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Abstract

Image synthesis is to render a novel image from given inputs. Besides having a
wide range of applications, it plays an important role to further step in computer
vision research in which many work e�ort to move from visual-level understanding
to reasoning-level understanding. Thanks to deep learning, learning-based image
synthesis has been established where a deep network is used to �rst learn feature space
from given inputs and then map the learned feature space to the image domain. Though
learning-based models obtain remarkable results, they still limit in generating faithful
and realistic images. Their shortcomings come from the fact that the inputs of image
synthesis are themselves diverse, leading multiple descriptive feature representations
can be obtained in the feature space along with the depth of the network. Consequently,
simply mapping all the feature representations (at the same layer in the network) is
unable to elaborate the contribution of each feature representation in the generated
image as our expectation. Based on the fact that the more helpful feature space is
attained, the more chance to generate better images, faithfully understanding and
e�ectively utilizing the feature representations thus is crucial in robustly elevating the
performance of image synthesis.

Needless to say, the feature representations are disentangled and have di�erent
roles in generating image. This dissertation, therefore, addresses learning-based image
synthesis by an introduction to a novel approach that fully takes into account the
feature space. Our approach �rst selects disentangled feature representations depending
on the role to obtain descriptive information. It then combines the disentangled feature
representations using an appropriate mapping process to generate images faithfully
and realistically. Generally, our approach is potential to deal with a wide range of
image synthesis tasks. We therefore apply our proposed way on three interestingly
challenging tasks including (i) rendering image contents in di�erent styles (i.e., style
transfer), (ii) image manipulation with text and (iii) text-to-image synthesis tasks. The
comprehensive experiments manifest that our proposed approach is su�cient and
�exible to handle many tasks in image synthesis.

The �rst task, rendering image contents in di�erent styles, is to render given image
contents in given styles. This task requires to preserve contents and to faithfully
render of styles. We thus propose a feed-forward network having two distinct streams
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to learn disentangled content and style features. These features are then combined
using our proposed adaptive feature injection and concatenation which fully take into
account contribution of the content and the style features in stylized images. In order
to train our proposed network, we employ a loss network, the pre-trained VGG-16, to
compute content loss and style loss, both of which are e�ciently used for the feature
injection as well as the feature concatenation.

The second task, image manipulation with text, on the other hand, is to render
foreground (object) given as a text description into a given source image. It requires to
disentangle the semantics contained in (source) image and text information and then
combine the disentangled semantics to synthesize realistic images. We propose a
generative adversarial network (GAN) where the network possesses one generator
and a pair of discriminators with di�erent architecture, called Paired-D GAN. The
generator has encoder–decoder architecture with skip-connections and synthesizes an
image matching the given text description while preserving other parts of the source
image. Two discriminators, on the other hand, judge foreground and background of
the generated image separately to meet an input text description and a source image.
We also propose a three-player adversarial learning process to simultaneously and
e�ectively train our Paired-D GAN.

The third task, text-to-image synthesis, is to render a novel image that is consistent
with a given text description. This task requires not only entity information (i.e., object
type, attribute, shape...) but also relations among entities (i.e., position, interaction...).
Since the gap between text description and image is large, we thus follow two-step
approach where inference of the scene layout as an intermediate representation
between text and image is followed by using the layout to generate images. The layout
in previous work is constructed through only the comprehensive usage of relation
among entities for bounding-boxes’ localization, resulting generated images may have
poor scene structure as a whole even if each entity is realistically rendered. We step
further in predicting visual-relation layout by employing not only all available relations
together but also individual relation separately. More precise, we �rst comprehensively
use all available relations together to localize initial bounding-boxes of all the entities.
Next, we use individual relation separately to predict from the initial bounding-boxes
relation-units for all the relations in the input text. Since each entity may involve in
multiple relations, we then unify all the relation-units to produce the visual-relation
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layout. Finally, our visual-relation layout is conditioned on a stack of three GAN,
namely stacking-GAN, to generate images that consistently capture the scene structure.

We evaluate our approach on publicly available dataset. More precise, for rendering
image contents in di�erent styles, we use images in the MS-COCO 2014 dataset as our
content images, and six famous paintings widely used in style transfer as our style
images. For image manipulation with text, we conduct experiments on the Caltech-200
bird dataset and the Oxford-102 �ower dataset. For text-to-image synthesis, we verify
our method on challenging 2017 COCO-stu� dataset and Visual GENOME dataset. The
intensive and extensive experiments show outperformances of our approach against
state-of-the-arts.
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1
Introduction

1.1 Background

Human has two ways of thinking: one is unconscious and impulsive while the other is
very conscious, aware and considerate [24]. With respect to two ways of thinking, our
visual system functions two kinds of understanding: (i) visual-level understanding and
(ii) reasoning-level understanding [25]. With one glance at a scene, we immediately
recognize objects appearing in that scene (visual-level understanding) while it takes
time to infer further information such as relations among objects (reasoning-level
understanding). The visual-level understanding is to acquire and improve knowledge
from the outside environment through experiences by remembering visual features
such as color, shape, or viewpoint. The reasoning-level understanding, on the other
hand, is to infer new knowledge from previously acquired knowledge for higher-level
understanding where visual features are considered in di�erent aspects such as meaning,
role, or relations among visual features. As a result, higher-level understanding allows
us to describe the scene in various forms such as a painting, an image, or a sentence.
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Image captioning

VQA

Image synthesis

Visual-level Reasoning-level

Figure 1.1: Examples of computer vision problems.

To simulate our visual system, computer vision research has been developed for years.
"At an abstract level, the goal of computer vision problems is to use the observed
image data to infer something about the world" [26]. Fig. 1.1 illustrates some popular
problems in computer vision.

With the progress of computer vision, a wide variety of problems have been
launched aiming to solve the visual-level understanding (Fig. 1.1, left). With either
hand-crafted features (photometric stereo [27], SIFT [28], for examples) or auto-
learned features from deep learning models (AlexNet [29], VGG [30], ResNet [31],
for examples), state-of-the-art vision systems can reliably handle a wide range of
long-standing problems such as object detection [32], object recognition [29–31],
semantic segmentation [33]. To some extent, computer vision technologies perform
even better than human ability [34–36].

To cope the reasoning-level understanding in computer vision, some novel problems
have been launched recently such as image synthesis [7–9, 11, 13, 17–20, 22, 37–48],
image captioning [49–52], visual question answering [53, 54] (Fig. 1.1, right). In
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contrast to human, current computer vision technologies still have di�culty in solving
these new problems. Moving towards reasoning-level understanding in computer
vision is thus desired [55].

Among the reasoning-level understanding problems, image captioning and visual
question answering achieve reasonable results with help from state-of-the-arts in
visual-level understanding such as object detection and object recognition. On the
contrary, the current stage of image synthesis is still far from its goal because of the
diversity of given inputs. In practice, image synthesis has a wide range of applications
such as intelligent image manipulation, game industry, mobile application, medical
research, or image search engines. In addition, it also potentially supplement a massive
amount of data which bene�ts the training in deep learning. To elevate the next step in
computer vision, this dissertation therefore investigates image synthesis problem.

1.2 Motivation

Image synthesis is a process that creates a novel image from given inputs. The
typical given inputs are attributes [38], textures [39], images [7–9, 11, 37, 40–44],
and texts [13, 17–20, 22, 45–48]. The diversity of given inputs raises some sort of
image synthesis tasks such as constrained image synthesis [38, 39], image-to-image
translation [37, 40, 41], style transfer [7–9, 11, 42–44], image manipulation with
text [13, 56, 57], or text-to-image [17–20, 22, 45–48].

Early work on image synthesis was reported in the context of texture synthesis by
using hand-crafted features [39, 58, 59]. These methods had limited results because
they were not able to deal with various kinds of inputs. Image synthesis therefore
stepped slowly during an early stage. Thanks to deep learning, image synthesis
has been relaunched recently. Gatys et al. [9] �rst employed convolutional neural
network (CNN) for style transfer task. At the same time, Reed at al. [45] used text
features extracted from a pre-trained text encoder to generate a novel image from text
description. Dong et al. [13] proposed image manipulation with text description by
generating an image that matches the semantic meaning of the input text description
while maintaining other parts of a source image. These work broke through previous
methods relying on hand-crafted features, and established new benchmarks. Following
the success of �rst attempts that employ deep learning in image synthesis [9, 13, 45],
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Figure 1.2: Deep learning pipelines used in basic computer vision methods (�rst row),
and previous learning-based image synthesis methods (second row).

many follow-up work such as [7, 8, 17, 19, 56, 60] proposed various deep learning
architectures to generate better images. Using deep learning, therefore, plays an
important role in generating images and establishes the learning-based image synthesis
approach.

Although learning-based image synthesis methods obtain remarkable results,
they still struggle to faithfully and realistically generate images. The image synthesis
problem remains unsolved. This is because the way of using the deep learning approach
is not e�ective. As shown in Fig. 1.2, similar to other tasks in computer vision using
deep learning models (for examples, object detection [32], object recognition [29–
31]), learning-based image synthesis models can be decomposed into two stages: (i)
learning feature space from input(s) and (ii) learning a mapping from feature space to
image domain. The former stage exploits characteristics of input(s) to extract feature
representations while the latter one transforms the extracted feature representations to
create images. These two stages together bring gains on performance. Both the stages
have been considered in previous work. However, prior work paid more attention
to one stage while alleviating the other stage. For example, Dong et al. [13] (image
manipulation with text) focused on learning image and text feature representations
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from inputs without consideration on learning a mapping (i.e., their mapping process
was not good). Gatys et al. [9] (style transfer), on the other hand, learned a mapping
by minimizing content and style losses in stylized images. Their method, however,
captured content and style feature representations from the same layer of a deep
neural network, leading feature space cannot retain useful information from both the
content and the style. Above examples show that either a good feature space or a
good mapping is not necessarily able to handle image synthesis task properly. These
shortcomings limit the ability of learning-based image synthesis in terms of image
quality. Therefore, focusing on both the stages at the same time is crucial to improve
the quality of generated images.

Previous methods relied on the network to extract features from given input(s)
and then use these feature representations together to produce new images (Fig. 1.2,
second row). Along this line, previous work often improved network architecture
by adding more and more layers [18, 41, 46, 61] or employing a so-called attention
mechanism [19]. Such improvements signi�cantly bring gains on performance of
image synthesis but raise di�culty in training and demand on memory resource. For
example, although BigGAN [61] introduced a set of tricks that lead a new benchmark
for generating high resolution images, it requires a super-powerful computer to train.
Therefore, exploring such network structures is not promising and limits applications
of image synthesis at a consumer level. Instead of increasing capability of networks (i.e.,
network parameters), investigating the input would be a better choice. This is because
input itself is universe and has di�erent roles in generated image. Consequently,
exploiting feature space is promising to improve image synthesis. Yet such investigation
is not well explored in the literature.

The given inputs bring multiple levels of descriptive information. Consequently,
as pointed out in previous work [9, 62, 63], the feature space can be separated
into disentangled feature representations where each of them takes di�erent role.
Understanding disentangled feature representations naturally enables us to bring
desired information from inputs to generated images, resulting in generating better
images. Accordingly, image synthesis models need to adequately exploit feature
space in a deep neural network. Unfortunately, the current usage of feature space is
insu�cient. Previous work usually made use of feature representations at the same
level (i.e., extracted from the same layer in a deep neural network) together, resulting in
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Figure 1.3: Overview of our approach.

uncontrollable contributions of feature representations in generated image. As a result,
the generated image are less realistic. On the other hand, employing disentangled
feature representations makes sure that we are able to handle the generated images as
our expectation. Needless to say, a (simple) deep network is capable of capturing
multiple informative feature representations along with its depth. We thus select
useful representations and utilize them to generate images depending on the task. For
example, let us consider image manipulation with text where its goal is to render
foreground (object) given as a text description into a given source image. If we use all
feature representations extracted at a same layer, the background and foreground
information may be mixed, leading we cannot successfully handle the task. On the
contrary, based on the fact that the network weights background representations at
early layers and foreground representations at latter layers [9, 62, 63], we can select
these disentangled feature representations to ensure that only descriptive information
(i.e., background and foreground information) are used to properly form the generated
images. More precisely, the network �rst edits the foreground representations to match
the text whereas the background representations are retained. Then, it combines the
(new) foreground representations and the (original) background representations to
produce a new image that satis�es the requirement of the task. Inductively, the idea of
using disentangled representations is able to apply for other image synthesis tasks.
Therefore, employing disentangled feature representations is crucial.
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Besides learning feature space from input, learning a mapping from feature
space to image domain also advances the quality of generated images as discussed
above. This stage involves two steps: (i) combining feature representations and (ii)
training a network to achieve the goal. In the �rst step, previous work [7, 9, 45]
often simply combine all the feature representations with the same ratio (in other
words, naively concatenating feature representations before feeding them into the
image decoder). However, since each feature representation has its own role, the
simple concatenation operation is unable to bring the contributions of all the feature
representations in generated images as expected. For instance, in style transfer task,
the style representation (in Gatys et al. [9]) is dominant while the work by Johnson et
al. [7] advocates the content representation. Consequently, neither Gatys et al. [9] nor
Johnson et al. [7] is capable of controlling the appearance of content and style as
expected. To tackle the above mentioned issue, some work [19, 56] employs attention
mechanism to automatically weight the contribution of feature representations, leading
better generated images. However, the attention layer often overweights the features
that appear frequently. This is because the attention mechanism does not indeed
understand the role of features and thus tends to learn the attention weights based on
the number of occurrences of the features (patterns) during training. As a result, more
frequently appearing features receive more attention. For example, the results by [19]
tend to focus on the details of objects described in the given text while alleviating
other information such as background, relations among objects. Therefore, how to
e�ectively combine the feature representations extracted from feature space should be
carefully considered.

The second step in learning a mapping (i.e., training a network) is nontrivial due to
lack of well-annotated ground-truth data. To train a model for image synthesis, we
need to design an objective and appropriate loss function. For examples, Gatys et
al. [9], Johnson et al. [7] proposed a perceptual loss which is a summation of content
and style loss. Reed et al. [45], on the other hand, employed an adversarial loss [64] to
enforce the network to generate realistic images. Though loss functions introduced in
previous work can be used to optimize the network, they do not always converge at
expected point. For instance, in Gatys et al. [9], when the ratio of content and style in
the loss function is signi�cantly changed, the convergence point does not change so
much. Another example is the loss function in Dong et al. [13] (image manipulation
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Figure 1.4: Inputs and output of rendering image contents in di�erent styles (style
transfer), image manipulation with text and text-to-image synthesis tasks.

with text task) where they use one discriminator (e.g., one adversarial loss function) to
simultaneously deal with both foreground and background. Because the foreground
and background feature representations are di�erent, using one discriminator is
unable to give strong feedback to the generator; generated images by Dong et al. [13]
cannot successfully render the foreground according to a given text while retaining the
background in a source image. Aforementioned examples suggest that designing a
good training strategy is also a key to improve the quality of generated images.

Inspired by aforementioned discussions, this dissertation investigates learning-
based image synthesis by utilizing disentangled feature representations depending on
the role in the task (Fig. 1.3). In particular, we address three challenging tasks: (i)
rendering image contents in di�erent styles (style transfer), (ii) image manipulation
with text and (iii) text-to-image synthesis. More precise, we employ disentangled
feature representations (in feature space) and design an appropriate mapping process
depending on speci�c task. More details of our research statement and methodology
will be described in next section.
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1.3 Research Statement and Methodology

Though image synthesis can handle a wide range of inputs, only either image or
text description is friendly and understandable to us. Using these kinds of inputs in
image synthesis is thus interesting and has received a lot of attentions. The di�erent
combinations of these image and text descriptions promote di�erent tasks including
rendering image contents in di�erent styles (style transfer), image manipulation with
text and text-to-image synthesis. The de�nition of each task is follows. (i) Rendering
image contents in di�erent styles is to render given image contents in given styles.
(ii) Image manipulation with text is to render foreground (object) given as a text
description into a given source image. (iii) Text-to-image synthesis is to render a novel
image that is consistent with input text description. Fig. 1.4 illustrates the inputs and
output of each task. From (i) to (iii), the tasks gradually become easy to human, but
more challenging to the computer. Since either image or text description conveys
di�erent meaningful roles in each task as discussed above, understanding and utilizing
appropriate feature representations depending on the role is important to faithfully
generate images. This question still opens and remains challenging. Therefore, this
dissertation addresses this challenge by exploiting the three tasks in a row.

Instead of improving deep learning architectures and learning the improved model
as aforementioned work, we introduce a novel approach in image synthesis that fully
takes into account feature representations in a deep neural network. More precisely, our
approach �rst selects disentangled feature representations with respect to their roles in
a speci�c task to obtain useful information. It then utilizes the disentangled feature
representations to generate images. By utilizing disentangled feature representations,
we are able to decide what to bring from input to generated images. Therefore,
our approach is su�cient and �exible to apply to various tasks in image synthesis.
In particular, we investigate our approach on three interestingly challenging tasks
including rendering image contents in di�erent styles, image manipulation with text,
and text-to-image.

For rendering image contents in di�erent styles, we experimentally found that the
deep network extracts the style representation at early layers while doing the content
representation at latter layers. We, therefore, prepare two distinct networks to deal with
the content and the style representations separately. More precisely, a deep network
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(in terms of number of hidden layers) is used to obtain the content representation
while a shallow one extracts the style representation. The two representations are then
utilized in an adaptive manner where our model takes into account the contribution of
each representation through the ratio of content and style loss in (total) loss value.

For image manipulation with text, based on the observation that the background
representation is weighted at early layers in the network while the foreground
representation is obtained at latter layers, we �rst extract the background and the
foreground representations at di�erent layers in the network. Next, we match the
foreground representation with the text feature obtained from the pre-trained text
encoder (i.e., concatenating foreground representation and text feature). Finally, the
manipulated foreground representation and the background representation are utilized
to produce a new image that matches the given text description while retaining other
irrelevant information in the source image. However, simply matching the foreground
representation and the text feature does not ensure that the generated images satisfy
the requirement of the task. This is because the (image) foreground representation
is totally di�erent from the text feature. For robust foreground-text matching, we
therefore design a novel mapping process that fully makes use of the background and
the foreground representations. More precisely, the background representation is used
to verify whether the background in generated image is the same as that of source
image. The foreground representation, on the other hand, is employed to enhance the
foreground-text matching.

For text-to-image synthesis, we design a two-step model that �rst infers an image
layout from text description and then converts the layout to image. Based on the
observation that the comprehensive usage of relations in previous work loses the
individual relation information in predicting a layout, we propose to use relations
comprehensively and individually to infer the layout. Our model �rst aggregates all
available relations to obtain the comprehensive relation representation and select
each relation one by one for the individual relation representation. It then uses the
comprehensive relation representation to infer initial bounding-boxes. Next, our model
uses the individual relation representations to adjust the initial bounding-boxes for
producing the layout. Finally, the layout is converted to the image.
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1.4 Main Contributions

Many existing work with complex network architectures are struggling to deal with
image synthesis because of diversity of inputs. More precisely, the role of inputs is
di�erent according to speci�c task. For rendering image contents in di�erent styles,
when we stylize images, the content gives us what exist (object shapes and locations)
in the rendered image and the style gives us the impression of the rendered image. For
image manipulation with text, the source image gives us background information
while the given text describes foreground information. For text-to-image, the text
description not only describes object information but also presents relations among
objects. These mean that we cannot obtain all those features at the same level (layer) in
a deep neural network. We instead address learning-based image synthesis by utilizing
disentangled feature representations depending on the role. Since the feature space
contains multiple levels of feature representations, our work therefore is e�ective to
handle the shortcomings in current image synthesis methods. Comprehensive results
on addressing tasks show e�ectiveness of our proposed approach. In the direction of
our research, the main contributions of this dissertation are follows:

• For rendering image contents in di�erent styles, we propose an end-to-end
two-stream Fully Convolutional Networks (FCNs) aiming at balancing the
contributions of the content and the style in rendered images. Our proposed
network consists of the encoder and decoder parts. The encoder part utilizes a
FCN for content and a FCN for style where the two FCNs have feature injections
and are independently trained to preserve the semantic content and to learn the
faithful style representation in each. The semantic content feature and the style
representation feature are then concatenated adaptively and fed into the decoder
to generate style-transferred (stylized) images. In order to train our proposed
network, we employ a loss network, the pre-trained VGG-16, to compute content
loss and style loss, both of which are e�ciently used for the feature injection
as well as the feature concatenation. Our intensive experiments show that
our proposed model generates more balanced stylized images in content and
style than state-of-the-art methods. Moreover, our proposed network achieves
e�ciency in speed.
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• For image manipulation with text, we propose a generative adversarial network
having a pair of discriminators with di�erent architectures, called Paired-D GAN,
where the two discriminators make di�erent judgments: one for foreground
synthesis and the other for background synthesis. The generator of paired-D
GAN has the encoder-decoder architecture with skip-connections and synthesizes
an image matching the given text description while preserving other parts of the
source image. The two discriminators judge foreground and background of the
synthesized image separately to meet an input text description and a source
image. The paired-D GAN is trained using the e�ective adversarial learning
process in a simultaneous three-player minimax game. Experimental results
on the Caltech-200 bird dataset and the Oxford-102 �ower dataset show that
Paired-GAN is capable of semantically synthesizing images to match an input
text description while retaining the background in a source image against the
state-of-the-art methods.

• For text-to-image synthesis, we propose an end-to-end network for image
generation from given structured-text that consists of the visual-relation layout
module and the pyramid of GANs, namely stacking-GANs. Our visual-relation
layout module uses relations among entities in the structured-text in two ways:
comprehensive usage and individual usage. We comprehensively use all available
relations together to localize initial bounding-boxes of all the entities. We also
use individual relation separately to predict from the initial bounding-boxes
relation-units for all the relations in the input text. We then unify all the relation-
units to produce the visual-relation layout, i.e., bounding-boxes for all the entities
so that each of them uniquely corresponds to each entity while keeping its
involved relations. Our visual-relation layout re�ects the scene structure given in
the input text. The stacking-GANs is the stack of three GANs conditioned on the
visual-relation layout and the output of previous GAN, consistently capturing
the scene structure. Our network realistically renders entities’ details in high
resolution while keeping the scene structure. Experimental results on two public
datasets show outperformances of our method against state-of-the-art methods.
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1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows.

• Chapter 2 recalls some basic concepts which are related to image synthesis. It
also reviews current approaches in image synthesis and analyzes the advantages
and the disadvantages of these approaches. Finally, we present overview of our
approach for each task.

• Chapter 3 presents our two-stream FCNs network for rendering image contents
in di�erent styles. Our network employs disentangled content and style feature
representations in an adaptive manner to take into account the contribution of
the content and the style feature representations in stylized images.

• Chapter 4 introduces our Paired-D GAN which consists of one generator and a
pair of discriminators for image manipulation with text. To train our Paired-D
GAN, this chapter presents a three-player adversarial training which is helpful to
force the generated image keeps background as in the source image while its
foreground meets the input text.

• Chapter 5 presents a two-step approach for text-to-image synthesis where
inference layout is followed by layout-to-image step. Our focus is introduction to
construct visual-relation layout by using subject–predicate–object relations be-
tween entities extracted from an input structured-text not only comprehensively
but also individually.

• Chapter 6 summarizes our contributions in this dissertation. We also discuss
direction of our future work.
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2
Literature Review

Image synthesis is a long-standing and fundamental research in computer vision.
Early work on image synthesis was closely related to texture synthesis and color
transfer [39, 59]. Some methods there used histogram matching [58] and/or non-
parametric sampling [39, 59]. These methods had limited results because they relied
on hand-crafted low-level features and often failed in capturing image structures
e�ectively.

Inspired by the impressive progress of various tasks in computer vision using
deep neural networks, image synthesis has recently relaunched in both academy and
industry and has achieved remarkable results.

In this chapter, this dissertation �rst recalls some basic concepts regarding to our
work. It next discusses two main approaches in image synthesis. Finally, we present
overview of our approach.
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2.1 Preliminary Background

2.1.1 Deep learning

Deep learning is a subset of machine learning which is designed following neural
network in human brain. The idea of deep learning has been launched for a couple of
years but stepped slowly in early stage due to the limitations of computing resources.
With the rapid development of powerful computers, deep learning is getting more
attentions nowadays. In literature, the de�nition of deep learning is: "Deep learning is
a particular kind of machine learning that achieves great power and �exibility by
learning to represent the world as nested hierarchy of concepts, with each concept
de�ned in relation to simpler concepts, and more abstract representations computed in
terms of less abstract ones." [65]. The di�erences of traditional algorithms in machine
learning and deep learning can be summarized as follows:

• Training dataset: the performance of deep learning depends on amount of
training dataset. When the dataset is small, a deep learning model does not work
well. If we increase the size of the dataset, the performance of deep learning
exponentially becomes better and better. This is because with a large-scale
dataset, deep learning model is able to capture the underlying distribution of data
perfectly. On the other hand, the traditional algorithms do not su�er from this
issue because they use well-designed handcrafted features. However, developing
a good handcrafted feature extractor which is able to handle the diversity of
data in real-world scenario is not easy. Deep learning thus is dominant in such
scenarios.

• Hardware: deep learning relies on high-end machines while traditional algorithms
are able to work on low-end machines.

• Feature selection: deep learning model automatically learns low-level to high-
level features from input data. Moreover, deep learning model is capable of
extracting features from any data. This is a major advance of deep learning
comparing to traditional algorithms which needs to develop new feature extractor
depending on every task.
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• Training and Testing time: deep learning and traditional algorithms have opposite
behavior in training and testing time. More precisely, deep learning requires
long time in training while taking (nearly) real-time in testing. On the other
hand, traditional algorithms usually take less time for training and long time for
testing.

• Problem solving approach: deep learning model tends to solve problem in an
end-to-end manner. In contrast, the traditional algorithms advocate to break
a problem into sub-problems, then solve sub-problems separately and �nally
combines them to obtain �nal result.

A deep learning model often comprises of an input layer, multiple hidden layers,
and an output layer. The input layer receives input variables with various forms such
as image, text, sound signal. Next, the hidden layers model and process non-linear
relationships of input variables. Finally, the output layer predicts/produces output
variable corresponding to the problem. In general, a deep learning model learns a
mapping from input variables to output variable. To this end, we use training dataset
to iteratively optimize the weights of the model. This optimization process not only
requires to explore the underlying distribution of training dataset but also needs to
ensure the capability of the trained model in processing new data (in testing phase).
Therefore, optimizing a deep learning model is nontrivial because the structure of
training dataset is complex and non-linear. The widely used optimization algorithms
in deep learning are Stochastic gradient descent (SGD) [66] and Adaptive Moment
Estimation (Adam) [67].

In the context of computer vision, deep learning is applied to many tasks (Fig. 1.4,
Chapter 1). As we mentioned above, current deep learning models in computer vision
are able to handle many tasks such as object detection [32], object recognition [29–31],
semantic segmentation [33]. However, deep learning still struggle to solve image
synthesis.

2.1.2 Convolutional neural network

In computer vision, a deep learning model often consists of multiple hidden layers
which learns the underlying distribution of input images. In an early stage of deep
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(a) Convolution operator.

(b) Max pooling operator.

Figure 2.1: Examples of convolution operator and max pooling operator (image
credits: [1]).

learning, these hidden layers were built upon fully connected layers. However, the
fully connected layers do not work well when the size of image quickly increases
because of the explosion of the number of parameters in the network. To overcome this
problem, convolutional neural network (CNN) [68] has been proposed. By using �lters
which stride over image, CNN is capable of successfully capturing the spatial and the
temporal information within image. Consequently, the feature representations by CNN
are better than those by fully connected layers, resulting in better performance. CNN,
therefore, becomes major architecture in computer vision. Nowadays, most of deep
learning model in computer vision employ CNN. This dissertation also uses CNN in
designing network architecture. We here brie�y review basic concepts in CNN.

Convolution layer. The core part of convolution layer is kernel/�lter. It is a small
learnable matrix with the size of " × # which traverses entire image (or output from
previous layer) to extract feature representations. Each value of feature representations
is computed by performing convolution operator between the kernel and the image
patch (local receptive �eld) corresponding to traversing step. We remark that the size
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of local receptive �eld is the same with that of kernel. Fig. 2.1a illustrates an example
of convolution operator. At each step, the kernel moves to right with a pre-set BCA834 to
reach the width of image. It then hops down to the beginning of image with the same
BCA834 and repeats the process until completion of traversing.

Depending on the size of kernel, the kernel may lose information from several (of
the last) columns. This is because the kernel cannot stride outside the size of image. To
avoid such scenario, padding the border of image may be used. More precisely, every
direction of the image is added ?0338=6 extra layer(s) of zero.

Using the kernel with the size of " × # , the stride step BCA834 , and the padding size
?0338=6, the size of output (feature representation) is computed as follows:⌊

�>DC =
�8= + 2 × ?0338=6 −"

BCA834
+ 1

⌋
(2.1)

⌊
,>DC =

,8= + 2 × ?0338=6 − #
BCA834

+ 1
⌋

(2.2)

where �8=,,8= are height and width of input while �>DC ,,>DC represent those of
output, respectively.

Activation layer. The activation layer is used after convolution layer. This will
apply element wise activation function to the output of convolution layer. Several
common activation layers are ReLU [69], Sigmoid, Tanh, and LeakyReLU [70].

Pooling layer. This layer is used to reduce the size of feature representations
before feeding those feature representations into the convolution layer. This layer is
helpful to decrease computational cost and to prevent from over�tting. The most
widely used pooling layer is max-pooling (Fig. 2.1b). We remark that using pooling
layer is optional.

Combining aforementioned layers in an appropriate order creates a complete
convolutional neural network which has capability of extracting desired feature
representations. There is no common way to design such CNN. In general, we can use
a combination of convolution layer and activation layer following by a pooling layer. In
addition, a normalization layer (Batch normalization [71], Instance normalization [72])
is used to accelerate the speed, performance, and stability of CNN. Fig. 2.2 show the
architecture of VGG-16 [30] which we use as our backbone network in this dissertation
(see Chapters 3, 4, and 5).
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Figure 2.2: Architecture of VGG-16 (image credits: [2]).

2.1.3 Generative models

Generally, deep learning models fall into two categories: discriminative models and
generative models. The discriminative models learn the boundaries between data
instances so that they are able to discriminate between di�erent kinds of data instances.
The generative models, on the other hand, capture the underlying distribution of data
so that they are capable of generating new data instance. More precisely, given a set of
data instances - and a set of labels . :

• The discriminative models capture the conditional probability ? (- |. ).

• The generative models capture the joint probability ? (-,. ) or ? (- ) (if there is
no label)

Since image synthesis attempts to produce a novel image from given inputs, it
therefore belongs to generative models family. We then brie�y review generative
models in this section. A generative model is generally optimized by using Maximum
Likelihood Estimation where the model seeks a set of parameters \ that maximize the
objective function:
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Figure 2.3: Taxonomy of Generative Models (image credit: [3]).

\ = max
\
? (- |\ ) (2.3)

where - is a set of data instances. We assume that - contains # data instances, the
above equation is equivalent to:

\ = max
\
? (G1, ..., G# |\ ) (2.4)

Since the probability of all data instance G1, ...G# happen at the same time is joint
probability, optimizing Eq. 2.4 becomes maximum likelihood:

\ = max
\
? (G1, ..., G# |\ ) (2.5)

We can approximate the term ? (G1, ..., G# |\ ) in Eq. 2.5 as follows:

? (G1, ..., G# |\ ) ≈
#∏
==1

? (G= |\ ) (2.6)

Using the approximation of ? (G1, ..., G# |\ ), Eq. 2.5 is rewrote:

\ = max
\

#∏
==1

? (G= |\ ) (2.7)
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Figure 2.4: Example of encoder–decoder architecture (image credits: [4]).

In practice, optimizing Eq. 2.7, however, is di�cult since it is a production of
probabilities. We thus transform it to a simpler form which is a summation of log
functions:

\ = max
\

#∑
==1

log(? (G= |\ )) (2.8)

Eq. 2.8 is a basic objective function of generative models. Since generative models
are diverse (Fig. 2.3) such as PixelRNN [73], variational Autoencoder [74] and generative
adversarial network (GAN) [64], Eq. 2.8 will be di�erent depending on the type of model.
For example, the objective function of GAN is a minimax game between generator and
discriminator min� max� + (�,�) = EG∼?data [log� (G)] + EI∼?z [log(1 − � (� (I))]. We
remark that our work heavily employs GAN. We thus review GAN in more details later.

2.2 Encoder–Decoder Approach

2.2.1 Overview of encoder and decoder

Encoder–decoder architecture [75] aims to transfer inputs into outputs without much
data distortion which are popularly used in image processing, machine translation. The
encoder–decoder architecture consists of two neural networks, namely encoder part
and decoder part. The encoder part learns to map the input into feature representations.
The decoder part, on the other hand, takes the feature representations as its input and
processes to produce results. Note that the results obtained by the decoder are variety
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Figure 2.5: Examples of convolution layer used in Encoder (left) and Decoder (right).
Blue maps are inputs, and cyan maps are outputs (image credits: [5]).

depending on the task. For example, the encoder–decoder network can be used for
semantic segmentation [4], style transfer [7, 9], text-to-image synthesis [76].

Theoretically, the encoder and the decoder can use di�erent network architecture.
For example, both encoder and decoder can be designed using CNN [68] or encoder is
RNN [75] while decoder is CNN [68]. In our work, however, we employ CNN [68] for
both the encoder and the decoder.

Fig. 2.4 illustrates a typical encoder–decoder network which uses CNN [68] in
designing both the encoder and the decoder. Though both the encoder and the
decoder employ convolution layer, they use di�erent sets of kernel size, BCA834 , and
?0338=6 (Fig. 2.5) (see Eqs. 2.1, 2.2). As a result, the encoder reduces the size of feature
representations along with its depth. On the other hand, the decoder gradually
increases the size of feature representations. The encoder and the decoder are jointly
trained to optimize the loss function. To this end, we iteratively feed the training
data to the network and compare the obtained results with the initial data using
reconstruction loss. We then update the parameters of the network by backpropagating
the error through the network architecture (i.e., both the encoder and the decoder).
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2.2.2 Image synthesis using encoder–decoder

Though the encoder–decoder network [75] is able to reconstruct image, but it still
lacks of ability of generating a novel image. This is because the encoder–decoder
network encodes each data instance independently, leading feature space is not
regular enough. Obviously, if the feature space is regular enough, any random
feature representation can be decoded to create a new image. To overcome this issue,
variational auto-encoder [74] has been proposed. Basically, the architecture of both
the networks (i.e., encoder–decoder [75] and variational auto-encoder [74]) are the
same. However, instead of encoding each data instance individually, the encoder in
variational auto-encoder encodes all data instances as distribution over the feature
space. Next, the encoder samples feature representations from the encoded distribution.
Then, the sampled feature representations are feed into the decoder to generate a new
image. It is worth to note that the learned distribution from the encoder is forced to be
close to the standard distribution by regularizing the KL-divergence between the two
distributions. This is because the standard distribution is continuity (i.e., two close
feature representations in feature space should not give two completely di�erent
images) and completeness (i.e., any feature representation in feature space should give
reasonable image).

Following the success of variational auto-encoders [74], many work [76–79] have
been proposed for image synthesis. Among these models, Mansimov et al. [76]
introduced text-to-image model that generates images from natural language de-
scriptions. The model in [76] inherits DRAW mechanism [79] to iteratively draw
patches on a canvas while attending to relevant words in description. Although these
models [74, 76–79] showed better performances than methods employing hand-crafted
features, they were unable to achieve highly realistic images.

Another major approach to improve encoder–decoder network [75] is to guide
the network with "meaningful" feature representations. In this approach, instead of
minimizing the reconstruction loss, we minimize the di�erence of meaningful feature
representations. More precisely, this approach employs a pre-trained CNN network
to extract the meaningful feature representations from input data and generated
images depending on the task. Then, the di�erence of those extracted features is
used to guide the network to update its parameters. The most famous work of this
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approach is proposed by Gatys et al. [9]. They found that the pre-train VGG-16 [30] on
ImageNet [80] is capable of capturing content and style along with its depth. The
content is the feature representations at higher layers in VGG-16. The style, on the other
hand, is Gram matrix [81] (i.e., a matrix of inner products) of feature representations.
They then apply these characteristics of feature representations extracted from VGG-16
in rendering image contents in di�erent styles. To this end, they [9] start from a noise
image sampled from standard distribution (we may regard this noise image as output of
encoder) and iteratively update the image to produce an image satisfying the semantic
distribution of the content image and appearance statistics of the style. During the
iteration, the weighted sum of style loss and content loss is minimized:

L(~̂, ~c, ~s) = ULcontent(~̂, ~c) + VLstyle(~̂, ~s), (2.9)

where ~c, ~s, and ~̂ denote the content image, the style, and the stylized image,
respectively. U and V are the weighting factors for content and style reconstruction.
Lcontent and Lstyle are content and style loss respective. The content loss is de�ned as
follows:

Lcontent(~̂, ~c) =
1
"

∑
:∈"

1
�: × �: ×,:

‖Φ: (~̂) − Φ: (~c)‖2, (2.10)

whereΦ: (·) denotes the normalized feature map at the:-th layer, which has�:×�:×,:

elements.

The style loss is computed at # layers as follows:

Lstyle(~̂, ~s) =
1
#

∑
:∈#
‖� (Φ: (~̂)) −� (Φ: (~s))‖� , (2.11)

where ‖·‖� denotes the Frobenius norm [81]. � (Φ: (·)) is the Gram matrix [81] of
the normalized feature map at the :-th layer. The Gram matrix��:×�: has elements
�8 9 = 〈h8, h 9 〉 where h8, h 9 are features at the 8-th and the 9-th channels respectively of
the feature map Φ: (·).

The work by Gatys et al. [9] showed remarkable results and opened up a new trend
in style transfer. As follow-up work of [9], [42] proposed a structure preservation
method using Matting Laplacian for photo-realistic style transfer. [43] utilized the
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Figure 2.6: Overview of Generative Adversarial Network.

screened Poisson equation to make a stylized image more photo-realistic. [82] proposed
a Laplacian loss that computes the Euclidean distance between the Laplacian �lters
responding to a content image and a stylized image in order to keep a �ne structure of
the content image.

Johnson et al. [7] and Ulyanove et al. [83], on the other hand, proposed a feed-
forward CNN and used the perceptual loss function for gradient-based optimization.
The perceptual loss used there is similar to the content and the style losses used in [9].
Their models have only to pass the content image to a single forward network to
produce a stylized image, which is fast. Methods related to [7] were proposed [8, 10–
12, 44, 84] where most of them improved network architecture to extract content and
style features, resulting in the explosion of network parameters.

2.3 GAN-based Approach

2.3.1 Overview of Generative adversarial network

Generative Adversarial Network (GAN) is �rst proposed by Goodfellow et al. [64].
Since GAN aims to learn the underlying distribution of data, it thus also falls into the
family of generative models (see Fig. 2.3). Di�erent from other generative models,
GAN composes of two independently di�erent network, namely Generator � and
Discriminator � (Fig. 2.6). The generator receives a noise vector z sampled from a
normal distribution ?z and outputs a novel image� (I). The discriminator, on the other
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hand, distinguishes whether its input G is real (i.e., image in training data ?data) or fake
(i.e., image � (I) obtained by generator). The two models are simultaneously trained
where the network �rst updates the parameters of � with �xing the parameters of �
and then updates the parameters of � with �xing the parameters of� . The training
process is summarized as follows:

• First, with �xing the parameters of � , the generator � generates an fake image
� (I) from a sampled noise I. Then, � (I) is fed into � to obtain classi�cation
error which is used to update the parameters of� through backpropagation.
Note that, � (I) is expected to be classi�ed as real label.

• Next, with �xing the parameters of � , the discriminator � takes a real image G
and a fake image � (I) to update its parameters.

• The above two steps are repeated until the network is optimized.

In formally, training GAN is a minimax game between � and � :

min
�

max
�
+ (�,�) = EG∼?data [log� (G)] + EI∼?z [log(1 − � (� (I))] (2.12)

where ?data denotes all training data, ?z denotes sample distribution and E means
expectation over data.

The idea of GAN is simple but e�ective. However, training a GAN model is hard
with some major problems:

• Non-convergence: the training of GAN is a minimax game between the generator
� and the discriminator � (Eq. 2.15). In other word, if one wins the other loses.
However, depending on the learning rate and the initial parameters of each
model, the convergence may be never happened. Intuitively, either the generator
or the discriminator always countermeasures against each other. This leads the
network is hard to converge.

• Mode collapse: the real data distributions are diverse and multimodal. For
example, the numeric system has 10 modes from digit "0" to digit "9". However, if
a GAN model is able to generate digit "1" only, it su�ers from a so-called "mode
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collapse". This issue happens when the generator (accidentally) �nds a good
sample that always fools the discriminator. As a result, the generator tends to
generate that good sample independently to sampled vector. The GAN network,
therefore, produces images less diverse.

• Diminished gradient: In generally, training a classi�cation (i.e., training the
discriminator) is easier than training the generator. When the discriminator
becomes very good at its task, the gradient of the generator is saturated, leading
that the parameters of the generator are not updated.

• Training GAN is highly sensitive to hyperparamter selections.

To stabilize the training of GAN, many work [85–88] has been proposed. Since this
dissertation does not aim at improving GAN, we thus refer previous work [85–88] for
more details.
GAN evaluation. In order to evaluate the performance of GAN, we need to measure
two criteria: (i) the overall quality of generated images, and (ii) the diversity of
generated images. To this end, two metrics have been proposed, namely Inception
score [89] and Fréchet inception distance [90].

Inception score (�(). The idea behind of �( comes from the entropy value of a random
variable. Intuitively, when an image is highly predictable, its entropy is low. In contrast,
entropy is high if an image is highly unpredictable. Given a generated image Ĝ , we
expect that Ĝ is easily classi�ed. Therefore, the conditional probability ? (~ |Ĝ) (where ~
is class label) should be low. The ? (~ |Ĝ) evaluates the quality of generated image
(criterion (i)). On the other hand, if the generated images are diverse, the distribution
of each class label ~ should be uniform (criterion (ii)). To this end, we compute the
empirical marginal-class distribution for each class label ~: ?̂ (~). To combine two
criteria, we compute the KL-divergence between ? (~ |Ĝ) and ?̂ (~). We remark that
higher inception score is better. In practice, inception score is computed through the
output of the Inception-v3 network [91]:

�( (�) ≈ exp( 1
#

#∑
8=1

�KL(? (~ |Ĝ (8) | |?̂ (~)))) (2.13)

where Ĝ is a synthesized image by the generator� , # is the number of generated im-
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Figure 2.7: Overview of Conditional GAN.

ages, �KL is the Kullback–Leibler divergence, ~ indicates an instance of all classes given
in the dataset, ? (~ |Ĝ) is the conditional class distribution, and ?̂ (~) = 1

#

∑#
8=1 ? (~ |Ĝ (8))

is the empirical marginal-class distribution.
Fréchet inception distance (���). This metric evaluate how close between generated

images and real images. To this end, ��� measures the similarity of real and generated
data using the Fréchet distance [92] between their activation distributions extracted
from the ?>>;3 layer of the Inception-v3 network [91]:

��� =


`real − `gen



2 + tr(Σreal + Σgen − 2(ΣrealΣgen)1/2) (2.14)

where `real, `gen Σreal, Σgen are means and covariance matrices of the activation
distributions of real and generated data, and tr(·) is the trace.

2.3.2 Conditional GAN and DCGAN

Conditional GAN [87] and Deep convolutional GAN (DCGAN) [6] are two of the
popular and successful network design of GAN. Moreover, they are fundamental ideas
of GAN-based image synthesis model.
Conditional GAN. As we mentioned above, training a GAN model is nontrivial. This
is because GAN automatically learns from the noise vector resulting in uncontrollable
results. To better control the results of GAN, we can add an extra information to guide
the learning process. Conditional GAN [87] comes with this idea. More precisely,
conditional GAN [87] adds an additional condition to both the generator and the
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Figure 2.8: Generator in DCGAN (image credits: [6]).

discriminator to not only to generate plausible images but also to meet the conditions
(Fig. 2.7). By adding class label, the loss function in GAN (Eq. 2.15) becomes:

min
�

max
�
+ (�,�) = EG∼?data [log� (G |~)] + EI∼?z [log(1 − � (� (I) |~)] (2.15)

where ~ is given condition.
Interestingly, the additional condition in conditional GAN is variety such as class

label, segmentation map, text, or image. Nowadays, the idea of conditional GAN is
widely used in GAN-based models.
Deep convolutional GAN (DCGAN). This architecture is proposed by Radford et
al. [6]. DCGAN is mainly built upon convolution layers without max-pooling layer or
fully connected layer. Fig. 2.8 illustrates the generator in DCGAN. The discriminator in
DCGAN (mostly) mirrors to the generator. In summary, some important points in
DCGAN are below:

• Replace max-pooling layer by using the BCA834 in convolution layer (Eqs. 2.1, 2.2).

• Remove all full-connected layers.

• Use transposed convolution layer to upsample feature maps.

• Use Batch Normalization [71] after convolution layer. Note that the output layer
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of generator and the input layer of discriminator are not followed by Batch
Normalization.

• In generator, use ReLU [69] except for the last convolution layer uses C0=ℎ.

• In discriminator, use LeakyReLU [70].

2.3.3 Image synthesis using GAN

As we mentioned above, combination of conditional GAN and DCGAN is a basic
architecture for GAN-based image synthesis. Some work conditions GANs on the
attribute label [38, 86] or images [37, 93–96] for domain transfer [37, 93], photo
editing [94], image super-resolution [95].

Several GAN-based models for style transfer are also proposed [96–99]. These
models also optimize the network with a large number of content images during the
training step. Though GAN-based models bring a promising approach to improve the
quality of stylized images, their results, at this time, still are less impressive [100].
Furthermore, as in common with other GAN-based approaches, their training processes
are also unstable.

Dong et al. [13] proposed image manipulation with text where they condition
text and source image on GAN. Though it generates images that match the semantic
meaning of the input text description while maintaining other parts of a source image,
it does not preserve background precisely because the discriminator is used only for
foreground; synthesized images are less realistic images. To enhance the matching
between text description and the foreground, Nam et al. [56] proposed a text-adaptive
discriminator. Their discriminator splits a text description into word-level so that the
discriminator is able to match each word to each visual attribute more precisely. Li et
al. [57], on the other hand, attempted to generate attributes matching text description
and to reconstruct text-irrelevant contents of the source image at the same time. They
thus proposed text-image a�ne combination module (ACM) and detail correction
module (DCM). The ACM seeks the text-relevant regions in source image to generate
new attributes matching given text descriptions while the DCM recti�es text-irrelevant
regions and completes missing contents. Addressing the background problem in image
synthesis, Yang et al. [62] proposed to decompose the image synthesis into two phases
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using foreground and background generators. However, using only one discriminator
is not able to judge foreground and background well. Nonetheless, their method
illustrated the capability of GAN in separating feature space.

Reed et al. [45] proposed an end-to-end GAN using the text condition. They
employed a pre-trained text encoder [47] to extract text features from an input text, and
then combined text features with a vector representing random noise to produce the
input of the generator. They also employed the combination of text features and image
features in the discriminator to discriminate real images and generated images. Their
proposed model [45] became the baseline of the GAN framework for generating images
from text descriptions. As an extension, a model conditioned on texts and location
information was proposed [101]. Models with two stages of GAN, Stack-GAN [18]
(and Stack-GAN++ [46]), were also proposed, showing successfully generated higher
resolution images (256 × 256), compared to [45] (64 × 64). Xu et al. [19] proposed an
attention mechanism to �ne-grained text-to-image generation. Their model generated
image details by paying attention to the relevant words in text description. These
models [18, 19, 45, 46, 62] condition on GAN only texts or a pair of texts and location
information [101]. However, directly generating images from text description is
di�cult because of the large gap between text and image domains. To overcome the
limitation of GANs conditioned on text descriptions, a two-step approach was proposed
where inference of the scene layout as an intermediate representation between text
and image is followed by using the layout to generate images [17, 20, 22, 48]. Since the
gap between the intermediate representation and image is smaller than that of text and
image, this approach generates more realistic images.

2.4 Our Approach

As we mentioned above, a deep neural network is capable of capturing from low-level
to high-level feature representations. Moreover, input data of a network is diverse and
multimodal, leading the feature representations have di�erent meaning depending
on their role. Unfortunately, either the encoder–decoder models or the GAN-based
models currently employ all the feature representations together, resulting in lack of
ability of controlling generated images. This dissertation, on the other hand, aims to
propose a novel methodology in image synthesis which employs disentangled feature
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Table 2.1: Feature representations used in state-of-the-arts and our research.

Task Style transfer Image manipulation
with text

Text-to-image
synthesis

Feature space Content Style Foreground Background Object All relations Individual relation

Gatys+ [9] – X – – – – –
Sheng+ [10] – X – – – – –
Li+ [12] – X – – – – –
Johnson+ [7] X – – – – – –
Huang+ [8] X – – – – – –
Chen+ [11] X – – – – – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dong+ [13] – – X – – – –
Yang+ [62] – – X – – – –
Nam+ [56] – – X – – – –
Li+ [57] – – X – – – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [18] – – – – X – –
Xu+ [19] – – – – X – –
Johnson+ [17] – – – – – X –
Hong+ [22] – – – – – X –
Li+ [48] – – – – – X –
Ashual+ [20] – – – – – X –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Our research X X X X – X X

representations. More precisely, we choose feature representations depending on their
role in the task and then combine these disentangled feature representations to create
image. Table 2.1 summarizes feature representations used in state-of-the-arts and our
research.

In order to investigate our proposed methodology, we take both basic approaches
in image synthesis (i.e., encoder–decoder and GAN-based models) in our research.
Rendering content images in di�erent styles (style transfer). In this task, we
follow the encoder–decoder architecture because it is more promising in style transfer
task. Di�erent to other style transfer models, we extract content and style feature repre-
sentations from inputs and then combine these disentangled feature representations to
stylize images. Fig. 2.9 intuitively illustrates our idea. More precisely, we propose a
two-stream network where a deep stream extracts content feature representations
while a shallow stream does style feature representations. Then, the network combines
these disentangled representations in an adaptive manner to produce stylized images.
By using disentangled content and style representations, our network is able to control
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Figure 2.9: Overview of our idea for rendering content images in di�erent style. More
details can be found in Chapter 3.

Figure 2.10: Overview of our idea for image manipulation with text. More details can
be found in Chapter 4.

the contribution of content and style images in the �nal results. This makes our work
distinct to previous work. We refer Chapter 3 for more details.
Image manipulation with text. This task conditions on two (very) di�erent con-
ditions, namely image and text. We thus take GAN-based model to deal with this
task because GAN-based model has been known better in controlling such di�erent
conditions. We observe that the foreground and background feature representations
in an image are obtained at di�erent layers in the network. We thus fully take into
account the disentangled foreground and background feature representations in this
task. Overview of our idea is shown in Fig. 2.10. In particular, we propose a GAN-based
model having two discriminators, one for foreground and one for background. The
two discriminators separately judge foreground and background of the synthesized
image to meet an input text description and a source image. The use of disentangled
foreground and background representations brings us two bene�ts. First, the matching
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Figure 2.11: Overview of our idea for text-to-image synthesis. More details can be
found in Chapter 5.

between foreground and text description is more precise because the network does
not distract by irrelevant information (i.e., background). Second, the network is
able to retain background information successfully because it brings background
representations in source image to generated image directly. Chapter 4 discusses our
proposed method for this task in more details.
Text-to-image synthesis. As we discussed above, GAN-based models obtain impres-
sive results in text-to-image synthesis. However, they still struggle to generate realistic
images that are consistent with text description. We thus apply our methodology
on GAN-based text-to-image synthesis model to tackle the current issues. Due to
large gap between text description and image, we �rst predict an intermediate layer
(i.e., image layout) from text and then convert the layout to the image. The image
layout re�ects visual relations among objects in the text description. When localizing
each object in the layout, we necessarily keep not only the whole structure (i.e., all
relations together) but also local structure (i.e., each relation individually). To ensure
such conditions, we therefore employ two kinds of relations in predicting layout:
(i) comprehensive relation, and (ii) individual relation (Fig. 2.11). The two kinds of
relations enable us to �rst initialize the whole structure of image and then to adjust
objects’ locations to preserve local structure. Consequently, our predicted layout is
consistent to the text description which allows better generating images. Chapter 5
presents our proposed method for this task.
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3
Learning Content and Style Feature

Representations Adaptively for Style
Transfer

3.1 Introduction

How New York looks like in “The Starry Night” by Vincent van Gogh is an interesting
question and, at the same time, di�cult to answer. In practice, re-painting a famous
�ne-art style takes much time and requires well-trained artists. Answering this
question can be stated as the problem of rendering semantic content of one image to
di�erent styles, and it is called style transfer.

[9] showed that the image representation derived from a Convolutional Neural
Network (CNN) can be used to represent the semantic content of an image and the style,
which opened up a new trend of CNN-based style transfer. CNN-based approaches
in style transfer fall into two categories [100]: Image-Optimisation-Based Online
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Figure 3.1: Example of stylized results. Left-most column: content image (large) and
style image (small). From left to right: the stylized image by our method, Johnson+ [7],
Huang+ [8], and Gatys+ [9], Sheng+ [10], Chen+ [11], and Li+ [12]. Our results
surrounded with red rectangles are more balanced in content and style than the others.

1:5 1:11:5 1:1

Gatys+Johnson+

Figure 3.2: Example of stylized results obtained by Johnson+ [7] and Gatys+ [9] by
changing the ratio of content and style from 1:5 to 1:1. Left-most column: content
image (large) and style image (small). In each block, from left to right: the stylized
image with various ratio of content and style.

Neural Methods (IOB-NST) and Model-Optimisation-Based O�ine Neural Methods
(MOB-NST). The key idea of IOB-NST is to synthesis a stylized image by directly
updating pixels in the image iteratively through the back-propagation. The IOB-NST
such as [9, 42, 43] starts with a noise image and iteratively updates the image by
changing the distribution of noise along with the statistics of content and style until
the de�ned loss function is minimized. MOB-NST such as [7, 8, 10–12, 44, 98, 99, 102],
on the other hand, �rst optimizes a generative model through iterations, and then
renders the stylized image using a forward pass. In order to optimize the generative
model, MOB-NST trains each feed-forward model for each speci�c style by using the
gradient descent over a large dataset. IOB-NST is known to produce better stylized
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results in quality than MOB-NST [100], while MOB-NST has more e�ciency in speed.
IOB-NST and MOB-NST have the capability of controlling the balance between the

content and the style. Namely, they allow to manually change the ratio of content and
style. However, changing the ratio do not guarantee that network parameters for
stylized images changes as expected, meaning that the contributions of the content and
the style in a stylized image are uncontrollable in reality. Fig. 3.2 shows examples
obtained by IOB-NST (Gatys+ [9]) and MOB-NST (Johnson+ [7]) with various settings
of contributions of the content and the style. We can see although the ratio of content
and style is signi�cantly changed, the results do not change much. How to control
such contributions is important. To this end, the network need to disentangle content
and style feature space. This allows us to explicitly control the ratio of content and
style in stylized images. Since the balance between the content and the style in style
transfer is required in many applications; for instance, font transfer [103], realistic
photo transfer [43, 104], we thus address the balancing content and style in stylized
images in this work.

Although existing methods [7–12, 42–44, 97–99, 102] show the capability of
rendering image contents in di�erent styles, generated stylized images are not always
well balanced in content and style. Such methods take care of either the content or
the style, but not both, producing unbalanced stylized images. IOB-NST is good at
faithfully rendering the style while it tends to lose the content. MOB-NST, on the
other hand, preserves more semantic content than the style. How to keep the balance
between the content and the style in style transfer is a crucial issue to improve the
quality of stylized images.

Another important issue to address is the computational speed. Although MOB-NST
such as [7, 8, 10–12, 44, 97–99, 102] are able to produce stylized images fast, they rely
on a strong computational power. Therefore, either IOB-NST or MOB-NST is hard to
apply to real-time applications.

We propose an end-to-end two-stream network for balancing the content and style
in stylized images where contributions of the content and the style are adaptively
taken into account. The encoder part of our network consists of the content stream
and the style stream where the streams have di�erent architectures. The two streams
are connected by adaptive feature injection and independently trained to learn the
semantic content or the style representation. The content features and the style
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features are then combined in our proposed adaptive concatenation to ensure the
balanced contribution of each stream. As the decoder part of our network, we use
the feed-forward model to reduce the rendering time while we spend much time on
learning like [7, 8, 10–12, 44]. Unlike other methods that train a new model from the
scratch for a yet unknown style, we �ne-tune parameters from an existing model,
allowing our network not only to accommodate fast training but also to easily adapt
new styles. Our experiments demonstrate that our method produces more balanced
stylized images in both content and style than the state-of-the-art methods (Fig. 3.1).
They also show that our method runs about 22× faster than the state-of-the-art
methods. We remark that our proposed model is trained for one style only, but it is
easy to be �ne-tuned to other styles incrementally with a low cost.

3.2 Related Work

Gatys et al.[9] for the �rst time proposed a method using CNNs and showed remarkable
results. Their method trains CNNs to learn the semantic information from content
images and matched it with the distribution of the style. It starts from a randomly
distributed noise image and iteratively updates the image to produce an image satisfying
the semantic distribution of the content image and appearance statistics of the style.
During the iteration, the weighted sum of style loss and content loss is minimized. As
follow-up work of [9], [42] proposed a structure preservation method using Matting
Laplacian for photo-realistic style transfer. [43] utilized the screened Poisson equation
to make a stylized image more photo-realistic. [82] proposed a Laplacian loss that
computes the Euclidean distance between the Laplacian �lters responding to a content
image and a stylized image in order to keep a �ne structure of the content image.
These approaches fall into the IOB-NST category, and all face with the computational
speed problem.

[7] and [83], on the other hand, took MOB-NST, proposing a feed-forward CNN
and used the perceptual loss function for gradient-based optimization. The perceptual
loss used there is similar to content and style loss in [9]. Their models have only to
pass the content image to a single forward network to produce a stylized image, which
is fast. Their two models are di�erent only in the network architecture. [7] follows the
design of [6] with their modi�cation of using residual blocks and fractionally strided
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convolutions while [83] uses a multi-scale in their generator. [44] also utilized the
feed-forward network, and they used multiple-generator to improve the quality of
results. These methods are fast in generating stylized images, but they are capable of
dealing with a single style only.

[84] proposed a multi-style network that introduces shared-computation in many
style images where they used instance normalization (IN) [72] for balancing features
from the content and from the style. They also proposed an improvement of IN to learn
a di�erent set of a�ne parameters for multi-styles in the batch way. However, their
model can train a limited number of styles because the network capability is limited,
meaning that the number of styles to handle is limited. [11] proposed a method that
overcomes the limitation of the number of styles by using a patch-based method. Their
method �rst extracts a set of patches from the content and style each, and then, for
each content patch, the method �nds its closest style patch and swaps their activation.
In this way, their method transfers an unlimited number of styles; however, the cost
for patch extraction and swapping increases the computational time signi�cantly.
[12] also proposed a method for multi-style transfer using feature transformations.
They �rst employ pre-trained VGG-19 as their encoder to train an decoder for image
reconstruction. Then, with �xing both encoder (VGG-19) and decoder, their model
performs the style transfer through whitening and coloring transforms on a given
content image and a style image. Though their method successfully solves the multi-
style transfer, it still su�ers from the computational cost and loses the content due to
the feature transformations.

[8] and [10] proposed multi-style transfer models consisting of two CNN streams
for content and style. [8] employed the pre-trained VGG-16 to extract content and style
features and introduced Adaptive Instance Normalization (AIN) to make the mean
and the variance of content features similar to those of style features. [10], on the
other hand, proposed AvatarNet which employed the pre-trained VGG-19 to extract
the content and style features. These features are matched by using style-swap [11]
or AIN [8] before being fed into the decoder. Di�erent from [8], their models have
skip-connections from the style encoder to the decoder. [8] and [10], however, used the
same architecture for the content CNN and for the style CNN. Having the same CNN
architecture for the content and the style causes unavoidable unbalance between
the content and the style because semantic levels extracted from the content and
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Original image relu1_2 relu2_2 relu3_1 relu3_2 relu3_3 relu4_3 relu5_1

Figure 3.3: Examples of the feature reconstruction for several layers from the VGG-16
pre-trained network.

the style should not be the same in style transfer. Those models require expensive
computational cost as well. Furthermore, AIN [8] assumes the standard distribution on
pixel values of images, which is not always ensured in styles when normalizing data.
In deed, AIN [8] tends to produce a lot of artifacts; especially they are visible on �at
surfaces [98]. We remark that the skip-connection in AvatarNet [10] weights the style
contribution more, causing unbalance in stylized images.

Di�erent from the methods above, we take into account the contributions of the
content and the style through a two-stream feed-forward network to balance the
content and the style in stylized images. In particular, our proposed two-stream
network is di�erent from [8, 10] in that our network has di�erent depths in layer for
the content and the style encoders to extract di�erent semantic levels of the content
and the style. In addition, separating content and style enables our method easy to
�ne-tune to other styles with a cheaper computational cost (re-training time, required
numbers of training images) than other models possessing only one encoder [7, 11, 44].
As a result, our method is able to easily deal with multi-styles.

3.3 Semantic Levels of Image Features for Content

and Style

Along with the depth, CNN is known to extract di�erent semantic levels of image
features in layers. As demonstrated in [7, 9], features in early layers re�ect colors,
textures, and common patterns of images while those in latter layers preserve content
and spatial structure of images. We, therefore, expect that the features in lower
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Style image relu1_2 relu2_2 relu3_3 relu4_3relu2_1 relu3_1 relu3_2

Figure 3.4: Examples of style image reconstruction for several layers from the VGG-16
pre-trained network.

relu3_2 relu3_3 relu4_1 relu4_2 relu4_3

Figure 3.5: Examples of combination of content and style images from A4;D3_2 to
A4;D4_3. Left-most column: content image (large) and style image (small), From left to
right: the stylized images at di�erent combination levels by Gatys+ [9] where the ratio
of contributions of content and style is 1:1.

layers work as style features and those in higher layers do as content features. Using
appropriate semantic levels of image features in style transfer is crucial. We thus
experimentally exploit the semantic levels of image features in VGG-16 [30] to design
suitable numbers of layers in designing our network to extract content and style
features. We remark that we refer [7, 9] in which image reconstruction is learned using
hidden features in CNN layers.

For the content image reconstruction, we randomly prepare 100 images. We then
feed each of the 100 images into the VGG-16 [30] pre-trained on object recognition
using ImageNet dataset [80] without any �ne-tuning and extract the features at each
Recti�ed Linear Unit (ReLU) [105]. These features are employed to reconstruct original
images using inverting technique [106]. Hereafter, we use A4;D-_. to mention a
speci�c ReLU layer; see the de�nition of VGG-16 [30] architecture for details. Fig. 3.3
shows some examples of image reconstruction at several layers. We see that at low
levels, i.e., from the 2nd layer (A4;D1_2) to the 5th layer (A4;D3_1), the reconstructed
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images are similar to the original image, meaning that these layers successfully keep
colors, textures, and common patterns of images. At higher levels, i.e., from the 6th
layer (A4;D3_2) to the 10th layer (A4;D4_3), the reconstructed images preserve the
content and spatial structure. At even higher layers that start from the 11th layer
(A4;D5_1), semantic features are gradually learned; the exact shape, on the other hand,
is not preserved.

For the style image reconstruction, we use Adam optimization [107] to �nd an
image that minimizes the style reconstruction loss (proposed in [9]). To obtain style
reconstructed images, we start from a noise image and optimize the style loss as [9]
using the VGG-16 pre-trained on ImageNet. Fig. 3.4 shows an example of the style
image reconstruction. We see that the style of image can be obtained until the 7th layer
(A4;D3_3)

The above observation holds true for the images and the styles that we evaluated.
Combining the insight given by [7, 9], we may thus conclude that the low-level layers
re�ect the style of the image while the high-level layers capture the content of the
image. More precisely, from the 6th layer (A4;D3_2) to the 10th layer (A4;D4_3), the
network is capable of appropriately capturing content information in the images. The
style information, on the other hand, can be obtained from the 2nd (A4;D1_2) to the 7th
(A4;D3_3) layers.

[9] pointed out that image content and style cannot be completely disentangled.
This indicates that depending on the objective, we have to appropriately design the
layer levels of content and style features for their combination. We thus further analyze
e�ectiveness of the layers from the 6th (A4;D3_2) to the 10th (A4;D4_3) for content
matching to determine the best one for combination. We follow [9] to synthesize the
stylized images where we set the contributions of content and style to be equal with
each other. To this end, we �x the style matching from the 2nd (A4;D1_2) to the 7th
(A4;D3_3) layers, while performing the content matching at every single layer from the
6th (A4;D3_2) to the 10th layers (A4;D4_3). Fig. 3.5 shows examples of stylized images
having di�erent layers in combination. We see that the content matching at the 6th
and the 7th layers (A4;D3_2 and A4;D3_3) is most reasonable to keep the balance of
content and style in stylized images.

Using above observation, we design our network to fully exploit the characteristics
of image features. We choose the 6th layer for content because it has a smaller number
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of parameters than the 7th layer (it is faster to learn). We choose the 4th layer for style
because it is neither too early in layer nor marginally di�erent from the layer used for
content. In conclusion, we use the features at the 6th layer (A4;D3_2) for content and
those at the 4th layer (A4;D2_2) for style.

3.4 Proposed Method

3.4.1 Network design

Our network follows end-to-end encoder-decoder architecture for rendering of the
content in a given style [7, 11, 44]. The network in [7, 11, 44] possesses only one
encoder to extract the semantic content and style. This means that the extracted
semantic level of the content and that of the style are the same. When we stylize
images, the role of the content should be di�erent from that of the style because the
content gives us what exist (object shapes and locations) in the rendered image and
the style gives us the impression of the rendered image. Accordingly, the semantic
level used for the rending should be di�erent depending on the content or the style.
Otherwise, unbalance between the content and style remains in stylized images. We
thus design a network having two encoders in which their architectures are di�erent
from each other to extract di�erent semantic levels of the content and the style. With
the two encoders, our model treats the content and the style in di�erent ways, allowing
the network to be able to balance the roles of the content and the style better than the
model having only one encoder.

Ideally, the network should be able to retain the semantics of the content as well
as the statistics of the style as much as possible. The semantic content and style of
an image are captured at di�erent layers in the network (see [7, 9] and Section 3.3):
the network obtains the style at low-level layers in depth while high-level layers
become more sensitive to the actual content of the image. We thus design the encoders
with di�erent depths to retain useful information from both the content and the style.
Namely, we design a deep encoder for the content and a shallow encoder for the style.
Moreover, in order to re�ect features extracted from the style at low-level to those from
the content, we employ the feature injection via the skip-connection technique from
the shallow encoder to the deep one. Because the content feature and the style feature
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Figure 3.6: Framework of our proposed method. Our network consists of two encoders
having di�erent architectures and one decoder. The loss network is used to train the
encoders and the decoder.

are extracted at di�erent levels in the network, they have di�erent characteristics. We
thus introduce an e�ective concatenation to enhance the contribution of these features
for good performances instead of implementing their simple ones.

3.4.2 Network architecture

Our proposed network consists of three Fully Convolutional Network (FCNs): two
encoders and one decoder (Fig. 5.2). The two encoders are a deep network, the content
subnet, to extract content feature qc from a content image, and a shallow network, the
style subnet, to extract style feature qs from a style image. The feature injection is
employed between the content subnet and the style subnet using the balance weight
(cf. Section 3.4.4). This balance weight is also used to adaptively concatenate the
features qc and qs at the top of content and style subnet before being fed into a deep
network, the generator subnet, to produce a stylized image. We employ the VGG-16
model [30] as the loss network in the training phase.

Our network receives the content and style images where each image is with the
size of = × = × 3 (= is the size of image, 3 are for RGB channels), and synthesizes an
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stylized image of = × = × 3. In the training phase, we use the images of 256 × 256 × 3 (=
= 256). Although we train the network on images with the size of 256 × 256 × 3, the
network can accept any size of images in testing (= can be 64, 128, 256, or 512). We
remark that the size of the content image and that of the style image have to be the
same to ensure the consistency of the feature size when injecting and concatenating
the content and the style features.

Content subnet

The content subnet is a stack of six convolution layers with the �lter size of 3 × 3, and
the padding size of 1 × 1. We use the stride of 2 × 2 at the third, the �fth, and the sixth
layers to reduce the size of feature maps and the stride of 1 × 1 at the other layers. The
numbers of the output channels are 32, 48, 64, 80, 96, and 128, respectively. Each
convolution layer is followed by a spatial instance normalization (IN) layer [72] and a
Recti�ed Linear Unit (ReLU) layer [105]. In order to avoid the border artifacts caused
by convolution, the re�ection-padding is used instead of the zero-padding similarly
to [84].

Style subnet

The style subnet, which has four convolution layers, is shallow network (more precisely,
shallower than the content subnet). All convolution layers have the �lter size of 3 × 3,
the re�ection-padding of 1 × 1, and the stride of 2 × 2, except for the �rst layer that
employs the stride of 1 × 1. The numbers of the output channels are 32, 64, 96, and 128,
respectively. Similarly to the content subnet, each convolution layer is also followed by
an IN layer [72] and a ReLU layer [105].

We employ feature injection from the feature q@s at the @-th layer in the style subnet
to those q?c at the ?-th layer in the content subnet, the size of whose feature map is the
same (Table 3.1). To take into account the contributions of q@s and q?c , we introduce the
adaptive feature injection with the balance weight (cf. Section 3.4.4).

Generator subnet

The generator subnet consists of �ve residual blocks, three deconvolution layers, and
two convolution layers in this order.
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Table 3.1: Architecture of our encoders. The arrow (←) indicates the adaptive feature
injection.

Content subnet Style subnet

No Layer Output channel No Layer Output channel

0 Content image 3 0 Style image 3
1 Convolution 32 1 Convolution 32
2 Instance normalization 32 2 Instance normalization 32
3 ReLU 32 ← 3 ReLU 32
4 Convolution 48
5 Instance normalization 48
6 ReLU 48
7 Convolution 64 4 Convolution 64
8 Instance normalization 64 5 Instance normalization 64
9 ReLU 64 ← 6 ReLU 64
10 Convolution 80
11 Instance normalization 80
12 ReLU 80
13 Convolution 96 7 Convolution 96
14 Instance normalization 96 8 Instance normalization 96
15 ReLU 96 ← 9 ReLU 96
16 Convolution 128 10 Convolution 128
17 Instance normalization 128 11 Instance normalization 128
18 ReLU 128 12 ReLU 128

[7] argues that the residual block can enrich the information involved in the input
feature. We, therefore, use residual blocks to increase the impact of the balance weight
in the concatenated feature. Similarly to [7], we use �ve residual blocks outputting 256
channels, where each of them has two convolution layers with the �lter size of 3 × 3,
the re�ection-padding of 1 × 1, the stride of 1 × 1, and a summation layer as in [31]. All
convolution layers are followed by an IN layer [72] (we use it to replace the batch
normalization [71] in the original architecture [31]) and a ReLU layer [105].

To upscale the feature map, we employ three deconvolution layers with the same
�lter size of 3 × 3, the re�ection-padding of 1 × 1, and the stride of 2 × 2, outputting
128, 96, and 64 channels, respectively.

In order to eliminate the a�ect of the convolution stride, we use two convolution
layers which have the �lter size of 1 × 1, the padding of 0 × 0, and the stride of 1 × 1,
outputting 32 and 3 channels. All deconvolution layers and convolution layers are
followed by an IN layer [72] and a ReLU layer [105], except for the last convolution
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layer that uses the tanh activation to guarantee that the range of the output can be
normalized to be [0, 255].

3.4.3 Loss function

We employ two loss functions for content loss and style loss, which are computed from
layers of the loss network. The content loss Lc computes the similarity of high-level
features between the content image and the stylized image. The style loss Ls, on the
other hand, computes the similarity of low-level features between the style image and
the stylized image.

The overall loss is a weighted sum of the content loss and the style loss:

L(~̂, ~c, ~s) = ULc(~̂, ~c) + (1 − U)Ls(~̂, ~s), (3.1)

where ~c, ~s, and ~̂ denote the content image, the style, and the stylized image,
respectively. U is the combination weight (we set U = 0.5 in our experiments to equally
weight these two loss functions).

We obtain the content loss at " layers as follows:

Lc(~̂, ~c) =
1
"

∑
:∈"

1
�: × �: ×,:

‖Φ: (~̂) − Φ: (~c)‖2, (3.2)

whereΦ: (·) denotes the normalized feature map at the:-th layer, which has�:×�:×,:

elements. The range of Lc is [0, 1].

The style loss is computed at # layers as follows:

Ls(~̂, ~s) =
1
#

∑
:∈#
‖� (Φ: (~̂)) −� (Φ: (~s))‖� , (3.3)

where ‖·‖� denotes the Frobenius norm [81]. � (Φ: (·)) is the Gram matrix [81] of
the normalized feature map at the :-th layer. The Gram matrix��:×�: has elements
�8 9 = 〈h8, h 9 〉 where h8, h 9 are features at the 8-th and the 9-th channels respectively of
the feature map Φ: (·). The range of Ls is [0, 1].
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3.4.4 Adaptive feature injection and concatenation

In our network, we employ the feature injection between the content features and the
style features. We also concatenate them to feed into the generator subnet. To weight
the contributions of the content features and the style features, we introduce the
balance weight W . This balance weight is adaptively updated during the training so that
it retains the balance between the content and the style in stylized images.

At the C-th iteration in training phase, Wt is computed as follows:

Wt =
Ls(C)

Ls(C) + Lc(C)
, (3.4)

where Ls(C) and Lc(C) are the style loss and the content loss at the C-th iteration in the
training phase. To restrict the �uctuation of the balance weight, we compute W at every
non-overlapping ) iterations and use it for the next ) iterations:

W =
1
)

)∑
C=1

WC . (3.5)

Using W , we sum up the content feature at the ?-th layer q?c and the style feature at
the @-th layer q@s for the feature in adaptive feature injection as follows:

q?@ = (W × q?c ) + ((1 − W) × q
@
s ). (3.6)

Similarly, we concatenate the content feature qc and the style feature qs in the
adaptive concatenation as follows:

q = (W × qc) ⊕ ((1 − W) × qs). (3.7)

The learned balance weight W ensures the balance of the contributions of the content
feature and the style feature in both feature injection and concatenation layers. For
example, when Ls is smaller than Lc (meaning W ≤ 0.5 in Eq. (3.5)), the contribution of
style feature is increased in the next iterations, and vice verse. Moreover, the learned
balance weight W is more advantageous than the �xed balance weight that does not
concern the balance of losses.

In order to explicitly control the contribution ratio of the content and the style, we
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Figure 3.7: Styles used in experiments. From left to right: Starry Night, Mosaic,
Composition VII, La Muse, The Wave, and Feathers.

manually set the expected contribution ratio in the loss function, and then introduce
the learnable weight that allows us to change stylized images as we expect. The
combination weight U takes the former role while the learnable balance weight W does
the latter role. In other words, in our method, U sets an expected contribution ratio of
content and style in stylized images through the loss function while W controls the
learning direction of the network during the training to achieve the contribution ratio
speci�ed by U . In our experiments where we set U = 0.5, we see that W works for the
equal contribution ratio of the content and the style as expected (see Section 3.6.1 for
details). We remark that U and W together play the role of the indicator for how much
the content and the style are emphasized in obtained stylized images.

3.5 Experimental Settings

3.5.1 Dataset and compared methods

Dataset

We used in our experiments, images in the MS-COCO 2014 dataset [108] as our content
images, and six famous paintings widely used in style transfer [7–9], as our style
images (cf. Fig. 3.7).

We used the MS-COCO 2014 training set for our training, and we randomly selected
20 images from the MS-COCO 2014 validation set for our validation. In the testing
phase, on the other hand, we randomly selected 50 images from MS-COCO 2014
validation (di�erent ones from the 20 images used in our validation).
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Compared methods

We compared our method with SOTA methods: Gatys+ [9], Johnson+ [7], Huang+ [8],
Sheng+ [10], Chen+ [11], and Li+ [12]. We note that Gatys+ is based on IOB-NST and
the others are on MOB-NST. For Gatys+, we used the re-implementation version by J.
Johnson1. For the others, we used publicly available source codes with parameters
recommended by the authors (Johnson+2, Huang+3, Sheng+4, Chen+5, Li+6). We
remark that we set 1000 iterations for Gatys+.

3.5.2 Evaluation metrics

In order to evaluate the quality of synthesized images, most previous work employed
user studies although they are subjective and have ambiguity in evaluation. We, on
the other hand, evaluate stylized images by quantifying the content and style losses.
Intuitively, when the total loss is su�ciently small, we may say that the overall quality
of stylized images is good. Furthermore, the quality of stylized images also depends on
how the content and the style are re�ected in them. We have to consider these two
factors in evaluating the quality of stylized images. Since the contributions of the
content and the style are controlled by U (set in advance) in our method, we may
see if a synthesized image is good in quality by evaluating (i) whether its total loss
is su�ciently small, and (ii) whether the ratio between its content and style losses
consistently agrees with the pre-set contribution ratio (i.e., combination weight U)
between the content and the style. We thus introduce a metric to evaluate the quality
of synthesized images using these two criteria. We remind that we set U = 0.5 (for
simplicity) in our experiments to see the content and style losses converge to almost
the same values.

For each pair of content image 2 and style image B , we compute content loss Lc and
style loss Ls. In the 2D plane whose coordinate system is de�ned by content loss and
style loss, the criterion (i) can be measured using the distance between the origin and

1https://github.com/jcjohnson/neural-style
2https://github.com/jcjohnson/fast-neural-style
3https://github.com/xunhuang1995/AdaIN-style
4https://github.com/LucasSheng/avatar-net
5https://github.com/rtqichen/style-swap
6https://github.com/Yijunmaverick/UniversalStyleTransfer
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(Lc,Ls). The criterion (ii), on the other hand, can be measured by evaluating how
close (Lc,Ls) is to the line of “content loss”=“style loss” (called the balanced axis
hereafter).

We assume that we have  stylized images. We normalize content loss and style
loss for each stylized image over  images:

L̃c =
1

1 + exp (Lc−Lc
fc
)
, L̃s =

1

1 + exp (Ls−Ls
fs
)
, (3.8)

where Lc, fc, Ls, and fs are the mean and the standard deviation of content loss and
style loss over  stylized images, respectively.

The quality of stylized images with respect to the criterion (i) is measured using

;4=6Cℎ =

√
L̃c

2 + L̃s
2
. (3.9)

Let l (∈ [0, c4 ]) denote the angle between the line going through the origin and
(L̃c, L̃s) and the content loss axis or the style loss axis (the smaller angle is selected):

l =


tan−1 L̃s

L̃c
if L̃c ≥ L̃s

c/2 − tan−1 L̃s
L̃c

otherwise
. (3.10)

Larger l indicates that (L̃c, L̃s) is closer to the balanced axis, meaning that the stylized
image is more balanced in content and style. This re�ects the criterion (ii).

Using ;4=6Cℎ and l above, we de�ne our metric 10;0=24 :

10;0=24 =
tan(l)
;4=6Cℎ

. (3.11)

10;0=24 concerns both the two criteria (i) and (ii). Therefore it is a useful metric for
evaluating stylized images. We note that larger 10;0=24 is better because tan(l) should
be larger and ;4=6Cℎ should be smaller for better stylized images.
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3.5.3 Implementation and training details

Implementation setup

We implemented our method in PyTorch7. We used the instance incremental learning
strategy for dealing with multiple styles. We conducted all experiments using a PC
with CPU core i7 3.7 GHz, 12 GB of RAM, and GTX 770 GPU (4 GB of VRAM).

We performed the adaptive feature injection from layers @ = 3, 6, 9 in the style
subnet to layers ? = 3, 9, 15 in the content subnet, respectively (Table 3.1). We adopted
the VGG-16 model [30] pre-trained on the ImageNet [80] as the loss network without
any �ne-tuning. All layers after A4;D4_3 layer were dropped. We obtained the content
loss at " = 1 layer, e.g., A4;D4_3, and the style loss at # = 3 layers, e.g., A4;D1_2,
A4;D2_2, and A4;D3_3 (" and # are de�ned in Section 5.4.3).

Training the model

Our method addresses a one-style model to reduce computational time. For training a
new yet unknown style, we �ne-tune parameters from an existing model. With this
learning strategy, our method can easily adapt a new style with a lower cost than
existing work [7–9, 44]. Moreover, the �ne-tuning learning enables our method to deal
with an unlimited number of styles fast unlike existing methods such as [11, 84].

We �rst trained an initial model on the Starry Night style and then incrementally
�ne-tuned on the other styles one by one. We trained the network on the Starry Night
style with a batch size of 2 for 80k iterations corresponding to 2 epochs. The balance
weight W in Eq. (3.5) is re-computed at every ) = 500 iterations. All the training and
validation images are resized to 256 × 256. To train the model, we used the Adam
optimizer [107] with the learning rate of 10−3, the moments V1 = 0.9 and V2 = 0.999,
and the division from zero parameter n = 10−8. We did not use the learning rate decay
and the weight decay.

For the initial model, we trained all subnets simultaneously with independently
updating the weight of each subnet. Validation was performed at every 100 iterations
during the training process. When observing the content loss and the style loss on the
validation set, if any loss function raises the over�tting problem, we stopped updating

7https://pytorch.org/
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the weight of the corresponding subnet.
We incrementally �ne-tuned the initial model to the other styles one by one. 2000

images in the MS-COCO 2014 training set [108] were randomly selected as content
images for training. The network was trained for 1000 iterations with the batch size of
2. The Adam optimizer [107] was also used with the same parameters as the training of
the initial model. The balance weight W in Eq. (3.5) was re-computed at every ) = 50
iterations. The loss-based training technique was also applied to avoid over�tting,
where the validation was performed at every 50 iterations.

3.6 Experimental Results

3.6.1 Comparison with state-of-the-arts

Qualitative evaluation.
Figures 3.8 and 3.9 show examples of the obtained results, showing that the stylized

images obtained by our method are more balanced in content and style. We also see
that overall the results obtained by Gatys+ [9], Sheng+ [10], and Li+ [12] re�ect the
style well, but they mostly lose content (we cannot understand the content of stylized
results using La Muse and Feathers styles). In some styles (Starry Night, Composition
VII, and The Wave), we see that Johnson+ [7] seems to randomly select a patch in the
style and paste it into the content image. Huang+ [8] also loses the content and su�ers
from a so-called checkerboard e�ect. We also see that Chen+ [11] loses almost style
and tends to keep the original content images.

To objectively compare the obtained results, we conducted three user studies,
including overall quality, content preserving and style look-like. From the visual
comparison in Figs. 3.8 and 3.9, we see that evaluating all stylized results among
compared methods is pretty di�cult. We thus picked up three methods only for our
user studies. To this end, we investigated the quantitative comparison (Section 3.6.1).
As Gatys+ [9] is known to keep styles most while Johnson+ [7] retain the content most,
these methods are appropriate to choose for our user studies. Among the remaining
compared methods, we see that Huang+ [8] is most balanced (the loss distributions of
Huang+ [8] appear near balanced axis (Fig. 3.11)). We, therefore, chose Gatys+ [9],
Johnson+ [7] and Huang+ [8] for our user studies.
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Figure 3.8: Visual comparison of our method against the state-of-the-art methods.
Left-most column: content image (large) and style image (small). From left to right: the
stylized image by our method, Johnson+ [7], Huang+ [8], and Gatys+ [9], Sheng+
[10], Chen+ [11], and Li+ [12]. Our results surrounded with red rectangles are more
balanced in content and style than the others. Note that all stylized images are with the
size of 512 × 512.

For our user studies, we randomly selected 20 images from the 50 testing images as
content images and chose 5 styles by excluding The Wave style because it is simpler
than the other styles (Fig. 3.7). We remark that the combination of 20 content images
and 5 styles results in 100 stylized images by each method. In each user study, we
presented 100 sets of images to 31 subjects where each set consists of a content image, a
style image, and four output images obtained by our method and the three comparison
methods [7–9]. We then asked the subjects to rank the four output stylized images at
each set (1st is best, and 4th is worst). For the overall quality study, the subjects were
asked to give the ranking based on the overall quality at each set. For the content
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Figure 3.9: Visual comparison of our method against the state-of-the-art methods.
Left-most column: content image (large) and style image (small). From left to right: the
stylized image by our method, Johnson+ [7], Huang+ [8], and Gatys+ [9], Sheng+
[10], Chen+ [11], and Li+ [12]. Our results surrounded with red rectangles are more
balanced in content and style than the others. Note that all stylized images are with the
size of 512 × 512.

preserving study, the subjects were asked to rank output images in each set based
on how faithfully the images preserve the content in content images. For the style
look-like study, on the other hand, the subjects ranked output images in each set based
on how the images look like the style in style images. We note that four output images
are aligned in the random order in each set and that each set was displayed for 6
seconds.

Table 3.2, Table 3.3, and Table 3.4 show the average of rankings over the 100 sets for
the overall quality, the content preserving, and the style look-like studies, respectively.
We also computed the average of rankings in each style, which is also illustrated in
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Table 3.2, Table 3.3, and Table 3.4.
We see that our method takes the best ranking among the four methods in overall

quality (Table 3.2). Looking into the results in more detail, we see that our method is
ranked in the �rst place at the Mosaic style, and in the second place at others (except for
Composition VII style). This indicates that our method performs stably well in overall
quality in accordance with human cognition. We remark that the Composition VII style
is rather complex (Fig. 3.7) and, the results for this style are di�cult to evaluate. We
also remark that the single-style models (ours, Gatys+[9], and Johnson+[7]) performed
better than the multi-style model (Huang+[8]).

For the content preserving (Table 3.3) and the style look-like (Table 3.4) studies, our
method takes the second best ranking. Note that the scores in these studies more
largely distributed than those in the overall quality study. As MOB-NST is known to
perform better in content preserving than IOB-NST [100]; Johnson+ [7], which is
MOB-NST, takes the best ranking in the content preserving study. Gatys+ [9], on the
other hand, which is IOB-NST, takes the best ranking in the style look-like study.
In contrast, our method is ranked in the second place for all styles in the content
preserving study (except for Composition VII style) (Table 3.3) and in the style look-like
study (except for Feathers style) (Table 3.4). These indicate that our method stably
produces stylized images balanced in content and style for almost all the styles. We
remark that in the case of the Feathers style, the two best methods for the look-like
study follow the MOB-NST approach. As MOB-NST is known not to keep styles well
[100], this suggests that the Feathers style is a di�cult style for users to evaluate
stylized images.
Quantitative evaluation.

In order to quantitatively evaluate the obtained results, we computed the averages
of ;4=6Cℎ’s and 10;0=24’s over 300 (= 50 contents × 6 styles) sets for each method
(Table 3.5). We see that our method performs best both in ;4=6Cℎ and 10;0=24 . We also
computed the averages of ;4=6Cℎ’s and 10;0=24’s in each style, which is illustrated in
Fig. 3.10. Fig. 3.10 shows that our method performs best in ;4=6Cℎ and best in 10;0=24
for all the styles.

To look into the results in more detail, we show the loss distribution of 50 stylized
images in each style (Fig. 3.11). We see that (1) the content loss and the style loss
(for each stylized result) in our method are similar with each other and that (2) loss
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Table 3.2: Average of rankings in the overall quality study. The best and the second
best results are given in red and blue, respectively.

Style Ours Johnson+ Huang+ Gatys+
[7] [8] [9]

Starry Night 2.12 2.72 3.14 2.01
Mosaic 2.21 2.25 2.91 2.63
Composition VII 2.47 2.95 2.4 2.18
La Muse 2.38 2.28 2.82 2.51
Feathers 2.15 1.82 3.28 2.74
All together 2.27 2.40 2.91 2.41

distributions in our method appear densely near the balanced axis for all the styles
while those in the other methods do not.
Computational speed.

We measured the running time for generating 300 stylized images with the sizes of
256 × 256 and 512 × 512 by each method and compared the average for generating one
stylized image by each method.

Table 3.6 illustrates the average of the running time in generating one stylized
image. As we see, our method is the fastest and speeds up 22 times for the image
size of 256 × 256 and 21 times for that of 512 × 512 when compared with the fastest
state-of-the-arts [7]. We can thus conclude that our method is promising for real-time
applications.

3.6.2 Ablation studies

Behavior of balance weight W during the training

We investigate the behavior of balance weight W to verify that W is adaptively updated
to converge to an expected value.

Figure 3.12 illustrates how balance weight W changes during the training on the
Starry Night style. We see that W is adaptively updated corresponding to the content
and style losses. We remark that since we set U = 0.5 in the loss function, W is expected
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Table 3.3: Average of rankings in the content preserving study. The best and the second
best results are given in red and blue, respectively.

Style Ours Johnson+ Huang+ Gatys+
[7] [8] [9]

Starry Night 2.53 1.96 2.67 2.84
Mosaic 2.13 1.60 3.05 3.22
Composition VII 3.02 1.81 2.50 2.67
La Muse 1.99 1.82 3.06 3.13
Feathers 2.02 1.81 2.50 2.67
All together 2.34 1.80 2.87 2.99

to be close to 0.5 after the training. At the beginning of training, the style loss LB is far
larger than the content loss L2 , resulting in W far larger than 0.5 (close to 1.0). As the
training proceeds, the network is gradually optimized, resulting W close to 0.5 in the
end of the training.

We observe that W quickly decreases after one epoch (about 40k iterations). This
can be explained as follows. After one epoch, the over�tting problem on the style
image occurs since our network is trained using a single style image. Hence, the
style loss quickly drops. As a result, the behavior of W becomes di�erent. Indeed, we
observed that the style loss raised the over�tting problem through the validation phase.
We thus stopped the training of the style subnet while kept updating the weights of the
other subnets. As a result, the content loss decreased more quickly than the style loss.
Then, W was gradually recovered; its value became close to 0.5 in the end of training.

This evaluation con�rms that W gradually adapts to achieve the equal contributions
of content and style in stylized images during the training thanks to our adaptive
feature injection and concatenation. We remark that we observed similar behaviors of
W for other styles.

E�ectiveness of feature injection

In this section, we evaluate the e�ectiveness of the introduction to the adaptive feature
injection between the content subnet and the style subnet.
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Table 3.4: Average of rankings in the style look-like study. The best and the second
best results are given in red and blue, respectively.

Style Ours Johnson+ Huang+ Gatys+
[7] [8] [9]

Starry Night 2.27 2.77 3.34 1.61
Mosaic 2.26 2.66 2.94 2.13
Composition VII 2.49 2.96 2.65 1.90
La Muse 2.71 2.81 2.81 1.67
Feathers 1.69 2.34 3.42 2.55
All together 2.28 2.71 3.03 1.97

We compared our complete model with the model w/o feature injection (i.e., the
model that disabled only the adaptive feature injection), which is shown in Fig. 3.13.
Fig. 3.13 shows that the stylized images obtained by the complete model are in general
more balanced in content and style than those by the model w/o feature injection.
However, we can see roughly global structure appearing in the synthesized images
in Fig. 3.13 upper set (in particular, the leftmost which is with Starry Night style).
This can be explained as follows. In general, the model w/o feature injection tends to
preserve more content than style while the complete model does more style than
content. This is because the feature injection from the style subnet to the content
subnet tries to reduce the style loss (see below). The feature injection at multiple layers
employed in the content and style subnets helps to keep both global and local structure
in rendering. As a result, global structure in stylized images such as the stroke in the
Starry Night may sometimes become impressive.

We also compared the ;4=6Cℎ and 10;0=24 of stylized images (Table 3.7). We see
that the complete model performs better both in ;4=6Cℎ and 10;0=24 than the model
w/o feature injection. Table 3.7 also shows that employing adaptive feature injection
improves both ;4=6Cℎ and 10;0=24 for each style (except for La Muse style). This
indicates that adaptive feature injection is e�ective to improve not only the quality
but also the balance in content and style of stylized images. With respect to the La
Muse style, ;4=6Cℎ of the complete model is comparable to that of model w/o feature
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Table 3.5: Averages of ;4=6Cℎ (smaller is better) and 10;0=24 (larger is better).

Method ;4=6Cℎ (⇓) 10;0=24 (⇑)
Ours 0.37 2.95
Johnson+ [7] 0.54 1.60
Huang+ [8] 0.45 1.23
Gatys+ [9] 0.45 1.36
Sheng+ [10] 0.52 1.21
Chen+ [11] 0.59 0.72
Li+ [12] 0.49 1.40

Table 3.6: The average wall-clock time in second for producing one stylized image.

Method Image size Implemented framework
256 × 256 512 × 512

Ours 0.05 0.18 PyTorch
Johnson+ [7] 1.12 3.79 Torch
Huang+ [8] 1.98 6.78 Torch
Gatys+ [9] 74.12 269.74 Torch
Sheng+ [10] 3.04 10.67 TensorFlow
Chen+ [11] 2.74 9.33 Torch
Li+ [12] 3.53 9.42 Torch

injection, however 10;0=24 is not the case. This can be explained as follows. The La
Muse style follows Cubism and thus it is very unique. Because of this, the adaptive
feature injection tends to keep more style to re�ect the impression of this style.

Finally, we compare the loss distributions of 50 stylized images in each style
(Fig. 3.14). We see that for all styles (except for the La Muse style) the loss distributions
of the complete model appears more densely near the balanced axis and is closer to the
origin than those of the model w/o feature injection for all styles. In the case of the
Starry Night style (Fig. 3.14a), we see that the model w/o feature injection preserves
much more content than the style because the loss distribution appears far above the
balanced axis. This observation also holds true for the Mosaic style (Fig. 3.14b), the
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Figure 3.10: Averages of ;4=6Cℎ and 10;0=24 in each style.

Composition VII (Fig. 3.14c), and the La Muse (Fig. 3.14d). By using adaptive feature
injection, the complete model is able to reduce the style loss in stylized images (e.g.,
the Starry Night, the Mosaic, the Composition VII, the La Muse styles), compared to
the model w/o feature injection. These observations indicate that the adaptive feature
injection e�ectively improves to keep the balance in content and style of stylized
images.
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(f) Feathers style.

Figure 3.11: Loss distribution in each style. Red lines denote the balanced axis. Our
method has the distributions nearer the balanced axis than the other methods.

E�ectiveness of combination weight U and balance weight W

Here, we evaluate the necessity of combination weight U in Eq. (3.1) and balance
weight W in Eq. (3.4). In particular, we evaluate whether U plays the role of explicitly
controlling the contribution ratio of the content and the style.

We generated stylized images using di�erent values of U : U = 0.1, 0.3, 0.7, 0.9. The
results are illustrated in Fig. 3.15 where the complete model denotes the model using
U and W together while the model w/o W denotes the model using U only (i.e., W is
disabled). Ideally, for smaller U , the style is more emphasized and results become more
similar to those by Gatys+ [9]. For larger U , on the other hand, the content is more
emphasized and results become more similar to those by Johnson+ [7]. We observe
these in Fig. 3.15 and see that U of the complete model indeed controls the contribution
ratio of the content and the style as we expected. However, we see that the model w/o
W is not the case. This observation suggests the necessity of both U and W .
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Figure 3.12: Behavior of W during the training on the Starry Night style.

Figure 3.13: Visual comparison of the complete model and the model w/o feature
injection. In each block, from left to right, a content image (large one) with a style
(small one) is followed by outputs by the complete model and the model w/o feature
injection. Note that all stylized images are with the size of 512 × 512.

3.7 Conclusion

We presented an end-to-end two-stream network for balancing the content and style in
stylized images. Our proposed method utilizes a deep FCN to preserve the semantic
content and a shallow FCN to faithfully learn the style representation, whose outputs
are adaptively feature injected and concatenated using the balance weight and fed into
the decoder to generate stylized images. Our intensive experiments using six famous
styles widely used in style transfer demonstrate the e�ectiveness of our proposed
method against state-of-the-art methods in terms of balancing content and style.
Furthermore, our proposed method outperforms the state-of-the-art methods in speed.
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Figure 3.14: Loss distribution in each style obtained by the complete model and the
model w/o feature injection. Red lines denote the balanced axis.

Table 3.7: Averages of ;4=6Cℎ (smaller is better) and 10;0=24 (larger is better) in the
complete model (denoted by complete) and the model w/o feature injection (denoted
by w/o injection).

Style ;4=6Cℎ (⇓) 10;0=24 (⇑)
complete w/o injection complete w/o injection

Starry Night 0.34 0.46 2.12 1.35
Mosaic 0.45 0.57 1.80 1.03
Composition VII 0.21 0.26 3.61 3.21
La Muse 0.30 0.27 1.72 2.54
The Wave 0.15 0.24 5.39 3.15
Feathers 0.23 0.28 3.71 3.20
All together 0.28 0.35 3.06 2.41
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 = 0.1  = 0.3  = 0.7  = 0.9  = 0.1  = 0.3  = 0.7  = 0.9

Complete model Model w/o 𝛾 Gatys+ Johnson+

Figure 3.15: Example of stylized images by changing U from 0.1 to 0.9. Left-most
column: the content image (large) and the style image (small). From left to right: the
stylized image using various U . The last column shows results obtained by Gatys+ [9]
and Johnson+ [7] for the reference.
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4
Learning Background and Foreground
Adversarially for Image Manipulation

with Text

4.1 Introduction

Image manipulation with text [13] is to manipulate a given source image semantically
with given text descriptions, while still maintain features that are irrelevant to what
text descriptions. Text descriptions are usually on foreground (objects), and thus the
task is to render foreground given as a text description into a given source image.

Image manipulation with text requires to disentangle the semantics contained in
image and text information and then combine the disentangled semantics to synthesize
realistic images. This suggests to separately deal with text descriptions and images
with di�erent semantic levels. We thus design a GAN with a pair of discriminators,
called Paired-D GAN, to separately condition text descriptions and images. Indeed, dual
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Dong+ Paired-D GAN

This small bird has a blue 

crown and white belly.
128x128

64x64

Figure 4.1: Examples of synthesized images. Our results match the text description
more precisely than [13] while successfully retaining background of the source image.
The performance of our method does not change for di�erent sizes of images (64 × 64
and 128 × 128 images).

discriminator GAN [109] showed that having two discriminators is more e�ective than
GANs with one discriminator for image synthesis. Di�erent from dual discriminator
GAN, we design di�erent architectures for two discriminators to deal with di�erent
levels of semantics of text descriptions and images. The two discriminators separately
judge foreground and background of the synthesized image to meet an input text
description and a source image. Furthermore, we employ the skip-connection in the
generator to more precisely retain background information in the source image. We
also introduce a training process for adversarial learning in the three-player minimax
game of the generator and two discriminators. In this way, Paired-D GAN improves
the quality of synthesized images. Experiments on the Caltech-200 bird dataset [14]
and the Oxford-102 �ower dataset [15] demonstrate outperformances of Paired-D GAN
against [13, 62]. Fig. 5.1 shows an example of our results.

4.2 Related Work

Generative Adversarial Network (GAN) [64] can be constrained on various conditions
not only to generate plausible images but also to meet the conditions. Among various
conditions on GAN, text descriptions make image synthesis easier and more friendly
to us. Reed et al. [45] proposed an end-to-end GAN using the text condition. They
employed a pre-trained text encoder [47] to extract text features from an input text,
and then combined text features with a vector representing random noise to produce
the input of the generator. They also employed the combination of text features and
image features in the discriminator to discriminate real images and generated images.
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Their proposed model [45] became the baseline of the GAN framework for generating
images from text descriptions.

As an extension, a model conditioned on texts and location information was pro-
posed [101]. Models with two stages of GAN, Stack-GAN [18] (and Stack-GAN++ [46]),
were also proposed, showing successfully generated higher resolution images (256×256),
compared to [45] (64 × 64). These models [18, 45, 46, 62] condition on GAN only texts
or a pair of texts and location information [101].

Addressing the background problem in image synthesis, Yang et al. [62] proposed
to decompose the image synthesis into two phases using foreground and background
generators. They fed random noise vectors to a long short-term memory (LSTM)
network to obtain hidden states for the foreground generator and used the �rst hidden
state to generate background. They then combined foreground and background by a
compositor operator. However, decomposing foreground and background may cause
less realistic images.

The model proposed by Dong et al. [13] is most related with ours. It also conditions
text and source image on GAN. The architecture of the model is, however, similar
to [45] and has a single discriminator: the noise vector in [45] is replaced by image
features from the image encoder. Though it generates images that match the semantic
meaning of the input text description while maintaining other parts of a source image,
it does not preserve background precisely because the discriminator is used only for
foreground; synthesized images are less realistic images.

Di�erent from the above mentioned models, we fully take into account each
role of foreground and background in synthesized images. More precisely, our
proposed Paired-D GAN is conditioned on both text descriptions and images, has
skip-connections in its generator to preserve background information as much as
possible, and has two discriminators with di�erent architectures for synthesizing
realistic images. Paired-D GAN generates simultaneously foreground and background.
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Figure 4.2: Distribution of the mean values of the �rst 7 ReLU layers in VGG-16.

4.3 Semantic Levels of Image Features for

Foreground/Background

Convolution Neural Network (CNN) has proved the e�ectiveness in many tasks. Along
with the depth, CNN extracts di�erent semantic levels of image features in layers.
Gatys et al. [9] pointed out that features in early layers re�ect color or texture of images
while features in latter layers convey foreground information. The work [63] also
found that features in early layers address background while foreground is obtained in
latter layers. As [110] learned the statistic of image features, we experimentally exploit
semantic levels of image features in VGG-16 [30].

We randomly prepare 10 foreground images and 8 background ones. We then
generated 100 images for each pair of foreground-background images with randomly
localizing foreground (we have 8000 images in total). We feed these generated images
into the VGG-16 [30] pre-trained on ImageNet dataset [80] without any �ne-tuning to
compute the mean activation at each Recti�ed Linear Unit (ReLU) layer [105].

The distribution of the mean activations in all 13 ReLU layers shows that the �rst 7
ReLU layers are more sensitive to background and foreground than the other ReLU
layers. In the case where background is the same (Fig. 4.2a), the distribution of the
mean values is small at the 1st – 3rd ReLU layers and becomes larger from the 4th
ReLU layer. This suggests that VGG-16 recognizes the similarity of images at the 1st –
3rd ReLU layers and starts to learn di�erences of images from the 4th ReLU layer
(though not strictly clear at the 4th layer).

On the other hand, in the case where backgrounds are di�erent (Fig. 4.2b, Fig. 4.2c),
the values at the 1st – 3rd ReLU layers are larger and similar with each other even if
foregrounds are di�erent (compared to the same background case). This observation is
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in good harmony with the same background case. If we change foreground (Fig. 4.2b,
Fig. 4.2c), the distribution of mean values is completely di�erent from the layer 4th to
the 7th layer (at each layer respectively).

Combining insights given by [9, 63], we may thus conclude that VGG-16 weights
background in early layers and foreground at latter layers. More precisely, from the 1st
to the 3rd ReLU layers capture background while from the 5th to the 7th ReLU layers
do foreground, and the 4th ReLU layer seems to be in-between as a transition.

Using appropriate semantic levels of image features for discriminators is crucial.
We use above observation for employing appropriate semantic levels of image features
for foreground and background. Namely, we use features from the 1st to the 3rd ReLU
layers for background and those from the 5th to the 7th ReLU layers for foreground.
We remark that more deeply exploring background-foreground relation is preferable.

4.4 Proposed Method

4.4.1 Network design

Our network follows the GAN architecture [64] for image synthesis [13, 18, 45, 46].
Like [13], we condition GAN on both text descriptions and a source image. As seen in
Section 4.3, we use di�erent semantic levels of features depending on foreground and
background. Namely, we design the network in which a text description on foreground
matches features in latter layers while features of a source image in early layers are
preserved as much background information as possible. This appropriate-level selection
allows our model to synthesize realistic images that meet both a text description and a
source image.

Nguyen et al. [109] argued that dual discriminators in GAN generate better
images in quality than a single discriminator, though the two discriminators has the
same architecture. To deal with foreground and background separately and more
precisely, we employ a pair of discriminators where each of them independently
judges foreground/background of synthesized images. For di�erent semantic levels of
foreground and background, we design our discriminators with di�erent architectures
and make each play a di�erent role. Namely, we design one discriminator to evaluate
matching foreground between a text description and a synthesized image following [13,
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Figure 4.3: Framework of our proposed Paired-D GAN.

18, 45] and the other discriminator to evaluate whether background of a source image
is retained in the synthesized image. We also introduce an e�ective training strategy
for adversarial learning in a three-player minimax game.

4.4.2 Network architecture

We build our network, called Paired-D GAN, upon the GAN architecture with one
generator� and a pair of discriminators, foreground discriminator��� and background
discriminator ��� (Fig. 5.2). We employ the end-to-end encoder-decoder architecture
for our generator � following [13]. The generator � receives a source image and a text
description where the source image is with the size of = ×= × 3 (= can be 64, 128 or 256;
3 are for RGB channels) and the text description is with maximum of 50 words. �
synthesizes an image of = × = × 3 that adaptively changes foreground to match the text
description while retaining background of the source image.

Two discriminators ��� , ��� evaluate whether the synthesized image is real
or generated. ��� receives the generated image and the ground-truth foreground
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image with the text feature extracted from the text description to focus on foreground
evaluation. ��� , on the other hand, receives the image feature extracted from the
source image and the text feature extracted from the text description to focus on
background evaluation. We use the pre-trained VGG-16 to extract image features
from input images for ��� as mentioned in Section 4.3. We remark that the two
discriminators do not share their parameters.

We train � , ��� , and ��� simultaneously in a three-player minimax game using
adaptive loss functions. This adversarial learning process enables our generator � to
generate plausible images that mach text descriptions while preserving background
information of the source image.

Generator

Our generator � consists of an image encoder, a text encoder, and a decoder.
The image encoder is a stack of three convolution layers that receives the source

image size of = ×= × 3 to produce an image feature with the size of< ×< × 512 (< can
be 16, 32 or 64 depending on =) at the top. We adopt the pre-trained text encoder [47]
for our text encoder and use the text embedding augmentation [18] to produce a text
feature with the size of 1 × 128. The channel of the text feature is duplicated to the size
of< ×< × 128 to be consistent with that of the image feature.

The image feature and the text feature are then concatenated to produce an
image-text feature as the input of the decoder.

The decoder in our generator consists of one convolution layer, four residual blocks
[31], and two deconvolution layers. The convolution layer reduces the channel of
the image-text feature, and the four residual blocks enrich feature maps. The two
deconvolution layers, on the other hand, upscale the feature maps.

We remark that each of the convolution and deconvolution layers in the image
encoder and the decoder is followed by a batch normalization (BN) layer [71] and a
ReLU layer. The only exception is the last deconvolution layer in the decoder where it
uses the tanh activation to guarantee that the range of the output can be normalized to
be [0, 255] (in the test step). We remark that we use images with the range [−1, 1] in
the training step.

To re�ect the features at early layers weighting background information into a
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synthesized image, we employ the skip-connection from the image encoder to the
decoder. More precisely, the �rst layer in the image encoder is connected to the last
layer in the decoder while the second layer in the image encoder is paired with the
second last layer in the decoder.

Foreground discriminator

The foreground discriminator should be able to discriminate foreground of real
images and that of generated images. We employ the foreground-text matching in the
foreground discriminator. Following previous work [13, 18, 45, 46], we design our
foreground discriminator ��� as a classi�cation task that rewards high probability
scores to real images and low ones to generated images in the adversarial learning
phase.

Our ��� is a stack of six convolution layers.
Each of the �rst four convolution layers uses the �lter size of 4 × 4, the re�ection-

padding size of 1 × 1, and the stride size of 2 × 2, producing 64, 128, 256, 512 output
channels, respectively. These convolution layers encode an input to produce the
high-level semantic image features containing mostly foreground information (cf.
Section 4.3). These image features are then concatenated with the text feature obtained
from the input text description using the text encoder to produce a image-text feature.

Next, the image-text feature is fed into the last two convolution layers, each of
which is with the �lter size of 1 × 1, and 4 × 4, respectively, no padding, the stride size
of 1 × 1, outputting 512, 4 channels respectively. The output of the last convolution
layer indicates how realistic the image input to ��� is using the similarity probability.

We remark that each of the all convolution layers except for the last one is followed
by a BN layer and a ReLU layer. We follow Reed et al. [45] to train ��� (Eq. 4.1).

��� need not access all image information but focuses on foreground image
information. To enhance the performance of ��� , we introduce a processing before
feeding an input image to ��� . Namely, we create a binary �lter where 0 at each
pixel is generated with the probability of ? . We then apply the binary �lter to the
image input to ��� , and feed the �ltered image to ��� . This processing brings two
bene�ts: (1) ��� has more chance to focus on only foreground information, helping to
extract semantic image features of foreground, and (2) this operation prevents quick
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convergence [111].

Background discriminator

The background discriminator evaluates how real and generated images are di�erent
in background. We therefore design the background discriminator as a veri�cation task
with the limited number of samples in each category. This is because each image in a
dataset has di�erent background in general, and the number of samples with the same
(very similar) background is limited. To this end, we follow the idea of the Siamese
network [112] because it shows the e�ectiveness for the veri�cation task.

Our ��� consists of four fully-connected layers in which the �rst three layers
are two shared-parameter layers and the last one is the joint layer, producing 512,
100, 10, 1 outputs, respectively. ��� receives two input features (one from the source
image with the text description and the other from the generated image with the text
description) and passes them to the two shared-parameter layers separately before
being jointly trained at the last layer.

In order to create the input of ��� , we feed the input image into the pre-trained
VGG-16 to compute the mean and variance at the �rst four ReLU layers (cf. Section 4.3),
and then concatenate them with the text feature extracted from the input text de-
scription using the pre-trained text encoder [47] (without using the text embedding
augmentation [18]). The text feature is useful to disentangle background and fore-
ground information (e.g. images with the same background and di�erent foreground
information can be positive samples for the background veri�cation task). We remark
that the size of the input is 1 × 1068 where the image feature is with the size of 1 × 768
and the text feature is with the size of 1 × 300.

We propose a new training strategy for ��� , which is based on the contrastive loss
function [112] that fully uses a source image and a text description.

4.4.3 Adversarial learning for Paired-GAN

Training the generator � , and a pair of discriminators ��� and ��� becomes a
three-player minimax game conditioned on images and text descriptions. Using
positive/negative training samples, we �rst update the parameters of ��� with �xing
the parameters of ��� and � , and then update the parameters of ��� with �xing
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Table 4.1: Types of input pairs used in the adversarial leaning process.

��� ���

Positive {6, i (C)} {(B, C), (B, C̄)}
Negative {6, i (C̄)}, {� (B, i (C)), i (C)} {(� (B, i (C)), C), (� (B̄, i (C)), C)}

the parameters of ��� and � , and �nally update the parameters of � with �xing the
parameters of the two discriminators. We iterate this adversarial training to minimize
each loss function separately.

For the adversarial training for Paired-D GAN, we use positive and negative
samples whose de�nitions depend on ��� and ��� . A positive sample of ��� is a
sample in which foreground is the ground-truth and its text description is matching. A
sample is negative if (1) foreground is the ground-truth but its text description is
mismatching or (2) foreground is generated even if its text description is matching. A
positive sample of ��� , on the other hand, is the one where the background of the
source image used in training the generator and discriminators for each iteration is the
same regardless of whether text descriptions are matching or mismatching. A sample
is negative if background is generated even if the text descriptions match foreground.

Let B be an image in a dataset and C be a text description. Then, we let 6 be an image
in the dataset whose foreground is the ground-truth to C (C is thus a matching text
description to 6). We denote by B̄ a randomly selected image (from the dataset) having
di�erent background from B , and by C̄ a di�erent text description from C (a mismatching
text description to 6). We also denote by i (·) the text embedding augmentation [18].
Then, positive/negative samples of ��� and ��� can be classi�ed as in Table 4.1.

Let � (·) denote the discriminators (��� and ��� ). At each iteration in training
� (·), we randomly select all the types of samples in Table 4.1 from the training dataset,
and feed them one by one to � (·) to obtain the probability whether the sample is
positive or negative. We train the two discriminators to reward a high score to a
positive sample and a low score to a negative sample. Through the training, we
maximize the ability of � (·) to assign relevant scores to the samples. The loss functions
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for � (·) are de�ned as follows:

LFG = E(6,C)∼?data [log�FG(6, i (C))] +
1
2E(6,C̄)∼?data [log(1 − �FG(6, i (C̄)))]

+1
2E(B,C)∼?data [log(1 − �FG(� (B, i (C)), i (C)))] . (4.1)

LBG = E(B,C,B,C̄)∼?data [log�BG((B, C), (B, C̄))]
+E(B,C,B̄,C)∼?data [log(1 − �BG((� (B, i (C)), C), (� (B̄, i (C)), C)))], (4.2)

where ?data denotes the all the training data and E(·)∼?data means the expectation over
?data. Each term in Eqs. 4.1 and 4.2 corresponds to the type of samples: log(� (·)) for
positive samples and log(1 − � (·)) for negative samples. Note that Eq. 4.1 follows [45].

Since our adversarial learning process is a three-player minimax game, we also
train the generator � in which we minimize the terms of log(1 − � (·)) in Eqs. 4.1 and
4.2. In practice, however, maximizing log(� (·)) is known to be better than minimizing
log(1 − � (·)) in training � [64]. We also introduce the reconstruction loss to keep the
structure of the input source image. Now the loss function for � is:

LG = E(B,C)∼?data [log(�FG(� (B, i (C)), i (C))]
+E(B,C,B,C̄)∼?data [log(�BG((� (B, i (C)), C)), (� (B, i (C̄)), C̄)))]
+_E(B,C)∼?data ‖B −� (B, i (C))‖2 , (4.3)

where _ is the hyperparameter, and ‖.‖2 is the Euclidean distance. To train � , we
randomly select an image B , and two text descriptions C and C̄ to generate the synthesized
images. We then feed them to the ��� and ��� to receive feedback signals for updating
parameters of � . We remark that since our aim is not to reconstruct the source image,
_ can be small (we set _ = 0.0001 in our experiments).

As discussed in [45], training ��� with match and mismatching text descriptions
enables ��� to feedback stronger image-text matching signals, allowing� to generate
plausible images that match text descriptions. Our usage of a pair of image and a
text description in training ��� , on the other hand, enables ��� to generate stronger
signals as well, leading to the capability of � of retaining background information
(though at the beginning, ��� spends more time to verify background, ��� gradually
need not concern foreground thanks to text descriptions, and has ability of easily
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judging whether the image is real or generated). Accordingly, the above adversarial
learning brings to Paired-D GAN the capability of generating realistic images that
match text descriptions in foreground and precisely retain background of source
images.

4.5 Experimental Settings

4.5.1 Dataset and compared methods

Dataset. We used the Caltech-200 bird dataset [14] and the Oxford-102 �ower dataset
[15]. The Caltech-200 bird dataset contains 11,788 images belonging to one of 200
di�erent bird classes. The Oxford-102 �ower dataset has 8,189 images with 102 classes
of the �ower. Each image in the datasets has 10 captions collected by Reed et al. [47].
Following previous work [13, 45], we split the Caltech-200 dataset into 150 training
classes and 50 testing classes, and the Oxford-102 dataset into 82 training classes and
20 testing classes. We remark that we resized the images used in our experiments to
ones with 64 × 64.
Comparedmethods. We employed the model proposed by Dong+ [13] as the baseline.
We also compared our method with Yang+ [62] that generates image foreground and
background separately and recursively from input text descriptions (we chose this
though the task is di�erent because it generates realistic images). For Dong+ [13], we
used the re-implementation by Seonghyeon [113] (as recommended by the authors
of Dong+ [13]). For Yang+ [62], we used the publicly available source codes with
the parameters recommended by the authors [114]. We remark that we used the
combination of a noise vector and a text feature [45] as an input for Yang+ [62].

4.5.2 Evaluation metrics

We use the inception score (�() [89] to evaluate the overall quality of synthesized
images. We also use two metrics, foreground score (��() and background score (��()
for evaluating foreground and background of synthesized images separately.

�( is widely used for the generative model evaluation through the output of the
Inception-v3 network [91]: �( (�) ≈ exp( 1

#

∑#
8=1�KL(? (~ |Ĝ (8) | |?̂ (~)))), where Ĝ is a
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synthesized image by the generator � , # is the number of generated images, �KL is
the Kullback–Leibler divergence, ~ indicates an instance of all classes given in the
dataset, ? (~ |Ĝ) is the conditional class distribution, and ?̂ (~) = 1

#

∑#
8=1 ? (~ |Ĝ (8)) is the

empirical marginal-class distribution.
We employ the visual-text shared-space [47] and compute the matching between

text descriptions and foreground for the foreground evaluation: ��( =


5img − 5text




2

where 5img and 5text are the features from the image encoder and the text encoder.
For background evaluation, we use ��( =



Ĝ � Gseg − G � Gseg




2 where G is the
source image, and � is the element-wise multiplication. Gseg is the inverse map of Gseg

where Gseg is the binary segmentation map of G provided from the dataset. We use Gseg

to mask foreground for G and Ĝ .

4.5.3 Implementation and training details

We implemented our model in PyTorch. We adopted the pre-trained text encoder [47]
without any �ne-tuning. To extract image features for the background discriminator
input, we employed the VGG-16 [30] pre-trained on ImageNet dataset [80] without any
�ne-tuning. Like [13], we also used the image augmentation technique (e.g., �ipping,
rotating, zooming and cropping). We conducted all the experiments using a PC with
CPU 6-cores Xeon 3.7GHz, 64GB of RAM, and GTX1080 Titan GPU (11GB of VRAM).

We optimized the adaptive loss functions (Section 4.4.3) using Adam optimizer [67]
with the learning rate of 2 × 10−3, the learning rate decay of 0.5 performed every 100
epochs, the momentum V1 = 0.9 and V2 = 0.999, and the division from zero parameter
n = 10−8. We did not use the weight decay. We trained our model with the batch size of
48 for 600 epochs.

4.6 Experimental Results

4.6.1 Comparison with state-of-the-arts

Qualitative evaluation
Figures 4.4 and 4.5 illustrate some examples of the results obtained by our method

(with ? = 0.8) and Dong+ [13]. They show that the synthesized images by our method
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Dong+ Paired-D GAN

This black bird has no other 

colors with a short bill.

A small brown bird with a 

brown crown has a white belly.

A black bird with a red head.

An orange bird with green wings

and blue head.

This particular bird with a red 

head and breast and features 

grey wings.

Source image

Figure 4.4: Visual comparison of our method against Dong+ [13] on the Caltech-200
bird dataset [14]. First row: source images, most left column: text descriptions. Each
image is generated using a source image and a text description.

match the text descriptions more precisely than Dong+ [13] while successfully retaining
background of the source images.

On the Caltech-200 dataset, we see that the results by our method are clearer
in foreground and background with less noise than Dong+ [13] (Fig. 4.4). Though
foreground of the results by Dong+ [13] also matches the text descriptions (not always
though), we observe that background is not preserved well.

On the Oxford-102 dataset, on the other hand, we see that our method and
Dong+ [13] both have some failures in synthesizing images (red rectangles in Fig. 4.5).
This is because images in the dataset are too complex; for example, the detail of
�owers such as a stamen is too small. Nevertheless, we still observe that our method
outperforms Dong+ [13]. We note that Dong+ [13] generated di�erent �owers from
the source images (blue rectangles in Fig. 4.5).
Quantitative evaluation

For the quantitative evaluation, we computed �( , ��( , and ��( of the synthesized
images, which are shown in Table 4.2. To compute �( , we iterated 10 times the



4.6 Experimental Results 83

Dong+ Paired-D GAN

The petals are white and the 

stamens are light yellow.

The light purple flower has a large 

number of small petals.

The petals of the flower have 

yellow and red stripes.

The petals of the flower have 

mixed colors of bright yellow and 

light green.

The flower shown has reddish 

petals with yellow edges.

Source image

Figure 4.5: Visual comparison of our method against Dong+ [13] on Oxford-102 �ower
dataset [15]. First row: source image, most left column: text descriptions. Each image
is generated using its source image and text. The red rectangles indicate the failure
synthesized images in both Dong+ [13] and ours. The blue rectangles indicate the
generated images di�erent from their source images.

experiment that we synthesize 8000 images, and computed the average and the
standard deviation of the resulting scores, as recommended in [89]. For ��( and ��( ,
we iterated 5 times the experiment that we synthesize 600 images, and computed
the average and the standard deviation of the resulting scores. Note that we cannot
compute ��( for Yang+ [62] because no ground-truths of background images exit for
Yang+ [62]. We also remark that we used the visual-text shared-space model [47]
pre-trained on the Caltech-200 (or Oxford-102) dataset to compute features for ��( .

Table 4.2 shows that our method achieves the best performances in all the metrics,
meaning that the images synthesized by our method are superior not only in the
overall quality (�() but also in foreground-text matching (��() and in background
preservation (��(). The outperformance of our method against Dong+ [13] in all the
metrics con�rms that evaluating foreground and background separately in the training
phase is e�ective. Compared to Yang+ [62], we see that our method and Dong+ [13]
generate more realistic image, suggesting that for semantic image synthesis, generating
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Table 4.2: Quantitative comparison using �( (larger is better), ��( , and ��( (smaller is
better). The best results are given in blue.

Dataset Caltech-200 [14] Oxford-102 [15]
Metric �( ⇑ ��( ⇓ ��( ⇓ �( ⇑ ��( ⇓ ��( ⇓
Paired-D GAN 6.39±0.18 17.26±0.21 9.03±0.06 4.41±0.08 8.81±0.08 8.87±0.04
Dong+ [13] 5.56±0.14 18.60±0.09 11.83±0.06 4.03±0.11 9.71±0.11 9.47±0.14
Yang+ [62] 5.92±1.04 18.34±0.14 – 3.49±0.04 10.32±0.09 –

Table 4.3: Evaluation on the e�ectiveness of employing ��� .

Dataset Caltech-200 Oxford-102

Metric �( ⇑ ��( ⇓ ��( ⇓ �( ⇑ ��( ⇓ ��( ⇓
Complete model (��� + ��� ) 6.39±0.18 17.26±0.21 9.03±0.06 4.41±0.08 8.81±0.08 8.87±0.04
Model with ��� only 5.83±0.19 16.74±0.12 11.89±0.08 4.21±0.07 8.52±0.13 10.02±0.08
Model with ��� only 6.02±0.15 20.33±0.11 7.63±0.08 4.24±0.10 10.68±0.14 8.32±0.15

foreground and background at the same time is better than separately and recursively
generating foreground and background.

4.6.2 Ablation studies

First of all, we evaluated the e�ectiveness of employing ��� through comparing our
complete model with models using ��� only or ��� only. As shown in Table 4.3, the
method using ��� only achieves ��( best, and the method using ��� only achieves
��( best. This means that the method using ��� is correctly tuned to the foreground
while the method using ��� is correctly tuned to the background, and that ��� and
��� properly work for foreground and background each. Our completed method, on
the other hand, balances foreground and background well as it achieves �( best.

Then, we evaluated the impact on the results by di�erent ?’s (the probability of
generating zero at each pixel) used in creating the binary �lter for the foreground
discriminator ��� . We changed ? by 0.2 from 0.0 (no mask) to 0.8 and computed �( ,
��( , ��( at each ? (Fig. 4.6). Visual comparison with di�erent ?’s are illustrated in
Fig. 4.7 (two examples with simple/complex background). Fig. 4.6 indicates that all the
metrics become better at ? = 0.8 (80% in probability of a source image are masked
to focus on foreground). The explanation for this can be as follows, which is also
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Figure 4.6: Quantitative comparison by changing ? by 0.2 from 0.0 to 0.8.

An orange bird with black head.

p=0.0 p=0.2 p=0.4 p=0.6 p=0.8 p=0.0 p=0.2 p=0.4 p=0.6 p=0.8

A blue bird with black wings.

Figure 4.7: Zero-shot results by changing ? by 0.2 from 0.0 to 0.8. The source image
has simple background (right) or complex background (left).

supported by Fig. 4.7. When ? = 0.0 (no mask), ��� accesses the whole source image
in the training phase, a�ecting background of generated images. By increasing ? , ���
is likely to focus on only foreground, leading to improving the quality of generated
images. We note that background discriminator ��� also succeeds in maintaining
background of the source image (we can see that the background is kept well in most
cases).

We next demonstrated the smooth interpolation between the source image and the

This is a red bird.
A black bird.

This red bird has blue wings.

Figure 4.8: Zero-shot results of interpolation. Left: interpolation between two source
images with the same target text description. Right: interpolation between two target
text descriptions for the same source image.
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The petals of this 

flower are white

with a large stigma.

A yellow bird with 

a black on wings.

The red flower has 

no visible stamens.

This bird is 

completely white.

Figure 4.9: Zero-shot results from a source image and text descriptions that are
not related to each other, showing the e�ectiveness of foreground and background
discriminators.

The bird is blue and red in 

color with a black beak.

This bird is completely 

red with black swing.

Figure 4.10: Zero-shot results from the same source image and text descriptions,
showing variety of foregrounds.

target image. Fig. 4.8 show synthesized images obtained by the linear interpolation
between the source and the target images. In Fig. 4.8 (left), we interpolated two source
images with a �xed text description. In contrast, we keep the source image �xed while
changing text descriptions in Fig. 4.8 (right). These results indicate that our method is
capable of independently interpolating between source images and text descriptions.
We remark that our method preserve background well regardless of interpolation.

Figure 4.9 shows the generated images obtained using source images from the
Caltech-200 [14] dataset with text descriptions from the Oxford-102 [15] dataset
(not used in training phase), and vice verse. Fig. 4.9 shows that our model retains
background of source images and changes only foreground to match text descriptions
(e.g. color) even if they are not used in the training (regardless of untrained text
descriptions). This illustrates the �exible capability of our model to disentangle
foreground and background.

We also show in Fig. 4.10 the e�ectiveness of text embedding augmentation [18]
in our method to synthesize various images using the same source image and text
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descriptions.

4.7 Conclusion

We proposed Paired-D GAN conditioned on both text descriptions and images for
image manipulation with text. Paired-D GAN consists of one generator and two
discriminators with di�erent architectures where one discriminator is used for judging
foreground and the other is for judging background. Our method is able to synthesize
a realistic image where an input text description matches its corresponding part
(foreground) of the image while preserving background of a given source image.
Experimental results on the Caltech-200 and the Oxford-102 datasets demonstrate the
e�ectiveness of our method.
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5
Comprehensive and Individual Usage of

Relations for Text-to-Image Synthesis

5.1 Introduction

Generating photo-realistic images from text descriptions is one of the major problems
in computer vision. Besides having a wide range of applications such as intelligent
image manipulation, it drives research progress in multimodal learning and inference
across vision and language [17, 115, 116].

The GANs [64] conditioned on unstructured text description [13, 18, 19, 45, 47]
show remarkable results in text-to-image generation. Stacking such conditional GANs
has shown even more ability of progressively rendering a more and more detailed
entity in high resolution [18, 19]. However, in more complex scenarios where sentences
are with many entities and relations, their performance is degraded. This is because
they use only entity information in given text descriptions for rendering a speci�c
entity, leading to a poor layout of multiple entities in generated images.
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Scene graph Relation-unit Visual-relation layout Generated image Reference image
Scene graph with 

initial BBs

Figure 5.1: Overall framework of our proposed method. Given a structured-text (scene
graph), our method �rstly predicts initial bounding-boxes for entities using all available
relations together, next takes individual relation one by one to infer a relation-unit
for the relation, then uni�es all the relation-units to produce visual-relation layout.
Finally, the visual-relation layout is converted to image (256 × 256). Color of each
entity bounding-box corresponds to that in the scene graph. Dotted arrow in red
illustrates the individual usage of relations.

In the presence of multiple entities, besides the details of each entity, how to
localize all the entities so that they re�ect given relations becomes crucial for better
image generation. Indeed, recent work [17, 20, 22, 48] show the e�ectiveness of
inferring the scene layout �rst from given text descriptions. Johnson+[17], Li+[48], and
Ashual+[20] use structured-text, i.e., scene graphs [115], �rst to construct a scene
layout by predicting bounding boxes and segmentation masks for all entities, then
convert it to an image. Hong+[22] constructs a semantic layout, a scene structure
based on object instances, from input text descriptions and converts the layout into an
image. However, those mentioned methods [17, 20, 22, 48] aggregate all relations in
which each entity is involved, and then localize all entities’ bounding-boxes at the
same time. As a result, the predicted bounding-boxes do not preserve the relations
among entities well. Localizing entities faithfully by preserving their relations given in
text descriptions is desired.

We leverage advantages of the pyramid of GANs and inferring the scene layout,
proposing a GAN-based model for text-to-image generation where our network steps
further in relation usage by employing not only all available relations together but also
individual relation separately. We refer the former usage of relations as comprehensive
while the latter as individual. Our network has two steps: (1) inferring from input
the visual-relation layout, i.e., localized bounding-boxes for all the entities so that
each of which uniquely corresponds to each entity and faithfully preserves relations
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between the entities, and (2) progressively generating coarse-to-�ne images with
the pyramid of GANs, namely stacking-GANs, conditioned on the visual-relation
layout. The �rst step takes the comprehensive usage of relations �rst to generate initial
bounding-boxes for entities as in [17, 20, 22, 48], and then takes the individual usage to
predict a relation-unit for each subject–predicate–object relation where all the relations
in the input are extracted through its scene graph [115]. Each relation-unit consists of
two bounding-boxes that participate in the relation: one for a “subject" entity and
one for an “object" entity. Since one entity may participate in multiple relations, we
then unify all the relation-units into re�ned (entity) bounding-boxes (including their
locations and sizes) so that each of them uniquely corresponds to one entity while
keeping their relations in the input text. Aggregating the re�ned bounding-boxes
allows us to infer the visual-relation layout re�ecting the scene structure given in the
text. In the second step, three GANs progressively generate images where entities are
rendered in more and more details while preserving the scene structure. At each level,
a GAN is conditioned on the visual-relation layout and the output of previous GAN.
Our network is trained in a fully end-to-end fashion.

The main contribution of our proposed method is our introduction to the individual
usage of subject–predicate–object relations for localizing entity bounding-boxes, so that
our proposed visual-relation layout surely preserves the visual relations among entities.
In addition, we stack and condition GANs on the visual-relation layout to progressively
render realistic detailed entities that keep their relations even from complex text
descriptions. Experimental results on two public datasets (COCO-stu� [16] and
GENOME [21]) demonstrate outperformances of our method against state-of-the-arts.
Fig. 5.1 shows the overall framework of our proposed method.

5.2 Related Work

Recent conditional GAN-based methods have shown promising results on text-to-image
generation [13, 17–19, 22, 45, 101]. They, however, struggle to faithfully reproduce
complex sentences with many entities and relations because of the gap between text
and image representations.

To overcome the limitation of GANs conditioned on text descriptions, a two-step
approach was proposed where inference of the scene layout as an intermediate
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representation between text and image is followed by using the layout to generate
images [17, 20, 22, 48]. Since the gap between the intermediate representation and
image is smaller than that of text and image, this approach generates more realistic
images. Zhao+[117] and Sun+[118] propose a combination of ground-truth layout and
entity embeddings to generate images. Hong+[22] infers a scene layout by feeding text
descriptions into a LSTM. More precisely, they use a LSTM to predict bounding-boxes
for all entities independently, then employ a bi-directional conv-LSTM to generate
entity shapes from each predicted bounding-box without using any relation. The
function of the bi-directional conv-LSTM used here is just the putting-together. They
then combine the layout with text embeddings obtained from the pre-trained text
encoder [47], and use a cascade re�nement network (CRN) [41] for generating images.

Johnson+[17], Li+[48], and Ashual+[20] employ a scene graph [115] to predict
a scene layout and then condition CRN [41] on the layout. The graph convolution
network (GCN) used in these methods aggregates available relations of all the entities
together along the edges of the scene graph. Namely, only the comprehensive usage of
relations is employed. As a result, individual relation information is lost at the end of
GCN because of the averaging operation on entity embeddings. Averaging entity
embeddings means mixing di�erent relations in which a single entity is involved,
resulting in failure of retaining individual relation information. Di�erent from [17],
[48] retrieves entity appearances from a pre-de�ned tank while [20] adds entity
appearances to the scene layout before feeding it to the generation part. The layout in
[17, 20, 22, 48] is constructed through only the comprehensive usage of relation among
entities for bounding-boxes’ localization. As a result, their generated images may have
poor scene structure as a whole even if each entity is realistically rendered.

Our main di�erence from the aforementioned methods is to construct the visual-
relation layout using subject–predicate–object relations between entities extracted from
an input structured-text not only comprehensively but also individually. Recursively
conditioning stacking-GANs on our constructed visual-relation layout enables us to
progressively generate coarse-to-�ne images that consistently preserve the scene
structure given in texts.
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Table 5.1: Scene structure preservation in image layout by di�erent usage of relations
on COCO-stu� [16] using '@g , A�>* , and '( (larger is better).

'@0.3 A�>* '(

Comprehensive usage 51.20 0.2532 59.75
Individual usage 30.47 0.1109 29.18
Comprehensive usage + Individual usage 75.79 0.2918 67.48
Individual usage + Comprehensive usage 41.38 0.1837 48.17

5.3 Scene Structure Preservation by Di�erent Usage

of Relations

The two ways usage of relations leads to di�erent ways to predict image layout. We
therefore experimentally exploit the degree of retaining relations in the constructed
layout using di�erent usage of relations. More precisely, we investigate four ways: (i)
comprehensive usage only, (ii) individual usage only, (iii) combination of comprehensive
and individual usage, and (iv) combination of individual and comprehensive usage.

For comprehensive usage only, we employ the graph convolution network used
in [17] to predict a bounding-box for each entity in the scene graph.

For individual usage only, we �rst train a bounding-box regression using ground-
truth bounding-boxes. We build the regression upon two fully-connected layers
followed by a ReLU layer [69] outputting 512 and 8 outputs. For each subject–predicate–
object relation of scene graph, we take its corresponding subject, predicate, object
embeddings and two random initial bounding-boxes with the size of 1×(2×|C|+ |R|+8).
We note that either subject or object embedding is with the size of 1 × |C|, predicate
embedding is with the size 1 × |R| whereas each initial bounding-box is with the
size of 1 × 4. We also remark that C and R are de�ned as the set of categories and
the set of relations given in a dataset, and a learned embedding layer is used to
produce subject/predicate/object embeddings. We refer Section 5.4 for more details.
We then feed the combination of embeddings and initial bounding-boxes into the
bounding-box regression to predict two bounding-boxes for entities (e.g., subject and
object) that involve in the relation. In testing time, since each entity may participate
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multiple relations, we further unify its corresponding bounding-boxes into a single
bounding-box by averaging all the bounding-boxes correspond to one entity. By this
way, we are able to predict bounding-box for each entity using individual usage of
relations only.

For combination of comprehensive and individual usage, we �rst employ graph
convolution network to aggregate all the relations in scene graph to infer (initial)
bounding-box for each entity. We then use each relation separately to modify the
location of initial bounding-boxes. To this end, for each relation, we identify the two
initial bounding-boxes that involve in the relation. If they do not satisfy the relation,
we �x the location of the "subject" initial bounding-box and then move the location of
the "object" initial bounding-box to meet the relation. After modifying all the initial
bounding-boxes according to all the relations, we also unify all the bounding-boxes
corresponding to a single entity.

For combination of individual and comprehensive usage, we �rst use pre-trained
bounding-box regression (i.e., individual usage only) to predict entities’ bounding-boxes.
Then, all the bounding-boxes along with entity/predicate embeddings are fed into the
graph convolution network to produce �nal bounding-boxes.

We conducted four di�erent ways to predict image layout on COCO-stu� dataset [16].
This is because the dataset has geometrical relations only which is easy to modify
location of bounding-box when we use individual usage of relation. Table 5.1 shows
the scene structure preservation by di�erent usage of relations. We note that the details
of evaluation metrics are presented in Section 5.5.2. We see that the combination of
comprehensive and individual usage preserves the scene structure much better than
others. We may conclude that the comprehensive usage followed by individual usage is
promising because it is reasonable to initialize all entities’ locations �rst and then to
adjust them to meet their relations. These observations lead to our idea to design a
sequential network to predict image layout. In particular, We �rst use comprehensive
usage to initialize locations for all entities appearing in scene graph, and then use
individual usage to adjust the initial locations to meet all relations. By this way, our
network can predict image layout more precisely, resulting in better generated image.
Next section will describe our proposed method in more details.
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Figure 5.2: Our proposed network model consisting of the Visual-relation layout
module and the Stacking-GANs.

5.4 Proposed Method

Our method is decomposed into two steps: (1) inferring the visual-relation layout \ (C)
from structured-text description C , and (2) generating an image from the visual-relation
layout, namely �̂ = � (\ (C)). To this end, we design an end-to-end network with two
modules: the visual-relation layout module and the stacking-GANs (Fig. 5.2). We train
the network in a fully end-to-end manner.

5.4.1 Visual-relation layout module

The visual-relation layout module constructs the visual-relation layout \ (C) from
a given structured-text description C (Fig. 5.3) where C is assumed to be converted
into a scene graph [115], i.e., the collection of subject–predicate–object’s. After the
pre-processing on converting C to its scene graph, the comprehensive usage subnet in
this module predicts initial bounding-boxes (BBs) for all the entities in C by aggregating
all available relations together through GCN (“comprehensive usage"). The individual
usage subnet takes each subject–predicate–object relation from the scene graph one
by one and select the pair of initial BBs involved in the relation (predicate): one
for “subject" entity and one for “object" entity. The subnet then adjusts the location
and size of the pair of initial BBs using the relation (“individual usage") to have a
relation-unit for the relation. Since one entity may participate in multiple relations, it
next uni�es relation-units so that each entity uniquely has a single BB (called re�ned
BB) that is further adjusted in location and size using weights learned from all the
participating relations. The Re�nedBB2layout subnet constructs the visual-relation
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Figure 5.3: Details of visual-relation layout module. This �gure illustrates the prediction
for two subject–predicate–object relations.

layout by aggregating all the re�ned BBs together using conv-LSTM.
Preprocessing. Similar to [17], we convert the structured-text C to its scene graph
(�, %) where � ⊆ C and % ⊆ C × R × C. C and R are the set of categories and the
set of relations given in a dataset. An edge of (�, %) is associated with one subject–
predicate–object. It is directed and represented by (4s, ?, 4o) with entities 4s, 4o ∈ � and
predicate ? ∈ R (s and o indicate subject and object).

Like [17], we employ a learned embedding layer to produce the entity embedding
with the size of 1 × |C| and the predicate embedding with the size of 1 × |R| for any
of all the entities and predicates appearing in the scene graph (�, %). Any entity
embedding is associated with a single default BB presented by [G,~,F,ℎ] ∈ [0, 1]4

where G is the left coordinate, ~ is the top coordinate,F is the width, and ℎ is the height.
We set G = ~ = 0 andF = ℎ = 1 as default. This process ensures that all the entities
appear in the image. In the implementation, we concatenate the default BB and its
associated entity embedding to produce the vector with the size of 1 × (|C| + 4).
Comprehensive usage subnet. This subnet applies the comprehensive usage to
predict a single initial BB for each entity appearing in C as in [17, 20, 22, 48]. This
subnet gives us initial locations and sizes of entities and they do not necessarily satisfy
the relations given in C .

In order to aggregate all information along the edges in the scene graph, we employ
GCN [17]. Our GCN composed of �ve graph convolution layers is designed following
the idea in [17] with a modi�cation that produces 388 outputs instead of 384 not only
to enrich entity/predicate embeddings as in [17, 20, 48] but also to infer initial BBs.
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We do not use the average pooling layer on top of GCN to retain individual relation
information.

For each edge : of scene graph (�, %), the triplet of its embeddings (es
:
,p: , e

o
:
)

and two default BBs with the size of 1 × (|C| + |R| + |C| + 8) are processed to give
enriched subject e′s

:
, predicate p′

:
, and object e′o

:
embeddings with the size of 1 × 128

each, separately, and a pair of initial BBs (one for “subject" and one for “object") with
the size of 1 × 4 each.

Individual usage subnet. Since the initial BBs of the entites do not always satisfy the
relations given in C , we adjust their locations and sizes using each relation separately.
For each relation, we select a pair of initial BBs corresponding to the “subject" and
“object" involved in the relation, and adjust the locations and sizes of the pair of BBs
using the relation to have a relation-unit for the relation where a relation-unit consists
of two BBs for “subject" and “object" entities in the relation. This process causes the
situation where multiple BBs correspond to the same entity, as di�erent relations may
involve same entities in common. We thus move to focus on each entity to unify
its corresponding BBs into a single BB (called re�ned BB) where we use weights
learned to retain all the relations. Accordingly, the function of this subnet is two-folds:
relation-unit prediction using individual relation separately and uni�cation of multiple
BBs corresponding to the same entity into a single re�ned BB. The subnet is built upon
two fully-connected layers followed by a ReLU layer [69] producing 512 and 8 outputs.

For each edge : of scene graph (�, %), its enriched embeddings and its corresponding
pair of initial BBs with the size of 1 × 392(= 128 + 4 + 128 + 128 + 4) are fed into this
subnet to infer relation-unit (bs

:
, bo
:
) with the size of 1 × 8. Each BB (bs

:
or bo

:
) in the

relation-unit is associated with enriched embedding either e′s
:

or e′o
:

, respectively for
“subject" or “object". Since the number of relation-units is |% |, the total number of
obtained BBs is |{bs

:
, bo
:
}| = 2 × |% |, which is in general larger than |� |.

To encourage the re�ned BB of each entity to keep its involved relations, we use
the relation loss LA4; (see Section 5.4.3 for details) in a supervised manner. This is
because the relation loss indicates the degree of retaining the involved relations in
terms of relation-unit.

For entity 48 ∈ �, let H8 = {H8a } denote the set of its corresponding BBs (appearing
in di�erent relation-units) and V8 = {V8a } be the set of their weights. We de�ne the
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re�ned BB Ĥ8 of entity 48 as the weighted sum:

Ĥ8 =

∑|H8 |
a=1{(1 + V8a ) × H8a }∑|H8 |

a=1(1 + V8a )
(5.1)

Each weight in V8 is obtained from the outputs of the softmax function in the relation
auxiliary classi�er using the relation loss Lrel.

At the beginning of training, relation-units cannot exactly reproduce their involved
relations. Their weights thus tend to be close to I4A> , leading Eq. (5.1) almost similar
to the simple average. Our re�ned BBs may be close to those of [17, 20, 48] at the
beginning of training yet they keep their relations thanks to their weights.

As training proceeds, the contribution of the relation-units retaining relations
consistent with text C to the re�ned BB gradually increases. As a result, the location
and size of the re�ned BB are continuously altered to keep relations consistent with C .

For entity 48 , its embeddings that are associated with {H8a }’s over a are averaged.
In this way, we obtain the set of re�ned BBs {Ĥ8} and their associated embeddings for
all the entities in �. We remark that |{Ĥ8}| = |� |.

If all the initial BBs completely keep their relations, the individual usage subnet
works as the averaging operator as in [17, 20, 48] and our visual-relation layout is
similar to the layout by [17, 20, 48]. In practice, however, the comprehensive usage of
relations cannot guarantee to completely keep the relations. Our individual usage
subnet plays the role of adjusting all the BBs in location and size to keep their relations
as much as possible using each relation separately.
Re�nedBB2layout subnet. In order to construct the visual-relation layout, we
aggregate all the re�ned BBs and transfer them from the bounding-box domain to the
image domain. This process should meet two requirements: (i) each entity in the image
should be localized and resized to match its individual re�ned BB, and (ii) each entity
should appear in the image even if some re�ned BBs overlap with each other. To
this end, we design re�nedBB2layout subnet as a learnable network rather than the
putting-together operation. We build this subnet using a conv-LSTM [119] with the 5
hidden states each outputting 128 channels.

For Ĥ8 of entity 48 , we �rst convert it to the binary mask with the size of 64×64×128
whose element is 1 if and only if it is contained in Ĥ8 , 0 otherwise. Then, we reshape its
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Figure 5.4: Details of one GAN in the stacking-GANs. Illustrated is the �rst GAN
which receives the visual-relation layout (64 × 64 × 128) and Gaussian distribution
noise (64 × 64 × 32) as its inputs. The second (the third) GAN receives the upsampled
visual-relation layout and the hidden features of previous GAN.

associated embedding from 1 × 128 to 1 × 1 × 128. Finally, the reshaped embedding
is wraped to Ĥ8 using the bilinear interpolation [120] for the layout of entity 48
(64 × 64 × 128). To produce \ (C), we feed the sequence of entity layouts into the
re�nedBB2layout subnet. The size of \ (C) is 64 × 64 × 128.

5.4.2 Stacking-GANs

We employ stacking-GANs to progressively generate coarse-to-�ne images. It consists
of three GANs, each of which is identical to CRN [41] to generate images with the size
of = × = × 3 (= = 64, 128, 256) (Fig. 5.4). Parameters are not shared by any GANs.

The �rst GAN generator receives the visual-relation layout \ (C) and a standard
Gaussian distribution noise as input while the others receive the bilinear upsam-
pled [120] layout \ (C) and the output of the last re�nement layer from the previous
GAN. The discriminators receive an image-layout pair as their inputs. Each pair is
either a real sample or a fake sample. A real sample consists of a real image and a
real layout while a fake sample consists of a predicted layout and a generated or real
image. These samples not only encourage the GAN to improve the quality of generated
images but also give the helpful feedback to the visual-relation layout module.
Generator. Our generator consists of �ve re�nement layers [41] producing 512, 256,
128, 64, 32 outputs and two convolution layers outputting 32 and 3 channels.

We concatenate \ (C) and Gaussian noise (for the �rst generator) or the output
of the last re�nement layer of the previous generator (for the second and the third
generators) to produce the input of ; × ; × 160 (; = 64, 128, 256). The size of the input is
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upsampled using the bilinear interpolation [120] to be consistent with that of the
generator input. At each level of the re�nement layers of each generator, the generator
input is downsampled and concatenated with the output of the previous re�nement
layer (upsampled using the bilinear interpolation) to produce the input (except for the
�rst re�nement layer that receives the generator input only).
Discriminator. Following [18], we design our discriminator as the classi�cation task
rewarding high probability for real images and low one for generated images. Our
discriminator consists of �ve convolution layers, outputting 64, 128, 256, 512, and 4
channels, respectively.

5.4.3 Loss function

We jointly train our network in an end-to-end manner to minimize the weighted sum
of four losses.
Relation loss Lrel is computed using cross entropy between relation-units and their
ground-truth relations that is obtained through the relation auxiliary classi�er which
is built upon two fully-connected layers producing 512 and |R | outputs. The �rst
fully-connected layer is followed by a ReLU layer while the second one ends with the
B> 5 C<0G function.

For each edge : of (�, %), its relation-unit and involved embeddings, i.e., e′s
:

, bs
:
, e′o
:

,
and bo

:
, are concatenated in this order to have an input vector of 1 × 264. We then feed

this vector into the relation auxiliary classi�er to obtain the probability distributionw:

of the relations over R. w: is a vector of 1 × |R| and contains all the predicates ?: ∈ R.
We �rst obtain the index of predicate ?: ∈ R. Since the order of predicates inw: is the
same as that in R, the value at index inw: is the weight of ?: , which is used as the
weight of the relation-unit (bs

:
, bo
:
) in the individual usage subnet. Note that the weight

of a relation-unit is used for the weight of both bs
:

and bo
:

involved in the relation-unit.
The relation loss is de�ned as: Lrel = −

∑|% |
:=1

∑|R |
a ′=1 p: [a′] log(w: [a′]). Minimizing

the relation loss encourages relation-units to adjust their locations and sizes to meet the
“predicate" relation. This is because the relation re�ects the relative spatial locations
among its associated relation-units.
Pixel loss: Lpix = | |� − �̂ | |2, where � is the ground-truth image and �̂ is a generated
image. The Lpix is useful for keeping the quality of generated images.
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Contextual loss [121]: Lcontext = − log(�- (Φ; (� ),Φ; (�̂ ))), where Φ; (·) denotes the
feature map extracted from layer ; of perceptual network Φ, and �- (·) is the function
that computes the similarity between image features. Lcontext is used to learn the
context of an image since re�ned BBs may lose the context such as missing pixel
information or the size of entity.
Adversarial loss [64] Ladv is used to encourage the stacking-GANs to generate
realistic images. Since the discriminator also receives the real/predicted visual-relation
layout as its input, the Ladv is helpful in training the visual-relation layout module as
well.

In summary, our loss function is de�ned as

L = _1Lrel + _2Lpix + _3Lcontext +
3∑
8=1

_4Ladv8, (5.2)

where _8 are hyper-parameters. Note that we compute Ladv at each level in the stacking-
GANs, while Lpix and Lcontext are computed at the last level in the stacking-GANs.

5.5 Experimental Settings

5.5.1 Dataset and compared methods

Dataset. We evaluated our method on challenging 2017 COCO-stu� dataset [16] and
Visual GENOME dataset [21], which have complex descriptions with many entities
and relations in diverse context. Note that we followed [17] to pre-process all the
datasets: |C| = 171 and |R | = 6 on COCO-stu� dataset [16], and |C| = 178 and |R | = 45
on GENOME dataset [21].
Compared methods. We employed Johnson+[17] as the baseline (64 × 64). To factor
out the in�uence of image generator, we replaced the CRN in [17] by our stacking-GANs
to produce higher resolution images (128 × 128 and 256 × 256). We also compared our
method with Hong+[22], Zhang+[18], Xu+[19], Li+[48], Ashual+[20], Zhao+[117], and
Sun+[118]. We reported the results in the original papers whenever possible. For the
methods that released at least one reference pre-trained model ([60] and [122]), we
trained authors’ provided codes (Zhang+[18] and Xu+[19]) on GENOME dataset.
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5.5.2 Evaluation metrics

We use the inception score (IS) [89] and Fréchet inception distance (FID) [90] to evaluate
the overall quality of generated images (we used the implementation in [123, 124]). We
also use four metrics to evaluate the visual-relation layout: the entity recall at IoU
threshold ('@g), the relation IoU (A�>* ), the relation score ('(), and the BB coverage.
Furthermore, to evaluate the relevance of generated images and input text descriptions,
we use the image caption metrics: �!�* [125], "�)�$' [126], and ����A [127]. In
addition, to evaluate the diversity of generated images, we use the diversity score [23]
(implemented in [128]).

To evaluate how much the predicted layout is consistent with the ground-truth,
we measure the agreement in size and location between predicted (i.e., re�ned) and
ground-truth BBs using the entity recall at IoU threshold: '@g = |{8 | �>* (Ĥ8, MZ8) ≥
g}|/# , where Ĥ8 and MZ8 are predicted and ground-truth BBs for entity 48 , # =

min( |{Ĥ8}|, |{MZ8}|) (we always observed |{Ĥ8}| = |{MZ8}|), g is a IoU threshold, and
�>* (·) denotes Intersection-over-Union metric. Note that we used only the BBs that
exist in both {Ĥ8} and {MZ8} to compute '@g .

We also evaluate the predicted layout using subject–predicate–object relations.
For each subject–predicate–object relation, we computed the IoU of the predicted
“subject" BB and its corresponding ground-truth, and that for the “object". We then
multiplied the two IoUs to obtain the IoU for the relation. A�>* is the average over all
the subject–predicate–object relations.

We use the relation score (RS) [129] for COCO-stu� to evaluate the compliance of
geometrical relation between predicted BBs. For each edge : of scene graph (�, %), we
de�ne B2>A4 (Ĥs

:
, Ĥo

:
) = 1 if and only if the relative location between Ĥs

:
and Ĥo

:
satis�es

the relation ?: , 0 otherwise. '( =
∑|% |
:=1 B2>A4 (Ĥ

s
:
, Ĥo

:
)/|% |.

To evaluate how much BBs cover the area of the whole image, we compute the
coverage of predicted BBs over the image area: 2>E4A064 =

⋃|� |
8=1 Ĥ8/(image area).

We note that '@g and A�>* consider the consistency between predicted BBs and
GTs, and '( and 2>E4A064 are independent of GTs. On other words, '@g and A�>*
evaluate absolute locations of BBs while '( (and 2>E4A064 as well to some extent) does
semantic relations. Therefore, they together e�ectively evaluate the layout in a wide
range of aspects.



5.6 Experimental Results 103

5.5.3 Implementation and training details

We implemented our model in PyTorch [130] and optimized it on a PC with GTX1080Ti
×2 using the Adam optimizer with the recommended parameters [74] and the batch
size of 16 for 500 epochs. We used VGG-19 [30] pre-trained on ImageNet without any
�ne-tuning as Φ, and ; = 2>=E4_2 to compute Lcontext. The total training time for each
model was about one week on a PC with GTX1080Ti × 2 while testing time was less
than 0.5 second per structured-text input.

We trained the model except for the pre-processing in the end-to-end manner
where we set _1 = _2 = _3 = _4 = 1, and do not pre-train each individual subset,
meaning that we do not use any ground-truth BBs to train the visual-relation layout.
The layout predictor receives signals not only directly from the relation loss but also
from the other losses. In an early stage of the training, the rendering part cannot
generate reasonable images because the quality of BBs is poor. This means the signals
from losses are strong, leading to quick convergence of the layout predictor. As
the training proceeds, the layout predictor properly works, and the rendering part
gradually becomes better. Lrel, at that time, keeps the layout predictor stable and more
accurate.

5.6 Experimental Results

5.6.1 Comparison with state-of-the-arts

Qualitative evaluation. Figs. 5.5 and 5.6 show examples of the results obtained by
our method and SOTAs [17–20] on COCO-stu� [16] and GENOME [21] datasets.
They show that the generated images by our method successfully preserve the scene
structure given in text descriptions, indicating that our proposed visual-relation
layouts are highly consistent with those of ground-truths. We see that the results
by Johnson+[17] have reasonable layouts, however, their layouts failed to keep all
relations well and the visual impression of their results is not good. The results by
Zhang+[18] and Xu+[19] are clear in (entities) details but they lose the scene structure
(some entities disappear). The results by Ashual+ [20] (COCO-stu� only) are more
impressive than ours to some extent, however, they use GT layout and pre-de�ned
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Figure 5.5: Visual comparison on COCO-stu� [16]. For each example, we show the
scene graph and reference image at the �rst row. From second to the last rows, we
show the layouts and images generated by our method (256 × 256), Johnson+[17]
(64 × 64), Zhang+[18] (256 × 256), Xu+[19] (256 × 256), and Ashual+ [20] (256 × 256).
The color of each entity BB corresponds to that in the scene graph. Scene graphs and
layouts are enlarged for best views. Note that the layouts of Ashual+ [20] are the
ground-truth ones.

entities’ appearances.
Quantitative evaluation. We classify all the compared methods into three: (A)
Johnson+ [17], Hong+[22], Li+[48], and Ashual+[20] (which �rstly infer a layout and
then convert it to an image), (B) Zhang+[18] and Xu+[19] (which are directly conditioned
on texts), and (C) Zhao+[117] and Sun+[118] (which are directly conditioned on
ground-truth layouts).

Table 5.2 shows that our method (almost) outperforms (A) in �( and ��� on both
COCO-stu� and GENOME. In comparison with (B), our method achieves the best in
��� on both the datasets, the best on GENOME and the second best on COCO-stu� in
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Figure 5.6: Visual comparison on GENOME [21]. For each example, we show the
scene graph and reference image at the �rst row. From second to the last rows, we
show the layouts and images generated by our method (256 × 256), Johnson+[17]
(64 × 64), Zhang+[18] (256 × 256), and Xu+[19] (256 × 256). The color of each entity BB
corresponds to that in the scene graph. Scene graphs and layouts are enlarged for best
views.

�( . Xu+[19] achieved better �( on COCO-stu� than us because (i) Xu+[19] focuses on
generating images in good human perception based on entity information and (ii)
COCO-stu� has less complex relations, in other words, layouts may be less important.
On GENOME, however, text descriptions are more complex with many entities and
relations, and their results are degraded due to poor layouts as seen later in Table 5.3.
Table 5.2 also shows that the scores of our completed model are comparable to those of
(C), meaning that our (predicted) visual-relation layout is close to the ground-truth
layout. When replacing the predicted layout by the ground-truth (the 17th row),
our results achieve the same level with (C). Note that the results in the 17th row are
di�erent from simply conditioning a single CRN [41] on GT layout. We attribute these
results (the 17th row) to the stacking-GANs through training. We may thus conclude
that our method is more e�ective and promising than the others.
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Table 5.2: Comparison of the overall quality using �( (larger is better) and ��� (smaller
is better). From the 4th to the 16th rows: the methods conditioned on structured/un-
structured texts (the best in blue; the second best in red). From the 17th to the 19th
rows: the methods conditioned on ground-truth layouts (bold indicates the best).
Scores inside the parentheses indicate those reported in the original papers.

IS FID

Dataset COCO-stu� [16] GENOME [21] COCO-stu� [16] GENOME [21]
Image size 64 × 64 128 × 128 256 × 256 64 × 64 128 × 128 256 × 256 64 × 64 128 × 128 256 × 256 64 × 64 128 × 128 256 × 256
Ours w/o individual usage 7.02±0.19 8.12±0.41 9.95±0.31 5.48±0.16 5.66±0.26 5.91±0.41 63.28 59.52 55.21 72.42 72.02 71.49
Ours w/o weighted uni�cation 7.10±0.27 8.64±0.37 10.49±0.41 5.99±0.22 6.61±0.31 7.32±0.37 61.89 57.20 49.16 69.37 60.89 57.18
Ours w/o re�nedBB2layout 7.23±0.20 8.70±0.35 10.50±0.37 6.11±0.25 6.93±0.29 7.87±0.33 57.68 53.81 46.55 67.65 58.54 54.45
Ours w/o Lpix 7.29±0.17 9.26±0.31 11.36±0.40 6.05±0.15 8.26±0.27 8.66±0.36 56.81 51.02 43.18 70.18 60.02 58.63
Ours w/o Lcontext 7.56±0.11 9.68±0.33 11.47±0.42 6.37±0.16 8.41±0.22 8.97±0.31 50.89 47.22 40.10 68.20 56.39 53.75
Ours w/o Ladv 7.31±0.19 9.47±0.34 11.41±0.47 6.30±0.19 8.39±0.20 8.96±0.39 56.24 50.87 41.05 68.34 57.23 53.86
Ours (completed model) 9.20±0.32 12.01±0.40 14.20±0.45 7.97±0.30 9.24±0.41 11.75±0.43 35.12 29.12 27.39 58.37 50.19 36.79
Johnson+ [17] (6.70±0.10) 7.13±0.24 7.25±0.47 (5.50±0.10) 5.72±0.33 5.81±0.37 67.99 65.23 64.19 73.39 69.48 68.42
Hong+ [22] — (11.46±0.09) — — — — — — — — — —
Li+ [48] (9.40±0.20) — — (7.30±0.20) — — — — — — — —
Ashual+ [20] (7.90±0.20) (10.40±0.40) (14.50±0.70) — — — (65.30) (75.40) (81.00) — — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zhang+ [18] 7.79±0.32 8.49±0.52 (10.62±0.19) 6.35±0.16 6.44±0.25 7.39±0.38 87.21 85.37 78.19 108.68 86.17 77.95
Xu+ [19] 11.78±0.14 19.11±0.28 (25.89±0.47) 6.38±0.22 6.88±0.32 8.20±0.35 50.06 43.98 34.48 96.40 83.39 72.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ours with GT layout 10.36±0.41 13.73±0.59 14.78±0.65 8.87±0.57 10.04±0.45 12.03±0.37 30.98 27.74 26.32 45.63 40.96 27.33
Zhao+ [117] (GT layout) (9.10±0.10) — — (8.10±0.10) — — — — — — — —
Sun+ [118] (GT layout) (9.80±0.20) (13.80±0.40) — (8.70±0.40) (11.10±0.60) — (34.31) (29.65) — (34.75) (29.36) —
Ground-truth 16.25±0.38 25.89±0.47 32.61±0.69 13.92±0.42 21.43±1.03 31.22±0.65 — — — — — –

Next, we evaluated how the scene structure given in input text was preserved
in generated images using '@g (we changed g from 0.3 to 0.9 by 0.2), A�>* , '( , and
2>E4A064 , see Table 5.3. We remark that we computed '( only for COCO-stu� because
COCO-stu� has geometrical relations only. For Zhang+[18] and Xu+[19], we employed
Faster-RCNN [32] to estimate their predicted BBs of entities where we set the number
of generated BBs to be the number of entities in an image. We note that the number
of predicted BBs by ours or Johnson+[17] was always the same with the number of
entities in an image.

Table 5.3: Comparison of the scene structure using '@g , A�>* , '( , and 2>E4A064 (larger
is better; the best in bold).

Dataset COCO-stu� [16] GENOME [115]
Metric '@g A�>* '( 2>E4A064 '@g A�>* 2>E4A064

0.3 0.5 0.7 0.9 GT=98.24 0.3 0.5 0.7 0.9 GT=77.10
Ours w/o individual usage 61.45 43.22 29.71 20.05 0.2652 53.48 94.96 26.48 14.29 11.90 9.81 0.1264 50.07
Ours w/o weighted uni�cation 61.76 45.28 30.22 20.51 0.2795 56.27 95.07 29.57 18.22 13.76 10.80 0.1501 56.77
Ours (completed model) 65.34 49.01 35.87 23.61 0.3186 68.23 97.19 35.00 23.12 16.34 13.40 0.1847 71.13

Johnson+ [17] 59.75 42.53 29.23 19.89 0.2532 51.20 94.82 28.13 17.17 12.30 10.47 0.1485 52.28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [18] 37.81 20.50 10.64 7.76 0.0824 30.72 60.15 18.38 10.84 8.11 5.82 0.0643 40.07
Xu+ [19] 21.39 10.71 8.15 5.83 0.0671 31.97 52.76 16.02 9.33 7.66 5.15 0.0579 36.82
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Table 5.4: Comparison using caption generation metrics on COCO-stu� (larger is
better; the best in bold). Scores inside the parentheses indicate those reported in [22].

Method �!�* − 1 �!�* − 2 �!�* − 3 �!�* − 4 "�)�$' ����A

Ours 0.561 0.352 0.217 0.139 0.157 0.325
Johnson+ [17] 0.531 0.321 0.183 0.107 0.141 0.238
Hong+ [22] (0.541) (0.332) (0.199) (0.122) (0.154) (0.367)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zhang+ [18] 0.417 0.214 0.111 0.062 0.095 0.078
Xu+ [19] 0.450 0.251 0.157 0.087 0.105 0.251
Ground-truth 0.627 0.434 0.287 0.191 0.191 0.367

(0.678) (0.496) (0.349) (0.243) (0.228) (0.802)

Table 5.3 shows that our method performs best, indicating that our predicted BBs
more precisely agree with those in relation (location and size) of entities given in
texts than the compared methods. To be more speci�c, A�>* ’s in Table 5.3 show that
our predicted BBs more successfully retain the relations of entities than the other
methods. This observation is also supported by '( on COCO-stu�. Moreover, our
method outperforms the others in 2>E4A064 and achieves comparable levels with the
ground-truth BBs. These indicate that our visual-relation layout is well-structured. Our
method thus has even better ability of rendering more realistic images with multiple
entities since the faithful scene structure and more BB coverage (i.e., entity information)
are achieved. Note that the observation that the 2>E4A064’s on COCO-stu� are better
than those on GENOME explains the reason why generated images on COCO-stu� are
better in �( and ��� than those on GENOME.

Next, we use the image caption task to evaluate how the generated image is relevant
to its input text. We follow [22] to report scores on COCO-stu� [16], see Table 5.4.
Note that we evaluated on COCO-stu� only since the pre-trained image caption model
on GENOME is not available. We also note that all the scores on the ground-truth
dataset in [22] are higher than our re-computation. Table 5.4 shows that our method
outperforms the others [17–19, 22] on �!�* , "�)�$' and comparable to [22] on
����A . We thus conclude that our method performs more consistently with input
texts than the others.

Finally, we show the diversity score of generated images in Table 5.5. Overall,
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Table 5.5: Comparison using diversity score [23] (the best in blue; the second best in
red). Original scores are inside the parentheses.

Method COCO-stu� [16] GENOME [115]
Ours (64 × 64) 0.36±0.10 0.39±0.09
Ours (128 × 128) 0.45±0.12 0.49±0.07
Ours (256 × 256) 0.52±0.09 0.56±0.06
Johnson+ [17] 0.29±0.10 0.31±0.08
Ashual+ [20] (0.67±0.05) –
Zhao+ [117] (0.15±0.06) (0.17±0.09)
Sun+ [118] (0.40±0.09) (0.43±0.09)

our scores are higher than Johnson+ [17], Zhao+ [117], and Sun+ [118] on both
COCO-stu� and GENOME datasets and comparable to Ashual+ [20] on COCO-stu�
dataset. Moreover, along with our stacking-GANs, our scores become better and better.
These scores also support the e�cacy of our method.

We quantitatively observed that the number of (trainable) parameters in our model
(41M) is comparable with Johnson+ [17] (28M), Zhang+ [18] (57M), Xu+ [19] (23M),
and is signi�cantly smaller than Ashual [20] (191M). We thus conclude that our method
is not so complex and more su�cient than others.

5.6.2 Ablation studies

We evaluated the plausibility of employing the visual-relation layout module, see
the �rst block of Tables 5.2 and 5.3: ours w/o individual usage denotes the model
dropping the individual usage subnet; ours w/o weighted uni�cation denotes the
replacement of Eq. (5.1) with just averaging in the individual usage subnet; ours w/o
re�nedBB2layout denotes the replacement by just putting all entity layouts together in
constructing the visual-relation layout. Fig. 5.7 illustrates a typical output example of
the ablation models. We remark that model w/o comprehensive usage is not applicable
since all the other subnets in our visual-relation layout module need the output by the
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Model w/o 

individual usage

Model w/o 

weighted unification 

Completed modelModel w/o 

RefinedBB2layout

Reference layout 

and image

Scene graph

Comprehensive    

Individual ()  

RefinedBB2layout   

Figure 5.7: Example of layouts and generated images by the ablation models. For each
model, the 1st row shows the layout, the 2nd row shows the generated image. All
images are at 256 × 256 resolution.

comprehensive usage subnet.
The 4th and 5th rows of Tables 5.2 and 5.3 con�rm the importance of the individual

usage subnet. We also see the necessity of our learnable weights in Eq. (5.1) because
model w/o weighted uni�cation performs better than model w/o individual usage. We
may conclude that the relation-unit prediction and the weighted uni�cation together
bring gain on our performance.

From Fig. 5.7, we visually observe that the layout by the model w/o individual
usage does not successfully re�ect relations. This observation is applicable to the
model w/o weighted uni�cation as well. As a result, both the models generated images
in poorer quality than our complete model. The relation-units are in diversity: entity
BBs can be various in size and location because of multiple relations (see Fig. 5.8, for
example), and thus simply averaging BBs corresponding to the same entity does not
successfully retain the relations among entities. Therefore, the individual usage of
relations in addition to the comprehensive usage is important for more consistent
layout with input text.

The 6th row in Table 5.2 shows the signi�cance of the re�nedBB2layout. Complex
descriptions with many entities and relations tend to produce overlapped BBs. The
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Relation-units

Scene graph cow-by-cow cow-eating-grass cow-standing on-

field

cow-eating-grasscow-standing on-

field

cloud-in-sky

tree-on-field Model w/o 

weighted 

unification

Completed 

model

Reference 

layout and 

imageInitial BBs

Figure 5.8: Example of relation-units in the individual usage subnet; layouts and
generated images by model w/o weighted uni�cation and completed model.

Figure 5.9: Example of output along with the stacking-GANs. From left to right, scene
graph, visual-relation layout, the outputs at 64 × 64, 128 × 128, 256 × 256 resolutions,
and the reference image.

model w/o re�nedBB2layout cannot necessarily produce all the entities in the layout,
generating poor images.

We also evaluated the necessity of each term of the loss function through comparing
our completed model with models dropping one term each: model w/o Lpix, model
w/o Lcontext, and model w/o Ladv (we dropped each term in the loss function (Eq. (5.2))
except for stacking-GANs). From the 2nd block of Table 5.2, we see that the absence of
any term degrades the quality of generated images. This indicates that all the loss
terms indeed contribute to performance.

Finally, we see that along with the stacking of GANs, our method progressively
generates better images in terms of �( and ��� (Table 5.2). We observe that at 64 × 64
resolution, generated images tend to be blurred and lose some details while the details
of images are improved as the resolution becomes higher (the best result is obtained
at 256 × 256 resolution) (see Fig. 5.9 as an example). We also con�rmed that the
visual-relation layouts of generated images at any resolutions are the same and highly
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consistent with texts.
When we replaced CRN in [17] with our stacking-GANs for 128× 128 and 256× 256

resolutions to factor out the in�uence of image generators, we see that the improvement
of [17] on �( and ��� along the resolution is worse than that of our model (the 10th
and the 11th rows of Table 5.2). This indicates that better layout signi�cantly improves
the performance of the �nal image generation and also con�rms clearer contribution
of the proposed visual-relation layout module. We remark that the stacking-GANs
enables us to generate coarse-to-�ne images while keeping the scene structure and the
quality of generated images signi�cantly depends on layout because with more precise
BBs, more realistic images can be generated.

5.7 Conclusion

We proposed a GAN-based end-to-end network for text-to-image generation where
relations between entities are comprehensively and individually used to infer a
visual-relation layout. We also conditioned the stacking-GANs on the visual-relation
layout to generate high-resolution images. Our layout preserves the scene structure
more precisely than the layout by SOTAs. Experimental results on two public datasets
demonstrate the e�ectiveness of our method.





113

6
Conclusion and Future Work

6.1 Conclusion

This dissertation introduced a novel approach for learning-based image synthesis. Our
approach �rst select disentangled feature representations according to speci�c task and
then combined the disentangled feature representations with an appropriate learning
process to generate images. Since the feature representations themselves contain
di�erent meaningful information, our approach therefore is promising and is able to
apply to a wide range of image synthesis. We investigate e�ectiveness of our approach
on three interestingly challenging tasks. They are (i) rendering image contents in
di�erent styles, (ii) image manipulation with text, and (iii) text-to-image synthesis.

For rendering image contents in di�erent styles, we extract content feature and
style feature in di�erent layers in network. We thus design the encoders with di�erent
depths to retain useful information from both the content and the style. Namely, we
design a deep encoder for the content and a shallow encoder for the style. These
features are combined in an adaptive way by using our proposed adaptive weight
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computed from the content and the style losses during training. In order to train
the network, we employ the pre-trained VGG-16, to compute content loss and style
loss, both of which are e�ciently used for the feature injection as well as the feature
concatenation. By employing disentangled content and style features, our method
therefore is able to control contribution of each feature in stylized images.

For image manipulation with text, we introduce Paired-D GAN where the network
consists of one generator and two discriminators. The generator captures background
feature in source image from lower-layer. It then combines background feature and
text (foreground) feature extracted from pre-trained text encoder to generate images.
Two discriminators, on the other hand, judge foreground and background of the
synthesized image separately to meet an input text description and a source image.
We also introduce a three-player adversarial learning process to simultaneously
train one generator and two discriminators. By using disentangled foreground and
background features, our method is able to synthesize a realistic image where an
input text description matches its corresponding part (foreground) of the image while
preserving background of a given source image.

For text-to-image synthesis, we comprehensively use all available relations in
text description together and individual relation separately to predict visual-relation
layout, i.e., localized bounding-boxes for all the entities so that each of which uniquely
corresponds to each entity and faithfully preserves relations between the entities. We
then condition the layout on a stack of three GANs, namely stacking-GAN, to generate
image that consistently captures the scene structure. By using relations among entities
in two ways: comprehensive usage and individual usage, our method can predict scene
layout precisely, leading better image can be generated.

Our comprehensive experiments on public dataset verify the e�ectiveness of our
approach. Moreover, they also con�rm that our approach is capable of handling a wide
range of image synthesis tasks.

6.2 Future Work

In this section, this dissertation discusses our future direction to tackle our current
shortcomings. We thus sequentially present our plan for each task as belows.
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Figure 6.1: Examples of stylized video in real-time using the "Starry night" style. We
use the video of Eadweard Muybridge "The horse in motion" (1878) as the content
input. Our model processes every frame independently without any post-processing.
Video resolution is 480 × 640 at 30 FPS.

6.2.1 Rendering image contents in di�erent styles

Our proposed method requires �ne-tuning of parameters from an existing model to
deal with di�erent styles. This limits the applicability of our proposed method to
multi-style transfer. Extending our proposed method so that it can deal with a large
style dataset such as Wikiart or unseen styles is left for future work.

As an extension of rendering image contents in di�erent styles, the real-time video
stylization methods are currently proposed [131–133]. Since our proposed method
runs fast, we believe that it can be useful for real-time video stylization. Though
video stylization is out of the scope of this dissertation, we applied our method in the
frame-by-frame manner to several videos for video stylization demonstration. Fig. 6.1
shows some examples of stylized frames from a video. Our approach was able to stylize
videos in real-time with the resolution 480 × 640 at 30 FPS or more. As we see, our
method produces reasonable results for consecutive frames with varying appearance,
meaning that the usage of our method for real-time video stylization is promising.
We remark that we did not use either temporal regularization or post-processing.
Di�erent from image style transfer, real-time video stylization needs to pay attentions
to the temporal consistency among adjacent video frames. Incorporating the temporal
consistency into our method for real-time video stylization is left for our future work.
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Figure 6.2: Word-level discriminator.

6.2.2 Image manipulation with text

Our Paired-D GAN is able to generate an image where an input text description
matches its corresponding part (foreground) of the image while preserving background
of a given source image. However, as illustrated in Fig. 4.5, our proposed method failed
in matching foreground well in case the details of foreground are too small. Taking into
account the details of foreground is thus crucial to improve quality of generated images.
Such case may be handled by employing an attention mechanism [19] which helps
network focuses on signi�cant semantic information and ignores some unimportant
words. Indeed, Nam et al. [56] recently proposed employing attention mechanism [19]
in the discriminator for this task (Fig. 6.2). Their method really generate details of
image that match the text description. However, they still struggle to retain background
well. We thus believe that incorporating attention mechanism in our current method is
helpful. Investigating such combination is left for our future work.

Moreover, our method only handles one foreground object which limits our
application. In reality, one image may contain more than one foreground. Manipulating
multiple (foreground) objects with text is more challenging than our current setting.
To deal with it, the model should have ability of matching object in image with its
corresponding words in text description. More exploiting in this direction is also left
for our future.
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6.2.3 Text-to-Image synthesis

Currently, our visual-relation layout covers a large area of the whole image leading our
method has even better ability of rendering more realistic images. Recent work [134]
show that well-annotated instance maps are helpful in realistically generating images.
Our layout is currently constructed by bounding-boxes. It thus need a further step to
transform from bounding-boxes to instance segmentation maps. Incorporating a novel
step in our method is left for our future work.
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