
Hierarchical Optimization
for Hybrid System Falsi�cation

by

Zhenya Zhang

Dissertation

submitted to the Department of Informatics

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI

September 2020

iii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Ichiro Hasuo, for his

continuous supervisions and supports to me. Every time when I arrive at bottlenecks

in my research, it is always his patient guidance and encouragement that help me

overcome them. Also I am grateful for his help and care in my daily life. I really enjoy

the three years living here.

I would like to thank Paolo Arcaini for his detailed guidance all along. He taught

me so much, both in science and in life. He is always so patient to help me review

my writings and correct my mistakes. I would like to thank Gidon Ernst and Sean

Sedwards for their guidance in my current research topic. Also thank other colleagues

and friends in the laboratory. There is so much happy time in the laboratory life. I am

proud of being a member of this team.

I would like to thank my families for their supports all along. They always warm

my heart and encourage me when I am frustrated. Thanks for always giving me

suggestions and supporting the choices made by myself.

This work is supported by ERATO HASUO Metamathematics for Systems Design

Project (No. JPMJER1603), JST; it is also supported by Grant-in-Aid for JSPS Fellows

No. 19J15218.

v

Abstract

Cyber-Physical Systems (CPS) are physical systems integrated with digital control.

Quality assurance of CPS is a problem of great importance, but it is also challenging

due to the hybrid nature of CPS in which both discrete and continuous dynamics

exist. While formal veri�cation su�ers from a severe scalability issue, stochastic

optimization-based falsi�cation, which aims to �nd a counterexample input to refute

the system speci�cation, is a viable approach to solving the problem. This technique

turns the problem into an optimization one based on the robust semantics of the

speci�cation language, namely Signal Temporal Logic (STL), and employs stochastic

optimization algorithms to search for an answer.

Although falsi�cation has proved to be an e�ective approach, many methodological

weaknesses are still there, limiting its usage in practice. In this work, we address

three important ones, namely, improper balance between exploration and exploitation

during search, superposing robustness values from signals of di�erent scales in STL

robust semantics, and inability of handling input constraints.

In order to tackle those problems, we propose a general two-layered hierarchical

optimization framework, in which a problem is �rstly decomposed into a set of

sub-problems, and then solved via a two-layered methodology: the top layer selects a

sub-problem as the next step to proceed based on the information given by the bottom

layer; the bottom layer performs numerical optimization with the selected sub-problem

and returns feedback to the top layer. In this way, the two layers collaborate with each

other and work together to solve the problem.

This framework is instantiated to three techniques, each addressing one speci�c

weakness in the existing falsi�cation work�ow. In summary, these techniques are:

• A two-layered optimization framework that combines Monte Carlo Tree Search

vi

and hill-climbing optimization for balancing exploration and exploitation during

the search;

• A framework for falsifying safety properties with Boolean connectives via the

introduction of the Multi-Armed Bandit model;

• A search space transformation approach integrated with the Multi-Armed Bandit

model for handling constraints on input signals.

Experimental results show the e�ectiveness of our approaches. Together, these

approaches enhanced the existing falsi�cation technique. Moreover, these approaches

also exemplify our hierarchical optimization framework, which is potentially applicable

in other contexts.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction: Quality Assurance of Cyber-Physical Systems 1
1.1 Cyber-Physical Systems . 1

1.2 Quality Assurance of Cyber-Physical Systems 2

1.2.1 A Usage Scenario: an Automotive System 4

1.2.2 Veri�cation . 5

1.2.3 Testing . 7

1.3 Optimization-Based Falsi�cation . 8

1.3.1 Quantitative STL Robustness 10

1.3.2 Stochastic Optimization-Based Falsi�cation 11

1.3.3 Usage Scenario of Falsi�cation 13

1.3.4 Current Status of Falsi�cation in Academia and Industry 14

1.4 Motivation: Existing Problems and Related Works 16

1.4.1 Exploration and Exploitation 16

1.4.2 Robust Semantics De�nition . 19

1.4.3 Input Constraints . 20

1.5 A Hierarchical Optimization Framework 21

1.6 Organization . 23

2 Preliminaries: Optimization-Based Falsi�cation 25
2.1 System Models . 25

viii Contents

2.2 Robust Semantics for STL . 27

2.3 Hill Climbing-Guided Falsi�cation . 28

2.4 Evaluation Metrics of Falsi�cation Algorithms 31

3 Balancing Exploration and ExploitationUsingMonte Carlo Tree Search 33
3.1 Exploiting Time Causality via Time Staging 34

3.1.1 Time-Staging Approach . 35

3.2 Falsi�cation with Monte Carlo Tree Search 37

3.2.1 Monte Carlo Tree Search . 37

3.2.2 The Basic Two-Layered Algorithm 40

3.2.3 The Two-Layered Algorithm with Progressive Widening 46

3.3 Experimental Evaluation . 47

3.3.1 Experiment Setup . 47

3.3.2 Performance Evaluation . 49

3.3.3 Evaluation of Parameter Choices 52

3.4 Discussion . 53

4 Multi-Armed Bandits for Boolean Connectives in STL 57
4.1 Motivation: the Scale Problem . 58

4.2 Multi-Armed Bandit-Based Falsi�cation Algorithm 61

4.2.1 Conjunctive and Disjunctive Safety Properties 62

4.2.2 The Multi-Armed Bandit (MAB) Problem 63

4.2.3 Our MAB-Guided Algorithm I: Conjunctive Safety Properties . 65

4.2.4 Our MAB-Guided Algorithm II: Disjunctive Safety Properties . 68

4.3 Experimental Evaluation . 68

4.3.1 Experiment Setup . 68

4.3.2 Evaluation . 72

4.3.3 A Comparison to a Normalization-Based Approach 74

5 Constraining Counterexamples via Search Space Transformation 77
5.1 Motivation and Problem De�nition . 78

5.1.1 Problem De�nition . 79

5.2 Penalty-Based Approaches . 80

5.2.1 Constraint Embedding Approach 80

Contents ix

5.2.2 Lexicographic Method Approach 80

5.2.3 Discussion: Weaknesses of the Penalty-Based Approaches . . . 84

5.3 Problem Setting and Overview of the Proposed Approach 84

5.3.1 Search Space Transformation-Based Approach 86

5.4 Proportional Transformation . 88

5.5 Falsi�cation Based on the Proportional Transformation 92

5.5.1 Method 1: Fixed-Priority . 93

5.5.2 Method 2: All-Priorities . 94

5.5.3 Method 3: MAB-Priority . 95

5.6 Experimental Evaluation . 97

5.6.1 Experiment Setup . 97

5.6.2 Evaluation . 101

6 Conclusions 107
6.1 Discussion: Integration of the Techniques 109

6.2 Future works . 110

Bibliography 113

Appendix A Omitted Details 127
A.1 MATLAB Source Code for the Usage Scenario 127

A.2 Raw Experimental Results for Table 4.2 129

Index 131

xi

List of Figures

1.1 Simulink model: automatic transmission 5

1.2 Hybrid automaton: a bouncing ball . 6

1.3 Falsi�cation problem . 8

1.4 Piecewise constant signal . 9

1.5 Hill-climbing optimization . 11

1.6 Work�ow of stochastic optimization-based falsi�cation 13

1.7 Illustration of the tool Breach . 13

1.8 Screenshot of a trial by Breach . 14

1.9 “Local optimum” . 16

1.10 Solving problems using a hierarchical optimization framework 22

3.1 Falsi�cation by global optimization . 34

3.2 The time-staging strategy . 35

3.3 A hypothetical tree that implements “backtracking” 37

3.4 An example of the work�ow of MCTS 38

3.5 Asymmetric tree growth . 39

3.6 Our MCTS search tree . 43

3.7 Playout by hill-climbing optimization 44

3.8 Our two-layered optimization framework 45

3.9 Lines 9–11 of Alg. 3.4 . 47

4.1 Sample1: A sample from hill-climbing optimization during falsi�cation

to φ ≡ �(дear = 4→ speed > 35) . 59

xii List of Figures

4.2 Sample2: A sample occurring after Sample1, from the same process

with that in Fig. 4.1 . 59

4.3 Sub-formulas treated as bandit machines 61

4.4 Automatic transmission model with speed ampli�ed by 10 71

4.5 A sample from hill-climbing optimization during falsi�cation to AT5
0

6
≡

�(speed < 135 ∧ rpm < 4780) . 75

5.1 Feasible areas without/with considering input constraints 78

5.2 Proposed constrained falsi�cation approach 86

5.3 Running example–proportional transformation 91

5.4 Fitness landscape of Ωψ and transformed �tness landscapes in Ξ . . . 92

5.5 In�uence of selected priority S in the Fixed-Priority 105

6.1 A potential framework integrating all the technique 109

xiii

List of Tables

1.1 Boolean satisfaction w |= φ, and quantitative robustness values, of

three signals of speed for the STL formula φ ≡ �[0,30](speed < 120) . . 11

3.1 Comparison of uniform random sampling and Breach against Algs. 3.2

(Basic) and 3.4 (P.W.). 50

3.2 Parameter variation for Alg. 3.2 (Basic) 54

4.1 Benchmark sets Bbench and Sbench 70

4.2 Aggregated results for benchmark sets Bbench and Sbench 72

4.3 Experimental results – Sbench . 73

5.1 Temporal speci�cations φ . 99

5.2 Input constraintsψ . 100

5.3 Experimental results for Chapter 5 . 103

5.4 Wilcoxon signed-rank test results . 104

A.1 Raw experimental results – Bbench 129

A.2 Raw experimental results – Sbench 130

1

1
Introduction: Quality Assurance of

Cyber-Physical Systems

1.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) are physical systems with digital control of computers.

With the rapid development of computer technology, especially arti�cial intelligence

these years, the collaboration between physical and digital components of systems

is getting much closer than ever before, giving birth to many applications of CPS.

These applications are facilitating people’s daily life: for example, domestic robots

are saving people’s time from household duties; autonomous driving cars are giving

people easier and safer driving experiences; unmanned aerial vehicles (UAV) are being

used for photography, package delivery, or even �re �ghting; some advanced medical

devices, such as arti�cial pancreas
1
, are helping people �ght with diseases. Actually, it

1
https://en.wikipedia.org/wiki/Arti�cial_pancreas

2 Chapter 1. Introduction: Quality Assurance of CPS

is already such an era: machines are equipped with “brain”s, so they behave not only

mechanically, but also intelligently.

CPS are usually referred to as hybrid systems in the abstract sense: they combine

discrete and continuous dynamics together in a single system. Discrete dynamics

exhibits stepwise behaviors, and they are empowered by computer software. Continuous

dynamics exhibits continuous behaviors, and they are composed of traditional physical

systems. The roles that computer software play are usually controlling and monitoring:

they monitor the behaviors of mechanical systems, and send commands to control them

based on a set of business logical rules. Mechanical systems execute the commands,

and also feedback information to the computer system. Therefore, they do not work

independently, but interact with each other actively.

1.2 Quality Assurance of CPS

Quality assurance of CPS products is a topic of great signi�cance. On the one hand,

many of the CPS applications are life-critical; system failures can cause unacceptable

consequences. For example, many CPS serve as transportation tools, such as airplane,

train, car, etc. System faults of these applications can cause huge �nancial damages or

even loss of human lives. Moreover, software systems are prone to error; it is still a

challenging job to guarantee the quality of software products. In the history, there

are many tragedies due to system failures caused by software errors, such as the

well-known Apollo 13 Accident
1
.

Verifying software systems is a di�cult problem, and it is still one of the major

research topics in computer science. CPS, as a family of more complicated systems,

pose many new challenges in their quality assurance. We list some of the major

concerns below:

• In�nite state space. Due to the existence of physical components, the system

state space of CPS is usually in�nite. This feature poses challenges in modeling

and reasoning about the system. New formalisms have been invented for

modeling hybrid systems, such as hybrid automata [1], Simulink
2
, etc. However,

1
https://nssdc.gsfc.nasa.gov/planetary/lunar/ap13acc.html

2
https://www.mathworks.com/products/simulink.html

1.2 Quality Assurance of Cyber-Physical Systems 3

veri�cation of such models is usually undecidable.

• Complex dynamics. White-box methods based on rigorous mathematical proofs

are highly reliable approaches to quality assurance. However, the dynamics

equations of CPS are typically so complicated that even if they are known, there

is still a barrier to a tractable way of verifying them.

• Scalability. Scalability refers to the ability of extending reasoning techniques

that are applicable to small models to systems of much larger magnitude. As

real-world CPS products are usually gigantic and complex, developing techniques

that are scalable remains a big challenge.

• Black-box components. Nowadays, many CPS products are produced by com-

mercialized collaborations, so they contain black-box components. A black box

component indicates that the internal dynamics of the component are not acces-

sible. One reason is that those components include con�dential techniques; also

modern CPS are produced by interdisciplinary collaborations, so one individual

is not supposed to hold all the domain expertise. As a consequence, black box

gives rise to more uncertainties and more uninterpretabililities compared to

white-box models.

• Environmental uncertainty. In practice environmental noises can be introduced

into the system execution in many ways, and the uncertainty brought by them is

an important issue that needs to be considered. Even worse, they are typically

di�cult to model or handle. Firstly, it is hard to precisely describe them with a

formal model; secondly, taking them into consideration during reasoning is also

a complicated work.

Speci�cation In quality assurance, properties related to safety, user experience,

industrial international standards etc. are referred to as speci�cations; violation of a

speci�cation is undesired. Quality assurance consists in guaranteeing that all the

system behaviors satisfy the speci�cation; however, since rigorous guarantee is most of

the times infeasible, some quality assurance methods try to show the existence of a

system behavior that violates the speci�cation.

4 Chapter 1. Introduction: Quality Assurance of CPS

Speci�cations can be described in natural language on some informal occasions.

However, natural languages usually su�er from the ambiguity issue: the same sentence

can be interpreted completely di�erently by di�erent people. Moreover, natural

language processing is a huge burden for computer systems; it is unreasonable to

involve this process into the loop of quality assurance. Therefore, a formal language

that is easily understandable by computer systems is needed. This is not a trivial

task. There has been a lot of research attention paid on building up such formal

language. Many of the languages are in the form of mathematical logic, such as

propositional logic, �rst-order logic, etc. Speci�cally, in the context of reasoning

about temporal properties, people usually use temporal logics. They feature the use of

temporal operators, such as always (or �), eventually (or ^)—these allow reasoning

about events of presence or persistence on a timeline.

In the next section, we show a usage scenario about a quality assurance task of an

automotive system. The model is a hybrid system, and the speci�cation is a temporal

property about safety.

1.2.1 A Usage Scenario: an Automotive System

In this section, we present a usage scenario which engineers may encounter in practice.

Suppose an engineer is designing a car in a Simulink development environment (an

introduction to Simulink is given in §1.3). As Fig. 1.1 shows, the car
1

is composed of

many blocks; it accepts throttle and brake as inputs, and outputs rounds per minute
(RPM), speed, gear, etc. Note that this is an automatic transmission system, so gear is an

output here.

Now a task comes to the engineer: he/she would like this car to satisfy such a

safety property—whenever the gear is 4 (a relatively high gear value), the speed should

never be too low, say lower than 35 km/h. This is a reasonable requirement for the

car because, once the car runs at a high gear with a low speed, it will harm some

components and even threaten the safety of the entire system. However, this is not a

trivial problem for the engineer, as the car consists of so many blocks that operate

according to complicated dynamics. It sounds hard to give a mathematical proof to

1
This model is from: https://www.mathworks.com/help/simulink/slref/modeling-an-automatic-

transmission-controller.html

1.2 Quality Assurance of Cyber-Physical Systems 5

Modeling an Automatic Transmission Controller

5
gear

4
RPM

3
speed

Vehicle

Ne

gear

Nout

Ti

Tout

Transmission

gear

throttle

down_th

up_th

run()

ThresholdCalculation

speed

up_th

down_th

gear

CALC_TH()

ShiftLogic

Ti
Throttle

Ne

Engine

2
brake

1
throttle

ImprellerTorque

EngineRPM

TransmissionRPM

VehicleSpeed

OutputTorque

Figure 1.1: Simulink model: automatic transmission

rigorously guarantee that property. As a trial, the engineer comes up with several

instances of throttle and brake. He/she gives these instances as inputs to the car, gets

the car model run, and collects the logs of output signals. Then he/she does an analysis

on output data. Through the observation, the car seems not violating that property.

Nevertheless, the engineer is not convinced, because the number of test cases is too

small. Here the problem arises—is there a good way to determine if the car satis�es

that property? It will be helpful either saying yes with a proof, or giving an instance of

throttle and brake values under which the car violates the property.

For discrete systems, typical approaches to quality assurance include veri�cation
and testing. In the following sections, we discuss on the technical details of these

approaches and the problems that arise from applying them to CPS applications.

1.2.2 Veri�cation

Formal veri�cation is a quality assurance approach that uses mathematical formal

methods to guarantee the correctness of systems. It has been widely used in applica-

6 Chapter 1. Introduction: Quality Assurance of CPS

tions such as cryptographic protocols, digital circuits, etc. The advantage of formal

veri�cation is that it gives rigorous proofs to the properties of interest based on abstract

mathematical models, and thus the result is reliable.

Model checking [2] is a major veri�cation approach to quality assurance. This term

is usually connected to reachability analysis, a method that aims to determine if a goal

state (usually an unsafe state) can be reached by the system. A discrete system, such as

a software program, can be modeled as an automaton. The negation of the system

speci�cation in the form of temporal logics, which represents the unexpected situation,

can be transformed to another automaton. Model checking solves the problem in the

following way: �rstly it combines the two automata; then it checks, starting from the

initial states, if the combined automaton can reach the goal state. This approach is

known to be rigorous, but it does not always scale very well. 7

ẋ1 = x2,
ẋ2 = −g
m

start

x1 ≥ 0

x1=0 ∧ x2≤0,
impact

x′
1=x1 ∧ x′

2= − cx2

Fig. 6. A hybrid automaton modeling the dynamics of a bouncing ball

and at that time it reverses the direction of its velocity, while
losing some energy proportional to its restitution coefficient
c, i.e. after the impact we have x′

1 = x1 and x′
2 = −cx2.

Observe that the bouncing ball system is a hybrid system since
its dynamics involve both flows and jumps. The continuous
dynamics of the system is captured using flow function of the
unique mode m, while the jump is modeled with the discrete
transition labeled impact. For the starting valuation we assume
x1 = ℓ meters and x2 = 0. Formally the hybrid automataH =
(M, M0, Σ, X, ∆, I, F, V0) models the bouncing ball where:

− M = M0 = {m0},
− Σ = {impact},
− X = {x1, x2},
− ∆ contains the following transition

(m, x1=0 ∧ x2≤0, impact, x′
1=x1 ∧ x′

2= − cx2, m),

− I(m) = x1≥0,
− F (m) = ẋ1 = x2 ∧ ẋ2 = −g, and
− V0 = {(ℓ, 0)}.

The transition diagram corresponding to this automaton is
shown in Figure 6(a). The transition diagram of a hybrid au-
tomaton follows the similar conventions as that of an extended
finite state machine, with the exception of flow conditions. We
write flow conditions of a mode inside the rounded rectangle
representing the mode.
Now let us explain the unique run of the system starting

from the configuration (m, (ℓ, 0)). The solution to ODE cor-
responding to the flow function is

x1(t) = −1

2
gt2 + Ct + D and x2(t) = −gt + C. (2)

For the initial configuration is (m, (ℓ, 0)) solving (2) we
get C = 0 and D = ℓ. Hence from (m, (ℓ, 0)) system
flows according to the equations x1(t) = − 1

2gt2 + ℓ and
x2(t) = −gt. According to these equations the value of
variable x1 continue to fall for the next t1 =

√
2ℓ/g time

units when x1 becomes 0, and the transition impact becomes
available and must be taken (since the invariant of the mode
requires x1 to be non-negative). Immediately before taking the
transition the configuration is (0, −gt1). Using our notations
we can write it as (0, −gt1) = (ℓ, 0)⊕F (m)t1.
After taking the transition impact this valuation changes

according to the jump function x′
1=x1 ∧ x′

2= − cx2 re-
sulting in the new valuation (0, cgt1). Again, in our no-

0 2 4 6 8

−10

0

10

t (in seconds) &→

x
1
(in

m
et
er
s)
an
d

x
2
(
in
m
et
er
/se
co
nd
)&→

x1
x2

Fig. 7. a run of the system where the initial vertical position is ℓ = 10 meters
and the coefficient of restitution c = 1.

tation we write (0, cgt1) ∈ (0, −gt1)[x
′
1=x1∧x′

2=−cx2].
The run of the system, so far, can be written as
⟨(m, (ℓ, 0)), (t1, impact), (m, (0, cgt1))⟩. Now from the con-
figuration (m, (0, cgt1)) the system can flow continuously
according to F (m). Solving (2) for this initial valuation we get
C = cgt1 and D = 0. Hence from (m, (0, cgt1)) the system
flows according to the equations x1(t) = − 1

2gt2 + cgt1t and
x2(t) = −gt + cgt1 for the next t2 = 2ct1 time units till it
reaches the valuation x1 = 0 (the ball hits the ground again).
At this point the resulting configuration will be (0, −cgt1)
and after the transition the configuration will be (0, c2gt1).
The system continues in this fashion forever and realizes the
following infinite run of the system:

⟨(m, (ℓ, 0)), (t1, impact), (m, (0, cgt1)),

(2ct1, impact), (m, (0, c2gt1)),

(2c2t1, impact), (m, (0, c3gt1)), . . .⟩, (3)
where t1 =

√
2ℓ/g. The first two transitions of the run for

ℓ = 10 and c = 1 are shown in Figure 6(b).
For a given run r = ⟨(m0, ν0), (t1, a1), (m1, ν1), . . .⟩ of a

hybrid automaton we define its time T (r) is defined as

T (r) =

∞∑

i=1

ti.

We say that a run r time-diverging if T (r) = ∞. For an ex-
ample of a time-diverging run consider (3) for c = 1 as shown
in the Figure 6(b) where time between every consecutive
transition is 2

√
2ℓ/g. The infinite run in this example seems

natural since we assume the restitution coefficient c = 1, and
under this unrealistic situation we expect the ball to bounce
indefinitely. However, given the generality of the model of
hybrid automata the time divergence of a run is not always
guaranteed. As an example consider again the bouncing ball
system now with restitution coefficient 0 < c < 1. In this case
the time of the run (3) is T (r) = t1(1 + c)/(1 − c) is finite
for any 0 < c < 1. Runs that are not time-diverging, on an
intuitive level, are not physically realizable since they execute
infinitely many discrete transitions in a finite amount of time.
Assuming the possibility of realizing infinitely many discrete

Figure 1.2: Hybrid au-

tomaton: a bouncing

ball

In the context of hybrid systems, hybrid automata [1]

are a widely-used formalism. Fig. 1.2 gives an example of a

hybrid automaton (taken from [3]), in which the dynamics

of a bouncing ball is formally represented. Here x1 denotes the

vertical position of the ball, and x2 denotes the vertical velocity

of the ball. It has two types of state transitions: x1 and x2 �ow

continuously when the ball is in the air; the system jumps

to the next state when the ball impacts against the ground.

This is an elegant way to formalize hybrid systems, but model

checking, even on quite simple hybrid automata, is usually

undecidable due to the presence of continuous dynamics.

Timed automata [4] are a sub-class of hybrid automata. They capture the temporal

features of systems using several clocks. Each clock �ows as the time elapses, and

when they reach certain conditions, one state jumps to the next one. Timed automata

are mainly used to model and analyze real-time systems. They are severe restrictions

of hybrid automata, for which reachability is decidable [4]. There have been several

successful tools for veri�cation of timed automata, such as UPPAAL [5], Kronos [6],

IMITATOR [7], etc.

Other veri�cation techniques for software systems include theorem proving, which

also has a counterpart technique in hybrid systems. For example, KeYmaera [8] and

KeYmaera (X) [9] are automated and interactive theorem provers. KeYmaera (X) supports

1.2 Quality Assurance of Cyber-Physical Systems 7

a �rst-order logic, named di�erential dynamic logic (DL) [10, 11], as the speci�cation

language. Hybrid systems are expressed in the form of hybrid programs [10, 11], and

the tools can automatically prove if the system satis�es a given property in DL.

Extension of programming logics by non-standard analysis is studied for reasoning

about hybrid systems in [12–14]. It adds a notation of in�nitesimal to the traditional

programming language, enabling it to express continuous dynamics and thus describe

the executions of hybrid systems. Then, it develops the counterpart of Hoare Logic in

that context for reasoning about the correctness of the proposed formalism.

Through the aforementioned instances, we can see that, although veri�cation

techniques for hybrid systems give elegant formalization and rigorous guarantees for

the problem, they also inherit the weaknesses from traditional veri�cation techniques:

�rstly, scalability is still a major problem, therefore, the class of models and speci�cations

that can be practically handled is limited; secondly, usually they do not handle

environmental uncertainty well, restricting their usage to the theory level.

1.2.3 Testing

Testing is a dual process to veri�cation. Instead of verifying that a system satis�es a

speci�cation, testing aims to �nd a counterexample showing that the system is possible

to violate the speci�cation. In this way, testing exposes the fact that the system is able

to behave unexpectedly, so it requires repairing or redesigning. Veri�cation is usually

di�cult (if not impossible) to many applications in the context of quality assurance of

CPS; on these occasions, testing is a viable approach to understanding the behaviors of

the system. Indeed, searching for one speci�c case is much easier than exploring the

whole system thoroughly.

Testing usually relies on system executions. However, directly testing on the

real system is expensive and ine�cient. For instance, if we test a real car on the

road, it is not only time and resource consuming, but it may also lead to catastrophic

accidents. Therefore, engineers usually develop a model and run simulations on that

one instead [15]. A widely-used modeling tool for CPS is Simulink, such as the example

shown in Fig 1.1. It provides a graphical interface that allows engineers to quickly

prototype systems. It is based on MATLAB, and thus it is convenient to integrate other

toolboxes of MATLAB. Other simulation environments include some game engine

8 Chapter 1. Introduction: Quality Assurance of CPS

applications, such as Unreal Engine
1
, especially for automated driving systems. See a

related work in [16]. Although using those simulators can be costly, they provide

better interfaces and more powerful functionalities that make simulations closer to the

real world.

In order to test a system against speci�cations, search-based testing is a commonly-

used technique. It usually employs optimization algorithms, such as genetic algorithms,

to search for test cases that violate the given property, guided by a well-de�ned �tness

function. This technique has been widely applied in many applications, and there have

been a lot of research e�orts put in that direction. See [17,18] for surveys. Search-based

testing is also considered as an approach that is well-suited for testing CPS: one reason

is that it works well with black-box models; another reason is that it is more e�cient

compared to naive random sampling, and thus it saves a lot of simulation costs. In fact,

the theme of this work, namely the falsi�cation technique, is also considered as an

instance of search-based testing.

1.3 Optimization-Based Falsi�cation

As we mentioned, falsi�cation is a search-based testing approach for quality assurance

of CPS products. Compared to veri�cation techniques, it needs no exploration of the

whole system states, but instead pursues one counterexample to refute the system

speci�cation. We �rstly introduce a basic problem setting of falsi�cation that has been

considered in many literature [19–30].

Multi-Armed Bandits for Boolean Connectives in
Hybrid System Falsification

No Author Given

No Institute Given

Abstract. Hybrid system falsification is an actively studied topic, as a scalable
quality assurance methodology for real-world cyber-physical systems. In falsifi-
cation, one employs stochastic hill-climbing optimization to quickly find a coun-
terexample input to a black-box system model. Quantitative robust semantics is
the technical key that enables use of such optimization. In this paper, we tackle the
so-called scale problem regarding Boolean connectives that is widely recognized
in the community: quantities of different scales (such as speed [km/h] vs. rpm, or
worse, rph) can mask each other’s contribution to robustness. Our solution con-
sists of integration of the multi-armed bandit algorithms in hill climbing-guided
falsification frameworks, with a technical novelty of a new reward notion that we
call hill-climbing gain. Our experiments show our approach’s robustness under
the change of scales, and that it outperforms a state-of-the-art falsification tool.

Keywords: signal temporal logic, cyber-physical systems, falsification, Boolean
combination, reinforcement learning

1 Introduction

Hybrid System Falsification Quality assurance of cyber-physical systems (CPS) is at-
tracting growing attention from both academia and industry, not only because it is
challenging and scientifically interesting, but also due to the safety-critical nature of
many CPS. The combination of physical systems (with continuous dynamics) and dig-
ital controllers (that are inherently discrete) is referred to as hybrid systems, capturing
an important aspect of CPS. To verify hybrid systems is intrinsically hard, because the
continuous dynamics therein leads to infinite search spaces.

More researchers and practitioners are therefore turning to optimization-based falsi-
fication as a quality assurance measure for CPS. The problem is formalized as follows.

The falsification problem

– Given: a model M (that takes an input signal u and
yields an output signal M(u)), and a specification ' (a
temporal formula)

– Find: a falsifying input, that is, an input signal u such
that the corresponding output M(u) violates '

u // M
M(u)

6|=' ?
//

In optimization-based falsification, the above problem is turned into an optimization
problem. It is robust semantics of temporal formulas [10, 13] that makes it possible.

Figure 1.3: Falsi�cation

problem

Model Falsi�cation problem concerns about a model, i.e.,

the object under test, such as a car. We usually treat the

model as a black box; in other words, we do not access its

internal dynamics, but the only way we evaluate it is via

providing an input signal and observing the corresponding

output signal. We have elaborated on the reason in §1.2.

This partially explains why falsi�cation is a hard problem: indeed, no other clue is

given by the model; the only means to access it is through sampling of input and output

1
https://www.unrealengine.com/

1.3 Optimization-Based Falsi�cation 9

signals. On the other hand, this setting also gives the technique a better practicality, in

that its usage is not limited to any speci�c type of model.

In industry, Simulink, a toolbox developed by MathWorks, is a commonly used tool

for modeling the CPS products. It provides a visualized interface for fast prototyping.

It is also convenient to transform Simulink models to C programs. An example of

Simulink model is shown in Fig. 1.1. The ports 1 and 2 are input signals for the system,

namely throttle and brake; the ports 3, 4 and 5 are output signals, namely RPM (rounds

per minute), gear and speed. It is composed of several blocks, and each of them can

have several sub-blocks embedded. When an input signal is provided, the model can be

executed and then output signals will be generated. In this work, all the experiments

are done with Simulink models.

u

t
Figure 1.4: Piecewise constant

signal

Input signal With the black-box setting, the prob-

lem boils down to searching for a speci�c input signal

such that the corresponding output signal violates the

system speci�cation. Here, a signal is a time-variant

function. It is impossible to search for values point by

point in the time domain, as the domain is continuous.

Therefore, we adopt parameterized representations of

input signals as approximations of them. Commonly-

used representations include piecewise constant (see Def. 2), piecewise linear (see

Def. 3), pulse signals and so on. Fig. 1.4 shows an example of piecewise constant

signals, in which the signal is composed of three constants. In practice, piecewise

constant signals can be obtained by sampling the real signals at intervals; as a result,

the number of samples, usually called control points, decides how closely the piecewise

constant signal approximates the real one. For falsi�cation, by �xing the type of

representation and hyperparameters such as control points, the task is reduced to

searching for a �nite set of parameters that identify an input signal (counterexample).

Speci�cation System speci�cations (as introduced in §1.2) can be used to formalize

the criteria, such as safety concerns, that the system needs to satisfy. Research has

been heavily performed on formal languages for expressing speci�cations, such

as [31–40]. Temporal logics are a family of formal languages for describing temporal

10 Chapter 1. Introduction: Quality Assurance of CPS

properties. A well-known one for reasoning about discrete systems is Linear Temporal

Logic (LTL) [41], which is used to express properties in a discrete domain. One

of its counterparts for reasoning about hybrid systems is Signal Temporal Logic

(STL) [32]. The feature that enables them to express temporal properties is the use of

temporal operators, namely, always (or �), eventually (or ^) and until (orU). For

example, STL is able to express the property in §1.2.1 as �(дear = 4→ speed > 35)

(see the syntax of STL in §2.2). Here, � is the always temporal operator, requiring

the proposition дear = 4→ speed > 35 to be true at every moment. Moreover, STL

introduces quantitative semantics, of which the optimization algorithm can make

use as a guidance to the search. In the next section, we will elaborate on how the

quantitative STL robustness works.

1.3.1 Quantitative STL Robustness

The Boolean satisfaction of temporal logics is well-known and easy to understand. In

the context hybrid systems, it is a relation between a signal u and an STL formula

φ—we write u |= φ if u satis�es φ, and u 2 φ otherwise.

Quantitative semantics of STL introduces quantities into the relation. This quantity

is usually called robustness, and written as Jw,φK. We will introduce its formal de�nition

in §2.2. The quantitative semantics does not only say that u satis�es φ or not, but

also indicates how robustly u satis�es φ. See the examples in Table 1.1. There are

three signals of speed, and we reason about their satisfaction to the temporal property

�[0,30](speed < 120), that is, “during the time bound [0, 30], the speed is always below

120”. It is clear that the �rst 2 signals satisfy the property, while the third one violates it,

which corresponds to the Boolean satisfaction shown in the second row. Furthermore,

although both of the �rst two signals satisfy the property, intuitively the second one is

more vulnerable to perturbations than the �rst one, in the sense that once a small

change happens to the signal, it may violate the property. This intuition is embodied by

the robustness in the third row. These values are computed from the margin between

the peak point of each signal and the threshold 120. We can further see that when this

value is negative (as the case of the third signal), the property is violated.

This is just a simple example of STL robustness; in practice, we need to deal with

system speci�cations that are much more complicated. STL provides a well-established

1.3 Optimization-Based Falsi�cation 11

Table 1.1: Boolean satisfaction w |= φ, and quantitative robustness values, of three

signals of speed for the STL formula φ ≡ �[0,30](speed < 120)

signal w SP
EE

D

0

30

60

90

120

150

TIME
0 10 20 300

60

90
70

120

SP
EE

D

0

30

60

90

120

150

TIME
0 10 20 300

80

110
96

120

SP
EE

D

0

30

60

90

120

150

TIME
0 10 20 30

0

100

130
110120

w |= φ True True False

Jw,φK 30 10 −10

de�nition of robust semantics (see §2.2), which can always return a real number, given

a signal and a property.

1.3.2 Stochastic Optimization-Based Falsi�cation

input signal u

robustness JM(u), 'K

u(2) u(1)

· · ·

u(i)

hill-clim
bing

u(i+1)?

1 2

Figure 1.5: Hill-climbing optimiza-

tion

One application of the STL robust semantics is

the stochastic optimization-based falsi�cation

technique. Stochastic optimization is a family

of optimization methods that implement diverse

strategies of metaheuristics for the purpose of

e�ective search. These algorithms introduce ran-

domness into the search process, so that the op-

timization is stochastic—multiple executions of

one algorithm with di�erent random seeds lead to

di�erent performances. This feature gives the algorithms more possibilities to reach

the optimization goal.

Metaheuristics refer to strategies that generate and utilize heuristic rules for quickly

achieving optimization goals. Many of these algorithms are inspired from natural

processes, such as hill climbing, genetic algorithms, simulated annealing, etc. (see the

detailed introduction to these algorithms in §2.3). For example, hill climbing works

with a process as shown in Fig 1.5: it starts with initial random samplings and obtains

their objective function values; then it analyzes these values and conjectures the

direction where the objective function potentially descends; based on that, it comes up

with the next sample following that direction. This loop is repeated until a time budget

12 Chapter 1. Introduction: Quality Assurance of CPS

is run up; hopefully by that time the optimization goal can be achieved. Just as the

name indicates, this process is pretty like climbing (upwards or downwards) a hill.

Other metaheuristics take di�erent strategies, but all of them aim at the same goal. In

this work, we refer to this body of techniques as hill climbing.

Falsi�cation is turned into an optimization problem in the following way: robustness

is treated as the objective function, and optimization aims to minimize it as much

as possible. Once a negative robustness value is observed, then it indicates that the

system speci�cation is violated.

In order to solve that optimization problem, we employ stochastic optimization

algorithms. The key reason why we select them is that they are applicable to black-box

models: providing output data of the model is su�cient for them to work. Besides,

e�ciency and scalability issues are also important. Usually the system simulation that,

given an input signal, generates the corresponding output signal is computationally

expensive, so in practice it is preferred if an algorithm can work out e�ciently with a

small number of simulations. We also expect the algorithms to be scalable enough, so

that the same work�ow can be smoothly applied to systems of larger scale (e.g., with

more input signals, system components, etc.). Although hill-climbing optimization

algorithms also su�er from this scalability issue, the e�ect is less severe compared to

other exhaustive techniques such as veri�cation.

As the optimization methods are stochastic, di�erent executions can result in

di�erent outcomes, depending on the random seeds. Therefore, in the experiments

when we assess the algorithms, usually we repeat one experiment many times and

then compute the percentage of the number of successful runs (that manages to return

a counterexample signal) over the total runs.

So far we have gone through the work�ow of the optimization-based falsi�cation

technique, as illustrated in Fig 1.6. The model accepts an input signal given by the

optimizer, and runs simulation to generate an output signal; the robustness that re�ects

the relation between the output signal and the system speci�cation is computed

according to the STL robust semantics; the optimizer then tries to minimize the

robustness by proposing a new input signal. This loop keeps working until a falsifying

input is found, or a given time budget is run up.

1.3 Optimization-Based Falsi�cation 13

Model Optimizer

input signal

output signal

STL robust
semantics

robustness

specification

Figure 1.6: Work�ow of stochastic optimization-based falsi�cation

1.3.3 Usage Scenario of Falsi�cation

In this section we come back to the usage scenario introduced in §1.2.1. We show how

falsi�cation can help the engineer with that problem.

Breach

model

specification

parameters

falsified with
 input u

failed to falsify
within the budget

Figure 1.7: Illustration of the tool Breach

Let us say the engineer decided to use a falsi�cation tool Breach [22], one of the

most commonly used among the existing falsi�cation tools. As shown in Fig. 1.7,

Breach takes a model (usually expressed in Simulink), a speci�cation (in STL), and

some other parameters, such as time budget, signal type, choice of an optimization

algorithm, etc., as inputs; it then performs the falsi�cation work�ow shown in Fig. 1.6,

and outputs a result—either succeeding in falsifying the speci�cation with an input

signal u or failing to do so.

In an experiment, the engineer gives the automatic transmission model in Fig. 1.1 to

Breach as the system model under test, and then expresses the property in STL, namely

14 Chapter 1. Introduction: Quality Assurance of CPS

… … … …

Figure 1.8: Screenshot of a trial by Breach

�[0,30](дear = 4→ speed > 35) (see §2.2 for STL syntax); the engineer sets the time

budget as 100 seconds, and uses CMA-ES (see §2.3) as the optimizer. The engineer then

can command the program to start running, and wait for a while to see the results.

Breach shows a running instance as Fig. 1.8. On the top of the �gure, there are four

columns, respectively recording the number of simulations, total time consumed so

far, the robustness value resulting from the current input signal, and the best (i.e.,

smallest) robustness over the input signal history. It is clear that the best robustness is

decreasing, which means that Breach is approaching a falsifying input gradually. After

204 simulations (53.2 seconds), Breach succeeded in �nding a falsifying input, shown

on the bottom of the �gure, with the robustness -0.198605. This result demonstrates

that the car designed in Fig. 1.1 is not so safe as expected, and the engineer needs to

redesign related components to �x some existing problems.

1.3.4 Current Status of Falsi�cation in Academia and Industry

Over the years, the methodology of falsi�cation has proved to be e�ective in practice.

There have been several tools developed following the work�ow depicted in Fig. 1.6,

such as Breach [22] (see §1.3.3), S-TaLiRo [19], and our tool FalStar [27, 42], etc. These

tools take Simulink models as systems under test. They di�er in many implementation

details. For example, S-TaLiRo implements MITL (Metric Interval Temporal Logic) [31]

1.3 Optimization-Based Falsi�cation 15

as the speci�cation language, while Breach and FalStar adopt STL. MITL is originally

designed for reasoning about discrete systems, but it has a well-de�ned robust

semantics; STL is a counterpart of MITL in a continuous setting. These tools are also

used for research purpose—their authors include new research outcomes in them, so

they are evolving all the time. In academia, there is an annual friendly competition,

held with the workshop of Applied Veri�cation for Continuous and Hybrid Systems

(ARCH)
1
, for these tools to compete on their performances. See [43,44] for competition

results in recent years.

Falsi�cation techniques are increasingly applied to testing complicated systems,

such as autonomous driving systems, aviation systems, etc. These systems are

typically large-scale and complex. More system parameters are needed to consider, and

simulations are more time-consuming. Regarding these features, falsi�cation provides

an e�cient way to discover system defects; meanwhile, successful applications to these

systems have also proved the strength of falsi�cation and enriched its theory. In many

cases, falsi�cation is introduced as a technique for test generation for autonomous

vehicles, such as [45–47]. Due to the large system magnitude, reinforcement learning-

based falsi�cation techniques are heavily applied in testing those systems [48–51].

Moreover, testing systems with machine learning components is attracting more and

more research attention. On the one hand, these components are being increasingly

applied in modern CPS, bringing many uncertainties into the system behaviors; on the

other hand, these components are known as uninterpretable and di�cult to reason

about. Many works [52–55] have studied the related topics.

Furthermore, the methodology has been adopted by many industrial manufacturers,

such as Toyota [56], Bosch [57], Airbus [58], etc. Toyota is one of the earliest

manufacturers that apply this methodology in verifying their products. In [56], they

present a fuel control system, and list several requirements that the system is supposed

to satisfy; they test those requirements with S-TaLiRo, and experiments show that in

most cases S-TaLiRo does not �nd any violation, so they conclude that “the quality

of the manual abstractions that we performed vis-à-vis high-level requirements is

reasonable”. Bosch has also been working on this for several years. They have been

trying to apply the technique in testing autonomous driving systems. In [57] they

present their practical experience, in particular they give several interesting tips,

1
https://cps-vo.org/group/ARCH/FriendlyCompetition

16 Chapter 1. Introduction: Quality Assurance of CPS

such as “simulation is costly”, “many properties can be formalized by formulas of

simple form”, etc. which are helpful for practitioners. Airbus [58] recently collaborates

with academia on a project of testing their products. They apply Monte Carlo Tree

Search (MCTS), a technique introduced to falsi�cation by us [42] (to be presented in

Chapter 3), in their work.

1.4 Motivation: ExistingProblems andRelatedWorks

As we introduced, the methodology introduced in §1.3 has proved to be e�ective, and it

has been adopted by manufacturers such as Toyota [56], Bosch [57], etc. However, it

does not mean that the methodology is already perfect. Many shortcomings emerge

from both industrial practice and academic research. In this section, we list and

elaborate on these problems as the motivation for this work; we also review the

existing literature to show the recent progress on those topics.

The problems arise from the following aspects, corresponding to the three shaded

boxes in Fig. 1.6.

1.4.1 Exploration and Exploitation

The trade-o� between exploration and exploitation is the core of search-based

techniques. Exploration prefers to cover the search space as broadly as possible, rather

than focusing on a speci�c local area; exploitation is the other way around that looks

into a local area as deeply as possible, without considering big jumps in the search

space. It is a challenge how to balance exploration and exploitation, especially given a

limited time budget for the search.

local minimum

global minimum

f(x)

x

A

Figure 1.9: “Local optimum”

In falsi�cation, we usually employ hill-climbing

optimization algorithms as the optimizer (see §1.3.2).

Nevertheless, these algorithms are usually known for

their bias on exploitation, i.e., they tend to perform

more exploitation to a speci�c local area rather than

explore the entire search space. This feature leads

these algorithms to the “local optimum” trap, as shown

in Fig. 1.9. Suppose that an algorithm starts with the

1.4 Motivation: Existing Problems and Related Works 17

sample at point A, and that it performs hill climbing to proceed; after several loops, it is

not hard to reach the local optimum point. However, the algorithm is usually unable to

jump out of the local optimum after that, and as a consequence, it returns the local

optimum as the optimization result, missing the global one elsewhere.

This problem a�ects the falsi�cation performance severely, and thus it becomes

one of the main directions of the research in falsi�cation. The works that handle this

problem can be classi�ed according to the techniques used as a back end, as follows.

Metaheuristics This line of works makes use of metaheuristics to avoid pure

exploitation. Many metaheuristic-based approaches implement such a mechanism that

triggers a jump when the search falls into a local optimum. For example, Simulated
Annealing [59] is an algorithm inspired from the process of annealing in metallurgy.

Compared to the naive hill climbing, it has a possibility to jump out of the local search.

Its application to falsi�cation is studied in [60, 61], and it now has become a basic

optimizer for falsi�cation in both Breach and S-TaLiRo. We will give a more detailed

introduction in §2.3. In [62], the authors apply the famous ant colony optimization to

falsi�cation, in which the search takes a small probability to start a new exploration.

In [20], the authors propose the use of tabu search for falsi�cation. The algorithm

maintains a tabu list during the search, which is a memory structure that records the

sampling history, so that it will not fall into the same local optimum twice. Cross
entropy [63] is an importance sampling method that initially explores the search

space and then performs biased sampling in the promising area. Its application to

falsi�cation is studied in [64]. S-TaLiRo implements the stochastic optimization

with the adaptive restart mechanism [65] to avoid trapping into local optima. Some

hill-climbing algorithms are able to change the portion of exploration/exploitation

through modifying some parameters, such as CMA-ES as studied in [66].

Coverage-guided metrics Coverage is an important notion in software testing.

Originally, it is used to measure how much portion of a program is executed by test

suites. In the case when no error is found from the program, the larger coverage

the test suites achieve, the more reliable the testing result can be considered. Some

falsi�cation techniques are developed based on the coverage notion for the aim of

avoiding local optimum. Those techniques employ coverage as a guidance for the

18 Chapter 1. Introduction: Quality Assurance of CPS

search—with that guidance, the search then aims not only to minimize the robustness,

but also to enlarge the coverage to the search space. In this way, the search can avoid

pure exploitation because that does not help to obtain a good coverage.

As hybrid systems deal with in�nite search space, it remains the problem how to

de�ne the coverage metric in this context. Di�erent coverage de�nitions have been

proposed. In [67], the coverage is de�ned based on the internal states of Simulink

models, and it is included as a part of the objective function so that the search is guided

by both robustness and coverage. However, it is unclear how the de�ned robustness

a�ects the balance between exploration and exploitation. In [23], the coverage is

de�ned by star discrepancy, a measure for evaluating how well-distributed a set of

samples are. This coverage de�nition thus guarantees exploration; however, as it

considers input space only, it emphasizes purely on exploration. In [68], a coverage

notion is de�ned based on classi�cation in input space according to robustness values.

This work gives a better balance between exploration and exploitation because it takes

not only input space but also robustness into consideration.

Machine learning Machine learning techniques are developing rapidly, and they

are also applied to falsi�cation for enhancing the search e�ectiveness. In general, these

techniques learn models or objective functions from sampling data; based on that, they

come up with new samples that explore the search space e�ectively. Speci�cally two

machine learning techniques have been used heavily in falsi�cation, that is, Bayesian

optimization and reinforcement learning.

Bayesian optimization makes use of Gaussian Process Regression to learn the

objective function (i.e., robustness in our context); this results in a Gaussian process

over the search space. Gaussian process is a model in which every �nite collection

of variables form a multivariate normal distribution; in our context, it predicts the

probability distribution of robustness at each point. Bayesian optimization then samples

at some potentially interesting places, that is, those predicted to have low robustness.

The sampling strategy, known as acquisition function, guarantees the balance between

exploration and exploitation. This technique has been studied in [69–72]. In [69], the

authors apply a dimension reduction method to mitigate the scalability issue. In [71],

the authors exploit the causality between the sub-formulas and the global formula

of the speci�cation to accelerate the search. There are also other machine learning

1.4 Motivation: Existing Problems and Related Works 19

techniques that are based on Gaussian Process Regression, such as active learning that

is applied to falsi�cation in [25].

Reinforcement learning is a hot spot in the machine learning community in recent

years. It tries to learn the best policy—a sequence of actions—that an agent can take,

from the interactions between the agent and the environment. There is also a trade-o�

between exploration and exploitation in reinforcement learning: when the agent

decides which action to take for the next step, the choice is either to explore an

action that has not been taken before, or to exploit an already taken action further

to get more reliable feedback. In recent years, this technique has been applied to

falsi�cation [26,73]. In [26], the authors study the application of reinforcement learning

to falsi�cation, where they discretize the input signal as a sequence of actions and

search in an incremental way. In [73], the authors also study the technique, with the

aim of falsifying a family of models rather than a single one. Reinforcement learning is

also applied in the context of testing autonomous vehicles [74] for detecting dangerous

scenarios, going through a similar work�ow with falsi�cation.

1.4.2 Robust Semantics De�nition

The de�nition of robust semantics in our context plays the role of objective function

for optimization, and thus it a�ects the performance of the entire framework sig-

ni�cantly. The current widely-used STL robust semantics de�nition captures only

spatial robustness (see §2.2 for the de�nition and see the example in Table. 1.1). The

formalism [32] that captures the temporal robustness also exists. It formalizes such an

intuition: for example, compare the �rstly two signals in Table 1.1; the �rst one arrives

at the speed 90 much later than the second one, therefore, the former is more robust

than the latter. In [33], the authors propose a way that takes both perspectives into

account, resulting in the Averaged STL (AvSTL). While the computation of spatial or

temporal robustness is just a matter of obtaining a vertical or horizontal distance,

AvSTL requires to compute the integration of the signal over certain interval; the

authors then design a speci�c algorithm for that purpose. They also experimentally

show the strength of that semantics applied in the falsi�cation problems.

In this work, we tackle another problem, that is, the robust semantics for Boolean

connectives. In the existing de�nition, when it comes to the robustness for Boolean

20 Chapter 1. Introduction: Quality Assurance of CPS

connectives, it makes a comparison between the robustness values of di�erent sub-

formulas—for conjunctive it takes the minimum, and for disjunctive it takes the

maximum (see §2.2 for details). However, this yields new problems. Intuitively, if the

sub-formulas concern with di�erent signals ranging over di�erent scales, then the

comparison becomes unfair, because one can always beat the other one. This is the

so-called scale problem, and we elaborate on that with a concrete example in §4.1.

There has been one work handling that problem [75]. In that work, they explicitly

declare the input and output signals so that they manually introduce a bias on the

comparison. This method solves the problem in many cases, however, it requires

domain expertise and human intervention.

1.4.3 Input Constraints

As we introduced in §1.3.2 the way hill-climbing optimization works, it relies on

random sampling to explore the search space. Therefore, the search space must

be unconstrained (usually a hyperrectangle). In this way, falsi�cation can return

any input signal that violates the system speci�cation in the search space, once it

manages to �nd one. However, in reality, there usually exist some logical constraints

among input signals. One example is that, in an automotive system like the one in

Fig. 1.1, the throttle and brake cannot be pushed simultaneously. Such constraints also

exist in other literature about CPS products; for example in [76], the authors test an

assisted driving system under di�erent environment and system parameters; there is

a constraint—“when there is no fog, the visibility range is set to maximum”—that

restricts the system inputs. Sometimes, the engineers also desire to impose some

conditions on the input when testing systems; for example in [56], the authors aim to

test a system under the condition that throttle increases monotonically. In the presence

of such constraints, input signals produced by falsi�cation should be guaranteed to

satisfy them; otherwise, those signals would be meaningless.

Few works have addressed this issue before. To the best of our knowledge, [77] is

the only one. It utilizes a timed automaton, that implements the input constraints, to

generate meaningful words, and then it applies Monte Carlo sampling methods to

produce input signals. This work does solve the input constraint problem; however, it

cannot be integrated with hill-climbing optimization, that is more e�cient in �nding

1.5 A Hierarchical Optimization Framework 21

counterexamples than Monte Carlo sampling.

In the optimization community, the constrained optimization problem has been

heavily studied. Many among those works are white-box methods, but they are not

applicable in our context. Methods based on black-box models can be classi�ed into

the following categories according to [78]:

• Methods based on penalty functions. The intuition is simple: once the input does

not satisfy the constraint, add a penalty value to the objective function. In this way,

the constrained optimization problem can be converted into an unconstrained

one. Common methods include death penalty [79], static penalty [80], dynamic

penalty [81], etc. As these methods change the objective function quite much,

the performance of them is very problem-dependent. In §5.2, we will present our

study [82] of penalty-based approaches to falsi�cation.

• Methods based on search of feasible solutions. These methods make use of

heuristic rules that advise the search to proceed towards the feasible areas.

Examples include [83, 84], etc. This is also a commonly-used approach, but as it

depends on heuristics, there is no guarantee on the performance.

• Methods based on preserving feasibility of solutions. These methods somehow

transform the infeasible samples to feasible ones, with the help of encoding and

decoding techniques. This proposal has already studied in [85]. Our contribution

in Chapter 5, §5.3 is also based on this idea: we de�ne a new transformation

method, and extend it with introduction of multi-armed bandit model.

• Hybrid methods. They are combinations of the methods in the aforementioned

categories. Examples include [86, 87], etc.

1.5 A Hierarchical Optimization Framework

In this work, we propose a hierarchical optimization framework, used as a general idea

for solving the problems that we discussed in §1.4. We then instantiate this framework

to three techniques, each addressing one speci�c problem of §1.4. In this section,

we introduce the philosophy of the hierarchical framework, and brie�y preview the

contributions in the following chapters.

22 Chapter 1. Introduction: Quality Assurance of CPS

Sub-Problems

decompose hierarchize

decision on
which child to process

feedback based on
numerical optimization

Two-layered optimization

Problem

Figure 1.10: Solving problems using a hierarchical optimization framework

Hierarchical framework The hierarchical optimization framework is shown as in

Fig. 1.10. It �rstly decomposes the problem into a set of sub-problems, and then uses

a hierarchical methodology: the top layer makes a decision on selecting one child

problem as the next step to proceed, based on the information coming from the bottom

layer; the bottom layer performs numerical optimization on the sub-problem suggested

by the top layer, and it returns feedback to the top layer. This process takes place

iteratively, until the problem is solved. One feature of this framework is the interaction

between the two layers: the top layer makes high-level decisions and advises the

bottom layer; the bottom layer performs concrete numerical evaluation and gives

feedback to the top layer to facilitate the future decisions.

This framework is instantiated into three techniques addressing the problems in

§1.4. Concretely, they are:

• A Monte Carlo Tree Search (MCTS)-based technique for balancing exploration

and exploitation during the search. MCTS is originally an arti�cial intelligence

technique, and is booming in recent years due to its application to computer Go

games. In Chapter 3, we apply MCTS to explore the search space that is organized

as a tree by time staging and space discretization. A key notion of MCTS is reward,

as the asymmetric search performed by MCTS is guided by rewards attached with

branches. We connect the de�nition of reward with robustness—the branches

exposing high robustness have low reward, and vice versa. The robustness values

are obtained by running hill-climbing optimization on the sub-spaces identi�ed

by branches. In this way, we combine MCTS and hill-climbing optimization,

which gives rise to a two-layered optimization framework.

• A Multi-Armed Bandit (MAB)-based technique solving the problem in the

de�nition of STL robust semantics. The MAB problem originally models the

1.6 Organization 23

problem of how to maximize the rewards that a gambler can earn in front

of a row of bandit machines. In Chapter 4, we take di�erent sub-formulas

of a Boolean connective as “bandit machines”, and connect the rewards with

robustness. We then apply MAB algorithms, such as UCB1, to govern the

hill-climbing optimization running with each “machine”: once the robustness of

one sub-formula descends smoothly, then MAB takes more e�orts on that one;

otherwise, less budget will be assigned. In this work, MAB algorithms work on

the high level, governing the hill-climbing optimization running on the low level.

• A search space transformation-based technique extended with MAB for solving

input constrained falsi�cation. Search space transformation is a technique that

allows optimization to sample in an unconstrained space. When a sample comes,

search space transformation maps it to a point in the constrained space, and

computes its �tness according to the robustness of the mapped point. Once a

sample with negative �tness is found, the mapped point in the constrained space

will be returned as a falsifying input; as that point is from the constrained space,

it is guaranteed to satisfy the constraint. The performance of this framework

is subject to a hyperparameter on the choice of a transformation map, more

speci�cally, a total order over dimensions of the search space. In order to achieve

the best performance, we apply MAB algorithms in this context again to select

the optimal order.

1.6 Organization

The rest of the work is organized as follows:

• Chapter 2 describes a formal model for falsi�cation.

• Chapter 3 talks about the exploration and exploitation problem, and particularly

presents the application of Monte Carlo Tree Search in falsi�cation. This chapter

is based on two works: [88] and [42].

• Chapter 4 addresses the problem in STL robust semantics de�nition for Boolean

connectives, and proposes a novel approach based on the Multi-Armed Bandit

model to solve it. This chapter is based on the work [89].

24 Chapter 1. Introduction: Quality Assurance of CPS

• Chapter 5 discusses on the input constraint problem, and introduces a technique

named search space transformation and three parameter selection approaches

based on that technique. This chapter is based on two works: [82] and [90].

• Chapter 6 concludes this work.

25

2
Preliminaries: Optimization-Based

Falsi�cation

In this chapter, we review the widely-accepted methodology of stochastic optimization-

based falsi�cation. Mainly, we give a formal description of the framework.

2.1 System Models

We treat the system model as a black box—the system behaviors are only observed

from inputs and their corresponding outputs. We �rstly de�ne signals, and later

introduce system model.

De�nition 1 ((Time-bounded) signal) LetT ∈ R+ be a positive real. AnM-dimensional

signal with a time horizon T is a function w : [0,T] → RM .

Let w : [0,T] → RM and w′ : [0,T ′] → RM beM-dimensional signals. Their concate-

nation w ·w′ : [0,T +T ′] → RM is theM-dimensional signal de�ned by (w ·w′)(t) = w(t)

26 Chapter 2. Preliminaries: Optimization-Based Falsi�cation

if t ∈ [0,T], and (w ·w′)(t) = w′(t −T) if t ∈ (T ,T +T ′].
Let 0 < T1 < T2 ≤ T . The restriction w|[T1,T2] : [0,T2 −T1] → R

M of w : [0,T] → RM

to the interval [T1,T2] is de�ned by (w|[T1,T2])(t) = w(T1 + t).

The time domain of signals in Def. 1 is continuous. This derives the di�erence

between discrete systems and hybrid systems: in discrete systems all the state transitions

are “jumps”, while in hybrid systems physical components exhibit such continuous

“�ows”.

In order for computer systems to handle signals, such continuity is a barrier. In

practice, engineers consider parameterized representations of continuous signals for

approximation. Examples of such approximations include piecewise constant, piecewise
linear, etc. See the following de�nitions.

De�nition 2 (Piecewise constant signal) LetK be a positive integer. A signalw : [0,T] →

RM is piecewise constant if for all k ∈ {0, . . . ,K − 1}, w(t) is a vector of M constant
values in the interval t ∈ [k T

K , (k + 1)
T
K].

De�nition 3 (Piecewise linear signal) LetK be a positive integer. A signalw : [0,T] →

RM is piecewise linear if for all k ∈ {0, . . . ,K − 1}, each dimension of w(t) is linear in
the interval t ∈ [k T

K , (k + 1)
T
K].

The parameter K is known as the number of control points. Apparently, once K is �xed

as a positive natural number, a piecewise constant/linear signal can be identi�ed by

K ·M parameters of real number.

De�nition 4 (Signal range) Let w : [0,T] → RM be an M-dimensional signal. The
range of w is anM-dimensional hyperrectangle Ω such that w(t) ∈ Ω for all t ∈ [0,T].

We give a formal description of the system model, which we treat as a black box.

We simply de�ne the system model as a function.

De�nition 5 (System modelM) A system model, with M-dimensional input and
N -dimensional output, is a functionM that takes an input signal u : [0,T] → RM and
returns a signalM(u) : [0,T] → RN . Here the common time horizon T ∈ R+ is arbitrary,
and the input signal u is bounded by a range Ω.

2.2 Robust Semantics for STL 27

Furthermore, we impose the following causality condition onM: for any time-

bounded signals u : [0,T] → RM and u′ : [0,T ′] → RM , we require thatM(u · u′)
��
[0,T]
=

M(u).
Note thatM(u · u′) =M(u) ·M(u′) does not hold in general: feeding u can change

the internal state ofM. This motivates the following de�nition.

De�nition 6 (ContinuationMu) LetM be a system model and u : [0,T] → RM be
a signal. The continuation ofM after u, is de�ned as follows. For an input signal
u′ : [0,T] → RM ,Mu(u′)(t) :=M(u · u′)(T + t).

2.2 Robust Semantics for STL

In this work, we select Signal Temporal Logic (STL) as our speci�cation language. This

is a common choice in the falsi�cation community, and it is also adopted by the tool

Breach [22]. In this section, we review the syntax and robust semantics of STL.

Our de�nitions here are taken from [31, 32].

De�nition 7 (STL syntax) We �x a set Var of variables. In STL, atomic propositions

and formulas are de�ned as follows, respectively: α ::≡ f (x1, . . . ,xN) > 0, and
φ ::≡ α | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ UI φ. Here f is an N -ary function f : RN → R,
x1, . . . ,xN ∈ Var, and I is a closed non-singular interval in R≥0, i.e. I = [a,b] or [a,∞)
where a,b ∈ R and a < b.

We omit subscripts I for temporal operators if I = [0,∞). Other common connectives

such as →,>, �I (always) and ^I (eventually), are introduced as abbreviations:

φ1 → φ2 ≡ ¬φ1 ∨ φ2, ^Iφ ≡ >UI φ and �Iφ ≡ ¬^I¬φ. An atomic formula f (®x) ≤ c ,

where c ∈ R, is accommodated using ¬ and the function f ′(®x) := f (®x) − c .

Below we will introduce the robust semantics of STL. More precisely, this is the

de�nition of spatial robustness.

De�nition 8 (Robust semantics [32]) Let w : [0,T] → RN be an N -dimensional
signal, and t ∈ [0,T). The t-shift of w, denoted by wt , is the time-bounded signal
wt

: [0,T − t] → RN de�ned by wt (t ′) := w(t + t ′).
Letw : [0,T] → R|Var| be a signal, and φ be an STL formula. We de�ne the robustness

Jw,φK ∈ R ∪ {∞,−∞} as follows, by induction on the construction of formulas. Here
d

28 Chapter 2. Preliminaries: Optimization-Based Falsi�cation

and
⊔

denote in�mums and supremums of real numbers, respectively. Their binary
version u and t denote minimum and maximum.

Jw, f (x1, · · · ,xn) > 0K := f
(
w(0)(x1), · · · ,w(0)(xn)

)
Jw,⊥K := −∞ Jw,¬φK := −Jw,φK
Jw,φ1 ∧ φ2K := Jw,φ1K u Jw,φ2K Jw,φ1 ∨ φ2K := Jw,φ1K t Jw,φ2K
Jw,φ1UI φ2K :=

⊔
t∈I∩[0,T]

(Jwt ,φ2K u
d

t ′∈[0,t)Jwt ′,φ1K
)

For atomic formulas, Jw, f (®x) > cK stands for the vertical margin f (®x) − c for the

signal w at time 0. A negative robustness value indicates how far the formula is

from being true. It follows from the de�nition that the robustness for the eventually

modality is given by Jw,^[a,b](x > 0)K = ⊔
t∈[a,b]∩[0,T]w(t)(x).

The above robustness notion taken from [32] is therefore spatial. Other robustness

notions [32] take temporal aspects into account, too, such as “how long before the

deadline the required event occurs.” A robustness de�nition that integrates both

temporal and spatial features is introduced in [33]. Our choice of spatial robustness in

this paper is for the sake of simplicity, and is thus not essential.

The original semantics of STL is Boolean, given as usual by a binary relation

|= between signals and formulas. The robust semantics re�nes the Boolean one

in the following sense: Jw,φK > 0 implies w |= φ, and Jw,φK < 0 implies w 6 |= φ,

see [31, Prop. 16]. Optimization-based falsi�cation via robust semantics hinges on this

re�nement.

2.3 Hill Climbing-Guided Falsi�cation

We �rstly make clear the basic problem setting in this work, and then introduce the

optimization-based solution to it.

De�nition 9 (Falsi�cation problem) LetM be a system model, and φ be an STL
formula. Falsi�cation aims to �nd an input signal u such that the corresponding output
signalM(u) violates φ, i.e.,M(u) 2 φ. Here, input signal u is called a falsifying input.

In general, it is infeasible to search for a continuous falsifying input u. Therefore, we

use parameterized representations of input signals, such as piecewise constant/linear

2.3 Hill Climbing-Guided Falsi�cation 29

(see Def. 2 and Def. 3), and thus the task is reduced to searching for a �nite set of

parameters that identify u. In this work, we use piecewise constant signals for the sake

of simplicity.

The solution to falsi�cation problem is via transforming it into an optimization

problem, shown as follows.

De�nition 10 (Optimization problem derived from falsi�cation) The optimiza-
tion problem derived from falsi�cation is shown as follows:

minimize
u

JM(u),φK

subject to u(t) ∈ Ω

where the robustness JM(u),φK ∈ R ∪ {∞,−∞} serves as the objective function (a.k.a.
�tness function), and the input signal u is bounded by a signal range Ω. The goal of the
optimization is to �nd an input signal u such that JM(u),φK < 0.

In order to solve the optimization problem in Def. 10, we apply hill-climbing
optimization. It is a metaheuristic-based stochastic optimization algorithm. We present

the work�ow of hill-climbing optimization in Def. 11.

De�nition 11 (Hill climbing-guided falsi�cation) Assume the setting in Def. 9. For
�nding a falsifying input, the methodology of hill climbing-guided falsi�cation is
presented in Algorithm 2.1.

The algorithm requires a systemmodelM, an STL formulaφ as the system speci�cation,
and a budget K that can be in the form of time limit or the number of simulations.

Here the function Hill-Climb makes a guess of an input signal uk , aiming at mini-
mizing the robustness JM(uk),φK. It does so, learning from the previous observations(
ul , JM(ul),φK)

l∈[1,k−1] of input signals u1, . . . , uk−1 and their corresponding robustness
values (cf. Table 1.1).

The Hill-Climb function can be implemented by various metaheuristic strategies.

These strategies are usually inspired by natural processes or phenomena; we will see

some examples below.

30 Chapter 2. Preliminaries: Optimization-Based Falsi�cation

Algorithm 2.1 Hill climbing-guided falsi�cation

Require: a system modelM, an STL formula φ, and a budget K
1: function Hill-Climb-Falsify(M,φ,K)

2: rb←∞ ; k ← 0 . rb is the smallest robustness so far, initialized to∞

3: while rb ≥ 0 and k ≤ K do
4: k ← k + 1
5: uk ← Hill-Climb

((
ul , JM(ul),φK)

l∈[1,k−1]

)
6: rbk ← JM(uk),φK
7: if rbk < rb then
8: rb← rbk

9: u←

{
uk if rb < 0, that is, rbk = JM(uk),φK < 0

Failure otherwise, that is, no falsifying input found within budget K
10: Return u

• Global Nelder-Mead [91]. Nelder-Mead method makes use of the simplex to

perform local search. It is specialized in searching for local optimum, but unable

to jump out of it to search for the global optimum. Global Nelder-Mead introduces

a probabilistic restart mechanism, so that the search is possible to be reinitialized

elsewhere and thus not trapped in the local optimum.

• Simulated annealing. Simulated annealing is inspired by the physical process of

heating a material and then cooling it down to decrease defects. The algorithm

starts with random sampling, and accepts all new points that have a lower

temperature (i.e., robustness in our context). The feature of the algorithm is that

it also accepts points that have higher temperature with a small probability,

therefore the algorithm is able to jump out of the local optimum.

• CMA-ES [92] CMA-ES is the abbreviation for Covariance Matrix Adaption

Evolutionary Strategy, belonging the family of evolutionary algorithm (genetic

algorithm). Generally, genetic algorithm is inspired by Darwin’s theory of

evolution: it maintains a set of solutions, known as population. Di�erent

individuals in the population consist of di�erent combinations of properties;

this combination is known as chromosome. The genetic algorithm proceeds

much like the evolution process of creatures: mutations and crossovers can

happen to chromosomes, so new individuals are created; population rule out the

2.4 Evaluation Metrics of Falsi�cation Algorithms 31

individuals that have low �tness and keep those good ones, like the natural
selection theory. In this way, the algorithm proceeds towards the optimization

goal gradually. CMA-ES, based on the general evolutionary algorithm, employs

a multivariate normal distribution to approximate the objective function, and

updates its covariance matrix according to the information learned by performing

mutations and crossovers.

Compared to naive random sampling, hill climbing learns from sampling history

and based on that comes up with the next samplings; therefore, it is a more intelligent

and e�ective approach. Moreover, it suits well for black box—learning from input and

output data is su�cient.

2.4 Evaluation Metrics of Falsi�cation Algorithms

In this section, we introduce the metrics for assessing falsi�cation algorithms. As

falsi�cation employs stochastic optimization as the optimizer (see §1.3.2), di�erent

falsi�cation trials with di�erent random seeds can produce di�erent results. The metrics

we use in this work thus take this feature into account, so they evaluate falsi�cation

algorithms by running them repeatedly and analyzing the results statistically.

We consider two metrics, namely e�ectiveness (if an algorithm can �nd an answer)

and e�ciency (how fast an algorithm manages to �nd an answer). In general, we

prioritize e�ectiveness rather than e�ciency of an algorithm, because the ultimate goal

of falsi�cation is to �nd out the falsifying inputs, as long as the time budget is not run

out. These two aspects are embodied by the following two measurements.

Falsi�cation success rate It refers to the percentage of the trials that succeed in

�nding falsifying inputs within the budget, over the total number of trials. A high

success rate certi�cates the e�ectiveness of an algorithm, in the sense that it manages to

�nd falsifying inputs with a high probability. Otherwise, it indicates that the algorithm

is not e�ective, or vulnerable to random seeds, thus not stable.

Time consumption For successful trials, time consumption is counted until the

time when the algorithm returns a falsifying input; for unsuccessful trials, usually they

32 Chapter 2. Preliminaries: Optimization-Based Falsi�cation

will run out of the budget, or it can also be the case that the optimization algorithm

meets its internal termination criteria, e.g., local optimum, and thus quits halfway.

Therefore, there are two ways of computing time consumption: one is by computing

the average time consumption of only successful trials; the other one is by taking

also unsuccessful trials into consideration, and thus computing the average time

consumption of both successful and unsuccessful trials, in the latter case taking time

budget as their values.

The advantage of the �rst method is that it re�ects the e�ciency of algorithms

better, e.g., in the case that a “greedy” algorithm is fast but not e�ective; the second

method integrates e�ectiveness into e�ciency, exemplifying the principle that only if

one is e�ective can it be e�cient. Both methods are adopted by literature, especially

the former one. In this work, we also mainly use the former one.

Note that these two metrics are not independent—as the success rate metric is

subject to the parameter of budget, in many cases e�ciency leads to e�ectiveness.

Therefore, we report both falsi�cation success rate and time consumption in our

experiments.

33

3
Balancing Exploration and Exploitation

Using Monte Carlo Tree Search

Balance between exploration and exploitation is the core issue in search-based

techniques. Pure exploration is bene�cial to covering the entire search space, but it

is unlikely to hit the goal state if that is rare; pure exploitation is able to reach the

local optimum, but it may miss the global one if that is elsewhere. The collaboration

between exploration and exploitation is thus of great importance, especially in the case

where budget is limited, as in falsi�cation.

In this chapter, we tackle the problem of balancing exploration and exploitation

during the search by using a Monte Carlo Tree Search (MCTS) based technique. This

technique discretizes the search space, and then combines MCTS with hill-climbing

optimization, yielding a two-layered optimization framework that improves the search

e�ectiveness. We introduce the framework in §3.2. Before that, we �rstly introduce an

idea of time staging in §3.1 that preludes the main contribution of this chapter.

The material in this chapter is based on [88] and [42]

34 Chapter 3. Balancing Exploration and Exploitation Using MCTS

· · · −→

i-th sampling

time

throttle

u
(i)
1

u
(i)
2

u
(i)
3

u
(i)
4

time

vehicle speed

120

v(i)

Choosing

u
(i+1)
1 , . . . , u

(i+1)
K

by optimization−−−−−−−−−−−−−−−→

(i+ 1)-th sampling

time

throttle

u
(i+1)
1

u
(i+1)
2

u
(i+1)
3

u
(i+1)
4

time

vehicle speed

120

v(i+1)

−→ · · ·

Figure 3.1: Falsi�cation by global optimization

3.1 Exploiting Time Causality via Time Staging

The falsi�cation technique introduced in §1.3 has a weakness, that is, it does not make

use of time causal information in the problem. Time causality has been introduced in

§2.1; it says that the continuation of a modelM after a signal u does not equal to the

initialM, since feeding u toM changes the state ofM. This derives a property of

time monotonicity: an input pre�x that achieves smaller robustness is more likely

to extend to a full falsifying input signal. However, this property is ignored by the

existing falsi�cation framework.

See Fig. 3.1 for an illustration. This trial aims to falsify a simple property �(v < 120),

i.e., it aims to �nd a piecewise constant signal throttle such that the vehicle speed v is

over 120 at some moments. Compare the i-th and the (i + 1)-th samplings. We can

observe that v(i+1) is better than v(i) in that it has a (globally) lower robustness. This

is thanks to the application of hill-climbing optimization that helps the sampling

approach the falsi�cation goal. However, if we take a closer look at these two samples,

we can �nd that the pre�x of v(i+1) in the �rst interval is not as good as that of v(i), due

to that the value of u(i+1)
1

is lower than u(i)
1

. It is reasonable to hypothesize that keeping

the value of u(i)
1

would have achieved an even better robustness. This example exposes

the weakness in the way of applying hill-climbing optimization—as hill climbing

treats variables (that identify input signals) of di�erent stages independent, it does not

maintain those ones that result in good pre�xes.

In addition, it brings about another problem of state space explosion: if we denote

3.1 Exploiting Time Causality via Time Staging 35

first stage

time

throttle

u
(1)
1

u
(2)
1

u
(n1)
1

...

...

...

o
p
tim

iza
tio

n

time

vehicle speed

120

v
(1)
1

v
(2)
1

v
(n1)
1

...

...

...

o
p
tim

iza
tio

n

Choosing
the best
prefix

u
(n1)
1��������!

second stage

time

throttle
u

(n1)
1

u
(1)
2

u
(2)
2

u
(n2)
2

...

...

...

o
p
tim

iza
tio

n

time

vehicle speed

v
(n1)
1 v

(1)
2

...

...

...

v
(n2)
2

o
p
tim

iza
tio

n

�! · · ·

Figure 3.2: The time-staging strategy

U as a sub-space of one interval, then the size of the entire search space is |U |K where

K is the number of control points; apparently, it increases exponentially with respect to

K.

3.1.1 Time-Staging Approach

We proposed a time-staging approach to mitigate the problem. Time staging refers to

discretizing the time domain of the input signal u and then searching for each segment

incrementally. In the case that u is piecewise constant, a natural way of discretization

is to break it at the K control points.

The algorithm is shown in Alg. 3.1. The function Time-Stage starts with an empty

signal u. Then it calls the function Hill-Climb-Falsify for K times; at each loop,

Hill-Climb-Falsify �gures out the best signal segment u′, and concatenate it to u.

Finally, if the constructed u is a falsifying input, then just return it; otherwise, report a

failure of the trial. The function Hill-Climb-Falsify di�ers from Alg. 2.1 a bit in the

following aspects: it has one more input argument u∗, which drives the model to

an initial state; the signal that Hill-Climb searches for in Line 11 is not a complete

one but a segment; the returned u′ is a signal segment that results in the smallest

robustness over the loops rather than a falsifying input. This process is also illustrated

by Fig. 3.2, in which the optimization algorithm searches for the best signal segment at

36 Chapter 3. Balancing Exploration and Exploitation Using MCTS

Algorithm 3.1 The time-staging approach for falsi�cation

Require: a system model M that accepts input signal u : [0,T] → RM and gives output signal

M(u) : [0,T] → RN , an STL formula φ, the time budget K ∈ R+ and the number of control points

(time stages) K ∈ N

1: function Time-Stage(M,φ,K,K)

2: u← () . start with the empty signal ()

3: for j ∈ {1, . . . ,K} do
4: u′← Hill-Climb-Falsify(M,φ, u, KK) . synthesizing the j-th input segment

5: u← u · u′ . concatenate u′

6: Return

{
u if rbk = JM(u),φK < 0

Failure otherwise, that is, no falsifying input found within budget K

7: function Hill-Climb-Falsify(M,φ, u∗,K)

8: rb←∞ ; u′← () ; k ← 0 . rb, u′ record the best robustness and signal segment so far

9: while rb ≥ 0 and k ≤ K do
10: k ← k + 1
11: uk ← Hill-Climb

((
ul , JM(u∗ · ul),φK)

l ∈[1,k−1]

)
. Hill-Climb searches for a segment

12: rbk ← JM(u∗ · uk),φK
13: if rbk < rb then . update rb and u′ if applicable

14: rb← rbk
15: u′← uk
16: Return u′ . return the u with the least robustness

each interval, and concatenate them in the end.

This approach makes use of the time causality: it maintains the best pre�x at each

stage, and proceeds based on that. In this way, the search is more e�cient. In addition,

this approach reduces the search space, from |U |K to K · |U |, because the search does

not take place at all stages simultaneously, but in a one-by-one manner.

Apparently, this strategy is greedy. It does not work in such an occasion, that

is, the best pre�x is not included in any falsifying input. Actually, this is common,

especially when it comes to complicated systems or properties. This gives rise to a new

problem, i.e., the trap of “local optimum” brought from time staging.

In order to solve this problem, an ideal way is to introduce a “backtracking”

mechanism to this approach: when the concatenated signal is not a falsifying input, we

backtrack to one stage earlier to search for a substitution, and then proceed again. This

derives a tree search structure, as shown in Fig. 3.3: the hierarchy of the tree comes

from time staging; and each path identi�es a signal pre�x. This idea is also challenging,

in that the tree has in�nitely many paths and thus it is impossible to explore the whole

3.2 Falsi�cation with Monte Carlo Tree Search 37

…
 …

time 0 time T/K … … time T

Figure 3.3: A hypothetical tree that implements “backtracking”

tree. An “intelligent” technique is needed that helps identify the essential parts of the

tree and explore only there within the limited budget.

In the following sections, we introduce a falsi�cation technique based on Monte

Carlo Tree Search, which solves the problem.

3.2 Falsi�cation with Monte Carlo Tree Search

In this section we present the main contribution of this chapter, namely, a two-layered

optimization framework for hybrid system falsi�cation. It combines: Monte Carlo
tree search (MCTS) for high-level planning in the upper layer; and hill-climbing

optimization for local search in the lower layer. The upper layer steers the lower layer

using the UCT strategy [93], an established method in machine learning for balancing

exploration and exploitation. We present two algorithms: the basic two-layered

algorithm (Alg. 3.2), and a version enhanced with progressive widening (Alg. 3.4).

3.2.1 Monte Carlo Tree Search

We �rstly give an introduction to Monte Carlo Tree Search (MCTS) in this section.

MCTS is a famous algorithm in the arti�cial intelligence community. Especially in

recent years, its successful application on the AlphaGo
1

[94], the AI board game player

1
https://deepmind.com/research/case-studies/alphago-the-story-so-far

38 Chapter 3. Balancing Exploration and Exploitation Using MCTS

Figure 3.4: An example of the work�ow of MCTS

who beat the world champion Lee Sedol
1
, leads to prevalence of the algorithm.

MCTS has a long history, but nowadays it mainly refers to the Upper Con�dence
Bounds applied to Trees (UCT) [93] algorithm. It concerns with a problem of search in a

huge tree. In the basic setting, the tree yields a huge search space, but its number of

nodes is still �nite. The aim of MCTS is to select the most promising child of the root

node to move, with which the search can gain the best reward. Here, the de�nition

of reward depends on the problem context. For example, in the Go game, reward is

correlated to the result of the game, i.e., winning or losing. In the following paragraphs,

we use the example in Fig. 3.4
2

to elaborate on how MCTS works. In the �gure, there is

a fraction attached with each node; the denominator is the number of total visits to

that node, while the numerator is the number of winnings. Therefore, the fractions

represent the rewards of nodes.

Selection The �rst step is to select a child node to reason about. Initially, only the

root node is available; when there are several children that have already been expanded,

the selection is based on the Upper Con�dence Bound version 1 (UCB1) [95] algorithm. It

selects the best candidate according to the following equation:

abest = arg max

a∈A

©­«Ra + c
√
2 lnN

Na

ª®¬
1
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

2
The �gure is from https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

3.2 Falsi�cation with Monte Carlo Tree Search 39

where A is the set of children, Ra is the reward of child a, c is a scalar parameter, and

N ,Na are the numbers of visits to the parent and child a respectively. This algorithm

exempli�es the balance between exploration and exploitation: on the one hand, if

a child holds a good reward, that one is more likely to be exploited further; on the

other hand, if a child has not been visited much often, it will get a better chance to be

explored in the future. This balance can also be adjusted by tuning c , so that the user

can impose a bias on either exploration or exploitation. For example in Fig. 3.4, when

the search visits the root, there are three children to be selected; by applying UCB1, it

selects the one with the best reward 7/10.

Expansion If all the children of a selected node have been expanded, then it just

continues selection; otherwise, an unexpanded child will be expanded. This is usually

done by choosing randomly from the list of the unexpanded children. Then, the

expanded child will be initialized with the reward 0/0, as shown in Fig. 3.4.

Simulation (a.k.a. Playout or Rollout) Simulation aims to evaluate a node that

has just been expanded. This is by applying Monte Carlo methods: �rstly, it collects

the sequence of nodes from the root to the node just expanded; then this sequence is

concatenated by the nodes randomly chosen from the lower layers of the tree, ending

with a leaf node. The sequence can be evaluated according to the context. For example,

in a board game, this sequence identi�es a way how a player plays the game, and thus

a result, either “winning” or “losing”, comes out. In the case of “winning”, we update

the numerator of the reward with 1; otherwise, it will be 0. In both cases, the number

of visits will be updated to 1. In the example of Fig. 3.4, it loses the game, so the reward

is updated to 0/1.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric

The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology

The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:

• Flat Monte Carlo: A Monte Carlo method with
uniform move selection and no tree growth.

• Flat UCB: A Monte Carlo method with bandit-based
move selection (2.4) but no tree growth.

• MCTS: A Monte Carlo method that builds a tree to
inform its policy online.

• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB

Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

input signal u

robustness JM(u), 'K

u(2) u(1)

· · ·

u(i)

hill-clim
bing

u(i+1)?

Figure 3.5: Asymmetric tree

growth

Backpropagation In this step, the information ob-

tained from simulation is used to update the nodes

along the path from the root to the expanded node.

Namely, for all the nodes along that path, their de-

nominators of rewards will be added by 1, and their

numerators of rewards will be added by 0 or 1 depend-

ing on the simulation result.

40 Chapter 3. Balancing Exploration and Exploitation Using MCTS

MCTS repeats this loop for many times, until reaching the given budget. Then,

it can select the best child of the root that has the best reward as the output of the

algorithm. The generated tree in the end is an asymmetric tree, as the one shown in

Fig. 3.5
1
: it has rich branches in those promising areas; meanwhile it does take care of

other areas, though barely.

Although MCTS is an e�ective search method, it is not trivial to apply it in the

falsi�cation context. There are several challenges as listed below:

• Falsi�cation reasons about an in�nite search space, which is a di�erent setting

from the original one of MCTS. Therefore, it is a problem how to build up the

search tree.

• Intuitively, the concept of “winning” in falsi�cation may refer to �nding a

falsifying input. However, the latter is the ultimate goal in falsi�cation, which is

rare and hard to reach. Therefore, rewards must be rede�ned.

• Following up the last item, it is also a challenge to perform simulation (playout)

in this context in order to evaluate each node.

In the following sections, we address these issues with the proposal of our two-

layered optimization framework.

3.2.2 The Basic Two-Layered Algorithm

We start with the basic two-layered algorithm.

Time staging Similar to the method presented in §3.1, we search for a falsifying

input signal, focusing on piecewise constant signals (see Def. 2). The interval [0,T] is

divided into K equal sub-intervals, where K is the number of control points. We call

this discretization to the time domain time staging. Our goal is therefore to �nd a

sequence u1, . . . , uK, where each ui = (ui1, . . . ,uiM) is an M-dimensional real vector (M

is the number of input signal dimensions for the modelM), so that the corresponding

piecewise constant signal is a falsifying one (Def. 9).

We assume intervals Ii = [u
min

i ,u
max

i], i ∈ {1, . . . ,M}, for the ranges of input

u1, . . . ,uM of the modelM.

1
The �gure is from [96].

3.2 Falsi�cation with Monte Carlo Tree Search 41

Algorithm 3.2 Basic Two-Layered Algorithm

Require: a system modelM, an STL formula φ, intervals Ii = [u
min

i ,u
max

i], i ∈ {1, . . . ,M}, for the

ranges of input u1, . . . ,uM ofM, time horizon T ∈ R+, and the following tunable parameters: the

number K of control points, the number Li of partitions of the input range [umin

i ,u
max

i] for each

i ∈ {1, . . . ,M}, the scalar c in Line 2 of Alg. 3.3, and an MCTS budget (the maximum number of

MCTS samples, Line 9)

1: functionMCTSPreprocess

2: A← {1, . . . ,L1} × · · · × {1, . . . ,LM } . the set of actions

3: T ← {ε} . the MCTS search tree, initially root-only

4: N ← (ε 7→ 0) . visit count N initialized, de�ned only for ε
5: R ← (ε 7→ ∞) . reward function R initialized

6:
−→u ← null . place holder for a falsifying input

7: Rmin ←∞ . place holder for a minimum reward

8:
−→a min ← null . the most promising action sequence

9: while R(ε) ≥ 0 and within the MCTS budget do
10: MCTSSample(ε)

11: if −→u , null then Return −→u . a falsifying input is found already in preprocessing

12: else Return −→a min . return the most promising action sequence

13: function MCTSSample(w) . let w = a1 . . . ad with ai ∈ A
14: N (w) ← N (w) + 1
15: if |w | < K then
16: if wa′ ∈ T for all a′ ∈ A then . if all children have been expanded

17: a ← UCBSample(w) . pick a child wa by UCB

18: MCTSSample(wa) . recursive call

19: R(w) ← mina′∈A R(wa
′) . back-propagation

20: else
21: randomly sample a ∈ A from {a | wa < T } . expand a random unexpanded child wa
22: T ← T ∪ {wa}
23: u1, . . . , uK← arg min

HillClimb

u1∈Reg(a1), ...,ud ∈Reg(ad),
ud+1∈Reg(a),

ud+2, ...,uK∈I1×···×IM

JM(u1 . . . uK), φK . playout by hill-climbing

24: N (wa) ← 0

25: R(wa) ← JM(u1 . . . uK), φK
26: if R(wa) < 0 then
27:

−→u ← u1 . . . uK . a falsifying input is found and stored in
−→u

28: if R(wa) < Rmin then
29: Rmin ← R(wa)
30:

−→a min ← a1 . . . ada

31: R(w) ← mina′∈A R(wa
′) . back-propagation

32: functionMain

33:
−→x ←MCTSPreprocess

34: if −→x = −→u , an input signal then . Line 11

35: Return −→u
36: else . −→x = a1a2 . . . aK′ ∈ A

∗
with some K′ ≤ K, Line 12

37: Return arg min
HillClimb

u1∈Reg(a1), ...,uK′ ∈Reg(aK′),
uK′+1, ...,uK∈I1×···×IM

JM(u1 . . . uK), φK

42 Chapter 3. Balancing Exploration and Exploitation Using MCTS

Algorithm 3.3 Auxiliary Functions for Algs. 3.2 & 3.4

1: function UCBSample(w)

2: Return arg max

a∈A

((
1 −

R(wa)

maxw ′∈T R(w ′)

)
+ c

√
2 lnN (w)

N (wa)

)
3: function Reg(a) . The input region for an action a ∈ A is of the form (k1, . . . ,kM), see Line 2 of

Alg. 3.2

4: Return
∏M

i=1

[
umin

i +
ki−1
Li
(umax

i − umin

i) , u
min

i +
ki
Li
(umax

i − umin

i)

]

The search tree A search tree in MCTS has a branching degree |A|, where the set

A is called an action set in the MCTS literature. In Go, for example, an action set A

consists of possible moves.

We use, as the action set A, a partitioning of the input space I1 × · · · × IM . We

partition the input space into L1 × · · · × LM hyperrectangles of equal size, according to

predetermined parameters L1, . . . ,LM , where M is the number of input signals of the

system and Li indicates how �nely the i-th input should be partitioned. In Fig. 3.6 we

present an example where M = 2 and L1 = L2 = 2. There we have four actions in the

set A, corresponding to the four square regions.

An edge in our search tree represents a choice of an input region—from which we

choose the input value ui—for a single control point
(i−1)T

K . The depth of the tree is K

(the number of control points). We follow the usual convention and specify a node of a

|A|-branching tree by a word w = a1a2 . . . aj over the alphabet A, where j ≤ K. That is:

the root is ε (the empty word), its child in the direction a1 ∈ A is a1, its children are

a1a1,a1a2, . . . , and so on.

In general, a node in an MCTS search tree is decorated by two values: reward R and

visit count N . In our case, R stores the current estimate of the smallest (i.e. the best)

robustness value. Both values are updated explicitly during backpropagation (see

below).

Monte Carlo Tree Search sampling Much like usual MCTS, Alg. 3.2 iteratively

expands the search tree T . Initially the tree T is root-only (Line 3), and in each

iteration—called MCTS sampling—the invocation of MCTSSample on Line 10 adds one

new node to T . In the MCTS literature, expanding a child means adding the child to T .

We repeat MCTS sampling until a counterexample is found, or the MCTS budget is

3.2 Falsi�cation with Monte Carlo Tree Search 43

A = { , , , }
where

…

time 0

time T/K

time 2T/K

time 3T/K

time T
throttle

brake

100500

325

162.5

Figure 3.6: Our MCTS search tree for a system modelM with two input signals,

throttle and brake, whose ranges are [0, 100] and [0, 325], respectively. We partition

each range into two intervals, i.e. L1 = L2 = 2, hence the branching degree |A| is 2 × 2.

used up after the maximum number of iterations (Line 9).

The exploration-exploitation trade-o� in MCTS comes in the choice of the node to

add. In each MCTS sampling, we start from the root (Line 10), walk down the tree T ,

choosing already expanded nodes (Lines 17–18), until we expand a child (Lines 21–22).

Growing a wider tree means exploration, while a deeper tree means exploitation.

We use the UCT strategy [93], the most commonly used strategy in MCTS,

to resolve the dilemma. UCT is based on the UCB strategy for the multi-armed

bandit problems [95]; Line 2 of Alg. 3.3 follows UCB1, where the exploitation score

1 −
R(wa)

maxw ′∈T R(w ′)
and the exploration score

√
2 lnN (w)
N (wa) are superposed using a scalar c .

Recall that our rewards R(wa) for w ’s children are given by robustness estimates from

previous simulations, and that falsi�cation favors smaller R. Note also that values

of R can be greater than 1. In the exploitation score 1 −
R(wa)

maxw ′∈T R(w ′)
, therefore, we

normalize rewards to the interval [0, 1] and reverse their order.
1

The exploration score√
2 lnN (w)
N (wa) is taken from UCB1: the visit count N (w) gives how many times the node w

has been visited, that is, how many o�spring the node w currently has in T . The scalar,

for the trade-o�, is a tunable parameter, as usual in MCTS.

1
We can assume nonnegative values of R , otherwise we already have a falsifying input.

44 Chapter 3. Balancing Exploration and Exploitation Using MCTS

Newly
expanded

child

……

time (d-1)T/K

time dT/K

time (d+1)T/K

time T

…

 ud(1)

ud+1(1)

ud+2(1)

uK(1)

…

 ud(2)

ud+1(2)

ud+2(2)

uK(2)

…

ud

ud+1

ud+2

uK

…

Playout by hill-climbing optimization

… … … …

Reward
JM(u1 . . .uK), 'K

Figure 3.7: Playout by hill-climbing optimization

Playout and backpropagation In MCTS, the reward of a newly expanded node

a1a2 . . . ada (see e.g. Line 22) is computed by an operation called playout (or simulation
as in §3.2.1). The result is then back-propagated, in a suitable manner, to the ancestors:

a1 . . . ad , a1 . . . ad−1, . . . , and �nally ε .

In our MCTS algorithms for falsi�cation we use hill-climbing optimization (e.g. SA,

GNM and CMA-ES) for playout. See Line 23, where input values u1, u2, . . . , uK are

sampled by stochastic hill-climbing optimization, so that the resulting robustness value

of the speci�cation φ becomes smaller. The regions from which to sample those values

are dictated by the MCTS tree: u1 ∈ Reg(a1), . . . , ud ∈ Reg(ad) follow the actions

a1, . . . ,ad determined so far (here Reg is from Alg. 3.3); ud+1 ∈ Reg(a) follows the

newly chosen action a (Line 21); and the remaining values ud+2, . . . , uK can be chosen

from the whole input range I1 × · · · × IM .

Figure 3.7 illustrates an example of playout by hill-climbing optimization. Smaller

gray squares represent actions, and red dots represent input values (notice that they

are chosen from the gray regions). The values u1, . . . , uK are sampled repeatedly so

that the robustness value JM(u1 . . . uK), φK becomes smaller.

An intuition of this playout operation is that we sample the best input signal,

u1 . . . uK, under the constraints imposed by the MCTS search tree (namely, the input

regions prescribed by the actions). The least robustness value thus obtained is assigned

to the newly expanded node wa as its reward (Line 25). If R(wa) < 0 then this means

we have already succeeded in falsi�cation (Line 27).

Backpropagation is an important operation in MCTS. Following the intuition that

3.2 Falsi�cation with Monte Carlo Tree Search 45

MCTS  
Optimization

Hill-Climbing  
Optimization

Search  
region

(, 5.2)
Concrete input  

(red dot)
and reward

Figure 3.8: Our two-layered optimization framework

the reward R(w) is the smallest robustness achievable at the node w , we de�ne the

reward of an internal node w by the minimum of its children’s rewards. See Lines 19

and 31. Note that, via recursive calls of MCTSSample (Line 18), the result of playout is

propagated to all ancestors.

A two-layered framework In Alg. 3.2, hill-climbing optimization occurs twice, in

Lines 23 and 37. The �rst occurrence is in playout of MCTS—this way we interleave

MCTS optimization (by growing a tree) and hill-climbing optimization. See Fig. 3.8.

MCTS optimization is considered to be a preprocessing phase in Alg. 3.2 (Line 33): its

principal role is to �nd an action sequence
−→a min, i.e. a sequence of input regions, that

is most promising. In the remainder of the Main function, the second hill-climbing

optimization is conducted for falsi�cation, where we sample according to
−→a min.

The two occurrences of hill-climbing optimization therefore have di�erent roles.

Given also the fact that the �rst occurrence is repeated every time we expand a new

child, we choose to spend less time for the former than the latter. In our implementation,

we set the timeout to be 5–15 seconds for the �rst hill-climbing sampling in Line 23

(TOpo in §3.3), while for the second hill-climbing sampling in Line 37 the timeout is

300 seconds.

A falsifying input
−→u is often found already in the preprocessing phase. In this case

the Main function simply returns
−→u (Line 35).

46 Chapter 3. Balancing Exploration and Exploitation Using MCTS

3.2.3 The Two-Layered Algorithm with Progressive Widening

Our second algorithm (Alg. 3.4) di�ers from the basic one (Alg. 3.2) in two ways:

Algorithm 3.4 Two-Layered Algorithm with Progressive Widening
Require: The algorithm is the same as Alg. 3.2, except that the function MCTSSample is replaced by

the following one.

Require: The same data as required in Alg. 3.2, and additionally, constants C,α (used in Line 4)

1: functionMCTSSample(w) . let w = a1 . . . ad with ai ∈ A
2: N (w) ← N (w) + 1
3: if |w | < K then

4: if
(��{a′ ∈ A | wa′ ∈ T }�� ≥ C · N (w)α

or wa′ ∈ T for all a′ ∈ A

)
then . progressive widening

5: a ← UCBSample(w) . pick a child wa by UCB

6: MCTSSample(wa) . recursive call

7: R(w) ← mina′∈A R(wa
′) . back-propagation

8: else
9: S ← (a maximal convex subset of

⋃
wa′<T Reg(a

′))

10: u1, . . . , uK← arg min
HillClimb

u1∈Reg(a1), ...,ud ∈Reg(ad),
ud+1∈S,

ud+2, ...,uK∈I1×···×IM

JM(u1 . . . uK), φK . playout by hill-climbing

11: a ←
(
a ∈ A such that ud+1 ∈ Reg(a)

)
12: T ← T ∪ {wa}
13: N (wa) ← 0

14: R(wa) ← JM(u1 . . . uK), φK
15: if R(wa) < 0 then
16:

−→u ← u1 . . . uK
17: if R(wa) < Rmin then
18: Rmin ← R(wa)
19:

−→a min ← a1 . . . ada

20: R(w) ← mina′∈A R(wa
′) . back-propagation

Progressive widening Alg. 3.4 uses progressive widening [97]; see Line 4. Unlike in

the basic algorithm (Line 16 of Alg. 3.2), we do not always expand a new child, even if

there are unexpanded ones; the threshold C · N (w)α is computed using the visit count

N (w) and tunable parameters C,α .

Progressive widening is a widely employed technique in MCTS for coping with

a large or in�nite action set A—in such a case expanding all children incurs a lot

of computational cost. See e.g. [48]. In our Alg. 3.4 the action set A can be large,

depending on the numbers L1, . . . ,Lm of input range partitions.

3.3 Experimental Evaluation 47

Hill-climbing optimization for expanding children In progressive widening,

since we may not expand all the children, it makes sense to be selective about which

child to expand. This is in contrast to random sampling in Alg. 3.2 (Line 21). See

Line 10 of Alg. 3.4, where we �rst playout by hill-climbing optimization. The value

ud+1 thus obtained is then used to determine which child wa to expand, in Line 11.

Already
expanded

Which child
to expand?

is non-convex…

➜ sample from

 S = or S =

Figure 3.9: Lines 9–11 of Alg. 3.4

In order to ensure that the new child wa is

indeed previously unexpanded, the value ud+1
is sampled from the set

⋃
wa′<T Reg(a

′); in

fact, we restrict to its convex subset (Line 9),

because many hill-climbing optimization al-

gorithms work best in a convex domain. See

Fig. 3.9 for illustration.

3.3 Experimental Evaluation

We have implemented our basic algorithm (Alg. 3.2, denoted “Basic”) and our progressive
widening algorithm (Alg. 3.4, denoted “P.W.”) in MATLAB, using Breach [22] as a

front-end for hill-climbing optimization and for its implementation of the robust

semantics.

The experiments have two goals. Firstly, in §3.3.2, we evaluate the falsi�cation

performance of our proposal in comparison to the state-of-the-art. Since our MCTS

enhancement emphasizes coverage, our interest is in the success rate in hard problem

instances rather than in execution time. Secondly, in §3.3.3, we evaluate the impact of

di�erent choices of parameters for our algorithms (such as the UCB scalar c in Alg. 3.3).

3.3.1 Experiment Setup

The experiments are based on the following benchmarks.

The automatic transmission (AT) model is exactly the Simulink model in Fig. 1.1,

and it was proposed as a benchmark for falsi�cation in [98]. It has input sig-

nals thro�le ∈ [0, 100] and brake ∈ [0, 325], and computes the car’s speed speed,

the engine rotation rpm, and the selected gear gear . We consider the following

speci�cations, taken in part from [98].

48 Chapter 3. Balancing Exploration and Exploitation Using MCTS

S1 ≡ �[0,30] (speed < 120) can be falsi�ed easily by hill climbing with an input

thro�le = 100 and brake = 0 throughout.

S2 ≡ �[0,30] (gear = 3→ speed ≥ 20) states that in gear three, the speed should not

get too low. The di�culty arises from the lack of guidance by robustness as long

as gear , 3: we follow [98] and take gear = 1, . . . , gear = 4 as Boolean propositions,

instead of taking gear as a numeric variable. In contrast to [98], we use a more di�cult

speed threshold of 20 instead of 30.

S3 ≡ ^[10,30] (speed < [53, 57]) states that it is not possible to maintain a constant

speed after 10s. A falsifying trace needs precise inputs to hit and maintain the narrow

speed range.

S4 ≡ �[0,29](speed < 100) ∨�[29,30](speed > 65) is a speci�cation designed to demon-

strate the limitation of robustness-guided falsi�cation by hill-climbing optimization

only. Here, a falsifying trajectory has to reach high speed before braking. Similarly

to S2, the speed 100 has to be reached much earlier than the indicated time bound of 29

to give su�cient time for deceleration. However, by using the maximum as semantics

for the ∨-connective, the robustness computation can shadow either of the disjuncts .

S5 ≡ �[0,30](rpm < 4770 ∨ �[0,1](rpm > 600)) aims to prevent systematic sudden

drops from high to low rpm. It is falsi�ed if an rpm peak above 4770 is immediately

followed by a drop to rpm ≤ 600.

The second benchmark is the Abstract Fuel Control (AFC) model [56]. It takes two

input signals, pedal angle and engine speed, and outputs the critical signal air-fuel ratio
(AF), which in�uences fuel e�ciency and car performance. The value is expected

to be close to a reference value AFref . The pedal angle varies in the range [0, 61.1]

and the engine speed varies in the range [900, 1100]. According to [56], this setting

corresponds to normal mode, where AFref = 14.7.

The basic requirement of the AFC is to keep the air-to-fuel ratio AF close to the

reference AFref . However, changes to the pedal angle cause brief spikes in the output

signal AF before the controller is able to regulate the engine. Falsi�cation is used to

discover the amplitude and periods of such spikes.

The formal speci�cation Sbasic is �[11,30](¬(|AF − AFref | > 0.05 ∗ 14.7)). It is

violated when AF deviates from its AFref too much. Another speci�cation is Sstable:

¬(^[6,26]�[0,4](|AF − AFref | > 0.01 ∗ 14.7)). The goal is to �nd spikes where the ratio

is o� by a fraction 0.01 of the reference value for at least t ′ seconds during the

3.3 Experimental Evaluation 49

interval [6, 26].

The third benchmark model is called Free Floating Robot (FFR) that has been

considered as a falsi�cation benchmark in [69]. It is a robot vehicle powered by

four boosters and moving in two spatial dimensions. It is governed by the following

second-order di�erential equations:

Üx = 0.1 · (u1 + u3) cos(φ) − 0.1 · (u2 + u4) sin(φ)

Üy = 0.1 · (u1 + u3) sin(φ) + 0.1 · (u2 + u4) cos(φ)

Üφ = 5/12 · (u1 + u3) − 5/12 · (u2 + u4)

The goal of the robot is to steer from (x ,y,φ) = (0, 0, 0) to x = y = 4, with a tolerance

of 0.1, such that Ûx and Ûy are within [−1, 1], given a time horizon of T = 5. The four

inputs ui ∈ [−10, 10] range over the same domain. We run falsi�cation on the negated

requirement: Strap ≡ ¬ ^[0,5] x ,y ∈ [3.9, 4.1] ∧ Ûx , Ûy ∈ [−1, 1].

The experiments use Breach version 1.2.9 and MATLAB R2017b on an Amazon

EC2 c4.large instance (2.9 GHz Intel Xeon E5-2666, 2 virtual CPU cores, 4 GB main

memory).

3.3.2 Performance Evaluation

The results are shown in Table 3.1 and are grouped with respect to the method: uniform

random sampling (“Random”) as a baseline, Breach, our “Basic” algorithm (Alg. 3.2) and

our “P.W.” algorithm (Alg. 3.4), as well as with respect to the underlying hill-climbing

optimization solver (CMA-ES, Global Nelder-Mead (GNM) and Simulated Annealing

(SA)). Run times are shown in seconds. Since the algorithms are stochastic, we give the

success rate out of a number of trials—here it is 10 trials for each experiment.

For all the experiments, input signals are chosen to be piecewise constant, with

K = 5 control points for AT and AFC, and K = 3 control points for FFR (due to the

shorter time horizon). These numbers coincide with the depth of the MCTS search

trees. In Breach, this is achieved with the “UniStep” input generator, with its .cp
attribute set to K. The timeout for Breach was set to 900 seconds (which is well above

all successful falsi�cation trials) with no upper limit on the number of simulations. For

our P.W. algorithm, we used the parameters C = 0.7 and α = 0.85 (Line 4 of Alg. 3.4).

50 Chapter 3. Balancing Exploration and Exploitation Using MCTS

Table 3.1: Comparison of uniform random sampling and Breach against Algs. 3.2

(Basic) and 3.4 (P.W.).

(a) Experimental results of Automatic Transmission

Parameters AT model

S1 S2 S3 S4 S5

Algorithm M_b TOpo c succ. time succ. time succ. time succ. time succ. time

Random 10/10 108.9 10/10 289.1 1/10 301.1 0/10 - 0/10 -

C
M

A
-
E

S

Breach 10/10 21.9 6/10 30.3 10/10 193.9 4/10 208.8 3/10 75.5

Basic 40 15 0.20 10/10 15.8 10/10 108.5 10/10 697.1 7/10 786.8 9/10 384.4

P.W. 40 15 0.20 10/10 10.8 10/10 65.7 10/10 728.6 7/10 767.8 10/10 648.1

G
N

M

Breach 10/10 5.4 10/10 151.4 0/10 - 0/10 - 0/10 -

Basic 20 5 0.20 10/10 12.4 10/10 162.3 10/10 185.6 7/10 261.9 7/10 163.7

P.W. 20 5 0.05 10/10 60.8 9/10 110.7 8/10 211.2 8/10 313.0 10/10 178.7

S
A

Breach 10/10 160.1 0/10 - 3/10 383.7 0/10 - 3/10 80.4

Basic 20 15 0.05 10/10 264.8 9/10 236.1 8/10 385.6 8/10 505.3 7/10 341.2

P.W. 40 15 0.20 10/10 208.7 10/10 377.6 8/10 666.0 7/10 795.4 10/10 624.2

(b) Experimental results of Abstract Fuel Control and Free Floating Robot

Parameters AFC model FFR model

Sbasic Sstable Strap

Algorithm M_b TOpo c succ. time succ. time succ. time

Random 6/10 278.7 10/10 242.6 4/10 409.3

C
M

A
-
E

S

Breach 10/10 111.7 3/10 256.3 10/10 119.8
Basic 40 15 0.20 10/10 182.0 7/10 336.9 10/10 338.0

P.W. 40 15 0.20 10/10 177.1 8/10 272.9 10/10 473.9

G
N

M

Breach 10/10 171.4 0/10 - 0/10 -

Basic 20 5 0.20 10/10 227.1 2/10 378.5 10/10 162.2
P.W. 20 5 0.05 10/10 252.0 6/10 153.2 6/10 197.4

S
A

Breach 0/10 - 6/10 307.0 3/10 92.8

Basic 20 15 0.05 5/10 391.3 8/10 273.8 10/10 273.2
P.W. 40 15 0.20 8/10 665.7 6/10 293.7 10/10 390.9

3.3 Experimental Evaluation 51

The choice of parameters for our two MCTS-based algorithms is as follows: for

each combination with the hill-climbing optimization solvers, we present a set of

parameters that give good results over all the speci�cations. This is justi�ed, because

the performance is quite dependent on these parameters, and one choice that works for

a given combination of a falsi�cation algorithm and a hill-climbing solver might just

not work for another combination. However, note that we do not change the settings

across the speci�cations.

As we discuss at the end of §3.2.2, di�erent timeouts are set for hill-climbing

in playout (Line 23 of Alg. 3.2) and to hill-climbing at the end (Line 37 of Alg. 3.2).

Speci�cally, the timeout for the former is TOpo in Table 3.1 (5–15 seconds) while the

timeout for the latter is globally 300 seconds. M_b (MCTS budget) is the maximum

visit count for the root of the MCTS search tree (i.e. the maximum number of nodes of

the tree).

The cells with bold fonts are local best performers w.r.t. each hill-climbing solver,

and green backgrounded cells are the global performers w.r.t. each property. Here,

the ranking criterion takes success rate as �rst priority, and average time as second

priority.

The results in Table 3.1 indicate, at a high-level, that for seemingly hard problems,

the bene�t of the extra exploration done by the MCTS layer signi�cantly increases

the falsi�cation rate. This is most evident in S4 and S5, where Breach (with any of

CMA-ES, GNM or SA) has at most 30–40% success rates. Our MCTS enhancements

succeed much more often.

For easy problems, the increased exploration typically increases the falsi�cation

times, which is expected. One reason is that falsi�cation is in general a hard problem

that can only be tackled by heuristics. We note from Table 3.1 that the additional

execution time is often not prohibitively large. We also note that there is generally no

single algorithm that works on all instances equally well. For example, for Sstable,

both Breach and our algorithms are even weaker than random testing. However, our

algorithms still increase the falsi�cation rate compared to Breach.

The choice of a hill-climbing optimization solver has a great in�uence on the

outcome. CMA-ES has built-in support for some exploration before the search converges

in the most promising direction. Nevertheless, we see that the upper-layer optimization

by MCTS can improve success rates (S4, S5, Sstable). The Nelder-Mead variant GNM

52 Chapter 3. Balancing Exploration and Exploitation Using MCTS

has very little support for exploration and furthermore, Breach’s implementation

is not stochastic (it uses deterministic low-discrepancy sequences as a source of

quasi-randomness). For this reason, the method quickly converges to non-falsifying

minima that are local and cannot be escaped without extra measures. Thus, using

MCTS pays o� especially with GNM; see for example S3 and S4. Conversely, SA

heavily relies on exploration and keeps just a single good trace found so far, limiting its

exploitation. In combination with MCTS, SA shows mixed performance. In some

cases falsi�cation time becomes longer (S1, S3), whereas for S4, MCTS is able to

overcome this particular limitation, presumably because it maintains several good

pre�xes. For the free �oating robot, we observe that our approach needs additional

time in comparison to Breach with CMA-ES (within an order of magnitude), which

is reasonable given the added exploration on the exponentially larger state space.

However, it does increase the falsi�cation rate with GNM and SA, for the same reasons

as before.

The di�erence between the two variants, Algs. 3.2 and 3.4 (the latter with progressive

widening), is not signi�cant on most of the examples. However, progressive widening

has a positive e�ect on the success rate and falsi�cation time for S2 and S5.

In the experiments, we set the MCTS budget (number of iterations of the main

loop) to be 20–40. Note that the number of all possible nodes is much greater: it is

(1 + |A| + |A|2 + · · · + |A|K). For AT and AFC (2 input signals, L = 3 × 5 and K = 5), it is

813616; and for FFR (4 input signals, L = 2 × 2 × 2 × 2 and K = 3), it is 4369. The overall

success rates seem to suggest that, not only in computer Go but also in hybrid system

falsi�cation, MCTS is very e�ective in searching in a vast space with limited resources.

3.3.3 Evaluation of Parameter Choices

We evaluate the e�ect of the parameters using the speci�cation S4 for the AT model,

where the success of falsi�cation varies strongly. For the experiments in this section

we focus on Alg. 3.2 (Basic).

Table 3.2 contains 4 sub-tables, each showing the results for the di�erent optimiza-

tion solvers when varying a hyperparameter. The results are shown in terms of success

rate and average time in seconds for those successful trials. The default parameter

settings are: maximum tree size (MCTS budget) is 60, and c = 0.2, L = 2, TOpo = 10,

3.4 Discussion 53

K = 5 (gray headed columns). The green cells are the best performers w.r.t. each solver.

The �rst concern is about the scalar c for exploration/exploitation. We observe

that there is a general trend that falsi�cation rate improves with increased focus on

exploration. It is particularly evident when comparing the results of c = 0.02 and

c = 0.5. However, no signi�cant performance gap is observed between c = 0.5 and

c = 1.0, indicating that c = 0.5 is already su�cient for optimization solvers to bene�t

from exploration.

Next, consider the results for di�erent partitioning of the input space, where

L = n ×m means that the throttle range is partitioned into n actions and the brake

range into m actions (for the AT model; pedal and engine for the AFC model). We note

that the di�erent choices have much less in�uence than the scalar c . However, there

are some di�erences, e.g., GNM seems to cope badly with the coarse partitioning 2 × 2

in the �rst column, which could be attributed to its reliance on guidance by the MCTS

layer.

With respect to the timeout for individual playouts TOPO, we observe that it is

correlated with overall falsi�cation time. This is expected, as we spend more time in

non-falsifying regions of the input space as well.

Varying the number of control points K (and therefore the depth of the MCTS tree),

shows that for the respective requirement, K = 3 is insu�cient but the results for more

control points are not clear. As more control points make the problem harder due to

the larger search space, the falsi�cation rate drops (speci�cally for K = 10). Note that

we purposely keep the MCTS budget and playout time consistent to expose this e�ect,

whereas in practice one might want to increase the limits when the problem is more

complex.

3.4 Discussion

Our algorithms interleave MCTS optimization and hill-climbing optimization: the

latter is used in the playout operation of the former, for sampling and estimating the

reward of a high-level input-synthesis strategy. This high-level strategy is concretely

given by a sequence a1a2 . . . ad of input regions. Via the UCT tree search strategy,

we ensure that our search in a search tree is driven not only by depth, but also by

width. This way we enhance exploration in search-based falsi�cation, in the sense that

54 Chapter 3. Balancing Exploration and Exploitation Using MCTS

Table 3.2: Parameter variation for Alg. 3.2 (Basic)

c = 0.02 c = 0.2 c = 0.5 c = 1.0
Solver succ. time succ. time succ. time succ. time

CMA-ES 6/10 826.1 7/10 728.7 8/10 725.7 9/10 744.3

GNM 0/10 - 4/10 807.3 3/10 779.4 3/10 791.4

SA 1/10 719.5 8/10 733.5 9/10 736.3 8/10 799.1

L = 2 × 2 L = 3 × 3 L = 3 × 5 L = 5 × 5

Solver succ. time succ. time succ. time succ. time

CMA-ES 7/10 728.7 9/10 674.4 9/10 740.2 8/10 743.4

GNM 4/10 807.3 3/10 712.3 9/10 721.6 10/10 724.2

SA 8/10 733.5 6/10 755.7 8/10 832.0 6/10 832.8

TOpo = 5 TOpo = 10 TOpo = 15 TOpo = 20

Solver succ. time succ. time succ. time succ. time

CMA-ES 8/10 431.8 7/10 728.7 9/10 776.2 7/10 1330.1

GNM 3/10 502.6 4/10 807.3 4/10 809.4 2/10 1397.1

SA 7/10 510.5 8/10 733.5 7/10 1108.0 8/10 1342.5

K = 3 K = 5 K = 7 K = 10

Solver succ. time succ. time succ. time succ. time

CMA-ES 0/10 - 7/10 728.7 6/10 711.5 5/10 777.9

GNM 0/10 - 4/10 807.3 1/10 664.3 6/10 892.8

SA 0/10 - 8/10 733.5 8/10 709.7 3/10 750.9

di�erent regions of the input space are sampled in a structured and disciplined manner.

It is an interesting topic for future work to quantify the coverage guarantees that can

potentially be achieved by our approach.

In falsi�cation of hybrid systems, it is often the case that simulation, i.e. running a

modelM under a given input signal, is computationally the most expensive operation.

In our algorithm this occurs in Lines 23 and 37, since a hill-climbing optimization

algorithm tries many samples of u1, . . . , uK. Simplifying Line 23, e.g. by decimating the

control points, can result in a useful variation of our algorithm.

Among the tunable parameters of the algorithm is the scalar c , used for the UCB

sampling (Line 2 of Alg. 3.3). Having this parameter is unique to our falsi�cation

framework, in comparison to simple robustness-guided optimization (with hill-climbing

only). Speci�cally, the parameter c endows our algorithm with �exibility in the

3.4 Discussion 55

exploration-exploitation trade-o�. Given the diversity of instances of the hybrid system

falsi�cation problem, it is unlikely that there is a single value of c that is optimal for all

falsi�cation examples. An engineer can then use her/his expert domain knowledge to

tune the parameter c .

57

4
Multi-Armed Bandits

for Boolean Connectives in STL

In this chapter, we tackle the scale problem that arises from the de�nition of STL

robust semantics for Boolean connectives (conjunctive and disjunctive) in the existing

falsi�cation framework. We propose a novel technique based on the Multi-Armed

Bandit (MAB) problem to falsify safety properties embedded with Boolean connectives.

Our solution consists of integration of the MAB algorithms in hill climbing-guided

falsi�cation: it takes di�erent sub-formulas of the Boolean connective as bandit

machines, and applies MAB algorithms, namely UCB1 and ε-Greedy, to govern the

hill-climbing optimization processes running on di�erent machines. As a result, the

MAB algorithms tend to select the machine that is more likely to falsify the property,

and therefore the problem can be solved e�ectively.

We �rstly explain the problem caused by the improper de�nition of robust semantics

for Boolean connectives in §4.1, and then present the proposed approach in §4.2.

The material in this chapter is based on [89]

58 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

4.1 Motivation: the Scale Problem

Safety properties are a class of properties of great importance. Intuitively, they require

that “something bad will never happen”. In STL, safety properties are expressed by the

“always” modality, i.e., they are in the form �(φ′), where φ′ refers to that “something

bad does not happen”. The examples we use in §1.2.1 and Table 1.1 are both safety

properties. In industrial practice, safety properties are usually used in combination

with conjunctive or disjunctive. In other words, these two forms of formulas are usually

tested against, �(φ1 ∧ φ2) and �(φ1 ∨ φ2); the former requires a system to satisfy more

than one property, while the latter indicates a logical constraint between properties.

However, the existing falsi�cation framework is problematic in handling such

properties. The problem arises from the de�nition of STL robust semantics that

has been presented in §2.2. As robustness plays the role of objective function for

hill-climbing optimization, it a�ects the performance of the framework signi�cantly.

We �rstly take a glance at the problem via an example.

Recall the usage scenario introduced in §1.2.1; it regards the following property:

when the gear of the car is 4, the speed should not be lower than 35km/h. In STL,

it is written as φ ≡ �(дear = 4 → speed > 35), and thus equivalent to �(¬(дear =

4) ∨ speed > 35), i.e., it belongs to the form �(φ1 ∨ φ2). Fig. 4.1 and Fig. 4.2 show two

samples, Sample1 and Sample2, that happen chronologically during a falsi�cation

process to φ. In each �gure, on the left (Fig. 4.1a and Fig. 4.2a) are the input and output

signals, and on the right (Fig. 4.1b and Fig. 4.2b) are the Boolean satisfaction and

quantitative robustness for sub-formulas. Compare Sample1 and Sample2; in both cases,

the robustness to φ is 1. This is troublesome to hill-climbing optimization: recall the

way how hill-climbing optimization works (see Alg. 2.1); it compares the robustness of

di�erent samples, and �gures out the direction for future sampling based on that

comparison. In the case that robustness stays the same over di�erent samples, hill

climbing will get lost and report a failure.

We analyze the reason why this situation of �at robustness happens. The robustness

computation processes for Sample1 and Sample2 are presented in Fig. 4.1b and Fig. 4.2b

respectively. In both cases, the �nal robustness 1 is obtained from the robustness

to φ itself, i.e., the last sub-�gures in Fig. 4.1b and Fig. 4.2b. Those two are derived

from the second last sub-�gures, i.e., the robustness to ¬(дear = 4) ∨ speed > 35. The

4.1 Motivation: the Scale Problem 59

0 5 10 15 20 25 30
0

20

40

th
ro
ttl
e

0 5 10 15 20 25 30
0

20

40

br
ak
e

0 5 10 15 20 25 30
1

2

3

ge
ar

0 5 10 15 20 25 30
time

0

50

sp
ee
d

(a) Input signals throttle, brake and output

signals gear, speed of Sample1

0 5 10 15 20 25 30
1

1.5
2

2.5
3

not ((gear[t] == 4))

false

true
Quant. sat
Bool. sat

0 5 10 15 20 25 30
-50

0

50
(speed[t] > 35)

false

true

0 5 10 15 20 25 30
0

5

10
(not ((gear[t] == 4))) or ((speed[t] > 35))

false

true

0 5 10 15 20 25 30
time

0

5

10
alw_[0,30] ((not ((gear[t] == 4))) or ((speed[t] > 35)))

false

true

(b) Boolean satisfaction and quantitative ro-

bustness of Sample1 to sub-formulas of φ

Figure 4.1: Sample1: A sample from hill-climbing optimization during falsi�cation to

φ ≡ �(дear = 4→ speed > 35)

0 5 10 15 20 25 30
0

20

40

th
ro
ttl
e

0 5 10 15 20 25 30
0

50

br
ak
e

0 5 10 15 20 25 30
0

2

4

ge
ar

0 5 10 15 20 25 30
time

0

50

100

sp
ee
d

(a) Input signals throttle, brake and output

signals gear, speed of Sample2

0 5 10 15 20 25 30
-5

0

5
not ((gear[t] == 4))

false

true
Quant. sat
Bool. sat

0 5 10 15 20 25 30
-50

0

50
(speed[t] > 35)

false

true

0 5 10 15 20 25 30
0
5

10
15
20

(not ((gear[t] == 4))) or ((speed[t] > 35))

false

true

0 5 10 15 20 25 30
time

0
5

10
15
20

alw_[0,30] ((not ((gear[t] == 4))) or ((speed[t] > 35)))

false

true

(b) Boolean satisfaction and quantitative ro-

bustness of Sample2 to sub-formulas of φ

Figure 4.2: Sample2: A sample occurring after Sample1, from the same process with

that in Fig. 4.1

60 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

computations of these two ones are interesting: they are based on the robustness

to ¬дear = 4 and speed > 35 (the �rst 2 sub-�gures), and computed by applying the

robust semantics for disjunctive in Def. 8:

Jw,φ1 ∨ φ2K := Jw,φ1K t Jw,φ2K

Namely, taking the maximum of the robustness of two sub-formulas. Therefore, the

robustness to ¬(дear = 4) ∨ speed > 35 (the third sub-�gures in Fig. 4.1b and Fig. 4.2b)

comes from comparing the robustness of ¬(дear = 4) and that of speed > 35 point

by point and taking the maximum accordingly. We can see that the robustness to

¬(дear = 4) ∨ speed > 35 is composed of the robustness to ¬(дear = 4) and speed > 35;

and in both cases the lowest parts come from the robustness to ¬(дear = 4). In

conclusion, the problematic situation results from the robust semantics for disjunctive;

more precisely, it results from comparing the robustness concerned with gear and the

robustness concerned with speed.

Here it gives rise to the problem: gear usually ranges from 1 to 5, while speed
ranges over about [0, 150]; therefore, it is not fair to compare the robustness values

of them directly, as one can always win the comparison. In this example, when we

compare the robustness values at the point where both are positive, the one w.r.t. speed
is likely to be larger, e.g., in the interval [25,30] of Sample1 or the interval [20,30] of

Sample2. This is the so-called scale problem. Even worse, gear, of which the robustness

contributes the �nal robustness, is a discrete variable—tuning an input signal may not

lead to a di�erent robustness value. That is the direct reason why the failure in this

section takes place.

Few existing work has tackled the problem. In [75], the authors propose a method

that explicitly declares input signals and output signals, so it manually introduces a

bias when comparing the robustness values of sub-formulas concerned with di�erent

signals. This method mitigates the problem in the presence of knowledge about

input/output signals; however, it cannot handle the following cases. Firstly, domain

expertise is not available. Although it is generally not di�cult to classify signals into

input and output, sometimes that is not the case, e.g., gear can be an input signal

in some applications, but in Fig. 1.1, it is an output signal. Secondly, if both signals

are output signals, their method becomes not working unless manually assigning a

4.2 Multi-Armed Bandit-Based Falsi�cation Algorithm 61

priority, but that does not give any guarantee on the performance.

Our work proposes a novel approach to handling the problem by introducing

the Multi-Armed Bandit (MAB) model into the falsi�cation framework. During the

falsi�cation to a Boolean connective, we take sub-formulas as bandit machines as shown

'1
<latexit sha1_base64="HCaa2KJbduncIFrRI9xRJIsZ4SI=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUiyhN7JJBkyM7vMzAbCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TJxqyuo0FrFuRWiY4IrVLbeCtRLNUEaCNaPR3cxvjpk2PFaPdpKwUOJA8T6naJ301BmjToa8G3RLZb/iz0FWSZCTMuSodUtfnV5MU8mUpQKNaQd+YsMMteVUsGmxkxqWIB3hgLUdVSiZCbP5wVNy7pQe6cfalbJkrv6eyFAaM5GR65Roh2bZm4n/ee3U9m/CjKsktUzRxaJ+KoiNyex70uOaUSsmjiDV3N1K6BA1UusyKroQguWXV0njshL4leDhqly9zeMowCmcwQUEcA1VuIca1IGChGd4hTdPey/eu/exaF3z8pkT+APv8welppBK</latexit><latexit sha1_base64="HCaa2KJbduncIFrRI9xRJIsZ4SI=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUiyhN7JJBkyM7vMzAbCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TJxqyuo0FrFuRWiY4IrVLbeCtRLNUEaCNaPR3cxvjpk2PFaPdpKwUOJA8T6naJ301BmjToa8G3RLZb/iz0FWSZCTMuSodUtfnV5MU8mUpQKNaQd+YsMMteVUsGmxkxqWIB3hgLUdVSiZCbP5wVNy7pQe6cfalbJkrv6eyFAaM5GR65Roh2bZm4n/ee3U9m/CjKsktUzRxaJ+KoiNyex70uOaUSsmjiDV3N1K6BA1UusyKroQguWXV0njshL4leDhqly9zeMowCmcwQUEcA1VuIca1IGChGd4hTdPey/eu/exaF3z8pkT+APv8welppBK</latexit><latexit sha1_base64="HCaa2KJbduncIFrRI9xRJIsZ4SI=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUiyhN7JJBkyM7vMzAbCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TJxqyuo0FrFuRWiY4IrVLbeCtRLNUEaCNaPR3cxvjpk2PFaPdpKwUOJA8T6naJ301BmjToa8G3RLZb/iz0FWSZCTMuSodUtfnV5MU8mUpQKNaQd+YsMMteVUsGmxkxqWIB3hgLUdVSiZCbP5wVNy7pQe6cfalbJkrv6eyFAaM5GR65Roh2bZm4n/ee3U9m/CjKsktUzRxaJ+KoiNyex70uOaUSsmjiDV3N1K6BA1UusyKroQguWXV0njshL4leDhqly9zeMowCmcwQUEcA1VuIca1IGChGd4hTdPey/eu/exaF3z8pkT+APv8welppBK</latexit><latexit sha1_base64="HCaa2KJbduncIFrRI9xRJIsZ4SI=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUiyhN7JJBkyM7vMzAbCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TJxqyuo0FrFuRWiY4IrVLbeCtRLNUEaCNaPR3cxvjpk2PFaPdpKwUOJA8T6naJ301BmjToa8G3RLZb/iz0FWSZCTMuSodUtfnV5MU8mUpQKNaQd+YsMMteVUsGmxkxqWIB3hgLUdVSiZCbP5wVNy7pQe6cfalbJkrv6eyFAaM5GR65Roh2bZm4n/ee3U9m/CjKsktUzRxaJ+KoiNyex70uOaUSsmjiDV3N1K6BA1UusyKroQguWXV0njshL4leDhqly9zeMowCmcwQUEcA1VuIca1IGChGd4hTdPey/eu/exaF3z8pkT+APv8welppBK</latexit>

'2
<latexit sha1_base64="V+2dlzvgn+wvRAsSqZr7cI73/eQ=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r2A9pl5JNs21okl2SbKEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pmTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2O7+Z+e8K04bF6tNOEBZIMFY84JdZJT70J0cmI92v9csWregvgdeLnpAI5Gv3yV28Q01QyZakgxnR9L7FBRrTlVLBZqZcalhA6JkPWdVQRyUyQLQ6e4QunDHAUa1fK4oX6eyIj0pipDF2nJHZkVr25+J/XTW10E2RcJallii4XRanANsbz7/GAa0atmDpCqObuVkxHRBNqXUYlF4K/+vI6adWqvlf1H64q9ds8jiKcwTlcgg/XUId7aEATKEh4hld4Qxq9oHf0sWwtoHzmFP4Aff4ApyqQSw==</latexit><latexit sha1_base64="V+2dlzvgn+wvRAsSqZr7cI73/eQ=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r2A9pl5JNs21okl2SbKEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pmTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2O7+Z+e8K04bF6tNOEBZIMFY84JdZJT70J0cmI92v9csWregvgdeLnpAI5Gv3yV28Q01QyZakgxnR9L7FBRrTlVLBZqZcalhA6JkPWdVQRyUyQLQ6e4QunDHAUa1fK4oX6eyIj0pipDF2nJHZkVr25+J/XTW10E2RcJallii4XRanANsbz7/GAa0atmDpCqObuVkxHRBNqXUYlF4K/+vI6adWqvlf1H64q9ds8jiKcwTlcgg/XUId7aEATKEh4hld4Qxq9oHf0sWwtoHzmFP4Aff4ApyqQSw==</latexit><latexit sha1_base64="V+2dlzvgn+wvRAsSqZr7cI73/eQ=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r2A9pl5JNs21okl2SbKEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pmTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2O7+Z+e8K04bF6tNOEBZIMFY84JdZJT70J0cmI92v9csWregvgdeLnpAI5Gv3yV28Q01QyZakgxnR9L7FBRrTlVLBZqZcalhA6JkPWdVQRyUyQLQ6e4QunDHAUa1fK4oX6eyIj0pipDF2nJHZkVr25+J/XTW10E2RcJallii4XRanANsbz7/GAa0atmDpCqObuVkxHRBNqXUYlF4K/+vI6adWqvlf1H64q9ds8jiKcwTlcgg/XUId7aEATKEh4hld4Qxq9oHf0sWwtoHzmFP4Aff4ApyqQSw==</latexit><latexit sha1_base64="V+2dlzvgn+wvRAsSqZr7cI73/eQ=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r2A9pl5JNs21okl2SbKEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pmTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2O7+Z+e8K04bF6tNOEBZIMFY84JdZJT70J0cmI92v9csWregvgdeLnpAI5Gv3yV28Q01QyZakgxnR9L7FBRrTlVLBZqZcalhA6JkPWdVQRyUyQLQ6e4QunDHAUa1fK4oX6eyIj0pipDF2nJHZkVr25+J/XTW10E2RcJallii4XRanANsbz7/GAa0atmDpCqObuVkxHRBNqXUYlF4K/+vI6adWqvlf1H64q9ds8jiKcwTlcgg/XUId7aEATKEh4hld4Qxq9oHf0sWwtoHzmFP4Aff4ApyqQSw==</latexit>

Figure 4.3: Sub-formulas

treated as bandit machines

in Fig. 4.3, and apply MAB algorithms on the high level

to govern the hill-climbing optimization processes

running on the low level. The proposed approach

overcomes the weakness of [75], in that it does not

need human intervention but it learns the falsifying

priority between sub-formulas automatically.

4.2 Multi-ArmedBandit-Based Falsi�cationAlgorithm

In this section, we present our contribution, namely a falsi�cation algorithm that

addresses the scale problem in Boolean superposition. The main novelties in the

algorithm are as follows.

1. (Use of MAB algorithms) For binary Boolean connectives, unlike most works

in the �eld, we do not superpose the robustness values of the constituent formulas

φ1 and φ2 using a �xed operator (such as u and t in Def. 8). Instead, we view the

situation as an instance of the Multi-Armed Bandit problem (MAB): we use an

algorithm for MAB to choose one formula φi to focus on (here i ∈ {1, 2}); and

then we apply hill climbing-guided falsi�cation to the chosen formula φi .

2. (Hill-climbing gain as rewards in MAB) For our integration of MAB and

hill-climbing optimization, the technical challenge is �nd a suitable notion of

reward for MAB. We introduce a novel notion that we call hill-climbing gain: it

formulates the (downward) robustness gain that we would obtain by applying

hill-climbing optimization, suitably normalized using the scale of previous

robustness values.

Later, in §4.3, we demonstrate that combining those two features gives rise to

falsi�cation algorithms that successfully cope with the scale problem in Boolean

superposition.

Our algorithms focus on a fragment of STL as target speci�cations. They are called

(disjunctive and conjunctive) safety properties. In §4.2.1 we describe this fragment of

62 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

STL, and introduce necessary adaptation of the semantics. After reviewing the MAB

problem in §4.2.2, we present our algorithms in §4.2.3–4.2.4.

4.2.1 Conjunctive and Disjunctive Safety Properties

De�nition 12 (conjunctive/disjunctive safety property) An STL formula of the
form �I (φ1 ∧ φ2) is called a conjunctive safety property; an STL formula of the form
�I (φ1 ∨ φ2) is called a disjunctive safety property.

It is known that, in industry practice, a majority of speci�cations is of the form

�I (φ1 → φ2), where φ1 describes a trigger and φ2 describes a countermeasure that

should follow. This property is equivalent to �I (¬φ1∨φ2), and is therefore a disjunctive

safety property.

In §4.2.3–4.2.4, we present two falsi�cation algorithms, for conjunctive and

disjunctive safety properties respectively. For the reason we just discussed, we expect

the disjunctive algorithm should be more important in real-world application scenarios.

In fact, the disjunctive algorithm turns out to be more complicated, and it is best

introduced as an extension of the conjunctive algorithm.

We de�ne the restriction of robust semantics to a (sub)set of time instants. Note

that we do not require S ⊆ [0,T] to be a single interval.

De�nition 13 (Jw,ψ KS , robustness restricted to S ⊆ [0,T]) Letw : [0,T] → R|Var|

be a signal,ψ be an STL formula, and S ⊆ [0,T] be a subset. We de�ne the robustness of
w underψ restricted to S by

Jw,ψ KS :=
d

t∈S Jwt ,ψ K . (4.1)

Obviously, Jw,ψ KS < 0 implies that there exists t ∈ S such that Jwt ,ψ KS < 0. We

derive the following easy lemma; it is used later in our algorithm.

Lemma 1 In the setting of Def. 13, consider a disjunctive safety property φ ≡ �I (φ1 ∨φ2),
and let S := {t ∈ I ∩[0,T] | Jwt ,φ1K < 0}. Then Jw,φ2KS < 0 implies Jw,�I (φ1∨φ2)K <
0. ut

4.2 Multi-Armed Bandit-Based Falsi�cation Algorithm 63

4.2.2 The Multi-Armed Bandit (MAB) Problem

The Multi-Armed Bandit (MAB) problem describes a situation where,

• a gambler sits in front of a row A1, . . . ,An of slot machines;

• each slot machine Ai gives, when its arm is played (i.e. in each attempt), a reward

according to a prescribed (but unknown) probability distribution µi ;

• and the goal is to maximize the cumulative reward after a number of attempts,

playing a suitable arm in each attempt.

The best strategy of course is to keep playing the best arm Amax, i.e. the one whose

average reward avg(µmax) is the greatest. This best strategy is infeasible, however,

since the distributions µ1, . . . , µn are initially unknown. Therefore the gambler must

learn about µ1, . . . , µn through attempts.

The MAB problem exempli�es the “learning by trying” paradigm of reinforcement
learning, and is thus heavily studied. The greatest challenge is to balance between

exploration and exploitation. A greedy (i.e. exploitation-only) strategy will play the

arm whose empirical average reward is the maximum. However, since the rewards

are random, this way the gambler can miss another arm whose real performance is

even better but which is yet to be found so. Therefore one needs to mix exploration,

too, occasionally trying empirically non-optimal arms, in order to identity their true

performance.

The relevance of MAB to our current problem is as follows. Falsifying a conjunctive

safety property �I (φ1 ∧ φ2) amounts to �nding a time instant t ∈ I at which either φ1

or φ2 is falsi�ed. We can see the two subformulas (φ1 and φ2) as two arms, and this

constitutes an instance of the MAB problem. In particular, playing an arm translates to

a falsi�cation attempt by hill climbing, and collecting rewards translates to spending

time to minimize the robustness. We show in §4.2.3–4.2.4 that this basic idea extends to

disjunctive safety properties �I (φ1 ∨ φ2), too.

A rigorous formulation of the MAB problem is presented for the record.

De�nition 14 (the Multi-Armed Bandit problem) The Multi-Armed Bandit (MAB)
problem is formulated as follows.

Input: arms (A1, . . . ,An), the associated probability distributions µ1, . . . , µn over R, and
a time horizon H ∈ N ∪ {∞}.

Goal: synthesize a sequence Ai1Ai2 . . .AiH , so that the cumulative reward
∑H

k=1 rewk is

64 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

Algorithm 4.1 The ε-greedy algorithm for multi-armed bandits

Require: the setting of Def. 14, and a constant ε > 0 (typically very small)

At the k-th attempt, choose the arm Aik as follows

1: jemp-opt ← arg max

j∈[1,n]

R(j,k − 1) . the arm that is empirically optimal

2: Sample ik ∈ [1,n] from the distribution[
jemp-opt 7−→ (1 − ε) + ε

n
j 7−→ ε

n for each j ∈ [1,n] \ {jemp-opt}

]
3: Return ik

maximized. Here the reward rewk of the k-th attempt is sampled from the distribution µik
associated with the arm Aik played at the k-th attempt.

We introduce some notations for later use. Let (Ai1 . . .Aik , rew1 . . . rewk) be a history,
i.e. the sequence of arms played so far (here i1, . . . , ik ∈ [1,n]), and the sequence of
rewards obtained by those attempts (rewl is sampled from µil).

For an arm Aj , its visit count N (j,Ai1Ai2 . . .Aik , rew1rew2 . . . rewk) is given by the
number of occurrences ofAj inAi1Ai2 . . .Aik . Its empirical average rewardR(j,Ai1Ai2 . . .Aik ,

rew1rew2 . . . rewk) is given by
∑

l∈{l∈[1,k]|il=j} rewl , i.e. the average return of the arm Aj

in the history. When the history is obvious from the context, we simply write N (j,k) and
R(j,k).

MAB Algorithms

There have been a number of algorithms proposed for the MAB problem; each

of them gives a strategy (also called a policy) that tells which arm to play, based

on the previous attempts and their rewards. The focus here is how to resolve the

exploration-exploitation trade-o�. Here we review two well-known algorithms.

The ε-Greedy algorithm This is a simple algorithm that spares a small fraction ε

of chances for empirically non-optimal arms. The spared probability ε is uniformly

distributed. See Algorithm 4.1.

The UCB1 algorithm The UCB1 (upper con�dence bound) algorithm is more com-

plex; it comes with a theoretical upper bound for regrets, i.e. the gap between the

expected cumulative reward and the optimal (but infeasible) cumulative reward (i.e. the

4.2 Multi-Armed Bandit-Based Falsi�cation Algorithm 65

Algorithm 4.2 The UCB1 algorithm for multi-armed bandits

Require: the setting of Def. 14, and a constant c > 0

At the k-th attempt, choose the arm Aik as follows

1: ik ← arg max

j∈[1,n]

(
R(j,k − 1) + c

√
2 ln(k−1)
N (j,k−1)

)
2: Return ik

result of keep playing the optimal arm Amax). It is known that the UCB1 algorithm’s

regret is at most O(
√
nH logH) after H attempts, improving the naive random strategy

(which has the expected regret O(H)).

See Alg. 4.2. The algorithm is deterministic, and picks the arm that maximizes the

value shown in Line 1. The �rst term R(j,k − 1) is the exploitation factor, re�ecting the

arm’s empirical performance. The second term is the exploration factor. Note that it is

bigger if the arm Aj has been played less frequently. Note also that the exploration

factor eventually decays over time: the denominator grows roughly with O(k), while

the numerator grows with O(lnk).

4.2.3 Our MAB-Guided Algorithm I: Conjunctive Safety Proper-
ties

Our �rst algorithm targets at conjunctive safety properties. It is based on our

identi�cation of MAB in a Boolean conjunction in falsi�cation—this is as we discussed

just above Def. 14. The technical novelty lies in the way we combine MAB algorithms

and hill-climbing optimization; speci�cally, we introduce the notion of hill-climbing
gain as a reward notion in MAB (Def. 15). This �rst algorithm paves the way to the one

for disjunctive safety properties, too (§4.2.4).

The algorithm is in Algorithm 4.3. Some remarks are in order.

Algorithm 4.3 aims to falsify a conjunctive safety property φ ≡ �I (φ1 ∧ φ2). Its

overall structure is to interleave two sequences of falsi�cation attempts, both of which

are hill climbing-guided. These two sequences of attempts aim to falsify �Iφ1 and

�Iφ2, respectively. Note that JM(u),φK ≤ JM(u),�Iφ1K, therefore falsi�cation of �Iφ1

implies falsi�cation of φ; the same holds for �Iφ2, too.

In Line 5 we run an MAB algorithm to decide which of �Iφ1 and �Iφ2 to target at

66 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

Algorithm 4.3 Our MAB-guided algorithm I: conjunctive safety properties

Require: a system modelM, an STL formula φ ≡ �I (φ1 ∧ φ2), and a budget K
1: function MAB-Falsify-Conj-Safety(M,φ,K)

2: rb←∞ ; k ← 0

. rb is the smallest robustness seen so far, for either �Iφ1 or �Iφ2
3: while rb ≥ 0 and k ≤ K do . iterate if not yet falsi�ed, and within budget

4: k ← k + 1
5: ik ← MAB

(
(φ1,φ2),

(
R(φ1),R(φ2)

)
, φi1 . . .φik−1, rew1 . . . rewk−1

)
. an MAB choice of ik ∈ {1, 2} for optimizing the reward R(φik)

6: uk ← Hill-Climb

((
(ul , rbl)

)
l∈[1,k−1] such that il=ik

)
. suggestion of the next input uk by hill climbing, based on the previous

observations on the formula φik (those on the other formula are ignored)

7: rbk ← JM(uk),�Iφik K
8: if rbk < rb then
9: rb← rbk

10: u←

{
uk if rb < 0

Failure otherwise, that is, no falsifying input found within budget K
11: Return u

Algorithm 4.4 Our MAB-guided algorithm II: disjunctive safety properties

Require: a system modelM, an STL formula φ ≡ �I (φ1 ∨ φ2), and a budget K
1: function MAB-Falsify-Disj-Safety(M,φ,K)

The same as Algorithm 4.3, except that Line 7 is replaced by the following Line 7’.

7’: rbk ← JM(uk),φik KSk where Sk =
{
t ∈ I ∩ [0,T]

�� JM(ut
k
),φik K < 0

}
. here φik denotes the other formula than φik , among φ1,φ2

in the k-th attempt. The function MAB takes the following as its arguments: 1) the list

of arms, given by the formulas φ1,φ2; 2) their rewards R(φ1),R(φ2); 3) the history

φi1 . . .φik−1 of previously played arms (il ∈ {1, 2}); and 4) the history rew1 . . . rewk−1

of previously observed rewards. This way, the type of the MAB function in Line 5

matches the format in Def. 14, and thus the function can be instantiated with any MAB

algorithm such as Algorithms 4.1–4.2.

The only missing piece is the de�nition of the rewards R(φ1),R(φ2). We introduce

the following notion, tailored for combining MAB and hill climbing.

De�nition 15 (hill-climbing gain) In Algorithm 4.3, in Line 5, the reward R(φi) of

4.2 Multi-Armed Bandit-Based Falsi�cation Algorithm 67

the arm φi (where i ∈ {1, 2}) is de�ned by

R(φi) =


max-rb(i,k − 1) − last-rb(i,k − 1)

max-rb(i,k − 1)
if φi has been played before

0 otherwise

Here max-rb(i,k − 1) := max{rbl | l ∈ [1,k − 1], il = i} (i.e. the greatest rbl so far, in
those attempts where φi was played), and last-rb(i,k − 1) := rbl

last
with llast being the

greatest l ∈ [1,k − 1] such that il = i (i.e. the last rbl for φi).

Since we try to minimize the robustness values rbl through falsi�cation attempts,

we can expect that rbl for a �xed arm φi decreases over time. (In the case of the

hill-climbing algorithm CMA-ES that we use, this is in fact guaranteed). Therefore

the value max-rb(i,k − 1) in the de�nition of R(φi) is the �rst observed robustness

value. The numerator max-rb(i,k − 1) − last-rb(i,k − 1) then represents how much

robustness we have reduced so far by hill climbing—hence the name “hill-climbing

gain.” The denominator max-rb(i,k − 1) is there for normalization.

In Algorithm 4.3, the value rbk is given by the robustness JM(uk),�Iφik K. Therefore

the MAB choice in Line 5 essentially picks ik for which hill climbing yields greater

e�ect (but also taking exploration into account—see §4.2.2).

In Line 6 we conduct hill-climbing optimization—see §2.3. The function Hill-Climb

learns from the previous attempts ul1, . . . , ulm regarding the same formula φik , and their

resulting robustness values rbl1, . . . , rblm . Then it suggests the next input signal uk that

is likely to minimize the (unknown) function that underlies the correspondences[
ulj 7→ rblj

]
j∈[1,m]

.

Lines 6–8 read as follows: the hill-climbing algorithm suggests a single input uk ,

which is then selected or rejected (Line 8) based on the robustness value it yields

(Line 7). We note that this is a simpli�ed picture: in our implementation that uses

CMA-ES (it is an evolutionary algorithm), we maintain a population of some ten

particles, and each of them is moved multiple times (our choice is three times) before

the best one is chosen as uk .

68 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

4.2.4 Our MAB-Guided Algorithm II: Disjunctive Safety Proper-
ties

The other main algorithm of ours aims to falsify a disjunctive safety property φ ≡

�I (φ1∨φ2). We believe this problem setting is even more important than the conjunctive

case, since it encompasses conditional safety properties (i.e. of the form �I (φ1 → φ2)).

See §4.2.1 for discussions.

In the disjunctive setting, the challenge is that falsi�cation of �Iφi (with i ∈ {1, 2})

does not necessarily imply falsi�cation of �I (φ1 ∨ φ2). This is unlike the conjunctive

setting. Therefore we need some adaptation of Algorithm 4.3, so that the two interleaved

sequences of falsi�cation attempts for φ1 and φ2 are not totally independent of each

other. Our solution consists of restricting time instants to those where φ2 is false, in a

falsi�cation attempt for φ1 (and vice versa), in the way described in Def. 13.

Algorithm 4.4 shows our MAB-guided algorithm for falsifying a disjunctive safety

property �I (φ1 ∨ φ2). The only visible di�erence is that Line 7 in Algorithm 4.3 is

replaced with Line 7’. The new Line 7’ measures the quality of the suggested input

signal uk in the way restricted to the region Sk in which the other formula is already

falsi�ed. Lem. 1 guarantees that, if rbk < 0, then indeed the input signal uk falsi�es the

original speci�cation �I (φ1 ∨ φ2).

The assumption that makes Alg. 4.4 sensible is that, although it can be hard to �nd a

time instant at which both φ1 and φ2 are false (this is required in falsifying �I (φ1 ∨φ2)),

falsifying φ1 (or φ2) individually is not hard. Without this assumption, the region Sk in

Line 7’ would be empty most of the time. Our experiments in §4.3 demonstrate that

this assumption is valid in many problem instances, and that Alg. 4.4 is e�ective.

4.3 Experimental Evaluation

4.3.1 Experiment Setup

We name MAB-UCB and MAB-ϵ-greedy the two versions of MAB algorithm using

strategies ε-Greedy (see Alg. 4.1) and UCB1 (see Alg. 4.2). We compared the proposed

approach (both versions MAB-UCB and MAB-ϵ-greedy) with a state-of-the-art

falsi�cation framework, namely Breach [22]. Breach encapsulates several hill-

4.3 Experimental Evaluation 69

climbing optimization algorithms, including CMA-ES (covariance matrix adaptation
evolution strategy) [92], SA (simulated annealing), GNM (global Nelder-Mead) [91], etc.

According to our experience, CMA-ES outperforms other hill-climbing solvers in

Breach, so the experiments for both Breach and our approach rely on the CMA-ES

solver.

Experiments have been executed using Breach 1.2.13 on an Amazon EC2 c4.large

instance, 2.9 GHz Intel Xeon E5-2666, 2 virtual CPU cores, 4 GB RAM.

Benchmarks We selected three benchmark models from the literature, each one

having di�erent speci�cations. The �rst one is the Automatic Transmission (AT)

model [44, 98]. It has two input signals, thro�le∈[0, 100] and brake∈[0, 325], and com-

putes the car’s speed, engine rotation in rounds per minute rpm, and the automatically

selected gear . The speci�cations concern the relation between the three output signals

to check whether the car is subject to some unexpected or unsafe behaviors. The

second benchmark is the Abstract Fuel Control (AFC) model [44, 56]. It takes two

input signals, pedal angle∈[8.8, 90] and engine speed∈[900, 1100], and outputs the

critical signal air-fuel ratio (AF), which in�uences fuel e�ciency and car performance.

The value is expected to be close to a reference value AFref ; mu≡|AF−AFref |/AFref is the

deviation of AF from AFref . The speci�cations check whether this property holds

under both normal mode and power enrichment mode. The third benchmark is a model

of a magnetic levitation system with a NARMA-L2 neurocontroller (NN) [44, 99]. It

takes one input signal, Ref ∈[1, 3], which is the reference for the output signal Pos, the

position of a magnet suspended above an electromagnet. The speci�cations say that

the position should approach the reference signal in a few seconds when these two are

not close.

We built the benchmark set Bbench, as shown in Table 4.1a that reports the name

of the model and its speci�cations (ID and formula). In total, we found 11 speci�cations.

In order to increase the benchmark set and obtain speci�cations of di�erent complexity,

we arti�cially modi�ed a constant (turned into a parameter named τ if it is contained

in a time interval, named ρ otherwise) of the speci�cation: for each speci�cation S , we

generatedm di�erent versions, named as Si with i ∈ {1, . . . ,m}; the complexity of the

speci�cation (in terms of di�culty to falsify it) increases with increasing i .1 In total, we

1
Note that we performed this classi�cation based on the falsi�cation results of Breach.

70 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

Table 4.1: Benchmark sets Bbench and Sbench

(a) Bbench (here δt ′(w) represents wt (t ′) −wt (0)).

Bench Speci�cation Parameter

ID Formula

AT

AT1 �[0,30]((gear = 3) → (speed > ρ)) ρ ∈ {20.6, 20.4, 20.2, 20, 19.8}
AT2 �[0,30]((gear = 4) → (speed > ρ)) ρ ∈ {43, 41, 39, 37, 35}
AT3 �[0,30]((gear = 4) → (rpm > ρ)) ρ ∈ {700, 800, 900, 1000, 1100}
AT4 �[0,30−τ]((δ10(rpm) > 2000) → (δτ (gear) > 0)) τ ∈ {15, 16, 17, 18, 19}
AT5 �[0,30]((speed < ρ) ∧ (RPM < 4780)) ρ ∈ {130, 131, 132, 133, 134, 135, 136, 137}
AT6 �[0,26]((δ4(speed) > ρ) → (δ4(gear) > 0)) ρ ∈ {20, 25, 30, 35, 40}
AT7 �[0,30−τ]((δτ (speed) > 30) → (δτ (gear) > 0)) τ ∈ {2, 3, 4, 5, 6, 7, 8}

AFC

AFC1 �[11,50]((controller_mode = 0) → (mu < ρ)) ρ ∈ {0.16, 0.17, 0.18, 0.19, 0.2}
AFC2 �[11,50]((controller_mode = 1) → (mu < ρ)) ρ ∈ {0.222, 0.224, 0.226, 0.228, 0.23}

close ≡ |Pos − Re f | <= ρ + α ∗ |Re f |
reach ≡ ^[0,2](�[0,1](close))

NN

NN1 �[0,18](¬close → reach), α = 0.04 ρ ∈ {0.001, 0.002, 0.003, 0.004, 0.005}
NN1 �[0,18](¬close → reach), α = 0.03 ρ ∈ {0.001, 0.002, 0.003, 0.004, 0.005}

(b) Sbench

Spec ID scaled factor 10
k

output

AT11

speed k ∈{-2,0,1,3}

AT12

AT13

AT14

AT15

AT54

speed k ∈{-2,0,1,3}

AT55

AT56

AT57

AT58

AFC11

mu k ∈{0,1,2,3}

AFC12

AFC13

AFC14

AFC15

produced 60 speci�cations. Column parameter in the table shows which concrete

values we used for the parameters ρ and τ . Note that all the speci�cations but one are

disjunctive safety properties (i.e., �I (φ1 ∨ φ2)), as they are the most di�cult case and

they are the main target of our approach; we just add AT5 as example of conjunctive

safety property (i.e., �I (φ1 ∧ φ2)).

Our approach has been proposed with the aim of tackling the scale problem.

Therefore, to better show how our approach mitigates this problem, we generated

a second benchmark set Sbench as follows. We selected 15 speci�cations from

Bbench (with concrete values for the parameters) and, for each speci�cation S , we

changed the corresponding Simulink model by multiplying one of its outputs by a

factor 10
k
, with k ∈ {−2, 0, 1, 2, 3} (note that we also include the original one using

scale factor 10
0
); the speci�cation has been modi�ed accordingly, by multiplying with

the scale factor the constants that are compared with the scaled output. This makes

sense, because we may use a di�erent measurement in real life, such as m/s instead of

km/h for speed. We implement this by adding a product block to the Simulink model.

Fig. 4.4 shows an example, where speed is ampli�ed by 10. We name a speci�cation S

scaled with factor 10
k

as Sk . Table 4.1b reports the IDs of the original speci�cations,

the output that has been scaled, and the used scaled factors; in total, the benchmark set

Sbench contains 60 speci�cations .

4.3 Experimental Evaluation 71

Modeling an Automatic Transmission Controller

3
gear

2
RPM

1
speed

Vehicle

Ne

gear

Nout

Ti

Tout

Transmission

gear

throttle

down_th

up_th

run()

ThresholdCalculation

speed

up_th

down_th

gear

CALC_TH()

ShiftLogic

Ti
Throttle

Ne

Engine

2
brake

1
throttle

ImprellerTorque

EngineRPM

TransmissionRPM

VehicleSpeed

OutputTorque

Figure 4.4: Automatic transmission model with speed ampli�ed by 10

Experiment In our context, an experiment consists in the execution of an approach

A (either Breach, MAB-ϵ-greedy, or MAB-UCB) over a speci�cation S for 30 trials,
using di�erent initial seeds. For each experiment, we record the success SR as the

number of trials in which a falsifying input was found, and average execution time of

the trials. Complete experimental results are reported in Appendix §A.2
1
. We report

aggregated results in Table 4.2.

For benchmark set Bbench, it reports aggregated results for each group of

speci�cations obtained from S (i.e., all the di�erent versions Si obtained by changing the

value of the parameter); for benchmark set Sbench, instead, results are aggregated

for each scaled speci�cation Sk (considering the versions Ski obtained by changing the

parameter value). We report minimum, maximum and average number of successes SR,

and time in seconds. For MAB-ϵ-greedy and MAB-UCB, both for SR and time, we

also report the average percentage di�erence
2

(∆) w.r.t. to the corresponding value of

Breach.

1
The code, models, and speci�cations are available online at https://github.com/ERATOMMSD/

FalStar-MAB.

2∆=((m−b)∗100)/(0.5∗(m+b)) wherem is the result of MAB and b the one of Breach.

https://github.com/ERATOMMSD/FalStar-MAB
https://github.com/ERATOMMSD/FalStar-MAB

72 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

Table 4.2: Aggregated results for benchmark sets Bbench and Sbench (SR: #

successes out 30 trials. Time in secs. ∆: percentage di�erence w.r.t. Breach).

Outperformance cases are highlighted, indicated by positive ∆ of SR, and negative ∆ of

time.

Spec. Breach MAB-ϵ-greedy MAB-UCB
ID SR (/30) time (sec.) SR (/30) time (sec.) SR (/30) time (sec.)

Min Max Avg Min Max Avg Min Max Avg ∆ Min Max Avg ∆ Min Max Avg ∆ Min Max Avg ∆

AT1 14 25 20.2 125 361.2 223.1 24 30 28.6 35.7 62.7 213.4 106.4 −73.4 28 30 29.2 37.8 45.1 146.8 77.4 −97.1

AT2 11 30 20.2 14 390.6 209.8 30 30 30 43.9 11.9 126.3 54.5 −96.9 27 30 29.4 42.2 17.7 92.5 36.8 −112.1

AT3 29 30 29.4 2.3 22.2 14.2 30 30 30 2 2.5 7 3.5 −82.9 30 30 30 2 2.5 3.6 3 −88.6

AT4 18 30 25.8 19.5 265.3 109.6 29 30 29.8 16 7.8 45.1 24.4 −105 30 30 30 16.6 6.2 36.2 22.2 −113.5

AT5 6 23 14.1 203.1 525.9 366.2 26 30 28.5 72.1 35.2 149 93.7 −120.6 26 30 28.2 71.4 37.7 154.1 99.2 −116.8

AT6 5 29 22.8 30.1 509.5 157 21 30 27 28 2.3 300 95.1 −98.3 22 30 27 27.7 2.9 247.3 86.1 −99.4

AT7 15 30 26.6 12.2 314 81.5 20 30 28.6 8.4 2.9 283.9 49.9 −92 23 30 29 10.3 5.5 223.3 42.9 −88.3

AFC1 6 30 14.4 124.8 565.6 413.5 4 28 12 −28.4 171 568.4 446 10.8 5 30 16.4 9.7 98.7 559.8 389.9 −9.3

AFC2 2 30 18 80.7 582.3 343.4 5 30 20 23.8 43.2 547.8 301.9 −23.8 5 30 20 22.9 59.4 568.4 320.5 −11.1

NN1 17 25 20.8 212.9 384.7 292.9 14 27 20.2 −4.5 189.5 422.8 320.3 6.2 17 28 22.6 7.3 148.2 403.3 272.3 −11.8

NN2 27 28 27.2 55.5 93.4 73.1 30 30 30 9.8 11 39.3 26.3 −97.8 30 30 30 9.8 14.6 38.2 27.4 −92.3

AT1
−2

30 30 30 42.5 97.4 56.9 28 30 29 −3.4 75.6 178.3 118.7 68.7 28 30 29.4 −2.1 54.3 136.3 80.3 33.3

AT1
0

14 25 20.2 125 361.2 223.1 24 30 28.6 35.7 62.7 213.4 106.4 −73.4 28 30 29.2 37.8 45.1 146.8 77.4 −97.1

AT1
1

4 21 15.4 204.5 527.6 310.2 25 30 29 68.4 49 234.7 102.1 −108 27 29 28.2 64.5 77.5 128.7 105.1 −93

AT1
3

8 24 19.8 164 471.7 240.1 29 30 29.8 44.6 67.5 170.6 101.9 −77.3 29 30 29.4 43.4 55.4 104.8 80.6 −93.6

AT5
−2

29 30 29.6 61.1 163.7 102 25 30 27.8 −6.4 76.9 139.5 111.9 12.6 28 30 29.4 −0.7 48.5 131.9 85.7 −17

AT5
0

6 18 11.2 291.1 525.9 423.1 28 30 28.4 90.5 80.2 151.3 107.4 −117.7 26 30 28 89.4 68.3 154.1 114.9 −114.5

AT5
1

0 2 0.4 566.4 600 593.3 27 30 28.4 194.8 70.7 184.5 110.3 −138.5 25 30 27.6 194.1 83.1 150 123.7 −131.2

AT5
3

0 1 0.2 586.4 600 597.3 27 30 28.6 197.2 66.8 163.3 102.5 −142.3 27 29 28 197.2 80.4 160.9 111.9 −137.4

AFC1
0

6 30 14.4 124.8 565.6 413.5 4 29 16.4 8.5 115.1 559.9 411.1 −2.8 5 30 16.4 9.7 98.7 559.8 389.9 −9.3

AFC1
1

7 30 16.6 99 548.2 393.3 3 29 10.8 −60.9 198.1 587.6 465.8 24.6 7 29 17.8 10.3 105.7 527.3 354.3 −10.3

AFC1
2

0 12 5.2 434.4 600 535.8 3 28 11.6 96.2 180.8 577.6 463 −20.7 4 30 17 127 73.7 556.3 374.5 −47.3

AFC1
3

1 12 4.8 425.7 587.4 532.6 3 30 14.4 109 138 585.5 436.5 −28 7 30 15 113 77.1 553.4 403.7 −39.9

Comparison In the following, we compare two approaches A1,A2 ∈ {Breach, MAB-
ϵ-greedy, MAB-UCB } by comparing the number of their successes SR and average

execution time using the non-parametric Wilcoxon signed-rank test with 5% level of

signi�cance
1

[100]; the null hypothesis is that there is no di�erence in applying A1 A2

in terms of the compared measure (SR or time).

4.3.2 Evaluation

We evaluate the proposed approach with some research questions.

RQ1 Which is the best MAB algorithm for our purpose?

In §4.2.2, we described that the proposed approach can be executed using two

di�erent strategies for choosing the arm in the MAB problem, namely MAB-ϵ-

1
We checked that the distributions are not normal with the non-parametric Shapiro-Wilk test.

4.3 Experimental Evaluation 73

Table 4.3: Experimental results – Sbench (SR: # successes out of 30 trials. Time in

secs)

Spec. Breach MAB-UCB Spec. Breach MAB-UCB Spec. Breach MAB-UCB
ID SR time SR time ID SR time SR time ID SR time SR time

(/30) (sec.) (/30) (sec.) (/30) (sec.) (/30) (sec.) (/30) (sec.) (/30) (sec.)

AT1
−2
1

30 51.3 30 54.3 AT5
−2
4

30 61.1 30 48.5 AFC1
0

1
30 124.8 30 98.7

AT1
0

1
25 125 29 75 AT5

0

4
18 291.1 28 94.5 AFC1

1

1
30 99 29 105.7

AT1
1

1
20 221.1 28 107.9 AT5

1

4
2 566.4 25 150 AFC1

2

1
12 434.4 30 73.7

AT1
3

1
23 170 29 55.4 AT5

3

4
1 586.4 28 96.2 AFC1

3

1
12 425.7 30 77.1

AT1
−2
2

30 49 29 67.5 AT5
−2
5

30 71.3 29 67.8 AFC1
0

2
16 421.5 23 346.8

AT1
0

2
22 187.5 30 45.1 AT5

0

5
15 369.1 27 114 AFC1

1

2
25 345.9 27 227.9

AT1
1

2
21 204.5 29 77.5 AT5

1

5
0 600 29 83.1 AFC1

2

2
8 497.2 25 320.5

AT1
3

2
24 164 30 61 AT5

3

5
0 600 27 113.8 AFC1

3

2
5 518.1 21 364

AT1
−2
3

30 42.5 30 62.4 AT5
−2
6

29 110.2 28 103.3 AFC1
0

3
11 457.7 15 442

AT1
0

3
19 239.5 29 62.5 AT5

0

6
10 438.2 30 68.3 AFC1

1

3
13 479.2 14 455.5

AT1
1

3
16 296.2 27 128.7 AT5

1

6
0 600 27 126.7 AFC1

2

3
2 590.7 15 453.2

AT1
3

3
21 209.8 30 93.4 AT5

3

6
0 600 29 80.4 AFC1

3

3
5 545.6 8 510.6

AT1
−2
4

30 44.5 30 80.8 AT5
−2
7

30 103.6 30 77.3 AFC1
0

4
9 498.2 9 502.1

AT1
0

4
21 202.2 30 57.4 AT5

0

7
7 491.4 26 154.1 AFC1

1

4
8 494 12 455

AT1
1

4
16 301.7 28 119.5 AT5

1

7
0 600 27 134.3 AFC1

2

4
4 556.8 11 468.7

AT1
3

4
23 185.1 29 88.3 AT5

3

7
0 600 29 108 AFC1

3

4
1 587.4 9 513.4

AT1
−2
5

30 97.4 28 136.3 AT5
−2
8

29 163.7 30 131.9 AFC1
0

5
6 565.6 5 559.8

AT1
0

5
14 361.2 28 146.8 AT5

0

8
6 525.9 29 143.6 AFC1

1

5
7 548.2 7 527.3

AT1
1

5
4 527.6 29 91.9 AT5

1

8
0 600 30 124.2 AFC1

2

5
0 600 4 556.3

AT1
3

5
8 471.7 29 104.8 AT5

3

8
0 600 27 160.9 AFC1

3

5
1 586 7 553.4

greedy and MAB-UCB. We here assess which one is better in terms of SR and

time. From the results in Table 4.2, it seems that MAB-UCB provides slightly better

performance in terms of SR; this has been con�rmed by the Wilcoxon test applied over

all the experiments (i.e., on the non-aggregated data reported in Appendix, §A.2):

the null hypothesis that using anyone of the two strategies has no impact on SR is

rejected with p-value equal to 0.005089, and the alternative hypothesis that SR is

better is accepted with p-value=0.9975; in a similar way, the null hypothesis that

there is no di�erence in terms of time is rejected with p-value equal to 3.495e-06,

and the alternative hypothesis that is MAB-UCB is faster is accepted with p-value=1.

Therefore, in the following RQs, we compare Breach with only the MAB-UCB version

of our approach.

RQ2 Does the proposed approach e�ectively solve the scale problem?

We here assess if our approach is e�ective in tackling the scale problem. Table 4.3

reports the complete experimental results over Sbench for Breach and MAB-UCB;

for each speci�cation S , all its scaled versions are reported in increasing order of

the scaling factor. We observe that changing the scaling factor a�ects (sometimes

74 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

greatly) the number of successes SR of Breach; for example, for AT55 and AT57 it

goes from 30 to 0. For MAB-UCB, instead, SR is similar across the scaled versions of

each speci�cation: this shows that the approach is robust w.r.t. to the scale problem

as the “hill-climbing gain” reward in Def. 15 eliminates the impact of scaling and

UCB1 algorithm balances the exploration and exploitation of two sub-formulas. The

observation is con�rmed by the Wilcoxon test over SR: the null hypothesis is rejected

with p-value=1.808e-09, and the alternative hypothesis accepted with p-value=1.

Instead, the null hypothesis that there is no di�erence in terms of time cannot be

rejected with p-value=0.3294.

RQ3 How does the proposed process behave with not scaled benchmarks?

In RQ2, we checked whether the proposed approach is able to tackle the scale

problem for which it has been designed. Here, instead, we are interested in investigating

how it behaves on speci�cations that have not been arti�cially scaled (i.e., those in

Bbench). From Table 4.2 (upper part), we observe that MAB-UCB is always better

than Breach both in terms of SR and time, which is shown by the highlighted cases.

This is con�rmed by Wilcoxon test over SR and time: null hypotheses are rejected with

p-values equal to, respectively, 6.02e-08 and 1.41e-08, and the alternative hypotheses

that MAB-UCB is better are both accepted with p-value=1. This means that the

proposed approach can also handle speci�cations that do not su�er from the scale

problem, and so it can be used with any kind of speci�cation.

4.3.3 A Comparison to a Normalization-Based Approach

A naïve solution to the scale problem could be to rescale the signals used in speci�cation

at the same scale. This is a normalization approach. For example, instead of falsifying

(¬(gear = 4) ∨ speed > 35), we can falsify (¬(gear = 4) ∨ (γ · speed > γ · 35)), where γ

is a rescaling factor that normalizes the robustness value of speed > 35 to the same

scale as that of gear = 4.

The Sbench already gives an implementation of the approach with manual

selections of rescaling factors. We thus can compare the performance of our approach

to this possible baseline. In some cases, this baseline approach performs quite well. For

example, the performance of AT1
−2

in Table 4.2 are the cases where speed is rescaled

by 0.01. In these cases, the falsi�cation performance in terms of SR is quite good

4.3 Experimental Evaluation 75

0 5 10 15 20 25 30
0

50

100

th
ro
ttl
e

0 5 10 15 20 25 30
0

200

400

br
ak
e

0 5 10 15 20 25 30
0

50

100

sp
ee
d

0 5 10 15 20 25 30
time

0

5000

R
PM

(a) Input signals throttle, brake and output sig-

nals speed, RPM of a sample during falsifying

AT5
0

6

0 5 10 15 20 25 30
50

100

150
speed[t] < 135

false

true
Quant. sat
Bool. sat

0 5 10 15 20 25 30
0

1000
2000
3000
4000

RPM[t] < 4780

false

true

0 5 10 15 20 25 30
0

50
100
150
200

(speed[t] < 135) and (RPM[t] < 4780)

false

true

0 5 10 15 20 25 30
time

0

50

100
alw_[0,30] ((speed[t] < 135) and (RPM[t] < 4780))

false

true

(b) Boolean satisfaction and quantitative ro-

bustness of the sample in Fig. 4.5a to sub-

formulas of AT5
0

6

Figure 4.5: A sample from hill-climbing optimization during falsi�cation to AT5
0

6
≡

�(speed < 135 ∧ rpm < 4780)

(SR being 30/30), compared to the cases with other rescaling factors. However, the

baseline approach does not always work well. For example, the speci�cations of AT5

give restriction to speed and rpm together, and these properties su�er from the scale

problem as speed is one order of magnitude less than rpm. However, from Table 4.2, we

observe that the baseline approach (i.e., running Breach over AT5
1
) is not e�ective, as

SR is 0.4/30, that is much lower than the original SR 14.1/30 of the unscaled approach

using Breach. Our approach, instead, raises SR to 28.4/30 and to 27.6/30 using the two

proposed versions. By monitoring Breach execution, we notice that the baseline

approach fails because it tries to falsify rpm < 4780, which, however, is not falsi�able;

our approach, instead, understands that it should try to falsify speed<ρ thanks to the

application of MAB algorithms.

Here, it gives rise to the problem: how to select the rescaling factor. The quick

answer is by comparing the scales of di�erent signals. However, the example of AT5

proves that this method does not work. Instead, the experimental results in Table 4.2

show that 10
−2(0.01) is the best choice. Let us take a further look into the example.

Fig. 4.5 presents a sample during the process falsifying AT5
0

6
. We can see that the �nal

robustness comes from the robustness to the sub-formula rpm < 4780. This is opposite

to our intuition, since robust semantics for conjunctive (see Def. 8) selects the minimum

76 Chapter 4. Multi-Armed Bandits for Boolean Connectives in STL

one between sub-formulas, but rpm is the one of larger magnitude. The explanation is

as follows: although rpm has a larger scale, it is less variant than speed; in other words,

JM(u), rpm < 4780K is more likely to be smaller than JM(u), speed < 135K, because

it is not hard to drive rpm to a high value. Therefore, the larger rescaling factor to

speed we select, the more probably that rpm takes the �nal robustness. That is why it

performs the best when the rescaling factor is 10
−2(0.01).

77

5
Constraining Counterexamples via

Search Space Transformation

In this chapter, we consider the falsi�cation problem in the presence of logical

constraints on input signals. Typical hill-climbing optimization algorithms rely on

random samplings, therefore, introduction of input constraints increases the occurrence

of infeasible samplings and thus makes the search more di�cult.

We �rstly show two naive penalty-based approaches that are, though able to

solve the problem, not very e�ective. We then present the main contribution of this

chapter, that is, a framework based on search space transformation. It consists of a

space mapping that maps points in an unconstrained search space to the constrained

input space, and a �tness de�nition that assigns �tness values to points in the search

space according to the robustness values of points in the input space. In this way, it

allows the search performing in an unconstrained space, and when a negative �tness is

detected, it returns the mapped point in the input space as a falsifying input. An

The material in this chapter is based on [82] and [90]

78 Chapter 5. Constraining Counterexamples via Search Space Trans.

throttle

brake

throttle

brake

throttle 2 [0, 1]
<latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit><latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit><latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit><latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit>

brake 2 [0, 1]
<latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit><latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit><latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit><latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit>

throttle 2 [0, 1]
<latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit><latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit><latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit><latexit sha1_base64="qLZX9jbwPG5nJRsmqFQ92cDGxmE=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIHqQkIuix6MVjBVsLSSib7aZdutkNuxOhhOLFv+LFgyJe/RXe/Ddu2hy09cHC48282ZkXpZxpcN1vq7K0vLK6Vl2vbWxube/Yu3sdLTNFaJtILlU3wppyJmgbGHDaTRXFScTpfTS6Lur3D1RpJsUdjFMaJnggWMwIBiP17IMgwTBkkMNQSTD2ScCE7556Yc+uuw13CmeReCWpoxKtnv0V9CXJEiqAcKy177kphDlWwIiZWwsyTVNMRnhAfUMFTqgO8+kJE+fYKH0nlso8Ac5U/e3IcaL1OIlMZ7Gwnq8V4n81P4P4MsyZSDOggsw+ijPugHSKPJw+U5QAHxuCiWJmV4cMscIETGo1E4I3f/Ii6Zw1PLfh3Z7Xm1dlHFV0iI7QCfLQBWqiG9RCbUTQI3pGr+jNerJerHfrY9ZasUrPPvoD6/MHdAWXbg==</latexit>

brake 2 [0, 1]
<latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit><latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit><latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit><latexit sha1_base64="e787FoUJ5NOEKXVcbLy1kbZ27Xg=">AAAB/3icbVBNS8NAFHypX7V+RQUvXhaL4EFKIoIei148VrC1kISy2W7apZtN2N0IJfbgX/HiQRGv/g1v/hs3bQ7aOrAwzLzHm50w5Uxpx/m2KkvLK6tr1fXaxubW9o69u9dRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DT+3B0Xfj3D1Qqlog7PU5pEOOBYBEjWBupZx/4MdZDpvNQ4hGd+Ex4zqkb9Oy603CmQIvELUkdSrR69pffT0gWU6EJx0p5rpPqIMdSM8LppOZniqaYjPCAeoYKHFMV5NP8E3RslD6KEmme0Giq/t7IcazUOA7NZJFWzXuF+J/nZTq6DHIm0kxTQWaHoowjnaCiDNRnkhLNx4ZgIpnJisgQS0y0qaxmSnDnv7xIOmcN12m4t+f15lVZRxUO4QhOwIULaMINtKANBB7hGV7hzXqyXqx362M2WrHKnX34A+vzB7W9ld8=</latexit>

throttle = 0 _ brake = 0
<latexit sha1_base64="VRBD2DQF6mP8/L7R2s3IdDIiU80=">AAACAXicbVC7SgNBFJ2NrxhfqzaCzWAQrMKuCNoEgjaWEcwDkiXMTmaTIbMzy8xdISyx8VdsLBSx9S/s/BsnyRaaeKvDeXDvPWEiuAHP+3YKK6tr6xvFzdLW9s7unrt/0DQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0c1Ubz0wbbiS9zBOWBCTgeQRpwQs1XOPYKgV2FjV61ovDjUZMVzFXs8texVvNngZ+Dkoo3zqPfer21c0jZkEKogxHd9LIMiIBk4Fm5S6qWEJoSMyYB0LJYmZCbLZBxN8apk+juwBkZKAZ+zvREZiY8ZxaJ0xgaFZ1Kbkf1onhegqyLhMUmCSzhdFqcCg8LQO3OeaURBjCwjV3N6K6ZBoQsGWVrIl+IsvL4PmecX3Kv7dRbl2nddRRMfoBJ0hH12iGrpFddRAFD2iZ/SK3pwn58V5dz7m1oKTZw7Rn3E+fwAWFZX5</latexit><latexit sha1_base64="VRBD2DQF6mP8/L7R2s3IdDIiU80=">AAACAXicbVC7SgNBFJ2NrxhfqzaCzWAQrMKuCNoEgjaWEcwDkiXMTmaTIbMzy8xdISyx8VdsLBSx9S/s/BsnyRaaeKvDeXDvPWEiuAHP+3YKK6tr6xvFzdLW9s7unrt/0DQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0c1Ubz0wbbiS9zBOWBCTgeQRpwQs1XOPYKgV2FjV61ovDjUZMVzFXs8texVvNngZ+Dkoo3zqPfer21c0jZkEKogxHd9LIMiIBk4Fm5S6qWEJoSMyYB0LJYmZCbLZBxN8apk+juwBkZKAZ+zvREZiY8ZxaJ0xgaFZ1Kbkf1onhegqyLhMUmCSzhdFqcCg8LQO3OeaURBjCwjV3N6K6ZBoQsGWVrIl+IsvL4PmecX3Kv7dRbl2nddRRMfoBJ0hH12iGrpFddRAFD2iZ/SK3pwn58V5dz7m1oKTZw7Rn3E+fwAWFZX5</latexit><latexit sha1_base64="VRBD2DQF6mP8/L7R2s3IdDIiU80=">AAACAXicbVC7SgNBFJ2NrxhfqzaCzWAQrMKuCNoEgjaWEcwDkiXMTmaTIbMzy8xdISyx8VdsLBSx9S/s/BsnyRaaeKvDeXDvPWEiuAHP+3YKK6tr6xvFzdLW9s7unrt/0DQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0c1Ubz0wbbiS9zBOWBCTgeQRpwQs1XOPYKgV2FjV61ovDjUZMVzFXs8texVvNngZ+Dkoo3zqPfer21c0jZkEKogxHd9LIMiIBk4Fm5S6qWEJoSMyYB0LJYmZCbLZBxN8apk+juwBkZKAZ+zvREZiY8ZxaJ0xgaFZ1Kbkf1onhegqyLhMUmCSzhdFqcCg8LQO3OeaURBjCwjV3N6K6ZBoQsGWVrIl+IsvL4PmecX3Kv7dRbl2nddRRMfoBJ0hH12iGrpFddRAFD2iZ/SK3pwn58V5dz7m1oKTZw7Rn3E+fwAWFZX5</latexit><latexit sha1_base64="VRBD2DQF6mP8/L7R2s3IdDIiU80=">AAACAXicbVC7SgNBFJ2NrxhfqzaCzWAQrMKuCNoEgjaWEcwDkiXMTmaTIbMzy8xdISyx8VdsLBSx9S/s/BsnyRaaeKvDeXDvPWEiuAHP+3YKK6tr6xvFzdLW9s7unrt/0DQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0c1Ubz0wbbiS9zBOWBCTgeQRpwQs1XOPYKgV2FjV61ovDjUZMVzFXs8texVvNngZ+Dkoo3zqPfer21c0jZkEKogxHd9LIMiIBk4Fm5S6qWEJoSMyYB0LJYmZCbLZBxN8apk+juwBkZKAZ+zvREZiY8ZxaJ0xgaFZ1Kbkf1onhegqyLhMUmCSzhdFqcCg8LQO3OeaURBjCwjV3N6K6ZBoQsGWVrIl+IsvL4PmecX3Kv7dRbl2nddRRMfoBJ0hH12iGrpFddRAFD2iZ/SK3pwn58V5dz7m1oKTZw7Rn3E+fwAWFZX5</latexit>

Figure 5.1: Feasible areas without/with considering input constraints

instance of space mapping, named proportional transformation, is then de�ned. We

propose three approaches that make use of the proportional transformation, and

we experimentally show that the one based on Multi-Armed Bandit (MAB) model

performs better than others.

5.1 Motivation and Problem De�nition

The problem setting of falsi�cation introduced in Def. 10 does not take into consideration

possible constraints over the input signals. Therefore, the search takes place in an

unconstrained space, and it can return any input signal that violates the system

speci�cation in that space provided that it manages to �nd one. However, in the

presence of constraints, the feasible search space is much more restricted. For example,

in an automotive system, like the one in Fig. 1.1, the throttle and brake cannot be

pushed simultaneously. If we ignore this constraint, then hill climbing can search freely

in the black rectangle in the left sub-�gure of Fig. 5.1; however, if the constraint is

considered, the search space shrinks to the black area in the right sub-�gure. Actually,

typical hill-climbing optimization algorithms only support searching in a rectangle

as the case of the left sub-�gure, so they do not work for the case of the right one.

As a consequence, the falsifying inputs they return are meaningless, e.g., a case in

which pushing throttle and brake simultaneously. Apparently, they are not helpful for

engineers to debug the system.

Indeed, some works [56, 76] report such input constraints in CPS. In [56], the

authors aim to test a powertrain control system, under the condition that throttle
increases or decreases monotonically; in that case, the values of input signals should be

dependent on their pre�xes. In [76], the authors test an assisted driving system with

5.1 Motivation and Problem De�nition 79

di�erent initial conditions as the system inputs. There is an constraint about the

environment and the system parameter—“when there is no fog, the visibility range is

set to maximum”. The authors should handle this constraint; otherwise the test does

not help the practical use.

In §5.1.1, we formally de�ne the constrained falsi�cation problem, in comparison

the the one in Def. 10. Particularly, we introduce two ways to formalize the constraints.

They will be used in di�erent technical contexts later, but they are equivalent in

expressivity given the condition that input signals are piecewise constant.

5.1.1 Problem De�nition

The input constrained falsi�cation problem considered in this chapter is de�ned as

follows.

De�nition 16 (Input constrained falsi�cation problem) The input constrained fal-
si�cation problem can be stated as the following constrained optimization problem, where
ψ are input constraints over the input signals u.

minimize
u

JM(u),φK

subject to u |= ψ

u ∈ Ω

In this chapter, we use two formalisms of constraintsψ . This �rst one used in §5.2

is simple. We just use STL to express constraints, becauseψ is a temporal property that

the input signal u is supposed to satisfy. See the syntax of STL in Def. 7. The second

one is introduced in Def. 19, given in the form of propositional logic formula. We use

that form for the search space transformation approach introduced in §5.3, §5.4 and

§5.5. Note that these two formalisms have equivalent expressivity provided that we use

piecewise constant as input signals, as we show in §5.6.1, where we explain how we

can transform one into the other one.

80 Chapter 5. Constraining Counterexamples via Search Space Trans.

5.2 Penalty-Based Approaches

In this section, we introduce two penalty-based approaches. A simple approach based

on the modi�cation of the speci�cation under study is presented in §5.2.1, while a

more complicated approach based on the lexicographic method are proposed in §5.2.2.

5.2.1 Constraint Embedding Approach

A straightforward penalty-based approach to the constrained falsi�cation problem con-

sists in embedding the input constraintsψ as a prerequisite of the system speci�cation

φ. In this way, we obtain the STL formulaψ → φ as a new falsi�cation goal.

The constrained problem of Def. 16 can be stated as the following unconstrained

problem.

minimize
u

J〈u,M(u)〉,ψ → φK

subject to u ∈ Ω

The falsi�cation approach must now evaluate the robustness of a formula that

predicates both over the input and output signals, formally denoted as 〈u,M(u)〉.
The soundness of the approach is given by Thm. 1.

Theorem 1 (Soundness & completeness of the Constraint Embedding Approach)
For all input signals u, J〈u,M(u)〉,ψ → φK < 0 if and only if the input constraintsψ are
satis�ed and the speci�cation φ is falsi�ed.

The proof directly comes from the robustness de�nition of STL and the semantics

of the implication.

5.2.2 Lexicographic Method Approach

While the constraint embedding approach can be e�ective in some cases, it does

not dictate a search algorithm to �rst satisfy input constraintsψ and then falsify the

speci�cation φ. We here propose a method that imposes a strict prioritization between

the satisfaction of the input constraints and the optimization of the objective function

for falsi�cation. This method is based on the use of a lexicographic method [101] for

de�ning the �tness function of the optimization problem.

5.2 Penalty-Based Approaches 81

A lexicographic method [101] can be applied for a multi-objective optimization

problem that aims at minimizing objective functions f1, . . . , fN , and for which there

exists a preference order in the optimization of the objective functions, i.e., functions

with higher priorities must be optimized �rst. Formally, there exists a total order of

priorities p1, . . . , pN , where pk = N − k for each k ∈ {1, . . . ,N }; the larger pk is, the

higher priority fk has.

minimize
x

f1(x), . . . , fN (x)

subject to x ∈ Ω

The method de�nes a global cost function GCF in the following way:

GCF(x) =
N∑
k=1

Bpk d(B − 1)Tk
(
fk(x)

)
e (5.1)

where B ∈ R+ with B > 1 is a base number, de is the regular ceiling operator, and

each Tk is a transformation function. Note that d(B − 1)Tk
(
fk(x)

)
e is needed to map

the transformed value of the objective function fk in B quantization levels. Such a

quantization is required by the lexicographic method to maintain the total order of the

inputs [102] w.r.t. the priorities of the objective functions, i.e., the �tness value of

a unachieved function with higher priority always dominates the �tness values of

functions of lower priority. Note that the value of B can have an e�ect on the e�ciency

of the search [102], as also noted during the application of the lexicographic methods

in other contexts [103]. In the experiments, we will evaluate such e�ect using di�erent

values for B.

The de�nition of a Tk is speci�c to the type of optimization problem; for example,

we will see later how to de�ne it for the constraint satisfaction problem and the

falsi�cation problem. In any case, the de�nition of a Tk must at least satisfy the

monotonicity property, i.e., given two values v1 ≤ v2, then Tk(v1) ≤ Tk(v2). Usually,

a transformation function Tk is implemented as a normalization function between

[0,1]: in such a case, the values of fk that are mapped to 0 are those that achieve the

objective.
1

1
Note that, in general, it is not always possible to specify when an objective function is “achieved”.

However, the lexicographic methods require that for functions f1, . . . , fN−1, this is possible, and this is

82 Chapter 5. Constraining Counterexamples via Search Space Trans.

We apply the lexicographic method to the constrained falsi�cation problem

introduced in Def. 16. To do this, we �rst turn the constrained falsi�cation problem in

a unconstrained multi-objective problem as follows.

minimize
u

Ju,¬ψ K (5.2)

minimize
u

JM(u),φK (5.3)

subject to u ∈ Ω

The constraint satisfaction problem has been turned into an optimization problem

by exploiting the robust semantics of STL (recall that also the input constraints are

expressed in STL). Since in a lexicographic method all objective functions must be

minimized (see Eq. 5.2.2), we consider the negation of the input constraints (negative

robustness of ¬ψ corresponds to positive robustness ofψ).

We can now combine the two objectives (Eq. 5.2 and Eq. 5.3) into a single global

cost function, following Eq. 5.1. Since we want to prioritize the satisfaction of the input

constraints, we take Ju,¬ψ K as f1, and JM(u),φK as f2. The de�nition of the global

cost function is as follows.

De�nition 17 (Lexicographic �tness function GCF fal for falsi�cation) Let f1(u) :=

Ju,¬ψ K, and f2(u) := JM(u),φK. The de�nition of the global cost function for the
constrained falsi�cation problem is as follows:

GCF fal(u) = Bd(B − 1)T1(f1(u))e + (B − 1)T2(f2(u))

As explained before, the de�nition of a transformation function Tk is speci�c to

the kind of optimization problem. In our context, the transformation function T1

considers values r given by the robustness evaluation of the input constraints: for any

negative value of the robustness, the input constraints are satis�ed, while positive

values indicate the degree of violation of the input constraints ψ . Therefore, T1 is

applicable in our context.

5.2 Penalty-Based Approaches 83

de�ned as a normalization function as follows:

T1(r) =


0 r < 0

r

Rψmax

otherwise
(5.4)

where Rψmax is the possible maximum value of r . The identi�cation of a correct Rψmax

requires minimum e�ort by sampling the input space. We will present how we come

up with Rψmax later in §5.6.

The transformation function T2, instead, considers values r given by the robustness

evaluation of the speci�cation φ. Also in this case, negative values of the robustness

mean that the objective is achieved (i.e., the speci�cation is falsi�ed). Therefore, the

de�nition of the transformation function for T2 is as follows:

T2(r) =


0 r < 0

ϵ r = 0

r

Rφmax
otherwise

(5.5)

where Rφmax is the possible maximum value of r , and ϵ is an arbitarily small positive

number
1
. We will also explain later in §5.6 how we select a proper Rφmax .

Considering the de�nitions of the two transformation functions, we can now

analyse the behaviour of function GCF fal (see Def. 17). Given an input signal u, if the

input constraintsψ are satis�ed, the �rst operand of the sum will be 0 (due to the

transformation function T1 in Eq. 5.4), and therefore the value of GCF fal will only

depend on the robustness value of the temporal speci�cation (i.e., the second operand).

On the other hand, if the input constraints are not satis�ed, the �rst operand will

be positive and guaranteed to be larger than the second one (so driving the search

towards the satisfaction of the input constraints).

Note that in the de�nition of GCF fal, we do not apply the ceiling operator to the

robustness evaluation of the speci�cation φ (i.e., f2). It is indeed known that the ceiling

operator is not really needed by the lexicographic method for the last operand of the

sum [101, 103], and we take advantage of this. Therefore, since f2 corresponds to the

1
Note that this is needed to distinguish inputs having robustness 0 (not falsifying) from those

having negative robustness (falsifying).

84 Chapter 5. Constraining Counterexamples via Search Space Trans.

falsi�cation algorithm, we prefer to remove the ceiling in order to preserve as much

information as possible regarding the speci�cation robustness that could be helpful for

driving the search. Indeed, removing the ceiling avoids the quantization e�ect that in

general is adversarial for the hill-climbing search.

Theorem 2 (Soundness of the GCF fal �tness function) If there exists an input sig-
nal u such that GCF fal(u) = 0, then the input constraints ψ are satis�ed and the
speci�cation φ is falsi�ed.

The proof directly comes from the de�nitions of GCF fal, T1, and T2, and the

robustness de�nition of STL.

5.2.3 Discussion: Weaknesses of the Penalty-Based Approaches

The approaches in §5.2 exemplify the same idea—adding a penalty to the objective

function and searching in a unconstrained space. Moreover, both approaches implement

the penalty as a quantitative guidance for input signals to satisfying the constraints.

However, these approaches are not su�ciently e�ective, as proved by the experimental

results in §5.6.

The reason is mainly from the following two folds: �rstly, the optimization

algorithm spends quite much time on searching in the infeasible area, especially if the

constraint is non-trivial, or even very hard, to satisfy, like the case in Fig. 5.1; secondly,

the penalty added to the objective function changes the �tness domain, which makes

the search much more di�cult. The penalty can introduce local optimum, �at �tness,

etc, to the objective function, in which cases hill-climbing optimization algorithms do

not work.

5.3 ProblemSetting andOverviewof the Search Space

Transformation-Based Approach

From this section on, we present the main contribution of this chapter, namely,

a framework solving the input constrained falsi�cation problem via search space

transformation. This framework consists of a search space transformation that maps a

5.3 Problem Setting and Overview of the Proposed Approach 85

point in an unconstrained search space to the constrained feasible space (which will be

introduced in §5.3 and §5.4), and the way of utilizing such transformation (which will

be introduced in §5.5).

The search space transformation maps a sample point from an unconstrained space

to a point in the constrained space. The latter identi�es an input signal u, in terms of

its parameterized representation. This is reasonable as we consider piecewise constant

signals as our input signal. We denote the discretized representation of u as a vector

−→u = (u1,1, . . . , u1,M , . . . , uK,1, . . . , uK,M), where M is the dimension of u and K is the

number of control points. We use it from now on to indicate the input signal. We thus

restate the problem de�nition of Def. 16 as follows.

De�nition 18 (Input constrained falsi�cation problem) The input constrained

falsi�cation problem is de�ned as:

minimize
−→u

JM(−→u),φK

subject to −→u |= ψ
−→u ∈ Ω

whereψ is a constraint on the input signal −→u . The goal of the problem is to �nd an input
signal −→u such that −→u |= ψ , −→u ∈ Ω, and JM(−→u),φK < 0.

In this work, asψ , we consider logical combinations of linear constraints (both

equalities and inequalities). We now give the syntax of the supported constraints.

Without loss of generality, we assume the logical constraints to be in Disjunctive

Normal Form (DNF). In the following sections, for the sake of presentation, constraints

are not given in DNF, but of course they can be transformed to it.

De�nition 19 (Syntax of constraints) We de�ne an n-ary constraintψ as follows:

ψ ::≡ ψ ∨ψ | γ γ ::≡ γ ∧ γ | ξ

ξ ::≡

n∑
k=1

akxk + an+1 = 0 |

n∑
k=1

akxk + an+1 < 0 | ⊥ | ¬ξ

Here a1, . . . ,an+1 ∈ R are coe�cients, and x1, . . . ,xn variables, each one xi de�ned over a
domain Di .

86 Chapter 5. Constraining Counterexamples via Search Space Trans.

space mapping

search space
input space

input
fitnesssample

model simulation
& fitness computation

⌦
<latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit>

�!x
<latexit sha1_base64="+MfDmQkXMZaAKk5StPwxCVuJngs=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48VbCu0oWy2m3bpZjfsbrQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5YcKZNp737ZTW1jc2t8rblZ3dvf0D97Da1jJVhLaI5FI9hFhTzgRtGWY4fUgUxXHIaScc38z8ziNVmklxb6YJDWI8FCxiBBsr9d1qT1pbseHIYKXkUzbJ+27Nq3tzoFXiF6QGBZp996s3kCSNqTCEY627vpeYIMPKMMJpXumlmiaYjPGQdi0VOKY6yOa35+jUKgMUSWVLGDRXf09kONZ6Goe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0aiWRBowBQlhk8twUQxeysiI6wwMTauig3BX355lbTP675X9+8uao3rIo4yHMMJnIEPl9CAW2hCCwhM4Ble4c3JnRfn3flYtJacYuYI/sD5/AE2z5Uw</latexit><latexit sha1_base64="+MfDmQkXMZaAKk5StPwxCVuJngs=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48VbCu0oWy2m3bpZjfsbrQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5YcKZNp737ZTW1jc2t8rblZ3dvf0D97Da1jJVhLaI5FI9hFhTzgRtGWY4fUgUxXHIaScc38z8ziNVmklxb6YJDWI8FCxiBBsr9d1qT1pbseHIYKXkUzbJ+27Nq3tzoFXiF6QGBZp996s3kCSNqTCEY627vpeYIMPKMMJpXumlmiaYjPGQdi0VOKY6yOa35+jUKgMUSWVLGDRXf09kONZ6Goe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0aiWRBowBQlhk8twUQxeysiI6wwMTauig3BX355lbTP675X9+8uao3rIo4yHMMJnIEPl9CAW2hCCwhM4Ble4c3JnRfn3flYtJacYuYI/sD5/AE2z5Uw</latexit><latexit sha1_base64="+MfDmQkXMZaAKk5StPwxCVuJngs=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48VbCu0oWy2m3bpZjfsbrQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5YcKZNp737ZTW1jc2t8rblZ3dvf0D97Da1jJVhLaI5FI9hFhTzgRtGWY4fUgUxXHIaScc38z8ziNVmklxb6YJDWI8FCxiBBsr9d1qT1pbseHIYKXkUzbJ+27Nq3tzoFXiF6QGBZp996s3kCSNqTCEY627vpeYIMPKMMJpXumlmiaYjPGQdi0VOKY6yOa35+jUKgMUSWVLGDRXf09kONZ6Goe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0aiWRBowBQlhk8twUQxeysiI6wwMTauig3BX355lbTP675X9+8uao3rIo4yHMMJnIEPl9CAW2hCCwhM4Ble4c3JnRfn3flYtJacYuYI/sD5/AE2z5Uw</latexit><latexit sha1_base64="+MfDmQkXMZaAKk5StPwxCVuJngs=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48VbCu0oWy2m3bpZjfsbrQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5YcKZNp737ZTW1jc2t8rblZ3dvf0D97Da1jJVhLaI5FI9hFhTzgRtGWY4fUgUxXHIaScc38z8ziNVmklxb6YJDWI8FCxiBBsr9d1qT1pbseHIYKXkUzbJ+27Nq3tzoFXiF6QGBZp996s3kCSNqTCEY627vpeYIMPKMMJpXumlmiaYjPGQdi0VOKY6yOa35+jUKgMUSWVLGDRXf09kONZ6Goe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0aiWRBowBQlhk8twUQxeysiI6wwMTauig3BX355lbTP675X9+8uao3rIo4yHMMJnIEPl9CAW2hCCwhM4Ble4c3JnRfn3flYtJacYuYI/sD5/AE2z5Uw</latexit>

r(�!x) = ⇢(�!y)
<latexit sha1_base64="tA67RlvF0PXBYonR1uTZ9RLg8O0=">AAACF3icbVDLSsNAFJ34rPUVdelmsAjtJiQi6EYounFZwT6gCWUynTRDJ5kwM1FDyF+48VfcuFDEre78G6dtFtp6YOBwzrncucdPGJXKtr+NpeWV1bX1ykZ1c2t7Z9fc2+9IngpM2pgzLno+koTRmLQVVYz0EkFQ5DPS9cdXE797R4SkPL5VWUK8CI1iGlCMlJYGpiXqLtcBQUehQkLw+/yhaFy4IuQLRlY0BmbNtuwp4CJxSlIDJVoD88sdcpxGJFaYISn7jp0oL0dCUcxIUXVTSRKEx2hE+prGKCLSy6d3FfBYK0MYcKFfrOBU/T2Ro0jKLPJ1MkIqlPPeRPzP66cqOPdyGiepIjGeLQpSBhWHk5LgkAqCFcs0QVhQ/VeIQyQQVrrKqi7BmT95kXROLMe2nJvTWvOyrKMCDsERqAMHnIEmuAYt0AYYPIJn8ArejCfjxXg3PmbRJaOcOQB/YHz+AACwoRA=</latexit><latexit sha1_base64="tA67RlvF0PXBYonR1uTZ9RLg8O0=">AAACF3icbVDLSsNAFJ34rPUVdelmsAjtJiQi6EYounFZwT6gCWUynTRDJ5kwM1FDyF+48VfcuFDEre78G6dtFtp6YOBwzrncucdPGJXKtr+NpeWV1bX1ykZ1c2t7Z9fc2+9IngpM2pgzLno+koTRmLQVVYz0EkFQ5DPS9cdXE797R4SkPL5VWUK8CI1iGlCMlJYGpiXqLtcBQUehQkLw+/yhaFy4IuQLRlY0BmbNtuwp4CJxSlIDJVoD88sdcpxGJFaYISn7jp0oL0dCUcxIUXVTSRKEx2hE+prGKCLSy6d3FfBYK0MYcKFfrOBU/T2Ro0jKLPJ1MkIqlPPeRPzP66cqOPdyGiepIjGeLQpSBhWHk5LgkAqCFcs0QVhQ/VeIQyQQVrrKqi7BmT95kXROLMe2nJvTWvOyrKMCDsERqAMHnIEmuAYt0AYYPIJn8ArejCfjxXg3PmbRJaOcOQB/YHz+AACwoRA=</latexit><latexit sha1_base64="tA67RlvF0PXBYonR1uTZ9RLg8O0=">AAACF3icbVDLSsNAFJ34rPUVdelmsAjtJiQi6EYounFZwT6gCWUynTRDJ5kwM1FDyF+48VfcuFDEre78G6dtFtp6YOBwzrncucdPGJXKtr+NpeWV1bX1ykZ1c2t7Z9fc2+9IngpM2pgzLno+koTRmLQVVYz0EkFQ5DPS9cdXE797R4SkPL5VWUK8CI1iGlCMlJYGpiXqLtcBQUehQkLw+/yhaFy4IuQLRlY0BmbNtuwp4CJxSlIDJVoD88sdcpxGJFaYISn7jp0oL0dCUcxIUXVTSRKEx2hE+prGKCLSy6d3FfBYK0MYcKFfrOBU/T2Ro0jKLPJ1MkIqlPPeRPzP66cqOPdyGiepIjGeLQpSBhWHk5LgkAqCFcs0QVhQ/VeIQyQQVrrKqi7BmT95kXROLMe2nJvTWvOyrKMCDsERqAMHnIEmuAYt0AYYPIJn8ArejCfjxXg3PmbRJaOcOQB/YHz+AACwoRA=</latexit><latexit sha1_base64="tA67RlvF0PXBYonR1uTZ9RLg8O0=">AAACF3icbVDLSsNAFJ34rPUVdelmsAjtJiQi6EYounFZwT6gCWUynTRDJ5kwM1FDyF+48VfcuFDEre78G6dtFtp6YOBwzrncucdPGJXKtr+NpeWV1bX1ykZ1c2t7Z9fc2+9IngpM2pgzLno+koTRmLQVVYz0EkFQ5DPS9cdXE797R4SkPL5VWUK8CI1iGlCMlJYGpiXqLtcBQUehQkLw+/yhaFy4IuQLRlY0BmbNtuwp4CJxSlIDJVoD88sdcpxGJFaYISn7jp0oL0dCUcxIUXVTSRKEx2hE+prGKCLSy6d3FfBYK0MYcKFfrOBU/T2Ro0jKLPJ1MkIqlPPeRPzP66cqOPdyGiepIjGeLQpSBhWHk5LgkAqCFcs0QVhQ/VeIQyQQVrrKqi7BmT95kXROLMe2nJvTWvOyrKMCDsERqAMHnIEmuAYt0AYYPIJn8ArejCfjxXg3PmbRJaOcOQB/YHz+AACwoRA=</latexit>

�!y = T (�!x)
<latexit sha1_base64="x9ywW43AQX5M+wFulmpiIqfIZmo=">AAACG3icbVDLSsNAFJ3UV62vqEs3wSLUTUmKoBuh6MZlhb6gCWUynbRDJzNhZqKGkP9w46+4caGIK8GFf+OkzUJbD1w4nHMv997jR5RIZdvfRmlldW19o7xZ2dre2d0z9w+6kscC4Q7ilIu+DyWmhOGOIorifiQwDH2Ke/70Ovd7d1hIwllbJRH2QjhmJCAIKi0NzYbLtS3IeKKgEPw+TbJLN4RqgiBN21lt0X7ITodm1a7bM1jLxClIFRRoDc1Pd8RRHGKmEIVSDhw7Ul4KhSKI4qzixhJHEE3hGA80ZTDE0ktnv2XWiVZGVsCFLqasmfp7IoWhlEno6878bLno5eJ/3iBWwYWXEhbFCjM0XxTE1FLcyoOyRkRgpGiiCUSC6FstNIECIqXjrOgQnMWXl0m3UXfsunN7Vm1eFXGUwRE4BjXggHPQBDegBToAgUfwDF7Bm/FkvBjvxse8tWQUM4fgD4yvHySPo1I=</latexit><latexit sha1_base64="x9ywW43AQX5M+wFulmpiIqfIZmo=">AAACG3icbVDLSsNAFJ3UV62vqEs3wSLUTUmKoBuh6MZlhb6gCWUynbRDJzNhZqKGkP9w46+4caGIK8GFf+OkzUJbD1w4nHMv997jR5RIZdvfRmlldW19o7xZ2dre2d0z9w+6kscC4Q7ilIu+DyWmhOGOIorifiQwDH2Ke/70Ovd7d1hIwllbJRH2QjhmJCAIKi0NzYbLtS3IeKKgEPw+TbJLN4RqgiBN21lt0X7ITodm1a7bM1jLxClIFRRoDc1Pd8RRHGKmEIVSDhw7Ul4KhSKI4qzixhJHEE3hGA80ZTDE0ktnv2XWiVZGVsCFLqasmfp7IoWhlEno6878bLno5eJ/3iBWwYWXEhbFCjM0XxTE1FLcyoOyRkRgpGiiCUSC6FstNIECIqXjrOgQnMWXl0m3UXfsunN7Vm1eFXGUwRE4BjXggHPQBDegBToAgUfwDF7Bm/FkvBjvxse8tWQUM4fgD4yvHySPo1I=</latexit><latexit sha1_base64="x9ywW43AQX5M+wFulmpiIqfIZmo=">AAACG3icbVDLSsNAFJ3UV62vqEs3wSLUTUmKoBuh6MZlhb6gCWUynbRDJzNhZqKGkP9w46+4caGIK8GFf+OkzUJbD1w4nHMv997jR5RIZdvfRmlldW19o7xZ2dre2d0z9w+6kscC4Q7ilIu+DyWmhOGOIorifiQwDH2Ke/70Ovd7d1hIwllbJRH2QjhmJCAIKi0NzYbLtS3IeKKgEPw+TbJLN4RqgiBN21lt0X7ITodm1a7bM1jLxClIFRRoDc1Pd8RRHGKmEIVSDhw7Ul4KhSKI4qzixhJHEE3hGA80ZTDE0ktnv2XWiVZGVsCFLqasmfp7IoWhlEno6878bLno5eJ/3iBWwYWXEhbFCjM0XxTE1FLcyoOyRkRgpGiiCUSC6FstNIECIqXjrOgQnMWXl0m3UXfsunN7Vm1eFXGUwRE4BjXggHPQBDegBToAgUfwDF7Bm/FkvBjvxse8tWQUM4fgD4yvHySPo1I=</latexit><latexit sha1_base64="x9ywW43AQX5M+wFulmpiIqfIZmo=">AAACG3icbVDLSsNAFJ3UV62vqEs3wSLUTUmKoBuh6MZlhb6gCWUynbRDJzNhZqKGkP9w46+4caGIK8GFf+OkzUJbD1w4nHMv997jR5RIZdvfRmlldW19o7xZ2dre2d0z9w+6kscC4Q7ilIu+DyWmhOGOIorifiQwDH2Ke/70Ovd7d1hIwllbJRH2QjhmJCAIKi0NzYbLtS3IeKKgEPw+TbJLN4RqgiBN21lt0X7ITodm1a7bM1jLxClIFRRoDc1Pd8RRHGKmEIVSDhw7Ul4KhSKI4qzixhJHEE3hGA80ZTDE0ktnv2XWiVZGVsCFLqasmfp7IoWhlEno6878bLno5eJ/3iBWwYWXEhbFCjM0XxTE1FLcyoOyRkRgpGiiCUSC6FstNIECIqXjrOgQnMWXl0m3UXfsunN7Vm1eFXGUwRE4BjXggHPQBDegBToAgUfwDF7Bm/FkvBjvxse8tWQUM4fgD4yvHySPo1I=</latexit>

r(�!x) < 0
<latexit sha1_base64="tr7b3975Ih+ybV2gaEankQFMcoI=">AAACAHicbVC7TsMwFHXKq5RXgIGBJaJCKkuVICQYGCpYGItEH1IbVY7rtFYdO7JvgCrKwq+wMIAQK5/Bxt/gthmg5UiWjs45V9f3BDFnGlz32yosLa+srhXXSxubW9s79u5eU8tEEdogkkvVDrCmnAnaAAactmNFcRRw2gpG1xO/dU+VZlLcwTimfoQHgoWMYDBSzz5Qla40AcUGQ8BKyYf0MTu5dHt22a26UziLxMtJGeWo9+yvbl+SJKICCMdadzw3Bj/FChjhNCt1E01jTEZ4QDuGChxR7afTAzLn2Ch9J5TKPAHOVP09keJI63EUmGSEYajnvYn4n9dJILzwUybiBKggs0Vhwh2QzqQNp88UJcDHhmCimPmrQ4ZYYQKms5IpwZs/eZE0T6ueW/Vuz8q1q7yOIjpER6iCPHSOaugG1VEDEZShZ/SK3qwn68V6tz5m0YKVz+yjP7A+fwDhC5aR</latexit><latexit sha1_base64="tr7b3975Ih+ybV2gaEankQFMcoI=">AAACAHicbVC7TsMwFHXKq5RXgIGBJaJCKkuVICQYGCpYGItEH1IbVY7rtFYdO7JvgCrKwq+wMIAQK5/Bxt/gthmg5UiWjs45V9f3BDFnGlz32yosLa+srhXXSxubW9s79u5eU8tEEdogkkvVDrCmnAnaAAactmNFcRRw2gpG1xO/dU+VZlLcwTimfoQHgoWMYDBSzz5Qla40AcUGQ8BKyYf0MTu5dHt22a26UziLxMtJGeWo9+yvbl+SJKICCMdadzw3Bj/FChjhNCt1E01jTEZ4QDuGChxR7afTAzLn2Ch9J5TKPAHOVP09keJI63EUmGSEYajnvYn4n9dJILzwUybiBKggs0Vhwh2QzqQNp88UJcDHhmCimPmrQ4ZYYQKms5IpwZs/eZE0T6ueW/Vuz8q1q7yOIjpER6iCPHSOaugG1VEDEZShZ/SK3qwn68V6tz5m0YKVz+yjP7A+fwDhC5aR</latexit><latexit sha1_base64="tr7b3975Ih+ybV2gaEankQFMcoI=">AAACAHicbVC7TsMwFHXKq5RXgIGBJaJCKkuVICQYGCpYGItEH1IbVY7rtFYdO7JvgCrKwq+wMIAQK5/Bxt/gthmg5UiWjs45V9f3BDFnGlz32yosLa+srhXXSxubW9s79u5eU8tEEdogkkvVDrCmnAnaAAactmNFcRRw2gpG1xO/dU+VZlLcwTimfoQHgoWMYDBSzz5Qla40AcUGQ8BKyYf0MTu5dHt22a26UziLxMtJGeWo9+yvbl+SJKICCMdadzw3Bj/FChjhNCt1E01jTEZ4QDuGChxR7afTAzLn2Ch9J5TKPAHOVP09keJI63EUmGSEYajnvYn4n9dJILzwUybiBKggs0Vhwh2QzqQNp88UJcDHhmCimPmrQ4ZYYQKms5IpwZs/eZE0T6ueW/Vuz8q1q7yOIjpER6iCPHSOaugG1VEDEZShZ/SK3qwn68V6tz5m0YKVz+yjP7A+fwDhC5aR</latexit><latexit sha1_base64="tr7b3975Ih+ybV2gaEankQFMcoI=">AAACAHicbVC7TsMwFHXKq5RXgIGBJaJCKkuVICQYGCpYGItEH1IbVY7rtFYdO7JvgCrKwq+wMIAQK5/Bxt/gthmg5UiWjs45V9f3BDFnGlz32yosLa+srhXXSxubW9s79u5eU8tEEdogkkvVDrCmnAnaAAactmNFcRRw2gpG1xO/dU+VZlLcwTimfoQHgoWMYDBSzz5Qla40AcUGQ8BKyYf0MTu5dHt22a26UziLxMtJGeWo9+yvbl+SJKICCMdadzw3Bj/FChjhNCt1E01jTEZ4QDuGChxR7afTAzLn2Ch9J5TKPAHOVP09keJI63EUmGSEYajnvYn4n9dJILzwUybiBKggs0Vhwh2QzqQNp88UJcDHhmCimPmrQ4ZYYQKms5IpwZs/eZE0T6ueW/Vuz8q1q7yOIjpER6iCPHSOaugG1VEDEZShZ/SK3qwn68V6tz5m0YKVz+yjP7A+fwDhC5aR</latexit>

hill-climbing
optimization

sampling, fitness history

�!x 0
<latexit sha1_base64="q7DL+AleuTUgF/YyyKFhbOpty/Y=">AAAB/XicbVDJSgNBEO2JW4zbuNy8NAbBU5gRQY9BLx4jmAWSYejp9CRNerqH7ho1DsFf8eJBEa/+hzf/xs5y0MQHBY/3qqiqF6WCG/C8b6ewtLyyulZcL21sbm3vuLt7DaMyTVmdKqF0KyKGCS5ZHTgI1ko1I0kkWDMaXI395h3Thit5C8OUBQnpSR5zSsBKoXvQUdbWvNcHorW6zx9GoRe6Za/iTYAXiT8jZTRDLXS/Ol1Fs4RJoIIY0/a9FIKcaOBUsFGpkxmWEjogPda2VJKEmSCfXD/Cx1bp4lhpWxLwRP09kZPEmGES2c6EQN/Me2PxP6+dQXwR5FymGTBJp4viTGBQeBwF7nLNKIihJYRqbm/FtE80oWADK9kQ/PmXF0njtOJ7Ff/mrFy9nMVRRIfoCJ0gH52jKrpGNVRHFD2iZ/SK3pwn58V5dz6mrQVnNrOP/sD5/AFp55XT</latexit><latexit sha1_base64="q7DL+AleuTUgF/YyyKFhbOpty/Y=">AAAB/XicbVDJSgNBEO2JW4zbuNy8NAbBU5gRQY9BLx4jmAWSYejp9CRNerqH7ho1DsFf8eJBEa/+hzf/xs5y0MQHBY/3qqiqF6WCG/C8b6ewtLyyulZcL21sbm3vuLt7DaMyTVmdKqF0KyKGCS5ZHTgI1ko1I0kkWDMaXI395h3Thit5C8OUBQnpSR5zSsBKoXvQUdbWvNcHorW6zx9GoRe6Za/iTYAXiT8jZTRDLXS/Ol1Fs4RJoIIY0/a9FIKcaOBUsFGpkxmWEjogPda2VJKEmSCfXD/Cx1bp4lhpWxLwRP09kZPEmGES2c6EQN/Me2PxP6+dQXwR5FymGTBJp4viTGBQeBwF7nLNKIihJYRqbm/FtE80oWADK9kQ/PmXF0njtOJ7Ff/mrFy9nMVRRIfoCJ0gH52jKrpGNVRHFD2iZ/SK3pwn58V5dz6mrQVnNrOP/sD5/AFp55XT</latexit><latexit sha1_base64="q7DL+AleuTUgF/YyyKFhbOpty/Y=">AAAB/XicbVDJSgNBEO2JW4zbuNy8NAbBU5gRQY9BLx4jmAWSYejp9CRNerqH7ho1DsFf8eJBEa/+hzf/xs5y0MQHBY/3qqiqF6WCG/C8b6ewtLyyulZcL21sbm3vuLt7DaMyTVmdKqF0KyKGCS5ZHTgI1ko1I0kkWDMaXI395h3Thit5C8OUBQnpSR5zSsBKoXvQUdbWvNcHorW6zx9GoRe6Za/iTYAXiT8jZTRDLXS/Ol1Fs4RJoIIY0/a9FIKcaOBUsFGpkxmWEjogPda2VJKEmSCfXD/Cx1bp4lhpWxLwRP09kZPEmGES2c6EQN/Me2PxP6+dQXwR5FymGTBJp4viTGBQeBwF7nLNKIihJYRqbm/FtE80oWADK9kQ/PmXF0njtOJ7Ff/mrFy9nMVRRIfoCJ0gH52jKrpGNVRHFD2iZ/SK3pwn58V5dz6mrQVnNrOP/sD5/AFp55XT</latexit><latexit sha1_base64="q7DL+AleuTUgF/YyyKFhbOpty/Y=">AAAB/XicbVDJSgNBEO2JW4zbuNy8NAbBU5gRQY9BLx4jmAWSYejp9CRNerqH7ho1DsFf8eJBEa/+hzf/xs5y0MQHBY/3qqiqF6WCG/C8b6ewtLyyulZcL21sbm3vuLt7DaMyTVmdKqF0KyKGCS5ZHTgI1ko1I0kkWDMaXI395h3Thit5C8OUBQnpSR5zSsBKoXvQUdbWvNcHorW6zx9GoRe6Za/iTYAXiT8jZTRDLXS/Ol1Fs4RJoIIY0/a9FIKcaOBUsFGpkxmWEjogPda2VJKEmSCfXD/Cx1bp4lhpWxLwRP09kZPEmGES2c6EQN/Me2PxP6+dQXwR5FymGTBJp4viTGBQeBwF7nLNKIihJYRqbm/FtE80oWADK9kQ/PmXF0njtOJ7Ff/mrFy9nMVRRIfoCJ0gH52jKrpGNVRHFD2iZ/SK3pwn58V5dz6mrQVnNrOP/sD5/AFp55XT</latexit>

initial sample

:-)

Search space transformation

⌅<latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit>

Figure 5.2: Proposed constrained falsi�cation approach

In our context, the number of variables is n = MK, because the input signal is a

piecewise constant signal composed of M inputs having K control points.

Example 1 The aforementioned example of constraint that throttle and brake cannot be

positive simultaneously can be expressed as
∧K

k=1 (thro�lek = 0 ∨ brakek = 0).

In Def. 18, the actual input space is given by the application ofψ to Ω. We denote

this constrained space as Ωψ , which contains all the points in Ω that satisfy ψ , i.e.,

Ωψ := {−→x ∈ Ω | −→x |= ψ }.

5.3.1 Search Space Transformation-Based Approach

In this rest of this chapter, we propose an approach for the input constrained falsi�cation

problem. The work�ow is shown in Fig. 5.2. Let Ξ be an arbitrary hyperrectangle with

the same number of dimensions as Ωψ . In the following, we name Ξ as a search space
and Ωψ as an input space. The approach allows to perform the falsi�cation search over

the search space Ξ (weakly-bounded, so not harming the e�ectiveness of hill climbing)

but, at the same time, it minimizes the �tness computed based on the input space Ωψ .

To do this, the �tness function r of Ξ is de�ned in terms of the �tness (robustness)

distribution ρ in Ωψ . More precisely, it employs a search space transformation that

�rstly maps a point
−→x of the search space Ξ into a point

−→y of the input space Ωψ

through a space mapping T (i.e.,
−→y = T(−→x)), and then de�nes the �tness accordingly

(i.e., r (−→x) = ρ(−→y)). In this way, the constrained falsi�cation problem is turned into an

5.3 Problem Setting and Overview of the Proposed Approach 87

unconstrained optimization problem:

minimize
−→x

r (−→x)

subject to −→x ∈ Ξ

Once a point
−→x with negative �tness in Ξ is found, the mapped point

−→y = T(−→x)

in Ωψ will be returned as falsifying input. Formally, the process of search space

transformation is de�ned by the two following de�nitions.

De�nition 20 (Space mapping) Let Ξ be the search space, and Ωψ be the input space.
We de�ne a space mapping function T : Ξ→ Ωψ as a total surjective function from Ξ to
Ωψ .

We also de�ne the �tness function of the points of the search space Ξ on the base

of the �tness of the input space Ωψ .

De�nition 21 (Fitness function in Ξ) Let Ωψ be the input space, and ρ : Ωψ → R be
a �tness function for Ωψ . Let T : Ξ→ Ωψ be a space mapping from the search space Ξ to
Ωψ . The �tness function r : Ξ→ R in the search space Ξ is de�ned as r (−→x) := ρ

(
T(
−→x)

)
.

The search space transformation guarantees two properties necessary in our

approach.

Proposition 1 (Soundness and completeness of the Search Space Transformation)
Any falsi�cation algorithm that samples over the search space Ξ using the �tness function
r as guidance is guaranteed to be sound and complete:

Soundness: If a sample −→x with negative �tness (r (−→x) < 0) is found in the search space
Ξ, the corresponding input −→y = T(−→x) in the input space Ωψ is guaranteed to be
a falsifying input (ρ

(
−→y

)
< 0). As soon as such an −→x is found, the falsi�cation

process can stop and −→y can be returned as witness of the falsi�cation.
Completeness: For each falsifying input −→y in the input space Ωψ , there is a sample −→x

in the search space Ξ that maps to it, i.e., −→y = T(−→x). This guarantees that the
search over Ξ can �nd all the falsifying inputs (if any).

88 Chapter 5. Constraining Counterexamples via Search Space Trans.

The soundness comes from the de�nition of r (see Def. 21): once r (−→x) < 0, it means

that ρ
(
T(
−→x)

)
< 0 and thus ρ

(
−→y

)
< 0. The completeness is from the surjectiveness of

T (Def. 20).

Remark 1 Prop. 1 states that any space mapping guarantees soundness and completeness
of the approach. However, these are not the only desired properties. We would also like
that the implemented space mapping does not harm the e�ectiveness of hill climbing. For
guaranteeing this, hill climbing in the search space Ξ should get a faithful representation
of the �tness landscape of the input space Ωψ .

Continuity of a space mapping, i.e., mapping points in proximity again to proximity,
is a good criterion. We shall propose a speci�c class of continuous space mappings. It is
called the proportional transformation.

5.4 Proportional Transformation

Di�erent search space transformations can be identi�ed, that di�er in the way they

implement the space mapping (see Def. 20). In this section, we propose the proportional
transformation T that maps each point of the search space Ξ into a point of the input

space Ωψ , by proportionally scaling the value of each dimension of Ξ. It is illustrated in

Fig. 5.3.

We call a set of non-overlapping intervals as interval sequence. Formally, an

interval sequence over the real domain is de�ned as R := (I1, . . . , Iq), where (a) each

Ij = [I
L
j , I

U
j] is a continuous interval with lower bound ILj ∈ R and upper bound IUj ∈ R,

such that ILj ≤ IUj ; (b) IUj < ILj+1 for each j = 1, . . . ,q − 1. We denote the length of an

interval Ij as |Ij | = IUj − I
L
j , and the accumulated length of all the intervals in R as

accLen(R) =
∑q

j=1 |Ij |.

We now provide a de�nition for determining the bounds of the constrained space

identi�ed by the constraints.

De�nition 22 (Feasible interval sequence) LetΞ be the search space, andψ = ∨ti=1ψi
an n-ary constraint in DNF de�ned over variables −→x = (x1, . . . ,xn), where each ψi is
a conjunction of equalities and/or inequalities. Given a dimension d ∈ {1, . . . ,n}, we
can identify the bounds ofψ over d as follows. For each conjunctionψi , we identify the

5.4 Proportional Transformation 89

minimum ΓLi and the maximum ΓUi of its feasible area, by solving two linear programming
problems1 (note thatψi only contains equalities and inequalities):

minimize xd

subject to −→x |= ψi
−→x ∈ Ω

and
maximize xd

subject to −→x |= ψi
−→x ∈ Ω

Then, the feasible interval sequence Rd ofψ on the d-th dimension is computed as
follows: Rd :=

⋃t
i=1[Γ

L
i , Γ

U
i].

In the next de�nition, we show how a value belonging to a continuous interval can

be mapped to an interval sequence.

De�nition 23 (Proportional position) LetA = [AL,AU] be a continuous interval and
v ∈ A. The proportional position Θ(v,A, R) of v in an interval sequence R = (I1, . . . , Iq) is
de�ned as follows:

Θ(v,A, R) := p · accLen(R) −
e∑
j=1

|Ij | + I
L
e+1

where:

• p = v−AL

AU −AL is the proportional value of v in A;
• e ∈ {1, . . . ,q} is the maximum index that satis�es p · accLen(R)−

∑e
j=1 |Ij | > 0.2

De�nition 24 (Constraint reduction) Letψ be an n-ary constraint. Given a search
space Ξ and a point −→u ∈ Ξ, we compute the proportional position πd = Θ(ud , Dd , Rd) over
the d-th dimension of −→u (i.e., ud). Then, the function Reduce(ψ ,πd ,d) := ψ [xd 7→ πd]

is used to reduceψ to an (n − 1)-ary constraint.

1
They can be easily computed with any linear programming solver.

2
Note that accLen(R) can be 0. The implementation handles these cases.

90 Chapter 5. Constraining Counterexamples via Search Space Trans.

Algorithm 5.1 Proportional transformation

Require: a search space Ξ =
∏n

k=1 Dk , a sampled point
−→u ∈ Ξ, a constraintψ = ∨ti=1ψi

in DNF, a priority (permutation) S of the dimensions {1, . . . ,n}.
1: function Map-Point(Ξ,ψ , S,−→u)

2:
−→π = (π1, . . . ,πn) ← (0, . . . , 0) . Initialize

−→π
3: Map-Dimension(Ξ,ψ , S,−→u ,−→π)

4: Return −→π . Final mapped point in Ωψ

5: procedure Map-Dimension(Ξ,ψ , S,−→u ,−→π)

6: if length(S) > 0 then
7: s ← S .head . Obtain the �rst dimension in S
8: Rs ←

⋃t
i=1[Γ

L
i , Γ

U
i] . Feasible interval sequence

9: πs ← Θ(us ,Ds ,Rs) . Obtain proportional position

10: ψ ′← Reduce(ψ ,πs , s) . Constraint reduction

11: S′← remove s from S
12: Map-Dimension(Ξ,ψ ′, S′,−→u ,−→π) . Recursive call

13: end procedure

We de�ne S as a permutation of the set {1, . . . ,n} of the dimensions of Ξ. Here, S

identi�es the order in which the dimensions must be considered, and so it will be

called priority in the following.

The proposed proportional transformation T maps a point
−→u of Ξ into a point

−→π of

Ωψ , such that
−→π satis�es the constraintψ . To do this, it iteratively computes feasible

interval sequences (Def. 22), identi�es the proportional position (Def. 23), and performs

constraint reduction (Def. 24), following a given priority order S , until all values on

di�erent dimensions of
−→u have been mapped to their corresponding proportional

positions. The computation of the proportional transformation is presented in Alg. 5.1.

The algorithm starts by initializing an n-dimensional point
−→π (Line 2), and invoking

the procedure Map-Dimension using as arguments the search space Ξ, the constraint

ψ , and the priority S (Line 3). The procedure Map-Dimension also receives the point

−→π , and iteratively modi�es its value on each dimension. In each loop, the procedure

obtains the �rst element s of the priority S , and determines the feasible interval sequence
Rs of s dimension, following the rules in Def. 22 (Line 8). Then, the proportional

position Θ(us ,Ds ,Rs) of
−→u on s dimension is computed according to Def. 23 (Line 9),

and the constraintψ is reduced over s dimension following Def. 24 (Line 10). Finally,

5.4 Proportional Transformation 91

10

10

5

5

O

⌦
<latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>O

⌅
<latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit>

T
<latexit sha1_base64="77YRmHrEMtg+VcaIbemULYAWkRw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63U9rY3NreKe9W9vYPDo+qxycdE6ea8TaLZax7ATVcCsXbKFDyXqI5jQLJu8H0Pve7T1wbEasWzhLuR3SsRCgYRSv1BxHFCaMya82H1Zpbdxcg68QrSA0KNIfVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLSLPyYVVRiSMtX0KyUL9vZHRyJhZFNjJPKJZ9XLxP6+fYnjrZ0IlKXLFlh+FqSQYk/x+MhKaM5QzSyjTwmYlbEI1ZWhbqtgSvNWT10nnqu65de/xuta4K+oowxmcwyV4cAMNeIAmtIFBDM/wCm8OOi/Ou/OxHC05xc4p/IHz+QONLZFq</latexit><latexit sha1_base64="77YRmHrEMtg+VcaIbemULYAWkRw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63U9rY3NreKe9W9vYPDo+qxycdE6ea8TaLZax7ATVcCsXbKFDyXqI5jQLJu8H0Pve7T1wbEasWzhLuR3SsRCgYRSv1BxHFCaMya82H1Zpbdxcg68QrSA0KNIfVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLSLPyYVVRiSMtX0KyUL9vZHRyJhZFNjJPKJZ9XLxP6+fYnjrZ0IlKXLFlh+FqSQYk/x+MhKaM5QzSyjTwmYlbEI1ZWhbqtgSvNWT10nnqu65de/xuta4K+oowxmcwyV4cAMNeIAmtIFBDM/wCm8OOi/Ou/OxHC05xc4p/IHz+QONLZFq</latexit><latexit sha1_base64="77YRmHrEMtg+VcaIbemULYAWkRw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63U9rY3NreKe9W9vYPDo+qxycdE6ea8TaLZax7ATVcCsXbKFDyXqI5jQLJu8H0Pve7T1wbEasWzhLuR3SsRCgYRSv1BxHFCaMya82H1Zpbdxcg68QrSA0KNIfVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLSLPyYVVRiSMtX0KyUL9vZHRyJhZFNjJPKJZ9XLxP6+fYnjrZ0IlKXLFlh+FqSQYk/x+MhKaM5QzSyjTwmYlbEI1ZWhbqtgSvNWT10nnqu65de/xuta4K+oowxmcwyV4cAMNeIAmtIFBDM/wCm8OOi/Ou/OxHC05xc4p/IHz+QONLZFq</latexit><latexit sha1_base64="77YRmHrEMtg+VcaIbemULYAWkRw=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmWFvqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63U9rY3NreKe9W9vYPDo+qxycdE6ea8TaLZax7ATVcCsXbKFDyXqI5jQLJu8H0Pve7T1wbEasWzhLuR3SsRCgYRSv1BxHFCaMya82H1Zpbdxcg68QrSA0KNIfVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLSLPyYVVRiSMtX0KyUL9vZHRyJhZFNjJPKJZ9XLxP6+fYnjrZ0IlKXLFlh+FqSQYk/x+MhKaM5QzSyjTwmYlbEI1ZWhbqtgSvNWT10nnqu65de/xuta4K+oowxmcwyV4cAMNeIAmtIFBDM/wCm8OOi/Ou/OxHC05xc4p/IHz+QONLZFq</latexit>

(a) Ξ and Ωψ

10

10

O

O 14 14
0.8 5

5O

0.2

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit> �!⇡ 1

<latexit sha1_base64="6nG0b0UXH0NpDcyifg97SOqBZJM=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL4tF8FQSEfRY9OKxgm2FJoTNdtsu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9OOdPG876d0tLyyupaeb2ysbm1vePu7rW0zBShTSK5VHcx1pQzQZuGGU7vUkVxEnPajodXE799T5VmUtyaUUrDBPcF6zGCjZUi9yCQ1lasPzBYKfmQBykbR37kVr2aNwVaJH5BqlCgEblfQVeSLKHCEI617vheasIcK8MIp+NKkGmaYjLEfdqxVOCE6jCf3j9Gx1bpop5UtoRBU/X3RI4TrUdJbDsTbAZ63puI/3mdzPQuwpyJNDNUkNmiXsaRkWgSBuoyRYnhI0swUczeisgAK0yMjaxiQ/DnX14krdOa79X8m7Nq/bKIowyHcAQn4MM51OEaGtAEAo/wDK/w5jw5L8678zFrLTnFzD78gfP5A+VZlqU=</latexit><latexit sha1_base64="6nG0b0UXH0NpDcyifg97SOqBZJM=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL4tF8FQSEfRY9OKxgm2FJoTNdtsu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9OOdPG876d0tLyyupaeb2ysbm1vePu7rW0zBShTSK5VHcx1pQzQZuGGU7vUkVxEnPajodXE799T5VmUtyaUUrDBPcF6zGCjZUi9yCQ1lasPzBYKfmQBykbR37kVr2aNwVaJH5BqlCgEblfQVeSLKHCEI617vheasIcK8MIp+NKkGmaYjLEfdqxVOCE6jCf3j9Gx1bpop5UtoRBU/X3RI4TrUdJbDsTbAZ63puI/3mdzPQuwpyJNDNUkNmiXsaRkWgSBuoyRYnhI0swUczeisgAK0yMjaxiQ/DnX14krdOa79X8m7Nq/bKIowyHcAQn4MM51OEaGtAEAo/wDK/w5jw5L8678zFrLTnFzD78gfP5A+VZlqU=</latexit><latexit sha1_base64="6nG0b0UXH0NpDcyifg97SOqBZJM=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL4tF8FQSEfRY9OKxgm2FJoTNdtsu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9OOdPG876d0tLyyupaeb2ysbm1vePu7rW0zBShTSK5VHcx1pQzQZuGGU7vUkVxEnPajodXE799T5VmUtyaUUrDBPcF6zGCjZUi9yCQ1lasPzBYKfmQBykbR37kVr2aNwVaJH5BqlCgEblfQVeSLKHCEI617vheasIcK8MIp+NKkGmaYjLEfdqxVOCE6jCf3j9Gx1bpop5UtoRBU/X3RI4TrUdJbDsTbAZ63puI/3mdzPQuwpyJNDNUkNmiXsaRkWgSBuoyRYnhI0swUczeisgAK0yMjaxiQ/DnX14krdOa79X8m7Nq/bKIowyHcAQn4MM51OEaGtAEAo/wDK/w5jw5L8678zFrLTnFzD78gfP5A+VZlqU=</latexit><latexit sha1_base64="6nG0b0UXH0NpDcyifg97SOqBZJM=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL4tF8FQSEfRY9OKxgm2FJoTNdtsu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9OOdPG876d0tLyyupaeb2ysbm1vePu7rW0zBShTSK5VHcx1pQzQZuGGU7vUkVxEnPajodXE799T5VmUtyaUUrDBPcF6zGCjZUi9yCQ1lasPzBYKfmQBykbR37kVr2aNwVaJH5BqlCgEblfQVeSLKHCEI617vheasIcK8MIp+NKkGmaYjLEfdqxVOCE6jCf3j9Gx1bpop5UtoRBU/X3RI4TrUdJbDsTbAZ63puI/3mdzPQuwpyJNDNUkNmiXsaRkWgSBuoyRYnhI0swUczeisgAK0yMjaxiQ/DnX14krdOa79X8m7Nq/bKIowyHcAQn4MM51OEaGtAEAo/wDK/w5jw5L8678zFrLTnFzD78gfP5A+VZlqU=</latexit>

�!u
<latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit><latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit><latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit><latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit>

⌦
<latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit>

⌦
<latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit> x1

<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>priority

�!u = (8, 8)
<latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit><latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit><latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit><latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit>�!⇡ 1 = (4, 0.8)
<latexit sha1_base64="z0QOC2ysqPS+FT5SCzPCcDE/3tE=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRgt0IRTcuK9gHNCFMppN26GQmzEyUErp246+4caGIW7/AnX/jtM1CqwcuHM65l3vvCRNGlXacL6uwtLyyulZcL21sbm3v2Lt7bSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdDX1O3dEKir4rR4nxI/RgNOIYqSNFNiHnjC2pIOhRlKK+8xL6CRw4QWs1E6hU62fBHbZqTozwL/EzUkZ5GgG9qfXFziNCdeYIaV6rpNoP0NSU8zIpOSliiQIj9CA9AzlKCbKz2avTOCxUfowEtIU13Cm/pzIUKzUOA5NZ4z0UC16U/E/r5fqqO5nlCepJhzPF0Upg1rAaS6wTyXBmo0NQVhScyvEQyQR1ia9kgnBXXz5L2mfVV2n6t7Uyo3LPI4iOABHoAJccA4a4Bo0QQtg8ACewAt4tR6tZ+vNep+3Fqx8Zh/8gvXxDcoQmPc=</latexit><latexit sha1_base64="z0QOC2ysqPS+FT5SCzPCcDE/3tE=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRgt0IRTcuK9gHNCFMppN26GQmzEyUErp246+4caGIW7/AnX/jtM1CqwcuHM65l3vvCRNGlXacL6uwtLyyulZcL21sbm3v2Lt7bSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdDX1O3dEKir4rR4nxI/RgNOIYqSNFNiHnjC2pIOhRlKK+8xL6CRw4QWs1E6hU62fBHbZqTozwL/EzUkZ5GgG9qfXFziNCdeYIaV6rpNoP0NSU8zIpOSliiQIj9CA9AzlKCbKz2avTOCxUfowEtIU13Cm/pzIUKzUOA5NZ4z0UC16U/E/r5fqqO5nlCepJhzPF0Upg1rAaS6wTyXBmo0NQVhScyvEQyQR1ia9kgnBXXz5L2mfVV2n6t7Uyo3LPI4iOABHoAJccA4a4Bo0QQtg8ACewAt4tR6tZ+vNep+3Fqx8Zh/8gvXxDcoQmPc=</latexit><latexit sha1_base64="z0QOC2ysqPS+FT5SCzPCcDE/3tE=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRgt0IRTcuK9gHNCFMppN26GQmzEyUErp246+4caGIW7/AnX/jtM1CqwcuHM65l3vvCRNGlXacL6uwtLyyulZcL21sbm3v2Lt7bSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdDX1O3dEKir4rR4nxI/RgNOIYqSNFNiHnjC2pIOhRlKK+8xL6CRw4QWs1E6hU62fBHbZqTozwL/EzUkZ5GgG9qfXFziNCdeYIaV6rpNoP0NSU8zIpOSliiQIj9CA9AzlKCbKz2avTOCxUfowEtIU13Cm/pzIUKzUOA5NZ4z0UC16U/E/r5fqqO5nlCepJhzPF0Upg1rAaS6wTyXBmo0NQVhScyvEQyQR1ia9kgnBXXz5L2mfVV2n6t7Uyo3LPI4iOABHoAJccA4a4Bo0QQtg8ACewAt4tR6tZ+vNep+3Fqx8Zh/8gvXxDcoQmPc=</latexit><latexit sha1_base64="z0QOC2ysqPS+FT5SCzPCcDE/3tE=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRgt0IRTcuK9gHNCFMppN26GQmzEyUErp246+4caGIW7/AnX/jtM1CqwcuHM65l3vvCRNGlXacL6uwtLyyulZcL21sbm3v2Lt7bSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdDX1O3dEKir4rR4nxI/RgNOIYqSNFNiHnjC2pIOhRlKK+8xL6CRw4QWs1E6hU62fBHbZqTozwL/EzUkZ5GgG9qfXFziNCdeYIaV6rpNoP0NSU8zIpOSliiQIj9CA9AzlKCbKz2avTOCxUfowEtIU13Cm/pzIUKzUOA5NZ4z0UC16U/E/r5fqqO5nlCepJhzPF0Upg1rAaS6wTyXBmo0NQVhScyvEQyQR1ia9kgnBXXz5L2mfVV2n6t7Uyo3LPI4iOABHoAJccA4a4Bo0QQtg8ACewAt4tR6tZ+vNep+3Fqx8Zh/8gvXxDcoQmPc=</latexit>

10

10

O

5

O

1
4

1
4

5

5O

0.8 0.2

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit> x2

<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

�!⇡ 2
<latexit sha1_base64="WvvXq4Kqv1Gq2H3oY0EKOQo8kTA=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL8EieCpJEfRY9OKxgv2AJoTNdtMu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9KGVXadb+t0srq2vpGebOytb2zu2fvH7SVyCQmLSyYkN0IKcIoJy1NNSPdVBKURIx0otH11O/cE6mo4Hd6nJIgQQNOY4qRNlJoH/nC2JIOhhpJKR5yP6WTsB7aVbfmzuAsE68gVSjQDO0vvy9wlhCuMUNK9Tw31UGOpKaYkUnFzxRJER6hAekZylFCVJDP7p84p0bpO7GQprh2ZurviRwlSo2TyHQmSA/VojcV//N6mY4vg5zyNNOE4/miOGOOFs40DKdPJcGajQ1BWFJzq4OHSCKsTWQVE4K3+PIyaddrnlvzbs+rjasijjIcwwmcgQcX0IAbaEILMDzCM7zCm/VkvVjv1se8tWQVM4fwB9bnD+bdlqY=</latexit><latexit sha1_base64="WvvXq4Kqv1Gq2H3oY0EKOQo8kTA=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL8EieCpJEfRY9OKxgv2AJoTNdtMu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9KGVXadb+t0srq2vpGebOytb2zu2fvH7SVyCQmLSyYkN0IKcIoJy1NNSPdVBKURIx0otH11O/cE6mo4Hd6nJIgQQNOY4qRNlJoH/nC2JIOhhpJKR5yP6WTsB7aVbfmzuAsE68gVSjQDO0vvy9wlhCuMUNK9Tw31UGOpKaYkUnFzxRJER6hAekZylFCVJDP7p84p0bpO7GQprh2ZurviRwlSo2TyHQmSA/VojcV//N6mY4vg5zyNNOE4/miOGOOFs40DKdPJcGajQ1BWFJzq4OHSCKsTWQVE4K3+PIyaddrnlvzbs+rjasijjIcwwmcgQcX0IAbaEILMDzCM7zCm/VkvVjv1se8tWQVM4fwB9bnD+bdlqY=</latexit><latexit sha1_base64="WvvXq4Kqv1Gq2H3oY0EKOQo8kTA=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL8EieCpJEfRY9OKxgv2AJoTNdtMu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9KGVXadb+t0srq2vpGebOytb2zu2fvH7SVyCQmLSyYkN0IKcIoJy1NNSPdVBKURIx0otH11O/cE6mo4Hd6nJIgQQNOY4qRNlJoH/nC2JIOhhpJKR5yP6WTsB7aVbfmzuAsE68gVSjQDO0vvy9wlhCuMUNK9Tw31UGOpKaYkUnFzxRJER6hAekZylFCVJDP7p84p0bpO7GQprh2ZurviRwlSo2TyHQmSA/VojcV//N6mY4vg5zyNNOE4/miOGOOFs40DKdPJcGajQ1BWFJzq4OHSCKsTWQVE4K3+PIyaddrnlvzbs+rjasijjIcwwmcgQcX0IAbaEILMDzCM7zCm/VkvVjv1se8tWQVM4fwB9bnD+bdlqY=</latexit><latexit sha1_base64="WvvXq4Kqv1Gq2H3oY0EKOQo8kTA=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL8EieCpJEfRY9OKxgv2AJoTNdtMu3eyG3Y1SYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9KGVXadb+t0srq2vpGebOytb2zu2fvH7SVyCQmLSyYkN0IKcIoJy1NNSPdVBKURIx0otH11O/cE6mo4Hd6nJIgQQNOY4qRNlJoH/nC2JIOhhpJKR5yP6WTsB7aVbfmzuAsE68gVSjQDO0vvy9wlhCuMUNK9Tw31UGOpKaYkUnFzxRJER6hAekZylFCVJDP7p84p0bpO7GQprh2ZurviRwlSo2TyHQmSA/VojcV//N6mY4vg5zyNNOE4/miOGOOFs40DKdPJcGajQ1BWFJzq4OHSCKsTWQVE4K3+PIyaddrnlvzbs+rjasijjIcwwmcgQcX0IAbaEILMDzCM7zCm/VkvVjv1se8tWQVM4fwB9bnD+bdlqY=</latexit>

�!u
<latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit><latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit><latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit><latexit sha1_base64="ww6TfzTUmYpZQ/486iBlYxhGWn0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsbtQS8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v6Be1hta5kqQltEcqm6IdaUM0FbhhlOu4miOA457YSTm5nfeaBKMynuzTShQYxHgkWMYGOlgVvtS2srNhobrJR8zNJ84Na8ujcHWiV+QWpQoDlwv/pDSdKYCkM41rrne4kJMqwMI5zmlX6qaYLJBI9oz1KBY6qDbH57jk6tMkSRVLaEQXP190SGY62ncWg7Y2zGetmbif95vdREV0HGRJIaKshiUZRyZCSaBYGGTFFi+NQSTBSztyIyxgoTY+Oq2BD85ZdXSfu87nt1/+6i1rgu4ijDMZzAGfhwCQ24hSa0gMATPMMrvDm58+K8Ox+L1pJTzBzBHzifPzJAlS0=</latexit>

⌦
<latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit>

⌦
<latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit><latexit sha1_base64="mvVMw92qdn/oAzZabsIK0rgHSW0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF29GMA/YXcLsZDYZMo9lplcIIZ/hxYMiXv0ab/6Nk2QPmljQUFR1092VZIJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVueGshbVQptuQiwTXLEWcBCsmxlGZCJYJxndzvzOEzOWa/UI44zFkgwUTzkl4KQwupdsQHpRZnmvWvPr/hx4lQQFqaECzV71K+prmkumgApibRj4GcQTYoBTwaaVKLcsI3REBix0VBHJbDyZnzzFZ07p41QbVwrwXP09MSHS2rFMXKckMLTL3kz8zwtzSK/jCVdZDkzRxaI0Fxg0nv2P+9wwCmLsCKGGu1sxHRJDKLiUKi6EYPnlVdK+qAd+PXi4rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St688B78d69j0VryStmjtEfeJ8/Of+RNA==</latexit>

priorityx1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

�!u = (8, 8)
<latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit><latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit><latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit><latexit sha1_base64="v2gEdObu4oYu2VEunKE8hMeMkoQ=">AAACBHicbVBNS8NAEJ3Ur1q/oh57WSxCBSmJCPYiFL14rGA/oA1ls920SzfZsLtRSujBi3/FiwdFvPojvPlv3LY5aOuDgcd7M8zM82POlHacbyu3srq2vpHfLGxt7+zu2fsHTSUSSWiDCC5k28eKchbRhmaa03YsKQ59Tlv+6Hrqt+6pVExEd3ocUy/Eg4gFjGBtpJ5d7ApjSzYYaiyleEiTCbpE5eopqp707JJTcWZAy8TNSAky1Hv2V7cvSBLSSBOOleq4Tqy9FEvNCKeTQjdRNMZkhAe0Y2iEQ6q8dPbEBB0bpY8CIU1FGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdVL2URXGiaUTmi4KEIy3QNBHUZ5ISzceGYCKZuRWRIZaYaJNbwYTgLr68TJpnFdepuLfnpdpVFkceinAEZXDhAmpwA3VoAIFHeIZXeLOerBfr3fqYt+asbOYQ/sD6/AEihpcR</latexit>�!⇡ 2 = (0.8, 4)

<latexit sha1_base64="E2wLkoPqPbVd5aIdbX8e3ar+cCA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAgVpCSlYDdC0Y3LCvYBTQiT6aQdOpkJMxOlhG7d+CtuXCji1j9w5984bbPQ1gMXDufcy733hAmjSjvOt7Wyura+sVnYKm7v7O7t2weHbSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdD31O/dEKir4nR4nxI/RgNOIYqSNFNjQE8aWdDDUSErxkHkJnQRVeAnLTqV+XjsL7JJTcWaAy8TNSQnkaAb2l9cXOI0J15ghpXquk2g/Q1JTzMik6KWKJAiP0ID0DOUoJsrPZp9M4KlR+jAS0hTXcKb+nshQrNQ4Dk1njPRQLXpT8T+vl+qo7meUJ6kmHM8XRSmDWsBpLLBPJcGajQ1BWFJzK8RDJBHWJryiCcFdfHmZtKsV16m4t7VS4yqPowCOwQkoAxdcgAa4AU3QAhg8gmfwCt6sJ+vFerc+5q0rVj5zBP7A+vwBaz6Yzg==</latexit><latexit sha1_base64="E2wLkoPqPbVd5aIdbX8e3ar+cCA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAgVpCSlYDdC0Y3LCvYBTQiT6aQdOpkJMxOlhG7d+CtuXCji1j9w5984bbPQ1gMXDufcy733hAmjSjvOt7Wyura+sVnYKm7v7O7t2weHbSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdD31O/dEKir4nR4nxI/RgNOIYqSNFNjQE8aWdDDUSErxkHkJnQRVeAnLTqV+XjsL7JJTcWaAy8TNSQnkaAb2l9cXOI0J15ghpXquk2g/Q1JTzMik6KWKJAiP0ID0DOUoJsrPZp9M4KlR+jAS0hTXcKb+nshQrNQ4Dk1njPRQLXpT8T+vl+qo7meUJ6kmHM8XRSmDWsBpLLBPJcGajQ1BWFJzK8RDJBHWJryiCcFdfHmZtKsV16m4t7VS4yqPowCOwQkoAxdcgAa4AU3QAhg8gmfwCt6sJ+vFerc+5q0rVj5zBP7A+vwBaz6Yzg==</latexit><latexit sha1_base64="E2wLkoPqPbVd5aIdbX8e3ar+cCA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAgVpCSlYDdC0Y3LCvYBTQiT6aQdOpkJMxOlhG7d+CtuXCji1j9w5984bbPQ1gMXDufcy733hAmjSjvOt7Wyura+sVnYKm7v7O7t2weHbSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdD31O/dEKir4nR4nxI/RgNOIYqSNFNjQE8aWdDDUSErxkHkJnQRVeAnLTqV+XjsL7JJTcWaAy8TNSQnkaAb2l9cXOI0J15ghpXquk2g/Q1JTzMik6KWKJAiP0ID0DOUoJsrPZp9M4KlR+jAS0hTXcKb+nshQrNQ4Dk1njPRQLXpT8T+vl+qo7meUJ6kmHM8XRSmDWsBpLLBPJcGajQ1BWFJzK8RDJBHWJryiCcFdfHmZtKsV16m4t7VS4yqPowCOwQkoAxdcgAa4AU3QAhg8gmfwCt6sJ+vFerc+5q0rVj5zBP7A+vwBaz6Yzg==</latexit><latexit sha1_base64="E2wLkoPqPbVd5aIdbX8e3ar+cCA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAgVpCSlYDdC0Y3LCvYBTQiT6aQdOpkJMxOlhG7d+CtuXCji1j9w5984bbPQ1gMXDufcy733hAmjSjvOt7Wyura+sVnYKm7v7O7t2weHbSVSiUkLCyZkN0SKMMpJS1PNSDeRBMUhI51wdD31O/dEKir4nR4nxI/RgNOIYqSNFNjQE8aWdDDUSErxkHkJnQRVeAnLTqV+XjsL7JJTcWaAy8TNSQnkaAb2l9cXOI0J15ghpXquk2g/Q1JTzMik6KWKJAiP0ID0DOUoJsrPZp9M4KlR+jAS0hTXcKb+nshQrNQ4Dk1njPRQLXpT8T+vl+qo7meUJ6kmHM8XRSmDWsBpLLBPJcGajQ1BWFJzK8RDJBHWJryiCcFdfHmZtKsV16m4t7VS4yqPowCOwQkoAxdcgAa4AU3QAhg8gmfwCt6sJ+vFerc+5q0rVj5zBP7A+vwBaz6Yzg==</latexit>

S1 = (x1, x2)
<latexit sha1_base64="KD9UtVJzwizdzwrG43Fkt9nCaBE=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s2djc5RaezaJ2jsVo5ds2iVq1YG9JvY5Vm3irBA3TXfur2IJAENFeFYyo5txcpJsVCMcDotdBNJY0yGuE87moY4oNJJZ5dP0ZFWesiPhK5QoZn6dSPFgZSTwNOTAVYD+dPLxL+8TqL8MydlYZwoGpL5Q37CkYpQFgPqMUGJ4hNNMBFM34rIAAtMlA6roEP4/Cn6nzQrZdsq29fVYu1iEUceDuAQSmDDKdTgCurQAAIjuIdHeDJS48F4Nl7mozljsbMP32C8fgAmipFk</latexit><latexit sha1_base64="KD9UtVJzwizdzwrG43Fkt9nCaBE=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s2djc5RaezaJ2jsVo5ds2iVq1YG9JvY5Vm3irBA3TXfur2IJAENFeFYyo5txcpJsVCMcDotdBNJY0yGuE87moY4oNJJZ5dP0ZFWesiPhK5QoZn6dSPFgZSTwNOTAVYD+dPLxL+8TqL8MydlYZwoGpL5Q37CkYpQFgPqMUGJ4hNNMBFM34rIAAtMlA6roEP4/Cn6nzQrZdsq29fVYu1iEUceDuAQSmDDKdTgCurQAAIjuIdHeDJS48F4Nl7mozljsbMP32C8fgAmipFk</latexit><latexit sha1_base64="KD9UtVJzwizdzwrG43Fkt9nCaBE=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s2djc5RaezaJ2jsVo5ds2iVq1YG9JvY5Vm3irBA3TXfur2IJAENFeFYyo5txcpJsVCMcDotdBNJY0yGuE87moY4oNJJZ5dP0ZFWesiPhK5QoZn6dSPFgZSTwNOTAVYD+dPLxL+8TqL8MydlYZwoGpL5Q37CkYpQFgPqMUGJ4hNNMBFM34rIAAtMlA6roEP4/Cn6nzQrZdsq29fVYu1iEUceDuAQSmDDKdTgCurQAAIjuIdHeDJS48F4Nl7mozljsbMP32C8fgAmipFk</latexit><latexit sha1_base64="KD9UtVJzwizdzwrG43Fkt9nCaBE=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s2djc5RaezaJ2jsVo5ds2iVq1YG9JvY5Vm3irBA3TXfur2IJAENFeFYyo5txcpJsVCMcDotdBNJY0yGuE87moY4oNJJZ5dP0ZFWesiPhK5QoZn6dSPFgZSTwNOTAVYD+dPLxL+8TqL8MydlYZwoGpL5Q37CkYpQFgPqMUGJ4hNNMBFM34rIAAtMlA6roEP4/Cn6nzQrZdsq29fVYu1iEUceDuAQSmDDKdTgCurQAAIjuIdHeDJS48F4Nl7mozljsbMP32C8fgAmipFk</latexit>

S2 = (x2, x1)
<latexit sha1_base64="EbmPdffY9mP/DplTFisIpE9hYgY=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s1dBZ2j0titnKCxax+7ZtEqV60M6Dexy7NuFWGBumu+dXsRSQIaKsKxlB3bipWTYqEY4XRa6CaSxpgMcZ92NA1xQKWTzi6foiOt9JAfCV2hQjP160aKAykngacnA6wG8qeXiX95nUT5Z07KwjhRNCTzh/yEIxWhLAbUY4ISxSeaYCKYvhWRARaYKB1WQYfw+VP0P2lWyrZVtq+rxdrFIo48HMAhlMCGU6jBFdShAQRGcA+P8GSkxoPxbLzMR3PGYmcfvsF4/QAoIJFl</latexit><latexit sha1_base64="EbmPdffY9mP/DplTFisIpE9hYgY=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s1dBZ2j0titnKCxax+7ZtEqV60M6Dexy7NuFWGBumu+dXsRSQIaKsKxlB3bipWTYqEY4XRa6CaSxpgMcZ92NA1xQKWTzi6foiOt9JAfCV2hQjP160aKAykngacnA6wG8qeXiX95nUT5Z07KwjhRNCTzh/yEIxWhLAbUY4ISxSeaYCKYvhWRARaYKB1WQYfw+VP0P2lWyrZVtq+rxdrFIo48HMAhlMCGU6jBFdShAQRGcA+P8GSkxoPxbLzMR3PGYmcfvsF4/QAoIJFl</latexit><latexit sha1_base64="EbmPdffY9mP/DplTFisIpE9hYgY=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s1dBZ2j0titnKCxax+7ZtEqV60M6Dexy7NuFWGBumu+dXsRSQIaKsKxlB3bipWTYqEY4XRa6CaSxpgMcZ92NA1xQKWTzi6foiOt9JAfCV2hQjP160aKAykngacnA6wG8qeXiX95nUT5Z07KwjhRNCTzh/yEIxWhLAbUY4ISxSeaYCKYvhWRARaYKB1WQYfw+VP0P2lWyrZVtq+rxdrFIo48HMAhlMCGU6jBFdShAQRGcA+P8GSkxoPxbLzMR3PGYmcfvsF4/QAoIJFl</latexit><latexit sha1_base64="EbmPdffY9mP/DplTFisIpE9hYgY=">AAAB+XicdVDLSgMxFL1TX7W+Rl26CRahgpSZUtCNUHTjsqJ9QDsOmTTThmYeJJnSMvRP3LhQxK1/4s6/MdNW8Hngcg/n3EtujhdzJpVlvRu5peWV1bX8emFjc2t7x9zda8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7zM/NaICsmi8FZNYuoEuB8ynxGstOSa5s1dBZ2j0titnKCxax+7ZtEqV60M6Dexy7NuFWGBumu+dXsRSQIaKsKxlB3bipWTYqEY4XRa6CaSxpgMcZ92NA1xQKWTzi6foiOt9JAfCV2hQjP160aKAykngacnA6wG8qeXiX95nUT5Z07KwjhRNCTzh/yEIxWhLAbUY4ISxSeaYCKYvhWRARaYKB1WQYfw+VP0P2lWyrZVtq+rxdrFIo48HMAhlMCGU6jBFdShAQRGcA+P8GSkxoPxbLzMR3PGYmcfvsF4/QAoIJFl</latexit>

⌅
<latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit>

⌅
<latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit><latexit sha1_base64="LikKNUqT8dPAavvLZwaoeMS7Zcc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodcRfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5AytFjbU=</latexit>

(b) Two proportional transformations

Figure 5.3: Running example–proportional transformation

the priority S is updated by removing the �rst element s (Line 11), and the procedure

Map-Dimension is invoked again to reduce the remaining arguments (Line 12). The

recursive call terminates when all dimensions have been mapped. At the end,
−→π is

returned (Line 4) as the mapped point in Ωψ that satis�es the constraintψ .

It is easy to see that the proportional transformation T is a space mapping in

Def. 20, that is, it is a total surjection. Indeed, one can follow its de�nition and construct,

in a step-by-step manner, a right inverse д of T (i.e. T ◦ д = id). Existence of such д

witnesses the surjectiveness of T . Continuity of T is easily established, too.

Example 2 We use a simple example to explain our approach. We consider Ξ =
[0, 10] × [0, 10] as search space, and ψ = (x1 + x2 − 5 < 0) as constraint de�ning the
input space Ωψ , as shown in Fig. 5.3a. Let us consider a point −→u = (8, 8) ∈ Ξ. Let us call
x1 and x2 the two dimensions of the search space. Using the priority S1 = (x1,x2), −→u is
mapped to point −→π 1 = (4, 0.8); instead, using the priority S2 = (x2,x1), it is mapped to
point −→π 2 = (0.8, 4). The two proportional transformations are shown in Fig. 5.3b.

Remark 2 Note that the general transformation process is not specialized to linear
constraints, and can be adapted for any type of constraints. What needs to be adapted is
Def. 22 to �nd the bounds over a given dimension: di�erent types of constraints need
di�erent solvers (for linear constraints, we use a linear programming solver). In this

92 Chapter 5. Constraining Counterexamples via Search Space Trans.

-0.5
0

0

ro
bu
st
ne
ss 0.5

10

x1

5

1

x2

5
10 0

(a) In Ωψ

-0.5
0

0fit
ne
ss

0.5

10

x1

5

1

x2

5
10 0

(b) In Ξ (priority S1)

-0.5
0

0fit
ne
ss

0.5

10

x1

5

1

x2

5
10 0

(c) In Ξ (priority S2)

Figure 5.4: Fitness landscape of Ωψ and transformed �tness landscapes in Ξ

paper, we focus and perform experiments on linear constraints. Extending the approach to
non-linear constraints is left as future work.

5.5 Falsi�cation Based on the Proportional Transfor-

mation

In this section, we describe how we use the proportional transformation presented in

§5.4 to implement a falsi�cation algorithm that considers the constraints existing

among the inputs. Namely, we adapt the hill climbing-guided falsi�cation approach

described in §2.3. The approach performs classical hill-climbing optimization over the

search space Ξ; sampled points
−→u k are mapped to points

−→π k of the input space Ωψ ,

using the proportional transformation presented in §5.4. In this context, the �tness

function ρ of Ωψ is given by the robustness value of the mapped input
−→π k for the

speci�cation φ, i.e., ρ(−→π k) = JM(−→π k),φK. See the whole work�ow in Fig 5.2. We can

notice that the hill-climbing algorithm (performed over the whole search space Ξ) has

a deformed view of the �tness landscape of the input space Ωψ . The obtained deformed

landscape depends on the priority used in the proportional transformation (see §5.4,

Alg. 5.1, and the two proportional transformations in Fig. 5.3b).

Example 3 Let us consider Ex. 2. The �tness landscape of the input space Ωψ (produced
by a given objective function) is as shown in Fig. 5.4a. By applying the proportional
transformation using the two priorities S1 and S2 (as shown in Fig. 5.3b), we obtain the
�tness landscapes in Fig. 5.4b and Fig. 5.4c.

5.5 Falsi�cation Based on the Proportional Transformation 93

Algorithm 5.2 Fixed-Priority approach

Require: a system modelM, an STL formulaφ, a constraintψ , a priority of dimensions

S , and a budget K
1: function Fals-Fixed-Priority(M,φ,K,ψ , S)

2: rb←∞ ; k ← 0 . rb is the smallest robustness so far, initialized to∞

3: while rb ≥ 0 and k ≤ K do
4: k ← k + 1
5:

−→u k ← Hill-Climb

((−→u l , JM(−→u l),φK)
l∈[1,k−1]

)
6:

−→π k ← Map-Point(Ξ,ψ , S,−→u k) . Proportional transformation

7: rbk ← JM(−→π k),φK . Robustness value of the mapped point

8: if rbk < rb then
9: rb← rbk

10:
−→π ←

{
−→π k if rb < 0, that is, rbk = JM(−→π k),φK < 0

Failure otherwise, that is, no falsifying input found within budget K
11: Return −→π

As we will show in the experiments in §5.6, the chosen priority can greatly a�ect

the performance of the falsi�cation. In the following sections, we consider three

methods for selecting the priority: selecting one priority, considering all the priorities,

or learning which priority is better.

5.5.1 Method 1: Fixed-Priority

In this approach, the user must provide a given priority order S . Alg. 5.2 shows how

the classical hill climbing-guided falsi�cation has been modi�ed to implement the

proportional transformation with Fixed-Priority. There are two di�erences: �rstly, the

algorithm now also considers a constraintψ and, for computing the �tness of an input

−→u k sampled in the search space Ξ, it �rst maps it to a point
−→π k in the input space Ωψ

using the proportional transformation (Line 6), and then uses the robustness of
−→π k as

�tness for
−→u k (Line 7); secondly, the �nal falsifying input (if any) is a point

−→π k of the

input space (Line 10).

94 Chapter 5. Constraining Counterexamples via Search Space Trans.

Algorithm 5.3 All-Priorities approach

Require: a system modelM, an STL formula φ, constraintψ , priorities Prior , and a

budget K
1: function Fals-All-Priorities(M,φ,K,ψ , Prior)
2: rb←∞ ; k ← 0 . rb is the smallest robustness so far, initialized to∞

3: while rb ≥ 0 and k ≤ K do
4: k ← k + 1
5:

−→u k ← Hill-Climb

((−→u l , JM(−→u l),φK)
l∈[1,k−1]

)
6: Π ← {Map-Point(Ξ,ψ , S,−→u k) | S ∈ Prior} . Proportional transformations

7:
−→π k ← arg min

−→π ∈Π

JM(−→π),φK . Selection of best mapped point

8: rbk ← JM(−→π k),φK . Robustness value of the selected mapped point

9: if rbk < rb then
10: rb← rbk

11:
−→π ←

{
−→π k if rb < 0, that is, rbk = JM(−→π k),φK < 0

Failure otherwise, that is, no falsifying input found within budget K
12: Return −→π

5.5.2 Method 2: All-Priorities

Although the proportional transformation is surjective, it changes the distribution of

�tness on the base of the selected priority, and so it in�uences the performance of

hill-climbing optimization. Therefore, di�erent priorities lead to di�erent falsi�cation

performance and di�erent results. The current method is based on this observation, and

so it considers all the priorities. Alg. 5.3 shows the implementation of the All-Priorities

approach (di�erences w.r.t. Alg. 2.1). At Line 6, the approach now generates all the

mapped points Π of
−→u k , using the priorities contained in set Prior given as input.

The set Prior is built as follows. Initially, all the permutations of the dimensions

{1, . . . ,n} are added to the set. However, some priorities are guaranteed to map the

points in the same way. Therefore, such equivalent priorities are identi�ed with these

two rules:

(a) Only the variables contained in the constraintψ a�ect the result of the priority

application. Given two priorities S1 and S2, if the relative order of variables

contained inψ is the same in S1 and S2, then they are equivalent;

(b) Two variables are independent if they occur in the same conjunctionψi ofψ (recall

5.5 Falsi�cation Based on the Proportional Transformation 95

that ψ is in DNF) and they are not in the same atomic proposition. Given two

priorities S1 and S2, if they only di�er in the relative order of independent variables,

then they are equivalent.

So, Prior is the set of all non-equivalent permutations of {1, . . . ,n}.

Note that, even if two priorities are not equivalent, a point can still be mapped

to the same point under both priorities: therefore, at Line 6, duplicated points are

removed.

At Lines 7-8, the algorithm determines the point
−→π k in Π having the minimum

robustness value rbk . Finally, at Lines 11-12, it returns a falsifying input
−→π in the input

space or reports a failure.

5.5.3 Method 3: MAB-Priority

Although the All-Priorities approach guarantees to �nd the best priority (i.e., the one

mapping to points with minimum robustness), it is computationally expensive, as it

requires to simulate all the mapped points. In this section, we propose a method that

tries to learn the best priority during execution: it is based on the Multi-Armed Bandit

(MAB) problem, that has proven to be e�ective in other contexts for falsi�cation [89]

(our contribution in Chapter 4).

We �rst provide an introduction to the Multi-Armed Bandit problem, and then we

describe how we apply it to our context.

Multi-Armed Bandit problem The Multi-Armed Bandit (MAB) problem describes

the situation where a gambler sits in front of a row A1, . . . ,Am of slot machines, each

one giving, when its arm is played (i.e., in each attempt), a reward according to a

prescribed (but unknown) probability distribution µi . The goal is to maximize the

cumulative reward after a number of attempts, playing a suitable arm in each attempt.

The best strategy of course is to keep playing the best arm Amax, i.e., the one whose

average reward avg(µmax) is the greatest. However, this best strategy is infeasible,

because the distributions µ1, . . . , µm are initially unknown. Therefore, the gambler

must learn about µ1, . . . , µm through attempts. A formal de�nition of the MAB problem

is as follows.

96 Chapter 5. Constraining Counterexamples via Search Space Trans.

De�nition 25 (The Multi-Armed Bandit (MAB) problem) Input: arms (A1, . . . ,Am),
the associated probability distributions µ1, . . . , µm over R, and a time horizon HT ∈

N ∪ {∞}.

Goal: synthesize a sequence Ai1Ai2 . . .AiH , so that the cumulative reward
∑HT

k=1
rewk is

maximized. Here the reward rewk of the k-th attempt is sampled from the distribution µik
associated with the arm Aik played at the k-th attempt.

We introduce some notations for later use. Let 〈(Ai1 . . .Aik), (rew1 . . . rewk)〉 be a
history, i.e., the sequence of arms played so far (here i1, . . . , ik ∈ {1, . . . ,m}), and the
sequence of rewards obtained by those attempts (rewl is sampled from µil).

MAB-based falsi�cation In our context, an arm is a priority S . The reward of a

priority S is based on the minimum robustness value observed when using S for

mapping the sampled point (i.e., playing that arm). The hill-climbing algorithm

implementing the MAB approach is shown in Alg. 5.4 (di�erences w.r.t. Alg. 2.1).

In Line 5, an MAB algorithm is run to decide which priority S , taken from a set of

priorities Prior (see §5.5.2), must be executed in the k-th attempt.

The function MAB takes as inputs: (i) priorities Prior = {S1, . . . , Sm} (i.e., the

arms); (ii) the history (Si1, . . . , Sik−1) of previously played arms; and (iii) the history of

robustness values (rb1, . . . , rbk−1) of the previously selected inputs.

Our MAB algorithm is based on the UCB1 (upper con�dence bound) algorithm.

UCB1 algorithm exempli�es the exploitation and exploration trade-o� over the set of

arms. It is instantiated at Line 13 of Alg. 5.4: it returns the index ik of the priority Sik

that has the largest sum of exploitation and exploration score (Line 14). Given a priority

Sz , the exploitation score identi�es the empirical reward Rew(z,k − 1), and it follows

the formal de�nition in [42], that considers the robustness obtained in previous loops:

the lower the observed robustness is, the higher the reward assigned to the arm is. The

de�nition is as follows: Rew(z,k − 1) =
(
1 −

minl∈{1,...,k−1} s.t. il=z rbl
maxl∈{1,...,k−1} rbl

)
.

The exploration score is a value negatively correlated to the number of attempts of

the arm of priority Sz . At Line 14, N (z,k − 1) identi�es the number of attempts of

priority Sz in the previous k − 1 steps Si1 . . . Sik−1 . The scalar c is used to give more

importance to either exploration or exploitation.

5.6 Experimental Evaluation 97

Algorithm 5.4 MAB-Priority approach

Require: a system modelM, an STL formula φ, constraintψ , permutations Prior =
{S1, . . . , Sm} of dimensions {1, . . . ,n}, and a budget K

1: function Fals-MAB-Priority(M,φ,K,ψ , Prior)
2: rb←∞ ; k ← 0 . rb is the smallest robustness so far, initialized to∞

3: while rb ≥ 0 and k ≤ K do
4: k ← k + 1
5: ik ← MAB(Prior, 〈(Si1 . . . Sik−1), (rb1 . . . rbk−1)〉) . Selection of the priority

6:
−→u k ← Hill-Climb

((
(
−→u l , rbl)

)
l∈{1,...,k−1} such that il=ik

)
. Hill climbing suggests

−→u k based on sampling history of Sik

7:
−→π k ← Map-Point(Ξ,ψ , Sik ,−→u k) . Proportional transformation

8: rbk ← JM(−→π k),φK . Robustness value of the mapped point

9: if rbk < rb then
10: rb← rbk

11:
−→π ←

{
−→π k if rb < 0, that is, rbk = JM(−→π k),φK < 0

Failure otherwise, that is, no falsifying input found within budget K
12: Return −→π

13: function MAB(Prior, 〈(Si1 . . . Sik−1), (rb1 . . . rbk−1)〉)

14: ik ← arg max

z∈{1,...,|Prior |}

(
Rew(z,k − 1) + c

√
2 ln(k − 1)

N (z,k − 1)

)
15: Return ik

5.6 Experimental Evaluation

In this section, we present the experiments we performed to evaluate the e�ectiveness

of the proposed approaches. We take the penalty-based approaches introduced in §5.2

as baselines comparison. Then, in §5.6.1 we introduce the experiments setup, and in

§5.6.2 we illustrate the experiments and evaluate the results using some research

questions.

5.6.1 Experiment Setup

Baselines We compare the performance of the search space transformation-based

approaches presented in §5.3, §5.4 and §5.5 with two penalty-based approaches—the

Constraint Embedding method in §5.2.1 and the Lexicographic Method in §5.2.2.

In the lexicographic method-based approaches proposed in §5.2.2, we need to

98 Chapter 5. Constraining Counterexamples via Search Space Trans.

choose a proper base number B and transformation functions T1 and T2 for the global

cost function. Regarding B, we selected 10 in our experiments because it performs the

best according to [82]. As for transformation functions T1 and T2, we need to determine

Rψmax and Rφmax in each case (see §5.2.2). We handle this problem as follows. We take a

small set of samplings of the input space and compute their robustness values (both

for the input constraint and the speci�cation). Then, for the input constraints, we

determine Rψmax by multiplying the maximum value of the obtained robustness values

by a reasonable factor. For the speci�cation, we determine Rφmax in a similar way.

Models, speci�cations and constraints We experiment our approaches over the

benchmarks used in the falsi�cation community [44]. In order to make a comprehensive

and reliable comparison, we select 4 Simulink models with 20 system speci�cations.

The hardness of these speci�cations depends on their parameters; in our experiments,

we vary the parameters to obtain problems of di�erent di�culties. Each speci�cation

has been experimented with di�erent input constraints taken from [82].

The constraints for the considered models usually predicate about the inputs over

time. Therefore, we allow users to specify input constraints in STL, as we stated

in §5.1.1; such constraints predicate over variables u1, . . . ,uM (one for each input).

However, the constraints supported by the search space transformation-based approach

are a combination of linear constraints (no temporal operators) de�ned over variables

−→u = (u1,1, . . . , u1,M , . . . , uK,1, . . . , uK,M) (see Defs. 19 and §5.3), where, for each input

ui , there are K variables u1,i , . . . , uK,i (one for each control point). We present how STL

constraints can be translated to our supported format as follows:

Such constraints predicate over variables u1, . . . ,uM (one for each input). However,

the constraints we support in our approach are a combination of linear constraints (no

temporal operators) de�ned over variables
−→u = (u1,1, . . . , u1,M , . . . , uK,1, . . . , uK,M).

(a) each subformula �[t1,t2] (γ) of ψSTL is transformed in

∧b KT t2c
k=b KT t1c

(γ [u1 7→ uk,1, . . . ,

uM 7→ xk,M]);

(b) each subformula ^[t1,t2] (γ) of ψSTL is transformed in

∨b KT t2c
k=b KT t1c

(γ [u1 7→ uk,1, . . . ,

uM 7→ xk,M]);

(c) the formula obtained from the two previous substitutions is transformed in DNF.

5.6 Experimental Evaluation 99

Table 5.1: Temporal speci�cations φ. Here, wt
represents the t-shift of w (see Def. 8)

and ∆t (w) represents wt −w

Model Spec. ID Temporal speci�cation in STL

AT

AT1 �[0,30] (speed < 120)

AT2 �[0,30] (gear = 3→ speed ≥ 20)

AT3 �[0,30] (gear = 4→ speed ≥ 35)

AT4 ¬(�[10,30]((50 < speed) ∧ (speed < 60)))

AT5 ¬(�[10,30]((53 < speed) ∧ (speed < 57)))

AT6 �[0,29](speed < 100) ∨ �[29,30](speed > 75)

AT7 �[0,29](speed < 100) ∨ �[29,30](speed > 70)

AT8 �[0,30](rpm < 4770 ∨ �[0,1](rpm > 1000))

AT9 �[0,30](rpm < 4770 ∨ �[0,1](rpm > 700))

AT10 �[0,30](rpm < 3000) → �[0,20](speed < 65)

AT11 �[0,10] (speed < 50) ∨ ^[0,30] (rpm > 2700)

AT12 �[0,10] (speed < 50) ∨ ^[0,30] (rpm > 2520)

AT13 �[0,26](∆4(speed) > 40→ ∆4(gear) > 0)

AT14 �[0,27](∆3(speed) > 30→ ∆3(gear) > 0)

AFC

AFC1 �[11,50](µ < 0.23)
AFC2 �[11,50](^[0,10](|µ | < 0.05))

NN

NN_req ≡ �[0,16](¬close_ref → reach_ref _in_tau)
close_ref ≡ |Pos − Ref | ≤ α1 + α2 · |Ref |
reach_ref _in_tau ≡ ^[0,2](�[0,1](close_ref))

NN1 NN_req with α1 = 0.003,α2 = 0.04
NN2 NN_req with α1 = 0.015,α2 = 0.03

FFR

FFR1 ¬^[0,5](x ,y ∈ [3.9, 4.1] ∧ Ûx , Ûy ∈ [−1, 1])
FFR2 ¬^[0,5](x ,y ∈ [3.95, 4.05] ∧ Ûx , Ûy ∈ [−0.5, 0.5])

The speci�cations are reported in Table 5.1. The input constraints are reported in

Table 5.2, where each constraint is in its two forms, namely STL and format of Def. 19.

As the Simulink models have been used in the experiments of chapters before, we just

give a brief introduction, as below.

Automatic Transmission (AT) [98] It has two input signals, thro�le (throttle) and

brake (brake), and produces outputs signals such as speed, rpm, gear , etc. The model is

composed of 6 sub-systems, 1 State�ow chart, and 72 blocks in total. The thro�le and

brake range over [0, 100] and [0, 325] respectively, each with 5 control points. We

select speci�cations AT1, . . . , AT14, concerned with system’s safety, from literature [42,

100 Chapter 5. Constraining Counterexamples via Search Space Trans.

Table 5.2: Input constraintsψ . Here, wt
represents the t-shift of w (see Def. 8) and

∆t (w) represents wt −w

Model Constr. ID ψ in STL and in the format of Def. 19

AT

ψ 1

AT
�[0,30](thro�le = 0 ∨ brake = 0)∧K

k=1 (thro�lek = 0 ∨ brakek = 0)

ψ 2

AT
�[0,30](thro�le ≤ 20 ∨ brake ≤ 50)∧K

k=1 (thro�lek ≤ 20 ∨ brakek ≤ 50)

ψ 3

AT
�[0,30](thro�le ≥ 3 · brake ∨ brake ≥ 3 · thro�le)∧K

k=1 (thro�lek ≥ 3 · brakek ∨ brakek ≥ 3 · thro�lek)

ψ 4

AT
�[0,24](thro�le ≥ 70→ thro�le6 ≤ 10)∧K−1

k=1 (thro�lek ≥ 70→ thro�lek+1 ≤ 10)

ψ 5

AT
�[6,30](thro�le = 0 ∨ brake = 0) ∧ �[0,6](brake = 0)∧K

k=2 (thro�lek = 0 ∨ brakek = 0) ∧ brake1 = 0

AFC

ψ 1

AFC
�[0,50](Pedal_Angle ≥ 50→ Engine_Speed ≥ 1000)∧K

k=1

(
Pedal_Anglek ≥ 50→ Engine_Speedk ≥ 1000

)
ψ 2

AFC
�[0,20](∆10(Pedal_Angle) ≥ 0)∧

3

k=1

(
Pedal_Anglek ≤ Pedal_Anglek+1

)
NN

ψ 1

NN
�[0,14](^[0,6](Ref ≥ 2.5))∧ c

2

k=1

(∨
2

j=1 Ref k ≥ 2.5
)

ψ 2

NN
�[0,15](∆5(Ref) ≥ 0)∧K

k=1

(
Ref k ≤ Ref k+1

)
FFR ψ 1

FFR
�[0,5]

((∨
∼∈{≤,≥}

∧
i∈{1,3}

ui ∼ 0

)
∧

(∨
∼∈{≤,≥}

∧
i∈{2,4}

ui ∼ 0

))
∧K

k=1

((∨
∼∈{≤,≥}

∧
i∈{1,3}

uik ∼ 0

)
∧

(∨
∼∈{≤,≥}

∧
i∈{2,4}

uik ∼ 0

))

44, 89, 98]. We consider 5 input constraints, covering both equalities and inequalities.

Abstract Fuel Control (AFC) [56] It takes two input signals, Pedal_Angle (pedal

angle) and Engine_Speed (engine speed), and outputs a ratio µ re�ecting the deviation

of air-fuel-ratio from its reference value. In our experiment, we set the range of

Pedal_Angle ∈ [8.8, 70] and Engine_Speed ∈ [900, 1100], each with 5 control points.

The model is composed of 20 sub-systems, and 271 blocks in total. Speci�cations

AFC1 and AFC2 reason about the expected safety properties of the system. We specify

two input constraints, one constraining the value of Engine_Speed w.r.t. the value of

Pedal_Angle, and another one constraining the value of Pedal_Angle over time.

5.6 Experimental Evaluation 101

Neural Network controller (NN) It is a neural network controller for a magnet system

from Mathworks. Speci�cations NN1 and NN2 formalize the safety requirement about

the position Pos of the magnet w.r.t. its reference value Ref . The input signal Ref
ranges over [1, 3] with 4 control points. The model is composed of 11 sub-systems,

including one neural network-based controller, and 104 blocks in total. We consider

two input constraints: the �rst one requiring Ref to be non-decreasing, and the second

one requiring Ref to be larger of 2.5 in at least one time point.

Free Floating Robot (FFR) It is a model considered as a falsi�cation benchmark

in [69] and [42]. The inputs u1,u2,u3,u4 ∈ [−10, 10] are four boosters for a robot, and

the goal is to steer it from (x ,y) = (0, 0) to (4, 4) in a 2-dimensional space. The model

contains 32 blocks in total. We take 4 control points for input signals. The constraint

we consider is a real one: u1 and u3 should be both positive or negative, and so should

u2 and u4, according to [42]; otherwise, the boosters would con�ict with each other.

Experiment platform In our experiments, we use Breach [22] (ver 1.2.13) with

CMA-ES (the state of the art). The experiments are executed on an Amazon EC2

c4.2xlarge instance (2.9 GHz Intel Xeon E5-2666 v3, 15 GB RAM).

5.6.2 Evaluation

We performed a set of experiments using the two baseline approaches Constraint

Embedding (CE) and Lexicographic Method (LM), and the three proposed approaches

Fixed-Priority (Fix), All-Priorities (ALL), and MAB-Priority (MAB). Since Fixed-

Priority requires to select a given priority, for each benchmark we randomly selected

two priorities S1 and S2: we name the two settings as FixS1 and FixS2 .

In our context, an experiment consists in the execution of an approach A (CE, LM,

FixS1 , FixS2 , ALL, or MAB) over a speci�cation φ for 30 trials, with di�erent random

seeds; each single trial has been executed with a time budget K of 900 secs. For each

experiment, we de�ne the success rate SR as the number of trials in which a falsifying

input was found, and measure the average execution time of the successful trials. Note

that time is correlated with the number of simulations, because simulation is much

more computationally expensive than other steps, e.g., proportional transformation.

In the following, we compare two approaches A1,A2 ∈ {CE, LM, FixS1 , FixS2 ,

102 Chapter 5. Constraining Counterexamples via Search Space Trans.

ALL, MAB} by comparing SR using the non-parametric Wilcoxon signed-rank test

with 5% level of signi�cance [100]. The null hypothesis is that there is no statistical

signi�cant di�erence in applying A1 or A2 in terms of SR; if the null hypothesis is

rejected, we check the alternative hypothesis that A1 is better than A2 (higher SR).

Experimental results are reported in Table 5.3. The gray cells are local best

performers: they have the best SR with minimum time. Table 5.4 reports the results of

the Wilcoxon signed-rank test between each pair of techniques in terms of SR.

We now analyze the results using three research questions.

RQ1 Do the proposed approaches outperform the two baseline approaches?

In this RQ, we want to assess whether we improve w.r.t. the state of the art. From

Table 5.3, we observe that sometimes the two baseline approaches CE and LM are not

able to �nd any feasible falsifying input over the 30 trials: for example, AT7 for almost

all the constraints, and AT8 and AT9 forψ 4

AT . Our proposed approaches, instead, are

almost always successful in at least one trial. Exceptions are FixS1 with AT6, FixS2

with AT7, and ALL with AT5, all under constraintψ 1

AT .

Also when the two baseline approaches do �nd at least a falsifying input, our

approaches in general perform better.

The statistical tests in Table 5.4 con�rm the previous qualitative evaluation: all our

approaches are statistically better than the two baseline approaches.

Note that both the baseline approaches and our proposed approaches modify

the �tness landscape. However, in the baseline approaches, the �tness landscape

is given by the composition of the degree of violation of the constraints and of the

robustness; in this way, the falsi�cation task performed by hill-climbing is complicated.

Moreover, note that the scales (i.e., orders of magnitude) of constraint violation and

robustness may be very di�erent, and this has been shown to a�ect the e�ectiveness of

falsi�cation algorithms [89]. In our approach, instead, hill-climbing operates over a

�tness landscape that, although deformed, it is only given by robustness.

We notice that in many cases the proposed approaches improve the baselines in

time. This is reasonable: since the baselines make objective functions much more

complex, they need more simulations (thus time) to �nd the falsifying input. Note that

all infeasible samplings require simulation, so wasting time for falsi�cation.

We want now to assess the e�ect of the proportional transformation on the

5.6 Experimental Evaluation 103

Table 5.3: Experimental results (SR: the number of successes out of 30 trials. #sim: the

number of simulations. Time in secs.)

(a) Automatic Transmission

AT1 AT2 AT3 AT4 AT5 AT6 AT7

SR #sim time SR #sim time SR #sim time SR #sim time SR #sim time SR #sim time SR #sim time

ψ 1

AT

CE 22 334 130.1 6 320 121.0 1 186 66.1 25 318 120.1 26 741 286.6 7 1094 481.6 0 - -

LM 9 477 194.2 0 - - 0 - - 15 291 116.0 9 860 348.5 1 399 154.1 0 - -

FixS1 28 111 37.3 27 71 23.6 17 84 28.0 9 246 94.7 7 1014 418.9 0 - - 2 315 127.0

FixS2 24 216 78.1 26 106 36.2 13 87 29.1 19 238 84.2 9 834 331.0 1 193 85.4 0 - -

ALL 30 382 124.0 30 145 47.0 29 269 88.2 28 464 161.4 0 - - 29 988 343.5 19 1143 428.0

MAB 30 744 251.3 30 57 28.1 30 127 49.5 30 473 164.6 16 2000 741.5 28 1603 604.6 14 1849 726.9

ψ 2

AT

CE 28 216 75.6 13 90 31.4 3 78 27.5 30 228 82.3 29 527 193.9 10 620 263.9 0 - -

LM 20 402 157.2 9 95 35.0 3 93 35.4 28 224 86.8 29 454 166.7 4 629 272.9 0 - -

FixS1 29 93 32.3 18 109 38.6 21 97 33.9 20 176 66.5 16 917 390.9 7 563 232.0 8 463 200.1

FixS2 30 137 46.1 22 76 26.0 13 100 33.9 23 261 93.5 24 689 269.3 4 191 83.9 4 747 290.9

ALL 30 410 132.1 30 359 117.8 28 308 101.3 24 755 273.0 0 - - 27 885 306.3 21 1368 500.5

MAB 30 480 160.5 30 119 47.0 30 228 82.0 30 497 172.1 14 2067 781.6 28 1578 601.9 27 1787 681.7

ψ 3

AT

CE 10 211 82.8 23 179 64.9 11 168 61.7 18 372 140.7 15 778 310.9 0 - - 0 - -

LM 1 439 177.4 26 131 48.3 11 167 64.5 26 397 155.2 24 741 292.1 5 530 241.4 6 874 366.7

FixS1 30 110 37.2 20 79 27.3 16 78 26.8 29 219 78.6 23 852 337.8 16 489 193.6 13 748 303.6

FixS2 29 127 43.1 22 93 32.2 13 100 33.9 27 215 74.3 28 675 257.5 9 537 213.6 4 675 283.0

ALL 30 540 177.0 27 390 132.2 25 706 240.9 30 431 149.2 2 1432 676.4 12 1309 486.6 3 1865 699.1

MAB 30 736 249.3 30 114 45.3 30 246 88.0 30 347 122.3 16 2087 767.3 24 1710 634.2 15 1830 708.0

ψ 4

AT

CE 17 1105 460.7 23 89 31.4 14 70 24.2 30 114 40.2 29 448 162.8 2 1433 571.5 4 1170 487.7

LM 14 1154 480.5 21 112 41.9 14 87 31.9 30 120 44.3 30 478 181.3 1 1055 469.6 1 1563 610.5

FixS1 14 543 208.0 18 92 30.8 10 127 43.1 28 108 36.0 26 504 180.8 5 228 89.3 4 411 165.9

FixS2 21 376 141.9 21 89 29.7 19 78 25.8 30 115 38.4 28 414 149.1 21 187 65.8 17 206 77.4

ALL 30 795 273.7 21 263 92.3 16 181 63.6 30 191 64.2 27 1104 402.3 22 828 294.9 21 1437 401.2

MAB 27 583 203.5 30 160 61.8 29 258 95.4 29 164 62.7 29 634 214.1 13 636 242.4 16 592 199.7

ψ 5

AT

CE 14 272 106.1 12 167 61.0 4 437 165.4 23 632 258.2 14 919 376.7 9 1093 490.2 0 - -

LM 12 706 276.6 0 - - 0 - - 28 538 217.1 15 947 402.3 0 - - 0 - -

FixS1 30 90 30.2 28 66 23.0 20 63 21.5 30 131 45.6 28 973 383.0 13 526 218.2 4 1186 463.6

FixS2 25 88 30.2 27 57 19.1 28 69 23.1 30 187 63.4 21 804 326.2 26 151 52.0 28 313 111.8

ALL 30 435 140.6 23 189 80.3 30 321 106.2 26 318 110.5 6 1565 646.0 30 966 330.7 23 1225 441.1

MAB 30 503 168.8 30 69 30.5 30 80 35.3 30 260 93.4 28 1351 497.0 26 745 271.8 21 1122 414.8

AT8 AT9 AT10 AT11 AT12 AT13 AT14

SR #sim time SR #sim time SR #sim time SR #sim time SR #sim time SR #sim time SR #sim time

ψ 1

AT

CE 5 865 371.2 4 1631 655.1 18 541 215.8 7 679 291.2 9 559 229.3 6 325 118.5 16 281 101.5

LM 3 201 77.5 9 439 170.3 3 747 310.1 2 1688 705.2 2 1519 617.6 9 236 88.2 8 289 109.2

FixS1 22 208 74.7 20 226 87.1 29 172 61.7 26 265 96.6 19 423 161.3 25 157 55.8 30 70 23.1

FixS2 22 198 70.6 17 342 132.2 28 332 121.2 19 245 86.7 14 316 120.9 22 246 88.2 27 74 25.3

ALL 27 553 184.6 22 658 232.4 30 454 150.3 28 629 224.5 14 1176 483.2 28 995 351.8 30 281 95.0

MAB 30 493 177.4 30 997 355.0 30 271 96.5 30 368 126.9 26 1536 570.3 30 1085 398.6 30 207 75.3

ψ 2

AT

CE 13 715 289.9 9 909 359.6 27 513 203.4 25 577 229.4 20 878 352.2 10 234 84.2 17 115 39.7

LM 8 208 86.8 13 255 96.1 25 566 231.0 22 601 250.0 23 575 227.5 9 215 76.3 16 165 60.5

FixS1 25 87 30.7 19 111 40.6 29 116 40.3 26 159 57.3 22 380 146.7 27 142 50.4 30 72 25.0

FixS2 24 100 33.7 22 112 38.6 27 162 56.1 23 192 69.7 19 350 132.8 26 130 45.4 30 87 29.9

ALL 29 470 157.6 24 564 197.5 30 444 146.7 28 666 237.0 5 1097 420.9 27 704 244.0 30 400 133.5

MAB 30 511 180.8 30 704 248.1 30 220 80.5 30 376 133.0 30 1608 598.3 30 942 340.3 30 228 84.0

ψ 3

AT

CE 1 507 216.9 0 - - 22 470 184.2 19 719 293.5 1 574 215.1 5 365 133.9 12 226 81.3

LM 1 124 56.1 4 658 275.7 23 451 182.4 27 760 295.9 1 1883 831.8 11 412 153.0 14 238 85.1

FixS1 20 117 41.1 22 140 49.8 29 212 75.2 27 522 196.4 11 538 213.5 19 178 62.5 26 91 31.2

FixS2 19 138 48.2 14 150 52.9 28 275 98.1 26 491 182.6 6 394 161.0 18 177 63.7 28 98 34.0

ALL 24 502 174.8 15 672 253.4 30 623 209.8 18 873 331.0 1 565 261.2 21 778 285.5 28 377 125.8

MAB 30 866 315.7 30 851 299.0 30 394 139.9 29 851 296.4 8 1991 742.8 30 762 273.9 30 255 92.0

ψ 4

AT

CE 0 - - 0 - - 30 106 36.7 29 216 77.0 28 717 274.3 2 361 127.9 5 223 78.5

LM 0 - - 0 - - 30 132 48.5 28 148 76.7 26 758 297.2 7 482 179.9 3 150 53.7

FixS1 14 155 52.8 15 156 53.8 30 97 31.5 30 198 67.4 25 814 311.8 8 97 32.3 21 73 24.3

FixS2 20 187 66.2 12 130 46.9 30 126 41.7 29 172 57.8 29 553 205.7 11 195 67.8 17 66 22.1

ALL 13 379 146.1 10 572 172.5 30 180 61.0 30 288 97.9 19 1180 382.3 10 759 183.0 24 462 72.5

MAB 22 441 164.7 24 514 181.5 30 174 67.4 30 255 94.7 28 862 305.2 18 352 131.1 26 155 56.3

ψ 5

AT

CE 11 1209 514.2 7 1050 427.0 26 423 165.8 14 530 222.9 14 617 243.3 5 401 149.0 5 343 124.8

LM 5 413 173.1 4 405 164.6 20 472 199.8 16 587 253.7 4 873 376.0 6 454 169.6 8 317 116.1

FixS1 23 89 30.5 18 131 45.4 30 116 39.9 30 100 34.0 30 251 88.8 7 119 41.7 16 95 32.8

FixS2 15 91 30.5 13 130 44.4 30 177 61.1 18 248 92.4 13 400 154.4 13 86 30.1 22 93 32.2

ALL 21 495 169.3 14 455 168.6 30 346 114.5 26 826 300.2 5 953 388.0 25 694 237.2 29 511 171.7

MAB 30 571 206.9 30 687 242.1 30 228 82.8 30 291 104.4 28 1045 376.7 28 605 217.8 30 302 108.2

(b) Abstract Fuel Control

AFC1 AFC2

SR #sim time SR #sim time

ψ 1

AFC

CE 3 1181 771.4 10 438 282.7

LM 7 901 591.2 10 452 295.4

FixS1 4 604 401.3 14 399 257.0

FixS2 10 787 516.6 11 215 140.5

ALL 0 - - 23 598 386.5

MAB 0 - - 4 975 604.0

ψ 2

AFC

CE 0 - - 8 520 343.3

LM 5 655 427.9 13 642 418.4

FixS1 7 492 316.8 14 543 358.2

FixS2 3 1028 702.4 11 587 380.3

ALL 6 840 546.7 9 339 239.6

MAB 5 550 355.8 13 637 412.1

(c) Neural Network controller

NN1 NN2

SR #sim time SR #sim time

ψ 1

NN

CE 23 591 271.6 18 723 291.2

LM 28 407 172.0 20 617 202.7

FixS1 30 303 121.7 26 461 192.3

FixS2 26 301 118.2 24 583 239.7

ALL 28 549 211.4 20 556 226.9

MAB 30 501 197.4 30 737 283.8

ψ 2

NN

CE 25 507 217.0 16 826 361.0

LM 20 478 285.1 12 790 354.9

FixS1 26 379 152.6 22 459 192.5

FixS2 19 403 167.4 16 463 195.0

ALL 27 543 218.9 18 716 333.1

MAB 27 542 204.2 24 763 297.5

(d) Free Floating Robot

FFR1 FFR2

SR #sim time SR #sim time

ψ 1

FFR

CE 1 1492 477.4 1 1427 548.7

LM 3 1456 346.1 0 - -

FixS1 30 338 65.1 20 1467 398.6

FixS2 30 370 67.9 18 1325 370.1

ALL 4 1751 460.7 0 - -

MAB 30 1034 226.5 3 920 316.9

104 Chapter 5. Constraining Counterexamples via Search Space Trans.

Table 5.4: Wilcoxon signed-rank test between two considered approaches A1 and A2.

Legend: (nh = null hypothesis that there is no di�erence between A1 and A2)

3: nh is rejected; A1 is better than A2 by the alternative hypothesis (ah).

≡: nh is not rejected.

7: nh is rejected; A2 is better than A1 by the alternative hypothesis (ah).

A2

CE LM FixS1 FixS2 ALL MAB

A1

CE - ≡ 7 7 7 7

LM ≡ - 7 7 7 7

FixS1 3 3 - ≡ ≡ 7

FixS2 3 3 ≡ - 7 7

ALL 3 3 ≡ 3 - 7

MAB 3 3 3 3 3 -

execution time. For each experiment, we have computed the average simulation time

(time/#sim) for all the techniques (not reported for the sake of space); note that, for the

proposed approaches, such value also includes the time required by the transformation.

We observed that there is no signi�cant di�erence between the approaches, meaning

that the computational cost of the transformation is negligible.

RQ2 How do the three proposed approaches compare each other in terms of SR?

We are here interested in assessing which is the best approach (among the three

proposed ones) in terms of SR (in the given time budget). From Table 5.3, we notice

(as already observed in RQ1) that in very few cases the Fix approach may be not

e�ective: this shows that, in some cases, choosing the wrong priority can a�ect the

performance; a more detailed analysis will be given in RQ3. In one case, we observe

that also the ALL method is not e�ective: although this is an exception considering all

the other results of ALL, it is a signal that such exhaustive approach may be ine�ective,

in particular when there are many priorities to consider.

Observing the statistical tests in Table 5.4, we can draw more de�nitive conclusions.

Selecting one particular priority (Fix) does not make any di�erence: FixS1 and

FixS2 are statistically equivalent. Considering all the priorities (ALL) is sometimes

better than considering only one (ALL is better than FixS2), but sometimes it is

equivalent (ALL is equivalent to FixS1). This means that none of the two techniques,

Fix and ALL, overcomes the other, because they highly depend on the considered

5.6 Experimental Evaluation 105

AT1 AT3 AT4 AT7 AT8 AT12 AFC1 AFC2 NN2 FFR2

Constraints

0

5

10

15

20

25

30
SR

CE
LM

Figure 5.5: In�uence of selected priority S in the Fixed-Priority. (ψ 1

AT is used for AT

speci�cations,ψ 1

AFC for AFC speci�cations, andψ 1

NN for the NN speci�cation, andψ 1

FFR
for the FFR speci�cation.)

speci�cation and constraint. On the other hand, we observe that the MAB approach

outperforms all the other proposed approaches: this shows that the Multi-Armed

Bandit e�ciently learns the priority that must be used because it provides the lower

robustness.

RQ3 How does the selection of priority S in the Fixed-Priority approach a�ect SR?

As observed in RQ2, the priority chosen by the Fixed-Priority approach can

in�uence the falsi�cation ability. In this RQ, we want to assess such in�uence. We

selected 8 speci�cations among those used previously and, for each of these, we also

selected one constraint. For each speci�cation, we run the Fixed-Priority approach

using all the non-equivalent priorities in set Prior (see §5.5.2). For each �xed priority,

the falsi�cation is run 30 times. Fig. 5.5 shows how the success rate SR changes by

varying priorities. We observe that, for some speci�cations (AT1, AFC1, NN2, FFR2),

the variability is low, meaning that the in�uence of the selected priority is small. Some

of these speci�cations are simple, such as AT1 and NN2, as we note that SR is high.

AFC1 and FFR2 are not simple but they still exhibit small variance. For example in

FFR2, this is because the four di�erent inputs (i.e., the four robot boosters) play similar

106 Chapter 5. Constraining Counterexamples via Search Space Trans.

roles in the system, and thus the priority over them does not matter.

On the other hand, for some speci�cations (e.g., AT3, AT4, AT7 and AT12), the

variance is very high, going from SR of (almost) 0 to (almost) 30. This means that, in

these cases, some priorities perform much better than others, because they tend to map

points towards parts of the input space having low (possibly negative) robustness. In

these speci�cations, the MAB-Priority approach is e�ective (see RQ2 and Table 5.3): in

AT3, AT4 and AT12 withψ 1

AT , MAB-Priority approaches achieve the highest success

rate; in AT7 withψ 1

AT , it performs better than most of other approaches.

We also mark the performance of CE and LM methods in Fig. 5.5. We observe that,

in almost all the cases, these two baseline methods do not perform as well as the

median performance of the Fixed-Priority method; and in many cases, they perform

even worse than the worst cases of the Fixed-Priority method. This observation

strengthens our conclusion in RQ1 that the proposed approach performs generally

better than the baseline approaches.

107

6
Conclusions

In this work, a general hierarchical optimization framework that can be instantiated

for multiple purposes is presented. The framework consists of two layers: a top layer

that selects a subset of the whole problem as the next step to proceed, and a bottom

layer that performs numerical optimization and returns feedback to the top layer.

The decision made by the top layer is dependent on the information provided by the

bottom layer; the numerical optimization performed by the bottom layer is bounded by

the conditions suggested by the top layer. In this way, the two layers collaborate with

each other and work together to solve the given problem.

The framework is instantiated to three techniques, and each of them solves one

speci�c problem that exists in the falsi�cation work�ow. Concretely, they are:

• A Monte Carlo Tree Search (MCTS)-based technique for balancing exploration

and exploitation during search. Hill-climbing optimization used in the existing

falsi�cation technique is a greedy search strategy, and thus can easily fall into

the local optimum. In our method, we discretize the search space and structure

the sub-spaces as a search tree, and then we perform search in a hierarchical

108 Chapter 6. Conclusions

manner: on the top layer, MCTS decides the sub-spaces (identi�ed by branches)

that should be further looked into based on the rewards computed by the bottom

layer; on the bottom layer, hill-climbing optimization is run in a local space

suggested by the top layer to give feedback or �nd a concrete solution. These

two layers work closely together to improve the e�ectiveness and e�ciency of

the search.

• Application of Multi-Armed Bandit (MAB) model to handling safety properties

with Boolean connectives. The existing de�nition of STL robust semantics for

Boolean connectives superposes the robustness values from di�erent signals. As

signals may have di�erent scales, the global robustness will be biased, and this

can a�ect the falsi�cation performance. We propose a novel technique that

treats di�erent sub-formulas as di�erent bandit machines, and applies the MAB

algorithms (UCB1 and ε-Greedy) to govern the hill-climbing processes running

on di�erent machines. We then de�ne hill-climbing gain rewards to embody the

running status of each machine. It forms such a framework: the MAB algorithms

on the top layer select one of the machines according to the rewards of them;

the selected machine on the bottom layer runs hill-climbing optimization and

returns the running status information for computing rewards. These two layers

work together to handle the problem of falsifying safety properties with Boolean

connectives.

• Handling input constraints via search space transformation enhanced by Multi-

Armed Bandit (MAB) model. The existing falsi�cation framework ignores

logical constraints on input signals, and thus produces falsifying inputs that are

meaningless. We propose a search space transformation approach, in which the

search is allowed to sample in an unconstrained search space, guided by �tness

coming from the constrained input space. This is implemented by a surjection

that maps points from the unconstrained space to the constrained space. Once

a negative �tness is observed, we return the point in the constrained space

(as the counterexample for falsi�cation), so that its satisfaction to the input

constraints is guaranteed. The performance of this approach is subject to a

hyperparameter, namely, a total order over the dimensions of the search space.

In order to achieve the best performance, we introduce the MAB model in this

6.1 Discussion: Integration of the Techniques 109

Model
MCTS-based

optimizer

input signal

output signal STL robust semantics robustness

specification

MAB{
<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>

sub-formula

sub-formula

Search space
transformation

sample
input constraint

Figure 6.1: A potential framework integrating all the technique

context again, and construct the hierarchical framework: the MAB algorithm on

the top layer selects the best order and sends it to the bottom layer; the search

space transformation-based optimization on the bottom layer runs following that

order and gives feedback to the top layer. Again, they solve the problem through

collaboration.

These techniques exemplify the strength of the hierarchical optimization frame-

work. Together, they enhanced the existing falsi�cation framework, and pushed the

falsi�cation technique one big step forward to the practical use. In the next section, we

discuss on the potential of integrating these di�erent techniques into a single tool, and

compare it with the existing state of the art.

6.1 Discussion: Integration of the Techniques

As the proposed techniques work in di�erent phases of the falsi�cation work�ow

(Fig. 1.6), it is possible to integrate all of them into a single framework, which is

depicted in Fig. 6.1. In the presence of input constraints, the framework starts with a

sample and maps it to an input signal that satis�es the constraint via search space

transformation; then the calculation of robustness of the output signal will be tailored

if the speci�cation contains Boolean connectives—it selects one sub-formula rather

110 Chapter 6. Conclusions

than the whole formula at each loop according to the MAB algorithm; lastly, the

optimizer is replaced by the combination of hill-climbing optimization and MCTS to

enhance the search ability.

The framework shown in Fig. 6.1 improves the classic falsi�cation framework in the

following aspects: �rstly, it strengthens the e�ectiveness so that the new framework is

not vulnerable to problems such as local optima or scale problem; secondly, it provides

new functionalities such as support for input constraints.

Moreover, the framework in Fig. 6.1 also bene�ts the practitioners in the sense

that they do not have to strive to select one speci�c technique for their applications—

they can directly apply this framework in any case without additional cost. If their

application has no input constraint to deal with, then the sample and the input signal

in Fig. 6.1 just correspond; even if it is unknown in advance whether their application

su�ers from the scale problem, applying the MAB technique for Boolean connectives

will not lead to a worse performance as shown in Chapter 4; if the search is so simple

that hill climbing su�ces, using our MCTS-based technique will introduce a little

overhead for search space exploration but that is acceptable. Therefore, our work

o�ers practitioners a more powerful falsi�cation tool than the state of the art.

6.2 Future works

An ongoing work now is to investigate how much con�dence can be given by the

falsi�cation technique. Especially, in the case that no falsifying input has been found

by falsi�cation, how likely it is that no such input exists in the search space. As the

search space we consider here is a continuous domain, in general this problem is

undecidable. However, some clues are still given by the sampling. For example, if the

sampling is biased to exploitation and thus only searches in a local area, then it is

not known if the unexplored areas contain the falsifying input. In such a case, the

con�dence level on non-existence of falsifying inputs should be rather low, even if the

algorithm does not manage to �nd one.

As mid-term future works, related topics about debugging hybrid systems and

automatic fault repair will be investigated. Falsi�cation technique in nature is a

testing-based approach for the aim of knowing the existence of unexpected behaviors.

In the case there exist such behaviors, it is important to conduct fault localization

6.2 Future works 111

to �nd the root cause. One instance of the problem is that if the speci�cation is a

complicated one, it is required to �rstly address the sub-formula that is violated. A

more important problem is to �nd the system components that cause the unexpected

behavior. The aim of fault localization is to repair it, and it is preferable if it can be done

automatically. This is a direction of great signi�cance, but it has not been explored

much yet.

The long-term future work is to extend the philosophy of the hierarchical framework

to other contexts. One possibility is to develop new techniques that instantiate the

framework. For example, in a setting of white-box information of a Simulink model

aware, we can consider combining symbolic execution and numerical analysis in a

hierarchical manner for falsi�cation: on the top layer, we perform symbolic execution

to obtain the constraints under which an execution path can be visited; on the bottom

layer, we run constrained optimization to assess the quality of the corresponding path.

We can use techniques such as UCB1 to balance the exploration to di�erent execution

paths and the exploitation to some speci�c paths. Our goal is to �nd the path where

falsifying inputs exist e�ectively and e�ciently.

It is also possible to extend the hierarchical optimization framework to totally

di�erent domains. Nowadays, as the scales of many problems are much larger than

ever before, techniques based on arti�cial intelligence or optimization are more and

more widely applied. For instance, in deep learning, a critical problem is to tune a large

set of parameters using optimization. In general, decomposing the problems and

hierarchizing the methodologies can be a generic strategy. Therefore, we believe that

our hierarchical framework can also make a success in other contexts.

113

Bibliography

[1] Thomas A Henzinger. The theory of hybrid automata. In Veri�cation of Digital
and Hybrid Systems, pages 265–292. Springer, 2000.

[2] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and

Helmut Veith. Model checking. MIT press, 2018.

[3] Shankara Narayanan Krishna and Ashutosh Trivedi. Hybrid automata for formal

modeling and veri�cation of cyber-physical systems. CoRR, abs/1503.04928, 2015.

[4] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[5] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International
journal on software tools for technology transfer, 1(1-2):134–152, 1997.

[6] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The tool

kronos. In International Hybrid Systems Workshop, pages 208–219. Springer, 1995.

[7] Étienne André, Thomas Chatain, Laurent Fribourg, and Emmanuelle Encrenaz.

An inverse method for parametric timed automata. International Journal of
Foundations of Computer Science, 20(05):819–836, 2009.

[8] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem prover

for hybrid systems (system description). In International Joint Conference on
Automated Reasoning, pages 171–178. Springer, 2008.

114 Bibliography

[9] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.

Keymaera x: An axiomatic tactical theorem prover for hybrid systems. In

International Conference on Automated Deduction, pages 527–538. Springer, 2015.

[10] André Platzer. Di�erential dynamic logic for verifying parametric hybrid

systems. In International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, pages 216–232. Springer, 2007.

[11] André Platzer. Di�erential dynamic logic for hybrid systems. Journal of
Automated Reasoning, 41(2):143–189, 2008.

[12] Kohei Suenaga and Ichiro Hasuo. Programming with in�nitesimals: A while-

language for hybrid system modeling. In International Colloquium on Automata,
Languages, and Programming, pages 392–403. Springer, 2011.

[13] Ichiro Hasuo and Kohei Suenaga. Exercises in nonstandard static analysis of

hybrid systems. In International Conference on Computer Aided Veri�cation,

pages 462–478. Springer, 2012.

[14] Kohei Suenaga, Hiroyoshi Sekine, and Ichiro Hasuo. Hyperstream processing

systems: nonstandard modeling of continuous-time signals. ACM SIGPLAN
Notices, 48(1):417–430, 2013.

[15] James Kapinski, Jyotirmoy Deshmukh, Xiaoqing Jin, Hisahiro Ito, and Ken Butts.

Simulation-guided approaches for veri�cation of automotive powertrain control

systems. In 2015 American Control Conference (ACC), pages 4086–4095. IEEE,

2015.

[16] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. Geoscenario: An

open dsl for autonomous driving scenario representation. In 2019 IEEE Intelligent
Vehicles Symposium (IV), pages 287–294. IEEE, 2019.

[17] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review of search-

based testing for non-functional system properties. Information and Software
Technology, 51(6):957–976, 2009.

Bibliography 115

[18] Phil McMinn. Search-based software testing: Past, present and future. In Fourth
IEEE International Conference on Software Testing, Veri�cation and Validation,
ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Proceedings, pages

153–163. IEEE Computer Society, 2011.

[19] Yashwanth Annapureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. S-Taliro: A tool for temporal logic falsi�cation for hybrid systems.

In Proceedings of the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems: Part of the Joint European Conferences on
Theory and Practice of Software, TACAS’11/ETAPS’11, pages 254–257, Berlin,

Heidelberg, 2011. Springer-Verlag.

[20] Jyotirmoy Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic

local search for falsi�cation of hybrid systems. In Automated Technology for
Veri�cation and Analysis, pages 500–517, Cham, 2015. Springer International

Publishing.

[21] Jan Kuřátko and Stefan Ratschan. Combined global and local search for the

falsi�cation of hybrid systems. In Formal Modeling and Analysis of Timed Systems,
pages 146–160, Cham, 2014. Springer International Publishing.

[22] Alexandre Donzé. Breach, A toolbox for veri�cation and parameter synthesis

of hybrid systems. In Computer Aided Veri�cation, 22nd Int. Conf., CAV 2010,

volume 6174 of LNCS, pages 167–170. Springer, 2010.

[23] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin,

and Jyotirmoy V. Deshmukh. E�cient guiding strategies for testing of temporal

properties of hybrid systems. In NASA Formal Methods, pages 127–142, Cham,

2015. Springer International Publishing.

[24] Aditya Zutshi, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and James

Kapinski. Multiple shooting, cegar-based falsi�cation for hybrid systems. In

2014 International Conference on Embedded Software, EMSOFT 2014, New Delhi,
India, October 12-17, 2014, pages 5:1–5:10. ACM, 2014.

116 Bibliography

[25] Simone Silvetti, Alberto Policriti, and Luca Bortolussi. An active learning

approach to the falsi�cation of black box cyber-physical systems. In Integrated
Formal Methods, pages 3–17, Cham, 2017. Springer International Publishing.

[26] Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan, and Jianye Hao.

Falsi�cation of cyber-physical systems using deep reinforcement learning. In

Formal Methods - 22nd International Symposium, FM 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings,
pages 456–465, 2018.

[27] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Fast falsi�cation of

hybrid systems using probabilistically adaptive input. In Quantitative Evaluation
of Systems, pages 165–181, Cham, 2019. Springer International Publishing.

[28] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,

Aarti Gupta, and George J. Pappas. Monte-carlo techniques for falsi�cation of

temporal properties of non-linear hybrid systems. In Proc. of the 13th ACM Int.
Conf. on Hybrid Systems: Computation and Control, HSCC ’10, pages 211–220,

NY, USA, 2010. ACM.

[29] Houssam Abbas, Bardh Hoxha, Georgios Fainekos, Jyotirmoy V Deshmukh,

James Kapinski, and Koichi Ueda. Conformance testing as falsi�cation for

cyber-physical systems. arXiv preprint arXiv:1401.5200, 2014.

[30] Aditya Zutshi, Sriram Sankaranarayanan, Jyotirmoy V Deshmukh, and James

Kapinski. A trajectory splicing approach to concretizing counterexamples

for hybrid systems. In 52nd IEEE Conference on Decision and Control, pages

3918–3925. IEEE, 2013.

[31] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic

speci�cations for continuous-time signals. Theor. Comput. Sci., 410(42):4262–4291,

September 2009.

[32] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over

real-valued signals. In Formal Modeling and Analysis of Timed Systems - 8th Int.
Conf., FORMATS 2010, volume 6246 of LNCS, pages 92–106. Springer, 2010.

Bibliography 117

[33] Takumi Akazaki and Ichiro Hasuo. Time robustness in MTL and expressivity

in hybrid system falsi�cation. In Computer Aided Veri�cation, pages 356–374,

Cham, 2015. Springer International Publishing.

[34] Pavithra Prabhakar, Ratan Lal, and James Kapinski. Automatic trace generation

for signal temporal logic. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 208–217. IEEE, 2018.

[35] Alexandre Donzé, Thomas Ferrere, and Oded Maler. E�cient robust monitoring

for stl. In International Conference on Computer Aided Veri�cation, pages 264–279.

Springer, 2013.

[36] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. Online monitoring of metric

temporal logic. In Runtime Veri�cation - 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings, pages 178–192, 2014.

[37] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous

signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, pages 152–166, Berlin, Heidelberg, 2004. Springer.

[38] Bardh Hoxha, Adel Dokhanchi, and Georgios E. Fainekos. Mining parametric

temporal logic properties in model-based design for cyber-physical systems.

STTT, 20(1):79–93, 2018.

[39] Oded Maler, Dejan Nickovic, and Amir Pnueli. From mitl to timed automata. In

International Conference on Formal Modeling and Analysis of Timed Systems,
pages 274–289. Springer, 2006.

[40] Ezio Bartocci, Roderick Bloem, Dejan Nickovic, and Franz Roeck. A counting

semantics for monitoring ltl speci�cations over �nite traces. In International
Conference on Computer Aided Veri�cation, pages 547–564. Springer, 2018.

[41] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[42] Zhenya Zhang, Gidon Ernst, Sean Sedwards, Paolo Arcaini, and Ichiro Hasuo.

Two-layered falsi�cation of hybrid systems guided by monte carlo tree search.

118 Bibliography

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
37(11):2894–2905, Nov 2018.

[43] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon

Ernst, Zhenya Zhang, Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. ARCH-

COMP18 category report: Results on the falsi�cation benchmarks. In ARCH18.
5th International Workshop on Applied Veri�cation of Continuous and Hybrid
Systems, volume 54 of EPiC Series in Computing, pages 104–109. EasyChair, 2018.

[44] Gidon Ernst, Paolo Arcaini, Alexandre Donzé, Georgios Fainekos, Logan

Mathesen, Giulia Pedrielli, Shakiba Yaghoubi, Yoriyuki Yamagata, and Zhenya

Zhang. ARCH-COMP 2019 category report: Falsi�cation. In ARCH19. 6th
International Workshop on Applied Veri�cation of Continuous and Hybrid Systems,
volume 61 of EPiC Series in Computing, pages 129–140. EasyChair, 2019.

[45] Cumhur Erkan Tuncali, Theodore P Pavlic, and Georgios Fainekos. Utilizing

s-taliro as an automatic test generation framework for autonomous vehicles. In

2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), pages 1470–1475. IEEE, 2016.

[46] Cumhur Erkan Tuncali and Georgios Fainekos. Rapidly-exploring random trees

for testing automated vehicles. In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pages 661–666. IEEE, 2019.

[47] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Hadi

Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia. Verifai: A toolkit

for the formal design and analysis of arti�cial intelligence-based systems. In

International Conference on Computer Aided Veri�cation, pages 432–442. Springer,

2019.

[48] Ritchie Lee, Mykel J Kochenderfer, Ole J Mengshoel, Guillaume P Brat, and

Michael P Owen. Adaptive stress testing of airborne collision avoidance systems.

In Digital Avionics Systems Conference, 2015 IEEE/AIAA 34th, pages 6C2–1. IEEE,

2015.

[49] Anthony Corso, Peter Du, Katherine Driggs-Campbell, and Mykel J Kochenderfer.

Adaptive stress testing with reward augmentation for autonomous vehicle

Bibliography 119

validatio. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pages 163–168. IEEE, 2019.

[50] Mark Koren and Mykel J Kochenderfer. E�cient autonomy validation in

simulation with adaptive stress testing. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 4178–4183. IEEE, 2019.

[51] Vahid Behzadan and Arslan Munir. Adversarial reinforcement learning frame-

work for benchmarking collision avoidance mechanisms in autonomous vehicles.

IEEE Intelligent Transportation Systems Magazine, 2019.

[52] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. Compositional

falsi�cation of cyber-physical systems with machine learning components.

In NASA Formal Methods, pages 357–372, Cham, 2017. Springer International

Publishing.

[53] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for

control systems with machine learning components. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control,
pages 179–184, 2019.

[54] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.

Simulation-based adversarial test generation for autonomous vehicles with

machine learning components. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1555–1562. IEEE, 2018.

[55] Cumhur Erkan Tuncali, Georgios Fainekos, Danil Prokhorov, Hisahiro Ito, and

James Kapinski. Requirements-driven test generation for autonomous vehicles

with machine learning components. IEEE Transactions on Intelligent Vehicles,
2019.

[56] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken

Butts. Powertrain control veri�cation benchmark. In Proc. of the 17th Int. Conf.
on Hybrid Systems: Computation and Control, HSCC ’14, pages 253–262, NY, USA,

2014. ACM.

120 Bibliography

[57] Christoph Gladisch, Thomas Heinz, Christian Heinzemann, Jens Oehlerking,

Anne von Vietingho�, and Tim P�tzer. Experience paper: Search-based testing

in automated driving control applications. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019, pages 26–37, 2019.

[58] Rémi Delmas, Thomas Loquen, Josep Boada-Bauxell, and Mathieu Carton. An

evaluation of monte-carlo tree search for property falsi�cation on hybrid �ight

control laws. In Numerical Software Veri�cation - 12th International Workshop,
NSV@CAV 2019, New York City, NY, USA, July 13-14, 2019, Proceedings, pages

45–59, 2019.

[59] Martin Pincus. Letter to the editor—a monte carlo method for the approximate

solution of certain types of constrained optimization problems. Operations
Research, 18(6):1225–1228, 1970.

[60] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo Ivančić,

and Aarti Gupta. Probabilistic temporal logic falsi�cation of cyber-physical

systems. ACM Transactions on Embedded Computing Systems (TECS), 12(2s):1–30,

2013.

[61] Arend Aerts, Bryan Tong Minh, Mohammad Reza Mousavi, and Michel A Reniers.

Temporal logic falsi�cation of cyber-physical systems: An input-signal-space

optimization approach. In 2018 IEEE International Conference on Software Testing,
Veri�cation and Validation Workshops (ICSTW), pages 214–223. IEEE, 2018.

[62] Yashwanth Singh Rahul Annapureddy and Georgios E Fainekos. Ant colonies

for temporal logic falsi�cation of hybrid systems. In IECON 2010-36th Annual
Conference on IEEE Industrial Electronics Society, pages 91–96. IEEE, 2010.

[63] Reuven Rubinstein. The cross-entropy method for combinatorial and continuous

optimization. Methodology and computing in applied probability, 1(2):127–190,

1999.

[64] Sriram Sankaranarayanan and Georgios Fainekos. Falsi�cation of temporal

properties of hybrid systems using the cross-entropy method. In Proceedings of

Bibliography 121

the 15th ACM international conference on Hybrid Systems: Computation and
Control, pages 125–134, 2012.

[65] Logan Mathesen, Shakiba Yaghoubi, Giulia Pedrielli, and Georgios Fainekos.

Falsi�cation of cyber-physical systems with robustness uncertainty quanti�cation

through stochastic optimization with adaptive restart. In 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE), pages

991–997. IEEE, 2019.

[66] Shakiba Yaghoubi and Georgios Fainekos. Worst-case satisfaction of stl speci�-

cations using feedforward neural network controllers: a lagrange multipliers

approach. ACMTransactions on Embedded Computing Systems (TECS), 18(5s):1–20,

2019.

[67] Adel Dokhanchi, Aditya Zutshi, Rahul T. Sriniva, Sriram Sankaranarayanan,

and Georgios E. Fainekos. Requirements driven falsi�cation with coverage

metrics. In 2015 International Conference on Embedded Software, EMSOFT 2015,
Amsterdam, Netherlands, October 4-9, 2015, pages 31–40. IEEE, 2015.

[68] Arvind Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski, and Xiaoqing

Jin. Classi�cation and coverage-based falsi�cation for embedded control

systems. In Computer Aided Veri�cation, pages 483–503, Cham, 2017. Springer

International Publishing.

[69] Jyotirmoy V. Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and

Vinayak S. Prabhu. Testing cyber-physical systems through bayesian optimiza-

tion. ACM Trans. Embedded Comput. Syst., 16(5):170:1–170:18, 2017.

[70] Takumi Akazaki. Falsi�cation of conditional safety properties for cyber-

physical systems with gaussian process regression. In Runtime Veri�cation -
16th International Conference, RV 2016, Madrid, Spain, September 23-30, 2016,
Proceedings, volume 10012 of Lecture Notes in Computer Science, pages 439–446.

Springer, 2016.

[71] Takumi Akazaki, Yoshihiro Kumazawa, and Ichiro Hasuo. Causality-aided

falsi�cation. In Proceedings First Workshop on Formal Veri�cation of Autonomous

122 Bibliography

Vehicles, FVAV@iFM 2017, Turin, Italy, 19th September 2017., volume 257 of EPTCS,

pages 3–18, 2017.

[72] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek. Generating

adversarial driving scenarios in high-�delity simulators. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8271–8277. IEEE, 2019.

[73] Koki Kato, Fuyuki Ishikawa, and Shinichi Honiden. Falsi�cation of cyber-physical

systems with reinforcement learning. In 3rd Workshop on Monitoring and Testing
of Cyber-Physical Systems, MT@CPSWeek 2018, Porto, Portugal, April 10, 2018,

pages 5–6, 2018.

[74] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J Kochenderfer. Adaptive stress

testing for autonomous vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1–7. IEEE, 2018.

[75] Thomas Ferrère, Dejan Nickovic, Alexandre Donzé, Hisahiro Ito, and James

Kapinski. Interface-aware signal temporal logic. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019., pages 57–66, 2019.

[76] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing

vision-based control systems using learnable evolutionary algorithms. In

Proceedings of the 40th International Conference on Software Engineering, ICSE

’18, pages 1016–1026, New York, NY, USA, 2018. ACM.

[77] Benoît Barbot, Nicolas Basset, and Thao Dang. Generation of signals under

temporal constraints for CPS testing. In NASA Formal Methods, pages 54–70,

Cham, 2019. Springer International Publishing.

[78] Özgür Yeniay. Penalty function methods for constrained optimization with

genetic algorithms. Mathematical and computational Applications, 10(1):45–56,

2005.

[79] Thomas Back, Frank Ho�meister, and Hans-Paul Schwefel. A survey of evolution

strategies. In Proceedings of the fourth international conference on genetic
algorithms, volume 2. Morgan Kaufmann Publishers San Mateo, CA, 1991.

Bibliography 123

[80] Angel Kuri Morales and Carlos Villegas Quezada. A universal eclectic genetic

algorithm for constrained optimization. In Proceedings of the 6th European
congress on intelligent techniques and soft computing, volume 1, pages 518–522,

1998.

[81] S Kazarlis and Vassilios Petridis. Varying �tness functions in genetic algorithms:

Studying the rate of increase of the dynamic penalty terms. In International
conference on parallel problem solving from nature, pages 211–220. Springer, 1998.

[82] Zhenya Zhang, Paolo Arcaini, and Ichiro Hasuo. Constraining counterexam-

ples in hybrid system falsi�cation: Penalty-based approaches. arXiv preprint
arXiv:2001.05107, 2020.

[83] Zbigniew Michalewicz and Girish Nazhiyath. Genocop iii: A co-evolutionary

algorithm for numerical optimization problems with nonlinear constraints. In

Proceedings of 1995 IEEE International Conference on Evolutionary Computation,

volume 2, pages 647–651. IEEE, 1995.

[84] Kalyanmoy Deb. An e�cient constraint handling method for genetic algorithms.

Computer methods in applied mechanics and engineering, 186(2-4):311–338, 2000.

[85] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary algorithms, homo-

morphous mappings, and constrained parameter optimization. Evolutionary
computation, 7(1):19–44, 1999.

[86] Hojjat Adeli and Nai-Tsang Cheng. Augmented lagrangian genetic algorithm for

structural optimization. Journal of Aerospace Engineering, 7(1):104–118, 1994.

[87] Jong-Hwan Kim and Hyun Myung. Evolutionary programming techniques

for constrained optimization problems. IEEE Transactions on evolutionary
computation, 1(2):129–140, 1997.

[88] Zhenya Zhang, Gidon Ernst, Ichiro Hasuo, and Sean Sedwards. Time-staging

enhancement of hybrid system falsi�cation. In 3rd Workshop on Monitoring and
Testing of Cyber-Physical Systems, MT@CPSWeek 2018, Porto, Portugal, April 10,
2018, pages 3–4, 2018.

124 Bibliography

[89] Zhenya Zhang, Ichiro Hasuo, and Paolo Arcaini. Multi-armed bandits for

boolean connectives in hybrid system falsi�cation. In International Conference
on Computer Aided Veri�cation, pages 401–420. Springer, 2019.

[90] Zhenya Zhang, Paolo Arcaini, and Ichiro Hasuo. Hybrid system falsi�cation

under (in)equality constraints via search space transformation. preprint, 2020.

[91] Marco A. Luersen and Rodolphe Le Riche. Globalized Nelder–Mead method for

engineering optimization. Computers & Structures, 82(23):2251–2260, 2004.

[92] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with

increasing population size. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2005, pages 1769–1776. IEEE, 2005.

[93] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In

Machine Learning: ECML 2006, pages 282–293, Berlin, Heidelberg, 2006. Springer.

[94] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,

Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural

networks and tree search. Nature, 529:484–489, 2015.

[95] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine Learning, 47(2):235–256, 2002.

[96] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,

Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree search

methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):1–43, 2012.

[97] Rémi Coulom. Computing "elo ratings" of move patterns in the game of go.

ICGA Journal, 30(4):198–208, 2007.

[98] Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Benchmarks for

temporal logic requirements for automotive systems. In 1st and 2nd Interna-
tional Workshop on Applied veRi�cation for Continuous and Hybrid Systems,

Bibliography 125

ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek 2015,
Seattle, USA, April 13, 2015., pages 25–30, 2014.

[99] Mark Hudson Beale, Martin T Hagan, and Howard B Demuth. Neural network

toolbox™ user’s guide. The Mathworks Inc, 1992.

[100] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and

Anders Wessln. Experimentation in Software Engineering. Springer Publishing

Company, Incorporated, 2012.

[101] Kuang-Hua Chang. Chapter 19 - multiobjective optimization and advanced

topics. In Kuang-Hua Chang, editor, e-Design, pages 1105 – 1173. Academic

Press, Boston, 2015.

[102] Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg,

2005.

[103] Daniele Pinchera, Stefano Perna, and Marco Donald Migliore. A lexicographic

approach for multi-objective optimization in antenna array design. Progress In
Electromagnetics Research, 59:85–102, 2017.

127

A
Omitted Details

A.1 MATLAB Source Code for the Usage Scenario

%Initialize the execution environment of Breach.
InitBreach;

%Specify the model name, and interface with Breach
mdl = ’Autotrans_shift’;
Br = BreachSimulinkSystem(mdl);

%Specify the type of Signal. Here, piecewise constant signal.
input_gen.type = ’UniStep’;
input_gen.cp = 5;
Br.SetInputGen(input_gen);

%Specify the ranges of the signals

128 Chapter A. Omitted Details

for cpi = 0:input_gen.cp-1
throttle_sig = strcat(’throttle_u’, num2str(cpi));
brake_sig = strcat(’brake_u’, num2str(cpi));
Br.SetParamRanges({throttle_sig},[0 100]);
Br.SetParamRanges({brake_sig},[0 325]);
end

%System specification in Signal Temporal Logic (STL)
phi_str = ’alw_[0,30]((gear[t] == 4) => (speed[t] > 35))’
phi = STL_Formula(’phi’, phi_str);

%Interface the problem
falsif_pb = FalsificationProblem(Br, phi);

%Budget in terms of timeout or the number of simulations
falsif_pb.max_time = 100;
%falsif_pb.max_obj_eval = 100;

%Select an optimization solver
solver_input = ’cmaes’;
falsif_pb.setup_solver(solver_input);

%Executing falsification process
falsif_pb.solve();

%Plot input and output signals
%falsif_pb.BrSys.PlotSignals();

%Plot specification satisfaction
%falsif_pb.BrSys.PlotRobustSat(phi, 2)

A.2 Raw Experimental Results for Table 4.2 129

A.2 Raw Experimental Results for Table 4.2

Table A.1: Raw experimental results – Bbench (SR: # successes out 30 trials. Time in

secs. ∆: percentage di�erence w.r.t. Breach)

Spec

Breach MAB-ϵ-greedy MAB-UCB
SR time SR time ∆SR ∆time SR time ∆SR ∆time

AT11 25 125 29 77.4 14.8 −47 29 75 14.8 −50

AT12 22 187.5 30 62.7 30.8 −99.7 30 45.1 30.8 −122.4

AT13 19 239.5 30 91.5 44.9 −89.4 29 62.5 41.7 −117.2

AT14 21 202.2 30 87.1 35.3 −79.5 30 57.4 35.3 −111.6

AT15 14 361.2 24 213.4 52.6 −51.4 28 146.8 66.7 −84.4

AT21 30 14 30 11.9 0 −16.2 30 17.7 0 23.3

AT22 26 96.2 30 37.8 14.3 −87.1 30 19 14.3 −134

AT23 20 216.3 30 41.1 40 −136.1 30 23 40 −161.5

AT24 14 331.9 30 55.2 72.7 −143 30 31.9 72.7 −164.9

AT25 11 390.6 30 126.3 92.7 −102.3 27 92.5 84.2 −123.4

AT31 29 21.9 30 7 3.4 −103.6 30 3.6 3.4 −143.6

AT32 30 2.3 30 2.5 0 7.1 30 2.5 0 8.3

AT33 29 22.2 30 2.6 3.4 −158.4 30 3.4 3.4 −146.9

AT34 30 3 30 2.8 0 −5.8 30 2.9 0 −3.4

AT35 29 21.7 30 2.8 3.4 −154 30 2.6 3.4 −157.3

AT41 30 19.5 30 7.8 0 −85.8 30 6.2 0 −103.5

AT42 29 48.1 30 19.5 3.4 −84.4 30 13.3 3.4 −113.4

AT43 29 54.4 30 31.7 3.4 −52.8 30 29.2 3.4 −60.3

AT44 23 160.5 30 17.8 26.4 −160 30 36.2 26.4 −126.4

AT45 18 265.3 29 45.1 46.8 −141.9 30 26.3 50 −163.9

AT51 23 203.1 30 35.2 26.4 −140.9 30 37.7 26.4 −137.4

AT52 16 320.4 26 126.8 47.6 −86.6 30 39.7 60.9 −155.9

AT53 18 290.6 30 46.6 50 −144.7 26 141.6 36.4 −68.9

AT54 18 291.1 27 108.5 40 −91.4 28 94.5 43.5 −102

AT55 15 369.1 29 71.1 63.6 −135.4 27 114 57.1 −105.6

AT56 10 438.2 30 75.3 100 −141.3 30 68.3 100 −146

AT57 7 491.4 28 136.8 120 −112.9 26 154.1 115.2 −104.5

AT58 6 525.9 28 149 129.4 −111.7 29 143.6 131.4 −114.2

AT61 28 46.4 30 2.3 6.9 −180.8 30 2.9 6.9 −176.5

AT62 29 30.1 30 4.3 3.4 −149.5 30 4.3 3.4 −150.1

AT63 25 111.9 30 9.7 18.2 −168.1 30 11.4 18.2 −163

AT64 27 86.9 24 159 −11.8 58.6 23 164.8 −16 61.8

AT65 5 509.5 21 300 123.1 −51.8 22 247.3 125.9 −69.3

AT71 30 12.2 20 283.9 −40 183.5 23 223.3 −26.4 179.2

AT72 15 314 30 33.6 66.7 −161.4 30 43.2 66.7 −151.6

AT73 25 111.9 30 10.5 18.2 −165.6 30 11.4 18.2 −163

AT74 28 51.1 30 2.9 6.9 −178.6 30 5.8 6.9 −159.5

AT75 30 13.5 30 5 0 −91.5 30 5.5 0 −84.1

AT76 30 12.6 30 5.5 0 −78.5 30 5.6 0 −76.2

AT77 28 54.9 30 7.6 6.9 −151.6 30 5.6 6.9 −162.7

AFC11 30 124.8 28 171 −6.9 31.2 30 98.7 0 −23.4

AFC12 16 421.5 15 419.2 −6.5 −0.5 23 346.8 35.9 −19.4

AFC13 11 457.7 8 506.7 −31.6 10.2 15 442 30.8 −3.5

AFC14 9 498.2 5 568.4 −57.1 13.2 9 502.1 0 0.8

AFC15 6 565.6 4 564.7 −40 −0.1 5 559.8 −18.2 −1

AFC21 30 80.7 30 43.2 0 −60.5 30 59.4 0 −30.5

AFC22 29 128.1 30 100.5 3.4 −24.2 30 123.3 3.4 −3.8

AFC23 17 436.1 23 326.1 30 −28.9 24 359.3 34.1 −19.3

AFC24 12 489.9 12 491.9 0 0.4 11 492 −8.7 0.4

AFC25 2 582.3 5 547.8 85.7 −6.1 5 568.4 85.7 −2.4

NN11 25 221.2 27 189.5 7.7 −15.4 28 148.2 11.3 −39.5

NN12 24 212.9 24 212.6 0 −0.1 28 169 15.4 −23

NN13 19 300.1 18 401.9 −5.4 29 19 308.7 0 2.8

NN14 17 384.7 18 374.6 5.7 −2.7 21 332.2 21.1 −14.6

NN15 19 345.5 14 422.8 −30.3 20.1 17 403.3 −11.1 15.4

NN21 27 66.8 30 11 10.5 −143.5 30 14.6 10.5 −128.1

NN22 27 70.7 30 17.3 10.5 −121.4 30 23.7 10.5 −99.5

NN23 28 55.5 30 26 6.9 −72.2 30 27.8 6.9 −66.6

NN24 27 79.1 30 39.3 10.5 −67.3 30 32.5 10.5 −83.5

NN25 27 93.4 30 37.8 10.5 −84.7 30 38.2 10.5 −83.8

130 Chapter A. Omitted Details

Table A.2: Raw experimental results – Sbench (SR: # successes out 30 trials. Time in

secs. ∆: percentage di�erence w.r.t. Breach)

Spec

Breach MAB-ϵ-greedy MAB-UCB
SR time SR time ∆SR ∆time SR time ∆SR ∆time

AT1
−2
1

30 51.3 30 75.6 0 38.3 30 54.3 0 5.6

AT1
0

1
25 125 29 77.4 14.8 −47 29 75 14.8 −50

AT1
1

1
20 221.1 30 49 40 −127.5 28 107.9 33.3 −68.8

AT1
3

1
23 170 30 82.5 26.4 −69.3 29 55.4 23.1 −101.6

AT1
−2
2

30 49 29 115.6 −3.4 80.9 29 67.5 −3.4 31.9

AT1
0

2
22 187.5 30 62.7 30.8 −99.7 30 45.1 30.8 −122.4

AT1
1

2
21 204.5 30 59.7 35.3 −109.6 29 77.5 32 −90.1

AT1
3

2
24 164 30 88.8 22.2 −59.5 30 61 22.2 −91.5

AT1
−2
3

30 42.5 28 144.4 −6.9 109.1 30 62.4 0 38

AT1
0

3
19 239.5 30 91.5 44.9 −89.4 29 62.5 41.7 −117.2

AT1
1

3
16 296.2 30 72.3 60.9 −121.5 27 128.7 51.2 −78.8

AT1
3

3
21 209.8 29 99.9 32 −71 30 93.4 35.3 −76.8

AT1
−2
4

30 44.5 30 79.8 0 56.8 30 80.8 0 57.9

AT1
0

4
21 202.2 30 87.1 35.3 −79.5 30 57.4 35.3 −111.6

AT1
1

4
16 301.7 30 94.6 60.9 −104.5 28 119.5 54.5 −86.5

AT1
3

4
23 185.1 30 67.5 26.4 −93.1 29 88.3 23.1 −70.8

AT1
−2
5

30 97.4 28 178.3 −6.9 58.7 28 136.3 −6.9 33.3

AT1
0

5
14 361.2 24 213.4 52.6 −51.4 28 146.8 66.7 −84.4

AT1
1

5
4 527.6 25 234.7 144.8 −76.8 29 91.9 151.5 −140.7

AT1
3

5
8 471.7 30 170.6 115.8 −93.7 29 104.8 113.5 −127.3

AT5
−2
4

30 61.1 25 139.5 −18.2 78.1 30 48.5 0 −23

AT5
0

4
18 291.1 28 106.6 43.5 −92.8 28 94.5 43.5 −102

AT5
1

4
2 566.4 29 70.7 174.2 −155.6 25 150 170.4 −116.2

AT5
3

4
1 586.4 28 89.3 186.2 −147.1 28 96.2 186.2 −143.6

AT5
−2
5

30 71.3 27 113.8 −10.5 45.9 29 67.8 −3.4 −5.1

AT5
0

5
15 369.1 28 98.2 60.5 −115.9 27 114 57.1 −105.6

AT5
1

5
0 600 27 115.4 200 −135.5 29 83.1 200 −151.4

AT5
3

5
0 600 30 66.8 200 −159.9 27 113.8 200 −136.2

AT5
−2
6

29 110.2 29 76.9 0 −35.5 28 103.3 −3.5 −6.5

AT5
0

6
10 438.2 28 100.5 94.7 −125.4 30 68.3 100 −146

AT5
1

6
0 600 29 90.8 200 −147.4 27 126.7 200 −130.3

AT5
3

6
0 600 30 70 200 −158.2 29 80.4 200 −152.7

AT5
−2
7

30 103.6 28 116.1 −6.9 11.4 30 77.3 0 −29.1

AT5
0

7
7 491.4 30 80.2 124.3 −143.9 26 154.1 115.2 −104.5

AT5
1

7
0 600 30 90 200 −147.8 27 134.3 200 −126.8

AT5
3

7
0 600 27 123.3 200 −131.8 29 108 200 −139

AT5
−2
8

29 163.7 30 113 3.4 −36.7 30 131.9 3.4 −21.6

AT5
0

8
6 525.9 28 151.3 129.4 −110.6 29 143.6 131.4 −114.2

AT5
1

8
0 600 27 184.5 200 −105.9 30 124.2 200 −131.4

AT5
3

8
0 600 28 163.3 200 −114.4 27 160.9 200 −115.4

AFC1
0

1
30 124.8 29 115.1 −3.4 −8.1 30 98.7 0 −23.4

AFC1
1

1
30 99 29 198.1 −3.4 66.7 29 105.7 −3.4 6.5

AFC1
2

1
12 434.4 28 180.8 80 −82.4 30 73.7 85.7 −142

AFC1
3

1
12 425.7 30 138 85.7 −102.1 30 77.1 85.7 −138.7

AFC1
0

2
16 421.5 23 331.7 35.9 −23.8 23 346.8 35.9 −19.4

AFC1
1

2
25 345.9 12 456.8 −70.3 27.6 27 227.9 7.7 −41.1

AFC1
2

2
8 497.2 15 446.6 60.9 −10.7 25 320.5 103 −43.2

AFC1
3

2
5 518.1 16 438.9 104.8 −16.5 21 364 123.1 −34.9

AFC1
0

3
11 457.7 16 531.3 37 14.9 15 442 30.8 −3.5

AFC1
1

3
13 479.2 7 514.9 −60 7.2 14 455.5 7.4 −5.1

AFC1
2

3
2 590.7 6 554.3 100 −6.4 15 453.2 152.9 −26.3

AFC1
3

3
5 545.6 16 472.1 104.8 −14.4 8 510.6 46.2 −6.6

AFC1
0

4
9 498.2 4 559.9 −76.9 11.7 9 502.1 0 0.8

AFC1
1

4
8 494 3 571.7 −90.9 14.6 12 455 40 −8.2

AFC1
2

4
4 556.8 6 555.9 40 −0.2 11 468.7 93.3 −17.2

AFC1
3

4
1 587.4 7 547.8 150 −7 9 513.4 160 −13.4

AFC1
0

5
6 565.6 10 517.5 50 −8.9 5 559.8 −18.2 −1

AFC1
1

5
7 548.2 3 587.6 −80 6.9 7 527.3 0 −3.9

AFC1
2

5
0 600 3 577.6 200 −3.8 4 556.3 200 −7.6

AFC1
3

5
1 586 3 585.5 100 −0.1 7 553.4 150 −5.7

131

Index

ε-Greedy, 57, 64, 68, 108

Boolean connective, 19, 23, 57, 61

Breach, 14, 17, 27, 47, 49, 51, 68, 71–73, 75,

101

CMA-ES, 17, 30, 44, 49, 51, 67, 69, 101

constraint embedding, 80, 97, 101

CPS, 1, 2, 5, 7–9, 15, 20, 78

exploration and exploitation, 16–18, 22, 23,

33, 37, 39, 43, 55, 74, 107

falsifying input, 12, 14, 23, 28, 29, 31, 34–36,

40, 43, 45, 71, 77, 78, 87, 93, 101,

102, 108, 110

hierarchical optimization, 21, 107, 109, 111

hill climbing, 11, 12, 16, 17, 20, 22, 29, 33,

34, 37, 44–47, 49, 54, 57, 58, 61, 63,

65–68, 77, 78, 84, 88, 92, 93, 96, 107,

110

hill-climbing gain, 61, 65, 67, 74

hybrid system, 2, 4, 6, 10, 18, 26, 37, 52, 54,

110

input constraint, 20, 24, 77–80, 82, 83, 98,

100, 108, 109

lexicographic method, 80–83, 97, 101

MAB, 22, 23, 57, 61, 63–65, 67, 68, 72, 75,

78, 95, 96, 101, 108, 110

MCTS, 16, 22, 33, 37, 40, 42–47, 51–53, 107,

110

penalty, 21, 77, 80, 84, 97

piecewise constant, 9, 28, 34, 35, 40, 49, 79,

85, 86

progressive widening, 37, 46, 47, 52

proportional transformation, 78, 88, 90–93,

101

robust semantics, 11, 12, 15, 19, 22, 23, 27,

28, 47, 57, 58, 60, 62, 75, 82, 108

robustness, 10, 12, 14, 18, 19, 22, 28, 29, 34,

35, 42–44, 48, 54, 58, 61–63, 67, 74,

75, 77, 80, 82, 83, 92, 93, 95, 96, 98,

106, 108

safety property, 4, 62, 63, 68, 70

scale problem, 20, 57, 60, 61, 70, 73, 74

search space transformation, 23, 24, 77, 79,

84, 97, 108, 109

Simulink, 2, 4, 7, 9, 13, 14, 18, 47, 70, 98,

111

132 Index

speci�cation, 3, 6–10, 12, 13, 15, 18, 20, 27,

29, 44, 47, 48, 51, 52, 61, 62, 68, 69,

71, 73, 74, 78, 80, 83, 92, 98, 99, 101,

105, 109, 111

STL, 10, 11, 13, 15, 19, 27, 28, 57, 58, 61, 80,

82, 98, 108

time staging, 22, 33, 35, 36, 40

UCB1, 23, 38, 43, 57, 64, 68, 96, 108, 111

	List of Figures
	List of Tables
	1 Introduction: Quality Assurance of Cyber-Physical Systems
	1.1 Cyber-Physical Systems
	1.2 Quality Assurance of Cyber-Physical Systems
	1.2.1 A Usage Scenario: an Automotive System
	1.2.2 Verification
	1.2.3 Testing

	1.3 Optimization-Based Falsification
	1.3.1 Quantitative STL Robustness
	1.3.2 Stochastic Optimization-Based Falsification
	1.3.3 Usage Scenario of Falsification
	1.3.4 Current Status of Falsification in Academia and Industry

	1.4 Motivation: Existing Problems and Related Works
	1.4.1 Exploration and Exploitation
	1.4.2 Robust Semantics Definition
	1.4.3 Input Constraints

	1.5 A Hierarchical Optimization Framework
	1.6 Organization

	2 Preliminaries: Optimization-Based Falsification
	2.1 System Models
	2.2 Robust Semantics for STL
	2.3 Hill Climbing-Guided Falsification
	2.4 Evaluation Metrics of Falsification Algorithms

	3 Balancing Exploration and Exploitation Using Monte Carlo Tree Search
	3.1 Exploiting Time Causality via Time Staging
	3.1.1 Time-Staging Approach

	3.2 Falsification with Monte Carlo Tree Search
	3.2.1 Monte Carlo Tree Search
	3.2.2 The Basic Two-Layered Algorithm
	3.2.3 The Two-Layered Algorithm with Progressive Widening

	3.3 Experimental Evaluation
	3.3.1 Experiment Setup
	3.3.2 Performance Evaluation
	3.3.3 Evaluation of Parameter Choices

	3.4 Discussion

	4 Multi-Armed Bandits for Boolean Connectives in STL
	4.1 Motivation: the Scale Problem
	4.2 Multi-Armed Bandit-Based Falsification Algorithm
	4.2.1 Conjunctive and Disjunctive Safety Properties
	4.2.2 The Multi-Armed Bandit (MAB) Problem
	4.2.3 Our MAB-Guided Algorithm I: Conjunctive Safety Properties
	4.2.4 Our MAB-Guided Algorithm II: Disjunctive Safety Properties

	4.3 Experimental Evaluation
	4.3.1 Experiment Setup
	4.3.2 Evaluation
	4.3.3 A Comparison to a Normalization-Based Approach

	5 Constraining Counterexamples via Search Space Transformation
	5.1 Motivation and Problem Definition
	5.1.1 Problem Definition

	5.2 Penalty-Based Approaches
	5.2.1 Constraint Embedding Approach
	5.2.2 Lexicographic Method Approach
	5.2.3 Discussion: Weaknesses of the Penalty-Based Approaches

	5.3 Problem Setting and Overview of the Proposed Approach
	5.3.1 Search Space Transformation-Based Approach

	5.4 Proportional Transformation
	5.5 Falsification Based on the Proportional Transformation
	5.5.1 Method 1: Fixed-Priority
	5.5.2 Method 2: All-Priorities
	5.5.3 Method 3: MAB-Priority

	5.6 Experimental Evaluation
	5.6.1 Experiment Setup
	5.6.2 Evaluation

	6 Conclusions
	6.1 Discussion: Integration of the Techniques
	6.2 Future works

	Bibliography
	Appendix A Omitted Details
	A.1 MATLAB Source Code for the Usage Scenario
	A.2 Raw Experimental Results for Table 4.2

	Index

