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Abstract

Multimedia data has a complex structure including various modalities, such as audio,
image, text, and video. In order to satisfy the requirement of users to obtain useful
information from the increasingly complicated multimedia collections, which often
rely on multimodal information retrieval (MIR). MIR takes one modality of data as the
query to retrieve relevant data of another modalities. Learning robust representation
is essential for MIR, which requires the MIR system to capture the alignment that
contains similar semantic concepts across modalities. Such alignment representation
learning allows us to learn a shared latent space, where the data samples of di�erent
modalities have similar representations and can be directly compared with each other.

The main challenge of MIR remains in diminishing the di�erences between two
data points of di�erent modalities or bridging the heterogeneous gap, which has
been widely studied in video-text, image-text, and audio-text. Unfortunately, because
of the lack of available temporal structures of multimodal dataset, learning aligned
representation of the temporal structure of di�erent data modalities is impossible.
Moreover, learning aligned representations for multimodal information retrieval on
three data modalities are rarely reported, such as alignment representation learning in
sheet music, lyrics, and audio.

The target of this dissertation is to learn the correlation between the data set
of di�erent modalities for MIR. We introduce three architectures: Supervised-Deep
Canonical Correlation Analysis (S-DCCA) and Triplet Neural Networks with Cluster
Canonical Correlation Analysis (TNN-C-CCA) for audio-visual cross-modal retrieval,
Deep alignment representation learning methods (DARLearning) for sheet music,
audio, and lyrics.

S-DCCA model learns aligned representations in a shared latent space by �nding
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nonlinear transforms for audio and visual to optimize the correlation between them. In
particular, the model exploits the temporal structure of data to achieve the music video
retrieval with audio chunks as query to retrieve the full-length visual. The contribution
of this work is that we utilize the temporal structure of our collected MV-10K dataset
to retrieve full-length visual with audio chunks as query by using attention mechanism
to capture local properties of audio. The experiment results show that the aligned
representations for audio and visual of our proposed architecture is useful for music
video retrieval.

TNN-C-CCA method can be viewed as an improvement of S-DCCA with audio-
visual special loss function to promote CCA-variant methods by establishing triplets
as training based on the similar or dissimilar semantic pairs on the Cluster-CCA
embeddings. The implication of this work is to learn a better aligned representation for
audio-visual cross-modal retrieval by applying audio-visual special loss function to
improve Cluster-CCA method. Compared with other state-of-the-art methods, the
proposed method can achieve better performance.

DARLearning approach transfers strong semantic relevant pairs from two di�erent
modalities to the weak relevant data of another modality by adversarial learning. The
contribution of this work is that our approach can learn useful representations of three
di�erent modalities for MIR. The learned discriminative aligned representations of this
approach in the experiment indicates the results can bene�cial from the representations.
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1
Introduction

1.1 Overview

Deep alignment representation learning is to map low-level features of di�erent
modalities into a semantic shared space based on latent concept alignment by the deep
learning method, seen in the Fig. 1.1. This dissertation aims at learning deep alignment
representations for multimodal information retrieval (MIR), including audio-visual
cross-modal retrieval and cross-modal retrieval between every two modalities from
sheet music, audio, and lyrics, which is to retrieve the relevant data in one modality
with a query in another modality. The challenge of MIR mainly discussed here is
the semantic gap or the heterogeneous gap. Especially, the widely used low-level
features of di�erent modalities possess inconsistent distributions and representations,
which causes the features are unable to be directly compared with each other to
accomplish the retrieval achievement. The objective of this dissertation is to develop
new architecture to project the low-level data representations of di�erent modalities to
high-level semantic representation in a common space to bridge the modality gap.
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Figure 1.1: The general framework of alignment representation learning for multimodal
information retrieval.

The contribution of this dissertation is that we proposed three di�erent advanced
approaches for deep alignment representation learning in MIR areas. Our experiments
suggest that these kinds of representations are useful for MIR.

With the rapid growth in web technologies and user applications on the Internet,
web has increasingly become the platform of various multimedia data aggregated. In
order to enable MIR system to perceive and understand the unstructured multimedia
data and conduct indistinguishable multimodal information interaction from a large
amount of data, it requires the multimodal models can abstract the data and build
similarity link from one modality item to anther modalities of the items there are
semantically related by representation learning.

Di�erent from learning representations for single modality, this dissertation learns
representations across modalities. Imagine a scene: when there is lightning in the air
visually, the same concept also appears aurally, such as a thunder sound, and the
concept also can be written in a sentence "Lightning �ashed around and thunder
rumbled". In the case of representation learning, a robust representation of modality is
often the one that captures the alignment in representations across modalities for the
observed inputs. In this way, the lightning video or image, the thunder sound, and
the sentence description are expected to produce similar representations for MIR. In
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the Fig. 1.1, the dataset for training contains videos and their labels (i.e., chainsaw
and etc.), a video contains two tracks: audio track and visual track. The alignment
representation learning method projects the low-level features of di�erent modalities
into a alignment representation learning subspace, where supports the data points
of di�erent modalities can be compared with each other, then ranking the items of
retrieved database. When the user inputs a data point from one modality, the MIR
system will rank the items of the database in the corresponding semantic space and
return the multimodal retrieval results.

Among the various ways of learning aligned representation, CCA [1] is a classical
linear method to learn the correlation of two variable sets (V1, V2) by utilizing two
views of the same semantic object to learn the aligned representation of the semantics.
In order to �nd linear transforms to map V1 and V2 into a common space, where the
correlation of similar pairs are optimized, supposed the linear transformsW1 andW2

are the matrices and Σv1v1 and Σv2v2 are the covariance matrices of V1 and V2 and Σv1v2
is the cross-covariance matrix, which uses to maximize the correlation in the latent
subspace as follows.

(W1,W2) = arg max
(W1,W2)

W T
1 Σv1v2W2√

W T
1 Σv1v1W1 ·W T

2 Σv2v2W2

(1.1)

Based on the CCA, some extension methods are proposed. Before projecting
the features into a common space, KCCA [2] �rst map the features into a higher
dimensional feature space. To be bene�cial from deep learning method, DCCA [3]
learns complex nonlinear transformations for two di�erent sets of variants. Unlike the
standard pair in the CCA training, in Cluster-CCA [4] divided each set into several
clusters, the new pairs between two sets de�ned by the label then applied CCA to
optimize the correlation between new pairs.

This dissertation focused on learning aligned representation based on deep learning
by the composition of multiple non-linear transformations. The �rst two works can be
viewed as two di�erent nonlinear extension ways of CCA. The third work use CCA
embedding to transfer one close relationship to the other two relationships.

In the �rst work, since previous researches are required the query and the retrieved
content shared the same length of time, we achieve cross-modal music video retrieval
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concerning emotion similarity, which is to obtain full-length music silence video using
an audio snippet. Therefore, we introduce a novel audio-visual aligned representation
learning approach by the Supervised Deep Canonical Correlation Analysis (S-DCCA)
that maps audio and visual into a latent shared subspace to bridge the heterogeneous
gap between audio and visual data. The method is not only learning the aligned
representation across the modalities but also preserves the similarity between data
points with the same label in each modality and temporal structure information. Due
to little o�-the-shelf music video dataset is available, we collect a 10,000 music video
from the YouTube-8M dataset to evaluate our proposed architecture. The performance
of our experiment including the MAP and PRC suggest that our novel model can be
implemented to music video retrieval.

Two main contributions were made in this work: i) We apply the emotion feature
extraction model to select top k audio chunks to summary the audio content with local
properties. ii) We establish an end-to-end supervised learning model for audio-visual
cross-modal embedding where the model can acquire the semantic correlation between
audio and visual content.

In the second work, on account of establishing alignment representation across
modalities in previous works is trained on matched data pairs, which overlooks the
unpaired data will weaken the alignment. We present a novel deep triplet neural
network with cluster canonical correlation analysis (TNN-C-CCA) that is an end-to-end
deep model with audio and visual branches. We utilize the correlation optimization
during learning a latent shared subspace. The experimental results implemented on
two audio-visual datasets demonstrate the presented model with two branches exceeds
other state-of-the-art cross-modal retrieval methods.

In particular, two signi�cant contributions include: i) A novel alignment represen-
tation learning method is bene�t from a deep triplet neural network and cluster-CCA
method. ii) We take the positive and negative examples into account to enhance
the alignment learning between audio and visual during the training process. Our
experiment uses 5-fold cross-validation to evaluate the learned predictive model.

In the third work, alignment learning in two di�erent modalities limited in special
modalities, in reality, alignment may appear in each modality of multimedia. In this
case, we try to learn deep discriminative representations across three major musical
modalities: sheet music, lyrics, and audio, where a deep learning network based on
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Figure 1.2: Overview of techniques used in this dissertation.

three branches is jointly trained. Our experiment result suggests that our model is
useful for cross-modal retrieval tasks.

Two main contributions are achieved in the third work: i) our model has the
capability of transferring a known pair to the other two unknown pairs by adversarial
learning, and one of the unknown pairs is from the known pair. ii) we explore the
manifold structure of data points on CCA embedding, which enhances the generator
model to generate discriminative representations.

Fig. 1.2 presents the relationship between the proposed methods and their related
existing methods. The �rst model supervised-DCCA extends cluster-CCA by �nding
nonlinear transformations instead of a linear projection model to optimize the
correlation between audio and visual modalities, which can be used for retrieving
full-length visual with audio chunk. Compared with supervised-DCCA, our second
model TNN-C-CCA uses negative samples to reduce the noisy samples that the samples
in the supervised-DCCA shared subspace are grouped into the wrong cluster. The
former two architectures constrain on two cross-modal data and it highly relies on the
user’s annotation, our third approach can learn alignment representation for three
di�erent modalities by unsupervised learning.
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1.2 Organization

The remainder of this dissertation is organized as follows:
Chapter 2 summarises the related works of our previous three works, we respectively

display related works of cross-modal retrieval and multimodal information retrieval;
alignment representation learning in special domain. Chapter 3 introduces the detailed
process of dataset collection, the methods of feature extraction and the applied
evaluation metrics. Chapter 4 derives from one of our papers [5] and presented a new
audio-visual cross-modal retrieval system, the system is based on the supervised deep
canonical analysis. Chapter 5 is based on previous work [6], proposed an audio-visual
cross-modal embedding learning system which consists of cluster canonical analysis
algorithm and triplet neural networks. Chapter 6 is based on our work [7], which
shows how we develop a system for unsupervised generative adversarial multimodal
alignment learning for sheet music audio and lyrics. Chapter 7 summarizes the current
works on multimodal joint embedding learning and described the feasibility of our
vision on future research.
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2
Related Work

In this section, we discuss some close related works, which promotes our motivation
of the architecture developed and are useful for the explanation of our research
background. We organize this section with related works by two subsections. Section 2.1
introduces the cross-modal retrieval and multimodal information retrieval to explain
their di�erence and relevance. Section 2.2 shows some typical related cross-modal
retrieval tasks in special domains.

2.1 Cross-modal Retrieval and Multimodal Informa-

tion Retrieval

2.1.1 Cross-modal Retrieval Techniques

Di�erent from retrieval in the same modality, such as image retrieval [8], cross-modal
retrieval is used for implementing a retrieval task across di�erent modalities. such as
image-text[9, 10, 11, 12], video-text[13], and audio-text[14] cross-modal retrieval. The



8 Chapter 2. Related Work

main challenge of cross-modal retrieval is the modality gap and the key solution of cross-
modal retrieval is to learn aligned embedding for di�erent modalities. Learning aligned
representation is not only a solution of cross-modal retrieval and also applied for other
multimedia tasks, such as image classi�cation [15], video question and answering [16].
As for our task, cross-modal retrieval aim at generating new representations from
di�erent modalities in the shared subspace, such that newly generated features can be
applied in the computation of distance metrics, such as Cosine distance and Euclidean
distance.

Canonical Correlation Analysis Variant Methods

Some methods such as CFA [17], CoCA [18], CMPM [10], MVML-GL[19], GSS-SL[20]
and LRGA [21] are to learn the cross-modal association to reduce the dimension.
Canonical correlation analysis (CCA) is one of the most prevailing cross-modal
embedding models, which aims at �nding a pair of linear transformations to maximize
the correlation between two di�erent modalities. CCA [22] can be used to calculate
the cross-modal correlations between image and text. Kernel canonical correlation
analysis (KCCA) [2, 23] is to extend CCA by �nding nonlinear transforms for the
data to a feature common space and then applying linear-CCA. KCCA is aspired
by support Vector regression [24] to perform a nonlinear mapping of the data set
into a high-dimensional feature space. Compared with CCA to learn the pairwise
correspondence correlation between the data points from two modalities, Cluster-CCA
(C-CCA) [4, 25, 26] partitions all the data points into multiple classes or clusters, where
the data sets shares the correspondences. By the same way of extending CCA to KCCA,
extending C-CCA to C-KCCA [4, 2] to account for non-linear correlations. Instead
of exploring linear method CCA to learn the correlation, Deep CCA [3, 27] is an
alternative to the non-parametric method KCCA, which is to learn complex nonlinear
transformations for the data set, such that the newly generated representations are
highly linearly correlated. Similar to the extension of CCA to DCCA, extending
C-CCA to category-based deep canonical correlation analysis (C-DCCA) [28] by
mapping venue image and text into the same semantic space, which can strengthen
their pairwise correlation. Besides, some CCA variant methods [29, 30, 31, 32] are
applied in cross-modal retrieval tasks.
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Arti�cial neural networks methods

With the development of arti�cial neural networks related methods [33], such as
deep neural networks (DNN) [34], recurrent neural network (RNN) [35], Long short-
term memory (LSTM) [36], convolutional neural network (CNN) [37], Attention
mechanisms [38] and generative adversarial network (GAN) [39], which can learn
nonlinear transforms for data representation has success in single-modality tasks, such
as pattern classi�cation and recognition [40, 41, 42], person re-identi�cation [43, 44, 45].
DNN method recently has increasingly explored in cross-modal correlation learning by
�nding nonlinear transformations of data points to optimize the correlation in a shared
subspace. DCCA computes feature representations of the two data modalities via
feeding them into two layers of nonlinear transformation. Corr-AE [46] architecture
learns the correlation of hidden representations for two modality autoencoders,
which minimizes linear transforms of representation and correlation error in hidden
representations of modalities. [47] develops a novel application of deep neural networks
to learn feature representation across modalities. [48] proposes deep neural networks
for cross-modal retrieval, which is divided into two steps: by considering intra-media
information and inter-media correlation to generate a new representation for each
modality. Then, learning the cross-modal correlation in shared feature representation
space through a complex cross-modal multiple deep networks. [48] is for matching
images and captions, which learns a joint latent space with DCCA to get the high
dimensionality of the feature representations.

LSTM method applied in [49, 50, 51] for learning language representation and
AlexNet [52], VGGNet [53] or ResNet [54] for learning image representations, by
learning a shared latent space to generate compact binary codes for image and sentence.
HM-LSTM [55] explores the hierarchical relations between sentences and phrases by
learning joint embedding of sentences, phrases, images, and image regions.

GAN approach has increasingly exploited in the cross-modal retrieval task. [56]
presents an architecture, which includes the interplay between feature projector
part and a modality classi�er part for adversarial learning, in order to learn aligned
representation for image and text modalities. SCH-GAN [57] model is for cross-modal
hashing, where the generative model can select margin samples from unlabeled data
in one modality by a query from other modality. Such that the model can solve the
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problem that cross-modal architecture highly relies on the user’s annotation.

2.1.2 Multimodal Information Retrieval

Only one modality retrieval such as image retrieval [58, 59], textual retrieval [60, 61]
and audio retrieval [62, 63], has successfully shown excellent performance, where the
query and the content have the same format and can be matched almost directly.
The cross-modal representation learning or retrieval also has revolutionized, which
through learning a common latent space to make it possible to compare the query and
the content. However, many applications in the arti�cial intelligence �eld involve
multiple modalities even more than two modalities [64]. In reality, �exible and
applicable retrieval is more like the retrieval system can retrieve the content from any
modalities by a query from one modality. Similar to learning aligned representations
for cross-modal retrieval, representation learning for MIR into a shared space is a more
challenging task, where query processing in MIR must �ll a tremendous gap. Bridging
the semantic gap between query and content for the features, which includes the
low-level features such as color, shape, object, action, and high-level features like
user’s annotation, content-based semantic features, requires the system to learn a
common latent space.

In the previous research reports, cross-modal aligned representation has made
a breakthrough improvements successfully, while little research reported in three
modalities. In the paper [65], they developed a deep convolutional neural networks
model for audio, image, and text aligned representation learning. This model was
trained by audio-image pairs and image-text pairs and is can be transfer between
audio-text pairs by two alignment steps: 1) The alignment was a unsupervised teacher-
student model transfer by optimizing the gaps with KL-divergence loss. 2) They
applied the transfer discriminative visual model to transfer into the other two models
by ranking loss. The learned representation showed the hidden units can automatically
detect the concepts among each modality. In this paper [66], due to general methods
learn shared subspace require that the data point from di�erent modalities should
share the same labels. However, it’s not suit for a zero-shot learning based cross-modal
retrieval, when the samples of target include unseen classes during the training. The
TANSS model addresses the di�culty in the dataset for cross-modal zero-shot learning.
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Firstly, semantic features learning to preserve the data structure of di�erent modalities
and simultaneously keep the relationship of di�erent modalities. Then, the proposed
self-supervised semantic model can leverage the relation of seen and unseen classes.
The above correlation learning in common space was optimized by adversarial learning.

2.2 AlignmentRepresentationLearning in SpecialDo-

main

2.2.1 Audio and Visual

Understanding the relationship between audio and visual is crucial for multimodal
intelligence, which allows the system to learn the association between their contribution
of high-level semantics. In the paper [67], they applied the linear correlation model
such as CCA and CFA, to learn the relationship across modalities in a synchronized
audiovisual signal. [68] learns correlations between audio and visual datasets and the
correlations can be adopted for the clustering on the datasets. [69] uses KCCA and
MV-HCRF to learn the relationship between audio and visual by using a multi-chain
structured latent variable discriminative model. [70] presents a novel deep networks to
learn the relationship between audio and visual. [71] overcomes the shortage of the
Maximum covariance analysis method, which requires perfectly paired data as input.
The proposed architecture can accept weakly paired data on large datasets and learn
e�cient representation for materials and its sound. In these works [72, 73, 74], they
use the property of materials to learn audio representations from the visual features.

2.2.2 Audio and Lyrics

Recently, the audio-lyrics alignment techniques are getting trendy. The target of the
techniques is to leverage the relationship between audio and lyrics, such as temporal
relation [75], deep sequential correlation [76]. [77] presents two di�erent novel models
to learn the aligned representations for audio and lyrics. In the �rst model, using chord
change in the Markov chain and a audio feature to extend the HMM architecture. In
the second model, applying the repetition in the audio to stand for the lost chord
information. [78] proposes a model for learning aligned representation for audio-lyrics
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by learning the correlation between the synthesized voice and the vocal track extracted
from the song resource.

2.2.3 Sheet music and Audio

The popular problem is to automatically generate musically relevant linking structures
between sheet music and audio. In [79], where aims to establish the linking of sheet
music snippet to the corresponding clip in an audio recording of the same piece. [80]
puts forward an end-to-end convolutional neural network for multi-modal learning,
which takes short music audio snippets as input to �nd the relevant pixel location in
the image of sheet music. However, the global and local tempo deviations in music
recordings will e�ect the accuracy of the retrieval system in the temporal context. To
address that, [81] introduces an additional soft-attention mechanism on audio modality.
Instead of correlation learning with high-level representations, [82] matches musical
audio to sheet music directly, the method learns latent shared subspace for short
excerpts of the audio and corresponding section in sheet music.

2.2.4 Lyrics and Sheet music

Learning the correlation between lyrics and sheet music is a challenging research
issue, which requires learning latent relationships with high-level representations.
The automatic composition techniques are considerable for upgrading the musical
applications. [83] proposes a novel deep generative model LSTM-GAN to learn the
correlation in lyrics and melody for generation task. Similarly, [84] presents an
approach that can automatically generate songs from Japanese lyrics. [85] presents a
novel data-driven language model that can generate entire lyrics for a given input
sheet music. [86] proposed an improved query by QBSH system with melody and
lyrics information, which take advantage of extra lyrics information by combining
the scores from pitch-only melody recognition and lyrics recognition. Accept that,
“singing voice synthesis,” which is for generating singing voice has been drawing
attention in the last years. [87] explores a novel architecture that the musical audio
generation with no consideration of pre-assigned melody and lyrics.
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3
Data Collection, Feature Extraction and

Evaluation Metrics

In this section, we explain the motivation and contribution of our data collection, then
present the process of dataset collection applied in our experiments and the data
feature extraction is discussed following. In the end, we explain all the evaluation
metrics that apply to leverage our models.

3.1 Dataset Collection

In our dissertation, we introduce three di�erent models for di�erent multimodal
learning tasks. To evaluate our these new architectures of learning joint embedding,
we collected three di�erent datasets: music video 10K (MV-10K) dataset, VEGAS
dataset and Musical Ternary Modalities (MTM) dataset. Fig 3.1 shows a few examples
of each dataset we applied. The detailed description is as follows.



14 Chapter 3. Data Collection, Feature Extraction and Evaluation Metrics

  

Labels:
Water flowing, dogs, chainsaw, baby 
crying, helicopter, fireworks, rail 
transport, human snoring, drum, printers 
and rail transport.

Lyrics: 
Science fails to recognize the single most 
Potent element of human existence.

I always needed time on my own, I never 
thought I'd need you there when I cry and 
the days feel like years when I'm alone

Visual samples audio samples

Sheet music samples Music audio samples Lyrics samples

Label samples

Vision Sound Language

Figure 3.1: A few examples of our dataset applied in our experiments.

3.1.1 Dataset 1: Music Video 10K Dataset

We chose to learn aligned representation for musical audio and musical visual, which is
two tracks extracted from a music video. Because the growing availability of music
video allows us to build a certain scale audio-visual dataset to achieve our goal.

YouTube-8M is the largest video understanding multi-label dataset, mainly used for
video classi�cation, where has released the audio-visual time-localized frame-level and
it’s globe mean video-level features that is extracted from the Inception V3 model. We
are interested in the music video, so we download the audio-visual feature pairs where
contains the "music video" label. We collect 10K audio-visual feature pairs and neglect
other annotations by two rules as follows:

1) In order to reduce the noisy in the video and focus on the music video, the
selected video is required to contain "music video" entity only and not including other
top entity in the hierarchical tree.

2) The time length of the selected video should span from 213 to 219 seconds,
which allows us to cut the audio evenly and try to keep original time-located feature in
each audio chunk without removing excess frames or padding extra frames.

Our goal is to retrieve the full length musical visual samples with the musical audio
chunk as query, the initial pre-processing for our dataset is to slide audio into three
chunks on average. In order to preserve su�cient information in each chunk, we
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set the number of audio chunks as 3, 6, 9. The time length of selected video in our
MV-10K dataset is around 216 seconds, because 216 is the common multiple of 3, 6, 9.
Frame-level visual feature is extracted by Inception version 3 model trained on the
large amount of ImageNet dataset. The dimension of the frame-level visual feature is
L1024, where L is the music video lengths in seconds. The frame-level audio feature is
extracted by a Vggish model [88], the globe average of frame-level feature is as the
video-level audio feature.

3.1.2 Dataset 2: VEGAS Dataset

In the MV-10K dataset, the label of the dataset is generated by music video content
with K-mean methods, which annotates video with mood categories, the detailed
description is in section 4.2.3. The precision achieved on the MV-10K dataset is not
enough to leverage our second architecture TNN-C-CCA in section 5. Because the
mood categories labeled by the content highly rely on the feature extraction model.
However, the pre-trained model is not trained on the musical knowledge dataset.
Except for investigating the musical video, the relationship between musical audio and
visual based on the high-level semantic features, we are interested in the relationship
between audio and visual with human/environment sound labels by learning object
alignment from low-level features behind the data. We download the video from the
Visually Engaged and Grounded AudioSet (VEGAS) [89] with manual annotated 10
labels (water �owing, dog, chainsaw, and etc.). A video in our dataset should satisfy
two conditions:

1) To keep enough information for each, the length of each video should be longer
than 1 second.

2) The selected video under 1) should be available to extract audio features from
the audio track with the mel-frequency cepstrum (MFC) method.

Finally, the length of a video in the VEGAS dataset spans from 2 seconds to 10
seconds and the average of all videos is around 7 seconds. Finally, we obtain 28,103
videos to evaluate our proposed model in the second work.
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3.1.3 Dataset 3: Musical Ternary Modalities Dataset

The available musical dataset with three modalities, which can be applied in multimodal
information retrieval based on the high-level semantic features is rarely reported. We
try to learn aligned representation for Sheet music image, musical audio and lyrics
because they frequently appear in the music data collection. We follow the work [90]
to collect our musical dataset by extending two modalities (lyrics and music notes) to
three modalities: sheet music, audio, and lyrics.

In [90], the music dataset consists of lyrics and music notes. the lyrics is parsed as
syllable level collection, such as the lyrics: ’Listen to the rhythm of fall ...’ will parse
as ’Lis ten to the rhy thm of fall’. A music note is a ternary structure that includes
three attributions: pitch, duration, and rest. The pitch is a frequency-related scale
of sounds, for example, piano keys MIDI number ranges from 21 to 108, each MIDI
number correspond to a pitch number, such as MIDI number ’76’ represents pitch
number ’E5’. Duration in music notes denotes the time span of the pitch, for example, a
pitch number ’E5’ with its duration 1.0, means this music note will last 0.5 seconds in
the playing. The rest of the pitch is the intervals of silence between two adjacent
music notes and share the same unit with duration. The dataset used for the melody
generation from lyrics, to consider the time-sequence information in the pairs, the
syllable-level lyrics and music notes are aligned by pairing a syllable and a note.

The initial pre-processing for our dataset is to get the beginning of music notes and
corresponding syllables. In our Musical Ternary Modalities (MTM) dataset collection,
two rules are as follows.

1) We ensure that each syllable-note paired sample contains 20 notes, it keeps the
former �rst 20 notes as a sample or �rst 40 notes as two samples.

2) we removed the samples if existing the rest attribute of one note are longer than
8 (around 4 seconds).

Music audio and sheet music can be generated from music notes that satis�es our
objective of music three modalities data establishment. Once we get the music note and
the syllable-level lyrics, we can extend them to generate the pairs of music audio and
sheet music by some high-quality present technologies. All the music data modalities
contain temporal structure information, which motivates us to establish �ne-grained
alignment across di�erent modalities, as seen in Fig. 3.2. In detail, the syllable of lyrics,
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the audio snippet, and sheet music fragment generated from music notes are aligned.

Lis ten to the rhy thm of the fall ing rain tel ing me

D5 C5 C5 A4 A4 G4 G4 F4 G4 F4 F4 D5 C5 C5

0.5 1 0.5 1 0.5 1 1 0.5 2.5 1 4 1 0.5 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0

audio

Lyrics 

Music note 

Duration 

Reset 

Audio 

Figure 3.2: An example of �ne-grained alignment across three modalities: sheet music,
lyrics and music audio.

Music audio is also music sound transmitted in signal form. We add piano
instrument in the music channel to create new midi �les, and synthesize audios with
TiMidity++ tool 1

Sheet music is created by music note with Lilypond tools 2. Lilypond is a compiled
system that runs on a text �le describing the music. The text �le may contain music
notes and lyrics. The output of Lilypond is sheet music can be viewed as an image.
Lilypond is like programming language system, Music notes are encoded with letters
and numbers and commands are entered with backslashes. It can combine melody with
lyrics by adding the "\addlyrics" command. In our MTM Dataset, sheet music (visual
format) for one note and entire sheet music (visual format) for 20 notes are created
respectively. Accordingly, each song has single note-level and sequential note-level
(sheet fragment) visual formats.

1http://timidity.sourceforge.net/.
2http://lilypond.org/
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3.2 Feature Extraction

In this section, we will explain the motivation and the method of feature extraction for
di�erent modality, including audio, visual, text and sheet music.

3.2.1 Audio Feature Extraction

Generally, audio feature extraction is to extract feature from audio signal, which plays
main role in speech processing [91, 92], music genre classi�cation [93], and so on.
Here, we present a typical model for audio feature extraction, the supervised trained
model Vggish.

Vggish model 3 is released by Google Audioset trained on a large YouTube dataset.
Firstly, we exploit the librosa2 library to extract the Mel spectrogram feature with
some parameters setting like hop size=512, nftt=2,048. Secondly, input the extract
Mel-spectrogram feature into the Vggish model, seen in Fig. [?].

We choose the supervised learning Viggish model trained with users’ annotations
to catch the prede�ned audio label information for audio representation from the
output of the model. Finally, the Vggish model project the Mel-spectrogram feature
into 128-D audio representation for the input of alignment representation learning of
audio-visual cross-modal embedding.

Figure 3.3: The audio feature extracted process with vggish model.

3.2.2 Visual Feature Extraction

In our dataset, hand-crafted features are hard and time-consuming to obtain. With
the deep learning model success in the visual feature extraction, we expect to chose
Inception V3 pre-trained model to extract useful visual feature.

3https://github.com/tensor�ow/models/tree/master/research/audioset/vggish
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Inception V3 is widely applied in visual feature extraction from image [94, 95],
for object recognition and can get good performance on the ImageNet dataset [96, 97].
Visual track in the video can be viewed as an image sequence, the visual features are
also can be extracted by the pre-trained Inception V3 model [96]. The input of the
Inception V3 model is the pre-processing video that each video is decoded with one
frame one second. After feed the decoded videos into the deep CNN architecture and
use the ReLU activation and PCA technique in the last layer, the output of Inception V3
model is the frame-level semantic features, the output dimension of visual feature is
1,024.

3.2.3 Sheet music Feature Extraction

Di�erent from other image feature extraction, our feature extraction of sheet music
image tries to catch pitches and the segments. In this dissertation, our information
extraction of sheet music has two levels, pitch detection, and semantic segments. We
apply ASMCMR [98] model trained in audio-sheet retrieval tasks, which learns the
correlation between audio clips and corresponding sheet snippet. In our work, the
shape of extracted note-level feature and sheet snippet-level feature are (100, 32) and
(32,) respectively

3.2.4 Lyrics Feature Extraction

We follow [90] to keep the alignment between syllable and note by representing lyrics
in the form of syllable and word level. The syllable-level feature extracted with the
syllable skip-gram model, the word-level feature extracted with word skip-gram model
used in [90]. These two pre-trained skip-gram models is trained on all the lyrics data,
as a logistic regression task with stochastic gradient descent (SGD) optimization. The
input of the syllable-level skip-gram model is a sequence of syllable in a sentence,
while the input of the word-level model is word sequence in a sentence. The output of
syllable-level and word-level skip-gram model is 20 dimensional embedding for each
syllable and word, respectively.

The overall statistics of our musical data are shown in Table 3.2. We divided the
dataset into 3 parts as training, validation, and testing set by 70%, 15% and 15%. The
number of training, validation and testing set are 13,535, 2800 and 2800 respectively.
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Table 3.1: General statistics of two modalities used di�erent pre-trained models in our
experiments

Modalities Feature Extractor Dimension

audio Vggish (10, 128)
Soundnet (10, 400)

visual Inception V3 (10, 1024)
I3D (10, 400)

Table 3.2: General statistics of three data modalities used in our experiments
Modality Feature Extractor Dimension Number

Audio Vggish (20, 128) 14,454
Lyrics Skip-gram (20, 20) 14,454

Sheet music Lilypond&ASMCMR (20, 100, 32) 14,454

3.3 Evaluation Metrics

3.3.1 The Di�erence of Distance and Similarity

Normally, the higher similarity the shorter distance, here we try to discuss Euclidean
distance and cosine similarity.

Euclidean distance used in previous face identity tasks [99, 100], the distance like
D(T (i) −T (j)) = | |T (i) −T (j)| |22 to calculate the distance between the image anchor and
the positive image or the negative image, where i and j are from the same modality of
image. In our experiment, we apply a cosine similarity for the �nal representation
comparison at the end of the whole architecture. Our distance metric is de�ned by
following equation.

| |x,y | |cosine−distance = 1 −
∑n

k=1 xkyk√∑n
k=1 xk

√∑n
k=1yk

, (3.1)

where n is the dimension of vector x and y, its iteration k ranges from 1 to n. The
scale of the Cosine distance ranges from 0 to 2 and the e�ective margin shares the
same scale, normally it is set to 0.5.

Cosine similarity and cosine distance have 1.0 di�erence. Which all very popular
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in cross-modal embedding metrics. It is de�ned as follows.

Similarity = cos(θ ) =
A · B

| |A| | · | |B | |
=

∑N
i=1 xiyi√∑N

i=1 x
2
i

√∑N
i=1y

2
i

(3.2)

where xi and yi are the components of vector A and B respectively.
Seen in Fig.3.4. the overview of Euclidean distance and cosine similarity. While

cosine (θ ) focuses on the angle between vectors, euclidean distance (d) like applying a
ruler to measure the distance.

θ

dA1 (x1, y1)
B1 (x2, y2)

Figure 3.4: The overview of Euclidean distance (d) and cosine similarity (cos θ )

3.3.2 The Evaluation Metrics in our Experiments

This section is to introduce some metrics to evaluate the performance of our approaches
in our experiments. They can be summarized as two groups. One group is for supervised
cross-modal retrieval, such as mean average precision (MAP), Precision and recall
curve (PRC), other group is for unsupervised cross-modal retrieval: Recall@K, MedR
and MeanR. We exploit the common evaluation metrics in most previous work [101]
on unsupervised cross-modal retrieval.
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Mean Average Precision

is the mean of average precision (AP) for all the queries. To calculate the MAP value, it
�rstly required to compute the AP for each query in the rank list. The AP is calculated
by

AP =
1
Rel

N∑
k=1

p(k) · rel(k) (3.3)

where Rel is the number of relevant documents that shares the same label with the
query. p(k) is the precision in the top k of rank list, rel(k) is a indicator function. When
the value is 1 if the kth candidate in the rank list has the same label as query. If the
value is 0, both the kth candidate and query have the di�erent labels.

Precision-Recall Curve

Precision-Recall Curve (PRC) a graph with precision on y axis and recall on x axis.
Precision is about the percentage of the numbers of relevant items in the top k of
rank list, while recall relate to the percentage of the numbers of retrieved items in all
relevant items in the database.

Recall@K (K=1, 5, 10)

R@K (Recall at K) is to compute the percentage of relevant items appear in the top-k of
rank list for the query. We calculate the performance of our unsupervised architecture
by the average of R@1, R@5 and R@10 for all queries respectively.

Median Rank and Median Rank

Median Rank compute the median of the relevant items in the rank list. As a popular
metric to evaluate the performance of unsupervised task, the lower value it obtain
the better performance it achieve. Similarly, Mean Rank measure the mean rank of
all relevant items and the higher value means the better performance of proposed
approach.
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4
Audio-Visual Aligned Representation

Learning for Music Video Retrieval with
Supervised Deep CCA

4.1 Background and Motivation

Deep alignment learning is a very important research topic in the area of multimedia
and computer vision, which aims at learning aligned representations between di�erent
modalities to bridge the modality gap. It has widely discussed in same special domain,
such as image-text [12, 28]. The cross-modal retrieval in the music area, applying
music audio clip to obtain corresponding visual content is a imaginative application to
raise the experience of users. Image when you go cross a mall, a fantastic song you
heard and you want to record the song clips to �nd the music video, as shown in
Fig. 4.1. Learning aligned representation for audio-visual is non-trivial. Unfortunately,
few works has reported that the aligned learning within temporal structure of two
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Figure 4.1: The framework of music video retrieval: Applying a short audio clip to �nd
related music video by computing the similarity between the audio clip and the visual
items in the video collection.

modalities, which will be next generation for cross-modal representation learning.
A music video contains visual and audio modalities, which are embedded in musical

temporal sequences to express music theme and story. Moreover, as a special form
of expression, a music video also conveys strong feelings and emotions, which are
semantically contained in audio and visual modalities. That is to say, music emotion is
delivered by both audio and visual modalities in music video. This motivates us to
learn a aligned representation subspace where music audio and visual contents are
assumed with same semantically meaning.

The rapid growth of music videos on the Internet allow us to learn the align
representation between audio and visual sequences. Audio and visual are two tracks of
music video to together convey the music mood and feelings. Moreover, as a special
form of expression, a music video also conveys strong feelings and emotions, which are
semantically contained in audio and visual modalities. That is to say, music emotion is
delivered by both audio and visual modalities in music video. This motivates us to
learn a aligned representation subspace where music audio and visual contents are
assumed with same semantically meaning.

In this work, we study how to use audio to retrieve music video under a realistic
situation: with a segment of music audio that has a variable length as a query, the
system automatically �nds the music video that is similar to this audio with regard to
emotions. In other words, an audio with an arbitrary length can retrieve a longer
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or full-length music video. It is natural for users to search music video in this way.
However, this is a challenging research issue because audio and video are di�erent
modalities that have di�erent low-level features with di�erent properties of temporal
structures. To this end, we propose a novel audio-visual embedding algorithm by
Supervised Deep Canonical Correlation Analysis (S-DCCA) that projects audio and
video into a joint feature space to bridge the gap across di�erent modalities. This also
preserves the similarity among audio and visual contents from di�erent videos with
the same class label and the temporal structure. In addition to selecting 10K music
video data from the YouTube-8M dataset, most importantly, several contributions are
made in this paper as follows:

i) We are the �rst try to study how to retrieve a full-length silence music video by
an variable length of audio clips as query.

ii) We propose to select k representative audio chunks based on emotion features
extracted by a Long Short-Term Memory (LSTM)-based attention model, which serve
as audio summary meanwhile conserving the temporal structure.

iii) We develop an end-to-end deep learning architecture for audio-visual aligned
representation learning by learning the semantic correlation.

iv) The experimental results suggest that our algorithm has competitive performance
compared with the state-of-the-art methods.

4.2 Architecture

The section is to explain the detailed architecture of our musical audio-visual aligned
representation learning method.

4.2.1 Neural Attention Modeling

Aspired by the [36], they applied a bi-directional LSTM to achieve the selection of short
audio clips candidates for audio summarization. We exploit the same pre-trained model
to select the top k chunks based on the contribution of the audio clips for emotion
similarity.

LSTM understand the present audio frame assisting from previous audio frames,
and can preserve the "long-term dependencies" information because it consist of
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self-loops units. The weights of self-loops are updated by four components at the same
time.
1) Input gate determine what kind of values should be updated. It relies on the present
input xi and the previous hidden state ht−1 as follows:

st = σ (bi +Wxixt +Whiht−1 +Wcict−1). (4.1)

2) Forget gate judge which information will be forgotten from the present cell, seen as
follows:

ft = σ (b f +Wx f xt +Whf ht−1 +Wc f ct−1). (4.2)

3) Cell state ct renovate the old state ct−1, shown as follows:

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc). (4.3)

4) Output gate determines what the next hidden state will be, seen as follows:

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo). (4.4)

ht = ottanh(ct ) (4.5)

where xt denotes the present input variable, ht−1 represents the last hidden state,W
and b are the weight and bias of the updated function.

LSTM is a one way computation method. In order to consider both past and
future information, the extension of LSTM networks adds one more layer with the
opposite temporal sequence and is named bi-directional LSTM, as shown in Fig. 4.2.
In our works, each audio is divided into 72 chunks, each with 3 seconds. Then, the
bi-directional LSTM model is applied on each chunk. In the attention model, the input
of bi-directional LSTMs is the output of global max-pooling layer, which is the �rst
attention layer to compute the contribution scores of di�erent audio chunks. The
attention score ut of the t-th chunk can be computed as follows.
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Figure 4.2: (a) The neural attention model can select the top k audio chunks, which
have the top k contribution for the emotions. (b) A LSTM memory block consists of
four components, the cell state and three gates.

Figure 4.3: Emotion learning model for evaluating the contribution of each chunk to
emotions. When an original 216 seconds audio is divided into 3 chunks, the model
calculates the contribution score of each chunk, which helps to obtain the top k − th
chunk.
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ut =W
T tanh(Wf ht f +Wbhtb + β), (4.6)

where ht f ,htb are the outputs of forward and backward LSTM for the t-th chunk, the
W T ,Wf ,Wb and β are the weight parameters of attention score function. When the
attention score is obtained, the attention distribution θ is calculated by a softmax
function:

θ = so f tmax(ut ). (4.7)

We regard this architecture as an emotion learning model [102], which is trained
over the MER31K dataset, using emotion tags from AllMusic1. The detail of selecting
audio segments achieved by emotion learning model is shown in Fig.4.3. Firstly,
the emotion learning model is used to evaluate the contributions of each chunk to
emotions. The contribution score allows us to rank the chunks. Secondly, in the ranked
chunks, the best top k are selected. For instance, the �rst audio in the Fig. 4.3 is divided
into 3 chunks, and depending on the contribution scores, the third chunk is selected as
the best one, because it has the highest score within the audio.

4.2.2 Supervised Deep Canonical Correlation Analysis and Dis-
tance Similarity

CCA[103] is a classical approach for correlation analysis among two or more modalities.
Its core idea is to learn projection matrices that map features of di�erent modalities
into the same space, where the correlation between similar items of di�erent modalities
are maximized.

Denote X ∈ Rk as an audio feature, Y ∈ Rl as a visual feature, and denoteWx , and
Wy as matrices that linearly map X and Y to the same space, thenWx andWy are found
by maximizing the correlation betweenW T

x X andW T
y Y , as follows:

1http://www.allmusic.com/moods
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Figure 4.4: Audio-visual embedding architecture through S-DCCA. (left) During the
training process, the model learns the correlation between audio and visual content.
(right) Using audio chunks as input to retrieve music videos.

(Wx ,Wy) = arg max
(Wx ,Wy )

W T
x ΣxyWy√

W T
x ΣxxWx ·W

T
y ΣyyWy

(4.8)

where Σxx and Σyy represent the covariance matrices of X and Y, respectively and Σxy

is their cross covariance matrix.
DCCA extends CCA, realizing non-linear projections by deep neural networks

(DNN). Assume the output of (i − 1)th layer is Xi−1 and Yi−1 (X0 = X and Y0 = Y ),
andWxi,Wyi,bxi,byi are the weights and biases of the ith layers. Then, the ith layer
outputs Xi = s(W T

xiXi−1 + bxi), Yi = s(W T
yiYi−1 + byi) at two branches, where s: R→ R is

a nonlinear function. The output of the �nal (dth) layer are fx = s(WxdXd−1 + bxd), fy =
s(WydYd−1 + byd). Let θx represent the parametersWxi , bxi , i = 1, ..., d, and θy represent
the parametersWyi , byi , i = 1, ..., d. They are optimized by

(θ ∗x , θ
∗
y ) = arg max

(θx ,θy )
corr (fx (X , θx ), fy(Y , θy)). (4.9)

Supervised deep CCA does not merely consider one-to-one match between all pairs of
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audio-visual data and apply deep CCA to learn the correlation. In order to preserve the
similarity among items with the same class label, audio and visual contents from
di�erent videos with the same class label are formed as new relevant pairs to increase
the number of training samples.

In the training process, maximizing the CCA objective function G(W T
x ΣxyWy) to

obtained the linear projections weightWx ,Wy and non-linear function fx , fy as follow.

(Wx ,Wy, fx , fy) = argmax
(Wx ,Wy ,fx ,fy )

G(W T
x ΣxyWy),

s .t .W T
x ΣxxWx = I ,W T

y ΣyyWy = I .

(4.10)

where the covariance matrices Σxx , Σxy and Σyy are computed as.

Σxx = Ei(f
(i)
X f (i)X

T ) + rI, (4.11)

Σyy = Ei(f
(i)
Y f (i)Y

T ) + rI, (4.12)

Σ(1)xy (d) = Ei∈d(f
(i)
X f (i)Y

T ), (4.13)

Σ(2)xy (d) = Ei,j∈d,i,j(f
(i)
X f (j)Y

T ), (4.14)

Σxy = σ · Ed⊂D(Σ
(1)
xy (d)) + (1 − σ ) · Ed⊂D(Σ(2)xy (d)). (4.15)

where N is the number of all pairs. The σ value decide two factor of the number of
training dataset, di�erent from DCCA, S-DCCA considers pairs between audio and
visual contents from videos with the same class label, including those pairs formed
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from di�erent videos, as shown in (4.14). similar to DCCA, all parameters are optimized
by formulation (4.13). The left side of Fig. 5.1 shows the whole process.

4.2.3 K-means Clustering

k-means clustering is a very popular unsupervised learning method for cluster analysis
in data mining. k-means clustering enables n variables to be separated into k clusters
based on the nearest mean, where k is usually pre-de�ned by users.

Given a set of variables X=(x1, x2, …, xn), where each variable xi ∈ X is a d-
dimensional vector. In order to cluster them into k groups G = д1,д2, ...,дk (k < n) ,
�rstly, a common method is to randomly choose k values from X as initial cluster
centers, then iteratively update the cluster center after assigning each variable xi to its
closest cluster till the cluster center never changes. The objective function is de�ned as
follows:

argmax
G

k∑
i=1

∑
x∈дi

| |x − ui | |
2 (4.16)

where ui is the mean of points or cluster center of Gi . In our experiments, we allocate 3
annotated audios for each 10 prede�ned categories (angry, tender, bitter, cheerful, fun,
bright, happy, anxious, calm and warm) to compute the initiated mean u0. We use the
k-means method to cluster all audios into 10 semantic classes based on the emotion
features.

4.2.4 Matching and Ranking

It is not easy to recognize emotion inside the visual modality, because the visual
feature of the dataset is high-level semantic features without clear emotion expression
like facial expression changes or body movement. However, the high-level semantic
information extracted or trained from complicated deep network is able to represent
emotion attributes contained in music. Based on this background, we design a S-DCCA
model to learn the correlation between audio and video, which enables us to use audio
to retrieve video clip.
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The audio-visual embedding is to map audio chunks and visual features to a
common space. This space links audio chunks and visual feature in terms of emotion,
and enables us to implement cross-modal music video retrieval based on emotion
similarity. In the cross-modal retrieval, given an audio chunk or multiple chunks as
query, we calculate the similarity between the query audio chunks and each of the
visual features from the database in the emotion-based embedding space. We use the
cosine similarity between fx (X , θx ) and fy(Y , θy) as the similarity metric, which is
de�ned as follows.

Cos(fx , fy) =
fx fy

| | fx | |.| | fy | |
(4.17)

The detail of our architecture is shown in Fig. 5.1. which consists of 2 branches:
audio branch and visual branch. Firstly, the pre-trained VGG16 model is used to
extract frame-level audio feature and the pre-trained Inception model is used to extract
frame-level visual feature, for all data in the dataset. Secondly, the frame-level visual
feature is represented as video-level feature by the max pooling method. As for audio
branch, we load frame-level audio feature into the pre-trained emotion learning
model [102] to extract emotion features , based on which the best top k chunks are
selected to do music video retrieval, then feed them into Sub-Net1 and Sub-Net2
respectively. Thirdly, based on the extracted emotion features, we apply k-means to
cluster the audio into 10 groups. Fourthly, the visual video-level feature and emotion of
top k audio chunks are fed into 4 fully connected layers, which generates compact
features. Finally, CCA components of these compact features are used to compute the
similarity between video and audio chunks.

4.3 Experiments

The performance of the proposed S-DCCA for cross-modal music video retrieval are
evaluated in this section, with the studies on the in�uence of the number of chunks
and cross-modal music video retrieval by audio.



4.3 Experiments 33

4.3.1 Experiment Setting

The frame-level video feature in YouTube-8M is computed one frame per second,
according to the pre-trained emotion learning model. We divide the 216 second
frame-level audio feature into 72 chunks.The attention model is applied to each chunk
to calculate the contribution score of emotion, and each 3 second share the same score.
Finally, the result of max pooling is regarded as the score of emotion for each chunk.

The following parameters are used in our experiments:

• Network parameter. Both the audio and the branch have 4 hidden layers. The
number of units per layer is 512, 512, 256, 256 in the visual branch, and 128, 128,
64, 64 in the audio branch. The number of CCA component is 30. We set the
probability of dropout to 0.2 and apply tanh as the activation function in each
hidden layer and use siдmoid function in the �nal layer.

• Experiment parameter. Train batch size is 512 and test batch size is 64. The
number of training epochs is 50.

• We run the experiments with 5 fold cross-validation and get the average
performance.

• The RMSProp optimizer is used and the learning rate is set to 0.001.

4.3.2 Baseline

Multi-view [104] learning is a technology in machine learning that learn one function
per view to model multiple views and optimizes all functions to remove the cross-view
gap.

CCA [105] algorithm is to �nd the correlations between two multivariate sets of
vectors by linear projections, which depends on singular value decomposition.

KCCA [106] is also a method to extract common features from two data sets
Instead of the linear correlation KCCA tries to obtain non-linear correlation through
the kernel method, which uses Gaussian kernel and set parameter β=0.4.

DCCA [103] is to learn the nonlinear transformations of two data sets such that
outputs are highly correlated.



34
Chapter 4. Audio-Visual Aligned Representation Learning for Music Video

Retrieval with Supervised Deep CCA

Figure 4.5: Precision-recall curve with the number of chunks set to 3, where “mean"
denotes using the average of frame level audio feature as query, k (=1, 2) is the number
of audio chunks selected as query.

C-CCA [4] (Cluster-CCA) is a CCA variant. Di�erent from standard CCA. C-CCA
algorithm clusters each data set into several groups or classes and tries to enhance the
intra-cluster correlation.

4.3.3 Evaluation and Analysis

Our experiments of S-DCCA use three di�erent training data sets to obtain three
di�erent models. The basic C-CCA and S-DCCA model are trained by the 8000
one-to-one pairs. To enhance to intra-cluster correlation, we further consider the
correlation between audios and visual contents from di�erent videos of the same
cluster, to learn the relationship between the two modalities. We also try to construct
more audio-visual pairs during the training. The C-CCA-extend1 and S-DCCA-extend1
are trained by around 0.8 million pairs, C-CCA-extend2 and S-DCCA-extend2 models
by around 1.5 million pairs. where the former -extend1 model uses 50% of all music
videos of a cluster to form training pairs with each audio in the cluster, and the latter
-extend2 model applies 100% of all music videos in the same cluster to form training
pairs.
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Figure 4.6: Precision-recall curve with the chunks=6, where “mean" denotes using the
average of frame level audio feature, k(=1, 2, 3) is the number of audio chunks selected
as query.

Figure 4.7: Precision-recall curve with the chunks=9, where “mean" denotes using the
average of frame level audio feature, k (=1, 2, 3) is the number of audio chunks selected
as query.
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Figure 4.8: Precision-recall curve, achieved by changing the number of output, where
k (=1, 2, 3) is the number of chunks selected from all chunks (c) of an audio as query;
for example, k/c=1/3 denotes selecting 1 chunk from an audio that is divided into 3
chunks. "mean" denotes using the average of the whole audio as query.

Figure 4.9: Mean average precision when using di�erent numbers of audio chunks
selected as query for video retrieval, k denotes the number of chunks selected as query,
c denotes the number of overall chunks that the audio is divided into.
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Table 4.1: The MAP results of di�erent methods under di�erent con�gurations.
k/chunks 1/3 2/6 3/9 mean

Multi-views 14.02 14.36 14.25 14.58
CCA 18.34 18.39 18.32 18.35

KCCA 17.54 17.04 17.49 17.80
DCCA 18.35 18.39 18.22 18.40
C-CCA 18.51 19.60 19.73 19.72

S-DCCA-extend1 20.19 20.04 20.00 20.14
S-DCCA 21.38 21.43 21.24 21.76

We use the precision-recall curve to draw the tendency of results as the number
of outputs increases so as to compare our S-DCCA model with DCCA model and
S-DCCA-extend2 model. Our model tries to leverage the temporal structure inside the
query audio, and each query audio is divided into 3, 6, or 9 chunks, from which k chunks
are selected as the actual query. In order to investigate the overall performance of our
S-DCCA, we use MAP as the metric and compare S-DCCA with others CCA variants
(DCCA, C-CCA, KCCA), we set the same dimension of embedding for all methods,
and set the same hidden layers structure for DCCA, S-DCCA, S-DCCA-extend1, and
S-DCCA-extend2. The correct retrieved video in the rank list which has the same
category as query, otherwise it is incorrect video.

Figs. 4.5, 4.6, 4.7 demonstrates the precision-recall curve, comparing DCCA and
S-DCCA-extend2 model. The pair of precision and recall value is achieved by changing
the number of music videos output. Generally, with the increase of the number of music
videos output, the recall increases and the precision decreases. In the S-DCCA-extend2
model, these three �gures show that precision starts with the highest value and then
sharply decreases before recall arrives at 0.2, then precision almost remains stable as
recall increases to 1.0. As is known, the query and the model as two main factors
control the curve trend. As for the query factor, when each audio is divided into 3 or 6
chunks, the precision and recall curves of the selected chunks and full-length audio are
very close. But when each audio is divided into 9 chunks, and 3 chunks are selected
as query, the performance is better than other con�gurations when the number of
output is small. This infers that the 3 chunks have most contribution of emotion and
this kind of information is helpful for cross-modal retrieval. As for the model factor,
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S-DCCA-extend2 is better than DCCA, which indicates that more videos in the output
belong to the same cluster as the query in S-DCCA-extend2, than in DCCA.

We also investigate the in�uence of the number of overall chunks and the number
of chunks selected. Fig. 4.8, shows that with the same volume of audio information as
query, when the audio is divided into 9 chunks and 3 chunks are selected as the query
the S-DCCA-extend2 model achieves the best performance (precision ranges from
26.6% to 23.8%; recall ranges from 0.20 to 0.41).

In order to further study the in�uence of the number of overall chunks and the
number of chunks selected as query , the MAP results of di�erent models are compared
in Table 4.1 and Fig. 4.9. As for the number of chunks selected, generally there is no big
di�erence in MAP when the same model is used. When the same audio information is
used as query, comparing the MAP results among di�erent models, it shows that the
training process explicitly exploiting the cluster information generally outperforms the
one without cluster information.

As a result, S-DCCA (and S-DCCA-extend1, S-DCCA-extend2) and C-CCA (and
C-CCA-extend1, C-CCA-extend2) can get higher MAP than Multi-views, CCA, KCCA,
and DCCA. It indicates that the correlation learning based on both cluster information
and instance features is better than those using instance features only. With the
increases in the volume of the training data, from two groups, group 1: C-CCA, C-CCA-
extend1, C-CCA-extend2, and group 2: S-DCCA, S-DCCA-extend1, S-DCCA-extend2,
the MAP gets higher and higher. It proves that considering all possible pairs within two
data sets for each label cluster can get better performance than one-to-one pairs, and it
also illustrates the limited training data cannot well learn the correlation between
audio and visual feature in this case. Generally, using parts of audio as queries to do
retrieval can get close performance as in this case where full-length audio is used as
queries.

4.3.4 Summary

We proposed a supervised deep CCA model to learn a semantic space where audio and
visual data from music video, which are in di�erent modalities, are linked to learn the
cross-modal correlation. Besides the pairwise similarity, the semantic similarity or
alignment between audio and visual contents from di�erent videos in the same cluster
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is also explicitly considered. An end-to-end deep architecture that represents an audio
sequence as representative chunks is studied. The experimental evaluation run over
MV-10K data selected from You Tube-8M proves the e�ectiveness of the proposed deep
audio-visual aligned representation learning algorithm in cross-modal music video
retrieval. We proposed a more advanced architecture for the audio-visual aligned
representation learning in the next section, instead of training with audio-visual pairs,
we established triplet with audio-visual modalities based on the component of triplet
belong to the same category or not, and our model are trained by the built triplet.
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5
Deep Triplet Neural Networks with

Cluster-CCA for Audio-Visual
Cross-Modal Retrieval

5.1 Background and Motivation

The web has progressively become the multimedia content platform, to be bene�cial
from the relationship of multimedia content will results in a heterogeneous gap between
di�erent modality data, which brings a big challenge for e�ciently and e�ectively
cross-modal retrieval between data from di�erent modalities. In the past, researches
have focused on learning aligned representation between every two modalities of
data for cross-modal retrieval tasks, which has made big successes in multimodal
information retrieval, such as image-text [10, 12], audio-text [14], and video-text [13].
In particular, the visual and auditory senses of human being are the most important
ways to understand the living environment and understand the world. For instance,
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when hearing a helicopter sound, a helicopter can be imagined in your mind. When
you see lightning, subconsciously the thunder is coming soon. Unfortunately, due
to the limited audio-video paired dataset and semantic category information, little
research works on audio-visual cross-modal retrieval [107]. This motivates us to mimic
the mutual-aid based learning process and extract cognitive patterns from human
being.

Cross-modal retrieval between data from di�erent modalities has a challenge
of the heterogeneous gap of data structure among the modalities, which requires
us to formulate a aligned representation space, where the similarity of di�erent
data modalities suggests the semantic matched pair between their former inputs by
correlation learning. Recently, most methods for correlation learning are to bridge the
gap of di�erent modalities by learning aligned representation, which has achieved
great success in cross-modal retrieval tasks [108, 109, 48, 110].

The typical representation learning method CCA [109] is to �nd linear transforma-
tions of two-view of data as inputs via maximizing the pairwise correlation. However,
if there is a nonlinear relation between two instances, CCA has no capability to always
extract useful features. Kernel-CCA [23] uses the kernel method to CCA, which enables
the nonlinear transformation for two-view of data. With the rapid growth of deep
neural network (DNN) techniques, the DNN model has been progressively applied in
cross-modal retrieval tasks [103, 46, 47, 11]. For example, Deep Canonical Correlation
Analysis (DCCA) [103], which is used for learning complex nonlinear transformations
of the di�erent datasets. DCCA can learn nonlinear transformations without the inner
product computation of Kernel-CCA. Also, DCCA has no hyper-parameters limited
in the representation learning unlike kernel-CCA limited in the �xed kernel. The
current cross-modal retrieval model also tries to keep the pairwise correlation with the
aligned prede�ned semantic categories, where each category contains many pairs
of cross-modal data. CCA, Kernel-CCA and DCCA cross-modal retrieval methods
focus on the pairwise correlation only. However, the di�erent samples with the same
category convey the same semantic information which might be neglected. In theory,
to solve this issue, it requires a model that can preserve all the semantic information
during the representation learning, where the heterogeneous gap in the pairwise
samples is minimized while non-pairwise samples with the same semantic categories
are maximized.
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Cluster-CCA [4] can preserve all the semantic information by applying a one-to-one
correspondence between all pairs from the cross-modal dataset and use standard
CCA to learn the projections. Cluster-CCA can learn aligned representations that
maximize the correlations between the two di�erent modalities and segregating
the di�erent categories in the shared subspace. Cluster-CCA tries to enhance the
similarity inside the category between data from di�erent modalities. Inspired by
Cluster-CCA and DCCA, an improved C-DCCA[28] is proposed to learn the nonlinear
correlation between data from di�erent modalities and simultaneously consider the
similarity within the category across modality data. However, the above methods
cannot guarantee all the similarity distance of two instances from di�erent modalities
of the same category is similar than that of two instances from di�erent modalities of
the di�erent categories.

To settle this problem, it needs to completely consider all the positions of data
points in the common space. The previous alignment representation learning methods,
after the two branch networks are optimized, the CCA projections are calculated only
one time. It is impossible to completely focus on the distribution of all the data points
in the shared subspace.

To �gure out this issue, our �rst contribution is that deep TNN is proposed to
maximize the correlation between every two instances from di�erent modalities with
the same category while minimizing the correlation between every two instances with
di�erent modalities from di�erent categories during training. In other words, each data
point from one modality is more close to samples with the same semantic category
from the other modality (namely positive samples). Simultaneously, the data point is
farther from instances with di�erent categories. (namely negative samples). The deep
TNN used here is to apply deep neural networks with backpropagating errors and
use triplet loss to update the weights of the neural network during the training. The
second contribution is that all the data points within a batch size is considered to meet
storage limitation instead of using all the position of data points space. Finally, our
architecture is evaluated on two video datasets. MV-10K dataset is selected from the
YouTube-8M video dataset by us. To evaluate the extendability of our algorithms,
VEGAS dataset [89] is used in the experiments. The experimental results demonstrate
that the proposed embedding learning architecture signi�cantly surpasses the existing
six CCA-based methods and four state-of-the-art methods in cross-modal retrieval.
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Figure 5.1: The overall framework of our TNN-C-CCA model. It consists of two parts:
feature extraction and TNN-C-CCA training. We apply Inception V3 and Vggish
model to extract feature, then explore cluster-CCA to learn the correlation with cluster
segregating and select triplets as input for deep TNN training. In the deep TNN, there
are three branches: anchor, positive, and negative. Positive and negative branches
shared the same weights. Anchor branch is trained by audio data, positive and negative
branches are trained by visual data. The detailed description is shown in section 3.3.

5.2 Architecture

Table 5.1: Con�guration of TNN-C-CCA
log mel-spectrogram audio inputs 96x64

Output of visual branch L1*1024
Output of audio branch L*128
Output of Cluster-CCA 10

Fully connected layers for audio [100, 100, 100, 10]
Fully connected layers for visual [200, 200, 200, 10]

Output of TNN-C-CCA 10

Our deep architecture generally can be divided into two di�erent parts: feature
extraction and TNN-C-CCA training, as shown in Fig. 5.1. The con�guration of

1L is the number of frames in a video, by decoding each video at one frame per second.
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TNN-C-CCA used in this work is shown in Table 5.1. Outputs of visual branch and
audio branch respectively are 1024-dimensional and 128-dimensional, which are
mapped to 10-dimensional by cluster-CCA. Deep triplet neural network consists of 4
fully connected layers respectively for audio embedding and visual embedding and
outputs a feature vector with a size of 10. The motivation of our architecture is to take
advantage of the two models. Cluster-CCA is to establish one-to-one correspondences
between all possible pairs by given categories information across the two modalities to
maximize the correlation between the latent representation of two di�erent modalities
via CCA. deep TNN aims to enforce the relation of similar samples and simultaneously
weaken the relation of dissimilar samples. Particularly, using more negative samples
and positive samples during the training of Deep TNN improves the discriminative
capability of the embedding space.

5.2.1 The Cluster-CCA

CCA is used for exploring the relationship between two multivariate sets of vectors,
such as x ∈ RA and y ∈ RB with zero-mean, and the pair format is like (xi , yi ). The goal
of CCA is to �nd new axis for x and y by the weight w ∈ RA and u ∈ RB respectively,
such that the correlation between these two sets is maximized. The correlation can be
de�ned as follows:

corr =
w
′

Cxyu√
w ′Cxxw

√
u ′Cyyu

, (5.1)

Cxx = E[xxT ] =
1
n

n∑
i=1

xix
T
i , Cyy = E[yyT ] =

1
n

n∑
i=1

yiy
T
i , Cxy = E[xyT ] =

1
n

n∑
i=1

xiy
T
i ,

(5.2)
Where corr is the correlation, Cxx , and Cyy are the co-variance metrics, Cxy is the

cross-variance metrics. Here E(∗) is the expectation function. Normally, the problem is
regarded as an eigenvalue problem, suppose w is the top eigenvector, the problem can
be represented as follows:

C−1xxCxyC
−1
yyCyxw = λ

2w, (5.3)

CCA has been successfully utilized to solve the multimedia problems, such as
cross-modal retrieval. However, CCA is suitable for calculating pairwise correlation
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similarity from di�erent modalities and not available for calculating correlation
similarity within a cluster. CCA will be ine�ective for learning representation with a
cluster in this case. Cluster-CCA is a variant of CCA [109] with consideration of the
cluster segregating by training on all possible pairs in the cluster across modalities,
then apply CCA to learn the projections.

corr =
w
′

C
′

xyu√
w ′C

′

xxw
√
u ′C

′

yyu
, (5.4)

The three types of variances can be formulated as follows:

C
′

xx =
1
L

C∑
c=1

|Xc |∑
i=1
|Yc |x

c
i x

cT
i , C

′

yy =
1
L

C∑
c=1

|Yc |∑
j=1
|Xc |y

c
jy

cT
j , C

′

xy =
1
L

C∑
c=1

|Xc |∑
i=1

|Yc |∑
j=1

xiy
cT
j ,

(5.5)
Where L =

∑C
c=1 |Xc | |Yc | is the sum number of all pairs. Similar to CCA, the

optimization problem can be regarded as an eigenvalue problem like formulation (5.9).
Here we assume that the covariance is calculated for the zero-mean random variables.

5.2.2 Deep Triplet Neural Network

The Deep Triplet Neural Network is an end-to-end training, as shown in Fig. 5.1, which
is optimized by triplet loss [99] at the end of cross-modal retrieval architecture. For
example, in audio-to-visual retrieval process, we try to obtain an audio i represented
by T (i) and a visual j represented by S(j), a visual k(k , i) represented by S(k), where
T(.) and S(.) are the output of Cluster-CCA model, i and j from the same category, i and
k from di�erent categories. Here we want to guarantee audio sample i (Anchor) of one
speci�c category is closer to visual sample j (Positive) of the same category than any
visual sample k (Negative) of any other category.

As shown in Fig. 5.2. Triplet loss will pull Anchor and Positive samples, simul-
taneously push Anchor and Negative samples. The condition is represented as
follows.

Where α is a margin that is used for reinforcing the Cosine distance among anchor,
positive and negative. Λ is the collection of all possible triplets in the training dataset.
The triplet loss can be de�ned as follows:
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Loss = Max{
N∑
i

[| |T (i) − S(j)| |cosine−distance − ||T (i) − S(k)| |cosine−distance + α], 0}, (5.6)

Where N is the sum of all possible triplets. The collection of all the possible triplets
is generated by the output of Cluster-CCA model, it is easy to ful�ll the condition
de�ned in Eq.(5.12), because the new audio/visual representations have already learned
pairwise-based correlation and cluster-based correlation which results in almost
pairwise examples of the same class group more closer than the pairwise example from
di�erent classes. The triplet loss values of most triplets are zero and these triplets have
no contribution to the sum of triplet loss, which lead to the �nal average of loss values
close to zero.

In particular, when a loss has | |T (i)−S(j)| |cosine−distance+α < | |T (i)−S(k)| |cosine−distance ,
it is equal to zero, the loss has no contribution to optimizing the �nal loss. Our
experiment follows [100], a better triplet loss optimization is to ignore all the triplet
when its loss is zero, so that the triplet loss can be fast converged and the optimization
will be more e�ective [99].

It is impossible for us to calculate all the argmin and argmax among all the training
dataset. Because in our experiment dataset, we have around 1K examples in MV-10K
dataset and more than 2K examples in the VEGAS dataset for each class, which result
in a large number of possible triplets. And computation in this way may bring bad
generation and over-�tting. In this paper, we follow the FaceNet method [99] and select
triplets to remove all negative/positive samples in a batch when its triplet loss is zero.

5.2.3 Cluster-CCA

CCA is used for exploring the relationship between two multivariate sets of vectors,
such as x ∈ RA and y ∈ RB with zero-mean, and the pair format is like (xi , yi). The
goal of CCA is to �nd a new coordinate for x and y by direction w ∈ RA and u ∈ RB

respectively, such that the correlation between these two sets is maximized. The
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correlation can be de�ned as follows:
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Where corr is the correlation, Cxx , and Cyy are the co-variance metrics, Cxy is the
cross-variance metrics. Here E(∗) is the expectation function. Normally, the problem is
regarded as an eigenvalue problem, suppose w is the top eigenvector, the problem can
be represented as follows:

C−1xxCxyC
−1
yyCyxw = λ

2w, (5.9)

CCA has been successfully applied to several multimedia problems, such as cross-
modal retrieval. However, CCA is suitable for calculating pairwise correlation similarity
from di�erent modalities and not available for calculating correlation similarity within
a cluster. CCA will be ine�ective for learning representation with a cluster in this case.
Cluster-CCA is a variant of CCA [109] with consideration of the cluster segregating by
establishing one-to-one correspondences from all pairs of data points in a given cluster
across the two di�erent modalities, then apply CCA to learn the projections.
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The three types of variances can be formulated as follows:
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Where L =
∑C

c=1 |Xc | |Yc | is the sum number of all pairs. Similar to CCA, the
optimization problem can be regarded as an eigenvalue problem like formulation (5.9).
Here we assume that the covariance is calculated for the zero-mean random variables.
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(a)  (b)  (c) (d)

Figure 5.2: (a) and (b) show the traditional triplet loss minimizes the Euclidean distance
between (anchor, positive) and (anchor, negative) with a �xed margin and optimal
gradient back-propagation direction; (c) and (d) present our triplet loss through
minimizing the Cosine distance between (anchor, positive) and (anchor, negative) with
�xed margin and optimal gradient back-propagation direction.

5.2.4 Deep Triplet Neural Network

The Deep Triplet Neural Network is an end-to-end training, as shown in Fig. 5.1, which
is optimized by triplet loss [99] at the end of cross-modal retrieval architecture. For
example, in audio-to-visual retrieval process, we try to obtain an audio i represented
by T (i) and a visual j represented by S(j), a visual k(k , i) represented by S(k), where
T(.) and S(.) are the output of Cluster-CCA model, i and j from the same category, i and
k from di�erent categories. Here we want to guarantee audio sample i (Anchor) of one
speci�c category is closer to visual sample j (Positive) of the same category than any
visual sample k (Negative) of any other category. As shown in Fig. 5.2. Triplet loss will
pull Anchor and Positive samples, simultaneously push Anchor and Negative samples.
The condition is represented as follows.

| |T (i) − S(j)| |cosine−distance + α < | |T (i) − S(k)| |cosine−distance,

Labi = Lab j, Labi , Labk(i , k), ∀(i, j,k) ∈ Λ,
(5.12)

Where α is a margin that is used for reinforcing the Cosine distance among anchor,
positive and negative. Λ is the collection of all possible triplets in the training dataset.
The triplet loss can be de�ned as follows:
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Loss = Max{
N∑
i

[| |T (i) − S(j)| |cosine−distance − ||T (i) − S(k)| |cosine−distance + α], 0},

(5.13)
Where N is the sum of all possible triplets. The collection of all the possible

triplets is generated by the output of Cluster-CCA model, it is easy to ful�ll the
condition de�ned in Eq.(5.12), because the new audio/visual representations have
already learned pairwise-based correlation and cluster-based correlation which
results in almost pairwise examples of the same class group more closer than the
pairwise example from di�erent classes. The triplet loss values of most triplets
are zero and these triplets have no contribution to the sum of triplet loss, which
lead to the �nal average of loss values close to zero. In particular, when a loss has
| |T (i) − S(j)| |cosine−distance + α < | |T (i) − S(k)| |cosine−distance , it is equal to zero, the loss
has no contribution to optimizing the �nal loss. Our experiment follows [100], a better
triplet loss optimization is to ignore all the triplet when its loss is zero, so that the
triplet loss can be fast converged and the optimization will be more e�ective [99].

It is impossible for us to calculate all the argmin and argmax among all the training
dataset. Because in our experiment dataset, we have around 1K examples in MV-10K
dataset and more than 2K examples in the VEGAS dataset for each class, which result
in a large number of possible triplets. And computation in this way may bring bad
generation and over-�tting. In this paper, we follow the FaceNet method [99] and select
triplets to remove all negative/positive samples in a batch when its triplet loss is zero.

5.3 Experiments

5.3.1 Training Setting

In our experiments, we set parameters for our deep TNN-C-CCA model as follows.
1) For deep TNN, there are three branches: anchor branch, positive branch, and

negative branch. For each branch, they will go through a full connection. Anchor branch
has its own parameters, positive and negative branches share the same parameters.
When taking audio sample as an anchor, the positive and negative are visual samples.
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We set four hidden layers for each full connection. The number of units per layer is
respectively set to 100, 100, 100, 10 for audio branch and 200, 200, 200, 10 for visual
branch. If taking visual as the anchor, the positive and negative samples are from audio
samples. We set the number of units per layer for visual branch to 200, 200, 200, 10,
and 100, 100, 100, 10 for audio branch.

2) We set the correlation component for all the following experiments as 10. We set
the probability of dropout as 0.2 and use tanh as activation function for each hidden
layer and use siдmoid as the activation function in the last layer.

3) We separately divided the training set ranges from 300 to 1,000, and select the
best one. The number of training epochs is 20.

4) Our result is the average performance via 5-fold cross-validation. We consider
the category balance when we evenly group all the dataset into 5 folds.

5) The Adam optimizer is used for our experiment. The learning rate is set as 0.001.

Table 5.2: The MAP scores of cross-modal retrieval between audio and visual contents
for our TNN-C-CCA method and some existing state-of-the-art methods on VEGAS
dataset and MV-10K dataset.

Models VEGAS Dataset (%) MV-10K Dataset (%)
audio→visual visual→audio audio→visual visual→audio

CCA [109] 32.43 32.11 18.38 18.17
KCCA [23] 28.65 27.24 17.81 17.03

DCCA [103] 41.43 42.15 18.43 18.21
C-CCA [4] 65.16 64.35 19.71 19.62

C-KCCA [4] 32.41 32.74 18.38 18.11
C-DCCA [5] 70.34 69.27 21.79 20.08

UGACH [111] 17.18 17.07 11.11 11.40
AGAH [112] 57.82 56.16 20.74 20.19
UCAL [113] 42.68 41.53 18.82 18.47
ACMR [56] 45.46 43.12 19.02 18.63

LSTM_C_CCA 66.62 71.34 19.11 18,89
TNN-C-CCA 74.66 73.77 23.34 21.32

5.3.2 Results on the VEGAS Dataset

We report the result of audio-visual cross-modal retrieval task on the VEGAS dataset in
the left part of Table 5.2 with MAP metric and Fig. 5.3 with PRC. We implement our



52
Chapter 5. Deep Triplet Neural Networks with Cluster-CCA for Audio-Visual

Cross-Modal Retrieval

architecture compared with some existing CCA-variant approaches and non-CCA
methods: CCA [109], DCCA [103], KCCA [23], C-CCA [4], C-KCCA [4] C-DCCA [28],
AGAH [112] and etc. as baselines, to show the improvement of our model. For these
baselines, we separately implement all of them with the same dimension of outputs
and the same parameters.

According to the experience of our experiments, when the correlation component is
set to 10, the CCA-variant approaches can get the best performance[28, 14]. Here we use
the MAP value as our main performance metric, the MAP of 10 correlation components
is much better than the other number of ten multiples correlation components. We
set the dimension of outputs of all baselines as 10. The dimensions of the audio
feature as inputs are L ∗ 128(L ∈ [2, 10]), the dimensions of visual feature as inputs are
L ∗ 1024(L ∈ [2, 10]). For each audio-visual pairwise, L for the audio and the visual are
the same. Then via a mean layer to make all the audios and all the visual samples
respectively have the same dimensions, to make it possible to calculate the correlation
in the shared space with CCA-variant approaches. Especially, the DCCA and the
C-DCCA have the same structures of hidden layers. We did all the experiments for
each model with 5-fold cross-validation. All models were done by the same structure
of folds and the structure established considers balance factor. Each fold contains the
same number of samples in each category and 10 categories are kept simultaneously in
each fold.

Table 5.2 shows that all CCA variants with category information as training such as
C-CCA, C-KCCA, LSTM-C-CCA, and C-DCCA are much better than training without
any class as inputs such as CCA, DCCA, and KCCA. The best performance without
category information training is DCCA. The MAP of audio-to-visual retrieval is 41.43%
and the MAP of visual-to-audio is 42.15% over VEGAS dataset, which outperforms
the CCA method: the MAP of audio-to-visual retrieval is 32.43% and the MAP of
visual-to-audio retrieval is 32.11%, and are much better than the KCCA method: the
MAP of audio-to-visual retrieval is 28.65% and the MAP of visual-to-audio is 27.24%.
Compared with the above unsupervised CCA-variant method, the supervised CCA
variants can get higher MAP performance. Taking C-CCA as an example, the MAP
of audio-to-visual retrieval is 65.16% which has 23.63% improvement and the MAP
of visual-to-audio retrieval is 64.35% which has 22.20% improvement. C-DCCA not
only discusses the pairwise correlation but also studies the category-based similarity
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Figure 5.3: The PRC achieved on the VEGAS dataset with our TNN-C-CCA model and
other eight di�erent models. The left �gure is for audio-to-visual retrieval, the right
�gure is for visual-to-audio retrieval.

correlation with enlarging the number of pairwise by category information. In our
experiment with this dataset, we establish new possible pairs within the same category
for each sample in the train set, then select 50% pairs for each sample to enlarge the
train set. There are three main shortages of C-DCCA method: 1) because it deeply relies
on the balance of pairwise correlation and category-based correlation which is adjusted
by a hyper-parameter beta, it is very hard to set the best beta during the training. 2)
when we do model generation for new dataset input, the method can not reduce the
noisy pairs which belong to the paired data from other categories closer than the
paired data from its category. 3) it is really time-consuming and space-consuming
during the training.

To overcome three shortages, we put forward TNN-C-CCA model with the aim of
learning a more reliable correlation in the common space and learning better new
aligned embeddings for each modality to compute the similarity. Table 5.3 shows
that our TNN-C-CCA model can get a MAP of 65.62% for audio-to-visual retrieval
and the MAP of 63.30% for visual-to-audio retrieval by randomly selecting the 150
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negative samples for each anchor in the training set. Compared with Cluster-CCA
without considering negative information, visual-to-audio retrieval can get the MAP
of about 7% improved. However, randomly selecting the negative samples are not
statistical reliability, which brings trouble for re-implementing the experiments to
get the same result. In theory, we hope to consider all the negative samples, but in
fact, for each sample, there almost have 16,800 negative samples and exist N 2 (N is
the size of the training set.) training samples, it is the time- and space- consuming
in the case of TNN-C-CCA. In order to balance the time- and space- consuming,
and consider the negative samples, according to these works [99, 100, 114], we build
triplets (anchor, positive and negative) inside a batch for training. If the size of the
training set is N and the number of the batch is B, the batch size is the �oor of
N /B. The samples of all categories balance in each batch. In each batch, there are∑10

i=1
N 2
i (N−Ni )

B3 triplets, and the training set size is
∑10

i=1
N 2
i (N−Ni )

B2 . Built triplets based on
batch, it can save

∑10
i=1

N 2

B2 (N − Ni)(B
2 − 1) training set compared with building all

triplets one time, where the Ni is the number of pairs with class i in train set. And the
performance is much better than that of the C-DCCA and other baselines, the MAP of
audio-to-visual retrieval is 74.66% which has 4.28% improvement compared to C-DCCA
model. The MAP of visual-to-audio retrieval is 73.77% which has 4.5% improvement
compared to C-DCCA model. In addition, we compare TNN-C-CCA model with four
state-of-the-art cross-modal retrieval methods. As shown in Table 5.2, the performance
of our TNN-C-CCA model is much better than that of novel adversarial learning
methods.

Table 5.3: The MAP scores of audio-visual cross-modal retrieval for our TNN variant
methods

Models VEGAS Dataset MV-10K Dataset
Audio→ Visual Visual→ Audio Audio→ Visual Visual→ Audio

C-CCA [4] 65.16 64.35 19.71 19.62
TNN (batch all) 14.18 13.44 13.25 14.02

TNN (batch semi-hard) 15.18 14.22 14.20 14.17
TNN (batch hard) 11.18 12.20 12.06 11.59

TNN-C-CCA (rand) 65.62 63.30 19.23 18.74
TNN-C-CCA (batch semi-hard) 71.35 70.23 20.37 19.97

TNN-C-CCA (batch hard) 60.71 58.39 19.16 18.85
TNN-C-CCA (batch all) 74.66 73.77 23.34 21.32
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Figure 5.4: The PRC achieved on the MV-10K dataset with nine di�erent models. The
left �gure is for audio-to-visual retrieval, the right �gure is for visual-to-audio retrieval.

5.3.3 Results on the MV-10K Dataset

We report the result of audio-visual cross-modal retrieval on the MV-10K dataset
in Table 5.2 with MAP metric and Fig. 5.4 with the PRC. We compare our model
with some previous models published in [5]. For those models, where the results of
audio-visual retrieval are calculated. Based on the previous works, we use the same
input features that are used in all models. In Table 5.3, the TNN-C-CCA (rand) model
is achieved by selecting the negative and positive in the training set by random to
build the triplet as inputs after obtaining the embedding in the common space with
Cluster-CCA method. In the experiment, we randomly select 150 triplets for each
sample during the training, as shown in Table 5.3. Because it is very hard to select the
triplet for each sample. Since it is time-consuming to use all the possible triplets,
we select all the triplets within a batch. For audio-to-visual retrieval as shown in
Table 5.2, our model gets the improvement of 1.55% for MAP and 1.24% improved for
visual-to-audio retrieval task compared with the state-of-the-art model C-DCCA,
and the performance of proposed method is much higher than the state-of-the-art
non-CCA models: UGACH, AGAH, UCAL and ACMR model.
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In Table 5.2, Fig. 5.3 and Fig. 5.4, it is easy to notice that the MAP of VEGAS Dataset
is much better than that of MV-10K Dataset. Two main reasons are explained as
follows.

1. The supervised cross-modal retrieval deeply depends on the accuracy of the
label for the samples. In the MV-10K Dataset, the labels are allocated by the
feature similarity. It is hard to guarantee the allocated labels are always correct.
There exist many noisy labels in this dataset. However, the VEGAS Dataset
is annotated by volunteers and the labels are double-checked. The label can
accurately re�ect the semantic information in both audio and visual modalities.

2. Moreover, video in the MV-10K Dataset is about 216 seconds while the VEGAS
dataset is 10 seconds or less. The input of our model is high-level features, this
kind of feature is more e�ective for the short length of the video in this case.
Because high-level semantic features will �lter that unimportant information.
We use the same dimension to represent those two datasets, in general, which
leads to long videos losing more information than short videos.

5.3.4 Ablation Study of TNN-C-CCA

To have a good ablation study, we investigate triplet selection for the inputs of TNN
model to see how it in�uences the performance of TNN-C-CCA architecture. We also
study the impact of distance using in triplet loss of TNN-C-CCA. Then, we show the
visualization of the learned semantic space and display the visualization of retrieval
results according to the given audio query. In addition, we discuss the e�ect of model
parameters.

Triplet selection strategies

According to the relationship between anchor-positive distance and anchor-negative
distance, triplets can be divided into three categories. In other words, under the �xed
anchor-positive distance, negative samples can be categorized into three classes: easy
negative, hard negative and semi negative, as shown in Fig. 5.5. During the training,
the triplet selection for training TNN-C-CCA model is a very important part. We
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<A, P>
<A, NH> <A, NS> <A, NE>

m
ar
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n

Easy negative (NE):
cosine(A, N) + margin<cosine(A, P).

Hard negative (NH):
cosine(A, P)<cosine(A, N).
Semi negative (Ns):

cosine(A, P)-margin<cosine(A, N)<cosine (A, P)
(margin = cosine ! = 0.5)

X

Y

X1 = <A, NE>

X2 = <A, NS>

X3 = <A, NH>

Figure 5.5: Given an Anchor-Positive pair with its angle <A, P>, those negative samples
having the same modality with Anchor as Positive and having di�erent label as Positive,
based on the relationship between cosine(A, P) and cosine(A, N), can be classi�ed into
three categories: 1) Easy negative, 2) Hard negative and 3) Semi-hard negative.

introduce three triplet selection strategies: batch all when selecting all triplets as
training, batch hard when selecting one hard negative-based triplet as training, batch
semi-hard when selecting all semi-hard as training.

Table 5.3 shows the MAP scores of audio-visual cross-modal retrieval with three
triplet selections strategies that are used for training for TNN and TNN-C-CCA. In
TNN model which uses original audio-visual features as input, batch semi-hard as
training can achieve the best performance for audio-visual retrieval. However, in
TNN-C-CCA model, batch all can obtain the best performance.

On the other hand, it is obviously that C-CCA with TNN embedding is much better
than C-CCA embedding and TNN embedding respectively, the best TNN model (batch
semi-hard), which can achieve MAP of 15.18% for audio-to-visual retrieval and MAP
of 14.22% for visual-to-audio on VEGAS dataset, MAP of 14.02% for audio-to-visual
retrieval and MAP of 14.17% for visual-to-audio on MV-10K dataset. The TNN-C-CCA
(batch hard) can obtain MAP of 60.71% for audio-to-visual retrieval and MAP of 58.39%
for visual-to-audio on VEGAS dataset, MAP of 19.16% for audio-to-visual retrieval
and MAP of 18.85% for visual-to-audio on MV-10K dataset. From these results, we
can observe that the proposed TNN-C-CCA model gets a signi�cant improvement
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comparing with C-CCA embedding.

Table 5.4: MAP with respect to Euclidean distance and Cosine distance in TNN-C-CCA
model

Distances audio-visual visual-audio
Euclidean distance 0.5300 0.4206
Cosine distance 0.7466 0.7377

Distance metrics in triplet loss

To examine the e�ectiveness of the distances applied in the triplet loss of TNN-C-
CCA model, we brie�y introduce the Euclidean distance as follows:

| |X ,Y | |euclidean−distance =

√√
n∑
i=1
(xi − yi)2, (5.14)

where X = (x1, x2, ..., xn) and Y = (y1,y2, ...,yn) are two points in Euclidean n-space
with Cartesian coordinates.

Then, we compared Euclidean distance with Cosine distance in triplet loss of
TNN-C-CCA model. Table 5.4 shows the results on VEGAS dataset, which demonstrates
Cosine distance is much better than Euclidean distance. In particular, the MAP score is
signi�cantly improved. Euclidean distance value is unlimited which may lead to the
triplet loss is too large during the training and it is hard to be converged.

Visualization of the learned semantic space

The goal is to investigate the e�ectiveness of TNN-C-CCA model combines C-CCA
embedding and TNN model on VEGAS dataset. We select one fold as target set with
5,600 samples. The learned common semantic space from C-CCA to generate the
semantic features for all samples and then input them into TNN model is to generate
more discriminative semantic features by taking negative samples into the training
stage. Then, we use t-SNE [115] to implement dimension reduction on the original
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(1) Original feature (2) C-CCA embedding             (3) TNN-C-CCA embedding

a) audio       
b) visual

c)  audio-visual

Figure 5.6: The visualization of the two learned subspace with the t-SNE plot, shows
audio, visual and audio-visual in the original feature, C-CCA learning subspace, and
TNN-C-CCA learning subspace. The circle sign represents audio, the cross sign
represents visual.

audio-visual dataset and these features respectively generated from Cluster-CCA and
TNN-C-CCA model, where Fig. 5.6 shows audio, visual and audio-visual of their raw
features, C-CCA features and TNN-C-CCA features. We can see that in Fig. 5.6, many
samples in each category of two modalities scatter and hardly separated, while C-CCA
embedding groups into clusters and each cluster represents one category, however, the
clusters are not completely discriminative. In the center of space, those clusters are
intersection and hard to be segregated. TNN-C-CCA embedding is much better than
C-CCA embedding, those new clusters are more discriminative and samples belonging
to the same category are in the same cluster. It indicates that TNN-C-CCA embedding
learning e�ectively improves the performance compared with C-CCA embedding
learning.

Furthermore, we investigate the e�ectiveness of learned semantic space by the
audio-visual retrieval task. We try to compare the retrieval results of our method with
the other three best approaches. Fig. 5.7 provides audio-to-visual retrieval examples
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Figure 5.7: The visualized audio-visual retrieval results of our proposed method and
other three best approaches, the Cluster-CCA, the AGAH, and the ACMR model. Given
an audio as query, the �gure shows the top �ve retrieved visuals.

generated respectively by ACMR, AGAH, C-DCCA, and our TNN-C-CCA model
on VEGAS dataset for given audio with the "Chainsaw" label as the query. we can
observe that the matched top 5 visuals by our TNN-C-CCA is 80% related to the label
"Chainsaw" and average precision (AP) is 80.12% in all rank lists. For other models,
ACMR model is 40% related to the query label and AP is 42.72% in all rank list; AGAH
model is 60% related to the query label and AP is 55.34% in all rank list; C-DCCA model
is 60% related to the query label and AP is 59.94% in all rank list.

E�ect of model parameters

In the deep TNN part, batch size and margin play a leading role in the impact of the
performance and time-consuming of the system. In this work, we respectively do some
experiments on VEGAS dataset to leverage the e�ect of batch size and margin.
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Table 5.5: MAP with respect to di�erent margins with TNN-C-CCA model when
batch_num is 500

Margin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
audio-visual 64.73 68.82 74.30 74.59 75.31 74.17 74.15 73.80 74.68 65.30 61.28
visual-audio 64.36 67.29 72.45 73.20 73.26 72.42 72.36 72.12 73.04 62.96 58.47

Margin [116] is a region which is bounded by two hyper-planes in the support-vector
machines (SVM), when selecting two hyper-planes to split two categories of data.
The goal of SVM optimal is to maximize the margin between the vectors of the two
categories. The margin of deep TNN is quite similar to the margin in SVM.

In our work, we use Cosine distance to calculate the di�erence among anchor,
positive and negative samples, according to our loss function of deep TNN, the e�ective
margin ranges from 0.0 to 2.0. In our experiments, we show the MAP of audio-to-visual
retrieval and visual-to-audio retrieval based on the margin ranges from 0.1 to 1.1 by a
step as 0.1 and set the number of batches to 500. All the results are listed in Table 5.5.
In order to show the change of MAP values more obviously, we draw the MAP curve
based on changing the margin. The right of Fig. 5.8 presents when the margin range
from 0.3 to 0.9 by step as 0.1, the MAP value has no big change. When the margin is
0.5 the MAP can get the best performance. As margin increases from 0.1 to 0.5, the
MAP increases from 64.73% to 75.31% for audio-to-visual retrieval and from 64.36% to
73.26% for visual-to-audio retrieval. While the margin ranges from 0.5 to 1.1, the MAP
decreases from 75.31% to 61.28% for audio-to-visual retrieval and from 73.26% to 58.47%
for visual-to-audio retrieval.

Batch size is a hyper-parameter in machine learning, which de�nes the numbers of
samples to update the model weights in one iteration. The number of batches is the
number of iterations used in the experiment. Generally, the training dataset can be
divided into one or more batches. In our experiments, we de�ned di�erent batch sizes
by changing the number of batches. We divided our training set into di�erent batches
ranging from 300 to 900 by a step as 50. Table 5.6 shows the MAP and time-consuming
(hour) of audio-to-visual retrieval and visual-to-audio retrieval. CCA, KCCA, C-CCA,
DCCA, and C-DCCA will take about 2, 3, 3, 4 and 7 hours respectively. In general,
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Table 5.6: MAP in respect to di�erent batch sizes with TNN-C-CCA model when
margin is 0.5

Batches 300 350 400 450 500 550 600 650 700 800 900
a-v 74.49 73.63 75.31 74.50 74.51 74.99 74.87 74.58 74.12 62.96 61.28
v-a 73.16 71.47 73.26 72.55 72.98 73.22 72.85 72.79 71.64 65.30 58.47

Time(h) 32 27 21 16 12 9 6 4 3 2 2

time-consuming take more, the performance will be better. When the number of a
batch is 400, the batch size is about 55 (batch size=training set/batch number), which
can get the best MAP value of 75.31% for audio-to-visual retrieval and 73.26% for
visual-to-audio retrieval compared with other number of a batch. Overall, the MAP
value has no big di�erence when the number of batch ranges from 300 to 700. The big
di�erence of running time in audio-visual cross-modal retrieval is when the number of
a batch is 300 and the samples in the batch are balanced, it needs almost 32 hours
to �nish the experiment. There are around 70 samples in the batch, including 63
negative samples and 6 positive samples combination, totally in the batch there are
6*63*70=264640 triplets. When the training set is divided into 700 batches, the batch
size is about 30. In the same situation, in the batch, there are 2*27*30=1620 triplets, it
saves more time compared with 300 batches, only taking 3 hours. When the number of
batches is set to 800, the MAP will decrease a lot and the performance is close to that of
the C-DCCA model. When the batch number is 900, the MAP will be lower than that
of the C-DCCA model. In the left of Fig. 5.8, the top MAP is 400 batches. In the left part
of the curve, as the batches increase from 300 to 400, the MAP will get a bit larger. In
the left part of the curve, the number of a batch from 500 to 900, the MAP is degraded.
When the number of batches reaches 800, our model gets the same performance as
C-DCCA. When the number of a batch is smaller than 800, it will get lower than that
of C-DCCA.

The above experiment results show that our model can outperform other methods
when we set e�ective parameters (margin and batch size). We respectively do the
experiments based on one of them as the main variable. There are a lot of combinations
between batch size and margin. In our experiments, we �xed the margin as 0.5 and
make the batch size as a variable. Better batch size is obtained based on better MAP.
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Figure 5.8: The left �gure is the MAP curve of TNN-C-CCA and C-DCCA on batch
number range from 300 to 700 and the margin are 0.5. The right �gure is the MAP
curve of TNN-C-CCA and C-DCCA on margin range from 0.3 to 1.0 and the batch
number is 500.

Secondly, when batch size is �xed and the margin is made as a variable, we can get a
better margin.

Correlation components In addition, the number of correlation components in
the CCA-variant method are very important, in order to investigate the correlation
structure of learned representation among the four approaches. Fig.5.9 shows the MAP
curve based on the change of the number of components for all the four models. In our
experiments, as for our architecture TNN-C-CCA, the dimension of Cluster-CCA and
the dimension of output in deep TNN are the same. It is very obvious that the number
of correlation components is set to 10 which can achieve the best MAP 74.66% for
audio-to-visual retrieval and 73.77% for visual-to-audio. As the component decreases,
the performance will go down. Especially, it is not a big change in the CCA paradigm
at 10, 20, 30, but with the decrease at 40 and 50.
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Figure 5.9: The MAP curve of the correlation component changes from 10 to 50, the
corner point in the curve represents the correlation component of X-axis and MAP of
Y-axis, which use line to connect two adjacent points.The left part is audio-to-visual
retrieval and the right part is visual-to-audio retrieval.

5.3.5 Summary

In this work, we propose a new deep architecture that consists of Cluster-CCA and
deep TNN model. Our architecture can get both bene�ts of the Cluster-CCA and deep
TNN such that completely consider the suitable location of each data point in the
shared subspace based on the pairwise correlation and semantic label allocation. The
deep TNN model is a supplement of Cluster-CCA model by learning the similarity
distance between all pairs within the same class and compares the similarity distance
with all possible pairs cross di�erent views. This can help to learn more discriminative
embedding space between audio and visual. We applied two di�erent audio-visual
datasets to evaluate the performance of our architecture with the PRC and MAP metrics.
Audio and visual features are respectively represented by the advanced pre-trained
deep CNN based feature extractors for both datasets. The result of the experiments
proved that our model can outperform other state-of-the-art cross-modal retrieval
models. In order to further investigate the capability of cross-modal embedding
learning, we design more extensive experiments for ablation studies where triplet
selection strategies, distance metrics, visualization of learned semantic space, and
e�ect of model parameters are investigated.

In the future, we would like to extend our model to support retrieval across other
di�erent multi-modalities, such as image-text, audio-text, and video-text cross-modal
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retrieval. We would like to explore generative adversarial networks (GAN) methods
to improve our architecture. We try to apply GAN models to transfer the given
cross-modal aligned learning to other one modalities in the next section.
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6
Unsupervised Generative Adversarial

Multimodal Alignment Learning

6.1 Background and Motivation

With the rapid growth of music contents including users’ annotations emerging on the
Internet, it is becoming very important to learn common semantics of music alignment
representation for facilitating cross-modal music information retrieval. For example,
when we input "kids" as query to search a song’s audio, video or lyrics, what we
expected is an audio that exists kids’ voice, video contains kids or lyrics has semantic
kids’ information. Such semantic concept in audio, video and lyrics are based on
explicit concept "kids", which is de�ned by users. In this paper, sheet music, audio
and lyrics are implicitly aligned by high-level semantic concepts, so we develop a
content-based representation learning approach by learning alignment across these
modalities for retrieval task. The approach ensures the search engine to �nd the exactly
paired music data, without involving the problems of deviation of users’ preference.
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The main challenge of representation learning across di�erent musical modalities
is the heterogeneous gap. In previous works, representation learning for musical
cross-modal retrieval focus more on two modalities to bridge the modality gap, such
as audio-sheet music [79], which achieved success in musical cross-modal retrieval
domain. A classical method series is the CCA-based approaches, which aims at �nding
transformation to optimize the correlation between the input pairs from two di�erent
variable sets. In order to be bene�cial from CCA and rank loss for two modalities
aligned representation learning, CCA layer [117], combines the existing representations
learning like pairwise loss, with the optimal projections of CCA to learn representation
between the short snippets of music and the corresponding part of sheet music for the
content-based sheet music-audio retrieval scenarios.

With deep learning achieved excellent in modalities aligned representation learning,
deep neural networks (DNNs) is introduced in learning aligned representation for
cross-modal retrieval task, which provides extensible nonlinear transformations for
e�ective data item representations. Especially, the prevailing architectures combine
the DNNs and the CCA that widely apply in the cross-modal aligned representation
learning domain, such as deep CCA (DCCA) [118, 103], which demonstrates the
possible of learning the aligned representation to retrieval the sheet music image with
a short music audio clips as query and vice versa.

Learning aligned representations between two modalities has progressively been
arranged in cross-modal retrieval [28, 14, 5], such as learning temporal relation [75]
between audio and lyrics for various applications, deep sequential correlation [14]
between audio and lyrics for cross-modal retrieval. However, it is hard to satisfy the
requirement of real multimodal information retrieval when retrieving one modality
by the other two modalities. The goal of this paper is to learn a robust alignment
representation for sheet music, audio and lyrics by unsupervised learning, and explore
the representations for three groups of cross-modal retrieval tasks to evaluate the
performance of our architecture.

Little research has been conducted on the content-based alignment representation
learning among musical modalities: audio, sheet music and lyrics, due to the limited
available musical dataset. In this paper, we collected a musical dataset with three
modalities, including musical audio, sheet music and lyrics. In the dataset, audio
and sheet music are paired because they are generated by music notes. Our new
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architecture for musical alignment representation learning for multimodal information
retrieval have achieved two main contributions. Firstly, our architecture can transfer
the audio-sheet music pair to audio-lyrics and sheet music-lyrics pair by generative
adversarial networks (GANs), and some results achieved by our approach on the MTM
dataset prove the feasibility of learning aligned among three modalities by transferring
one close relationship to the other two couple of relationship. Secondly, we combine
the objective of existing CCA projection with the optimal representations of GANs.
In detail, we establish a new ground truth based on the cca embedding and explore
generative model (G model) to generate new audio-sheet music pair, the discriminative
model of GANs try to distinguish the input is from G model or ground truth, during
the adversarial learning, the G model can generated more discriminative and aligned
representation for lyrics, audio and sheet music.

6.2 Architecture

6.2.1 Problem Formulation

The goal of our research is to develop a model that has the capability to accept either
an audio, a sheet music or a lyric as input to retrieve other two modalities.

Let U = {x1, x2, ..., xn} ∈ Rn be audio set, V = {y1,y2, ...,yn} be sheet music set and
W = {z1, z2, ..., zn} be lyrics set. An example of ternary is T = {x1,yi, zi}. In particular,
the audio features, the sheet music features and lyrics features are represent with
di�erent distributions, which cannot be directly compared with each other. Their
respectively mappings f (xi), д(yi) and h(zi), that transform audio, sheet music and
lyrics features into d-dimensional vectors sU , sV and sW have the same dimension.

Our deep alignment representation learning (DARLearning) approach proposed in
this section aim at learning e�ective three couple of representation sU , sV and sW for
audio, sheet music and lyrics. The requirement of distribution of sU , sV and sW to be
modality-invariant and there is alignment behind the representations. We explain how
to achieve the goal of the requirement in the following subsection.
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6.2.2 Generative Model

We take advantage of the close relationship of audio and sheet music. The generative
model is to generate a new audio and sheet music pair with a �xed lyrics to challenge
the discriminative model. The generated new pair combines with the abstract concept
of audio and sheet music for lyrics.

Alignment by Model Transfer

Aspired by teacher-student model [119, 120], we assume audio and sheet music are
Student models, lyrics the Teacher model. Our model tries to establish a new aligned
representation for all of them. Let xi be a data point from audio set x , the corresponding
data point yi and zi are from sheet music set y and lyrics set z. The new generated
aligned representations f (xi) and д(yi) of audio and sheet music from our model are
trained with lyrics zi . Because the three modalities are synchronized, we can learn h(zi)

model for lyrics zi to predict the feature of f (xi) and д(yi). In our work, we separately
use the entropy and following KL-divergence[119, 120, 65] as a loss:

n∑
i

DKL(h(zi)| | f (xi)) =
n∑
j

h(zi)loд
h(zi)

f (xi)

n∑
i

DKL(h(zi)| |д(yi)) =
n∑
i

h(zi)loд
h(zi)

д(yi)

(6.1)

The model transfer enhances the audio and sheet music to learn the discriminative
representation as lyrics. To reinforce three components of a ternary have similar
representations, we enable an alignment across di�erent modalities by generative
probability.

Alignment by Generative Probability

Given a lyrics, generative model G aims at �tting the contribution over the lyrics-audio
and lyrics-sheet music pairs in a shared common space by mapping function F (x),
G(y) and H (z) for audio x , sheet music y and lyrics z. Then, the pairs of informative
audio and sheet music are selected to test the ability of discriminative model D. The
generative probability of G is pθ (xU ,yV |z), which is the foundation of selecting relevant
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audio-sheet music pair from unpaired data with lyrics. For instance, given a lyrics
query zi , the generative model tries to select relevant audio xj from Xdb and sheet
music yk from Ydb . The generative probability pθ (J (x

U ,yV )|z) is de�ned as follows.

pθ (J (x
U ,yV )|z) ==

exp(−||H (z) − J (xU ,yV )| |2)∑
J exp(−||H (z) − J (x

U ,yV )| |2)

J (xU ,yV ) = 0.5 ∗ (F (xU ) +G(yV ))
(6.2)

Where the �nal pθ (J (xU ,yV )|z) decides the possibility of an audio-sheet music to
be a relevant sample.
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Figure 6.1: Schematic of the proposed deep alignment representation learning. The left
manifold structure establishment is based on the CCA-based embedding, the right
shared space learned by DARLearning model.

6.2.3 Discriminative Model

We apply KNN method to exploit underlying manifold structure for the CCA embeddings
of audio-sheet music pairs, we select the top �ve most close items to establish new
pairs as ground truth. The input of the discriminative model is the generated audio and
sheet music pair, and the manifold structure based ground truth, seen in Fig. 6.1.

The target of discriminative model D is to discern the input audio-sheet music pair
is from ground truth or generated. Once the discriminative model receives the two
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kinds of input pairs, the model will receive a relevance score for each pair (query and
instance i) as the judgment score. The relevance score of φ(p,q) is calculated by the
following formulation:

φ(pG,q) =max(0,α + | |Θ(q) − Θ(pT )| |2 − ||Θ(q) − Θ(pG)| |2)

Θ(x) = tanh(Wix + bi)
(6.3)

where q is the audio query and its generated sheet music instances pG , pT is the
corresponding ground truth instance. α the margin parameter and it set as 1 in this
work. Wi is the weight and bi is the bias parameter.

The discriminative model use the relevant score to compute the predicted probability
of a audio-sheet music pair (x,y) by a sigmoid function.

D(p |q) = siдmoid(φ(pG,q)) =
exp(φ(p,q)

1 + exp(φ(p,q) (6.4)

6.2.4 Adversarial Learning

Once the concepts of the G model and D models accomplished, they both can be trained
by applying a minimax game together. Inspired by the GAN [39], this adversarial
process can be de�ned as follow.

V (G,D) =minθmaxϕ

n∑
j=1
(Ex∼ptrue (xT |qj )[loд(D(x

T )|qj)]

+ Ex∼pθ (xG |qj )[loд(1−D(xG )|qj )])

(6.5)

Fig. 6.2 shows the architecture of our developed algorithm. The architecture has
three components: 1) applying advanced pre-trained deep model to extract the features
for each modality. 2) generating new data points to fool the D model. 3) distinguishing
the input feature belong to generated or ground truth. In detail, we apply di�erent
pre-trained model to extract high-level semantic features to bridge the modality gap by
alignment representation learning. The features of each modality are 2-Dimensional,
which describe more detailed in the section 3. In generative model, the input data is
the summary of extracted feature, learning aligned representation is to take lyrics
as Teacher model to teach the audio and sheet music model to learn discriminative
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representation, then transfer the lyrics model into audio and sheet music by GANs. In
the discriminative model, the goal is to distinguish the input pair is from generated
pair or ground truth pair by computing the relevance score for the judgement result of
each generated pair from generative model.
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Figure 6.2: The overall framework of our present architecture, which includes three
parts: feature extraction, G model and D model.

6.3 Experiments

6.3.1 Implementation Details

This subsection is for the implementation details of our DARLearning model, the
model implemented by tensor�ow 1. Audio feature is extracted from the last layer
of Vggish model, apply 32 dimensional ASMCMR [?] model extracted feature for
sheet music and use the 40 dimensional skip-gram model extracted word-level and
syllable-level features for lyrics. The dimensional of feature in the common space is set
as 128. Moreover, we train our DARLearning model in a mini-batch with batch size as

1https://www.tensor�ow.org/
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64 for both generative and discriminative model, all the fully connection layers of
audio and sheet music in G model and D model share the same structure but learn its
own weights and bias. The model is trained iteratively and the G model and D model
trained respectively. More detailed setting is shown in the table 6.1.

Table 6.1: The experiment setting of DARLearning model
Music audio feature 128
Sheet music feature 32

Lyrics feature 40
The output dimensional in common space 128

Batch size of generative model 64
Batch size of discriminative model 64

Fully connected layer for audio branch [1024,1024,128]
Fully connected layers for sheet music branch [1024,1024,128]

Fully connected layers for lyrics branch [1024,1024,128]
Global epoch for iterative training 30

Generative epoch 2
Discriminative epoch 2

Initial learning rate 0.001
Decreased factor for each 2 epochs 10

In order to leverage the performance of our proposed model on test sample, we set
the same the input and output dimension. In detail, all the above methods apply the
same input audio, sheet music and lyrics features and share the same dimension of the
output in the common space.

6.3.2 Retrieval Tasks

In our experiments, three couple of cross-modal retrieval are achieved. Specially,
retrieving audio by lyrics query (lyrics −→ audio) and retrieving lyrics by audio query
(audio −→ lyrics), retrieving audio by sheet music query (sheetmusic −→ audio) and
retrieving sheet music by audio query (audio −→ sheetmusic), retrieving lyrics by
sheet music query (sheetmusic −→ lyrics) and retrieving sheet music by lyrics query
(lyrics −→ sheetmusic). We learn deep alignment representation for audio, lyrics
and sheet music in the query and retrieval database for our approach, then take one
modality such as using audio as query to compute the cosine similarity with all lyrics
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in retrieval database. We arrange all lyrics by cosine similarity to obtain rank list and
evaluate the rank list by �ve di�erent standard evaluation criteria, which used in most
prior work [101] on unsupervised cross-modal retrieval. We evaluate rank-based
performance by R@K (K=1,5 and 10), MedR and MeanR.

6.3.3 Comparison with Existing Methods

We compare our method with two baselines for musical multimodal information
retrieval task.

Baseline only discriminative model without generative model and adversarial
learning, denoted as Baseline . The Baseline model is trained by triplet ranking loss,
and the positive item in triplet is only the paired data.

Baseline-GAN is expanded Baseline with adversarial training, denoted as Baseline-
GAN. The input of D model is the pre-trained model extracted features.

DARLearning model The only di�erence with Baseline-CCA is the loss of G
model, we applies the joint generated probability in the G model.

The novelty of our architecture is that our proposed DARLearning method projects
all the three modalities into a shared subspace to learn aligned representations. We do
some initial experiments with the simple structure like applying mean function as joint
probability in the G model, using the simplest fully connection for each branch.

Compared with traditional cross-modal retrieval methods, our model can use data
in one modality to retrieve the samples from another two di�erent modalities in only
one learned latent shared subspace. For example, when apply audio as query to retrieve
lyrics with traditional cross-modal retrieval methods, we can not use audio to retrieve
sheet music because the sheet music is not in this audio-lyrics shared subspace.

Our model projects three modalities into a common space to support the represen-
tation can be compared with each other. Some initial results show in the tables. In
table I, it veri�es the e�ective of our proposed model for transferring learning, which
proves our hypothesis is acceptable. In detail, our model can transfer the relationship
of two modalities to another one modality. In table II, the result of three groups of
cross-modal retrievals (audio-lyrics, sheet music-lyrics, and audio-sheet music) show
the feasibility of further improvement of our proposed model.

In general, our proposed method gets a better performance like R@1, MedR, and
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Table 6.2: Cross-modal Retrieval Results on MTM Musical Dataset.
audio-to-lyrics retrieval

Methods R@1 R@5 R@10 MedR MeanR
RANDOM [65] 2.77 5.53 7.61 7312.0 7257.19

Our model 5.02 5.51 6.34 715.6 808.02
lyrics-to-audio retrieval

RANDOM 2.69 5.45 7.59 7316.5 7257.31
Our model 4.14 4.56 5.21 716.0 797.00

sheet music-to-lyrics retrieval
RANDOM 2.74 5.48 7.53 7311.8 7257.26
Our model 8.36 14.24 16.58 572.5 765.30

lyrics-to-sheet music retrieval
RANDOM 2.72 5.51 7.66 7313.2 7257.43
Our model 9.95 14.26 17.02 576.0 767.82

audio-to-sheet music retrieval
RANDOM 2.84 5.57 7.50 7310.0 7257.16
Our model 30.06 33.98 35.02 352.4 600.34

sheet music-to-audio retrieval
RANDOM 2.63 5.49 7.48 7310.0 7257.37
Our model 33.02 34.12 35.88 330.8 584.42

MeanR than the corresponding performance of GCCA, which suggests the e�ective of
our DARLearning model by applying transfer learning with adversarial learning in
audio → lyrics retrieval, and also for lyrics → audio retrieval. In other two cross-
modal retrievals, when �nd a shared subspace for all three musical data modalities to
obtain aligned representations, the performance of our architectures are higher than
Random case and similar to GCCA.

In the table 6.3, it veri�es the e�ective of our proposed generative model for
transferring learning, which means our hypothesis is accepted that our DARLearning
model can transfer the relationship of one pair to other two relationship within three
modalities.

6.3.4 Further Analysis on Our Method

The initial experimental results suggest that our model is viability to learn alignment
representations for audio, sheet music and lyrics for cross-modal retrieval task.
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Table 6.3: Cross-modal Retrieval Results on MTM Musical Dataset with R@1 and MedR
metric.

Method audio lyrics audio sheet music lyrics sheet music
↓ ↓ ↓ ↓ ↓ ↓

lyrics audio sheet music audio sheet music lyrics
R@1 MedR R@1 MedR R@1 MedR R@1 MedR R@1 MedR R@1 MedR

Baseline 3.69 838.0 2.97 891.0 24.46 562.0 25.13 502.5 3.18 963.0 3.05 982.0
Baseline-GAN 3.92 804.2 3.18 858.0 26.01 529.0 25.74 472.2 3.21 940 3.36 925.8

Our model 5.02 715.6 4.14 716.0 30.06 352.4 33.02 330.8 8.36 572.5 9.95 576.0

Instead of learning representations of two variable sets, our model learns only one
shared subspace across three modalities. The learned representations can keep the
modality-variant and the paired data should have similar representations.

We expect that our model can surpass CCA model in each couple of cross-modal
retrieval in the future. Currently, the shortages of our modal are as follows: i) the
loss in G model is not good enough to generate new representation of each modality.
Especially, the mean function as the joint probability for the generative probability may
weaken the relationship between audio-sheet music by only considering the relevant
positions of audio and sheet music. ii) some weights of the fully connection is close to
zero. In the future, we would like to use new method to normalize the input features.
Overall, it requires us to enhance the relationship between the audio-sheet music
during transfer learning with some advanced joint probability, such as considering the
local positions of audio and sheet music.

Traditional cross-modal retrieval methods can not learn a deep alignment repre-
sentation space at once, it constrains on two variable sets. It can not guarantee that
our model is lower than this kind of methods, because the learned representation of
three modalities with Traditional cross-modal retrieval methods are not in the only
one common space. So, what we expected is that our model can surpass traditional
cross-modal retrieval methods in each group of cross-modal retrieval task in the future.
The aligned representations can keep the modality-variant and the paired data should
have similar representations. Currently, the shortages of our modal are as follows: i)
the loss in G model not good enough to generate new representation of each modality.
Especially, the mean function as the joint probability for the generative probability can
not ensure that the relationship in audio-sheet music get closer during the learning,
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which may weaken the relationship between audio-sheet music. ii) same weights of
the fully connection is very low, some of them is around 3.1323e-22, this is because the
input feature would contains so many value are closed to zero. In the future, I would
like to use new method to normalize the input features. Overall, it requires us to
enhance the relationship between the audio-sheet music during transfer learning with
some advanced joint probability, such as considering the local positions of audio and
sheet music.

6.3.5 Summary

Modality-invariant and discriminative representations empower multimodal intel-
ligence to manipulate unrestricted and real world environment. Learning aligned
representation is critical for the next generation of multimodal intelligence to learn each
cross-modal data on multimodal content. Learning aligned representation between two
data modalities has reached outstanding achievement. In this section, we introduce a
representation learning model on three data modalities. The experimental results show
the feasibility for align representation learning across three di�erent music modalities.
Even though there are not audio-lyrics and lyrics-sheet music pairs for training our
model, the results demonstrate the alignment can be learned by modalities-level
transfer learning.

An open issue for future research is to develop a new generative model which can
enhance the relationship of audio-sheet music pairs.
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7
Conclusion

In this dissertation, we present three di�erent works to learn aligned representations
which are discriminative and modality-invariant for multimodal information retrieval,
involving sheet music image, audio, lyrics and visual four modalities. In detail, the
proposed S-DCCA architecture for audio-visual cross-modal alignment representation
learning capitalizes the temporal structure of the dataset for visual retrieval with audio
clips as query, through learning the contributions of the pre-de�ned semantic labels.
Instead of focusing solely on keeping the standard pairwise correspondence between
samples, S-DCCA can fully preserve the latent cross-modal semantic structure by
considering the gap among the representation of all data points from two modalities
with the same class.

In order to further investigating the audio-visual representation learning. Especially,
even though S-DCCA considers all the pairs of data points to train within a class, the
learned representation of S-DCCA still unavoidably exists the noisy data points that
are participated into the wrong class in the learned common space. To address the
problem, we propose the TNN-C-CCA model that is an end-to-end supervised learning
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architecture with audio branch and visual branch. We build triplets based on the
pairwise correspondence under partitioning data set into multiple classes as the model
input. The experiment results show that TNN-C-CCA model can achieve a better
performance than S-DCCA by the pairwise correspondences with the addition of
negative samples. Unfortunately, the limitation of GPU memory constrains us to
consider all the triplets in the train set. So we established triplets within a mini-batch.
With the case of training within a mini-batch, the performance of the model is easily
in�uenced by the size of mini-batch. When the size of mini-batch gets larger, the
performance will be better but it will be harder to train and more time-consuming.
Moreover, the above two architectures highly rely on the user’s annotation and the
query and the content of cross-modal retrieval limit in two special modalities.

Our DARLearning model can be viewed as a modality extension of the cross-modal
representation learning, which is a new architecture of deep alignment representation
for multimodal information retrieval on the musical ternary dataset. To solve the above
problem of TNN-C-CCA, the DARLearning model is a no-label involving unsupervised
learning which the pairwise correspondence is the standard pairwise and the number
of triplets only depends on the number of negative samples. The model can transfer
the strong relationship in audio-sheet music pairs to lyrics modality by adversarial
learning. However the current model constrains on the transfer learning. In detail,
when the model transfers two modalities to another modality, the model only consider
the relevant positions of audio and sheet music and ignore the local positions of
them. In this case, we need to further investigate our DARLearning model compared
with other basic representation learning for multimodal information retrieval in the
future, so that when we learn aligned representation among three modalities, we can
guarantee each cross-modal representation learning can surpass other state-of-the-art
methods.

Invariant representations is essential for multimodal intelligence, which allows
the system to work in the real-world environment. Alignment representations for
multimodal will be the next generation of MIR when it starts to explore the correlation
across modalities. In the future, we look forward to proposing more advanced
algorithms for the deep alignment representation for multimodal information retrieval
in the audio-visual and musical ternary dataset. For example, we hope to consider more
low-level features in our architecture, such as object and action in the visual-audio
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cross-modal aligned learning. Also, we want to apply some arti�cial neural networks
to exhibit temporal dynamic information in our methods, such as RNN, LSTM, and
attention model to capture the sequence information.





83

Bibliography

[1] David R. Hardoon, Sándor Szedmák, and John Shawe-Taylor. Canonical
correlation analysis: An overview with application to learning methods. Neural
Computation, 16(12):2639–2664, 2004.

[2] Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis.
International Journal of Neural Systems, 10(05):365–377, 2000.

[3] Galen Andrew, Raman Arora, Je� A. Bilmes, and Karen Livescu. Deep canonical
correlation analysis. In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1247–1255,
2013.

[4] Nikhil Rasiwasia, Dhruv Mahajan, Vijay Mahadevan, and Gaurav Aggarwal.
Cluster canonical correlation analysis. In Proceedings of the Seventeenth Interna-
tional Conference on Arti�cial Intelligence and Statistics, AISTATS 2014, Reykjavik,
Iceland, April 22-25, 2014, pages pp.823–831, 2014.

[5] Donghuo Zeng, Yi Yu, and Keizo Oyama. Audio-visual embedding for cross-
modal music video retrieval through supervised deep CCA. In 2018 IEEE
International Symposium on Multimedia, ISM 2018, Taichung, Taiwan, December
10-12, 2018, pages pp.143–150, 2018.

[6] Donghuo Zeng, Yi Yu, and Keizo Oyama. Deep triplet neural networks with
cluster-cca for audio-visual cross-modal retrieval. CoRR, abs/1908.03737, 2019.



84 Bibliography

[7] Donghuo Zeng, Yi Yu, and Keizo Oyama. Unsupervised generative adversarial
alignment representation for sheet music, audio and lyrics. arXiv preprint
arXiv:2007.14856, 2020.

[8] Zhangcheng Wang, Ya Li, Richang Hong, and Xinmei Tian. Eigenvector-
based distance metric learning for image classi�cation and retrieval. TOMM,
15(3):84:1–84:19, 2019.

[9] Andrej Karpathy, Armand Joulin, and Fei-Fei Li. Deep fragment embeddings
for bidirectional image sentence mapping. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages pp.1889–1897,
2014.

[10] Jian Wang, Yonghao He, Cuicui Kang, Shiming Xiang, and Chunhong Pan.
Image-text cross-modal retrieval via modality-speci�c feature learning. In
Proceedings of the 5th ACM on International Conference on Multimedia Retrieval,
Shanghai, China, June 23-26, 2015, pages pp.347–354, 2015.

[11] Fei Yan and Krystian Mikolajczyk. Deep correlation for matching images and
text. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages pp.3441–3450, 2015.

[12] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving
image-text embeddings. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages pp.5005–5013,
2016.

[13] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to
object matching in videos. In 9th IEEE International Conference on Computer
Vision (ICCV 2003), 14-17 October 2003, Nice, France, pages pp.1470–1477, 2003.

[14] Yi Yu, Suhua Tang, Francisco Raposo, and Lei Chen. Deep cross-modal correlation
learning for audio and lyrics in music retrieval. TOMCCAP., Vol.15(no.1):pp.20:1–
20:16, 2019.



Bibliography 85

[15] Yan Yan, Feiping Nie, Wen Li, Chenqiang Gao, Yi Yang, and Dong Xu. Image
classi�cation by cross-media active learning with privileged information. IEEE
Trans. Multimedia, Vol.18(12):pp.2494–2502, 2016.

[16] Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexander G. Hauptmann. Uncovering
the temporal context for video question answering. International Journal of
Computer Vision, Vol.124(3):pp.409–421, Sep 2017.

[17] Dongge Li, Nevenka Dimitrova, Mingkun Li, and Ishwar K. Sethi. Multimedia
content processing through cross-modal association. In Proceedings of the
Eleventh ACM International Conference on Multimedia, Berkeley, CA, USA,
November 2-8, 2003, pages pp.604–611, 2003.

[18] Xiaoxiao Shi and Philip S. Yu. Dimensionality reduction on heterogeneous
feature space. In 12th IEEE International Conference on Data Mining, ICDM 2012,
Brussels, Belgium, December 10-13, 2012, pages pp.635–644, 2012.

[19] Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. Neural
Comput. Appl., Vol.23:pp.2031–2038, 2013.

[20] Abhishek Sharma, Abhishek Kumar, Hal Daumé III, and David W. Jacobs.
Generalized multiview analysis: A discriminative latent space. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June
16-21, 2012, pages pp.2160–2167, 2012.

[21] Yi Yang, Feiping Nie, Dong Xu, Jiebo Luo, Yueting Zhuang, and Yunhe Pan. A
multimedia retrieval framework based on semi-supervised ranking and relevance
feedback. IEEE Trans. Pattern Anal. Mach. Intell., Vol.34(4):pp.723–742, 2012.

[22] Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert R. G.
Lanckriet, Roger Levy, and Nuno Vasconcelos. A new approach to cross-modal
multimedia retrieval. In Proceedings of the 18th International Conference on
Multimedia 2010, Firenze, Italy, October 25-29, 2010, pages pp.251–260, 2010.

[23] Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis.
Int. J. Neural Syst., Vol.10(no.5):pp.365–377, 2000.



86 Bibliography

[24] Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and
Vladimir Vapnik. Support vector regression machines. In Advances in neural
information processing systems, pages 155–161, 1997.

[25] Yoshihiro Yamanishi, J-P Vert, Akihiro Nakaya, and Minoru Kanehisa. Extraction
of correlated gene clusters from multiple genomic data by generalized kernel
canonical correlation analysis. Bioinformatics, 19(suppl_1):i323–i330, 2003.

[26] Matthew B Blaschko, Christoph H Lampert, and Arthur Gretton. Semi-supervised
laplacian regularization of kernel canonical correlation analysis. In Joint European
conference on machine learning and knowledge discovery in databases, pages
133–145. Springer, 2008.

[27] Weiran Wang, Raman Arora, Karen Livescu, and Nathan Srebro. Stochastic
optimization for deep cca via nonlinear orthogonal iterations. In 2015 53rd
Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 688–695. IEEE, 2015.

[28] Yi Yu, Suhua Tang, Kiyoharu Aizawa, and Akiko Aizawa. Category-based deep
cca for �ne-grained venue discovery from multimodal data. IEEE transactions on
neural networks and learning systems., Vol.30(no.99):pp.1–9, 2018.

[29] Arthur Tenenhaus and Michel Tenenhaus. Regularized generalized canonical
correlation analysis. Psychometrika, 76(2):257, 2011.

[30] David R Hardoon and John Shawe-Taylor. Sparse canonical correlation analysis.
Machine Learning, 83(3):331–353, 2011.

[31] Viresh Ranjan, Nikhil Rasiwasia, and CV Jawahar. Multi-label cross-modal
retrieval. In Proceedings of the IEEE International Conference on Computer Vision,
pages 4094–4102, 2015.

[32] Adrian Benton, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger, Sheng
Zhang, and Raman Arora. Deep generalized canonical correlation analysis.
arXiv preprint arXiv:1702.02519, 2017.

[33] Michael W Roth. Survey of neural network technology for automatic target
recognition. IEEE Transactions on neural networks, 1(1):28–43, 1990.



Bibliography 87

[34] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E
Alsaadi. A survey of deep neural network architectures and their applications.
Neurocomputing, 234:11–26, 2017.

[35] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev
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