
Empowering Runtime Verification
with Polyhedra

by

Masaki Waga

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI
September 2020

Committee

Advisor Dr. Ichiro Hasuo
Associate professor of the Graduate University for Advanced Studies (SOK-
ENDAI)/National Institute of Informatics

Subadvisor Dr. Kensuke Fukuda
Associate professor of the Graduate University for Advanced Studies (SOK-
ENDAI)/National Institute of Informatics

Subadvisor Dr. Fuyuki Ishikawa
Associate professor of National Institute of Informatics

Examiner Dr. Jaco van de Pol
Professor of Aarhus University/University of Twente

Examiner Dr. Tomohiro Yoneda
Professor of the Graduate University for Advanced Studies (SOK-
ENDAI)/National Institute of Informatics

Acknowledgements

My Ph.D. study has been an exciting and fantastic experience, supported by too many people
to list up here. First and foremost, I would like to thank my supervisor Ichiro Hasuo. His
teaching, encouragement, advice, help, arrangement, and many other supports were obviously
needed for finishing this thesis. He opened my eyes to the world of automata theory and
formal methods. His extensive knowledge, experience, and vision helped me a lot in pursuing
my Ph.D. research. My gratitude extends to the thesis committee members Kensuke Fukuda,
Fuyuki Ishikawa, Jaco van de Pol, and Tomohiro Yoneda for their comments from various
perspectives. I would also like to thank my M.Sc. supervisor Masami Hagiya for a lot of
supports during and after my M.Sc. study.

It was a lot of pleasure to collaborate with various researchers. I am particularly grateful for
the opportunity to work with Étienne André during his stay in Tokyo and my visit to Nancy.
He led me to the theory of parametric timed automata that resulted in our contribution
to runtime verification with parametric timed automata. I would give a special thanks to
Takamasa Okudono, Taro Sekiyama, Elena Gutiérrez, Kohei Suenaga, and Takumi Akazaki
for the fruitful and inspiring discussion through the collaboration with them.

It was also a great pleasure to work with the colleagues in the ERATO MMSD project.
Special thanks go to Sasinee Pruekprasert, Zhenya Zhang, Paolo Arcaini, and Stefan Klikovits
for a lot of fruitful discussions. I am also thankful to the industrial collaborators for the
comments and discussion on the practical relevance of my research.

Finally, I would like to thank my family, especially my parents Masanobu and Takako, for
everything.

Masaki Waga
Tokyo, July 2020

iii

Abstract

This thesis aims to improve the practical effectivity of runtime verification, monitoring with
logics. Our main application is the safety monitoring of cyber-physical systems (CPSs), e. g.,
cars and robots. Our technical gadget is the symbolic analysis with convex polyhedra. The
high-level contribution of this thesis is to show that the polyhedra-based symbolic analysis
plays an essential role in various advanced runtime verification algorithms.

Monitoring is, in general, an activity to observe system behavior. In the development and
maintenance of systems, it is essential to monitor the system behavior. For example, in devel-
opment, engineers have to monitor the system behavior to identify the necessary modification
to the system under development. In maintenance, for example, engineers have to monitor the
running system so that they can replace the system’s worn-out components as soon as possible.

Runtime verification (or specification-based monitoring) is an automated monitoring tech-
nique using logic. Given a formal specification of an unsafe behavior expressed by some logical
formalism, runtime verification observes a system execution and evaluates if the observation
satisfies the specification.

Although quite a lot of research and engineering efforts have been devoted to runtime
verification of CPSs, there are remaining challenges. We identify the following important
but often missing features of runtime verification. Generic algorithms that are applicable
to a wide class of runtime verification problems rather than one problem setting Flexible
runtime verification algorithm that does not require complete knowledge of the specifications or
behaviors Informative results such as quantitative satisfaction rather than Boolean satisfaction

In this thesis, we present enhanced runtime verification algorithms focusing on the three
features above. In our improvements, the use of polyhedra for symbolic analysis plays an
essential role. In the symbolic analysis, we utilize discrete abstraction of the continuous value
domains represented by polyhedra: each of which stands for infinitely many concrete values;
and thus, we can analyze infinitely many values. This is in contrast to the analysis of each
value, where only finitely many values can be analyzed in finite time.

Such a polyhedra-based analysis is useful, for example, in the runtime verification with
an ambiguous specification. Consider the following specification: “whenever the gear of a car
becomes low, the gear should remain low for a while,” where the definition of “for a while” is
unclear. Moreover, the threshold defining “for a while” may depend on the context. When the
specification contains such an unspecified threshold, we have to monitor the log considering
all the possible thresholds. Since there are infinitely many possibilities, we cannot try each
threshold in a one-by-one manner, and we need a polyhedra-based symbolic analysis.

This thesis’s high-level contribution is to show the usefulness of the polyhedra-based analy-
sis in runtime verification. To show the usefulness, we conducted three concrete improvements.
The following summarizes the usages of polyhedra and the enhanced features in this thesis.

v

vi

Firstly, in Chapters 3 and 4, we study runtime verification with ambiguous specifications
containing unknown thresholds in the constraints. Such a runtime verification algorithm does
not require complete knowledge of the monitored specification and is flexible. We use polyhedra
for symbolic analysis of infinitely many possible thresholds. In Chapter 3, we introduce and
solve the parametric timed pattern matching problem, where we can use a specification with
timing parameters to leave some thresholds in the timing constraints unspecified. For example,
in the example above, we can represent the timing constraint “for a while” by “for p seconds”
using a timing parameter p. In Chapter 4, we generalize the parametric timed pattern matching
problem to allow the parameters also in data values. For example, consider the following
specification: “whenever the temperature becomes high, the air conditioner must be turned
on within 5 seconds,” where the high-temperature threshold is unspecified. In this example,
we can represent the condition on high-temperature by “more than T degree,” where T is
a data parameter representing the high-temperature threshold. Moreover, our algorithm is
generic because it allows any data with a suitable data structure for symbolic analysis such as
polyhedra for rationals and an ad hoc data structure for strings.

Secondly, in Chapter 5, we study quantitative timed pattern matching that is a mathe-
matical formulation of quantitative runtime verification of real-valued signals. Quantitative
timed pattern matching returns the degree of unsafety and is more informative than returning
Boolean results. We propose an online algorithm for quantitative timed pattern matching that
can monitor a running system. Our notion of unsafe degree and our proposed algorithm are
based on semiring valued weighted automata. Thanks to the algebraic genericity of semir-
ings, our algorithm works for various quantitative semantics capturing different safety criteria
such as the worst deviation from the specification and the accumulated deviation from the
threshold over time. We use polyhedra to obtain discrete abstraction of the continuous pos-
sibility of switching in a temporal specification. Consider the specification “in the beginning,
the acceleration of the car is high, and later, the velocity becomes high.” When monitoring
such a temporal specification, we have to consider all the possible timing of the switching
from the “beginning” to the “later.” Since there are continuously many possibilities, we utilize
polyhedra-based symbolic analysis to consider all such switching.

Thirdly, in Chapter 6, we study runtime verification, where we only have intermittent sam-
ples of the signal values. We introduce and solve the model-bounded monitoring problem,
where we interpolate the signal values between the samples considering the bounding model.
Thanks to the bounding model, model-bounded monitoring is precise even if we reduce the
sampling frequency, and thus it is flexible. More precisely, if the bounding model overapprox-
imates the actual system behavior, model-bounded monitoring is guaranteed to detect every
unsafe behavior independent of the sampling frequency. Although we may have false alarms,
we have fewer false alarms for a more precise bounding model. We use polyhedra to consider
all the possible interpolation.

Contents

Contents vii

List of Figures x

List of Tables xv

1 Introduction 1
1.1 System monitoring . 1
1.2 Primitive forms of monitoring . 2
1.3 Runtime verification — monitoring with logics 2
1.4 Towards generic, flexible, and informative runtime verification 3
1.5 High-level contribution: advanced runtime verification with polyhedra 3
1.6 Highlight of the improvements . 4
1.7 Related work . 22
1.8 Information for readers . 26

2 Background: Timed Automata and Timed Pattern Matching 27
2.1 Timed words . 27
2.2 Timed automata . 28
2.3 Reachability checking of timed automata with polyhedra 30
2.4 Timed pattern matching . 32

3 Parametric Timed Pattern Matching 37
3.1 Preliminaries: Parametric timed automata . 37
3.2 Parametric timed pattern matching . 39
3.3 Algorithm I: via reduction to PTA reachability analysis 40
3.4 Algorithm II: Direct method by polyhedra computation 49
3.5 Comparison between the two approaches . 58
3.6 Related work . 59
3.7 Conclusion and perspectives . 60

4 Symbolic Monitoring against Specifications Parametric in Time and Data 61
4.1 Summary . 61
4.2 Preliminaries: Clocks, timing parameters and timed guards 63
4.3 Parametric timed data automata . 64
4.4 Symbolic monitoring against PTDA specifications 68
4.5 Experiments . 73

vii

viii Contents

4.6 Related work . 76
4.7 Conclusion and perspectives . 79

5 Online Quantitative Timed Pattern Matching with Semiring-ValuedWeighted
Automata 81
5.1 Summary . 81
5.2 Preliminary . 84
5.3 Timed symbolic weighted automata . 86
5.4 Quantitative timed pattern matching . 88
5.5 Trace value computation by shortest distance 89
5.6 Online algorithm for quantitative timed pattern matching 91
5.7 Experiments . 92
5.8 Related work . 98
5.9 Conclusion and perspectives . 100

6 Model-Bounded Monitoring of Hybrid Systems 101
6.1 Summary . 101
6.2 Preliminaries: Linear hybrid automata . 107
6.3 Monitored languages of LHAs . 109
6.4 The model-bounded monitoring scheme . 110
6.5 Membership for monitored languages: symbolic interpolation 111
6.6 Algorithm I: via reduction to LHA reachability analysis 112
6.7 Algorithm II: Direct method by polyhedra computation 114
6.8 Experimental evaluation . 115
6.9 Related work . 121
6.10 Conclusion and perspectives . 122

7 Discussion 123
7.1 Conclusions . 123
7.2 Perspectives . 125

A Construction of V`,n in Chapter 3 129

B Omitted proofs of Chapter 5 131
B.1 Finiteness of the reachable part of WSTTSs . 131
B.2 Proof of Theorem 5.13 . 133
B.3 Proof of Theorem 5.15 . 137

C Detailed example of Chapter 6 141

D Model-Bounded Monitoring with Partial Observations 143
D.1 Partial timed quantitative word . 143
D.2 Partial monitored language . 143
D.3 Membership constraint problem for partial monitored languages 144
D.4 Algorithms for the membership constraint problem 144

Bibliography 145

Contents ix

Index 157

List of Figures

1.1 An automaton accepting the observation such that there is no response within two
time steps after the request . 2

1.2 Concrete points in a continuous 2-dimensional value domain (left) and their polyhedra-
based abstraction (right). By using the polyhedra-based abstraction (right), we can
symbolically analyze continuously many points in each area while by evaluating the
concrete points (left), we can evaluate only finite points. 4

1.3 Relationships among the contributions. Parametric timed pattern matching (Chap-
ter 3) and quantitative timed pattern matching (Chapter 5) generalizes timed pat-
tern matching [UFAM14, WAH16]. Symbolic monitoring (Chapter 4) generalizes
parametric timed pattern matching. Model-bounded monitoring (Chapter 6) is not
a direct generalization of timed pattern matching; however, the generalization in
Appendix D allows timed pattern matching with flexible signal interpolation. . . . 5

1.4 An example of timed pattern matching . 5
1.5 The PTA A such that the timing constraint x < 1 in Fig. 1.4b is replaced with a

parametric timing constraint x < p . 6
1.6 An automated cleaning system. Once the camera finds trash, it notifies a robot

cleaner to remove the trash. 7
1.7 A PTA matching too late removal of the trash after its detection 7
1.8 The timed word and the timed data word modeling the observation in Example 1.6

of the automatic cleaning system . 9
1.9 Example transactions of a bank account . 9
1.10 A PTDA accepting a timed data word containing a removal of trash that is more

than p time units after the detection, where idp is the data parameter for the
identifying string of the trash, and p is the timing parameter. 10

1.11 A joining process of a vehicle platoon. When a non-member truck sends a joining
request (left), the member trucks increase the inter-vehicle distance so that the
non-member truck can join. Once the inter-vehicle distance becomes large enough,
one of the member truck sends the agreement to the joining truck (center), and the
truck joins the platoon (right). 10

1.12 Example communication in joining processes of a vehicle platoon. The request
event with two strings id and position is for the joining request by the vehicle id at
position. The accept event with one string id is for the acceptance of the joining
by the vehicle id. We need infinite domain data for the identification because the
number of the vehicles in a platoon is unbounded. 11

x

List of Figures xi

1.13 A PTDA to detect too late acceptance or rejection of the joining request to platoon,
where x is the clock variable for the duration after the request, delay is the timing
parameter for the delay of the response, and pid is the string-valued data parameter
to identify the joining vehicle . 11

1.14 A PTDA to locate the interval [t, t′] in the log where the balance decreases for
more than 100 in total, where x is the clock variable for the global time, t and t′
are timing parameters, and sum is the variable to contain how much the balance
decreases. 12

1.15 A signal σ showing the velocity of a car. A subsignal is unsafe if: 1) it starts in the
red area; 2) it ends in the orange area; and 3) its duration is shorter than 3.0. . . . 13

1.16 An illustration of the quantitative semantics. A signal satisfies the specification if it
starts in the red area and ends in the orange area. Since this specification represents
unsafe behavior, the quantitative semantics shows an unsafety degree. The quan-
titative semantics of the specification for the original signal (left) is 20 because it
keeps satisfying the specification even after decreasing (center) or increasing (right)
the value up to 20. 14

1.17 The TSWA showing that the velocity v changes from v < 40 to v > 100 within 3
time units. More precisely, at location `0 and `2, we require the constraints v < 40
and v > 100, respectively; we have to enter `2 less than 3 time units after we leave
`0. The transition from `2 to `3 shows that we have no constraint on the time elapse
in `2. 14

1.18 An illustration of the result of the quantitative timed pattern matching. Each point
(t, t′) shows the quantitative semantics α

(
σ
(
[t, t′)

))
for the subsignal σ

(
[t, t′)

)
of the

input signal σ in the interval [t, t′). For example, the value at (3.3, 5.3) is −10, which
shows that the quantitative semantics α

(
σ
(
[3.3, 5.3)

))
for the subsignal σ

(
[3.3, 5.3)

)
in the interval [3.3, 5.3) is −10. 15

1.19 The signal constructed by the piecewise-linear interpolation from the samples in
Fig. 1.15 . 18

1.20 A signal of a thermostatic chamber: the black points (x1, . . . , x4) are the samples;
the red dotted areas are the unsafe areas; the blue hatched areas are the reachable
areas. 19

1.21 A bounding model of the thermostatic chamber in LHA. These intervals are e. g.,
the Lipschitz constants of the actual derivative. 19

1.22 A bounding model of an automatic transmission system in LHA. These intervals
are e. g., the Lipschitz constants of the actual derivative. 19

1.23 A signal showing the velocity of a car: the black points (v1, . . . , v3) are the samples;
the red dotted area is the unsafe area; the blue hatched areas are the reachable areas. 20

1.24 A bounding model A for the platooning example, expressed as an LHA 20
1.25 A signal of an automotive platooning system: the black circles are the samples of

the first car; the black triangles are the samples of the second car; the hatched areas
are the reachable areas. 20

1.26 Comparison between model checking and runtime verification 23
1.27 Comparison between exhaustive verification of an automaton with discrete time

(Fig. 1.27a) and continuous time (Fig. 1.27b), where the reachability to `2 is verified. 24

2.1 An example of a timed word w . 28
2.2 An example of a timed automaton A . 28

xii List of Figures

2.3 A zone Z representing 1 < x < 2 ∧ 1 < y < 3 ∧ x < y 31
2.4 The zone graph of the TA in Fig. 2.2 with 1-normalization. The solid lines are for

discrete transitions and the dashed lines are for delay transitions. 31

3.1 Example of parametric timed pattern matching . 40
3.2 Our transformations exemplified on Fig. 3.1 . 41
3.3 An example of parametric timed pattern matching 42
3.4 Our transformations exemplified on Fig. 3.3 . 43
3.5 Projections of the result of parametric timed pattern matching on Fig. 3.3 43
3.6 Experiments: patterns . 46
3.7 Experiments: charts (x-scale ×1, 000) . 47
3.8 Visualizing many matches for Gear (|w = 1467|) 49
3.9 OnlyTiming: the parameter p is substituted to 1 in OnlyTiming-np. 55
3.10 Execution time for the benchmarks with parameters which MONAA cannot handle:

Gear (above left), Accel (above right), Blowup (below left), and OnlyTiming
(below right) . 56

3.11 Execution time for the benchmarks without parameters: Gear-np (above left),
Accel-np (above right), Blowup-np (below left), and OnlyTiming-np (below
right) . 57

3.12 A log of entrance and leaving from a building. Timestamps are omitted for sim-
plicity. We usually know who entered or left the building (e. g., BobEnter) but we
sometimes do not know who (e. g., XEnter). 58

3.13 The TA constructed from the log in Fig. 3.12 using TW2PTA in Section 3.3.2.2.
We assume X,Y ∈ {Alice,Bob} and X 6= Y. The timing constraints are omitted for
simplicity. 58

4.1 Monitoring copy to b within tp time units . 62
4.2 Monitoring proper file opening and closing . 66
4.3 PTDAs in Dominant (left) and Periodic (right) 71
4.4 Execution time (left) and memory usage (right) of Copy 74
4.5 Execution time (left) and memory usage (right) of Dominant and Periodic 75

5.1 Piecewise-constant signal σ (left) and an illustration of the quantitative matching
function (M(σ,W))(t, t′) for [t, t′) ⊆ [0, 30.5) (right). In the right figure, the score
in the white areas is −∞. The specification W is outlined in Example 5.1. In the
right figure, the value at (3, 15) is 5. It shows that the score

(
M(σ,W)

)
(3, 15), for

the restriction σ
(
[3, 15)

)
of σ to the interval [3, 15), is 5. 82

5.2 High level comparison between [BFN+18] and our contribution: our contribution is
a generalization of [BFN+18] from Boolean semiring to semiring in general 83

5.3 Example of a TSWA W = (A, κr) which is the pair of the TSA A (upper) and the
cost function κr (lower). See Definition 5.5 for the precise definition. 83

5.4 Illustration of our online algorithm for quantitative timed pattern matching of a
signal σ = aτ1

1 a
τ2
2 . . . aτnn meaning “the signal value is a1 for τ1, the signal value is

a2 for the next τ2, . . .” and a TSWA W. The intermediate data weighti for the
weight computation is represented by zones. The precise definition of the weighti
is introduced later in Definition 5.14. 84

List of Figures xiii

5.5 WSTTS Ssym of the TSWA W in Fig. 5.3 and the signal σ = a3.5
1 a3.5

2 , where
u0 = x < 15, u1 = x > 5, a1 = {x = 7}, and a2 = {x = 12}. The states
unreachable from the initial state or unreachable to the accepting state are omitted.
The transition for time elapse which can be represented by the composition of other
transitions are also omitted. A dashed transition is for the time elapse and a solid
transition is for a transition of A. 90

5.6 Matching automaton Amatch for the TSA A shown in Fig. 5.3. The fresh initial
location `init and the transition to the original initial location `0 are added. 91

5.7 Overshoot: The set of input signals is generated by the cruise control model [cru].
The TSA is for the settling when the reference value of the velocity is changed from
vref < 35 to vref > 35. The left and right maps are for the sup-inf and tropical
semirings, respectively. 94

5.8 Ringing: The set of input signals is generated by the same model [cru] as that in
Overshoot. The TSA is for the frequent rise and fall of the signal in 80 s. The
constraints rise and fall are rise = v(t)− v(t− 10) > 10 and fall = v(t)− v(t− 10) <
−10. The left and right maps are for the sup-inf and tropical semirings, respectively. 94

5.9 Overshoot (Unbounded): The set of input signals is generated by the same
model [cru] as that in Overshoot. The TSA is almost the same as that in Over-
shoot, but the time-bound (c < 150) is removed. The left and right maps are for
the sup-inf and tropical semirings, respectively. 94

5.10 Change in execution time (left) and memory usage (right) for Overshoot and
Ringing with the number of the entries of the signals 94

5.11 Change in execution time (left) and memory usage (right) for Overshoot (Un-
bounded) with the number of the entries of the signals 94

5.12 Change in execution time (left) and memory usage (right) for Overshoot and
Ringing with the sampling frequency . 96

5.13 Change in execution time for Overshoot and Ringing with the sampling interval 96

6.1 Hybrid system monitoring and sampling uncertainties 102
6.3 A leading example: automotive platooning . 102
6.2 w and σ . 102
6.4 Model-bounded monitoring of hybrid systems . 104
6.5 Model-bounded monitoring of the log w in Fig. 6.3b. The bounding model A in

Fig. 6.6a confines interpolation to the hatched area. Thus, no collision in t ∈ [0, 10];
potential collision in t ∈ [10, 20]. 104

6.6 LHAs for the automotive platooning example . 104
6.7 Adding margins to obtain bounding models. The top model gets loosened by per-

ception uncertainties (margin 0.5) and actuation uncertainties (margin 0.2) 106
6.8 TWQ2LHA applied to the timed quantitative word in Fig. 6.3b. Here, i) X =

{x1, x2, tabs, trel}, ii) Init is such that Init(`0) = {x1 = 40 ∧ x2 = 35 ∧ tabs =
0 ∧ trel = 0} and Init(wi) = ⊥ for 1 ≤ i ≤ 3, and iii) ˙tabs = ˙trel = 1 in all locations.
We use the TA notation for invariants, i. e., boxed under the location. 113

6.9 The LHA of dimension 5 in ACCC, where i ∈ {1, 2, 3, 4} 116
6.10 The LHA of dimension 2 in ACCD . 117
6.11 The execution time of HAMoni for ACCC dimension 5 (left) and ACCI (right) . . 119
6.12 The execution time of HAMoni for ACCD . 120

xiv List of Figures

6.13 The execution time of PHAVerLite and HAMoni for ACCD fixing the word length
to be 100 . 120

7.1 Concrete points in a continuous 2-dimensional space (left) and their polyhedra-
based abstraction (right). By using polyhedra-based abstraction (right), we can
symbolically analyze continuously many points in each area while by evaluating the
concrete points (left), we can evaluate only finite points. 123

List of Tables

1.1 Summary of the comparison with related research areas 25

3.1 Experiments: Gear . 46
3.2 Experiments: Accel . 47
3.3 Experiments: Blowup . 48
3.4 Execution time for Gear [s] . 55
3.5 Execution time for Accel [s] . 55
3.6 Execution time for Blowup [s] . 55
3.7 Execution time for OnlyTiming [s] . 55
3.8 Execution time [s] for the skip value computation 58

4.1 Comparison of monitoring expressiveness . 63
4.2 Variables, parameters and valuations used in guards 65
4.3 Experiment results: each cell consists of a pair (T,M) of the execution time T [sec.]

and the memory usage M [KiB] in the experiment setting. 74

5.1 Execution time and memory usage under long signals for Overshoot and Ringing
for sup-inf semiring . 93

5.2 Execution time and memory usage under long signals for Overshoot (Unbounded)
for sup-inf semiring . 95

5.3 Execution time and memory usage under long signals for Overshoot and Ringing
for tropical semiring . 95

5.4 Execution time and memory usage under long signals for Overshoot (Unbounded)
for tropical semiring . 95

5.5 Execution time and memory usage under high frequency for Overshoot and Ring-
ing for sup-inf semiring . 97

5.6 Execution time and memory usage under high frequency for Overshoot and Ring-
ing for tropical semiring . 98

5.7 Comparison of the problem settings with related studies 99

6.1 Summary of the benchmarks . 115
6.2 The experiment result on ACCC [sec.] . 117
6.3 The experiment result on ACCI [sec.] . 117
6.4 The experiment result on ACCD (dimension 2–6) [sec.] 118
6.5 The experiment result on ACCD (dimension 7 and 8) [sec.] 119

xv

CHAPTER 1
Introduction

This thesis aims to improve the practical applicability and efficiency of runtime verifica-
tion [BFFR18, BF18], especially of real-time properties. Our technical vehicle is polyhedra
for symbolic analysis of continuous space. The high-level contribution of this thesis is to show
that the polyhedra-based symbolic analysis plays an essential role in various advanced runtime
verification algorithms.

The main application of the technical results in this thesis is the monitoring of cyber-physical
systems (CPSs) [BDD+18], e. g., cars, robots, smart-cities, and medical systems. Among them,
the monitoring of cars or robots is of our main interest. Nevertheless, the application of our
methods is not limited to monitoring of CPSs but also includes monitoring of both purely
software- or hardware-oriented systems.

1.1 System monitoring

Monitoring1 [BDD+18] is, in general, an activity to observe system behavior. Both in the
development and maintenance of systems, it is essential to monitor the system behavior. For
example, in development, engineers modify a system to satisfy requirements. To identify the
necessary modification, they have to monitor the difference between the actual system behavior
and the expected behavior. In maintenance, engineers have to replace the worn-out components
in the system. This decision also requires monitoring because they have to detect if the current
system behavior deviates from the original behavior.

The following two examples show more concrete usage scenarios of monitoring.

Example 1.1 (continuous monitoring of a deployed system). Consider a scenario in which we
developed a factory automation system, and we have just deployed it to a factory. Just after
the deployment, the system performs pretty well, e. g., there is no overshoot, and the system
behaves robustly. But as time passes, the system gradually becomes erroneous. For instance, a
slight overshoot might happen due to the wearing out of some hardware. Such an issue might

1In the literature, the terms monitoring and runtime verification are often used interchangeably. In this
thesis, following [BDD+18], we use monitoring for the general activity while we use runtime verification and
specification-based monitoring for the monitoring with formal specifications.

1

2 Chapter 1. Introduction

`0 `1 `2 `3

any
req. ¬res. ¬res.

Figure 1.1: An automaton accepting the observation such that there is no response within two
time steps after the request
stop the system; therefore, we need continuous monitoring of the system to detect and deal
with an issue as soon as possible. �

Example 1.2 (monitoring as a test oracle). Consider a scenario in which we develop a new
engine from scratch, and we have several prototypes either as a simulator or a hardware.
Because it is at the very beginning of the development, each prototype most likely contains
issues, and we have to figure out the problem, e. g., by testing. In testing, we need an oracle to
decide if the behavior of the system under test is erroneous or not; this is also monitoring. �

1.2 Primitive forms of monitoring
One of the most primitive forms of monitoring is by a human: given a specification in a docu-
ment, an engineer checks if the system observation meets the specification. Manual monitoring
is ubiquitous in system development. For example, it is natural to check if the system under
development satisfies the given requirement through manual trials.

Although manual monitoring is easily applicable and ubiquitous in system development, it
has a big issue, namely its poor scalability. The amount of the available observation tends to
be huge in CPS development, and the scalability of monitoring must be high. For a human,
it is very challenging to monitor massive system observation. Another related issue is that
manual monitoring is usually costly because human resources are expensive.

In order to overcome the scalability issue, we can automate monitoring by implementing
a dedicated software or hardware. These automated monitors are necessary, especially for
continuous monitoring of a running system, e. g., indicators of cars or airplanes. It is, however,
challenging to handcraft a correct monitor for a complicated specification.

1.3 Runtime verification — monitoring with logics
Runtime verification (or specification-based monitoring) is a monitoring method using logics.
Given a formal specification typically of an unsafe behavior expressed in some logical formalism,
e. g., automata, temporal logic formalism, or regular expressions, runtime verification observes
a system execution and evaluates if the observation satisfies the specification. Since these
logical specifications can be automatically translated into a monitor, we can automate the
monitoring task and solve the scalability issue without the effort of monitor construction.

For discrete systems such as software or digital hardware, a system execution is a sequence
of states or events at each step, and the specification represents the set of sequence of our
interest. For example, the automaton in Fig. 1.1 accepts a sequence such that the server does
not respond within two time steps after the request, which is undesired.

This high-level picture of runtime verification is the same for CPSs. However, due to the
continuous nature of CPSs, more continuous formalisms are usually used for observation and
specification. For example, the system behavior in Fig. 1.4a is a sequence of events equipped
with continuous timestamps rather than discrete time steps.

1.4. Towards generic, flexible, and informative runtime verification 3

1.4 Towards generic, flexible, and informative runtime
verification

In order to cope with the aforementioned continuous nature of CPSs, quite a lot of research
and engineering effort have been devoted. For example, after the introduction of signal tem-
poral logic [MN04] to monitor continuous-time real-valued signals, various extensions have
been proposed, e. g., an extension to compare with previous signal value using an additional
operator called freezing operator [BDSV14], an extension to monitor the frequency domain us-
ing Fourier transform [DMB+12], and an extension to handle properties on spaces [NBC+18].
See [BDD+18] for a survey. Nevertheless, there are remaining challenges in runtime verifica-
tion of CPSs. We identify the following important but often missing features of the runtime
verification problems and the algorithms.

Genericity One issue in the current runtime verification is that we have to construct one
algorithm for each problem setting. For instance, when we monitor a log with numeric
data, we cannot reuse a runtime verification algorithm for strings. A generic runtime
verification algorithm works for a class of problems rather than one problem and reduces
the effort to give a new algorithm and implementation for a new problem setting.

Flexibility In runtime verification, it is a usual assumption to have complete knowledge of
the specification and the system observation (i. e., log). However, these assumptions are
not always realistic. One issue is that, for the system under development, it is often the
case that the specification is not precisely determined. Notably, it is more challenging
to determine the exact threshold in the specification than ambiguously stating, e. g.,
“the velocity should not be too large” or “the system should respond reasonably soon.”
Another issue is that, in monitoring with an embedded system, we want to increase
the sampling interval to reduce energy consumption, which also reduces the available
information for the monitor. Flexible runtime verification algorithms that relax these
issues improve the practicality of runtime verification.

Informativeness It is also beneficial to return more information than Boolean satisfaction.
For example, by returning a quantitative safety degree (or robustness), one can compare
and differentiate the safety of two system logs, even if both satisfy the given specification.
Such quantitative monitoring also plays an essential role in search-based safety assurance,
e. g., falsification [Don10, ALFS11] of CPSs.

1.5 High-level contribution: advanced runtime verification
with polyhedra

In this thesis, we present enhanced runtime verification algorithms focusing on the three fea-
tures in Section 1.4. This thesis’s high-level contribution is to show the usefulness of the
polyhedra-based analysis in runtime verification through the concrete improvements.

In our improvements, the use of polyhedra for symbolic analysis plays an essential role. See
Fig. 1.2 for an illustration of the symbolic analysis with polyhedra. In the symbolic analysis,
we utilize discrete abstraction of the continuous value domains represented by polyhedra: each
of which stands for infinitely many concrete values; and thus, we can analyze infinitely many
values. For example, in the right of Fig. 1.2, the three polyhedra represent all the points in the

4 Chapter 1. Introduction

Figure 1.2: Concrete points in a continuous 2-dimensional value domain (left) and their
polyhedra-based abstraction (right). By using the polyhedra-based abstraction (right), we can
symbolically analyze continuously many points in each area while by evaluating the concrete
points (left), we can evaluate only finite points.
continuous value domain, and we can analyze all the points by the symbolic analysis of these
three polyhedra. This is in contrast to the analysis of each value, where only finitely many
values can be analyzed in finite time.

Such a polyhedra-based analysis is useful, for example, in runtime verification with an
ambiguous specification. Consider the following specification: “whenever the gear of a car
becomes low, the gear should remain low for a while,” where the definition of “for a while” is
unclear. Moreover, the threshold defining “for a while” may depend on the context. When the
specification contains such an unspecified threshold, we have to monitor the log considering
all the possible thresholds. Since there are infinitely many possibilities, we cannot try each
threshold in a one-by-one manner, and we need a polyhedra-based symbolic analysis.

We note that polyhedra-based symbolic analysis is also an essential ingredient of the reach-
ability checking, a fundamental technique for exhaustive verification, of various kinds of au-
tomata e. g., timed automata [AD94], linear hybrid automata [HPR94], and parametric timed
automata [AHV93, ACEF09]. Our high-level contribution is to employ the techniques origi-
nally developed for exhaustive verification to improve the practicality of runtime verification.
See Section 1.7.1 for a comparison between exhaustive verification and runtime verification.

1.6 Highlight of the improvements

In this section, we summarize the concrete contributions of each chapter focusing on the
application rather than the technical background. Fig. 1.3 shows the relationships among the
contributions.

Since monitoring of cars is an important application, we have at least one vehicle monitoring
example for each subsection. Using various automotive examples, we show various features of
our runtime verification algorithms. In addition to the automotive examples, we also use
many other examples from various domains to show the applicability to other domains, e. g.,
monitoring of other CPSs or purely software-oriented systems.

1.6.1 Parametric timed pattern matching

In Chapter 3, we extend the timed pattern matching problem [UFAM14, WAH16] with pa-
rameters. This enables us to write a specification without deciding the thresholds in timing
constraints.

1.6. Highlight of the improvements 5

Background
Timed Pattern Matching

Chapter 2
([UFAM14, WAH16])

Parametric Timed
Pattern Matching

Chapter 3

Symbolic
Monitoring
Chapter 4

Online Quantitative
Timed Pattern Matching

Chapter 5

Model-Bounded Moni-
toring of Hybrid Systems

Chapter 6 and Appendix D

add timing parameters add data and data parameters

return quantitative semantics
instead of Boolean semantics

flexible signal interpolation

Figure 1.3: Relationships among the contributions. Parametric timed pattern matching (Chap-
ter 3) and quantitative timed pattern matching (Chapter 5) generalizes timed pattern match-
ing [UFAM14, WAH16]. Symbolic monitoring (Chapter 4) generalizes parametric timed pat-
tern matching. Model-bounded monitoring (Chapter 6) is not a direct generalization of timed
pattern matching; however, the generalization in Appendix D allows timed pattern matching
with flexible signal interpolation.

t0

g3

0.2

g4

0.7

g3

0.9

g2

1.3

g1

1.6

g4

2.0

g3

2.7

g2

3.0

g1

3.2
(a) A timed word w

`0 `1 `2 `4
g4, x := 0

g2 or g3

x < 1, g1 >, $

(b) A timed automaton A
Figure 1.4: An example of timed pattern matching

1.6.1.1 Motivation: Specification with unspecified thresholds

Timed pattern matching Timed pattern matching [UFAM14] is a mathematical formula-
tion of runtime verification. Given a system log and a specification, timed pattern matching
answers in which part of the log, the specification is satisfied. Typically, the specification
represents an unsafe behavior. In this case, timed pattern matching finds when such an unsafe
behavior occurs in the given log.

After the introduction in [UFAM14], the timed pattern matching problem has been studied
in various problem settings with technical improvements (e. g., [UFAM14, UFAM16, WAH16,
WHS17]). In [WAH16], the timed pattern matching problem is defined with timed words and
timed automata (TAs) [AD94]. A timed word is a sequence of events with timestamps. A TA
is a nondeterministic finite automaton (NFA) equipped with clock variables to represent the
timing constraints on timed words.

Example 1.3 (gear changes of a car). Consider the example in Fig. 1.4. The timed word w in
Fig. 1.4a is the log of the gear changes of a car. The objective of the runtime verification with
the TA A in Fig. 1.4b is to find too frequent gear changes. Roughly speaking, A matches if
the gear changes from g4 to g1 within 1 time unit, which is too soon and undesirable. On the

6 Chapter 1. Introduction

`0 `1 `2 `4
g4, x := 0

g2 or g3

x < p, g1 >, $

Figure 1.5: The PTA A such that the timing constraint x < 1 in Fig. 1.4b is replaced with a
parametric timing constraint x < p
one hand, because we have g4 at 0.7 and g1 at 1.6 in w, A matches around [0.7, 1.6]. On the
other hand, although we have g4 at 2.0 and g1 at 3.2 in w, A does not match around [2.0, 3.2]
because the time difference is longer than 1.0.

Formally, timed pattern matching returns the set of matching intervals {(t, t′) | w|(t,t′) ∈
L(A)} = {(t, t′) | t ∈ [0.2, 0.7), t′ ∈ (1.6, 2.0]}, which is the set of open intervals (t, t′) such that
the restriction w|(t,t′) of the timed word w in (t, t′) is accepted by the TA A. Here the notion
“around [0.7, 1.6]” is formalized as the open intervals containing [0.7, 1.6] but not including
any other events i. e., not including either 0.2 or 2.0. We note that $ in the TA A is the special
terminal character. �

Issue: Difficulty in writing specifications In practice, it is often challenging to specify
a concrete specification. Notably, it tends to be hard to determine the exact threshold in the
specification. For example, for an automatic transmission system of a car, we do not want
to have too frequent gear changes, and the following is a reasonable requirement: “the gear
should not change too soon after the latest gear change.” When we give a specification in a
TA, we have to specify the concrete threshold to determine what it means for a gear change to
be “too soon.” It is, however, not easy to give such a threshold because it requires an in-depth
domain knowledge of the developed system. This issue can be a significant obstacle when using
timed pattern matching in practice.

1.6.1.2 Contribution: Pattern matching with parametric specifications

Parametric timed pattern matching Our solution to the issue above is to use parameters
for unspecified thresholds. More precisely, we use parametric timed automata (PTAs) [AHV93]
for parametric specifications. Fig. 1.5 shows an example of a PTA. A PTA is a TA such that
we can use parameters as well as the constant numbers in the timing constraints. For instance,
by using the parameter p for the unspecified threshold, we can represent “the gear should not
change for p seconds after the latest gear change” in a PTA.

Parametric timed pattern matching is a generalization of timed pattern matching where
the specification is given in a PTA A rather than a TA. Given a timed word w and a PTA A,
parametric timed pattern matching returns in which part of the timed word w and for what
parameter valuation v assigning a real-value to the parameters, the parametric specification
represented by the PTA A is satisfied.

Example 1.4 (gear changes of a car). Consider the timed word w in Fig. 1.4a and the PTA
A in Fig. 1.5. Here, the PTA A matches if the gear changes from g4 to g1 within p time unit.
Because we have g4 at 0.7 and g1 at 1.6 in w, A matches around [0.7, 1.6] for p > 0.9. Because
we have g4 at 2.0 and g1 at 3.2 in w, A matches around [2.0, 3.2] for p > 1.2.

Formally, the output of parametric timed pattern matching is as follows, where (t, t′) is a

1.6. Highlight of the improvements 7

Figure 1.6: An automated cleaning system. Once the camera finds trash, it notifies a robot
cleaner to remove the trash.

`0 `1 `2 `4

detection,
x := 0

x > p,
removal >, $

Figure 1.7: A PTA matching too late removal of the trash after its detection
matching interval and v is one of the corresponding parameter valuations.

{(t, t′, v) | w|(t,t′) ∈ L(v(A))} ={(t, t′, v) | t ∈ [0.2, 0.7), t′ ∈ (1.6, 2.0], v(p) > 0.9}
∪{(t, t′, v) | t ∈ [1.6, 2.0), t′ ∈ (3.2,∞), v(p) > 1.2}

�

Example 1.5 (automated cleaning system). Consider an automated cleaning system in Fig. 1.6.
There are cameras in a public space, and once a camera finds trash, it notifies a robot cleaner
to remove the trash. One reasonable specification is that the robot should remove the trash
as soon as the camera finds the trash. However, it is hard to define the exact threshold de-
termining if the robot is too late because it depends on various factors, e. g., the size of the
public space, the number of the working robots, and how crowded it is.

By using a PTA, we can represent this specification as in Fig. 1.7. By parametric timed
pattern matching, for each trash, we obtain how long it took to remove the trash after the
detection of it. We note that it is also possible to ignore clearly safe behaviors by a giving a
global constraint of the parameter p. �

Algorithms and implementations We give two algorithms for the parametric timed pat-
tern matching: an algorithm via model checking and a dedicated algorithm. Both methods
are similar in the sense that they utilize the finite abstraction of the clock and parameter val-
uations by polyhedra. The latter dedicated algorithm is optimized by using skipping [FJS07]
that is originally from string matching.

For the algorithm via model checking, we used IMITATOR, which is a model checking tool
for PTAs. For the dedicated algorithm, we implemented a prototype tool ParamMONAA. Our
experimental evaluation shows the efficiency of our methods especially for ParamMONAA. For
example, ParamMONAA monitors about 35,000 entries per second for a realistic benchmark
called Gear and about 120,000 entries per second for a realistic benchmark called Accel on an
Amazon EC2 c4.large instance (2.9GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75GiB RAM)
that runs Ubuntu 18.04 LTS (64 bit). This is as fast as CAN bus or hundreds of high-speed
sensors.

8 Chapter 1. Introduction

1.6.1.3 Summary

Parametric timed pattern matching is a parametric extension of timed pattern matching with
parameters in the timing constraints. Our contribution to parametric timed pattern matching
is summarized as follows.

• We introduce the problem of parametric timed pattern matching.

• We give two approaches to solve the parametric timed pattern matching problem.

• Our experimental result shows the efficiency of our results for some benchmarks.

We used polyhedra to obtain a finite abstraction of the clock and the parameter valuations.
Our contribution makes timed pattern matching more flexible and informative as follows.

Flexibility Using parameters, we can use timing constraints with unspecified thresholds in
the specification. This allows us to give a specification without precisely defining timing
constraints, which tends to be challenging in practice.

Informativeness By using parametric timed pattern matching, we can synthesize how ro-
bustly the timing constraints are satisfied (or violated). This is more informative than
returning Boolean satisfaction. The idea is to enlarge the timing constraints using pa-
rameters representing the robustness of the satisfaction. For example, by replacing the
guard x < 1 of Fig. 1.4b with x < 1 + px, where px is a parameter, we can synthesize the
robust satisfaction degree of x < 1.

The material in Chapter 3 is based on the joint work [AHW18, WA19] with Étienne André
and Ichiro Hasuo. Useful comments from the anonymous referees of these papers are gratefully
acknowledged.

1.6.2 Symbolic monitoring against specifications parametric in time and
data

1.6.2.1 Motivation: Beyond finite domain events

By parametric timed pattern matching in Section 1.6.1, we can conduct monitoring even if the
timing constraints in the specification contains unspecified thresholds represented by parame-
ters. The use of PTAs instead of TAs is the essence of parametric timed pattern matching.

In parametric timed pattern matching, the monitored log is a timed word, which is the
same as timed pattern matching. A timed word is a sequence of events with timestamps,
where the events are from a finite domain. This finiteness of the events is often too restrictive
to represent system behavior with infinite or unbounded nature.

Example 1.6 (automated cleaning system). Consider again the scenario in Example 1.5. In
Example 1.5, we abstract the observed actions into two events: detection and removal. This
abstraction is too coarse when we have multiple pairs of detection and removal. Consider the
following observation.

• The camera observed trash (say #1) at 0.7.

• The camera observed another trash (say #2) at 2.5.

1.6. Highlight of the improvements 9

t0

detection

0.7

detection

2.5

removal

3.0

removal

3.5
(a) The timed word over the alphabet {detection, removal} modeling the observation in Example 1.6.

t0

detection(#1)

0.7

detection(#2)

2.5

removal(#2)

3.0

removal(#1)

3.5

(b) The timed data word modeling the observation in Example 1.6. The events (detection or removal)
is equipped with an identifying string (#1 or #2).
Figure 1.8: The timed word and the timed data word modeling the observation in Example 1.6
of the automatic cleaning system

1 @1 .5 deposit 100
2 @3 .8 withdraw 50
3 @4 .2 withdraw 30
4 @6 .7 withdraw 80
5 @8 .9 deposit 30

Figure 1.9: Example transactions of a bank account
• The cleaning robot removed #2 at 3.0.

• The cleaning robot removed #1 at 3.5.

Fig. 1.8a shows the timed word modeling this observation using the events in Example 1.5.
The issue here is that the information on the correspondence between the detection and the
removal is abstracted away, and we cannot monitor it as we would like. One possible solution
is to equip an identifying string for each event. The technical issue is that the number of such
strings is unbounded due to the unbounded number of observed trash. �

Example 1.7 (bank account). Consider the transactions of a bank account shown in Fig. 1.9.
We can model it as a timed word by abstracting each transaction to either withdraw or deposit.
However, this abstraction is too coarse because the amount is essential in the modeling of the
transaction; without the amount of the deposit or withdrawal, we cannot monitor, e. g., too
much decrease of the balance in a short period. The amount of each withdrawal or deposit is
a number, which is also from an infinite domain. �

Overall, timed words are often not expressive enough, and we need to equip each event
with data from some infinite domain.

1.6.2.2 Contribution: Symbolic monitoring of infinite domain data

Symbolic monitoring against parametric timed data automata To overcome the
issue above on the expressive power of timed words, we introduce the symbolic monitoring of
infinite domain data. In symbolic monitoring, the log is given by a timed data word, and the
specification is given by a parametric timed data automaton (PTDA).

A timed data word is a timed word such that each event is equipped with infinite domain
data as well as a timestamp. For example, Fig. 1.8b shows an example of the timed data word
for the automated clearing system; here, #1 and #2 are the strings to identify each trash.

PTDA is an extension of PTA with infinite domain data. PTDA can represent constraints
on data using data variables, data guards, and variable updates. We note that we can use

10 Chapter 1. Introduction

`0 `1 `2

detection(id)

removal(id)

detection(id), id = idp,
x := 0

detection(id)

removal(id), id 6= idp

removal(id), x > p,
id = idp

detection(id)

removal(id)
Figure 1.10: A PTDA accepting a timed data word containing a removal of trash that is more
than p time units after the detection, where idp is the data parameter for the identifying string
of the trash, and p is the timing parameter.

Joining
Request

Joining
Agreement Joined

Figure 1.11: A joining process of a vehicle platoon. When a non-member truck sends a joining
request (left), the member trucks increase the inter-vehicle distance so that the non-member
truck can join. Once the inter-vehicle distance becomes large enough, one of the member truck
sends the agreement to the joining truck (center), and the truck joins the platoon (right).
parameters for data as well as the timing constraints. For example, Fig. 1.10 shows an example
of the PTDA for the automated clearing system with timing parameter p and data parameter
idp. This PTDA accepts a timed data word containing a removal of trash that is more than p
time units after the detection.

Given a timed data word and a PTDA, symbolic monitoring returns the set of parameter
valuations such that the PTDA accepts the timed data word.

Example 1.8 (automated cleaning system). Continue the scenario in Example 1.6. The
observation in Example 1.6 contains two pairs of the detection and the removal of trash; the
first trash (say #1) is detected at 0.7 and removed at 3.5; the second trash (say #2) is detected
at 2.5 and removed at 3.0. We alert if the removal of the trash idp is more than p time unit
after the detection, where idp is the string-valued data parameter to identify the trash and
p is the timing parameter for the timing constraint. For the above observation, we alert for
idp = #1 ∧ p < 2.8 and idp = #2 ∧ p < 0.5.

Formally, these observation and specification are represented by the timed data word w in
Fig. 1.8b and the PTDA A in Fig. 1.10, respectively. The result of the symbolic monitoring
for w and A is the following set of parameter valuations v, where v(idp) is a string and v(p) is
a rational number.

{v | v(idp) = #1, v(p) < 2.8)} ∪ {v | v(idp) = #2, v(p) < 0.5)}

�

Example 1.9 (vehicle platooning). Consider monitoring of a vehicle platooning [KDM+17]
system. Vehicle platooning is a style of self-driving vehicles such that a group of vehicles drives
in a line. Thanks to the inter-vehicle communication, vehicle platooning can reduce the inter-
vehicle distance and the brake usage, and thus, vehicle platooning improves the efficiency of
the road usage and the energy consumption.

Our goal is to monitor a joining process to a platoon shown in Fig. 1.11 and check if the
acceptance of the joining is too late. In the log in Fig. 1.12, we observe that the acceptance

1.6. Highlight of the improvements 11

1 @0 .5 request #A #2
2 @4 .8 accept #A
3 @8 .5 request #B #4
4 @20 .3 accept #B

Figure 1.12: Example communication in joining processes of a vehicle platoon. The request
event with two strings id and position is for the joining request by the vehicle id at position.
The accept event with one string id is for the acceptance of the joining by the vehicle id. We
need infinite domain data for the identification because the number of the vehicles in a platoon
is unbounded.

`0 `1 `2

request(id,position)

accept(id) reject(id)

request(id,position),
pid = id, x := 0

request(id,position)

accept(id)
pid 6= id

reject(id)
pid 6= id

accept(id), pid = id,
x = delay

reject(id), pid = id,
x = delay

request(id,position)

accept(id)

reject(id)

Figure 1.13: A PTDA to detect too late acceptance or rejection of the joining request to
platoon, where x is the clock variable for the duration after the request, delay is the timing
parameter for the delay of the response, and pid is the string-valued data parameter to identify
the joining vehicle
of the vehicle #B takes much longer time than #A. We can use the PTDA A in Fig. 1.13 to
detect such delay of the acceptance. The result of the symbolic monitoring is as follows.{

v |
(
v(pid), v(delay)

)
= (#A, 4.3) or (#B, 11.8)

}
�

In principle, symbolic monitoring does not answer where unsafe behavior is detected, but
it only answers the acceptance with the corresponding parameter valuations. However, we can
locate in which part of the log the unsafe behavior occurs by using timing parameters. In
Example 1.10, we show a simpler pattern matching problem than (parametric) timed pattern
matching. See Section 4.4.3 for the encoding of parametric timed pattern matching with
symbolic monitoring.

Example 1.10 (bank account). Continue the scenario in Example 1.7. Our goal is to locate
in which part of the log, the balance decreases for more than 100 in total. In the log in Fig. 1.9,
we observe that such a decrease happens between 3.8 and 6.7, and between 3.8 and 8.9.

We can use the PTDA A in Fig. 1.14 to locate such a decrease. The PTDA A contains two
timing parameters t and t′ for the interval [t, t′] where such a decrease happens. In A, we take
the summation of the amount of the withdrawals and deposits between t and t′. The result of
the symbolic monitoring is as follows.{

v |
(
v(t), v(t′)

)
= (3.8, 6.7) or (3.8, 8.9)

}
�

12 Chapter 1. Introduction

`0 `1 `2

withdraw(amt)

deposit(amt)

withdraw(amt), x = t,
sum := amt

deposit(amt), x = t,
sum := −amt

withdraw(amt)
sum := sum+ amt

deposit(amt)
sum := sum− amt

withdraw(amt), x = t′
sum+ amt > 100

deposit(amt), x = t′
sum− amt > 100

withdraw(amt)

deposit(amt)

Figure 1.14: A PTDA to locate the interval [t, t′] in the log where the balance decreases for
more than 100 in total, where x is the clock variable for the global time, t and t′ are timing
parameters, and sum is the variable to contain how much the balance decreases.
Algorithms and implementations We give an algorithm to solve the symbolic monitoring
problem. Thanks to the finite abstraction of the time and data valuations, e. g., by convex
polyhedra for rational-valued data and a list-based ad hoc data structure for string-valued
data, the main body of the algorithm is a breadth-first search.

We implemented a tool SyMon for symbolic monitoring. Our experimental evaluation shows
the efficiency of our method. For example, SyMon monitors about 130 entries per second for
a realistic benchmark called Dominant on an Amazon EC2 c4.large instance (2.9GHz Intel
Xeon E5-2666 v3, 2 vCPUs, and 3.75GiB RAM) that runs Ubuntu 18.04 LTS (64 bit). This
is fast enough for online monitoring using 10 sensors with sampling interval 100ms.

1.6.2.3 Summary

Symbolic monitoring is a generalization of parametric timed pattern matching with data from
some infinite domain. Our contribution to symbolic monitoring is summarized as follows.

• We introduce symbolic monitoring as well as its input formalisms.

• We give an algorithm for symbolic monitoring.

• Our experimental result shows the efficiency of our algorithm.

We used polyhedra to obtain a finite abstraction of rational-valued data and parameter valu-
ation as well as clock and timing parameter valuations. Our contribution is generic, flexible,
and informative.

Genericity Our symbolic monitoring algorithm works for any “data” from domain that offers
suitable operations. For example, our algorithm works for both rationals and strings.

Flexibility We can use data parameters as well as timing parameters we used in Section 1.6.1.
In this sense, the specification in symbolic monitoring is more flexible.

Informativeness Similarly to Section 1.6.1, we can synthesize the safety degree using the
parameters. Moreover, we can extract timing and data information from the log. For
example, in Example 1.10, by monitoring the log, we extracted the intervals of the
withdrawals for each range of amounts.

1.6. Highlight of the improvements 13

t

v

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0.5 1.7 2.5 3.3 4.0 4.7 5.3 6.0 7.0 8.0 8.7 9.3 10.010.8

20.0

120.0

10.0

90.0

30.0

110.0

40.0

60.0

Figure 1.15: A signal σ showing the velocity of a car. A subsignal is unsafe if: 1) it starts in
the red area; 2) it ends in the orange area; and 3) its duration is shorter than 3.0.

The material in Chapter 4 is based on joint work [WAH19] with Étienne André and Ichiro
Hasuo. Useful comments from the anonymous referees of the paper are gratefully acknowl-
edged.

1.6.3 Online quantitative timed pattern matching with semiring-valued
weighted automata

1.6.3.1 Motivation: Online algorithm for quantitative timed pattern matching

More informative timed pattern matching Consider monitoring of a driving record of
a self-driving car. For example, we locate in which part of the driving record, the acceleration
is too sudden. More precisely, we alert if the velocity v changes from v < 40 to v > 100 within
3 time units. For the signal of the velocity in Fig. 1.15, such a pattern appears in [0, 2.5) and
[6.0, 8.7). Timed pattern matching locates such areas.

However, we observe that this result is not informative enough to tell the following: the
acceleration is more sudden in [0, 2.5) than in [6.0, 8.7); the acceleration in [3.3, 5.3) is more
sudden than in [9.3, 10.8), although both of them are not too sudden according to the speci-
fication. In order to give a more fine-grained and informative answer, for each area, we want
the degree of unsafety rather than the Boolean verdict of unsafety.

Quantitative timed pattern matching [BFMU17] is a quantitative extension of timed pattern
matching returning the quantitative semantics representing the satisfaction degree of the given
specification rather than the Boolean satisfaction. For each subsignal, quantitative timed
pattern matching returns how robustly the given specification is satisfied or violated. When
the specification represents unsafe behavior, we obtain the degree of unsafety for each subsignal.

Example 1.11. For the signal σ in Fig. 1.15, the quantitative semantics α
(
σ
(
[0, 2.5)

))
for the

subsignal σ
(
[0, 2.5)

)
in [0, 2.5) is 20 because the inequality constraints (v < 40 and v > 100) are

satisfied even if we shift the signal values up or down, by a gap up to 20. See Fig. 1.16 for an
illustration. Because the quantitative semantics α

(
σ
(
[6.0, 8.7)

))
for the subsignal σ

(
[6.0, 8.7)

)
is

10, σ
(
[0, 2.5)

)
satisfies the specification more robustly than σ

(
[6.0, 8.7)

)
. Since the specification

represents unsafe behavior, we conclude that σ is safer in [6.0, 8.7) than in [0, 2.5). Similarly, the
quantitative semantics α

(
σ
(
[3.3, 5.3)

))
and α

(
σ
(
[9.3, 10.8)

))
for the subsignals σ

(
[3.3, 5.3)

)
and

14 Chapter 1. Introduction

t

v

0

•

•

•

0.5 1.72.5

20.0

90.0

120.0

t

v

0
•

•

•

0.5 1.72.50.0

70.0

100.0

t

v

0

•

•

•

0.5 1.72.5

40.0

110.0

140.0

Figure 1.16: An illustration of the quantitative semantics. A signal satisfies the specification if
it starts in the red area and ends in the orange area. Since this specification represents unsafe
behavior, the quantitative semantics shows an unsafety degree. The quantitative semantics of
the specification for the original signal (left) is 20 because it keeps satisfying the specification
even after decreasing (center) or increasing (right) the value up to 20.

`0, v < 40 `1,> `2, v > 100 `3,>
x := 0 x < 3 >

Figure 1.17: The TSWA showing that the velocity v changes from v < 40 to v > 100 within 3
time units. More precisely, at location `0 and `2, we require the constraints v < 40 and v > 100,
respectively; we have to enter `2 less than 3 time units after we leave `0. The transition from
`2 to `3 shows that we have no constraint on the time elapse in `2.
σ
(
[9.3, 10.8)

)
are −10 and −40, respectively; therefore, σ

(
[9.3, 10.8)

)
is safer than σ

(
[3.3, 5.3)

)
.
�

Issue: Online monitoring capability In [BFMU17], an offline algorithm for quantitative
timed pattern matching is introduced. This algorithm requires the entirety of the monitored
signal to start monitoring. Such a monitoring algorithm is offline monitoring capable: for a
log of previous system execution, this algorithm computes the quantitative semantics for each
subsignal. However, such a monitoring algorithm is not online monitoring capable: for a stream
of a log of the running system, this algorithm cannot compute the quantitative semantics along
with the system execution. This limitation is critical for some usage scenarios. For example,
an offline monitoring algorithm cannot give feedback to a running system using the monitoring
result before the execution is complete. The introduction of an online algorithm is practically
valuable because it expands the application area.

1.6.3.2 Contribution: Quantitative timed pattern matching with weighted
automata

Online algorithm with automata We introduce an online algorithm for quantitative timed
pattern matching. Our algorithm utilizes weighted automata, which is a quantitative extension
of NFAs. The use of automata makes an online algorithm simpler.

By combining the concepts from both timed automata and weighted automata, we intro-
duce timed symbolic weighted automata (TSWAs). Fig. 1.17 shows an example of a TSWA. In

1.6. Highlight of the improvements 15

0 2 4 6 8 10
0

2

4

6

8

10

80

60

40

20

0

20

Figure 1.18: An illustration of the result of the quantitative timed pattern matching. Each
point (t, t′) shows the quantitative semantics α

(
σ
(
[t, t′)

))
for the subsignal σ

(
[t, t′)

)
of the input

signal σ in the interval [t, t′). For example, the value at (3.3, 5.3) is −10, which shows that the
quantitative semantics α

(
σ
(
[3.3, 5.3)

))
for the subsignal σ

(
[3.3, 5.3)

)
in the interval [3.3, 5.3) is

−10.
a TSWA, each location has a constraint on the signal values. The other structure of TSWAs
is the same as TAs.

Example 1.12 (velocity monitoring). Continue the scenario in Example 1.11. Let σ be the
signal shown in Fig. 1.15. The TSWA in Fig. 1.17 represents the specification “the velocity v
changes from v < 40 to v > 100 within 3 time units”. We note that the constraints at locations
`1 and `3 are >, and we do not care the signal values there.

For the subsignal σ
(
[0, 2.5)

)
of σ in [0, 2.5), the quantitative semantics α

(
σ
(
[0, 2.5)

))
is 20

because of Eq. (1.1), where σ(0) and σ(1.7) are the signal values at 0 and 1.7, respectively,
and 40 and 100 are the thresholds in the specification. This follows the intuition in Fig. 1.16.

α
(
σ
(
[0, 2.5)

))
= min

{
(40− σ(0)), (σ(1.7)− 100)

}
= min

{
(40− 20), (120− 100)

}
= 20 (1.1)

Quantitative timed pattern matching answers such a quantitative semantics for each subsignal.
Fig. 1.18 illustrates the result of quantitative timed pattern matching, where the color at point
(t, t′) shows the quantitative semantics α

(
σ
(
[t, t′)

))
for the subsignal σ

(
[t, t′)

)
. �

Genericity via semirings We note that our contribution is not only to provide an online
algorithm but also to generalize the notion of quantitative semantics. We utilize an algebraic
structure called semiring in our algorithm, and our algorithm works for various quantitative
semantics. For example, we can take the summation of the difference from the threshold rather
than taking the minimum value as in Eq. (1.1). Mathematically, this is to use the sup-plus
semiring instead of the sup-inf semiring.

The preference between these semantics depends on the usage scenario. For example, as
shown in Example 1.13, when we use the quantitative semantics αsup -+ with sup-plus semiring,
the “safe” values compensate for the “unsafe”. This semantics may be an option, e. g., for costs
or energy consumption, but not suitable, e. g., for physical distance because we can cover the
debt with revenue while very long inter-vehicular distance cannot compensate for a collision of

16 Chapter 1. Introduction

cars. Nevertheless, the quantitative semantics by the sup-inf semantics would be the standard
semantics thanks to the intuition in Fig. 1.16.

Example 1.13 (quantitative semantics by summation). Continue the scenario in Exam-
ple 1.12. Here, we use the quantitative semantics αsup -+ defined by sup-plus semiring instead
of sup-inf semiring. For the subsignals σ

(
[0, 2.5)

)
, σ
(
[3.3, 5.3)

)
, σ
(
[6.0, 8.7)

)
, and σ

(
[9.3, 10.8)

)
,

the quantitative semantics are as follows.

αsup -+
(
σ
(
[0, 2.5)

))
= (40− 20) + (120− 100) = 40

αsup -+
(
σ
(
[3.3, 5.3)

))
= (40− 10) + (90− 100) = 20

αsup -+
(
σ
(
[6.0, 8.7)

))
= (40− 30) + (110− 100) = 20

αsup -+
(
σ
(
[9.3, 10.8)

))
= (40− 40) + (60− 100) = −40

For the quantitative semantics defined by sup-plus semiring, we have αsup -+
(
σ
(
[3.3, 5.3)

))
=

αsup -+
(
σ
(
[6.0, 8.7)

))
while for the quantitative semantics defined by sup-inf semiring, α

(
σ
(
[6.0, 8.7)

))
is larger than α

(
σ
(
[3.3, 5.3)

))
. This inconsistency is because, in the quantitative semantics

αsup -+ by sup-plus semiring, small deviation from the specification by the velocity (v = 10)
at the beginning of σ

(
[6.0, 8.7)

)
affects the quantitative semantics, while in the quantitative

semantics α by sup-inf semiring, large deviation by the velocity (v = 90) masks it. �

Generic algorithm and implementation We give an online algorithm for quantitative
timed pattern matching using the shortest distance over (semiring-valued) weighted graphs.
Our algorithm works for any semiring satisfying a certain condition. For example, our algo-
rithm captures both of the quantitative semantics above.

We used polyhedra-based abstraction when reducing the size of the weighted graph to
finite. In signal monitoring, there are continuously many possible timings of the switching in a
temporal specification due to the continuity of the signals. For example, there are continuously
many possible durations to stay at `0 in the TA in Fig. 1.17. We use polyhedra to obtain finite
abstraction of such possibilities and reduce the size of the weighted graph finite so that we can
apply the existing shortest distance algorithm.

We implemented a prototypical tool QTPM for online quantitative timed pattern match-
ing. Our experimental evaluation shows the efficiency of our algorithm, especially when the
specification has a time-bound, i. e., the length of each matching is bounded. For example, for
a realistic benchmark called Overshoot with time-bound of length 150 seconds, when the
sampling interval is 10 seconds, QTPM monitors more than 3,000 entries, i. e., 30,000 seconds
in the simulation time, per second on an Amazon EC2 c4.large instance (2.9GHz Intel Xeon
E5-2666 v3, 2 vCPUs, and 3.75GiB RAM) that runs Ubuntu 18.04 LTS (64 bit). This as-
sumption on the time-bound is not too restrictive because we are usually not interested in too
long matching. For instance, for the TA in Fig. 1.17, although the length of the matching is
unbounded, we are usually not interested in much longer matching than 3 time unit, which is
the maximum duration between v < 40 and v > 100. Therefore, it does not harm the practical
usefulness to give such a bound of the length of the matching.

In addition to the number of the monitored entries, we also measured the shortest feasible
sampling interval of QTPM. In signal monitoring, the shortest feasible sampling interval is an
important efficiency criterion. This is because by making the sampling interval shorter, we can
make the monitoring result more accurate, while it makes monitoring more computationally
demanding because the algorithm has to handle more information in a certain length of time.

1.6. Highlight of the improvements 17

For the aforementioned benchmark Overshoot, the shortest feasible sampling interval of
QTPM is about 450 milliseconds on an Amazon EC2 c4.large instance (2.9GHz Intel Xeon E5-
2666 v3, 2 vCPUs, and 3.75GiB RAM) that runs Ubuntu 18.04 LTS (64 bit). Although this
is not fast enough to monitor the raw sensor values of sampling interval 100 milliseconds, the
bound of matching length (150 seconds) is much longer than the available sampling intervals,
and the performance of QTPM may be enough for some applications.

1.6.3.3 Summary

Quantitative timed pattern matching is a quantitative extension of timed pattern matching
computing the quantitative semantics rather than the Boolean satisfaction. Our contribution
to quantitative timed pattern matching is summarized as follows.

• We define the quantitative timed pattern matching problem for TSWAs.

• We give an online algorithm for quantitative timed pattern matching.

• Our experimental result shows the efficiency of our results.

We used polyhedra-based symbolic analysis to obtain a finite abstraction of the weighted
graph used in the algorithm. Our contribution makes runtime verification more generic and
informative.

Genericity The quantitative semantics is parameterized with a semiring. Our algorithm
works for different semirings provided they satisfy some conditions.

Informativeness For each subsignal, quantitative timed pattern matching computes the un-
safe degree rather than deciding the Boolean satisfaction.

The material in Chapter 5 is based on work [Wag19]. Useful comments from the anonymous
referees are gratefully acknowledged.

1.6.4 Model-bounded monitoring of hybrid systems

1.6.4.1 Motivation: Bounding possible signals between samples

Signal monitoring requires sampling and interpolation In the monitoring of CPSs,
we monitor a signal, and this signal is thought of as a behavior of the system. For example,
in Section 1.6.3, monitoring the signal σ shown in Fig. 1.15, we compute the quantitative
semantics for each subsignal of σ. However, in reality, what we observe is not a continuous
signal but a series of discrete sampling points, and we interpret them as a continuous signal
by interpolation. For example, in Fig. 1.15, what we observe is the left end points of the
constant pieces of a signal, and we interpret these observed samples as a signal by the piecewise-
constant interpolation. In practice, the piecewise-constant or piecewise-linear interpolations
(see Fig. 1.19) are commonly used, but we can also use other interpolations, e. g., with spline
curves.

18 Chapter 1. Introduction

t

v

0

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

0.5 1.7 2.5 3.3 4.0 4.7 5.3 6.0 7.0 8.0 8.7 9.3 10.010.8

20.0

120.0

10.0

90.0

30.0

110.0

40.0

60.0

Figure 1.19: The signal constructed by the piecewise-linear interpolation from the samples in
Fig. 1.15
Issue: no guarantee between samples In signal monitoring, due to the sampling and
interpolation mechanism above, we have a methodological difficulty in guaranteeing the cor-
rectness of our analysis. Namely, we cannot determine the safety of the system between
samples.

We note that this issue is ignorable when the sampling intervals are short, implicitly as-
suming that the system state does not change a lot in a short period. However, this can be a
big issue when the sampling interval is longer, which is the case to reduce power consumption
in an IoT-based monitoring system.

1.6.4.2 Contribution: Model-bounded monitoring for flexible interpolation

Idea: Exploit the knowledge of the monitored system Our solution is to bound
the unknown behavior between samples using the prior knowledge of the monitored system.
The latter is called bounding model; it is an abstraction of the monitored system. Utilizing
the bounding model, we bound the behavior between the samples and determine if there
is a possibility of unsafe behavior between samples. We call this procedure model-bounded
monitoring.

We use linear hybrid automata (LHAs) as the formalism for bounding models. The use of
LHAs is due to the following observation: on the one hand, LHAs are expressive, e. g., it allows
discrete switching as well as bounding the derivative by the Lipschitz constant; on the other
hand, LHAs is a limited subclass of hybrid automata, and its reachability analysis is tractable
using convex polyhedra analysis.

Example 1.14 (thermostatic chamber). Consider the monitoring of a thermostatic chamber.
The thermostatic chamber has two modes, on and off, and at each location, the rate of the
temperature change satisfies Ṫ ∈ [2.0, 4.0] and Ṫ ∈ [−2.0, 0], respectively. We note that the
actual dynamics can be much more complicated, but we assume that these intervals bound
the actual derivatives of the temperature under the current condition e. g., the output of the
heater, range of the temperature, amount of the water, and room temperature. The LHA in
Fig. 1.21 models such a thermostatic chamber.

Fig. 1.20 illustrates the model-bounded monitoring procedure. Our goal is to alert if the
temperature enters the unsafe area; the red areas in Fig. 1.20 show the unsafe areas. We observe
that all the samples (the black points x1, . . . , x4) are in the safe area. For each pair (xi−1, xi)

1.6. Highlight of the improvements 19

t

T

70

80

• •

•
•

x1 x2

x3
x4

0.0 2.0 4.0 6.0

7575

71
72

Figure 1.20: A signal of a thermostatic chamber: the black points (x1, . . . , x4) are the samples;
the red dotted areas are the unsafe areas; the blue hatched areas are the reachable areas.

OFF
Ṫ ∈ [−2.0, 0]

ON
Ṫ ∈ [2.0, 4.0]

Figure 1.21: A bounding model of the thermostatic chamber in LHA. These intervals are e. g.,
the Lipschitz constants of the actual derivative.

low
v ∈ [0, 90]
v̇ ∈ [−6, 15]

ċ = 1

high
v ≥ 30

v̇ ∈ [−6, 7]
ċ = 1

v ≥ 45, c ≥ 2/c := 0

v ≤ 50, c ≥ 2/c := 0
Figure 1.22: A bounding model of an automatic transmission system in LHA. These intervals
are e. g., the Lipschitz constants of the actual derivative.
of samples, we compute the reachable area (the blue areas) through which the temperature
moves from the previous sample xi−1 to the next sample xi. The reachable area is represented
by a finite union of convex polyhedra. Here, we observe that the blue and red areas intersect
in between x3 and x4, which means that the unsafe area might be visited. Therefore, we
alert that there is a potential safety violation, although we do not observe any violation in the
samples. �

Example 1.15 (automatic transmission system). Consider the monitoring of a car. The car
has two gear modes, low and high, and at each location, the acceleration of the car satisfies
v̇ ∈ [−6, 15] and v̇ ∈ [−6, 7], respectively. At low and high gear modes, the velocity must be
in v ∈ [0, 90] and v ≥ 30, respectively. The gear can change from low to high and high to low
when v ≥ 45 and v ≤ 50, respectively. There must be at least 2 time units between each gear
change for the comfortability. The LHA in Fig. 1.22 models such a car.

Fig. 1.23 illustrates the model-bounded monitoring procedure. Our goal is to alert if the
velocity is too high, i. e., v ≥ 120; the red area in Fig. 1.23 shows the unsafe area. We observe
that the reachable area between v2 and v3 is non-convex. This is because the maximum
acceleration is different between the low velocity and the high velocity. Nevertheless, the

20 Chapter 1. Introduction

t

v
120

•

•
•

v1

v2

v3

1.0 6.0 15.0
30

90
100

Figure 1.23: A signal showing the velocity of a car: the black points (v1, . . . , v3) are the
samples; the red dotted area is the unsafe area; the blue hatched areas are the reachable areas.

cruising
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

x1 = 40
x2 = 35 recovering

ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

x1 − x2 ≤ 4

x1 − x2 ≥ 4

Figure 1.24: A bounding model A for the platooning example, expressed as an LHA

t0 10 20

40

35

123
117

203
201

Figure 1.25: A signal of an automotive platooning system: the black circles are the samples of
the first car; the black triangles are the samples of the second car; the hatched areas are the
reachable areas.
reachable area is represented by finite union of convex polyhedra, and we can use the symbolic
analysis of LHA with convex polyhedra. We observe that all the samples (the black points
v1, . . . , v3) are in the safe area. Nevertheless, we alert that there is a potential safety violation
because we observe that the blue and red areas intersect in between v2 and v3. �

Example 1.16 (vehicle platooning). Consider a vehicle platooning scenario where two vehicles
drive one after the other, with their distance kept small. As mentioned in Example 1.9, such
vehicle platooning attracts interest as a measure for enhanced road capacity as well as for fuel
efficiency.

1.6. Highlight of the improvements 21

The vehicle platooning system has two modes, cruising and recovering. In the normal
cruising mode, the relative distance has a drift and the inter-vehicle distance decreases. The
recovering mode is used to recover the decreased inter-vehicle distance. At each location, the
velocity of each car is ẋ1 ∈ [7.5, 8.5] and ẋ2 ∈ [8.0, 9.0]; and ẋ1 ∈ [11.0, 13.0] and ẋ2 ∈ [9.0, 11.0],
respectively. The LHA in Fig. 1.24 models such a vehicle platooning system.

Fig. 1.25 illustrates the model-bounded monitoring procedure. Our goal is to alert if the
two vehicles potentially touched each other. Physical contact of the vehicles is not observed in
Fig. 1.25, but we cannot be sure what happened between the sampling instants. The hatched
areas show the reachable area i. e., the symbolic interpolation using the bounding model.

Here, we observe that in the first interpolation (the blue areas), there is no potential
physical contact, while in the second interpolation (the red areas), there is a potential physical
contact. Therefore, we alert that there is a potential safety violation, although we do not
observe the violation in the samples. �

On the usage of the model One might say that the application area of model-bounded
monitoring is smaller than the other runtime verification methods because it requires a model.
Certainly, model-bounded monitoring requires an LHA as a bounding model, which is much like
a system model for the exhaustive verification of hybrid systems [AHH96]. See Section 1.7.1 for
a comparison between runtime verification and exhaustive verification. It is usually challenging
to obtain system models, and the use of models usually limits the application area of the
exhaustive verification.

However, we remark that in model-bounded monitoring, the model construction is not such
a big issue as in exhaustive verification because the bounding model does not have to be as
precise as the system model for the exhaustive verification. On the one hand, the analysis
in exhaustive verification is global, and the modeling error accumulates over time; thus, even
a small modeling error can cause a huge impact on the analysis. On the other hand, the
reachability analysis in model-bounded monitoring is local, and the modeling error is reset at
each sample. For example, in Fig. 1.20, we observe that the reachable area converges to one
point at each sample.

Algorithms and implementations We show two approaches to solve the model-bounded
monitoring problem: by a reduction to reachability analysis; and by a dedicated algorithm.
We implemented the former approach with a model checker PHAVerLite and the latter ap-
proach in a prototype tool HAMoni. Both of the approaches share the technical essence, namely
the bounded-time reachability analysis of LHAs. The reachability analysis of PHAVerLite is
optimized with recent techniques, while HAMoni is a simple prototype tool using Parma Poly-
hedra Library for convex polyhedra operations. Our experimental results show the feasibility
of model-bounded monitoring, especially by HAMoni. For example, for a benchmark called
ACCD, HAMoni monitors 1,000 samples about in 12 seconds for dimension 5 on an Amazon
EC2 c4.large instance (2.9GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75GiB RAM) that
runs Ubuntu 18.04 LTS (64 bit).

1.6.4.3 Summary

Model-bounded monitoring is a monitoring method guaranteed to detect every unsafe behavior
even if the signal is coarsely sampled. Although we may have false alarms, we have fewer false

22 Chapter 1. Introduction

alarms for a more precise bounding model. Our contribution to model-bounded monitoring is
summarized as follows.

• We define the model-bounded monitoring problem for bounding models in LHAs.

• We give two algorithms for model-bounded monitoring.

• Our experimental results show the feasibility of our approaches.

We use polyhedra for the symbolic interpolation between samples. Our contribution is flexible
and informative.

Flexibility Model-bounded monitoring utilizes a flexible interpolation of the sampled logs
considering the prior knowledge of the system called bounding model. Model-bounded
monitoring is guaranteed to detect every unsafe behavior even if the log is sampled
sparsely.

Informativeness By using parameters, we can synthesize parameter valuations and unob-
served signal values much like in Sections 1.6.1 and 1.6.2. We note that the use of
parameters is detailed in Appendix D while Chapter 6 focuses on a simpler setting.

The material in Chapter 6 is based on the unpublished joint work [WAH20] with Éti-
enne André and Ichiro Hasuo. Useful comments from the anonymous referees are gratefully
acknowledged.

1.7 Related work

In this section, we give a high-level comparison with related research areas. See the related
work sections in the coming chapters for the detailed discussion of works related to each
contribution.

1.7.1 Polyhedra for verification

1.7.1.1 Exhaustive verification

“Are we creating the system correctly?” This is one of the fundamental questions in system
development. Exhaustive verification (also called formal verification) mathematically answers
this question by proving the satisfaction of the formal specification by the system. Model
checking [BK08] is an automata-theoretic approach to prove the correctness of the system.
Fig. 1.26a shows the typical scheme of model checking. Given a system model M and a
specification ϕ, model checking decides if the system model satisfies the specification for any
execution.

The essence of the model checking is to reduce exhaustive verification to graph analysis,
e. g., reachability checking and finding the strongly connected components. A model checking
algorithm with Büchi automata and linear temporal logic (LTL) is shown in [Var95]. Since
we can consider both of these formalisms as finite state systems, we can reduce the model
checking of them to finite graph analysis. For example, the reachability to `3 in the automaton
in Fig. 1.27a can be verified by breadth-first search.

1.7. Related work 23

System under
verification Model M

Model Checker

Safe or Unsafe

Specification ϕ

(Typically)
not formal Formal

modeling
(typically by human)

(a) Typical model checking scheme. In the verification of CPSs, we usually have only informal informa-
tion of the system under verification, for example, because of the third-party components or machine
learning-based components whose internal mechanism is unknown. Moreover, it is highly challenging to
precisely understand and model external environmental information such as road conditions, weather,
and pedestrians’ behavior. We note that usually, the model M must be precise enough to verify the
specifications ϕ.

System under
monitoring
(SUM)

Log w Monitor

Safe or Unsafe

Specification ϕ

(Typically)
not formal Formal

automatically
produced by
execution

(b) Typical runtime verification scheme. We note that the absence of the model M is not mandatory;
For example, a bounding model is used in model-bounded monitoring (Chapter 6), while the model
does not have to be as precise as that for model checking.

Figure 1.26: Comparison between model checking and runtime verification
Model-checking of CPSs with polyhedra-based abstraction In model checking of
CPSs, it is not straightforward to apply these graph analysis methods because of the contin-
uous state spaces to model continuous-time behavior (i. e., not integer-valued but rational- or
real-valued time) in timed automata [AD94] or even the continuous-valued signals in hybrid
automata [Hen96]. For example, the reachability to `2 in the automaton in Fig. 1.27b cannot be
verified by naive breadth-first search because the underlying configuration is the infinite graph
in Fig. 1.27c. Nevertheless, polyhedra-based abstraction solves this issue for a specific class of
systems by discretizing the continuous state space as shown in Fig. 1.27d. See Section 2.3
for the detail. By using the polyhedra-based abstraction, various model checking tools have
been introduced for various formalisms, e. g., for timed automata [LLN18], parametric timed
automata [AFKS12], and linear hybrid automata [Fre08, BZ19]; they have been used in various
case studies [LMNS05, MLR+10, AFMS19]. We note that for parametric timed automata and
linear hybrid automata, model checking may not terminate because of the discrete but not
always finite abstraction.

Exhaustive verification of CPSs is hard The result of exhaustive verification is strong;
it rigorously and exhaustively proves the correctness of the system model. However, especially

24 Chapter 1. Introduction

`0 `1 `2
a

b
a

(a) An automaton with discrete time. The reachability to `2 can be verified by breadth-first search.

`0 `1 `2
a, x < 1/x := 0

b, 0 ≤ y < 1/x := 0
a, x > 1 ∧ y < 1

(b) A timed automaton with continuous time. Timing constraints are represented by guards, e. g., x < 1
that enables the transition only if we have x < 1, and the resets, e. g., x := 0 that resets the value of x.
See Section 2.2 for the detail of timed automata.

(`0, 0, 0) (`0, 0.2, 0.2)

(`0, 0.1, 0.1) (`1, 0, 0.1)

(`1, 0, 0.2)

· · ·

· · ·

· · ·

...
0.1

0.2

...

...

...

a

a

(c) A part of the configuration space of the timed automaton in Fig. 1.27b. Each node (`, x, y) is a
tuple of the location `, and the values of the clock variables x and y. The dashed edges are for the time
elapse and the solid edges are for the transitions in Fig. 1.27b. This graph has infinite branching due
to the infinite possibility of the time elapse.

`0,
x = y = 0

`0,
0 ≤ x = y

`1,
x = 0 ≤ y < 1

`1,
0 ≤ x ≤ y

a

b

(d) A symbolic abstraction of the configuration space in Fig. 1.27c. Each node consists of a location
and a constraint representing a set of the clock valuations. This graph has only finite space and we can
verify that `2 is unreachable by breadth-first search.
Figure 1.27: Comparison between exhaustive verification of an automaton with discrete time
(Fig. 1.27a) and continuous time (Fig. 1.27b), where the reachability to `2 is verified.
for CPS, we have a difficulty in the model construction. In model checking, what is verified
is not the actual system but the system model. Therefore, we need a system model to be
accurate enough to verify the given specification. This is highly challenging for CPSs because
we have to model the external environment of the system e. g., road condition, object, behavior
of the pedestrians, which is not easy. To make matters worse, CPSs often contain third-party
components whose internal mechanism are usually not specified; therefore, the construction of
the precise system model (without the environment model) is still challenging.

1.7.1.2 Runtime verification

Runtime verification [BFFR18] (also called specification-based monitoring) is an alternative
verification method. Fig. 1.26b shows a scheme of runtime verification. Runtime verification is
a verification of the system observation (also called log) rather than a verification of the system
model; therefore, it does not (necessarily) require system models. Given a system observation

1.7. Related work 25

Table 1.1: Summary of the comparison with related research areas
system model specification background

Exhaustive Verification necessary given logic
Runtime Verification (typically) unnecessary given logic
Anomaly Detection unnecessary implicit/generated statistics

w and a specification ϕ, runtime verification typically decides if the system observation w
satisfies the specification ϕ. Since runtime verification is a verification of a system observation,
it is not exhaustive with respect to all possible behavior of the system. Nevertheless, it is
practically appealing that runtime verification does not require system models.

Runtime verification of CPSs Runtime verification of CPSs [BDD+18] as well as software
systems is an active research topic given the recent trend of the highly sophisticated CPSs, e. g.,
self-driving cars and autonomous robots. This difference in the application area also affects
the formalism. For example, in the runtime verification of software systems, LTL [BLS11] is
widely used to express the monitored specification. In the monitoring of CPSs, however, these
formalisms are usually not expressive enough to model the continuous-time or real-valued
behavior. Therefore, the formalisms with continuous behaviors, e. g., metric temporal logic
(MTL) [Koy90], signal temporal logic (STL) [MN04], timed regular expressions [ACM02], and
timed automata [AD94], have been used in runtime verification of CPSs [TR05, MN04, DM10,
UFAM14, WAH16]. These research efforts result in various monitoring tools e. g., [Don10,
BKZ17, BKT17, Ulu17, NLM+18, WHS18].

Polyhedra-based abstraction for runtime verification In naive runtime verification,
polyhedra-based abstraction is unnecessary because we have only finitely many possibilities
thanks to the finiteness of the observation. For example, when we check if an observation
matches a specification represented by a timed automaton, although the configuration space
is infinitely many as shown in Fig. 1.27c, we only have to consider the time elapse in the
observation, and thus, the relevant part of the configuration is only finite.

For advanced runtime verification techniques, however, we have to handle infinite possi-
bilities, and polyhedra-based symbolic analysis plays an essential role in the algorithms, as
we show in Section 1.6. Although polyhedra-based symbolic analysis is a common technique
for exhaustive verification, it is utilized only in a few algorithms, e. g., in [ADMN11, BFM18,
UFAM14, BFN+18]. In this thesis, we extensively use polyhedra-based symbolic analysis in
various runtime verification algorithm to show its wide applicability.

1.7.2 Anomaly detection

Another research direction for system monitoring is anomaly detection [CBK09]. See Table 1.1
for a summary of the comparison. In anomaly detection, the monitoring is based on statistical
analysis of data rather than logical specifications. The goal of anomaly detection is to detect
statistically anomalous behaviors, i. e., rare events in the input space distribution. Anomaly
detection learns the feature of the normal behavior from data and utilizes the learned feature
as a detection criteria.

This data-driven approach of anomaly detection has both advantages and disadvantages.
On the one hand, anomaly detection can raise false alarms because the detection criteria is
not if the behavior is safe or unsafe but if the behavior is statistically rare or not. Runtime

26 Chapter 1. Introduction

verification does not detect such behavior as long as the specification precisely represents the
safety. On the other hand, anomaly detection is applicable even if the specification is entirely
unknown. This makes the application area of anomaly detection larger than that of runtime
verification.

We note that a combination of runtime verification and anomaly detection is also stud-
ied [FdSC+17]. In [FdSC+17], the authors utilize formal specifications with uninterpreted
predicates, which are similar to the parametric specification we use in Chapters 3 and 4. It
is an interesting future work to combine our parametric runtime verification techniques with
anomaly detection.

1.8 Information for readers
Fig. 1.3 shows the relations among the chapters. The preliminaries on the theory of timed
automata and timed pattern matching in Chapter 2 are used in the remaining chapters. The
contribution in Chapter 3 is generalized in Chapter 4; therefore, we recommend reading Chap-
ter 3 before reading Chapter 4. Chapters 5 and 6 do not have such dependencies.

Although this thesis is meant to be self-contained, a deeper understanding of the timed
automata theory, e. g., in [BY03a], will help read this thesis. We also note that Chapter 5 is
mathematically more demanding than the other chapters because of the abstract discussion
with semirings.

CHAPTER 2
Background: Timed

Automata and Timed Pattern
Matching

In this chapter, we review the common background on timed automata and timed pattern
matching.

2.1 Timed words
We use timed words to represent system behavior1. A timed word is a sequence of events
equipped with timestamps. By using a timed word, we represent a sequence of events that
occurred in the system with timing information.

Definition 2.1 (timed word). For an alphabet Σ, a timed word w is a sequence

(a1, τ1), (a2, τ2), . . . , (an, τn)

of pairs (ai, τi) of a character ai ∈ Σ and a timestamp τi ∈ R≥0 satisfying τi ≤ τi+1. We let τ0 =
0. We denote the length n of w by |w|. The set of timed words over Σ is denoted by T (Σ) and
for n ∈ Z≥0, we denote T n(Σ) = {w ∈ T (Σ) | |w| = n}. For a timed word w, we often denote it
by (a, τ), where a ∈ Σ∗ is the sequence a1, a2, . . . , an and τ ∈ R∗≥0 is the sequence τ1, τ2, . . . , τn.
For a timed word w = (a, τ), we denote the subsequence (ai, τi), (ai+1, τi+1), . . . , (aj , τj) by
w(i, j). For a timed word w = (a, τ) and t ∈ R satisfying −τ1 < t, the t-shift of w is
(a, τ) + t = (a, τ + t) where τ + t = τ1 + t, τ2 + t, . . . , τ|τ | + t.

Let w = (a, τ) and w′ = (a′, τ ′) be timed words. When τ|w| ≤ τ ′1, their absorbing concate-
nation w ◦ w′ is the timed word

w ◦ w′ = (a · a′, τ · τ ′) = (a1, τ1), (a2, τ2), . . . , (a|w|, τ|w|), (a′1, τ ′1), (a′2, τ ′2), . . . , (a′|w′|, τ ′|w′|)
1We note that we can also use a signal for the same purpose. See e. g., [ACM02] for comparison in the

context of timed automata.

27

28 Chapter 2. Background: Timed Automata and Timed Pattern Matching

t0

a

1.0

b

1.9

a

3.4
Figure 2.1: An example of a timed word w

`0

`1

`2

`3

a, x < 1/x := 0

b, 0 ≤ y < 1/x := 0

a, y < 1

a, x > 1 ∧ y < 1

a, x > 1

Figure 2.2: An example of a timed automaton A
and their non-absorbing concatenation w · w′ is the timed word w · w′ = w ◦ (w′ + τ|τ |) =
(a · a′, τ · (τ ′ + τ|τ |)). The concatenations on T (Σ) are also defined similarly. �

Example 2.2. The timed word w in Fig. 2.1 represents a sequence of events with timestamps
such that “a happens at 1.0, b happens at 1.9, and a happens at 3.4”. �

2.2 Timed automata
A property on timed words can be defined as a language of a timed automaton [AD94]. A timed
automaton is an NFA equipped with clock variables, clock resets, and guards to represent
constraints on the timestamps. Clock variables are also called clocks for simplicity. The
following is the definition of clock valuations and guards. Though disjunctions are missing in
our definition of guards, it does not harm the expressive power of timed automata because
disjunctions can be encoded by nondeterministic branching.

Definition 2.3 (clock valuation, guard). For a finite set X of clock variables, a clock valuation
ν is a function ν : X→ R≥0. We write ~0 for the clock valuation assigning 0 to all clock variables.
For a clock valuation ν and t ∈ R≥0, the t-shift ν + t of ν is the clock valuation satisfying
(ν + t)(x) = ν(x) + t for each x ∈ X. For a clock valuation ν : X → R≥0 and a set R ⊆ X of
clock variables, the clock valuation [ν]R is such that

(
[ν]R

)
(x) = 0 if x ∈ R, and otherwise,(

[ν]R
)
(x) = ν(x).

For a finite set X of clock variables, Φ(X) is the set of guards defined as follows.

g ::= > | x ./ c | g ∧ g (x ∈ X, ./ ∈ {>,≥,≤, <}, and c ∈ Z≥0)

For a clock valuation ν : X → R≥0 and a guard g over X, we denote ν |= g if the guard g
holds for the clock valuation ν. �

In timed automata, in addition to the structure from NFAs, each edge is associated with
a guard g and a set R of the reset clock variables. For example, in the timed automaton in
Fig. 2.2, the edge from `0 to `2 is associated with the guard g = x > 1 and the set R = ∅ of
the reset clock variables i. e., no clock variable is reset at this guard.

2.2. Timed automata 29

Definition 2.4 (syntax of a TA). A timed automaton (TA) A is a tuple (Σ, L, L0, LF ,X, E)
such that

• Σ is the alphabet,

• L is the finite set of locations,

• L0 ⊆ L is the set of initial locations,

• LF ⊆ L is the set of accepting locations,

• X is the finite set of clock variables, and

• E ⊆ L× Φ(X)× Σ× P(X)× L is the set of edges.

�

Example 2.5. The timed automaton A = (Σ, L, L0, LF ,X, E) in Fig. 2.2 is such that

• Σ = {a, b},

• L = {`0, `1, `2, `3},

• L0 = {`0},

• LF = {`2, `3},

• X = {x, y}, and

• E = {e1, e2, e3, e4, e5}, where e1 = (`0, x < 1, a, {x}, `1), e2 = (`0, x > 1, a, ∅, `2), e3 =
(`1, 0 ≤ y < 1, b, {x}, `1), e4 = (`1, y < 1, a, ∅, `2), and e5 = (`1, x > 1 ∧ y < 1, a, ∅, `3).

We have the guard y < 1 at the edge from `1 to `2. Since the clock y is never reset in A, we
can use this edge only within 1 time unit from the beginning. �

Let us now recall the semantics of TAs.

Definition 2.6 (semantics of a TA). For a TA A = (Σ, L, L0, LF ,X, E), the (concrete) se-
mantics of A is defined by the timed transition system (TTS) (S, S0,→), with

• S = L× (R≥0)X

• S0 = L0 × {~0},

• → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (`, ν) e7→ (`′, ν ′), with a ∈ Σ, if there exists e = (`, g, a,R, `′) ∈
E, such that ν ′ = [ν]R, and ν |= g.

2. delay transitions: (`, ν) d7→ (`, ν + d), with d ∈ R≥0.

�

30 Chapter 2. Background: Timed Automata and Timed Pattern Matching

Moreover, we write (`, ν) (e,d)−→ (`′, ν ′) for a combination of a delay and discrete transition if
∃ν ′′ : (`, ν) d7→ (`, ν ′′) e7→ (`′, ν ′).

Given a TA A with concrete semantics (S, S0,→), we refer to the states S as the (concrete)
states of A.

Definition 2.7 (run, language). A run of A is an alternating sequence of concrete states si
of A and pairs (ei, di) of edges and delays starting from an initial state s0 ∈ S0 of the form
s0, (e1, d1), s1, . . . , sn with i = 1, 2, . . . , n, ei ∈ E, di ∈ R≥0 and si−1

(ei,di)−→ si. Given such a run,
the associated timed word is (a1, τ1), (a2, τ2), . . . , (an, τn), where ai is the action of edge ei, and
τi = ∑

1≤j≤i dj , for i = 1, 2, . . . , n. Given a concrete state s = (`, ν), we say that s is reachable
in A if s appears in a run of A. By extension, we say that ` is reachable; and by extension
again, given a set K of locations, we say that K is reachable if there exists ` ∈ K such that `
is reachable in A.

A run is accepting if its last state (`, ν) is such that ` ∈ LF . The (timed) language L(A) of
A is defined to be the set of timed words associated with at least one accepting run of A. �

Example 2.8. In the TA A in Fig. 2.2, the location `2 is reachable because of the existence
of the following run, where e1 is the edge from `0 to `2, and we denote the clock valuation ν
over {x, y} by the pair (ν(x), ν(y)). The associated timed word to this run is (a, 1.5). Since
`2 ∈ LF , this run is accepting, and we have (a, 1.5) ∈ L(A).(

`0, (0, 0)
) (e1,1.5)−→

(
`2, (1.5, 1.5)

)
�

2.3 Reachability checking of timed automata with polyhedra
Reachability checking is one of the most fundamental problems in the analysis of automata. In
this section, we review the reachability checking of TAs with polyhedra as an example usage for
polyhedra. For the simplicity, we show an algorithm for checking the reachability to a location.
An extension for a set of locations or a set of concrete states is straightforward. We can also
check the emptiness of the language by checking the reachability to the accepting locations.
The (single location) reachability checking problem:
Input: A TA A = (Σ, L, L0, LF ,X, E) and a location ` ∈ L
Problem: Decide if ` is reachable in A
For a TA A, the concrete states of A is in general infinite. Therefore, we cannot simply

use BFS or DFS to check the reachability of a location. Nevertheless, for TAs, the reachability
checking is decidable and proved to be PSPACE-complete [AD94].

One of the key ingredients in the reachability checking of TAs is zones [Dil89], which is a
class of convex polyhedra. The reachability can be checked by i) constructing a (finite) graph
from the TTS by abstracting the clock valuations using zones; and ii) conducting the standard
finite graph reachability checking, e. g., with BFS. Such a graph construction is called zone
construction and the constructed graph is called zone graph.

Definition 2.9 (zones). Let X be the finite set of clock variables. A zone is a |X|-dimensional
convex polyhedron specified with a conjunction of the constraints of the form x − x′ ./ c or
x ./ c, where ./ ∈ {<,≤,≥, >}, x, x′ ∈ X, and c ∈ Z.

2.3. Reachability checking of timed automata with polyhedra 31

x

y

0 1 2 3

1

2

3

Figure 2.3: A zone Z representing 1 < x < 2 ∧ 1 < y < 3 ∧ x < y

`0
x = y = 0

`0
x = y ≥ 0

`1
x = 0 ≤ y < 1

`1
0 ≤ x ≤ y

`2
x = y > 1

`2
0 ≤ x ≤ y < 1

`2
0 ≤ x ≤ y

Figure 2.4: The zone graph of the TA in Fig. 2.2 with 1-normalization. The solid lines are for
discrete transitions and the dashed lines are for delay transitions.

By a zone Z, we also denote the set of clock valuations ν satisfying ν |= Z. �

Example 2.10. Fig. 2.3 shows an example of a zone Z. The zone Z represents all the clock
valuations ν satisfying 1 < ν(x) < 2, 1 < ν(y) < 3, and ν(x) < ν(y). �

Definition 2.11 (symbolic state). For a TA A = (Σ, L, L0, LF ,X, E), a symbolic state is a
pair (`, Z) of a location ` ∈ L and a zone Z. A symbolic state (`, Z) represents concrete states
{(`, ν) | ν ∈ Z}. �

Since the number of the symbolic states is infinite, the reachability checking over the
symbolic states may not terminate. Therefore, we need a finite abstraction to make the state
space finite. One of such finite abstraction methods is the k-normalization [BY03b] ak(Z).
For a zone Z, the k-normalization ak(Z) is the zone Z such that any constraint with constant
larger than k are removed. 2

Example 2.12. For the zone Z representing 1 < x < 2∧1 < y < 3∧x < y, the 2-normalization
a2(Z) is 1 < x < 2 ∧ 1 < y ∧ x < y. �

Example 2.13. Fig. 2.4 shows the zone graph of the TA in Fig. 2.2 with 1-normalization. By
breadth-first search, we can check that `0, `1, and `2 are reachable from the initial concrete
state while `3 is unreachable. �

Algorithm 1 shows an algorithm for the reachability checking by BFS with an on-the-fly
finite abstraction. The loop from line 2 is the BFS over symbolic states. In the loop from line 6,

2We note that there are other finite abstraction methods (e. g., [BBFL03, BBLP06, HSW10, TM17]) and
they come with different efficiency. Our choice of k-normalization is due to its simplicity.

32 Chapter 2. Background: Timed Automata and Timed Pattern Matching

Algorithm 1: Reachability checking of a TA by the zone construction
Input: A TA A = (Σ, L, L0, LF ,X, E), k ∈ Z≥0, and `f ∈ L
Output: Return > if `f is reachable in A, ⊥ otherwise

1 Conf new ← {(`0,~0) | `0 ∈ L0};Conf ← Conf new // initialize
2 while Conf new 6= ∅ do
3 if ∃(`f , Z) ∈ Conf then
4 return >
5 Conf tmp ← ∅
6 for (`, Z) ∈ Conf new do
7 Zelapsed ← {ν + t | t ∈ R≥0, ν ∈ Z} // apply the time elapse
8 for (`, g, a,R, `′) ∈ E do
9 Zguarded ← {ν | ν ∈ Zelapsed, ν |= g}

// the clock valuations satisfying the guard
10 if Zguarded 6= ∅ then
11 Zreset ← {[ν]R | ν ∈ Zguarded} // apply the reset of the clock variables
12 if ∀(`′, Z ′) ∈ Conf . Zreset 6⊆ Z ′ then
13 push (`′, ak(Zreset)) to Conf tmp
14 Conf new ← Conf tmp; Conf ← Conf ∪ Conf tmp
15 return ⊥

for each symbolic state (`, Z) in Conf new, we try to use each edge (`, g, a,R, `′). Namely, after
applying the time elapse (line 7), we symbolically check if the guard g is satisfied (lines 9
and 10) and apply the reset to the clock variables (line 11). In line 13, we push the symbolic
state to the Conf tmp, which is the set of newly visited symbolic states.

Overall, Algorithm 1 terminates because i) it visits the symbolic states of A at most once
and ii) the number of the symbolic states is finite after the abstraction. The correctness of
Algorithm 1 is straightforward thanks to the following correctness of the abstraction.

Proposition 2.14 (correctness of the abstraction). Let A = (Σ, L, L0, LF ,X, E) be a timed
automaton, k ∈ Z≥0 be the maximum constant in the guards of A, Z be a zone. For any guard
g in A, we have ∃ν ∈ Z. ν |= g if and only if we have ∃ν ∈ ak(Z). ν |= g.

Proof. Since Z ⊆ ak(Z), we have ∃ν ∈ Z. ν |= g ⇒ ∃ν ∈ ak(Z). ν |= g.
Assume ∃ν ∈ ak(Z). ν |= g and let ν ∈ ak(Z) be such a clock valuation. If for any x ∈ X

we have ν(x) ≤ k, we have ν ∈ Z and thus ∃ν ∈ Z. ν |= g holds. Otherwise, there is a clock
valuation ν ′ ∈ Z such that for any x ∈ X, i) ν(x) ≤ k if and only if ν ′(x) ≤ k; and ii) ν(x) ≤ k
implies ν(x) = ν ′(x). Since the constants in g is less than or equal to k, we have ν ′ |= g.
Therefore, we have ∃ν ∈ ak(Z). ν |= g ⇒ ∃ν ∈ Z. ν |= g.

2.4 Timed pattern matching

2.4.1 Problem definition

Timed pattern matching [UFAM14] is a mathematical formulation of runtime verification. We
employ the definition using timed words in [WAH16, WHS17, WHS18] while the original defi-
nition in [UFAM14] is by signals. Given a timed word w and a timed automaton A, the timed
pattern matching problem locates in which part of w, the property specified by A is satisfied.
The mathematical formulation is as follows.

2.4. Timed pattern matching 33

Definition 2.15 (timed word segment). For a timed word w = (a, τ) on Σ and t, t′ ∈ R≥0
satisfying t < t′, a timed word segment w|(t,t′) is defined by the timed word (w(i, j)−t)◦($, t′−t)
on the augmented alphabet Σ q {$}, where i, j are chosen so that τi−1 ≤ t < τi and τj < t′ ≤
τj+1. Here the fresh symbol $ is called the terminal character. �

Timed pattern matching problem:
Input: a timed word w over an alphabet Σ and a TA A over the augmented alphabet
Σq {$}
Problem: compute all the intervals (t, t′) for which the segment w|(t,t′) is accepted by A.
That is, it requires the match set M(w,A) = {(t, t′) | w|(t,t′) ∈ L(A)}.

The match setM(w,A) is in general uncountable; however it allows finite representation,
as a finite union of zones. See Example 1.3 for an example.

As in [WAH16, WHS17, WHS18], we make the following assumption on the TA in timed
pattern matching, which is reasonable for the purpose of pattern matching.

Assumption 2.16. We assume that all transitions to this accepting locations are labeled with $.
�

2.4.2 Algorithm

Here, we review the online algorithm for timed pattern matching in [WAH16]. This algorithm
finds all the intervals (t, t′) ∈ M(w,A) by a breadth-first search. This algorithm is online in
the following sense: after reading the i-th element (ai, τi) of the timed word w = (a, τ), it
immediately outputs all the intervals (t, t′) over the available prefix (a1, τ1), (a2, τ2), . . . , (ai, τi)
of w.

Firstly, we define the auxiliary for the online algorithm for timed pattern matching. We
introduce an additional variable t representing the absolute time of the beginning of the match-
ing. We use a function ρ : X → (R>0 q {t}) to represent the latest reset time of each clock
variable x ∈ X. Intuitively, ρ(x) = τ ∈ R>0 means the latest reset of x is at τ , and ρ(x) = t
means x is not reset after the beginning of the matching.

Definition 2.17 (eval(ρ, τ), reset(ρ,R, τ), ρ∅). Let X be the set of clock variables and t be the
variable for the beginning of a matching. For a function ρ : X → (R≥0 q {t}) and the current
time τ ∈ R≥0, eval(ρ, τ) is the following constraint on Xq {t}.

eval(ρ, τ) =
∧
x∈X

(
x = τ − ρ(x)

)
For a function ρ : X→ (R≥0 q {t}), the set R ⊆ X of clocks to be reset, and the current time
τ ∈ R≥0, reset(ρ,R, τ) : X→ (R≥0 q {t}) is the following function.

reset(ρ,R, τ)(x) =
{
τ if x ∈ R
ρ(x) if x 6∈ R

By ρ∅ : X→ (R≥0 q {t}), we denote the function mapping each x ∈ X to t. �

Intuitively, eval(ρ, τ) is the constraint corresponding to the clock valuation, and reset(ρ,R, τ)
is the operation to reset the clock variables x ∈ R at τ .

34 Chapter 2. Background: Timed Automata and Timed Pattern Matching

Algorithm 2: An algorithm for timed pattern matching [WAH16]
Input: A timed word w = (a, τ), and a TA A = (Σ, L, L0, LF ,X, E).
Output:

∨
Z is the match setM(w,A)

1 CurrConf ← ∅; Z ← ∅
2 for i← 1 to |w| do
3 push (`0, ρ∅, [τi−1, τi)) to CurrConf
4 for (`, ρ, I) ∈ CurrConf do // lines 4 to 7 try to insert $ in (τi−1, τi].
5 for `f ∈ LF do
6 for (`, g, $, R, `f) ∈ E do
7 push

(
t ∈ I ∧ (τi−1 < t′ ≤ τi) ∧ g ∧ eval(ρ, t′)

)
to Z

8 (PrevConf ,CurrConf)← (CurrConf , ∅)
9 for (`, ρ, I) ∈ PrevConf do // lines 9 to 13 try to go forward using (ai, τi).

10 for (`, g, ai, R, `′) ∈ E do
11 I ′ ← {τ ∈ I | (t = τ) ∧ g ∧ eval(ρ, τi) = >}

// Narrow the interval I to satisfy the guard g.

12 if I ′ 6= ∅ then
13 push (`′, reset(ρ,R, τ), I ′) to CurrConf
14 push

(
`0, ρ∅, (τ|w|,∞)}

)
to CurrConf // for the trimming after the final event

15 for (`, ρ, I) ∈ CurrConf do // lines 15 to 18 try to insert $ in (τ|w|,∞).
16 for `f ∈ LF do
17 for (`, g, $, R, `f) ∈ E do
18 push

(
(t ∈ I) ∧ (τ|w| ≤ t′ <∞) ∧ g ∧ eval(ρ, t′)

)
to Z

Algorithm 2 shows an algorithm for timed pattern matching. In the pseudocode, we used
CurrConf , PrevConf , and Z. CurrConf and PrevConf are finite sets of triples (`, ρ, I) made
of a location ` ∈ L, a mapping ρ : X→ (R≥0q{t}) denoting the latest reset of each clock, and
an interval I. Z is a finite set of constraints over {t, t′}. As a running example, we use the TA
and the timed word in Fig. 1.4.

At first, the counter i is 1 (line 2), and we start the matching trial from t ∈ [τ0, τ1) = [0, 0.2).
At line 3, we add the new configuration (`0, ρ∅, [τ0, τ1)) to CurrConf , which means we are at
the initial location `0, we have no reset of the clock variables yet, and we can potentially start
the matching from any t ∈ [τ0, τ1). In lines 5 to 8, we try to insert $ (i. e., the end of the
matching) in (τ0, τ1]. In our running example in Fig. 1.4, since there is no edge from `0 to the
accepting location `4, we immediately jump to line 8. Then, in lines 10 to 14, we consume
(a1, τ1) = (g3, 0.2) and try to transit from `0 to `1. Since a1 = g3 and there is no edge from `0
labeled with g3, we go back to line 3.

When i = 2 at line 3, we add the new configuration (`0, ρ∅, [τ1, τ2)) to CurrConf . Similarly,
we immediately jump to line 8, and we try the edge from `0 to `1 in lines 10 to 14. This time,
because the edge from `0 to `1 is labeled with a2 = g4, we use the edge to `1. The guard at
the label is >, and we push the next configuration

(
`1, reset(ρ∅, {x}, τ2), [τ1, τ2)

)
to CurrConf

at line 13.
When i = 3 and i = 4, since ai 6= g4, the new configurations

(
`0, ρ∅, [τi−1, τi)

)
cannot go

from `0 to `1 while the existing configuration
(
`1, reset(ρ∅, {x}, τ2), [τ1, τ2)

)
remains by using

the loop at `1. Overall, we have CurrConf =
{
(`1, reset(ρ∅, {x}, τ2), [τ1, τ2))

}
when i = 4 at

line 13.
When i = 5, similarly to the previous loop, after adding the new configuration (`0, ρ∅, [τ4, τ5))

2.4. Timed pattern matching 35

to CurrConf , we immediately jump to line 8. For (`0, ρ∅, [τ4, τ5)), we cannot use the edge from
`0 to `1 because of a5 6= g4. For

(
`1, reset(ρ∅, {x}, τ2), [τ1, τ2)

)
, we use the edge from `1 to `2

because a5 = g1. The guard x < 1 at the edge from `1 to `2 is examined at line 11. Since
eval(ρ, τ5) = {x = τ5 − τ2 = 0.9}, the constraint at line 11 is t = τ ∧ x < 1 ∧ x = 0.9, which
is satisfied by any τ ∈ I = [τ1, τ2) and thus we have I ′ = I. Because I ′ 6= ∅, we push the new
configuration (`2, reset(ρ∅, {x}, τ2), [τ1, τ2)) to CurrConf at line 13.

When i = 6, since we have an edge from `2 to the accepting location `3, we go to the
accepting location from the configuration (`2, reset(ρ∅, {x}, τ2), [τ1, τ2)). At line 7, we push the
following constraint to Z, which is equivalent to the result of timed pattern matching shown
in Example 1.3.

t ∈ [0.2, 0.7) ∧ t′ ∈ (1.6, 2.0] ∧ > ∧ x = t′ − 0.7

Algorithm 2 terminates because the size of CurrConf is always finite. Algorithm 2 is correct
because it symbolically keeps track of all the runs of A over w|(t,t′) for any (t, t′) ⊆ R≥0.

CHAPTER 3
Parametric Timed Pattern

Matching

In this chapter, we introduce the parametric timed pattern matching problem by using para-
metric timed automata instead of timed automata. See Section 1.6.1 for a motivation and
a summary of the contribution. This chapter is based on the joint work [AHW18, WA19]
with Étienne André and Ichiro Hasuo. Useful comments from the anonymous referees of these
papers are gratefully acknowledged.

Organization of the chapter We introduce the necessary definitions in Section 3.1 and
define the parametric timed pattern matching problem in Section 3.2. We present and evaluate
our method based on parametric timed model checking in Section 3.3. We then present and
evaluate a dedicated method, enhanced with automata-based skipping, in Section 3.4. In
Section 3.5, we discuss the comparison between the approaches in Sections 3.3 and 3.4. After
reviewing the related work in Section 3.6, we conclude in Section 3.7.

3.1 Preliminaries: Parametric timed automata

In this section, we show the definition of parametric timed automata, which are a parametric
extension of timed automata in Section 2.2.

We assume a set X = {x1, . . . , xH} of clock variables, i. e., real-valued variables that evolve
at the same rate. We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown constants.
A parameter valuation v is a function v : P→ Q+. We assume ./ ∈ {<,≤,=,≥, >}. A guard g
is a constraint over X ∪ P defined by a conjunction of inequalities of the form x ./ d, or x ./ p
with d ∈ N and p ∈ P. Given g, we write ν |= v(g) if the expression obtained by replacing
each x with ν(x) and each p with v(p) in g evaluates to true.

A linear term over X∪P is of the form∑
1≤i≤H αixi+

∑
1≤j≤M βjpj+d, with xi ∈ X, pj ∈ P,

and αi, βj , d ∈ Z. A constraint C (i. e., a convex polyhedron) over X ∪ P is a conjunction of
inequalities of the form lt ./ 0, where lt is a linear term. Given a set P of parameters, we
denote by C↓P the projection of C onto P, i. e., obtained by eliminating the variables not in P

37

38 Chapter 3. Parametric Timed Pattern Matching

(e. g., using Fourier-Motzkin [Sch86]). ⊥ denotes the constraint over P representing the empty
set of parameter valuations.

3.1.1 Parametric timed automata

Parametric timed automata (PTA) extend timed automata with parameters within guards in
place of integer constants [AHV93].

Definition 3.1 (PTA). A PTA A is a tuple A = (Σ, L, `0, LF ,X,P, E), where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. L0 ⊆ L is the set of initial locations,

4. LF ⊆ L is the set of accepting locations,

5. X is the finite set of clock variables,

6. P is the finite set of parameters,

7. E is the finite set of edges e = (`, g, a,R, `′) where `, `′ ∈ L are the source and target
locations, a ∈ Σ, R ⊆ X is a set of clock variables to be reset, and g is a guard.

�

See Fig. 1.5 for an example of PTAs.
Given a parameter valuation v, we denote by v(A) the non-parametric structure where all

occurrences of a parameter pi have been replaced by v(pi). We refer as a timed automaton to
any structure v(A), by assuming a rescaling of the constants: by multiplying all constants in
v(A) by the least common multiple of their denominators, we obtain an equivalent (integer-
valued) TA, as defined in Section 2.2.

The synchronous product (using strong broadcast, i. e., synchronization on shared actions)
of several PTAs gives a PTA.

Definition 3.2 (synchronized product of PTAs). Let N ∈ N. Given a set of PTAs Ai =
(Σi, Li, Li0, L

i
F ,Xi,Pi, Ei), 1 ≤ i ≤ N , the synchronized product of Ai, 1 ≤ i ≤ N , denoted by

A1 ‖ A2 ‖ · · · ‖ AN , is the tuple (Σ, L, L0, LF ,X,P, E), where:

1. Σ = ⋃N
i=1 Σi,

2. L = ∏N
i=1 L

i,

3. L0 = L1
0 × · · · × LN0 ,

4. LF = {(`1, . . . , `N) ∈ L | ∃i ∈ [1, N] s.t. `i ∈ LiF },

5. X = ⋃
1≤i≤N Xi,

6. P = ⋃
1≤i≤N Pi,

3.2. Parametric timed pattern matching 39

and E is defined as follows. For all a ∈ Σ, let ζa be the subset of indices i ∈ 1, . . . , N such
that a ∈ Σi. For any a ∈ Σ, for any (`1, . . . , `N) ∈ L, and for any (`′1, . . . , `′N) ∈ L, we have(
(`1, . . . , `N), g, a, R, (`′1, . . . , `′N)

)
∈ E if:

• for any i ∈ ζa, there exist gi, Ri such that (`i, gi, a, Ri, `′i) ∈ Ei, g = ∧
i∈ζa gi, R =⋃

i∈ζa Ri, and,

• for all i 6∈ ζa, `′i = `i.

�

For a PTA A and a parameter valuation v, the semantics and the language of the instan-
tiated TA v(A) is the same as the usual TAs. See Definition 2.6.

3.1.2 Reachability synthesis

We use here reachability synthesis for the following two purposes.

• In Section 3.3: to solve parametric timed pattern matching

• In Section 3.4: to improve the dedicated parametric timed pattern matching algorithm
(Algorithm 4) with a skipping optimization

This procedure, called EFsynth, takes as input a PTA A and a set of target locations K, and
attempts to synthesize all parameter valuations v for which K is reachable in v(A). EFsynth
was formalized in e. g., [JLR15] and is a procedure that may not terminate, but that computes
an exact result (sound and complete) if it terminates. EFsynth traverses the parametric zone
graph of A, which is a potentially infinite extension of the zone construction in Section 2.3
(see, e. g., [ACEF09, JLR15] for a formal definition).

3.2 Parametric timed pattern matching
We extend the timed pattern matching problem in Section 2.4 to parameters by allowing a
specification expressed using PTAs. The problem now requires not only the start and end
dates for which the property holds, but also the associated parameter valuations.
Parametric timed pattern matching problem:
Input: a timed word w over an alphabet Σ and a PTA A over the augmented alphabet
Σq {$}
Problem: compute all the triples (t, t′, v) for which the segment w|(t,t′) is accepted by
v(A). That is, it requires the match set M(w,A) = {(t, t′, v) | w|(t,t′) ∈ L(v(A))}.

The match set M(w,A) is in general uncountable; however, we will see that it can still
be represented as a finite union of polyhedra, but in more dimensions, viz., |P| + 2, i. e., the
number of parameters + 2 further dimensions for t and t′. In addition, the form of the obtained
polyhedra is more general than zones, as parameters may “accumulate” to produce sums of
parameters with coefficients (e. g., 3× p1 < p2 + 2× p3).

Example 3.3. Fig. 3.1 shows an example of parametric timed pattern matching: Given the
PTA A and the timed word w, the parametric timed pattern matching problem asks for the

40 Chapter 3. Parametric Timed Pattern Matching

`0 `1 `2 3

a
x > 1

a
x < p
x := 0

$
x < 1

(a) the input PTA A

t0

a

0.7

a

2.0

a

4.1

(b) the input timed word w

0.7 ≤ t < 1.0
4.1 < p+ t

4.1 < t′ ≤ 5.1

(c) the convex polyhedron representing the
match setM(w,A)

Figure 3.1: Example of parametric timed pattern matching
match set M(w,A) in Fig. 3.1c. We observe that the convex polyhedron in the match set
has three dimensions for the parameter p and for t and t′. We also observe that this convex
polyhedron is not a zone because it contains the constraint 4.1 < p+ t. �

In the rest of this chapter, we make the following assumption on the PTA in parametric
timed pattern matching as in Section 2.4.

Assumption 3.4. We assume that all transitions to the accepting locations are labeled with $.
�

3.3 Algorithm I: via reduction to PTA reachability analysis

3.3.1 General approach

In addition to Assumption 3.4, we make the following two assumptions, that do not impact
the correctness of our method, but simplify the subsequent reasoning.

Assumption 3.5. We assume that the pattern automaton contains a single accepting location.
�

Assumption 3.6. We assume that the initial locations L0 of A is a singleton, i. e., L0 = {`0}
and there is no incoming edge to `0. �

All the assumptions are easy to remove in practice: for Assumption 3.5, if the pattern PTA
contains more than one accepting location, they can be merged into a single accepting location.
For Assumption 3.6, if the pattern PTA contains incoming edges to the initial location, we can
split the initial location into the initial location without incoming edges and the non-initial
location with incoming edges; if the pattern PTA contains more than one initial location, they
can be merged into a single initial location.

We show using the following approach that parametric timed pattern matching can reduce
to parametric reachability analysis.

1. We turn the pattern into a symbolic pattern, by allowing it to start anytime. In addition,
we use two parameters to measure the (symbolic) starting time and the (symbolic) ending
time of the pattern.

2. We turn the timed word into a (non-parametric) timed automaton that uses a single
clock xabs measuring the absolute time.

3. We consider the synchronized product of the symbolic pattern PTA and the timed word
(P)TA.

3.3. Algorithm I: via reduction to PTA reachability analysis 41

`′′0

`′0

`0 `1 `2 `3
xabs = t = 0

start

a

a
xabs = t

start
x := 0, y := 0

a
y > 0, x > 1
y := 0

a
x < p

x := 0, y := 0

$
xabs = t′

x < 1, y > 0
y := 0

(a) MakeSymbolic applied to the PTA in Fig. 3.1a

w0 w1 w2 w3

xabs = 0.7
a

xabs = 2.0
a

xabs = 4.1
a

(b) TW2PTA applied to the timed word in Fig. 3.1b
Figure 3.2: Our transformations exemplified on Fig. 3.1

4. We run the reachability synthesis algorithm to derive all possible parameter valuations
for which the accepting location of the pattern automaton is reachable.

3.3.2 Our approach step by step

3.3.2.1 Making the pattern symbolic

In this first step, we first add two parameters t and t′, which encode the (symbolic) start and
end time where the pattern holds on the input timed word. This way, we will obtain a result in
the form of a finite union of polyhedra inM+2 dimensions, where the 2 additional dimensions
come from the addition of t and t′. We also add a clock xabs initially 0 and never reset (this
clock is shared by the pattern PTA and the subsequent timed word TA). Then, we modify the
pattern PTA as follows:

1. we add two fresh locations (say `′0 and `′′0) prior to the initial location `0;

2. we add a fresh clock (say y), which is reset at each edge;

3. we add a guard y > 0 on all the transitions from `0;

4. we add an unguarded self-loop allowing any action of the timed word on `′0;

5. we add an unguarded transition from `′′0 to `′0 allowing any action of the timed word;

6. we add a transition from `′0 to `0 guarded by xabs = t, labeled with a fresh action start
and resetting all clock variables of the pattern (except xabs);

7. we add a transition from `′′0 to `0 guarded by xabs = t ∧ xabs = 0, labeled with start;

8. we add a guard xabs = t′ ∧ y > 0 on the accepting transitions labeled with $;

9. the initial location of the modified PTA becomes `′′0.

Let us give the intuition behind our transformation. First, the two guards xabs = t and
xabs = t′ allow recording symbolically the value of the starting and ending dates. Second, the

42 Chapter 3. Parametric Timed Pattern Matching

Algorithm 3: PTPM(A, w)
input : A pattern PTA A with accepting locations LF , a timed word w
output: Constraint K over the parameters

1 A′ ← MakeSymbolic(A)
2 Aw ← TW2PTA(w)
3 return EFsynth(A′ ‖ Aw, LF)

`0 `1 `2 `3 `4

x > p1
a

x := 0

x < p2
a

x := 0

x < p2
a

>
$

(a) A parametric timed automaton

t0

a

0.5

a

0.9

b

1.3

b

1.7

a

2.8

a

3.7

a

5.3

a

4.9

a

6.0
(b) A timed word

Figure 3.3: An example of parametric timed pattern matching
new locations `′′0 and `′0 allow the pattern to “start anytime”; that is, it can synchronize with
the timed word TA for an arbitrary long time while staying in the initial location `′′0 (and
therefore not matching the pattern), and start (using the transition from `′0 to `0) anytime.
Third, due to the constraint y > 0, a non-zero time must elapse between the beginning of
the pattern and the first action in the actual pattern. The distinction between `′′0 and `′0 is
necessary to also allow starting the pattern at xabs = 0 if no action occurred before. Finally,
the guard y > 0 just before the accepting location ensures that a non-zero time must elapse
between the last action in the pattern and the end of the pattern matching. Let MakeSymbolic
denote this procedure.

Consider the pattern PTA A in Fig. 3.1a. The result of MakeSymbolic(A) is given in
Fig. 3.2a.

3.3.2.2 Converting the timed word into a (P)TA

In this second step, we convert the timed word into a (non-parametric) timed automaton.
This is very straightforward, and simply consists in converting a timed word of the form
(a1, τ1), · · · , (an, τn) into a sequence of transitions labeled with ai and guarded with xabs = τi
(recall that xabs measures the absolute time and is shared by the timed word automaton and
the pattern automaton). Let TW2PTA denote this procedure.

Consider the timed word w in Fig. 3.1b. The result of TW2PTA(w) is given in Fig. 3.2b.

3.3.2.3 Synchronized product

The last part of the method consists in performing the synchronized product of MakeSymbolic(A)
and TW2PTA(w), and calling EFsynth on the resulting PTA.

We summarize our method PTPM(A, w) in Algorithm 3.

3.3. Algorithm I: via reduction to PTA reachability analysis 43

`′′0

`′0

`0 `1 `2 `3 `4
xabs = t = 0

start

a,b

a, b
xabs = t

start
x := 0, y := 0

x > p1 ∧ y > 0
a

x := 0
y := 0

x < p2
a

x := 0
y := 0

x < p2
a

y := 0

xabs = t′ ∧ y > 0
$

y := 0

(a) MakeSymbolic applied to the PTA in Fig. 3.3a

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

xabs = 0.5
a

xabs = 0.9
a

xabs = 1.3
b

xabs = 1.7
b

xabs = 2.8
a

xabs = 3.7
a

xabs = 4.9
a

xabs = 5.3
a

xabs = 6.0
a

(b) TW2PTA applied to the timed word in Fig. 3.3b
Figure 3.4: Our transformations exemplified on Fig. 3.3

(a) On p1 and p2 (b) On t and t′ (c) On t and p1

Figure 3.5: Projections of the result of parametric timed pattern matching on Fig. 3.3
Example 3.7. Consider another example: the timed word w and the PTA pattern A in
Fig. 3.3. Fig. 3.4 shows the result of MakeSymbolic and TW2PTA. The result of PTPM(A, w)
is as follows:

1.7 < t < 2.8− p1 ∧ 4.9 ≤ t′ < 5.3 ∧ p2 > 1.2
∨ 2.8 < t < 3.7− p1 ∧ 5.3 ≤ t′ < 6 ∧ p2 > 1.2
∨ 3.7 < t < 4.9− p1 ∧ t′ ≥ 6 ∧ p2 > 0.7

Observe that, for the parameter valuation v with v(p1) = v(p2) = 1, only the pattern corre-
sponding to the last disjunct could be obtained, i. e., the pattern that matches the last three
a of the timed word in Fig. 3.3b. In contrast, the first disjunct can match the first three a
coming after the two bs, while the second disjunct allows to match the three as in the middle
of the last five as in Fig. 3.3b.

We give various projections of this constraint onto two dimensions in Fig. 3.5 (the difference
between plain red and light red is not significant—light red constraints denote unbounded
constraints towards at least one dimension). �

3.3.3 Termination

We state below the termination of our procedure.

44 Chapter 3. Parametric Timed Pattern Matching

Lemma 3.8 (termination). Let A be a PTA encoding a parametric pattern, and w be a timed
word. Then PTPM(A, w) terminates.

Proof. First, observe that there may be non-determinism in the pattern PTA, i. e., the timed
word can potentially synchronize with two transitions labeled with the same action from a
given location. Even if there is no syntactic nondeterminism, nondeterminism can appear due
to the interleaving of the initial start action: in Fig. 3.4, the first a of the timed word can
either synchronize with the edge from `′′0 to `′0, or the start action can first occur, and then
the first a synchronizes of the timed word with the a labeling the transition from `0 to `1 of
the pattern PTA. Second, the pattern PTA may well have loops (and this is the case in our
experiments in Section 3.3.5.3), which yields an infinite parametric zone graph (for the pattern
automaton not synchronized with the word automaton). However, let us show that only a
finite part of the parametric zone graph is explored by EFsynth: indeed, since TW2PTA(w) is
only a finite sequence, and thanks to the strong synchronization between the pattern PTA and
the timed word PTA, only a finite number of finite discrete paths in the synchronized product
will be explored. The only interleaving is due to the initial start action (which appears twice
in the pattern PTA but can only be taken once at most due to the mutually exclusive guards
x = 0 and x > 0), and due to the final $ action, that only appear on the last transition to
the last-but-one accepting location. As the pattern PTA is finitely branching, this gives a
finite number of finite paths. The length of each path is clearly bounded by |w| + 3. Let
us now consider the maximal number of such paths: given a location in TW2PTA(w), the
choice of the action (say a) is entirely deterministic. However, the pattern PTA may be non-
deterministic, and can synchronize with B outgoing transitions labeled with a, which gives
B|w| combinations. In addition, the start action can be inserted exactly once, at any position
in the timed word (from before the first action to after the last action of the word—in the case
of an empty pattern): this gives therefore (|w|+ 1)×B|w| different runs. (The $ is necessarily
the last-but-one action, and does not impact the number of runs, as the (potential) outgoing
transitions from the accepting location are not explored.) Altogether, a total number of at
most (|w|+ 3)× (|w|+ 1)×B|w| symbolic states is explored by EFsynth in the worst case.

Lemma 3.8 may not come as a surprise, as the input timed word is finite. But it is worth
noting that it comes in contrast with the fact that the wide majority of decision problems are
undecidable for parametric timed automata, including the emptiness of the valuation set for
which a given location is reachable both, for integer- and rational-valued parameters [AHV93,
Mil00] (see [And19] for a survey).

3.3.4 Pattern matching with optimization

We also address the following optimization problem: given a timed word and a pattern con-
taining parameters, what is the minimum or maximum value of a given parameter such that
the pattern is matched by the timed word? That is, we are only interested in the optimal value
of the given parameter, and not in the full list of matches as in PTPM.

While this problem can be solved using our solution from Section 3.3.1 (by computing the
multidimensional constraint, and then eliminating all parameters but the target parameter,
using variable elimination techniques), we use here a dedicated approach, with the hope it is
more efficient. Instead of managing all symbolic matches (i. e., a finite union of polyhedra),
we simply manage the current optimum; in addition, we cut branches that cannot improve
the optimum, with the hope to reduce the number of states explored. For example, assume

3.3. Algorithm I: via reduction to PTA reachability analysis 45

parameter p is to be minimized; if the current minimum is p > 2, and if a branch is such
that p ≥ 3, then this branch will not improve the minimum, and can safely be discarded. Let
PTPMopt denote this procedure.

Example 3.9. Consider again the timed word w and the PTA pattern A in Fig. 3.3. Mini-
mizing p2 so that the pattern matches the timed word for at least one position gives p2 > 0.7,
while maximizing p1 gives p1 < 1.2. �

3.3.5 Experiments

We evaluated our approach against two standard benchmarks from [HAF14], already used
in [WHS17], as well as a third benchmark specifically designed to test the limits of parametric
timed pattern matching. We fixed no bounds for our parameters.

We used IMITATOR [AFKS12] to perform the parameter synthesis (algorithm EFsynth).
IMITATOR relies on the Parma Polyhedra Library (PPL) [BHZ08] to compute symbolic states.
It was shown in [BFMU17] that polyhedra may be dozens of times slower than more efficient
data structures such as DBMs (difference bound matrices); however, for parametric analyses,
DBMs are not suitable, and parameterized extensions (e. g., in [HRSV02]) still need polyhedra
in their representation.

We used a slightly modified version of IMITATOR for technical reasons: IMITATOR handles
non-convex constraints (finite unions of polyhedra); while most case studies solved by IMITA-
TOR in the past handle simple constraints (made of a few disjuncts), the experiments in this
chapter may handle up to dozens of thousands of such polyhedra. We therefore had to disable
an inclusion test of a newly computed state into the already computed constraint: this test
usually has a very interesting gain but, on our complex polyhedra, it had disastrous impact
on the performance, due to the inclusion check of a (simple) new convex polyhedron into a
disjunction of dozens of thousands of convex polyhedra. To disable this check, we added a
new option (not set by default) to the master branch of IMITATOR, and used it in all our
experiments.

We wrote a simple Python script to implement the TW2PTA procedure; the patterns
(Fig. 4.3) were manually transformed following the MakeSymbolic procedure, and converted
into the input language of IMITATOR.

We ran experiments using IMITATOR 2.10.4 “Butter Jellyfish” on a Dell Precision 3620
i7-7700 3.60GHz with 64GiB memory running Linux Mint 19 beta 64 bits. Sources, binaries,
models, logs can be found at www.imitator.fr/static/ICECCS18.

3.3.5.1 Gear

Benchmark Gear is inspired by the scenario of monitoring the gear change of an automatic
transmission system. We conducted simulation of the model of an automatic transmission
system [HAF14]. We used S-TaLiRo [ALFS11] to generate an input to this model; it generates
a gear change signal that is fed to the model. A gear is chosen from {g1, g2, g3, g4}. The
generated gear change is recorded in a timed word. The set W consists of 10 timed words; the
length of each word is 1,467 to 14,657.

The pattern PTA A, shown in Fig. 3.6a, detects the violation of the following condition:
If the gear is changed to 1, it should not be changed to 2 within p seconds. This condition is
related to the requirement φAT

5 proposed in [HAF14] (the nominal value for p in [HAF14] is 2).

www.imitator.fr/static/ICECCS18

46 Chapter 3. Parametric Timed Pattern Matching

g1 g2 3

g1
x := 0

x < p
g2 $

(a) Gear

?

g1

?

g2

g′1

g3

g′2

g4

g′3 g′4

3

g1,>

g2,> g3,>
g4, x ≤ p
x := 0

rpmHigh,> rpmHigh,> rpmHigh,> rpmHigh,>

g1,> g2,> g3,>

g4, x ≤ p
x := 0

rpmHigh,>

$, x > 1

(b) Accel

`1 `2 `3 `4

a
y := 0

x < p1

b

x = p1
$

p3 ≤ y < p2
a

y := 0

(c) Blowup
Figure 3.6: Experiments: patterns

Model PTPM PTPMopt
Length Time frame States Matches Parsing (s) Comp. (s) States Comp. (s)

1,467 1,000 4,453 379 0.02 1.60 3,322 0.94
2,837 2,000 8,633 739 0.33 2.14 6,422 1.70
4,595 3,000 14,181 1,247 0.77 3.63 10,448 2.85
5,839 4,000 17,865 1,546 1.23 4.68 13,233 3.74
7,301 5,000 22,501 1,974 1.94 5.88 16,585 4.79
8,995 6,000 27,609 2,404 2.96 7.28 20,413 5.76

10,316 7,000 31,753 2,780 4.00 8.38 23,419 6.86
11,831 8,000 36,301 3,159 5.39 9.75 26,832 7.87
13,183 9,000 40,025 3,414 6.86 10.89 29,791 8.61
14,657 10,000 44,581 3,816 8.70 12.15 33,141 9.89

Table 3.1: Experiments: Gear
We tabulate our experiments in Table 3.1. We give from left to right the length of the timed

word in terms of actions and time, then the data for PTPM (the number of symbolic states
explored, the number of (symbolic) matches found, the parsing time and the computation time
excluding parsing) and for PTPMopt (number of symbolic states explored and computation
time) using IMITATOR. The parsing time for PTPMopt is almost identical to PTPM and is
therefore omitted.

The corresponding chart is given in Fig. 3.7a (PTPM is given in plain black, and PTPMopt
in red dashed). PTPMopt brings a gain in terms of memory (symbolic states) of about 25%,
while the gain in time is about 20%.

3.3.5.2 Accel

The W of benchmark Accel is also constructed from the Simulink model of the automated
transmission system [HAF14]. For this benchmark, the (discretized) value of three state vari-
ables are recorded in W : engine RPM (discretized to “high” and “low” with a certain thresh-

3.3. Algorithm I: via reduction to PTA reachability analysis 47

|w|

t (s)

0 2 4 6 8 10 12 14 16
0
1
2
3
4
5
6
7
8
9

10
11
12

(a) Gear

|w|

t (s)

0 5 10 15 20 25
0
2
4
6
8

10
12
14
16
18
20

(b) Accel

|w|

t (s)

0.0 0.2 0.4 0.6 0.8 1
00

100

200

300

400

500

600

700

800

900

(c) Blowup
Figure 3.7: Experiments: charts (x-scale ×1, 000)

Model PTPM PTPMopt
Length Time frame States Matches Parsing (s) Comp. (s) States Comp. (s)

2,559 1,000 6,504 2 0.27 1.60 6,502 1.85
4,894 2,000 12,429 2 0.86 3.04 12,426 3.57
7,799 3,000 19,922 7 2.21 4.98 19,908 6.06

10,045 4,000 25,520 3 3.74 6.51 25,514 7.55
12,531 5,000 31,951 9 6.01 8.19 31,926 9.91
15,375 6,000 39,152 7 9.68 10.14 39,129 12.39
17,688 7,000 45,065 9 13.40 11.61 45,039 14.06
20,299 8,000 51,660 10 18.45 13.52 51,629 16.23
22,691 9,000 57,534 11 24.33 15.33 57,506 18.21
25,137 10,000 63,773 13 31.35 16.90 63,739 20.61

Table 3.2: Experiments: Accel
old), velocity (discretized to “high” and “low” with a certain threshold), and 4 gear positions.
We used Breach [Don10] to generate an input sequence of gear change. Our set W consists of
10 timed words; the length of each word is 2,559 to 25,137.

The pattern PTA A of this benchmark is shown in Fig. 3.6b. This pattern matches a
part of a timed word that violates the following condition: If a gear changes from 1 to 2, 3,
and 4 in this order in p seconds and engine RPM becomes large during this gear change, then
the velocity of the car must be sufficiently large in one second. This condition models the
requirement φAT

8 proposed in [HAF14] (the nominal value for p in [HAF14] is 10).
Experiments are tabulated in Table 3.2. The corresponding chart is given in Fig. 3.7b.

This time, PTPMopt brings almost no gain in terms of states, and a loss of speed of about 15
to 20%, which may come from the additional polyhedra inclusion checks to test whether a
branch is less good than the current optimum.

3.3.5.3 Blowup

As a third experiment, we considered an original (toy) benchmark that acts as the worst case
situation for parametric timed pattern matching. Consider the PTA pattern in Fig. 3.6c, and
assume a timed word consisting in an alternating sequence of “a” and “b”. Observe that the
time from the pattern beginning (that resets x) to the end is exactly p1 time units. Also
observe that the duration of the loop through `2 and `3 has a duration in [p3, p2); therefore,
for values sufficiently small of p2, p3, one can always match a larger number of loops. That
is, for a timed word of length 2n alternating between “a” and “b”, there will be n possible

48 Chapter 3. Parametric Timed Pattern Matching

Model PTPM PTPMopt
Length Time frame States Matches Parsing (s) Comp. (s) States Comp. (s)

200 101 20,602 5,050 0.01 15.31 515 0.24
400 202 81,202 20,100 0.02 82.19 1,015 0.49
600 301 181,802 45,150 0.03 236.80 1,515 0.71
800 405 322,402 80,200 0.05 514.57 2,015 1.05

1,000 503 503,002 125,250 0.06 940.74 2,515 1.24

Table 3.3: Experiments: Blowup
matches from position 0 (with n different parameter constraints), n − 1 from position 1, and
so on, giving a total number of n(n+1)

2 matches with different constraints in 5 dimensions.
Note that this worst case situation is not specific to our approach, but would appear

independently of the approach chosen for parametric timed pattern matching.
We generated random timed words of various sizes, all alternating exactly between “a” and

“b”. Our set W consists of 5 timed words of length from 200 to 1,000.
Experiments are tabulated in Table 3.3. The corresponding chart is given in Fig. 3.7c.

PTPM becomes clearly non-linear as expected. This time, PTPMopt brings a dramatic gain in
both memory and time; even more interesting, PTPMopt remains perfectly linear.

3.3.6 Discussion

A first positive outcome is that our method is effectively able to perform parametric pattern
matching on words of length up to several dozens of thousands, and is able to output results
in the form of several dozens of thousands of symbolic matches in several dimensions, in just
a few seconds. Another positive outcome is that PTPM is perfectly linear in the size of the
input word for Gear and Accel: this was expected as these examples are linear, in the sense
that the number of states explored by PTPM is linear as these patterns feature no loops.

Note that the parsing time is not linear, but it could be highly improved: due to the
relatively small size of the models usually treated by IMITATOR, this part was never properly
optimized, and it contains several quadratic syntax checking functions that could easily be
avoided.

The performances do not completely allow yet for an online usage in the current version of
our algorithm and implementation (in [WHS17], we pushed the Accel case study for timed
words of length up to 17,280,002). A possible direction is to perform and on-the-fly computation
of the parametric zone graph, more precisely to do an on-the-fly parsing of the timed word
automaton; this will allow IMITATOR to keep in memory a single location at a time (instead
of up to 25,137 in our experiments).

Finally, although this is not our original motivation, we believe that, if we are only interested
in robust pattern matching, i. e., non-parametric pattern matching but with an allowed devi-
ation (“guard enlargement”) of the pattern automaton, then using the efficient 1-dimensional
parameterized DBMs of [San15] would probably be an interesting alternative: indeed, in con-
trast to classical parameterized DBMs [HRSV02] (that are made of a matrix and a parametric
polyhedron), the structure of [San15] only needs an H × H matrix with a single parameter,
and seems particularly efficient.
Remark 3.10. In the conference version of this work [AHW18], we describe this approach as an
offline algorithm. In fact, it is essentially online in the sense that it can potentially run with
only a portion of the log: it relies on parallel composition of a specification automaton and a log
automaton, and this parallel composition can be achieved on-the-fly. However, as mentioned
in [BDD+18], “a good online monitoring algorithm must: i) be able to generate intermediate

3.4. Algorithm II: Direct method by polyhedra computation 49

(a) Projection onto t and p (b) Projection onto t and t′

Figure 3.8: Visualizing many matches for Gear (|w = 1467|)
estimates of property satisfaction based on partial signals, ii) use minimal amount of data
storage, and iii) be able to run fast enough in a real-time setting.” So, at least for point iii,
our algorithm may not really run in a real-time setting.

In contrast, we will present in the next section a contribution fast enough to run in a
real-time setting, with runs of dozens of thousands of events being analyzable in less than a
second.

3.4 Algorithm II: Direct method by polyhedra computation
In this section, we present a dedicated online algorithm for parametric timed pattern matching.
We will then enhance it with skipping in Section 3.4.1, and experimentally evaluate both
versions with and without skipping in Section 3.4.2.

Similarly to the online algorithm for timed pattern matching in Algorithm 2 (Section 2.4),
our algorithm finds all the matching triples (t, t′, v) ∈M(w,A) by a breadth-first search. Our
algorithm is online in the following sense: after reading the i-th element (ai, τi) of the timed
word w = (a, τ), it immediately outputs all the matching triples (t, t′, v) over the available prefix
(a1, τ1), (a2, τ2), . . . , (ai, τi) of w. See Definition 2.17 for the auxiliaries eval(ρ, τ), reset(ρ,R, τ),
and ρ∅ as well as the usage of ρ : X → (R≥0 q {t}) to represent the latest reset time of each
clock variable.

Algorithm 4 shows our online algorithm for parametric timed pattern matching. In the
pseudocode, we used CurrConf , PrevConf , and Z. CurrConf and PrevConf are finite sets of
triples (`, ρ, C) made of a location ` ∈ L, a mapping ρ : X → (R≥0 q {t}) denoting the latest
reset of each clock, and a constraint C over Pq{t}. Z is a finite set of constraints over Pq{t, t′}.
As a running example, we use the PTA and the timed word in Fig. 3.1.

At first, the counter i is 1 (line 2), and we start the matching trial from t ∈ [τ0, τ1).
At line 4, we add the new configuration (`0, ρ∅, (τ0 ≤ t < τ1)) to CurrConf , which means
we are at the initial location `0, we have no reset of the clock variables yet, and we can
potentially start the matching from any t ∈ [τ0, τ1). In lines 5 to 8, we try to insert $(i. e.,
the end of the matching) in (τ0, τ1]; in our running example in Fig. 3.1, since there is no edge
from `0 to the accepting state, we immediately jump to line 9. Then, in lines 10 to 14, we
consume (a1, τ1) = (a, 0.7) and try to transit from `0 to `1. The guard x > 1 at the edge
from `0 to `1 is examined at line 12. We take the conjunction of the current constraint C,
the guard g, and the constraints eval(ρ, τi) on the clock valuations. We take the projection
to P q {t} because the constraint on the clock variables changes after time passing. Since no
clock variable is reset so far, the constraint on the clock valuation is x = τ1− t. The constraint

50 Chapter 3. Parametric Timed Pattern Matching

Algorithm 4: Online parametric timed pattern matching without skipping
Input: A timed word w = (a, τ), and a PTA A = (Σ, L, L0, LF ,X,P, E).
Output:

∨
Z is the match setM(w,A)

1 CurrConf ← ∅; Z ← ∅
2 for i← 1 to |w| do
3 for ` ∈ L0 do
4 push (`, ρ∅, (τi−1 ≤ t < τi)) to CurrConf
5 for (`, ρ, C) ∈ CurrConf do // lines 5 to 8 try to insert $ in (τi−1, τi].
6 for `f ∈ LF do
7 for (`, g, $, R, `f) ∈ E do
8 push

(
C ∧ (τi−1 < t′ ≤ τi) ∧ g ∧ eval(ρ, t′)

)
↓Pq{t,t′} to Z

9 (PrevConf ,CurrConf)← (CurrConf , ∅)
10 for (`, ρ, C) ∈ PrevConf do // lines 10 to 14 try to go forward using (ai, τi).
11 for (`, g, ai, R, `′) ∈ E do
12 C′ ←

(
C ∧ g ∧ eval(ρ, τi)

)
↓Pq{t}

13 if C′ 6= ⊥ then
14 push (`′, reset(ρ,R, τ), C′) to CurrConf
15 push (`0, ρ∅, {τ|w| ≤ t <∞}) to CurrConf // for the trimming after the final event

16 for (`, ρ, C) ∈ CurrConf do // lines 16 to 19 try to insert $ in (τ|w|,∞).
17 for `f ∈ LF do
18 for (`, g, $, R, `f) ∈ E do
19 push

(
C ∧ (τ|w| < t′ <∞) ∧ g ∧ eval(ρ, t′)

)
↓Pq{t,t′} to Z

C ∧ g ∧ eval(ρ, τ1) = (0 ≤ t < 0.7) ∧ (x > 1) ∧ (x = 0.7− t) is unsatisfiable, and we go back to
line 4.

At line 4, we add the new configuration (`0, ρ∅, (τ1 ≤ t < τ2)) to CurrConf . Similarly, we
immediately jump to line 9, and we try the edge from `0 to `1 in lines 10 to 14. This time, the
constraint C ∧ g ∧ eval(ρ, τ2) = (0.7 ≤ t < 2.0)∧ (x > 1)∧ (x = 2.0− t) is satisfiable at line 13,
and we push the next configuration (`1, ρ∅, C′) to CurrConf at line 14.

Similarly, we keep adding and updating configurations until the end of the input timed
word w. Finally, in lines 16 to 19, we try to insert $in (τ3,∞) = (4.1,∞). We can use the edge
from `2 to the accepting state, and we add the constraint at the right of Fig. 3.1 to Z.

Algorithm 4 terminates because the size of CurrConf is always finite. Algorithm 4 is correct
because it symbolically keeps track of all the runs of v(A) over w|(t,t′) for any v ∈ (Q+)P and
(t, t′) ⊆ R≥0.

3.4.1 Skipping enhanced parametric timed pattern matching

We now enhance Algorithm 4 with automata-based skipping. By using skipping, at line 2 of
Algorithm 4, we can increase the counter i by the skip value. The skip value can be more than 1,
and some matching trials may be prevented. A large part of the skip value computation can be
reused and the whole algorithm can become faster. Following [WHS17], we employ FJS-style
skipping [FJS07]. An FJS-style skipping consists of two skip value functions: the KMP-style
skip value function ∆KMP [KJP77] and the Quick Search-style skip value function ∆QS [Sun90].
We note that this optimization does not change the result thanks to the soundness theorems
(Theorems 3.12 and 3.15).

3.4. Algorithm II: Direct method by polyhedra computation 51

The following are auxiliaries for the skip values. For a PTA A and a parameter valuation
v, the language without the last element is denoted by L−$(v(A)) = {w(1, |w| − 1) | w ∈
L(v(A))}. For a PTA A = (Σ, L, L0, LF ,X,P, E) and ` ∈ L, A` denotes the PTA A` =
(Σ, L, L0, {`},X,P, E).

3.4.1.1 KMP-style skip values

Given a location ` ∈ L and a set V ⊆ (Q+)P of parameter valuations, the KMP-style skip value
function ∆KMP returns the skip value ∆KMP(`, V) ∈ Z>0. The location ` and the parameter
valuations V present one of the configurations in the previous matching trial. We utilize the
pair (`, V) to overapproximate the subsequence w(i, j) of the timed word w examined in the
latest matching trial.

Definition 3.11 (∆KMP). Let A be a PTA A = (Σ, L, L0, LF ,X,P, E). For a location ` ∈ L
and n ∈ Z>0, let V`,n be the set of parameter valuations v such that there is a parameter
valuation v′ ∈ (Q+)P satisfying L(v(A`)) · T (Σ) ∩ T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t ≥ 0} ·
T (Σ) 6= ∅. The KMP-style skip value function ∆KMP : L×P((Q+)P)→ Z>0 is ∆KMP(`, V) =
min{n ∈ Z>0 | V ⊆ V`,n}. �

Intuitively, the soundness of the skipping with ∆KMP is as follows. Let ` be a location we
reached in the end of the matching trial from i ∈ {1, 2, . . . , |w|} for the parameter valuation v.
We overapproximate the subsequence w(i, |w|) by the language L(v(A`)) · T (Σ). For n ∈ Z>0,
we overapproximate the matching from i+n by ⋃v′∈(Q+)P T n(Σ)·{w′′+t | w′′ ∈ L−$(v′(A)), t ≥
0} · T (Σ). Because of these overapproximation, we have no matching from i + n if v 6∈ Vl,n
holds. Overall, we can skip the matching trials from i+ 1, i+ 2, . . . , i+ ∆KMP(`, {v})− 1. We
note that if we reached both ` and `′, the intersection (L(v(A`)) · T (Σ)) ∩ (L(v(A`′)) · T (Σ))
is an overapproximation of w(i, |w|), and therefore, we take the maximum of ∆KMP(`, V) over
the reached configurations.

Since V`,n is independent of the timed word w, we can compute it before the matching
trials. The computation of V`,n is by the reachability synthesis of PTAs constructed from
A. See Appendix A for the construction of the PTAs. During the matching trials, only the
inclusion checking V ⊆ V`,n is necessary. This test can be achieved thanks to convex polyhedra
inclusion.

Theorem 3.12 (soundness). Let A = (Σ, L, L0, LF ,X,P, E) be a PTA and let w ∈ T (Σ). For
any subsequence w(i, j) of w and for any (`, v) ∈ L× (Q+)P, if there exists t ∈ R≥0 satisfying
w(i, j) − t ∈ L(v(A`)), for any n ∈

{
1, 2, . . . ,∆KMP(`, {v}) − 1

}
, we have

(
(τi+n−1, τi+n] ×

R≥0 × (Q+)P
)
∩M(w,A) = ∅.

First, we prove the following lemma.

Lemma 3.13. Let A be a PTA A = (Σ, L, L0, LF ,X,P, E) and let w ∈ T (Σ). For a subse-
quence w(i, j) of w, let Ci,j ⊆ L× (Q+)P be Ci,j = {(`, v) | ∃t ∈ R≥0. w(i, j)− t ∈ L(v(A`))}.
For a subsequence w(i, j) of w and n ∈ Z>0, if there exists (`, v) ∈ Ci,j satisfying v 6∈ V`,n, we
have

(
[τi+n−1, τi+n)× R≥0 × (Q+)P

)
∩M(w,A) = ∅.

Proof. If there exists (`, v) ∈ Ci,j satisfying v 6∈ V`,n, by the definition of Ci,j and V`,n, such
(`, v) ∈ L× (Q+)P satisfies the following.

• ∃t ∈ R≥0. w(i, j)− t ∈ L(v(A`))

52 Chapter 3. Parametric Timed Pattern Matching

• ∀v′ ∈ (Q+)P.L(v(A`)) · T (Σ) ∩ T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ) = ∅

Therefore, we have the following.

∃(`, v) ∈ Ci,j . v 6∈ V`,n
⇒∃t ∈ R≥0.∀v′ ∈ (Q+)P.

(w(i, j)− t) · T (Σ) ∩ T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ) = ∅
⇒∀v′ ∈ (Q+)P.
w(i, j) · T (Σ) ∩ T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ) = ∅

⇒∀v′ ∈ (Q+)P. w(i, |w|) 6∈ T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ)
⇒∀v′ ∈ (Q+)P. w(i, |w|) 6∈ T n(Σ) ◦ {w′′ + t | w′′ ∈ L−$(v′(A)), t ∈ [τi+n−1, τi+n)} · T (Σ)
⇒∀v′ ∈ (Q+)P. w(i+ n, |w|) 6∈ {w′′ + t | w′′ ∈ L−$(v′(A)), t ∈ [τi+n−1, τi+n)} · T (Σ)

⇐⇒ ∀t ∈ [τi+n−1, τi+n), v′ ∈ (Q+)P. w(i+ n, |w|)− t 6∈ {w′′ | w′′ ∈ L−$(v′(A))} · T (Σ)
⇐⇒ ∀t ∈ [τi+n−1, τi+n), t′ > t, v′ ∈ (Q+)P. w|(t,t′) 6∈ L(v′(A))
⇐⇒ ([τi+n−1, τi+n)× R≥0 × (Q+)P) ∩M(w,A) = ∅

Then, the proof of Theorem 3.12 is as follows.

Proof. By definition of Ci,j in Lemma 3.13, for any subsequence w(i, j) of w and (`, v) ∈
L × (Q+)P, ∃t ∈ R≥0. w(i, j) − t ∈ L(v(A`)) implies (`, v) ∈ Ci,j . By definition of ∆KMP,
for any (`, v) ∈ Ci,j and n ∈ {1, 2, . . . ,∆KMP(`, {v}) − 1}, we have v 6∈ Vi,n. Therefore,
Theorem 3.12 holds because of Lemma 3.13.

Although Vl,n can be computed before the matching trials, the KMP-style skip value func-
tion ∆KMP requires checking V ⊆ Vl,n after each matching trial, which means a polyhedral
inclusion test in |P| + 2 dimensions. To reduce this runtime overhead, we define the non-
parametric KMP-style skip value function ∆′KMP(`) = minv∈(Q+)P ∆KMP

(
`, {v}

)
. For compar-

ison, we refer ∆KMP as the parametric KMP-style skip value function.

3.4.1.2 Quick Search-style skip values

Given an action a ∈ Σ, the Quick Search-style skip value function ∆QS returns the skip value
∆QS(a) ∈ Z>0. Before the matching trial from the i-th element (ai, τi), we look ahead the
action ai+N−1, where N is the length of the shortest matching. If we observe that there is
no potential matching, we also look ahead the action ai+N and skip by ∆QS(ai+N). The
construction of the Quick Search-style skip value function ∆QS is by reachability emptiness of
PTAs, i. e., the emptiness of the valuation set reaching a given location.

Definition 3.14 (∆QS). For a PTA A = (Σ, L, L0, LF ,X,P, E), the Quick-Search-style skip
value function ∆QS : Σ→ Z>0 is as follows, where Untimed(L−$(v(A))) is the untimed projec-
tion of the language L−$(v(A)) and N ∈ Z>0 is N = min{|w| | w ∈ ⋃v∈(Q+)P L−$(v(A))}.

∆QS(a) = min
{
n ∈ Z>0

∣∣ ∃v ∈ (Q+)P.ΣNaΣ∗ ∩ ΣnUntimed(L−$(v(A))) 6= ∅
}

�

3.4. Algorithm II: Direct method by polyhedra computation 53

The intuition of ∆QS is as follows. For i ∈ {1, 2, . . . , |w|}, the subsequence w(i, |w|) is
overapproximated by ΣNai+NΣ∗. For n ∈ Z>0, the matching from i+ n is overapproximated
by ⋃v∈(Q+)P ΣnUntimed(L−$(v(A))). Therefore, for any n ∈ {1, 2, . . . ,∆QS(ai+N)−1}, we have
no matching from i+ n, and we can skip these matching trials.

Theorem 3.15. Let A be a PTA A = (Σ, L, L0, LF ,X,P, E), let w = (a, τ) ∈ T (Σ), and let
N = min{|w| | w ∈ ⋃v∈(Q+)P L−$(v(A))}. For any index i ∈ {1, 2, . . . , |w|} of w and for any
m ∈ {1, 2, . . . ,∆QS(ai+N)− 1}, we have ([τi+m−1, τi+m)× R≥0 × (Q+)P) ∩M(w,A) = ∅.

First, we prove the following lemma.

Lemma 3.16. Let A be a PTA A = (Σ, L, L0, LF ,X,P, E), let w = (a, τ) ∈ T (Σ), and let
N = min{|w| | w ∈ ⋃v∈(Q+)P L−$(v(A))}. For any index i ∈ {1, 2, . . . , |w|} of w and for
any m ∈ {1, 2, . . . , N}, if any (a′, τ ′) ∈ ⋃v∈(Q+)P L(v(A)) satisfies ai+N 6= a′N−m+1, we have(
[τi+m−1, τi+m)× R≥0 × (Q+)P

)
∩M(w,A) = ∅.

Proof. If ai+N 6= a′N−m+1 holds for any (a′, τ ′) ∈ ⋃v∈(Q+)P L(v(A)), we have the following.

Untimed({w(i+m, |w|)}) 6⊆
⋃

v∈(Q+)P
Untimed(L−$(v(A)))Σ∗

Lemma 3.16 is proved by the following.

Untimed({w(i+m, |w|)}) 6⊆
⋃

v∈(Q+)P
Untimed(L−$(v(A)))Σ∗

⇒∀t ∈ [τi+m−1, τi+m), v ∈ (Q+)P. w(i+m, |w|)− t 6∈
⋃

v∈(Q+)P
L−$(v(A)) · T (Σ)

⇒∀t ∈ [τi+m−1, τi+m), t′ > t, v ∈ (Q+)P. w|(t,t′) 6∈
⋃

v∈(Q+)P
L(v(A))

⇐⇒ ([τi+m−1, τi+m)× R≥0 × (Q+)P) ∩M(w,A) = ∅

Then, the proof of Theorem 3.15 is as follows.

Proof. Since ΣNaΣ∗∩ΣnUntimed(L−$(v(A))) 6= ∅ holds for any n ≥ N+1, we have ∆QS(ai+n)−
1 ≤ N . By definition of ∆QS, m < ∆QS(ai+N) implies the following.

∀v ∈ (Q+)P.ΣNai+NΣ∗ ∩ ΣmUntimed(L−$(v(A))) = ∅

Therefore, Lemma 3.16 implies Theorem 3.15.

Algorithm 5 shows an improvement of Algorithm 4 by skipping. After reading the i-th
element (ai, τi) of the timed word w = (a, τ), Algorithm 5 does not immediately output the
matching over the available prefix (a1, τ1), (a2, τ2), . . . , (ai, τi) of w, but it still outputs the
matching before obtaining the entire timed word with some delay. In the loop in lines 4 to 7
of Algorithm 5, we use the Quick-Search-style skip value function ∆QS to avoid unnecessary
matching trials. The matching trial in lines 8 to 10 of Algorithm 5 corresponds to the loop
in lines 2 to 14 of Algorithm 4. At line 11, it skips using the parametric KMP-style skip
value ∆KMP(`, V). We can employ the non-parametric KMP-style skip value by replacing
∆KMP(`, V) with ∆′KMP(`).

54 Chapter 3. Parametric Timed Pattern Matching

Algorithm 5: Parametric timed pattern matching with parametric skipping
Input: A timed word w and a PTA A = (Σ, L, L0, LF ,X,P, E)
Output: Z is the match setM(w,A)

1 i← 1 // i is the position in w of the beginning of the current matching trial

2 N = min{|w| | w ∈ ⋃v∈(Q+)P L−$(v(A))}
3 while i ≤ |w| −N + 1 do
4 while ∀ v ∈ (Q+)P, (a′, τ ′) ∈ L(v(A)). ai+N−1 6= a′N do

// Try matching the n-th action of L(v(A))
5 i← i+ ∆QS(ai+N) // Quick Search-style skipping

6 if i > |w| −N + 1 then
7 return
8 Z ← Z ∪ {(t, t′, v) ∈ [τi−1, τi)× (τi−1,∞)× (Q+)P | w|(t,t′) ∈ L(v(A))}

// Try matching

9 j ← max{j ∈ {i, i+ 1, . . . , |w|} | ∃` ∈ L, v ∈ (Q+)P, t ∈ R≥0. w(i, j)− t ∈ L(v(A`))}
10 C ← {(`, V) ∈ L× P((Q+)P) | ∀v ∈ V,∃t ∈ R≥0. w(i, j)− t ∈ L(v(A`))}
11 i← i+ max(`,V)∈C ∆KMP(`, V) // Parametric KMP-style skipping

12 Z ← Z ∪ {(t, t′, v) ∈ [τ|w|,∞)× (τ|w|,∞)× (Q+)P | w|(t,t′) ∈ L(v(A))}

3.4.2 Experiments

We implemented our dedicated algorithms for parametric timed pattern matching in a tool
ParamMONAA. We implemented the following three algorithms: the online algorithm without
skipping (Algorithm 4, referred as “no skip”); the online algorithm with parametric skipping
(Algorithm 5, referred as “parametric skip”); and the online algorithm with non-parametric
skipping (Algorithm 5 where ∆KMP(`, V) at line 11 is replaced with ∆′KMP(`), referred as “non-
parametric skip”). In the skip value computation, we use reachability synthesis for PTAs. Since
reachability synthesis is intractable in general (the emptiness problem, i. e., the (non-)existence
of a valuation reaching a given location, is undecidable [AHV93]), we use the following over-
approximation: after investigating 100 configurations, we speculate that all the inconclusive
parameter valuations are reachable parameter valuations. We remark that this overapproxi-
mation does not affect the correctness of parametric timed pattern matching, as it potentially
decreases the skip value. We conducted experiments to answer the following research questions.

RQ1 Which is the fastest algorithm for parametric timed pattern matching?

RQ2 Why is parametric timed pattern matching slower than non-parametric timed pattern
matching? Namely, is it purely because of the difficulty of the problem itself or is it
mainly because of the general implementation and data structure required by the general
problem setting?

RQ3 How large is the overhead of the skip value computation? Namely, is it small and
acceptable?

We implemented ParamMONAA in C++ and we compiled them using GCC 7.3.0. We
conducted the experiments on an Amazon EC2 c4.large instance (2.9GHz Intel Xeon E5-2666
v3, 2 vCPUs, and 3.75GiB RAM) that runs Ubuntu 18.04 LTS (64 bit). Experiment data can
be found on https://github.com/MasWag/monaa/blob/PTPM/doc/NFM2019.md.

https://github.com/MasWag/monaa/blob/PTPM/doc/NFM2019.md

3.4. Algorithm II: Direct method by polyhedra computation 55

`1 `2 `3 `4 `5

a
x := 0

a
x > 1
x := 0

a
x < p $

Figure 3.9: OnlyTiming: the parameter p is substituted to 1 in OnlyTiming-np.

Table 3.4: Execution time for Gear [s]

.

Non-Param. Param.|w| No Skip Skip Skip IMITATOR

1467 0.04 0.05 0.05 1.781
2837 0.0725 0.0805 0.09 3.319
4595 0.124 0.13 0.1405 5.512
5839 0.1585 0.156 0.17 7.132
7301 0.201 0.193 0.2115 8.909
8995 0.241 0.2315 0.2505 10.768
10315 0.2815 0.269 0.2875 12.778
11831 0.322 0.301 0.325 14.724
13183 0.3505 0.3245 0.353 16.453
14657 0.392 0.361 0.395 18.319

Table 3.5: Execution time for Accel [s]
Non-Param. Param.|w| No Skip Skip Skip IMITATOR

2559 0.03 0.0515 0.06 2.332
4894 0.0605 0.0605 0.0705 4.663
7799 0.1005 0.071 0.08 7.532
10045 0.13 0.08 0.09 9.731
12531 0.161 0.09 0.1 12.503
15375 0.1985 0.1005 0.113 15.583
17688 0.2265 0.1095 0.1215 17.754
20299 0.261 0.115 0.1325 21.040
22691 0.288 0.121 0.143 23.044
25137 0.3205 0.1315 0.159 25.815

Table 3.6: Execution time for Blowup [s]
Non-Param. Param.|w| No Skip Skip Skip IMITATOR

2000 66.75 68.0125 67.9735 OutOfMemory
4000 267.795 271.642 269.084 OutOfMemory
6000 601.335 611.782 607.58 OutOfMemory
8000 1081.42 1081.25 1079 OutOfMemory
10000 1678.15 1688.22 1694.53 OutOfMemory

Table 3.7: Execution time for OnlyTiming [s]
Non-Param. Param.|w| No Skip Skip Skip IMITATOR

1000 0.0995 0.1305 0.11 1.690
2000 0.191 0.23 0.191 3.518
3000 0.2905 0.3265 0.273 5.499
4000 0.3905 0.426 0.3525 7.396
5000 0.488 0.5225 0.4325 9.123
6000 0.588 0.6235 0.517 11.005

Figure 4.3 shows the pattern PTAs we used in the experiments. We reuse the benchmarks
Gear, Accel, and Blowup from Section 3.3 as well as the new benchmark OnlyTiming.
The timed words for Gear and Accel are generated by the automatic transmission system
model in [HAF14]. Blowup and OnlyTiming are toy examples. Blowup shows the worst
case situation for parametric timed pattern matching. In OnlyTiming, the parametric skip
values are greater than the non-parametric skip values. In Sections 3.4.2.2 and 3.4.2.3, we also
used the non-parametric variants Gear-np, Accel-np, Blowup-np, and OnlyTiming-np
where the parameters are substituted to specific concrete values.

3.4.2.1 RQ1: Overall execution time

To answer RQ1, we compared the total execution time of ParamMONAA using Gear, Accel,
Blowup, and OnlyTiming. As a baseline, we used our previous implementation of parametric
timed pattern matching based on IMITATOR (“Butter Jellyfish”, version 2.10.4). Tables 3.4
to 3.7 and Fig. 3.10 show the execution time of our online algorithms compared with the
IMITATOR-based implementation.

In Tables 3.4 to 3.7, we observe that our algorithms are faster than the IMITATOR-based
implementation by orders of magnitude. Moreover, for Blowup, the IMITATOR-based imple-
mentation aborted due to out of memory. This is mainly because ParamMONAA is specific to
parametric timed pattern matching while IMITATOR is a general tool for parametric verifica-
tion. This shows the much better efficiency of our new approach compared to Section 3.3.

In Fig. 3.10, we observe that the curve of “no skip” has the steepest slope and the curves of
either “parametric skip” or “non-parametric skip” have the gentlest slope except for Blowup.
Blowup is a benchmark designed on purpose to observe exponential blowup of the execution
time, and it requires much time for all the implementations.

56 Chapter 3. Parametric Timed Pattern Matching

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 20 40 60 80 100 120 140 160

Ex
ec

ut
io

n
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 50 100 150 200 250 300

Ex
ec

ut
io

n
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

0
200
400
600
800

1000
1200
1400
1600
1800

20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

10 20 30 40 50 60

Ex
ec

ut
io

n
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

Figure 3.10: Execution time for the benchmarks with parameters which MONAA cannot handle:
Gear (above left), Accel (above right), Blowup (below left), and OnlyTiming (below right)

For Gear and Accel, the execution time of “non-parametric skip” increases the most gen-
tly. This is because the parametric KMP-style skip value ∆KMP(`, V) and the non-parametric
KMP-style skip value ∆′KMP(`) are equal for these benchmarks, and “parametric skip” is slower
due to the inclusion checking V ⊆ V`,n.

For OnlyTiming, we observe that the execution time of “parametric skip” increases the
most gently because the parametric KMP-style skip value ∆KMP(`, V) is larger than the non-
parametric KMP-style skip value ∆′KMP(`).

We conclude that skipping usually makes parametric timed pattern matching efficient. The
preference between two skipping methods depends on the pattern PTA and it is a future work
to investigate the tendency. Since the computation of the skip values does not take much time,
the following work flow is reasonable: i) compute the skip values for both of them; and ii) use
“parametric skip” only if its skip values are strictly larger than that of “non-parametric skip”.

3.4.2.2 RQ2: Parametric vs. non-parametric timed pattern matching

To answer RQ2, we ran ParamMONAA using the non-parametric benchmarks (Accel-np,
Gear-np, Blowup-np, and OnlyTiming-np) and compared the execution time with a tool
MONAA [WHS18] for non-parametric timed pattern matching.

In Fig. 3.11, we observe that our algorithms are slower than MONAA by orders of magnitude
even though we solve the same problem (non-parametric timed pattern matching). This is
presumably because our implementations rely on Parma Polyhedra Library (PPL) [BHZ08] to
compute symbolic states, while MONAA utilizes DBMs (difference bound matrices) [Dil89]. It

3.4. Algorithm II: Direct method by polyhedra computation 57

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 20 40 60 80 100 120 140 160

Ex
ec

ut
io

n
ho

ge
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 50 100 150 200 250 300

Ex
ec

ut
io

n
ho

ge
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
ho

ge
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

0
0.1
0.2
0.3
0.4
0.5
0.6

10 20 30 40 50 60

Ex
ec

ut
io

n
ho

ge
Ti

m
e

[s]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

Figure 3.11: Execution time for the benchmarks without parameters: Gear-np (above left),
Accel-np (above right), Blowup-np (below left), and OnlyTiming-np (below right)
was shown in [BFMU17] that polyhedra may be dozens of times slower than DBMs; however, for
parametric analyses, DBMs are not suitable, and parameterized extensions (e. g., in [HRSV02])
still need polyhedra in their representation.

Moreover, in Figs. 3.10 and 3.11, we observe that the execution time of our algorithms are
not much different between each parametric benchmark and its non-parametric variant except
Blowup. This observation shows that at least one additional parameter does not make the
problem too difficult.

Therefore, we conclude that the lower efficiency of parametric timed pattern matching is
mainly because of its general data structure required by the general problem setting.

3.4.2.3 RQ3: Overhead of skip value computation

To answer RQ3, we compared the execution time of our algorithms for an empty timed word
using all the benchmarks. As a baseline, we also measured the execution time of MONAA.

In Table 3.8, we observe that the execution time for the skip values is less than 0.05 second
except for Blowup and Blowup-np. Even for the slowest pattern PTA Blowup-np, the
execution time for the skip values is less than 1.5 second and it is faster than that of MONAA.
We conclude that the overhead of the skip value computation is small and acceptable in many
usage scenarios.

58 Chapter 3. Parametric Timed Pattern Matching

Table 3.8: Execution time [s] for the skip value computation
Non-Parametric Parametric

Skip Skip MONAA

Gear 0.0115 0.0175 n/a
Gear-np 0.01 0.01 < 0.01

Accel 0.042 0.0435 n/a
Accel-np 0.04 0.04 0.0305

OnlyTiming 0.03 0.03 n/a
OnlyTiming-np 0.02 0.02 < 0.01

Blowup 0.3665 0.381 n/a
Blowup-np 1.268 1.2905 1.5455

t0

BobEnter AliceEnter BobLeft AliceLeft XEnter YEnter AliceLeft

Figure 3.12: A log of entrance and leaving from a building. Timestamps are omitted for
simplicity. We usually know who entered or left the building (e. g., BobEnter) but we sometimes
do not know who (e. g., XEnter).

w0 w1 w2 w3 w4

w5,1

w5,2

w6 w7
BobEnter AliceEnter BobLeft AliceLeft

BobEnter

AliceEnter

AliceEnter

BobEnter

AliceLeft

Figure 3.13: The TA constructed from the log in Fig. 3.12 using TW2PTA in Section 3.3.2.2.
We assume X,Y ∈ {Alice,Bob} and X 6= Y. The timing constraints are omitted for simplicity.
3.5 Comparison between the two approaches

In Sections 3.3 and 3.4, we presented two approaches for parametric timed pattern matching.
In Section 3.3, we reduced parametric timed pattern matching to parametric timed model
checking of PTAs (Algorithm 3). Parametric timed model checking relies on the reachability
analysis with symbolic abstraction by convex polyhedra. In Section 3.4, we solved paramet-
ric timed pattern matching by following the transition of the PTA (Algorithm 4). Moreover,
we optimized Algorithm 4 using skipping (Algorithm 5), which is a technique originally from
string matching. Although the relationship between parametric timed pattern matching and
parametric timed model checking is implicit in Section 3.4, Algorithms 4 and 5 utilize convex
polyhedra to compute the reachable concrete states. Moreover, both IMITATOR and Param-
MONAA rely on Parma Polyhedra Library (PPL) [BHZ08] for convex polyhedra operation. In
this sense, the underlying technique utilized in Section 3.3 is also used in Section 3.4.

For the performance, Section 3.4.2 shows that Algorithms 4 and 5 are much more efficient
than Algorithm 3. This efficiency is thanks to the skipping and its direct implementation
rather than an indirect approach via parametric timed model checking.

Therefore, someone might consider that the approach in Section 3.4 is strictly superior
to the one in Section 3.3. However, we note that the model checking-based framework in

3.6. Related work 59

Section 3.3 is generic and it is robust to the modification of the problem setting. For example,
consider the ill-shaped log shown in Fig. 3.12: we take a log of the entrance and leavening from
a building with the name and the timestamp, but we sometimes fail to identify who passed
the gate e. g., due to a sensor error. Since a timed word w is a sequence of pairs (ai, τi) of an
event ai and a timestamp τi, it cannot directly represent the log in Fig. 3.12 and therefore, it
is not straightforward to handle such a log using Algorithms 4 and 5. However, it is easy to
generalize the conversion TW2PTA from a timed word to a (P)TA in Section 3.3.2.2 to a log with
branching. An example of the result is shown in Fig. 3.13. Thus, it is rather straightforward to
monitor such an ill-shaped log using Algorithm 3. Moreover, the framework in Section 3.3 has
a potential to be used for a different monitoring e. g., monitoring of a probabilistic behavior
using probabilistic model checking.

In summary, Algorithms 4 and 5 are better at solving the parametric timed pattern match-
ing problem, but the construction used in Algorithm 3 is general and it is potentially applicable
to other similar problems.

3.6 Related work

Several algorithms have been proposed for online monitoring of real-time temporal logic specifi-
cations. Online monitoring consists in monitoring on-the-fly at runtime, while offline monitor-
ing is performed after the execution is completed, with less hard constraints on the monitoring
algorithm performance. An online monitoring algorithm for ptMTL (a past time fragment of
MTL [Koy90]) was proposed in [RFB14] and an algorithm for MTL[U,S] (a variant of MTL
with both forward and backward temporal modalities) was proposed in [HOW14]. In addition,
a case study on an autonomous research vehicle monitoring [KCDK15] shows such procedures
can be performed in an actual vehicle.

The approaches most related to ours are [UFAM14, UFAM16, Ulu17]. In that series of
works, logs are encoded by signals, i. e., values that vary over time. This can be seen as a
state-based view, while our timed words are event-based. The formalism used for specification
in [UFAM14, UFAM16] is timed regular expressions (TREs). An offline monitoring algorithm
is presented in [UFAM14] and an online one is presented in [UFAM16]. These algorithms are
implemented in the tool Montre [Ulu17]. In [BFN+18], the setting is signals matched against
a temporal pattern; the construction is automata-based as in [WAH16, WHS17].

Some algorithms have also been proposed for parameter identification of a temporal logic
specification with uncertainty over a log. In the discrete time setting, an algorithm for an
extension of LTL is proposed in [FR08]; and in the real-time setting, algorithms for parametric
signal temporal logic (PSTL) are proposed in [ADMN11, JTS+17, BFM18]. Although these
works are related to our approach, previous approaches do not focus on segments of a log
but on a whole log. In contrast, we exhibit intervals together with their associated parameter
valuations, in a fully symbolic fashion. We believe our matching-based setting is advantageous
in many usage scenarios e. g., from hours of a log of a car, extracting timing constraints of a
certain actions to cause slipping. Also, our setting allows the patterns with complex timing
constraints (see the pattern in Fig. 3.6c for example).

Further works attempted to quantify the distance between a specification and a signal
temporal logic (STL) specification (e. g., [DFM13, DMP17, JBG+18b]). The main difference
with our work is that these works compute a distance w.r.t. to a whole log, while we aim at
exhibiting where in the log is the property satisfied; our notion of parameters can also be seen

60 Chapter 3. Parametric Timed Pattern Matching

as a relative time distance. However, our work is closer to the robust satisfaction of guards
rather than signal values; in that sense, our contribution is more related to the time robustness
in [DM10] or the distance in [ABD18].

Finally, while our work is related to parameter synthesis, in the sense that we identify
parameter valuations in the property such that it holds (or not), the term “parameter synthesis”
is also used in monitoring with a slightly different meaning: given a model with parameters,
the goal is to find parameters that maximize the robustness of the specification, i. e., satisfying
behaviors for a range of parameters for which the model robustly satisfies the property. A
notable tool achieving this is Breach [Don10].

3.7 Conclusion and perspectives

3.7.1 Conclusion

We proposed two approaches to perform timed pattern matching in the presence of an uncer-
tain specification. This allows us to synthesize parameter valuations and intervals for which
the specification holds on an input timed word. Our implementation using IMITATOR may not
completely allow for online timed pattern matching yet, but already gives an interesting feed-
back in terms of parametric monitoring. Our second algorithm aiming at finding minimal or
maximal parameter valuations is less sensitive to state space explosion. While our algorithms
should be further optimized, we believe they pave the way for a more precise monitoring of
real-time systems with an output richer than just timed intervals.

In a second part, our dedicated method dramatically outperforms the previous approach
using parametric timed model checking. In addition, we discussed an optimization using
skipping, that brings an interesting speedup.

3.7.2 Perspectives

Exploiting the polarity of parameters, as done in [ADMN11] or in lower-bound/upper-bound
parametric timed automata [HRSV02, AL17], may help to improve the efficiency of PTPMopt.

In addition, natural future works include more expressive specifications than (parametric)
timed automata-based specifications, e. g., using more expressive logics such as [BKMZ15b].

Another challenge is the interpretation (and the visualization) of the results of parametric
timed pattern matching. While the result of PTPMopt is natural, the fully symbolic result
of PTPM remains a challenge to be interpreted; for example, the 125,250 matches for Blowup
means the union of 125,250 polyhedra in 5 dimensions. We give a possible way to visualize
such results in Fig. 3.8 for Gear (|w| = 1, 467): in particular, observe in Fig. 3.8a that a single
point exceeds 3, only a few exceed 2, while the wide majority remain in [0, 1]. This helps to
visualize how fast the gear is changed from 1 to 2, and at what timestamps.

CHAPTER 4
Symbolic Monitoring against
Specifications Parametric in

Time and Data

In this chapter, we introduce a new formalism parametric timed data automata (PTDAs) and
give a symbolic monitoring algorithm against a specification in a PTDA. PTDAs extend para-
metric timed automata with infinite domain data. This chapter is based on joint work [WAH19]
with Étienne André and Ichiro Hasuo. Useful comments from the anonymous referees of the
paper are gratefully acknowledged.

Organization of the chapter Section 4.1 summarizes the technical contribution in this
chapter. After reviewing the necessary preliminaries in Section 4.2, We introduce paramet-
ric timed data automata in Section 4.3. We present our symbolic monitoring approach in
Section 4.4 and show the experimental evaluation in Section 4.5. We review related work in
Section 4.6. we conclude in Section 4.7.

4.1 Summary
Here, we summarize our contribution from the technical viewpoint. See Section 1.6.2 for a
summary from more application viewpoint.

Monitoring consists in checking whether a sequence of data (a log or a signal) satisfies
or violates a specification expressed using some formalism. Offline monitoring consists in
performing this analysis after the system execution, as the technique has access to the entire
log in order to decide whether the specification is violated. In contrast, online monitoring
can make a decision earlier, ideally as soon as a witness of the violation of the specification is
encountered.

Using existing formalisms (e. g., the metric first order temporal logic [BKMZ15b]), one
can check whether a given bank customer withdraws more than 1,000€ every week. With
formalisms extended with data, one may even identify such customers. Or, using an extension

61

62 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

1 @0 update (a , 0) @4 update (c , 2)
2 @1 update (c , 1) @5 update (a , 2)
3 @2 update (a , 0) @6 update (b , 2)
4 @3 update (b , 1) @7 update (c , 3)
5 @4 update (b , 0) @9 update (b , 3)

(a) Log

t0 1 2 3 4 5 6 7 8 9

a

c
b

(b) Graphical representation

`0 6=

`/=

update(x, v)
x 6= b

update(b, v)
valb := v

update(x, v)
x = px
valb = v

update(x, v)
x = px
valb 6= v

x := 0, valx := v

update(b, v)
v = valx
x < tp ε

x ≥ tp

update(b, v)
x < tp
v 6= valx

update(x, v)
x < tp
x 6= b

(c) Monitoring PTDA
Figure 4.1: Monitoring copy to b within tp time units

of the signal temporal logic (STL) [BDSV14], one can ask: “is that true that the value of
variable x is always copied to y exactly 4 time units later?” However, questions relating time
and data using parameters become much harder (or even impossible) to express using existing
formalisms: “what are the users and time frames during which a user withdraws more than half
of the total bank withdrawals within seven days?” And even, can we synthesize the durations
(not necessarily 7 days) for which this specification holds? Or “what is the set of variables for
which there exists a duration within which their value is always copied to another variable?”
In addition, detecting periodic behaviors without knowing the period can be hard to achieve
using existing formalisms.

In this work, we address the challenging problem to monitor logs enriched with both timing
information and (infinite domain) data. In addition, we significantly push the existing limits
of expressiveness so as to allow for a further level of abstraction using parameters: our spec-
ification can be both parametric in the time and in the data. The answer to this symbolic
monitoring is richer than a pure Boolean answer, as it synthesizes the values of both time and
data parameters for which the specification holds. This allows us notably to detect periodic
behaviors without knowing the period while being symbolic in terms of data. For example,
we can synthesize variable names (data) and delays for which variables will have their value
copied to another data within the aforementioned delay. In addition, we show that we can
detect the log segments (start and end date) for which a specification holds.

Example 4.1. Consider a system updating three variables a, b and c (i. e., strings) to values
(rationals). An example of log is given in Fig. 4.1a. Although our work is event-based, we can
give a graphical representation similar to that of signals in Fig. 4.1b. Consider the following
property: “for any variable px, whenever an update of that variable occurs, then within strictly
less than tp time units, the value of variable b must be equal to that update”. In our formalism,
a simple automaton made of 4 locations (given in Fig. 4.1c) can monitor this property. The
variable parameter px is compared with string values and the timing parameter tp is used in the
timing constraints. We are interested in checking for which values of the variable parameter px
and the timing parameter tp this property is violated. This can be seen as a synthesis problem
in both the variable and timing parameters. For example, px = c and tp = 1.5 is a violation of
the specification, as the update of c to 2 at time 4 is not propagated to b within 1.5 time unit.

4.2. Preliminaries: Clocks, timing parameters and timed guards 63

Table 4.1: Comparison of monitoring expressiveness
Work [ADMN11] [BDSV14] [BKMZ15b] [BKMZ15a]
Timing parameters

√
× ? ?

Data
√ √ √ √

Parametric data
√

×
√ √

Memory ×
√ √ √

Aggregation × × ×
√

Complete parameter identification
√

N/A
√
/×

√
/×

Work [RCR15] [HPU17] [AHW18] [BFM18] This work
Timing parameters ? ×

√
×

√

Data
√ √

×
√ √

Parametric data
√ √

×
√ √

Memory
√ √

× ×
√

Aggregation
√

× × ×
√

Complete parameter identification N/A N/A
√ √ √

Our algorithm outputs such violation by a constraint e. g., px = c ∧ tp ≤ 2. In contrast, the
value of any signal at any time is always such that either b is equal to that signal, or the value
of b will be equal to that value within at most 2 time units. Thus, the specification holds for
any valuation of the variable parameter px, provided tp > 2. �

We propose an automata-based approach to perform monitoring parametric in both time
and data. We use an extension of both timed automata extended with data, and of parametric
timed automata, both extended with parametric data over infinite domains. We implement
our work in a dedicated prototype SyMon (relying on polyhedra to encode symbolic param-
eter relations) and perform experiments showing that, while our formalism allows for high
expressiveness, it is also tractable even for online monitoring.

We believe our framework balances expressiveness and monitoring performance well: i) Re-
garding expressiveness, comparison with the existing work is summarized in Table 4.1 (see
Section 4.6 for further details). ii) Our monitoring is complete, in the sense that it returns
a symbolic constraint characterizing all the parameter valuations that match a given spec-
ification. iii) We also achieve reasonable monitoring speed, especially given the degree of
parametrization in our formalism. Note that it is not easy to formally claim superiority in
expressiveness: proofs would require arguments such as the pumping lemma; and such for-
mal comparison does not seem to be a concern of the existing work. Moreover, such formal
comparison bears little importance for industrial practitioners: expressivity via an elaborate
encoding is hardly of practical use. We also note that, in the existing work, we often observe
gaps between the formalism in a theory and the formalism that the resulting tool actually
accepts. This is not the case with the current framework.

4.2 Preliminaries: Clocks, timing parameters and timed
guards

Although most of the following concepts are already introduced in the previous chapters, we
show them to clarify the notation in this section.

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that evolve at the
same rate. A clock valuation is a function ν : X → R≥0. We write ~0 for the clock valuation
assigning 0 to all clocks. Given d ∈ R≥0, ν+d denotes the valuation s.t. (ν+d)(x) = ν(x)+d,

64 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

for all x ∈ X. Given R ⊆ X, we define the reset of a valuation ν, denoted by [ν]R, as follows:
[ν]R(x) = 0 if x ∈ R, and [ν]R(x) = ν(x) otherwise.

We assume a set TP = {tp1, . . . , tpJ} of timing parameters, i. e., unknown timing constants.
A timing parameter valuation γ is a function γ : TP→ Q+.1 We assume ./ ∈ {<,≤,=,≥, >}.
A timed guard tg is a constraint over X ∪ TP defined by a conjunction of inequalities of the
form x ./ d, or x ./ tp with d ∈ N and tp ∈ TP. Given tg, we write ν |= γ(tg) if the expression
obtained by replacing each x with ν(x) and each tp with γ(tp) in tg evaluates to true.

4.3 Parametric timed data automata

4.3.1 Variables, data parameters and data guards

Here we show our formulation of the data. For sake of simplicity, we assume a single infinite
domain D for data. The formalism defined in Section 4.3.2 can be straightforwardly extended
to different domains for different variables (and our implementation SyMon does allow for
different types). The case of finite data domain is immediate too. We however define this
formalism in an abstract manner, so as to allow a sort of parameterized domain.

We assume a set V = {v1, . . . , vM} of variables valued over D. These variables are internal
variables, that allow a high expressive power in our framework, as they can be compared
or updated to other variables or parameters. We also assume a set LV = {lv1, . . . , lvO} of
local variables valued over D. These variables will only be used locally along a transition in
the “argument” of the action (e. g., x and v in upate(x, v)), and in the associated guard and
(right-hand part of) updates. We assume a set VP = {vp1, . . . , vpN} of data parameters, i. e.,
unknown variable constants. A data type (D,DE ,DU) is made of i) an infinite domain D, ii) a
set of admissible Boolean expressions DE (that may rely on V, LV and VP), which will define
the type of guards over variables in our subsequent automata, and iii) a domain for updates
DU (that may rely on V, LV and VP), which will define the type of updates of variables in
our subsequent automata.

Example 4.2. As a first example, let us define the data type for rationals. We have D = Q.
Let us define Boolean expressions. A rational comparison is a constraint over V ∪ LV ∪ VP
defined by a conjunction of inequalities of the form v ./ d, v ./ v′, or v ./ vp with v, v′ ∈ V∪LV,
d ∈ Q and vp ∈ VP. DE is the set of all rational comparisons over V ∪ LV ∪ VP. Let us then
define updates. First, a linear arithmetic expression over V ∪ LV ∪ VP is ∑i αivi + β, where
vi ∈ V∪LV∪VP and αi, β ∈ Q. Let LA(V∪LV∪VP) denote the set of arithmetic expressions
over V, LV and VP. We then have DU = LA(V ∪ LV ∪ VP).

As a second example, let us define the data type for strings. We have D = S, where S
denotes the set of all strings. A string comparison is a constraint over V ∪ LV ∪ VP defined
by a conjunction of comparisons of the form v ≈ s, v ≈ v′, or v ≈ vp with v, v′ ∈ V ∪ LV,
s ∈ S, vp ∈ VP and ≈ ∈ {=, 6=}. DE is the set of all string comparisons over V ∪ LV ∪ VP.
DU = V∪LV∪ S, i. e., a string variable can be assigned another string variable, or a concrete
string. �

A variable valuation is a function µ : V→ D. A local variable valuation is a partial function
η : LV 9 D. A data parameter valuation ζ is a function ζ : VP → D. Given a data guard

1We choose Q+ by consistency with most of the PTA literature, but also because, for classical PTAs,
choosing R≥0 leads to undecidability [Mil00].

4.3. Parametric timed data automata 65

Table 4.2: Variables, parameters and valuations used in guards
timed guards data guards

clock timing parameter (data) variable local variable data parameter
Variable x tp v lv vp
Valuation ν γ µ η ζ

u ∈ DE , a variable valuation µ, a local variable valuation η defined for the local variables in
u, and a data parameter valuation ζ, we write (µ, η) |= ζ(u) if the expression obtained by
replacing within u all occurrences of each data parameter vpi by ζ(vpi) and all occurrences
of each variable vj (resp. local variable lvk) with its concrete valuation µ(vj) (resp. η(lvk)))
evaluates to true.

A parametric data update is a partial function PDU : V 9 DU . That is, we can assign
to a variable an expression over data parameters and other variables, according to the data
type. Given a parametric data update PDU, a variable valuation µ, a local variable valuation η
(defined for all local variables appearing in PDU), and a data parameter valuation ζ, we define
[µ]η(ζ(PDU)) : V→ D as follows:

[µ]η(ζ(PDU))(v) =
{
µ(v) if PDU(v) is undefined
η(µ(ζ(PDU(v)))) otherwise

where η(µ(ζ(PDU(v)))) denotes the replacement within the update expression PDU(v) of all
occurrences of each data parameter vpi by ζ(vpi), and all occurrences of each variable vj
(resp. local variable lvk) with its concrete valuation µ(vj) (resp. η(lvk)). Observe that this
replacement gives a value in D, therefore the result of [µ]η(ζ(PDU)) is indeed a data parameter
valuation V→ D. That is, [µ]η(ζ(PDU)) computes the new (non-parametric) variable valuation
obtained after applying to µ the partial function PDU valuated with ζ.

Example 4.3. Consider the data type for rationals, the variables set {v1, v2}, the local vari-
ables set {lv1, lv2} and the parameters set {vp1}. Let µ be the variable valuation such that
µ(v1) = 1 and µ(v2) = 2, and η be the local variable valuation such that η(lv1) = 2 and η(lv2) is
not defined. Let ζ be the data parameter valuation such that ζ(vp1) = 1. Consider the paramet-
ric data update function PDU such that PDU(v1) = 2×v1 +v2− lv1 +vp1, and PDU(v2) is unde-
fined. Then the result of [µ]η(ζ(PDU)) is µ′ such that µ′(v1) = 2×µ(v1)+µ(v2)−η(lv1)+ζ(vp1) =
3 and µ′(v2) = 2. �

4.3.2 Parametric timed data automata

We introduce here parametric timed data automata (PTDAs). They can be seen as an ex-
tension of parametric timed automata [AHV93] (that extend timed automata [AD94] with
parameters in place of integer constants) with unbounded data variables and parametric vari-
ables. PTDAs can also be seen as an extension of some extensions of timed automata with
data (see e. g., [BER94, Dan03, Qua15]), that we again extend with both data parameters and
timing parameters. Or as an extension of quantified event automata [BFH+12] with explicit
time representation using clocks, and further augmented with timing parameters. PTDAs fea-
ture both timed guards and data guards; we summarize the various variables and parameters
types together with their notations in Table 4.2.

66 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

1 @2046 open(Hakuchi . txt , rw)
2 @2136 open(Unagi . mp4 , rw)
3 @2166 close (Hakuchi . txt)

(a) Example of log

`0 `1 `2

open(f,m)
f 6= vp

close(f)
f 6= vp

open(f,m)
f = vp
x := 0 open(f,m)

f 6= vp

close(f)
f 6= vp

close(f)
f = vp
x > tp

open(f,m)
f = vp

close(f)
f = vp
x ≤ tp

close(f)
f = vp

(b) PTDA monitor
Figure 4.2: Monitoring proper file opening and closing

4.3.2.1 Syntax of PTDAs

We will associate local variables with actions (which can be seen as predicates). Let Dom : Σ→
2LV denote the set of local variables associated with each action. Let Var(u) (resp. Var(PDU))
denote the set of variables occurring in u (resp. PDU).

Definition 4.4 (PTDA). Given a data type (D,DE ,DU), a parametric timed data automaton
(PTDA) A over this data type is a tuple A = (Σ, L, `0, LF ,X,TP,V,LV, µ0,VP, E), where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. `0 ∈ L is the initial location,

4. LF ⊆ L is the set of accepting locations,

5. X is a finite set of clocks,

6. TP is a finite set of timing parameters,

7. V (resp. LV) is a finite set of variables (resp. local variables) over D,

8. µ0 is the initial variable valuation,

9. VP is a finite set of data parameters,

10. E is a finite set of edges e = (`, tg, u, a,R,PDU, `′) where i) `, `′ ∈ L are the source and
target locations, ii) tg is a timed guard, iii) u ∈ DE is a data guard such as Var(u)∩LV ⊆
Dom(a), iv) a ∈ Σ, v) R ⊆ X is a set of clocks to be reset, and vi) PDU : V 9 DU is the
parametric data update function such that Var(PDU) ∩ LV ⊆ Dom(a).

�

The domain conditions on u and PDU ensure that the local variables used in the guard
(resp. update) are only those in the action signature Dom(a).

Example 4.5. Consider the PTDA in Fig. 4.2b over the data type for strings. We have
X = {x}, TP = {tp}, V = ∅ and LV = {f,m}. Dom(open) = {f,m} while Dom(close) = {f}.
`2 is the only accepting location, modeling the violation of the specification.

This PTDA (freely inspired by a formula from [HPU17] further extended with timing
parameters) monitors the improper file opening and closing, i. e., a file already open should

4.3. Parametric timed data automata 67

not be open again, and a file that is open should not be closed too late. The data parameter
vp is used to symbolically monitor a given file name, i. e., we are interested in opening and
closings of this file only, while other files are disregarded (specified using the self-loops in `0
and `1 with data guard f 6= vp). Whenever vp is opened (transition from `0 to `1), a clock x is
reset. Then, in `1, if f is closed within tp time units (timed guard “x ≤ tp”), then the system
goes back to `0. However, if instead f is opened again, this is an incorrect behavior and the
system enters `2 via the upper transition. The same occurs if f is closed more than tp time
units after opening. �

Given a data parameter valuation ζ and a timing parameter valuation γ, we denote by
γ|ζ(A) the resulting timed data automaton (TDA), i. e., the non-parametric structure where
all occurrences of a parameter vpi (resp. tpj) have been replaced by ζ(vpi) (resp. γ(tpj)).

Note that, if V = LV = ∅, then A is a parametric timed automaton [AHV93] and γ|ζ(A) is
a timed automaton [AD94].2

4.3.2.2 Semantics of PTDAs

We now equip our TDAs with a concrete semantics.

Definition 4.6 (Semantics of a TDA). Given a PTDAA = (Σ, L, `0, LF ,X,TP,V,LV, µ0,VP, E)
over a data type (D,DE ,DU), a data parameter valuation ζ and a timing parameter valua-
tion γ, the semantics of γ|ζ(A) is given by the timed transition system (TTS) (S, s0,→),
with

• S = L× DM × RH≥0,

• s0 = (`0, µ0,~0),

• → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (`, µ, ν) e,η7→ (`′, µ′, ν ′), if there exist e = (`, tg, u, a,R,PDU, `′) ∈
E and a local variable valuation η defined exactly for Dom(a), such that ν |= γ(tg),
(µ, η) |= ζ(u), ν ′ = [ν]R, and µ′ = [µ]η(ζ(PDU)).

2. delay transitions: (`, µ, ν) d7→ (`, µ, ν + d), with d ∈ R≥0.

�

Moreover, we write ((`, µ, ν), (e, η, d), (`′, µ′, ν ′)) ∈ → for a combination of a delay and
discrete transition if ∃ν ′′ : (`, µ, ν) d7→ (`, µ, ν ′′) e,η7→ (`′, µ′, ν ′).

Given a TDA γ|ζ(A) with concrete semantics (S, s0,→), we refer to the states of S as the
concrete states of γ|ζ(A). A run of γ|ζ(A) is an alternating sequence of concrete states of
γ|ζ(A) and triples of edges, local variable valuations and delays, starting from the initial state
s0 of the form (`0, µ0, ν0), (e0, η, d0), (`1, µ1, ν1), · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and
((`i, µi, νi), (ei, ηi, di), (`i+1, µi+1, νi+1)) ∈ →. Given such a run, the associated timed data word
is (a1, τ1, η1), (a2, τ2, η2), · · · , where ai is the action of edge ei−1, ηi is the local variable valuation

2We may need to multiply all timing constants in γ|ζ(A) by the least common multiple of their denominators,
so as to obtain an equivalent (integer-valued) TA, as defined in [AD94].

68 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

associated with that transition, and τi = ∑
0≤j≤i−1 dj , for i = 1, 2 · · · .3 For a timed data word

w and a concrete state (`, µ, ν) of a TDA γ|ζ(A), we write (`0, µ0,~0) w−→ (`, µ, ν) in γ|ζ(A) if
w is associated with a run of γ|ζ(A) of the form (`0, µ0,~0), . . . , (`n, µn, νn) with (`n, µn, νn) =
(`, µ, ν). For a timed data word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn), we denote |w| = n
and for any i ∈ {1, 2, . . . , n}, we denote w(1, i) = (a1, τ1, η1), (a2, τ2, η2), . . . , (ai, τi, ηi).

A finite run is accepting if its last state (`, µ, ν) is such that ` ∈ LF . The language L(γ|ζ(A))
is defined to be the set of timed data words associated with all accepting runs of γ|ζ(A).

Example 4.7. Consider again the PTDA in Fig. 4.2b over the data type for strings. Let
γ(tp) = 100 and ζ(vp) = Hakuchi.txt. An accepting run of the TDA γ|ζ(A) is:
(`0, ∅, ν0), (e0, η0, 2046), (`1, ∅, ν1), (e1, η1, 90), (`1, ∅, ν2)(e2, η2, 30), (`2, ∅, ν3),
where ∅ denotes a variable valuation over an empty domain (recall that V = ∅ in Fig. 4.2b),
ν0(x) = 0, ν1(x) = 0, ν2(x) = 90, ν3(x) = 120, e0 is the upper edge from `0 to `1, e1 is
the self-loop above `1, e2 is the lower edge from `1 to `2, η0(f) = η2(f) = Hakuchi.txt,
η1(f) = Unagi.mp4, η0(m) = η1(m) = rw, and η2(m) is undefined (because Dom(close) = {f}).

The associated timed data word is (open, 2046, η0), (open, 2136, η1), (close, 2166, η2).
Since each action is associated with a set of local variables, given an ordering on this

set, it is possible to see a given action and a variable valuation as a predicate: for example,
assuming an ordering of LV such as f precedes m, then open with η0 can be represented as
open(Hakuchi.txt, rw). Using this convention, the log in Fig. 4.2a corresponds exactly to this
timed data word. �

4.4 Symbolic monitoring against PTDA specifications
In symbolic monitoring, in addition to the (observable) actions in Σ, we employ the unob-
servable action denoted by ε with Dom(ε) = ∅. We write Σε for Σ q {ε}. We let ηε be
the local variable valuation such that ηε(lv) is undefined for any lv ∈ LV. For a timed data
word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn) over Σε, the projection w↓Σ is the timed data
word over Σ obtained from w by removing any triple (ai, τi, ηi) where ai = ε. An edge
e = (`, tg, u, a,R,PDU, `′) ∈ E is unobservable if a = ε, and observable otherwise. The use of
unobservable actions makes symbolic monitoring more general, and allows us in particular to
encode parametric timed pattern matching (see Section 4.4.3).

Example 4.8. Let Σ = {wd}, LV = {a}, and Dom(wd) = {a}. For a timed data word
w = (wd, 0.1, η1), (wd, 0.3, η2), (ε, 0.7, η3), (wd, 0.9, η4) over Σε, w↓Σ is the timed data word
w↓Σ = (wd, 0.1, η1), (wd, 0.3, η2), (wd, 0.9, η4) over Σ. �

We make the following assumption on the PTDAs in symbolic monitoring, which is neces-
sary for the termination of our algorithm.

Assumption 4.9. The PTDA A does not contain any loop of unobservable edges. �

4.4.1 Problem definition

Roughly speaking, given a PTDAA and a timed data word w, the symbolic monitoring problem
asks for the set of pairs (γ, ζ) ∈ (Q+)P × DVP satisfying w(1, i) ∈ γ|ζ(A), where w(1, i) is a

3The “−1” in indices comes from the fact that, following usual conventions in the literature, states are
numbered starting from 0 while words are numbered from 1.

4.4. Symbolic monitoring against PTDA specifications 69

prefix of w. Since A also contains unobservable edges, we consider w′ which is w augmented
by unobservable actions.
Symbolic monitoring problem:
Input: a PTDA A over a data type (D,DE ,DU) and actions Σε, and a timed data word w
over Σ
Problem: compute all the pairs (γ, ζ) of timing and data parameter valuations such that
there is a timed data word w′ over Σε and i ∈ {1, 2, . . . , |w′|} satisfying w′↓Σ = w and
w′(1, i) ∈ L(γ|ζ(A)). That is, it requires the validity domain D(w,A) = {(γ, ζ) | ∃w′ : i ∈
{1, 2, . . . , |w′|}, w′↓Σ = w and w′(1, i) ∈ L(γ|ζ(A))}.

Example 4.10. Consider the PTDA A and the timed data word w shown in Fig. 4.1. The
validity domain D(w,A) is D(w,A) = D1 ∪D2, where

D1 =
{

(γ, ζ) | 0 ≤ γ(tp) ≤ 2, ζ(xp) = c
}
and D2 =

{
(γ, ζ) | 0 ≤ γ(tp) ≤ 1, ζ(xp) = a

}
.

For w′ = w(1, 3) · (ε, ηε, 2.9), we have w′ ∈ L(γ|ζ(A)) and w′↓Σ = w(1, 3), where γ and ζ are
such that γ(tp) = 1.8 and ζ(xp) = c, and w(1, 3) · (ε, ηε, 2.9) denotes the juxtaposition. �

For the data types in Example 4.2, the validity domain D(w,A) can be represented by a
constraint of finite size because the length |w| of the timed data word is finite.

4.4.2 Summary of our online algorithm

Our algorithm is online in the sense that it outputs (γ, ζ) ∈ D(w,A) as soon as its membership
is witnessed, even before reading the whole timed data word w.

Outline Let w = (a1, τ1, η1), (a2, τ2, η2), . . . (an, τn, ηn) and A be the timed data word and
PTDA given in symbolic monitoring, respectively. Intuitively, after reading (ai, τi, ηi), our
algorithm symbolically computes for all parameter valuations (γ, ζ) ∈ (Q+)P×DVP the concrete
states (`, ν, µ) satisfying (`0, µ0,~0) w(1,i)−−−→ (`, µ, ν) in γ|ζ(A). Since A has unobservable edges
as well as observable edges, we insert unobservable actions between observable actions in w.
By Conf oi , we denote the configurations after reading (ai, τi, ηi) and no unobservable actions
are appended after (ai, τi, ηi). By Conf ui , we denote the configurations after reading (ai, τi, ηi)
and at least one unobservable action is appended after (ai, τi, ηi).

Definition 4.11 (Conf oi , Conf ui). For a PTDA A over actions Σε, a timed data word w over
Σ, and i ∈ {0, 1, . . . , |w|} (resp. i ∈ {−1, 0, . . . , |w|}), Conf oi (resp. Conf ui) is the set of 5-
tuples (`, ν, γ, µ, ζ) such that there is a timed data word w′ over Σε satisfying the following:
i) (`0, µ0,~0) w′−→ (`, µ, ν) in γ|ζ(A), ii) w′↓Σ = w(1, i), iii) The last action a′|w′| of w′ is observable
(resp. unobservable and its timestamp is less than τi+1). �

Algorithm 6 shows an outline of our algorithm for symbolic monitoring (see Section 4.4.4
for the full version). Our algorithm incrementally computes Conf ui−1 and Conf oi (line 3). After
reading (ai, τi, ηi), our algorithm stores the partial results (γ, ζ) ∈ D(w,A) witnessed from the
accepting configurations in Conf ui−1 and Conf oi (line 4). (We also need to try to take potential
unobservable transitions and store the results from the accepting configurations after the last
element of the timed data word (lines 5 and 6).)

70 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

Algorithm 6: Outline of our algorithm for symbolic monitoring
Input: A PTDA A = (Σε, L, `0, LF ,X,TP,V,LV, µ0,VP, E) over a data type (D,DE ,DU) and

actions Σε, and a timed data word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn) over Σ
Output:

⋃
i∈{1,2,...,n+1}Resulti is the validity domain D(w,A)

1 Conf u−1 ← ∅; Conf o0 ← {(`0,~0, γ, µ0, ζ) | γ ∈ (Q+)P, ζ ∈ DVP}
2 for i← 1 to n do
3 compute (Conf ui−1,Conf oi) from (Conf ui−2,Conf oi−1)
4 Resulti ← {(γ, ζ) | ∃(`, ν, γ, µ, ζ) ∈ Conf ui−1 ∪ Conf oi . ` ∈ LF }
5 compute Conf un from (Conf un−1,Conf on)
6 Resultn+1 ← {(γ, ζ) | ∃(`, ν, γ, µ, ζ) ∈ Conf un. ` ∈ LF }

Since (Q+)P × DVP is an infinite set, we cannot try each (γ, ζ) ∈ (Q+)P × DVP and we use
a symbolic representation for parameter valuations. Similarly to the reachability synthesis of
parametric timed automata [JLR15], a set of clock and timing parameter valuations can be
represented by a convex polyhedron. For variable valuations and data parameter valuations,
we need an appropriate representation depending on the data type (D,DE ,DU). Moreover, for
the termination of Algorithm 6, some operations on the symbolic representation are required.

Theorem 4.12 (termination). For any PTDA A over a data type (D,DE ,DU) and actions
Σε, and for any timed data word w over Σ, Algorithm 6 terminates if the following operations
on the symbolic representation Vd of a set of variable and data parameter valuations terminate.

1. restriction and update {([µ]η(ζ(PDU)), ζ) | ∃(µ, ζ) ∈ Vd. (µ, η) |= ζ(u)}, where η is a local
variable valuation, PDU is a parametric data update function, and u is a data guard;

2. emptiness checking of Vd;

3. projection Vd↓VP of Vd to the data parameters VP.

Example 4.13. For the data type for rationals in Example 4.2, variable and data parameter
valuations Vd can be represented by convex polyhedra, and the above operations terminate.
For the data type for strings S in Example 4.2, variable and data parameter valuations Vd can
be represented by S|V| × (S ∪ Pfin(S))|VP| and the above operations terminate, where Pfin(S) is
the set of finite sets of S. �

4.4.3 Encoding parametric timed pattern matching

The symbolic monitoring problem is a generalization of the parametric timed pattern matching
problem shown in Chapter 3. Recall that parametric timed pattern matching aims at synthe-
sizing timing parameter valuations and start and end times in the log for which a log segment
satisfies or violates a specification. In our approach, by adding a clock measuring the absolute
time, and two timing parameters encoding respectively the start and end date of the segment,
one can easily infer the log segments for which the property is satisfied. We note that even
with Assumption 4.9, symbolic monitoring is still a generalization of parametric timed pattern
matching.

Consider the Dominant PTDA (left of Fig. 4.3). It is inspired by a monitoring of with-
drawals from bank accounts of various users [BKZ17]. This PTDA monitors situations when
a user withdraws more than half of the total withdrawals within a time window of (50, 100).
The actions are Σ = {withdraw} and Dom(withdraw) = {n, a}, where n has a string value

4.4. Symbolic monitoring against PTDA specifications 71

`0 `1 `2

withdraw(n, a)
ε

x = tp1
v1 := 0, v2 := 0

withdraw(n, a), vp = n
x− tp1 < 100
v1 := v1 + a
v2 := v2 + a

withdraw(n, a), vp 6= n
x− tp1 < 100, v2 := v2 + a

ε
x = tp2

x− tp1 ∈ (50, 100)
2v1 > v2 `0

withdraw(a)
a ≤ vp

withdraw(a)
a > vp

tp1 ≤ x ≤ tp2
x := 0

Figure 4.3: PTDAs in Dominant (left) and Periodic (right)
and a has an integer value. The string n represents a user name and the integer a represents
the amount of the withdrawal by the user n. Observe that clock x is never reset, and therefore
measures absolute time. The automaton can non-deterministically remain in `0, or start to
measure a log by taking the ε-transition to `1 checking x = tp1, and therefore “remembering”
the start time using timing parameter tp1. Then, whenever a user vp has withdrawn more
than half of the accumulated withdrawals (data guard 2v1 > v2) in a (50, 100) time window
(timed guard x−tp1 ∈ (50, 100)), the automaton takes a ε-transition to the accepting location,
checking x = tp2, and therefore remembering the end time using timing parameter tp2.

4.4.4 Details on our algorithm for symbolic monitoring

Notations In the pseudocode, we use Vt, Vt+, and Vd for symbolic representation of valua-
tions: Vt is a set of pairs (ν, γ) ∈ (R≥0)X × (Q+)P of a clock valuation and a time parameter
valuation; Vt+ is a set of triples (ν, γ, t) ∈ (R≥0)X × (Q+)P × R≥0 of a clock valuation, a time
parameter valuation, and an elapsed time; and Vd is a set of pairs (µ, ζ) ∈ DV × DVP of a
variable valuation and a data parameter valuation. We also use CurrConf , NextConf , and
CurrUConf : CurrConf and NextConf are finite sets of triples (`, Vt, Vd) and CurrUConf is a
finite set of triples (`, Vt+, Vd), where ` ∈ L is a location and Vt, Vd, and Vt+ are as shown in
the above. For Vt ⊆ (R≥0)X × (Q+)P and t ∈ R≥0, we let Vt + t = {(ν + t, γ) | (ν, γ) ∈ Vt}.
For Vt ⊆ (R≥0)X × (Q+)P, Vt+ ⊆ (R≥0)X × (Q+)P × R≥0, and Vd ⊆ DV × DVP, we denote
Vt↓TP = {γ | ∃(ν, γ) ∈ Vt}, Vt+↓TP = {γ | ∃(ν, γ, t) ∈ Vt+}, and Vd↓VP = {ζ | ∃(µ, ζ) ∈ Vd}. We
let τ0 = 0.

Detail of the algorithm Algorithm 7 is a pseudocode of our algorithm for symbolic moni-
toring. In line 1 of Algorithm 7, we set the current configurations CurrConf to be the triple
(`0, {~0}×(Q+)P, {µ0}×DVP), which means we are at the initial location `0, the clock (resp. vari-
able) valuation is the initial valuation ~0 (resp. µ0), and the timing (resp. data) parameter
valuations can be any valuations (Q+)P (resp. DVP). In lines 3 to 15, we try unobservable
transitions. In line 3, we set the current configurations CurrUConf for the unobservable tran-
sitions, which is essentially the same as CurrConf , but each Vt is equipped with the time elapse
after the latest observable transition. The elapsed time t is used i) to restrict the unobservable
transitions between the last observable action ai−1 and the next observable action ai (line 7)
and ii) to make the time elapse to τi (line 13). For (`, Vt+, Vd) ∈ CurrUConf , after time
elapse in line 7, we try unobservable edges from ` (lines 8 to 15). We constrain the valuations
(Vt+, Vd) by the guards (tg and u) and conduct the reset and update in lines 9 and 10. If
(Vt+, Vd) satisfies the guards, we add the valuations (V ′t+, V ′d) and the valuations after time
elapse to CurrUConf and NextConf , respectively. Moreover, if `′ ∈ LF , we add the parameter
valuations (V ′t+↓TP, V ′d↓VP) to Result. After trying the unobservable edges, in lines 16 to 25,

72 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

Algorithm 7: Algorithm for symbolic monitoring
Input: A PTDA A = (Σε, L, `0, LF ,X,TP,V,LV, µ0,VP, E) over a data type (D,DE ,DU) and

actions Σε, and a timed data word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn) over Σ
Output: Result is the validity domain D(w,A)

1 CurrConf ← {(`0, {~0} × (Q+)P, {µ0} × DVP)}; Result ← ∅
2 for i← 1 to n do
3 CurrUConf ← {(`, Vt × {0}, Vd) | (`, Vt, Vd) ∈ CurrConf }

// append the elapsed time from τi−1

4 NextConf ← ∅
5 while CurrUConf 6= ∅ do // insert ε before (ai, τi, ηi)
6 pop (`, Vt+, Vd) from CurrUConf
7 Vt+ ← {(ν + d, γ, t+ d) | (ν, γ, t) ∈ Vt+, d ∈ R>0. t+ d < τi − τi−1} // time elapse
8 for e = (`, tg, u, ε,R,PDU, `′) ∈ E do // try unobservable edges
9 V ′t+ ← {([ν]R, γ, t) | ∃(ν, γ, t) ∈ Vt+. ν |= γ(tg)}

// constrain and reset the clock
10 V ′d ← {([µ]ηε(ζ(PDU)), ζ) | ∃(µ, ζ) ∈ Vd. (µ, ηε) |= ζ(u)}

// constrain and update the data variables
11 if V ′t+ 6= ∅ & V ′d 6= ∅ then
12 push (`′, V ′t+, V ′d) to CurrUConf
13 push (`′, {(ν + τi − τi−1 − t, γ) | ∃(ν, γ, t) ∈ V ′t+}, V ′d) to NextConf
14 if `′ ∈ LF then // found an accepting run
15 Result ← Result ∪ (V ′t+↓TP × V ′d↓VP)
16 NextConf ← NextConf ∪ {(`, Vt + (τi − τi−1), Vd) | (`, Vt, Vd) ∈ CurrConf } // time

elapse
17 (CurrConf ,NextConf)← (NextConf , ∅)
18 for (`, Vt, Vd) ∈ CurrConf do // use (ai, τi, ηi) for transition
19 for e = (`, tg, u, ai, R,PDU, `′) ∈ E do // try observable edges
20 V ′t ← {([ν]R, γ) | ∃(ν, γ) ∈ Vt. ν |= γ(tg)} // constrain and reset the clock
21 V ′d ← {([µ]ηi(ζ(PDU)), ζ) | ∃(µ, ζ) ∈ Vd. (µ, ηi) |= ζ(u)}

// constrain and update the data variables
22 if V ′t 6= ∅ & V ′d 6= ∅ then
23 push (`′, V ′t , V ′d) to NextConf
24 if `′ ∈ LF then // found an accepting run
25 Result ← Result ∪ (V ′t ↓TP × V ′d↓VP)
26 (CurrConf ,NextConf)← (NextConf , ∅)
27 while CurrConf 6= ∅ do // append ε after (an, τn, ηn)
28 pop (`, Vt, Vd) from CurrConf
29 Vt ← {(ν + d, γ) | (ν, γ) ∈ Vt, d ∈ R>0} // time elapse
30 for e = (`, tg, u, ε,R,PDU, `′) ∈ E do
31 V ′t ← {([ν]R, γ) | ∃(ν, γ) ∈ Vt. ν |= γ(tg)} // constrain and reset the clock
32 V ′d ← {([µ]ηε(ζ(PDU)), ζ) | ∃(µ, ζ) ∈ Vd. (µ, ηε) |= ζ(u)}

// constrain and update the data variables
33 if V ′t 6= ∅ & V ′d 6= ∅ then
34 push (`′, V ′t , V ′d) to CurrConf
35 if `′ ∈ LF then // found an accepting run
36 Result ← Result ∪ (V ′t ↓TP × V ′d↓VP)

4.5. Experiments 73

we try observable edges. Finally, we try unobservable edges after the whole timed data word
in lines 27 to 36. The explanation of lines 16 to 25 and lines 27 to 36 is essentially similar to
that of lines 3 to 15.

Termination SinceA does not have any loop of unobservable edges, CurrConf and CurrUConf
are always finite sets. The valuations Vt, V ′t , Vt+, and V ′t+ can be represented by convex poly-
hedra. The time elapse (e. g., in line 7), restriction and reset (e. g., in line 9), and projection
(e. g., in line 15) are standard operations on convex polyhedra, and they terminate. Therefore,
if the operations on variable and data parameter valuations Vd and V ′d terminate, Algorithm 7
terminates.

Algorithm 7 is correct because for each w′ ∈
{
w′′(1, i)

∣∣ w′′↓Σ = w, i ∈ {1, 2, . . . , |w′′|}
}
, it

adds {(γ, ζ) | w′ ∈ L(γ|ζ(A))} to Result.

Theorem 4.14 (correctness). For any PTDA A over a data type (D,DE ,DU) and actions Σε,
and for any timed data word w over Σ, if Algorithm 7 terminates, we have Result = D(w,A)
after the execution of Algorithm 7.

4.5 Experiments
We implemented our symbolic monitoring algorithm in a tool SyMon in C++ (compiled using
GCC 7.3.0), where the domain for data is the strings and the integers.4 For the strings, we
used the data type in Example 4.2 and for integers, we used the data type for the rationals in
Example 4.2, where any occurrences of Q are replaced by Z. Our tool SyMon is distributed at
https://github.com/MasWag/symon. We use the Parma Polyhedra Library (PPL) [BHZ08]
for the symbolic representation of the valuations. We note that we employ an optimization
to merge adjacent polyhedra in the configurations if possible.5 See the following paragraph
for the detail of the optimization. We evaluated our monitor algorithm against three original
benchmarks: the PTDA in Copy is in Fig. 4.1c; and the PTDAs in Dominant and Periodic
are shown in Fig. 4.3.

We conducted the experiments on an Amazon EC2 c4.large instance (2.9GHz Intel Xeon
E5-2666 v3, 2 vCPUs, and 3.75GiB RAM) that runs Ubuntu 18.04 LTS (64 bit).

Optimization In our implementation, we also employ an optimization to merge adjacent
polyhedra in the configurations NextConf if possible. Precisely, we merge (`, Vt, Vd) and
(`′, V ′t , V ′d) in NextConf whenever we have the following:

• ` and `′ are the same.

• Vt and V ′t are the same.

• The projection of Vd and V ′d to the valuations on strings are the same.

• The projection of Vd and V ′d to the valuations on integers are adjacent convex polyhedra.

Such a merge is conducted after consuming each entry (ai, τi, ηi) of the timed word w i. e., in
line 26 of Algorithm 7.

4The use of integers is not an essential limitation. We may scale any rational number to an integer.
5After consuming each entry (ai, τi, ηi) of the timed word w (i. e., in line 5 of Algorithm 6), we use PPL’s

Pointset_Powerset::pairwise_reduce function.

https://github.com/MasWag/symon

74 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

0
1
2
3
4
5
6
7

0 5 10 15 20 25 30 35 40

Ex
ec

ut
io

n
tim

e
[se

c.]

Number of events [×1, 000]

Copy

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35 40

M
em

or
y

U
sa

ge
[K

B]

Number of events [×1, 000]

Copy

Figure 4.4: Execution time (left) and memory usage (right) of Copy
4.5.1 Benchmark 1: Copy
Table 4.3: Experiment results: each cell consists of a pair (T,M) of the execution time T [sec.]
and the memory usage M [KiB] in the experiment setting.

(a) Results of Copy

|w| Copy
4,000 (0.66,6340)
8,000 (1.32,6108)

12,000 (2.04,6164)
16,000 (2.68,6168)
20,000 (3.45,6252)
24,000 (4.15,6140)
28,000 (4.68,6256)
32,000 (5.79,6256)
36,000 (6.14,6284)
40,000 (6.76,6112)

(b) Results of Dominant and Periodic

|w| Dominant Periodic
2,000 (14.65,6928) (6.66,6396)
4,000 (29.22,6964) (14.91,6472)
6,000 (44.41,6964) (16.82,6332)
8,000 (61.78,6956) (27.85,6384)

10,000 (75.95,6936) (36.64,6568)
12,000 (87.63,7032) (37.59,6564)
14,000 (106.93,6984) (55.93,6372)
16,000 (121.71,6948) (57.09,6492)
18,000 (132.45,6952) (61.53,6440)
20,000 (148.22,7236) (69.59,6384)

Our first benchmark Copy is a monitoring of variable updates much like the scenario in
[BDSV14]. The actions are Σ = {update} and Dom(update) = {n, v}, where n has a string
value representing the name of the updated variables and v has an integer value representing
the updated value. We generated random timed data words of various sizes. Our set W
consists of 10 timed data words of length 4,000 to 40,000.

The PTDA in Copy is shown in Fig. 4.1c, where we give an additional constraint 3 < tp <
10 on tp. The property encoded in Fig. 4.1c is “for any variable px, whenever an update of
that variable occurs, then within tp time units, the value of b must be equal to that update”.

The experiment result is in Fig. 4.4 and Table 4.3. We observe that the execution time is
linear to the number of the events and the memory usage is more or less constant with respect
to the number of events.

4.5.2 Benchmark 2: Dominant

Our second benchmark is Dominant (Fig. 4.3 left). We generated random timed data words
of various sizes, where the number of users is 3 and the duration between each withdrawal
follows the uniform distribution on {1, 2, . . . , 10}. Our set W consists of 10 timed data words
of length 2,000 to 20,000. Recall that this PTDA matches a situation when the amount of the
withdrawal by the user vp in a certain time window is more than the half of the withdrawals
by all the users in the same time window. The time window must be between 50 and 100. The
parameters tp1 and tp2 show the beginning and the end of the time window respectively.

4.5. Experiments 75

0
20
40
60
80

100
120
140
160

2 4 6 8 10 12 14 16 18 20

Ex
ec

ut
io

n
tim

e
[se

c.]

Number of events [×1, 000]

Dominant
Periodic

0

2000

4000

6000

8000

10000

2 4 6 8 10 12 14 16 18 20

M
em

or
y

U
sa

ge
[K

B]

Number of events [×1, 000]

Dominant
Periodic

Figure 4.5: Execution time (left) and memory usage (right) of Dominant and Periodic

The experiment result is in Fig. 4.5 and Table 4.3. We observe that the execution time is
linear to the number of the events and the memory usage is more or less constant with respect
to the number of events.

4.5.3 Benchmark 3: Periodic

Our third benchmark Periodic is inspired by a parameter identification of periodic with-
drawals from one bank account. The actions are Σ = {withdraw} and Dom(withdraw) = {a},
where a has an integer value representing the amount of the withdrawal. We randomly gen-
erated a set W consisting of 10 timed data words of length 2,000 to 20,000. Each timed data
word consists of the following three kinds of periodic withdrawals:

short period One withdrawal occurs every 5± 1 time units. The amount of the withdrawal
is 50± 3.

middle period One withdrawal occurs every 50±3 time units. The amount of the withdrawal
is 1000± 40.

long period One withdrawal occurs every 100± 5 time units. The amount of the withdrawal
is 5000± 20.

0
20
40
60
80

100

0 1000 2000 3000 4000 5000

Va
lu

es
of

tp
1

an
d

tp
2

The threshold (vp) of the withdrawal amount

tp1tp2

The PTDA in Periodic is shown in the right of Fig. 4.3.
The PTDA matches situations where, for any two successive
withdrawals of amount more than vp, the duration between
them is within [tp1, tp2]. By the symbolic monitoring, one
can identify the period of the periodic withdrawals of amount
greater than vp is in [tp1, tp2]. An example of the validity
domain is shown in the right figure.

The experiment result is in Fig. 4.5 and Table 4.3. We
observe that the execution time is linear to the number of the events and the memory usage
is more or less constant with respect to the number of events.

4.5.4 Discussion

First, a positive result is that our algorithm effectively performs symbolic monitoring on more
than 10,000 actions in one or two minutes even though the PTDAs feature both timing and
data parameters. The execution time in Copy is 50–100 times smaller than that in Dominant
and Periodic. This is because the constraint 3 < tp < 10 in Copy is strict and the size of the

76 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

configurations (i. e., Conf oi and Conf ui in Algorithm 6) is small. Another positive result is that
in all the benchmarks (Copy, Dominant, and Periodic), the execution time is linear and
the memory usage is more or less constant in the size of the input word. This is because the
size of configurations (i. e., Conf oi and Conf ui in Algorithm 6) is bounded due to the following
reason. In Dominant, the loop in `1 of the PTDA is deterministic, and because of the guard
x− tp1 ∈ (50, 100) in the edge from `1 to `2, the number of the loop edges at `1 in an accepting
run is bounded (if the duration between two continuing actions are bounded as in the current
setting). Therefore, |Conf oi | and |Conf ui | in Algorithm 6 are bounded. The reason is similar in
Copy, too. In Periodic, since the PTDA is deterministic and the valuations of the amount
of the withdrawals are in finite number, |Conf oi | and |Conf ui | in Algorithm 6 are bounded.

It is clear that we can design ad hoc automata for which the execution time of symbolic
monitoring can grow much faster (e. g., exponential in the size of input word). However,
experiments showed that our algorithm monitors various interesting properties in a reasonable
time.

Copy and Dominant use data and timing parameters as well as memory and aggrega-
tion; from Table 4.1 in Section 4.6, no other monitoring tool can compute the valuations
satisfying the specification. We however used the parametric timed model checker IMITA-
TOR [AFKS12] to try to perform such a synthesis, by encoding the input log as a separate
automaton; but IMITATOR ran out of memory (on a 3.75GiB RAM computer) for Dominant
with |w| = 2000, while SyMon terminates in 14 s with only 6.9MiB for the same benchmark.
Concerning Periodic, the only existing work that can possibly accommodate this specifica-
tion is [ADMN11]. While the precise performance comparison is interesting future work (their
implementation is not publicly available), we do not expect our implementation be vastly
outperformed: in [ADMN11], their tool times out (after 10 min.) for a simple specification
(“E[0,s2]G[0,s1](x < p)”) and a signal discretized by only 128 points.

For those problem instances which MonPoly and DejaVu can accommodate (which are
simpler and less parametrized than our benchmarks), they tend to run much faster than ours.
For example, in [HPU17], it is reported that they can process a trace of length 1,100,004
in 30.3 seconds. The trade-off here is expressivity: for example, DejaVu does not seem to
accommodate Dominant, because DejaVu does not allow for aggregation. We also note that,
while SyMon can be slower than MonPoly and DejaVu, it is fast enough for many scenarios of
real-world online monitoring.

4.6 Related work

4.6.1 Robustness and monitoring

Robust (or quantitative) monitoring extends the binary question whether a log satisfies a
specification by asking “by how much” the specification is satisfied. The quantification of
the distance between a signal and a signal temporal logic (STL) specification has been ad-
dressed in, e. g., [FP09, DM10, Don10, DFM13, DMP17, JBG+18b] (or in a slightly different
setting in [ALFS11]). The distance can be understood in terms of space (“signals”) or time.
In [ABD18], the distance also copes for reordering of events. In [BFMU17], the robust pattern
matching problem is considered over signal regular expressions, by quantifying the distance be-
tween the signal regular expression specification and the segments of the signal. For piecewise-
constant and piecewise-linear signals, the problem can be effectively solved using a finite union
of convex polyhedra. While our framework does not fit in robust monitoring, we can simulate

4.6. Related work 77

both the robustness w.r.t. time (using timing parameters) and w.r.t. data, e. g., signal values
(using data parameters).

4.6.2 Monitoring with data

The tool MarQ [RCR15] performs monitoring using Quantified Event Automata (QEA) [BFH+12].
This approach and ours share the automata-based framework, the ability to express some first-
order properties using “events containing data” (which we encode using local variables associ-
ated with actions), and data may be quantified. However, [RCR15] does not seem to natively
support specification parametric in time; in addition, [RCR15] does not perform complete
(“symbolic”) parameters synthesis, but outputs the violating entries of the log.

The metric first order temporal logic (MFOTL) allows for a high expressiveness by allowing
universal and existential quantification over data—which can be seen as a way to express pa-
rameters. A monitoring algorithm is presented for a safety fragment of MFOTL in [BKMZ15b].
Aggregation operators are added in [BKMZ15a], allowing the computation of sums or maxi-
mums over data. A fragment of this logic is implemented in MonPoly [BKZ17]. While these
works are highly expressive, they do not natively consider timing parameters; in addition,
MonPoly does not output symbolic answers, i. e., symbolic conditions on the parameters to
ensure validity of the formula.

In [HPU17], binary decision diagrams (BDDs) are used in order to symbolically represent
the observed data in QTL. This can be seen as monitoring data against a parametric speci-
fication, with a symbolic internal encoding (the BDDs of [HPU17, HP18] work efficiently for
comparing whether a variable is equal or not equal to another, but not for comparing whether
a variable is smaller than another one—which suits strings better than rationals). However,
their implementation DejaVu only outputs concrete answers. In contrast, we are able to pro-
vide symbolic answers (both in timing and data parameters), e. g., in the form of union of
polyhedra for rationals, and unions of string constraints using equalities (=) and inequalities
(6=).

4.6.3 Freeze operator

In [BDSV14], the STL logic is extended with a freeze operator that can “remember” the value
of a signal, to compare it to a later value of the same signal. This logic STL∗ can express
properties such as “In the initial 10 seconds, x copies the values of y within a delay of 4
seconds”: G[0,10] ∗ (G[0,4]y

∗ = x). While the setting is somehow different (STL∗ operates
over signals while we operate over timed data words), the requirements such as the one above
can easily be encoded in our framework. In addition, we are able to synthesize the delay
within which the values are always copied, as in Example 4.1. In contrast, it is not possible to
determine using STL∗ which variables and which delays satisfy or violate the specification.

4.6.4 Monitoring with parameters

In [ADMN11], a log in the form of a dense-time real-valued signal is tested against a pa-
rameterized extension of STL, where parameters can be used to model uncertainty both in
signal values and in timing values. The output comes in the form of a subset of the param-
eters space for which the formula holds on the log. In [BFM18], the focus is only on signal
parameters, with an improved efficiency by reusing techniques from the robust monitoring.

78 Chapter 4. Symbolic Monitoring against Specifications Parametric in Time and Data

Whereas [ADMN11, BFM18] fit in the framework of signals and temporal logics while we fit in
words and automata, our work shares similarities with [ADMN11, BFM18] in the sense that
we can express data parameters; in addition, [BFM18] is able as in our work to exhibit the
segment of the log associated with the parameters valuations for which the specification holds.
A main difference however is that we can use memory and aggregation, thanks to arithmetic
on variables.

In [FR08], the problem of inferring temporal logic formulae with constraints that hold in
a given numerical data time series is addressed. The method is applied to biological systems.

4.6.5 Timed pattern matching

A recent line of work is that of timed pattern matching, that takes as input a log and a
specification, and decides where in the log the specification is satisfied or violated. On the
one hand, a line of works considers signals, with specifications either in the form of timed
regular expressions [UFAM14, UFAM16, Ulu17, BFN+18], or a temporal logic [UM18]. On
the other hand, a line of works considers timed words, with specifications in the form of timed
automata in [WAH16, WHS17] and also in Chapter 3 of this thesis. Our work can also encode
parametric timed pattern matching; therefore, our work can be seen as a two-dimensional
extension of both lines of works: first, we add timing parameters (note that we also considered
similar timing parameters in Chapter 3) and, second, we add data—themselves extended with
parameters. That is, coming back to Example 4.1, [UFAM14, UFAM16, Ulu17, WHS17] could
only infer the segments of the log for which the property is violated for a given (fixed) variable
and a given (fixed) timing parameter; while parametric timed pattern matching in Chapter 3
could infer both the segments of the log and the timing parameter valuations, but not which
variable violates the specification.

4.6.6 Summary

We compare related works with our work in Table 4.1. “Timing parameters” denote the
ability to synthesize unknown constants used in timing constraints (e. g., modalities intervals,
or clock constraints). “?” denotes works not natively supporting this, although it might
be encoded. The term “Data” refers to the ability to manage logs over infinite domains
(apart from timestamps). For example, the log in Fig. 4.1a features, beyond timestamps,
both string (variable name) and rationals (value). Also, works based on real-valued signals
are naturally able to manage (at least one type of) data. “Parametric data” refer to the
ability to express formulas where data (including signal values) are compared to (quantified
or unquantified) variables or unknown parameters; for example, in the log in Fig. 4.1a, an
example of property parametric in data is to synthesize the parameters for which the difference
of values between two consecutive updates of variable px is always below pv, where px is a
string parameter and pv a rational-valued parameter. “Memory” is the ability to remember
past data; this can be achieved using e. g., the freeze operator of STL∗, or variables (e. g., in
[RCR15, BKMZ15b, HPU17]). “Aggregation” is the ability to aggregate data using operators
such as sum or maximum; this allows to express properties such as “A user must not withdraw
more than $10,000 within a 31-day period” [BKMZ15a]. This can be supported using dedicated
aggregation operators [BKMZ15a] or using variables ([RCR15], and our work). “Complete
parameter identification” denotes the synthesis of the set of parameters that satisfy or violate
the property. Here, “N/A” denotes the absence of parameter [BDSV14], or when parameters

4.7. Conclusion and perspectives 79

are used in a way (existentially or universally quantified) such as the identification is not
explicit (instead, the position of the log where the property is violated is returned [HPU17]).
In contrast, we return in a symbolic manner (as in [ADMN11, AHW18]) the exact set of (data
and timing) parameters for which a property is satisfied. “

√
/×” denotes “yes” in the theory

paper, but not in the associated tool.

4.7 Conclusion and perspectives

4.7.1 Conclusion

We proposed a symbolic framework for monitoring using parameters both in data and time.
Logs can use timestamps and infinite domain data, while our monitor automata can use timing
and variable parameters (in addition to clocks and local variables). In addition, our online
algorithm can answer symbolically, by outputting all valuations (and possibly log segments) for
which the specification is satisfied or violated. We implemented our approach into a prototype
SyMon and experiments showed that our tool can effectively monitor logs of dozens of thousands
of events in a short time.

4.7.2 Perspectives

Combining the BDDs used in [HPU17] with some of our data types (typically strings) could
improve our approach by making it even more symbolic. Also, taking advantage of the polarity
of some parameters (typically the timing parameters, in the line of [BL09]) could improve
further the efficiency.

We only considered infinite domains, but the case of finite domains raises interesting ques-
tions concerning result representation: if the answer to a property on the log of Fig. 4.1a is
“neither a nor b”, knowing the domain is {a, b, c}, then the answer should be c.

From a usability point of view, adding some syntactic improvements to the PTDAs will
help further the ease of using by non-experts (for example allowing “update(¬b,_)” without
guard instead of the self-loop over `0 in Fig. 4.1c).

Investigating further usage of the symbolic monitoring problem is also a future work. For
example, it may be useful as a general query language for streams of data.

CHAPTER 5
Online Quantitative Timed

Pattern Matching with
Semiring-Valued Weighted

Automata

In this chapter, we give an online algorithm for the quantitative timed pattern matching
problem. This chapter is based on work [Wag19]. Useful comments from the anonymous
referees are gratefully acknowledged.

Organization of the chapter Section 5.1 summarizes the technical contribution in this
chapter. Section 5.2 introduces preliminaries on signals and semirings. Section 5.3 defines
timed symbolic weighted automata (TSWAs), and our quantitative semantics of signals over a
TSWA. Section 5.4 defines the quantitative timed pattern matching problem. Section 5.5 and
Section 5.6 describe our algorithms for computing the quantitative semantics and the quan-
titative timed pattern matching problem, respectively. Section 5.7 presents our experimental
results for the sup-inf and tropical semirings, which confirm the scalability of our algorithm un-
der some reasonable assumptions. After reviewing the related work in Section 5.8, we present
conclusions and some future perspectives in Section 5.9.

5.1 Summary

Here, we summarize our contribution from the technical viewpoint.

Quantitative timed pattern matching Among the various problem settings of monitor-
ing, we focus on an online algorithm for quantitative timed pattern matching [BFMU17] in a
dense time setting.

81

82
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

10

20

30

40

50

60

70

0 5 10 15 20 25 30

x

t

signal σ

 0 5 10 15 20 25 30 t
 0

 5

 10

 15

 20

 25

 30t′

-50

-40

-30

-20

-10

 0

 10

Figure 5.1: Piecewise-constant signal σ (left) and an illustration of the quantitative matching
function (M(σ,W))(t, t′) for [t, t′) ⊆ [0, 30.5) (right). In the right figure, the score in the white
areas is −∞. The specification W is outlined in Example 5.1. In the right figure, the value at
(3, 15) is 5. It shows that the score

(
M(σ,W)

)
(3, 15), for the restriction σ

(
[3, 15)

)
of σ to the

interval [3, 15), is 5.
Given a piecewise-constant signal σ and a specification W expressed by what we call a

timed symbolic weighted automaton, our algorithm returns the quantitative matching function
M(σ,W) that maps each interval [t, t′) ⊆ [0, |σ|) to the (quantitative) semantics

(
M(σ,W)

)
(t, t′),

with respect to W, for the restriction σ([t, t′)) of σ to the interval [t, t′), where |σ| is the du-
ration of the signal. An illustration of M(σ,W) is in Fig. 5.1. In [BFMU17], quantitative
timed pattern matching was solved by an offline algorithm using a syntax tree of signal regular
expressions. In this chapter, we propose an online algorithm for quantitative timed pattern
matching with automata. To the best of our knowledge, this is the first online algorithm for
quantitative timed pattern matching. Moreover, our (quantitative) semantics is parameterized
by a semiring and what we call a cost function. This algebraic formulation makes our problem
setting general.

Example 5.1. Let σ be the piecewise-constant signal in the left of Fig. 5.1 and W be the
specification meaning the following.

• At first, the value of x stays less than 15, and then the value of x becomes and remains
greater than 5 within 5 s.

• We are only interested in the behavior within 10 s after the value of x becomes greater
than 5.

• We want the score showing how robustly the above conditions are satisfied (or violated).

The right of Fig. 5.1 illustrates the result of quantitative timed pattern matching. Quantitative
timed pattern matching computes the semantics

(
M(σ,W)

)
(t, t′), with respect to W, for each

subsignal σ([t, t′)) of σ. The current semantics shows how robustly the conditions are satisfied.
The semantics

(
M(σ,W)

)
(3, 15) for the subsignal σ

(
[3, 15)

)
is 5, which is the value at (3, 15)

in the right of Fig. 5.1. This is because the distance between the first constraint x < 15 and
the first valuation x = 10 of the subsignal σ

(
[3, 15)

)
is 5, and the distance between the second

constraint x > 5 and the valuations x = 10 and x = 40 of the subsignal σ
(
[3, 15)

)
is not smaller

than 5. The semantics
(
M(σ,W)

)
(10, 15) for the subsignal σ

(
[10, 15)

)
is −25, which is the

value at (10, 15) in the right of Fig. 5.1. Thus, the subsignal σ
(
[3, 15)

)
satisfies the condition

specified in W more robustly than the subsignal σ
(
[10, 15)

)
.

Our algorithm is online and it starts returning the result before obtaining the entire signal
σ. For example, after obtaining the subsignal σ

(
[0, 7.5)

)
of the initial 7.5 s, our algorithm

returns that for any [t, t′) ⊆ [0, 7.5), the score
(
M(σ,W)

)
(t, t′) is 5. �

5.1. Summary 83

timed automaton zone graph Boolean
semantics

timed automaton
+

weight

zone graph
+

weight

quantitative
semantics

Online Algorithm for (Qualitative) Timed Pattern Matching in [BFN+18]

Online Algorithm for Quantitative Timed Pattern Matching (This Chapter)

zone construction
in Section 2.3

Reachability Checking
(shortest distance for
Boolean semiring)

zone construction
in Section 2.3

shortest distance
for semiring

Figure 5.2: High level comparison between [BFN+18] and our contribution: our contribution
is a generalization of [BFN+18] from Boolean semiring to semiring in general

`0, x < 15 `1, x > 5 `2,>
c < 5 /c := 0 c < 10

κr
(
u, (a1a2 . . . am)

)
= inf
i∈{1,2,...,n}

κr(u, (ai))

κr
(n∧
i=1

(vi ./i di), (a)
)

= inf
i∈{1,2,...,n}

κr(vi ./i di, (a)) where ./i∈ {>,≥,≤, <}

κr(v � d, (a)) = a(x)− d where �∈ {≥, >}
κr(v ≺ d, (a)) = d− a(x) where ≺∈ {≤, <}

Figure 5.3: Example of a TSWA W = (A, κr) which is the pair of the TSA A (upper) and the
cost function κr (lower). See Definition 5.5 for the precise definition.
Our solution We formulate quantitative timed pattern matching using the shortest dis-
tance [Moh09] of semiring-valued (potentially infinite) weighted graphs. We reduce it to the
shortest distance of finite weighed graphs. This is in contrast with the qualitative setting: the
semantics is defined by the reachability in a (potentially infinite) graph and it is reduced to
the reachability in a finite graph. The following is an overview.

Problem formulation We introduce timed symbolic weighted automata (TSWAs) and define
the (quantitative) semantics α(σ,W) of a signal σ with respect to a TSWAW. Moreover,
we define quantitative timed pattern matching for a signal and a TSWA. A TSWA W is
a pair (A, κ) of a timed symbolic automaton (TSA) A — that we also introduce in this
chapter — and a cost function κ. The cost function κ returns a semiring value at each
transition of A, and the semiring operations specify how to accumulate such values over
time. This algebraic definition makes our problem general. Fig. 5.3 shows an example of
a TSWA.

Algorithm by zones We give an algorithm for computing our semantics α(σ,W) of a signal
σ by the shortest distance of a finite weighted graph. The constructed weighted graph is

84
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

W

weight0
shortest
distance

aτ1
1

weight1
shortest
distance

aτ2
2

weight2 · · ·

· · ·

weightn

M(aτ1
1 ,W) M(aτ1

1 a
τ2
2 ,W) M(σ,W)

compute the
partial result

compute the
partial result

compute the
entire result

Figure 5.4: Illustration of our online algorithm for quantitative timed pattern matching of a
signal σ = aτ1

1 a
τ2
2 . . . aτnn meaning “the signal value is a1 for τ1, the signal value is a2 for the

next τ2, . . .” and a TSWA W. The intermediate data weighti for the weight computation is
represented by zones. The precise definition of the weighti is introduced later in Definition 5.14.

much like the zone graph [BY03b] for reachability analysis of timed automata. See also
Section 2.3. Our algorithm is general and works for any semantics defined on an idem-
potent and complete semiring. (See Example 5.4 later for examples of such semirings.)

Incremental and online algorithms We present an incremental algorithm for computing
the semantics α(σ,W) of a signal σ with respect to the TSWA W. Based on this incre-
mental algorithm for computing α(σ,W), we present an online algorithm for quantitative
timed pattern matching. To the best of our knowledge, this is the first online algorithm
for quantitative timed pattern matching. Our online algorithm for quantitative timed
pattern matching works incrementally, much like in dynamic programming. Fig. 5.4 shows
an illustration.

Contribution We summarize our contributions as follows.

• We formulate the semantics of a signal with respect to a TSWA by the shortest distance
of a potentially infinite weighted graph.

• We reduce the above graph to a finite weighted graph.

• We give an online algorithm for quantitative timed pattern matching.

5.2 Preliminary

For a setX, its powerset is denoted by P(X). We use ε to represent the empty sequence. All the
signals in this chapter are piecewise-constant, which is one of the most common interpolation
methods of sampled signals.

Definition 5.2 (signal). Let X be a finite set of variables defined over a data domain D. A
(piecewise-constant) signal σ is a sequence σ = aτ1

1 a
τ2
2 . . . aτnn , where for each i ∈ {1, 2, . . . , n},

ai ∈ DV and τi ∈ R>0. The set of signals over DV is denoted by T (DV). The duration ∑n
i=1 τi

of a signal σ is denoted by |σ|. The sequence a1 ◦ a2 ◦ · · · ◦ an of the values of a signal σ is
denoted by Values(σ), where a ◦ a′ is the absorbing concatenation

a ◦ a′ =
{
aa′ if a 6= a′

a if a = a′
.

5.2. Preliminary 85

We denote the set {a1 ◦ a2 ◦ . . . ◦ an | n ∈ Z≥0, a1, a2, . . . , an ∈ DV} by (DV)~. For t ∈ [0, |σ|),
we define σ(t) = ak, where k is such that ∑k−1

i=1 τi ≤ t <
∑k
i=1 τi. For an interval [t, t′) ⊆

[0, |σ|), we define σ([t, t′)) = a

∑k

i=1 τi−t
k a

τk+1
k+1 . . . a

τl−1
l−1 . . . a

t′−
∑l−1

i=1 τi
l , where k and l are such that∑k−1

i=1 τi ≤ t <
∑k
i=1 τi and

∑l−1
i=1 τi < t′ ≤

∑l
i=1 τi.

�

Definition 5.3 (semiring). A system S = (S,⊕,⊗, e⊕, e⊗) is a semiring if we have the follow-
ing.

• (S,⊕, e⊕) is a commutative monoid with identity element e⊕.

• (S,⊗, e⊗) is a monoid with identity element e⊗.

• For any s, s′, s′′ ∈ S, we have (s ⊕ s′) ⊗ s′′ = (s ⊗ s′′) ⊕ (s′ ⊗ s′′) and s ⊗ (s′ ⊕ s′′) =
(s⊗ s′)⊕ (s⊗ s′′).

• For any s ∈ S, we have e⊕ ⊗ s = s⊗ e⊕ = e⊕.

�

A semiring (S,⊕,⊗, e⊕, e⊗) is complete if for any S′ ⊆ S, ⊕s∈S′ s is an element of S
satisfying the following.⊕

s∈S′
s = e⊕ if S′ = ∅

⊕
s∈S′

s = s if S′ = {s}
⊕
s∈S′

s =
⊕
i∈I

(⊕
s∈S′i

s
)

for any partition S′ =
∐
i∈I

S′i

s⊗
(⊕
s′∈S′

s′
)

=
⊕
s′∈S′

(s⊗ s′) and
(⊕
s∈S′

s
)
⊗ s′ =

⊕
s∈S′

(s⊗ s′) for any s ∈ S

A semiring S = (S,⊕,⊗, e⊕, e⊗) is idempotent if for any s ∈ S, s ⊕ s = s holds. For a
semiring (S,⊕,⊗, e⊕, e⊗) and s1, s2, . . . , sn ∈ S, we denote ⊕n

i=1 si = s1 ⊕ s2 ⊕ · · · ⊕ sn and⊗n
i=1 si = s1 ⊗ s2 ⊗ · · · ⊗ sn.

Example 5.4. All the following four semirings are complete and idempotent.

Boolean semiring ({>,⊥},∨,∧,⊥,>)

Sup-inf semiring (Rq {±∞}, sup, inf,−∞,+∞)

Tropical (inf-plus) semiring (Rq {+∞}, inf,+,+∞, 0)

Sup-plus semiring (Rq {−∞}, sup,+,−∞, 0)

�

Let S = (S,⊕,⊗, e⊕, e⊗) be a semiring and G = (V,E,W) be a weighted graph over S, i. e.,
V is the finite set of vertices, E ⊆ V × V is the finite set of edges, and W : V × V → S is the
weight function. For Vfrom, Vto ⊆ V , the shortest distance from Vfrom to Vto is

Dist(Vfrom, Vto, V, E,W) =
⊕

v∈Vfrom,v′∈Vto

.
⊕

v=v1v2...vn=v′∈Paths(G)

n−1⊗
i=1

W (vi, vi+1) ,

86
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

where Paths(G) is the set of paths in the directed graph G, i. e.,

Paths(G) =
{
v1v2 . . . vn | ∀i ∈ {1, 2, . . . , n− 1}. , (vi, vi+1) ∈ E

}
.

For any complete semiring, the shortest distance problem can be solved by a generalization of
the Floyd-Warshall algorithm [Moh09]. Under some conditions, the shortest distance problem
can be solved more efficiently by a generalization of the Bellman-Ford algorithm [Moh09].

5.3 Timed symbolic weighted automata
We propose timed symbolic automata (TSAs), timed symbolic weighted automata (TSWAs),
and the (quantitative) semantics of TSWAs. TSAs are an adaptation of timed automata [AD94]
for handling signals over D rather than signals over a finite alphabet. In the remainder of this
chapter, we assume that the data domain D is equipped with a partial order ≤. A typical
example of the data domain D is the reals R with the usual order. We note that TSAs
are much like the state-based variant of timed automata [ACM97, BFN+18] rather than the
original, event-based definition [AD94] in Section 2.2.

For a finite set V of variables and a poset (D,≤), we denote by Φ(V,D) the set of constraints
defined by a finite conjunction of inequalities v ./ d, where v ∈ V, d ∈ D, and ./ ∈ {>,≥, <,≤}.
We denote ∧ ∅ ∈ Φ(V,D) by >. For a finite set X of clock variables, a clock valuation is a
function ν ∈ (R≥0)X. For a clock valuation ν ∈ (R≥0)X over X and X′ ⊆ X, we let ν↓X′ ∈
(R≥0)X′ be the clock valuation over X′ satisfying ν↓X′(x) = ν(x) for any x ∈ X′. For a finite
set X of clock variables, let 0X be the clock valuation 0X ∈ (R≥0)X satisfying 0X(x) = 0 for any
x ∈ X. For a clock valuation ν over X and τ ∈ R≥0, we denote by ν+τ the valuation satisfying
(ν + τ)(x) = ν(x) + τ for any x ∈ X. For a clock valuation ν ∈ (R≥0)X and R ⊆ X, we denote
by [ν]R the valuation such that ([ν]R)(x) = 0 for x ∈ R and ([ν]R(x) = ν(x) for x 6∈ R.

The definitions of TSAs and TSWAs are as follows. As shown in Fig. 5.3, TSAs are similar
to the timed automata in [ACM97, BFN+18], but the locations are labeled with a constraint
on the signal values DV instead of a character in a finite alphabet.

Definition 5.5 (timed symbolic, timed symbolic weighted automata). For a poset (D,≤), a
timed symbolic automaton (TSA) over D is a 7-tuple A = (V, L, L0, LF ,X,∆,Λ), where:

• V is a finite set of variables over D;

• L is the finite set of locations;

• L0 ⊆ L is the set of initial locations;

• LF ⊆ L is the set of accepting locations;

• X is the finite set of clock variables;

• ∆ ⊆ L× Φ(X,Z≥0)× P(X)× L is the set of transitions; and

• Λ is the labeling function Λ : L→ Φ(V,D).

For a poset (D,≤) and a complete semiring S = (S,⊕,⊗, e⊕, e⊗), a timed symbolic weighted
automaton (TSWA) over D and S is a pair W = (A, κ) of a TSA A over D and a cost function
κ : Φ(V,D)× (DV)~ → S over S. �

5.3. Timed symbolic weighted automata 87

The semantics of a TSWAW = (A, κ) on a signal σ is defined by the trace value α(S) of the
weighted timed transition systems (WTTS) S of σ and W. The trace value α(S) depends on
the cost function κ and implicitly on its range semiring S as well as the signal σ and the TSA A.
As shown below, the state space of a WTTS S is Q = L×(R≥0)X× [0, |σ|]×(DV)~. Intuitively,
a state (`, ν, t, a) ∈ Q of S consists of: the current location `; the current clock valuation ν;
the current absolute time t; and the observed signal value a after the latest transition. The
transition → of S is for a transition of A or time elapse.

Definition 5.6 (weighted timed transition systems). For a signal σ ∈ T (DV) and a TSWA
W = (A, κ) over the data domain D and semiring S, the weighted timed transition system
(WTTS) S = (Q,Q0, QF ,→,W) is as follows, where A = (V, L, L0, LF ,X,∆,Λ) is a TSA over
D and κ is a cost function over S.

• Q = L× (R≥0)X × [0, |σ|]× (DV)~

• Q0 = {(`0,0C , 0, ε) | `0 ∈ L0}

• QF = {(`F , ν, |σ|, ε) | `F ∈ LF , ν ∈ (R≥0)X}

• → ⊆ Q×Q is the relation such that
(
(`, ν, t, a), (`′, ν ′, t′, a′)

)
∈ → if and only if either of

the following holds.

(transition of A) ∃(`, g, R, `′) ∈ ∆ satisfying ν |= g, ν ′ = [ν]R, t′ = t, a′ = ε, and a 6= ε

(time elapse) ∃τ ∈ R>0 satisfying ` = `′, ν ′ = ν + τ , t′ = t + τ , and a′ = a ◦
Values(σ([t, t+ τ)))

• W
(
(`, ν, t, a), (`′, ν ′, t′, a′)

)
is κ(Λ(`), a) if a′ = ε; and e⊗ if a′ 6= ε

�

Definition 5.7 (trace value). For a WTTS S = (Q,Q0, QF ,→,W), the trace value α(S) is
the shortest distance Dist(Q0, QF , Q,→,W) from Q0 to QF . �

For a signal σ and a TSWA W, by α(σ,W), we denote the trace value α(S) of the WTTS
S of σ and W.

Example 5.8. By changing the semiring S and the cost function κ, various semantics can
be defined by the trace value. Let D = R. For the Boolean semiring ({>,⊥},∨,∧,⊥,>) in
Example 5.4, the following function κb is a prototypical example of a cost function, where
u ∈ Φ(V,D) and (a1a2 . . . am) ∈ (DV)~.

κb
(
u, (a1a2 . . . am)

)
=

m∧
i=1

κb(u, (ai))

κb
(n∧
i=1

(vi ./i di), (a)
)

=
n∧
i=1

κb
(
vi ./i di, (a)

)
where ./i∈ {>,≥,≤, <}

κb(v ./ d, (a)) =
{
> if a |= v ./ d

⊥ if a 6|= v ./ d

For the sup-inf semiring (Rq{±∞}, sup, inf,−∞,+∞) in Example 5.4, the trace value defined
by the cost function κr in Fig. 5.3 captures the essence of the so-called space robustness [FP09,

88
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

BFMU17]. For the tropical semiring (R q {+∞}, inf,+,+∞, 0) in Example 5.4, an example
cost function κt is as follows.

κt
(
u, (a1a2 . . . am)

)
=

n∑
i=1

κr(u, (ai))

κt
(n∧
i=1

(vi ./i di), (a)
)

=
n∑
i=1

κt(vi ./i di, (a)) where ./i∈ {>,≥,≤, <}

κt(v � d, (a)) = a(v)− d where �∈ {≥, >}
κt(v ≺ d, (a)) = d− a(v) where ≺∈ {≤, <}

�

The preference between these semantics depends on the usage scenario. For example, as
shown in Example 1.13, the quantitative semantics with sup-plus semiring compensates the
“unsafe” values by “safe” values. This semantics may be an option, e. g., for costs or energy
consumption, but not suitable, e. g., for physical distance because we cannot compensate a col-
lision of cars with very long inter-vehicular distance. Nevertheless, the quantitative semantics
by the sup-inf semantics would be the standard semantics thanks to the intuition in Fig. 1.16.

Example 5.9. LetW = (A, κ) be a TSWA over R and S, whereA is the TSA over R in Fig. 5.3,
σ be the signal σ = {x = 10}2.5{x = 40}1.0{x = 60}3.0. When S = (Rq{±∞}, sup, inf,−∞,+∞)
and κ is the cost function κr in Example 5.8, we have α(σ,W) = 5. When S = (R q
{+∞}, inf,+,+∞, 0) and κ is the cost function κt in Example 5.8, we have α(σ,W) = 35. �

5.4 Quantitative timed pattern matching
Using TSWAs, we formulate quantitative timed pattern matching as follows.
Quantitative timed pattern matching problem:
Input: a TSWA W over the data domain D and complete semiring S, and a signal
σ ∈ T (DV)
Problem: compute the quantitative matching functionM(σ,W) : dom(σ)→ S such that
(M(σ,W))(t, t′) = α

(
σ
(
[t, t)

)
,W

)
, where dom(σ) = {(t, t′) | 0 ≤ t < t′ ≤ |σ|} and S is the

underlying set of S.

Example 5.10. LetW be the TSWA shown in Fig. 5.3, which is defined over R and the sup-inf
semiring (Rq{±∞}, sup, inf,−∞,+∞), and σ be the signal σ = {x = 10}7.5{x = 40}10.0{x = 60}13.0.
The quantitative matching functionM(σ,W) is as follows. Fig. 5.1 shows an illustration.

(
M(σ,W)

)
(t, t′) =

5 when t ∈ [0, 7.5), t′ ∈ (0, 17.5], t′ − t < 10 or
t ∈ [0, 7.5), t′ ∈ (10, 17.5], t′ − t ∈ [10, 15)

−25 when t ∈ [7.5, 17.5), t′ ∈ (7.5, 27.5], t′ − t < 10 or
t ∈ [2.5, 17.5), t′ ∈ (17.5, 27.5], t′ − t ∈ [10, 15)

−45 when t ∈ [17.5, 30.5), t′ ∈ (17.5, 30.5], t′ − t < 10 or
t ∈ [12.5, 30.5), t′ ∈ (27.5, 30.5], t′ − t ∈ [10, 15)

�

5.5. Trace value computation by shortest distance 89

Although the domain
{
(t, t′)

∣∣ 0 ≤ t < t′ ≤ |σ|
}
of the quantitative matching function

M(σ,W) is an infinite set,M(σ,W) is a piecewise-constant function with finitely many pieces.
Moreover, each piece of M(σ,W) can be represented by zones in Section 2.3, much like the
case of timed pattern matching in Section 2.4. We denote the set of zones over X by Z(X).

Theorem 5.11. For any TSWA W over D and S and for any signal σ ∈ T (DV), there is
a finite set {(Z1, s1), (Z2, s2), . . . , (Zn, sn)} ⊆ Z({xbegin, xend}) × S such that Z1, Z2, . . . , Zn
is a partition of the domain {(t, t′) | 0 ≤ t < t′ ≤ |σ|}, and for any [t, t′) ⊆ R≥0 satisfying
0 ≤ t < t′ ≤ |σ|, there exists i ∈ {1, 2, . . . , n} and ν ∈ Zi satisfying ν(xbegin) = t, ν(xend) = t′,
and (M(σ,W))(t, t′) = si.

5.5 Trace value computation by shortest distance

We present an algorithm to compute the trace values α(S). Since a WTTS possibly has
infinitely many states and transitions (see Definition 5.6), we need a finite abstraction of it.
We use zone-based abstraction for what we call weighted symbolic timed transition systems
(WSTTSs). In addition to the clock variables in the TSA, we introduce a fresh clock variable
T to represent the absolute time.

Definition 5.12 (weighted symbolic timed transition system). For a TSWA W = (A, κ) over
the data domain D and complete semiring S, and a signal σ = aτ1

1 a
τ2
2 . . . aτnn ∈ T (DV), where

A = (V, L, L0, LF ,X,∆,Λ), the weighted symbolic timed transition system (WSTTS) is the
5-tuple Ssym = (Qsym, Qsym

0 , Qsym
F ,→sym,W sym) defined as follows.

• Qsym = {(`, Z, a) ∈ L × Z(X q {T}) × (DV)~ | Z 6= ∅, ∀ν ∈ Z. ν(T) ≤ |σ|, a = ε or a ◦
σ(ν(T)) = a}

• Qsym
0 = {(`0, {0Xq{T}}, ε) | `0 ∈ L0}

• Qsym
F = {(`F , Z, ε) | `F ∈ LF ,∃ν ∈ Z. ν(T) = |σ|}

• →sym ⊆ Qsym × Qsym is the relation such that
(
(`, Z, a), (`′, Z ′, a′)

)
∈ →sym if and only

if one of the following holds.

(transition of A) there exists (`, g, R, `′) ∈ ∆, satisfying Z ′ = {[ν]R | ν ∈ Z, ν |= g},
a 6= ε, and a′ = ε.

(punctual time elapse) ` = `′, a′ = a ◦ Values(σ([ν̃(T), ν̃ ′(T)))), and there is i ∈
{1, 2, . . . , n} satisfying Z ′ = {ν + τ | ν ∈ Z, τ ∈ R>0, ν(T) + τ = ∑i

j=0 τj}, where
ν̃ ∈ Z, ν̃ ′ ∈ Z ′1.

(non-punctual time elapse) ` = `′, a′ = a ◦Values(σ([ν̃(T), ν̃ ′(T)))), and there is i ∈
{1, 2, . . . , n} satisfying Z ′ = {ν+τ | ν ∈ Z, τ ∈ R>0,

∑i−1
j=0 τj < ν(T)+τ <∑i

j=0 τj},
where ν̃ ∈ Z, ν̃ ′ ∈ Z ′.

• W sym((`, Z, a), (`′, Z ′, a′)
)
is κ(Λ(`), a) if a′ = ε; and e⊗ if a′ 6= ε

�

90
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

`0
c = T = 0, ε

`0
0 < c = T < 3, 5

a1

`1
0 = c < T < 3.5

ε

`1
0 = c < T = 3.5

ε

`1
0 < c < T = 3.5

a1

`1
0 < c < T < 3.5

a1

`1
0 = c < T ∈ (3.5, 5)

ε

`1
0 < c < T ∈ (3.5, 7)

a2

`1
0 < c < T = 7.0

a2

`0
0 < c = T = 3.5

a1

`0
3.5 < c = T < 7.0

a1a2

`1
0 < c < T ∈ (3.5, 7)

a1a2

`1
0 < c < T = 7.0

a1a2

`2
0 < c < T = 7, ε

+∞ (= e⊗)

+∞ (= e⊗)

+∞ (= e⊗)

+∞
(= e⊗)

+∞ (= e⊗)

+∞ (= e⊗)

+∞
(= e⊗)

+∞ (= e⊗)

+∞
(= e⊗)

+∞ (= e⊗)

8
(= κ(u0, a1))

8
(= κ(u0, a1))

3
(= κ(u0, a1a2))

2 (= κ(u1, a1a2))

7
(= κ(u1, a2))

Figure 5.5: WSTTS Ssym of the TSWA W in Fig. 5.3 and the signal σ = a3.5
1 a3.5

2 , where
u0 = x < 15, u1 = x > 5, a1 = {x = 7}, and a2 = {x = 12}. The states unreachable from the
initial state or unreachable to the accepting state are omitted. The transition for time elapse
which can be represented by the composition of other transitions are also omitted. A dashed
transition is for the time elapse and a solid transition is for a transition of A.

Although the state space Qsym of the WSTTS Ssym may be infinite, there are only finitely
many states reachable from Qsym

0 and therefore, we can construct the reachable part of Ssym.
See Appendix B.1 for the proof. An example of a WSTTS is shown in Fig. 5.5. For a WSTTS
Ssym, we define the symbolic trace value αsym(Ssym) as the following shortest distance from
Qsym

0 to Qsym
F .

Dist(Qsym
0 , Qsym

F , Qsym,→sym,W sym)

Theorem 5.13. Let W be a TSWA over D and S, and σ ∈ T (DV) be a signal. Let S and Ssym

be the WTTS (in Definition 5.6) and WSTTS of W and σ, respectively. If S is idempotent,
we have α(S) = αsym(Ssym).

Because of Theorem 5.13, we can compute the trace value α(S) by i) constructing the
reachable part of Ssym; and ii) computing the symbolic trace value αsym(Ssym) using an al-
gorithm for the shortest distance problem. For example, the symbolic trace value of the
WSTTS in Fig. 5.5 is αsym(Ssym) = max{min{8, 2},min{8, 7},min{3, 7}} = 7. However, this
method requires the whole signal to compute the trace value, and it does not suit for the
use in online quantitative timed pattern matching. Instead, we define the intermediate weight
weighti and give an incremental algorithm to compute the trace value α(S). Intuitively, for
each state (`, Z, a) ∈ Qsym of the WSTTS Ssym, the intermediate weight weighti assign the
shortest distance to reach (`, Z, a) by reading the subsignal aτ1

1 a
τ2
2 . . . aτii of σ = aτ1

1 a
τ2
2 . . . aτnn .

Definition 5.14 (incr , weighti). For a TSWA W = (A, κ) over the data domain D and
complete semiring S, a ∈ DV, and t ∈ R>0, the increment function

incr(a, t) : P(L×Z(Xq {T})× (DV)~ × S)→ P(L×Z(Xq {T})× (DV)~ × S)

is as follows, where A = (V, L, L0, LF ,X,∆,Λ) and (Qsym
a,t , Q

sym
a,t,0, Q

sym
a,t,F ,→

sym
a,t ,W

sym
a,t) is the

WSTTS of at and W.

incr(a, t)(w) =
{
(`′, Z ′, a′, s′) ∈ L×Z(Xq {T})× (DV)~ × S

∣∣ ∀ν ′ ∈ Z ′. ν ′(T) = t,

s′ =
⊕

(`,Z,a,s)∈w
s⊗Dist({(`, Z, a)}, {(`′, Z ′, a′)}, Qsym

a,t ,→
sym
a,t ,W

sym
a,t)

}
1The choice of ν̃ and ν̃′ does not change σ(ν̃(T)) and σ(ν̃′(T)) due to the definition of Qsym.

5.6. Online algorithm for quantitative timed pattern matching 91

Algorithm 8: Incremental algorithm for trace value computation
Input: A WSTTS Ssym = (Qsym, Qsym

0 , Qsym
F ,→sym,W sym) of σ = aτ1

1 a
τ2
2 . . . aτn

n and W
Output: R is the symbolic trace value αsym(Ssym)

1 weight ← {(`0, {0Xq{T}}, ε, e⊗) | `0 ∈ L0};R← e⊕
// initialize

2 for i ∈ {1, 2, . . . , n} do
3 weight ← incr(ai, Ti), where Ti =

∑i
k=1 τk

// We have weight = weighti.
4 for (`, Z, a, s) ∈ weight do
5 if (`, Z, a) ∈ Qsym

F then
6 R← R⊕ s

`init,> `0, x < 15 `1, x > 5 `2,>
>/T ′ := 0, c := 0 c < 5/c := 0 c < 10

Figure 5.6: Matching automaton Amatch for the TSA A shown in Fig. 5.3. The fresh initial
location `init and the transition to the original initial location `0 are added.
For a TSWAW over D and S, a signal σ = aτ1

1 a
τ2
2 . . . aτnn , and i ∈ {1, 2, . . . , n}, the intermediate

weight weighti is defined as follows, where Tj = ∑j
k=1 τk.

weighti =
(
incr

(
ai, Ti

)
◦ · · · ◦ incr

(
a1, T1

))
({(`0, {0Xq{T}}, ε, e⊗) | `0 ∈ L0})

�

Because of the following theorem, we can incrementally compute the symbolic trace value
αsym(Ssym), which is equal to the trace value α(σ,W), by Algorithm 8.

Theorem 5.15. For any WSTTS Ssym of a signal σ = aτ1
1 a

τ2
2 . . . aτnn and a TSWA W over D

and S, we have the following, where Qsym
F is the accepting states of Ssym.

αsym(Ssym) =
⊕

(`,Z,a)∈Qsym
F

⊕
(`,Z,a,s)∈weightn

s

5.6 Online algorithm for quantitative timed pattern matching
In quantitative timed pattern matching, we compute the trace value α(σ([t, t′)),W) for each
subsignal σ([t, t′)). In order to try matching for each subsignal σ([t, t′)), we construct the
matching automaton [BFN+18] Amatch from the TSA A. The matching automaton Amatch
is constructed by adding a new clock variable T ′ and a new initial location `init to the TSA
A. The new clock variable T ′ represents the duration from the beginning t of the subsignal
σ([t, t′)). The new location `init is used to start the subsignal in the middle of the signal. We
add transitions from `init to each initial location `init of A, resetting all the clock variables.
Fig. 5.6 shows an example ofAmatch. We also define the auxiliary incr< for our online algorithm
for quantitative timed pattern matching.

Definition 5.16 (matching automaton [BFN+18]Amatch). For a TSAA = (V, L, L0, LF ,X,∆,Λ)
over D, thematching automaton is the TSAAmatch = (V, Lq{`init}, {`init}, LF ,Xq{T ′},∆′,Λ′)

92
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

Algorithm 9: Online algorithm for quantitative timed pattern matching
Input: A signal σ = aτ1

1 a
τ2
2 . . . aτnn and a TSWA W = (A, κ)

Output: M is the quantitative matching functionM(σ,W).
1 Amatch ← the matching automaton of A;
2 weight ← {(`0, {0Xq{T,T ′}}, ε, e⊗) | `0 ∈ L0}; for each [t, t′) ⊆ [0, |σ|), M(t, t′)← e⊕;
3 for i ∈ {1, 2, . . . , n} do
4 weight ← (incr<(ai, Ti))(weight), where Ti = ∑i

k=1 τk;
5 for (`, Z, ε, s) ∈ weight, ν ∈ Z do
6 if ` ∈ LF then
7 M(ν(T ′)− ν(T), ν(T ′))←M(ν(T ′)− ν(T), ν(T ′))⊕ s.;
8 weight ← (incr(ai, Ti))(weight), where Ti = ∑i

k=1 τk;

over D, where the transition is ∆′ = ∆ q {(`init,>,X q {T ′}, `init) | `init ∈ L0}, the labeling
function is Λ′(`init) = >, and Λ′(`) = Λ(`) for ` ∈ L. �

Definition 5.17 (incr<). For a TSWA W = (A, κ) over the data domain D and complete
semiring S, a ∈ DV, and t ∈ R>0, the partial increment function

incr<(a, t) : P(L×Z(Xq {T})× (DV)~ × S)→ P(L×Z(Xq {T})× (DV)~ × S)

is as follows, where A = (V, L, L0, LF ,X,∆,Λ) and (Qsym
a,t , Q

sym
a,t,0, Q

sym
a,t,F ,→

sym
a,t ,W

sym
a,t) is the

WSTTS of the TSWA W and the constant signal at.

incr<(a, t)(w) = {(`′, Z ′, a′, s′) ∈ L×Z(Xq {T})× (DV)~ × S | ∀ν′ ∈ Z ′. ν′(T) < t,

s′ =
⊕

(`,Z,a,s)∈w

s⊗Dist({(`, Z, a)}, {(`′, Z ′, a′)}, Qsym
a,t ,→

sym
a,t ,W

sym
a,t)}

�

Algorithm 9 shows our online algorithm for quantitative timed pattern matching. We
construct the matching automaton Amatch from the TSA A (line 1), and we try matching by
reading each constant subsignal aτii of the signal σ = aτ1

1 a
τ2
2 . . . aτnn much like the illustration in

Fig. 5.4. For each i, first, we consume a prefix aτ
′
i
i of aτii = a

τ ′i
i a

τ ′′i
i and update the intermediate

weight weight (line 4). Then, we update the result M for each weight (`, Z, ε, s) ∈ weight
labelled with an accepting location (line 7). Finally, we consume the remaining part aτ

′′
i
i and

update the intermediate weight weight (line 8).

Complexity discussion In general, the time and space complexities of Algorithm 9 are
polynomial to the length n of the signal σ = aτ1

1 a
τ2
2 . . . aτnn due to the bound of the size of the

reachability part of the WSTTS. On the other hand, if the TSWA has a time-bound and the
sampling frequency of the signal is also bounded (such as in Figs. 5.7 and 5.8), time and space
complexities are linear and constant to the length n of the signal, respectively.

5.7 Experiments
We implemented our online algorithm for quantitative timed pattern matching in C++ and
conducted experiments to answer the following research questions. We suppose that the input

5.7. Experiments 93

Table 5.1: Execution time and memory usage under long signals for Overshoot and Ringing
for sup-inf semiring

|σ| Execution Time [s]
(Overshoot)

Memory Usage [KiB]
(Overshoot)

Execution Time [s]
(Ringing)

Memory Usage [KiB]
(Ringing)

60,000 1.59 7,196.20 13.06 7,949.20
120,000 3.19 7,143.60 26.17 7,924.00
180,000 4.85 7,197.80 39.03 7,960.00
240,000 6.44 7,160.60 52.06 7,977.60
300,000 8.07 7,165.60 65.19 7,912.20
360,000 9.71 7,147.20 78.13 7,953.60
420,000 11.40 7,197.80 91.37 7,961.20
480,000 13.01 7,195.60 104.12 7,933.20
540,000 14.60 7,160.00 117.49 7,966.40
600,000 16.28 7,202.80 131.00 7,972.40

piecewise-constant signals are interpolations of the actual signals by sampling. Our implemen-
tation QTPM is in https://github.com/MasWag/qtpm.

RQ1 Is the practical performance of Algorithm 9 realistic?

RQ2 Is Algorithm 9 online capable, i. e., does it perform in linear time and constant space,
with respect to the number of the entries in the signal?

RQ3 Can Algorithm 9 handle denser logs, i. e., what is the performance with respect to the
sampling frequency of the signal?

RQ4 What is the shortest sampling interval QTPM can handle?

We conducted the experiments on an Amazon EC2 c4.large instance (2 vCPUs and 3.75 GiB
RAM) running Ubuntu 18.04 LTS (64 bit). We compiled QTPM by GCC-4.9.3. For the
measurement of the execution time and memory usage, we used GNU time and took an average
of 20 executions. We could not compare with [BFMU17] because their implementation is not
publicly available.

As the complete semiring S, we used the sup-inf semiring (R q {±∞}, sup, inf,−∞,+∞)
and the tropical semiring (Rq{+∞}, inf,+,+∞, 0) in Example 5.4. We used the cost functions
κr in Example 5.8 for the sup-inf semiring, and κt in Example 5.8 for the tropical semiring.

Benchmarks We used the automotive benchmark problems shown in Figs. 5.7 to 5.9. A
summary of quantitative timed pattern matching is on the right of each figure. The speci-
fied behaviors in the TSWAs are taken from ST-Lib [KJD+16] and known to be useful for
automotive control applications.

RQ1: practical performance Figs. 5.10 and 5.11 and Tables 5.1 to 5.4 show the execution
time and memory usage of our quantitative timed pattern matching for the TSWAs W and
signals σ. Here, we fixed the sampling frequency to be 0.1 Hz and changed the duration |σ| of
the signal from 60,000 s to 600,000 s in Overshoot and Ringing, and from 1,000 s to 10,000
s in Overshoot (Unbounded).

In Fig. 5.10, we observe that QTPM handles the log with 60,000 entries for Overshoot,
in less than 20 s with less than 7.1 MiB of memory usage, and for Ringing, in about 1 or 2
minutes with less than 7.8 MiB of memory usage. In Fig. 5.11, we observe that QTPM handles
the log with 10,000 entries in less than 120 s with less than 250 MiB of memory usage for

https://github.com/MasWag/qtpm

94
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

vref < 35
|v − vref | < 10

vref > 35
|v − vref | > 10 >

c < 10 c < 150

 450 550 650 t 450

 550

 650
t'

-14

-10

-6

-2

 450 550 650 t 450

 550

 650
t'

0

30

60

90

Figure 5.7: Overshoot: The set of input signals is generated by the cruise control model [cru].
The TSA is for the settling when the reference value of the velocity is changed from vref < 35
to vref > 35. The left and right maps are for the sup-inf and tropical semirings, respectively.

rise

>

fall

>

>

c1 < 20
c2 < 80

c1 < 20
c2 < 80

c1 < 20, c2 < 80
/c1 := 0

c1 < 20
c2 < 80

c1 < 20
c2 < 80

 0 30 60 90 120 t 0

 30

 60

 90

 120t'

-29

-22

-15

-8

 0 30 60 90 120 t 0

 30

 60

 90

 120t'

-19

-16

-13

-10

Figure 5.8: Ringing: The set of input signals is generated by the same model [cru] as that in
Overshoot. The TSA is for the frequent rise and fall of the signal in 80 s. The constraints
rise and fall are rise = v(t) − v(t − 10) > 10 and fall = v(t) − v(t − 10) < −10. The left and
right maps are for the sup-inf and tropical semirings, respectively.

vref < 35
|v − vref | < 10

vref > 35
|v − vref | > 10 >

c < 10 >

 450 550 650 t 450

 550

 650
t'

-14

-10

-6

-2

 450 550 650 t 450

 550

 650
t'

0

30

60

90

120

Figure 5.9: Overshoot (Unbounded): The set of input signals is generated by the same
model [cru] as that in Overshoot. The TSA is almost the same as that in Overshoot, but
the time-bound (c < 150) is removed. The left and right maps are for the sup-inf and tropical
semirings, respectively.

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

Ex
ec

ut
io

n
tim

e
[s]

Number of entries of the signal [×10, 000]

Overshoot, sup-inf
Ringing sup-inf

Overshoot, tropical
Ringing tropical

6.9
7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

0 1 2 3 4 5 6

M
em

or
y

us
ag

e
[M

iB
]

Number of entries of the signal [×10, 000]

Overshoot, sup-inf
Ringing, sup-inf

Overshoot, tropical
Ringing, tropical

Figure 5.10: Change in execution time (left) and memory usage (right) for Overshoot and
Ringing with the number of the entries of the signals

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
tim

e
[s]

Number of entries of the signal [×100]

Overshoot (Unbounded), sup-inf
Overshoot (Unbounded), tropical

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
[M

iB
]

Number of entries of the signal [×100]

Overshoot (Unbounded), sup-inf
Overshoot (Unbounded), tropical

Figure 5.11: Change in execution time (left) and memory usage (right) for Overshoot (Un-
bounded) with the number of the entries of the signals

5.7. Experiments 95

Table 5.2: Execution time and memory usage under long signals for Overshoot (Un-
bounded) for sup-inf semiring

|σ| Execution Time [s] Memory Usage [KiB]
1,000 0.14 9,050.60
2,000 0.92 14,633.80
3,000 2.97 23,667.80
4,000 6.79 36,452.00
5,000 13.46 52,806.80
6,000 23.22 72,639.40
7,000 36.86 96,220.80
8,000 55.63 123,263.00
9,000 79.23 153,900.00
10,000 112.15 188,054.00

Table 5.3: Execution time and memory usage under long signals for Overshoot and Ringing
for tropical semiring

|σ| Execution Time [s]
(Overshoot)

Memory Usage [KiB]
(Overshoot)

Execution Time [s]
(Ringing)

Memory Usage [KiB]
(Ringing)

60,000 1.92 7,292.80 6.67 7,678.80
120,000 3.86 7,273.00 13.17 7,680.00
180,000 5.83 7,278.00 19.79 7,710.80
240,000 7.76 7,315.40 26.30 7,704.00
300,000 9.75 7,304.80 32.88 7,703.20
360,000 11.69 7,287.80 39.35 7,709.40
420,000 13.67 7,288.00 46.11 7,712.00
480,000 15.64 7,281.80 52.73 7,737.20
540,000 17.57 7,283.40 59.20 7,728.00
600,000 19.48 7,266.00 65.67 7,737.60

Table 5.4: Execution time and memory usage under long signals for Overshoot (Un-
bounded) for tropical semiring

|σ| Execution Time [s] Memory Usage [KiB]
1,000 0.18 9,799.40
2,000 1.16 16,840.40
3,000 3.59 28,256.20
4,000 8.22 44,139.40
5,000 15.75 64,509.40
6,000 27.34 89,218.40
7,000 43.33 118,498.00
8,000 64.29 152,075.00
9,000 90.74 190,065.00
10,000 122.87 232,474.00

Overshoot (Unbounded). Although the quantitative timed pattern matching problem is
complex, we conclude that its practical performance is realistic.

RQ2: change in speed and memory usage with signal size Figs. 5.10 and 5.11 and Ta-
bles 5.1 to 5.4 show the execution time and memory usage of our quantitative timed pattern
matching. See RQ1 for the detail of our experimental setting.

In Fig. 5.10, for the TSAs with time-bound, we observe that the execution time is linear
with respect to the duration |σ| of the input signals and the memory usage is more or less
constant with respect to the duration |σ| of the input signals. This performance is essential
for a monitor to keep monitoring a running system.

96
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 0.5 1 1.5 2 2.5 3 3.5 4

Ex
ec

ut
io

n
tim

e
[s]

Sampling frequency [Hz]

Overshoot, sup-inf
Ringing, sup-inf

Overshoot, tropical
Ringing, tropical

0

200

400

600

800

1000

1200

1400

0 0.5 1 1.5 2 2.5 3 3.5 4

M
em

or
y

us
ag

e
[M

iB
]

Sampling frequency [Hz]

Overshoot, sup-inf
Ringing, sup-inf

Overshoot, tropical
Ringing, tropical

Figure 5.12: Change in execution time (left) and memory usage (right) for Overshoot and
Ringing with the sampling frequency

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
tim

e
[s]

Sampling interval [s]

Simulation time
Overshoot, sup-inf

Ringing, sup-inf
Overshoot, tropical

Ringing, tropical

Figure 5.13: Change in execution time for Overshoot and Ringing with the sampling interval
In Fig. 5.11, for the TSA without any time-bound, we observe that the execution time is

cubic and the memory usage is quadratic with respect to the number of the entries in |σ|. The
memory usage increases quadratically with the number of the entries because the intermediate
weight weightj has an entry for each initial interval [τi, τi+1) of the trimming and for each
interval [τk, τk+1) where the transition occurred. The execution time increases cubically with
respect to the number of the entries because the shortest distance is computed for each entry
of weightj . However, we note that our quantitative timed pattern matching still works when
the number of the entries is relatively small.

RQ3: change in speed and memory usage with sampling frequency Fig. 5.12 and Ta-
bles 5.5 and 5.6 show the execution time and memory usage of QTPM for each TSWA W and
signal σ of Overshoot and Ringing. Here, we fixed the number of the entries to be 6,000
and changed the sampling frequency from 0.1 Hz to 4.0 Hz i. e., the simulated time is 6,000
sec. for 1.0Hz and 60,000 sec. for 0.1 Hz.

In Fig. 5.12, we observe that the execution time is cubic, and the memory usage is more
or less quadratic with respect to the sampling frequency of the signals. This is because the
number of the entries in a certain duration is linear to the sampling frequency, which increases
the number of the reachability states of the WSTTSs quadratically.

RQ4: shortest sampling interval In signal monitoring, the shortest feasible sampling
interval is an important efficiency criterion. This is because by making the sampling interval
shorter, we can make the monitoring result more accurate, while it makes monitoring more
computationally demanding because the algorithm has to handle more information in a certain
length of time. Fig. 5.13 shows the execution time of QTPM with the sampling interval for

5.7. Experiments 97

Table 5.5: Execution time and memory usage under high frequency for Overshoot and
Ringing for sup-inf semiring

Sampling Freq. [Hz] Execution Time [s]
(Overshoot)

Memory Usage [KiB]
(Overshoot)

Execution Time [s]
(Ringing)

Memory Usage [KiB]
(Ringing)

0.1 1.64 · 100 7,123.8 6.42 · 100 7,426.2
0.2 4.76 · 100 7,438.4 1.32 · 101 8,012.2
0.3 9.35 · 100 7,986 2.53 · 101 8,635.2
0.4 1.50 · 101 8,730.8 4.37 · 101 9,657.8
0.5 2.26 · 101 9,731.4 8.43 · 101 11,310.6
0.6 3.24 · 101 11,160.2 1.33 · 102 13,344.6
0.7 4.41 · 101 13,153 1.93 · 102 15,191.8
0.8 5.74 · 101 15,716.2 2.49 · 102 17,829.4
0.9 7.46 · 101 18,890.4 2.94 · 102 19,620.8
1.0 9.36 · 101 22,688 3.31 · 102 20,763
1.1 1.18 · 102 27,293.6 4.13 · 102 23,025.2
1.2 1.45 · 102 32,736.4 4.50 · 102 27,082.6
1.3 1.80 · 102 38,954.8 5.27 · 102 27,305.6
1.4 2.11 · 102 45,924.2 5.82 · 102 28,909.2
1.5 2.64 · 102 54,422.2 6.89 · 102 35,029.6
1.6 3.05 · 102 63,616 7.25 · 102 35,460.6
1.7 3.70 · 102 74,029 8.40 · 102 39,885.8
1.8 4.17 · 102 85,779.6 9.21 · 102 41,936
1.9 4.99 · 102 98,694.6 1.08 · 103 46,025
2.0 5.64 · 102 112,683.4 1.16 · 103 49,504.8
2.1 6.21 · 102 128,929 1.46 · 103 58,201.2
2.2 7.12 · 102 145,465 1.89 · 103 89,350
2.3 8.30 · 102 163,803.6 2.29 · 103 74,712.8
2.4 9.07 · 102 183,922.8 2.61 · 103 84,850.2
2.5 9.87 · 102 206,233.8 2.87 · 103 79,574.8
2.6 1.07 · 103 230,562 3.41 · 103 96,280
2.7 1.21 · 103 255,283 3.78 · 103 96,124.8
2.8 1.40 · 103 283,075.6 3.81 · 103 114,410
2.9 1.55 · 103 311,450.2 4.30 · 103 122,042.2
3.0 1.65 · 103 342,199.8 4.46 · 103 136,999.8
3.1 1.78 · 103 378,197.2 5.00 · 103 135,252
3.2 1.87 · 103 410,698.8 5.14 · 103 130,856.6
3.3 1.99 · 103 448,147.6 6.02 · 103 155,443.6
3.4 2.19 · 103 487,956 6.12 · 103 139,874.8
3.5 2.42 · 103 529,348.2 6.82 · 103 169,890.8
3.6 2.69 · 103 575,203.8 7.07 · 103 178,998.4
3.7 2.97 · 103 621,682.6 7.32 · 103 188,703.4
3.8 3.20 · 103 671,744.6 7.54 · 103 225,122.6
3.9 3.37 · 103 724,041.8 7.61 · 103 195,706.2
4.0 3.50 · 103 777,275.4 8.38 · 103 208,952.2

each TSWA W and signal σ of Overshoot and Ringing. We used the same experiment
result as RQ3.

In Fig. 5.13, we observe that the execution time is shorter than the simulation time when
the sampling interval is longer than 400 milliseconds. On the one hand, since the sampling
interval of the sensors may be around 10 milliseconds to 100 milliseconds, QTPM is not fast
enough to monitor the raw sensor values. An optimization by an algorithmic improvement
is a future work. On the other hand, as Figs. 5.7 and 5.8 shows, the time-bound of the
benchmarks Overshoot and Ringing are 150 seconds and 80 seconds. This is much longer
than the available sampling intervals, and the performance of QTPM may be enough for some
applications. Overall, although further optimization is a future work, our algorithm is still
online capable for some usage scenarios.

98
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

Table 5.6: Execution time and memory usage under high frequency for Overshoot and
Ringing for tropical semiring

Sampling Freq. [Hz] Execution Time [s]
(Overshoot)

Memory Usage [KiB]
(Overshoot)

Execution Time [s]
(Ringing)

Memory Usage [KiB]
(Ringing)

0.1 2.08 · 100 7,097.8 6.03 · 100 7,336.4
0.2 6.92 · 100 7,444.4 1.12 · 101 7,717.8
0.3 1.45 · 101 8,192.6 1.70 · 101 8,166.8
0.4 2.41 · 101 9,212 2.60 · 101 8,868.4
0.5 3.72 · 101 10,920.2 3.93 · 101 9,991.6
0.6 5.57 · 101 13,281.8 6.39 · 101 11,461.6
0.7 7.88 · 101 16,497.8 8.59 · 101 12,472.2
0.8 1.06 · 102 20,371.2 1.08 · 102 13,337
0.9 1.43 · 102 25,628.8 1.19 · 102 14,434.8
1.0 1.85 · 102 31,701.2 1.20 · 102 14,840
1.1 2.44 · 102 39,399 1.18 · 102 14,884.8
1.2 3.14 · 102 48,346.8 1.32 · 102 15,669.8
1.3 3.95 · 102 58,905.2 1.34 · 102 16,585.6
1.4 4.69 · 102 70,886 1.32 · 102 15,462.2
1.5 5.73 · 102 84,744.2 1.51 · 102 17,946.4
1.6 6.77 · 102 100,155 1.53 · 102 18,365.6
1.7 8.21 · 102 118,195.8 1.53 · 102 19,729.6
1.8 9.19 · 102 138,113.2 1.76 · 102 28,508.8
1.9 1.10 · 103 160,375.4 1.84 · 102 22,240
2.0 1.24 · 103 183,886 2.04 · 102 24,377.4
2.1 1.32 · 103 211,464.6 2.88 · 102 23,809.8
2.2 1.52 · 103 241,210.8 2.83 · 102 28,554
2.3 1.78 · 103 273,248 2.89 · 102 29,372.4
2.4 1.97 · 103 307,758.8 2.89 · 102 30,195.2
2.5 2.11 · 103 345,901.6 3.97 · 102 34,630.8
2.6 2.32 · 103 386,944.8 3.84 · 102 41,156
2.7 2.62 · 103 431,212.6 3.90 · 102 35,633.6
2.8 2.98 · 103 478,369.6 5.10 · 102 44,330.2
2.9 3.29 · 103 529,608 4.39 · 102 43,304.2
3.0 3.49 · 103 583,681 5.29 · 102 46,483.2
3.1 3.74 · 103 642,023.6 7.53 · 102 85,028.6
3.2 3.93 · 103 701,285.2 4.55 · 102 36,554.6
3.3 4.32 · 103 769,337 6.13 · 102 52,744.2
3.4 4.82 · 103 838,889.8 6.45 · 102 49,122.4
3.5 5.34 · 103 912,721 6.52 · 102 59,171.6
3.6 5.92 · 103 990,741.4 7.61 · 102 73,032.6
3.7 6.50 · 103 1,073,107.8 8.83 · 102 65,822.8
3.8 6.97 · 103 1,159,919.2 7.61 · 102 51,009.2
3.9 7.37 · 103 1,251,782.4 6.68 · 102 64,513
4.0 7.64 · 103 1,343,401.6 8.36 · 102 65,017.4

Performance comparison between the benchmarks In Fig. 5.10, we observe that the
execution time and memory usage of Ringing are higher than those of Overshoot. This
is because the TSA of Ringing of is more complex than that of Overshoot: it has more
states and clock variables, and it contains a loop. We also observe that for Ringing, the
execution time for the tropical semiring is shorter. This is because staying at the locations
with > minimizes the weight for tropical semiring, and we need less exploration.

5.8 Related work

Monitoring can be formulated in various ways. They are classified according to the following
criteria. Table 5.7 shows a comparison of the present study with some related studies.

5.8. Related work 99

Table 5.7: Comparison of the problem settings with related studies
Quantitative? Online? Dense time? Result of which part?

[BFN+18] No Yes Yes All subsignals (pattern matching)
[BFMU17] Yes No Yes All subsignals (pattern matching)
[JBGN18] Yes Yes No The whole signal
[DDG+15] Yes Yes Yes The whole signal

This chapter Yes Yes Yes All subsignals (pattern matching)

Qualitative vs. quantitative semantics When an alphabet admits subtraction and com-
parisons, in addition to the qualitative semantics (i. e., true or false), one can define
a quantitative semantics (e. g., robustness) of a signal with respect to the specifica-
tion [FP09, DM10, AH15, BFMU17]. Robust semantics shows how robustly a signal satis-
fies (or violates) the given specification. For instance, the specification v > 70 is satisfied
more robustly by v = 170 than by v = 70.0001. In the context of CPSs, robust seman-
tics for signal temporal logic is used in robustness-guided falsification [Don10, ALFS11].
Weighted automata are used for quantitative monitoring in [CHO16, JBG+18a, JBGN18],
but the time model was discrete.

Offline vs. online Consider monitoring of a signal σ = σ1 · σ2 over a specification W. In
offline monitoring, the monitor returns the result M(σ,W) after obtaining the entire
signal σ. In contrast, in online monitoring, the monitor starts returning the result before
obtaining the entire signal σ. For example, the monitor may return a partial result
M(σ1,W) for the first part σ1 before obtaining the second part σ2.

Discrete vs. dense time In a discrete time setting, timestamps are natural numbers while,
in a dense time setting, timestamps are positive (or non-negative) real numbers.

Result of which part? Given a signal σ, we may be interested in the properties of different
sets of subsignals of σ. The simplest setting is where we are interested only in the whole
signal σ (e. g.,[DDG+15, JBGN18]). Another more comprehensive setting is where we
are interested in the property of each subsignal of σ; problems in this setting are called
timed pattern matching [UFAM14, WAH16, BFMU17].

Timed pattern matching Among these related studies, the line of works on timed pat-
tern matching are closely related. Since the formulation of qualitative timed pattern match-
ing [UFAM14], many algorithms have been presented [UFAM14, UFAM16, WAH16, WHS17,
BFN+18], including the online algorithms [WHS17, BFN+18] using timed automata. In the
consequence, two tools have been presented [Ulu17, WHS18]. Quantitative timed pattern
matching was formulated and solved by an offline algorithm in [BFMU17]. This offline algo-
rithm is based on the syntax trees of signal regular expressions, and it is difficult to extend for
online monitoring.

Online quantitative monitoring The online quantitative monitoring for signal temporal
logic [DDG+15] is also a highly related work. Since we use the clock variables of TSAs to rep-
resent the intervals of timed pattern matching, it seems hard to use the algorithm in [DDG+15]
for quantitative timed pattern matching.

100
Chapter 5. Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted

Automata

5.9 Conclusion and perspectives

5.9.1 Conclusion

Using an automata-based approach, we proposed an online algorithm for quantitative timed
pattern matching. The key idea of this approach is the reduction to the shortest distance of
a weighted graph using zones. Moreover, we utilized an algebraic structure called semiring in
our definition of the semantics and the algorithm. Our algorithm works for various semantics,
e. g., the semantics defined by the sup-inf semiring and the tropical semiring in Example 5.8.

5.9.2 Perspectives

Comparison of the expressiveness of TSWAs with other formalisms e. g., signal temporal logic [MN04]
or signal regular expressions [BFMU17] is future work. Another future work is the comparison
with the quantitative semantics based on the distance between traces presented in [JBGN18].

CHAPTER 6
Model-Bounded Monitoring

of Hybrid Systems

In this chapter, we introduce the model-bounded monitoring problem of hybrid system using
linear hybrid automata (LHAs). This chapter is based on the unpublished joint work [WAH20]
with Étienne André and Ichiro Hasuo. Useful comments from the anonymous referees are
gratefully acknowledged.

Organization of the chapter Section 6.1 summarizes the technical contribution in this
chapter. We recall LHAs in Section 6.2. After we introduce monitored languages Lmon for
LHAs in Section 6.3, model-bounded monitoring is formalized in Section 6.4, and we prove its
correctness. We show that Lmon membership is undecidable in Section 6.5. We present two
partial algorithms: i) the one in Section 6.6 relies on an existing model checker PHAVerLite
via suitable translation; and ii) the one in Section 6.7 is a dedicated algorithm. We perform
extensive experiments in Section 6.8. After reviewing the related work in Section 6.9, we
conclude in Section 6.10.

6.1 Summary
Here, we summarize our contribution from the technical viewpoint. See Section 1.6.4 for a
summary from more application viewpoint.

Hybrid system monitoring In this chapter, we study monitoring of CPSs, with a particular
emphasis on their hybrid aspect (i. e., the interplay between continuous and discrete worlds).

We sketch the workflow of hybrid system monitoring in Fig. 6.1. We are given a specific
behavior σ of the system under monitoring (SUM), and a specification ϕ (in this paper we
focus on safety specifications). The problem is to decide whether σ is safe or not, in the sense
that σ satisfies ϕ. We assume this problem is solved by a computer. Therefore, an input to
a monitor must be a discrete-time signal w, obtained from the continuous-time signal σ via
sampling. We shall call such w a log of the SUM induced by the behavior σ.

101

102 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

system under
monitoring

(SUM)

sensor 
(~ sampler) monitor

“behavior” σ  
(a conti.-time  

signal)

t

x

t

x

“log” w 
(a discr.-time  

signal)

safety  
specification φ

σ ⊧ φ?

Figure 6.1: Hybrid system monitoring and sampling uncertainties

x1x2
(a) Automotive platooning

t0 10 20

40
35

123
117

203
201

(b) The log w. The red circles are x1 and the blue
triangles are x2.

Figure 6.3: A leading example: automotive platooning

t

x

t

x

Figure 6.2: w and σ

Sampling uncertainties in hybrid system monitoring
There is a methodological difficulty already in the high-level
schematics in Fig. 6.1:

By looking only at a sampled log w, how can a mon-
itor say anything decisive about the real behavior σ?

The same log w can result from different behaviors σ. An example is shown in Fig. 6.2, where
we cannot decide if a safety property “x is always nonnegative” is satisfied by σ. In other
words, the way we interpolate the log w and recover σ is totally arbitrary. Therefore, we
cannot exclude potential violations of any safety specification, unless the specification happens
to talk only about values at sampling instants.

t

x

t

xThis issue of sampling uncertainties is often ignored in the
hybrid system monitoring literature. They typically employ
heuristic interpolation methods, such as piecewise-constant and
piecewise-linear interpolation (above). Use of these heuristic in-
terpolation methods is often justified, typically when the sampling rate is large enough. How-
ever, in networked monitoring scenarios where a sensor and a monitor are separated by, e. g.,
a wireless network, the sampling rate is small, and the interpolation of a log becomes a real
issue. Network monitoring is increasingly common in IoT applications, and smaller sampling
rates (i. e., longer sampling intervals) are preferred for energy efficiency.

Example 6.1 (automotive platooning). Consider a situation where two vehicles drive one
after the other, with their distance kept small. Such automotive platooning attracts interest as
a measure for enhanced road capacity as well as for fuel efficiency (by reducing air resistance).

Assume that the monitoring is conducted on a remote server. Each vehicle intermittently
sends its position to the server via the Internet. Thus, only a coarse-grained log is available to
the remote monitor. Concretely, a log w is given in Fig. 6.3b, by the position x1, x2 (meters)
of each of the two vehicles, sampled at time t = 0, 10, 20 (seconds).

Let us now ask this question: have the two vehicles touched each other? Physical contact
of the vehicles is not observed in Fig. 6.3b, but we cannot be sure what happened between the

6.1. Summary 103

sampling instants. The piecewise-constant and piecewise-linear interpolation can only answer
to this question approximately. Moreover, such approximation is not of much help in the
current example where sampling intervals are long. �

Interpolation assisted by system knowledge The following idea underpins the current
work.

Prior knowledge about a system is a powerful tool to bound sampling uncertainties.

The latter means excluding some candidates when we recover a behavior σ from a word w by
interpolation (cf. Fig. 6.2). For the log in Fig. 6.3b, for example, we can say x1 never reached
104, knowing that the vehicle cannot accelerate that quickly.

Putting this idea to actual use requires a careful choice of a knowledge representation
formalism.

• For one, it is desired to be expressive. The above “acceleration rate” argument can be
formulated in terms of Lipschitz constants, but it is nice to also include mode switching—
an important feature of hybrid systems.

• For another, a formalism should be computationally tractable. Monitoring is a practice-
oriented method that often tries to process a large amount of data with limited computing
resources (especially in embedded applications). Therefore, inference over knowledge
represented in the chosen formalism should better be efficient.

Note that these two concerns—expressivity and computational tractability—are in a trade-off.

Bounding models given by LHAs In this chapter, we express such prior knowledge about
a system using a linear hybrid automaton (LHA) [HPR94]. This LHA is called a bounding
model, and serves as an overapproximation of the target system.

LHA is one of the well-known subclasses of hybrid automata (HA); an example is in
Fig. 6.6a. LHA’s notable simplifying feature is that flow dynamics is restricted to a conjunc-
tion of linear (in)equalities over the derivatives ẋ1, ẋ2, . . . , ẋM . Its expressivity is limited—for
example, a flow specification ẋ = Ax + b is not allowed since the variables x occur there.
Differential inclusions are allowed, nevertheless (such as ẋ1 ∈ [7.5, 8.5] and ẋ1 − ẋ2 ≤ 1); these
are useful in expressing known safety envelopes, as in Fig. 6.6a. Most importantly, analysis of
LHAs is tractable, with convex polyhedra providing an efficient means to study the reachability
problem.

Model-bounded hybrid system monitoring Our proposal is a scheme that we callmodel-
bounded monitoring of hybrid systems. Its workflow is in Fig. 6.4; its features are as follows.

1. We use our prior knowledge about the SUM in order to reduce sampling uncertainties.
The knowledge is expressed by an LHA; it is called a bounding model.

2. We restrict to a safety specification ϕ given by a conjunction of linear (in)equalities.1 We
interpret ϕ globally (“σ(t) satisfies ϕ at any time t”). We combine ϕ with the bounding
modelM, obtaining an LHAM¬ϕ.

1This restriction is for the ease of presentation. Extension to LTL specifications should not be hard: an
LTL formula can be translated to an automaton; and it can then be combined with a bounding modelM. This
is future work.

104 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

system under
monitoring

(SUM)

sensor 
(~ sampler)

proposed  
LHA  

monitor

a “behavior” σ  
(a conti.-time  

signal)

t

x

t

x

a “log” w 
(a discr.-time  

signal)

a safety  
specification φ

w ∈ Lmon(ℳ¬φ)?

The LHA
ℳ¬φ

a bounding
model ho  
(an LHA)

ℳ

(raise an alert if yes)

over-  
approximates

Figure 6.4: Model-bounded monitoring of hybrid systems

t0 10 20

40
35

123
117

203
201

Figure 6.5: Model-bounded monitoring of the log w in Fig. 6.3b. The bounding model A in
Fig. 6.6a confines interpolation to the hatched area. Thus, no collision in t ∈ [0, 10]; potential
collision in t ∈ [10, 20].

`0
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

x1 = 40
x2 = 35 `1

ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

x1 − x2 ≤ 4

x1 − x2 ≥ 4

(a) A bounding model A for the platooning
example, expressed as an LHA

`0
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

x1 = 40
x2 = 35 `1

ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

`2
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

`3
ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

x1 − x2 ≤ 4

x1 − x2 ≥ 4

x1 − x2 ≤ 4

x1 − x2 ≥ 4

x1 − x2 ≤ 0 x1 − x2 ≤ 0

(b) The LHA A¬ϕ for ϕ = (x1 − x2 > 0)
Figure 6.6: LHAs for the automotive platooning example

3. We introduce the notion of monitored language Lmon of an LHA. Roughly speaking, it
is the set of “logs which have a corresponding signal accepted by the LHA.” The notion
differs from known language notions for LHA (e. g., in [AKV98]), in that mode switches
in an LHA need not be visible in a log (modes may change between sampling instants).

4. We show the following meta-level correctness result: w ∈ Lmon(M¬ϕ) if and only if there
exists a continuous-time signal σ such that

a) σ induces w by sampling,
b) σ conforms with the bounding modelM, and
c) σ violates the safety specification ϕ.

Our main technical contribution consists of i) the introduction of the new language notion
Lmon, ii) the use of Lmon in the proposed model-bounded monitoring scheme, and iii) (partial)
algorithms that solve Lmon membership. Used in the scheme in Fig. 6.4, these algorithms
check if the given log w belongs to Lmon(M¬ϕ), whose answer is then used for the safety

6.1. Summary 105

analysis of the (unknown) actual behavior σ. The last point is discussed in the next paragraph
about usage scenarios.

We present two (partial) algorithms: one reduces the Lmon membership problem to the
reachability problem of LHAs, translating a log w into an LHA. The other is a direct algorithm
that relies on polyhedra computation. These algorithms are necessarily partial since Lmon
membership is undecidable (Theorem 6.17). However, their positive and negative answers are
guaranteed to be correct. Moreover, we observe that the latter direct algorithm terminates in
most benchmarks, especially when a bounding model’s dimensionality is not too large.

Example 6.2. We continue Example 6.1. For the log w in Fig. 6.3b, the bounding model A in
Fig. 6.6a confines potential interpolation between the samples to the hatched areas in Fig. 6.5.
The two areas are separate in t ∈ [0, 10], which means the two cars were safe in the period.
For t ∈ [10, 20], the two areas overlap, suggesting potential collision.

The above analysis is automated by our automata-theoretic framework in Fig. 6.4. We
shall sketch its workflow. Let ϕ be the safety specification x1−x2 > 0 (“no physical contact”).
The formal construction of A¬ϕ (Definition 6.12) yields the LHA in Fig. 6.6b. In A¬ϕ, the
original LHA A (Fig. 6.6a) is duplicated, and once ϕ is violated, the execution can move from
the first copy (the top two states in Fig. 6.6b) to the second (the bottom states). The bottom
states are accepting—they detect violation of ϕ.

Now we use one of our algorithms to solve the membership problem, i. e., if the log w
belongs to Lmon(A¬ϕ). Solving this membership problem amounts to computing the hatched
areas in Fig. 6.5—it is done relying on polyhedra computation—and checking if the safety
specification is violated.

�

Usage scenarios The scheme in Fig. 6.4 is used as follows. As a basic prerequisite, we
assume that the bounding model M overapproximates the SUM: for each continuous-time
signal σ,

(soundness of a bounded model)

σ is a behavior of the SUM =⇒ σ is a run ofM.

We do not require the other implication. Due to the limited expressivity of LHAs (that is the
price for computational tractability),M would not tightly describe the SUM.

Assume first that our monitor did not raise an alert (i. e., w 6∈ Lmon(A¬ϕ)). Let σ0 be
the (unknown) actual behavior of the SUM that is behind the log w. By the feature 4 of the
scheme, we conclude that σ0 was safe. Indeed, σ0 satisfies (a) by definition. It comes from the
SUM, and thus by the soundness assumption, σ0 satisfies (b). Hence, (c) must fail.

Let us turn to the case where our monitor did raise an alert (w ∈ Lmon(M¬ϕ)). This can
be a false alarm. For one, the existence of unsafe σ (as in the feature 4) does not imply that the
actual behavior σ0 was unsafe. For another, (b) does not guarantee that σ is indeed a possible
behavior of the SUM, since we only assume soundness of the bounding model. Nevertheless,
a positive answer of our monitor comes with a reachability witness (a trace) in M¬ϕ, which
serves as a useful clue for further examination.

Summarizing, our monitor’s alert can be false, while the absence of an alert proves safety.
We can thus say our model-bounded monitoring scheme is sound.

106 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

a system model
`0

ẋ1 = 7
ẋ2 = 8.5

`1
ẋ1 = 12
ẋ2 = 10

x1 − x2 ≤ 4

x1 − x2 ≥ 4

⇓ add margins

a bounding model
`0

ẋ1 ∈ [6.8, 7.2]
ẋ2 ∈ [8.3, 8.7]

`1
ẋ1 ∈ [11.8, 12.2]
ẋ2 ∈ [9.8, 10.2]

x1 − x2 ≤ 4.5

x1 − x2 ≥ 3.5

Figure 6.7: Adding margins to obtain bounding models. The top model gets loosened by
perception uncertainties (margin 0.5) and actuation uncertainties (margin 0.2)
Bounding models We note that the roles of bounding models are different from common
roles played by system models. A system model aims to describe the system’s behaviors in
a sound and complete manner. In contrast, bounding models focus on overapproximation,
trading completeness for computational tractability that is needed in monitoring applications.

The overapproximating nature of a bounding model is less of a problem in monitoring, com-
pared to other exhaustive applications such as model checking. In the latter, approximation
errors accumulate over time, leading to increasingly loose overapproximation. In contrast, in
our usage, a bounding model is used to interpolate between samples (Fig. 6.5). Here overap-
proximation errors get reset to zero by new samples.

Bounding models can arise in different ways, including:

• (Adding margins to a system model) If a system model is given as an LHA, we can
use it as a bounding model. A more realistic scenario is to add some margins to address
potential perception and actuation errors. LHAs’ feature that they allow differential
inclusions is particularly useful here. An example is in Fig. 6.7, where perception and
actuation uncertainties are addressed by the additional margins in the transition guards
and flow dynamics, respectively.

• (LHA approximation of a system model) LHA is one of the subclasses of HA for
which exact reachability is attackable (it is hopeless for general HA). Consequently, tools
have been proposed for analyzing LHA, including PHAVerLite [BZ19] and its predecessor
PHAVer [Fre08]. Moreover, for their application, overapproximation of other dynamics
by LHAs has been studied and tool-supported. See e. g., [Fre08, Section 3.2]. These
techniques can be used to obtain an LHA bounding model from a more complex model.

• (From a third-party vendor) HA is a well-accepted formalism in academia and in-
dustry. It is conceivable that a system vendor provides an LHA as the system’s “safety
specification.” It serves as a bounding model.

Contributions We summarize our main contributions.

• We tackle the issue of sampling uncertainties in hybrid system monitoring, proposing
the model-bounded monitoring scheme (Fig. 6.4) as a countermeasure. The scheme uses
LHAs as bounding models.

• We introduce the novel technical notion of monitored language Lmon for LHAs. In Lmon,
unlike in other language notions, input words and mode switches do not necessarily

6.2. Preliminaries: Linear hybrid automata 107

synchronize. We show that Lmon membership is undecidable, yet we introduce two
partial algorithms.

• We establish soundness of our model-bounded monitoring scheme: absence of an alert
guarantees that every possible behavior σ behind the log w is safe.

• The practical relevance and algorithmic scalability is demonstrated by experiments, using
benchmarks that are taken from automotive platooning scenarios.

Our focus is in the algorithmic aspects of the scheme in Fig. 6.4. The rate of false alerts is a
major issue that this paper does not address—this issue is about the quality of an input to the
algorithm (“how tight a bounding model is”) rather than about the algorithm itself. Further
discussions are in Remark 6.20.

In this chapter, we assume that each sample in the log w contains the complete valuation
i. e., we know the value of each variable x at each sampling. We note that it is easy to relax this
assumption and allow partial valuations i. e., we do not know the value of all the variables at
each sampling. See Appendix D for the detail of this generalization. By using partial valuation,
we can also encode parameters in the specification or the model.

6.2 Preliminaries: Linear hybrid automata
Let I(Q) be the set of closed intervals on Q, i. e., of the form [a, b], where a, b ∈ Q and
a ≤ b. For a partial function f : X 9 Y , the domain {x ∈ X | f(x) is defined} is denoted
by dom(f). We fix a set X = {x1, . . . , xM} of real-valued variables. A (variable) valuation is a
function v : X→ R. When X is clear from the context, a valuation v is expressed by the tuple
(v(x1), v(x2), . . . , v(xM)). Given µ : X 9 I(Q), we define the update of a valuation v, written
[v]µ, as follows: [v]µ(x) ∈ µ(x) if µ(x) is defined, and [v]µ(x) = v(x) otherwise.

We assume ./ ∈ {≤,=,≥}. Let Φ(x) be the set of linear systems over X defined by a finite
conjunction of inequalities of the form a1x1+a2x2+· · ·+aMxM ./ d, with d, a1, a2, . . . , aM ∈ Z.
We let > = ∧

∅ and ⊥ be the contradiction. The set Φ(ẋ) is defined similarly; it consists of
constraints over derivatives ẋ1, . . . , ẋM .

6.2.1 Syntax

Definition 6.3 (linear hybrid automata (LHA) [HPR94]). An LHA is a tuple

A = (L,LF ,X, Init,F , Inv, E) ,

where:

1. L is a finite set of locations,

2. LF ⊆ L is the set of accepting locations,

3. X is a finite set of variables,

4. Init : L→ Φ(x) is the initial variable valuation for each location,

5. F : L → Φ(ẋ) is the flow, assigning to every ` ∈ L the set of derivatives (“rates”)
{(ẋ1, ẋ2, . . . , ẋM) | (ẋ1, ẋ2, . . . , ẋM) |= F(`)},

108 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

6. Inv : L→ Φ(x) assigns to ` ∈ L an invariant Inv(`) ∈ Φ(x),

7. E is a finite set of edges e = (`, g, µ, `′) where i) `, `′ ∈ L are the source and target
locations, ii) g ∈ Φ(x) is the guard, iii) µ : X 9 I(Q) is the update function.

�

Note that Definition 6.3 allows for non-deterministic initial locations. A location ` that cannot
be initial is such that Init(`) = ⊥.

Example 6.4. Consider the LHA in Fig. 6.6a, where Init is such that Init(`0) = {x1 =
40 ∧ x2 = 35} and Init(`1) = ⊥. This LHA, giving a bounding model for an automotive
platooning system (Example 6.1), contains 2 locations and 2 variables X = {x1, x2}. This
LHA features no invariant (i. e., all invariants are >). Note that this LHA fits into a subclass
in which the derivatives for the flows are all in bounded, constant intervals.

In this LHA (Fig. 6.6a), x1 (resp. x2) denotes the position of Vehicle 1 (resp. 2), initially
40 and 35 respectively. In `0, both vehicles run roughly at the same speed, although Vehicle 2
can be slightly faster (e. g., due to smaller air resistance, as it follows Vehicle 1). When the
distance between both vehicles becomes less than 4, they enter mode `1, where Vehicle 1 drives
faster than in `0.

In the LHAA¬ϕ in Fig. 6.6b, the vertical edges are enabled once the specification x1−x2 > 0
is violated, that is, once the two vehicles touch each other. �

A timed automaton (TA) [AD94] is an LHA i) each variable is a clock, i. e., its derivative
is 1 in all locations, ii) each update µ attached to edges is of the form µ : X 9 {0}, and iii) the
initial state is deterministic, i. e., a single location is initial and all values are initially equal to
a constant integer-value.2

Example 6.5. Consider the LHA in Fig. 6.8, where i) X = {x1, x2, tabs, trel}, ii) Init is such
that Init(`0) = {x1 = 40 ∧ x2 = 35 ∧ tabs = 0 ∧ trel = 0} and Init(wi) = ⊥ for 1 ≤ i ≤ 3, and
iii) ẋ1 = ẋ2 = ˙tabs = ˙trel = 1 in all locations (not depicted in Fig. 6.8). Then this LHA is
a TA. Note that we use the TA notation for invariants, i. e., boxed under the location. �

6.2.2 Semantics

We recall the standard semantics of LHAs called concrete semantics. It is formulated as a
timed transition system [HMP91].

Definition 6.6 (concrete semantics of an LHA). Given an LHAA = (L,LF ,X, Init,F , Inv, E),
the concrete semantics of A is given by the timed transition system (TTS) (S, S0,→), with

• S = {(`, v) ∈ L× RM | v |= Inv(`)},

• S0 = {(`, v) | ` ∈ L, v ∈ Init(`)} ∩ S,

• → consists of the discrete and continuous transition relations:

1. discrete transitions: (`, v) e7→ (`′, v′), if there exists e = (`, g, µ, `′) ∈ E such that
v |= g, v′ ∈ [v]µ.

2Strictly speaking, the original definition [AD94] and the definition in Section 2.2 require clock to be zero,
and they do not have invariants, but this is equivalent.

6.3. Monitored languages of LHAs 109

2. continuous transitions: (`, v) d,f7→ (`, v′), with the delay d ∈ R≥0 and the flow f : X→
R satisfying, f |= F(`), ∀d′ ∈ [0, d], (`, v + d′f) ∈ S, and v′ = v + df , where v + d′f
is the valuation satisfying (v + d′f)(x) = v(x) + d′f(x) for any x ∈ X.

�

Definition 6.7 ((accepting) run). Given an LHA A with concrete semantics (S, S0,→), we
refer to the states of S as the concrete states of A. A run of A is an alternating sequence
ρ = s0,→1, s1,→2, . . . ,→n, sn of concrete states si ∈ S and transitions →i ∈ → satisfying
s0 ∈ S0 and s0 →1 s1 →2 · · · →n sn. For a run ρ, the duration Dur(ρ) ∈ R≥0 is the sum of the
delays in ρ. We denote the i-th prefix s0 →1 s1 →2 · · · →i si of ρ by ρ[i].

A run is accepting if its last state (`, v) is such that ` ∈ LF . �

Example 6.8. LetA be the LHA in Fig. 6.6a. The sequence ρ =
(
`0, v0

) 10,(8.3,8.2)7→
(
`0, v1

) 4
3 ,(7.5,9)
7→(

`0, v2
) e17→

(
`1, v2

) 2
3 ,(12,9)
7→

(
`1, v3

) e27→
(
`0, v3

) 8,(7.75,8.25)7→
(
`0, v4

)
is a run ofA, where v0 = (40, 35),

v1 = (123, 117), v2 = (133, 129), v3 = (141, 135), v4 = (203, 201), and e1 and e2 are the edges
from `0 and `1, respectively. �

6.3 Monitored languages of LHAs
We introduce another semantics of an LHA besides concrete semantics (Definition 6.6); it
is called the monitored language. The two semantics are used in Fig. 6.4 in the following
way: i) concrete semantics is (roughly) about whether a continuous-time signal σ (“behavior”)
conforms with the LHA A; ii) the monitored language Lmon(A) is about whether a discrete-
time signal w (“log”) conforms with A.

Definition 6.9 (timed quantitative words). A timed quantitative word w is a sequence

(u1, τ1), (u2, τ2), . . . , (um, τm)

of pairs (ui, τi) of a valuation ui : X → R and a timestamp τi ∈ R≥0 satisfying τi ≤ τi+1 for
each i ∈ {1, 2, . . . ,m− 1}.

For a timed quantitative word w = (u1, τ1), (u2, τ2), . . . , (um, τm), we let |w| = m and for
any i ∈ {1, 2, . . . , n}, we let w[i] = (u1, τ1), (u2, τ2), . . . , (ui, τi). �

We sometimes refer to pairs (ui, τi) as samples—these are the red dots in Fig. 6.4.

Definition 6.10 (monitored language Lmon(A)). Let ρ = s0 →1 s1 →2 · · · →n sn be a run
of an LHA A (Definition 6.6), and w = (u1, τ1), (u2, τ2), . . . , (um, τm) be a timed quantitative
word. We say w is associated to ρ if, for each j ∈ {1, 2, . . . ,m}, we have either of the following
two. Here `i, vi are so that si = (`i, vi) for each i ∈ {0, 1, . . . , n}.

1. There exists i ∈ {0, 1, 2, . . . , n} such that Dur(ρ[i]) = τj and uj = vi; or

2. There exists i ∈ {0, 1, 2, . . . , n− 1} such that Dur(ρ[i]) < τj < Dur(ρ[i+ 1]) and for any
x ∈ X, uj(x) = vi(x) + (τj −Dur(ρ[i]))fi(ẋ) holds, where →i = di,fi7→ .

Finally, the monitored language Lmon(A) of an LHA A is the set of timed quantitative words
associated with some accepting run of A. �

110 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

In the above definition of association of w to ρ, note that the lengths of ρ and w can differ
(n 6= m). The condition 1 is when a sample in w happens to be simultaneous with some
transition in ρ. This special case is not required to happen at all, for w to be associated to ρ.

For example, in Fig. 6.5, mode switches (i. e., discrete transitions) in the LHA in Fig. 6.6a
can occur at times other than t = 0, 10, 20. This is in contrast to the language of hybrid
automata in [AKV98], where (observable) discrete transitions are always synchronous with
the word, much like the condition 1.

Example 6.11. Let A be the LHA in Fig. 6.6a, ρ be the run of A in Example 6.8. The timed
quantitative word w in Fig. 6.3b is associated to ρ. We note that the sampling and the discrete
transitions are asynchronous: the sampling is at 0, 10, and 20, while the discrete transitions
are at 34

3 and 12. This is in contrast to the synchronous language in [AKV98]: the accepted
words represent the discrete transitions e. g., at 34

3 and 12. �

6.4 The model-bounded monitoring scheme

Based on the technical definitions in Section 6.3, we formally introduce the scheme that we
sketched in Fig. 6.4. (Partial) algorithms for computing if w ∈ Lmon(M¬ϕ) are introduced in
later sections.

Recall that we focus on safety specifications that are global and linear.

Definition 6.12 (the LHA A¬ϕ). Let A be an LHA, and ϕ ∈ Φ(x) (Section 6.2). The LHA
A¬ϕ is defined by

• making a copy A◦ of A,

• making every location `◦ of A◦ non-initial (by letting Immd(`◦) = ⊥),

• letting LF consist of all the states `◦ of A◦, and

• for each location ` ∈ A, creating an edge (`,¬ϕ, ∅, `◦) from ` to its copy `◦, labeling the
edge with the safety specification ϕ as a guard and no update.

�

An example of A¬ϕ is shown in Fig. 6.6. We note that, in A¬ϕ, having a single accepting sink
state for violation of ϕ is not enough. After detecting violation, we are still obliged to check if
the rest of a word w conforms with the bounding model A. Therefore we maintain a copy of
A.

Lemma 6.13. The following are equivalent, for each sequence ρ.

1. Both of the following hold: i) ρ is a (non-necessarily accepting) run of A, and ii) ρ
violates ϕ at a certain time instant.

2. There exists an accepting run ρ′ of A¬ϕ such that
{w | w is associated to ρ}
= {w | w is associated to ρ′}.

6.5. Membership for monitored languages: symbolic interpolation 111

The proof is easy by definition. The runs ρ and ρ′ can differ only in the locations they
visit—in an LHA, an enabled transition is not always taken. Note, however, that violation of
ϕ and w’s association are two properties that are insensitive to locations.

We are ready to state the correctness of our scheme (Fig. 6.4). The proof is straightforward
by Lemma 6.13 and Definition 6.10.

Theorem 6.14 (correctness). In the setting of Definition 6.12, let w be a timed quantitative
word. We have w ∈ Lmon(A¬ϕ) if and only if there is a (non-necessarily accepting) run ρ of
A such that i) w is associated to ρ, and ii) ρ violates ϕ at some time instant.

Identifying a run ρ with a behavior σ, and association of w to ρ with sampling, the theorem
establishes the feature 4 of our scheme (Section 6.1).

The consequence in the safety analysis of the real SUM (instead of its bounding model A)
is discussed in the “usage scenario” paragraph of Section 6.1. In particular, due to potential
gaps between the SUM and the bounding model A, an alert of our monitor can be false, while
the absence of an alert proves safety. Overall, our model-bounded monitoring scheme is sound.

Example 6.15. We show how the illustration in Example 6.2 is formalized by the monitored
language Lmon(A¬ϕ) of the bounded model A¬ϕ. Let A¬ϕ be the LHA in Fig. 6.6b and w be
the timed quantitative word in Fig. 6.3b.

We have w[2] 6∈ Lmon(A¬ϕ) because all the runs to which w[2] is associated are not accept-
ing. That is, the log w is safe until time t = 10.

However, for the full log we have w ∈ Lmon(A¬ϕ), because w is associated to the following

accepting run ρ: ρ =
[

(`0, u1) 10,(8.3,8.2)7→ (`0, u2) 4,(7.5,9.0)7→ (`0, v) e7→ (`2, v)
6,(25

3 ,8.0)7→ (`2, u2)
]
,

where v = (153, 153). �

6.5 Membership for monitored languages: symbolic
interpolation

The rest of the chapter is devoted to solving the membership problem of Lmon(A), a core
computation task in Fig. 6.4. We will present two (partial) algorithms: they are symbolic
algorithms that iteratively update polyhedra.
The Lmon membership problem:
Input: An LHA A and a timed quantitative word w.
Problem: Return the set C(w,A) of indices i satisfying u[i] ∈ Lmon(A). In particular,
w ∈ Lmon(A) iff |w| ∈ C(w,A).

Example 6.16. Let A¬ϕ be the LHA in Fig. 6.6b and w be the timed quantitative word
in Fig. 6.3b. We have C(w,A¬ϕ) = {3}, meaning w[1], w[2] 6∈ Lmon(A¬ϕ), and w[3] = w ∈
Lmon(A¬ϕ). This result corresponds to the illustration in Fig. 6.5. �

The following “no-go” theorem is sort of expected, given previous results from the hybrid
automata literature.

Theorem 6.17 (undecidability). For an LHA A and a timed quantitative word w, it is unde-
cidable to determine the emptiness of C(w,A).

112 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

Proof. We prove the claim by a reduction from the bounded-time reachability of the LHA
A = (L,LF ,X, Init,F , Inv, E). Let τ ∈ R>0 be the time bound of the reachability checking.
Let u : X → R be the valuation satisfying u(x) = 0 for any x ∈ X, w = (u, τ), and A′ =
(Lq {`f}, {`f},X, Init,F ′, Inv′, E q E′), where:

• F ′ is F ′(`) = F(`) for ` ∈ L and F ′(`f) is such that ẋ = 0 for any x ∈ X;

• Inv′ is Inv′(`) = Inv(`) for ` ∈ L and Inv′(`f) = >; and

• E′ = {(`,>, µ, `f) | ` ∈ LF , µ(x) = 0 for any x ∈ X}.

We have (u, τ) ∈ Lmon(A) if and only if LF is reachable in A within τ . Since we have |w| = 1,
the bounded-time reachability of the LHA A, which is undecidable [BDG+11], is reduced to
the emptiness checking of C(w,A′).

On the one hand, given the undecidability result, we can think of restricting the class of
the models. For example, the problems become decidable if the number of discrete transitions
within a time unit is bounded.

On the other hand, in practice, as we observe in Section 6.8, our partial algorithms below
perform effectively for many benchmarks—especially our latter, direct algorithm.

Our two partial algorithms have the following features.

• Instead of solving one-way reachability (forward or backward) as many existing algo-
rithms do, they solve interpolation between two points (i. e., samples, see Fig. 6.5).

• They work in a one-shot manner, collecting the linear constraints for “reachability from
the given origin” and those for “reaching the given end” simultaneously. Instead, a naive
method would iterate between forward and backward reachability analysis.

6.6 Algorithm I: via reduction to LHA reachability analysis
In our first solution, we reduce the Lmon membership problem to reachability analysis of LHAs.
In practice, we will use PHAVerLite, one of the most efficient tools for reachability analysis of
hybrid systems according to [BZ19].

The idea of reducing monitoring to reachability analysis of extensions of finite-state au-
tomata is also employed in Section 3.3. Indeed, the reduction in this section is similar to that
in Section 3.3. While both in Section 3.3 and the method we introduce in this section are
symbolic, the differences are in the formalism and problem. On the one hand, in Section 3.3,
we used parametric timed automata as a parametric specification and performs parametric
timed pattern matching (which can be seen as parametric monitoring). On the other hand,
we use LHAs for the bounding model and perform symbolic monitoring. An extension for a
parametric setting is a future work, which is technically not much demanding.

Our workflow is as follows:

1. We transform the input timed quantitative word w into an LHA Aw (that is in fact only
timed, i. e., it only uses clocks), that uses two extra clocks:

a) tabs measures the absolute time since the beginning of the word; and
b) trel measures the (relative) time since the last sampled timed quantitative word.

6.6. Algorithm I: via reduction to LHA reachability analysis 113

w0 w1 w2 w3

tabs ≤ 0 tabs ≤ 10 tabs ≤ 20

x1 = 40
x2 = 35
tabs = 0
trel = 0

tabs = 0
∧x1 = 40
∧x2 = 35
sample
trel ← 0

tabs = 10
∧x1 = 123
∧x2 = 117

sample
trel ← 0

tabs = 20
∧x1 = 203
∧x2 = 201

sample
trel ← 0

Figure 6.8: TWQ2LHA applied to the timed quantitative word in Fig. 6.3b. Here, i) X =
{x1, x2, tabs, trel}, ii) Init is such that Init(`0) = {x1 = 40 ∧ x2 = 35 ∧ tabs = 0 ∧ trel = 0} and
Init(wi) = ⊥ for 1 ≤ i ≤ 3, and iii) ˙tabs = ˙trel = 1 in all locations. We use the TA notation for
invariants, i. e., boxed under the location.

2. We perform the synchronized product A || Aw of the given LHA A with the transformed
LHA Aw.

3. We run the reachability analysis procedure for the product LHA A || Aw, to derive all
possible locations wi of Aw such that (`, wi) is reachable in A || Aw with trel = 0, where
` is an accepting location of the given LHA A.

We explain these steps in the following.

6.6.1 Transforming the timed quantitative word into an LHA

First, we transform the input timed quantitative word w into an LHA, and in fact into the
timed automata fragment of LHA. The resulting LHA Aw is a simple sequence of locations
with guarded transitions in between, also resetting trel .

The LHA Aw features an absolute time clock tabs (initially 0, of rate 1 and never reset), and
can test all variables of the system in guards (these are not reset in this LHA though). More in
details, we simply convert each sample (ui, τi) of the timed quantitative word w into a guard
of the LHA testing for the timestamp using the absolute time clock tabs, and for the value of
the variables. The invariant of the location preceding a timestamp τi also features the clock
constraint tabs ≤ τi (this is not crucial for correctness but limits the state space explosion).
The transitions are all labeled with a fresh action sample (which could be replaced with an
unobservable action, but such actions are not accepted by the PHAVerLite model checker).
Each transition resets trel . Let TWQ2LHA denote this procedure.

For example, consider the timed quantitative word w in Fig. 6.3b. The result Aw of
TWQ2LHA(w) is given in Fig. 6.8.

6.6.2 Reachability analysis using PHAVerLite

We perform the synchronized product Aw || A (“parallel composition”) of the LHA Aw con-
structed from w together with the given automaton A. The synchronized product of two LHA
is known to be an LHA [HPR94].

Then, we run the reachability analysis, setting as target the states for which both of the
following conditions hold:

1. the monitor is in an accepting location; and

2. trel = 0.

The latter condition ensures that only the states such that we just sampled a word are accept-
ing. Thanks to the latter condition, we can take into account of the next sample without any
explicit backward reachability analysis.

114 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

Algorithm 10: Outline of our incremental procedure for the Lmon membership prob-
lem
Input: A timed quantitative word w = (u1, τ1), (u2, τ2), . . . , (un, τn) and an LHA

A = (L,LF ,X, Init,F , Inv, E).
Output: The Boolean sequence Result1, . . . ,Resultn, where Resulti = > ⇐⇒ w[i] ∈ Lmon(A)

1 Conf 0 ← {(`, v) | ` ∈ L, v ∈ Init(`)}
2 for i← 1 to n do
3 Conf ′i ← reachable states from Conf i−1 in duration τi − τi−1
4 Conf i ← {(`, v) ∈ Conf ′i | v = ui}
5 Resulti ← ∃(`, v) ∈ Conf i. ` ∈ LF

Example 6.18. Let us exemplify the need for the latter condition. Consider the LHA A
in Fig. 6.6b and the timed quantitative word w in Fig. 6.3b transformed into the TA Aw in
Fig. 6.8 (only the time frame in [0, 10] is of interest in this example). Clearly, this log is
safe w.r.t. the automaton A in Fig. 6.6b, that is neither `2 nor `3 are reachable, because the
distance between both vehicles cannot have been ≤ 0 in the [0, 10] time frame.

Now, if we simply run the reachability procedure looking for `2 or `3 as target (without
condition on trel), the procedure will output that at least `2 is reachable. Indeed, it is possible
that vehicle 1 runs at the minimal rate of 7.5 while vehicle 2 runs at the maximal rate of 9.
In that case, after 10 time units, vehicle 1 (resp. 2) reaches x-coordinate 115 (resp. 125), and
therefore their distance is ≤ 0, making `2 reachable. While this behavior is indeed possible
from the knowledge we have of the first sample, it is actually impossible knowing the full log
and in particular the second sample. This phenomenon is illustrated in the part of Fig. 6.5
restricted to the [0, 10] time frame: the blue part depicts all possible valuations knowing the
first and second sample. �

Hence, adding the condition trel = 0 forces the model checker to take into consideration the
next sample before making a decision concerning the reachability of a possible target location.

6.7 Algorithm II: Direct method by polyhedra computation

In our second solution, we directly solve the Lmon membership problem. We iteratively compute
the runs of the LHA A associated with the prefixes of the timed quantitative word w utilizing
bounded reachability analysis. This is our main contribution.

Algorithm 10 shows an outline of our incremental procedure for the Lmon membership
problem. Algorithm 10 incrementally constructs the intermediate states Conf i and outputs
the partial result Resulti showing if w[i] ∈ Lmon(A). In line 1, we construct the initial states
Conf 0. We note that although Immd(`) is in general an infinite set, it is given as a convex
polyhedron, and we can represent Conf 0 as a finite list of pairs of a location and a convex
polyhedron.

From line 2 to line 5 is the main part of Algorithm 10: we incrementally compute Conf i and
Resulti. In line 3, we compute the reachable states Conf i from Conf i−1 after the executions of
duration τi− τi−1. This part is essentially the same as the bounded-time reachability analysis,
and thus, it is undecidable for LHAs in general [BDG+11]. Nevertheless, in practice, the
reachable states Conf ′i are usually effectively computable as a finite union of convex polyhedra.

In line 4, we require Conf i to be the subset of Conf ′i compatible with the current observation
ui. Thanks to this requirement, we can take into account of the next sample just by the forward

6.8. Experimental evaluation 115

Table 6.1: Summary of the benchmarks
Name Dimension (= d) # of locs. max. len. of the logs

ACCC 5,10,15 d+ 1 1,000
ACCI 2 4 100,000
ACCD 2, 3, . . . , 8 2d 1,000

reachability analysis. Finally, in line 5, we determine the partial result Resulti by checking the
reachability to the accepting locations.

An example is in the appendix (Example C.1).
The intermediate states Conf i is the set of last states of the runs of A associated with w[i]

and of duration τi. Therefore, we have the following.

Theorem 6.19 (correctness of Algorithm 10). Given a timed quantitative word w and an LHA
A, Algorithm 10 returns the sequence Result1, . . . ,Resultn satisfying Resulti = > ⇐⇒ w[i] ∈
Lmon(A).

6.8 Experimental evaluation
We experimentally evaluated our model-bounded monitoring scheme, where we used the two
procedures for Lmon membership. For the first procedure (reduction to reachability analysis, in
Section 6.6), we used PHAVerLite [BZ19] for conducting reachability analysis. For the second
direct procedure (in Section 6.7), we implemented a prototypical tool HAMoni.

We pose the following research questions.

RQ1 Is our dedicated implementation HAMoni worthwhile, performance-wise?

RQ2 Is HAMoni scalable with respect to the length of the input log?

RQ3 How is the scalability of PHAVerLite and HAMoni with respect to the dimension of the
bounding model?

Remark 6.20. The following questions are future work.

Q4 How precise is the proposed monitoring scheme? What is the rate of false alerts?

Q5 How easy is it to analyze an alert and to see if it is true or false?

We leave out Q4 and Q5 since, in this chapter, we focus on the algorithms for the model-
bounded monitoring scheme (Fig. 6.4). In contrast, Q4 and Q5 are questions on the quality of
the input to the algorithms. To answer them, we need to address how a bounding model A is
obtained. The latter is a big engineering problem—see the different ways to obtain A in the
introduction—that deserves a separate methodology paper.

We note that the algorithmic performance evaluation in this chapter will remain valid in
addressing Q4 and Q5, since it is not affected by the tightness of A.

6.8.1 Benchmarks

In the experiments, we used the following three benchmarks on adaptive cruise controller:
Piecewise-Constant ACC (ACCC); Interval ACC (ACCI); and Diagonal ACC (ACCD). The
bounding models for the benchmarks are mostly taken from the literature (see below); they

116 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

ẋ1 = 8, ẋ2 = 8.5,
ẋ3 = 9, ẋ4 = 9.5,

ẋ5 = 10,
2 ≤ xi − xi+1 ≤ 10

x1 = 40,
x2 = 35,
x3 = 30,
x4 = 25,
x5 = 20

ẋ1 = 12, ẋ2 = 10,
ẋ3 = 8, ẋ4 = 9,

ẋ5 = 10,
0 ≤ xi − xi+1 ≤ 10

ẋ1 = 12, ẋ2 = 12,
ẋ3 = 10, ẋ4 = 8.5,

ẋ5 = 9.5,
0 ≤ xi − xi+1 ≤ 10

ẋ1 = 12, ẋ2 = 12,
ẋ3 = 12, ẋ4 = 10,

ẋ5 = 9,
0 ≤ xi − xi+1 ≤ 10

ẋ1 = 12, ẋ2 = 12,
ẋ3 = 12, ẋ4 = 12,

ẋ5 = 10,
0 ≤ xi − xi+1 ≤ 10

unsafe

x1 − x2 ≤ 4

x1 − x2 ≥ 4
x2 − x3 ≤ 4

x2 − x3 ≥ 4
x3 − x4 ≤ 4

x3 − x4 ≥ 4 x4 − x5 ≤ 4

x4 − x5 ≥ 4

x1 − x2 ≥ 1
x2 − x3 ≥ 1 x3 − x4 ≥ 1

x4 − x5 ≥ 1

Figure 6.9: The LHA of dimension 5 in ACCC, where i ∈ {1, 2, 3, 4}
express keeping the inter-vehicular distance by switching between the normal cruise mode and
the recovery mode. This is much like Fig. 6.6a.

The input logs w were randomly generated by following the flows and the transitions of
the bounding model A. This means that our SUM is the bounding model itself (Fig. 6.4). We
note that this coincidence is not mandatory. More realistic evaluation is future work where a
bounding model is obtained in the ways described in the introduction (the “Bounding Models”
paragraph). Table 6.1 summarizes the benchmarks.

Piecewise-constant ACC (ACCC) The bounding models for ACCC are taken from [BRS19].
The accepting locations of ACCC happen to be unreachable, therefore there will be no alerts.
This is no problem because we focus on algorithmic performance (Remark 6.20). In ACCC, the
velocities of the cars at each location are constant. ACCC contains three LHAs of dimensions
5, 10, and 15. Fig. 6.9 is the LHA of dimension 5.

Interval ACC (ACCI) ACCI is a variant of the ACCC benchmark. In the bounding
model for ACCI, the velocities of the cars at each location are nondeterministically chosen
from the given interval. It is shown in Fig. 6.6b.

Diagonal ACC (ACCD) The bounding models for ACCD are taken from [FAA+19]. In
ACCD, the velocities of the cars at each location are constrained by the following diagonal
constraints (i. e., constraints of the form xi − xj ./ n, n ∈ Z): when recovering the distance
between xi and xi+1, we have |ẋi−ẋi+1−ε| < 1, where ε is the slow-down parameter; otherwise,
we have |ẋi − ẋi+1| < 1. We used ε = 0.9 and ε = 2.0. The safety specification in ACCD is
xi > xi−1 for each i. ACCD contains seven LHAs of dimensions from 2 to 8. The LHAs of
dimension 2 are shown in Fig. 6.10.

We use Definition 6.12 to construct A¬ϕ. In some benchmarks, we apply manual optimiza-
tion and collapse some equivalent accepting states.

6.8.2 Experiments

For the reachability analysis in the procedure presented in Section 6.6, we used PHAVerLite
0.2.1. PHAVerLite relies on PPLite [BZ19] to compute symbolic states. We implemented an

6.8. Experimental evaluation 117

ẋ1 = 36, 0 ≤ ẋ2,
|ẋ1 − ẋ2| ≤ 1
1 ≤ x1 − x2

x1 = 3,
x2 = 0
x1 = 3,
x2 = 0 ẋ1 = 36, 0 ≤ ẋ2,

|ẋ1 − ẋ2 − ε| ≤ 1
x1 − x2 ≤ 3

ẋ1 = 36, 0 ≤ ẋ2,
|ẋ1 − ẋ2| ≤ 1
1 ≤ x1 − x2

ẋ1 = 36, 0 ≤ ẋ2,
|ẋ1 − ẋ2 − ε| ≤ 1
x1 − x2 ≤ 3

x1 − x2 ≤ 2

x1 − x2 ≥ 2

x1 ≤ x2 x1 ≤ x2

x1 − x2 ≤ 2

x1 − x2 ≥ 2

Figure 6.10: The LHA of dimension 2 in ACCD

Table 6.2: The experiment result on ACCC [sec.]
dim. len. PHAVerLite HAMoni
5 10 500.02 0.46
5 25 540.02 0.86
5 50 480.06 0.78
5 75 580.01 0.79
5 100 520.07 1.21
5 200 560.06 1.00
5 300 540.13 1.37
5 400 T.O. 1.77

dim. len. PHAVerLite HAMoni
5 500 480.41 2.27
5 600 500.40 2.12
5 700 520.40 2.37
5 800 540.33 2.58
5 900 580.12 2.76
5 1000 560.26 3.26
10 10 267.60 204.79
15 10 T.O. T.O.

Table 6.3: The experiment result on ACCI [sec.]
len. PHAVerLite HAMoni
10000 13.42 2.18
20000 40.29 4.29
30000 83.39 6.43
40000 141.55 8.56
50000 225.23 10.76

len. PHAVerLite HAMoni
60000 116.67 12.86
70000 26.60 15.00
80000 227.29 17.14
90000 259.17 19.28
100000 227.12 21.45

OCaml program and a Python script to construct a PHAVerLite model from an LHA A and
a timed quantitative word w. For the procedure presented in Section 6.7, we implemented
HAMoni in C++ using Parma Polyhedra Library (PPL) [BHZ08] and compiled using GCC
7.4.0. In both PHAVerLite and HAMoni, closed convex polyhedra are used to analyze the
reachability [BZ19].

Since the difficulty of the Lmon membership problem depends on the given timed quanti-
tative word w, we randomly generated 30 logs for each experiment setting and measured the
average of the execution time. The sampling interval of the w is from 1 to 5 seconds, uniformly
distributed. The timeout is 10 minutes. We conducted the experiments on an Amazon EC2
c4.large instance (2.9GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75GiB RAM) that runs
Ubuntu 18.04 LTS (64 bit). Tables 6.2 to 6.5 summarize the experiment results.

118 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

Table 6.4: The experiment result on ACCD (dimension 2–6) [sec.]
ε = 0.9 ε = 2.0

dim. len. PHAVerLite HAMoni PHAVerLite HAMoni
2 10 0.02 0.00 0.02 0.00
2 25 0.03 0.00 0.03 0.00
2 50 0.04 0.00 0.04 0.00
2 75 0.05 0.01 0.05 0.00
2 100 0.06 0.01 0.06 0.01
2 200 0.12 0.02 0.11 0.01
2 300 0.16 0.02 0.16 0.02
2 400 0.21 0.03 0.20 0.02
2 500 0.27 0.04 0.26 0.03
2 600 0.32 0.04 0.30 0.03
2 700 0.35 0.05 0.36 0.04
2 800 0.40 0.05 0.40 0.05
2 900 0.46 0.06 0.45 0.05
2 1000 0.51 0.07 0.50 0.06
3 10 0.05 0.02 0.04 0.01
3 25 0.08 0.03 0.08 0.02
3 50 0.14 0.04 0.12 0.03
3 75 0.19 0.05 0.18 0.03
3 100 0.23 0.05 0.22 0.04
3 200 0.44 0.07 0.42 0.05
3 300 0.65 0.09 0.62 0.06
3 400 0.84 0.12 0.82 0.09
3 500 1.07 0.15 1.00 0.10
3 600 1.25 0.16 1.24 0.11
3 700 1.46 0.16 1.42 0.13
3 800 1.73 0.20 1.61 0.13
3 900 1.84 0.19 1.83 0.16
3 1000 2.04 0.20 2.00 0.17
4 10 0.28 0.35 0.22 0.42
4 25 0.46 0.46 0.34 0.22
4 50 0.66 0.42 0.59 0.38
4 75 0.92 0.47 0.82 0.36
4 100 1.21 0.64 1.05 0.35
4 200 2.13 0.82 2.02 0.87
4 300 2.98 0.74 2.81 0.40
4 400 3.98 0.92 3.76 0.62
4 500 4.79 0.85 4.69 0.65
4 600 5.71 0.86 5.63 0.68
4 700 6.60 0.81 6.53 0.93
4 800 7.67 1.15 7.28 0.97
4 900 8.39 1.04 0.02 0.87
4 1000 9.26 1.18 9.15 0.89
5 10 2.65 7.51 22.38 29.33
5 25 3.84 10.13 3.05 9.22
5 50 5.25 9.68 12.93 31.06
5 75 7.13 14.41 18.32 29.93
5 100 8.14 12.87 7.58 21.13
5 200 11.39 8.94 29.52 36.17
5 300 17.33 15.03 15.38 14.56
5 400 20.44 9.81 19.47 15.34
5 500 24.87 11.72 36.83 34.12
5 600 28.78 8.79 28.47 16.37
5 700 35.14 17.05 32.86 16.10
5 800 37.76 12.41 41.97 39.07
5 900 42.22 9.83 48.26 46.68
5 1000 47.11 11.55 57.49 54.44
6 10 47.42 221.55 80.26 428.66
6 25 41.18 165.63 76.40 510.55
6 50 65.36 243.97 120.77 518.01
6 75 58.21 173.46 125.61 480.19
6 100 87.47 209.53 131.88 421.59

6.8. Experimental evaluation 119

Table 6.5: The experiment result on ACCD (dimension 7 and 8) [sec.]
ε = 0.9 ε = 2.0

dim. len. PHAVerLite HAMoni PHAVerLite HAMoni
7 10 525.07 560.69 T.O. 594.05
7 25 489.35 559.56 T.O. 526.14
7 50 514.10 562.68 T.O. 566.01
7 75 T.O. 588.23 T.O. 583.49
7 100 T.O. 577.29 T.O. 578.39
8 10 T.O. 598.23 T.O. T.O.
8 25 T.O. T.O. T.O. T.O.
8 50 T.O. T.O. T.O. 593.32
8 75 T.O. 593.84 T.O. T.O.
8 100 T.O. T.O. T.O. T.O.

0
0.5

1
1.5

2
2.5

3
3.5

0 1 2 3 4 5 6 7 8 9 10

Ex
ec

.t
im

e
[se

c.]

Length [×100]

ACCC, dim 5

0
4
8

12
16
20
24

0 20 40 60 80 100

Ex
ec

.t
im

e
[se

c.]

Length [×1, 000]

ACCI

Figure 6.11: The execution time of HAMoni for ACCC dimension 5 (left) and ACCI (right)

RQ1: worthwhileness of a dedicated implementation In Tables 6.2 to 6.5, we observe
that HAMoni tends to outperform PHAVerLite. Especially, in Table 6.2, we observe that
for ACCC, HAMoni performed drastically faster than PHAVerLite for dimension 5. This is
because PHAVerLite is not a specific tool for the Lmon membership problem but a tool for
reachability analysis in general. Thus, despite the engineering cost for the implementation
that is not small, a dedicated solve i. e., HAMoni is worthwhile.

However, in Tables 6.4 and 6.5, we also observe that in ACCD, when the dimension of the
LHA is relatively large and the timed quantitative word is not too large, PHAVerLite often
outperformed HAMoni. This is because of the more optimized reachability analysis algorithm
in PHAVerLite.

Optimization of the reachability analysis algorithm in HAMoni e. g., utilizing the techniques
in [BZ19] is a future work.

RQ2: scalability with respect to the word length Figs. 6.11 and 6.12 show the exe-
cution time of HAMoni with respect to the length of the timed quantitative word for selected
experiment settings.

In Figs. 6.11, 6.12a and 6.12b, we observe that when the dimension of the LHA is not
large, the execution time was more or less linear to the word length. This is because, when
the number of the intermediate states (Conf i in Algorithm 10) is constant and the execution
time of the bounded-time reachability analysis (line 3 of Algorithm 10) is constant for each
iteration, the execution time of Algorithm 10 is linear to the word length. Thanks to the
merging of the convex polyhedra, such saturation often happens when the word length is long
enough for the complexity of the LHA.

In Figs. 6.12c and 6.12d, we observe that for ACCI of dimension 5, the execution time
was more or less constant with respect to the word length. Such behavior also happens for

120 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1 2 3 4 5 6 7 8 9 10Ex
ec

.t
im

e
[se

c.]

Length [×100]

ACCD, dim. 2, ε = 2.0
ACCD, dim. 2, ε = 0.9

(a) Result for ACCD dimension 2

0
0.04
0.08
0.12
0.16
0.2

0 1 2 3 4 5 6 7 8 9 10Ex
ec

.t
im

e
[se

c.]

Length [×100]

ACCD, dim. 3, ε = 2.0
ACCD, dim. 3, ε = 0.9

(b) Result for ACCD dimension 3

0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9 10Ex
ec

.t
im

e
[se

c.]

Length [×100]

ACCD, dim. 4, ε = 2.0
ACCD, dim. 4, ε = 0.9

(c) Result for ACCD dimension 4

0
10
20
30
40
50
60

0 1 2 3 4 5 6 7 8 9 10Ex
ec

.t
im

e
[se

c.]

Length [×100]

ACCD, dim. 5, ε = 2.0
ACCD, dim. 5, ε = 0.9

(d) Result for ACCD dimension 5
Figure 6.12: The execution time of HAMoni for ACCD

0.001
0.01
0.1

1
10

100
1000

2 2.5 3 3.5 4 4.5 5 5.5 6

Ex
ec

ut
io

n
tim

e
[se

c.]

Dimension

PHAVerLite, ACCD, len. 100, ε = 2.0
PHAVerLite, ACCD, len. 100, ε = 0.9

HAMoni, ACCD, len. 100, ε = 2.0
HAMoni, ACCD, len. 100, ε = 0.9

Figure 6.13: The execution time of PHAVerLite and HAMoni for ACCD fixing the word length
to be 100
other benchmarks when the word length is short e. g., when the word length is less than 200
for ACCC of dimension 5.

Overall, in our experiments, the execution time was less than linear, and we conclude that
at least for many benchmarks, HAMoni is scalable to the word length.

RQ3: scalability with respect to the dimensionality of the LHA Fig. 6.13 shows the
execution time of PHAVerLite and HAMoni to the dimension of the LHA, where the length of
the log is fixed to be 100. As we mentioned in Section 6.8.2, the sampling interval is from 1
to 5 seconds, uniformly distributed; therefore, each w spans 300 seconds in average. Note that

6.9. Related work 121

the y-axes of Fig. 6.13 follow a logarithmic scale.
In Fig. 6.13, we observe that the execution time is more or less exponential to the dimension

of the LHA. This is due to the exponential complexity of the convex polyhedra operations.
However, in Tables 6.2 to 6.5, we observe that for any benchmark (excluding ACCI, which
is not suitable for this discussion)3, HAMoni can effectively process a huge log up to around
5 dimensions. This is important for monitoring where the log tends to be huge while the
dimension of the bounding model may not be much large.

On the other hand, in Fig. 6.13, we observe that PHAVerLite is more scalable to the model
dimension than HAMoni. This is thanks to the optimized convex polyhedra algorithms and
implementations in PHAVerLite. Again, our future work will consist in optimizing HAMoni
with the most promising features of PHAVerLite, e. g., by using the techniques from [BZ19].

Overall, our experiment results suggest that, for signals of up-to 5 dimensions, our monitor-
ing works more or less in real-time because both of the implementation handle the logs spans
at least 100 seconds (a few paragraphs ago) in less than 30 seconds on average (Fig. 6.13).

6.9 Related work

In the IoT applications [GBMP13], energy efficiency is of paramount importance. Energy
efficiency demands longer sampling and communication intervals; the current work presents
an automatic and sound method to mitigate the uncertainties that result from those longer
intervals.

In the context of quality assurance of CPSs, monitoring of digital (i. e., discrete-valued) or
analog (i. e., continuous-valued) signals takes an important role. There have been many works
on signal monitoring using various logic e. g., signal temporal logic (STL) [MN04, FP09], timed
regular expressions (TREs) [UFAM14], timed automata (TAs) [BFN+18], or timed symbolic
weighted automata (TSWAs) [Wag19] and in Chapter 5. However, in most of the existing
works, interpolation of the sampled signals is limited to only piecewise-constant or piecewise-
linear. Recently, in [APM19], the authors presented more general signal interpolation methods
using signal processing techniques; they showed that the choice of interpolation methods have
a significant effect on the monitoring result.

There are a few works on monitoring utilizing system models. In [ZLD12], a set of predic-
tive words are generated through a static analysis of the monitored program and monitored
against linear temporal logic. In [PJT+17], the system model and the property are given as
TAs to construct a monitor predicting the satisfaction (or violation) of the monitored prop-
erty. In [BGF18], the stochastic system model is trained as a hidden Markov model, and the
predicted system behavior is monitored against a specification in a DFA.

Overall, prediction (i. e., extrapolation) of the future behaviors is the main purpose of the
existing model-based monitoring works [ZLD12, PJT+17, BGF18] to the best of our knowledge.
Our approach utilizes system knowledge for interpolation of the infrequently sampled signals.

There are existing language notions for LHAs [AKV98]. These are different from the notion
Lmon that we introduce; hence the results in [AKV98] do not subsume ours. The key difference
is whether we require an input word and mode switches synchronize; see Example 6.11 and
the preceding discussions.

3ACCI is not suitable to observe the scalability with respect to the model dimension because ACCI consists
of only one LHA of dimension 2.

122 Chapter 6. Model-Bounded Monitoring of Hybrid Systems

6.10 Conclusion and perspectives

6.10.1 Conclusion

Based on a novel language notion Lmon for LHAs, we formulated what we call the model-
bounded monitoring scheme for hybrid systems. It features the use of a bounding model of
the system to bridge the gap between (continuous-time) system behaviors and (discrete-time)
logs that a monitor can access. While the Lmon membership problem is undecidable, our
two partial algorithms (especially our dedicated HAMoni) work well for automotive platooning
benchmarks. Overall, our results show the power of symbolic manipulation of polyhedra in the
domain of cyber-physical systems.

6.10.2 Perspectives

So far, HAMoni is a quickly developed prototype. Optimization of the reachability analy-
sis using the technique in [CÁF11] is a first future work. In addition, importing the latest
optimizations from PHAVerLite [BZ19] into HAMoni is on our agenda.

One potential extension of the Lmon membership problem is to make it more quantitative:
returning a distance between the monitored language Lmon(A) and the observation w rather
than checking the membership of the observation w to the monitored language Lmon(A). This
makes the result of the analysis even more useful. Another extension is to use intervals rather
than points for the measured values to cope with the uncertainty in the measured values.

In the current setting, the safety verdict by the monitor is guaranteed thanks to the con-
vex polyhedra analysis. A testing-based approach e. g., in [DN09] is a future work for more
efficiency at the expense of the safety guarantee.

Finally, the precision of the proposed scheme relies on the quality of a bounding model A.
Its evaluation involves big engineering problems, including how we obtain A and how an alert
(as an outcome of Fig. 6.4) is manually matched against the SUM (instead of against A). See
Remark 6.20. This is future work that is best studied with a real-world industry example.

CHAPTER 7
Discussion

7.1 Conclusions

High-level contribution: polyhedra-based abstraction is useful to improve runtime
verification The high-level contribution of this thesis is to show that polyhedra-based ab-
straction is useful for improving runtime verification by conducting concrete improvements of
runtime verification. We show the usefulness by extensively using polyhedra-based analysis
in various advanced runtime verification algorithms. As shown in Fig. 7.1, polyhedra-based
abstraction allows a symbolic analysis of the continuously many points in each area rather
than an analysis of each point.

Polyhedra-based abstraction is typically used for exhaustive verification of automata with
continuous state space, e. g., timed automata [AD94], parametric timed automata [HRSV02],
and linear hybrid automata [AHH96]. For these class of automata, we cannot check if a state
is reachable by BFS or DFS on the concrete state space because we have continuous option of
time elapse. For example, a combination of the time elapse at the first and the second locations
can be represented by a point in the left of Fig. 7.1. Since there are continuously many such
combination, we cannot try all of them. Nevertheless, the reachability checking is tractable
thanks to the discrete abstraction of the continuous state space by using polyhedra. In the

Figure 7.1: Concrete points in a continuous 2-dimensional space (left) and their polyhedra-
based abstraction (right). By using polyhedra-based abstraction (right), we can symbolically
analyze continuously many points in each area while by evaluating the concrete points (left),
we can evaluate only finite points.

123

124 Chapter 7. Discussion

example in the right of Fig. 7.1, the continuously many possible time elapses are abstracted
into the three areas. See Fig. 1.27 for a concrete example of such an analysis.

In naive runtime verification, e. g., monitoring of LTL properties [BLS11], such an abstrac-
tion is unnecessary because we have only finite branching in the LTL monitor and the log
is finite length. However, in advanced runtime verification techniques with continuous op-
tions, we have a similar difficulty to exhaustive verification. Again, we used polyhedra-based
abstraction to solve this issue. For example, in parametric timed pattern matching in Chap-
ter 3, we have to consider continuously many combinations of the parameter valuations, much
like the points in the left of Fig. 7.1. We used polyhedra-based abstraction to abstract the
parameter space (much like in the right of Fig. 7.1) and solved the parametric timed pattern
matching problem using an algorithm similar to an algorithm for non-parametric timed pattern
matching [WAH16, WHS17].

Concrete improvements and usage of polyhedra In Chapters 3 to 6, we improved
runtime verification using polyhedra-based abstraction to show the aforementioned high-level
contribution. The following summarizes the usages of polyhedra and the enhanced features in
each chapter. Here, we categorize the improvements into genericity, flexibility, informativeness,
and efficiency.

Chapter 3: Parametric timed pattern matching

Usage of polyhedra We used polyhedra to discretize the real-valued parameter space
as well as the matching intervals. Such a symbolic analysis is essential for runtime
verification with parametric specification.
Flexibility By using timing parameters, we allow incomplete timing constraints

(i. e., constraints with unknown threshold) in the monitored specification.
Informativeness Parametric timed pattern matching returns the set of feasible

parameter valuations as well as the corresponding intervals. By using the pa-
rameters, we can synthesize the safety degree. For example, we can encode the
robustness by replacing a guard x < 3 with x < 3 +px, where px is a parameter
showing the satisfaction degree.

Usage of polyhedra We used polyhedra in the skip value computation. Concretely,
the skip value functions ∆KMP and ∆QS defined in Definitions 3.11 and 3.14 require
the emptiness checking of the parametric timed language, which is solved by the
reachability checking with polyhedra-based abstraction
Efficiency Since the computationally expensive part of the skip value functions

only depends on the PTA given as a specification, we can compute it before
starting monitoring. Since the skip value function reduces the number of the
matching trials, it makes the whole algorithm efficient as shown in Section 3.4.2.
We note that this optimization does not change the result thanks to the sound-
ness Theorems 3.12 and 3.15.

Chapter 4: Symbolic monitoring against specifications parametric in time and
data

Usage of polyhedra In addition to the usage of polyhedra to abstract the timing pa-
rameter space in Chapter 3, we use polyhedra to abstract the parameter space of
the numeric data and parameter valuations.

7.2. Perspectives 125

Flexibility In addition to the timing parameters in Chapter 3, we allow parameters
in infinite domain data.

Informativeness Similarly to Chapter 3, we can synthesize the safety degree using
the parameters. Moreover, we can extract timing and data information from
the log, as shown in Section 4.5.3.

Chapter 5: Online quantitative timed pattern matching with semiring-valued weighted
automata

Usage of polyhedra In signal monitoring, there are continuously many possible tim-
ings of the switching in a temporal specification due to the continuity of the signals.
We use polyhedra to obtain discrete abstraction of such possibilities.

Genericity The quantitative semantics is parameterized with semiring S and the
cost function κ. Our algorithm works for any complete idempotent semiring.

Informativeness Quantitative timed pattern matching computes the quantitative
semantics for each subsignal. This quantitative semantics represents e. g., unsafe
degree, which is more informative than mere Boolean semantics.

Chapter 6: Model-bounded monitoring of hybrid systems

Usage of polyhedra In model-bounded monitoring, we symbolically interpolate the
sampled points using convex polyhedra.

Flexibility We introduce signal monitoring with flexible interpolation of the sam-
pled log, considering the system’s prior knowledge.

Informativeness By using the extension detailed in Appendix D, we can synthe-
size parameter valuations and unobserved signal values, much like Chapters 3
and 4.

7.2 Perspectives

Some future directions are as follows. We believe the use of polyhedra-based abstraction will
be also useful in many of these future directions.

7.2.1 Short-term: Improvement of the current methods

Improvements of the current methods are the short-term future works. The following are the
examples.

Improvement of the tool interface We implemented several prototypical tools to evaluate
the practical relevance of our approach. Although we can conduct monitoring with these tools,
we need more improvement, especially on the interface, to make it useful for non-specialists.
For example, an improvement in the syntax, better presentation of the monitored result, and
giving a GUI will be useful for many users.

126 Chapter 7. Discussion

Integration with other tools Our current tools monitor the log from a file or the standard
input. Thanks to the flexibility of the pipeline in Unix-like operating systems, any system can
be monitored if the log is written to a file or the standard output. Nevertheless, it will also be
useful to implement an integration with widely used simulators or middleware such as Simulink
or ROS [QCG+09].

Investigating an efficient alternative for embedded usage Since the computation re-
source is limited in embedded devices, it will be useful to investigate an efficient alternative with
a scalability guarantee, e. g., the number of the loops for each input is bounded, or the memory
allocation can be static. For such efficiency, we can, for example, restrict the specification or
make the output less informative.

7.2.2 Easing formal specification writing

Even if we allow using parameters in defining a specification, it is still challenging to write a
specification in a formal language, e. g., automata or temporal logic. The following are some
future works for such difficulty.

Validation of the formal specification “Does our formal specification specify what we
want?” This is a natural question after writing a formal specification. One of the methods to
answer this question is to test the formal specification. Namely, we feed logs to the specification
and check if the monitoring result is as we expected. For example, STLInspector [RHM17] is
a tool in this direction. Although such a test itself is nothing but a naive runtime verification,
advanced usage of the test results, e. g., repairing the specification from the failed test inputs,
would require advanced runtime verification techniques and the theory of automata or logics.

Another method to answer the question is to generate the logs illustrating the specification,
e. g., typical logs satisfying or violating the specification and the borderline logs. Such an
enumeration would require a symbolic analysis of the specification.

Combination with anomaly detection Another direction is not to write a formal specifi-
cation but to learn it from labeled or unlabeled training data, or through the questions to the
oracle. Although the high-level picture of this direction is the same as anomaly detection, we
can potentially improve the explainability in a specification-free approach because the learned
formal specification is white-box.

Grammatical inference [dlH16, LG16] is a research area on such learning, where a formal
language, typically represented by an automaton, is learned. The typical setting in grammatical
inference is the exact learning of a language over a finite alphabet, and it is still challenging
to learn from numeric data with noise.

We note that the parametric runtime verification in Chapters 3 and 4 can also be used
to learn a concrete formal specification from a parametric specification given as a template,
e. g., in [FdSC+17]. However, we have to give an appropriate parametric specification; this is
challenging in some usage scenarios.

7.2.3 Improvement in networked monitoring

It is getting common to conduct monitoring in an IoT setting, where the monitored log is
sampled on an embedded device that is connected to other computers via the internet. The

7.2. Perspectives 127

following are some challenges for IoT monitoring.

Efficiency in the embedded devices In IoT monitoring, on the one hand, the computa-
tional resource of the embedded devices with sensors tends to be limited, and it makes sense to
delegate the monitoring task to another computer. On the other hand, since communication
requires much energy, it also makes sense to reduce the communication frequency to make the
embedded device energy efficient.

Symbolic analysis is useful for such a networked monitoring with small frequency. One of
the usage of model-bounded monitoring in Chapter 6 is to reduce the communication frequency
with the soundness guarantee at the cost of false alarms. In [WH18], by a symbolic analysis
of the specification, a Moore-machine filter is constructed to reduce the amount of the log by
removing the subsequence whose safety is efficiently determinable.

In these works, a scenario with one embedded system and one high-performance server is
considered. Optimization for other setting, e. g., task distribution among multiple embedded
systems, is future work.

Monitoring of distributed systems with no synchronous clock In IoT monitoring,
it is also often the case that the monitoring is conducted by combining the information from
different devices with various sensors. In such a situation, precisely synchronous clock among
the embedded devices is often expensive. To conduct monitoring without precisely synchronous
clocks, monitoring considering clock perturbation or monitoring with logical clocks [KS08]
would be future directions.

7.2.4 Future vision: Monitoring to accelerate the innovation

Runtime verification automates the analysis of system behavior and makes it efficient. Since
this reduces the cost of the evaluation after prototyping, runtime verification accelerates the
cycle of prototyping and evaluation. Moreover, because the alarm raised by runtime verification
can trigger the emergency brake, runtime verification can make hardware test safer. Overall,
we believe that, in the long term, runtime verification will make system development more
efficient and accelerate the innovation of technologies.

In terms of the application of automata and formal language theory, grep is a very successful
utility used in various systems. Given a regular expression and a text, grep finds the matching
of the regular expression in the text. Despite its simplicity, grep is a powerful utility to
analyze various text files, e. g., source code, configuration file, and log, and it is one of the
standard commands in Unix-like operating systems. Moreover, a similar text search technique
is implemented in various text editors and IDEs to make the development efficient.

We believe that in the future, the advanced runtime verification techniques in this thesis
will be used in various systems as a handy utility for system log analysis, much like grep for
text analysis.

APPENDIX A
Construction of V`,n in

Chapter 3

We present a construction of V`,n in Definition 3.11. The construction is by using EFsynth in
Section 3.1.2. We fix a PTA A = (Σ, L, `0, LF ,X,P, E), a location ` ∈ L, and n ∈ Z>0. Since
V`,n is the set of parameter valuations v ∈ (Q+)P such that there is a v′ ∈ (Q+)P satisfying
L(v(A`)) · T (Σ) ∩ T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ) 6= ∅, V`,n is constructed by
EFsynth of A′` ‖ A′+n, where A′` and A′+n are the PTAs satisfying L(v(A′`)) = L(v(A`)) · T (Σ)
and L(v′(A′+n)) = T n(Σ) · {w + t | w ∈ L−$(v′(A)), t > 0} · T (Σ).

We define A′` as A` = (Σ, Lq{`fin}, `0, {`, `fin},X,P, E′`), where E′` = E ∪ {(`,>, a, ∅, `fin) |
a ∈ Σ} ∪ {(`fin,>, a, ∅, `fin) | a ∈ Σ}. For any v ∈ (Q+)P, w′ ∈ L(v(A`)), and w′′ ∈ T (Σ), we
have `0 w′−→ `

w′′−−→ `fin in v(A′`) and w′ · w′′ ∈ L(v(A′`)). For any v ∈ (Q+)P and w ∈ L(v(A′`)),
there exist timed words w′, w′′ ∈ T (Σ) satisfying w = w′ · w′′ and `0

w′−→ ` in v(A′`), which
implies w′ ∈ L(v(A`)). Therefore, we have L(v(A′`)) = L(v(A`)) · T (Σ).

We define A′+n as A+n = (Σq {ε}, L′, `n+1, L
′
F ,X,P′, E′), where

• ε is the unobservable character;

• L′ = Lq {li | i ∈ {1, 2, . . . , n+ 1}} q {lfin};

• L′F = {` | ∃`′ ∈ LF . (`, g, a,R, `′) ∈ E} q {`fin};

• P′ is a disjoint copy of P; and

• E′ = Eq{(li+1,>, a, ∅, li) | a ∈ Σ, i ∈ {1, 2, . . . , n}}q{(l1,>, ε,X, `0)}q{(l,>, a, ∅, lfin) |
a ∈ Σ, l ∈ L′F } q {(lfin,>, a, ∅, lfin) | a ∈ Σ}, where any parameter p ∈ P is replaced with
p′ ∈ P′.

For any parameter valuation v′ ∈ (Q+)P′ , timed words w′ ∈ T n(Σ), w′′ ∈ L(v′(A)), w′′′ ∈
T (Σ), and t ∈ R>0, we have `n+1

w′−→ `1
(ε,t)−−→ `0

w′′−−→ `f
w′′′−−→ `fin in v′(A), where `f ∈ L′F .

For any parameter valuation v′ ∈ (Q+)P′ and for any timed word w ∈ L(v′(A′+n)), there exist
w′ ∈ T (Σ), w′′ ∈ T (Σ), w′′′ ∈ T (Σ), and t ∈ R>0 satisfying w = w′ · (ε, t) · w′′ · w′′′ and

129

130 Appendix A. Construction of V`,n in Chapter 3

`0
w′′−−→ `f in v(A′+n), where `f ∈ L′F , and therefore, we have w′′ ∈ L−$(v′(A)). Overall, for any

v ∈ (Q+)P′ , we have L(v′(A′+n)) = T n(Σ) · {w + t | w ∈ L−$(v′(A)), t > 0} · T (Σ).
To take the intersection of L(v(A′`)) and L(v′(A′+n)), we use the synchronous product. For

any v ∈ (Q+)P and v′ ∈ (Q+)P′ , we have L((v q v′)(A′` ‖ A′+n)) = L(v(A′`)) ∩ L(v′(A′+n)),
where v q v′ is the parameter valuation v q v′ : P q P′ → Q+ such that for any p ∈ P,
(v q v′)(p) = v(p) and for any p′ ∈ P′, (v q v′)(p′) = v′(p′). Therefore, we have V`,n = {v |
∃v′ ∈ (Q+)P′ .L((v q v′)(A′` ‖ A′+n)) 6= ∅}, which can be computed by EFsynth.

APPENDIX B
Omitted proofs of Chapter 5

Definition B.1 (path value). For a WTTS S = (Q,Q0, QF ,→,W), a sequence q0, q1, . . . , qn
of Q is a path of S if we have q0 → q1 → . . . → qn. For a WTTS S = (Q,Q0, QF ,→,W) and
a path π = q0, q1, . . . , qn of S, the path value is µ(π) = ⊗n

i=1W (qi−1, qi). �

For anyWTTS S = (Q,Q0, QF ,→,W), we have α(S) = ⊕
π∈ARuns(S) µ(π), where ARuns(S)

is the set of paths of q0, q1, . . . , qn of S satisfying q0 ∈ Q0 and qn ∈ QF .

B.1 Finiteness of the reachable part of WSTTSs
For aWSTTS Ssym = (Qsym, Qsym

0 , Qsym
F ,→sym,W sym), we denote the reachable set by Reach(Ssym) =

Qsym
0 ∪{qsym ∈ Qsym | ∃qsym

0 ∈ Qsym
0 , qsym

1 , qsym
2 , . . . , qsym

m ∈ Qsym. qsym
0 , qsym

1 , . . . , qsym
m , qsym is a path of Ssym}.

Lemma B.2. Let Ssym = (Qsym, Qsym
0 , Qsym

F ,→sym,W sym) be a WSTTS of a signal σ =
aτ1

1 a
τ2
2 . . . aτnn and a TSWA W. For any (`, Z, a) ∈ Reach(Ssym), ν ∈ Z, and x ∈ X, we have

0 ≤ ν(x) ≤ |σ|.

Proof. Since for any (`, Z, a) ∈ Qsym and ν ∈ Z, we have ν(T) ≤ |σ|, it suffices to prove
ν(x) ≤ ν(T) for any x ∈ X. Let (`, Z, a) ∈ Reach(Ssym). If (`, Z, a) ∈ Qsym

0 , we have
Z = 0Xq{T} and for any ν ∈ Z and for any x ∈ X, we have ν(x) = ν(T) = 0.

Assume (`, Z, a) 6∈ Qsym
0 and let (`′, Z ′, a′) ∈ Reach(Ssym) satisfying

(
(`′, Z ′, a′), (`, Z, a)

)
∈

→sym. If a = ε, there exists (`, g, R, `′) ∈ ∆ satisfying Z = {[ν ′]R | ν ′ ∈ Z ′, ν ′ |= g}. Since
T 6∈ R, ∀ν ′ ∈ Z ′, x ∈ X. ν ′(x) ≤ ν ′(T) implies ∀ν ∈ Z, x ∈ X. ν(x) ≤ ν(T).

If a 6= ε, for any ν ∈ Z, there are ν ′ ∈ Z ′ and τ ∈ R>0 satisfying ν = ν ′ + τ . Therefore,
∀ν ′ ∈ Z ′, x ∈ X. ν ′(x) ≤ ν ′(T) implies ∀ν ∈ Z, x ∈ X. ν(x) ≤ ν(T).

For a nonempty zone Z ∈ Z(X q {T}) and x, x′ ∈ X q {T, 0}, we define ≺Z,x,x′ ∈ {<,≤}
and dZ,x,x′ ∈ R q {∞} be the smallest elements satisfying the following, where we define < is
smaller than ≤ and we denote ν(0) = 0.

Z =
{
ν
∣∣∣ ∧
x,x′∈Xq{T,0}

(ν(x)− ν(x′)) ≺Z,x,x′ dZ,x,x′
}

Though the dZ,x,x′ may not be integer, its domain is discrete.

131

132 Appendix B. Omitted proofs of Chapter 5

Lemma B.3. Let Ssym = (Qsym, Qsym
0 , Qsym

F ,→sym,W sym) be a WSTTS of a signal σ =
aτ1

1 a
τ2
2 . . . aτnn and a TSWA W. For any (`, Z, a) ∈ Reach(Ssym) and x, x′ ∈ X q {T, 0},

we have dZ,x,x′ = ∞ or there is ki ∈ Z for each i ∈ {0, 1, . . . , n} satisfying dZ,x,x′ = k0 +∑n
i=1(ki(

∑i
j=1 τj)).

Proof. If (`, Z, a) ∈ Qsym
0 , we have Z = 0Xq{T} and we have dZ,x,x′ = 0 for each x, x′ ∈

Xq {T, 0}.
Assume (`, Z, a) 6∈ Qsym

0 and let (`′, Z ′, a′) ∈ Reach(Ssym) satisfying
(
(`′, Z ′, a′), (`, Z, a)

)
∈

→sym. If a = ε, there exists (`, g, R, `′) ∈ ∆ satisfying Z = {[ν ′]R | ν ′ ∈ Z ′, ν ′ |= g}. For each
x ∈ R, we have dZ,x,0 = dZ,0,x = 0. For each x, x′ ∈ Xq {T, 0}, dZ,x,x′ is the shortest distance
in the graph interpretation of Z ′, where for each x ∈ R, dZ′,x,0 and dZ,0,x are replaced with 0
and the edges corresponding to the constraints in g are added. (See e. g., [BY03b] for the graph
interpretation of a zone.) We note that the additional edges are with integer weights because
the constants in g are integer. Therefore, for each x, x′ ∈ Xq {T, 0}, there are kx′′,x′′′ ∈ {0, 1}
and k ∈ Z satisfying dZ,x,x′ = k + ∑

x′′,x′′′∈Xq{T,0} kx′′,x′′′dZ′,x′′,x′′′ . By induction hypothesis,
For any x, x′ ∈ X q {T, 0}, we have dZ,x,x′ = ∞ or there is ki ∈ Z for each i ∈ {0, 1, . . . , n}
satisfying dZ,x,x′ = k0 +∑n

i=1(ki(
∑i
j=1 τj)).

If a 6= ε, dZ,x,x′ are computed by the following procedure.

1. For each x ∈ X, we replace (dZ′,x,0,≺Z′,x,0) with (∞, <).

2. We replace (dZ′,T,0,≺Z′,T,0) and (dZ′,0,T ,≺Z′,0,T) with
(∑i

j=0 τj , <
)
and

(
−
∑i−1
j=0 τj , <

)
,

or
(∑i

j=0 τj ,≤
)
and

(
−
∑i
j=0 τj ,≤

)
, respectively.

3. We take the shortest distance in the graph interpretation of Z ′, where some weights are
replaced by the above.

Therefore, for each x, x′ ∈ X q {T, 0} and for each i ∈ {0, 1, . . . , n}, there are kx′′,x′′′ ∈ {0, 1}
and ki ∈ Z satisfying the following.

dZ,x,x′ =
∑

x′′,x′′′∈Xq{T,0}
kx′′,x′′′dZ′,x′′,x′′′ +

n∑
i=1

ki i∑
j=1

τj

By induction hypothesis, For any x, x′ ∈ Xq{T, 0}, we have dZ,x,x′ =∞ or there is ki ∈ Z for
each i ∈ {0, 1, . . . , n} satisfying dZ,x,x′ = k0 +∑n

i=1(ki(
∑i
j=1 τj)).

Lemma B.4. For any WSTTS Ssym = (Qsym, Qsym
0 , Qsym

F ,→sym,W sym) and for any (`, Z, a) ∈
Reach(Ssym), either a = ε holds or there is t ∈ R≥0 such that for any ν ∈ Z, a = Values(σ([t, ν(T))))
holds.

Proof. Let (`, Z, a) ∈ Reach(Ssym). If (`, Z, a) ∈ Qsym
0 , we have a = ε.

If (`, Z, a) 6∈ Qsym
0 , there is (`′, Z ′, a′) ∈ Reach(Ssym) such that

(
(`′, Z ′, a′), (`, Z, a)

)
∈

→sym. If a 6= ε, we have a = a′ ◦ Values(σ([ν(T), ν ′(T)))). By induction hypothesis, there is
ν ′ ∈ Z ′ such that for any ν ∈ Z, we have a = Values(σ([ν ′(T), ν(T)))) or there is t ∈ R≥0 such
that for any ν ∈ Z, a = Values(σ([t, ν(T)))) holds.

Theorem B.5 (finiteness). For any WSTTS Ssym, there are only finitely many states reachable
from Qsym

0 .

Proof. The locations L is a finite set. By Lemma B.2 and Lemma B.3, the number of zones
appearing in Reach(Ssym) is finitely many. By Lemma B.4, the subsequences a appearing in
Reach(Ssym) is finitely many. Therefore, Reach(Ssym) is a finite set.

B.2. Proof of Theorem 5.13 133

B.2 Proof of Theorem 5.13
First, we define symbolic path value.

Definition B.6 (symbolic path value). For aWSTTS Ssym = (Qsym, Qsym
0 , Qsym

F ,→sym,W sym),
a sequence qsym

0 , qsym
1 , . . . , qsym

n of Qsym is a path of Ssym if for any i ∈ {1, . . . , n}, we have
(qsym
i−1 , q

sym
i) ∈ →sym. For a WSTTS Ssym = (Qsym, Qsym

0 , Qsym
F ,→sym,W sym) and a path

πsym = qsym
0 , qsym

1 , . . . qsym
n of Ssym, the symbolic path value is µsym(πsym) = ⊗n

i=1W
sym(qsym

i−1 , q
sym
i).
�

Similarly to the trace value α(S), for any WSTTS Ssym = (Qsym, Qsym
0 , Qsym

F ,→sym,W sym),
we have αsym(Ssym) = ⊕

πsym∈ARuns(Ssym) µ
sym(πsym), where ARuns(Ssym) is the set of paths

of qsym
0 , qsym

1 , . . . , qsym
n of Ssym satisfying qsym

0 ∈ Qsym
0 and qsym

n ∈ Qsym
F .

For a semiring S = (S,⊕,⊗, e⊕, e⊗), we denote the canonical order by � ⊆ S × S, where
s � s′ ⇐⇒ s⊕ s′ = s′. When S is idempotent, s = s′ if and only of s � s′ and s′ � s because:
if s = s′, we have s⊕ s′ = s′ ⊕ s′ = s′ and s′ ⊕ s = s⊕ s = s; and if s � s′ and s′ � s, we have
s = s⊕ s′ = s′ ⊕ s = s′.

For simplicity, we assume that for any signal σ = aτ1
1 a

τ2
2 . . . aτnn ∈ T (DV) and for any

i ∈ {1, 2, . . . , n− 1}, we have ai 6= ai+1.

Lemma B.7. Let σ = aτ1
1 a

τ2
2 . . . aτnn ∈ T (DV) be a signal, let W be a TSWA, and let Ssym =

(Qsym, Qsym
0 , Qsym

F ,→sym,W sym) be the WSTTS of σ and W. For any (`, Z1, a), (`′, Z ′1, a′) ∈
Qsym satisfying

(
(`, Z1, a), (`′, Z ′1, a′)

)
∈ →sym and for any (`, Z2, a) ∈ Qsym satisfying Z1 ⊆ Z2,

there exists (`′, Z ′2, a′) ∈ Qsym satisfying Z ′1 ⊆ Z ′2 and
(
(`, Z2, a), (`′, Z ′2, a′)

)
∈ →sym.

Proof. If a′ = ε, there exists (`, g, R, `′) ∈ ∆ satisfying Z ′1 = {[ν]R | ν ∈ Z1, ν |= g}. Since
Z1 ⊆ Z2, Z ′2 = {[ν]R | ν ∈ Z2, ν |= g} is nonempty, we have

(
(`, Z2, a), (`′, Z ′2, a′)

)
∈ →sym. We

also have Z ′1 ⊆ Z ′2.
If a′ 6= ε, let M be either Mi,= = {ν | ν(T) = ∑i

j=0 τj} or Mi = {ν | ∑i−1
j=0 τj < ν(T) <∑i

j=0 τj} satisfying Z ′1 = {ν + τ | ν + Z1, τ ∈ R>0} ∩ M , where i ∈ {1, 2, . . . , n}. Let
Z ′2 = {ν + τ | ν ∈ Z2, τ ∈ R>0} ∩M . Then, we have

(
(`, Z2, a), (`′, Z ′2, a′)

)
∈ →sym and since

Z1 ⊆ Z2, we have Z ′1 ⊆ Z ′2.

Lemma B.8. Let σ = aτ1
1 a

τ2
2 . . . aτnn ∈ T (DV) be a signal and let W = (A, κ) be a TSWA,

where A = (V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W,
respectively. For any (`, ν, t, a)→ (`′, ν ′, t′, a′), there is a zone Z ′ ∈ Z(Xq {T}) satisfying the
following.

•
(
(`, {νZ}, a), (`′, Z ′, a′)

)
∈ →sym, where νZ ∈ (R≥0)Xq{T} is for any x ∈ X, νZ(x) = ν(x)

and νZ(T) = t.

• There exists ν ′Z ∈ Z ′ such that for any x ∈ X ν ′Z(x) = ν ′(x) and ν ′Z(T) = t′.

• W
(
((`, ν, t, a), (`′, ν ′, t′, a′))

)
= W sym(((`, {νZ}, a), (`′, Z ′, a′))

)
Proof. If a′ = ε, there is (`, g, R, `′) ∈ ∆ satisfying ν |= g, ν ′ = [ν]R, t′ = t, a 6= ε, and a′ = ε.
Let Z ′ be Z ′ = {[νZ]R}. Since νZ |= g, a 6= ε, and a′ = ε, we have

(
(`, {νZ}, a), (`′, Z ′, a′)

)
∈

→sym. Since ν ′ = [ν]R, for any x ∈ X, we have ([νZ]R)(x) = ν ′(x). Since t = t′ and T 6∈ R, we
have ([νZ]R)(T) = νZ(T) = t = t′. We also have W

(
((`, ν, t, a), (`′, ν ′, t′, a′))

)
= κ(Λ(`), a) =

W sym(((`, {νZ}, a), (`′, Z ′, a′))
)
.

134 Appendix B. Omitted proofs of Chapter 5

If a′ 6= ε, ` = `′ and there is τ ∈ R>0 satisfying ν ′ = ν+τ , t′ = t+τ , and a′ = a◦σ([t, t+τ)).
Let M be either Mi,= = {ν | ν(T) = ∑i

j=0 τj} or Mi = {ν | ∑i−1
j=0 τj < ν(T) < ∑i

j=0 τj}
satisfying t′ ∈ M , where i ∈ {1, 2, . . . , n}. Let Z ′ = {νZ + τ | τ ∈ R>0} ∩ M . We have(
(`, {νZ}, a), (`′, Z ′, a′)

)
∈ →sym. Since ν ′ = ν + τ and t′ ∈ M , there exists ν ′Z ∈ Z ′ such that

for any x ∈ X ν ′Z(x) = ν ′(x) and ν ′Z(T) = t′. We also haveW
(
((`, ν, t, a), (`′, ν ′, t′, a′))

)
= e⊗ =

W sym(((`, {νZ}, a), (`′, Z ′, a′))
)
.

Lemma B.9. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respec-
tively. For any path π = (`0, ν0, t0, a0), (`1, ν1, t1, a1), . . . , (`n, νn, tn, an) of S, there is a path
πsym = (`0, Z0, a0), (`1, Z1, a1), . . . , (`n, Zn, an) of S, such that Z0 = {νZ,0 | ∀x ∈ X. νZ,0(x) =
ν0(x), νZ,0(T) = t0} and for any i ∈ {1, 2, . . . , n}, there exists νZ,i ∈ Zi satisfying νZ,i(x) =
νi(x) for any x ∈ X and νZ,i(T) = ti.

Proof. We prove the lemma by induction on n.
When n = 1, by Lemma B.8, for Z0 = {νZ,0 ∈ (R≥0)Xq{T} | ∀x ∈ X. νZ,0(x) = ν0(x), νZ,0(T) =

t0} there is a zone Z1 ∈ Z(Xq {T}) satisfying:

•
(
(`0, Z0, a0), (`1, Z1, a1)

)
∈ →sym; and

• there exists νZ,1 ∈ Z1 satisfying νZ,1(x) = ν1(x) for any x ∈ X and νZ,1(T) = t1.

When n > 1, by Lemma B.8, for Z ′n−1 = {νZ,n−1 ∈ (R≥0)Xq{T} | ∀x ∈ X. νZ,n−1(x) =
νn−1(x), νZ,n−1(T) = tn−1} there is a zone Z ′n ∈ Z(Xq {T}) satisfying:

•
(
(`n−1, Z

′
n−1, an−1), (`n, Z ′n, an)

)
∈ →sym; and

• there exists νZ,n ∈ Z ′n satisfying νZ,n(x) = νn(x) for any x ∈ X and νZ,n(T) = tn.

By induction hypothesis, there is a path (`0, Z0, a0), (`1, Z1, a1), . . . , (`n−1, Zn−1, an−1) of Ssym,
such that Z0 = {νZ,0 | ∀x ∈ X. νZ,0(x) = ν0(x), νZ,0(T) = t0} and for any i ∈ {1, 2, . . . , n− 1},
there exists νZ,i ∈ Zi satisfying νZ,i(x) = νi(x) for any x ∈ X and νZ,i(T) = ti. Since
Z ′n−1 ⊆ Zn−1 and Lemma B.7, there exists Zn ∈ Z(X q {T}) satisfying Z ′n ⊆ Zn and(
(`n−1, Zn−1, an−1), (`n, Zn, an)

)
∈ →sym. Therefore, (`0, Z0, a0), (`1, Z1, a1), . . . , (`n, Zn, an)

is a path of Ssym, such that Z0 = {νZ,0 | ∀x ∈ X. νZ,0(x) = ν0(x), νZ,0(T) = t0} and for
any i ∈ {1, 2, . . . , n}, there exists νZ,i ∈ Zi satisfying νZ,i(x) = νi(x) for any x ∈ X and
νZ,i(T) = ti.

Lemma B.10. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respectively.
For any path π of S, there is a path πsym of Ssym satisfying µ(π) = µsym(πsym). Moreover, for
any π ∈ ARuns(S), there is πsym ∈ ARuns(Ssym) satisfying µ(π) = µsym(πsym).

Proof. By Lemma B.9, for any path π = (`0, ν0, t0, a0), (`1, ν1, t1, a1), . . . , (`n, νn, tn, an) of
S, there is a path πsym = (`0, Z0, a0), (`1, Z1, a1), . . . , (`n, Zn, an) of Ssym. For any i ∈

B.2. Proof of Theorem 5.13 135

{1, 2, . . . , n}, we have

W
(
(`i−1, νi−1, ti−1, ai−1), (`i, νi, ti, ai)

)
=
{
κ(Λ(`i−1, ai−1)) if ai = ε

e⊗ if ai 6= ε

=W sym((`i−1, Zi−1, ai−1), (`i, Zi, ai)
)

Therefore, we have µ(π) = µsym(πsym).
When π ∈ ARuns(S), we have `0 ∈ L0, ν0 = 0C , t0 = 0, a0 = ε, `n ∈ LF , tn = |σ|, and

an = ε. By Lemma B.9, we have Z0 = {0Xq{T}} and there is νZ,n ∈ Zn satisfying νZ,n(T) = tn.
Therefore, πsym ∈ ARuns(Ssym) also holds.

Theorem B.11. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respectively.
If the semiring S is idempotent, we have α(S) � αsym(Ssym).

Proof. By Lemma B.10, there is a mapping f : ARuns(S)→ ARuns(Ssym) satisfyingW sym(f(π)) =
W (π). We have

α(S)⊕ αsym(Ssym)
=
(⊕
π∈ARuns(S)

µ(π)
)
⊕
(⊕
πsym∈ARuns(Ssym)

µsym(πsym)
)

=
(⊕
πsym∈f(ARuns(S))

µsym(πsym)
)
⊕
(⊕
πsym∈ARuns(Ssym)

µsym(πsym)
)

=
(⊕
πsym∈ARuns(Ssym)

µsym(πsym)
)

= αsym(Ssym)

Therefore, we have α(S) � αsym(Ssym).

Lemma B.12. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respectively.
For any

(
(`, Z, a), (`′, Z ′, a′)

)
∈ →sym, and ν ′Z ∈ Z ′, there is a clock valuation νZ ∈ Z satisfying

the following.

• (`, νZ↓X, νZ(T), a)→ (`′, ν ′Z↓X, ν ′Z(T), a′), where νZ↓X, ν ′Z↓X ∈ (R≥0)X are for any x ∈ X,
νZ↓X(x) = νZ(x) and ν ′Z↓X(x) = ν ′Z(x).

• W
(
((`, νZ↓X, νZ(T), a), (`′, ν ′Z↓X, ν ′Z(T), a′))

)
= W sym(((`, Z, a), (`′, Z ′, a′))

)
Proof. If a′ = ε, we have a 6= ε and there is (`, g, R, `′) ∈ ∆ satisfying Z ′ = {[ν]R | ν ∈
Z, ν |= g}, which is nonempty. By definition of Z ′, there exists νZ ∈ Z such that ν ′Z =
[νZ]R. Since such νZ satisfies νZ↓X |= g and νZ(T) = ν ′Z(T), we have (`, νZ↓X, νZ(T), a) →
(`′, ν ′Z↓X, ν ′Z(T), a′). We also have the following.

W
(
((`, νZ↓X, νZ(T), a), (`′, ν ′Z↓X, ν ′Z(T), a′))

)
= κ(Λ(`), a) = W sym(((`, Z, a), (`′, Z ′, a′))

)
If a′ 6= ε, we have ` = `′, a′ = a ◦σ([νZ(T), ν ′Z(T))), and for any ν ′ ∈ Z ′, there exists ν ∈ Z

and τ ∈ R>0 satisfying ν ′ = ν + τ , where νZ ∈ Z. Let νZ ∈ Z and τ ∈ R>0 be such that
ν ′Z = νZ + τ . Because of

136 Appendix B. Omitted proofs of Chapter 5

• ` = `′,

• ν ′Z↓X = νZ↓X + τ ,

• ν ′Z(T) = νZ(T) + τ , and

• a′ = a ◦ σ([νZ(T), ν ′Z(T))),

we have (`, νZ↓X, νZ(T), a)→ (`′, ν ′Z↓X, ν ′Z(T), a′). We also have

W
(
((`, νZ↓X, νZ(T), a), (`′, ν ′Z↓X, ν ′Z(T), a′))

)
= e⊗ = W sym(((`, Z, a), (`′, Z ′, a′))

)
.

Lemma B.13. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respectively.
For any path πsym = (`0, Z0, a0), (`1, Z1, a1), . . . , (`n, Zn, an) of S and for any νZ,n ∈ Zn, there
is a path π = (`0, ν0, t0, a0), (`1, ν1, t1, a1), . . . , (`n, νn, tn, an) of S such that we have (νZ,n)↓X =
νn and νZ,n(T) = tn, and for any i ∈ {0, 1, . . . , n − 1}, there exists νZ,i ∈ Zi satisfying
(νZ,i)↓X = νi and νZ,i(T) = ti.

Proof. We prove the lemma by induction on n. When n = 1, by Lemma B.12, for any νZ,1 ∈ Z1,
there is νZ,0 ∈ Z0 satisfying (`, (νZ,0)↓X, νZ,0(T), a)→ (`′, (νZ,1)↓X, νZ,1(T), a′).

When n > 1, by induction hypothesis, for any νZ,n ∈ Zn, there is a path

(`1, ν1, t1, a1), (`2, ν2, t2, a2), . . . , (`n, νn, tn, an)

of S, such that we have (νZ,n)↓X = νn and νZ,n(T) = tn, and for any i ∈ {1, 2, . . . , n − 1},
there exists νZ,i ∈ Zi satisfying (νZ,i)↓X = νi and νZ,i(T) = ti. By Lemma B.12, there
is a clock valuation νZ,0 ∈ Z0 satisfying (`, (νZ,0)↓X, νZ,0(T), a) → (`′, ν1, t1, a′). There-
fore, (`0, νZ,0, νZ,0(T), a0), (`1, ν1, t1, a1), . . . , (`n, νn, tn, an) is a path of S, such that we have
(νZ,n)↓X = νn and νZ,n(T) = tn, and for any i ∈ {1, 2, . . . , n − 1}, there exists νZ,i ∈ Zi
satisfying (νZ,i)↓X = νi and νZ,i(T) = ti.

Lemma B.14. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respectively.
For any path πsym of Ssym, there is a path π of S satisfying µ(π) = µsym(πsym). Moreover, for
any πsym ∈ ARuns(Ssym), there is π ∈ ARuns(S) satisfying µ(π) = µsym(πsym).

Proof. By Lemma B.13, for any path

πsym = (`0, Z0, a0), (`1, Z1, a1), . . . , (`n, Zn, an)

of Ssym, there is a path

π = (`0, ν0, t0, a0), (`1, ν1, t1, a1), . . . , (`n, νn, tn, an)

of S. For any i ∈ {1, 2, . . . , n}, we have

W
(
(`i−1, νi−1, ti−1, ai−1), (`i, νi, ti, ai)

)
=
{
κ(Λ(`i−1, ai−1)) if ai = ε

e⊗ if ai 6= ε

=W sym((`i−1, Zi−1, ai−1), (`i, Zi, ai)
)

B.3. Proof of Theorem 5.15 137

Therefore, we have µ(π) = µsym(πsym).
When πsym ∈ ARuns(Ssym), we have `0 ∈ L0, Z0 = 0Xq{T}, a0 = ε, `n ∈ LF , ∃νZ,n ∈

Zn. νZ,n = |σ|, and an = ε. By Lemma B.13, for νZ,n ∈ Zn satisfying νZ,n = |σ|, there is a
path π = (`0, ν0, t0, a0), (`1, ν1, t1, a1), . . . , (`n, νn, tn, an) of S such that we have (νZ,n)↓X = νn,
νZ,n(T) = tn ν0 = 0C , t0 = 0, and for any i ∈ {1, 2, . . . , n− 1}, there exists νZ,i ∈ Zi satisfying
(νZ,i)↓X = νi and νZ,i(T) = ti. Therefore, π ∈ ARuns(S) also holds.

Theorem B.15. Let σ ∈ T (DV) be a signal and let W = (A, κ) be a TSWA, where A =
(V, L, L0, LF ,X,∆,Λ). Let S and Ssym be the WTTS and WSTTS of σ and W, respectively.
If the semiring S is idempotent, we have αsym(Ssym) � α(S).

Proof. By Lemma B.14, there is a mapping f : ARuns(Ssym)→ ARuns(S) satisfyingW (f(πsym)) =
W sym(πsym). We have

αsym(Ssym)⊕ α(S)
=
(⊕
πsym∈ARuns(Ssym)

µsym(πsym)
)
⊕
(⊕
π∈ARuns(S)

µ(π)
)

=
(⊕
π∈f(ARuns(Ssym))

µ(π)
)
⊕
(⊕
π∈ARuns(S)

µ(π)
)

=
(⊕
π∈ARuns(S)

µ(π)
)

= α(S)

Therefore, we have αsym(Ssym) � α(S).

Theorem 5.13. By Theorem B.11 and Theorem B.15, we have α(S) � αsym(Ssym). and
αsym(Ssym) � α(S). Therefore, we have the following.

αsym(Ssym) = α(S)⊕ αsym(Ssym) = αsym(Ssym)⊕ α(S) = α(S)

B.3 Proof of Theorem 5.15
For locations `, `′ of A = (V, L, L0, LF ,X,∆,Λ), Z,Z ′ ∈ Z(X q {T}), a, a′ ∈ (DV)~, and the
WSTTS Ssym of a signal σ and W = (A, κ), we denote the set of paths from (`, Z, a) to
(`′, Z ′, a′) of Ssym as follows.

Paths(Ssym, `, Z, a, `′, Z ′, a′)
={πsym | πsym = (`, Z, a), qsym

1 , qsym
2 , . . . , qsym

n , (`′, Z ′, a′) is a path of Ssym }

By symbolic path value µsym(πsym), we can rewrite the increment function incr(a, t) as
follows, where Ssym

a,t is the WSTTS of at and W.

incr(a, t)(w) =
{

(`′, Z ′, a′, s′) |`′ ∈ L,Z ′ ∈ Z(Xq {T}), ∀ν ′ ∈ Z ′. ν ′(T) = t, a′ ∈ (DV)~,

s′ =
⊕

(`,Z,a,s)∈w
πsym∈Paths(Ssym

a,t ,`,Z,a,`
′,Z′,a′)

s⊗ µsym(πsym)
}

138 Appendix B. Omitted proofs of Chapter 5

Lemma B.16. For a TSWA W, a signal σ = aτ1
1 a

τ2
2 . . . aτnn , and i ∈ {1, 2, . . . , n}, we have the

following.

weighti =
{

(`i, Zi, ai, si)
∣∣ `i ∈ L,Zi ∈ Z(Xq {T}), ai ∈ (DV)~,∀ν ′ ∈ Z ′. ν ′(T) =

i∑
j=1

τj

si =
⊕
`0∈L0

πsym∈Paths(Ssym,`0,0CXq{T},ε,`i,Zi,ai)

µsym(πsym)
}

Proof. We prove by induction on i. If i = 1, we have the following.

weight1 =incr
(
a1, τ1

)
({(`0,0Xq{T}, ε, e⊗) | `0 ∈ L0})

=
{

(`′, Z ′, a′, s′) | `′ ∈ L,Z ′ ∈ Z(Xq {T}), a′ ∈ (DV)~, ∀ν ′ ∈ Z ′. ν ′(T) = τ1

s′ =
⊕
`0∈L0

πsym∈Paths(Ssym
a1,τ1 ,`0,0Xq{T},ε,`

′,Z′,a′)

e⊗ ⊗ µsym(πsym)
}

=
{

(`′, Z ′, a′, s′) | `′ ∈ L,Z ′ ∈ Z(Xq {T}), a′ ∈ (DV)~, ∀ν ′ ∈ Z ′. ν ′(T) = τ1

s′ =
⊕
`0∈L0

πsym∈Paths(Ssym,`0,0Xq{T},ε,`
′,Z′,a′)

e⊗ ⊗ µsym(πsym)
}

If i > 1, by induction hypothesis, we have the following.

weighti =incr(ai, τi)(weighti−1)

=
{

(`′, Z ′, a′, s′) | `′ ∈ L,Z ′ ∈ Z(Xq {T}), a′ ∈ (DV)~,

s′ =
⊕

(`,Z,a,s)∈weighti−1∀ν′∈Z′. ν′(T)=
∑i

j=1 τj

πsym∈Paths(Ssym
ai,τi

,`,Z,a,`′,Z′,a′)

s⊗ µsym(πsym)
}

=
{

(`′, Z ′, a′, s′) | `′ ∈ L,Z ′ ∈ Z(Xq {T}), a′ ∈ (DV)~,∀ν ′ ∈ Z ′. ν ′(T) =
i∑

j=1
τj ,

s′ =
⊕

`0∈L0,`∈L,Z∈Z(Xq{T}),a∈(DV)~,
πsym∈Paths(Ssym

ai,τi
,`,Z,a,`′,Z′,a′)

πsym′∈Paths(Ssym,`0,0Xq{T},ε,`,Z,a),
∀ν∈Z. ν(T)=

∑i−1
j=1 τj

µsym(πsym′)⊗ µsym(πsym)
}

=
{

(`′, Z ′, a′, s′) | `′ ∈ L,Z ′ ∈ Z(Xq {T}), a′ ∈ (DV)~,∀ν ′ ∈ Z ′. ν ′(T) =
i∑

j=1
τj ,

s′ =
⊕
`0∈L0

πsym∈Paths(Ssym,`0,0Xq{T},ε,`
′,Z′,a′)

µsym(πsym)
}

B.3. Proof of Theorem 5.15 139

Theorem 5.15. By Lemma B.16, we have the following.⊕
(`,Z,a)∈Qsym

F
(`,Z,a,s)∈weightn

s

=
⊕

(`,Z,a)∈Qsym
0

(`′,Z′,a′)∈Qsym
F

πsym∈Paths(Ssym,`,Z,a,`′,Z′,a′)

µsym(πsym) =
⊕

πsym∈ARuns(Ssym)
µsym(πsym) = αsym(Ssym)

APPENDIX C
Detailed example of

Chapter 6

Example C.1. Let w and A be the ones in Example 6.16. In line 1 of Algorithm 10, we let
Conf 0 = {(`0, (40, 35))}. In line 3, we compute the time-bounded reachability analysis and the
result is as follows.

Conf ′1 = {(`0, v1) | v1(x1) ∈ [115, 125], v1(x2) ∈ [115, 125]}
∪{(`0, v1) | −3v1(x1) + 11v1(x2) ≥ 876,−2v1(x1) + 9v1(x2) ≥ 789,

v1(x2) ≤ 431/3, v1(x1) ≤ 499/3, v1(x2) ≥ 115, v1(x1) ≥ 115,
4v1(x1)− 7v1(x2) ≥ −415}

∪{(`1, v1) | −3v1(x1) + 11v1(x2) ≥ 876,−v1(x1) + 5v1(x2) ≥ 456,
− 3v1(x2) ≥ −431,−3v1(x1) ≥ −499, v1(x2) ≥ 115, v1(x1) ≥ 115,
4v1(x1)− 7v1(x2) ≥ −415}

∪{(`2, v1) | −18v1(x1) + 15v1(x2) ≥ −415,−v1(x1) + 2v1(x2) ≥ 115,
4v1(x1)− 7v1(x2) ≥ −415, v1(x1) ≥ 115}

∪{(`3, v1) | v1(x1) ∈ [115, 455/3],−3v1(x1) + 11v1(x2) ≥ 920,
v1(x2) ≤ 415/3, 4v1(x1)− 7v1(x2) ≥ −415}

In line 4, we require x1 = 123 and x2 = 117, and we have Conf 1 = {(`0, (123, 117)), (`1, (123, 117))}.
Since `0 6∈ LF and `1 6∈ LF , we have Result1 = ⊥.

After incrementing i in line 2, in line 3, we again compute the time-bounded reachability

141

142 Appendix C. Detailed example of Chapter 6

analysis and the result is as follows.

Conf ′2 = {(`0, v2) | v2(x1) ∈ [198, 253], v2(x2) ∈ [197, 227],
− 2v2(x1) + 9v2(x2) ≥ 1357, 4v2(x1)− 7v2(x2) ≥ −657}

∪{(`1, v2) | v2(x1) ∈ [233, 253], v2(x2) ∈ [207, 227]}
∪{(`1, v2) | −3v2(x1) + 11v2(x2) ≥ 1540,−v2(x1) + 5v2(x2) ≥ 784,

− 3v2(x2) ≥ −673,−3v2(x1) ≥ −737, v2(x2) ≥ 197,
v2(x1) ≥ 198, 4v2(x1)− 7v2(x2) ≥ −657}

∪{(`2, v2) | −6v2(x1) + 5v2(x2) ≥ −219,−v2(x1) + 2v2(x2) ≥ 198,
4v2(x1)− 7v2(x2) ≥ −657, v2(x1) ≥ 198}

∪{(`3, v2) | v2(x1) ∈ [198, 231], v2(x2) ≤ 219,−3v2(x1) + 11v2(x2) ≥ 1584,
4v2(x1)− 7v2(x2) ≥ −657}

In line 4, we require x1 = 203 and x2 = 201. This time, we have Conf 1 = {(`, (203, 201)) | ` ∈
L}. Since L ∩ LF 6= ∅, we have Result2 = >. �

APPENDIX D
Model-Bounded Monitoring

with Partial Observations

Here, we briefly show that it is straightforward to generalize model-bounded monitoring in
Chapter 6 to monitor the signals with partial observations. We note that by using partial
observations, we can also use parameters both in the model and the specification because a
parameter is equivalent to a variable x with flow ẋ = 0 and never observed in the log w.
Moreover, we can conduct timed pattern matching by constructing the matching automaton
in [BFN+18] and Section 5.6 with parameters t and t′.

D.1 Partial timed quantitative word
We introduce partial timed quantitative word to model the sampling with partial observation.
A partial timed quantitative word is a timed quantitative word where the valuation function
may be partial. For partial timed quantitative words, we use the same notation as timed
quantitative words.

Definition D.1 (partial timed quantitative words). A partial timed quantitative word w is a
sequence (u1, τ1), (u2, τ2), . . . , (um, τm) of pairs (ui, τi) of a partial valuation ui : X 9 R and a
timestamp τi ∈ R≥0 satisfying τi ≤ τi+1 for each i ∈ {1, 2, . . . ,m − 1}. For partial valuations
u, u′ : X 9 R, we denote u v u′ if for any x ∈ dom(u), u(x) = u′(x) holds. �

D.2 Partial monitored language
We extend the monitored language in Definition 6.10 to the set of partial timed quantitative
words. For partial monitored languages, we use the same notation as monitored languages.

Definition D.2 (partial monitored language Lmon(A)). Let ρ = s0 →1 s1 →2 · · · →n sn be
a run of an LHA A (Definition 6.6), and w = (u1, τ1), (u2, τ2), . . . , (um, τm) be a partial timed
quantitative word. We say w is associated to ρ if, for each j ∈ {1, 2, . . . ,m}, we have either of
the following two. Here `i, vi are so that si = (`i, vi) for each i ∈ {0, 1, . . . , n}.

143

144 Appendix D. Model-Bounded Monitoring with Partial Observations

1. There exists i ∈ {0, 1, 2, . . . , n} such that Dur(ρ[i]) = τj and uj v vi; or

2. There exists i ∈ {0, 1, 2, . . . , n− 1} such that Dur(ρ[i]) < τj < Dur(ρ[i+ 1]) and for any
x ∈ X, uj(x) = vi(x) + (τj −Dur(ρ[i]))fi(ẋ) holds if uj(x) is defined, where →i = di,fi7→ .

Finally, the partial monitored language Lmon(A) of an LHA A is the set of partial timed
quantitative words associated with some accepting run of A. �

D.3 Membership constraint problem for partial monitored
languages

Then, we formulate the monitoring problem of a partial timed quantitative word w against
a specification in an LHA A. In the monitoring problem, the total valuations v : X → R
compatible with the observation are synthesized as well as the indices i satisfying w[i] ∈
Lmon(A) are returned.
The Lmon membership constraint problem:
Input: An LHA A and a partial timed quantitative word w = (u1, τ1), . . . , (um, τm).
Problem: Returns (constraints that express) the set C(w,A), consisting of all the pairs
(i, v) of an index i ∈ {1, 2, . . . ,m} and a total valuation v : X → R satisfying ui v v and
(u1, τ1), (u2, τ2), . . . , (ui−1, τi−1), (v, τi) ∈ Lmon(A).

D.4 Algorithms for the membership constraint problem
Here we show how to modify the algorithms in Sections 6.6 and 6.7 to solve the membership
constraint problem.

D.4.1 Algorithm I in Section 6.6

We can directly reuse the algorithm in Section 6.6 because of the following reasons.

• Although the valuation in the partial timed quantitative word w can be partial, the
construction of the LHA Aw is the same; we simply convert each partial valuation to a
guard.

• The construction of the synchronized product Aw || A is the same.

• We need to synthesize the constraint for the reachability rather than deciding the reach-
ability. We can use PHAVerLite to synthesize such a constraint.

D.4.2 Algorithm II in Section 6.7

Since Algorithm 10 does not conduct the constraint synthesis, we need the following slight
modification.

• The constraint v = ui in line 4 of Algorithm 10 is replaced with ui v v.

• We return the valuation rather than the Boolean acceptance. Namely, line 5 of Algo-
rithm 10 becomes Resulti ← {v | ∃(`, v) ∈ Conf i. ` ∈ LF }.

Bibliography

[ABD18] Eugene Asarin, Nicolas Basset, and Aldric Degorre. Distance on timed words and
applications. In David N. Jansen and Pavithra Prabhakar, editors, Proceedings
of the 16th International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS 2018), volume 11022 of Lecture Notes in Computer Science,
pages 199–214. Springer, 2018.

[ACEF09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg.
An inverse method for parametric timed automata. International Journal of Foun-
dations of Computer Science, 20(5):819–836, October 2009.

[ACM97] Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed au-
tomata. In Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, Warsaw, Poland, June 29 - July 2, 1997, pages 160–171. IEEE Com-
puter Society, 1997.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,
49(2):172–206, 2002.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, April 1994.

[ADMN11] Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. Parametric
identification of temporal properties. In Proceedings of the Second International
Conference on Runtime Verification (RV 2011), volume 7186 of Lecture Notes in
Computer Science, pages 147–160. Springer, 2011.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITA-
TOR 2.5: A tool for analyzing robustness in scheduling problems. In Dimitra
Giannakopoulou and Dominique Méry, editors, Proceedings of the 18th Interna-
tional Symposium on Formal Methods (FM 2012), volume 7436 of Lecture Notes
in Computer Science, pages 33–36. Springer, 8 2012.

[AFMS19] Étienne André, Laurent Fribourg, Jean-Marc Mota, and Romain Soulat. Verifi-
cation of an industrial asynchronous leader election algorithm using abstractions
and parametric model checking. In Constantin Enea and Ruzica Piskac, editors,
Verification, Model Checking, and Abstract Interpretation - 20th International
Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings,
volume 11388 of Lecture Notes in Computer Science, pages 409–424. Springer,
2019.

145

146 Bibliography

[AH15] Takumi Akazaki and Ichiro Hasuo. Time robustness in MTL and expressivity in
hybrid system falsification. In Daniel Kroening and Corina S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of
Lecture Notes in Computer Science, pages 356–374. Springer, 2015.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic veri-
fication of embedded systems. IEEE Trans. Software Eng., 22(3):181–201, 1996.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors,
Proceedings of the 25th annual ACM symposium on Theory of computing (STOC
1993), pages 592–601, New York, NY, USA, 1993. ACM.

[AHW18] Étienne André, Ichiro Hasuo, and Masaki Waga. Offline timed pattern matching
under uncertainty. In Anthony Widjaja Lin and Jun Sun, editors, Proceedings of
the 23rd International Conference on Engineering of Complex Computer Systems
(ICECCS 2018), pages 10–20. IEEE CPS, 2018.

[AKV98] Rajeev Alur, Robert P. Kurshan, and Mahesh Viswanathan. Membership ques-
tions for timed and hybrid automata. In RTSS, pages 254–263. IEEE Computer
Society, 1998.

[AL17] Étienne André and Didier Lime. Liveness in L/U-parametric timed automata. In
Alex Legay and Klaus Schneider, editors, Proceedings of the 17th International
Conference on Application of Concurrency to System Design (ACSD 2017), pages
9–18. IEEE, 2017.

[ALFS11] Yashwanth Annpureddy, Che Liu, Georgios E. Fainekos, and Sriram Sankara-
narayanan. S-TaLiRo: A tool for temporal logic falsification for hybrid systems.
In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Proceedings of the 17th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2011), Held as Part of the Joint European Conferences
on Theory and Practice of Software (ETAPS 2011), volume 6605 of Lecture Notes
in Computer Science, pages 254–257. Springer, 2011.

[And19] Étienne André. What’s decidable about parametric timed automata? Interna-
tional Journal on Software Tools for Technology Transfer, 21(2):203–219, 4 2019.

[APM19] Houssam Abbas, Yash Vardhan Pant, and Rahul Mangharam. Temporal logic
robustness for general signal classes. In Necmiye Ozay and Pavithra Prabhakar,
editors, Proceedings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-
18, 2019, pages 45–56. ACM, 2019.

[BBFL03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim Guldstrand Larsen.
Static guard analysis in timed automata verification. In Hubert Garavel and John
Hatcliff, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, 9th International Conference, TACAS 2003, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,

Bibliography 147

Poland, April 7-11, 2003, Proceedings, volume 2619 of Lecture Notes in Computer
Science, pages 254–277. Springer, 2003.

[BBLP06] Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek Pelánek.
Lower and upper bounds in zone-based abstractions of timed automata. STTT,
8(3):204–215, 2006.

[BDD+18] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E. Fainekos,
Oded Maler, Dejan Nickovic, and Sriram Sankaranarayanan. Specification-based
monitoring of cyber-physical systems: A survey on theory, tools and applications.
In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification –
Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer
Science, pages 135–175. Springer, 2018.

[BDG+11] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-François
Raskin, and James Worrell. On reachability for hybrid automata over bounded
time. In ICALP (2), volume 6756 of Lecture Notes in Computer Science, pages
416–427. Springer, 2011.

[BDSV14] Lubos Brim, Petr Dluhos, David Safránek, and Tomas Vejpustek. STL∗: Extend-
ing signal temporal logic with signal-value freezing operator. Information and
Computation, 236:52–67, 2014.

[BER94] Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the automatic
verification of systems with continuous variables and unbounded discrete data
structures. In Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry,
editors, Hybrid Systems II, volume 999 of Lecture Notes in Computer Science,
pages 64–85. Springer, 1994.

[BF18] Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer
Science. Springer, 2018.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction
to runtime verification. In Bartocci and Falcone [BF18], pages 1–33.

[BFH+12] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E.
Rydeheard. Quantified event automata: Towards expressive and efficient runtime
monitors. In Dimitra Giannakopoulou and Dominique Méry, editors, FM, volume
7436 of Lecture Notes in Computer Science, pages 68–84. Springer, 2012.

[BFM18] Alexey Bakhirkin, Thomas Ferrère, and Oded Maler. Efficient parametric identi-
fication for STL. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week) (HSCC 2018), pages
177–186. ACM, 2018.

[BFMU17] Alexey Bakhirkin, Thomas Ferrère, Oded Maler, and Dogan Ulus. On the quan-
titative semantics of regular expressions over real-valued signals. In Alessandro
Abate and Gilles Geeraerts, editors, Proceedings of the 15th International Con-
ference on Formal Modeling and Analysis of Timed Systems (FORMATS 2017),

148 Bibliography

volume 10419 of Lecture Notes in Computer Science, pages 189–206. Springer,
2017.

[BFN+18] Alexey Bakhirkin, Thomas Ferrère, Dejan Nickovic, Oded Maler, and Eugene
Asarin. Online timed pattern matching using automata. In David N. Jansen and
Prabhakar Pavithra, editors, Proceedings of the 16th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2018), volume
11022 of Lecture Notes in Computer Science, pages 215–232. Springer, 2018.

[BGF18] Reza Babaee, Arie Gurfinkel, and Sebastian Fischmeister. Prevent : A predictive
run-time verification framework using statistical learning. In SEFM, volume 10886
of Lecture Notes in Computer Science, pages 205–220. Springer, 2018.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Science of Computer Programming,
72(1–2):3–21, 2008.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[BKMZ15a] David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. Mon-
itoring of temporal first-order properties with aggregations. Formal Methods in
System Design, 46(3):262–285, 2015.

[BKMZ15b] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. Monitoring
metric first-order temporal properties. Journal of the ACM, 62(2):15:1–15:45,
2015.

[BKT17] David A. Basin, Srdjan Krstic, and Dmitriy Traytel. AERIAL: almost event-rate
independent algorithms for monitoring metric regular properties. In Giles Reger
and Klaus Havelund, editors, RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Run-
time Verification Tools, September 15, 2017, Seattle, WA, USA, volume 3 of Kalpa
Publications in Computing, pages 29–36. EasyChair, 2017.

[BKZ17] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. The MonPoly monitoring
tool. In Giles Reger and Klaus Havelund, editors, RV-CuBES, volume 3 of Kalpa
Publications in Computing, pages 19–28. EasyChair, 2017.

[BL09] Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper bound
parametric timed automata. Formal Methods in System Design, 35(2):121–151,
2009.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, 2011.

[BRS19] Lei Bu, Rajarshi Ray, and Stefan Schupp. ARCH-COMP19 category report:
Bounded model checking of hybrid systems with piecewise constant dynamics. In
ARCH@CPSIoTWeek, volume 61 of EPiC Series in Computing, pages 120–128.
EasyChair, 2019.

Bibliography 149

[BY03a] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures
on Concurrency and Petri Nets, Advances in Petri Nets [This tutorial volume
originates from the 4th Advanced Course on Petri Nets, ACPN 2003], volume
3098 of Lecture Notes in Computer Science, pages 87–124. Springer, 2003.

[BY03b] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures
on Concurrency and Petri Nets, Advances in Petri Nets [This tutorial volume
originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in
Eichstätt, Germany in September 2003. In addition to lectures given at ACPN
2003, additional chapters have been commissioned], volume 3098 of Lecture Notes
in Computer Science, pages 87–124. Springer, 2003.

[BZ19] Anna Becchi and Enea Zaffanella. Revisiting polyhedral analysis for hybrid sys-
tems. In SAS, volume 11822 of Lecture Notes in Computer Science, pages 183–202.
Springer, 2019.

[CÁF11] Xin Chen, Erika Ábrahám, and Goran Frehse. Efficient bounded reachability
computation for rectangular automata. In RP, volume 6945 of Lecture Notes in
Computer Science, pages 139–152. Springer, 2011.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3):15:1–15:58, 2009.

[CHO16] Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative mon-
itor automata. In Xavier Rival, editor, Static Analysis - 23rd International Sym-
posium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings, volume
9837 of Lecture Notes in Computer Science, pages 23–38. Springer, 2016.

[cru] tprasadtp/cruise-control-simulink: Simulink model for Cruise control system
of a car with dynamic road conditions. https://github.com/tprasadtp/
cruise-control-simulink.

[Dan03] Zhe Dang. Pushdown timed automata: a binary reachability characterization and
safety verification. Theoretical Computer Science, 302(1-3):93–121, 2003.

[DDG+15] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin,
Garvit Juniwal, and Sanjit A. Seshia. Robust online monitoring of signal tempo-
ral logic. In Ezio Bartocci and Rupak Majumdar, editors, Runtime Verification -
6th International Conference, RV 2015 Vienna, Austria, September 22-25, 2015.
Proceedings, volume 9333 of Lecture Notes in Computer Science, pages 55–70.
Springer, 2015.

[DFM13] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring
for STL. In Natasha Sharygina and Helmut Veith, editors, Proceedings of the 25th
International Conference on Computer Aided Verification (CAV 2013), volume
8044 of Lecture Notes in Computer Science, pages 264–279. Springer, 2013.

https://github.com/tprasadtp/cruise-control-simulink
https://github.com/tprasadtp/cruise-control-simulink

150 Bibliography

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Automatic Verification Methods for Finite State Systems 1989, volume
407 of Lecture Notes in Computer Science, pages 197–212. Springer, 1989.

[dlH16] Colin de la Higuera. Learning grammars and automata with queries. Topics in
Grammatical Inference, page 47–71, 2016.

[DM10] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over
real-valued signals. In Krishnendu Chatterjee and Thomas A. Henzinger, editors,
Proceedings of the 8th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS 2010), volume 6246 of Lecture Notes in Computer
Science, pages 92–106. Springer, 2010.

[DMB+12] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu,
and Scott A. Smolka. On temporal logic and signal processing. In Supratik
Chakraborty and Madhavan Mukund, editors, Automated Technology for Verifi-
cation and Analysis - 10th International Symposium, ATVA 2012, Thiruvanan-
thapuram, India, October 3-6, 2012. Proceedings, volume 7561 of Lecture Notes
in Computer Science, pages 92–106. Springer, 2012.

[DMP17] Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu. Quantifying
conformance using the Skorokhod metric. Formal Methods in System Design,
50(2-3):168–206, 2017.

[DN09] Thao Dang and Tarik Nahhal. Coverage-guided test generation for continuous
and hybrid systems. Formal Methods in System Design, 34(2):183–213, 2009.

[Don10] Alexandre Donzé. Breach, A toolbox for verification and parameter synthesis
of hybrid systems. In Tayssir Touili, Byron Cook, and Paul B. Jackson, editors,
Proceedings of the 22nd International Conference on Computer Aided Verification
(CAV 2010), volume 6174 of Lecture Notes in Computer Science, pages 167–170.
Springer, 2010.

[FAA+19] Goran Frehse, Alessandro Abate, Dieky Adzkiya, Anna Becchi, Lei Bu, Alessan-
dro Cimatti, Mirco Giacobbe, Alberto Griggio, Sergio Mover, Muhammad Syifa’ul
Mufid, Idriss Riouak, Stefano Tonetta, and Enea Zaffanella. ARCH-COMP19
category report: Hybrid systems with piecewise constant dynamics. In
ARCH@CPSIoTWeek, volume 61 of EPiC Series in Computing, pages 1–13. Easy-
Chair, 2019.

[FdSC+17] Davide Fauri, Daniel Ricardo dos Santos, Elisa Costante, Jerry den Hartog, San-
dro Etalle, and Stefano Tonetta. From system specification to anomaly detection
(and back). In Bhavani M. Thuraisingham, Rakesh B. Bobba, and Awais Rashid,
editors, Proceedings of the 2017 Workshop on Cyber-Physical Systems Security
and PrivaCy, Dallas, TX, USA, November 3, 2017, pages 13–24. ACM, 2017.

[FJS07] Frantisek Franek, Christopher G. Jennings, and William F. Smyth. A simple fast
hybrid pattern-matching algorithm. Journal of Discrete Algorithms, 5(4):682–695,
2007.

Bibliography 151

[FP09] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifi-
cations for continuous-time signals. Theoretical Computer Science, 410(42):4262–
4291, 2009.

[FR08] François Fages and Aurélien Rizk. On temporal logic constraint solving for an-
alyzing numerical data time series. Theoretical Computer Science, 408(1):55–65,
2008.

[Fre08] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech.
International Journal on Software Tools for Technology Transfer, 10(3):263–279,
2008.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (IoT): A vision, architectural elements, and future
directions. Future Gener. Comput. Syst., 29(7):1645–1660, 2013.

[HAF14] Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Benchmarks for tem-
poral logic requirements for automotive systems. In Goran Frehse and Matthias
Althoff, editors, Proceedings of the 1st and 2nd International Workshops on Ap-
plied veRification for Continuous and Hybrid Systems (ARCH@CPSWeek 2014 /
ARCH@CPSWeek 2015), volume 34 of EPiC Series in Computing, pages 25–30.
EasyChair, 2014.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, July 27-30, 1996, pages 278–292. IEEE Computer Society, 1996.

[HMP91] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition sys-
tems. In REX, volume 600 of Lecture Notes in Computer Science, pages 226–251.
Springer, 1991.

[HOW14] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. Online monitoring of metric
temporal logic. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Pro-
ceedings of the 5th International Conference on Runtime Verification (RV 2014),
volume 8734 of Lecture Notes in Computer Science, pages 178–192. Springer, 2014.

[HP18] Klaus Havelund and Doron Peled. Efficient runtime verification of first-order tem-
poral properties. In María-del-Mar Gallardo and Pedro Merino, editors, Model
Checking Software - 25th International Symposium, SPIN 2018, Malaga, Spain,
June 20-22, 2018, Proceedings, volume 10869 of Lecture Notes in Computer Sci-
ence, pages 26–47. Springer, 2018.

[HPR94] Nicolas Halbwachs, Yann-Éric Proy, and Pascal Raymond. Verification of linear
hybrid systems by means of convex approximations. In SAS, volume 864 of Lecture
Notes in Computer Science, pages 223–237. Springer, 1994.

[HPU17] Klaus Havelund, Doron Peled, and Dogan Ulus. First order temporal logic mon-
itoring with BDDs. In Daryl Stewart and Georg Weissenbacher, editors, Pro-
ceedings of the 2017 Formal Methods in Computer Aided Design (FMCAD 2017),
pages 116–123. IEEE, 2017.

152 Bibliography

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear
parametric model checking of timed automata. Journal of Logic and Algebraic
Programming, 52-53:183–220, 2002.

[HSW10] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness
check for timed büchi automata. In Tayssir Touili, Byron Cook, and Paul B.
Jackson, editors, Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture
Notes in Computer Science, pages 148–161. Springer, 2010.

[JBG+18a] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Nickovic.
Quantitative monitoring of STL with edit distance. Formal Methods in System
Design, 53(1):83–112, 2018.

[JBG+18b] Stefan Jakšić, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Ničković.
Quantitative monitoring of STL with edit distance. Formal Methods in System
Design, 53(1):83–112, 2018.

[JBGN18] Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. An algebraic
framework for runtime verification. IEEE Trans. on CAD of Integrated Circuits
and Systems, 37(11):2233–2243, 2018.

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for real-time systems. IEEE Transactions on Software Engineering,
41(5):445–461, 2015.

[JTS+17] Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Tuhin Sahai, and Natarajan Shankar.
Telex: Passive STL learning using only positive examples. In Shuvendu K. Lahiri
and Giles Reger, editors, Proceedings of the 17th International Conference on
Runtime Verification (RV 2017), volume 10548 of Lecture Notes in Computer
Science, pages 208–224. Springer, 2017.

[KCDK15] Aaron Kane, Omar Chowdhury, Anupam Datta, and Philip Koopman. A case
study on runtime monitoring of an autonomous research vehicle (ARV) system. In
Ezio Bartocci and Rupak Majumdar, editors, Proceedings of the 6th International
Conference on Runtime Verification (RV 2015), volume 9333 of Lecture Notes in
Computer Science, pages 102–117. Springer, 2015.

[KDM+17] Maryam Kamali, Louise A. Dennis, Owen McAree, Michael Fisher, and Sandor M.
Veres. Formal verification of autonomous vehicle platooning. Sci. Comput. Pro-
gram., 148:88–106, 2017.

[KJD+16] James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, Alexandre Donze, Tomoya
Yamaguchi, Hisahiro Ito, Tomoyuki Kaga, Shunsuke Kobuna, and Sanjit Seshia.
St-lib: a library for specifying and classifying model behaviors. Technical report,
SAE Technical Paper, 2016.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

Bibliography 153

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

[KS08] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed computing. 2008.

[LG16] Damián López and Pedro García. On the inference of finite state automata from
positive and negative data. Topics in Grammatical Inference, page 73–112, 2016.

[LLN18] Kim G. Larsen, Florian Lorber, and Brian Nielsen. 20 years of UPPAAL enabled
industrial model-based validation and beyond. In Tiziana Margaria and Bern-
hard Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice - 8th International Symposium, ISoLA 2018,
Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV, volume 11247 of
Lecture Notes in Computer Science, pages 212–229. Springer, 2018.

[LMNS05] Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Test-
ing real-time embedded software using UPPAAL-TRON: an industrial case study.
In Wayne H. Wolf, editor, EMSOFT 2005, September 18-22, 2005, Jersey City,
NJ, USA, 5th ACM International Conference On Embedded Software, Proceed-
ings, pages 299–306. ACM, 2005.

[Mil00] Joseph S. Miller. Decidability and complexity results for timed automata and
semi-linear hybrid automata. In Nancy A. Lynch and Bruce H. Krogh, editors,
Proceedings of the Third International Workshop on Hybrid Systems: Compu-
tation and Control (HSCC 2000), volume 1790 of Lecture Notes in Computer
Science, pages 296–309. Springer, 2000.

[MLR+10] Marius Mikucionis, Kim Guldstrand Larsen, Jacob Illum Rasmussen, Brian
Nielsen, Arne Skou, Steen Ulrik Palm, Jan Storbank Pedersen, and Poul
Hougaard. Schedulability analysis using uppaal: Herschel-planck case study.
In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of
Formal Methods, Verification, and Validation - 4th International Symposium on
Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21,
2010, Proceedings, Part II, volume 6416 of Lecture Notes in Computer Science,
pages 175–190. Springer, 2010.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continu-
ous signals. In Yassine Lakhnech and Sergio Yovine, editors, Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems, Joint International
Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS
2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT
2004, Grenoble, France, September 22-24, 2004, Proceedings, volume 3253 of Lec-
ture Notes in Computer Science, pages 152–166. Springer, 2004.

[Moh09] Mehryar Mohri. Weighted Automata Algorithms, pages 213–254. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[NBC+18] Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke
Massink. Qualitative and quantitative monitoring of spatio-temporal properties
with SSTL. Log. Methods Comput. Sci., 14(4), 2018.

154 Bibliography

[NLM+18] Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus.
AMT 2.0: Qualitative and quantitative trace analysis with extended signal tem-
poral logic. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Pro-
ceedings, Part II, volume 10806 of Lecture Notes in Computer Science, pages
303–319. Springer, 2018.

[PJT+17] Srinivas Pinisetty, Thierry Jéron, Stavros Tripakis, Yliès Falcone, Hervé Marc-
hand, and Viorel Preoteasa. Predictive runtime verification of timed properties.
Journal of Systems and Software, 132:353–365, 2017.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[Qua15] Karin Quaas. Verification for timed automata extended with discrete data struc-
ture. Logical Methods in Computer Science, 11(3), 2015.

[RCR15] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at
runtime with QEA. In Christel Baier and Cesare Tinelli, editors, TACAS, volume
9035 of Lecture Notes in Computer Science, pages 596–610. Springer, 2015.

[RFB14] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. Runtime verification of
embedded real-time systems. Formal Methods in System Design, 44(3):203–239,
2014.

[RHM17] Hendrik Roehm, Thomas Heinz, and Eva Charlotte Mayer. Stlinspector: STL
validation with guarantees. In Rupak Majumdar and Viktor Kuncak, editors,
Computer Aided Verification - 29th International Conference, CAV 2017, Heidel-
berg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture
Notes in Computer Science, pages 225–232. Springer, 2017.

[San15] Ocan Sankur. Symbolic quantitative robustness analysis of timed automata. In
Christel Baier and Cesare Tinelli, editors, Proceedings of the 21st International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2015), volume 9035 of Lecture Notes in Computer Science, pages 484–
498. Springer, 2015.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., New York, NY, USA, 1986.

[Sun90] Daniel Sunday. A very fast substring search algorithm. Commununications of the
ACM, 33(8):132–142, 1990.

[TM17] Tamás Tóth and István Majzik. Lazy reachability checking for timed automata
using interpolants. In Alessandro Abate and Gilles Geeraerts, editors, Formal

Bibliography 155

Modeling and Analysis of Timed Systems - 15th International Conference, FOR-
MATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings, volume 10419
of Lecture Notes in Computer Science, pages 264–280. Springer, 2017.

[TR05] Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric temporal
logic specifications. Electron. Notes Theor. Comput. Sci., 113:145–162, 2005.

[UFAM14] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern
matching. In Axel Legay and Marius Bozga, editors, Proceedings of the 12th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2014), volume 8711 of Lecture Notes in Computer Science, pages
222–236. Springer, 2014.

[UFAM16] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Online timed
pattern matching using derivatives. In Marsha Chechik and Jean-François Raskin,
editors, Proceedings of the 22nd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2016), volume 9636 of
Lecture Notes in Computer Science, pages 736–751. Springer, 2016.

[Ulu17] Dogan Ulus. Montre: A tool for monitoring timed regular expressions. In Ru-
pak Majumdar and Viktor Kuncak, editors, Proceedings of the 29th International
Conference on Computer Aided Verification (CAV 2017), Part I, volume 10426
of Lecture Notes in Computer Science, pages 329–335. Springer, 2017.

[UM18] Dogan Ulus and Oded Maler. Specifying timed patterns using temporal logic. In
HSCC, pages 167–176. ACM, 2018.

[Var95] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Faron Moller and Graham M. Birtwistle, editors, Logics for Concurrency - Struc-
ture versus Automata (8th Banff Higher Order Workshop, Banff, Canada, August
27 - September 3, 1995, Proceedings), volume 1043 of Lecture Notes in Computer
Science, pages 238–266. Springer, 1995.

[WA19] Masaki Waga and Étienne André. Online parametric timed pattern matching with
automata-based skipping. In NFM, volume 11460 of Lecture Notes in Computer
Science, pages 371–389. Springer, 2019.

[Wag19] Masaki Waga. Online quantitative timed pattern matching with semiring-valued
weighted automata. In Proceedings of the 17th International Conference on For-
mal Modeling and Analysis of Timed Systems (FORMATS 2019), volume 11750
of Lecture Notes in Computer Science, pages 3–22. Springer, 2019.

[WAH16] Masaki Waga, Takumi Akazaki, and Ichiro Hasuo. A Boyer-Moore type algorithm
for timed pattern matching. In Martin Fränzle and Nicolas Markey, editors, Pro-
ceedings of the 14th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS 2016), volume 9884 of Lecture Notes in Computer
Science, pages 121–139. Springer, 2016.

[WAH19] Masaki Waga, Étienne André, and Ichiro Hasuo. Symbolic monitoring against
specifications parametric in time and data. In Proceedings of the 31st International

156 Bibliography

Conference on Computer Aided Verification (CAV 2019), Part I, volume 11561
of Lecture Notes in Computer Science, pages 520–539. Springer, 2019.

[WAH20] Masaki Waga, Étienne André, and Ichiro Hasuo. Model-bounded monitoring of
hybrid systems. Unpublished manuscript, 2020.

[WH18] Masaki Waga and Ichiro Hasuo. Moore-machine filtering for timed and untimed
pattern matching. IEEE Trans. on CAD of Integrated Circuits and Systems,
37(11):2649–2660, 2018.

[WHS17] Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. Efficient online timed pattern
matching by automata-based skipping. In Alessandro Abate and Gilles Geeraerts,
editors, Proceedings of the 15th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS 2017), volume 10419 of Lecture Notes in
Computer Science, pages 224–243. Springer, 2017.

[WHS18] Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. MONAA: A tool for timed
pattern matching with automata-based acceleration. In Proceedings of the 3rd
Workshop on Monitoring and Testing of Cyber-Physical Systems (MT@CPSWeek
2018), pages 14–15. IEEE, 2018.

[ZLD12] Xian Zhang, Martin Leucker, and Wei Dong. Runtime verification with predictive
semantics. In NFM, volume 7226 of Lecture Notes in Computer Science, pages
418–432. Springer, 2012.

Index

k-normalization, 31
t-shift, 28

absorbing concatenation, 27
accepting, 30, 68, 109
accepting location, 29
alphabet, 29
anomaly detection, 25
associated, 30

bounding model, 18, 103

clock valuation, 28, 63, 86
clock variable, 29
complete, 85
concrete state, s30
concrete states, 67
continuous transition, dtransition29
cost function, 86
CPS, see cyber-physical system
cyber-physical system, 1

data parameter valuation, 64
data parameters, 64
data type, 64
delay transition, 29
discrete transition, 29
duration, 84, 109

edge, 29, 108
EFsynth, 39

flow, 107

guard, 28

idempotent, 85
increment function, 90
initial location, 29

intermediate weight, 90
invariant, 108

KMP-style skip value function, 51

language, 30, 68
LHA, see linear hybrid automaton
linear hybrid automaton, 18, 107
linear system, 107
local variable valuation, 64
location, 29

match set, 33
matching automaton, 91
membership constraint problem, 144
model checking, 22
model-bounded monitoring, 18, 101
monitored language, 109
monitoring, 1

non-absorbing concatenation, 28
non-parametric, 52

observable, 68

parametric, 52
parametric data update, 65
parametric timed automaton, 6, 38, 67
parametric timed data automaton, 9, 66
parametric timed pattern matching, 6, 39
parametric zone graph, 39
partial monitored language, 144
partial timed quantitative word, 143
path value, 131
PTA, see parametric timed automaton
PTDA, see parametric timed data automa-

ton

quantitative matching function, 88

157

158 Index

quantitative timed pattern matching, 13, 88
Quick-Search-style skip value function, 52

rational comparison, 64
reachability checking, 30
reachability synthesis, 39
run, 30, 67, 109
runtime verification, 2, 24

sample, 109
semiring, 85
shortest distance, 85
signal, 84
skipping, 7, 49
state, 30
string comparison, 64
symbolic monitoring, 9, 68
symbolic path value, 133
symbolic state, 31
symbolic trace value, 90
synchronized product, 38

TA, see timed automaton
TDA, see timed data automaton
terminal character, 33
timed automaton, 5, 29, 67
timed data automaton, 67
timed data word, 9, 67
timed guard, 64
timed pattern matching, 5, 32
timed quantitative word, 109
timed symbolic automaton, 86
timed symbolic weighted automaton, 14, 86
timed transition system, 29
timed word, 5, 27
timed word segment, 33
timing parameter valuation, 64
timing parameters, 64
trace value, 87
TSA, see timed symbolic automaton
TTS, see timed transition system

unobservable, 68

validity domain, 69
variable, 64, 107
variable valuation, 64

weighted symbolic timed transition system,
89

weighted timed transition system, 87
WSTTS, see weighted symbolic timed tran-

sition system, 89
WTTS, see weighted timed transition sys-

tem

zone, 30
zone construction, 30
zone graph, 30

	Contents
	List of Figures
	List of Tables
	Introduction
	System monitoring
	Primitive forms of monitoring
	Runtime verification — monitoring with logics
	Towards generic, flexible, and informative runtime verification
	High-level contribution: advanced runtime verification with polyhedra
	Highlight of the improvements
	Related work
	Information for readers

	Background: Timed Automata and Timed Pattern Matching
	Timed words
	Timed automata
	Reachability checking of timed automata with polyhedra
	Timed pattern matching

	Parametric Timed Pattern Matching
	Preliminaries: Parametric timed automata
	Parametric timed pattern matching
	Algorithm I: via reduction to PTA reachability analysis
	Algorithm II: Direct method by polyhedra computation
	Comparison between the two approaches
	Related work
	Conclusion and perspectives

	Symbolic Monitoring against Specifications Parametric in Time and Data
	Summary
	Preliminaries: Clocks, timing parameters and timed guards
	Parametric timed data automata
	Symbolic monitoring against PTDA specifications
	Experiments
	Related work
	Conclusion and perspectives

	Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata
	Summary
	Preliminary
	Timed symbolic weighted automata
	Quantitative timed pattern matching
	Trace value computation by shortest distance
	Online algorithm for quantitative timed pattern matching
	Experiments
	Related work
	Conclusion and perspectives

	Model-Bounded Monitoring of Hybrid Systems
	Summary
	Preliminaries: Linear hybrid automata
	Monitored languages of LHAs
	The model-bounded monitoring scheme
	Membership for monitored languages: symbolic interpolation
	Algorithm I: via reduction to LHA reachability analysis
	Algorithm II: Direct method by polyhedra computation
	Experimental evaluation
	Related work
	Conclusion and perspectives

	Discussion
	Conclusions
	Perspectives

	Construction of V,n in chapter:ptpm
	Omitted proofs of chapter:qtpm
	Finiteness of the reachable part of WSTTSs
	Proof of corollary:tracevaluecorrectness
	Proof of theorem:incrementalcorrectness

	Detailed example of chapter:hamoni
	Model-Bounded Monitoring with Partial Observations
	Partial timed quantitative word
	Partial monitored language
	Membership constraint problem for partial monitored languages
	Algorithms for the membership constraint problem

	Bibliography
	Index

