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Abstract

Recommender systems were devised to provide personalized recommendations on suitable
items that would match the individual users’ interests. The standard recommendation
approach relies on user preferences on items, such as the numeric ratings, for building
a predictive model for future rating prediction. Utilizing only the rating data, however,
might not be sufficient to overcome two common challenges in recommender systems: the
prediction accuracy, and the rating sparsity. Whereas contextual information has often been
utilized to improve the prediction accuracy, user-generated reviews have been recognized
as valuable sources to alleviate the rating sparsity. This thesis studies extensively the
challenges on extracting contexts from reviews, and how to utilize such extracted contexts
for personalizing recommendations that would satisfy both accuracy and sparsity. In addition
to contexts and reviews, this thesis also studies on how to improve the prediction accuracy
with multi-criteria ratings. These studies result in three main proposed methods as follows.

First, the context-aware region embedding (CARE), a novel unsupervised method for
defining and extracting contexts from reviews, is proposed. CARE deals with the problems of
obtaining and identifying relevant contexts in a standard context-aware recommendations by
applying region embedding techniques to extract and represent contexts from reviews. Such
relevant contexts are represented as text regions that influence the distributions of ratings.
The experiments demonstrated that CARE has a flexibility to extract contexts from review
data in any recommendation domains. Moreover, the extracted contexts effectively captured
the polarity of reviews’ ratings, which can be useful for the rating prediction task.

Next, the attentional interaction model for context-aware region embedding (CARE-AI),
an extended model of CARE for rating prediction is proposed. CARE-AI aims to overcome
the challenges of learning user and item representations from reviews of the recent review-
based recommendations. This model introduces the interaction and attention modules for
constructing the user and item representations from the extracted contexts, which are derived
from CARE. Such representations are generated specifically for each particular review, based
on the different level of relevance among contexts in that review. Extensive experiments show
that, not only achieving better prediction accuracy compared to the state-of-the-art review-
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based recommendations, CARE-AI was also more robust in generating recommendations in
the rating sparsity situations.

Finally, a novel method for multi-criteria rating conversion is proposed. This method
aims to overcome the limitation of applying a standard rating conversion techniques to
multi-criteria recommendations, which might cause a loss in implicit relation among multi-
criteria ratings. The proposed method applies the principle component analysis to extract
the multi-criteria rating patterns from users, which are then used to convert all multi-criteria
ratings simultaneously to maintain their implicit relation. The experiments demonstrated that
the proposed method outperforms both single and multi-criteria rating conversion techniques
with higher accuracy and prediction coverage.
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Chapter 1

Introduction

1.1 Motivation

Recommender system (RS) was invented to provide a personalized recommendation on the
suitable items that would be interested by an individual user. A standard RS approach such
as collaborative filtering utilizes past interactions from users (e.g. their numeric ratings on
items) to build a predictive model for future recommendations on unseen items. However,
considering only rating data might not be sufficient to overcome two common challenges
that need to be addressed in order to produce effective recommendations: how to improve
the prediction accuracy, and how to alleviate the rating sparsity. First, the success of
the recommendation engines are often measured by their prediction accuracy. The highly
accurate recommendations would increase user satisfactions on the systems, and consequently
increases their revenues. On the other hand, the rating sparsity occurs when most users
only rate few portion of all available items. Having insufficient amount of ratings, the
recommendation engines would not be able to learn high-quality preference patterns from
users, and therefore, result in low recommendation accuracy.

In order to improve recommendation accuracy, a context-aware recommendation approach
has been introduced. In recommender systems, the contextual information or simply “context”
is defined as any information that influences the users’ decisions when they are choosing items.
For example, most users tend to travel to the beaches in summer, whereas the ski-resorts are
more preferred in winter. Incorporating contexts could help suggesting more relevant items
to users, which can be a crucial factor for producing more accurate recommendations than
the standard rating-only recommendation methods. However, there are two main concerns
that could have significant impact on the performances of context-aware recommendations.
First, obtaining contexts is not a trivial task. Many works collected them by first predefining
a list of contexts, and then ask users to select from those values as their contexts at the time
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they consumed items. Predefining optimal values of contexts, however, could potentially
be very expensive since their values are varied across different recommendation domains.
After obtaining contexts, the next challenge is to identify which contexts are relevant to a
specific recommendation task. Incorporating too many contexts not only degrades the quality
of recommendations, but also increases dimension of data and thus triggering a sparsity
problem.

On the other hand, a review-based recommendation approach has been proposed with
the main goal to alleviate rating sparsity problem occurred in standard RS by utilizing user-
generated reviews. In many systems, users have options to write text reviews on products
or services they have purchased, in addition to the ratings. In reviews, users can provide
comments explaining reasons behind their decisions on items, which offer more meaningful
and useful information than numeric ratings. Many review-based recommendation methods
take this opportunity to effectively extract the user personal preferences and item unique
features from reviews in the form of numeric user and item representation vectors. Recent
works in review-based recommendations proved that, learning such representations from
reviews and use them for rating prediction, is more robust to rating sparsity than learning
them from ratings alone [19, 47, 64, 86, 103].

Furthermore, in reviews users can express opinions describing their experiences, situa-
tions, and and satisfaction on their selected items, which can be a valuable source of contexts
[21]. Extracting contexts from reviews could be the key to overcome the challenge of ob-
taining contexts, and provides recommendations with high accuracy as well as robustness
to rating sparsity. Moreover, since contexts are information that affects users’ decisions on
items, they might be useful in constructing high-quality user and item representations for
review-based recommendations.

Finally, in addition to a contextual information and user-generated reviews, this thesis
also studies another type of data, the multi-criteria ratings. Unlike a standard RS approach
that considers only single overall ratings from users, the multi-criteria recommendation
approach lets users express their preferences toward items in multiple aspects, such as service
or cleanliness of hotels, with multi-criteria ratings. Effectively utilizing such multi-criteria
ratings could help analyzing user preferences and item features in more details, and yielding
even more accurate recommendations.
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1.2 Problem Definition

This thesis concerns three main problems: how to extract contexts from reviews, how to
construct user and item representations for rating prediction, and how to effectively utilize
multi-criteria ratings for making recommendations.

1.2.1 Extracting contexts from reviews

Recently, many works in context-aware recommendations tried to extract contexts from
user reviews based on supervised and unsupervised approach [13, 20, 38, 58, 75, 101]. The
supervised approach [20, 38, 58] extracts contexts as words that corresponds to the predefined
values, which makes them encounter the same challenge of predefining optimal values for
each context. On the other hand, the unsupervised approach [13, 75, 101] automatically
extract contexts from reviews without having to predefine them, which make this approach
widely applicable for various recommendation domains. However, unlike the traditional
context-aware recommendation techniques that utilize predefined type of contexts, most
context extraction methods lack the process of identifying the relevant contexts for each
specific domains. Furthermore, contexts extracted from most methods have been restricted in
a single word format, e.g. “family” or “breakfast”. In fact, the actual meaning of contexts
might be involved with more than one word, such as “family trip” or “continental breakfast.”

1.2.2 Constructing user and item representations

Recent works in review-based recommendations employed deep learning techniques to
learn representations of users and items from reviews, and use them for rating prediction
[19, 47, 86, 103]. These methods, however, share two similar principles that could potentially
be their limitations. First, they take into account every word in a review as an input to
learn the user and item representations. In fact, some words might not be related to user
preferences or item features, and therefore should not be taken into account when modeling
their representations. Moreover, the user and item representations are constructed in a static
manner by aggregating all of their corresponding past reviews. To predict a rating for a
particular review, it is more important to concentrate and leverage more relevant information
embedded in that review for modeling a user preferences and item features, with respect
to their current situations. By effectively extracting contexts from reviews, they might be
helpful in constructing more meaningful representations that help overcoming these two
limitations of review-based recommendations.
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1.2.3 Utilizing multi-criteria ratings

Most multi-criteria recommendation techniques are derived from the collaborative filtering-
based recommendation approach, which utilize the ratings from neighbors for making rating
predictions. However, one concern is that there might be a bias in a pattern of providing
rating from each individual user. For example, one user might always rate items with high
ratings, whereas the other user might always rate item with low ratings. Exploiting ratings
from the neighbors without concerning such biases might deteriorate the prediction accuracy.
By taking into account the user preference biases, the rating conversion techniques have been
introduced. However, those techniques only applicable to a single criterion recommendation
approach. For multi-criteria recommendation approach, converting each criterion rating
independently might result in loss of implicit relation among criteria ratings.

1.3 Objective

According to the problem definition, this thesis is proposed under the following three main
objectives.

• Unsupervised context extraction from reviews: contexts should be extracted from
reviews based in unsupervised way, which allows the model to avoid predefining
optimal contextual values—making it applicable on any kind of review dataset. In
addition, a model should include the process of identifying relevant contexts, to make
sure that only those affect the users’ ratings on items will be used to create a predictive
model. Finally, an extracted context should not be restricted in a single word format.
In many occasion, users might express their contexts involving more than one word,
extracting them appropriately could make a process of identifying relevant contexts
more effective.

• Dynamic user and item representations from contexts: to make an effective rating
prediction, a user and item representations should be generated with respect to these
following properties. First, they should be constructed focusing on words that are
related to contexts, which are the ones that affects users’ rating patterns on items.
Moreover, the user and item representations should be dynamically constructed for
each particular review, to effectively capture the contexts embedded in that review.
Finally, to make more personalized rating prediction, it is important to model the
relevance of each context to each individual user preferences and each specific item
features, which consequently influences the rating.
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• Multi-criteria rating conversion: to exploit the multi-criteria ratings from the neigh-
bors for rating prediction, such ratings should be firstly converted in an active user
preference scale, to prevent the biases in rating patterns. More importantly, every
criterion rating should be converted simultaneously, to maintain the implicit relation
among the other criteria ratings.

1.4 Contribution

This thesis is composed of three main works for achieving each previously mentioned
objective.

1.4.1 Unsupervised Context Extraction via Region Embedding for Con-
text Aware Recommendation

First, a novel unsupervised method for defining and extracting contexts from reviews, namely
the context-aware region embedding (CARE), is proposed [91]. Unlike any previous work,
a relevant context in this work is defined and extracted not only in the single word format,
but also includes its adjacent or nonadjacent words that occupy in the same text region and
having significant influences on the distributions of ratings. A region embedding technique
[77] is derived to emphasize the words in a small text region to be considered as a context,
and represent it by a region embedding to be used for a rating prediction. By not having
to predefine contexts, CARE has a flexibility to extract relevant contexts from any specific
recommendation domain.

The extensive experiments show that CARE is able to extract the set of unique contexts
from any specific recommendation domain. Moreover, the extracted contexts effectively
explain the distribution of ratings in reviews, which is useful for modeling the polarity of the
reviews’ ratings.

1.4.2 Context-Aware User and Item Representations Based on Unsu-
pervised Context Extraction from Reviews

This work is extended from CARE by utilizing the contexts extracted from the extraction
method for personalizing the rating prediction [92]. Specifically, an efficient method for
constructing a user and item representations based on the extracted contexts, namely the
attentional interaction model for context-aware region embedding (CARE-AI), is proposed.
This model introduces the interaction and attention modules, which help constructing a
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user and item representations based on different levels of relevance among the extracted
contexts with an individual user preferences and item features. Unlike most deep learning-
based methods that learn one static user or item representation for all reviews, CARE-AI
dynamically generates a unique user and item representations for each particular review,
which are more proper for capturing the specific contextual information embeded in that
review.

The experiments demonstrate that CARE-AI performs better than state-of-the-art rating
prediction methods including review-based and context-aware recommendation techniques.
In addition, the effectiveness of utilizing the proposed interaction and attention modules, the
impact of the model parameters, the impact of review quality, as well as the performance on
the rating sparsity situations, are analyzed in detail.

1.4.3 Multi-Criteria Rating Conversion Without Relation Loss For Rec-
ommender Systems

Finally, a novel method for simultaneously converting multi-criteria ratings between users
is proposed [90]. The multi-criteria ratings are first normalized by variances of users and
principle component analysis is applied to extract user preference patterns. Such patterns are
then used for multi-criteria rating conversion, which preserves the implicit relation among
criteria ratings.

The experiment results show that proposed multi-criteria rating conversion technique
outperforms both current single and multi-criteria rating conversion techniques with higher
accuracy on TripAdvisor and Yahoo datasets respectively, while maintaining considerably
high level of prediction coverages

1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 introduces the
background of recommender systems, including review-based and context-aware, and multi-
criteria recommendations. Chapter 3 presents the related techniques to this work, including
the review-based representation techniques, the context extraction techniques, and the rating
conversion techniques. Chapter 4 explains the first work, the Unsupervised Context Extrac-
tion via Region Embedding for Context Aware Recommendation. Chapter 5 then presents
the extension, the Context-Aware User and Item Representations Based on Unsupervised
Context Extraction from Reviews. Chapter 6 presents the Multi-Criteria Rating Conversion
without Relation Loss For Recommender Systems. Chapter 7 finally summarizes the thesis.



Chapter 2

Background

2.1 Recommender Systems

The rapid growth of an Internet of Things (IoT) in past decades leads us to an era where online
information is easily accessible anywhere and anytime. Many online retailers and service
providers take this opportunity to provide a variety of products and services to their customers
via online websites and mobile applications. The e-commerce consumers, on the other hand,
are often overwhelmed by the unlimited amount of products and services available for them
to make a selection. Offering too many choices, however, could consequently lead to an
information overload problem since most of them might not match with a unique interest
of each individual consumer. Motivated by this cause, a recommender system (RS) was
invented with one main objective—to provide a personalized recommendation on the suitable
items that would be interested by an individual user.

Most e-commerce systems rely on users’ past interactions with the systems as an input for
producing a personalized recommendation. Such interactions can come in various formats,
such as views, clicks, likes, shares, but the most common form is the numeric ratings. Figure
2.1, for example, shows the user rating system from Amazon.com, where users can provide
ratings to their purchased products with a score in the range of 1 to 5. These ratings indicating
the user preference levels toward those items—higher the score, the higher their satisfactions
toward the items. Note that the range of rating scores can be varied on the different systems.
For example, Agoda.com and IMDb use 10-scale rating system, where users can provide
a rating from 1 to 10. These ratings are utilized as the main input for the recommendation
algorithms for making the future rating prediction of unseen items for the individual users.



8 Background

Figure 2.1: A user rating system from Amazon.com
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Figure 2.2: A user-item rating matrix.

2.1.1 Recommendation Strategies

After the ratings are collected, they can be represented by a user-item rating matrix, as
shown by the example on Figure 2.2. Each row and each column in this matrix respectively
represent each user and each item in the system, whereas each entry of the matrix represents
the corresponding rating of a user given to an item. In Figure 2.2, for example, the user u1

assigned a rating score “5” to the item i1. The main task of a standard recommender system is
to predict the ratings of items that do not yet rated by the individual users, i.e. those denoted
by empty entries in Figure 2.2.

Formally, given User a set of users, Item a set of items, and Rating a set of possible
rating values (e.g. 1 to 5), an objective function R of a standard recommender system can be
defined by:
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R : User× Item → Rating. (2.1.1)

After the ratings are computed, the items retrieving the highest prediction scores are
selected as the ones to be recommended to an individual user, implying they are highly
relevant to his/her personal preferences.

Many recommendation methods were proposed under a collaborative filtering-based
(CF-based) approach. The main idea of CF-based approach is to utilize the preferences from
the other users in the system for making a recommendation. The CF-based approach can be
categorized further into two common sub-branches: the memory-based (or heuristic) and
model-based approaches [6].

The memory-based CF approach relies on the ratings from the users who shared similar
interests for making a rating prediction. From Figure 2.2, for example, the user u3 is very
similar to user u1 since they provided similar ratings to similar set of items. Therefore, the
ratings from user u3 on items that do not yet rated by u1 (e.g. v3) can be helpful for predicting
the rating for u1. In this case, u3 can be considered as a neighbor of u1. The simplest method
in a memory-based CF approach is the k-nearest neighbors (k-NN) technique [6], which
makes a prediction by incorporating the ratings from the top k most similar neighbors to the
target user. This method first computes the similarity between every pair of users by using a
similarity metrics such as Pearson correlation coefficient, as expressed by

sim(ua,ub) =
∑v j∈I(ua,ub)(rua,v j − r̄ua)(rub,v j − r̄ub)√

∑v j∈I(ua,ub)(rua,v j − r̄ua)
2
√

∑v j∈I(ua,ub)(rub,v j − r̄ub)
2
, (2.1.2)

where sim(ua,ub) denotes the similarity between users ua and ub, I(ua,ub) is the set of items
rated by both ua and ub, and r̄ua is the average rating of ua. The rating of the user ua on an
unseen item vk can then be estimated by

r̂ua,vk =
∑ub∈Neighbors(ua)(rub,vk − r̄ub)× sim(ua,ub)

∑ub∈Neighbors(ua) |sim(ua,ub)|
, (2.1.3)

where Neighbors(ua) denotes the set of k most similar neighbors of user ua. To produce an
accurate prediction, the memory-based approach requires a significant amount of mutually-
rated-items by users, in order to identify the high-quality neighbors.
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On the other hand, the model-based approach exploits the rating data to build a predictive
model, and uses it for future rating prediction. Many model-based CF techniques have
been proposed, among them the latent factor model [50] is the most popular one due to its
effectiveness in delivering high accurate prediction. The standard method in latent factor
model is the matrix factorization (MF) technique [50] that models a rating as an interaction
between the latent features of user and item. Specifically, each user ui and each item v j are
respectively associated with user and item latent-feature vectors xui and xv j ∈ Rk, where k is
the number of latent dimensions. The rating of user ui for item v j is then estimated by

r̂i, j = xT
ui

xv j . (2.1.4)

The parameters xui and xv j are learned and optimized by minimizing the regularized
square error through a loss function defined by

L = ∑
(i, j)∈O

(ri, j − r̂i, j)
2 +λ (∥xui∥

2 +∥xv j∥
2), (2.1.5)

where O denotes the set of observed user–item rating pairs, ri, j is the observed rating score
of user ui toward item v j, and λ is a constant controlling the regularization rate. (The
regularization term is added to avoid overfitting the observed rating data.)

The parameters xui and xv j can be considered as the representations of user ui and item
v j, respectively, in the latent space. Because they are learned and optimized from observed
ratings, their representation quality depends on the quantity of available historical ratings. For
most rating datasets, however, users typically rate only a few items among all the available
items in the system, which leads to a rating sparsity problem. Such a problem would directly
affect the quality of the user and item representations.

2.1.2 Challenges in Recommender Systems

In order to provide the effective recommendations, there are two common challenges that RS
methods aim to achieve: to improve the recommendation accuracy, and to deal with the data
sparsity issue.
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Improving Accuracy

Accuracy is the most discussed property in the RS literature. The basic assumption of the RS
indicates that the systems which provide more accurate prediction would be more preferable
by users [35, 36]. Therefore, the vast majority of RS methods measure the effectiveness of
their recommendation algorithms based on the prediction accuracy. An improvement in the
recommendation algorithm can have a value of million dollars, and can be the factor that
determines the success or failure of a business [9]. For example, Netflix offered a million
dollar to whomever improve their prediction accuracy in terms of Root Mean Square Error
(RMSE) by 10% [50].

The standard RS strategies such as CF-based approach, which utilize only the rating data
for making a recommendation, often fails to deliver highly accurate prediction. The accuracy
of a memory-based CF approach relies heavily on the quality of the neighbors who have
rated the target items. The process of computing user similarity becomes non-trivial on
a large-scale system with increasing numbers of users and items, and when the user-item
rating matrix is sparse. Several efforts tried to enhance the computation of similarity [40, 60].
For example, [40] introduced the weighted Pearson correlation coefficient by modeling
the confidence level among the neighbors. [60] proposed a novel similarity measure by
considering the proportion of common ratings between two users.

By building a predictive model for future rating prediction, the model-based CF approach,
in contrast, is more scalable than the memory-based CF approach. However, the prediction
made by the model-based CF approach might not be as accurate as the memory-based CF
approach when the user-item rating matrix is dense (when there is sufficient amount of
ratings to identify high-quality neighbors). Therefore, several model-based CF methods
have attempted to invent the models with more accurate prediction. For example, many
variants of MF have been proposed to improve the prediction accuracy upon the baselined
MF [50, 57, 81]. The most common variant of baselined MF that has been derived in many
studies is a biased MF [50]. This method considered the biases in preferences from users and
items to predict the ratings, as expressed by

r̂i, j = xT
ui

xv j +bui +bv j +µ, (2.1.6)

where bui,bv j , and µ ∈R respectively denote the bias for user ui, the bias for item v j, and the
global bias. These biases are added to take into account the deviations in ratings that might
cause by some users or items. For example, some users always give high rating scores to any
item, whereas some popular items tend to receive high rating scores from any user. Recently,
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Figure 2.3: A sparse user-item rating matrix.

a neural network model has been integrated into a latent factor model to further enhance the
prediction accuracy [39].

In fact, there are many additional sources of information that can be exploited to improve
the prediction accuracy upon the standard RS. For example, the content-based recommenda-
tion approach [62] recommends items with similar characteristics (or features) to the ones
the users liked in the past. On the other hand, the context-aware recommender systems
[5] improves the prediction accuracy by incorporating the contextual information such as
time, weather or season, which have significant influences on user preferences toward items.
Finally, the multi-criteria recommendation approach [3, 4] takes into account the ratings
in many aspects of an items (such as rating scores for cleanliness, service or location in
hotel booking websites) to improve the accuracy of the recommendation. This thesis focuses
mainly on utilizing the contextual information and multi-criteria ratings, which will be
explained in more details in Chapter 2.2 and 2.4.1, respectively.

Dealing with Sparsity

In many large-scale recommender systems, there are tremendous amount of users and items.
However, in most of them, many users only provide ratings to a few number of items,
compared to all available items, and many items might be rated only few times by the users.
Representing this kind of data with the user-item rating matrix would consequently result in
a sparse matrix where most of its entries are missing, as shown by the example on Figure 2.3.
This leads to one of the major challenges in RS, called data sparsity problem, that directly
impacts the predictive performances of many recommendation algorithms.

Since a CF-based approach relies on historical ratings for future rating prediction, it is
often suffered from rating sparsity problem, where there are insufficient amount of ratings
for producing an effective recommendation. For example, the memory-based CF approach
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relies on the overlapped ratings on the mutually rated items between two users to compute
their similarity. With the sparse user-item rating matrix, such overlapped ratings might be
unavailable—making the computation of user similarity unreliable [22, 34]. This leads to the
ineffective process of identifying the high-quality neighbors, and consequently degrade the
prediction accuracy.

Similary, the predictive performance of the model-based CF approach is also affected
by the sparsity of ratings. By building the predictive models on the sparse rating data,
those models might be trained to overfit with the only available user-item pairs. In spite of
providing high accuracy on the training (already seen) data, the overfitted model tends to
provide poor accuracy on the new (or unseen) data.

Many works have attempted to alleviate the sparsity problem [33, 42, 82]. For example,
[33, 42] combined content-based recommendation approach with the CF-based approach
by considering similarity of the item characteristics. Moreover, some works applied the
dimensionality reduction techniques such as the singular value decomposition (SVD) [48],
the principle component analysis (PCA) [31], latent semantic analysis (LSA) [23], or the
probabilistic latent semantic analysis (pLSA) [41] to overcome the rating sparisty. For
example, [32] used a predicted ratings of SVD to fill in missing values in the user-item rating
matrix, and then applied the traditional item-based CF to make a recommendation.

In the recent years, the user-generated reviews have been recognized by many studies
[19, 21, 47, 64, 86, 101, 103] as the additional source for alleviating the sparsity problem.
Therefore, in this work, we utilize the review data as the main source to overcome the sparsity
problem.

2.2 Context-Aware Recommender Systems

2.2.1 What is Context?

The generic dictionary definition of context is “conditions or circumstances which affect
something” [100]. However, this definition is too broad to be easily interpretable by re-
searchers and developers into the specific real-world applications. This is because the
concept of context has been widely studied across multiple research domains, such as com-
puter science, cognitive science, philosophy or psychology [7], each of which tends to
associate with a unique definition that is more specific than the previously mentioned generic
definition from dictionary. One study [14] tried to examine and compare over 150 definitions
of context from various disciplines, which led to a conclusion that it is not trivial to find such
a unifying definition of context. This work, specifically, will be focused on the definition of



14 Background

context from the research area of human-computer interaction (HCI), which is more relevant
to a recommender systems than the other areas.

According to the survey on context-aware computing applications conducted by [74],
the definition of context that is widely accepted by many researchers in the field of HCI
comes from Abowd et.al [1]. Abowd et.al [1] studied and tried to refine various definitions
of contexts from the previous researches in HCI. They first categorized those definitions into
three main types: by example, by synonym, and by aspect.

• By example: the definition of context is defined by its example. For example, Schilit
and Theimer [84] defined context as a location, identities of nearby people and objects,
and changes to those object. Ryan et al. [80] defined it as the user’s location, envi-
ronment, identity, and time. Finally, Dey [25] defined context as the user’s emotional
state, focus of attention, location and orientation, date and time, objects, and people
in the user’s environment. These definitions, however, are too specific, making them
difficult to determine whether an unlisted information is context or not.

• By synonym: context is defined by its synonym. For example, Franklin and Flaschbart
[30] defined it as the situation of the user. Brown [16] defined context as the elements of
the user’s environment that the user’s computer knows about. Ward et al. [99] defined
context as the state of the application’s surroundings. These definitions, however, are
too general, making them difficult to apply in practice.

• By aspect: this approach uses the aspects of context to determine whether the infor-
mation is context or not. For example, Schilit et al. [83] defined three important
aspects of context as: where you are, who you are with, and what resources are nearby.
According to these three aspects, context is then defined by the computing environment
(e.g. available devices), user environment (e.g. location or nearby people), and physical
environment (e.g. lightning or noise level). Similary, Dey et al. [26] defined context as
the user’s physical, social, emotional or informational state. These definitions are also
too specific. It is ineffective to identify which aspects of context are important to all
situations, since such aspects will change from situation to situation.

Abowd et.al [1] stated that some of these definitions are too general, whereas some are
too specific, which make them difficult to apply to any context-aware application. In order
to make it easier to enumerate context for any given application scenario, Abowd et.al [1]
provided the refinement from these three categories with their own definition of context as:

“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is consider relevant
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to the interaction between a user and an application, including the user and
applications themselves.”

This definition makes it easier to identify context from any HCI application in general.
If a piece of information can be used to characterize the situation of a participant in an
interaction, then that information is context. Determining the context of use can allow the
application to modify its current behaviour to better interact with the user.

The next question is, what is context in recommender system? From the definition of
context defined by Abowd et.al [1], such “entity” in recommender systems would include
a user and an item, and “interaction” between those user and item can be expressed in
various forms such as clicks, likes, watches, or ratings, which indicates the user’s decision
on specific items. In other words, context in recommender systems, can be defined as “any
information that affects or influences the users’ decisions when they are choosing items.” [7].
For example, the season (e.g. summer or winter) could be considered as context since it
strongly influences the users’ decisions on which type of clothes they would buy.

Context in recommender systems can be classified further into representational and
interactional views [28]. In representational view, context is defined with a predefined set of
observable attributes, and its structure does not change significantly over time. For example,
the context “daytype” might be defined with the static set of values {weekday, weekend}.
On the other hand, the interactional view assumes that the user behavior could be induced by
contexts, but the contexts themselves do not necessarily observable. This type of contexts
might be unstructured and hidden in various sources of data such as mobile sensors [94],
social media new feeds [59], or user-generated reviews [21, 63, 67].

Context could be a crucial factor for provide more relevant items to users, and leading to
more accurate recommendations. There exists one approach in recommender system that
dedicates to a study of utilizing context for improving the effectiveness of recommendations,
namely context-aware recommender systems.

2.2.2 Improving Accuracy with Contexts

From past decades, contexts have been widely utilized as an additional source of information
to improve the prediction accuracy upon the standard RS, which considers only the rating
data. This is due to the fact that contexts can be very useful for the systems to narrow
down the recommendation lists, and offer more relevant items that are suitable for each
individual user in a specific contextual situation. For example, knowing that a user want to
travel in summer, the system would suggest the hotels around beach areas, rather than the
mountainside ski resorts that are less relevant to this user’s contextual situation. Incorporating
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Figure 2.4: A user-item rating tensor for context Season.

contexts have been shown to improve the accuracy of the recommendations over the standard
CF-based recommendations that do not consider contexts [5, 7, 11, 88].

In order to utilize contexts for making a recommendation, a system needs to incorporate
the contextual information, in addition to the user and item information. The basic objective
function R of a context-aware recommendation can be defined by:

R : User× Item×Context1 × . . .×ContextN → Rating, (2.2.1)

where Contextn is a contextual variable, such as Season or Weather. By introducing a context
as an additional variable, a multi-dimensional array or a tensor is required to represent the
ratings under different contextual values, instead of a user-item rating matrix. Figure 2.4
for example, shows a three-dimensional user-item rating tensor for representing the ratings
collected under the different values of a context Season.

2.2.3 Incorporating Contexts for Making Recommendations

With the multi-dimensional ratings presented in Figure 2.4, the standard recommendation
techniques such as the CF-based approach which are designed for two-dimensional user-item
rating matrix, cannot be applied directly. Therefore, several context-aware recommendation
methods were proposed especially for dealing with contextual rating data [5, 7, 11, 88].
Adomavicius et al. [5] categorized the context-aware recommendation techniques into three
main categories, based on the stages of the recommendation process in which the contextual
information is applied, as follows:

• Contextual pre-filtering [5, 12]: only the ratings collected under the corresponding
contexts are incorporated into the recommendation process. For example, if a user want
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to find a restaurant for having a dinner, only the ratings provided under the contextual
value “dinner” are selected as an input for the standard recommendation techniques
(such as CF-based approach).

• Contextual post-filtering [71]: the system first applies a standard recommendation
technique to produce the recommendation list for each user. The items that are
irrelevant to the user’s contexts are then filtered out from the list. For example, if a
system detects that the user does not watch horror movie with his family, all horror
movies are then remove from the recommendation list.

• Contextual modeling [11, 37, 46, 88, 89]: contexts are directly utilized in the process
of learning the predictive model.

Campos et al. [17] conducted the experiments comparing the predictive performances
among these three categories. The strength of both contextual pre-filtering and post-filtering
is apparently their ability to exploit any standard recommendation techniques. On the
other hand, the contextual modeling requires a specific technique designed for dealing with
contexts. Its performance, therefore, depends on the effectiveness of the predictive model.

The earliest method among context-aware recommendation techniques is a context-aware
collaborative filtering (CACF) [5], which is categorized as contextual prefiltering approach.
The predictive performance of CACF is depended directly on the predefined values of
contexts, which are to be used for selecting the ratings. Defining too specific values might
result in too small number of the corresponding ratings, whereas defining too general value
might incorporate the irrelevant ratings, and consequently degrading the prediction accuracy.
Moreover, since this method used memory-based CF approach for making rating prediction,
it also encountered the data sparsity problem.

One of the well-known context-aware recommendation techniques is a context-aware
matrix factorization (CAMF) [11], which provided more accurate prediction and more robust
to the rating sparsity than CACF. This method derived the matrix factorization technique
[50, 49] to incorporate contextual variables as the bias, as expressed by:

r̂i, j = xT
ui

xv j +µui +bui +
K

∑
k=1

b j,ck , (2.2.2)

where µui is an average rating of user ui, and bv j,ck is a bias of item v j under contextual value
ck. By including the contextual biases into rating prediction, CAMF was able to achieve
higher accuracy than the standard MF, and performed better on the sparse data than CACF.
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Table 2.1: Examples of predefined contextual variables and their values.

Contextual variables values

Daytype Weekday, Weekend, Holidays

Time of day morning, afternoon, evening, night

Weather sunny, cloudy, rainy, stormy, snowy

Season spring, summer, autumn, winter

Companion alone, partner, family, friends

Location home, public, office, school

However, it considered only the influences of contexts on the items, which is contradicted to
the fact the contexts can have influences on both user preferences and item features.

2.2.4 Challenges for Contextual Recommendations

There are two common challenges that need to be addressed when incorporating contexts into
the recommendations: how to obtain them, and how to identify which of them are relevant to
the recommendation task.

Obtaining Contexts

Although context can improve recommendations, obtaining it is not trivial. In traditional
recommendation schemes, users review items they have previously chosen and assign rating
scores to indicate their preference levels for those items. Context is, however, rarely provided.

As previously mentioned in Section 2.2.1, Dourish [28] classified contexts into represen-
tational and interactional approaches. Most of the context-aware recommendation techniques
[5, 11, 12, 46, 71, 88, 89] adopt the representational approach, whereby contexts are defined
by predefined sets of contextual variables and their corresponding static values, such as
those presented in Table 2.1. In order to obtain this kind of contexts, early context-aware
recommendation techniques explicitly asked users to supply them by selecting from the
predefined values their contexts at the time the items were being consumed. In order to deliver
the satisfying prediction accuracy, such contexts need to be predefined with optimal values,
which is not a trivial task since their values depends on the specific recommendation domains.
For example, a context Location in movie recommendation domain might consist of the
values {home, cinema}, whereas its values for travel recommendation might be {mountain,
beach}. Moreover, most users have no intention of providing such contexts this way, which
makes the representational approach less useful in real-world scenarios where.
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The interactional approach, on the other hand, assumes that user behaviors are influenced
by context, but the contexts themselves are not necessarily observable. In this approach,
the unsupervised techniques are required to extract and represent contexts from additional
sources of data [37, 59, 94]. In one such example, [37] applied topic modeling to represent
context as sequences of latent topics that capture changes in users’ interests. This interactional
approach has the advantage of not having to predefine context values, which enables the
discovery of hidden or unobserved contexts, and is therefore applicable to a wider range of
recommendation domains than the representational approach. In recent years, one of the
most popular source of context has been user-generated reviews [21, 63, 67].

Identifying Relevant Contexts

After obtaining the context, it is then important to separate the relevant context from the
irrelevant context. For instance, a context Season should be more proper for hotel recom-
mendation (e.g. hotels in beach areas for summer), whereas Time of the day is more suitable
for restaurant recommendation (e.g. breakfast restaurants in the morning). Incorporating
too many contexts not only degrades the quality of recommendations, but also increases
dimension of data and thus triggering a sparsity problem [5].

The simplest but most expensive way to identify the relevant contexts is with the help
of domain experts, who manually select or conduct a user survey to decide which contexts
are relevant and which ones are not [10]. In addition to such manual methods, several
works define a relevant context as one that has a significant influence on the distribution
of ratings [7, 51, 61, 70], which can be identified automatically. Figure 2.5, for example,
visualizes the rating distributions for two contextual variables, Companion and Season. Each
cell contains the frequency of each contextual value for each rating value. For instance,
users who watch movies alone provided rating “1” 17 times. The distributions of ratings
can be visualized by the cell’s grayscale shading, which represents the densities of context
frequencies from highest (black) to the lowest (white). Note that each contextual value for
Companion influences the distributions of ratings differently, whereas there is no significant
difference in the distributions for Season. We can therefore hypothesize that Companion
is a relevant context and Season is an irrelevant context for this data. In practice, most
context-aware methods [61, 70] identify the relevance of contexts by applying the statistical
testing such as the paired t test or Pearson’s chi-squared test. However, these approaches
is only applicable to a representational approach of contexts (when using predefined types
of context such as those presented in Table 2.1). Moreover, most methods identify relevant
context based on its influence on ratings of an entire dataset. In reality, the relevance of an
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Figure 2.5: Examples of context-rating co-occurrences for contexts (a) Companion and (b)
Season

Visited this hotel during summer for family trip. The room offers a breathtaking 
view of the city at night. The bed is clean and comfort, but smaller than our 
expectation. Have a free-wifi but weak signal. However, the staff is friendly and 
helpful. The continental breakfast is OK, but they should offer more selections. 

Jonathan
on December 7, 2018

Figure 2.6: Example of a user-generated review and rating

element of context might well depend on individual user preferences and the specific target
item features, which would, therefore, influence their ratings.

2.3 Review-Based Recommender Systems

2.3.1 Alleviating Rating Sparsity with Reviews

In many e-commerce websites, users can write textual reviews on the products they have
purchased, in addition to the rating data. In reviews, users can provide comments explaining
reasons behind their ratings on items, which offer richer and more meaningful information
than numeric ratings. Such meaningful contents in reviews have been recognized as a
valuable source of information to alleviate the rating sparsity occurred in a standard CF-based
approach [21]. For example, consider the review in Fig. 2.6. Even if this user only provided
one review, some very useful information can still be mined from that review, such as having
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traveled in summer with family members, liking city views at night, and being concerned
about the cleanliness of the room. If such useful information is extracted effectively, they
might be helpful in modeling the user preferences or item features in more efficient way than
utilizing only ratings.

By leveraging a review text Review into rating prediction, the objective function R of a
review-based recommendation can be defined by:

R : User× Item×Review → Rating. (2.3.1)

2.3.2 Leveraging Reviews for Making Recommendations

Since a review is provided in an unstructured textual form, it cannot be easily interpreted by
the system. Therefore, a method for extracting and representing information from reviews is
required for making a recommendation. For example, [29] built a user and item profiles based
on the frequency of words extracted from reviews by applying a term frequency–inverse
document frequency (TF-IDF) technique. The recommendation is then made based on the
items with similar profiles to the user. Moreover, Poirier et at. [76] inferred the rating to
create the user-item rating matrix to be used for CF-based approach. They represented a
review with a word frequency vector, and combined it with a rating to train the Naive Bayes
classifier, which is then used to infer ratings for the new reviews. Furthermore, McAuley
and Leskovec [64] proposed a Hidden-Factors as Topic (HFT) model, which combined the
latent topics learned from reviews with the latent factor model learned from ratings. The
author represented a review with the set of topic distributions retrieved from latent dirichlet
allocation (LDA) [66], which is linked with the item latent factors. Specifically, a distribution
θv j,k of topic k of item v j is defined by the following transformation:

θv j,k =
exp(κxv j,k)

∑k′ exp(κxv j,k′)
, (2.3.2)

where xv j,k denotes a latent feature k of the representation of item v j, and κ is a parameter
to control the peakiness of the transformation. With Eq. 2.3.2, the latent topics can be
incorporated into the process of learning the latent factor model.

In recent years, many deep-learning techniques have been adopted to model user and item
representations from reviews due to their superior predictive performances [19, 47, 86, 103].
For example, DeepCoNN [103] applied a convolutional neural network (CNN) [102] to learn
such representations, which were then used to predict ratings based on the latent factor model.
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Figure 2.7: A neural network framework for constructing user representations from reviews

In an extension to the CNN, NARRE [19] applied an attention mechanism [96] to construct
representations by considering different contributions from reviews based on their usefulness.
Despite variations, these techniques share a common network framework for constructing
representations, which is shown schematically in Fig. 2.7. To learn a representation for user
ui, this technique first creates a user document for ui by concatenating all the user’s previous
reviews. Each of the M words in ui’s document is then looked up and mapped with its word
embedding, which can be initialized randomly or by utilizing a pretrained word embedding
such as Word2Vec [65], GloVe [73], or BERT [24]. These word embeddings are then fed
into the neural network components to learn xui as a representation of ui. Note that an item
representation can be constructed in the same way as a user representation. The output of
such a framework is a static representation for every user and item in the training data.

2.3.3 Challenges for Review-Based Recommendations

Although the deep learning based models for review-based recommendations utilize different
types of networks to learn the user and item representations, they share two similar principles
that could limit their potential: the way they utilized the relevant words, and the way they
incorporated the relevant reviews to learn such representations.
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Identifying Relevant Words

First, most of the deep-learning based methods consider every word in a review as an input
when learning user and item representations. Given that some words are not relevant either to
user preferences or item features, such words should not be given any weight when modeling
their representations. For example, in hotel recommendations, words such as “clean” or
“breakfast” are more relevant to a user preferences toward a hotel features than words such as
“he” or “run”. If only the words relevant to a specific recommendation domain are identified
and utilized, the user and item representations could be constructed in a more efficient and
meaningful way.

Utilizing a Particular Review’s Content

Moreover, the user and item representations are constructed in a static manner by aggregating
their relevant previous reviews. This means that each user or item has one fixed representation
per review. However, to predict a rating for a particular review, with the aim of modeling a
user preferences and an item features for application to the user’s current situation, I believe
that it is more important to concentrate and leverage the more relevant information embedded
in that review. For example, the review in Fig. 2.6 mentions that the room offers breathtaking
views of a city at night. To generate user and item representations for predicting a rating
for this review, it would be beneficial to know how much the user prefers, and how much
the hotel’s rooms are well known for, its city views at night. That is, my assumption is
that the user and item representations should be dynamically constructed for each particular
review, to capture the interactions between user preferences (or item features) and the relevant
information in that review.

2.3.4 Extracting Contexts from User Reviews

When writing reviews, users can express opinions describing their experiences and their
satisfaction with items, which can be a valuable source of contexts [21]. As shown in Fig. 2.6,
for example, underlined words such as “summer”, “family”, or “night” can be considered as
contexts embedded in a review. Successfully identifying and utilizing contexts from reviews
could be the key to satisfying both recommendation accuracy and alleviating rating sparsity
in recommender systems.

However, unlike the context-aware recommendation methods that relied on predefined
list of contexts [5, 7, 11, 88], the contexts embedded in reviews need to be recognized first
before they can further be used for making recommedations. There are two main approaches
to extracting contexts from reviews, namely supervised and unsupervised approaches. A
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supervised approach extracts contexts based on a predefined list of contextual variables and
their corresponding values [2, 20, 38, 58, 54, 55]. Using the predefined contexts in Table
2.1, words such as “summer”, “family”, or “night” could be extracted as contexts from the
review in Fig. 2.6. However, non-predefined words in Fig. 2.6 such as “clean”, “free-wifi”,
or “breakfast”, which could potentially be considered as contexts, are overlooked. For a
supervised approach to be robust, therefore, it will require the contextual variables and their
corresponding values to be predefined optimally for each specific recommendation domain.

In contrast, an unsupervised approach aims to infer contexts from reviews without having
to predefine them [13, 75, 101]. Some of these approaches [13, 75] classify reviews into
context-rich and context-free reviews, based on features of each review such as the number
of words, verbs, and verbs in the past tense. The contexts are then extracted as those words
or topics that occur more often in the context-rich reviews. These two methods, however,
require manual annotation of the review data (as context or noncontext) as part of the training
process. Recently, CARL [101] has applied CNN and word-level attention to semantically
infer contexts from reviews. Its user and item representations are constructed by modeling
the attention weight of each word as its influence in each context on a user–item pair. This
method was, however, presented using the framework shown in Fig. 2.7, which means
that it suffers from the limitations of utilizing irrelevant words and constructing only static
representations.

In addition, most context extraction methods [2, 13, 20, 38, 54, 55, 58] define and extract
a context in the form of a single word such as those shown in Table 2.1. However, when
users write reviews, they have flexibility in how their contexts are presented, including using
phrases in addition to single words. For example, some contexts from the review in Fig.
2.6 might be best extracted as “family trip”, “night city view”, or “friendly staff”, which
are more meaningful than just “family”, “night”, or “friendly.” I believe that other words
that often accompany (or are present in the same text region as) context words might help
in capturing the appropriate meaning of contexts, and should therefore also be extracted to
represent contexts accurately.

I strongly believe that effectively extracting and utilizing contexts in reviews could help
overcome the challenges of obtaining and identifying relevant contexts in context-aware
methods, in addition to the limitations of modeling user and item representations from
reviews via deep learning techniques.
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Figure 2.8: Example of multi-criteria ratings from Booking.com

2.4 Multi-Criteria Recommender Systems and Rating Con-
version

2.4.1 Improving Accuracy with Multi-Criteria Ratings

In most of recommendation framework, a user provides a single rating to an item, indicating
his overall preference toward that item. Such framework can be called single criterion (SC)
recommendation. The SC recommendation defines a global objective function that represents
the relationship among a user, an item and an overall rating score, as in Eq. 2.1.1. However,
taking into account only the overall ratings to justify the user preferences on items might
lead to a limitation of the recommendations. This is because in some systems, the users can
express their preferences in multiple aspects of items in addition to an overall rating. Figure
2.8, for example, shows a rating system from Booking.com, where users can provide ratings
to the criteria of the hotel, such as staff, facilities, cleanliness or value. This kind of system is
referred to as multi-criteria (MC) recommendation [4].

The MC system grants a better opportunity to analyze the user preferences in more detail,
and leads to more personalized and effective recommendations [4]. For example, as shown
in Table 2.2, the SC system that considers only the overall rating will claim that user u1 and
u2 are more similar than u1 and u3. However, by exploring the multi-criteria ratings that
have been given under the criteria Price, Location, Cleanliness, and Service, the MC system
proves that u1 and u3 are actually more similar. This means that letting the users express
their preferences in multiple aspects can contribute a better understanding of their individual
characteristics. Utilizing MC ratings can produce a better TopN precision results up to 3.8%
when comparing to SC recommendations [3].
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Table 2.2: Example of the overall and multi-criteria ratings on hotel rating data.

User Hotel
Multi-criteria ratings

Overall Price Location Cleanliness Service

u1 v1 10 8 10 9 7

u1 v2 8 10 8 6 9

u1 v3 9 7 9 8 9

u2 v1 10 9 7 7 10

u2 v2 8 7 10 9 10

u3 v1 7 8 9 10 7

u3 v3 7 7 10 8 9

By considering the multi-criteria ratings Rating1, . . . ,RatingK from K criteria in addition
to the overall rating Rating0, the objective function R for the MC recommendation can be
defined by:

R : User× Item → Rating0 ×Rating1 × . . .×RatingK. (2.4.1)

From Eq. 2.4.1, the prediction of MC recommendation can be made in three ways: predict
each criterion rating individually, use multi-criteria ratings to predict the overall rating, or
predict both multi-criteria and the overall rating.

2.4.2 Similarity Aggregation

Most of MC recommendation techniques are derived from the CF-based recommendation
approach, which can then be categorized as the memory-based and model-based approaches.

The traditional multi-criteria recommendation is based on the memory-based CF approach
[3], which relied on the computation of user similarity. In their work, the set of similar users
are determined based on a multi-criteria user profile. In order to measure the user similarities,
they extended the single criterion similarity methods for the multi-criteria scheme by applying
the aggregation techniques.

The similarity aggregation methods firstly exploit the traditional similarity metrics to
measure the similarities among users on each criterion independently [3, 72]. After the
similarities on all criteria are calculated, they are aggregated into a single similarity through
one of the following techniques. First, by averaging the similarities of all criterion:
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sim(ua,ub) =
1
K

K

∑
k=1

simk(ua,ub), (2.4.2)

where K is the number of the criteria. For another technique, a set of criteria weights
are incorporated to corresponding criterion similarity for performing weighted average, as
expressed by:

sim(ua,ub) =
K

∑
k=1

wksimk(ua,ub);
K

∑
k=1

wk = 1. (2.4.3)

After the aggregated similarity is computed, the prediction of the overall rating can be
done by any traditional CF-based approaches. Examples of the other MC recommendation
techniques are the following. Schmitt et al. applied the multi-attribute utility theory (MAUT)
[85] to the case study of car recommender system, while Le Roux et al. [79] constructed the
course recommender system based on multi-criteria decision making. Also, Tangphoklang et
al. [93] proposed adaptive user-variant weight to express preference of each user on each
criterion.

2.4.3 Rating Conversion

In order to provide an effective rating prediction, the memory-based CF approach rely
crucially on the ratings from neighbors. However, exploiting those ratings to make a
prediction for the other users directly might lead to a problem. This is because the habits or
patterns on giving ratings among users vary due to their personal biases. For example, on
the rating range of 1 to 10, User u1 might give rating score from 2 to 5 indicating ‘dislike’
to ‘like’, while User u2, instead, gives the rating from 5 to 8 with the same intention. This
means that ‘like’ for user u1 equals to ‘dislike’ to user u2. Therefore, using ratings from
neighbors to predict the rating for an active user directly may not be practical.

In order to deal with the user personal biases in the ratings, many rating conversion
techniques have been introduced in single criterion domain [8, 18, 43, 44, 56]. The main
idea is to convert the ratings from the neighbors into the same scale as the active user, before
utilizing them for a rating prediction. The most simplest approach that can be applied for
converting the ratings is a normalization.

The normalization approach converts the user ratings into a specific range. Such range is
usually between 0 and 1 where everyone’s ‘most like’ and ‘most dislike’ will be mapped to
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score ‘1’ and ‘0’, respectively. Many normalization methods are proposed based on different
assumptions, such as linear normalization, the Gaussian normalization, and the decoupling
normalization.

Linear Normalization

This method maps ratings based on the maximum and minimum of personal user ratings. By
using the linear function, the normalized rating value rnew

ua
for the user ua’s specific rating is

computed as:

rnew
ua

=
rold

ua
− rua,min +1

rua,max − rua,min +1
, (2.4.4)

where rold
ua

is an original rating of ua, rua,max and rua,min denote the maximum and minimum
ratings user ua has rated, respectively. This normalization method maps ratings based only
on maximum and minimum of the personal user ratings.

Gaussian Normalization

This method considers two factors that affect the variance of ratings among users with similar
interests [43]. The first factor is a difference of a rating from the average ratings. This factor
relates to the fact that some users are more tolerant and tend to give higher ratings than others.
Another factor is the difference of users rating scales. This comes from the fact that some
users tend to assign items to a narrow range of ratings, whereas other users tend to assign
items to a wide range. Combining these two factors, the ratings of each user are subtracted
with his average and divided by the variance of his ratings, as expressed by:

rnew
ua

=
rold

ua
− r̄ua

σua

, (2.4.5)

where r̄ua and σua are an average and a standard deviation of user ratings, respectively.

Decoupling Normalization

This method converts a user rating on item into a probability for that item to be favored by
the user [44]. When the rating rua is going to be normalized, the probability is determined
based on two factors. First, a ratio between two numbers: the number of items which was
rated no more than value rua by the user ua and the number of all items that the user ua has



2.4 Multi-Criteria Recommender Systems and Rating Conversion 29

rated. The high ratio means the rating rua are likely to be favored by the user. The second
factor is a ratio between the other two numbers: the number of items which was rated value
rua by the user ua and the double number of all items that the user has rated. The low ratio
means the rating rua are likely to be favored by the user. Based on these two factors, a special
formula; called halfway accumulative distribution was proposed as:

rnew
ua

=
|{v j ∈ Iua |ra, j ≤ rold

ua
}|

Iua

−
|{v j ∈ Iua|ra, j = rold

ua
}|

2|Iua|
, (2.4.6)

where Iua denotes the set of items to which user ua has rated.
Although the normalization techniques are able to convert a user’s ratings into the same

range, the conversions are based only on the rating data of the only one user. This might
lead to an inaccurate recommendation if there are two active users whose rating patterns
are different but having the same neighbors. If the normalized ratings are used for the
recommendations to these two active users, the results will be the same. For example, an
active user ua usually rates ‘0.4’ (normalized ratings) while another active user ub usually
rates ‘0.7’. If these two users share the same neighbor uc whose rated the target item with
‘0.8’, they will receive the same predicted ratings of ‘0.8’. Although ‘0.8’ seems like no
effect on user ub, it seems to be high value of rating for user ua since his usual rating is
‘0.4’. Thus, the better solution is to find the relationship between each pair of user ratings:
original user and target user, in order to convert neighbor ratings to individual active user
ratings. The examples of such conversion techniques include linear mapping [8], Lathia’s
rating conversion [56] and Warat’s rating conversion [18], which are explained further in
Chapter 3.3.

Furthermore, the rating conversion techniques have been proposed only in the SC domain.
Such SC rating conversion techniques can be applied to MC ratings by converting ratings
from each criterion independently. However, this could cause a scalability problem and
consume a lot of resources. Moreover, usually there are implicit relation among the criteria
ratings when user makes decision to select an item. For example, a user may choose a room
that have high score on both service and location, while ignore its price. If each criterion
rating is converted independently, such implicit relation could be lost.





Chapter 3

Related Work

3.1 Review-Based Recommendation Techniques

3.1.1 DeepCoNN

The deep cooperative neural networks (DeepCoNN) [103] is a first method that introduced
two neural networks for jointly constructing a user and item representations from reviews.
The user network learns the representation for each user by exploiting the reviews written by
that user, whereas the item network learns the representation for each item from the reviews
written for that item. The learned representations are then used to predict the corresponding
ratings in a layer on top of these two networks.

The architecture of DeepCoNN is presented in Figure 3.1. This model consists of two
parallel neural networks, one for constructing the representation of the user ui, and the
other for constructing the representation of the item v j. The user network first takes all
reviews written by the ui as inputs, and concatenates them to create the user document of
ui. Every word in such document is then mapped with the corresponding word embeddings,
in which the authors initialized with pre-trained embeddings by Word2Vec [65]. After that,
the word embeddings are fed into convolutional neural network (CNN), and are passed
through the fully-connected (FM) layer to construct the representation xui for user ui. Note
that the explanation for the item modeling is omitted here since a process of learning the
representation xv j of item v j on item network is very similar of the user presentation.

After both xui and xvj are constructed, they are fed into the prediction layer. In prediction
layer, xui and xv j are first concatenated into single vector ẑ = (xui,xy j), which is used as the
input for a factorization machine (FM) [78] for estimating the rating. The cost function of
DeepCoNN is computed by:
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Figure 3.1: The model architecture of DeepCoNN.

J = ŵ0 +
|ẑ|

∑
i=1

ŵiẑi +
|ẑ|

∑
i=1

|ẑ|

∑
j=i+1

⟨v̂i, v̂ j⟩ẑiẑ j, (3.1.1)

where ŵ0 is the global bias, ŵi models the strength of the ith variable in ẑ and ⟨v̂i, v̂ j⟩ =
∑
|ẑ|
f=1 v̂i, f v̂ j, f is for modeling the second order interactions.

3.1.2 NARRE

The neural attentional regression model with review-level explanations (NARRE) [19] is an
improved version of DeepCoNN that incorporated with attention mechanism. This method
learned different contribution of reviews to construct the user and item representations based
on the usefulness of reviews. The idea is that the highly-useful reviews are providing review-
level explanations to help users make better and faster decisions, and should have more
contributions for construct such representations.
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Figure 3.2: The model architecture of NARRE.

Specifically, the architecture of NARRE is presented in Figure 3.2. Similar to DeepCoNN,
NARRE comprises of two parallel neural networks, one for modeling the user, and one for
modeling the item. However, rather than concatenating all reviews into a single user or item
document, each review is transformed into a matrix of word vectors, and is fed into CNN to
learn its representation, separately from other reviews. Let oi,d denotes the representation of
review yi,d written by user ui. NARRE first computes the attention score of yi,d by:

a∗i,d = hT ReLu(WOoi,d +Wuui,d +b1)+b2 (3.1.2)

where WO ∈ Rt×k1 , Wu ∈ Rt×k2 , b1 ∈ Rt , h ∈ Rt , b2 ∈ R are model parameters, t denotes
the hidden layer size of the attention network, ReLu [68] is a nonlinear activation function,
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and ui,d ∈ Rk2 is an user embedding of user ui. The attention score is then normalized with
softmax function as expressed by:

ai,d =
exp(a∗i,d)

∑
D
d=1 exp(a∗i,d)

(3.1.3)

The representation of oi is then computed by a weighted sum of the attention scores of all
D reviews written by ui as:

oi =
D

∑
d=1

ai,doi,d (3.1.4)

The final representation of ui is created by passing oi to the fully-connected layer as:

xui = W0oi +b0 (3.1.5)

where W0 ∈ Rp×k1 and b0 ∈ Rp are model paramters.

After the representation from reviews of user ui, xui and item v j, xv j are constructed, they
are combined with the user and item latent feature vectors yui and yv j from a latent factor
model, as expressed by:

h0 = (yui +xui)⊙ (yv j +xv j) (3.1.6)

Finally, the rating of user ui on item v j is estimated by:

r̂i, j = WT
1 h0 +bi +b j +µ (3.1.7)

where W1 ∈ Rp denotes the weight matrix in prediction layer, bi, b j and µ denote the user
bias, item bias and the global bias, respectively. The training was done using Adam [27] as
the optimizer.
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3.2 Context Extraction Techniques from User Reviews

3.2.1 Rich-Context

The rich-context [75] represented each review with the distribution of the contextual topics
defined by Bauman and Tuzhilin [13], which is used as an input for factorization machine to
predict the rating.

In Bauman and Tuzhilin [13], the author proposed an unsupervised method for extracting
contexts from reviews. First, the author separated set of reviews Y into two groups: the
context-rich reviews Y r, which are rich in contextual information, and context-free reviews
Y f , which are less (or absent) of contextual information. The separation is done utilizing the
classical K-means clustering methods based on the following characteristics of a review:

• LogSentences: logarithm of the number of sentences in the review plus one (to avoid
empty review).

• LogWords: logarithm of the number of words in the review plus one.

• VBDsum: logarithm of the number of verbs in past tense in the review plus one.

• Vsum: logarithm of the number of verbs in the review plus one.

• VRatio: the ratio of VBDsum and Vsum (V BDsum
V sum )

After all reviews are separated, the contextual information can be extracted with two
approaches: the word-based and the topic-based approaches.

Word-Based Context Extraction

The word-based approach extracts contexts as those words that occur more in the context-rich
reviews than in context-free reviews, The identification process is explained by the following
steps:

1. For each review yi, identify the set of nouns Ni in that review.

2. For each noun nk, compute its weight frequencies wr(nk) in the context-rich reviews
Y r, and w f (nk) in the context-free reviews Y f , as follows:

wr(nk) =
|yi : yi ∈ Y r and nk ∈ Ni|

|yi : yi ∈ Y r|
, (3.2.1)
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and,

w f (nk) =
|yi : yi ∈ Y f and nk ∈ Ni|

|yi : yi ∈ Y f |
. (3.2.2)

The weight frequency wr(nk) is computed as the ratio of the number of all context-rich
reviews that contain nk, as compared to all context-rich reviews. Similarly, w f (nk) is
computed as the ratio of those context-free reviews that contain nk, as compared to all
context-free reviews.

3. Remove all nouns that have lower overall frequency than α (which is usually set as
0.005).

4. For each noun nk, compute the ratio of its weighted frequencies on context-rich and
context-less reviews: ratio(nk) =

wr(nk)
w f (nk)

.

5. Filter out all nouns nk with ratio(nk)< 1.

The remaining nouns after the identification process are then considered as context words.

Topic-Based Context Extraction

The topic-based approach extracts contexts as the topics that have higher probabilities in the
context-rich reviews than in context-free reviews. This methods applies the latent dirichlet
allocation (LDA) [15] to identify such contextual topics by the following steps:

1. Build the LDA model on the set of context-rich reviews Y r.

2. Apply the learned LDA model on all reviews to obtain the topic distribution Ti for each
review yi.

3. Similar to the word-based context extraction approach, for each topic tk, compute its
weight frequencies wr(tk) in the context-rich reviews Y r, and w f (tk) in the context-free
reviews Y f , as follows:

wr(tk) =
|yi : yi ∈ Y r and tk ∈ Ti|

|yi : yi ∈ Y r|
, (3.2.3)

and,

w f (tk) =
|yi : yi ∈ Y f and tk ∈ Ti|

|yi : yi ∈ Y f |
. (3.2.4)
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4. Remove all topics that have lower overall frequency than α (which is usually set as
0.005).

5. For each topic tk, compute the ratio of its weighted frequencies on context-rich and
context-less reviews: ratio(tk) =

wr(tk)
w f (tk)

.

6. Filter out all topics tk with ratio(tk)< 1.

After the process of topic identification, the remaining topics are considered as the
contextual topics to represent contexts extracted from reviews.

3.2.2 CARL

The context-aware user-item representation learning model for rating prediction (CARL)
[101] models the user and item representations from reviews with word-level attention, which
can be considered as the implicit influences of contexts to the rating. Note that the full model
of CARL combined review-based feature learning with interaction-based feature learning
(which was derived from latent factor model) for predicting ratings. This section, however,
only focuses on the modeling the contribution of words, as they represent the influences of
contexts.

The model architecture of review-based feature learning of CARL is presented in Figure
3.3. Similar to DeepCoNN and NARRE, this model comprises of two parallel neural networks
for constructing the user and item presentations from reviews. Following DeepCoNN, CARL
concatenates all reviews written by user ui to create a user document, and maps their words
to the corresponding word embeddings. This method then applies the convolution operation
on every M word embeddings of the user document to create the contextual feature vectors
cw1 . . .cwM . Next, the contextual feature vectors of both user document and item documents
are fed into the shared attention layer. Let cui

m and cv j
n denote the contextual feature vectors

of words at position m and n of user ui’s document and item v j’s document, respectively.
The attention score of each contextual feature vector is computed based on the pair-wise
relatedness between cui

m and cv j
n as:

R j,k = tanh(cui
mTcv j

n ), (3.2.5)

where R j,k is the relatedness between cui
m and cv j

n , tanh is the hypobolic tangent function, and
T ∈ R j× j is an attentive matrix, where j is the number of convolutional filter.

Such relatedness is used to compute attention score for each contextual feature vectors, and
the attention score is used as a weight to modify each contextual feature vector. Finally, the
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Figure 3.3: The architecture of review-based feature learning of CARL.

weighted contextual feature vectors are sent to the fully-connected layer to create the user and
item representations. The different contributions of the weighted contextual feature vectors
can be considered as the different influences of contexts to the user individual preferences
and item specific features, which consequently affect the corresponding rating of each review.

3.3 Rating Conversion Techniques

3.3.1 Linear Mapping

Similar to the linear normalization, the linear mapping technique [8] also uses the linear
function to map the ratings. The difference is that it maps original user rating’s range to the
target user rating’s range instead of the range [0, 1]. For example, user ua has rated (3, 3, 2, 4,
4) and user ub has rated (5, 4, 6, 8). It maps user ua’s ratings, range [2, 4], into range [4, 8] of
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user ub. Let rub,max and rub,min denote the maximum and minimum rating that the target user
ub has rated, respectively. The linear mapping function is defined as the following equation:

Linearua→ub(r) = (rua − rua,min) ·
rub,max − rub,min

rua,max − rua,min
+ rub,min. (3.3.1)

Using Eq. (3.3.1), the rating 2, 3 and 4 of user ua is linearly mapped to rating 4, 6 and 8 of
user ub, respectively.

Although the linear mapping approach is able to solve the some problems of normalization,
some are still occurred. One is that if there are users who have different rating patterns
but having the same maximum and minimum rating, the prediction results from the same
neighbors are still the same as occurred in the normalizations. Another problem is that if the
target user has rated items by only one rating value, all ratings from all neighbors will be
mapped to that value. This makes an invalid prediction since all items are received the same
predicted rating.

3.3.2 Lathia’s Rating Conversion function

The Lathia’s rating conversion technique [56] converts the ratings based on the ratings of the
two users on co-rated items. The co-rated items is the set of items which have been mutually
rated by both users. Consider a set Iua,ub of co-rated items rated by both user ub and ua. If
ub has rated for almost all items in Iua,ub greater than ratings given by ua, Lathia’s function
assumes that the ua’s original rating will be converted to greater value in ub’s aspect. The
converted rating is computed by a weighted mean between quantity of each group of ratings
in Iua,ub . Let lowerr, samer and higherr denote the groups of items that a target user ub has
rated less, equal and more than original rating r of user ua, respectively. The lowerr group
decreases the rating from r to (r− 1), samer unchanges r and higherr group increase the
rating to r+1. This is described by the following equation:

Lathiaua→ub(r) =
(r−1)|lowerr|+ r|samer|+(r+1)|higherr|

|lowerr|+ |samer|+ |higherr|
. (3.3.2)

For example, suppose user ua gives rating ‘4’ to fourteen co-rated items, and user ub

rates less than ‘4’ on five of them, equal to ‘4’ on three of them, and greater than ‘4’ on the
remaining six of them. With Eq. (3.3.2), Lathia’s function converts rating ‘4’ of user ua to
‘4.07’ of user ub. As for the rating that has no record, the transposed rating remains the same
as the original one.



40 Related Work

3.3.3 Warat’s Rating Conversion Function

Since most systems suffer from the sparsity problem, applying Lathia’s function on very
limited ratings on co-rated items would be quite challenging. Moreover, the converted ratings
by Lathia’s function are only converted to the range [-1, 1] of the original ratings. Even user
ua has rated only ‘3’ and user ub has rated on ‘5’ on all items, the rating ‘3’ of ua will be
converted to ‘4’ of user ub (not ‘5’). This problem is referred to as rating shifting problem.

Warat et. al [18] proposed a conversion method named Warat’s transpose function to
overcome the problems of insufficient co-rated items and the rating shifting. It was designed
for single rating conversion which converts the original rating to be an average rating of
the target user. The Warat’s function consists of two components: the original value and
the adjusting term. Original value is the rating to be converted and the adjusting term is an
average of difference between the original rating and the related target ratings (ratings of
target user on items corresponding to the original rating). Due to sparsity of data, there is a
chance that there is no actual related target ratings. In that case the pseudo ratings derived
from matrix factorization [50] are used instead.

The Warat’s function controls the adjusting term with the reducing term which are
confident of generated pseudo ratings and distribution of ratings as shown by Eq. (3.3.3).
The less error and less deviation of the considered rating lead to more suitable converted
ratings.

Wua→ub(r) = r+
∑v j∈βua,r(rb, j−r)

|βua,r|
·Distub,ua ·Con fub. (3.3.3)

We show how the Warat’s method work in three cases. For the first case, if user ua and
uc shared the same set of items with ratings (2, 2, 2) and (4, 4, 4), respectively. Since their
ratings contain no distribution, if the pseudo ratings from ub have no error, ‘2’ of ua will
be converted exactly to ‘4’ of ub (i.e. the adjusting term is ‘+2’). On second case, there
exist another user ud who rated the same set of items with distributed ratings (3, 4, 5), no
error. Although the average rating is ‘4’, the converted rating from ua is only ‘3.1’ since the
distribution term reduced the adjusting term from ‘+2’ to ‘+1.1’. The final case, if there is an
error on ud’s derived pseudo ratings with confident of 0.8, the adjusting term is reduced to
‘0.6’ and the converted rating from ua is ‘2.6’.



Chapter 4

Unsupervised Context Extraction via
Region Embeddings for Context-Aware
Recommendations

4.1 Introduction

Recommender systems (RS) were devised to provide personalized recommendations about
specific items to individual users. The most common approach in RS is the collaborative
filtering-based (CF-based) approach, which exploits the user past preferences about items,
such as their ratings, to create a predictive model for their future rating of unseen items.
In addition to using rating data, context-aware recommenders offer more effective recom-
mendations by taking into account contextual information (or simply “context”). Context
such as location, time or weather can have a major influence on users’ decisions when they
are choosing items. For example, if a user is seeking a hotel for a summer vacation, the
recommendation engine should suggest hotels in a beach area, rather than in mountainside
ski resorts.

By incorporating contexts, many context-aware methods have been able to achieve im-
proved prediction accuracy, when compared with standard CF-based approache [5, 7, 11, 88].
However, as previously mentioned in Chapter 2.2.4, two significant challenges remain for
context-aware methods. First, obtaining contexts is not a trivial task because they are rarely
provided directly by users. Many context-aware datasets collect contextual information by
predefining a list of contextual variables and possible corresponding values, and asking users
to select appropriate values for the contextual variables at the time they rate the items. To
deliver the best possible predictive performance, this approach requires the expensive process
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of carefully predefining optimal values for the contextual variables, each of which tends to be
associated with relatively few recommendation domains. Moreover, incorporating too many
contexts tends to increase the dimensionality of the data, thereby triggering a sparsity issue.
After obtaining the contexts, the second challenge is to identify and utilize only the contexts
that are relevant to a specific recommendation task. Several methods define a relevant context
as one that has a significant influence on the distribution of ratings [7, 61, 70]. In practice,
most context-aware methods [61, 70] identify the relevance of contexts by applying statistical
tests such as the paired t test to each contextual variable. However, this approach is only
applicable when using predefined types of context that have static values and are of fixed
size.

In recent years, many works tried to incorporate contexts from the other sources of data,
and one of the most popular sources is the user-generated reviews. In reviews, users can
express opinions about their experience and level of satisfaction with the items concerned,
which can, therefore, be a rich source of context data [21]. However, the context in reviews
has to be recognized as such before it can be used. Two common approaches to this task
are supervised and unsupervised approaches. The supervised approach [20, 38, 58] utilizes
techniques such as text mining to identify and extract words in a review that match a
predefined list of context values. Determining the optimal values of contexts for a specific
domain then becomes the main challenge in this approach because it can significantly affect
the quality of the recommendations. To address this issue, some approaches have applied
unsupervised techniques to extract context from reviews [13, 75, 101]. Moreover, contexts
extracted from most such methods have been restricted to a single word format, e.g., “family”
or “breakfast”. In fact, the precise meaning of a context might require more than one word
for its expression, such as “family trip” or “continental breakfast.”

In this chapter, the context-aware region embedding (CARE), a novel unsupervised
method for defining, extracting and representing context from review data is proposed [91].
A context is defined as any word in a region of text that has an influence on the distribution of
ratings. Such words can be in unigram, n-gram or even skip-gram format (nonadjacent words),
provided that they reside within the same region of text. By applying region embedding
with the local context unit proposed by [77], the positions of context words in a text region
can be emphasized as those that contribute the highest variance in ratings. As a result,
contexts can be represented by the region embeddings that capture their influence on the
rating distributions of a review data.

The experiments and extensive discussion regarding the extracted contexts were conducted.
These include the analysis of the contexts extracted from various recommendation domains,
the influence of the extracted contexts to the rating distributions, the investigation on quality
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Figure 4.1: A workflow architecture of CARE.

of the region embeddings, the analysis on the merits of defining and extracting contexts as
contextual regions with a review sentiment classification, and finally, the discussion about
the applications suitable for CARE.

The main contributions of this CARE can be summarized as follow:

• CARE is capable of automatically extracting relevant contexts from review datasets in
any recommendation domain, providing that review texts and ratings are available.

• A relevant context extracted by CARE is defined not only by a single word format,
but also by including its adjacent and/or nonadjacent words in the region of text that
influence the distributions of ratings.

• The extracted contexts effectively capture the polarities of reviews, which is helpful
for explaining the reviews’ ratings.

4.2 Model Overview

In this section, an overview of the proposed context extraction method, i.e. CARE, is
presented. The workflow of CARE is illustrated in Figure 4.1. First, the candidates for
context words are identified. After that, all text regions containing those candidate context
words are extracted, and their associated rating distributions are generated. Those text regions
and their rating distributions are then fed into a neural network to learn the word embeddings
and local context units, which are then used to compute the region embeddings.
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4.3 Identifying Candidate Context Words

CARE adopt the definition used in Odić et al. [70], which defines relevant contexts as those
that contribute to explaining the variance in ratings. By applying this definition to review
data, a context can be considered as any word in the reviews that influences the distribution
of ratings. For example, Fig. 4.2 presents a word-rating co-occurrence matrix, which gives
the word frequency for each rating value. From this figure, words such as “clean” or “good”
have frequent mentions in reviews with more positive rating scores such as “4” and “5”,
whereas “dirty” or “not” were mentioned more frequently for more negative scores such
as “1” or “2”. The implication is that these words influence the distribution of ratings, and
could therefore be considered as “candidates” for contexts. To measure the significance of
the influence of a word on the distribution of ratings, CARE first compute its variance on
such a distribution, as also shown by the example in Fig. 4.2. After computing variances for
every word in the review corpus, only those words having variances above the predefined
minimum-variance threshold minvar are selected as candidate context words and stored in the
candidate list Cand. Note that, in addition to direct context words (e.g., “clean”), Cand also
includes opinion or sentiment words such as “good” or “not” if they also have significant
influence on the distributions of ratings.
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4.4 Extracting Contextual Regions

Depending solely on the candidate context words might not be sufficient to cover the variety
of influences of contexts on the distributions of review ratings. This is because some words
that often accompany candidate context words (neighboring words) might significantly alter
the ways they influence the distributions of ratings. For example, as shown in Fig. 4.2, the
word “service” has a mixed frequencies of rating scores “2”, “3”, and “4”, indicating a neutral
distribution toward middle-rank ratings. However, when considering its co-occurrence with
the word “good” (i.e., “good service”), the rating distribution could change from neutral to
strongly positive, whereas “worst service” could result in a strongly negative distribution,
as shown in Fig. 4.3. This means that neighboring words might be opinion, sentiment,
or other words that could change the semantic meaning of a candidate context word, and
therefore influence their rating distributions. This emphasizes the importance of considering
neighboring words in addition to the candidate context words if the modeling of the influence
of contexts is to be effective.

Consider a candidate context word cn ∈Cand. The neighboring words of cn are defined as
any word wt that occupies the same “text region” of cn. More specifically, considering wt ∈
region(cn,d), where d is the window size for a region of length 2×d +1. The region(cn,d)
is called a contextual region of cn. Note that wt can be in any position within region(cn,d),
not necessarily directly adjacent to cn. This takes account of the different writing styles users
may adopt for the same meaning in writing reviews. For example, “view of a city at night”
and “night view of a city” are simply alternative expressions of the same context.

A relevant context in this work is, therefore, formally define as:

“any word in a region of text that has a significant influence on the distributions
of ratings. Such context can be in a format of a single word, adjacent words, or
even nonadjacent words, provided they occupy the same text region.”

To identify the positions of these words, their associated contextual regions are firstly
needed to be extracted. Figure 4.4, for example, shows the contextual regions of size 5
extracted from one review. Given that this review contains four candidate context words, four
contextual regions are extracted.

Let Region denotes a set of all contextual regions extracted from reviews and let a
contextual region at index m in Region is denoted by region(cn,d)m. The positions of words
to be constructed as context can then be identified by the following steps.

1. Generate all possible combinations of words wt ∈ region(cn,d)m of size θ (where
θ ≤ 2×d +1) that include cn, denoted by δ (cn,wt)m.
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Figure 4.5: Example process for identifying context words in a contextual region.

2. Count the number of times each combination in δ (cn,wt)m co-occurs in the same
region with each rating value on the entire training data and compute the variance from
the frequency distribution of ratings.

3. Choose the combination that contributes the highest variance in rating distribution as
context for region(cn,d)m. If no combination has a variance above minvar, cn alone is
considered as context for that region. Store the rating distribution of this combination,
dist(cn,d)m ∈ R|Rating| in the list of rating distributions Dist for index m.

Figure 4.5 illustrates the procedure for identifying the highest contributed variance combi-
nation of size θ = 2 for the region “bed is clean and cozy.”. Since, (“clean”, “cozy”) yields
the highest variance, it is chosen to represent context for this region.
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4.5 Learning the Region Embeddings

From the previous step, the contextual regions Region and their associated rating distributions
Dist were successfully extracted from the review data. They are now utilized for training
the predictive model so that, given a contextual region region(cn,d)m as an input, it predicts
the rating distribution dist(cn,d)m as an output. To achieve this, a model with an ability
to identify those words in region(cn,d)m that contribute to dist(cn,d)m is required. CARE
therefore adopt the model used for region embedding with local context proposed by Qiao
et al. [77] as the training model. This technique learns two representations for each word,
namely a word embedding of itself and a local context unit, which is a weight matrix for
its interaction with its neighboring words. CARE aims to modifiy the local context unit to
emphasize the positions of the words that have influence on the rating distributions and can
therefore be considered as contexts for each contextual region.

The derived region embedding method for context extraction in CARE is shown in Fig.
4.6. This technique is a simple feedforward neural network model that takes a text region
region(cn,d)m as an input and produces a rating distribution vector dist(cn,d)m as an output.
Every word wt ∈Vocab is mapped to its word embedding, whereas only a candidate context
word cn ∈Cand is mapped to its local context unit, which is used to produce the projected
word embeddings. Finally, a region embedding, which is a representation of a text region, is
generated from the projected word embeddings for use in computing a rating distribution.

Formally, every word wt has an associated word embedding ewt , which is stored in the
column of the embedding matrix E ∈ Rh×|Vocab|, where h is the embedding size and Vocab
is the vocabulary of all words in the training data. In addition to the word embeddings, a
candidate context word cn also has an associated local-context unit matrix Kcn ∈Rh×(2×d+1),
which is stored in the tensor C ∈ Rh×(2×d+1)×|Cand|.

Given a contextual region region(cn,d)m as an input, the projected word embedding pwt

of word wt at index position l of region(cn,d)m is calculated by

pwt = Kcn,l ⊙ ewt . (4.5.1)

A word embedding ewt of word wt at position l of region(cn,d)m is projected into the re-
gion of the candidate context word cn by element-wise multiplication with the corresponding
column l of Kcn . This indicates that ewt can alter the semantic meaning of cn. For example,
wt = “very” in the region of cn = “clean” yields a positive meaning for the region, whereas
wt = “not” would result in a negative meaning.
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After obtaining all projected word embeddings, the region embedding γγγcn,m ∈ Rh of a
contextual region region(cn,d)m is computed by

γγγcn,m = max([pwt−d . . . pcn . . . pwt+d ]), (4.5.2)

where max is a max pooling operation over all projected word embeddings, which is applied
to extract the most predictive features in the region [77].

This indicates that the meaning of region(cn,d)m is now defined semantically by the
meaning of neighboring words wt with respect to the candidate context word cn. For example,
the two contextual regions “very clean room” and “not clean room” would give totally
different region embeddings for the same cn = “clean.”
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Finally, γγγcn,m is fed into the fully connected layer to calculate the rating distribution
dist(cn,d)m. Its objective is to predict a vector of rating distributions and a multivariate
linear-regression model is adopt for the prediction, as expressed by

dist(cn,d)m ≈ W f ·γγγcn,m +b f . (4.5.3)

Here, W f ∈ R|Rating|×h and b f ∈ R|Rating| are the weight matrix and bias vector in the
fully connected layer, respectively, where |Rating| is the size of the categorical rating scores
(e.g., |Rating| = 5 for a five-point rating score). The L2 was chosen as the loss function,
following Qiao et al. [77], and Adam [27] as the optimizer. No regularization was applied.

After all model parameters are learned, each contextual region region(cn,d)m can now
be mapped with its region embedding representation γγγcn,m. Such a region embedding is
trained to capture the global influence, i.e., the influence on the rating distribution of the
entire review dataset, of its associated contextual region. This means that if two region
embeddings are similar in the embedding space, they will be expected to contribute similar
rating distributions.

4.6 Experiment Settings

The review datasets from multiple recommendation domains were used in the experiments.
The first was from TripAdvisor1, which contains hotel review data. The second dataset was
from Yelp 2, which also contains hotel and restaurant reviews. Finally, six categories of
Amazon 5-core datasets3 dataset [69], including Fashion, Grocery & Food, Software, Toys &
Games, Digital Music, and Movies & TV were incorporated.

First, the review text from all dataset were preprocessed by the following steps:

1. Tokenize the review text and convert all words to lower case.

2. Remove all punctuation marks and infrequently used words (i.e., those of appearance
frequency below 0.01% in all reviews)

3. Remove all stopwords listed by NLTK4, except for those indicating sentiment meanings
such as “very” or “not.”

1http://www.cs.cmu.edu/ jiweil/html/hotel-review.html
2https://www.yelp.com/dataset
3https://nijianmo.github.io/amazon/index.html
4https://www.nltk.org/nltk_data/
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Table 4.1: Statistics of review datasets from multiple recommendation domains

Reviews Vocab. Size Word/Reviews Candidates

TripAdvisor 873,214 22,353 82.984 226

Yelp 4,735,962 18,069 62.383 199

A. Fashion 2,917 1,438 15.404 187

A. Grocery & Food 1,065,735 8,351 22.766 84

A. Software 12,405 35,103 104.193 257

A. Toys & Games 1,702,027 9,247 24.451 110

A. Digital Music 144,969 10,442 20.307 134

A. Movies & TV 3,166,002 20,949 47.472 129

After the preprocessing, reviews of less than two words were marked as uninformative
and were therefore discarded. The statistics of the preprocessed datasets are presented in
Table 4.1.

To extract a list of candidate context words, a word-rating co-occurrence matrix is firstly
created for each dataset. Here, the main problem is that many datasets contain biases in
the proportion of ratings provided by users. For example, in the TripAdvisor dataset, more
than 80% of all reviews were rated as “4” or “5”, meaning that most users preferred to
provide high rating scores to most hotels. This causes almost every word in the corpus to
be distributed toward high rating scores, as shown by the example in Fig. 4.7 (a). This is
in contrast to the fact that reviews containing words such as “rude” should be rated with a
low rating score, rather than a high rating score. To properly analyze the actual influence of
a word on the rating distribution, a data standardization technique is therefore applied, as
expressed by

xnew
t,r =

xt,r −µr

σr
, (4.6.1)

where xt,r is the original frequency of word wt given for rating r, µr is the average of the
frequencies of all words given for rating r, and σr is the standard deviation of the frequencies
of all words given for rating r. The rating distribution after applying this standardization is
shown in Fig. 4.7 (b). The frequencies of ratings with the word “rude” are now distributed
toward low rating scores, which is appropriate to its negative meaning.

After standardization, the variance of the rating distribution of each word was computed,
and the words with variances exceeding minvar = 1 were selected as a set of candidate context
words for each dataset. The numbers of such words extracted from each dataset and the
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Figure 4.7: Rating distributions for example words: (a) before standardization, (b) after
standardization.

average number for each review are given in Table .... To extract the contextual regions for
each candidate context word, the region size was set to five and a padding of length d =
2 was applied to the head and tail of every review (a candidate context word might be the
first or last word in a review). Because some candidate context words might be associated
with millions of contextual regions, using all of them for training could cause scalability
problems. In fact, this is unnecessary because using only a sampled portion can cover all
unique patterns in the rating distributions. A criterion for sampling a subset of the contextual
regions for a candidate context word cn was therefore required. Specifically, let Regioncn

denote the set of all contextual regions of cn. If |Regioncn|> 100k, only a 10% subset was
used for training. If 10k ≤ |Regioncn| ≤ 100k, 10k were used. If |Regioncn| < 10k, all were
used. To assign a rating distribution to each contextual region the size of word combination
was set to θ = 2, and those with variances exceeding minvar = 1 were selected.

In the training process, the word embeddings E and local context units K were initialized
randomly in terms of a uniform distribution with values between −1 and +1. The embedding
size h for all datasets was set to 300. The learning rate was optimized from {0.0001, 0.001},
and the batch size was selected from {128, 256, 512, 1024, 2048}, using a validation set.

4.7 Results and Discussion

In this section, the list of contexts extracted from various recommendation domains is first
analyzed. Next are the visualization and discussion about the influences of the extracted
contexts on the rating distributions. Moreover, an analysis of the quality of the region embed-
dings learned by CARE is conducted to investigate its suitability for the rating prediction
task. Furthermore, the merits of defining and extracting contexts as contextual regions are
analyzed in terms of an illustrative example and a sentiment classification task. Finally, a
discussion on the applications suitable for CARE is conducted in detail.
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Table 4.2: Examples of candidate context words extracted from the TripAdvisor and Yelp
datasets.

TripAdvisor Yelp

area friendly area helpful

bathroom helpful atmosphere manager

breakfast manager business professional

central night clean reasonable

clean noisy delicious restaurant

comfortable restaurant dinner rude

convenient rude family service

dirty service friendly staff

downtown staff happy tasty

Table 4.3: Examples of candidate context words extracted from six categories within the
Amazon Product dataset.

Fashion Grocery & Food Software Toys & Games Digital Music Movies & TV

comfy awful buggy birthday album acting

dancing best computer broken beautiful action

fit coffee crashes christmas catchy boring

lightweight delicious digital cute classic cast

looking disappointed features daughter collection character

training flavor installation fun download dvd

tightly fresh interface game instrument enjoy

great good very nice love not but however even all

4.7.1 Context Analysis

This subsection aims to show that by defining contexts in reviews as words that influence the
distribution of ratings, CARE has the flexibility to extract contexts from review data across
a variety of recommendation domains. To achieve this, the list of candidate context words
extracted from multiple review datasets across different domains are analyzed, including
TripAdvisor and Yelp (hotel and restuarant), and Amazon Product (Fashion, Grocery & Food,
Software, Toys & Games, Digital Music, and Movies & TV). Examples of candidate context
words extracted for each dataset are given in Tables 4.2 and 4.3.

First, the list of candidate context words extracted from TripAdvisor and Yelp, which
involve similar recommendation domains are analyzed. As highlighted in Table 4.2, CARE
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was able to discover mutual words across these two datasets, such as “area”, “clean” and
“friendly”, which indicate the user preferences toward the hotel features. This demonstrates
that CARE has a generalized ability to extract a similar set of contexts from different datasets
in similar domains. Table 4.3 gives a list of candidate context words extracted across six
categories in the Amazon Product dataset. These results indicate that CARE is capable
of extracting exclusive words that are strongly related to each domain. Examples include
“fit” for fashion, “delicious” for food, “catchy” for music, and “acting” for movies. This
demonstrated that CARE would have the flexibility to extract contexts from many kinds of
review-rating datasets, independent of the dataset’s domain. Moreover, in addition to these
exclusive words from particular domains, CARE was able to extract sentiment and polarity
words such as “great”, or “not” from across all the domains. This supports the assumption
that these words also influence the distribution of ratings and should therefore accompany
the context words used in making rating predictions.

4.7.2 Influences of Candidate Context Words and Their Neighboring
Words

As discussed in Section 4.4, their neighboring words might alter the influence of candidate
context words on their rating distributions. To analyze such influences, I follow [77] by
applying the L2-norm to each column of the local context unit. This enables the influence
levels of the candidate context and their neighboring words to be emphasized, as shown
in Figure 4.8. For example, words that follow “staff” and “very” have more influence on
rating distributions than the words that come before them. This corresponds to the following
words often being “good,” “helpful” or “friendly” for “staff,” and “clean,” “convenient” or
“comfortable” for “very.” On the other hand, words such as “breakfast” are less influenced by
neighboring words, meaning that the word itself sufficiently describes the rating distributions
without any help from neighboring words. Moreover, the local context units can differentiate
the influence of positive words such as “good” or “excellent.” Although the rating distribu-
tions of “good” are influenced by its neighboring words, the word “excellent” is not. This
is because the word “excellent” itself indicates the strongest positive meaning, whereas the
semantic meaning of “good” can be altered if it follows words such as “not” or “very.”

For these reasons, we see that the local context units can capture the influences of the
candidate context words efficiently, together with their neighboring words, on the rating
distributions. This further helps to produce high-quality region embeddings, which are
capable of semantically representing the distribution of ratings for the individual contextual
regions.
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l2 l1 “staff” r1 r2
14.33 15.63 15.84 25.59 24.19

19.30 21.55 12.39 34.13 20.82

20.70 24.94 19.59 14.01 12.97

9.27 11.22 20.34 12.74 11.20

14.16 17.26 16.16 14.40 10.98

6.85 7.95 19.42 7.77 6.82

l2 l1 “very” r1 r2

l2 l1 “clean” r1 r2

l2 l1 “breakfast” r1 r2

l2 l1 “good” r1 r2

l2 l1 “excellent” r1 r2

Figure 4.8: Visualization of the local context units for some chosen candidate context words.

4.7.3 Embedding Analysis

The previous subsection showed that CARE is able to extract words representing contexts
from multiple recommendation domains. This subsection aims to show that the region
embeddings, which are generated from context words and their neighboring words, accurately
capture the rating distributions of their corresponding contextual regions and are therefore
useful for rating prediction. The assumption is that contextual regions that contribute similar
rating distributions should generate region embeddings that are close to each other in the
embedding space.

To investigate this assumption, I first define a method for categorizing the distributions
of ratings into classes. The idea is to assign a class to each rating distribution based on
its direction (positive or negative). For example, the frequencies of ratings in the distribu-
tion dist(cn,d)1 = [8, 25, 34, 56, 95] are positively distributed toward high rating scores,
whereas those of dist(cn,d)2 = [103, 75, 41, 18, 3] are negatively distributed toward low
rating scores. The dist(cn,d)1 would then be categorized as belonging to a positive class,
whereas dist(cn,d)2 should belong to a negative class. To implement this categorization,
Pearson correlation coefficient was chosen to compute a correlation score between the rating
distribution and an ordinal rating vector, as expressed by

ρdist(cn,d)m,scoreR =
cov(dist(cn,d)m,scoreR)

σdist(cn,d)mσscoreR

, (4.7.1)
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Table 4.4: Criteria for categorizing a rating distribution based on correlation score.

Correlation Class

ρ ≥ 0.9 Strong Positive

0.4 ≤ ρ < 0.9 Positive

-0.4 < ρ < 0.4 Neutral

-0.9 < ρ ≤ 0.4 Negative

ρ ≤ -0.9 Strong Negative

where cov denotes the covariance function , σ is a standard deviation, and scoreR ∈Z|Rating| is
an ordinal rating score vector (sorted in ascending order) for which |scoreR|= |dist(cn,d)m|.
For example, scoreR = [1,2,3,4,5] could be used for rating data via a five-point rating score.

After computing the correlation score for each dist(cn,d)m using scoreR, we can then
assign it to a class by using the categorization criteria given in Table 4.4, where the rating
distributions were categorized into five classes: Strong Positive, Positive, Neutral, Negative
and Strong Negative.

To visualize the subtle differences between the region embeddings, the contextual regions
from the TripAdvisor and Amazon Movies & TV datasets, were sampled and categorized
based on their corresponding rating distributions and generating their region embeddings.
Figures 4.9 and 4.10 were obtained by applying t-distributed stochastic neighbor embedding
(t-SNE) [95] to the sampled region embeddings from each dataset, where the color of each
point denotes the class of its associated rating distribution. In Figure 4.9, for each dataset,
50 contextual regions from each class (250 in total) were sampled and their corresponding
region embeddings were plotted. Note that the group of region embeddings representing
positive and negative classes is fairly distinguishable. This supports the assumption that
contextual regions with similar rating distributions are mapped close to each other in the
embedding space.

The region embeddings can be analyzed in more detail by visualizing those that are
associated with the contextual regions of each candidate context word. As shown in Figure
4.10, two candidate context words, “location” from TripAdvisor and “acting” from Amazon
Movies & TV were selected; 10 contextual regions that contained them from each class
(50 in total) were sampled and their corresponding region embeddings were plotted. Note
that words that contribute positive distributions such as “great”, “good”, or “excellent” are
grouped close to each other and are visually separated from negatively distributed words
such as “not”, “bad”, or “but”. This again supports the assumption that neighboring words in
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(a) TripAdvisor

(b) Amazon Movies & TV

Strong Positive

Strong Negative
Negative

Positive
Neutral

Strong Positive

Strong Negative
Negative

Positive
Neutral

Figure 4.9: Projection of sampled region embeddings for the TripAdvisor and Amazon
Movies & TV datasets.

the same text region as a candidate context word influence the distribution of ratings, and
should be considered when extracting contextual information from reviews.

4.7.4 Contexts as Regions

The previous subsection demonstrated that the region embedding representations of contex-
tual regions were effective in capturing their associated rating distributions. In this subsection
further analyzes the merits of defining and extracting a context as a contextual region. First,
we show that the rating distributions captured by contextual regions explain the polarity of a
review more effectively than those captured by single words. I investigate this assumption by
utilizing the embeddings of single candidate context words and the corresponding contextual
regions for review sentiment classification.
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Strong Positive

Strong Negative
Negative

Positive
Neutral

(a) Word “location”

(b) Word “acting”

Strong Positive

Strong Negative
Negative

Positive
Neutral

Figure 4.10: Projection of sampled region embeddings associated with two candidate context
words.

Review Polarity

Figure 5.8 (a) in Section 5.7.3 showed that utilizing a contextual region of size = 1 (i.e.,
considering only candidate context words not influenced by neighboring words) produced
the least accurate rating prediction among those for a range of region sizes. This indicated
that defining a context as a single word is less effective in modeling a review’s rating than
defining it as a text region. To support this finding, the goal here is to visualize the difference
in influence on a review’s polarity between considering a context as a single word and
considering it as a text region. To demonstrate this, CARE was applied to an example review
from the TripAdvisor dataset for the two types of context, as shown in Figure 4.11. Figure
4.11 (a) shows the contexts extracted as single candidate context words, whereas Fig. 4.11
(b) shows them extracted as contextual regions. The highlight colors reflect the class of the
associated rating distribution for each context, as defined in Section 4.7.3.
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Actual rating: 4 Predicted rating: 2.8

Actual rating: 4 Predicted rating: 4.2

We chose the San Carlos based on reviews in T.A and were not disappointed. 
Location was great, and staff is friendly and helpful. Close enough for an 
easy walk to Times Square but far from crowd and noise. The guest rooms 
are quite large, though the bath is smaller, but we would recommend to 
friends and stay again on our next NYC visit.

We chose the San Carlos based on reviews in T.A and were not disappointed. 
Location was great, and staff is friendly and helpful. Close enough for an 
easy walk to Times Square but far from crowd and noise. The guest rooms 
are quite large, though the bath is smaller, but we would recommend to 
friends and stay again on our next NYC visit.

(a) Contexts Extracted as Single Words

(b) Contexts Extracted as Contextual Regions

Strong PositiveStrong Negative Negative PositiveNeutral

Figure 4.11: Example of a review with extracted contexts highlighted to show their rating
distribution classes.

Consider first the contexts extracted as single words in Fig. 4.11 (a). Note that many
extracted words in this review such as “not”, “disappointed’, “crowd”, or “noise” were
classified as contexts with negative rating distributions. Utilizing those words individually
could negatively affect the polarity of the review, and consequently result in a low rating
prediction score, which does not accord with the actual rating score. This implies that
extracting contexts as single words might not adequately explain the polarity of a review.
This can happen because some single words fail to capture the actual rating distribution
patterns of contexts. In fact, their combination with some neighboring words could radically
alter their rating distribution pattern and lead to a totally different interpretation for a rating
prediction score. For example, “not disappointed” is classified as a context with a positive
rating distribution even though both “not” and “disappointed” are associated with negative
rating distributions.

By extracting contexts as contextual regions, a more appropriate rating distribution class
to each context is assigned. As illustrated in Figure 4.11 (b), some contextual regions such
as “not disappointed”, “close enough for an easy walk”, and “but far from crowd and noise”
are no longer assigned with negative rating distributions. Many positive rating distributions
could positively affect the polarity of this review and produce a high rating score that is closer
to the actual rating score. From this example, we can hypothesize that extracting contexts
as contextual regions is more effective in explaining the polarity of a review than extracting
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Table 4.5: Classification results for the single word-context and the contextual-region models.

Dataset Context
Classification

Accuracy F1 Score

Amazon Software
Single 0.71861 0.82371

Region 0.74361 0.83584

TripAdvisor
Single 0.79399 0.85615

Region 0.83858 0.89189

Amazon Movies & TV
Single 0.81664 0.88300

Region 0.84097 0.89842

them as single words. We can investigate this hypothesis by evaluating the comparative
performance using single context words against that using contextual regions for the review
sentiment classification task.

Review Sentiment Classification

Here, the goal is to demonstrate that, in addition to their use in making rating predictions, the
use of contextual regions is more effective in modeling the polarity of a review than the use
of single context words. This demonstration involves the sentiment classification of reviews.

For comparison, I set up two models for review classification, namely a “single” and
a “region” model. For the single model, I utilized the word embeddings of all candidate
context words learned by CARE for region size = 1. The word embeddings of all candidate
context words in each review was then averaged to create an embedding representation for
that review. For the region model, the region embeddings for all corresponding contextual
regions were computed, using word embeddings and local context units learned by CARE
for region size = 5. A representation of each review was then created by averaging all region
embeddings of all contextual regions in that review.

To evaluate the classification accuracy of these two models, a logistic regression was
chosen as a binary classifier of the review representations for both the single and region
models. All reviews from all three datasets (Amazon Software, TripAdvisor, and Amazon
Movies & TV) having rating scores of more than 3 were labelled as “positive” reviews, and
those with scores less than or equal to 3 were labelle as “negative” reviews. The classification
results for the single and region models on all datasets are given in Table 4.5. These results
show that the region model achieves a higher classification accuracy and F1 score for all
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three datasets compared with the single model. This supports the hypothesis that considering
contexts as contextual regions is helpful in explaining the polarity of a review.

4.7.5 Applications for CARE

In this chapter, it has been shown that the main goal of CARE is to extract contextual
information from reviews. However, the information extracted by CARE is not necessary
limited only to contexts. By inspecting the list of extracted words, CARE is also able to
extract the following valuable review elements:

• Feature opinions: the words relating to the features of an item, which are unique to
each specific review domain. For example, “bathroom” or “wifi” are extracted from
hotel reviews, “lightweight” or “training” from fashion item reviews, “fresh” or “flavor”
from food reviews, and “action” or “horror” from movie reviews.

• Aspect opinions: some of the feature opinions extracted by CARE can be grouped
further into the certain aspects or criteria of an item. For example, the words “central”,
or “downtown” are related to the location aspect of a hotel, whereas “friendly” or “rude”
are related to the service aspect. These aspects help in emphasizing the highlighted
characteristics of each item, as compared with the other items in the same system.

• Sentiment words: by extracting words having significant influences on the rating
distributions, a portion of them might capture a user sentiment orientation (i.e. positive,
negative, or neutral) toward items. The example of positive sentiment words include
“good”, “great”, “nice” or “love”, whereas negative sentiment words include “not”,
“never”, “but”, or “however”, and the neutral sentiment words might include “ok” or
“quite”.

• Frequent and useful words: with a merit of utilizing rating distributions as training
labels, the extracted words by CARE are not only frequent, but also useful. First, in
order to identity the words having significant influences on the rating distributions,
such words need to be written in reviews with significant number of times. Therefore,
applying CARE also indirectly remove the infrequent words from reviews. However,
not all frequent words are always useful for rating prediction task. For example, in
hotel recommendation, a word like “clean” should have more impact on a review’s
rating than a common word like “hotel”. Fortunately, the frequent words extracted by
CARE are emphasized on the ones having significant influences on rating distributions.
Since the frequencies of “clean” tend to be positively distributed toward high ratings,
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whereas the frequencies of “hotel” are neutralized on all ratings, only “clean” is then
extracted by CARE.

With these review elements being extracted, CARE can also be applied to a certain kind
of applications, in addition to a context-aware recommendation. The following are two
examples of the suitable applications for CARE.

• Content-based recommendation: the simplest application that can make use of CARE
is a content-based recommendation. The main goal of a content-based recommendation
is to recommend items having similar features to those previously liked by the user.
One challenge of a content-based recommendation is that some items might lack of
explicit item features, which leads to a difficulty in making recommendations. With the
ability to extract feature opinions from reviews, CARE can easily build a user profile
from the extracted relevant item features from his/her previous reviews, and use it for
future recommendations. For example, if CARE can extract the word “action” with a
significant number of times from the user previous movie reviews, this would mean
that this user might have special concern on action movies. The system can then use
this as a guideline by focusing on movies related to action genre when making future
recommendation for this user.

• Multi-criteria recommendation: another recommender system application that could
be benefitted from CARE is a multi-criteria recommendation. In multi-criteria rec-
ommender system, users can provide ratings in multiple aspects of an item (such as
location or service of a hotel), which are utilized by the system to make more effec-
tive recommendation. However, the multi-criteria rating system is not very common
since most systems only allow the user to provide a single overall rating to an item.
Fortunately, the aspect opinions extracted by CARE might be helpful in representing
multi-criteria preferences from users, which can be a replacement of the actual multi-
criteria ratings. Recall that CARE can associate each extracted text region with its
corresponding rating distribution, the idea is that this rating distribution might be useful
for inferring the preference level of the user in each aspect of an item. For example,
suppose that the text regions containing “nice location” are associated with a highly
positive rating distribution. If a review of one hotel is written with “nice location”,
we can then inferred that the user who write this review implicitly assign high rating
score on the location aspect to this hotel. By analyzing a set of reviews written by each
user, we might be able to model the user preference profile for each aspect of an item.
Similarly, the item preference profile for each aspect of each item could be modeled
by analyzing a set of reviews provided to that item. The system can then suggest
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the items having similar profile in each aspect to the user as a recommendation (e.g.
recommending the hotel with nice location to the user who concerns about location
aspect).

The utilization of contextual information extracted by CARE for context-aware recom-
mender system application, on the other hand, will be presented in detail in the next chapter.

4.8 Conclusion

In this chapter, a novel unsupervised method for extracting relevant contexts from reviews,
namely CARE, is proposed. Unlike any previous context-aware methods, a relevant context of
CARE can be automatically extracted not only in single word format but also in combination
with those neighboring words from the same text region that influence the distributions of
ratings. This makes CARE applicable to a wide variety of recommendation domains and
suitable for extracting contexts from sets of reviews that may involve a variety of styles.
Experiments showed that the CARE was able to extract the meaningful list of contexts that
are relevant to specific recommendation domains. Furthermore, the extracted contexts are
represented with high-quality region embeddings, which effectively capture the polarity of
reviews, and which can be useful for explaining the reviews’ ratings.



Chapter 5

Context-Aware User and Item
Representations Based on Unsupervised
Context Extraction from Reviews

5.1 Introduction

User-generated reviews can supply valuable information to mitigate the rating sparsity prob-
lem that can occur in the standard collaborative filtering-based (CF-based) recommendation
approach, which utilizes rating data alone [21, 64, 97]. In particular, recent work has em-
ployed deep learning techniques and attention mechanisms to learn representations of users
and items from reviews and use them for rating prediction [19, 47, 86, 103].

However, as mentioned in Chapter 2.3.4, constructing a representation using those tech-
niques has two common limitations. First, words that are not related to a user preferences
or an item features are (but should not be) used in constructing the representations. Second,
to predict a rating for a review yi, j, the representations of ui and v j are not (but should
be) dynamically constructed by emphasizing the relevant information in the review, which
explains the reason behind its rating, rather than relying on information from other reviews.

Extracting and exploiting contexts from reviews could be the key to overcoming these
two limitations. Context words such as “friend” or “summer” are often related to a user
preferences and an item features, and are therefore appropriate for use in constructing
representations. Moreover, contexts help characterize the situation within which the rating
was being given, which is unique and specific for each review. This means that user and item
representations can be constructed dynamically by considering the contexts embedded in
each particular review.
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In Chapter 4, the CARE, an unsupervised method for defining and extracting contexts
from reviews is proposed [91]. A relevant context is defined not by a single word alone but
by the word plus those of its neighboring words that influence the distributions of ratings. A
region embedding technique [77] is derived to emphasize the words in a small text region for
consideration as a context, and represent it by region embedding. By not having to predefine
contexts, CARE can be used to extract relevant contexts from reviews in any recommendation
domain.

In this chapter, an extension of CARE which utilizes the extracted contexts for rating
prediction is proposed [91]. The extended model, namely attentional interaction model for
context-aware region embedding (CARE-AI), derives region embedding representations for
the extracted contexts that are output from CARE. These are then input to the proposed
rating prediction procedure, which contains two neural network modules for interaction and
attention. The interaction module first models the relevance of each context in a particular
review based on its past interaction with an individual user preferences and item features.
The attention module then generates the user and item representations based on different
relevance levels among contexts in each review. These two modules enable the model to
dynamically construct unique user and item representations for each specific review, rather
than have one static representation for all reviews, as found in most deep-learning-based
methods. Finally, the user and item representations are used to predict ratings by exploiting a
latent factor model [50].

The experiments on three well-known review datasets demonstrated that CARE-AI out-
performs existing state-of-the-art rating prediction methods that include both review-based
and context-aware recommendation techniques [19, 57, 75, 81, 101, 103]. In addition, the
performance of CARE in the various aspects, including the effectiveness of interaction and at-
tention modules, the parameter sensitivity, the impact of review quality, and the performances
on sparse data, are discussed in detail.

The main contributions of CARE-AI can be summarized as follows.

• The user and item representations of CARE-AI are dynamically constructed for each
particular review to effectively capture the contextual information embedded in that
review.

• The proposed interaction and attention modules help modeling the different relevance
levels among the contexts in a review to the individual user preferences and item
features.

• Finally, CARE-AI produced more accurate prediction than the state-of-the-art review-
based recommendation techniques on both normal and sparsity situations.
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Figure 5.1: An overview of the workflow of CARE-AI.

5.2 Model Overview

In this section, the overview of CARE-AI model, including the workflow and the model
architecture, are presented,

5.2.1 Workflow

Figure 5.1 presents an overview of the workflow of CARE-AI. This model first derives the
region embeddings, which represent a review’s contextual regions extracted by CARE as an
input. The user and item representations are then dynamically constructed from the region
embeddings via the proposed interaction and attention modules. The interaction module
models the relevance of each context to the individual user and item by its past interaction
with the user preferences and the item features. The attention module then generates user
and item representations based on the different relevance levels among contexts extracted
from a particular review. Finally, these representations are used in a latent factor model that
predicts the rating.

5.2.2 Model Architecture

To utilize the region embeddings for making personalized rating predictions, it is important
to model the influence of each contextual region on the user preferences and the item features,
which are used in determining a particular review’s rating. To achieve this, two important
aspects of each contextual region, namely its relevance to each user preferences or item
features and its contribution to a particular review’s rating, are needed to be considered.

First, the relevance of each contextual region to a user’s personal preferences depends
on how it has previously been expressed by that user in previous reviews. For example,
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Figure 5.2: Illustration of the CARE-AI model.

many of the user’s hotel reviews might have contained words such as “cheap”, “expensive”,
or “worth”, whereas “small”, “large”, or “spacious” might have been used less often. The
implication is that this user is highly interested in the price when choosing a hotel, but is less
concerned about the size of the room. Therefore, those contextual regions containing words
related to the price of a room should be more relevant to this user preferences than those
containing words related to the size of a room. The same assumption can also be applied to
the relevance of contextual regions to the item’s unique features. Depending on what has
been frequently described in their reviews, some hotels, for example, might be famous for
their service, whereas others are better known for their convenient location.

Moreover, a review usually contains more than one contextual region and different
contextual regions might have unequal influences on the user’s decision about the item,
which would consequently affect the rating. I believe that, the more relevant a contextual
region is to each individual user preferences or item features, the more it should contribute to
the rating of a particular review compared with the other regions within the same review.

By properly analyzing the relevance and the contribution made by contexts in a particular
review, the user and item representations can be dynamically constructed specifically and
uniquely for that review. To implement this, the CARE-AI model, whose architecture
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is shown schematically in Fig. 5.2, is proposed. CARE-AI is composed of two parallel
neural networks, one each for user-context and item-context modeling. The model takes a
review of user ui on item v j, denoted by yi, j, that contains M contextual regions, denoted by
Region(yi, j), as an input. By looking up its corresponding word embeddings and local context
unit (learned from the context extraction step), a region embedding for each contextual region
is generated. The region embeddings are then fed into the user-context and item-context
modeling networks. Each of these networks comprises two modules, namely an interaction
module that models the relevance of contextual regions and an attention module that learns
the contributions of those regions to a review’s rating. Finally, the outputs of the user-
representation and item-representation networks are fed into the prediction layer, which
generates the final prediction of a review’s rating by using a latent factor model.

5.3 Interaction Module

To model the relevance of contextual regions to user preferences and item features, a user-
context interaction matrix Tu ∈R|User|×h and a item-context interaction matrix Tv ∈R|Item|×h

are introduced. Each row tui ∈ Tu and tv j ∈ Tv contains a vector representing the interac-
tion with the contextual regions for user ui and item v j, respectively. To fully capture
the interactions with the contextual regions, the dimensionalities of tui and tv j are set to
h, which is the dimensionality of the region embedding. The interaction of contextual
region region(cn,d)m ∈ Region(yi, j) with user ui and item v j are then modeled by using
element-wise multiplication between its region embedding γγγcn,m and tui or tv j , respectively,
as expressed by

γγγ(cn,m),i = tui ⊙γγγcn,m, γγγ(cn,m), j = tv j ⊙γγγcn,m. (5.3.1)

The vectors tui and tv j can be considered as projection vectors for converting the region
embedding γγγcn,m to the user-relevance region embedding γγγ(cn,m),i and item-relevance region
embedding γγγ(cn,m), j, respectively. They are learned with the main objective of capturing
previous interactions of a contextual region with each individual user preferences and a
specific item features. If a contextual region region(cn,d)m was mentioned a significant
number of times in user ui’s reviews, its interaction with tui will result in high values for
γγγ(cn,m),i, indicating that it is highly relevant to ui’s preferences.
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After all region embeddings γγγcn,1, · · · ,γγγcn,M of region(cn,d)1, · · · ,region(cn,d)M ∈Region(yi, j)

are converted into user-relevance and item-relevance region embeddings, they are fed into
the attention module to compute their contributions to a rating of the review yi, j.

5.4 Attention Module

The contribution of a contextual region region(cn,d)m to a particular review’s rating depends
on its degree of relevance to the user preferences and the item features compared with the
other regions in that review. Because a user-relevance region embedding γγγ(cn,m),i and an
item-relevance region embedding γγγ(cn,m), j indicate the relevance of region(cn,d)m to ui’s
preferences and v j’s features, they can be utilized for modeling their contributions. To
achieve this, attention mechanism is adopt since it has been successfully utilized in many
deep-learning-based recommendation methods [19, 86]. Specifically, the attention network
for modeling the contribution of region(cn,d)m in a user-context modeling network is defined
by

a∗γγγ(cn,m),i
= WT

attng(Wattnuγγγ(cn,m),i +battnu)+battn, (5.4.1)

where Wattnu ∈ Rk1×h, Wattn ∈ Rk1 , battnu ∈ Rk1 , and battn ∈ R are model parameters. The
size of the hidden layer in the attention network is denoted by k1 and g is a nonlinear
activation function. A softmax function is then applied to compute a normalized attention
score for a contextual region region(cn,d)m with respect to the other M-1 contextual regions
in review yi, j, Region(yi, j) as

aγγγ(cn,m),i
=

exp(a∗γγγ(cn,m),i
)

∑
M
m=1 exp(a∗γγγ(cn,m),i

)
. (5.4.2)

The attention scores are then used to compute the weighted sum of the user-relevance
region embeddings, which are fed into a fully connected layer to create a user representation
of user ui that is specific to review yi, j, xui,yi, j , as expressed by

xui,yi, j = Wu

M

∑
m=1

aγγγ(cn,m),i
γγγ(cn,m),i +bu, (5.4.3)
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where Wu ∈ Rk2×h and bu ∈ Rk2 are a weight matrix and bias vector, respectively, in a fully
connected layer with a hidden layer of size k2. This user representation is dynamically
generated to give different levels of relevance among the contexts in yi, j. A user who has
rated N reviews will therefore have N review-based representations, rather than the one
static representation across all reviews used in most deep-learning-based methods. (The
computational details for the item representation xv j,yi, j are omitted because they are very
similar to those for the user representation.)

5.5 Prediction Layer

The user and item representations are now ready to be used for the final rating prediction
task. To predict a rating, the latent factor model [50] which has been shown to be effective in
many deep-learning-based prediction approaches [19, 47, 103], is adopt for modeling the
interaction between xui,yi, j and xv j,yi, j . Specifically, the rating of user ui toward item v j is
estimated by

r̂i, j = xT
ui,yi, j

xv j,yi, j +bui +bv j +µ, (5.5.1)

where bui,bv j , and µ ∈R respectively denote the bias for user ui, the bias for item v j, and the
global bias. If a contextual region in yi, j is highly relevant to both user ui’s preferences and
item v j’s features, it should result in a high rating score. For example, (5.5.1) implies that a
user who likes a city view at night will be recommended a hotel famous for its nighttime city
view. The training is done using Adam [27] as an optimizer, and, to prevent overfitting, a
dropout operation is applied on the hidden layer. The L2 is chosen as a loss function, with
regularization expressed as

L = ∑
(i, j)∈O

(ri, j − r̂i, j)
2 +λΘ∥Θ∥2, (5.5.2)

where O denotes the set of observed user–item rating pairs, ri, j is the observed rating score
of user ui toward item v j, and Θ denotes the model parameters.
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5.6 Experimental Evaluation

5.6.1 Data Preparation

Three publicly available review datasets were used for conducting the experiments. The first
was from TripAdvisor1, which contains hotel review data. The two other datasets, Amazon
Software and Amazon Movies & TV were from the Amazon 5-core datasets2 [69]. All
datasets use a five-point rating system (users select an integer from 1 through 5). The same
preprocessing procedure on the review text as described in Chapter 4.6 was performed. After
the preprocessing, the one-word reviews were discarded as uninformative.

The statistics of these two datasets after preprocessing are summarized in Table 5.1. These
datasets differ in some respects. For example, Amazon Software is the smallest and densest,
whereas Amazon Movies & TV is the largest and also the sparsest among the three datasets.
Most of the reviews in all datasets were rated with very high scores, with Amazon Movies &
TV having the highest average score. Despite being the smallest dataset, Amazon Software
contains the highest number of unique words (i.e., vocabulary) in its reviews and also has the
longest reviews, on average. This contrasts with the Amazon Movies & TV dataset, which is
the largest dataset, but which contains the smallest vocabulary and the shortest reviews. After
applying the context extraction method by CARE, the number of candidate context words
and their frequencies per review were found to correspond with the size of the vocabulary
and the average number of words per review for each dataset.

5.6.2 Baselines

To establish baselines for evaluation, the performance of CARE-AI were compared with
seven existing state-of-the-art rating prediction models: PMF, NMF, RC-Topic, RC-Word,
DeepCoNN, NARRE, and CARL. The comparative characteristics of the baselines and
CARE-AI are listed in Table 5.2. The first two methods involve latent factor models that uti-
lize ratings alone to learn user and item representations. The remaining methods incorporate
review data to learn such representations, except for RC-Topic and RC-Word, which learn a
representation from each review. DeepCoNN and NARRE are review-based methods that do
not consider contexts in reviews. RC-Topic, RC-Word, CARL, and CARE-AI consider the
influence of contexts in reviews on rating predictions. More details about each method are
summarized as follows.

1http://www.cs.cmu.edu/ jiweil/html/hotel-review.html
2https://nijianmo.github.io/amazon/index.html
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Table 5.1: Statistics for the three review datasets.

Amazon Software TripAdvisor Amazon Movies & TV

Reviews 12,405 873,214 3,166,002

Users 1,802 574,450 293,867

Items 801 3,940 60,169

Density 0.008594 0.000386 0.000179

Rates/User 6.884 1.388 10.774

Rates/Item 15.487 221.628 52.618

Average Rating 3.871 3.937 4.202

Vocab. Size 35,103 22,353 20,949

Word/Review 104.193 82.984 47.472

Candidates 257 226 129

Cand./Review 37.369 31.931 12.159

• PMF [81]. Probabilistic matrix factorization (PMF) is a standard matrix factorization
approach that models user and item latent factors as Gaussian distributions.

• NMF [57]. Nonnegative matrix factorization (NMF) is a matrix factorization technique
for which each element in the latent factor is nonnegative.

• RC-Topic [75]. Rich-context topic (RC-Topic) learns a review representation based
on a distribution of contextual topics defined by Bauman and Tuzhilin [13] and uses
the factorization machine (FM) [78] for rating prediction.

• RC-Word. I modified RC-Topic [75] by identifying a set of context words, following
Bauman and Tuzhilin [13], and used them to represent a review with a term frequency–
inverse document frequency (TF-IDF) vector.

• DeepCoNN [103]. Deep cooperative neural network (DeepCoNN) employs two
parallel CNNs to independently construct user and item representations from their
reviews, which are then used by FM for rating prediction.

• NARRE [19]. Neural attentional regression model with review-level explanation
(NARRE) is an extension of DeepCoNN that applies review-level attention to model
the contribution of each review to the rating.
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Table 5.2: Comparison of the characteristics of all methods.

Rating Review Represent Attention Contexts Interaction

PMF ✓ - User/Item - - -

NMF ✓ - User/Item - - -

RC-Topic ✓ ✓ Review - Topic -

RC-Word ✓ ✓ Review - Word -

DeepCoNN ✓ ✓ User/Item - - -

NARRE ✓ ✓ User/Item Review - -

CARL ✓ ✓ User/Item Word Word -

CARE-AI ✓ ✓ User/Item Region Region ✓

• CARL [101]. Context-aware user-item represention learning model (CARL) applies
CNN and word-level attention to represent a context as the influence of each word in
reviews on the ratings.

5.6.3 Experimental Settings

For evaluations, 80% of each dataset was randomly selected as the training set, 10% as the
validation set, and the remaining 10% as the test set.

Note that all comparative methods require a significant number of ratings per user or
per item to learn high-quality representations. This significant number was set as 5 for
the Amazon Software and TripAdvisor datasets and 20 for the Amazon Movies & TV
dataset. Those reviews that did not meet this significance criterion were therefore eliminated.
Furthermore, this experiment assumed that the review texts would be available for both
training and testing stages because this is exploited by RC-Topic, RC-Word, and CARE-AI
when extracting contexts and making rating predictions.

For PMF and NMF, the number of latent dimensions was set to 15, the learning rate to
0.005, and the regularization parameter to 0.001.

For RC-Topic and RC-Word, the reviews were separated by applying K-means clustering
for the set of review features defined by Bauman and Tuzhilin [13], including the number of
words, number of verbs, and number of verbs in the past tense. The number of top contextual
topics was selected from {20, 30, 50, 100, 150, 200}, and the number of top contextual words
was selected from {1000, 2000, 5000, 10000}. The LibFM [78] is used to implement the
FM, following Peña [75]. All FM parameters were set to default values.
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For DeepCoNN, NARRE, and CARL, the number of convolutional kernels was selected
from {50, 100}, the window size for CNN was set to 3, the learning rate was selected from
{0.0001, 0.0005, 0.001}, the regularization parameter was selected from {0.001, 0.01, 0.1},
and the dropout rate was optimized between 0.1 and 0.5. The number of latent dimensions
was set to 32 and the embedding size was set to 300 for all these models.

For CARE-AI, the learning rate was selected from {0.0001, 0.0005, 0.001, 0.005, 0.01},
the regularization parameter λΘ was selected from {0.01, 0.1, 1}, and the dropout rate was
set to 0.2. The numbers of latent dimensions k1 and k2 were both set to 32. The hyperbolic
tangent (tanh) was selected as the activation function for (5.4.1). Because different reviews
contain different numbers of contextual regions, the maximum number of contextual regions
that would be extracted from each review was set to 128. The batch sizes for both the
proposed model and the baseline models were optimized from among {16, 32, 64, 128, 256}.

Evaluation Metrics

The performance of CARE-AI was evaluated against the baseline systems in terms of
prediction accuracy using three ranking evaluation metrics. The first evaluation metric was
the normalized discounted cumulative gain (NDCG), which evaluated the ranking accuracy
of the Top-K recommendation list for each user, as expressed by

DCG@K =
K

∑
j=1

2rel j −1
log2( j+1)

, NDCG@K =
DCG@K
IDCG@K

. (5.6.1)

Here, rel j ∈ {1,2,3,4,5} is set as the actual rating scores for an item at rank position j.
Because most users in Amazon Software and TripAdvisor had rated items less than seven
times, the NDCG@3, NDCG@5, and NDCG@7 were chosen for their evaluation, whereas
for Amazon Movies & TV, with more than 10 ratings per user, the NCDG@5, NCDG@10,
and NCDG@15 were therefore chosen for that dataset.

In addition to NDCG, the performances were also evaluated by the hit ratio (HR) and
mean reciprocal rank (MRR). The reviews in test data that had ratings above “3” were
first classified as positive reviews, and the remainder as negative reviews. An HR@K is
calculated as the number of positive reviews appearing in the Top-K recommendation list
for each user, whereas MRR is computed as the rank of the first positive review in each user
recommendation list, as given by (5.6.2) and (5.6.3), respectively.
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Table 5.3: The NDCG values for the compared methods on the Amazon Software dataset.

NDCG@3 NCCG@5 NDCG@7

PMF 0.89160 0.90009 0.87302

NMF 0.88848 0.84849 0.81870

RC-Topic 0.89944 0.95023 0.93930

RC-Word 0.93513 0.93698 0.89889

DeepCoNN 0.92396 0.92357 0.86373

NARRE 0.93901 0.93200 0.86880

CARL 0.92811 0.91501 0.91289

CARE-AI 0.92224 0.98448 0.97039

HR@K =
1
K

K

∑
j=1

rel j (5.6.2)

MRR =
1

|User| ∑
ui∈User

1
rankui

(5.6.3)

Here, rel j was set to 1 for a positive review and 0 otherwise. The value for rankui is the
first rank position of a positive review in ui’s recommendation list. The HR@5 was chosen
in evaluating the performance for all datasets.

5.6.4 Experimental Results

The values for NDCG of Amazon Software, TripAdvisor, and Amazon Movies & TV are
respectively presented in Table 5.3, 5.4, and 5.5, whereas the HR, and MRR for all baseline
systems and CARE-AI with each of the three datasets are presented Table 5.6. From all
tables, note that CARE-AI achieves the highest accuracy for almost every MRR and rank of
NDCG and HR across all datasets. Next are the deep-learning-based methods that utilize
review data (DeepCoNN, NARRE, and CARL). Although CARL, which is a context-aware
method, performs quite well on Amazon Software, DeepCoNN and NARRE perform better
on TripAdvisor and Amazon Movies & TV datasets. DeepCoNN and NARRE obtain very
similar results across all datasets, although DeepCoNN seems to perform slightly better on
TripAdvisor and Amazon Movies & TV. Furthermore, the other two context-aware baseline
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Table 5.4: The NDCG values for the compared methods on the TripAdvisor dataset.

@3 @5 @7

PMF 0.87673 0.78935 0.77752

NMF 0.88341 0.82420 0.80706

RC-Topic 0.91597 0.86226 0.84023

RC-Word 0.89744 0.81977 0.80363

DeepCoNN 0.92963 0.88715 0.87026

NARRE 0.92841 0.89495 0.87020

CARL 0.92335 0.86649 0.85077

CARE-AI 0.93147 0.91826 0.93168

Table 5.5: The NDCG values for the compared methods on the Amazon Movies & TV
dataset.

@5 @10 @15

PMF 0.90051 0.87458 0.86025

NMF 0.89939 0.87110 0.85774

RC-Topic 0.91223 0.89489 0.88759

RC-Word 0.90175 0.87899 0.86520

DeepCoNN 0.94070 0.92895 0.92294

NARRE 0.94018 0.92757 0.91909

CARL 0.92798 0.91375 0.90308

CARE-AI 0.91707 0.93527 0.92328

systems (RC-Topic and RC-Word) achieved quite good NDCG values on Amazon Software
but were less effective on the other two datasets, as was CARL. Finally, PMF and NMF,
which do not consider review information, yielded the lowest accuracies on all evaluation
metrics when compared with the other systems.

5.7 Discussion

In this section, a detailed analysis of the performance of the proposed method and the
baseline systems in various aspects is presented. This includes, the predictive performances,
the effectiveness of the interaction and attention modules, an analysis of model parameters,
the performance under the sparsity situation, and finally, the impact of review quality.
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Table 5.6: The HR and MRR values for the compared methods on the three review datasets.

A. Software TripAdvisor A. Movies & TV

HR@5 MRR HR@5 MRR HR@5 MRR

PMF 0.84000 0.85534 0.62667 0.84485 0.77305 0.53863

NMF 0.84000 0.85067 0.62667 0.84438 0.77162 0.53847

RC-Topic 0.88000 0.85555 0.61333 0.84282 0.78697 0.54063

RC-Word 0.84000 0.85802 0.60667 0.84075 0.77688 0.54233

DeepCoNN 0.92000 0.86054 0.63333 0.85249 0.81763 0.55235
NARRE 0.92000 0.86204 0.64000 0.85212 0.81608 0.55206

CARL 0.92000 0.86067 0.63333 0.85226 0.80390 0.54810

CARE-AI 0.96000 0.86466 0.64000 0.85456 0.82005 0.54922

5.7.1 Predictive Performance

Here, three main aspects of predictive performances are discussed. First, the effectiveness of
leveraging review content in making predictions is analyzed. This follows by an analysis
on how identifying and incorporating contexts from reviews affect the prediction accuracy.
Finally, the discussion on how the dynamic modeling of user and item representations differs
from and improves on the use of the static-representation approach, is conducted.

Utilizing Review Data

First, the merit of utilizing review data for making recommendations is discussed. As shown
by every table, all methods that leverage review content to learn user and item representations
(DeepCoNN, NARRE, CARL, and CARE-AI) returned better values for NDCG, HR, and
MRR than the standard CF-based methods that ignore reviews (PMF and NMF). This
demonstrated that the rich and useful information embedded in reviews helps the learning of
more appropriate representations, which more accurately capture the personal preferences of
a user or the unique features of an item. Utilizing these representations consequently resulted
in more accurate rating predictions.

Although leveraging review data, the RC-Topic and RC-Word methods did not always
provide better prediction accuracy than the standard CF-based methods that did not consider
reviews. For example, they gave lower HR and MRR values on the TripAdvisor dataset than
PMF and NMF. This might be because both RC-Topic and RC-Word utilize review content
to learn a representation of the review itself and use it directly for rating prediction, rather
than learning representations for users and items based on a latent factor model, as do the
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other methods. I believe that their review representations do not capture the personalized
information relating to user preferences or item features, which makes their predictions less
accurate than latent factor-based methods.

Incorporating Contextual Information

The effect of incorporating contextual information hidden in reviews on the rating prediction
is now analyzed. By comparing the results of the review-based context-aware methods
(RC-Topic, RC-Word, CARL, and CARE-AI), only CARE-AI could surpass the accuracy of
the review-based methods that did not consider contexts (DeepCoNN and NARRE).

This begins with an analysis of RC-Topic and RC-Word, which are review-based context-
aware methods based on topic modeling and TF-IDF representations. Although they mostly
performed better than the standard-CF based methods (PMF and NMF), they were the least
accurate of the review-based methods. This might be because the performance of their
context extraction depends on the quality of the reviews. Based on the definition used in
RC-Topic and RC-Word, contexts can be inferred only from reviews of high quality, which
often contain a significant number of words. For review data containing many low-quality
reviews, the context extraction would be less effective. In contrast, CARE-AI is capable of
extracting contexts from any kind of review, provided there is at least one candidate context
word embedded in that review. This makes CARE-AI more robust toward review quality
than RC-Topic and RC-Word. The impact of review quality on CARE-AI is further analyzed
in Section 5.7.4.

Now, the results from CARL, which is a context-aware method based on a deep-learning
technique, is analyzed. First, with the advantage of utilizing both deep learning and an atten-
tion mechanism, CARL outperformed both RC-Topic and RC-Word on almost every dataset.
However, although it outperformed the noncontext-deep-learning techniques (DeepCoNN
and NARRE) on Amazon Software, it obtained less accurate results on the other two datasets.
According to my assumption, I believe this occurred for two possible reasons. First, CARL
considers the contribution of every word in reviews to the rating as the influence of contexts.
Some of these words, however, are irrelevant to the user preferences or item features and
could degrade the quality of the representations. The second reason is that CARL computes
its attention score based on words from all previous reviews, rather than focusing on those
contained in a recent review. In context-aware recommendations, contexts are relevant at
the time the rating is created and, therefore, only applicable to a particular review and not
to others. By considering words from all previous reviews, CARL incorporates irrelevant
contexts that are not associated with the current rating situation, thereby constructing less
effective representations for users and items. On the other hand, CARE-AI constructs the
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representations based only on those words (and their neighbors) in a particular review that
influence the rating distribution as a context and achieved better results on all datasets. This
supports my assumption that considering only the words in a single review that are relevant
to the user preferences and item features is better for capturing the contextual information
and results in constructing more effective and meaningful representations.

Static and Dynamic Representations

Finally, the effectiveness of constructing user and item representations dynamically rather
than relying on a static set of representations, is analyzed.

First, the predictive performances of the methods that learn static user and item repre-
sentations (DeepCoNN, NARRE, and CARL) are discussed. Although the attention-based
baseline systems (NARRE and CARL) outperform DeepCoNN on the Amazon Software
dataset, they deliver lower overall NDCG, HR, and MRR values on the other two datasets.
This implies that applying an attention mechanism does not always improve the prediction
accuracy if it is not properly integrated into the model. One concern about the attention
mechanisms of both NARRE and CARL is that their attention scores are computed from
the contents of previous user or item reviews, rather than utilizing the content of the target
review (the review for which to predict a rating). The representations of NARRE, CARL, and
DeepCoNN consider a user’s past preferences or item’s past features but barely capture more
relevant information such as contexts, which can be extracted only from the target review.

In contrast, the dynamic approach for constructing user and item representations achieves
a higher overall prediction accuracy than the static-representation approach. This focuses on
utilizing the text of the target review as the main source from which to extract the relevant
contexts for a user–item pair. CARE-AI first apply interaction module to model the relevance
of each extracted context in the review to the individual user preferences and item features.
CARE-AI then compute the attention score for each context, based on its relevance level
when compared with the other contexts embedded the same review. This helps to construct
fine-grained user and item representations that dynamically capture the relevance of contexts
in a particular review to the user preferences and item features.

The next section studies further the impact of the attention and the interaction modules
in CARE-AI. This follows by the analysis on the performance of CARE-AI for various
parameter settings. Moreover, the impact of the review quality on the performance of context-
aware methods is discussed. Finally, the robustness of CARE-AI in situations of rating
sparsity is addressed. All evaluations in this section were conducted on the TripAdvisor
dataset.
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Figure 5.3: Illustration of CARE-I model.
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Figure 5.4: Illustration of CARE-A model.
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Figure 5.5: Illustration of CARE-0 model.

5.7.2 Attention and Interaction Modules

To evaluate the effect of incorporating attention and interaction modules, four variants of
rating prediction for CARE based on the four possible combinations of these two modules,
as listed below.

• CARE-AI: a model that incorporates both attention and interaction modules, that is,
the main model, as presented previously in Figure 5.2.

• CARE-I: a model that considers only the interaction module, with the attention module
being ignored, as presented in Figure 5.3. The user and item representations are
constructed only from their previous interactions with contextual regions in a review.
Specifically, instead of computing an attention score and using it as a weight for each
region embedding in (5.4.3), all projected region embeddings obtained from (5.3.1)
were directly averaged to form the user and item representations.

• CARE-A: a model that considers only the attention module, with the interaction module
being ignored, as presented in Figure 5.4. This model aims to find the contribution of
each contextual region to a review’s rating, when compared with the other regions in
the same review. Technically, the region embeddings generated from context extraction
directly as are used an input for (5.4.1), without applying the projection operation of
(5.3.1).
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Figure 5.6: The NDCG values for variants of the prediction models of CARE

• CARE-0: a model without attention or interaction modules, as presented in Figure 5.5.
The user and item representations are obtained by directly averaging all input region
embeddings for a review. In the fully connected layer, one shared weight matrix are
used for all users, and another for all items.

The hyperparameters of each variant are tuned with the same settings as the main model,
as described in Section 5.6.3. Their predictive performances are presented in Figure 5.6.

From Figure 5.6, the CARE-0 model (no attention or interaction module) gave the lowest
overall NDCG values of all the variants. The implication is that applying the attention and/or
interaction modules improves the performances of the proposed model.

By modeling the varying influences of contexts in a review to the rating by applying the
standard attention mechanism, the CARE-A model made more accurate predictions than the
base model. This demonstrates that different contexts can have different impacts on the rating
behaviors of all users and items. However, because CARE-A does not consider the relevance
of each context to an individual user preferences or item features, two reviews containing
the same set of contexts would produce the same user and item representations. That is,
the representations generated by this model depend only on the different contributions of
contexts embedded in the review, regardless of any personalized interaction with the user or
item. This makes CARE-A suitable for a sparse dataset where most users participate only
rarely or most items are rated only infrequently. However, if a review contains too few or
too many candidate context words, CARE-A might not be able to exploit the information
effectively, thereby degrading the recommendation quality. There is more analysis of the
impact of the number of candidates in Section 5.7.3.
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Although applying an attention mechanism gives improved accuracy compared with the
base method, CARE-A still did not match the performance of CARE-I, which models the
relevance of contexts to an individual user preferences and item features. The representations
for this model are unique for each user or item even for reviews containing the same set of
contexts, which is more appropriate when making a personalized recommendation. However,
because CARE-I relies on previous interactions with contexts, it requires a significant number
of reviews to precisely capture the relevance of each context. Moreover, unlike CARE-A,
this model does not consider the varying influence of different contexts on a review’s rating,
which should be a factor in improving the recommendation quality.

So far, both CARE-A and CARE-I have their own advantages, which contribute to
improved predictive performances. By recognizing the trade-off between these two methods,
it can be found that a combined model, CARE-AI, achieved the best predictive performance
among all the variants. This is convincing evidence that the influence of each context can be
adequately modeled based not only on its relevance to the target user preferences and item
features but also to its contribution to the rating of a particular review when compared with
other contexts in the same review. This model, however, also inherits the characteristics of
both CARE-A and CARE-I, in that it requires an appropriate number of candidate context
words per review and enough reviews per user and per item to be able to learn high-quality
user and item representations.

5.7.3 Parameter Sensitivity

This subsection first studies the impact of model parameters on the predictive performance of
CARE-AI. These parameters include the number of candidate context words, the region size,
and the embedding size. In addition, an investigation on the computational cost required for
these model parameters is conducted.

Impact of Candidate Context Words

Figure 5.7 shows the impact of the number of candidate context words per review on the
prediction accuracy. Because different reviews contain different numbers of candidate context
words, how these numbers affect the performance of the method should be addressed. To
investigate this, a fixed maximum number of candidate context words to be extracted from
each review was fixed. As shown in Figure 5.7 (a), increasing the number of candidates
across {1, 16, 32, 64, 128} yields a higher accuracy. However, for a maximum number
of 256, the NDCG@5 and NDCG@7 values start to decrease. The main reason might be
that the reviews containing very many candidates are unusually long reviews. As shown in
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(a) Predictive Performances (b) Statistics

Figure 5.7: Impact of different numbers of candidate context words.

(a) Predictive Performances (b) Validation Loss

Figure 5.8: Impact of different region sizes.

Figure 5.7 (b), most reviews in the TripAdvisor dataset contain only about 30 candidates
with less than an average of 2500 words per review. Some of the very long reviews (having
more than 100 candidates) could potentially be spam or otherwise less useful reviews, which
could degrade the prediction accuracy. In addition, considering too many candidate context
words might weaken the effectiveness of the attention module, because uniformly distributed
attention scores would become more likely. Because using 128 candidates yields the highest
predictive accuracy, this value was used in the training process.

Impact of Region Size

The impact of differently sized text regions are now investigated. Increasing the region
size means having more neighboring words to be identified and incorporated as contexts
together with the candidate context words. Figure 5.8 shows the predictive performance
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and the validation loss in context extraction for each region size in {1, 3, 5, 7}. (Region
size = 1 means that a context is constructed only from the candidate context word itself,
without any consideration of its neighboring words.) Despite having a very high validation
loss at the beginning, using this region size completed its training with the lowest loss
when compared with other region sizes. This is because it only learns one word embedding
to represent one rating distribution for each candidate, which has minimal complexity.
However, its prediction accuracy is also the lowest for the various region sizes. This implies
that considering only a single word as context is insufficient to accurately capture the
actual influence of relevant contexts on the distributions of ratings. Because increasing
the region size increases the possible number of combinations between neighboring words
and the candidates to be constructed as contexts, it significantly increases the number of
corresponding rating distributions, raises the model complexity, and increases the validation
loss. The prediction accuracy, however, improves significantly as the region size increases
from 1 to 5. This supports my assumption that incorporating neighboring words benefits the
construction of more relevant contexts for capturing rating distributions, resulting in more
accurate recommendations. However, an excessively large region size may also degrade
the performance, as shown by the NDCG@7 value for region size = 7. This is because the
model might mistakenly incorporate words from different phrases or sentences to construct
incorrect contexts. For example, suppose that the task is to extract a context from the text
region “is really worst services, the only good”. If the region size is set to 3 or 5, the context
could be extracted as “worst services”, but if region size is set to 7, the context might be
constructed as “services good.” Exploiting such unintended contexts could consequently
affect the rating prediction score. The region of size 5 was then selected for the parameter
setting because of its optimal performance.

Impact of Embedding Size

The impact of different embedding sizes are analyzed, which involves the dimensions of the
word embeddings, the local context units, and the corresponding region embeddings. Figure
5.9 gives the predictive performance and the validation loss of the model when trained with
different embedding sizes chosen from {50, 100, 150, 300, 450}. The loss values in Figure
5.9 (b) show that the larger embedding sizes are more effective for representing the rating
distributions, although the improvement is small between 300 and 450. Accordingly, the
larger embedding sizes also produce more accurate recommendations. A size of 300 was
chosen for the model setting because it gives a near-optimal overall prediction accuracy and
requires less computation time than using a size of 450.
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(a) Predictive Performances (b) Validation Loss

Figure 5.9: Impact of different embedding sizes.

Computational Cost

The proposed method was implemented with TensorFlow on Intel Xeon X5680 Processor
and NVIDIA Tesla P100 GPUs. The most time-consuming part was the context extraction
by CARE, which took roughly about 5-10 hours for one training, depending on the model
parameters. Two parameters from CARE that had significant impact on the training time
were the region size and embedding size, as shown in the Figure 5.10 (a) and (b), respectively.
Notice that the region size of 1, i.e. considering only candidate context words as contexts,
consumed significantly less amount of time for training, compared to the other region sizes.
This corresponds to the fact that the number of candidate context words is significantly
smaller than the number of combinations of words in the other region sizes. The larger the
regions, the more combination of words are needed to be considered for modeling the rating
distribution of the contextual regions, and thus significantly increases the computational time.
Similarly, increasing the embedding sizes consequently increased in time for generating
region embeddings for the contextual regions.

The learning process of a predictive model by CARE-AI, on the other hand, took less
amount of training time, as compared to the context extraction by CARE. Figure 5.10 (c) and
(d) respectively show the training times for CARE-AI with different numbers of candidate
context words per review, and different sizes of latent dimension. As it can be seen from
both figures, increasing the candidate size and the latent size linearly increased the training
time. As compared to the region size and embedding size from CARE, the candidate size and
latent size seem to have less impact on the computational time. By combining two offline
training steps (context extraction and rating prediction models), the proposed method took
about 10-15 hours for learning and optimizing the model parameters.
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(a) Region Size (b) Embedding Size

(c) Candidate Size (d) Latent Size

Figure 5.10: Training times with respect to four model parameters.

After the training is done, the online rating prediction for a given query can now be made.
Given a review text of a user-item pair, CARE firsts extract all contextual regions from that
review, based on the list of candidate context words learned from the offline training. These
contextual regions are then mapped with the learned word embeddings and local context units
to compute their associated region embeddings. Such region embeddings are then passed
through CARE-AI, which looks up for the learned user-context and item-context interaction
vectors from the user and item IDs. All components are then fed into the interaction, attention,
and prediction modules to compute the rating score. The whole process of the online rating
prediction for a given user-item pair took only about a few seconds, which is feasible for
making recommendations in real-time.

One main goal for the future work is to optimize the cost of training to make the model
more efficient, which might be achieved by combining the context extraction and rating
prediction into a single model with less complexity, and having a smaller number of model
parameters.



5.7 Discussion 87

Table 5.7: Comparison of context-rich and context-free reviews.

Dataset Statistic
Review Type

Context-Rich Context-Free

Amazon Software
Word/Review 173.371 21.814

Cand./Review 60.780 9.538

TripAdvisor
Word/Review 148.439 51.642

Cand./Review 57.948 21.643

Amazon Movies & TV
Word/Review 150.165 12.676

Cand./Review 33.211 4.926

5.7.4 Impact of Review Quality

This subsection analyzes how the quality of reviews affects context extraction and rating
prediction. First, a method for dividing reviews with respect to their quality is required. I
follow Bauman and Tuzhilin [13] in classifying reviews into context-rich and context-free
reviews, based on the richness of contexts. The criteria used for classification includes the
review features such a number of words, number of verbs and number of verbs in past tense.
After reviews are classified, CARE is applied to extract the candidate context words and
their associated contextual regions from each type of reviews. Table 5.7 shows a comparison
of the statistics for each type of review on all three datasets. These statistics include the
average number of words and the average number of extracted contexts (candidate context
words) per review. As shown in Table 5.7, the number of words in context-rich reviews is
significantly higher than in context-free reviews. Applying CARE consequently resulted in
more candidate context words being extracted from each context-rich review for all datasets.
This indicates that the quality of reviews significantly impacts the amount of contexts being
extracted by CARE.

In addition, I further analyze how this difference in number of contexts would affect the
prediction capability of CARE-AI. To do so, the predictive performance of CARE-AI were
further evaluated on each type of reviews. The reviews in test data of all three datasets were
divided into context-rich and context-free reviews, and evaluated the performance for each
set of reviews separately.

Figure 5.11 shows the comparison of NDCG@5 of CARE-AI on each type of reviews
from three datasets. From the figure, the prediction accuracies of CARE-AI on context-rich
reviews were significantly higher than those in context-free reviews. The differences in
accuracies were even more significant on Amazon Software dataset, in which the number of
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Figure 5.11: Predictive performances of CARE-AI on three datasets based on review quality.

N
D

C
G

@
5

0.74

0.84

0.93

RC-Topic RC-Word CARL CARE-AI

0.866
0.885

0.810

0.752

0.8940.885

0.8530.861

Context-Rich
Context-Free

N
D

C
G

@
5

0.83

0.92

1.00

A. Software TripAdvisor A. Movies & TV

0.902

0.866

0.938 0.935

0.894

0.995 Context-Rich
Context-Free

Figure 5.12: Predictive performances for context-aware methods based on review quality.

extracted contexts from two types of reviews were significantly different. From the result,
it can be inferred that the review quality also have significant impact on the predictive
performance. With high quality reviews, more number of contexts can be extracted, and have
more information to model the rating—resulted in more accurate prediction.

Finally, the predictive performance of CARE-AI for each type of review is compared
with the other context-aware baseline systems. Figure 5.12 shows the NDCG@5 value
for CARE-AI and the other context-aware methods (RC-Topic, RC-Word, and CARL) for
context-rich and context-free reviews. First, the RC-Topic and RC-Word methods gave the
lowest prediction accuracies for both types of review. Furthermore, their accuracies for
context-free reviews were significantly lower than those for context-rich reviews. This results
from these two methods treating contexts as topics or words that occur more frequently in
context-rich reviews. They are therefore unable to extract much contextual information from
the context-free reviews, resulting in lower prediction accuracies.
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Figure 5.13: Predictive performances with sparse data.

In contrast, for both CARL and CARE-AI, the prediction accuracy for context-rich
reviews differs little from that for context-free reviews. That is, both CARL and CARE-AI
are robust with respect to the quality of reviews. Note that CARE-AI is slightly less accurate
for context-free reviews than the CARL method. This might be because the average number
of contexts per review in context-free reviews is smaller than the number of words. Because
CARL considers the influence of every word in the review as context, it has more information
from which to learn user and item representations. However, if there are sufficient contexts
per review, which is more likely for context-rich reviews, CARE-AI is able to achieve a
higher accuracy than CARL.

5.7.5 Performance on Sparse Data

Finally, the performance of CARE-AI under conditions of rating sparsity is analyzed. The
training data was modified from the TripAdvisor dataset for two types of rating sparsity,
namely user-rating sparsity (each user provided only one rating) and item-rating sparsity
(each item is rated only once). The sparsity ratios for the user-rating sparsity data and the
item-rating sparsity data were 0.99937 and 0.99974, respectively. The NDCG@5 values
achieved by CARE-AI and all the baseline systems when using the sparsity-modified data
are given in Figure 5.13.

From Figure 5.13, all methods that utilize review data for constructing user and item
representations (DeepCoNN, NARRE, CARL, and CARE-AI) produced more accurate
predictions than those constructing such representations using only rating data (PMF and
NMF). This implies that, in rating-sparsity situations, review content can be used to construct
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more effective user and item representations than utilizing only the ratings, leading to more
accurate rating prediction.

However, utilizing review data does not always solve the sparsity problem. Figure 5.13
shows that both RC-Topic (in particular) and RC-Word produced significantly lower predic-
tion accuracies than the other review-based methods and even lower prediction accuracies
than the rating-based methods (PMF and NMF). This may be because both RC-Topic and
RC-Word depend heavily on word frequency when building their review representations.
Although the review data might be sparse, its vocabulary size could still be very large and
have very low word frequencies. These two methods, therefore, do not have sufficient data to
effectively model their topic or word distributions from which to build high-quality review
representations. Utilizing these poor representations will then result in low-accuracy rating
predictions.

Finally, the discussion on the predictive performance of CARE-AI, compared with the
other deep-learning-based representations (DeepCoNN, NARRE and CARL) is conducted.
Figure 5.13 shows that CARE-AI is able to achieve the highest NDCG@5 values for both
the user-rating and item-rating sparsity datasets. Note that in DeepCoNN, NARRE, and
CARL, these representations are generated statically from corresponding previous reviews.
Such representations, however, tend to overfit with sparse data, for which each user or item
provides only one or very few reviews. Utilizing these representations to predict ratings
for reviews of unseen items will then be less effective. In contrast, CARE-AI utilizes
previous reviews only to model the interactions of users and items with contexts, whereas the
representations themselves are generated dynamically based on any context being extracted
from each particular review. This makes CARE-AI’s representations less affected by the
sparsity in previous reviews, thereby achieving more accurate predictions.

5.8 Conclusion

In this chapter, the CARE-AI, an extension model utilizing the extracted contexts from
CARE for rating prediction is proposed. In making rating predictions, the user and item
representations are generated dynamically for each specific review through the proposed
interaction and attention modules, based on the relevance of the contexts extracted from
that review to a user preferences and an item features. Utilizing such representations
for making rating predictions is more accurate than using state-of-the-art deep-learning-
based representation techniques that do not properly consider the relevance of a context.
Furthermore, as strongly supported by the experiment results, CARE-AI is also more robust
for making recommendations in the situations of rating sparsity.



Chapter 6

Multi-Criteria Rating Conversion
without Relation Loss for Recommender
Systems

6.1 Introduction

The main mechanism of the collaborative filtering-based (CF-based) approach is based on the
usage of opinions from users to form the high quality set of neighbors, which consequently
affects the quality of recommendations. In multi-criteria (MC) recommendation approach,
users are able to specify their preferences on each item in multiple aspect rather than only
one single rating [6]. For example, a user might rate a hotel based on its price, location,
cleanliness, or service. Such multi-criteria scheme can improve the process of analyzing the
rating data in deeper aspect—forming a better set of neighbors.

However, using ratings from neighbors to make a prediction for an active user directly
may result in failure of recommendation. This is due to two following problems. First, as
mentioned in Chapter 2.4.3 the habits or patterns on giving ratings among users vary due
to their personal biases. Therefore, using ratings from neighbors to predict the active user
rating directly may not be practical. Another problem is that, most of RS systems contain the
enormous amount of items, but the neighbors do not always provide their ratings toward the
item targeted by the active user—leading to invalid prediction.

One possible solution to solve these two problems is by the following steps. First, find all
users (not only the neighbors) who have rated the target item as the raters. Then, convert
the ratings of the raters into the ratings in the aspect of the active user by considering and
analyzing their rating patterns. If the input ratings are properly analyzed and represented
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according to the true preference of a user, the recommendation output will be more accurate
and more preferable. Some methods can be applied to solve this problem, including linear
mapping [8], Lathia’s transposed function [56] and Warat’s transposed function [18]. How-
ever, these methods are designed for converting only a single criterion rating. When it comes
to multi-criteria framework, they have to convert each criterion rating separately—causing a
scalability problem and consuming a lot of resources. Also, converting each criterion rating
independently might cause a loss in implicit relation among the criteria ratings.

In this chapter, a novel method for simultaneously converting the multi-criteria ratings
from one user to another user’s aspect is proposed. This method can convert the multi-criteria
ratings simultaneously into the same space in order to maintain the implicit relationship
among the criteria ratings. By applying the principle component analysis (PCA) [87] on high
dimensional dataset, the patterns containing the most crucial characteristics of the data are
extracted. However, different users have different patterns on different planes with different
variances. This means that their planes are not equal and their patterns cannot be converted
to each other directly. To solve this problem, the variance normalization is applied on both
plane to make a pair of different planes to be viewed as the same plane, before extracting
the user preference pattern using PCA. The experiments demonstrated that the proposed
method outperformed both single and multi-criteria rating conversion techniques in terms of
prediction accuracy and prediction coverage.

The main contributions of this work can be summarized as follows.

• The proposed method maintains the implicit relation among the multi-criteria ratings
by simultaneously converting all criteria ratings from one user to another user’s aspect.

• The experiment showed that the proposed method yielded better on both accuracy and
prediction coverage, compared to well-known rating conversion techniques.

6.2 Model Overview

In this section, an overview of the proposed multi-criteria rating conversion technique is
presented. Figure 6.1 illustrates the four main steps of the proposed method. First, the
ratings of two users are normalized into the same plane of variance by using the variance
normalization technique. Then, PCA is applied to extract the multi-criteria rating patterns
from the users. These patterns are then utilized in the multi-criteria rating conversion process.
Finally, the converted multi-criteria ratings are used in the rating prediction for making the
recommendation.
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Figure 6.1: An overview of the mechanism of the proposed method.
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From now, a term rater will be used to denote a user whose ratings will be converted and
a term active user denotes a user who retrieve the converted ratings from the raters.

6.3 Variance Normalization

Before a pattern from the rater can be used to convert his multi-criteria ratings into an active
user’s aspect, they must be normalized into the same plane as the active user. This is because
different users have preference patterns on different planes with different variances. Since
their planes are not equal, the patterns between users cannot be converted to each other
directly. To solve this problem, the variance normalization [45] is applied on both planes, to
make a pair of different planes to be viewed as the same plane.

Suppose the task is to normalize Rua and Rub , the multi-criteria ratings of user ua and user
ub, respectively, to make them lie on the same plane. Let ra jk ∈ Rua denotes the rating of ua

on item v j ∈ Iua under criterion k ∈ K. First, the mean rating value for ua is calculated as:

µua =
1

|Iua||K| ∑
i∈Iua ,k∈K

ra jk (6.3.1)

The variance of ratings of user ua is then calculated by:

varua =
1

|Iua||K| ∑
i∈Iua ,k∈K

(ra jk −µua)
2 (6.3.2)

Beside µua and varua , µub and varub for user ub have to be calculated by the same way.
Finally, the original rating ra jk of ua is normalized by the variance and lies on the combined
plane of both user ua and user ub by:

rV
a jk(b) =

(ra jk −µu +µu,v)
√varua,ub√varua

(6.3.3)

where µua,ub is average of µua and µub , varua,ub is an average of varua and varub , and rV
a jk(b)

is the normalized rating, called variancenormalized rating. Let RV
ua

and RV
ub

respectively
denote the variance normalized rating matrices for user ua and ub. Now the variance is the
same for multi-criteria ratings of user ua and user ub.
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6.4 Finding Multi-Criteria Rating Patterns

After the pair of planes of two users are in the same scale of variance, the principle component
analysis or PCA is applied to extract each user multi-criteria rating pattern.

The principle component analysis (PCA) is usually serves as two main purposes in RS
[87]. One is the dimensionality reduction, which has been used by many researchers for
solving the sparsity problem [31, 52, 53, 98]. The other is to find patterns in high dimensional
dataset in order to extract the most crucial characteristics from the data. This paper applies
the latter one to find rating patterns of users on multi-criteria rating data. These patterns are
then used to convert the user multi-criteria ratings into another user’s aspect by projecting the
original rating data onto the principle eigenvector (i.e. the eigenvector that has the highest
eigenvalue).

By applying the PCA, the user multi-criteria rating patterns can be extracted from his
variance normalized rating data from the previous step. In order to find the multi-criteria
rating pattern from user ua, the system firstly needs to create the normalized rating matrix
RM

ua
for user ua. Each element of RM

ua
(denoted by rM

a jk) contains the subtraction between user
ua variance normalized rating given on item v j under criterion k (denoted by rV

a jk) normalized
value is defined for corresponding user, and the mean value µuak of the variance normalized
ratings of ua in the same criteria k.

rM
a jk = rV

a jk −µuak (6.4.1)

Along with RM
ua

, the system needs to create the feature matrix Qua of user ua which
represents the his multi-criteria rating patterns of the rated items, which can be done by PCA.
First, the system finds the eigenvector uak of ua’s covariance rating matrix (covariance matrix
of RV

ua
). After computing all eigenvectors, put the one that has highest eigenvalue to become

the first row of Qua , the second highest to the second row, and so on.

6.5 Multi-Criteria Rating Conversion

After the multi-criteria ratings patterns of all users are extracted, they can be used to convert
the rater multi-criteria ratings on each item into the active user’s aspect.

Suppose the task is to convert rater ua multi-criteria ratings on target item i into an active
user ub’s aspect. First, the rating vector ra j of item v j is selected from RV

ua
. This vector is

then subtracted by its mean value to create the modified rating vector rM
a j. To convert to the
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Figure 6.2: The user pattern transformation.

aspect of ub, rM
a j is projected into the same plane of ub by multiplying with the feature matrix

Qub of ub by the following equation.

σb j(a) = Qub(r
M
a j)

T (6.5.1)

Before it can be used further, σb j(a) needs to be turned back into original rating scale by
the following:

θb j(a) = σb j(a)+µua (6.5.2)

where µua = [µua,1 · · ·µua,K] is a mean rating vector which each element contains the mean
value of ratings in each criterion of user ua. The example of rating conversion process is
presented by Figure 6.2, which transforms of the rating of ua into pattern of ub on the same
plane.
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6.6 Rating Prediction

After the multi-criteria ratings from the raters are converted into the active user ub’s aspect.
An aggregation method is needed to aggregate each rater converted multi-criteria ratings on
the target item v j, (θb j(a)) into single overall criterion rating. For the proposed method, the
multiple linear regression is selected. First, the system calculates the criteria weight vector
ωua of the rater ua by applying the multiple linear regression on the overall variance nor-
malized rating vector rVOverall

ua (as dependent variable) and multi-criteria variance normalized
rating vector rVCriteria

u (as independent variable):

ωua = MLR(rVOverall
ua

,rVCriteria
ua

) (6.6.1)

where MLR(., .) is the function of multiple linear regression.
After the criteria weight vector is calculated, the new overall rating for user ua on item v j

under the active user ub’s aspect can be computed as follow.

r̂Overall
a j = ω

T
ua
·θb j(a) (6.6.2)

Finally, the rating of the active user ub to rate the target item v j is estimated by the average
of the overall ratings from all raters N(v j) who have rated item v j, as shown by the following.

r̂b j =
∑ua∈N(v j) r̂Overall

a j

|N(v j)|
(6.6.3)

6.7 Experimental Evaluation

6.7.1 Dataset

Two multi-criteria rating datasets, Yahoo Movie and TripAdvisor Hotel, are used for the
experiment and evaluation of the models. The Yahoo Movie dataset1 contains 2,550 ratings
provided by 200 users over 1,345 movies. Users are able to give the ratings from F to
A+ to each movie, which are converted to numerical range of 1 to 13 for the evaluation

1https://www.yahoo.com/entertainment/movies/
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Table 6.1: Statistical data of Yahoo and TripAdvisor datasets.

Yahoo Movie TripAdvisor Hotel

Number of users 200 281

Number of items 1345 2173

Number of ratings 2550 8324

Rating scale 1-13 1-5

Number of criteria 5 7

Max rating count per user 18 93

Min rating count per user 7 16

Average rating count per user 12.75 29.62

Standard Deviation 1.2268 11.315

Table 6.2: Experimental results on Yahoo Movie Dataset.

Methods Type RMSE %Coverage

Proposed Method MC 3.5574 58.04

Warat’s SC 3.6678 60.74

MC-CF MC 3.6924 22.98

MC-CF2 MC 3.6624 22.98

MC-Lathia’s MC 6.2121 12.63

MC-Warat’s MC 3.6230 58.94

purpose. Besides the overall rating, users also provide ratings on four criteria, which are
acting, story, direction and visual criteria. On the other hand, 8,324 ratings were extracted
from TripAdvisor 5-scale multi-criteria rating dataset2 provided by 281 users over 2,173
items. Beside the overall rating, this dataset contains ratings on six criteria: cleanliness,
location, rooms, service, sleep quality, and value. Table 6.1 summarizes the statistics of the
two datasets. The five-fold cross validation was conducted to evaluate the performances of
the models on both datasets.
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Table 6.3: Experimental results on TripAdvisor Hotel Dataset.

Methods Type RMSE %Coverage

Proposed Method MC 1.1082 87.89

Warat’s SC 1.1272 88.49

MC-CF MC 1.2109 63.08

MC-CF2 MC 1.1712 63.08

MC-Lathia’s MC 1.8633 64.04

MC-Warat’s MC 1.1038 88.35

6.7.2 Evaluation Results

In order to evaluate the performance, the proposed method is compared with the current
rating conversion methods on both single criteria and multi-criteria techniques, along with
the well-known recommendation techniques. The evaluation results on Yahoo Movie and
TripAdvisor datasets are presented in Tables 6.2 and 6.3, respectively. Note that in column
‘Type’, SC means single criterion and MC means multi-criteria recommendations.

In Table 6.2 and 6.3, MC represents the traditional multi-criteria collaborative filtering
method [3] mentioned in Chapter 2.4.2. This method uses multi-criteria ratings only in
neighbors selection process, but not in prediction. MC-CF2 is a variant of MC-CF that
exploits multi-criteria ratings on both neighbor selection and prediction. Both MC-CF and
MC-CF2 do not apply the rating conversion technique. Since both Warat’s and Lathia’s rating
conversion methods are designed for single criteria rating conversion, their multi-criteria
extensions: MC-Lathia and MC-Warat need to convert each criterion rating independently.
Like the proposed method, the MLR is also applied as aggregation method for the prediction
of MC-CF2, MC-Lathia and MC-Warat.

As presented in Tables 6.2 and 6.3, it can be summarized that the proposed method
outperforms the others in the aspect of prediction accuracy, while producing almost the
same level of prediction coverage as Warat’s conversion technique (both on single criterion
and multi-criteria ratings). In contrast, MC-Lathia results in the worst performance on both
accuracy and prediction coverage from all methods.

2http://www.cs.cmu.edu/ jiweil/html/hotel-review.html
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6.8 Discussion

The performances of the evaluation methods are now discussed in detail. For a better
explanation, the discussion is separated into four points. First, the performance of the
traditional multi-criteria collaborative filtering (MC-CF) is discussed. This is followed by the
comparison between two current rating conversion techniques: Lathia’s and Warat’s methods.
Next, the proposed method is compared with the multi-criteria Warat’s (MC-Warat) rating
conversion technique. Finally, a discussion on how to apply the proposed method to the
real-world applications is provided.

6.8.1 Multi-Criteria Collaborative Filtering

The only part of traditional multi-criteria collaborative filtering (MC-CF) that is relevant
to multi-criteria principle is the process of finding user similarities. MC-CF computes
the similarities among users on each criterion independently, and then aggregates such
similarities from all criteria into single similarity by Eq. 2.4.2 as mentioned in Chapter
2.4.2. The aggregated similarities along with the overall ratings are then exploited in the
neighborhood-based prediction, while other criteria ratings are being ignored. In order to
prove that exploiting the multi-criteria ratings on the prediction improves the performance,
The prediction of the method is slightly adjusted. In MC-CF2, instead of using the actual
overall ratings, they are calculated by using the weighted average on the multi-criteria ratings
with criteria weight ωua used in Eq. (6.6.1) as the weights. The results from Tables 6.2
and 6.3 show that MC-CF2 is more accurate than MC-CF, which is derived by using the
multi-criteria ratings on the prediction.

Since multi-criteria collaborative filtering technique relies on the ratings on co-rated items
from neighbors to make the prediction, it has very low prediction coverage (e.g. only 23% on
Yahoo dataset). In contrast, the proposed method which uses all ratings from the raters who
rated target items, is resulted in better coverage (almost three times higher than MC-CF and
MC-CF2 on Yahoo dataset). In the aspect of prediction accuracy, the proposed method also
outperforms both MC-CF and MC-CF2. This is due to the fact that the multi-criteria ratings
are converted from the raters into the active user’s aspect before making a prediction, while
both MC-CF and MC-CF2 use original multi-criteria ratings from the raters directly. Since,
ratings from the neighbors or raters are used to calculate the predicted rating for the active
user, RS can provide better accuracy when the problem about the different rating patterns
among users is addressed.
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6.8.2 Warat’s and Lathia’s Rating Conversion

The Warat’s single criterion rating conversion has shown that their conversion technique is
better than Lathia’s method [56] in the single criterion framework. This experimental result
also show that on multi-criteria scheme, MC-Warat method is also better than MC-Lathia
method in both accuracy and prediction coverage. A very low prediction coverage of Lathia’s
method (e.g. only 12% on Yahoo dataset) is because the rating conversion of Lathia’s method
relies on the ratings on co-rated items for prediction. Due to the sparsity of the rating data,
such co-rated items is limited—resulting in low coverage. In contrast, Warat’s method
exploited the pseudo ratings from matrix factorization to fulfill the sparse user rating matrix.

The poor accuracy of Lathia’s method is occurred because it can only convert a rating
to the range [-1, 1] of the original rating. This is not practically in the real world where
a person rating’s perspective can be significantly different from one another. In contrast,
Warat’s method concerned about distribution of active user ratings, which is able to convert
rater rating into real scale of active user rating.

6.8.3 Multi-Criteria Warat’s Rating Conversion

As shown in Tables 6.2 and 6.3, MC-Warat method achieves more accurate prediction than
the single criteria Warat’s method. This provides even more proof from section 6.8.1 that
exploiting the multi-criteria ratings improves the predictive performance of the method. In
the aspect of prediction coverage, MC-Warat method is slightly lower than single criteria
Warat’s method. This is because if there is at least one criterion rating that is inconvertible, it
will result in the invalid prediction of the overall rating of that record.

Now the Warat’s method is compared with the proposed method. Since MC-Warat method
is better than single-criteria Warat’s method, the propose method is compard only with the
MC approach. Both of the proposed method and MC-Warat method have almost the same
level of the prediction coverage because of the same reason explained earlier. Both proposed
and MC-warat methods do not rely on the ratings on co-rated items since MC-Warat can use
pseudo ratings while the proposed method apply PCA to extract rating patterns. This means
both methods are able to exploit all ratings from the raters for the rating conversion. For the
accuracy, the proposed method is better than MC-Warat method on Yahoo Movie dataset.
This is because MC-Warat method converts ratings on each criterion independently, causing
the loss of relation among the criteria ratings. In contrast, the proposed method converts
ratings from all criteria simultaneously, which help maintaining the implicit relationships
among the criteria ratings—resulting in a better prediction. The proposed method provides
almost similar level of accuracy as MC-Warat on TripAdvisor dataset. This is because the
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rating range of TripAdvisor is [1, 5] which is narrower than Yahoo Movie dataset which is
[1, 13].

6.8.4 Applications of Multi-Criteria Recommendations

Sections 6.8.1 and 6.8.3, demonstrated that the proposed method outperforms the others
in the predictive performances. In this section the merits of applying the method to the
real-world scenarios is discussed. Many web-based applications let a user rates on multiple
aspects of an item. For example, on Agoda3 and Booking.com4, users can rate a hotel room
under criteria such as location, cleanliness, services and value. A rating under each criterion,
however, might has dependency with those from other criteria. For example, John might
have high concern on location and service when judging the value of the room, meaning that
when he rates high scores on location and service, he tends to rate high score on value as
well. In contrast, when he rates low score on those two criteria, he also rates lower score on
value. If a single criterion rating conversion technique is applied to convert each criterion
rating separately, those relation across criteria ratings might be lost. For example, there
is Alex who has a habit on giving very low ratings on location and service to any room.
Suppose the task is to convert the 10-scale ratings from John, who rates ‘9’ on location and
‘10’ on service which consequently rates ‘9’ on value, to the aspect of Alex. By applying
single criteria rating conversion technique, ‘10’ and ‘9’ from location and service from
John might be converted to ‘2’ or ‘1’ for Alex since he always rates very low scores on
those two criteria, while ‘9’ on value might be converted to a much higher value (such as
‘9’ or ‘10’) because there is no bias on value criterion from Alex. As a result, the ratings
(‘9’, ‘10’, ‘9’) on location, service and value from John could be converted to, for example,
(‘1’, ‘2’, ‘9’) for Alex, meaning that the previous relation among those criteria from John
has been forever lost. To address this problem, the propose method, on the other hand,
simultaneously convert all multi-criteria ratings to maintain the implicit relation among those
criteria. Again, with the previous example, the proposed method would convert the ratings
(‘9’, ‘10’, ‘9’) from John to (‘1’, ‘2’, ‘1’) for Alex, which means the dependency among
those ratings from John remains untouched. I believe that this makes the proposed method
more suitable for real-world situations, where recommendation engines should take into
account the users’ unique patterns in providing multiple aspects of their preferences toward
items, for personalizing the recommendations.

3https://www.agoda.com
4https://www.booking.com
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6.9 Conclusion

In this work, a novel method for simultaneously converting the multi-criteria ratings from
one user to another user’s aspect is proposed. This method converts the multi-criteria ratings
simultaneously into the same space in order to maintain the implicit relation among the
criteria ratings. Not only producing the high level prediction coverage, the proposed method
also outperforms current rating conversion techniques on both single and multi-criteria
ratings with RMSEs of 1.1082 and 3.5574 on TripAdvisor hotel and Yahoo movie datasets
respectively. These experiment results prove the following assumptions on multi-criteria
recommendations and the ratings conversion. First, exploiting the multi-criteria rating data
helps improving the performance of the predictive model, compare to the single rating
approaches. Moreover, the ratings from the raters (all users who have rated the target item,
not only the neighbors) should be converted into the same aspect as the active user before
they can be used further in prediction step. Finally, the multi-criteria ratings should be
simultaneously converted together to maintain the implicit relationship among the criteria
ratings.

The proposed method can be utilized in a wide range of applications that concern various
aspects of users’ opinions for making recommendations. For example, in some hotel booking
websites users can rate hotel rooms separately by its location, cleanliness, service or value.
A rating of each criterion, however, might be depended with those from other criteria. For
example, some users might rate the value of a hotel room based on its location and services.
With the proposed method, when the multi-criteria ratings from one user is converted into
another user’s aspect, those unique patterns of the dependencies among the multi-criteria
ratings will be maintained. I believe that this makes the proposed model more suitable for a
real-world situation where a rating pattern of an individual user is unique and different from
others.





Chapter 7

Summary

This thesis presents a novel method for automatically extracting contexts from reviews, as
well as an effective method for utilizing the extracted contexts for rating prediction. In
addition, this thesis also introduces a novel multi-criteria rating conversion technique. These
methods were proposed to produce effective recommendations with respect to prediction
accuracy and rating sparsity.

First, a novel unsupervised method for defining and extracting contexts from reviews,
namely CARE, is proposed [91]. Unlike any previous work, a relevant context in this work
is defined and extracted not only in the single word format, but also includes its neighboring
words that have influences on distributions of ratings on a review data. A region embedding
technique is derived to emphasize the words in a small text region to be considered as a
context, and represent it by a region embedding to be used for a rating prediction. The
extensive experiments showed that CARE is able to extract the set of unique contexts from
any specific recommendation domain. Moreover, the extracted contexts effectively explain
the distribution of ratings in reviews, which is useful for modeling the polarity of the reviews’
ratings.

Moreover, an extended model of CARE for rating prediction, namely CARE-AI, is
proposed [92]. This model introduces the interaction and attention modules, which help
constructing a user and item representations based on different levels of relevance among
contexts extracted from CARE with an individual user preferences and item features. Unlike
most deep learning-based methods that learn one static user or item representation for all
reviews, CARE-AI dynamically generates a unique user and item representations for each
particular review, which are more proper for capturing the specific contextual information
embeded in that review. The experiments demonstrated that CARE-AI produced more
accurate prediction accuracy than the state-of-the-art rating prediction methods including
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review-based and context-aware recommendation techniques on both normal and sparsity
situations.

Finally, a novel rating conversion method for multi-criteria ratings is proposed [90]. This
method applies the principle component analysis extract multi-criteria preference patterns
from users. Such patterns are then used for simultaneously converting the multi-criteria
rating, which preserves the implicit relation among criteria ratings. The experiment results
show that proposed multi-criteria rating conversion technique outperforms both current single
and multi-criteria rating conversion techniques with higher accuracy on two multi-criteria
rating datasets, while maintaining considerably high level of prediction coverages.

For future work, there are three further challenges that I aim to achieve.

• First, the current rating prediction of CARE-AI assumes that the review data of a target
item is available at prediction phrase, which is exploited as the main source to extract
contexts. In fact, since the target item is not yet being rated, its review, therefore, is not
available. The model would be more useful in real-word if it is capable of providing
recommendations for any item without requiring their reviews from target users.

• Second, currently the proposed context extraction (CARE) and rating prediction
(CARE-AI) are two independent steps. I believe that a model with an ability to
identify contexts and predict rating in a single step would produce more efficient
recommendations.

• Finally, in Chapter 6, it has been shown that my proposed model for multi-criteria
recommendation could produce satisfying rating prediction results. However, one main
concern for the multi-criteria recommendation approach is that, it requires explicit
ratings in multiple aspects of items from the users. Similar to the predefined types of
contexts, such aspects of items are predefined by the system, which are very limited to
a specific recommendation domain. In fact, in most recommendation domains, users
provide only the overall ratings as well as their reviews, whereas the multi-criteria
ratings are not available. The existing multi-criteria recommendation techniques,
therefore, are not applicable for this kind of situation. Fortunately, as presented by the
example of suitable applications for CARE in Chapter 4.7.5, a portion of extracted
words by CARE, such as “clean”, “location”, or “service”, could be considered as
the aspects of items. I strongly believe that it is be possible to infer the multi-criteria
user preferences or item features from reviews, and utilizes them to produce a novel
multi-criteria recommendation technique that requires no explicit multi-criteria ratings
on predefined aspects of items.
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