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Abstract 

New technologies make a leap forward in research fields by inspiring ideas and requiring new 

methods. As genetics has been advanced with DNA sequencers, metabolomics has gradually 

matured with mass spectrometry. Liquid chromatography-tandem mass spectrometry (LC-

MS2) is a common technology for metabolomics studies. Major metabolomics experiments 

are roughly classified into two groups, targeted- and untargeted metabolomics. While 

targeted metabolomics aims to quantify pre-defined compounds with high accuracy, 

untargeted metabolomics tries to detect and identify as many compounds as possible for 

discovery studies. For reliable compound identification and estimation, MS2 spectrum is 

utilized because the fragmentation pattern of each molecule is consistent under the almost 

same experimental settings. In classical acquisition methods, a precursor ion is selected to 

acquire MS2 spectrum from co-eluting compounds. In contrast, All Ion Fragmentation (AIF) 

can generate all MS2 spectra by setting quite large m/z range (e.g. 40–1200 Da). Although 

AIF-MS is unbiased and reproducible, the acquired MS2 spectra are highly complex and 

difficult to interpret.  

To solve the complex AIF MS2 spectra, I have developed a new Correlation-based 

Deconvolution (CorrDec) method. The CorrDec method utilizes intensity correlation between 

precursor ion and its fragment ions among samples. As a demonstration of CorrDec, it was 

applied to two datasets: dilution series of chemical standards and a 224-sample urinary 

metabolomics cohort. The serial dilution study showed that the peak intensities of fragment 

ions were highly correlated with their precursor ions. In the urine cohort study, 105 

compounds were identified and CorrDec could generate clean MS2 spectra for 85 compounds 

out of them (>80% MS2 match with reference). CorrDec can separate completely co-eluting 

compounds and work well in even low concentration compounds. Consequently, CorrDec 
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enables more reliable compound annotations and identifications in multi-sample studies for 

untargeted metabolomics. 

In order to confidently annotate and identify compounds in LC-MS2 data, reliable 

chemical standard libraries including three orthogonal properties—accurate mass (AM), 

retention time (RT), and MS2 spectrum—are required. In AIF projects, an MS2 spectrum is 

generated from a mixture of several adduct types and isoforms; therefore, MS2 spectral 

library measured by AIF mode can improve the quality of compound identification. However, 

AIF MS2 spectrum contains many noise peaks even in the measurement of a standard. I 

describe a workflow to confidently obtain AM, RT, and MS2 for a given compound using the 

AIF method and provide practical recommendations for library development. So far, 814 

deconvoluted spectra by CorrDec and MS2Dec of 140 compounds were generated with 

manual curation as a chemical library. I illustrated how the library increases the confidence of 

compound identification in complex AIF data. The construction of high-quality, open-access 

libraries makes compound identifications more transparent, reliable, and transferable to the 

broader community.  

I have proposed the AIF platform consisting of three metabolomics tools—MS‑DIAL, 

MS‑FINDER, and MS‑LIMA. MS-DIAL and MS-FINDER were improved for AIF data, and 

MS-LIMA was newly developed. CorrDec was implemented into MS-DIAL, which is 

universal metabolomics software that supports various instruments. I have also improved 

MS-DIAL to adopt measurements of multiple collision energies and be fast and stable for 

large-scale study. MS‑DIAL has grown as a modern user-friendly tool by my contributions. 

Second, MS-FINDER supports compound estimation by characterizing MS2 spectra, which 

is a key process in untargeted metabolomics. MS‑FINDER can annotate MS2 peaks as 

molecular formulas, chemical substructures, and types of adduct/isotopic ions. Lastly, MS-

LIMA helps to properly manage MS2 spectra acquired from both biological samples and 

chemical standards. MS-LIMA is open-source software to curate, search, compare, and 

visualize MS2 spectra for stable and reliable management. The freely available AIF platform 
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supports reliable data analysis, biological and technical insights, and reanalysis using public 

metabolomics raw data. 

For further development in untargeted metabolomics, I believe that reusable data 

acquisition (such as AIF), reliable compound identification, and a universal and integrated 

data analysis platform are important. I hope that the AIF platform including CorrDec and the 

reliable library can improve the quality of compound identification, increase the number of 

annotated compounds, and help to exploit large-scale untargeted studies.  
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Chapter 1 General Introduction 1 

 

 

In the omics era, metabolomics is a next challenging research field following genomics, 

transcriptomics, and proteomics. The human metabolome includes >100,000 metabolites as 

the intermediate- and end products of metabolism affected by genetic- and environmental 

factors (Figure 1-1). To elucidate new findings, many metabolomics studies have been 

widely performed in not only human, but also microbes, plants, and other animals. While 

genomics can reveal many biological insights from genotype, metabolomics can directly 

observe metabolites related to phenotype. 

In this chapter, the fundamental knowledge of metabolomics, especially for all-ion 

fragmentation-based metabolomics will be introduced for easily understanding other chapters.  

 

Chapter 1  
Introduction 

Figure 1-1. Overview of metabolome.  
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1-1 History of metabolomics 

The suffix -ome and -omics are buzz words in life science [1,2]. The suffix -ome is well 

known as referring to wholeness/completion from the Greek origin [2]. The first -ome term 

genome, however, was coined as a blend word of “GENe” and “chromosOME” by Hans 

Winkler in 1920 [2–4]. The term genomics was proposed by Thomas H. Roderick during 

discussion about a new journal name with Frank Ruddle and Victor McKusick in 1986 [2,5]. 

78 years after genome, the term metabolome was introduced in the scientific literature by  

Stephen G. Oliver et al. in 1998 [6,7]. In 2002, Oliver Fiehn defined the metabolomics as “a 

comprehensive analysis in which all the metabolites of a biological system are identified and 

quantified” and described the difference between metabolomics and metabolite profiling (or 

metabolic profiling; the measurement of pre-defined metabolites related to particular 

metabolic pathways in a biological sample) [8]. Although the definition of metabolite was 

written in several literatures with a slight difference [8–10], the term can be broadly defined 

as “small molecule (<1500 Da) found in a biological sample”. Because true metabolomics is 

difficult, currently, the term metabolomics is typically used as “a large-scale study of small 

molecules (<1500 Da) in a biological sample”, and classified into two groups, targeted- and 

untargeted metabolomics. Untargeted metabolomics tries to detect and identify as many 

compounds as possible for discovery studies, while targeted metabolomics aims to measure 

and quantify pre-defined metabolites with high accuracy. 

 Since the late 1960s, before proposing the terms metabolome and metabolomics, 

many analysis methods have been developed for metabolomics with the improvement of 

separation and detection technologies [8,11–13]. In 1971, 250 and 280 substances were 

detected by gas-liquid partition chromatography in a sample of breath and urine vapor, 

respectively [11]. It was an initial separation study; however, all detected substances were 

unknown compounds, and they could include many noise peaks. Three years later, amino 

acid profiles were measured for protein hydrolysates, plant tissue extracts, urines, and sera by 

gas chromatography (GC) [14]. For comparative measurements, retention index (normalized 

retention time) was utilized instead of absolute retention time in 1980 [15]. At almost the 
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same era, mass spectrometry (MS) was advanced to profile many metabolites (de Jongh et al. 

1969 [16], Jellum et al. 1988 [17], and Kimura et al. 1999 [18]; see next section for detailed 

explanation of MS). In 2000, 326 distinct compounds were quantitatively detected using GC-

MS from leaf extracts of Arabidopsis thaliana, and a chemical structure was assigned to 

about half of them [19]. Although liquid chromatography (LC) methods typically have lower 

chromatographic resolution than GC, they have developed and utilized well because they can 

measure a broad coverage of compounds without derivatization (Wolfender et al. 1998 [20] 

and Tolstikov et al. 2002 [21]) [22]. For metabolic profiling and metabolomics studies, 

eventually, GC and LC became major measurement technologies coupled with a detector, 

such as fluorescence, UV, and MS. In the early 2000s, GC- and LC-MS could separate and 

detect thousands of compounds (not only metabolites, also many contaminants) from a 

sample [23]. With developments of technologies, metabolomics has been advanced for 

measuring, identifying, and quantifying as many metabolites as possible, i.e., the number of 

known metabolites was increased. Indeed, the Human Metabolome Database (HMDB) 

originally contained 2,180 endogenous metabolites in 2007 [10], and expanded the number to 

114,100 in 2018 [24], although the latter number was counted among not only known but 

also expected and predicted metabolites. 

  Besides MS, several other technologies have been utilized for metabolomics and are 

briefly introduced here. One of the major technologies is nuclear magnetic resonance (NMR). 

NMR was discovered in 1940s but began to be used in metabolic study in the early 1970s 

[25,26]. The advantages of NMR over MS are reproducibility and de novo identification of 

chemical structure, although it is known as a less metabolite coverage and low sensitivity 

[27].  

1-2 Mass spectrometry-based metabolomics 

Mass spectrometry (MS) is a well-known technology that measures the mass-to-charge ratio 

(m/z) of ionized molecules as mass spectrum, which is a plot of ion intensity versus m/z. The 

m/z value indicates the mass of an ion divided by the number of charges, and the unit of mass 

is Da (or u) in MS. Because MS separates isotopes, monoisotopic mass (calculated by the 
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mass of major isotope of each element) is used for interpretation. While the experimentally 

determined mass with high accuracy is called “accurate mass” (AM), the calculated mass of 

elemental formula is “exact mass” [28].  

The performance of MS is mainly determined by mass resolution and scan speed of 

mass spectrum. Many vendors (AB SCIEX, Agilent, Bruker, Shimadzu, Thermo Scientific, 

Waters Corporation, and so on; in alphabetical order) have improved the performance and 

release multiple instruments with different concepts, such as Q-TOF (Quadrupole-Time Of 

Flight), FTICR (Fourier Transform Ion Cyclotron Resonance), and Orbitrap [29,30]. From a 

bit different aspect, imaging MS has been established by MALDI (Matrix Assisted Laser 

Desorption/Ionization) and related technologies [31–33]. Lastly, the recent breakthrough is 

the combination technology with ion mobility (IM) spectrometry for improving the 

performance of ion separation by a new separation dimension [34]. For simplification, this 

chapter focuses the modern common knowledge of LC-MS. 

Liquid chromatography-mass spectrometry (LC-MS) 

Mass spectrometer roughly comprises three major parts, ion source, mass analyzer, 

and detector. Analyte molecules are ionized in the ion source, separated by m/z in the mass 

analyzer, and detected as a mass spectrum in the detector part (Figure 1-2A). In the ion 

source, a molecule (M) is ionized with adducts (H, Na, K, and so on from matrix) by several 

methods (electrospray ionization (ESI) is the most famous in LC-MS). In general, the major 

adduct ion is [M+H]+ and [M-H]- in positive- and negative mode, respectively. Therefore, the 

m/z value indicates the mass of an adduct ion such as [M+H]+ instead of the molecular mass 

of M. For example, in the case of leucine (C6H13NO2), the molecular weight is 131.173 but 

the monoisotopic mass is 131.0946, and the exact mass of the adduct ion [M+H]+ is 132.1014 

calculated as following: 131.094635  + 1.00728 − 0.000549 (M + H − e). In addition, the 

exact mass of the adduct ion of an isotope (13C-leucine) [M+H]+ is 133.1046, the mass of 

double molecule adduct ion [2M+H] is 263.1960, and the mass of double charged adduct ion 

[M+2H]2+ is 66.5540 (Table 1-1). The mass and relative abundance of possible isotopes can 

be calculated based on natural abundance, and the isotopic pattern is determined by 
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consisting elements. However, the isotopic ions are typically classified as M+1, M+2 and so 

on due to the limitation of mass accuracy. By investigating the exact masses of several 

adducts and the isotope pattern, mass spectrum is utilized for molecular formula estimation.  

 

  

Figure 1-2. Overview of mass spectrometry (MS). A. Flowchart of MS and tandem mass 
spectrometry (MS2). Mass spectrum of leucine in MS1 (B) and MS2 (C). 
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Name Value Formula 
Molecular weight 131.1732 6 * 12.01074 + 13 * 1.007941 + 14.00670 + 2 * 15.99940 

Monoisotopic mass 131.0946 6 * 12.000000 + 13 * 1.007825 + 14.00307 + 2 * 
15.99491 

[M+H]+ 132.1014 131.094635 + 1.00728 - 0.000549 
[M(13C)+H]+ 133.1046 132.097850 + 1.00728 - 0.000549 
[2M+H]+ 263.1960 2 * 131.094635 + 1.00728 - 0.000549 
[M+2H]2+ 66.5540 (131.094635 + 2 * 1.00728 - 2 * 0.000549) / 2 

 

With chromatographic technologies, mass spectra are also utilized for 

chromatographic peak detection by generating extracted ion chromatogram (EIC). LC-MS 

provides three-dimensional data consisting of m/z, retention time (RT), and ion intensity. In 

Figure 1-3A, thousands of ions can be separated in two-dimensions (RT and m/z) and 

detected as features from human urine data measured by my collaborators in public 

repository (the EMBL-EBI MetaboLights repository [35] with identifier MTBLS816). In this 

field, the feature consists of m/z, RT, ion intensity (peak height), peak area, and so on. The 

additional annotations of each detected feature will be assigned, such as adduct type, 

molecular formula, and chemical structure. As readers know, the molecular formula of 

leucine is the same as isoleucine and their structure is very similar; therefore, it is difficult to 

discriminate them. Using established methods, LC-MS can separate them in the EIC of 

132.1014 m/z with the mass tolerance 0.001 from the same human urine data (Figure 1-3B). 

Comparing with the chemical standards measured under the same environment can reveal 

that left chromatographic peak is leucine and right peak is isoleucine. 

Table 1-1. Mass list of C6H13NO2.  
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Tandem mass spectrometry 

Tandem mass spectrometry (MS2 or MS/MS) is a remarkable technology for chemical 

structure elucidation. The fragmentation pattern of each molecule is consistent under the 

almost same experimental settings; therefore, MS2 spectrum is utilized for compound 

identification and annotation in LC-MS2 measurement. A triple quadrupole MS (QqQ) 

consists of a collision cell sandwiched by two quadrupole mass analyzers (Figure 1-2A). 

Quadrupole mass analyzer (Q) filters ions by pre-defined value or pass all ions (called full 

scan). In the collision cell, analyte molecules are fragmented by collision-induced 

Figure 1-3. LC-MS provides three-dimensional data. A. Three-dimensional data of human urine 
consisting of m/z, retention time (RT), and intensity generated by MZmine2 [36],  
B. extracted ion chromatogram (EIC) of 132.1014 m/z with mass tolerance 0.01 Da generated by 
MS‑DIAL [37]. Leucine and isoleucine are the left- and right peak, respectively. 



1-2 Mass spectrometry-based metabolomics 8 

 

dissociation with pre-defined collision energy typically from 0 eV (full scan) to 70 eV. A 

selected ion (precursor ion) in the first Q is dissociated in the collision cell, passed through 

the second Q, and measured as an MS2 spectrum (product ion spectrum, precisely). For more 

accurate analyses, Q-Time of Flight (Q-TOF) system is also widely used in general. In LC-

MS2-based metabolomics, full scan without fragmentation is basic (called as MS1 scan) to 

detect features, also its spectrum called as MS1 spectrum. MS2 scans are additionally 

measured after MS1 scans with user-defined frequency due to the limited scan speed. In 

targeted metabolomics, pre-defined precursors are selected to measure MS2 spectra. As an 

example, mass spectra of leucine in MS1 and MS2 are shown in Figure 1-2. In contrast, in 

the case of untargeted metabolomics, high abundant ions are typically selected as precursor 

ions and measured in MS2 to give as many MS2 spectra as possible for compound 

identification.  

Compound identification and estimation 

Compound identification is a key process in metabolomics study. There are several ways and 

levels to identify compounds as described above, so the process should be scandalized with 

minimum metadata. In 2007, the minimum reporting standards and four identification levels 

were proposed by the Metabolomics Standard Initiative (MSI) [38]. To obtain the level-1 

identification (most reliable), at least two orthogonal experimental properties of compound 

should match with those of an authentic standard. In LC–MS metabolomics, this criterion is 

often interpreted as an exact match of the peak feature in the measured sample and to the 

chemical standard by accurate mass (AM) and RT. However, these two properties may not be 

enough to reliably identify compounds due to co- or closely eluting compounds and RT 

fluctuations of certain chromatography techniques (e.g., HILIC). To further increase the 

reliability of metabolite identification, MS2 spectra are used in addition to AMRT. Recently, 

other identification levels have been reported [39–41], but they are not widespread yet.  

 For compound estimation, molecular formula prediction and chemical structure 

elucidation are general approaches using precursor m/z, isotopic pattern, and product ion 

spectrum (MS2 spectrum). Three properties of candidate compounds, exact mass, predicted 
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RT, and in silico MS2 spectrum, are also useful for the estimation. Exact mass can be easily 

calculated from molecular formula. RT can be predicted from chemical properties by 

machine learning methods, such as PredRet [42]. Lastly, there are several tools for in silico 

fragmentation, such as CSI:FingerID [43], MetFrag [44], and MS-FINDER [45] by machine 

learning or fragmentation rules. These powerful tools can support compound estimation; 

however, manual interpretation and confirmation are still important to avoid mis-annotations.  

Difficulties of data reuse 

Data reuse analysis is typically difficult using public metabolomics data by bioinformatics. In 

genomics, raw sequences, public repositories/databases, tools, and technical knowledge have 

been accumulated and matured due to the high reusability and open data culture; therefore, 

bioinformaticians can easily utilize them for new findings  [46–49]. In fact, I reported a new 

visualization tool for bacterial complete genomes to compare public genomes with their 

consensus and highlight genome rearrangements [50,51]. Moreover, I have worked for 

comparative genomics of Lactobacillus and revealed a new species named Lactobacillus 

paragasseri from database [52,53].  

While genomics is assisted with bioinformatics, metabolomics has three major 

unsuitable points to compare with different studies and reuse them as follows: (1) large 

chemical diversity, (2) low reproducible measurement, (3) insufficient standardization. First, 

metabolome consists of large number of compounds with different chemical property. Thus, 

the perfect measurement methods cannot exist. Many measurement methods have been 

established based on study purposes and designs, and reported compounds are different by 

studies. Second, LC-MS and LC-MS2 are very sensitive but less reproducible. Even if the 

same measurement methods, the result will be slightly differed by laboratory, experimenter, 

and batch, although there are many normalization and calibration methods. Lastly, the 

characteristic of raw measurement data is machine-dependent; moreover, the file formats of 

raw data are also different by venders. Because metabolomics is also a field of analytical 

chemistry, measurement methods tend to be specialized and sophisticated with improved 

instruments in each laboratory, instead they are standardized and widespread worldwide. 
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Data processing is also difficult to be standardized. In LC-MS, detected chromatographic 

peaks depends on the parameters and manual curation by researchers. Compound 

identification also requires manual curation by expert as mentioned in the previous subsection. 

These issues are also major challenges in untargeted metabolomics study. 

In the era of open data, data sharing and further analysis are necessary in 

metabolomics [54,55]. To support and enhance metabolomics studies, public and commercial 

databases have been developed and maintained. PubChem [56] and ChemSpider [57] are 

comprehensive chemical databases, HMDB [24] and KNApSAcK [58] are curated metabolite 

databases, MassBank [59], METLIN [60], GNPS [61], and NIST [62] are well known MS2 

spectral databases. Moreover, several raw data repositories/databases are also developed. 

MetabolomeXchange [63] and Metabolonote [64] are measurement metadata databases, 

MetaboLights [35], Metabolomics Workbench [65], and Food Metabolome Repository 

[66,67] are raw measurement data repositories with standardized metadata. Reused study of 

public raw data in above databases has been anticipated. 

1-3 Data-Independent Acquisition (DIA) 

MS2 spectrum is very useful for compound identification. In the previous section, MS2 

acquisition was roughly explained as “a selected ion (precursor ion) in the first Q is 

dissociated in the collision cell, passed through the second Q, and measured as an MS2 

spectrum”. More precisely, the narrow m/z range (typically 1 Da) is used in Q1 for filtering, 

and passed ions are fragmented to acquire the corresponding MS2 spectrum. In general, MS2 

spectra are sequentially acquired from highly abundant MS1 ions, because the number of 

MS2 spectra are limited by the scan speed. Therefore, this classic measurement method is 

called as data-dependent acquisition (DDA) suffering from the low MS2 spectral coverage. 

For more comprehensive measurements, data-independent acquisition (DIA) has been 

developed to acquire all MS2 spectra from all co-eluting compounds. 

 In DDA method, MS2 spectra are relatively clean and easily usable for compound 

identification because the link between precursor ion and its product ions remain, while the 
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limitation of the MS2 spectral coverage restricts further analysis for untargeted metabolomics. 

In contrast, DIA method can acquire all MS2 spectra from all co-eluting compounds; 

however, the link between precursor and product ions is missing, i.e. its MS2 spectra are very 

complicated and necessary to be deconvoluted for compound identification. The difference of 

DDA and DIA was reviewed by Xiaochun Zhu et al. in 2013 [68] and Ruohong Wang in 

2019 [69].  

Two major DIA methods, AIF (All-Ion Fragmentation) and SWATH (Sequential 

Window Acquisition of all THeoretical fragmentation ion spectra), are briefly introduced. 

AIF is the simplest DIA method for acquiring full MS2 scan after full MS1 scan without 

precursor selection. Therefore, AIF MS2 spectra are highly complicated and consists of all 

co-eluting compounds and measurement noise. In SWATH, precursor ions are selected to 

acquire MS2 spectra by the sequential m/z window (typically 25 Da) after full MS1 scan. 

Thus, SWATH MS2 spectra from each 25 Da window are cleaner than AIF spectra from all 

m/z range (Figure 1-4). Even SWATH MS2 spectra require MS2 deconvolution for 

compound identification. Various deconvolution tools have been developed for SWATH, but 

high-performance tools for AIF spectra are still anticipated. 

 

 

  
Figure 1-4. The difference of DDA and DIA (SWATH and AIF).  
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1-4 Thesis Outline 

In this doctoral thesis, I will report my works related to AIF-MS for reusable untargeted 

metabolomics. For further development in metabolomics, I think that reusable data 

acquisition (such as AIF), reliable compound identification, and universal and integrated data 

analysis platform are required. The major disadvantages of AIF are the complex MS2 spectra 

and lack of good analysis platform. To generate clean MS2 spectra from AIF, I developed a 

new MS2 deconvolution method, named CorrDec (Correlation-based Deconvolution). For 

improving the accuracy of compound identification, reliable chemical standard library was 

created using AIF-MS and CorrDec. Lastly, a data analysis platform for AIF was developed 

and released in public.  

 In Chapter 2, Correlation-based Deconvolution (CorrDec) method will be 

demonstrated using dilution series and human urine dataset. CorrDec is a new method for 

MS2 deconvolution to generate clean MS2 spectra from complex AIF spectra. The advantage 

and limitation are discussed by comparing with the previous method (MS2Dec). By random 

resampling analysis, the minimum number of samples is roughly estimated for CorrDec. I 

also describe the usability of both MS2Dec and CorrDec based on different concepts. 

 In Chapter 3, creating reliable chemical library consisting of AM, RT, and MS2 

spectra will be reported. For accurate compound identification, a reliable chemical library is 

required. I provide practical recommendations for library development and mention the 

benefit and necessity of open data in metabolomics.  

 In Chapter 4, the AIF platform consisting of three metabolomics tools, MS-DIAL, 

MS-FINDER, and MS-LIMA, which are improved and developed by the author will be 

introduced. To analyze complex AIF-based metabolomics data, various functions are 

implemented in MS-DIAL and MS-FINDER. MS-LIMA has been developed by the author to 

manage MS2 spectra. The usability of the AIF platform is also summarized. 

 In Chapter 5, I will summarize the new data analysis platform including CorrDec, 

reliable library, and useful software, for AIF-based untargeted metabolomics. Future 

perspective and works are also described. 
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Note 

In this chapter, I briefly summarized the history of metabolomics and fundamental 

knowledge related to AIF-MS. Through this thesis, I tried to avoid explaining the principles 

of measurement technologies and techniques to clarify the scope and be easy for 

understanding the context. Readers who are interested in more details about the history, 

measurement technologies, and analysis methods are referred reviews and textbooks 

[7,9,23,68,70–74].  
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For complex AIF MS2 spectra, a new Correlation-based Deconvolution method, namely 

CorrDec, was developed. CorrDec utilizes intensity variations among samples and calculates 

intensity correlations between precursor peak and its MS2 peaks (Figure 2-1).  

The contents of this chapter are also described in Tada et al. Analytical Chemistry 2020 

[75]. 

 

Chapter 2  
Correlation-Based 

Deconvolution 

Figure 2-1. Graphical abstract of CorrDec 
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2-1 Introduction 

High-resolution tandem mass spectra (MS2) in combination with public mass spectra and the 

associated computational tools are considered indispensable for compound identification. A 

number of resources are now available including MassBank [59], GNPS[61], CSI:FingerID 

[43] and MS-FINDER [76]. In the classical data-dependent acquisition mass spectrometry 

(DDA-MS), ions are isolated in a narrow window (typically 1 Da) of the target m/z value. In 

contrast, for the data-independent acquisition mass spectrometry (DIA-MS), wider m/z 

windows of 10 to 1000 Da are used to obtain highly complex mixture spectra that require 

computational approaches to interpret. 

To overcome the trade-off between comprehensiveness and cleanness of spectra, 

various deconvolution tools have been proposed for DIA data, such as OpenSWATH [77], 

Specter [78], MetDIA [79], decoMetDIA [80], and MS-DIAL [37]. OpenSWATH, Specter, 

and MetDIA were designed for the targeted analyses utilizing predefined spectral libraries to 

deconvolute spectra. MS-DIAL (MS2Dec) and decoMetDIA can deconvolute MS2 spectra de 

novo by fitting MS2 chromatograms to their precursor chromatogram. These powerful 

methods are suitable for the SWATH (Sequential Window Acquisition of all THeoretical 

fragment ion spectra) type of DIA data [68]. However, MS2 spectra become highly complex 

when precursor ions of all m/z are fragmented together (e.g. all ion fragmentation (AIF), 

MSAll, or MSE). Especially busy chromatographic regions with multiple co-eluting 

compounds pose a challenge. In the case of MS2Dec, at least two data-point difference 

between the liquid chromatographic peak tops is required for deconvolution. Therefore, the 

MS2Dec and decoMetDIA are not suitable for untangling complex MS2 spectra from the AIF 

acquisition and its equivalent. 

Correlation has been widely used in mass spectrometry-based metabolomics [81,82]. 

For example, the Pearson correlation is used in CAMERA to estimate the similarity of 

different mass chromatograms to extract compound spectra, and to annotate adduct ions and 

isotopic peaks [83]. For DIA data correlation-based approaches such as RAMClust can be 

used to assign precursor-product relationships based on detected features in MS1 and MS2 
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[84,85]. Herein, I present a new MS2 deconvolution method based on the correlation of ion 

abundances between precursor- and product ions among biological samples, named CorrDec 

(Correlation-based Deconvolution). The CorrDec method is based on three assumptions: (1) 

metabolite concentrations differ across study samples in multi-sample studies, (2) the MS2 

fragmentation pattern is identical under identical experimental conditions, and (3) intensities 

of fragment ions correlate with those of their precursors. CorrDec (implemented in MS-DIAL 

version 3.22 and later) is designed to generate MS2 spectra using untargeted multi-sample 

AIF metabolomics data and does not require a pre-defined spectral library. 

In this study, I utilized the idea for MS2 deconvolution to purify the DIA spectra. In 

contrast to the previous approaches, CorrDec does not perform the feature detection 

procedure for MS2 chromatograms to retrieve as many characteristic product ions as possible 

from the DIA-MS2 spectra; instead, the noisy spectra are effectively excluded by integrating 

multi-samples profile data. I demonstrate the concept and utility of CorrDec in dilution series 

of chemical standards in urine and a case study from a urinary metabolomics cohort. 

2-2 Results and Discussion 

CorrDec workflow 

CorrDec starts with the aligned peak list from multiple samples. The peak list consists of 

‘aligned features’, which include the averages of RT, m/z, peak height and width obtained 

from the detected peaks in the samples, their ion abundances, and corresponding DIA MS2 

spectra. The peak height is used for the quantification of MS1 and MS2 peaks. The MS2 

deconvolution is performed as follows. 

(Step 1) For each aligned feature Ft1, Pearson correlations are calculated between all product 

ions and their precursors. The MS2 spectra of Ft1 for all samples are retrieved to create a 

“MS2Mat” data matrix, consisting of the ion abundances of each product ion (P) binned by 

an m/z threshold (0.01 in this study) in all samples. The precursor ion abundances of all 
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samples are retrieved to create a “MS1Vec” data vector, and Pearson correlations are 

calculated for all pairs of the features in MS1Vec and product ions in MS2Mat (Figure 2-2A). 

For each product ion, its existence ratio within the samples (the number of samples having 

the product ion above the threshold value (1000 in this study) divided by the number of all 

samples) is also recorded. 

(Step 2) All correlation values in all features are joined into a matrix based on the m/z of the 

product ion using the same m/z threshold (0.01 in this study) as MS2Mat (Figure 2-2B). 

(Step 3) Each product ion is assessed using the correlation value CorrMS1vsMS2 for its inclusion 

to the deconvoluted spectrum of Ft1. Three criteria are applied (Figure 2-2C): 

(Criterion 1) CorrMS1vsMS2 > minimum threshold, 

(Criterion 2) CorrMS1vsMS2 > MaxCorrFt − margin1, and 

(Criterion 3) CorrMS1vsMS2 > MaxCorrP − margin2. 

Criterion 1 is a simple cut-off threshold to suppress noise signals; correlations between the 

ion abundances of a MS1 precursor ion and the ion abundances of a MS2 product ion should 

be higher than a predefined minimum correlation threshold. In this study, I use 0.7 as a 

threshold (recommended range is between 0.3 and 0.7, the lower the threshold the higher the 

possibility to introduce noise peaks into the spectra). Criterion 2 is a threshold to judge 

whether each product ion is eligible as a fragment derived from the feature Ft1 (e.g. for 

removing lower correlating peaks due to ionization enhancement and/or biological correlation 

between compounds). The maximum of all correlations for each MS1 feature (Ft1), 

MaxCorrFt, is used for calculating the cut-off. Product ions with correlations smaller than 

MaxCorrFt − margin1 are excluded. In this study I use 0.2 as margin1 (recommended range is 

between 0.1 and 0.3, the larger the margin the higher the possibility of including noise peaks 

into the spectra). For example, in Figure 2-2B, the MS2 peak P1 (0.73) is removed because 

MaxCorrFt for the Ft1 feature is 0.98. Criterion 3 is used to avoid false-positive assignments 

by Criterion 2 when the same product ion shows high correlation values for multiple 

precursor ions. For each product ion Px a maximum correlation MaxCorrP with its 
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neighboring features (eluting within ± 0.5 * peak width of Ft1) is determined. When the 

correlation value between the Ft1 and Px is less than MaxCorrP − margin2 (0.1 in this study, 

recommended range is between 0.1 and 0.3, the larger the margin2 the higher the possibility 

of including noise peaks into the spectra), Px is excluded from the deconvoluted spectrum of 

Ft1. For example, the product ion P2 is excluded from the Ft1 deconvoluted spectrum 

because the value of 0.81 is less than MaxCorrP (0.93) − 0.1 (Figure 2-2B). These threshold 

values are strict; they may require tuning when applied to different datasets. The m/z value 

and the intensity in a deconvoluted spectrum are represented by their respective median value 

of m/z and intensities in biological samples, where the intensities are normalized by the 

abundance of the precursor ion in each sample. 
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Figure 2-2. Flowchart of the CorrDec method for a target feature Ft1. A. For each feature, the 
Pearson correlations are calculated for all pairs of precursor (MS1 vector) and product ion (MS2 
matrix). B. All correlation values of all features are merged into a single matrix. C. Product ions 
satisfying the three criteria (see the main text for details) are selected to produce the deconvoluted 
MS2 spectrum of Ft1. 
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Serial dilution study 

Using a dilution series of chemical standards, I tested whether the intensities of MS2 

fragments were highly correlated with those of their precursors. The 11-point dilution series 

of 8 chemical standards were measured by AIF mode (see Methods) with diluted urine as the 

matrix. In such a setup, only the concentrations of the spiked compound vary while 

concentrations of compounds in the urine matrix remain stable. In Figure 2-3, I show the 

result of the tyrosine standard. The tyrosine dilution series was partially masked by the 

endogenous tyrosine present in the matrix (diluted urine). In AIF mode, the MS2 spectra of 

tyrosine contained 193 and 280 peaks in the 11-point dilution series for 10 and 30 eV, 

respectively. The similarity scores (simple dot product) of all raw MS2 spectra with the 

reference spectra were less than 30%. When processed by the CorrDec, 12 and 13 peaks, 

respectively, showed >0.9 correlations with their precursors, clearly deviating from the 

normal distribution formed by the correlation values of the other peaks (Figure 2-3B bottom). 

These highly correlated peaks exhibited intensities proportional to the dilution (Figure 2-3B 

top in the log scale), and the MS2 similarity scores with the reference spectra were 90.5% and 

86.5% for 10 and 30 eV, respectively.  

Similar results were reproduced for the other 7 compounds; MS2 spectra were 

successfully generated with high MS2 matches (1 compound >80%, other 6 compounds > 

90% at least one collision energy) by the CorrDec (Table 2-1). In addition to the MS2 spectra 

at 10 and 30 eV, deconvoluted spectra were obtained for 0 eV resulting from in-source 

fragmentation which can be used for metabolite identification [84–87]. The degree of in-

source fragmentation depends on the ionization source settings and in this study in-source 

fragmentation is facilitated by rather high fragmentor voltage (380 V). In this setup, the MS2 

similarity of the 0 eV spectra was comparable to the 10 and 30 eV spectra, corroborating the 

usability of in-source fragmentation data.  
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ID RT m/z Adduct Metabolite name 

Similarity score (%) 

0 eV 10 eV 30 eV 
1 7.37 144.1053 [M+H]+ Proline betaine 92.9 92.9 82.9 
2 7.47 138.0582 [M+H]+ Trigonelline 94.5 96.8 88.8 
3 7.81 104.0710 [M+H]+ Dimethylglycine 95.1 99.2 69.5 

4 7.01 76.0762 [M+H]+ 
Trimethylamine N-
oxide 93.3 98.3 91.8 

5 7.62 182.0815 [M+H]+ Tyrosine 89.6 90.5 86.5 
6 7.56 118.0881 [M+H]+ Betaine 94.5 95.5 94.1 
7 7.74 116.0710 [M+H]+ Proline 93.8 92.2 84.3 
8 7.43 225.0872 [M+H]+ 3-Hydroxykynurenine 86.7 80.9 81.5 

 

Figure 2-3. Demonstration of the CorrDec method using tyrosine dilution series spiked into diluted 
urine as background matrix. A. Raw MS2 spectra of tyrosine [M+H]+ (m/z: 182.082) at the lowest 
(69 nM) and the highest (4 μM) spiked concentrations in dilution series. Raw MS2 spectra contain 
over one hundred peaks masking the ions derived from tyrosine, especially at low spiked-in 
concentrations. B. Linked scatter plots visualizing the intensity correlations between the MS1 m/z 
182.082 and MS2 peaks in 11 dilution series samples. Only 12 out of 193 (10 eV) and 13 out of 
280 peaks (30 eV) correlated >0.9 (highlighted lines). C. Deconvoluted MS2 spectra (above, in 
black) matched well with the library reference spectra (below, in red). The MS2 similarities of 
deconvoluted spectra were 90.5% (10 eV) and 86.5% (30 eV), while the MS2 similarities of raw 
spectra at 0, 10, and 30 eV were less than 30% in the all samples.  

Table 2-1. MS2 similarity scores for the CorrDec deconvoluted spectra of chemical standards 
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To further confirm the usability of CorrDec for metabolomics studies where the 

concentration of the compounds varies only little between the samples measured 1.07-fold 

dilution series of tyrosine in diluted urine matrix. CorrDec successfully generated MS2 

spectra showing >80% MS2 match at 10 eV using only 4 samples (3.05-4.00 μM). Therefore, 

only small concentration changes between the samples (<25%) can be enough for the 

correlation-based methods which is consistent with the previous report [84]. Based on the 

results of chemical standard dilution series, the CorrDec was applied to a metabolomics study. 

Urine cohort study 

As proof of concept for the performance of CorrDec, I analyzed a LC-MS (HILIC 

chromatography) metabolomics dataset consisting of 224 unique urine samples, 58 pooled 

QCs and 4 blanks acquired in positive ionization AIF mode. Data was processed by MS-

DIAL version 4.12. A total of 4159 features were aligned; the alignment of 64 features was 

manually curated. In the CorrDec deconvolution process, I discarded product ions that appear 

in <50% of all samples for computational efficiency. This threshold of 50% is arbitrary and 

should be set for each study considering the sample number and the desired level of 

reliability. After manual curation, 105 compounds were confidently identified at the MSI 

level 1 [38] by matching AM, RT and MS2 spectra to the reference library.  

For all of the 105 compounds, MS2Dec and CorrDec were able to generate MS2 

spectra. However, while for MS2Dec only 34 compounds showed >80% match to the 

reference spectra, 85 of the 105 compounds CorrDec spectra could achieve >80% match 

(Figure 2-4A). Furthermore, the distribution of MS2 similarity scores (Figure 2-4B) for the 

two deconvolution methods shows that MS2Dec spectra for 50 compounds had <60% match. 

Median similarity values were 59.1% and 91.3% for MS2Dec and CorrDec, respectively. The 

reason for the disparity is that CorrDec is especially effective in obtaining cleaner spectra for 

compounds of low abundance or smaller peak intensity (Figure 2-4C), which are often the 

majority in the metabolomics datasets and generally challenging to identify [72].  
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In addition to the 105 compounds identified at the AMRT and MS2 match level, I could 

identify six metabolites that highly matched (>80%) to the applied MS2 library using 

CorrDec spectra, but not with MS2Dec spectra, and have been previously reported to be 

detected in human urine (imidazole acetic acid [88], homocitrulline [89], aminohippuric acid 

[90], isobutyryl (C4) carnitine [90], liquiritigenin [91], and AICA-riboside [92]). Among the 

111 identified compounds over half (61) are amino acids and their metabolites (standard 

amino acids (13), methylated (9), acetylated (6), other amino acid metabolites (22), 

conjugates (11)).  The other major compound groups include products of nucleic acid 

metabolism (13), food and drug metabolites (8). I summarized identified compounds and 

their mass spectral similarities in Table 2-2. 

In addition to the MS2 library matching, CorrDec can provide more reliable MS 

spectra than MS2Dec for annotation tools such as MS-FINDER [93].  For example, I could 

annotate two features based on their CorrDec MS2 spectra as acetaminophen-sulfate and 

valerylcarnitine, two compounds not present in the used MS2 spectral library, but likely to 

present in urine [90]. At the early stages of this study, from the currently 85 AMRT+MS2 

confirmed compounds (Figure 2-4A), 25 compounds were annotated by MS2 match only and 

were purchased for confirmation. MS2 spectra of compounds with variable levels in the 

samples, for example metabolites of drugs and dietary components, are particularly suitable 

for deconvolution by CorrDec and subsequent structural interpretation. Therefore, CorrDec 

spectra are valuable for the identification using spectral libraries and as well as in silico 

annotations.  
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Figure 2-4. CorrDec MS2 spectra provide more confidence in compound identification than those 
obtained by MS2Dec in the urinary metabolomics DIA dataset. A. Number of compounds in each 
identification category identified using MS2Dec and CorrDec. B. Distribution of the MS2 similarity 
scores for the MSI level-1 compounds spectra deconvoluted by the CorrDec and MS2Dec. C. MS2 
similarity scores from CorrDec were higher than MS2Dec, especially for low-intensity peaks.  
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Average 
RT 

Average 
m/z Adduct Metabolite name 

Identification 
rank 

MS2 similarity 
score 

MS2Dec CorrDec 
7.43 76.080 [M+H]+ Trimethylamine N-oxide AMRT+MS2 92.4 98.0 
2.02 100.079 [M+H]+ 2-Piperidone AMRT+MS2 13.7 92.3 
7.81 104.072 [M+H]+ Dimethylglycine AMRT+MS2 97.3 100.0 
8.50 104.109 [M+H]+ Choline AMRT+MS2 86.1 70.3 
4.82 112.042 [M+H]+ 2,3-Dihydroxypyridine AMRT+MS2 76.9 87.4 
8.74 112.050 [M+H]+ Cytosine AMRT+MS2 85.4 88.1 
2.52 113.035 [M+H]+ Uracil AMRT+MS2 88.0 91.9 
8.62 114.069 [M+H]+ Creatinine AMRT+MS2 86.6 95.3 
7.74 116.072 [M+H]+ Proline AMRT+MS2 93.2 100.0 
9.05 118.066 [M+H]+ Glycocyamine AMRT+MS2 83.4 91.4 
7.60 118.094 [M+H]+ Betaine AMRT+MS2 48.6 85.5 
8.65 120.067 [M+H]+ Threonine AMRT+MS2 81.6 91.8 

7.35 121.065 
[M+H-
NH3]+ Tyramine AMRT+MS2 51.2 99.5 

7.72 126.024 [M+H]+ Taurine AMRT+MS2 75.3 84.3 
2.50 130.051 [M+H]+ Pyroglutamic acid AMRT+MS2 80.2 91.5 
7.47 130.088 [M+H]+ Pipecolic acid AMRT+MS2 81.2 100.0 
9.12 131.118 [M+H]+ N-Acetylputrescine AMRT+MS2 82.8 80.2 
8.28 132.085 [M+H]+ Creatine AMRT+MS2 90.7 96.8 
6.72 132.102 [M+H]+ Isoleucine AMRT+MS2 79.4 96.1 
6.72 132.103 [M+H]+ Leucine AMRT+MS2 98.1 98.2 
9.09 133.061 [M+H]+ Asparagine AMRT+MS2 28.4 82.1 
4.97 137.052 [M+H]+ Hypoxanthine AMRT+MS2 14.6 88.1 
8.75 137.060 [M+H]+ Dopamine AMRT+MS2 5.5 94.3 
7.51 138.066 [M+H]+ Trigonelline AMRT+MS2 70.4 87.9 
7.64 143.084 [M+H]+ Ectoine AMRT+MS2 84.0 84.3 
7.95 146.095 [M+H]+ 4-Guanidinobutanoic acid AMRT+MS2 68.2 86.3 
8.93 147.080 [M+H]+ Glutamine AMRT+MS2 86.5 84.1 

13.03 147.113 [M+H]+ Lysine AMRT+MS2 79.3 94.9 
7.61 152.057 [M+H]+ Guanine AMRT+MS2 1.2 96.3 
1.52 152.074 [M+H]+ Acetaminophen AMRT+MS2 68.2 82.3 
4.75 153.043 [M+H]+ Xanthine AMRT+MS2 61.2 99.2 
1.72 154.050 [M+H]+ 3-Hydroxyanthranilic acid AMRT+MS2 5.3 97.9 

12.56 156.082 [M+H]+ Histidine AMRT+MS2 92.1 97.7 
6.28 159.052 [M+H]+ Allantoin AMRT+MS2 6.6 86.5 
8.31 162.120 [M+H]+ Carnitine AMRT+MS2 92.0 95.0 
7.51 166.074 [M+H]+ 7-Methylguanine AMRT+MS2 52.3 96.0 
6.55 166.091 [M+H]+ Phenylalanine AMRT+MS2 91.2 95.8 
6.16 169.042 [M+H]+ Uric acid AMRT+MS2 94.5 98.1 
1.56 170.048 [M+H]+ 2-Furoylglycine AMRT+MS2 67.3 82.9 

12.60 170.105 [M+H]+ 3-Methylhistidine AMRT+MS2 95.9 96.4 
4.20 176.056 [M+H]+ N-Acetylaspartic acid AMRT+MS2 3.7 91.2 
9.34 176.104 [M+H]+ Citrulline AMRT+MS2 62.9 97.9 
1.44 180.070 [M+H]+ Hippuric acid AMRT+MS2 93.0 93.1 

Table 2-2. 111 identified and annotated compounds  
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1.62 181.082 [M+H]+ Dimethylxanthine AMRT+MS2 83.3 99.1 
8.06 182.049 [M+H]+ Methionine sulfone AMRT+MS2 19.8 81.4 
7.73 182.084 [M+H]+ Tyrosine AMRT+MS2 84.6 91.3 
4.95 183.055 [M+H]+ 1-Methyluric acid AMRT+MS2 92.7 93.8 
4.13 184.062 [M+H]+ 4-Pyridoxic acid AMRT+MS2 73.7 83.4 
8.36 189.124 [M+H]+ N6-Acetyllysine AMRT+MS2 47.5 96.3 
8.96 189.124 [M+H]+ N2-Acetyllysine AMRT+MS2 28.5 82.2 
3.07 190.051 [M+H]+ Kynurenic acid AMRT+MS2 90.4 93.1 
3.88 190.073 [M+H]+ N-Acetylglutamate AMRT+MS2 15.8 81.2 
1.24 194.082 [M+H]+ Methylhippuric acid AMRT+MS2 1.0 93.8 
1.31 195.096 [M+H]+ Caffeine AMRT+MS2 79.4 98.2 
1.41 196.061 [M+H]+ o-Hydroxyhippuric acid AMRT+MS2 17.4 91.9 
6.33 196.065 [M+H]+ MES AMRT+MS2 59.1 83.2 
3.89 197.070 [M+H]+ 1,7-Dimethylurate AMRT+MS2 85.4 98.6 
8.66 198.088 [M+H]+ N,N-Acetylhistidine AMRT+MS2 7.4 94.8 

5.44 199.084 [M+H]+ 
5-Acetylamino-6-amino-3-
methyluracil AMRT+MS2 83.2 88.7 

7.10 201.984 [M+H]+ Cysteine-S-sulfate AMRT+MS2 0.1 83.5 
12.41 203.151 [M+H]+ Dimethylarginine AMRT+MS2 90.4 15.1 
5.77 204.128 [M+H]+ Acetylcarnitine AMRT+MS2 93.4 98.7 
6.94 205.100 [M+H]+ Tryptophan AMRT+MS2 88.0 96.3 
4.24 206.046 [M+H]+ Xanthurenic acid AMRT+MS2 26.4 93.1 
1.36 206.082 [M+H]+ N-Cinnamoylglycine AMRT+MS2 19.9 94.3 
4.98 208.101 [M+H]+ CHES AMRT+MS2 26.4 88.7 
6.71 209.094 [M+H]+ Kynurenine AMRT+MS2 0.0 86.0 
1.70 211.084 [M+H]+ 1,3,7-Trimethyluric acid AMRT+MS2 1.0 95.7 
8.73 217.132 [M+H]+ N-Acetylarginine AMRT+MS2 65.3 92.5 
5.02 218.115 [M+H]+ Acetylcitrulline AMRT+MS2 72.6 96.2 
4.69 218.140 [M+H]+ Propionyl-carnitine AMRT+MS2 2.4 98.9 
2.13 220.120 [M+H]+ Pantothenic acid AMRT+MS2 94.7 98.6 
6.22 222.099 [M+H]+ N-Acetyl-D-glucosamine AMRT+MS2 72.4 84.6 
7.57 225.087 [M+H]+ 3-Hydroxykynurenine AMRT+MS2 0.7 92.0 
8.88 229.123 [M+H]+ Proline-hydroxyproline AMRT+MS2 21.4 99.3 
6.53 238.095 [M+H]+ Biopterin AMRT+MS2 5.3 95.9 

11.05 239.107 [M+H]+ HEPES AMRT+MS2 88.5 69.9 
10.71 241.032 [M+H]+ Cystine AMRT+MS2 76.8 80.8 
5.81 247.145 [M+H]+ Trimethyl-tryptophan AMRT+MS2 10.9 90.2 
2.46 265.126 [M+H]+ Phenylacetylglutamine AMRT+MS2 89.9 88.7 
6.95 268.105 [M+H]+ Adenosine AMRT+MS2 31.4 96.1 
5.58 269.088 [M+H]+ Inosine AMRT+MS2 8.5 100.0 
8.92 269.127 [M+H]+ N-acetylcarnosine AMRT+MS2 29.3 95.1 
6.59 284.099 [M+H]+ Guanosine AMRT+MS2 1.5 91.6 
7.51 290.135 [M+H]+ Ophthalmic acid AMRT+MS2 3.3 94.7 
5.57 298.097 [M+H]+ Methylthioadenosine AMRT+MS2 65.6 95.3 
8.86 303.068 [M+H]+ PIPES AMRT+MS2 9.6 83.5 
6.69 310.114 [M+H]+ N-Acetylneuraminic acid AMRT+MS2 78.0 85.3 
8.37 104.072 [M+H]+ Aminobutyric acid AMRT 0.2 73.0 
9.10 106.050 [M+H]+ Serine AMRT 61.8 69.0 
6.73 110.062 [M+H]+ 2-Aminophenol AMRT 45.4 54.6 
7.60 118.086 [M+H]+ 5-Aminovaleric acid AMRT 2.3 57.2 
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3.45 123.055 [M+H]+ Nicotinamide AMRT 13.7 0.0 
1.87 127.051 [M+H]+ Thymine AMRT 16.5 0.0 
7.47 144.107 [M+H]+ Proline betaine AMRT 66.0 70.1 
8.53 148.061 [M+H]+ Glutamate AMRT 7.8 70.0 
8.82 166.054 [M+H]+ Methionine sulfoxide AMRT 0.2 10.8 
7.20 175.108 [M+H]+ Theanine AMRT 0.0 55.2 
6.88 183.087 [M+H]+ Mannitol AMRT 4.0 64.1 
4.42 187.072 [M+H]+ Pyroglutamylglycine AMRT 0.0 2.0 
5.20 193.035 [M+H]+ Citric acid AMRT 10.2 32.2 
9.52 244.093 [M+H]+ Cytidine AMRT 1.1 21.3 
0.99 267.174 [M+H]+ Tri-N-butyl phosphate AMRT 67.6 69.7 
5.65 285.084 [M+H]+ Xanthosine AMRT 39.6 77.7 
1.16 361.200 [M+H]+ Cortisone AMRT 0.4 35.2 
8.16 127.050 [M+H]+ Imidazoleacetic acid AM+MS2 56.6 89.2 
9.07 190.119 [M+H]+ Homocitrulline AM+MS2 2.6 84.6 
1.70 195.078 [M+H]+ Aminohippuric acid AM+MS2 36.8 88.3 
3.76 232.157 [M+H]+ Isobutyryl-carnitine AM+MS2 34.9 97.9 
4.56 257.081 [M+H]+ Liquiritigenin AM+MS2 5.9 90.2 
6.57 259.104 [M+H]+ AICA-riboside AM+MS2 6.0 85.5 
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Glutamine and N-acetylcarnosine 

Untargeted LC methods often contain regions with multiple co-eluting compounds. In this 

analytical method, the distribution of the 4159 features ranged from a few to over 250 peaks 

per 20 s (approximate average peak width at base) across the 0.8-15 min of gradient elution. 

Such coeluting peaks pose a challenge to deconvolution methods relying on mass 

chromatograms, but the CorrDec could deconvolute even completely coeluting compounds, 

such as abundant glutamine and little N-acetylcarnosine (Figure 2-5A). The peak intensities 

of the two compounds fit well with the reported average concentrations in the literature: 18-

72 and 1-2 μM/mmol creatinine for glutamine [90] and N-acetylcarnosine (see supplemental 

material), respectively. Using MS2Dec, the deconvoluted spectrum of N-acetylcarnosine 

contained all fragment peaks of glutamine, reducing the MS2 match with the reference to 

only 29.3%. The deconvoluted spectrum of glutamine kept the MS2 match of >80% (Figure 

2-5C). With the same dataset, CorrDec could deconvolute the MS2 spectrum of N-

acetylcarnosine with >80% match (Figure 2-5D). Low abundance metabolites such as N-

acetylcarnosine arguably constitute the larger part of most metabolomics datasets [72]. The 

high-quality MS2 spectra deconvoluted by the CorrDec enabled us to untangle the complex 

AIF dataset, by improving the identifications and annotations of smaller peaks in 

chromatographically dense sections. 
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Figure 2-5. CorrDec can successfully deconvolute the MS2 spectra of completely 
coeluting compounds, glutamine and N-acetylcarnosine. A. The raw MS2 spectrum and 
extracted ion chromatograms in MS1 (0 eV) of completely coeluting glutamine and N-
acetylcarnosine as well as B. their fragments in MS2 (10 eV) from the urine data (QC1 
sample in batch 1). C. MS2 spectra of glutamine and N-acetylcarnosine deconvoluted by 
the MS2Dec. D. MS2 spectra of glutamine and N-acetylcarnosine deconvoluted by the 
CorrDec.  
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Random resampling validation 

Estimating the number of samples required for CorrDec is difficult, because it depends on 

multiple factors (study design, sample matrix, metabolite, etc). Here for a rough estimation, I 

used 85 compounds confidently annotated (AMRT and MS2 match) in the urine study to 

perform random resampling analysis. Based on the median MS2 similarity from 100 

iterations for each resampling, I plotted the number of compounds (total 85) having more 

than the particular MS2 similarity scores for each sampling number (Figure 2-6). Already 

with 10 samples, 47% (40 of 85) of the compounds showed over 80% MS2 similarity, when 

using 30 samples this number rose to 85% (72 of 85) of the compounds. Therefore, even 

smaller studies with tens of samples can benefit from the CorrDec method. Keeping in mind 

that urine is more variable compared to homeostatic fluids such as blood, I speculate that a 

larger number of samples might be required for successful application of CorrDec in studies 

with less metabolite variations between samples. The quality of MS2 spectra are largely 

dependent on compound classes and study designs; defining the best parameters or the 

minimum sample number required for all studies is therefore difficult. 

 
Figure 2-6. Summary of the randomized resampling analysis for the 85 CorrDec 
AMRT+MS2 compounds (Figure 2-4) to assess the relationship between the number of 
samples (urinary metabolomics dataset) used for the CorrDec and quality of the 
deconvoluted MS2 spectra compared library MS2 spectrum. 
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The benefits of CorrDec are summarized as: 1) cleaner MS2 spectra, and 2) statistical 

annotations (frequency and correlation) for MS2 peaks. CorrDec can generate clear spectra 

without noise signals from the matrix, mobile phase or mass spectrometer artifacts, enabling 

better matching to spectral databases and improving library search results. In the 

deconvolution process, each MS2 peak is assigned with a correlation value and frequency 

among samples. Advanced users can manually interpret deconvoluted MS2 spectra of 

unknown or marginally matching metabolites with reference spectra using these statistical 

annotations.  

On the other hand, CorrDec has two disadvantages: 1) requiring multiple samples 

with varying compound concentrations, 2) possibly missing shared fragments with coeluting 

compounds. First, in principle, CorrDec cannot be performed on a single sample and at least 

three samples are required to calculate the correlation coefficient. While I observed that four 

spiked samples can be sufficient to obtain >80% similarity match, I investigated further to 

estimate the required sample number in an actual study using random resampling of the urine 

metabolomics dataset. Second, if coeluting compounds produce same m/z product ions, their 

intensity correlations might be small and be filtered out from deconvoluted spectra depending 

on the CorrDec parameters. MS2Dec spectra might be useful to complement missing peaks. 

Moreover, if advanced users try to retrieve missing peaks, they can carefully interpret the 

spectral statistical annotations and MS2 chromatograms. 

In MS-DIAL, CorrDec is not intended to replace MS2Dec, as both deconvolution 

methods are based on different concepts and have different usage scenarios. The CorrDec 

method provides a reasonably clean deconvoluted MS2 spectrum per feature and sample set, 

therefore it is suitable for annotating and identifying a feature at the level of the whole sample 

set. MS2Dec can deconvolute MS2 spectra for each feature in a single sample; therefore, 

while noisier, the MS2Dec can be utilized to evaluate the feature identification for each 

sample in the dataset. In DIA metabolomics, MS2 spectra are obtained from only a small 

number of MS scans. For such complex and noisy data, traditional deconvolution methods 

such as multivariate curve resolution (MCR) is difficult to apply because the multivariate 
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method requires proper constraints to deconvolute spectra. When the number of coeluting 

compounds and peak shapes are interfered with noise, error-minimization is not a good 

algorithmic choice. Here, MS2Dec and CorrDec methods can function in complement to 

clean MS2 spectra from a relatively large dataset. Lastly, regardless of how clean the MS2 

spectra or how good the MS2 library similarity matches are, it is still necessary to manually 

confirm compound annotations with chemical standards.  

2-3 Conclusion 

To obtain MS2 spectra for as many compounds as possible, AIF approach is useful in 

untargeted metabolomics. However, the complex AIF MS2 spectra require computational 

approaches for interpretation. To overcome the trade-off between comprehensiveness and 

cleanness of spectra, I have developed CorrDec—a new MS2 spectra deconvolution method 

for AIF data based on the correlations of the peak intensities across samples.  

The serial dilution study of chemical standards showed that the peak intensities of 

fragment ions were highly correlated with those of their precursor ions across samples. The 

performance of CorrDec was demonstrated in the urine cohort study; the improved quality of 

the MS2 spectra and the ability to deconvolute completely coeluting compounds are the main 

advantages over retention-time based deconvolution methods. Additionally, CorrDec is 

useful for compound estimations by in silico fragmentation tools such as MS-FINDER, 

because CorrDec spectra were generated without any reference MS2 libraries. Although 

CorrDec requires multiple samples to calculate intensity correlations across samples, it is 

applicable for almost all untargeted studies because multiple samples are usually measured in 

untargeted metabolomics for comparison. Of course, it should be noted that the quality and 

reliability of CorrDec spectra tend to be low in small-scale studies. In any case, manual 

confirmation is still needed because computational approaches might lead to 

misinterpretation. 

CorrDec is available in MS‑DIAL version 3.22 or later, and is already utilized by not 

only my collaborators, but also a few other MS‑DIAL users. CorrDec can help to utilize 
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complex AIF MS2 spectra for reliable compound annotation and identification in various 

untargeted metabolomics studies. 
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2-4 Methods 

Sample information and data acquisition 

LC-MS measurements in AIF mode were performed as described previously [40,94], they are 

measured by my collaborators in Craig Wheelock laboratory. Metabolites were separated on 

a 15 minute gradient using HILIC chromatography with acidified water and acetonitrile. Data 

were acquired in positive ionization mode on an Agilent 6550 Q-TOF-MS system with a 

mass range of 40−1200 m/z in AIF mode with three alternating collision energies (full scan, 

10 and 30 eV). The data acquisition rate was 6 scans/s. 

Dilution series of eight chemical standards were prepared using urine as a matrix 

(proline betaine, trigonelline, dimethylglycine, trimethylamine N-oxide, tyrosine, glycine 

betaine, proline, 3-hydroxy-kynurenine). The original concentration of 4 μM in urine was 

diluted 1.5-fold with an equal amount of urine 10 times, resulting in an 11-point series to the 

final concentration of 69 nM. In addition, for tyrosine, a small step (1.07-fold) serial dilutions 

were also acquired.  

Urine samples (n = 224) were used as the proof of concept for assessing the CorrDec 

performance. A detailed description of the full study is found in the original publication [95]. 

Samples were measured in four analytical batches, with pooled quality control (QC) sample 

injections every 5 samples and a water blank at the end of the batch sequence.  

Chemical standard library 

An in-house MS2 spectral library containing 13597 compounds was used for identification. 

The retention times (RT) for 280 compounds were obtained from purchased chemical 

standards [40,96]. 

Data processing and analysis 

The CorrDec method was implemented into MS-DIAL [37]. Data were processed in MS-

DIAL version 4.12 (peak detection, alignment, and deconvolution). Important parameters 

were: minimum peak height MS1: 3000, noise level of MS2: 1000, total identified score 
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cutoff: 80%, detected in 20% of all samples, not in blank (maximum sample intensity/average 

blank intensity > 5). As the used library contained records of both DDA and DIA spectra, 

during the identification processes I used the deconvoluted spectra with and without the ions 

above the precursor. The higher scored match was kept. Detailed data processing settings of 

MS-DIAL are shown in Table 2-3 and Table 2-4. After the alignment of the features, MS2 

spectra were deconvoluted using the CorrDec and the MS2Dec method independently. 

 

ID MS Type Start m/z End m/z Name 
Collision 
energy 

Deconvolution target 
(0: No, 1:Yes) 

0 ALL 40 1200 10eV 10 1 
1 ALL 40 1200 30eV 30 1 
2 SCAN 40 1200 0eV 0 1 

 

Start up a project  
Ionization type Soft ionization 

Method type 
All-ions with multiple CEs (Table 2-2 
experiment file) 

Data type (MS1) Centroid 
Data type (MS/MS) Centroid 
Ion mode Positive ion mode 
Target omics Metabolomics 

  

New project window (file selection) Compound characterization 
Sample type Sample 
Set Class ID Sample 
  
New project window (file selection) E-TYPE 
Sample type Sample, QC, and Blank as in Table S7 
Set Class ID same as sample type 
  
Data collection  
MS1 tolerance 0.01 
MS2 tolerance 0.01 
Retention time begin 0 
Retention time end 16 
Mass range begin 40 
Mass range end 1200 

Table 2-3. Experimental file of MS-DIAL for multiple collision energy mode 

Table 2-4. MS-DIAL project settings 
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Maximum charged number 2 
Consider Cl and Br elements Unchecked 
Number of threads 20 
Execute retention time corrections Unchecked 
  
Peak detection  
Minimum peak height 3000 
Mass slice width 0.1 
Smoothing method Linear weighted moving average 
Smoothing level 3 
Minimum peak width 5 
Exclusion mass list (tolerance: 0.01Da) 121.051, 922.0098, and 923.0129 
  
MS2Dec  
Sigma window value 0.5 
MS2Dec amplitude cut off 1000 
Exclude after precursor Unchecked 
Keep isotope until 0.5 
Keep the isotopic ion w/o MS2Dec Unchecked 
  
Identification  
Retention time tolerance 1 
Accurate mass tolerance (MS1) 0.01 
Accurate mass tolerance (MS2) 0.01 
Identification score cut off 80 
Using retention time for scoring Checked 
Postidentification Not used 
  
Adduct  

Molecular species 
[M+H]+, [M+Na]+, [M+H-H2O]+, and 
[2M+H]+ 

  
Alignment  
Retention time tolerance 0.5 
MS1 tolerance 0.01 
Retention time factor 0.5 
MS1 factor 0.5 
Peak count filter 20 
N% detected in at least one group 20 
QC at least filter Unchecked 
Remove feature based on blank 
information Checked 
Sample max / blank average 5 
Keep identified and annotated metabolites Unchecked 
Keep removable features and assign the tag 
for checking Unchecked 
  
Tracking of isotopic labels Not used 
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For the urine data, I manually confirmed and curated the alignment results to correct 

missed or doubtful peak picking, feature alignment, and compound identification. I also 

annotated all features using three criteria: (i) accurate mass (AM) match (tolerance: 0.01 Da), 

(ii) retention time (RT) match (tolerance: 1 min), and (iii) MS2 spectrum match (similarity 

>80%). The MS2 similarity was scored by the simple dot product without any weighting 

[97]:   

𝑀𝑀𝑀𝑀2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡 (%) = 100 ∗  
(∑𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴)2

∑𝐴𝐴𝐴𝐴2 ∑𝐴𝐴𝐴𝐴2
 

where Am and Ar are the arrays of m/z intensities in a measured- and reference mass spectrum, 

respectively. To avoid erroneous high similarity match resulting from only a few peaks, I 

adopted the following additional criteria: 1) match of at least two MS2 peaks with the 

reference spectra when the RT also matches, and 2) match of at least three MS2 peaks 

without the RT match. The MS2 similarities with reference spectra were compared between 

the CorrDec and the MS2Dec using three different collision energies (0, 10, and 30 eV). 

Random sampling analysis 

I evaluated the performance of CorrDec for different sample sizes by randomized resampling 

analysis of the urine metabolomics dataset. After chromatographic alignment was performed 

using all samples, I re-selected the study- and QC samples for deconvolution by the CorrDec. 

The number of samples varied from four to the number of detected samples (depending upon 

the chosen compound) with 100 iterations. For each iteration, I calculated the MS2 similarity 

between the deconvoluted spectrum from the resampling and the reference spectrum. The 

MS2 similarity of resampling was the average of 100 iterations. 

Data availability 

The datasets have been deposited to the EMBL-EBI MetaboLights repository with the 

identifiers MTBLS787 (chemical standards) and MTBLS816 (urine metabolomics). 
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Reliable chemical standard libraries also required consisting of accurate mass (AM), retention 

time (RT), and MS2 spectrum. In this chapter, a workflow to obtain AM, RT, and MS2 for a 

given compound using the AIF method will be proposed. I also provide practical 

recommendations for library development.  

The contents of this chapter are also described in Tada et al. Metabolites 2019 [96]. 

3-1 Introduction 

Interest in the analysis of the metabolome has increased significantly due to its utility for 

understanding biological processes and for biomarker discovery [98]. Liquid chromatography 

coupled to mass spectrometry (LC-MS) is a widespread metabolomics method owing to its 

sensitivity, and its measurement strategies are broadly classified into targeted and untargeted 

approaches [99]. Targeted approaches using LC-MS2 offer increased selectivity and 

quantification [100]; however, they are by nature limited to the measurement of preselected 

compounds. Untargeted metabolomics enables the discovery of unknown compounds; 

however, metabolite identification is a major bottleneck in data interpretation [72]. The 

criteria for metabolite identification was proposed [38], it is not enough for current untargeted 

metabolomics as detailed in Chapter 1.  

To further increase the reliability of metabolite identification, MS2 spectra are used in 

addition to accurate mass and retention time (AMRT), MS2 spectra can be obtained from 

either data dependent acquisition (DDA) or data independent acquisition (DIA) [68]. In DDA, 

a narrow window of a few daltons or less is isolated around the precursor ion, and relatively 

clean MS2 spectra with a clear connection to their precursors are obtained [101]. However, 

Chapter 3  
Chemical Library 
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MS2 information is obtained only for a fraction of all detected ions in a measured sample. In 

DIA, on the other hand, all ions are sent to the collision cell to obtain their cumulative MS2 

spectra (Figure 3-1A); this means that MS2 information is collected for virtually all ions in 

the sample (provided that they are of sufficient abundance). DIA-based data such as AIF (all 

ion fragmentation), MSE, or SWATH (sequential windowed acquisition of all theoretical 

fragment ion mass spectra) [69] are therefore rich in content, but require spectral 

deconvolution. Towards this end, multiple software programs such as MS2Dec [37], MetDIA 

[79], and CorrDec (See Chapter 2) have been developed for interpretation of DIA-based data. 

In this process, there is little consensus on the treatment of spectra originating from identical 

compounds such as in-source fragmentation and different adducts [87]. In addition, peak 

intensities of MS2 spectra also depend on individual LC-MS instruments and measurement 

conditions [102]. Data analysis in DIA metabolomics is currently limited to the use of 

libraries constructed using DDA MS2 spectra without information on in-source fragmentation 

or multiple adduct types [40,103,104], or libraries with RT that are not suitable for the 

available measurement settings. 

To address these difficulties and to provide a useful workflow for library construction, I 

demonstrate the creation of a reliable AMRT+MS2 library for LC-MS AIF metabolomics of 

hydrophilic compounds on a zic-HILIC column (Figure 3-1B). RT shifts were rigorously 

assessed using technical internal standards (tIS), and spectral deconvolution was fully 

exploited to obtain high-quality mass spectra for accurate metabolite annotation. A dedicated 

software tool was developed for comparing and sharing spectra in the NIST MSP format, 

named Mass Spectral LIbrary MAnager (MS-LIMA; see Chapter 4) [105]. Step-by-step 

tutorials can be downloadable for constructing (Tutorial 1) and application (Tutorial 2) of the 

AMRT+MS2 library on an AIF metabolomics dataset [106]. While for simplicity the 

application in this work is limited to zic-HILIC chromatography, this approach is generally 

applicable to any chromatographic system. 
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Figure 3-1. A. Comparison of AIF (all ion fragmentation) and DDA (data dependent acquisition) 
MS2 spectra acquisition, B. MS2 library construction workflow used in the current study 
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3-2 Results and Discussion 

Chemical standard selection 

Due to the need to perform multiple injections per compound, compound selection for 

inclusion in the library should be performed based upon likelihood of detection in authentic 

samples. I recommend establishing a list of compounds based upon feature annotation in the 

target sample matrix (e.g., pooled quality control samples, pilot study samples) [86,107]. 

Compounds can have multiple common names: for example, 5-pyrrolidone-2-carboxylic acid, 

pidolic acid, and pyroglutamic acid all designate the same chemical compound. In addition, 

identifiers from chemical databases such as HMDB [24], ChEBI [108], PubChem [56], 

ChemSpider [57], do not necessarily contain all synonyms for a given compound. InChIKey 

is a universal and unique compound identifier developed under the auspices of IUPAC 

(International Union of Pure and Applied Chemistry) [109], which can be used to search for 

other identifiers automatically (for example, with the R webchem package [110] or Chemical 

Translation Service [111]). PubChem and ChemSpider provide comprehensive information 

on the compounds, including a list of vendors when available. Commercial compounds are 

often available as salts (e.g., trigonelline chloride), with varying degrees of purity. While 

composition and purity of the chemical standard is crucial for direct infusion, it is not critical 

when LC separation is used (Figure 3-2) 

Many plant- and food-based compounds are difficult to obtain commercially, as well 

as phase II metabolized forms (e.g., sulfates or glucuronides) of compounds other than drugs. 

While custom synthesis is an option, it is time-consuming, costly, and requires specific 

expertise [112]. When chemical standards are not available, the spectra of putatively 

annotated compounds in the samples can be used as an MSI level-2 or 3 compound library in 

order to reproduce consistent putative annotations across several studies. 
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Figure 3-2. Retention time (RT) and response curve characterization of seven compounds 
with C7H7NO2 formula in positive ionization mode on zic-HILIC chromatography. Peaks of 
the characterized compounds are indicated by black arrows. The elution order of the 
methyl-nicotinic acid and aminobenzoates (A-D) was confirmed by the constant RTs of the 
tIS. The analytical standard of 2-pyridylacetic acid (E) shows two peaks at 4.6 and 5.9 min, 
the later having the same RT as 3-pyridylacetic acid (F). Trigonelline (G) is detected at 
lower amounts than other compounds with the same formula. The shown MS2 spectra were 
deconvoluted using MS2Dec from the injection indicated by a blue dot in the response 
curve. 

 



3-2 Results and Discussion 43 

 

LC-MS acquisition of the chemical standard 

When high-quality spectra are available, AIF data can be used to distinguish isobaric co- or 

closely eluting compounds [40,94,104]. However, compounds have different ionization 

efficiencies and response curves [113,114]. To produce a clean MS2 spectrum using MS2Dec 

[37], an appropriate amount for each compound should be injected into the LC-MS system. 

CorrDec requires multiple samples, with varying levels of the target compound (see Chapter 

2). Therefore, multiple injections at different dilutions are necessary. Multiple injections also 

enable estimation of the detection and saturation limits for each compound. In positive 

ionization mode, as used in the current study, compounds with positively charged nitrogen 

atoms (e.g., trigonelline or trimethylamino groups in betaines and carnitines) ionize very well 

(Figure 3-2). The detection limits for such compounds can be an order of magnitude lower 

(around 0.1 fmol) compared with the standard amino acids and nucleosides (1–10 fmol). On 

the other hand, compounds containing only carbon, oxygen and hydrogen (e.g., carboxylic 

acids) are often poorly detected in positive ionization, and negative ionization mode should 

therefore be used [115]. In addition, depending upon the compound, the molecular ion might 

not always be the major species [86]. For example, in this study the main ions of 

chenodeoxycholic and cholic acids in positive ionization mode are [M+H-2H2O]+ and 

[M+H−3H2O]+. 

Retention time normalization 

RT characterization initially appears to be straightforward, simply requiring notation of the 

elution time of the injected chemical standard on the LC-MS system. However, RT can 

fluctuate depending on many factors, including the LC-MS system setup, solvents, column 

batches, etc. [116]. For example, some HILIC columns are prone to fluctuations in RT even 

within the same system and sorbent batch, which can complicate method transfer across 

laboratories and decrease long-term consistency. The challenge of RT shifts can be illustrated 

using two isobaric compounds, valine and betaine. In Naz et al. [40], who employed the same 

zic-HILIC method and instrumentation as this study, valine and betaine eluted at 6.79 and 

7.10 min, respectively, while in the current work, they eluted at 7.21 and 7.41 min, 
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respectively. It is difficult to confidently identify these two compounds based solely on 

AMRT. The addition of MS2 spectra does not easily resolve this RT complication because 

low-molecular-mass metabolites with different structures may exhibit similar MS2 spectra as 

shown in Figure 3-2 for compounds with the formula C7H7NO2. RT characterization is 

necessary for reliable identification. Chemical standards may also contain impurities; for 

example, the peak of 2-pyridylacetic acid standard is separated by RT from 3-pyridylacetic 

acid (Figure 3-2E and F). To address this issue, I include multiple tIS in each injection to 

check (1) the performance of the instrumentation (e.g., peak shape, intensity); and (2) RT 

shifts. In the GC-MS field, the Kovats retention indices have been used for decades to adjust 

the RT shifts. However, in the LC-MS field, there is no single set of widely adopted retention 

index standards [117–119]. RT standards were only recently proposed for HILIC 

chromatography [120]. A practical solution for selection of tIS is a mix of common 

metabolites or exogenous compounds as in this study, with RT spread across the elution 

profile. To adjust the RT, first, the reference RTs of the tIS is obtained from an authentic 

representative analysis. Second, when processing each chemical standard data, their RTs are 

adjusted using the RTs of the tIS, based on a linear correction between each tIS. This is a 

relatively coarse correction, and other sophisticated approaches are available for larger 

deviations [121]. Information on the fluctuations of the tIS RTs from the library construction 

can be used when setting RT tolerance for compound identification in a dataset. For the five 

tIS used in this study, I observed that RT deviations <0.55 min from average and coefficient 

of variation (CV) across the seven injections of the 140 compounds in most cases <10%. I 

also observed ion suppression when a tIS coeluted with a characterized compound (e.g., 

fluorocytosine coeluted with norvaline betaine, resulting in ion suppression at 6.10 and 6.16 

min, respectively). Currently the AMRT libraries can only be used for MSI level-1 annotation 

if generated in the same laboratory under identical experimental conditions. I demonstrate 

here that, in reality, experimental conditions fluctuate over time, even in the same laboratory 

on the same instrument (e.g., solvent, column production batches), greatly affecting the RT 

precision. Therefore, in current practice, untargeted metabolomics studies should only report 

MSI level-2 annotations, unless all standard compounds are simultaneously analyzed within 
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the same analytical batch/study. However, the use of measurable parameters such as RT 

deviations of the tIS should enable researchers to assess whether the library is suitable for the 

AMRT MSI level-1 annotations of a dataset. 

MS2 spectra characterization 

A high-quality library requires annotation of reliable product ions in MS2 spectra of the 

chemical standards. Comparison of the annotated compound MS2 spectra enables the search 

for compound-specific fragment ions. In the case of complex AIF data from biological 

samples, such compound-specific ions enable quantification of coeluting compounds such as 

threonine/homoserine [40] methylxanthines [94], or leucine/isoleucine [104]. In principle, 

DDA MS2 spectra can be used to identify such compound-specific ions, however, for 

example, DDA MS2 spectra obtained by direct infusion do not account for the in-source 

fragmentation as well as may contain peaks from isobaric impurities. Therefore, I recommend 

using annotated AIF MS2 spectra obtained from the characterization of chemical standard 

dilution series.  

I used two deconvolution methods based on different concepts. MS2Dec [37] applies 

a least square regression method to consider the difference of liquid chromatographic peak 

tops, while CorrDec calculates the Pearson’s correlation among multiple samples to identify 

correlated MS2 peaks with the precursor. In other words, MS2Dec and CorrDec consider 

different information: ion intensity over RT in MS2Dec, and ion intensity across samples in 

CorrDec.  

From the dilution series, a representative sample (at unsaturated ion intensity 

corresponding to 104–106 AU, with the instrumentation and settings used in this study) was 

selected for each chemical standard. For all 140 compounds, raw MS2 spectra were obtained 

at 0, 10, and 30 eV collision energies. The median number of peaks in raw MS2 spectra were 

52 (0 eV), 91 (10 eV), and 128 (30 eV) after removing small peaks with <1% relative ion 

intensities. Spectra were then deconvoluted using both MS2Dec and CorrDec. CorrDec was 

able to generate deconvoluted MS2 spectra for 132 of the 140 compounds, with eight 
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compounds not fulfilling the CorrDec criteria (at least four spectra of each compound have to 

be above the noise level). The two deconvolution methods produced similar spectra (the 

median dot product similarity: 81.3%), although their concepts and calculation methods are 

fundamentally different. The median number of peaks in MS2Dec spectra were 8, 15, 19, and 

in CorrDec spectra, 10, 19, 22 at 0, 10, 30 eV, respectively. 

After deconvolution, MS2 peaks in each spectrum were annotated using the fragment 

annotation method implemented in MS-FINDER [93]. The MS-FINDER version 3.22 or later 

can estimate not only formula and substructure, but also isotopic ions and different adduct 

types of MS2 peaks from AIF data (AIF MS2 spectra may include different adduct types due 

to multiple precursors as explained in the Introduction). Nonannotated peaks were removed 

from the spectra, and the median number of removed peaks was four in both MS2Dec and 

CorrDec. 

I detail the approach using the example of trigonelline, a betaine-type compound, 

made by plants and often detected in human biofluids [112]. Trigonelline ionizes well, and a 

relatively low amount of 125 fmol was sufficient to obtain a high (ion intensity: 907588), but 

unsaturated signal (Figure 3-2G). In the raw MS2 spectra at 30 eV (Figure 3-3A left 

column), the difference in the fragment patterns among the dilution series was observed. 

There was a common peak (149.022 m/z) detected in even the lowest concentration, which 

was most likely chemical noise (possible formula: C8H5O3, corresponding to the common 

contaminant phthalic acid [M+H-H2O]+ ion [122,123]). The MS2Dec spectra (Figure 3-3A, 

right column) were similar (the median similarity of all MS2Dec pairwise comparisons: 

90.8%) over the dilution series. The only exception was the 31 fmol sample, whose base peak 

was 65.038 m/z (the median similarity between MS2Dec 31 fmol spectra and the other 

MS2Dec spectra: 49.0%); however, this peak was a fragment of trigonelline in combination 

with noise. A comparison of trigonelline’s raw spectrum (Figure 3-3A, left column) to 

MS2Dec spectra (Figure 3-3A, right column) shows that deconvolution is indeed effective. 

The CorrDec spectra were generated using seven raw MS2 spectra and compared to 

representative MS2Dec spectrum, showing a good match (Figure 3-3B). In both spectra, the 
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primary adduct type observed was [M+H]+ (138.055 m/z). Additionally, [M+Na]+ (160.038 

m/z) and [M+K]+ (176.012 m/z) were also detected. The sodium and potassium adducts 

probably originate from the chemical standard, purchased as trigonelline chloride. To confirm 

the reliability of trigonelline’s MS2Dec and CorrDec deconvoluted spectra, they were 

compared with the DDA MS2 spectra measured in house (Figure 3-3C). Although raw AIF 

MS2 spectra are noisy, the deconvoluted and curated MS2 spectra were well matched with 

the DDA MS2 spectrum. MS2 spectra deconvoluted from AIF data offer advantages relative 

to DDA MS2 spectra, including good coverage of isotopic patterns and inclusion of the 

adducts relevant to the LC method used in the acquisition (Figure 3-3C). 

 

 

 

Figure 3-3. Deconvolution of trigonelline (C7H7NO2, monoisotopic mass 137.0477) MS2 spectra 
from AIF data at 30 eV. A. Raw trigonelline AIF spectra contain multiple noise peaks (left column), 
compared to MS2 spectra deconvoluted by MS2Dec (right column), especially when lower amounts 
were injected. B. MS2Dec and CorrDec yield similar MS2 spectra. C. Comparison between 
CorrDec and DDA MS2 spectra acquired in house at 30 eV (MoNa ID: MoNA011431) confirms 
the solid MS2 deconvolution from the AIF data. Similarity reported as the dot product. 
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Confirmation and curation of MS2 spectra using MS-LIMA 

With the MS-LIMA version 1.52, I examined 814 MS2 spectra (140 compounds) exported 

from MS-FINDER: compared the precursor m/z difference with theoretical m/z, confirmed 

adduct type and collision energies, and removed nonannotated MS2 peaks. The experimental 

precursor m/z was replaced with the theoretical precursor m/z, because the characterized 

compounds were known and theoretical precursor m/z values should be used in the mass 

spectral search to calculate the mass accuracy. The original experimental m/z values were 

stored, because it is also important to know the mass accuracy of spectral records. For 

example, the information of mass accuracy is necessary for structure elucidation tools such as 

MS-FINDER [93] and CSI:FingerID [43]. Although the MS1 mass accuracy cannot directly 

be transferred to the MS2 mass accuracy, the experimental precursor m/z value is a criterion 

to access accuracy in MS1 and MS2 spectra. Finally, I modified and added metadata, 

including SMILES, InChI, spectrum type, instrument, instrument type, chromatography, 

author, and license. As described in the methods section, raw data has been deposited to the 

EMBL-EBI MetaboLights repository [124] with the identifier MTBLS816, the MS2 spectral 

library was submitted to MoNA [125], and the RTs of compounds were also deposited at 

PredRet database [42], with the benefit of predicting RTs for uncharacterized compounds by 

mapping between multiple chromatographic systems. Raw data and MS spectra can also be 

deposited in other repositories (e.g., Metabolomics Workbench [65] and GNPS [61]). In this 

study, I used MS-DIAL and MS-FINDER to obtain the MS spectra from the AIF data; 

however, alternative workflows can be created using other available tools including MZmine 

[36], XCMS [126], CAMERA [83], RAMClust [85], MetFrag [44], and CSI:FingerID [43]. 

In the era of open science, sharing and obtaining feedback on the MS2 libraries is necessary 

for improving the quality as well as for developing the metabolomics community. 
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Library application for human urine study 

A 224-sample urinary metabolomics study measured by AIF was used for library assessment. 

The dataset has been deposited to the EMBL-EBI MetaboLights repository with the identifier 

MTBLS816. To highlight the benefits of the library, I focused on the particular m/z window, 

138.055 ± 0.01, which could correspond to [C7H7NO2+H]+; the details and additional 

examples are provided in the supplemental compound identification in the LC-MS AIF data 

tutorial (Tutorial 2) [106]. Based upon AMRT match only, which qualifies for MSI level-1, 

three features had plausible matches in the library (Figure 3-4A). With respect to MS2, two 

features at 4.99 min and 6.58 min did not match to any spectra in spite of relatively high ion 

abundance (Figure 3-4B and C). In contrast, a peak at 7.46 min could be identified as 

trigonelline, based on not only the AMRT, but also the MS2 match (Figure 3-4D). Therefore, 

I consider the two peaks at 4.99 and 6.58 min as adduct ions, in-source fragments, or 

unknown compounds. Due to RT fluctuations in HILIC chromatography, relatively large 

tolerances are used at the cost of reliable identification, and it is essential to use MS2 

matching whenever possible to ensure accurate annotation. 
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Figure 3-4. Application of the AMRT+MS2 library to urine metabolomics data acquired in 
positive ionization mode on a zic-HILIC column. A. Extracted ion chromatogram of m/z 
138.055±0.01 Da (corresponding to [C7H7NO2+H]+) from a quality control (QC) sample. Two 
peaks at (B) 4.99 min and (C) 6.58 min have AMRT matches within 0.7 min, but poor MS2 
match despite relative high abundance. A peak at 7.46 min (D) despite the mass shift due to high 
abundance could unequivocally be identified as trigonelline based on the AMRT+MS2 match 
(trigonelline was not spiked into the sample or known a priori to be present in the samples). 
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3-3 Conclusion 

Reliable AMRT+MS2 libraries are necessary to confidently annotate and identify 

compounds in untargeted metabolomics. I describe workflow to obtain AM, RT, and MS2 for 

a given compound using the AIF data acquisition method and provide practical 

recommendations for library development. AIF spectra are useful as a library because they 

contain several adduct types. The main features of the library are normalized RT and 

annotated MS2 spectrum including several adduct types. The serial dilution measurements of 

standards can improve the confidence of measurements, confirm the ionization efficacy and 

suitable concentration, and be deconvoluted by CorrDec. To facilitate library curation and 

visualization, I developed the mass spectral manager MS-LIMA. The workflow can be easily 

reproduced by the AIF platform explained in the Chapter 4. 

 Although I highlighted the advantages of the created library, there are limitations. 

The library spectra were obtained from the LC-MS platform (Agilent Technologies, Santa 

Clara, CA, USA), and the spectra will most likely differ on platforms from other MS vendors 

with different ionization configurations. The set of tIS was chosen for the zic-HILIC method 

using positive ionization mode, and a different set may offer improved performance for a 

different combination of chromatography system, sample type, and ionization mode. For 

example, positive ionization mode is suitable for the urine study due to its efficient ionization 

of nitrogen-containing metabolites. However, negative ionization mode will require a 

different set of tIS, while reversed phase would yet again require a unique set of tIS. In this 

sense, it is difficult to assess the efficiency of the library only from a single study. However, 

the methodology introduced here is clearly transferrable, and there is a need to standardize 

this process within the metabolomics community. The construction of high-quality, open-

access libraries makes compound annotations more transparent, reliable, and transferable to 

the broader community. 
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3-4 Materials and Methods 

Sample information and data acquisition 

Water, acetonitrile, methanol, and isopropanol used for the LC-MS analysis and sample 

preparation were of LC-MS grade and purchased from Wako (Osaka, Japan). 

A stock solution (1–10 mM) for each chemical standard was prepared in water, 

methanol, acetonitrile, or other suitable solvent and stored at −80 ◦C. For the LC-MS 

characterization, seven 4-fold serial dilutions from 4.0–0.001 µM were prepared for each 

compound in acetonitrile containing tIS. An Agilent Bravo liquid handling system (Agilent 

Technologies, Santa Clara, CA, USA) with 96-well 0.2 mL PCR plates (PCR-96-MJ, BMBio, 

Tokyo, Japan) was employed to automate the serial dilutions. Pierceable seals 4Ti-0531 

(4titude, Wotton, UK) were used to seal the plates for 4 s at 185 ◦C, using a PX1 heat sealer 

(Bio-Rad, Hercules, CA, USA). The plates were stored at 4 ◦C until measurement by LC-MS. 

See also tutorial chemical standard characterization using LC-MS AIF data (section 

“Handling of chemical standards and LC-MS measurements”). 

LC-MS measurements in AIF mode were performed as described previously [40,94]. 

My collaborators in Craig Wheelock laboratory measured all data with their instruments. In 

short, metabolites were separated on a 15 min gradient using a zic-HILIC column (100 × 2.1 

mm, 3.5 µm particle size; Merck, Darmstadt, Germany) with acidified water and acetonitrile. 

Data were acquired in positive ionization mode on an Agilent 6550 Q-TOF-MS system 

(Agilent Technologies, Santa Clara, CA, USA), with a mass range of 40−1200 m/z in AIF 

mode, with three alternating collision energies (full scan, 10, and 30 eV). The data acquisition 

rate was 6 scans/s. One or two microliters of the solution were injected into the LC-MS 

system, corresponding to 1–8000 fmol. Solutions were injected from the lowest to the highest 

concentration, with a blank sample between each compound. The LC system was conditioned 

with several injections before each LC-MS sequence, and in each injection, a 7 min re-

equilibration step was implemented after the gradient to maintain stable RTs. 
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Data processing and analysis 

Data files were converted to mzML format using ProteoWizard version 3.0 [60] and 

processed in MS-DIAL [37] version 3.66 to obtain RT and MS2 spectra using MS2Dec and 

CorrDec deconvolution algorithms. The CorrDec function is implemented in the MS-DIAL 

(version 3.32 or later), which is freely available. Next, peaks in each MS2 spectra were 

annotated in MS-FINDER [93] version 3.22 and exported in NIST MSP format. Detailed 

settings of MS-DIAL and MS-FINDER are showed in Table 3-1, 3-2, and 3-3. See also 

tutorial chemical standard characterization using LC-MS AIF data (Tutorial 1, sections 

“Deconvolution MS2 spectra in MS-DIAL” and “Annotation of MS fragments in 

MS-FINDER”) [106]. 

 

Compound name RT 
RT 

tolerance m/z 
m/z 

tolerance 
Minimum 
intensity Include 

Pyrantel STD [M+H]+ 2.3 0.5 207.09505 0.01 10000 TRUE 
CHES STD [M+H]+ 5 0.5 208.10019 0.01 10000 TRUE 
5-Fluorocytosine STD 
[M+H]+ 6.1 0.5 130.0441 0.01 10000 TRUE 
PIPES STD [M+H]+ 9.1 0.5 303.0679 0.01 10000 TRUE 
HEPES STD [M+H]+ 10.7 0.5 239.106 0.01 10000 TRUE 

 

#Data type 
MS1 data type: Centroid 
MS2 data type: Centroid 
Ion mode: Positive 
DIA file: File path to DIA file setting (Table S5) 
 
#Data collection parameters 
Retention time begin: 0.5 
Retention time end: 15 
Mass range begin: 40 
Mass range end: 1200 
 
#Centroid parameters 
MS1 tolerance for centroid: 0.01 
MS2 tolerance for centroid: 0.01 
 
#Retention time correction 
iSTD file: File path to internal standard file (Table 2-3) 

Table 3-1. Internal standard settings for retention time normalization 

Table 3-2. MS-DIAL console project settings  
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Excute RT correction: TRUE 
RT correction with smoothing for RT diff: TRUE 
User setting intercept: 0 
RT diff calc method: SampleMinusReference 
Interpolation Method: Linear 
Extrapolation method (begin): UserSetting 
Extrapolation method (end): LastPoint 
 
#Peak detection parameters 
Smoothing method: LinearWeightedMovingAverage 
Smoothing level: 3 
Minimum peak width: 5 
Minimum peak height: 1000 
Mass slice width: 0.02 
 
#Deconvolution parameters 
Sigma window value: 0.5 
Amplitude cut off: 1000 
Exclude after precursor: FALSE 
 
#Adduct list 
Adduct list: [M+H]+,[M+Na]+,[2M+H]+,[M+H-H2O]+,[M+H-2H2O]+,[M+K]+ 
 
#MSP file and MS/MS identification setting 
MSP file: File path to msp file 
Retention time tolerance for identification: 1 
Accurate ms1 tolerance for identification: 0.01 
Accurate ms2 tolerance for identification: 0.01 
Identification score cut off: 60 
 
#Text file and post identification (retention time and accurate mass based) setting 
Text file: File path to text format library 
Retention time tolerance for post identification: 0.5 
Accurate ms1 tolerance for post identification: 0.01 
Post identification score cut off: 85 
 
#Alignment parameters setting 
Retention time tolerance for alignment: 0.1 
MS1 tolerance for alignment: 0.015 
Retention time factor for alignment: 0.5 
MS1 factor for alignment: 0.5 
Peak count filter: 20 
QC at least filter: FALSE 
 
#CorrDec setting 
CorrDec excute: TRUE 
CorrDec MS2 tolerance: 0.01 
CorrDec minimum MS2 peak height: 500 
CorrDec minimum number of detected samples: 4 
CorrDec exclude highly correlated spots: 0.9 
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CorrDec minimum correlation coefficient (MS2): 0.9 
CorrDec margin 1 (target precursor): 0.1 
CorrDec margin 2 (coeluted precursor): 0.1 
CorrDec minimum detected rate: 0.7 
CorrDec minimum MS2 relative intensity: 1 
CorrDec remove peaks larger than precursor: FALSE 

 

Mass spectrum  
Mass tolerance (MS2) 0.01 Da 
Relative abundance cut off 1% 
Mass range max 1200 Da 
Mass range min 40 Da 
  
Advanced settings for AIF  
MS2 positive adduct list [M+H]+,[M+Na]+,[M+K]+,[2M+H]+ 
  
Structure finder  
Tree depth 3 

 

In order to curate and maintain the mass spectral libraries, I developed MS-LIMA 

software (open source, available on GitHub MS-LIMA project [105], see the next chapter). 

The library presented here was curated using MS-LIMA version 1.52 in the following 

manner: I replaced the experimental precursor m/z with the theoretical values (because the 

identity of the compound being characterized was known in each case) and kept only the 

peaks with the MS-FINDER formula annotation (isotopes, fragments, adducts) in the mass 

spectra. See also tutorial chemical standard characterization using LC-MS AIF data (Tutorial 

1, section “Library assembly and curation in MS-LIMA”) [106]. 

Data availability 

The dataset has been deposited to the EMBL-EBI MetaboLights repository with the identifier 

MTBLS1040. MS2 spectra were submitted to RIKEN PRIMe website and MoNA (MassBank 

of North America [125]) with the tags: “zicHILIC_POS_KI-GIAR”, “Agilent_6550_Q-

TOF_AIF”. RT were submitted to PredRet [42] and assigned to the chromatography named 

“KI_GIAR_zic_HILIC_pH2_7”. 
 

Table 3-3. MS-FINDER settings for fragment annotation  
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In this chapter, the recent developments of three tools for AIF technology—MS-DIAL, 

MS‑FINDER, and MS-LIMA—are introduced as the integrated platform.  

4-1 Introduction 

Metabolomics tools have been developed by vendors and researchers for feature picking, 

adduct ion estimation, compound identification, feature alignment, and statistical analysis. 

Integrated software for whole data processing is the recent mainstream. Comparing with 

genomics, many software supports graphic user interface (GUI) instead of console user 

interface (CUI), because the results (detected chromatographic peak region, adduct type, 

annotated compound, and alignment) should be manually confirmed and curated. Especially, 

chromatographic peaks and aligned features should be visually confirmed. 

 Currently, three integrated tools are widely used in untargeted metabolomics except 

for vendor software, XCMS [126], MZmine2 [127], and MS-DIAL [37]. XCMS is an R 

based software package, and its interactive online service also exists with METLIN database. 

MZmine2 is Java based software consisting of modular frameworks. MS-DIAL is C# based 

software for both DDA and DIA data. They have been utilized as reference in tool articles 

and compared with each other [79,128–130]. Each of them has advantages and disadvantages, 

and fairness evaluation is difficult. The overview of MS-DIAL is described in the next 

section. 

 Several functions have been anticipated for AIF data analysis. Multiple collision 

energies (CEs) can be sequentially measured such as 0, 10, and 30 eV in AIF. For each CE, 

the deconvolution and visualization are needed. Although AIF MS2 spectra consists of 

Chapter 4  
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several adduct types, current in silico fragmenters (CSI:FingerID [43], MetFrag [44], and 

MS-FINDER [45]) consider only an adduct ion in an MS2 spectrum. Lastly, user-friendly 

tools for AIF does not exist. 

I have proposed the AIF platform consisting of MS-DIAL, MS-FINDER, and 

MS-LIMA (Figure 4-1). MS-DIAL and MS-FINDER were improved for AIF data. 

MS‑LIMA was developed for mass spectral library management. Finally, the connections 

between MS-DIAL, MS-NDER, and MS-LIMA were enhanced to export/import in bulk and 

keep comments and sample information.  

 

 

4-2 MS-DIAL 

MS-DIAL is universal software for metabolomics and lipidomics developed by Tsugawa 

Hiroshi in 2015 [37]. I began to contribute to the MS-DIAL development in 2017 and became 

one of the main developers from 2019.  

MS-DIAL can perform feature detection, adduct estimation, deconvolution, 

compound identification, feature alignment, data normalization, and statistical analysis. 

Moreover, it supports multiple instrument data (GC-MS, LC-MS, LC-MS2, LC-IM-MS2) 

with several common data formats (abf, mzML, and netCDS) into which all major vendor 

Figure 4-1. Overview of the AIF platform.  



4-2 MS-DIAL 58 

 

formats can be converted. MS-DIAL is also known for the rapid development and frequent 

updates. Indeed, MS-DIAL is the first vendor-free software that supports all data processing 

for LC-IM-MS2 [131]. Nowadays, MS-DIAL is the most active category in the 

Metabolomics Society Forum [132].  

In Chapter 2 and 3, several results and settings of MS-DIAL are documented. In this 

chapter, the functions mainly developed and implemented by the author are introduced in the 

following subsections using public AIF data of yeast strains as a demonstration [133]. 

Multiple collision energy mode 

I have developed new methods and GUIs to adopt multiple collision energies (CEs; Figure 

4-2). The main functions of them are following; (1) accept metadata of multiple CEs (Table 

2-3), (2) identify compounds using multiple MS2 spectra with different CEs, (3) export all 

MS2 spectra, (4) simultaneously visualize multiple MS2 spectra in a feature. The main 

window and its usability are almost same as DDA and SWATH mode. As a difference, AIF 

controller window appears in multiple CE mode, and the additional windows are launched as 

in Figure 4-2.  

The multiple CE mode in MS-DIAL is first integrated program for large-scale AIF 

data with user-friendliness. According to discussion with AIF users, certain tools take a few 

minutes or more to just visualize a graph for manual curation, but MS-DIAL can visualize the 

same graph at once. In addition to the speed, the simultaneous visualization of all 

deconvoluted MS2 spectra of multiple CEs helps to understand the characteristic of product 

ions. For encouraging AIF study and data analysis, the multiple CE mode is essential. The 

demonstration and details are also described in Chapter 8 of the MS-DIAL online tutorial 

[134]. 
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Figure 4-2. Multiple collision energy (CE) mode. A. An example of multiple CEs (0, 10, and 30 eV). 
B. AIF viewer controller to launch additional windows, B. raw and deconvoluted MS2 
chromatograms of tryptophan at 0, 10, and 30 eV. Deconvoluted MS2 spectra of tryptophan at 0, 10, 
30 eV by MS2Dec (C) and CorrDec (D). 
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Correlation-based deconvolution (CorrDec) 

For complex AIF MS2 spectra, CorrDec was developed as detailed in Chapter 2, and 

implemented into MS-DIAL. According to its workflow (Figure 2-2), CorrDec program can 

run after feature alignment in multi-sample projects (>6 samples without blank samples).  

MS-DIAL supports two different concept deconvolution methods, CorrDec and 

MS2Dec, and can visualize both deconvoluted spectra at all CEs of a feature. In the case of 

demonstration data, 6 patterns MS2 deconvoluted spectra of tryptophan are simultaneously 

visualized and users can utilize them for interpretation (Figure 4-2D and E).  

Aligned extracted ion chromatogram 

To confirm the accuracy of feature alignment, I developed a new “graphical interface” for 

aligned extracted ion chromatograms (aligned EIC; Figure 4-3A). In aligned EICs, EICs 

from all samples in an alignment are overlaid to easily understand the difference among 

samples and detect miss-alignment. At the last part of data processing, all aligned EICs are 

calculated and saved as an additional file. Therefore, the visualization is very fast and stable; 

even >1000 samples project can visualize it in a few seconds.  

Chromatographic peak modification 

To curate miss-alignment manually, Tsugawa and I added chromatographic peak 

modification. Tsugawa implemented a function to curate a chromatographic peak, and I 

developed a function to simultaneously modify all peaks in an alignment to quickly curate 

even in large-scale projects (Figure 4-3B). First, when user select a region on the top panel in 

Figure 4-3B, EICs in the middle graph is aligned to adjust peak top in the selected region. 

Then, user can select chromatographic peak from RT aligned chromatogram. This function 

helps to save time for concentrating biological things. 
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Figure 4-3. Aligned extracted ion chromatograms (EICs). A. The aligned EICs graph in the 
MS-DIAL main window, B. the multiple peak modification window.  
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Retention time correction 

To reduce miss-alignments, I implemented a simple method of retention time (RT) correction 

based on linear correction by several internal standards. For reliable RT correction, the 

correction result should be manually confirmed. It provides several graphs to compare their 

EICs before and after correction (Figure 4-4). As a demonstration, EICs of an alignment are 

shown in Figure 4-5 before/after RT correction. 

 
Figure 4-4. RT correction windows A. Screenshot of overview of the window, B. EICs of selected 
standards before/after RT correction.   
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Data format and multi-threading 

Recently, the large number of samples are measured in metabolomics such as hundreds and 

thousands. I remodeled result file formats to quickly save, load, and select data even in >1000 

sample projects. Moreover, I changed data processing from single thread to multi thread. 

Even in large-scale study, MS-DIAL requires relatively small RAM (16GB for hundreds of 

samples, 64 GB for thousands of samples; of course, it depends on data size) while the 

process is very fast. 

Figure 4-5. EICs of 170.094 m/z with mass tolerance 0.01 before (A) and after (B, C) RT correction.   
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Table viewers 

Table viewers are just additional windows to visualize results as table with filtering function. 

However, it helps many users to save their time and find interesting metabolites (in personal 

communications).  

 

  
Figure 4-6. Screenshots of sample table viewer (A) and alignment table viewer (B).  
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MS-DIAL console for Windows, Linux, and MacOS 

Lastly, I am trying to develop a console program worked in all computational resources. 

MS-DIAL can perform in only Windows because it is written by C#. C# is a programing 

language to provide very nice GUIs, but it supports mainly Windows OS. Recently, a C# 

framework for Unix/Linux has been provided by Microsoft, therefore, universal MS-DIAL 

console program can be released for Windows, Linux, and MacOS. 

4-3 MS-FINDER 

For untargeted metabolomics, chemical structure elucidation from MS2 spectrum is a key 

process. MS-FINDER is also originally developed by Hiroshi Tsugawa to elucidate chemical 

structure by in silico fragmentation. MS-FINDER can also assign molecular formula and 

substructure to MS2 peaks of known compound. As a result of my contribution, MS-FINDER 

can predict different adduct ions in MS2 spectrum, and export detailed annotations as 

comments of MS2 peaks. These functions were utilized in the library creation study described 

in Chapter 3.  

Adduct ion annotation for MS2 spectrum 

AIF MS2 spectrum includes various adduct ions even from chemical standard for library 

creation. I have implemented adduct ion annotations for MS2 spectrum into MS-FINDER. In 

the setting window, target adduct types can be selected. After molecular formula assignment 

in MS2, unknown MS2 peaks are candidates of adduct ion estimation. Based on pre-defined 

adduct types, the candidate peaks are annotated as a different adduct ion. 

4-4 MS-LIMA development 

A chemical standard library should be confirmed and maintained by researchers who use the 

library. The main advantage of NIST MSP format (also MGF and MassBank) is that text 

editors can open and edit MSP files - MSP is a plain text format. Even though it can be 

opened by text editors, visualizing mass spectra is still important to intuitively understand 

their features. This is possible within NIST MS Search Program [62], which is primarily 
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designed for searching NIST Tandem Mass Spectral Libraries. Although the software is 

useful for mass spectral library searches, it is not convenient for the curation and 

management of AMRT+MS2 libraries containing MS2 peak annotations from MS-FINDER.  

I have developed a new open-source software, MS-LIMA (Mass Spectral Library 

MAnager), to visualize, manage, and curate mass spectral libraries. The main window of 

MS-LIMA is shown in Figure 4-8 after opening the library described in Chapter 3 and 

selecting peak at 94.065 m/z originating from trigonelline spectrum at 30 eV. MS-LIMA 

supports MassBank, MGF, and many subtypes of MSP formats from different institute and 

databases, such as RIKEN, MoNA (MassBank of North America), and NIST.  

 
Figure 4-7. MS library organization and editing with MS-LIMA. A. Visualization of MS spectrum 
with B. editable annotations from MS-FINDER for each peak. C. Available MS spectra for D. a 
selected compound in loaded AMRT+MS2 library. E. For MS-LIMA libraries, I recommend 
including the following lines for each record with trigonelline as an example. 
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After opening library files, MS-LIMA groups compound spectra based on InChIKey 

or short InChIKey (the first 14 characters corresponding to the bonding pattern are termed the 

short InChIKey and the default setting uses the short InChIKey) to easily compare and assess 

MS2 spectra originating from the same compound. In the grouping process, MS-LIMA 

checks all MS2 records from the same compound whether they share an identical formula and 

similar retention time (<1 min difference as default) limiting the possibility that the given 

MSP files contains retention times from different LC methods. MS-LIMA also supports 

commenting to MS2 annotated peaks by MS-FINDER version 3.22 or later, and visualization 

of the substructure for the selected peak. To curate spectra, users can check precursor m/z 

differences and modify all information in the library. Also, MS-LIMA has various functions 

to manage and curate the library, such as MS2 spectra comparison between two libraries, 

making a consensus spectrum of a compound, calculating the frequency of product ions 

among library, automatically saving, exporting spectrum as several formats, replacing 

metadata based on InChIKey (see GitHub repository for details [105]). Moreover, since it is 

open-source, anyone can contribute to MS-LIMA development to support additional formats 

or add new functions. 

In MSP format, inconveniently, there are no strict rules for describing meta 

information. For example, “retention_time” and “RETENTIONTIME” can be used to 

indicate retention time in MS-LIMA. I recommend adding metadata for each record in 

AMRT+MS2 library as shown in Figure 4-7E using trigonelline record as an example. 

Additional information lines (e.g. full InChI) can be included in MSP without affecting MS-

LIMA functionality. I expect that standards and guidelines for AMRT+MS2 libraries will 

gradually evolve, as in recent MS spectra annotations. 

4-5 AIF platform 

The AIF platform consisting of MS-DIAL, MS-FINDER, and MS-LIMA is useful not only 

for compound identification with reference libraries, but also for unknown compound 

characterization. Unknown compounds detected by MS-DIAL can be exported to 

MS‑FINDER, then they can be annotated molecular formula and chemical structures. 
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MS‑FINDER can export them to MS‑LIMA as MSP format with MS2 peak annotations. In 

MS‑LIMA, all characterized unknown compounds from known biological samples can be 

accumulated as a detected unknown compound library. The accumulated unknown compound 

library can be utilized to elucidate new biological findings, and MS‑DIAL can utilize the 

library for comparison with other projects.  

The created AIF platform can be utilized in three cases: (1) data analysis using own 

metabolomics data (Chapter 2), (2) creating reliable chemical library (Chapter 3), and (3) 

reanalysis of public metabolomics data. I described the usability and examples of the AIF 

platform for the first and second cases in Chapter 2 and 3. Lastly, reanalysis of public 

metabolomics data can be easily conducted by the AIF platform, although it is hard task to 

elucidate new findings from public raw metabolomics data.  

4-6 Conclusion 

In this chapter, I introduced three metabolomics tools developed for AIF data analysis. 

MS‑DIAL provides whole data processing for AIF data with multiple collision energies. In 

MS‑DIAL, AIF MS2 spectra can be deconvoluted by both CorrDec and MS2Dec, visualized, 

and utilized for compound identification. MS‑FINDER performs compound estimation from 

MS2 spectra by in silico fragmentation. For AIF spectra, several adduct ions can be annotated 

to MS2 peaks in a spectrum by MS-FINDER. MS‑LIMA supports management of mass 

spectra as the MSP format with annotations, compare them with each other. The AIF 

platform enables user-friendly and reliable data analysis for AIF-based untargeted 

metabolomics.  

The AIF platform and raw AIF data can be downloaded from websites [105,135] and 

online databases, such as MetaboLights [35] and Metabolome Workbench [65]. Therefore, 

the AIF platform can help not only AIF users but also many metabolomics researchers to 

reuse public AIF data. 
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This thesis has presented a new data analysis platform for untargeted metabolomics based on 

All Ion Fragmentation (AIF). Compound identification is a major bottleneck in untargeted 

metabolomics. MS2 spectra are required for reliable compound identification; moreover, 

MS2 spectra are necessary to annotate unknown compounds, which are most detected 

features in samples. Although the performance of mass spectrometers is dramatically 

improved, the number of MS2 scans are restricted by the scan speed. AIF is a very powerful 

approach to get comprehensive but complex MS2 spectra from limited MS2 scans by setting 

quite large m/z range (e.g. 40–1200 Da). Therefore, AIF is suitable for untargeted 

metabolomics to avoid precursor selection bias and annotate as many compounds as possible. 

However, AIF spectra require computational approaches for interpretation. In other words, 

AIF spectra consisting of several fragment ions from some precursor ions with different 

adduct types should be separated and correctly re-assigned to their precursor. Good data 

analysis methods and tools for AIF have been anticipated. In this study, I have developed a 

data analysis platform for AIF including a new deconvolution method, reliable chemical 

library, and user-friendly software. 

To overcome the trade-off between comprehensiveness and cleanness of spectra, I 

have developed CorrDec—a new MS2 spectra deconvolution method for AIF data based on 

the correlations of the peak intensities across samples. I confirmed that the peak intensities of 

fragment ions were highly correlated with those of their precursor ions across samples. The 

high quality of MS2 spectra and the ability to deconvolute completely coeluting compounds 

are the main advantages over retention-time (RT) based deconvolution methods. Additionally, 

Chapter 5  
Conclusion 
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CorrDec is useful for compound estimations by in silico fragmentation tools such as 

MS‑FINDER, because CorrDec spectra are generated without any reference MS2 libraries. 

Although CorrDec requires multiple samples to calculate intensity correlations across 

samples, it is applicable for almost all untargeted studies because multiple samples are 

usually measured in untargeted metabolomics for comparison. Of course, it should be noted 

that the quality and reliability of CorrDec spectra tend to be low in small-scale studies. In any 

case, manual confirmation is still needed because computational approaches might lead to 

misinterpretation. 

Reliable AMRT+MS2 libraries are necessary to confidently annotate and identify 

compounds in untargeted metabolomics. I described workflow to obtain accurate mass (AM), 

RT, and MS2 for a standard using the AIF data acquisition method and provided practical 

recommendations for library development. AIF spectra are useful as a library because they 

contain several adduct types. The main advantages of the library are normalized RT and 

annotated MS2 spectrum including several adduct types. The serial dilution measurements of 

standards can improve the confidence of measurements, confirm the ionization efficacy and 

suitable concentration, and be deconvoluted by CorrDec. The construction of high-quality, 

open-access libraries makes compound annotations more transparent, reliable, and 

transferable to the broader community. 

In Chapter 4, I introduced three metabolomics tools developed for AIF data analysis. 

MS‑DIAL provides whole data processing for AIF data with multiple collision energies. In 

MS‑DIAL, AIF spectra can be deconvoluted by both CorrDec and MS2Dec, visualized, and 

utilized for compound identification. MS‑FINDER performs compound estimation from MS2 

spectra by in silico fragmentation. For AIF spectra, adduct ions can be annotated to MS2 

peaks in a spectrum. MS‑LIMA supports management of mass spectra as the MSP format 

with annotations, compare with each other. The AIF platform enables user-friendly and 

reliable data analysis for AIF-based untargeted metabolomics.  

Reuse of public metabolomics data is still a challenge; however, it is necessary for 

further development in metabolomics. For accumulating open data in public repositories, data 
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analysis platform should be prepared and improved. Because AIF data contains all MS2 

spectra, it is suitable for further analysis. The AIF platform and raw AIF data can be freely 

downloaded from websites and online databases/repositories. Therefore, the AIF platform can 

help not only AIF users but also many metabolomics researchers to reuse public AIF data. 

CorrDec is available in MS-DIAL and utilized by some users for DIA data analysis, not 

only AIF but also SWATH. CorrDec was originally developed for AIF data, so the workflow 

and several parameters should be modified to adopt for SWATH data if SWATH user 

requested. MS-DIAL has two different deconvolutions, CorrDec and MS2Dec, which are 

based on different concepts, and produces each deconvolution result. For easily 

understanding, the summary and comparison of deconvoluted spectra between CorrDec and 

MS2Dec will be useful.  

The current AIF platform can easily analyze public metabolomics data. However, it is 

difficult to compare with other data measured by different methods/instruments. To enhance 

reuse of public data, a comparison workflow and tool should be developed. If researchers can 

easily compare own data with public metabolomics data, many metabolomics studies will be 

more advanced. 
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