Section 3.4.2

with slightly di↵erent speaker component setups. Interestingly, VL-su are slightly
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Figure 4.4: Subjective evaluations of multimodal TTS on supervised and unsu-
pervised speaker adaptation tasks.

worse than SS-su which suggests that sharing a single speaker code across multiple

layers acted as a constraint which restricts the adaptation process. There are no

significant di↵erences between supervised adaptation of the model trained with

multimodal learning methods, this reassures that multimodal learning methods

do not a↵ect the behavior of the original models.

The important results are the performance of unsupervised speaker adapta-

tion. In general, the unsupervised adaptation is slightly worse than its supervised

counterpart as expected, but the di↵erence is marginal. Among the unsuper-

vised systems SS-un stands out with the worst performance. This suggests that

the jointly training methods are better than step-by-step training. However the

quality and similarity of generated speech is still low in general as shown in

the subjective results presented in Figure 4.4. Generally speaking, the unsuper-

vised strategies are worse than supervised strategies in both measurements as

expected. Among the unsupervised strategies JG-un and JT-un are promising

with comparable performance with supervised baselines. It suggests that given a

complementary setup, the unsupervised strategy is potentially able to reach the

same performance of the supervised strategy.

Observation 5. By restricting the flexibility of the speaker component, a multi-

modal neural TTS can perform adaptation with untranscribed speech using back-

propagation algorithm in a similar manner and performance as the adaptation

with transcribed speech.

While the performance of the unsupervised speaker adaptation and the su-

pervised adaptation are still low, the results of the current experiment provide

a proof-of-concept for feasibility of the crossmodal speaker adaptation method

which is the foundation for further improvements introduced in later chapters.

47



Chapter 5

Modeling speaker-adaptive TTS

with scaling and bias codes

This chapter investigates di↵erent ways to incorporate a speaker component into

neural network by reviewing prior works on the subject for both ASR and TTS

acoustic models. The principles are then applied for modeling speaker-adaptive

TTS models in the form of speaker scaling and bias codes. Through the experi-

ments with the scaling and bias codes we can better understand the relation of

linguistic feature, acoustic features and speaker transformation.

Section 5.1 systematically reviews di↵erent ways to model speaker transfor-

mation within a neural acoustic model. Section 5.2 introduces a method of using

scaling and bias codes as speaker component for speaker-adaptive neural TTS

and present the hypothesis about the non-linear and linear nature of the speaker

transformation. Section 5.3 describes the experiments and relevant observations

about the subject.

5.1 Neural speaker component

The speaker component is a crucial aspect of a speaker adaptation methodol-

ogy as it directly a↵ects the speaker footprint and performance of the adapted

model. As explained in Section 3.2, we can adapt by simply tuning the entirely

of a pretrained network. However due to the large amount of parameters but

limited amount of data, it is vulnerable to overfitting. Regularization or heuristic

training policy can be used to alleviate this problem. Instead of regularization,

we can also limit adaptable parameters to a specific part of the network. The

speaker component can be just one [28] or several layers [26]. These layers can

be further factorized [100] to discourage the adapted model of the target speaker
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from straying too far from the initial state. In this section, we categorize these

factorized methods on the type of transformation they model within a single layer

of the neural network.

5.1.1 Speaker layer

Due to the hierarchy structure of a neural network, we can have one specific layer

as speaker-dependent:

hl = f (l)(W (k)
l hl�1 + c(k)

l ) (5.1)

These speaker layers are strategically placed at input [101], output [97] or in-

between the hidden layers [26] depending on the task. The weights and biases

can be factorized in various ways to further reduce the speaker footprint [100, 26].

5.1.2 Speaker weight

Instead of using the whole layer, we can use the weight as speaker dependant

while the bias is common for all speakers:

hl = f (l)(W (k)
l hl�1 + cl) (5.2)

The motivation behind this is by reducing the amount of speaker-dependent

parameters it would reduce the risk of overfitting for speakers with less data.

The amount of parameters can be further reduced by using other techniques.

Singular value decomposition (SVD) bottleneck [102] factorizes the full matrix

W (k)
l 2 Rm⇥m into products of several low-rank matrices

W (k)
l = U lA

(k)
l V l (5.3)

where U l 2 Rm⇥n , V l 2 Rn⇥m and A(k)
l 2 Rn⇥n. By setting n ⌧ m the speaker

specific parameters become much less numerous than using the square matrix

W (k)
l . Similarly, in the cluster adaptive training (CAT) method proposed by Tan

et al. [103], the speaker weight is estimated based on an interpolation between

several canonical matrices and hence the interpolation coe�cients �(k)
l 2 Rp are

speaker-specific parameters:

W (k)
l =

pX

i=1

�(k)
l,i W l,i (5.4)
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where W (k)
l depends on the canonical set M l = {W l,1, ...,W l,p}. Factorized

hidden layer (FHL) [104] exercises a similar concept, modeling the speaker weight

as a subspace over a finite set of canonical matrices.

5.1.3 Speaker bias

The layer bias by itself has also been proven to be an e↵ective speaker-specific

parameter [80, 79].

hl = f (l)(W lhl�1 + c(k)
l ) (5.5)

In practice we model a speaker bias by augmenting the input or hidden layer(s)

with a one-hot vector representing the speaker [86] while still keeping an extra

common bias:

hl = f (l)(W lhl�1 + cl + b(k)
l ) (5.6)

where b(k)
l 2 Rm⇥1 is a speaker-specific bias projected from the speaker one-hot

vector. We could factorize the speaker bias further by using a continuous vector

to represent the speaker instead of using the discrete one-hot vector.

b(k)
l = W b

ls
b,(k)
l (5.7)

This arbitrary-sized bias code sb,(k)
l 2 Rq⇥1 can be obtained by jointly training

with the model [91] or be immutable and assigned with a meaningful embedding

obtained with an external system (e.g. i-vector [105]). Whether the bias code is

mutable or immutable, the training process still optimizes W b
l 2 Rm⇥q which is

a universal subspace matrix for all speakers in the training stage.

5.1.4 Speaker scaling

Instead of factorizing the existing weight or bias of a layer, using an additional

speaker dependant diagonal matrix as a scaling operation has also been proven

to be useful for speaker modeling. For example learning hidden unit contribution

(LHUC) [106] uses a speaker-dependent vector a(k)
l 2 Rm⇥1 to adjust the output

of the hidden layers:

hl = a(k)
l � f (l)(W lhl�1 + cl). (5.8)

If we look at it from the perspective of the next layer, a(k)
l is basically a diagonal

scaling matrix:

hl+1 = f (l)(W l+1diag(a(k)
l )hl + cl+1) (5.9)
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Figure 5.1: Scaling and bias codes for speaker-adaptive neural TTS.

where diag is the operation of changing an m⇥ 1 vector into a diagonal m⇥m

matrix. Just like the speaker weight and bias, speaker scaling can be factorized

further using the subspace approach. Samarakoon et al. [107] proposed subspace

LHUC, in which a(k)
l is projected from a vector sa,(k)

l 2 Rp⇥1 of arbitrary size p

by using a SI matrix W a
l 2 Rm⇥p:

a(k)
l = 2 ⇥ �(W a

l s
a,(k)
l ) (5.10)

Other variations of subspace speaker scaling are investigated in [29] and [108].

5.2 Scaling and bias codes for neural TTS

Speaker bias by itself is enough to model a speaker-adaptive speech synthesis

system as suggested by the experiments in previous chapters. However, there is a

significant gap in performance between the multi-speaker and the speaker adap-

tation task. To improve the performance of adaptation task while maintaining its

resistance to overfitting, we want to enhance the expressive power of the speaker

components while maintaining the amount of adaptable parameters.

5.2.1 Scaling and bias codes as speaker components

Based on the prior works presented in Section 5.1, we can increase the expressive

power of the speaker transformation but not significantly increase the amount

of speaker-dependent parameters by using speaker scaling in conjunction with
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Figure 5.2: The non-linear and linear injection points of the speaker components.

speaker bias:

hl = f (l)(diag(a(k)
l )W lhl�1 + cl + b(k)

l ) (5.11)

To further reduce the amount of adaptation parameters, we can apply the sub-

space approach to factorize the speaker scaling and bias into scaling and bias

codes by using universal speaker projection matrices which are shared among

speakers in the training set:

a(k)
l = W a

l s
a,(k)
l , (5.12)

b(k)
l = W b

ls
b,(k)
l , (5.13)

where sa,(k)
l 2 Rp⇥1 and sb,(k)

l 2 Rq⇥1 are scaling and bias codes of the l-th layer

and have arbitrary size p and q. These codes are projected into a speaker scaling

and bias a(k)
l , b(k)

l by using the SI matrices W a
l 2 Rm⇥p and W b

l 2 Rm⇥q. This

reduces the number of parameters to be fine-tuned in the adaptation stage.

5.2.2 Linear and non-linear setups

The mechanism of multi-speaker neural TTS is that the speaker component

changes the transformation function modeled by the neural network, so that

the network is capable of transforming a speaker-independent latent feature to

a speaker-dependent feature. The power to model complex transformation func-

tions is the product of hierarchy and non-linear structure of the neural network.

The question is does the non-linear transformation benefits the speaker mod-

eling of the multi-speak neural TTS. Due to the hierarchy structure, the speaker
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Figure 5.3: The e↵ect of the speaker scaling code size on the objective measure-
ment of the multi-speaker task.

component essentially changes the transformation of the function modeled by

layers placed above it, while it has no e↵ect on the function modeled by the lay-

ers placed below it. To understand the relationship between linguistic input and

acoustic output we test the e↵ect of injection point for speaker components on

the performance. Figure 5.2a represents a scenario in which the speaker compo-

nent changes a non-linear function as it is placed below two layers with non-linear

activation functions, while Figure 5.2b represents a scenario in which the speaker

component changes a linear function.

5.3 Experiments

The purpose of the following experiments is testing the ability to use a scaling

code by itself or in conjunction with bias code as the speaker component. The

same 5-layer feedforward network used in previous chapters is reused. Details

can be found in Appendix C.1. The experiments in this chapter test the focused

hypothesis on both English and Japanese TTS systems. The linguistic features

used for each language can be found in Appendix B. The configuration of the

speaker component is dependent on each particular experiment.

We perform the experiments on [corpus].medium sets of VCTK and JVB

corpus to make sure the finding is consistent across languages. Both the multi-

speaker and adaptation tasks are evaluated on the [corpus].medium.target sets

of these corpora to provide a consistent condition and allow a direct comparison

between multi-speaker and adaptation tasks.
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Table 5.1: The objective evaluations for multi-speaker task of speaker-adaptive
acoustic model using scaling and bias codes.

Task Speaker code MCD (dB) F0 RMSE (Hz)
scaling bias 320 utt. 320 utt.

multi-setup1-bias - 64 5.81 16.93
multi-setup1-scale 64 - 5.82 16.49
multi-setup1-bias+scale 32 32 5.90 16.42
multi-setup2-bias - 64 6.53 17.68
multi-setup2-scale 64 - 5.85 16.38
multi-setup2-bias+scale 32 32 5.87 17.08

5.3.1 E↵ect of scaling code size on multi-speaker task

The first experiment is conducted with VCTK corpus to test the e↵ect of vary-

ing scaling code size on the multi-speaker task. The setup1 network is used as

the acoustic model. The objective evaluation is presented in Figure 5.3. This

corresponds to experiments which test the e↵ect of the varying bias code size

presented in Figure 3.3a. In general, objective results of both F0 RMSE and

MCD are getting better the bigger the scaling code is. However the performance

is quickly converges. This result is similar to the bias code case and proves that

a scaling code by itself can be used as the speaker component of a multi-speaker

acoustic model.

Observation 6. Scaling code by itself can be used as the speaker component of a

multi-speaker acoustic model. The size of the scaling code a↵ects the performance

of multi-speaker task in a similar manner to the bias code with a bigger vector

generally performing better than a smaller one.

5.3.2 Scaling and bias codes for English TTS

Next, we test performance of scaling and bias codes on both multi-speaker and

adaptation tasks of the English TTS system. We first evaluate the e↵ect of

scaling and bias codes with di↵erent network setups on a multi-speaker task.

The combined size of scaling and bias codes is kept at 64 as listed in Table

5.1. All strategies show marginal di↵erence but multi-setup2-bias, which has the

worst score in MCD while maintaining a competitive F0 RMSE evaluation. This

result suggests that the relationship between linguistic and F0 can be modeled

by linear function while it is not the case between linguistic and spectral feature.

This observation is perpetuated in the setup of many VC systems which transform

F0 of a source to a target speaker’s using a linear function instead of non-linear

54



Table 5.2: The objective evaluations for adaptation task of speaker-adaptive
acoustic model using scaling and bias codes.

Task Speaker code MCD (dB) F0 RMSE (Hz)
scaling bias 10 utt. 320 utt. 10 utt. 320 utt.

multi-setup1-bias - 64 6.17 5.81 22.20 16.93
adapt-setup1-bias - 64 6.29 6.27 21.84 22.39
adapt-setup1-scale 64 - 6.19 6.16 21.13 19.49
adapt-setup1-bias+scale 32 32 6.26 6.26 22.21 21.38
adapt-setup2-bias - 64 6.48 6.47 15.88 14.78
adapt-setup2-scale 64 - 6.19 6.19 19.99 17.99
adapt-setup2-bias+scale 32 32 6.29 6.26 17.35 15.82

function.

Table 5.2 shows the objective evaluation of the adaptation task with di↵erent

amounts of adaptation data. The multi-setup1-bias is included as the upper

bound. We can see that the multi-speaker task greatly benefits from increasing

amounts of data while the adaptation task does not. The adapt-setup2-bias stands

out from the rest with the worst MCD and the best F0 RMSE similar to its multi-

speaker counterpart. Between other adaptation systems, the ones which include

a scaling code seem to be slightly better than the baseline with just the bias

code adapt-setup1-bias. This confirms the potential of using scaling codes for

speaker-adaptive acoustic models.

Observation 7. The speaker component which is most suitable for modeling a

transformation between a linguistic feature and an acoustic feature is dependent on

the nature of the acoustic feature. Therefore, using a multitask network to model

all acoustic features together may have a negative impact on the performance.

5.3.3 Scaling and bias codes for Japanese TTS

In this experiment, we want to test our hypothesis on scaling and bias again with

a Japanese TTS system. As Japanese is a pitch-accent language [109], in which

pitch plays a bigger role on the meaning conveyed than English, it is interesting to

know if the same conclusion is still substantial. Only a few selected strategies are

recreated for the Japanese TTS experiment which includes the multi-speaker task

baseline with bias code multi-b which is short for multi-setup1-bias, the adaptation

task baseline with bias code adapt-b which is short for adapt-setup1-bias and

the proposed adaptation strategy with scaling and bias code adapt-ab which is

short for adapt-setup2-bias+scale. Their objective evaluations are listed in Table

5.3 with the 10-utterance and 100-utterance scenarios. Between the adaptation
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Table 5.3: Objective evaluations for selected strategies with Japanese corpus.

Strategy Speaker code MCD (dB) F0 RMSE (Hz)
scaling bias 10 utt. 100 utt. 10 utt. 100 utt.

multi-b - 64 5.23 5.07 27.76 25.99
adapt-b - 64 5.32 5.27 28.25 27.17
adapt-ab 32 32 5.25 5.23 25.96 25.90

(a) Quality (b) Similarity

Figure 5.4: Subjective evaluations for selected strategies with Japanese corpus.

baseline adapt-b and the proposed strategy adapt-ab, the latter has slightly better

scores in all data points with noticeable improvement on F0 RMSE metric. There

is marginal di↵erence between multi-speaker and adaptation strategies in 10-

utterance case, but the multi-speaker strategy multi-b is significantly better than

the adaptation strategies in the 100-utterance case.

Figure 5.4 presents subjective evaluation of the Japanese generated speech

samples. Interestingly, there is not much di↵erence in the quality score between

strategies. In similarity measurement, however, the multi-speaker strategy with

100 utterances has the best performance as expected. The strategy with scaling

and bias codes are consistently better than the adaptation baseline with just bias

code even though the amount of adaptable parameters is identical.

Observation 8. By using speaker scaling code along with speaker bias code to

model the speaker transformation, we can improve performance of speaker adapta-

tion with the speaker-adaptive neural TTS without having to increase the amount

of adaptable parameters.

The experiments in this chapter show that the key to improving the perfor-

mance of speaker adaptation is improving the expressive power of the speaker

component. Even though the performance of the speaker adaptation task is

improved by using scaling code along with bias code, it is still worse than the

multi-speaker task baseline.
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Chapter 6

Training a robust

speaker-adaptive multimodal

neural TTS

As Chapter 4 proposes a novel unsupervised speaker adaptation method and

Chapter 5 investigates relevant aspects of the adaptation process, this chapter

addresses their remaining limitations and provides solutions to improve upon the

established method. Specifically, we introduce the variational multimodal neural

TTS which greatly increases the consistency of the text-encoded and speech-

encoded linguistic latent spaces. This consistency allows us to relax constraints

on speaker components which, in turn, greatly improve performances of both

supervised and unsupervised speaker adaptation tasks.

Section 6.1 addresses the remaining limitations of methods introduced in

Chapter 4 and Chapter 5. Section 6.2 describes the enhanced system which

is inspired by variational autoencoder. Section 6.3 introduces a new hypothesis

about performance of the speaker adaptation approach by finetuning the entire

speaker-adaptive module. Section 6.4 presents the experiment setups and evalu-

ations.

6.1 Limitations of the multimodal neural TTS

6.1.1 The discontinuity of the linguistic latent space

Chapter 4 experiments suggest that even if we train the multimodal system with

the joint-goals method, which constrains the output, and the tied-layers method,

which constrains the hidden layers, the continuity of the latent space is only
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achievable to some extent. In simpler words, a small di↵erence in the latent

space can produce vastly di↵erent output which also means it is not reliable to

use the speech encoder as a substitute of the text encoder. It is because of the

scarcity nature of data, as we train a continuous latent space with a limited

amount of training examples.

Due to this reason, a key element for a serviceable crossmodal speaker adap-

tation method, introduced in Chapter 4, is restricting the amount of adaptable

parameters. More specifically, even if the speech encoder failed to approximate

the text encoder, as long as their latent space is correlated the adaptation method

can still function properly. The correlation in this context means that a speaker

embedding which improves the designated loss in the STS stack improves the

same loss function in the TTS stack.

However, if we are limiting the amount of adaptable parameters, there are

very few ways we can improve performance further; using speaker scaling and bias

codes, introduced in Chapter 5, is one approach. So to open up more possibilities

to improve the performance, we need to improve the continuity of the shared

latent space and train a speech encoder that is better at approximating the text

encoder.

6.1.2 The restrictive nature of speaker codes

The experiments conducted in Chapter 5 show that by adding a speaker scaling

along with the speaker bias, we can create more sophisticated speaker trans-

formations. These results suggests that the key to improve the performance of

the speaker adaptation task is increasing the expressive power of the adaptable

speaker component, which means we need to enhance the type of transformation

and increase the amount of adaptable parameters.

However, doing so makes the adaptation process become more vulnerable to

overfitting which is the reason we restrict the amount of adaptable parameters in

the first place. In summary, to improve the performance of speaker adaptation

task, we need to increase the expressive power of adaptable components while

deploying di↵erent types of strategies to prevent overfitting without having to

reduce the amount of adaptable parameters.

6.2 Variational multimodal neural TTS

We first address the discontinuity problem described in Section 6.1.1 by introduc-

ing a modification to the multimodal neural TTS, which is inspired by VAE [110].
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Figure 6.1: The variational multimodal speaker-adaptive speech synthesis system.

The main concept is instead of encoding the input into a single LLE sample (as

in Section 4.2), the encoders output a distribution over the latent space.

6.2.1 Variational latent linguistic embedding

The text encoder is modified to output a distribution of z given the input x to

reflect the new concept. The speech decoder then consumes a sample zT , which

is sampled from such distribution, and transforms it into speech feature:

zT ⇠ TEnc(x;�T ) = p(z|x) (6.1)

ỹT = SDec(zT ; ✓S/core, ✓S/spk,(k)) (6.2)

The same modification is applied to the speech encoder which changes the STS

transformation as follows:

zS ⇠ SEnc(y;�S) = q(z|y) (6.3)

ỹS = SDec(zS; ✓S/core, ✓S/spk,(k)) (6.4)

The proposed modified network is not trainable with backpropagation as it is, we

need to make several practical assumptions to make the training tractable. We

assume the linguistic latent spaces have isotropic Gaussian distribution and makes

the encoders output mean (µ) and standard deviation (�) of such distributions.

The reparameterization trick is, then, applied so we could train the network with
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backpropagation as usual:

z = µ + � � ✏, ✏ ⇠ N (0, 1) (6.5)

These configurations are not entirely novel but inspired by the typical setup of

the variational autoencoder network.

6.2.2 Kullback-Leibler divergence as latent tying loss

Conceptually, there is no di↵erence between the variational multimodal neural

TTS and the original model proposed in Chapter 4. Therefore, the same train-

ing methods introduced previously (Section 4.3) are usable for the new system.

Specifically we can use the joint-goal and the tied-layer methods to jointly train

the entire multimodal network. However, the tied-layer method is focused on in

this chapter as a special distance function can be used with the variational neural

structure, and we want to investigate its performance and behavior in detail:

losstrain = losstts + � losstie (6.6)
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Instead of using distortion between hidden layers as losstie, we can use Kullback-

Leibler divergence (KLD) on the encoders’ latent distribution outputs as the

latent tying loss:

losstie = LKLD(TEnc(x), SEnc(y)) (6.7)

The motivation for the setup is identical to the standard multimodal neural TTS

proposed in Chapter 4, the text encoder and speech decoder are trained with

a typical TTS objective while the speech encoder is trained to approximate the

text encoder so it could be used as a substitution. By jointly training the entire

multimodal network with the combined loss, we encourage the model to find the

optimal representation for all criteria.

6.2.3 Crossmodal adaptation with variational LLE

The adaptation process with variational multimodal neural TTS is also identical

to that of the standard multimodal system (Section 4.2.2). Specifically, the STS

stack is used to estimate a new set of speaker-dependent parameters, ✓S/spk,(r),

for the r-th target unseen speaker using untranscribed speech:

lossadapt = losssts . (6.8)

However we do need to apply the reparameterization trick just like in the training

stage. The main hypothesis about variational multimodal neural TTS is that as

we expect the shared linguistic latent space to become more consistent thanks to

the new modifications, we could increase the amount of adaptable parameters in

the speech decoder without having to worry about mismatch between the speech-

encoded and text-encoded latent spaces.

6.2.4 Variational autoencoder for shaping latent space

The proposed variation multimodal neural TTS addresses the sparsity of the la-

tent space by replacing the AE-like structure (see Section 4.2.3) with VAE-like

structure. The original purpose of VAE network [111] is enabling content gen-

eration by organizing the latent space into a simple distribution which could

be sampled from. However for speech synthesis, VAE is generally used as an

enhanced version of AE with the capacity to learn better latent features. The

VAE-based VC system introduced in Section 2.2.3 is one example. The advan-

tages of VAE over AE when used for shaping latent space is that it provides

better continuity and completeness (over a designated trivial prior distribution).
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Figure 6.3: Latent and acoustic space of the variational multimodal TTS.

The incorporating of VAE-like structure into the proposed multimodal net-

work is motivated by its ability to enhance the continuity of latent space. The

completeness of latent space is not yet a concern in this work, therefore we do not

assume a trivial prior distribution over the latent space like regular VAE setup.

Intuitively, there are several reasons a VAE-like structure would help create a

latent space with better continuity and train a speech encoder better at approx-

imating text encoder. First, the reparameterization trick can be regarded as an

artificial samples generation which increases the amount of training examples.

Moreover, these artificial latent samples are complied with the continuity pol-

icy (latent samples belonged to same distribution will produce the same acoustic

feature). Second, by forcing the latent space to have a simple distribution form

(e.g. isotropic Gaussian) we can apply the latent tying loss over densities in-

stead of individual samples which helps shape the speech-encoded latent space to

approximate the text-encoded latent space.

6.3 Adapting by finetuning entire module

6.3.1 Speaker-awareness the initial model

Besides the speaker component, the state of the initial model also a↵ects the

performance of the adapted model [30]. More specifically, we can classify the

initial model either as speaker-aware or speaker-unaware. A speaker-unaware

62



z

y

SEnc
� �

�

SDec

y~

trainable

MSE y

lossgoal

(a) Adaptation

z

x

TEnc
� �

�

SDec

y~

(b) Inference

Figure 6.4: Adapting by finetuning the entire speaker-adaptive speech decoder.

model is trained without information about the speaker. This sort of model

includes the conventional SI model of speech recognition and the single-speaker

[75, 87] or average-voice model [18, 62] of TTS and VC systems. A speaker-aware

model is trained with the speaker components integrated into the initial model.

For speech recognition, it is generally known as speaker-adaptive training (SAT)

[105]. For speech synthesis, it is the multi-speaker model [80].

The speaker components introduced in Section 5.1 can be used for both

speaker-aware and speaker-unaware setups. For example, Fan et al. [28] train a

multi-speaker model with a speaker output layer, capable of adapting to an unseen

speaker by fine-tuning a new layer for the target. Meanwhile Huang et al. [26]

add new layers for unseen speakers on top of a pretrained speaker-unaware single-

speaker model. Similar to the LHUC method, Swietojanski et al. [106] proposed

to add speaker parameters on top of the SI model for adaptation. By constrast, in

a more recent publication, they introduced a speaker adaptive training method for

LHUC (SAT-LHUC) [112] which adds LHUC parameters right from the training

stage. The speaker awareness or unawareness of the initial model does not change

the structure of the adapted model, but changes the representation learned by

the hidden layers. Training a speaker-aware model encourages the model to dis-

entangle speaker characteristics (style) from the linguistic information (content)

which is expected to improve the adaptation performance [112].
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Figure 6.5: Architecture of the variational multimodal neural TTS system using
residual filter-gate convolution layers.

6.3.2 Tuning speaker-adaptive layers to target speaker

Recent studies [21, 113] have shown that fine-tuning the entire network along with

the speaker embedding is better than fine-tuning just the speaker-embedding.

Given a speaker-aware layer with the speaker bias code defined by Equation 3.1,

finetuning the entire layer will create a speaker-dependent layer which can be

defined as follows:

h1 = f (1)(W (k)
1 x + c(k)

1 + W b,(k)
1 s(k)) , (6.9)

where all parameters of the layer are now dependent on the target speaker. How-

ever it is redundant to have c(k)
1 + W b,(k)

1 s(k) to model a speaker bias as a single

vector c(k)
1 2 Rm⇥1 can perform the same job.

Based on the above observations, we propose a new adaptation strategy in

which we fine-tune entire layers of an initial speaker-adaptive network by first

removing all speaker components like speaker scaling diag(a(k)
l ) and speaker bias

b(k)
l . Liu et al. [14] used a similar strategy to adapt a multi-speaker Wavenet

vocoder [114] to unseen speakers with limited data. We hypothesize that a
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Table 6.1: Speaker adaptation strategies with the variational multimodal systems.

Strategy Speaker layer(s) Speaker code Adaptable parameters
scaling bias

A1B A1 - full 256x1
A3a A3 128 128 256x1
BaB B[1-8] - full 512x8
Baa B[1-8] 64 64 256x8
BaBall B[1-8] - full speech decoder
Baaall B[1-8] 64 64 speech decoder

speaker-aware model with all speaker-specific parameters stripped is a good ini-

tialization for the speaker adaptation.

6.4 Experiments

The following experiments test the performances of variational multimodal neu-

ral TTS system on supervised and unsupervised speaker adaptation tasks. The

medium-sized network with time-domain one-dimensional convolution layer is

used extensively in the network as illustrated in Figure 6.5. While the concepts

of speaker scaling and speaker bias are defined in the context of a simple feed-

forward layer, they can easily be extended to more complex neural layers like

recurrent neural network (RNN) or convolution neural network (CNN). Details

about the architecture can be found in Appendix C.2. The text representation is

aligned Japanese linguistic which listed in Appendix B and speech representation

uses mel-spectrograms. By using a single acoustic feature instead of multiple

acoustic features and their dynamics, it reduces the complication with speaker

transformation which is discussed in Chapter 5.

The initial multi-speaker model is trained with jvb.medium.base (Appendix

A). Unlike previous experiments which test performance on many target speakers,

the following experiments focus on just two Japanese, one male and one female in

the single.ja.base set, whom have more than one thousand utterances so we could

investigate the e↵ect of the amount of data on adaptation performance. Table 6.1

describes the speaker adaptation strategies that will be evaluated in the following

experiments. A1B and A3a are strategies with speaker scaling and bias at a single

layer near input or output. BaB and Baa are strategies with speaker scaling and

bias at multiple hidden layers. BaBall and Baaall use the same initial model as BaB

and Baa but we fine-tune the entire speech decoder after removing all speaker

components in the adaptation stage.
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Figure 6.6: Objective evaluations for supervised and unsupervised speaker adap-
tation tasks of the variational multimodal systems.

6.4.1 Objective evaluation on adaptation by finetuning

As the mel-spectrogram is used as the acoustic feature, mean square error is utilize

for objective metric. Figure 6.6 shows the results of supervised and unsupervised

adaptation over di↵erent amounts of adaptation data. The number of utterances

used for adaptation ranged from 5 to 1000 utterances. We can see that A3a is

slightly better than A1b at most data points, which reassures the benefit of using

speaker scaling along with speaker bias. Surprisingly, BaBall outperforms all other

strategies, while Baaall shows poor results when the amount of data is limited.

The pattern is consistent between male and female speakers.

For the unsupervised adaptation task, BaBall is also the best strategy. How-

ever, adding more adaptation data seems to worsen the objective results. There

is still a observable gap between the objective performances of the supervised

and unsupervised adaptation, but the best proposed strategy BaBall surpasses the
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Figure 6.7: Subjective evaluations for supervised and unsupervised speaker adap-
tation tasks of the variational multimodal systems.

baseline A1B in both supervised and unsupervised tasks.

Observation 9. Given a good initial pretrained model, adaptation by finetuning

the entire module not only produces the best performance when data is plenty but

also does not cause overfitting when data is limited. The tricky part is finding a

good initial model for a particular setup.

6.4.2 Subjective evaluation on adaptation by finetuning

We conducted subjective surveys on the supervised and unsupervised adaptation

tasks. A speaker-independent WaveNet vocoder conditioned on mel-spectrogram

is used to generate speech. The neural vocoder was trained on jvb.medium.base

without tuning to target speaker so we can observe the di↵erence in performance

of the adapted acoustic model. To reduce the number of systems that the partic-
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ipants had to evaluate, we only used models adapted with 5 and 250 utterances.

A copy synthesis system was also included as a reference.

The mean values of the quality and similarity tests are shown in Figure 6.7.

Several inter-speaker and inter-strategy trends are: the quality of the male speaker

is lower than the female speaker; when more data becomes available the similar-

ity score increases for most strategies, while the quality sometimes decreases;

strategies utilizing both speaker scaling and bias got worse results than those

utilizing only speaker bias, despite their better objective results; the supervised

and unsupervised adaptations strategies gave similar results. Generally speak-

ing, BaBall is the best strategy for both supervised and unsupervised adaptation

tasks, especially in the 250-utterance case. The most surprising outcome is that

unsupervised adaptation of BaBall outperforms its supervised counterpart, even

though the objective results indicated the opposite.

Observation 10. The crossmodal unsupervised adaptation strategy with vari-

ational multimodal neural TTS has better subjective results than its supervised

counterpart even though the objective results suggest the opposite. This highlights

the limitation of using objective metrics to evaluate generation tasks.

The experiment results in this chapter have shown that the proposed vari-

ational multimodal neural TTS system has a highly consistent linguistic latent

space shared between the text encoder and speech encoder. This allows us to

fine-tune the entire speech decoder with STS stack then use it in the TTS stack.

The performance of this adaptation strategy is improved significantly when using

more adaptation data even if the data is untranscribed speech.
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Chapter 7

Latent linguistic embedding for

any-to-one VC

The previous chapters establish the fundamentals of the proposed voice cloning

method for neural TTS systems. Even though the quality of generated speech

presented in their experiment sections are not yet comparable to other SOTA

systems, we will put the TTS investigation on hold and return to it later in

Chapter 8. In this chapter, we move on to the second issue of this thesis which

is developing a unified voice cloning system of TTS and VC. Specifically, we

investigate the feasibility of using the latent linguistic embedding, obtained from

the training process of the multimodal neural TTS, for non-parallel VC systems.

As LLE shares many traits with PPG, which are a popular phonetic features used

to train non-parallel VC systems (Section 2.2.4), it hints at the potential of using

LLE for the same task. Moreover, this chapter also highlights the complementary

nature of TTS and VC systems, the ability of VC to convert speech in unseen

languages being one example.

Section 7.1 explains the complementary nature of TTS and VC systems and

points out the motivation for a unified method. Section 7.2 describes the proce-

dure to create a VC system with a target speaker’s voice using LLE obtained from

the training of a multimodal neural TTS system. Section 7.3 introduces di↵erent

cross-lingual scenarios that the proposed VC system can handle. Section 7.4 lays

out the experimental setups and results.

7.1 Complementarity of TTS and VC

TTS and VC can be seen as di↵erent interfaces for generating speech with a

target voice. The di↵erence in the input interface is not trivial but has important
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implications for their operation scenarios. More specifically, as text input is easy

to create and modify, TTS is capable of generating a large amount of speech

automatically and cheaply. However it is unable to generate speech when the

desired linguistic instructions cannot be represented in the expected written form

(e.g. when text is written in foreign languages). On the other hand, speech used

as a reference input for VC is more time-consuming and expensive to create, but

the system can be straightforwardly extended to an unseen language.

TTS and VC systems with the voice of a particular speaker can be used

together to handle a single task. For example, in the case of using speech synthesis

for video games, most of the time we would want to use TTS to generate dialog of

characters as it is cheaper and easier to edit, however when the conveying content

is more complex, expressive or unable to be represented by written text we would

want to use VC to generate speech with the same character’s voice. In this

example we assume that the quality and, more importantly, speaker similarity

between TTS and VC is highly consistent. To create TTS and VC systems with

consistent performance, it is desirable to use the same method or system for both

as each separated module is a chance to cause friction in performance.

7.2 Latent linguistic embedding for VC

Given the variational multimodal neural TTS introduced in Chapter 6, this sec-

tion establishes the framework to transfer knowledge learned by TTS, in the form

of latent linguistic embedding, to VC and create an any-to-one non-parallel VC

system for a target speaker.

7.2.1 Training the multimodal neural TTS

The first step is training a robust multimodal TTS system and the latent linguistic

embedding. This step is identical to the training stage defined in Section 6.2 which

requires transcribed speech data of multiple speakers:

losstrain = losstts + � losstie , (7.1)

where losstts is the distortion between output of the TTS stack and the natural

speech features, and losstie is the Kullback-Leibler divergence (KLD) between the

output of the text encoder and output of the speech encoder. We can use mean-

square error (MSE) or mean-absolute error (MAE) as the speech feature distortion

function. The previous chapter used MSE while this chapter uses MAE just for
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Figure 7.1: Creating VC system by finetuning speech decoder to target speaker’s
untranscribed speech data.

observation. In the training step, the speech encoder is trained to transform

acoustic features to the linguistic representation LLE while the acoustic decoder

is trained to become a good initial model for speaker adaptation.

7.2.2 Adapting to the target speaker of VC

For VC, we only need the speech encoder and the speech decoder trained previ-

ously. They make a complete STS stack. To create a VC system with a particular

voice, we can clone voices of the targets using the their untranscribed speech data.

It is identical to the unsupervised crossmodal speaker adaptation for TTS intro-

duced in the previous chapter. The adaptable parameters of the speech decoder

are fine-tuned using the following loss function:

lossadapt = losssts . (7.2)

Specifically, we remove all speaker components ✓S/spk,(r) and then fine-tune re-

maining parameters ✓S/core,(r) to the r-th target speaker as described in Section

6.3.2. A new tactic, named mean-value LLE, is introduced in this step. Basi-

cally, instead of sampling zS from a distribution (Equation 6.4), we assign the

mean vaue to it. The motivation is that by removing the stochastic sampling

process, the model can learn fine-grain details instead of a generalizing repre-

sentation. Figure 7.1a illustrates the adaptation process used for VC which is

slightly di↵erent to its counterpart in the previous chapter (Figure 6.4a).
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Figure 7.2: Di↵erent scenarios (by examples) of using LLE-based VC system
with an unseen language. English plays the role of the abundant language (seen
and with transcript) while Japanese plays the role of the low-resource language
(unseen and without transcript).

7.2.3 Converting speech of arbitrary source speakers

The adapted speech decoder is used together with the speaker-independent speech

encoder as an any-to-one VC system to convert speech of arbitrary source speakers

to the voice of the target as illustrated in Figure 7.1b. The system does not need

to train on or adapt to the speech data of source speakers which is similar to

PPG-based VC system.

7.3 Cross-lingual voice conversion scenarios

The procedure to create a VC system with a target voice described in Section

7.2 has an interesting characteristic which is the asymmetric nature in terms of

data requirements for each step. While the TTS training step requires a tran-

scribed multi-speaker corpus, the adaptation only requires a small amount of

untranscribed speech from the target speaker. Moreover the model does not need

to train on data of source speakers and hypothetically can convert utterances

of arbitrary speakers out of the box. This asymmetric nature in terms of data

requirements can be taken advantages of to build VC systems for low-resource

languages or handle various cross-lingual scenarios. Even though there are many

works dealt with cross-lingual VC, the way di↵erent types of cross-lingual scenar-

72



ios are described is imprecise and interchangeable which fails to highlight their

distinctions and their practical application. Therefore, we explain these cross-

lingual scenarios by using real examples as shown in Figure 7.2. These scenarios

are di↵erentiable due to the asymmetric nature of data requirements for creating

a VC system with a target voice using our framework.

7.3.1 Standard intra-language scenario

This scenario is represented by the EE-E scenario. We adapt the pretrained

English model to an English speaker and use it to convert English utterances.

Generally speaking the entire framework from start to finish operates within a

single language. It is essentially the typical intra-language scenario of a voice

conversion system.

7.3.2 Cross-language voice conversion scenario

This scenario is represented by the EE-J scenario. We adapt the pretrained

English model to an English speaker but use it to convert Japanese utterances.

Generally speaking, the VC system is used to generate speech from linguistic

instructions that it did not see before. The ability to generate speech for content

that is di�cult to represent in the expected written form (a foreign language

in this case) is one advantage of VC over TTS. This scenario is referred to as

cross-language voice conversion in several publications [115, 116].

7.3.3 Cross-language speaker adaptation scenario

This scenario is represented by the EJ-E scenario. We adapt the pretrained

English model to a Japanese speaker and use it to convert English utterances. In

this scenario we want to build a VC system in the abundant language; however,

the speech data of the target speaker is only available in a low-resource unseen

language. This is sometime referred to as cross-lingual voice conversion [64, 117],

however we call it cross-language speaker adaption to distinguish it from EE-

J. Unlike other scenarios involving the unseen language, cross-language speaker

adaptation is relevant for both VC [64] and TTS [118, 119]. However we will not

evaluate cross-language speaker adaptation for TTS systems in this thesis.
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Figure 7.3: Subjective evaluation of the reenactment of Voice Conversion Chal-
lenge 2018 SPOKE task for the LLE-based VC system.

7.3.4 Bootstrapping for low-resource language scenario

This scenario is represented by the EJ-J scenario. We adapt the pretrained En-

glish model to a Japanese speaker and use it to convert Japanese utterances of

unseen source speakers. In this scenario we essentially bootstrap a VC system

for a low-resource language from a pretrained model of an abundant one. The

written form of the target language is not used in the training, the adaptation

or the conversion stages. This scenario is sometime referred as text-to-speech

without text, which is the main topic of the Zero Resource Speech Challenge

2019 [120]. Even though our scenario has the same objective as the challenge,

the approach is a little di↵erent. The participants of the challenge are encour-

aged to develop intra-language unsupervised unit discovery methods, which are

more di�cult [121, 122, 123]. Our framework is bootstrapped from an abundant

language, which is a more practical approach [124, 125].

7.4 Experiments

The following experiments test the performance of LLE-based VC system on

the intra-language scenario as well as the cross-lingual ones. The medium-sized

network, same as previous chapter, is used as acoustic model (Appendix C.2).

The speaker biases are placed in layers B5, B6, B7 and B8 (see Figure 6.5). The

text representation is aligned English linguistic which is listed in Appendix B and
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Table 7.1: Detailed same-gender and cross-gender subjective results of the reen-
actment of VCC2018 SPOKE task.

(a) Quality

F-F F-M M-F M-M ALL
N10 3.91 3.96 3.85 3.93 3.91
B01 3.10 2.12 1.84 2.49 2.39
VCAu 2.72 2.77 2.41 2.68 2.65

(b) Similarity

F-F F-M M-F M-M ALL
N10 3.18 3.55 3.14 3.48 3.33
B01 2.74 2.87 2.21 2.04 2.47
VCAu 2.92 3.13 2.70 3.26 3.00

speech representation is mel-spectrogram. The WaveNet vocoder is finetuned to

the target speaker before it is used to generate the speech waveform.

The initial multi-speaker neural TTS system is trained with vctk.medium.base

(Appendix A). To test the feasibility of using LLE for non-parallel VC, the tar-

get speaker of the Voice Conversion Challenge 2018 (VCC2018) SPOKE task,

vcc2018.spoke.target, is used for the standard intra-language scenario. For cross-

lingual scenarios, two bilingual speakers spoke English and Japanese in the bilin-

gual.enja.target dataset are used as the target speakers. Details about the data

conditions can be found in Appendix A.

7.4.1 LLE for standard voice conversion

This experiment follows the guidelines of VCC2018 [53] to build systems for the

four target speakers of the SPOKE task and converting evaluation utterances

of the four source speakers. The proposed LLE-based VC system (VCAu) is

compared with B01 [126], which is the baseline of VCC2018, and N10 [14], which

is the best system based on the subjective evaluation. The listening test is setup

to ask participants to judge the quality and similarity of utterances generated by

the VCAu, B01 and N10 systems.

The general results can be seen in Figure 7.3. While it is not as good as the

best system N10, our system is slightly better than the baseline B01 in terms

of quality and significantly better in terms of speaker similarity. One should

note that B01 is a strong baseline, it is ranked 3rd in quality and 6th in speaker

similarity at the VCC2018 [53]. This validates our framework for VC. Detailed

results can be found in Table 7.1, which shows consistent performance of the

LLE-based VC system across same-gender and cross-gender pairs.
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results are statistically significant.

Observation 11. By following a similar procedure for cloning voices with multi-

modal neural TTS, we can create an any-to-one VC system with promising qual-

ity and speaker similarity. Moreover, the converting performance is consistent

between same-gender and cross-gender scenarios.

7.4.2 LLE for cross-language speaker adaptation

Next, we evaluate our system in the scenario of cross-language speaker adaptation

(EJ-E). For this task we developed the VC systems using the speech data of the

bilingual target speakers. We compare EJ-E with EE-E, which is the standard

intra-language of English, and a reference system NA-E, which is of held-out

natural English utterances.

The native English speakers who participated in the survey for the previous

task are asked to evaluate the cross-language speaker adaptation task as well. In

summary, each scenario is judged 544 times for quality and another 544 times

for similarity. The quality and similarity results are illustrated in Figure 7.4

and are statistically significant between all scenarios. The cross-language speaker

adaptation EJ-E is generally worse than EE-E as one would expect but the results

show the feasibility to use the model for cross-language speaker adaptation.

Observation 12. The LLE-based VC system can be adapted using speech in a

foreign unseen language of a target speaker without having to train on the speech

or text of the language. The performance is acceptable which suggests that the

linguistic latent space is somewhat universal.
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7.4.3 LLE for low-resource language voice conversion

In the last experiment, we test the performance of the proposed system on con-

verting speech of an unseen (low-resource) language. This consists of the EE-J

and EJ-J scenarios. We use JJ-J, the abundant language scenario of Japanese,

as the upper-bound and NA-J, the held-out natural Japanese utterances, as the

reference.

The subjective quality evaluation is illustrated in Figure 7.5a. Our standard

Japanese system JJ-J achieved a relatively better score than the English coun-

terpart EE-E, although technically they should not be compared directly. The

cross-language converting scenarios, EJ-J and EE-J, are a lot worse than the

standard scenario JJ-J; as expected EJ-J has a slightly better score than EE-J.

The result for the similarity test is illustrated in Figure 7.5b. For the four systems

that convert Japanese speech, their similarity result trend is the same as their

quality result trend. For the similarity test, we also included two extra systems
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that produce English speech, EE-E and NA-E. In these two cases the listener

would listen to an English utterance contributed by EE-E or NA-E and a natu-

ral Japanese utterance of the same speaker (as the target speakers are bilingual)

and judge their similarity. Interestingly the similarity result of NA-E is a lot

worse than that of NA-J even though they both contain natural speech spoken

by the same speaker in real life. This suggests that utterances spoken by the

same speaker in di↵erent languages might not have consistent characteristics.

Observation 13. The proposed LLE-based VC system can convert speech of an

unseen language without having to train on speech or text of the particular lan-

guage. Generally speaking, it is able to convert linguistic instructions that it has

not been trained on and cannot be represented in the expected written form.

Even though the performances in the unseen language scenarios are not as

good as the standard scenario, the subjective results present a proof-of-concept

for using the proposed system in cross-lingual scenarios. The experimental condi-

tions in this chapter are strictly configured to emulate the extremely limited data

scenarios of an unseen language. In practice, the performances of cross-lingual sce-

narios are expected to significantly improve by using multi-lingual corpus which

included the target language [64, 127]. This is also an interesting topic that we

will evaluate more in the future.

78



Chapter 8

A versatile voice cloning system

of TTS and VC

As previous chapters establish and evaluate di↵erent components or aspects of a

voice cloning system, the experimental systems are kept simple so the investiga-

tion can isolate and focus on behaviors of a particular component. This chapter

takes the generalized observations obtained in previous chapters and integrates

the proposed method into a SOTA versatile voice cloning framework by consid-

ering all major and minor complications of creating one [128].

Section 8.1 introduces relevant components and techniques that are essential

for high-quality speech generation systems which are overlooked in previous chap-

ters. Section 8.2 redefines the voice cloning framework as a unified system of TTS

and VC. Section 8.3 proposes the standard strategy for cloning voices with un-

transcribed speech. Section 8.3 introduces an alternative cloning strategy to use

when adaptation data is transcribed speech. Section 8.5 introduces two exper-

iment scenarios to test performance of the proposed system by comparing with

third-party SOTA TTS and VC systems. Section 8.6 provides further analysis

and discussion on the setup and training process of the proposed system.

8.1 Components of modern TTS/VC systems

8.1.1 Jointly tuned neural vocoder

A neural vocoder which generates waveforms sample-by-sample [11, 12, 13] is a

staple of many SOTA speech synthesis systems [6, 14]. Unlike the conventional

vocoder, a neural vocoder is trained with speech data and backpropagation al-

gorithm in the same manner as the neural acoustic model. A downside of a
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trained model is that it is more di�cult to obtain a universal vocoder but the

upside is that it can be integrated deeper with the neural acoustic model through

finetuning with backpropagation [129, 130].

8.1.2 Autoregressive speech synthesis

A standard neural acoustic model learns the mapping between a linguistic input

and the acoustic output while disregarding the temporal dependence between

neighboring acoustic feature frames. A better model should take the temporal

correlation between the target acoustic sequences into account. The autoregres-

sive neural acoustic model has shown to significantly improve the naturalness of

generated speech [131]. The autoregressive neural acoustic model takes previous

generated frames into account for the generation of the current, which allows the

network to model more sophisticated and complex functions. However an autore-

gressive structure also increases the inference time significantly as it generates one

sample at a time. Due to this reason, we did not use it in previous experiments.

8.1.3 Data-driven linguistic representation

As discussed in Section 2.4.1, in the conventional TTS system setup, the pho-

netic information is augmented with engineered language-specific linguistic infor-

mation. While for E2E system [6] this information is expected to be learned by

the model. Watts et al. [65] suggest that the learned linguistic context is one

aspect that contributes to the quality of E2E system. Moreover it also reduces

the burden of expert knowledge required to create hand-crafted relevant linguis-

tic information for a particular language. In previous chapters, we use aligned

linguistic as text representation; to boost the performance further we use a neural

module to learn linguistic information from a phoneme sequence.

8.2 A versatile voice cloning system

The core concept of our proposal is the latent linguistic embedding (LLE) which

is used as a stand-in for text when transcription is di�cult to obtain. The archi-

tecture of our multimodal system resembles the model proposed by Karita et al.

[132]; however, they focus on the performance of ASR system instead of speaker

adaptation. While the emphasis on linguistic latent features is similar to the

PPG-based VC system proposed by Sun et al. [58], their phonetic representation

extractor is trained independently from the VC model while our linguistic latent
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features are jointly trained with the speech generation model.

The main components of the proposed voice cloning system are presented in

Figure 8.1. The text-speech multimodal network is essential for our methodology,

while the neural vocoder is optional, but it is included as it is a necessary for

generating high-quality speech [6, 14]. The proposed multimodal system contains

four modules, which are encoders and decoders of either text, x, or speech, y. In

combinations of the encoder and decoder, they can perform four transformations:

text-to-speech (TTS), speech-to-speech (STS), speech-to-text (STT), and text-

to-text (TTT). Combining these modules into a single system is not just for

convenience but serves an important purpose. The speech encoder helps the TTS

system adapt with untranscribed speech as discussed in Chapter 6 while the text

encoder helps the VC system disentangle linguistic representation from speaker

characteristics as discussed in Chapter 7. The text decoder is the new addition

in this chapter. While Karita et al. [132] use a similar combination for speech

recognition, we focus on speech generation tasks and the text decoder is used

exclusively as an auxiliary regularizer in the training stage.

8.2.1 Training the text-speech multimodal system

Our methodology is designed around the training of a speaker-disentangled LLE,

z. The LLE in our setup plays the same role as the PPG proposed for VC

[57]. However, the LLE is jointly trained with the speech generation modules

and contains linguistic information as a whole (instead of phoneme). There are

several way to train a multimodal neural network. The modalities of such system

can be trained stochastically [97], step-by-step [95], or jointly together [93, 132]

as discussed in Section 4.3. To jointly train a multimodal system using either

joint-goal or tied-layer method is enough [93, 22] but as they are complementary

we can use them together:

losstrain = lossgoals + � losstie

= losstts + ↵sts losssts + ↵stt lossstt

+ � losstie ,

(8.1)

where the losstts in Equation 8.1 is a TTS loss defined by the text encoder and

speech decoder and is used as the anchor to adjust other hyperparameters. losssts

is an STS loss defined by the speech encoder and speech decoder and we de-

emphasize losssts with a weighting parameter, ↵sts. lossstt is an STT loss defined

by the speech encoder and text decoder. Even though the speech-to-text task
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Figure 8.1: The multimodal speaker-adaptive speech synthesis system.

is not a target one, its loss is also included to encourage the latent space to

focus more on phonemes (but not entirely). Some other works have shown that

an auxiliary phoneme classifier helps in boosting the quality of speech generation

systems in general [10]. A TTT loss defined by the text encoder and text decoder,

lossttt, is not included as we do not think that it helps. The last term losstie is

for the tied-layer constraint. In each training step, we calculate each term of the

losstrain using a transcribed sample then process to optimize all parameters in a

supervised manner. Our system can also benefits from semi-supervised strategy

[132], but we only focus on supervised training in this work.

For the tied-layers loss, we calculated the symmetric Kullback-Leibler diver-

gence between the output of the text and speech encoders instead of asymmetric

one as in previous chapters:

losstie =
1

2
LKLD(TEnc(x), SEnc(y)) +

1

2
LKLD(SEnc(y), TEnc(x)) (8.2)

The setup is decided so that we could obtain a consistent latent space between
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Figure 8.2: The standard strategy for cloning voices using untranscribed speech.

the text and speech encoders. Another important aspect is random sampling at

the output of the encoders. Thanks to the noise added by the sampling process

of the LLE in the training stage, the text and speech decoders are trained in

a denoising fashion. This, in turn, makes the speech decoder robust to unseen

samples, which is helpful for speaker adaptation.

To push the speech generation system toward an E2E setup, we include a

neural vocoder to generate a waveform from the acoustic representation instead

of using a conventional vocoder. In the training stage, the neural vocoder is

trained separately from the rest of the system on natural speech samples:

loss0train = lossvoc (8.3)

We used an autoregressive WaveNet [11] conditioned on mel-spectrogram and

trained on multi-speaker corpus as the neural vocoder in this paper. However,

our voice cloning procedure is applicable to any type of neural vocoder.
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8.3 Cloning voices with untranscribed speech

8.3.1 Adapting to target speaker

We first remove all speaker components and then fine-tune remaining parameters

of the speech decoder using the following loss:

lossadapt = losssts + � losscycle (8.4)

The speech distortion losssts by itself is enough for the adaptation [22], but we

still add a linguistic cycle consistent term losscycle to try improve the performance.

The losscycle is KL-divergence between LLE distribution of natural speech and

reconstructed speech:

losscycle =
1

2
LKLD(SEnc(y), SEnc(ỹ)) +

1

2
LKLD(SEnc(ỹ), SEnc(y)) (8.5)

Even though both losssts and losscycle are tried to force the reconstructed feature

to be closed to the natural, they focus on di↵erent aspects: losssts is either l1 or l2

frame-based hard distortion of the acoustic features, while losscycle focuses on the

linguistic content with soft divergence. We adapt the neural vocoder in a similar

manner using its goal loss:

lossadapt = lossvoc (8.6)

As the neural vocoder is only dependent on speech, it can be used in an unsu-

pervised adaptation strategy. This is a simple yet e↵ective approach [14].

8.3.2 Welding the speech decoder and the neural vocoder

Even though tuning the acoustic model and the neural vocoder separately produce

su�cient quality [14], there are still mismatches between the generated features

and the natural features used to train the vocoder. For text-to-speech systems,

Zhao et al. [129] fine-tuned the acoustic model with the losses propagated from

neural vocoder; while Ping et al. [25] jointly train them together. For voice

conversion, due to the duration mismatch between source and target utterances,

Huang et al. proposed to fine-tune WaveNet vocoder using reconstructed acoustic

features of the target [130].

Motivated by them, we deploy a “welding” strategy, illustrated in Figure 8.2b,

that conducts fine-tuning by using the reconstructed features of the target speaker

in a similar way to Huang’s approach [130], but, for both the speech decoder and
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neural vocoder like Ping’s method [25] based on the loss function below:

lossweld = losssts + � lossvoc (8.7)

where losssts is included to preserve the acoustic space even after the welding

process as the speech decoder is assumed to be autoregressive in the domain.

Two practical tactics are further introduced for this step. 1) mean-value LLE : to

let the acoustic model learn fine-grained details, we remove the sampling process

from the speech encoder and use the mean value instead. 2) mix-in: as losses

propagating from the neural vocoder can overpower the speech decoder [129], we

propose a mix-in tactic, inspired by drop-out, to ease this problem. Specifically

the output of the speech decoder is randomly mixed with natural frames by a

percentage to reduce the amount of losses propagated back.

8.3.3 Generating speech with TTS/VC stacks

Even though we use the speech encoder to tune the speech decoder and neural

vocoder in the adaption and welding steps, the text encoder can utilize these

tuned modules without any further adjustment in inference (See Figure 8.3)

thanks to the consistency between the latent spaces of the text and speech en-

coders. As our cloning method tunes entire modules, the more data available,

the better the performance.
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8.4 Cloning voices with transcribed speech

Instead of using exactly the same setup as the unsupervised strategy, for the

supervised strategy we first tune the speech decoder and text encoder together

using the transcribed speech since using transcriptions is expected to be beneficial

for the TTS system.

Step 1 - Adapting (supervised alternative): The supervised strategy for

the adapting step is illustrated in Figure 8.4a. We adapt both the speech decoder

and text encoder using the following function.

lossadapt = losstts + ↵ losssts + � losstie (8.8)

The optimizing loss is similar to that used in the training stage (Equation 8.1).

We use losssts and losstie to maintain the linguistic latent space for VC. The

welding and inference steps are the same as the unsupervised strategy.

8.5 Experiments

The end goal of voice cloning systems is generating speech with high quality and

similarity to the voice of a target speaker when we do not have control over their

data situation. However we do have more control over the data used to train

the initial model. Therefore, to evaluate performance of voice cloning systems

we designed two specific experiment scenarios which center around the target
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speakers. The first scenario focuses more on VC and cloning voices with untran-

scribed speech, while the second scenario focuses more on TTS and performance

of the supervised and unsupervised speaker adaptation strategies. Unlike pre-

vious chapters which evaluate individual techniques, these scenarios treat the

proposed system as a whole and compare it with third-party SOTA TTS and VC

systems. Our system can seamlessly switch between the TTS and VC modes with

several modules shared between the two as illustrated in Figure 8.5,

The particular realization used in the following experiments is called NAU-

TILUS whose details are given in Appendix C.3. It incorporates several modern

components of speech synthesis systems likes autoregressive and learned linguis-

tic representation to improve the naturalness of generated speech as discussed

in Section 8.1. The signature component of E2E system, which is the inte-

grated alignment/duration model (see Section 2.4.2), is not used in the current

setup to maintain absolute control over duration of generated speech which is

convenient for creating a matching condition between generated speech of the

TTS and VC systems. The text-speech multimodal system is first trained with

libritts.clean460.base to take advantage of the diverse linguistic contents, then

trained on the vctk.big.base, with a particular sampling rate dependant on the

target speaker’s data, to take advantage of high-quality studio-recorded speech.
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Table 8.1: Target speakers of scenario A.
Speaker Database Gender Accent Quantity Duration
VCC2TF1 VCC2018 female American 81 utt. 5.2 min
VCC2TF2 VCC2018 female American 81 utt. 5.0 min
VCC2TM1 VCC2018 male American 81 utt. 5.2 min
VCC2TM2 VCC2018 male American 81 utt. 5.3 min

8.5.1 Cloning voices with untranscribed speech

In the first scenario, scenario A, we tested the ability to clone voices by using a

small amount of untranscribed speech (about five minutes). A system showing

good performance under this scenario is expected to have the capability to clone

thousands of voices e�ciently and cheaply. We also use this scenario to test the

consistence between performances of TTS and VC modes of the proposed system.

Scenario description

We re-enacted the SPOKE task of Voice Conversion Challenge 2018 (VCC2018)

[53] for this scenario. The original goal of the task was to build VC systems for

four target English speakers (two males and two females) using 81 utterances

(Table 8.1). These systems were used to convert the speech of four source speak-

ers (two males and two females) into each of the target voices. We followed the

VCC2018 guidelines [53] faithfully with one extension – we evaluated TTS sys-

tems and VC systems at the same time. These TTS systems were required to

train on the untranscribed speech of the target speakers. In the inference stage,

transcriptions of source utterances were used to generate speech with TTS sys-

tems. As there were only 35 unique sentences, we generated each sentence twice.

In summary, each TTS system produced 70 utterances for each target speaker

while each VC system produced 140 utterances. We split each VC system into

two entities, one for same-gender conversion denoted by the superscript “=” and

the other for cross-gender denoted by “⇥”.

Evaluated systems

We evaluated the following TTS and VC systems in scenario A:

• XV: a speaker-adaptive E2E TTS system using the x-vector [15, 19, 36].

It was used as the third-party unsupervised TTS baseline. We used the

libritts.tacotron2.v1 model and the speaker-independent WaveNet vocoder

libritts.wavenet.mol.v1 which were trained on the LibriTTS corpus to realize

88



this approach. Both are available at the ESPnet [133] repository1. As the

x-vector is utterance-based, we randomly picked five utterances (about ten

seconds) from the training pool of target speakers to extract the x-vector

each time we generated an utterance. It is a realization of the unsupervised

adaptation method with speech-encoded speaker embedding discussed in

Section 2.1.4.

• N10: the winner of the VCC2018 SPOKE task. N10 contains a PPG-

based acoustic model [58] and a fine-tuned WaveNet vocoder [14]. It uses

a speaker-independent ASR model trained on hundreds of hours of labeled

data to extract PPG from speech. N10 clones voice without using the speech

data of source speakers. This is a SOTA VC system based on PPG which

is discussed in Section 2.2.4.

• N13\N17 (NR): the runners up of the VCC2018 SPOKE task in terms of

quality and similarity, respectively. To reduce the amount of systems, we

treat them as one (denotes as NR) and use N13 in the quality evaluation

while using N17 [134] in the similarity evaluation.

• VCAu: VC mode of the NAUTILUS system which was adapted to target

speaker by using the unsupervised strategy described in Section 8.3. The

letter “A” as in “any-to-one” indicates that the model is not trained on

source speakers. The word unsupervised means that the cloning is per-

formed with untranscribed speech in the context of our current work. It is

operated at 22.05 kHz to be compatible with the target speakers.

• TTSu: TTS mode of the NAUTILUS system which was adapted by us-

ing the unsupervised strategy. As we did not train an automatic duration

model, we used the duration extracted from the same-gender source speak-

ers to generate speech from text. This means that TTSu shares the same

duration model as VCA=
u (and other same-gender VC systems). This re-

duces the di↵erence in experimental conditions between them and allows us

to make more insightful observations.

• T00 and S00: natural utterances of the target and source speakers used as

references, respectively.

1https://github.com/espnet/espnet

89



Table 8.2: The word error rate for objective evaluation of scenario A.

System Target speakers (%WER)
VCC2TF1 VCC2TF2 VCC2TM1 VCC2TM2

XV 3.25 2.98 3.66 10.57
N10= 9.21 7.99 11.79 9.89
N10⇥ 9.62 11.52 8.67 9.21
N13= 23.31 21.68 31.57 27.37
N13⇥ 32.25 24.80 21.41 26.96
N17= 25.47 24.39 33.47 23.71
N17⇥ 38.08 31.44 35.23 25.88
VCA=

u 25.34 26.02 27.37 25.75
VCA⇥

u 30.62 27.51 23.71 22.63
TTSu 7.72 8.40 6.23 7.18

Source speakers (%WER)
VCC2SF3 VCC2SF4 VCC2SM3 VCC2SM4

S00 5.69 4.88 5.69 7.32

Scenario evaluation

Twenty-eight native English speakers participated in the subjective test for sce-

nario A. Listeners were asked to answer 18 quality and 22 similarity questions

in each session. In summary, each system was judged 560 times for each mea-

surement, while natural speech systems (T00 and S00) were judged 280 times.

The objective and subjective evaluation results are shown in Table 8.2 and Fig-

ure 8.6 with many interesting observations. a) XV had better quality but worse

similarity than the runners-up of VCC2018, while it received the lowest WER

for certain speakers. One possible explanation is that the utterances generated

by XV had the characteristics of the speakers in LibriTTS corpus instead of

those of the target speakers, which makes its utterances more compatible with

ASR model trained on LibriSpeech. The subjective evaluation of the XV speech

samples supports this speculation. b) Our systems had high scores in both sub-

jective measurements. Interestingly our TTS system has lower WER than our

VC systems. c) Even though we had a lower score for quality than N10, the

similarity seems to be higher. d) Our TTS and VC systems had highly consistent

results, while there was a gap between the same-gender and cross-gender N10

subsystems. This was perpetuated by extra similarity evaluations between the

generated systems presented in Figure 8.6. The similarity between our TTSu and

VCA=
u systems was higher than that of between TTSu and N10=.

Comparing with the similar experiment in Section 7.4.1, the performance of

the NAUTILUS has been significantly improved over the medium-sized neural
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Figure 8.6: The subjective evaluations of scenario A.

acoustic network setup thanks to the newly added components.

Scenario conclusion

Even though the naturalness of our voice cloning system was slightly worse than

N10 (again the best system at VCC2018), generally speaking it has achieved

performance that is comparable to SOTA systems considering the di↵erence in

experimental conditions (e.g., the amount of data used in the training stage).

More importantly, our system can seamlessly switch between TTS and VC modes

with high consistency in terms of speaker characteristics. This is a desirable trait

that would be useful for many applications.

8.5.2 Capturing unique speaker characteristics

As mentioned earlier, the way voice cloning is di↵erentiated from speech synthesis

is that it should prioritize capturing the unique characteristics of target speakers.

While it is easy for listeners to grasp general global characteristics (e.g., average

pitch), it is more di�cult to notice local subtle traits (e.g., pronunciation of

particular words) with just a single reference utterance. We could use famous

individuals as targets [17], but this assumes that listeners would be familiar with

them. In scenario B, we therefore used non-native speakers as targets to highlight
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Table 8.3: Target speakers of scenario B.
Speaker Database Gender Accent/L1 Quantity Duration
p294 VCTK female American 325 utt. 11.2 min
p345 VCTK male American 325 utt. 11.0 min
MF6 EMIME female Mandarin 145 utt. 10.2 min
MM6 EMIME male Mandarin 145 utt. 11.3 min

their unique characteristics. This is convenient for subjective evaluation as native

speakers can generally spot their distinctiveness without any explanation about

the linguistic aspect of it [135]. In simple words, the goal of scenario B was to

reproduce the accent of non-native speakers. This scenario is closely related to

reducing accents [136, 137] or controlling accents [16] tasks.

Scenario description

The target speakers for this scenario included two American and two non-native

English speakers who use Mandarin as their native language. Each speaker had

about 10 minutes of speech as listed in Table 8.3. As the base model was trained

with native speakers of English, the speakers from the VCTK corpus represented

the standard easy task while the speakers from the EMIME corpus [138] repre-

sented di�cult and unique target speakers. The evaluated systems were required

to be built with either the transcribed or untranscribed speech of the targets.

Twenty common sentences from the VCTK corpus were used for the evaluations.

Each sentence was generated twice by each TTS system, which totaled 40 utter-

ances. In the case of VC, one female (p299) and one male (p311) with a general

American accent included in the training pool are used as source speakers.

Evaluated systems

The following TTS and VC systems were used for the evaluation in scenario B:

• XV: the same x-vector system in scenario A is reused as the unsupervised

baseline of TTS.

• FT: a fine-tuned E2E TTS system was used as the supervised baseline. We

used ljspeech.tacotron2.v3, implemented with ESPnet [139], as the initial

model. It was trained with 24 hours of the transcribed speech of a female

speaker from the LJSpeech corpus [140]. An initial WaveNet vocoder was

also trained with the same corpus. When cloning voices, we fine-tuned

both acoustic and vocoder models with the transcribed speech of the tar-

gets. This system represented a simple supervised approach by fine-tuning

92



Table 8.4: The word error rate for objective evaluation of scenario B.

System Target speakers (%WER)
VCTK-p294 VCTK-p345 EMIME-MF6 EMIME-MM6

NAT* 6.09 8.69 56.24 43.39
XV 3.50 24.05 5.33 3.81
FT 13.39 20.09 57.53 42.01
VCMu 22.22 24.05 27.70 27.09
VCMs 23.29 24.81 29.07 29.53
TTSu 8.37 9.74 13.39 14.92
TTSs 9.28 10.05 36.38 38.20

Source speakers (%WER)
VCTK-p299 VCTK-p311 - -

SRC** 5.64 6.51 - -

*calculated on all training utterances of target speakers.
**calculated on natural utterances of source speakers.

a well-trained single speaker model [31]. It is a realization of the supervised

speaker adaptation discussed in Section 3.2.1.

• VCMu: VC mode of the NAUTILUS system which was adapted to target

speaker by using the unsupervised strategy described in Section 8.3 using

untranscribed speech. The letter “M” as in “many-to-one” indicates that

the source speakers were included in the training pool of the base model.

The system was operated in 24kHz.

• VCMs: VC mode of the NAUTILUS system which was adapted to target

speaker by using the alternative supervised strategy described in Section

8.4 using transcribed speech. The supervised strategy is more relevant to

TTS, but we still included its VC counterpart.

• TTSu: TTS mode of the NAUTILUS system which was adapted by using

the unsupervised strategy. The duration is extracted from the source speak-

ers of VC. This means our TTS and VC systems share the same duration

model.

• TTSs: TTS mode of the NAUTILUS system which was adapted by using

the alternative supervised strategy.

• NAT: the natural utterances of the target speakers.
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Figure 8.7: Subjective evaluations of scenario B. The lines indicate 95% confi-
dence interval.

Scenario evaluation

Thirty-two native speakers took part in our subjective evaluation for scenario B.

As the participants were native English speakers living in Japan and many work as

English teachers, we expected that they could quickly pick up on the non-native

accents. Each session had 18 quality and 18 similarity questions that contain

utterances of both native and non-native speakers. Besides the standard MOS

tests, we also included several AB tests in this scenario. In summary, each system

was evaluated 640 times for each assessment. The objective evaluation result are

listed in Table 8.3, and the subjective evaluation results are shown in Figure 8.7.

Here the results of native and non-native speakers are shown separately.

For the standard case with native target speakers, the subjective results show

high MOS scores for most systems as shown in Figure 8.7a. The new results

here are comparisons between supervised and unsupervised approaches. Com-

paring the XV and FT systems, which represent unsupervised and supervised

TTS baselines, we see that the fine-tuned one was significantly better than the

speaker embedding one as it benefited from all ten minutes of data. Similar

to scenario A, XV system has better WER than FT for many targets. Among

our systems, the di↵erence between the supervised and unsupervised strategies

was marginal, but they were all better than the supervised baseline FT. One

hypothesis is that our approaches are less sensitive to overfitting thanks to the

multi-speaker corpus, speaker factorization and denoising training while FT has a
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higher possibility of overfitting when using ten minutes of speech [31, 95]. These

observations are also supported by AB-preference tests (See the bottom part of

Figure 8.7a).

For the challenging case with non-native target speakers, the subjective results

revealed more interesting tendencies as shown in Figure 8.7b. This scenario not

only revealed the robustness of the voice cloning methods but also the listeners’

behaviors. First, we can see that our systems had higher similarity scores than

the TTS baselines, FT and XV. The di↵erences between our supervised and

unsupervised strategies was more profound in the non-native cases. TTSs seemed

to have higher similarity than TTSu. Next, we see that the natural speech of the

non-native speakers (NAT) had lower quality scores than its native counterpart.

This would be because our native listeners perceived the “quality” of speech

with strong non-native accents as low. As a result, the quality and similarity

measurements in this case was no more a positive correlation. Even a negative

correlation was found for the subjective results of the TTS baselines, FT and

XV, indicating that higher-quality speech corresponded to less accented speech

and hence lower speaker similarity to non-native target speakers. This highlights

the pros and cons of these adaptation methods. Interestingly, WER of TTSs was

worse than that of TTSu while the natural speech (NAT) had the worst score

of all in the non-native case. This can be interpreted as that TTSs produces

pronunciation which is more similar to the natural speech than TTSu, which

means TTSs is better at capturing non-standard speaker characteristics.

In summary, the proposed system had higher speaker similarity than the base-

line systems. Our TTS system, in particular, benefited from the supervised strat-

egy although the improvement was relatively small. Regarding the TTSu and the

other two VC systems that had slightly better quality than the natural speech, we

suspect that this is due to the reduced/lack of accents of their generated speech.

This hints at potential uses for other accent-related tasks [136].

Scenario conclusion

The subjective results have shown that the fine-tuning approach is better at

capturing unique speaker characteristics than the speaker embedding approach

when data are su�cient. Our systems, in particular, achieved high performance

for native speakers as well as non-native speakers. Moreover our cloning strategy

can be adjusted to take advantage of the transcriptions if they are available. In

the meantime, the experiment also points out the limitations of the subjective

evaluation. While the current quality and similarity questions work well for native
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Figure 8.8: Training curve of di↵erent loss terms when jointly train the text-
speech multimodal system.

speakers, listeners’ judgements were biased when they needed to evaluate the

voices of non-native speakers.

8.6 Analysis and Discussion

This section looks into several aspects of the proposed model to provide more in-

sight on its behaviors. The information is provided as it is without any evaluation

for readers to use as references and form their own opinions on the subject.

8.6.1 Training robust linguistic latent spaces

The linguistic latent spaces obtained in the initial training stage have critical

e↵ect on the performance of the proposed system, as the rest of the voice cloning
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procedure functions on the assumption that LLE is a speaker-disentangled lin-

guistic feature. Therefore, the training of the text-speech multimodal system

must be carefully designed to guarantee that objective. If we only consider the

text encoder and the speech decoder, then the proposed system is just a multi-

speaker TTS model which lacks the ability to adapt with untranscribed speech.

By adding a speaker-independent speech encoder, we provide a backdoor for un-

supervised speaker adaptation, which is the topic explored in our previous publi-

cations [93, 22]. If we only consider the speech encoder and speech decoder, then

it is not much di↵erent from a VAE-based multi-speaker non-parallel VC system

[57]. However, to avoid the weakness of self-supervised models, which is the de-

pendence on regularization to shape the latent space indirectly, we jointly trained

the STS stack with the text encoder and transcribed speech in a supervised fash-

ion. This ensures that the latent spaces will contain linguistic information which

in turn guarantees a moderately high level of performance for VC [141].

By jointly training the text and speech encoder, we help the speech encoder

to learn a speaker-disentangled representation, as it is forced to approximate the

text encoder, which is speaker-independent by nature. Figure 8.8a shows the

training curves of the TTS and STS goals, both of which descend over time and

gradually converge to each other. However in practice, we have to de-emphasize

losssts with a weighting parameter and observe the progress of the training curves,

as there is a risk that the training will focus on optimizing losssts and abandon

losstts completely, as there is always an easy and uninteresting solution to the au-

toencoder task. In summary, a robust and speaker-disentangled latent linguistic

representation is guaranteed by strategic placement of speaker components, joint

training of the TTS and STS stacks, and use of a large-scale transcribed multi-

speaker corpus. Furthermore, the tied-layer loss is used in conjunction with the

join-goal losses to encourage a consistent representation between text-encoded

and speech-encoded latent spaces. Figure 8.8c shows the forward and backward

KL divergence learning curves, which reveals that a small gap still exist between

the two. Finally, the text decoder was used to force the LLE to focus more on

phonetic information by adding lossstt to the optimizing loss. Interestingly, even

though lossttt is not optimized, it is still better than lossstt, as can be seen in

Figure 8.8b.‘

8.6.2 LLE of the supervised and unsupervised models

As mentioned in earlier sections, the architecture of the NAUTILUS system used

in this paper is not an E2E system, which is inconvenient for practical appli-
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(a) Native speaker as target - p294 (b) Non-native speaker as target - MF6

Figure 8.9: Examples of 64-dimensional LLE sequences generated by the text and
speech encoders of models adapted using either the supervised or unsupervised
cloning strategy.

cations but it allows us to have more control over the duration of the generated

utterances. In this section, we look into the linguistic latent spaces of the adapted

models to understand the behaviors of the supervised and unsupervised cloning

strategies. Figure 8.9 shows selected dimensions of the 64-dimensional LLE se-

quences generated by either the text or speech encoder of models adapted to ei-

ther p294 or MF6. For each target speaker, we used speaker-independent speech

encoder and an utterance not included in their adaptation data to generate a

speech-encoded LLE sequence and then used either the supervised or unsuper-

vised text encoder and the phoneme (text) and duration information of the same

utterance to generate text-encoded LLE sequences. This arrangement guaran-

tees the LLE sequences generated from the encoders are aligned, which helps to

highlight di↵erences between the supervised and unsupervised text encoders.

Even though we referred to the outputs of both the text and speech decoder

as LLE, they actually represent slightly di↵erent concepts. The speech-encoded

LLE represents the sound spoken in an utterance input, while the text-encoded

LLE represents the sound that we want to generate from a symbolic phoneme

input. Figure 8.9a shows all three LLE sequences are well-aligned to each other in

the case of p294. This suggests that the unsupervised speaker-independent text

encoder was able to correctly map the symbolic phoneme to the actual spoken

sound when the target is a native English speaker, which left little room for the

supervised strategy to improve upon. It is expected as the text and speech en-
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coders were initially trained on transcribed speech of a large-scale native speaker

corpus. In contrast, Fig. 8.9b shows clear misalignments between the LLE se-

quences; the text-encoded LLE sequence of the supervised model seems to align

to the speech-encoded LLE sequence better than its unsupervised counterpart.

From this figure, we can see that the supervised strategy adjusted the text en-

coder to map the symbolic phoneme to the actual (wrong) sound spoken by MF6,

which helps to improve the speaker similarity but degrades the quality (or pro-

nunciation) of generated utterances. The latent spaces of the models adapted to

p345 and MM6, while not presented in this paper, also show similar patterns.

8.6.3 Mel-spectrogram of the generated speech

The input features of TTS and VC modes as well as their respective generated

mel-spectrogram in di↵erent stages of the unsupervised speaker adaptation pro-

cess are presented in Figure 8.10. More coherent time-domain patterns can be

seen on samples generated by the speech decoder that goes through the “weld-

ing” stage. As expected, the WaveNet vocoder adds fine-grained details to the

the generated speech as it generates waveform one sample at a time.
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(a) Input - Source utterance (b) Input - Phonemes and durations

(c) Speech decoder - Adaptation (VC) (d) Speech decoder - Adaptation (TTS)

(e) Speech decoder - Welding (VC) (f) Speech decoder - Welding (TTS)

(g) WaveNet vocoder - Adaptation (VC) (h) WaveNet vocoder - Adaptation (TTS)

(i) WaveNet vocoder - Welding (VC) (j) WaveNet vocoder - Welding (TTS)

Figure 8.10: Examples of mel-spectrogram in each stage of the proposed unsu-
pervised voice cloning procedure.
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Chapter 9

Conclusions

9.1 Contributions

In this thesis, we have described a novel deep learning based voice cloning frame-

work which can be used for both TTS and VC. The method is first split into

several aspects, which are tackled separately in each chapter, before represented

as a unified framework. This narrative setup helps provide more insights about

each individual technique so they can be applied to similar problems. In summary,

the four major contributions of this thesis are as follow:

1) Proposing the crossmodal speaker adaptation method to adapt with un-

transcribed speech and backpropagation algorithm. The proposed fine-tuning

based approach avoids the shortcoming of existing speaker embedding based ap-

proach, which is the lack of data scalability, and unifies the techniques used for

supervised and unsupervised speaker adaptation.

2) Systematically investigating di↵erent types of speaker components to use

in a speaker-adaptive neural acoustic model, and concluding that the best type

of speaker component is highly dependent on the network architecture as well as

the linguistic and acoustic representation. In the other words, the experiments

can be treated as a guideline for designing a speaker-adaptive acoustic model.

3) Providing a proof-of-concept that the proposed latent linguistic embedding

can be used for standard and cross-lingual voice conversion. The method has

similar data e�ciency as PPG-based systems and can be utilized for low-resource

languages. Having the same framework for both TTS and VC systems allows

better integration for using both of them to handle a particular task.

4) Integrating the main principles into a large-scale neural network and pro-

ducing SOTA performance by incorporating modern deep learning components of

a speech generation system. Besides high quality synthetic speech, the proposed
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system also has a high speaker consistency when switching between TTS and VC

which is a useful for many practical aapplications.

9.2 Future works

At the end of this thesis, we essentially create a highly versatile voice cloning

framework. As a speech generation system, improving the general naturalness

and the similarity to target speakers is a continuing process. However given the

unique characteristic of the proposed system, the following two research directions

are interesting for future works:

1) A speech generation system is essentially a system which manipulates the

linguistic content of generated speech, while a voice cloning is a system which

manipulates the speaker characteristics. Recent end-to-end approaches pursue a

simple system without having to explicitly model all requisite information. In

contrast, our system, while also reduces the requirements for building a speech

generation system, carefully models di↵erent modality to allow a high degree of

control over generated speech utterances. Throughout this thesis, speech is as-

sumed to be a product of linguistic content and speaker characteristics. However,

speech is a complex, multimodal feature. For future work, we will focus on con-

trolling other para-linguistic features of speech or increasing the degree of control

over existing ones. A simple example is controlling emotions of the utterances or

controlling fine-grained details of a speaker, like accents.

2) The TTS and VC modes of the proposed system can be interpreted as

di↵erent input interfaces to control the output generated speech. Given the fac-

torized and multimodal structure of it, the proposed voice cloning framework can

be extended to other less popular speech generation tasks like video-to-speech.

Besides for purpose of convenience, merging these tasks into the base TTS/VC

system also opens up the possibility to improve performance for low-resource un-

common tasks by combining available data of TTS or VC corpora and executing

semi-supervised training.
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Appendix A

Speech corpora

There are two types of speech corpora used throughout this thesis: multi-speaker

corpus used to train initial based models and evaluate multi-speaker tasks, and the

target speaker corpus which used exclusive for evaluating voice cloning which data

may or may not include transcription. Table A.1 lists the multi-speaker corpus,

and Table A.2 listed corpus that used exclusively for evaluating speaker adap-

tation/voice cloning. The corpora are partitioned into base and target datasets

with vary amount of data to uniform the data experiment conditions as listed in

Table A.3.

Table A.1: The multi-speaker speech corpora used for training the initial base
model and evaluation.

Japanese Voicebank
(JVB)

Language: Japanese
Speakers: 61 male, 194 female, 255 in total
Utterances: ⇠145 utterances per speaker
Sampling rate: 48kHz
Notes: NII internal corpus

Voice cloning toolkit
(VCTK) [142]

Language: English
Speakers: 46 male, 62 female, 108 in total
Utterances: ⇠375 utterances per speaker
Sampling rate: 48kHz
Notes:

LibriTTS [143]

Language: English
Speakers: more than one thousand speakers
Utterances: varying
Sampling rate: 24kHz
Notes:
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Table A.2: The corpora contains speakers used exclusively for evaluation speaker
adaptation.

Japanese targets

Language: Japanese
Speakers: 1 male, 1 female
Utterances: 1000 utterances per speaker
Sampling rate: 48kHz
Notes:

Voice Conversion Challenge
2018 [53]

(VCC2018)

Language: English
Speakers: 2 male, 2 female
Utterances: 81 utterances per speaker
Sampling rate: 22,05kHz
Notes:

English/Japanese bilingual

Language: English and Japanese
Speakers: 1 Male 1 Female
Utterances: 400 utterances per speaker
Sampling rate: 48kHz
Notes: internal, bilingual speakers

EMIME Mandarin [138]

Language: English
Speakers: 1 Male 1 Female
Utterances: 145 utterances per speaker
Sampling rate: 48kHz
Notes: L2 speakers
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Appendix B

Linguistic features

Linguistic features used for TTS system are obtained using an automatic anno-

tator (i.e. front-end) then converted into feature vectors and used as input of

acoustic models. Details of linguistic information included in linguistic feature

are presented in Table B.2 and B.3 for Japanese and English respectively. In case

of the NAUTILUS system, only the current phoneme is used as the linguistic

input, as it learns the linguistic context by itself.

Table B.1: Linguistic feature vector configurations.

Language Dimension Toolkit
English 367 Flite

Japanese 389 OpenJTalk [68]
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Table B.2: Japanese linguistic features.

Type linguistic information

Phoneme

previous previous phoneme identity
previous phoneme identity
current phoneme identity
next phoneme identity
next next phoneme identity

Mora
di↵erence between accent location and position of current
mora position of current mora in AP (forward/backward)

Word
part-of-speech (POS) of previous/current/next word
inflected forms of previous/current/next word
conjugation type of previous/current/next word

Accent phrase
(AP)

number of moras in previous/current/next AP
accent type of previous/current/next AP
is previous/current/next AP interrogative
is there a pause between current and previous/next AP
position of current AP in BG by AP/mora (fw/bw)

Breath group
(BG)

number of mora in previous/current/next BG
number of AP in previous/current/next BG
position of current BG by BG/AP/mora (fw/bw)

Utterance number of BG/AP/mora in utterance

Frame
position of current frame in utterance (fw/bw)
number of frames in utterance
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Table B.3: English linguistic features.

Type linguistic information

Phoneme

previous previous phoneme identity
previous phoneme identity
current phoneme identity
next phoneme identity
next next phoneme identity

Syllable

number of phoneme in previous/current/next syllable
is previous/current/next syllable has lexical stress? (stressed)
is previous/current/next syllable has pitch-accent? (accented)
position of current syllable in word/phrase (fw/bw)
number of stressed syllables precede/follow current in phrase
number of accented syllables precede/follow current in phrase
distance from previous/next stressed syllable
distance from previous/next accented syllable

Word

POS of previous/current/next word
number of syllables in previous/current/next word
position of current word in phrase (fw/bw)
number of content words precede/follow current in phrase
distance from previous/next content word

Phrase
number of syllables in previous/current/next phrase
number of words in previous/current/next phrase
position of current phrase in utterance (fw/bw)

Utterance number of syllables/words/phrases in utterance

Frame
position of current frame in utterance (fw/bw)
number of frames in utterance
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Appendix C

Neural network architectures

This appendix provides details on the neural network architectures used in ex-

periment sections of the chapters in the main content.

C.1 Small-sized neural acoustic model

A small-sized neural network, which consists of several feed-forward layers, is

used as acoustic model in Chapter 3, 4 and 5 to test the feasibility and behavior

of the focused technique.

The neural acoustic model (text encoder and speech decoder) takes aligned

linguistic features (dependent on language) and transforms them into acoustic

features, which include 60-dimensional mel-cepstral coe�cients, 25-dimensional

band-limited aperiodicities, interpolated logarithm fundamental frequencies, and

their dynamic counterparts. A voiced/unvoiced binary flag is also included. The

output is 259-dimensional multitask feature. WORLD spectral analysis [77] was

used to extract spectra from 16-bit waveform signals with sampling frequency of

48kHz with a 25 ms window length and 5 ms shift.

Most of the layers in this setup are feedforward layer with sigmoid activation

function, unless stated otherwise:

hl = �(W lhl�1 + cl) , (C.1)

These layers can contain speaker components, like speaker scaling and bias, de-

pendent on the particular experiment of the chapters. The speech encoder used

in Chapter 4 takes in raw waveform, sampled at 16 kHz, as the input. The first

layer is one-dimensional convolution layer transform the waveform sequence to

the same length as the acoustic output by setting width of convolution to 400

and stride to 80. The convolution layer has 64 filters. The output of the convolu-
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Figure C.1: Details of the small-sized neural acoustic model.

tion layer was then fed into a 1024-dimensional feedforward layer just before the

common layers part as shown in Figure C.1.
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Figure C.2: Details of the medium-sized neural acoustic model.

C.2 Medium-sized neural acoustic model

A medium-sized neural network, which consists of one-dimensional convolution

layers, is used as acoustic model in Chapter 6 and 7 to evaluate the performance

of TTS and VC cloning protocol.

The neural acoustic model (text encoder and speech decoder) takes aligned lin-

guistic features (depending on languages) and transforms them into 80–dimensional

mel-spectrograms. The features are extracted from a 25ms window and shifted

in steps of 5ms over speech waveform with varying sampling rate depended on

the particular experiments. The layers in the speech decoder which can contain

speaker component are marked with an identity tag as shown in Figure C.2. The

input of the speech encoder is the same mel-spectrogram as the speech decoder

output, which make the STS stack a typical variational autoencoder network.
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Figure C.3: Filter-gate residual and skip connection layer.

C.2.1 Filter-gate activation function

To able to train a very deep network, we use residual and skip connection along

with one-dimensional (time-domain) convolution layers with non-linear filter-gate

activation function:

hl = tanh(W f
l ⇤ hl�1 + cfl ) � �(W g

l ⇤ hl�1 + cgl ) (C.2)

where cfl , c
g
l 2 Rm⇥1 are bias of the filter and gate, while W f

l and W g
l are filters

of convolutions layers used for the filter and the gate respectively. We can increase

the captured temporal context, without increase the amount of parameters, by

using dilated filters instead of dense filters. The speaker and bias components

can also be added into these layers:

hl = tanh(diag(af,(k)
l )W f

l ⇤ hl�1 + cfl + bf,(k)
l )

� �(diag(ag,(k)
l )W g

l ⇤ hl�1 + cgl + bg,(k)
l ) (C.3)

where the filter and gate have their own scaling vectors af,(k)
l , ag,(k)

l 2 Rm⇥1 and

bias vectors bf,(k)
l , bg,(k)

l 2 Rm⇥1. Just as in the case of the feedforward layer we

can factorize the speaker vectors into smaller speaker scaling and bias codes:

af,(k)
l = W a,f

l sa,(k)
l and ag,(k)

l = W a,g
l sa,(k)

l (C.4)

bf,(k)
l = W b,f

l sb,(k)
l and bg,(k)

l = W b,g
l sb,(k)

l (C.5)
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Figure C.4: Temporal contexts captured using a stack of non-overlapping dilated
convolution layers.

where the scaling code sa,(k)
l 2 Rp⇥1 and bias code sb,(k)

l 2 Rq⇥1 are shared

between the filter and the gate.

C.2.2 Dilated one-dimensional convolution layer

We use dilated one-dimensional convolution layer extensively for our system as

it is an easy way to capture temporal context and train faster than recurrent

layer. The dilated convolution layer is a variation of a time delay neural network

(TDNN) [144, 145]. Our version is most similar to the one used in the WaveNet

model [11], except that it does not have the causal part. We use blocks of dilated

convolution layers to capture both left and right non-overlapping contexts by

setting the dilation rate in order of 1, 3, 9 and 27 as illustrated in Figure C.4.

In the proposed NAUTILUS system, the causal and non-causal layers are used

together to model di↵erent functional modules of the system.
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C.3 NAUTILUS

The architecture of the proposed system, NAUTILUS, used in experiment section

of Chapter 8 is shown in Figure C.5. The text representation x is a phoneme

sequence and the speech representation y is mel-spectrogram. The features are

extracted from a 50ms window and shifted in steps of 12.5ms over speech wave-

form with varying sampling rate depended on the particular experiments.

The phoneme alignments of each corpus were extracted using an ASR model

trained on the same corpus using the KALDI toolkit [146]. For evaluated utter-

ances, the model trained on the LibriTTS corpus is used to extract their phoneme

alignments.

C.3.1 Text encoder

the text encoder transforms a compact phoneme sequence x into the LLE se-

quence z, which has the same length as the acoustic sequence. Our specifications

for the text encoder are illustrated in Figure C.5c. The input phoneme sequence

is represented as one-hot vectors. As engineered linguistic features are no longer

provided, tenc-linguistic-context is used to learn the linguistic context. This is a

direct imitation of Tacotron 2 [6] but with quasi-RNN used in place of the stan-

dard RNN to speed up the training. The attention mechanism is essential in a E2E

setup to unroll the phoneme sequence; our setup, however, uses an explicit dura-

tion/alignment module called “tenc-alignment” in training and inference to have

direct control over the generated sample prosody.1 The coarse linguistic features,

then, go through several dilated convolution layers called “tenc-latent-context” to

capture the local context and smooth out the coarseness. tenc-latent-context has

essentially the same design as the acoustic models used in our prior work [22],

which used residual, skip connection and filter-gate function (Figure 4a in [22])

to help the gradient flow:

hl = tanh(W f
l hl�1 + cfl ) � �(W g

lhl�1 + cgl ) , (C.6)

where hl is the output of the l-th layer, and W f
l , W

g
l , c

f
l , and cfl are the weights

and biases for filters and gates. The output of the text encoder consists of the

mean and standard deviation of a text-encoded LLE sequence.

1The tenc-alignment could be replaced with attention mechanism for convenience, and this
could also potentially improve the quality further [65].
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C.3.2 Speech decoder

the speech decoder takes in an LLE sequence z to generate a respective acous-

tic sequence ey with a particular voice. It is essentially a multi-speaker speech

synthesis model and there are three components that significantly a↵ect the per-

formance: temporal context capturing [147], autoregressive mechanism [131, 65],

and speaker modeling [29]. sdec-context-blk captures LLE temporal context by

using time-domain convolution (1dconv) layers, which also contain speaker biases

in their filters and gates (Figure 4b in [22]):

hl = tanh(W f
l hl�1 + cfl + bf,(k)

l ) � �(W g
lhl�1 + cgl + bg,(k)

l ) , (C.7)

where bf,(k)
l and bf,(k)

l are the speaker biases of k-th speaker in the training speaker

pool. The e↵ective type of speaker component depends on the network structure

as well as the acoustic features [29]. We previously found that speaker biases

work the best for our setup [22].

An autoregressive mechanism is introduced to improve the overall naturalness.

sdec-prenet is responsible for the autoregressive dependency that captures the

past outputs using causal layers. This is a direct imitation of the AudioEnc

proposed by Tachinaba et al. [20]. The layers in sdec-prenet use the highway

function in the same way as [20] as follows:

hf
l = W f

l hl�1, (C.8)

hg
l = �(W g

lhl�1), (C.9)

hl = hf
l � hg

l + hl�1 � (1 � hg
l ) (C.10)

The linguistic context and the past-state token are fed into more causal layers

before being transformed into the acoustic features. The architecture of the

speech decoder is shown in Figure C.5a. We use the mean absolute error (MAE)

as the loss function for the speech generation goals. In the adaptation stage,

speaker biases are removed from the speech decoder.

C.3.3 Speech encoder

the speech encoder extracts the LLE z from a given acoustic sequence y while

stripping unnecessary information (i.e. speaker characteristics). It is similar to

an ASR model as the output needs to be independent from training speakers,

and the model needs to be generalized to unseen targets. We have no strong

preference for speech encoder specification and simply use several dilated layers
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to capture the local context as illustrated in Figure C.5d.

C.3.4 Text decoder

the text decoder takes an LLE sequence z and predicts the phoneme posterior ex
at each frame. This is a new component introduced in this work compared with

previous ones [22]. Unlike other modules that would be reused in various stages,

the shallow text decoder is included in the training only and acts as an auxiliary

regularizer. Its purpose is forcing the latent linguistic embedding to focus more

on phoneme information, which we found important for generating utterances

with clear pronunciation. The balance between phoneme and other linguistic

information is adjustable using the joint-goal weight ↵stt and the representative

power of the text decoder itself. This is why we use a couple of layers only to

model the text decoder (Figure C.5b). The cross-entropy criterion is used as the

loss function of the phoneme classifier.

C.3.5 WaveNet vocoder

An auto-regressive WaveNet model conditioned on a mel-spectrogram [114, 6, 14]

is used as the neural vocoder of our setup. WaveNet is trained on either 22.05kHz

or 24kHz speech depending on the scenarios. Waveform amplitudes are quantized

by using 10-bit µ-law. The network consists of 40 dilated causal layers containing

speaker biases. Both the residual and skip channels are set at 128. This is

a typical setup for WaveNet [11]. In the adaptation stage, speaker biases are

removed before fine-tuning.
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Figure C.5: Details network architecture of the proposed NAUTILUS system.
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Appendix D

Generated speech samples

This appendix provides links to access speech samples generated by models trained

for the experiment sections of the main chapters.

• Chapter 3: speech samples for preliminary experiments on multi-speaker,

speaker adaptation and speaker manipulation by gradually changing speaker

code within an utterances.

http://www.hieuthi.com/papers/icassp2017/

• Chapter 4: speech samples for the proof-of-concept experiments on per-

forming unsupervised speaker adaptation with multimodal neural TTS.

http://www.hieuthi.com/papers/interspeech2018/

• Chapter 5: speech samples for experiments use speaker scaling and speaker

bias to model speaker transformation.

http://www.hieuthi.com/papers/slt2018/

• Chapter 6: speech samples for supervised and unsupervised adaptation with

variational multimodal neural TTS.

https://nii-yamagishilab.github.io/sample-tts-unified-adaptation/

• Chapter 7: speech samples for voice conversion system using latent linguistic

embedding for both standard intra-language and cross-lingual scenarios.

https://nii-yamagishilab.github.io/sample-vc-bootstrapping-tts/

• Chapter 8: speech samples for high performance unified TTS and VC sys-

tem for a standard “easy” scenario with native English speaker and unique

“di�cult” scenario with L2 non-native English speaker.

https://nii-yamagishilab.github.io/sample-versatile-voice-cloning/
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