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Abstract

Asteroseismology, a branch of stellar physics where we infer interiors of stars based on measurements
of stellar oscillations, has been firmly established with the advent of the space-borne missions such
as MOST, CoRoT, Kepler, and TESS, enabling us to identify evolutionary stages and investigate
internal structure and internal dynamics of the stars; the interiors of the stars are no longer obser-
vationally inaccessible places for us, and a large number of asteorseismic studies have been currently
greatly contributing to the development of stellar physics in the way the other branches have not
been able to do.

KIC 11145123 is one of the Kepler targets, and it has been actively studied asteroseismically.
Its well-resolved frequency splittings for p, g, and mixed modes have allowed us to reveal various
fascinating aspects of the star, among which there remain two important issues to be solved.

The first issue is related to its evolution. Spectroscopic analyses of the star with Subaru/HDS
indicate that the star is a blue straggler star, thought to be born via some interactions with other
stars. Although all of the previous theoretical models of the star are computed assuming single-
star evolution, high initial helium abundances of > 0.30 are preferred, which partly supports the
possibility that the star has experienced some interactions during the evolution. However, non
single-star evolution where such interactions are taken into account has not been tested yet. To
construct such a non-standard model of the star is one of the primary goals of this dissertation.

The second issue is related to the internal rotation of the star. Based on detailed asteroseismic
analyses of the star, it has been pointed out that the convective core of the star is rotating around
5 times faster than the other regions of the star. This suggestion is of great importance because
the current understanding of the stellar internal rotation obtained based on the other asteroseismic
researches is that stars are rotating almost rigidly throughout them without any strong velocity
shear inside them. Nevertheless, the suggestion of the fast core rotation is still far from being
a convention in the community because of the model-dependence of the inference, leading to the
second goal of this dissertation, namely, to infer the internal rotation of the star based on another
model (which is actually the model obtained in the non-standard modeling) to check whether the
suggested fast-convective-core rotation really exists or not.

The non-standard modeling of the star is conducted with two steps. In the first step, a number
of stellar models for some parameter range are calculated assuming single-star evolution, and models
reproducing the general trend of the observed pattern of g-mode period spacings A P, are chosen as
“candidate models”. The grid-based modeling results in the overshooting parameter fos ~ 0.027
for low-mass range (1.2 — 1.6M)). The sum of squared residuals normalized by the observational
uncertainties between the modeled g-mode frequencies and the observed ones is smaller (~ 3 x 10%)
than that for the previous models (~ 106). In the second step, the chemical compositions in the
envelopes of the “candidate models” obtained in the first step are modified (fixing the deep regions
of the models so that the g-mode frequencies are not affected) based on a novel scheme developed in
this dissertation. Another set of parameter range is prepared, and grid-based modeling is carried out
to find the best model which reproduces the observed p-mode frequencies best. The best model thus
constructed has the following parameters: M = 1.36 Mg, Yinit = 0.26, Zinie = 0.002, fovs = 0.027,
and Age = 2.169 x 10° years old. The modification is down to the depth of /R ~ 0.67 and the
extent is AX ~ 0.06 (AX is a difference in hydrogen abundance between the candidate model
and the modified model) at the surface. The residuals between the model and the observation are



comparable with those for the previous models, suggesting that it is possible that the star was born
with a relatively lower initial helium abundance of ~ 0.26 compared with that of the previous models
(> 0.30) and then experienced some modification of the chemical compositions in the envelope.

Based on the envelope-modified model, we have carried out rotation inversion with one of the
most standard methods, the Optimally Localized Averaging (OLA) method, and we have also com-
pared the results with the ones which were obtained based on the previous model of the star (com-
puted assuming single-star evolution). We do not see a strong model dependence in the results, and
the results are generally common for the two models. The deep radiative region is rotating slightly
slower than the envelope does as has been indicated by Kurtz et al. (2014). The latitudinally dif-
ferential rotation has been confirmed with significance more than 2¢ in a rather model-independent
way, where the high-latitude region is rotating slightly faster than the low-latitude region is. We
have also confirmed the hint for the fast-convective-core rotation for both models.

Resolutions for the two issues concerning KIC 11145123 are thus given by this dissertation.
Firstly, the possibility that the star has experienced some interactions during the evolution has been
tested for the first time. Though we cannot exclude another possibility that the star has evolved as
a single star throughout its life, the results of the test favors a scenario where the envelope of the
star has been somehow modified, which is consistent with the formation channel of blue straggler
stars. Secondly, the existence of the fast-core rotation is confirmed for both the standard model
and the non-standard model, showing little model dependence of the inference. This result should
shed new light on the current understanding of the stellar internal rotation, and it also could be an
important constraint on theoretical works focusing on the angular momentum transfer inside stars.
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Chapter 1

Introduction

Stars are one of the most important and ubiquitous components of the Universe. The study of
stars, in particular stellar physics, is one of the oldest research fields, but at the same time, one of
currently the most actively tackled, still developing, and mysteriously fascinating branches.

Stars have been protagonists in this Universe since its birth. Cosmological observations tell us
that there was an epoch called the Cosmic Dark Ages when everything was surrounded by darkness
after the Big Bang. The observations, however, also tell us that the Universe has been somehow
re-ionized to some extent since then. The most promising candidate for the re-ionization process
is ionization by the Ultraviolet photons emitted by the First Stars which are defined as stars born
from primordial gases produced only by the Big Bang nucleo-synthesis with no heavy elements. The
First Stars, however, have never been found yet. They are also important because they had kicked
off chemical enrichment of the Universe via nuclear fusion inside them and supernova explosions.
The “polluted” gases subsequently lead to births of next generations of stars. Then, explosion,
pollution, and birth, again and again. This is the way the Universe has evolved; stars are playing
a central role in this mechanism.

It is fairly easy to find other examples in astronomy where stars are regarded as essential elements
to help better understand what are hidden from us in the celestial worlds; they play roles in build-
ing the cosmological ladder, understanding how galaxies have been formed (galactic archaeology),
characterizing host stars in exoplanet hunting, etc. But that is not all. Another important aspect
of stellar physics that must be considered is the fact that, because of extreme environments realized
in stars which are otherwise almost impossible for us to set up in laboratories on the earth, they are
ideal laboratories for a broad range of fundamental physics such as microphysics, plasma physics,
and (magneto-)hydrodynamics. This feature clearly shows that stars themselves are interesting not
only as indicators for other astronomical phenomena but also as subjects to be investigated on their
own right.

One of the most successful and firmly established fields in stellar physics is the study of stellar
structure and evolution. It is Emden who was the first to propose that stars were gaseous spheres,
and with Lane, he devised a system of equations to describe the internal structure of stars, which
is currently known as the Lane-Emden equation. Such analytical attempts to understand the
interiors of stars continued to be developed by Eddington, Chandrasekhar, and so on, along with
the contemporary advances in fundamental physics like nuclear physics. The field finally bloomed
with the advent of electronic computers which enable us to numerically calculate stellar structures
and evolution. The life of stars can be mostly explained, and the interiors of them are no longer be



completely inaccessible places.

Nevertheless, we do not know everything at all yet. The first sentence in the preceding paragraph
should read in the following way: (Most people believe that) one of the most successful and firmly
established fields in stellar physics is study of stellar structure and evolution.

Let us take an example of the most well-studied star in the Universe; the Sun. How precisely
do we know about structure and evolution of the closest star? In the case of the Sun, it is relatively
simple to construct the model compared with the cases of the other stars because we have a set
of precise measurements of the radius, the luminosity, the mass, and the age of the Sun. Despite
such rather tight constraints, the study of the solar eigenoscillations, global helioseismology, shows
a significant 0.1 percentage difference in sound speed between the theoretical model and the real
Sun. The discrepancy is quite small, but not smaller than the estimated uncertainties, indicating
that there is something missing in the physical prescriptions of the solar model, and thus, there
should be room for improvements even in the case of the most tightly constrained stellar model.

Let alone the other stars, with full of a variety of characteristics in terms of mass, chemical
composition, evolutionary stage, and internal dynamics. On one hand, such diversity helps us to
carry out statistical studies on stellar clusters and galaxies, or to find some rare phenomena that are
not observed for the Sun. On the other hand, the diversity demands us to leave a simple picture of
stellar structure and evolution. Binarity is one example. Although there are 1-dimensional stellar
evolutionary codes which are claimed to be able to treat processes arising from binarity such as mass
accretion, it is still challenging to validate the schemes due to a lack of observational information on
internal structures affected by the processes. As it has been considered that a significant fraction
of stars have been making up binary systems, validating the existing numerical schemes is one of
the most highly prioritized subjects in stellar physics.

Rotation is another example of a process which may affect the stellar structure and evolution,
and there has been no established schemes which precisely incorporates physics related to rotation.
More than that, rotation has a huge impact on dynamics (e.g., dynamo mechanism) inside stars. It
must be instructive to mention that the famous twenty-two-year magnetic cycle of the Sun which
is thought to be caused by the dynamo mechanism in the solar interior is still not fully understood.

We are thus currently surrounded by innumerable unsolved problems in stellar physics, such as
discrepancies between the standard theory and the observations in terms of the stellar structure
and evolution, the effects of binarity and/or rotation on the stellar structure and evolution, and
internal dynamics of stars. One of the most recently contributing research fields to challenge these
mysteries is asteroseismology, a branch of stellar physics in which we can probe the interiors of stars
based on observation of the stellar oscillations. With the unprecedentedly precise measurements of
stellar oscillations brought about by the modern spacecrafts, asteroseismology is now blooming and
it is providing us a wealth of invaluable, direct information on internal structures and dynamics of
millions of the observed stars.

In this dissertation, asteroseismic analyses of KIC 11145123, which is one of the most actively
studied Kepler targets because of its high-quality frequency measurements and of its uniqueness with
respect to the evolutionary stage and internal dynamics, are presented. The detailed investigations
of the interior structure and dynamics of the star shed new light on our understandings of stellar
physics, and it also could be a milestone for future asteroseismic studies which are promisingly
becoming possible by next-generation space missions.

This chapter comprises three sections. In the first section, basic backgrounds of physics inside
low-mass main-sequence stars are introduced together with a few issues regarding internal structure



and dynamics of such low-mass stars, which used to be observationally inaccessible subjects in
astronomy before asteroseismology are established. The second section is devoted to an introduction
of asteroseismology; the main theme of this dissertation. Not only its basic concepts but also
the latest achievements realized by asteroseismology, some of which are giving us totally novel
perspectives on internal physics of low-mass main-sequence stars, are presented. On the intersection
of the preceding two topics is asteroseismology of KIC 11145123. Previous asteroseismic studies of
the star and prospects for further analyses are demonstrated in the third section.

1.1 Evolution of low-mass (1.2M; to 2.1M) stars; from ZAMS to
TAMS

Since most parts in this dissertation are dedicated to investigating internal physics of low-mass
main-sequence stars, we firstly would like to provide a brief introduction to the structure and
evolution of stars with masses ranging from 1.2Mg to 2.1Mg, and evolutionary stages from Zero
Age Main Sequence (ZAMS) stage to Terminal Age Main Sequence (TAMS) stage. ZAMS is defined
as an evolutionary stage when a star initiates stable nuclear hydrogen burning at the central region.
TAMS is defined as an evolutionary stage when the star has exhausted almost all the hydrogen at
the central region. We would like to make a little remark on internal dynamics of the low-mass stars
as well. For more details and comprehensive discussions about the structure and evolution of low-,
intermediate-, and high-mass stars, please refer to Kippenhahn et al. (2012), Weiss et al. (2004),
etc. Readers are also recommended to refer to Maeder (2009) for cases where rotation or magnetic
fields are taken into account. Such so-called non-standard physics in the study of stellar structure
and evolution are briefly introduced in Subsection 1.1.2 later in this section.

Some of the figures in this section are produced by myself based on computations with a
commonly-used 1-dimensional stellar evolutionary code, Modules for Experiments in Stellar As-
trophysics (MESA; see a series of papers, e.g., Paxton et al., 2011, 2013, 2015), with version 9793.
No rotation, magnetic field, nor deviation from spherical symmetry is assumed in the computations.

1.1.1 A standard case

It is generally considered that stars are born basically via contraction of a part of a molecular
cloud (e.g. Kippenhahn et al., 2012) with the dynamical timescale 7qyn ~ p~ /2 where p is the
density of the system. As contraction proceeds, the pressure gradient inside the gas-accreting
object gets stronger, and it gradually reaches hydrostatic equilibrium where the gravity and the
pressure gradient are balanced. It is, however, not in thermal equilibrium; the energy flux from the
center to the surface of the object is not equal to the energy generation rate, and thus, gravitational
contraction continues with, in this case, the so-called Kelvin-Helmholtz timescale 7wy ~ E,/L,
where E; and L are the gravitational energy and the luminosity of the object, respectively. Such
gravitational contraction stops when the temperature of the central region gets high enough (~ 107
K) due to the contraction that the nuclear hydrogen burning begins. The object no longer needs
gravitational contraction to compensate for the energy loss caused by the energy flux because the
nuclear energy release replaces the (local) gravitational energy one. The object is now in both
hydrostatic and thermal equilibrium, and this evolutionary stage is defined as the ZAMS stage; the
birth of a main-sequence star (Figure 1.1).

Once a star starts hydrogen burning, it evolves with the nuclear timescale defined as Ty ~
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Figure 1.1: Evolutionary tracks for various stellar models with different masses ranging from 1.1Mg to 2.1Mg.
The models are computed via MESA, version 9793 (Paxton et al., 2015). The initial hydrogen abundance Yinit
and the initial metallicity Zinit are 0.280 and 0.02, respectively. Elemental diffusion is activated, and moderate
overshooting over convective boundary is assumed just for models with a convective core. Open squares correspond to
an evolutionary stage when the central hydrogen mass fraction X. is 0.605. Filled squares and open circles correspond
to when X. is 0.305 and 0.005. Filled circles represent when the photospheric radius of a model reaches 5R),
considered as being close to, or almost on, the red giant branch.

qM., /L., where g, M,, and L, are the energy release per unit mass produced by hydrogen burning,
the mass, and the luminosity of the star, respectively. This timescale gives rough estimates for
the lifetime of main-sequence stars. For example, in the solar case (Ms ~ 2.0 x 1033 g, ¢ ~
6.3 x 10'%erg/g, and Ly ~ 3.8 x 10*3erg/s), we obtain a rough estimate for the solar main-
sequence lifetime as 1.1 x 10! years. This is actually ten times larger than the solar main-sequence
lifetime expected based on 1-dimensional stellar evolutionary calculation; not all of the solar mass
is converted to helium, and we overestimated the mass.

Though the position on the HR diagram will not drastically change during the evolution from
ZAMS to TAMS (from open squares to open circles in Figure 1.1), the internal structure signifi-
cantly changes mainly owing to the nuclear reaction which converts hydrogen to helium. We find the
signatures of the evolution in, for instance, the hydrogen content profile and the Brunt-Vaisila fre-
quency. The Brunt-Vaisilé frequency is a frequency of gravity waves, and it is related to convective
stability (c.f. Schwartzschild criterion), which is defined as

dlnp 1 dnP
N?=— - — 1.1
g( dr Iy dr )’ (1.1)

where 7, g, p, P, and T'; are the radius, the gravitational acceleration, the density, the pressure, and
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Figure 1.2: Hydrogen content profiles of stellar models with different masses at various evolutionary stages (upper
panels). The position of each model on the HR diagram is shown as squares or circles in Figure 1.1. For example,
the blue curve in the top-left panel is the hydrogen content profile of a model represented as a black open square
in Figure 1.1. It is readily seen that the hydrogen abundance in the nuclear burning region decreases as the stars
evolve. Bottom panels show the distributions of the Brunt-Vaisila frequency, in units of uHz (see the definition of the
Brunt-Viiséla frequency in the text.) We see that sharp features in the Brunt-Vaisald frequency correspond to places
where steep chemical composition gradients are located. It is also seen that how the core regions evolve is dependent
on the mass of the models.

the first adiabatic exponent, respectively. Figure 1.2 shows the hydrogen profiles and the Brunt-
Viisala frequencies of various stellar models with different masses and evolutionary stages. It is
clearly seen that hydrogen around the central region decreases as a star evolves in all the cases, and
that the Brunt-Viisila frequency varies its distribution correspondingly.

One interesting point is that there is a transition around 1.2M where a less massive model has
a radiative core and a convective envelope with uniform composition (see the hydrogen profile of
1.1Mg model in Figure 1.2), and a more massive model contrarily has a convective core with uniform
composition and a radiative envelope (see the hydrogen profile of 1.4Mg model in Figure 1.2). This
transition can be qualitatively explained based on a difference in the temperature sensitivity of
different kinds of nuclear reactions. In a lower mass range, the pp-chain reaction is dominant over
the CNO cycle owing to the relatively lower temperature in the central regions. The temperature
sensitivity of the pp-chain reaction is roughly ~ T%, and thus, the temperature gradient around the
nuclear burning region is not steep enough to render the adiabatic temperature gradient V4 larger
than the radiative temperature gradient V,.q, leading to a convectively stable core. On the other
hand, in a higher mass range, the central temperature is high enough for the CNO cycle to dominate
the pp-chain reaction (e.g. Kippenhahn et al., 2012). The temperature sensitivity of the CNO cycle
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Figure 1.3: Hydrogen content profiles of models with (solid curves) or without (dotted curves) elemental diffusion.
Though the hydrogen profiles of X; = 0.605 (blue curves) and R = 5R¢ (red curves) models are almost the same
independent of whether diffusion is adopted or not in the computation, significant differences can be found in the
hydrogen profiles of X. = 0.305 (turquoise curves) and X; = 0.005 (yellow curves) models; models computed with-
out diffusion show steeper chemical composition gradients than those with diffusion (see hydrogen profiles around
r/R ~ 0.05). For more information on effects of the other mixing processes other than the diffusion on the chemical
composition profile, see e.g., Miglio et al. (2008).

is ~ T and the temperature gradient is so steep that V,q < Viaq, leading to a convectively
unstable core. Therefore, whether a star has a convective core or a radiative core strongly depends
on the mass of the star; more accurately, the existence of a convective core depends on the central
temperature which is dependent on the stellar mass. We can see the signature as a difference in
evolutionary tracks in Figure 1.1 (compare the black solid track and the grey track).

Note that the explanation in the preceding paragraph is just a qualitative one. The threshold
mass for the transition from radiative-core models to convective-core models is dependent not only
on the stellar mass but also dependent on other stellar global parameters such as the initial chemical
composition. In addition, the chemical composition gradient left behind just above the nuclear
burning core has a significant impact on the onset of convection as well. This can be understood
based on an alternative expression of the Brunt-Vaiséla frequency as follows:

N2~@(v -V +V,) (1.2)
P ad w)s .

where V and V, are the actual temperature gradient and the chemical composition gradient, the

latter of which is defined as 51
n p
=[—= ) 1.
vu <81nP>pﬁT ( 3)



To derive Equation (1.2), the equation of state for an ideal monatomic gas is assumed (e.g. Miglio
et al., 2008). Equation (1.2) indicates that the dynamical convection is more prone to be stabilized
in the presence of the positive chemical composition gradient V, > 0. The stabilization thus affects
internal mixing processes of the star and also affects whether a certain position inside the star is
convectively unstable or not in a way different from that without a positive chemical composition
gradient. It is therefore not straightforward to determine exact positions of convective boundaries
for stellar models for this mass range. See more details in e.g. Gabriel and Noels (1977) and Gabriel
et al. (2014). Further complication arises from the fact that the chemical composition gradient of
a star at a certain evolutionary stage is a result of the internal mixing processes which have been
at work until then; the chemical composition gradient and the internal mixing processes interrelate
with each other (Figure 1.3). As such, direct observational information on chemical composition
gradients of stars at present should be of great help to understand the internal mixing processes of
the stars, e.g. overshooting (Pedersen et al., 2018), semiconvection (Gabriel et al., 2014), diffusion
(Michaud et al., 2015), rotationally induced mixing (Maeder, 2009), and so on. That is the reason
why studies of stellar non-radial oscillation (asteroseismology), based on which we can probe the
interiors of the stars, could be useful (e.g. Miglio et al., 2008; Cunha et al., 2015, 2019).

Then, how about the envelope? In contrast to the deep interiors where the hydrogen nuclear
burning and several mixing processes affect the chemical composition along evolution, the envelope
is usually believed to keep the initial composition since its birth; there are just minor nuclear
burnings such as the lithium burning, and the outermost convective layers are often fairy thin, both
of which seldom affect the chemical composition there in the case of stars with the mass range
considered in this section.

However, observations have indicated that this is often not the case, and there are two factors
playing important roles in determining the chemical composition profile in the envelope of the low-
mass stars. One is rotation. It is a well-known fact that most low-mass stars with relatively early
spectral types are rotating quite fast, sometimes reaching the break-up velocity of ~ a few hundred
km/s (Abt and Morrell, 1995). Such fast rotation possibly induces mixing inside them, and the
chemical composition can be uniform in the envelope (and possibly, also in a part of the deep region,
of course). Another one is diffusion. Though the diffusion was expected to be not at work inside
stars due to the relatively long timescale 7q;g ~ 10' years (Kippenhahn et al., 2012) compared with
those of the other physical mechanisms, several phenomena such as inhomogeneities of the surface
chemical compositions of Am and Ap stars have required the presence of the diffusion (Michaud et
al., 2015). Interestingly, the observed rotation for both Am and Ap stars are mostly slow with Po ~
a few weeks, which probably hinders rotationally induced mixing, leading to the dominance of the
diffusive process. It is crucial to understand both of the mechanisms, and astero-/helioseismology
could again be a key to tackle these problems by probing envelope structures of low-mass stars.

In any case, the star finally ends up with exhausting almost all the hydrogen around the core,
reaching the TAMS stage. The hydrogen shell burning gradually initiates, and then the stars leave
the main sequence toward the Red Giant Branch (RGB) in thermal timescale. The core (envelope)
rapidly shrinks (expands) along the evolution (Kippenhahn et al., 2012). By the time the models
are close to RGB, the internal structures are totally different from those when they used to be on
the main sequence; the radiative core and the convective envelope are separated by a thin shell
where hydrogen burning is occurring (Figure 1.2). This structure is common for all the models in
this relatively low-mass range.



1.1.2 Two specific topics among non-standard physics of stars

In the previous subsection 1.1.1, a standard view of structure and evolution of low-mass stars are
shortly reviewed based on the results of the computations by the 1-dimensional evolutionary code,
MESA. The term “standard” in this context means that “spherical symmetry, no rotation, no
magnetic fields, no interactions with other celestial objects are assumed in calculations of stellar
structure and evolution.” These assumptions are acceptable for us to roughly grasp characteristics
of stellar structure and evolution. But “non-standard” prescriptions are sometimes required to
better understand effects of the “non-standard” physics on the stellar structure and evolution. It
is, moreover, observationally well-accepted that such non-standard physics are common for various
types of stars. In this subsection, the significance of “non-standard” physics is demonstrated mainly
from the observational point of view. We especially focus on two subjects. One is related to the
existence of blue straggler stars which are thought to be born via binary interactions, and the other
is internal rotation, both of which are intimately concerned with primary topics in this dissertation.

Blue straggler stars

The structure and evolution of stars in binary systems are the same as those of single stars given
that there is no interaction among them because of, for instance, such a wide orbit that they are too
distant to interact. However, this is often not the case, and there are a quite large number of obser-
vational evidences where binary interactions matter; Algol-type binary systems where evolutionary
stages of the components seem to be somehow reversed, cataclysmic variables which are experienc-
ing runaways of hydrogen burning at the surface of white dwarfs which are thought to be triggered
by mass accretion onto them, type la supernovae which are also caused by mass accretion onto
white dwarfs exceeding the Chandrasekahar limit, binary mergers for a variety type of stars some
of which have been observationally confirmed by gravitational waves as binary blackhole mergers,
etc. As such, binary interactions are rather common and they must have considerable effects on the
structure and evolution of the components.

One of the observational evidences for binary interactions is the existence of blue straggler
stars. Since KIC 11145123, which is the main subject of this dissertation, is categorized as a
blue straggler star spectroscopically, a brief introduction to blue straggler stars is presented in the
following paragraphs. For a comprehensive reviews on the current understanding of blue straggler
stars, refer to Boffin et al. (2015).

The existence of blue straggler stars was reported by A. Sandage in 1953 for the first time. In
the color magnitude diagram of the globular cluster M3, he found that some stars are on the main
sequence significantly above the main-sequence turn-off point of M3 (Figure 1.4). The standard
theory of stellar structure and evolution tells us that massive stars leave the main sequence more
quickly than the lower mass stars, because nuclear timescales (Thye ~ gM., /L., see Subsection
1.1.1) for massive stars are much shorter than those of low-mass stars. Therefore, to explain the
origin of the strange stars Sandage discovered in M3, some kinds of mechanisms in which stars are
rejuvenated or able to live longer than usual are required. Importantly, such blue stragglers are
rather common at least in the Local Group, and a significant number of blue stragglers have been
observed in various environments including globular clusters, open clusters, fields, dwarf galaxies,
and so on (e.g. Boffin et al., 2015), suggesting that there might be common mechanisms to produce
this kind of stars.

There have been a large number of suggestions for the origin of blue straggler stars, which
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Figure 1.4: Color magnitude diagram of a globular cluster M3 (cited from Boffin et al., 2015). Most of the cluster
members are on an isochron whose turn-off mass corresponds to that in the case of 0.8 Mg (red curve). There, however,
exist a number of stars which are still on the main sequence. These stars are bluer compared with stars of the same
ages on the 0.8M isochron, which shows how this kind of stars were dubbed “blue straggler.”

are well summarized in Leonard (1989). The currently most promising mechanisms are binary
interaction, which is strongly supported by high binarity of blue straggler stars (Boffin et al., 2015),
and stellar collision, which is indicated by observed high frequency of blue straggler stars in dense
regions such as cluster cores (Boffin et al., 2015). In any case, it is generally considered that a
progenitor of a blue straggler star must have experienced some interactions with the other celestial
bodies during the evolution to significantly alter the properties of the star. It should be noticed
that there has never been a direct observation for the origin of the blue straggler formation; the
issue has not been settled yet.

It is then quite instructive for us to theoretically model structure and evolution of blue straggler
stars to acquire some hints about formation scenarios of them. However, we have to take into account
non-standard physics such as interactions with other stars during the evolution, and the subject
has not been established. One reason is that it is very difficult to validate numerical schemes with
such non-standard prescriptions. Although there are several numerical codes treating, for example,
mass accretion during the evolution, they are such phenomenological schemes with multiple free
parameters, and in addition, calibrating the schemes with observations has not been actively studied
(e.g. Brogaard et al., 2018). Timescale also matters. The timescale of mass accretion depends on
the stability of the Roch-Lobe overflow occurring in the binary system, and it is sometimes of the
order of the nuclear timescale, where we have to couple stellar evolution and mass accretion. See
Boffin et al. (2015) for more detailed information on the current theoretical studies of blue straggler
stars, such as the evolution of binary merger products or that of stellar collision products.
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Figure 1.5: Asteroseismically inferred rotation rate for B-type main-sequence stars (blue symbols), for A/F-type
main-sequence stars (green symbols), and for more evolved stars (red, orange, and grey symbols). Horizontal axis
is the logarithm of the observed surface gravitational accelerations, roughly showing the evolutionary stages of the
targets. Core rotation rates and envelope rotation rates are expressed with open circles and open triangles, respectively.
When we focus on the stars for which both core rotation and envelope rotation have been measured, we find that the
contrasts between them are always not so large (below a few factors). This trait is not compatible with the results
of previous numerical (hydrodynamical) simulations of angular momentum transfer inside the stars, indicating that
we should take into account extra mechanisms for angular momentum transfer. This figure is cited from Aerts et al.
(2017).

Internal rotation

Rotation is universal, and it is widely known that a large number of stars are rotating fast enough
that the effects on the structure cannot be ignored (e.g., deformation caused by the centrifugal force)
and evolution (e.g., transfer of angular momentum and mixing of chemical elements by rotation-
induced mixing). There have been numerous observations reporting that there exist correlations
between rotation and other stellar parameters including age, magnetic activities, chemical peculiar-
ities, and so on (see e.g. Maeder, 2009), which is the reason why rotation is regarded as one of the
most important characteristics of stars in stellar physics. Rotation also plays a key role in stellar
internal dynamics (e.g., dynamo mechanism). In this small subsection, we point out an issue on
internal dynamics, especially on the internal rotation profile and the angular momentum transfer
during the evolution, of low-mass main-sequence stars evolving from ZAMS to TAMS and beyond.

Naively speaking, the standard framework described in Subsection 1.1.1 provides us a simple
view about stellar structure and evolution; a contracting core and an expanding envelope, either in
nuclear or thermal timescale. This simple description leads to an expectation that the contracting
core rotates faster and faster, and the expanding envelope rotates slower and slower if the angular
momentum is locally conserved during the evolution. This is also confirmed based on previous
numerical simulations with (only) hydrodynamical effects.

Nevertheless, recent asteroseismic studies, which have succeeded in inferring internal rotation
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profiles of various types of stars ranging from main sequence (e.g. Aerts et al., 2017) to red giant
branch (e.g. Deheuvels et al., 2012), shows that there is a significant discrepancy between the
theoretical expectation and the observation (Figure 1.5); the cores of stars are not rotating as fast
as expected, and the contrast between the core rotation and the envelope rotation is not so strong
as the hydrodynamical numerical simulations suggested. Though the number of such asteroseismic
inferences of stellar internal rotation has been not so large (~a few hundreds) yet, it is evident
that we should consider extra effects (e.g., magnetic fields, internal gravity waves) other than the
hydrodynamical ones to cause angular momentum transfer inside stars during the evolution. That
is currently one of the most active fields in stellar physics (e.g. Aerts et al., 2019; Fuller et al., 2019).

1.2 Asteroseismology

As analyses in this dissertation are mostly by means of asteroseismology, we would like to offer a
brief introduction to the study of stellar oscillations in this section. In the first subsection, a brief
introduction to asteroseismology, concerning the history, the mathematical formulations, and the
method, is given. Secondly, we focus on current observations brought about by the Kepler spacecraft,
and also show some typical sub-groups of oscillating stars frequently found in the observations.
Recent studies and the results which are related to this dissertation are finally given in the last
subsection.

More thorough introductions to asteroseismology and detailed discussions about the mathemat-
ical formulations, observational techniques, and the statistical methods to draw inferences can be
found in e.g., Unno et al. (1989), Pijpers (2006), Aerts et al. (2010).

1.2.1 An introduction to asteroseismology

Despite the fact that asteroseismology has been a currently developing field and the fact that it is
rather recent that much attention has began to be paid to the field, it is not correct to consider the
subject is totally a new branch of stellar physics.

In this subsection, a brief history of astero- and helioseismology, the study of the solar oscil-
lations, is firstly reviewed. Then, a few equations to describe linear adiabatic stellar oscillations
are given. After some of asteroseismic observational aspects, namely, frequency determination and
mode identification are demonstrated, we close this subsection with a comparison between astero-
seismology and helioseismology, which would be helpful for readers to acknowledge both difficulties
and advantages of the study compared with helioseismology.

A brief history of astero- and helio-seismology

Mira is a star, whose variability in its brightness was noticed around the end of the sixteenth century.
As more sophisticated observations had been conducted, it was shown that the star is variable not
only in brightness but also in radial velocity with the same phase, thus showing that the star is really
oscillating (repeatedly contracting and expanding). The Mira-type variability, in addition to those of
the other types of variability as Cepheid-type one, is of great help to measure distances farther than
ones which can be determined based on annual parallax via well-known period-luminosity relations
found by Leavitt. But asteroseismology has not begun with the discovery of these so-called classical
variables. This is because they usually oscillate with radial modes which are eigenmodes constructed
by waves propagating the whole interior of the star. In addition, the number of detected modes is
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also small. Therefore, what we can extract from frequencies of classical variables are at best mean
density of the stars. We had to await detections of non-radial oscillations to extract somewhat more
localized information on interiors of stars.

The Sun is the first star, for which non-radial oscillations were detected, and the seismic concepts
and techniques have been applied to directly infer the interior of the object. In 1962, Leighton
detected the so-called solar five-minute oscillation for the first time (Leighton et al., 1962). They
did not know the origin at the beginning, and the five-minute oscillation was thought to be caused
by convective overshooting beyond the photosphere. As further observations had been carried out, it
was shown that the oscillation is independent of convective motion, and also shown that it is rather
a manifestation of superpositions of a large number of solar eigenmodes (e.g. Deubner, 1974); the
birth of helioseismology. After the confirmation of the existence of solar eigenmodes, it was not
long until helioseismologists began to utilize the observations to probe the solar interior directly.

For example, we can calculate the solar model with a 1-dimensional evolutionary code, and then,
we can also compute the eigenfrequencies of the model. Comparison of those frequencies with the
observed ones tells us the difference between the structure of the computed 1-dimensional model
and that of the real solar structure (Christensen-Dalsgaard et al., 1996). This is one of the ways to
infer the solar structure based on the helioseismic observations. To show every single piece of how
helioseismology has been contributing to reveal the internal structure and dynamics of the Sun so
far is almost impossible with this humble dissertation. Readers therefore should refer to e.g., Gough
et al. (1996), Thompson et al. (2017) for more details.

The point here is that the Sun, which used to be often considered as just one of the ordinary non-
variable stars in the universe, was found to be oscillating with many modes including both radial
and non-radial modes. Why not the other stars? The successful achievements of helioseismology
simply implied the feasibility of seismic studies of stars; asteroseismology (Christensen-Dalsgaard
et al., 1984). However, in contrast to the successful establishment of helioseismology, it took a long
time for researchers to apply asteroseismology to real stars. Stars are too distant from us and too
faint to observe the non-radial oscillations, the amplitudes of which are typically of the order of
102 magnitude in brightness. The stars are observed as point sources as well, and the number
of the eigenmodes, even though detected, is too small due to the so-called cancellation effect (see
the later small subsection, “comparison with helioseismology™”) to perform detailed seismic analyses
as has been done by helioseismology. We had many difficulties in terms of the observation of the
stellar oscillations (see more detailed historical backgrounds in Chapter 2 of Aerts et al., 2010).

That situation has been drastically changed since the advent of an era of space missions focusing
on exoplanet hunting and measuring stellar oscillations such as MOST (Walker et al., 2003), CoRoT
(Baglin et al., 2006), Kepler (Koch et al., 2010), and TESS (Ricker et al., 2014). The Kepler
spacecraft especially outstands among them. It has provided us with four-year-long continuous
light curves of hundreds of thousands stars covering a broad range of stellar evolutionary stages
with unprecedented precision of the measurements of the order of 1076 magnitude in brightness,
enabling us to perform seismic analyses of the observed stars. Of course, we still cannot analyze
the stars in details as in helioseismology, but at least, we can conduct estimation of global stellar
parameters (Chaplin and Miglio, 2013), determination of evolutionary stages (Bedding et al., 2011),
calibration of stellar models (Sanchez et al., 2017), and inferring internal rotation profiles (Aerts et
al., 2019), and so on. Asteroseismology is still in its infancy, and it is definitely such a promising
field that multiple future space missions are planned at the time of writing. (e.g. PLATO)
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Basic mathematical formulations

The analytical studies of stellar non-radial oscillations have a long history, some of which dates back
to the middle of the nineteenth century. One of the reasons why the analyses of stellar non-radial
oscillations have been a matter of interest for such a long time is that stellar non-radial oscillations
are closely related to, for instance, the stellar stability such as the convective stability. Therefore,
the theory of stellar non-radial oscillations is, not completely of course but, well-established. Refer
to Roseland for the early history of the studies, and Unno et al. (1989) for the history later on.

In this small subsection, spherical symmetry, no rotation, no magnetic fields are assumed in
the equilibrium model as in Subsection 1.1.1. We also do ignore them in the analysis of non-radial
oscillations, i.e. the effects of asphericity, rotation, and magnetic fields on eigenfrequencies are
neglected. Note that if we can treat them as perturbations which are small enough to neglect
terms higher than the second order, we can relate frequency changes to the perturbations and so-
called sensitivity kernels of the unperturbed model. This perturbative approach is of great use to
infer stellar interiors and it is shown in the end of this small subsection. The effects of asphericity,
rotation, and magnetic fields on the equilibrium structures are reviewed in Maeder (2009), and those
on non-radial oscillations based on non-perturbative approaches are in e.g. Unno et al. (1989). For
more detailed derivations of the following equations, refer to e.g. Unno et al. (1989) and Aerts et
al. (2010).

The starting point is a system of equations of hydrodynamics, namely, equation of momen-
tum conservation, equation of mass conservation, equation of energy conservation, and Poisson’s
equation,

p(% +uv- V)'v =—-VP —pVo, (1.4)
9p
a +V- (pv) - Oa (1‘5)
0
pT(a—}—v-V)s:pe—V-F, (1.6)
and
AD = 4A7Gp. (1.7)

Density p, velocity v, pressure P, gravitational potential ®, temperature T, specific entropy s,
and local flux F are functions of (7,6, ¢,t) in a spherical coordinate where r, 6, ¢, and t are the
distance from the center, colatitude, longitude, and time. Energy production rate per unit mass ¢ is
a function of thermodynamic parameters such as p, P, T'. The gravitational constant is represented
by G. Note that viscosity of the fluids and Lorentz force are neglected.

The next step is to separate all the quantities with unperturbed and perturbed parts as, for
example,

p(r,0,6,t) = po(r) + p'(r)Y;" (cos)e™", (1.8)

where w is the angular frequency, and [ and m are the spherical degree and the azimuthal order
of the spherical harmonics, respectively. For the unperturbed quantities with subscripts ‘0’, the
first-derivatives in horizontal direction in space and time are zero, i.e. 9/96 = 9/0¢ = 0/0t =0
because the spherical symmetry is assumed for the equilibrium model. The prime symbol represents
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the Eulerian perturbation. Substituting the expressions for the set of equations (1.4) to (1.7) and
retaining only the first-order terms lead to a set of linearized equations,

1dP" ¢ o’
z 2P (2 — N? = 1.
S toa (w )er + —— =0, (1.9)
1d, , g P’ L3\ l(l+1)
i)~ e+ (1) - T =0 (1.10)
and , ( ) / 2
1 d [ ,d®\ 1(1+1), P N
S (22 T Vg y A 1.11
r2dr (r dr ) 72 7TG/)</302 - 9 £T>7 (1)

where g, ¢, &, N, and L; are the gravitational acceleration, the adiabatic sound speed, the radial
displacement, the Brunt-Viiséld frequency (defined in Subsection 1.1.1), and the Lamb frequency
which is defined as

11+ 1)c?

L? =
l ,r,Q

(1.12)

The subscripts ‘0’ are omitted for the unperturbed quantities. It should be noted that the adiabatic
assumption is adopted (9(ds)/0t = 0), and thus the conservation of energy (Equation 1.6) is not
explicitly shown here. The set of the three equations is a system of equations for linear adiabatic
stellar oscillations. The equations (1.9) to (1.11) with some boundary conditions can be solved for
a set of appropriate frequencies w,; and radial displacements &, ,;, i.e. it is an eigenvalue problem.
The eigenfrequencies and the eigenfunctions are independent of the azimuthal order m because of
the assumption of spherical symmetry; there is no preferential direction with respect to the axis of
the oscillation. This forth-order eigenvalue problem is usually numerically solved.

To qualitatively understand behaviors of the eigenmodes, we reduce the order of the eigenvalue
problem from the fourth to the second by accepting an assumption that the Eulerian perturbation
of the gravitational potential ® is negligible. This is a frequently adopted assumption in astero-
seismology (Cowling approximation) and it is acceptable when the number of the radial order n or
the spherical degree [ are high enough, which is confirmed based on the results of the numerically
solved fourth-order stellar eigenoscillation problem. The second-order linear differential equation
thus obtained has the following form

d2&,
dr?

T k2% =0, (1.13)

where the radial wavenumber k, is defined as

1
w?c?

K2 =

r

(w? = NH)(w? - L}). (1.14)

On the course of the derivation of the expressions above, the radial dependence of the quantities is
neglected for simplicity (local treatments).

The sign of the squared radial wavenumber k? determines whether the wave is propagative or
not propagative (evanescent). Propagative waves are satisfying either of the following conditions

w?>N? and w?> I} (1.15)

or
w?< N? and W®< I3 (1.16)
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Figure 1.6: Propagation diagram of a solar model. Horizontal axis is the fractional radius, and the vertical axis
is the logarithm of the squared frequency which is in unit of uHz. The red and the blue curves are representing the
Lamb frequency for [ = 1 and the Brunt-Vaiisild frequency, respectively. For a mode with a particular frequency,
this propagation diagram tells us which part inside the star the mode is propagative (indicated by solid lines) or
evanescent (indicated by dotted lines) based on the two conditions (1.15) and (1.16).

Eigenmodes constructed with waves fulfilling the former condition is called pressure modes (p modes)
whose dominant restoring force is pressure. On the other hand, eigenmodes constructed with waves
fulfilling the latter condition is called gravity modes (g modes) whose dominant restoring force is
gravity (buoyancy force).

Figure 1.6 is a so-called propagation diagram of a solar model, which shows where a wave
with a certain eigenfrequency (here denoted by w) is propagative or evanescent. It is seen that p
modes, which are usually oscillating with relatively high frequencies (~ 3 mHz), are propagative in
the outer region (see the upper black horizontal line in Figure 1.6, indicating that the frequency
satisfies the condition 1.15 almost throughout the model; this mode is thus a p mode.) In contrast,
g modes, which are usually oscillating with relatively low frequencies (below a few hundreds pHz),
are propagative only in the inner radiative region and they are mostly evanescent in outer convective
region (see the lower black horizontal line in Figure 1.6); this is because the buoyancy force cannot
act as a restoring force in convectively unstable regions. The thick convective envelope thus prevents
us from detecting solar g modes. Solar g modes are believed to be excited in the solar interior, but
their (theoretically computed) amplitude are as small as a few mm/s (Appourchaux et al., 2010)
at the surface of the Sun because of the thick evanescent region. Such amplitudes are too small to
detect with the current observational equipments.

Figure 1.7 shows a propagation diagram for a stellar model with 1.4 solar mass around the TAMS
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Figure 1.7: Propagation diagram of a 1.4M¢ model around the TAMS stage.

stage. A major difference between the two figures 1.6 and 1.7 is in the Brunt-Vaiséila frequencies.
The 1.4Mg model has a convective core and a radiative envelope as explained in Subsection 1.1.1,
and the g modes are thus propagative in the outer envelope (see the bottom black line in Figure
1.7), contrary to the case of the solar model. This is suggesting the possibility that we can detect g
modes with significant amplitudes, which is actually the case in recent observations (see Subsection
1.2.2). Some of the eigenmodes with moderate frequencies can be propagative both in g-mode and
p-mode cavity (the middle black line in Figure 1.7). They are called mixed modes, which behave
as g modes in the g-mode cavity and as p modes in the p-mode cavity. Whether such mixed modes
are in reality constructed or not, roughly speaking, depends on the thickness of the evanescent zone
linking the p- and g-mode propagative regions.

One important point is that different modes propagate different region, meaning that the differ-
ent modes have different information on the interiors of the star. Therefore, it is of great importance
in asteroseismology to observe as many modes as possible in order to infer interior structures in
detail. Further analysis to obtain the eigenconditions, eigenfrequencies, and so on for high-order g
modes is addressed in Chapter 2.

Finally, the fourth-order differential equation is revisited. It is often convenient for further
analyses if we rewrite the system of the equations in vector form as below:

Pt = VA€ - V(P +pv |6 [ TR gy 4 TEg g

= L. (1.17)
where the displacement vector is expressed by &. Note that the quantities in Equation (1.17)
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are functions of r as well as 6 and ¢. The third-term in the right hand side of Equation (1.17)
represents the Eulerian perturbation of the gravitational potential ®’ with the Green’s function for
the Poisson’s equation. The linear differential operator is represented by L.

The above equation combined with the orthogonality of the eigenfunctions (see e.g. Unno et al.,
1989) can be further formally cast into an integral form,

[ € c@av =2 [ gfpav. (1.18)

It is shown that the equation suffices the variational principle based on zero boundary conditions
at the surface, leading to the following equation

L Jler e ser agav

+ o(|AE]?), (1.19)
[ 1€+ a)Rpav

which means that the perturbation of eigenfunctions is not affecting the frequency when the terms
higher than the second order are neglected. Equation (1.19) is useful to relate perturbed structures
to perturbed eigenfrequencies without the need to compute the eigenfunctions, as below:

s [ € ac@av -u [1grapav
w- = .
/IEIdeV

Equation (1.20) is applied in rotation inversion, structure inversion, and formulation of modu-
lated patterns of g-mode period spacings.

More careful discussions about orthogonality, completeness of the eigenfunctions can be found
in Dyson and Schutz (1979).

(1.20)

Observation

One of the important points shown in the previous small subsection is that the different modes (with
different n, 1, m) propagate different regions inside the star, leading to the different eigenfrequencies.
Therefore, it is essential for us to know frequencies and mode indices of eigenmodes in order to carry
out asteroseismic analyses for real stars and understand the interiors. Basic concepts of frequency
measurements, determination, and mode identification are thus presented here.

First of all, we would like to demonstrate how oscillations of a star are observed. Assuming that
the star is spherically symmetric, stellar pulsation can be described as superpositions of individual
modes which are expressed as functions consisting of oscillatory exponential components (e®nim?),
spherical harmonics (Y;"(6, ¢)), and radial-dependent components (fy;(r)). The indices n, [, and
m are the radial order, the spherical degree, and the azimuthal order, respectively, and wy, is the
angular frequency of the corresponding mode. Then, the radial velocity field of the star v(r, 8, ¢,t)
can be expressed as

’U(?", 0,9, t) = Z fnl(r)}/lm(eu (b)eiwmmt' (121)

n,l,m

The velocity field at the surface of the star is

vs(6,0,t) = v(R,0,0,1), (1.22)
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Figure 1.8: Power spectrum of 16 Cyg A observed by Kepler (Chaplin and Miglio, 2013). The upper-left window
shows the whole range of the spectrum. The bottom window is a closer look to the spectrum. The numbers just above
the peaks are the spherical degrees [ of the modes. The upper-right window is a much closer look. The blue line is
a raw spectrum and the black one is a smoothed one. Rotational splitting is expressed as dvnim though it is hard to
resolve the signals. Rotational splitting will be described in Subsection 1.2.3 where it is given as dwnim = 0Vnim. The
bell-shaped structure of the detected peaks as a whole is often seen in power spectra of solar-like oscillating stars,
which is demonstrated in Subsection 1.2.2.

where R is the radius of the star. Because we cannot resolve the surface of a distant star except
for cases with some interferometric techniques, what we observe is the integrated Doppler velocity
variation (or the integrated intensity variation) (more details in Chapter 4 in Aerts et al., 2010),

u(t) = / / (R, 0,6, )sin 0d0do, (1.23)

where the spatially resolved information on the velocity field of the star has been lost. As wv(t) is
still proportional to e™nim! according to the equation (1.21), we can obtain the amplitude spectrum
by Fourier transforming v(t), but we do not have direct access to the identification of the mode due
to the lack of spatial resolution, i.e. we have to determine the corresponding indices (n,l,m) by
some other way. This procedure is called mode identification, which is described in the latter part
of this small subsection.

Figure 1.8 shows an example of a power spectrum obtained by Fourier transforming the light
curve of a solar-like star Cyg 16 A which has been observed by the Kepler spacecraft. It is apparent
that there are a number of peaks representing the eigenmodes of the star. We can estimate, for
instance, the frequencies with statistical methods such as Maximum Likelihood Estimation (Appour-
chaux et al., 1998) or Bayesian estimation (Benomar et al., 2009) assuming models which represent
observed power spectra, or directly fitting observed light curves with sinusoidal components. As
extracting asteroseismic parameters (the frequencies, the mode widths, the mode heights, and so
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on) from light curves is critical for detailed analyses to infer the interiors and dynamics, frequency
analysis is one of the most prominent subjects in asteroseismology (Aerts et al., 2010).

Finally, let me come back to mode identification. As it has been described in the previous
paragraphs, the spatial information on stellar oscillations is lost, and thus we have to assign mode
indices to each of observed peaks (usually they are recognized as a peak with a threshold S/N ~ 4)
by comparing with theoretical models. A straightforward way is to construct an equilibrium model
of the star with a 1-dimensional stellar evolutionary code, to calculate the eigenfrequencies of the
model by solving linear adiabatic oscillation, to compare the theoretical eigenfrequencies, for which
we already know the mode indices, with the observed frequencies, and finally to let mode indices
of an observed peak be those of one of the computed eigenfrequencies which is the closest to the
frequency of the peak. It is, however, often the case that such stellar modeling is not successful
for reproducing all the observed frequencies, and that is difficult to validate the mode identification
thus done.

In either case, we need models to compare with observations, and it is of great difficulty to con-
struct totally reliable models. Therefore, we usually start with observables like the large separations
Av or the g-mode period spacings AP;, both of which represent averaged quantities of the stellar
interior (e.g. Tassoul, 1980), and after we roughly grasp structural and pulsational properties of the
observed stars, we move on to model calculations.

Comparison with helioseismology

There is little difference between asteroseismology and helioseismology from the theoretical point of
view; the set of equations for the linear adiabatic oscillations is the same. Considerable differences,
however, reside in the observations.

In helioseismic observations, we can resolve the surface of the Sun and obtain time series of 2-
dimensional images with a cadence of, for instance, ~ 45 seconds (in the case of HMI: Schou et al.,
2012). By decomposing the 2-dimensional images with spherical harmonics and Fourier transforming
the time series of the decomposed images, the power spectrum is computed as a function of the
spherical degree, the azimuthal order (related to the horizontal wavenumber), and the temporal
frequency. In other words, we do not have to carry out mode identification of the solar eigenmodes
in terms of the spherical degree; here is a main difference from the case of asteroseismology. Note
that for the radial orders we have to perform mode identification in helioseismology as well except
for when fundamental modes (f modes) whose radial order is zero are seen. How to assign the radial
orders to the observed peaks is basically the same as it is described in the small subsection 1.2.1.

Another difference also arises from the lack of the spatial resolution in asteroseismic observations.
The integration of the brightness variations caused by stellar eigenoscillations all over the surface
has cancellation effects on higher-degree modes, and, in asteroseismology, we usually do not observe
eigenmodes with spherical degrees higher than 3. Compared with helioseismic observations where
eigenmodes with high spherical degree ~ 1000 has been observed, the number of detected modes
in asteroseismology is smaller than that in helioseismology by four digits if the azimuthal order is
also considered. Therefore, it is quite difficult to carry out asteroseismic inversion to infer internal
structures or internal rotation because the lack of the data easily renders the inverse problems highly
ill-posed ones; we usually cannot infer interiors of stars as in detail as in helioseismology.

However, there are also good points in asteroseismology, diversity sometimes helps. One example
is the detection of g modes. Because the Sun has a thick convective envelope, g-mode waves are
evanescent there and the amplitudes at the solar surface are too small to detect (see the small
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Figure 1.9: Locations of various types of variables on the HR, diagram (cited from Aerts et al., 2010). The typical
properties of solar-like pulsators, § Sct stars, and v Dor stars are demonstrated in the text. Observational properties
for other main-sequence pulsators (roAp, SPB, and 8 Cep), more evolved pulsators (SR and PVSG), white dwarf
pulsators (GW Vir, DBV, and DAV), and classical variables (Mira, Ceph, and RR Lyr) are intensively explained in
e.g. Aerts et al. (2010).

subsection 1.2.1), hindering us from probing the deep radiative region of the Sun. In contrast, there
have recently been a large number of g-mode pulsators observed by several spacecrafts, enabling
us to infer much deeper regions which are somewhat impossible in helioseismology. Excitation
mechanisms are also different for some kinds of pulsators. In the case of the Sun, it is observationally
confirmed that the solar eigenmodes have finite widths, which are claimed to be caused by the
intrinsic stochasticity of the convectively driven mechanism. On the other hand, multiple stars are
oscillating based on other excitation mechanisms (for more detail, see e.g. Aerts et al., 2010) which
render modes more coherent than those of the Sun, sometimes leading to more precise measurements
of eigenfrequencies.

1.2.2 Seismic properties of low-mass main-sequence stars

It is currently known that there are multiple kinds of variables across a broad range of the HR
diagram as shown in Figure 1.9. Among them, three subgroups of variables, namely, solar-like
pulsators, § Scuti stars, and v Doradus stars, are demonstrated in this subsection focusing on their
positions on the HR diagram, oscillation spectra, frequencies, mode indices, excitation mechanisms,
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and so on, as these variabilities are typical for low-mass main-sequence stars with masses 1.2-2.1 M.
The other variables are discussed in e.g. Aerts et al. (2010).

Solar-like pulsators
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Figure 1.10: Power spectrum densities for several solar-like pulsators observed by the Kepler spacecraft (cited from
Chaplin and Miglio, 2013). The effective temperatures of the stars get smaller and smaller from top to bottom, i.e.
the stars are arranged younger to older from top to bottom. Comb-like structures and bell-curve shapes are common
in all the spectra. Bumps in the lower frequency regions are thought to be caused by background noises mainly caused
by granulations at the surfaces of the stars. It is also seen that vmax (explained in the text) gets smaller as the star
evolves.

Solar-like pulsators are literally stars which are oscillating with properties similar to those of
the Sun, and they are thus located close to the Sun on the HR diagram (Figure 1.9). Figure 1.10
illustrates typical power spectra of solar-like pulsators at different evolutionary stages. Comb-like
structures and bell-curve shapes are common in the spectra for all of the stars; which are believed to
originate from a common excitation mechanism where near-surface superadiabatic convection plays
a critical role. Typical frequencies of solar-like stars are of the order of mHz corresponding to periods
of a few minutes. Based on a comparison of the observation with theoretical calculations, they are
thought to be oscillating with high-order p modes; the radial orders of the observed eigenmodes are
relatively high ~ a few dozens. The spherical degree is at most three due to the cancellation effect
described in Subsection 1.2.1.

It should be noted that the solar-like pulsation is also observed for more evolved stars with con-
vective envelopes such as red giant stars (Figure 1.10) because of the same excitation mechanism.
The frequency which corresponds to the highest peak of the bell-curve shaped spectrum is, inter-
estingly, correlating with the evolutionary stage of the pulsator (Figure 1.10), which is often used
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Figure 1.11: Amplitude spectrum of a § Sct and v Dor hybrid pulsator KIC 11145123 (Kurtz et al., 2014) (see the
definition of what a hybrid pulsator is in Subsection 1.2.3). G-mode region (v Dor oscillation) and p-mode region (§
Sct oscillation) are apparently separated (some of the modes are mized modes which behave as a p mode in the outer
envelope and as a g mode in the core region.) The widths of the peaks are very narrow thanks to the coherence of
the modes, and thus, the obscrvational uncertainties arc astonishingly small (~ 1077 d ™).

to estimate ages of the pulsators in, for instance, galactic archaeology. The procedure to estimate
global parameters based on the so-called v, is presented in e.g. Chaplin and Miglio (2013).

4§ Scuti stars

0 Scuti (& Sct in short) stars are one of the frequently-observed variables and the prototype was
already discovered around the beginning of the twentieth century. They are considered as slightly
evolved stars with masses 1.5-2.0Mg (Figure 1.9), and located around a bluer edge of the Cepheid
instability strip; the oscillations are believed to be excited by the x mechanism where the He-
ionization zone is playing an important role. We do not see any bell-curve shaped structures as
seen in the spectra of solar-like pulsators (see the high-frequency region ranging from 15-20 d~! in
Figure 1.11), and they are thought to be oscillating with p modes whose radial orders are lower than
10. A typical frequency of a 0 Sct star is 10-100 uHz, a few hours in periods, and the amplitudes
are relatively high compared with those of solar-like pulsators (Figure 1.11).

Though this subgroup has been known for a long time, it has been quite challenging to correctly
interpret observed spectra of 0 Sct stars. One reason is that stars are often rotating fairly fast (~ 100
km/s) in this mass range, and thus we cannot neglect effects of rotation both on the structures and
the oscillations. Another point is related to the existence of outermost thin convection zones that
these low-mass stars typically have. In such outermost thin convective zones, superadiabaticity is
dominant and non-adiabatic effects have to be taken into account in analyzing the oscillations. The
prescriptions correctly treating convection and oscillation simultancously has, nonetheless, not been
established yet. For more detailed discussions about rotational effects on stellar oscillations and
those for convection-oscillation interactions, see e.g. Tassoul (1980) and e.g. Dupret et al. (2005)
respectively.
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v Doradus stars

We find v Doradus (v Dor in short) stars close to, though slightly redder and less luminous than,
0 Sct stars on the HR diagram (Figure 1.9). They are slightly smaller in mass than ¢ Sct stars,
with masses around 1.3-1.6M. The first discovery of v Dor stars as a variable was in 1995. This
rather recent discovery is mainly due to typical frequencies of v Dor stars, which are of the order
of ~ uHz or a few days in periods (see the low-frequency region ranging from 0-5 d~! in Figure
1.11). Such periods longer than a day are difficult to detect by ground-based telescopes without
any multisite observing campaigns or any special (for example, multi-photometric) observations.
We have to avoid diurnal cycles on the earth and we had to await the advents of space telescopes
such as Hipparcos to detect such long-period pulsators (for detailed historical backgrounds from the
observational perspective, see Chapter 2 of Aerts et al., 2010). Theoretical computations show that
~ Dor oscillations are high-order (the radial orders are higher than a few dozens) g modes. The
excitation of the g mode is attributed to so-called convective-blocking mechanism where convective
overshooting below the base of the convective envelope contributes much.

One of the most well-known properties of v Dor stars is the g-mode period spacing A Py, which is
defined as a difference between g-mode periods with consecutive radial orders and the same spherical
degree. Asymptotic analysis of stellar non-radial oscillations demonstrates that the mean value of
the AP, is inversely proportional to an integral of the Brunt-Véisala frequency. This theoretical
prediction has been currently confirmed in a model-independent manner, and the mean A P is often
used as an indicator for stellar evolutionary stage because the Brunt-Viisaléd frequency is strongly
dependent on the evolutionary stage of the star as described in Subsection 1.1.1. Interpreting the
AP, is one of the main subjects in this dissertation, and it is discussed in Chapter 2.

1.2.3 Recent studies and the results related to this dissertation

The goal of this subsection is to concisely present what we have learned so far with asteroseismology
and future prospects of the current studies. In particular, we would like to concentrate on three
themes, namely, estimation of evolutionary stages with the g-mode period spacing A P,, asteroseis-
mic modeling of § Sct and v Dor hybrid pulsators, and asteroseismic inference on stellar internal
rotation.

G-mode period spacing AP,

The detection of high-order g modes in various types of stars (7 Dor, SPB, 3 Cep, RGB, Red Clump
stars, white dwarf stars) is such a fortune that we are now able to probe the g-mode propagation
regions inside the stars, namely, the deep radiative regions. In particular, for such high-order g
modes, we can utilize asymptotic theory (see Chapter 2), leading to a simple relation between the
Brunt-Viisild frequency N? of the star and the g-mode period spacing which is defined as the
difference in period between two neighboring g modes, with consecutive radial orders and the same
spherical degree. Because N? is considerably dependent on the evolutionary stage of the star, the
observed g-mode period spacings can be used as an indicator for the evolutionary stage. This is
how we asteroseismically infer evolutionary stages for high-order g-mode pulsators, and the method
has been used in a large number of studies (e.g. Bedding et al., 2011). For more information, see
Chapter 2.

One of the examples where g-mode period spacings are successfully used to infer stellar evolu-
tionary stages is Bedding et al. (2011). They have measured g-mode period spacings for evolved
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Figure 1.12: So-called asteroseismic diagram for the observed red giants (hydrogen-shell burning stars) and red
clump stars (helium-core burning stars). Cited from Bedding et al. (2011). Horizontal axis is the large separation
Av, which is defined as a difference in frequency between two neighboring high-order p modes with consecutive
radial orders and the same spherical degree, and is generally considered to be related to the dynamical time scale
tayn X \/ﬁfl (p represents the mean density) of the stars (see, for example, Aerts et al., 2010). Vertical axis is AP, as
described in text. Based on the comparison between the theoretical evolutionary computations for red giants (black
lines) and those for red clump stars (black star symbols) with the observation, Bedding et al. (2011) have succeeded
in separating the two categories (blue circles, and red and orange circles, respectively.)

stars (on the red giant branch) observed by the Kepler spacecraft, and they have succeeded in dif-
ferentiating red giant stars from red clump stars (Figure 1.12) based on the values of the observed
g-mode period spacings. Since red giant stars and red clump stars sometimes overlap with each
other on the HR diagram, it is often the case that we cannot differentiate them photometrically
nor spectroscopically. Bedding et al. (2011) thus have shown the high potential of g-mode astero-
seismology, which enables us to carry out analyses we have not been able to do. The study is also
useful for other kinds of studies such as galactic archaeology (Miglio et al., 2013) by combining it
with the other observations as spectroscopy and stellar kinematics.

The mean value of the g-mode period spacings is thus useful for inferring stellar evolutionary
stages, which is one of the global parameters of a star, as we see in the last paragraph. But
we can further investigate internal structures in detail by focusing on the patterns of observed g-
mode period spacings; it has been analytically shown that the patterns are highly dependent on the
Brunt-Viisili frequency (IN?; see the definition in Subsection 1.1.1) profile (e.g. Miglio et al., 2008),
especially dependent on sharp features in N2. Therefore, based on the patterns of g-mode period
spacings, it is possible for us to extract information on sharp features in N? located in the deep
radiative regions. There have been numerous attempts where the relation between the patterns of
g-mode period spacings and N? is investigated via 1-dimensional evolutionary calculations changing
prescriptions for mixing processes (e.g. Pedersen et al., 2018). As it is demonstrated in Subsection
1.1.1, we do not fully understand the chemical composition profiles of stars, which strongly affect
N2, especially in the case of low-mass stars such as v Dor. So, attempts to interpret the patterns
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of g-mode period spacings are one of the most prominent subjects in asteroseismology.

Patterns of g-mode period spacings are also useful for inferring internal rotation of v Dor stars
(Bouabid et al., 2013), and Li et al. (2020), for example, have inferred a few hundred « Dor stars’
rotation rates in the deep radiative regions. This method is applicable for rapidly rotating stars,
and thus it can be complementary to the perturbative approach to infer internal rotation of stars
(see "Asteroseismic inference on stellar internal rotation’ later in this subsection.)

Asteroseismic modeling of § Sct and v Dor hybrid pulsators

It is readily seen that § Sct stars and ~ Dor stars are located close to each other on the HR diagram
(Figure 1.9), suggesting the possibility that there should be stars with both ¢ Sct and v Dor
properties, so-called & Sct and v Dor hybrid pulsators. Thanks to the observations by the Kepler
spacecraft, it has recently come to be recognized that such hybrids are rather common entities
(Bradley et al., 2015), and that about 50% of § Sct stars discovered so far are also pulsating with ~
Dor-type oscillation, which is much higher than previously expected. The important point is that
the & Sct and v Dor hybrid pulsators are oscillating with low-order p modes and high-order g modes.
We can therefore probe outer envelopes by the p modes and deep radiative regions by the g modes;
most of the interiors therefore can be probed for the § Sct and ~ Dor hybrids. This characteristic
is especially of great help to calibrating prescriptions in stellar evolutionary calculations (Sanchez
et al., 2017). Equilibrium models thus obtained are subsequently used for further asteroseismic
analyses, for example, rotation inversion (Kurtz et al., 2014), and the procedure to find models
which reproduce the observed frequencies is called asteroseismic modeling.

It should be mentioned that typical relative differences between modeled frequencies (which
are computed based on an equilibrium model) and observed frequencies are about a few percent,
which are much larger than those of the solar case (see “Comparison with helioseismology” in
the last subsection). Furthermore, observational uncertainties in asteroseismology are often so
small that residuals normalized by the uncertainties tend to be fairly large. Although there have
been several attempts to perform structure inversion with which the relative differences in sound
speed and density between a reference equilibrium model and the real star are estimated based on
statistical methods (Kosovichev and Kitiashvili, 2020), we are often confronted with the high degree
of ill-posedness which prevents us from correctly inferring the relative differences. This problem is
caused, for example, by the relatively small number of the detected modes in asteroseismology (see
“Comparison with helioseismology” in the last subsection). As such, filling the gap between the
theory and the observation via asteroseismology has been not really completely successful yet. For
more detailed discussions about the current status of asteroseismic modeling and structure inversion
in helio- and astero-seismology, refer to e.g. Buldgen et al. (2019).

Finally, let me introduce Chen et al. (2020); this study has been the first to carry out asteroseis-
mic modeling of a ¢ Sct star (KIC 10736223) in an Algol-type binary. They have modeled the star
taking into account the mass accretion during the evolution with MESA, and have drawn a conclu-
sion that the star has just undergone the mass accretion. The residuals between the frequencies of
their model and the observation are still large, but these kinds of studies definitely put constraints
on, for instance, mass accretion schemes adopted in stellar evolutionary codes, in which a number
of phenomenological prescriptions and assumptions need to be validated.
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Figure 1.13: Example of observed rotational splitting. This is actually an expanded amplitude spectrum of KIC
11145123 in p-mode frequency range (Figure 1.11). Since the number of the split modes are three (triplet) in the left
panel, it is most likely that this is a mode with [ = 1. Meanwhile, the quintuplet in the right panel is likely [ = 2.
Based on this rough mode identification and equation (1.24) we can roughly estimate the rotation of the star (see
text). This figure is partly cited from Kurtz et al. (2014).

Asteroseismic inference on stellar internal rotation

What the Kepler spacecraft has achieved is not only the precise measurements of brightness vari-
abilities but also the four-year long continuous observation, which has realized frequency resolution
of the order of a few pHz, leading to detections of a phenomenon called rotational splitting — an
essential observable in rotation estimation (Figure 1.13), especially for main-sequence stars and red
giants (interestingly, the rotational splitting of white dwarfs have been reported much before the
Kepler data has come, see for example Kawaler et al., 1999).

The frequency shift due to rotational splitting is related to internal rotation rate as

SWnim = m(1 — Cpy)Q, (1.24)

where C,,; is the Ledoux constant which is related to the perturbation in eigenfrequencies caused
by the Coriolis force (see the definition in e.g. Aerts et al., 2010) and € is a rotation rate. Note
that here the rotation is assumed to be uniform throughout the star. The expression (1.24) can
be obtained from the equation (1.20). The derivations can be found in, for instance, Aerts et al.
(2010).

Once we measure rotational shifts dwy;, and compute C,,; based on a reference model to repre-
sent the star, the rotation rate { can be estimated based on the equation (1.24). It should be noted
that what we really observe is a series of rotational shifts for detected modes with mode indices
(n,l,m), and we have a system of equations represented by the equation (1.24) (the equation has
rather complex forms if we take into account radial and latitudinal dependences of the internal
rotation, see Chapter 4.) Then, we have to estimate the rotation rates by inverting the set of the
equations; this procedure is called rotation inversion.

The number of the Kepler targets for which rotation inversion has been carried out is around
several dozens for now (Aerts et al., 2017). The evolutionary stages are ranging from the main
sequence to somewhat more evolved stars as red giant stars, allowing us to study the temporal
variation of internal rotation profiles along with the evolution (e.g. Deheuvels et al., 2012). The
current understanding thus established is summarized by Aerts et al. (2019) that almost all the
main-sequence stars investigated so far are exhibiting nearly rigid rotation throughout them, and
that, in spite of the core contraction phase they have experienced before they reached the red giant
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branch, the contrast between the core rotation rate and the envelope rotation rate is generally much
smaller than expected based on the numerical simulations of angular momentum transfer inside
stars (e.g. Tayar and Pinsonneault, 2013) (see Figure 1.5 in Subsection 1.1.2). Though several
mechanisms (angular momentum transfer by internal gravity waves, magnetic fields, and so on) to
explain the observed much-smaller contrast between the rotation rate of the core and the envelope
have been suggested (e.g. Fuller et al., 2019), this issue has not been settled yet. In addition, several
asteroseismic analyses focusing on inferring internal rotational profile in detail (e.g. Benomar et al.,
2018) have reported the significant detections of the rotational velocity shear with the factor ~ a
few, suggesting that the stars are rotating rigidly throughout most of the interiors, but rotating not
completely rigidly as the current understanding is.

1.3 Asteroseismology of KIC 11145123

The final section in this chapter is specifically dedicated to the introduction to asteroseismology
of KIC 11145123 which is one of the Kepler targets (Huber et al., 2014). Though there have
recently been a huge number of stars to be asteroseismically investigated, the star outstands in
terms of multiple aspects such as the high-quality observation done for the star and various intriguing
results successively obtained based on the observation, with respect to the internal rotation profile,
structure, and evolutionary stage of the star, etc. This star, nevertheless, is not only merely a star
exhibiting such fascinating characteristics, but also an important subject in the context of stellar
physics generally.

First of all, we present the context of asteroseismology of KIC 11145123; how and why the
star was found, what results have been obtained so far based on asteroseismic analyses of the star,
and mysteries simultaneously having arisen are discussed. We then provide the readers with brief
reviews of the previous researches in which asteroseismology has been utilized to infer a variety
of features of the star. Specific procedures are especially emphasized. In the last subsection, we
mention the current status of our understanding of the star, problems to be solved, and the goals
in this dissertation.

1.3.1 Context

The discovery of KIC 11145123 is closely related to a historical background of studies on stellar
internal rotation. As is described in the small subsection ‘Asteroseismic inference on stellar internal
rotation’, the Kepler spacecraft has provided us with a large number of detections of rotational
splitting for stars with various evolutionary stages. Among the fruitful Kepler targets, the first
asteroseismic analyses to infer the internal rotation of stars and, if possible, the angular momentum
transport inside stars during the evolution have been carried out for evolved stars such as red giant
and sub giant stars (Deheuvels et al., 2012). This is because these evolved stars are more luminous
than the main-sequence stars, and it was much easier to extract rotational splitting (than it was for
the main-sequence stars) with the data available at that time (the Kepler spacecraft was launched
in 2010). Based on the analysis, they have concluded that the core of the stars is rotating faster
than the envelope with a factor of at most 10, which is much smaller than the expected contrast for
such evolved stars (see the small subsection ‘Asteroseismic inference on stellar internal rotation’.)
Then, how about the internal rotation profiles of main-sequence stars? That was the next
question to be addressed in the community of asteroseismology as of around 2013 after Deheuvels
et al. (2012). To the end, D. W. Kurtz carefully looked for main-sequence stars (among the Kepler
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targets) which exhibit rotational splitting for both p modes and g modes, which enables us to infer
the internal rotation of the envelope and the core at the same time. KIC 11145123 is one of three
stars thus to be found among the vast samples of the Kepler Input Catalog; such main-sequence
stars are hardly found even in the Kepler targets. Kurtz et al. (2014) immediately conducted
asteroseismic analyses to infer the internal rotation profile of the star, and found that the star
is rotating almost rigidly with rotation period of ~ 100d, which is the first confirmation of such
almost-rigidly rotation of main-sequence stars, and the result is consistent with previous study
(Deheuvels et al., 2012), helping to establishing the current understanding of the internal rotation
of stars.

Interestingly enough, on the course of asteroseismic modeling of the star, Kurtz et al. (2014)
noticed that higher initial helium abundance ~ 0.3-0.4 is much favorable to reproduce the observed
p-mode frequencies. But such higher initial helium abundance is difficult to explain for a simple
single star, and thus, Kurtz et al. (2014) pointed out the possibility that the star is a blue straggler
star which is thought to be born via some interactions with the other stars (see Subsection 1.1.2.)
Interestingly again, the hypothesis above is partly supported by the inferred internal rotation profile
where the outer envelope is rotating slightly faster than the core is; we need some mechanisms of
angular momentum transfer to realize the rotational profile, and interacting with other stars can
be a straightforward explanation.

Another peculiarity has been pointed out by Gizon et al. (2016). They analyzed the observed
p-mode frequency splitting to estimate the asphericity of the star sensed by p modes, and found that
the star is less oblate than is expected based on the rotation period. They attributed the oblateness
smaller than the expected value to a possible existence of weak magnetic fields on the surface of the
star, but it is still challenging to explain the origin of the fields without a thick convective envelope
as the Sun has. Mysterious aspects of the star have been gradually revealed as more asteroseismic
analyses have been performed.

To better comprehend properties of the star from a different perspective, Takada-Hidai et al.
(2017) have conducted the spectroscopic observation of the star with Subaru/HDS. The primary
result is that they found the star to be spectroscopically a blue straggler star as suggested by Kurtz
et al. (2014). Thus, the star has probably experienced some interactions with other stars, which
could be a reason for the peculiar characteristics asteroseismically confirmed. Another important
finding in their study is that their best model of the star asteroseismically constructed based on the
low metallicity prefers higher initial helium abundance as that of Kurtz et al. (2014), which is still
too high for an ordinary single star.

Why have the high initial helium abundances been suggested for the star in the previous studies?
One possibility is that the star has been really born in such high helium environments contaminated
by stellar winds from already existing asymptotic giant branch stars. This multiple main-sequence
phenomena (Bastian and Lardo, 2018) has been recently observed for some globular clusters. The
star, however, is a ficld star based on the analysis of Takada-Hidai et al. (2017), and thus it is
currently not in the high helium environments. The other possibility is that the star was originally
born as a star with an ordinary initial helium abundance, and somehow obtain the helium from the
outside, leading the star to be a blue straggler with high helium abundance in its envelope. Still,
we have not had a clear answer to that point so far.

In addition to the unsolved problem concerning the formation history of the star, detailed
asteroseismic analyses to infer the 2-dimensional internal rotational profile of the star by Hatta
et al. (2019) demonstrated that the rotational profile is not so simple as previously suggested by
Kurtz et al. (2014); the study especially suggested a hint of the fast-convective-core rotation which
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Figure 1.14: Kepler field and the position of KIC 11145123 indicated as a red star. Figure courtesy of M. Takata.

has never been pointed out. Though the suggestion seems to be significant in the context of the
current understanding of stellar rotation, the best model of Kurtz et al. (2014) has been used where
single-star evolution is assumed. Thus, the model dependence matters if the star has not evolved
as a single star but has evolved as a blue straggler interacting with the other stars. Such model
dependence has not been checked so far.

1.3.2 Previous studies of KIC 11145123

KIC 11145123 is one of the stars that have been observed by Kepler for four years (Figure 1.14).
The effective temperature and the surface gravity were estimated photometrically (Huber et al.,
2014) as Tog = 8050 + 200K and log g = 4.0 £ 0.2 (in cgs units). Thus, the star was thought to be
an ordinary main-sequence A-type star. However, asteroseismology has disclosed many mysterious
features of the star which cannot be explained if we regard the star as an ordinary main-sequence
star (see the preceding subsection 1.3.1). In this subsection, previous asteroseismic studies of the
star are briefly reviewed.

Kurtz et al. (2014)

The first asteroseismic research of the star has been conducted by Kurtz et al. (2014). They firstly
measured the frequencies of the 76 detected modes (45 g modes and 31 p modes) (Figure 1.11)
using a non-linear least-squares method. Based on an assumption that the triplets (Figure 1.13)
are corresponding to modes with { = 1, and that the quintuplets (Figure 1.13) are corresponding
to modes with [ = 2, they determined the rotational shifts. They subsequently estimated averaged
internal rotation using averaged p-mode rotational shifts and those of g modes.
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Figure 1.15: Observed g-mode period spacings AP, (red squares) and modeled ones (open circles and blue open
triangles) cited from Kurtz et al. (2014). A model with M = 2.05 Mg, Xinit = 0.72, and Zinis = 0.014 (open circles),
shows that AP, gradually decreases with decreasing hydrogen content at the core X, i.e. AP, decreases as the star
evolves (see Subsection 1.2.3). The amplitudes of modulations also gradually decrease during the evolution. It is
theoretically predicted that amplitudes and “period”s of modulations are dependent on the structure of the Brunt-
Vaisala frequency N (Miglio et al., 2008). This topic is also discussed in Chapter 2 in this dissertation. The g-mode
period spacing AP, of the best model in Kurtz et al. (2014) is illustrated with blue open circles, and the mean of the
observed ones is fitted when the central hydrogen abundance is 0.033. Almost all the hydrogen has been consumed.

As we have described in Subsection 1.2.1, it is known that p modes probe the outer envelope
and g modes probe the deep radiative region of the star. We can develop this idea to interpret
p-mode rotational shift dw, as a frequency difference caused by the rotation in the outer envelope
)y, and g-mode rotational shift dw, as a frequency difference caused by the rotation in the core Qg
(Kurtz et al., 2014). They used this property and model-independently found that the envelope of
the star rotates slightly faster than the core does, namely, €2, > ;. This is the first case in which
we have found a star’s envelope rotating faster than the core.

Then, they modeled the star so that the model would reproduce the observed Teg, log g, and
frequencies. They aimed to fit the averaged g-mode period spacings A_Pg = 0.024d (Figure 1.15)
and some of the p-mode frequencies (Figure 1.16). On the course of fitting the observed frequencies,
they conducted mode identification. Their best model indicated that the star is at the TAMS stage.
Another consequence of the modeling is that the initial helium content Y is extremely high (~ 0.34)
for such a field star. Furthermore, they have carried out rotation inversion to estimate the internal
rotation based on the best model. They have confirmed the same results that the star rotates almost
rigidly with the period of 100d, and that the envelope of the star rotates slightly faster than the
core.

From their results obtained by asteroseismology, they suggested that the star could be a blue
straggler (see Subsection 1.1.2) and it has experienced interactions with other celestial objects such
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Observed frequency  Model frequency [ n

dh "
g 1.210 1209 1 -33
g 1.247 1245 1 -32
2 1.287 1284 1 -31
g 1.328 1325 1 —30
g 1.374 1369 1 —29
g 1.418 1416 1 -28
I 1.470 1467 1 =27
g 1.524 1521 1 —26
g 1.582 1.579 1 =25
I 1.647 1642 1 —24
g 1.713 1.712 1 =23
g 1.789 1786 1 —22
g 1.864 1868 1 —21
g 1.951 1957 1 =20
g 2.045 2.057 1 -19
q(v3) 16.742 16.693 2 -1
s(vy) 17.964 17925 0 3
t(v2) 18.366 18.448 1 2
q(vy) 19.006 18849 2 0
t(vs) 22.002 22007 1 3
t 23516 23444 6 -2 2
q 23.565 23488 2 2
t 23.819 23966 6 -1 2
t 24.419 24453 2 3

Figure 1.16: Table of the observed and the modeled frequencies by Kurtz et al. (2014). The first column shows the
mode properties, and the last two columns represent the spherical degree [ and the radial order n from left to right.
Though g-mode frequencies apparently are already fitted relatively well, some of the p-mode frequencies are not fitted
well and there are significant deviations. Note that the observational uncertainties are of the order of 107" d~!. Mode
identification of modes with question marks are not reliable so that they were not used in the subsequent analyses in
Kurtz et al. (2014).

as collision and mass transfer, in order to explain the peculiar internal rotation and the extremely
high helium abundance.

Gizon et al. (2016)

The second asteroseismic analysis has been carried out by Gizon et al. (2016). Based on the fre-
quency determination, the mode identification, the equilibrium model of the star, and the eigenfunc-
tions and the frequencies obtained by Kurtz et al. (2014), they carried out asteroseismic analyses
focusing on the frequency shifts caused by the asphericity in the structure, and they succeeded in
measuring the star’s oblateness. They however found that the star is less oblate than expected
from its rotation. They attributed the smaller oblateness to existence of weak magnetic fields at
the surface of the star. However, the outer convective layer of the star is modeled as too thin to
produce such a magnetic field via the usual dynamo mechanism. This is another mysterious aspect
of the star.

Takada-Hidai et al. (2017)

To shed lights on the ambiguous understandings of the star, Takada-Hidai et al. (2017) analyzed the
star spectroscopically with Subaru/HDS. They measured the atmospheric parameters Teg and log g,
and the metallicity of the star [Fe/H] from the equivalent widths of the iron lines, and found that
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the star has rather lower metallicity (Z = 0.003) than in the previous model of the star (Kurtz et al.,
2014), namely, Z = 0.01. They also estimated the surface abundance by calculating the equivalent
width of each element, and subsequently, they conducted abundance analysis to spectroscopically
categorize the star. By comparing abundance pattern of the star with those of the other stars
such as Am stars, Ap stars, blue stragglers, they concluded that the star is spectroscopically a
blue straggler, supporting the suggestion by Kurtz et al. (2014). However, they also found that the
upper limit for the mass of a companion star of the star is 70 M (Mj is the mass of Jupiter) via the
phase modulation technique (Murphy et al., 2016) and they concluded that the star probably has
currently no companion. This conclusion seems to be incompatible with their other conclusion that
the star is a blue straggler in terms of how a blue straggler is born; the star must have experienced
some interactions with its companion (see Subsection 1.1.2), but the companion is gone. How the
star could be a blue straggler is another interesting topic.

Hatta et al. (2019)

Hatta et al. (2019) have expanded the study of Kurtz et al. (2014) focusing on the internal rotation
profile of the star. Based on the rotational shifts, the rotational splitting kernels, and the equilibrium
model determined by Kurtz et al. (2014) (for what the rotational shifts and the rotational splitting
kernels are, see, e.g., Subsection 4.3.1), they have carried out 2-dimensional rotation inversion to,
especially, check the possibility of the latitudinally differential rotation of the star, and they have
confirmed that the high-latitude region in the envelope is rotating slightly faster than the low-
latitude region, thus exhibiting the so-called anti-solar-like rotation (Lund et al., 2014).

In addition to the existence of the latitudinally differential rotation of the star, they have also
found a hint that the convective core might be rotating much faster (~ 5 times faster) than the
other regions of the star, via detailed analyses of behaviors of the estimates obtained by inversion.
They claim that the fast-core rotation has been successfully measured because they have used
mixed modes to probe the convective core which cannot be probed by high-order g modes; it is
usually the case that high-order g modes are used to infer deep internal rotation of « Dor stars
(see Subsection 1.2.3). Though there still remains several issues about their results in terms of,
for example, the model-dependence of the inference, their findings are shedding new light on the
current understanding of the stellar internal rotation (see Subsection 1.2.3).

1.3.3 Two issues and room for improvements

In this final subsection, two issues concerning asteroseismology of KIC 11145123 are introduced.

‘What is the best model of the star?

The first issue is related to the evolution of the star. As Takada-Hidai et al. (2017) have suggested,
the star is spectroscopically a blue straggle star, and therefore, the star may have experienced
some interactions with other stars. Interestingly, the models, obtained by Kurtz et al. (2014) and
Takada-Hidai et al. (2017) assuming single-star evolution for the star, both have high initial helium
abundance of > 0.30. Such high initial helium abundance is rather rare for an ordinary single star,
and the high initial helium abundance of the models may also suggest (from the theoretical point
of view) the possibility of the star having experienced some interactions with other stars; it was
born as a single star with an ordinary initial helium abundance of ~ 0.26 and then obtained extra
helium from the outside via interactions with other stars. However, there have been no attempts
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to model the star assuming non single-star evolution with relatively low initial helium abundance.
Because it has recently been recognized that some stars in globular clusters exhibit high initial
helium abundance of ~ 0.40 (Bastian and Lardo, 2018), it is of great importance to compare the
previous models of the star (computed based on an assumption of single-star evolution) and a new
model of the star (computed based on an assumption of non single-star evolution) to understand
how the star was born and evolved until now.

Is the fast-core rotation reasonable?

The second issue is related to the internal rotation, in particular, the fast-core rotation of the star.
The previous studies asteroseismically inferring internal rotation of the star have been mostly based
on the models calculated assuming single-star evolution for the star. Therefore, it is necessary for
us to check whether the previous inferences on the internal rotation of the star are changed or not
depending on the choice of the models; model-dependence of the inference. It is, of course, impossible
to eliminate completely such model dependence in rotation inversion (because the rotational splitting
kernels depend on the models), but it should be instructive to discuss, for example, the existence of
the inferred fast-core rotation, which is especially sensitive to the model dependence (see the details
in Section 4.3).

1.4 Structure of this dissertation

Based on the backgrounds described in this chapter, detailed asteroseismic analyses covering various
subjects are demonstrated throughout this dissertation. Among them, the central topic is the
asteroseismology of KIC 11145123 featured in Chapter 4. Two other chapters, Chapters 2 and
3 are mainly devoted to methodologies which are to be applied in the asteroseismic studies of
KIC 11145123, but more than that, both of the chapters contain numerous discussions which are
invaluable in broader contexts of stellar physics. This is the reason why Chapters 2 and 3 are
independent from Chapter 4. Below are specific contents in each chapter.

Chapter 2 is dedicated to the analysis of g-mode period spacings AP;, especially focusing on
analytical formulations of the A P, patterns. These analytical expressions are compared with numer-
ically computed AP, patterns based on some stellar models, enabling us to validate the formulations.
A part of the result in Chapter 2 is applied to asteroseismic non-standard modeling of KIC 11145123
in Chapter 4. The other parts of the chapter are independent from the other chapters because AP,
patterns are frequently observed quantities for a large number of high-order g-mode pulsators, and
the topics are not limited just for KIC 11145123.

In Chapter 3, a novel scheme for calculating a stellar equilibrium model whose chemical com-
positions in the envelope are modified is presented. A large part of this chapter is devoted to
validating the scheme, and in the end, an example of the applications of the scheme is shown, e.g.
the non-standard modeling of KIC 11145123 in a rather simple manner. This newly developed
scheme is also applicable for other studies, which is the reason why this chapter is also independent
as a chapter.

Combining the case studies demonstrated in Chapters 2 and 3, detailed asteroseismic studies of
KIC 11145123 are presented in Chapter 4. The first goal is to construct an envelope-modified model
of the star (based on the scheme developed in Chapter 3) reproducing the observed AP, pattern
(following procedures explained in Chapter 2) and some of the p-mode frequencies. This is done in
a much more systematic way than in Chapter 3, and the tentative envelope-modified model of the
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star is given which reproduces as many observables as possible for the moment. The second goal is
to infer the internal rotation of the star by performing rotation inversion. The tentative model is
used as one of two reference models (the other is the previous model of Kurtz et al., 2014), and the
results are compared to draw a conclusion about a hint of fast-convective-core rotation suggested
by Hatta et al. (2019).

Finally, we conclude in Chapter 5 concentrating on the evolutionary stage, internal structure,
and internal dynamics of KIC 11145123.
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Chapter 2

G-mode period spacing pattern of v
Doradus stars

Space missions such as Hipparcos, MOST, CoRoT, Kepler, and TESS have enabled us to find stars
oscillating with periods of about a day, which used to be quite difficult targets for us to observe
with ground-based telescopes on the earth due to the diurnal effect. That is one of the main reasons
that a large number of high-order g-mode low-frequency pulsators, v Dor stars, SPB stars, 5 Cep
stars, and so on, have been found recently, and thus, we can now probe deep regions (~ 0.1 in
fractional radius) of the pulsators; remembering the case of the Sun (we can probe as deep as ~ 0.5
in fractional radius via, for instance, helioseismic rotation inversion), g-mode asteroseismology has
been definitely revealing new physics.

One difficulty of g-mode asteroiseismology is (this is also the case for p- or mixed-mode astero-
seismology, of course) that we cannot carry out inversion as precisely as in helioseismology because
the number of detected modes are much smaller than that in helioseismology (see the small sub-
section 1.2.1). Instead, the g-mode period spacing AP,, which is defined as a difference between
two g-mode periods with consecutive radial orders and the same spherical degree, is often used
to infer somewhat averaged properties of the interiors of the stars. This is because asymptotic
theory for high-order stellar eigenmodes shows that AP, is inversely proportional to the integral
of the Brunt-Viisalé frequency throughout the propagation zone as will be shown in the following
sections. Therefore, a mean value of observed g-mode period spacings A_Pg is frequently used as
an indicator for a stellar evolutionary stage, leading to multiple significant studies (see Subsection
1.2.2). Actually, as shown later, the evolutionary stage of the previous stellar model of our main
target KIC 11145123 used to be determined based on the observed AP,.

More can be explored if we pay attention to modulated patterns of AF,, not just a mean value
A_Pg. Such modulated patterns of AP, around a mean value A_Pg have been frequently observed,
and the apparent discrepancy between the theory, which predicts a constant value for AP, and
the observations, which clearly show oscillatory AP, patterns as a function of g-mode periods, can
be explained by the existence of the chemical composition gradient just above the convective core,
which leads to variation in N? (see Section 2.2). In other words, we can in principle infer chemical
composition gradients inside stars based on modulated patterns of observed AP, which could be
shedding new light on our understanding of how a convective core grows together with mixing
processes during the evolution; as it is described in Subsection 1.1.1, the interrelation between
mixing processes and the chemical composition gradients inside stars are still not fully understood,
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especially for 1.2-2.0M, stars.

In this chapter, modulated patterns of AP, (for v Dor stars because they are relatively less
massive main-sequence stars) is discussed both from the theoretical and observational points of
view. First, a basic expression relating high-order g-mode periods to the Brunt-Vaiséla frequency
is presented, and several examples where A_Pg can be used as an indicator for stellar ages are
illustrated. Observations actually revealing modulated AP, patterns are also shown. Secondly,
theoretical descriptions for modulated AP, patterns are given with simple numerical computations
to check the validity of the analysis. Some of the analyses have been newly developed. Then, the
theoretical descriptions are used to understand AP, patterns of realistic stellar models (Section
2.3). Tt is shown that the newly developed expressions are useful for extracting the information on
the extent of the overshooting above the convective core boundary. An application to KIC 11145123
is finally presented in Section 2.4, which is incorporated in the later analysis in Chapter 4. Several
suggestions are presented to resolve a discrepancy between the modeled AP, pattern obtained in
Section 2.4 and the observed one for KIC 11145123.

Reference stellar models are computed via MESA, version 9793, and eigenfrequency calculations
for stellar models are done by GYRE (Townsend and Teitler, 2013). Theoretical discussions are
mostly based on Tassoul (1980), Unno et al. (1989), Miglio et al. (2008), and Cunha et al. (2019);
see them for more thorough derivations and discussions.

A final remark concerns a history of analyses of AP, patterns. It is of a great interest to mention
that the first detection of modulated AP, patterns was done for not main-sequence g-mode pulsators
but for white-dwarf pulsators (Winget et al., 1982). Though the physical origin of modulated AP,
patterns of white dwarfs is thought to be the same as those of main-sequence g-mode pulsators,
the internal structures of these stars significantly differs from each other. Since we focus more on
low-mass main-sequence stars in this dissertation, we purposely do not discuss white-dwarf AP,
patterns in this chapter. Readers should refer to such discussions in, e.g., Chen (2016)

2.1 Introduction

2.1.1 Starting point: asymptotic solution for high-order g modes

Let us begin with the second order equation for stellar linear adiabatic oscillation obtained based
on the Cowling approximation where the Eulerian perturbation of the gravitational potential is
neglected (Equation 2.1)

+ k2 =0, (2.1)

in which the radial wavenumber k, is defined as

k2 =

T

w2102 (@2 — N2)(w? — L2). (2.2)

In the asymptotic limit for high-order g modes, w? < N? and w? < L?, we thus have

I(1+1)N?

]{:2
w2r2

T

(2.3)
Equation (2.1) with Equation (2.3) can be solved, for example, via the WKBJ approximation.

Note that it is assumed in the WKBJ approximation that wavelengths of eigenfunctions are much
shorter than the scale height of the backgrounds (that of the Brunt-Vaisila frequency in this case).
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This is such an important assumption that a deviation from the mean value of AP, is closely
related to the deviation from the condition as it is demonstrated in Subsection 2.2. The WKBJ
approximation results in the following eigenfunction

1 T
fr X \/—k_sin (/ krd'l" + %), (24)
T T0

where 7 is the lower boundary of the propagation zone above which k2 > 0.
Posing appropriate boundary conditions (see e.g. Unno et al., 1989) for the eigenfunction (2.4)
leads to the eigenvalue condition as below:

2l
/ kydr = nm, (2.5)
o

where n is a natural number, and where r is the upper boundary of the propagation zone below
which k2 > 0. By substituting the explicit form of k, for the eigenvalue condition (2.5) and
expanding the integrand of the left hand side of the eigenvalue condition to the first-order, we have
periods of high-order g modes;

2nm? 1 -1
P,=— / Ndlnr) . 2.6
=, 20
If we take a subtraction P,41 — P, for a certain spherical degree [, the g-mode period spacing AP,
can be obtained
AP, = 2 </1 Ndl >_1 (2.7)
= nr| . .
E U+ 1) \Un,

It should be noted that the derivations above are just qualitative demonstrations. For more
decent derivations, see Tassoul (1980), Unno et al. (1989), Miglio et al. (2008), and Cunha et al.
(2019).

2.1.2 Mean AP, as an indicator of stellar evolutionary stages

Firstly, let us take a look at the way the Brunt-Viisala frequency varies as a star evolves. Figure
2.1 shows the Brunt-Viisiléd frequencies of several stellar models at different evolutionary stages.
It is clearly seen that the Brunt-Vaiséla frequency gets more centrally concentrated along with
evolution, which is attributed to higher densities around the central region for more evolved models
and also attributed to chemical composition gradients just above the nuclear burning cores (for the
contribution of the chemical composition gradient V, to the Brunt-Viiséla frequency, see Equation
1.2).

Then, it is expected that [ Ndlnr gradually increases as the star evolves because of the cen-
tralization of the Brunt-Vaisild frequency together with the component ~ 1/r in the integrand,
resulting in the decrease of the asymptotic value of AP, which is inversely proportional to [ NdInr
(Equation 2.7). We can see the expected variation in Figure 2.2. Intriguingly, the decrease of the
asymptotic value of AP, is monotonic, this is one of the reasons why the mean value of observed
g-mode period spacings can be used as an indicator for the evolutionary stage of the star.
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Figure 2.1: Brunt-Viisila frequencies for several models (1.1Mg, 1.4Mg, and 2.0M, from left to right, respectively)
at different evolutionary stages which are represented by the hydrogen mass contents at the center of the models X,
(X = 0.605, X, = 0.305, and X = 0.005, arranged in the following order, blue, cyan, and gold). Note that the 1.1M¢
model has a radiative core and that each of the other two models has a convective core; we can see the difference in
the Brunt-Vaiiséld frequencies below r/R ~ 0.1.

2.1.3 Deviation from the mean AP,

As shown in the previous subsection, the asymptotic value of AP, is of great use for inferring stellar
evolutionary stages. Here is one caveat; we often see deviations from the theoretical expectations.
According to Equation (2.7), AP, should be a constant value which is determined by the integral of
the Brunt-Vaiséla frequency. However, this is never the case; we see deviations both in theoretical
calculations (Figure 2.3) and in observations (Figure 2.4). Such deviations are thought to be caused
by some sharp features in the Brunt-Vaisala frequency (see e.g. Figure 2.1). To theoretically analyze
extents to which sharp features in the Brunt-Viisala frequency have impact on AP, patterns is,
and to explain observations based on the theoretical analysis are main themes in this chapter. Note
that though observed AP, patterns often deviates from (theoretically expected) constant values,
they still oscillate around the mean values as in Figure 2.3 and Figure 2.4, thus partly validating the
method in which we utilize the mean value of the observed g-mode period spacings to infer stellar
evolutionary stages.

2.2 Theoretical description for modulated patterns of AP,

It was pointed out by D. O. Gough for the first time that a sharp feature or a discontinuity of
equilibrium structures such as the sound speed and the Brunt-Viisila frequency in mode cavities
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Figure 2.2: Evolutions of asymptotic values of AP,, which is inversely proportional to [ NdInr, for three models
with masses 1.1Mg (black), 1.4Mg (red), and 2.0Ms (purple). Note that the AP, is computed following Equation
(2.7); the stellar linear adiabatic oscillation has not been carried out. Roughly speaking, the AP, is around 4000 s at
ZAMS, and then it decreases as the star evolves toward TAMS (AP; ~ 1000s). When the model is close to RGB,
AP; ~ a few hundred seconds.

can cause a phenomenon called mode trapping for some modes, which leads to oscillatory modulated
patterns of asteroseismic quantities such as the large separation Av, the small separation dv (the
above two are for p modes), and AP, (for g modes). Explicit forms for the large separation Av and
the small separation év are obtained in almost the same manner as we obtain AP, except for an
assumption that w? > N? and w? > Ll2 in the asymptotic limit for high-order p modes. For more
details, see e.g. Tassoul (1980) and Unno et al. (1989). An important point is that such oscillatory
patterns have been also observed for the solar p modes, and they are used to probe structures
around the convective boundaries in detail (Christensen-Dalsgaard et al., 1995).

Although it is not until recently that high-order g modes were detected (for low-mass main-
sequence stars) and that oscillatory patterns of AP, around somewhat averaged values were re-
ported, the high potential of AP, patterns to infer detailed structures deep inside low-mass main-
sequence stars with masses 1.2 — 2.0M have been recognized by the community for a while. There
have thus been several attempts to theoretically analyze the oscillatory AP, patterns, e.g. Mont-
gomery et al. (2003), Miglio et al. (2008), Cunha et al. (2019), and so on. These studies can be
divided into two ways based on how they theoretically quantify the AP, patterns.

One is based on the variational principle (see Subsection 1.2.1) where modulated AP, patterns
are considered as a result of perturbed eigenfrequencies, which originate from a perturbation to the
Brunt-Véiséld frequency. This method has been basically discussed by Montgomery et al. (2003)
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Figure 2.3: AP, patterns for several stellar models at different evolutionary stages (the meanings of colors and
positions of the panels are the same as in Figure 2.1). They are calculated in the following ways: first, a set of [ = 1
g-mode eigenfrequencies for each stellar model is obtained by solving linear adiabatic oscillation via GYRE. Then,
P41 — P, (vertical axis) and (P41 + Pn)/2 (horizontal axis) are computed. In most cases, the numerically computed
AP, patterns show deviations from constant values (dotted lines) which are computed based on Equation (2.7) with
the Brunt-Vaiséla frequencies of the corresponding stellar models.

and Miglio et al. (2008), and we followed their analyses with a few new expressions derived by
myself (see Subsection 2.2.1.)

Though the analysis based on the variational principle is applicable for any perturbation in
the Brunt-Viisila frequency, the perturbation has to be small enough that terms higher than the
second-order can be neglected and that the variational principle is valid; this assumption is often
not acceptable when we deal with, for instance, chemical composition gradients inside low-mass
main-sequence stars, where even a discontinuity may develop. In that case, we can derive solutions
for g-mode eigenfrequencies. See details in Subsection 2.2.2.

2.2.1 Interpretation of AF, pattern based on variational principle

The first step is to obtain the equation that relates g-mode frequency difference dw, (or period
difference §P,,) to perturbation in the Brunt-Viisélé frequency d N, where n is the radial order. To
this end, we rewrite the second-order differential equation (2.1) in an integral form as

[ cengar = [Regar (2.8)

where L is a linear differential operator defined as d?/dr?. The explicit form of k, is given by the
expression (2.3). The asterisk represents complex conjugate, though &' = & in the case of linear
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Figure 2.4: Comparison of observed modulated AP, patterns for KIC 9244992 (blue Saio et al., 2015) and for KIC
11145123 (red Kurtz et al., 2014) with theoretically calculated patterns with diffusion (black) and without diffusion
(green) via a linear adiabatic oscillation code developed by M. Takata. Both the observations and theoretical results
are showing modulated patterns. It is also clear that the presence of diffusion in stellar evolution calculation strongly
affects the resulting AP, patterns. Cited from Saio et al. (2015).

adiabatic oscillation.

Because L is self-adjoint in this case with appropriate surface-zero boundary conditions, it is
shown that the eigenfunctions satisfy the variational principle; the first-order perturbation of a
certain eigenfunction does not affect the corresponding eigenfrequency. That can be explicitly
expressed in the following way:

[ eengar = - [(FEFE “HON 2))§r§:dr7 (2.9)

(w? + dw?)r?

where the perturbed eigenfrequency dw is directly related to the perturbation in the Brunt-Viisila
frequency dN.

Substituting the zero-th order equation (2.8) for the above equation (2.9) and neglecting per-
turbed quantities higher than the second-order leads to the linear equation as below:

ON OP,
/k3<w>§2dr = —P—"/kfgfdr, (2.10)
n
which can, combined with the asymptotic expression for the eigenfunction &, (2.4), further be
simplified
;' 6P, N (6N | r ™
_%?: = /?(W)mn? </Io kydr’ + Z)dr, (2.11)

in which 7o represents the bottom of the mode cavity, identical to the convective core boundary in
the case of low-mass (1.2 — 2.0M) main-sequence stars. The parameter I Lis expressed as

;' =10 (), (2.12)
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where the buoyancy radius I ! is defined in the following way:
T
! = / Ndlnr'. (2.13)
To

The upper boundary of the mode cavity is 71, which is often assumed to be identical to the surface
of the star. Note that a relation 0P, /P, = —dwy,/wy, is used to derive Equation (2.10), which is
easily obtained from the definition w,, = 27/P,.

With the newly introduced variable (2.13), Equation (2.11) has a rather simple form as follows:

' sp, SN\ . ofey 7r) .
s L A I = )dirt 2.14
2 P, /< N >sm ( ;o 7 dIl; (2.14)

We can derive explicit forms for AP, patterns as a function of the g-mode periods once we
parameterize the perturbation in the Brunt-Viiséla frequency 0N as Miglio et al. (2008) has done,
and analytically compute Equation (2.14). Three specific ways of parameterization of N are
presented in the following small subsections.

Parameterization of N with a step function; following Miglio et al. (2008)

Here, the results of the analysis by Miglio et al. (2008) are reproduced with the purpose of showing
exact procedures to formulate the g-mode period spacings 6P based on the variational principle.
For more detailed derivations and confirmation of the validity of the analyses can be found in the
original paper (Miglio et al., 2008).
The simplest parameterization of 6N can be achieved with a step function H (H;l —II71) as
below:
SN 1-a?
N a2
where 11, is the buoyancy radius for the position of the discontinuity, and the factor (1 — a?)/a? is
representing the strength of the discontinuity (see the left panel in Figure 2.5).
By substituting the parameterized expression for JN (2.15) for the equation (2.14), we can
compute the integral analytically, resulting in the following expression:

5P 1— o2\ 1!
R C AT S R

H(IL,' — 11,7, (2.15)

s

where L = /I(l + 1).

This is a rather simple formulation, but also it is revealing a few important points with respect
to the behavior of modulated AP, patterns. The first point is the dependence of amplitudes of
modulated AP, patterns on extents of the jumps ((1—a?)/a?); the amplitude is simply proportional
to (17042) / o?, and the amplitude gets larger as the extent of the jump increases. The second point is
that the oscillatory patterns of AP, (see e.g. Figure 2.3 and 2.4) can be explained by the presence of
the sinusoidal component in the equation (2.16), and that the period of the oscillation is determined
by a ratio between IT; ' and H;l; which is also a conclusion of Subsection 2.2.2. The ratio is related
to the position of the discontinuity, and thus, the period of the oscillatory AP, patterns can be
used to infer the position.
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Figure 2.5: Schematic view for three ways of parameterization of JIN. Note that curves are showing sums of the
unperturbed Brunt-V4iisila frequencies (represented by dotted lines) and § N. The parameterization by a step function
(left), that by a ramp function (middle), and that by partly a ramp function with unperturbed region around the
very center (red) are shown.

Parameterization of JN with a ramp function; following Miglio et al. (2008)

Here, the results of the analysis by Miglio et al. (2008) are again reproduced with the same purpose
in the preceding small subsection. For more detailed derivations and confirmation of the analyses
can be found in the original paper (Miglio et al., 2008).

The parameterization of N is done with a ramp function as below:

N _1-o?I7 I

~ — T H(IL' =111, (2.17)
L

T

see an example of the profile in Figure 2.5. It should be noted that the buoyancy radius of at the
center of the star r = 0 is zero.

We can analytically compute the integral (2.14) by inserting the expression (2.17) and integrating
by parts once. The result is

2

oP, 1— 1 Wi\ 2
- (_a_fnonﬂ> b(n;l)2 + ;—Zn;l — <“2"—Z) sin(mnon;l)]. (2.18)

The expression above seems to be much complex compared with the expression (2.16), but when
we pay attention to the sinusoidal component in the expression, it is readily understood that the
amplitude of the oscillatory AP, pattern is proportional to (1 — a?)/a? as in the expression (2.16)
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and that the period of the oscillation is determined by a ratio between 11 L and H;l as well. The
essential points are thus not changed. One difference is that the amplitude also depends on the
buoyancy radius of the discontinuity H;l and on the g-mode periods P,, which is not indicated in the
case of the simpler parameterization of 6V and it is later demonstrated that the parameterization
in this small subsection is better-describing (than that in the preceding small subsection) oscillatory
AP, patterns calculated based on realistic stellar models.

Parameterization of 6V considering an overshooting region; NEW

A novel formulation is presented in this small subsection with a parameterization of JN by a
modified ramp function as shown in the right panel of Figure 2.5. In the previous two formulations,
it is assumed that 6NN is finite at the bottom boundary of the g-mode cavity where I, 1 = 0. But
it is ordinarily seen based on 1-dimensional stellar evolutionary calculations that the Brunt-Vaisala
frequency is rather smooth around regions just above the convective core because of the presence
of the overshooting zone although the chemical compositions are well-mixed and the adiabatic
temperature gradient V,q is nevertheless smaller than the radiative temperature gradient Vi,q;
the Brunt-Vaisila frequency is finite there. Thus, we can not consider the perturbation to the
Brunt-Vaisala frequency in the overshooting zone.

The parameterization of J N is given as below:

SN 0 (I !
= 1

~ =\ 115 -1 -1
N = Hgi . H(IL,; — 1070 (1T

IN

1
1)
1

) (2.19)

II
IT

IN
SLE

1
where H;ll and H;; represent the buoyancy radius for an innermost position and an outermost
position between which d NV is finite, respectively.

We can obtain the corresponding expression for oscillatory AP, patterns in the case of the

assumed N almost in the same way as in the small subsection 2.2.1 except that we have extra
terms which otherwise vanish in the preceding manipulations where H;ll — 0 and H;; — H;l,

5P, 1 — a2
Ofn _ (_ o

1 —1y—1
P, 2 HO(HM - >

1 — S p— — _ Wn 2 . _ . _
X [5(1'[”21 - H/Lll)2 + E(H“; - Hml)cos <2n7rH0Hml) - <ﬁ> <s1n<2n7r1'[01'[ﬂ21> - sm(anHgHMl

We obtain the expression (2.18) if we take limits H;ll — 0 and H;zl — H;l.

Interestingly, the expression (2.20) contains two oscillatory components, one of which has a
period determined by a ratio between Il L and H;ll, and the other has a period determined by a
ratio between I, Land H;;, indicating that not only a sharp feature in the Brunt-Vaisala frequency
but also the extent of the overshooting have significant impacts on the oscillatory AP, patterns.

Because this is the first time that the relation between the extent of overshooting and the
oscillatory AP, patterns has been suggested, we would like to check the validity of the expression
by comparing with numerically computed AP, patterns. Figure 2.6 shows the comparison, and
it is clearly seen that the theoretical expression explains the results of numerical computations
moderately well. Be sure that this is valid only for perturbations which are small enough that
terms higher than the second-order can be ignored. Such deviations from the variational principle

can be found in, for instance, the right panel in Figure 2.6.
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Figure 2.6: Comparison of the analytical expression (2.20) for oscillatory AP, patterns (red curves) with numerically
computed ones (black curves) is illustrated in the bottom row. The numerically computed A P, patterns are obtained
by directly solving the eigenvalue problem (2.1), where the radial wavenumber k, is given by each Brunt-Véiisila
frequency N shown in the top row. The strength of a discontinuity is represented by «?; it increases from left to
right (a® = 0.99 to a® = 0.50). The analytical expressions reproduce the numerically calculated oscillatory AP,
patterns fairy well in the case of small perturbations (left and middle panels), though they deviated from each other
in the rightmost panel, which clearly shows that the assumption that the perturbation is small enough to apply the
variational principle is broken down.

2.2.2 Interpretation of AP, pattern based on exact eigenfunction

An alternative strategy is taken in this subsection to theoretically explain modulated patterns AF;.
Namely, expressions for g-mode periods are presented, mainly based on the way by Cunha et al.
(2019). This can be done by assuming two asymptotic eigenfunctions for both inside and outside
the discontinuity and posing boundary conditions which demand the continuity and the smoothness
of the eigenfunctions at the discontinuity. Then, we end up with an eigenvalue condition, which
is somehow a modified version of that presented in Subsection 1.2.1, and solving the condition
provides us with the g-mode eigenfrequencies under the existence of a discontinuity in the Brunt-
Viisila frequency (in the small subsection 'In the case with a discontinuity’); we do not have to
rely on the assumption that the sharp features in the Brunt-Vaisila frequency can be treated a
small perturbation. This procedure can also be applied for smoother profiles of the Brunt-Vaisala
frequency with slight modifications to the original formulations, which is demonstrated in the small
subsection ’In the case with a slope’.
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In the case with a discontinuity

First of all, we divide the g-mode cavity (ro < r < r1) into two regions by a discontinuity in the
Brunt-Vaisala frequency located at r = r,. Eigenfunctions for the two regions are given based on
the assumption that the asymptotic approximation is valid (in other words, the wavelengths are
much shorter than the scale heights of the backgrounds except for the discontinuity). Below are the
explicit forms of the eigenfunctions

—~ 1 r
€in = &n\/TESin</ro kindr + %), (2.21)
and

— 1 . T1 T
Sout = fouthm </ koutdr + Z>7 (222)
out

where ki, and koyt are the radial wavenumber defined as (2.3) for the inner region and that for the
outer region. There are constants related to the amplitudes of the eigenfunctions, £ln and fout

Then, let us consider that the inner eigenfunction and the outer one are linked continuously and
smoothly. The conditions can be expressed as the following boundary conditions at the discontinuity
=Ty

&in(ﬁk) = gout(""*); (223)
and
dgin _ dgout (2 24)
dr r=ry dr r=ry ’ ’

with which the constants é; and ng/ut can be eliminated, leading to a relation

K
sm(/ Koudr+— )cos </ Kipdr+— ) —|—sm</ Kindr+— >cos </ Kowdr+— ) , (2.25)
K. 4 4

where K = Kin(ry) and K = Kout (7).
Following the treatment in Cunha et al. (2019), we define a new parameter for the strength of
the discontinuity as below:

K — K
A, = K—*Out (2.26)

out

The relation (2.25) can be cast into the following simple form:

Tx
Csin</ Kindr + g + g/)) =0, (2.27)
T0o

where C' and ¢ are defined by a system of two equations, namely,
Csin(¢) = (A, + )gln( ' Koutdr + )
(2.28)
C cos(¢) = cos <f;;1 Kouedr + %)

Equation (2.27) represents the eigenvalue condition in the presence of a discontinuity in the Brunt-
Vaisala frequency. Though we need some special techniques to solve the eigenvalue condition (2.27),
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the eigenfrequencies can be obtained based on the analysis of the condition. See for more details
Appendix of the original paper (Cunha et al., 2019). The result is shown below:

AP [1 B (H H_1> —A*singl + AzCOSQBQ -1
APy 0 (14 Ayco82f2)2 + (0.5A,co85 )2

: (2.29)

where II;! = TI,71(r,) and AP,s = 2m2Tly/L. The phases B1 and B, inside the sinusoidal components
in the equation above are defined as

~ 2L
B = Uﬂil + 29, (2.30)
and I
S | o S 2.31
B L + 1 +4, (2.31)

respectively. The extra phase term represented by § is necessary to quantify the phase jump
produced around the boundaries of the g-mode cavity. This is beyond the scope of this dissertation,
and thus, see Appendix of the original paper (Cunha et al., 2019) for more discussions.

There are clear differences in explicit forms between the expression (2.29) and the ones derived
based on the variational principle such as the expression (2.16). For instance, the eigenfrequency
is given as a continuous variable (w) in the former case, and it is discrete (w,,) in the latter cases.
The oscillatory components are not represented by pure sinusoidal ones in the former case as well.
However, the periods of oscillatory AP, patterns are essentially the same; if we replace the contin-
uous variable w with the discrete one wy, and inserting P, = 27/w, into the expression (2.29) with
the help of Equation (2.7), we find that the period is dependent on a ratio between II; L and H;l
as shown in the expression (2.16).

Cunha et al. (2019) have also carried out the validation of the expression (2.29) by comparing
with the numerically calculated oscillatory AP, patterns, which we do not intend to repeat here.

In the case with a slope; NEW

In the previous small subsection, the g-mode cavity is divided into two zones (whose backgrounds
are considered to be smooth compared with the wavelength of the eigenfunctions) by a discontinuity.
Such discontinuous structure is rather rare inside stars; there usually are sharp features with finite
gradients such as chemical composition gradients above a convective core (see Figure 1.2 in Chapter
1). It is thus convenient for us to formulate oscillatory AP, patterns in the presence of a sharp
feature with a finite gradient as schematically shown in Figure 2.7, which is the main theme in this
small subsection.

We follow almost the same procedures and assumptions as in the previous small subsection to
derive the expression, except for a different definition of the strength of sharpness, which is

A, = (%)exp (—(B*A)">, (2.32)

out

where we have three additional variables, namely, By, A, and a free parameter 7, respectively. The
former two, By and A, are defined as
By = Ky (rmid), (2.33)

and
A=ry, — 1y, (2.34)

48



Figure 2.7: Schematic picture of the Brunt-Viisild frequency considered in this small subsection. The radial
wavenumber in the inner cavity and that in the outer cavity are represented by Ki, and Kout, between which is a
gradient characterized by the sharpness (defined as a relative difference between Kin and Kout) and by the width A.
The larger A is, the smoother the gradient is. Note that the unit of the Brunt-Vaiséla frequency N and that of the
II;" are arbitrary.

where rmig = (7u, — 74,)/2. The radial coordinates for the locations of the inner position and the
outer one of the gradient are expressed as r,, and 7,.

The parameters B, and A are introduced in order to effectively represent a deviation from the
original expression (2.29). The parameter B, is related to the inverse of the wavelength at the
middle of the inner position and the outer one of the gradient, and A is related to the scale height
of the gradient there. Therefore, when B,A is quite small (large), the wavelength is much larger
(smaller) than the scale height of the gradient, and thus, the sharp feature can be treated as a
discontinuity (almost a flat structure), leading to the expression (2.29) (a constant AP,) in these
limits.

The final form for oscillatory AP, patterns in the presence of a sharp feature with a finite
gradient is the same as that (2.29); the definition of A, is the only difference. We can, however, see
that the formulation explains the oscillatory AP, patterns well in this case (Figure 2.8). Especially,
it has to be mentioned that adopting the position of the outer boundary of the gradient to compute
! is much more favorable than adopting the inner boundary for II;!, which is clearly suggested
by the better-reproduced periods of the numerically calculated oscillatory AP, patterns.

Note that the derivation described here is just the crude ones mathematically; asymptotic char-
acteristics of high-order g modes are actually lost inside the gradients (if the scale height is com-
parable to the wavelength), and we have to consider the effects on the eigenconditions and the
eigenfrequencies. That should be further investigated in the forthcoming studies.
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Figure 2.8: Comparison of the theoretical expression (2.29) (colored curves) where an alternatively defined A,
(2.32) is used, with numerically calculated AP, patterns (black curves). The numerical computations are carried
out for the Brunt-Viiséla frequency shaped like the one in Figure 2.7, which is characterized by the strength of the
sharpness and the width of the gradient. The top panel shows theoretical AP, patterns, for which the position of the
outer boundary of the gradient is used to compute II;', with different free parameters 1. The bottom panel shows
theoretical patterns as well, though the position of the inner boundary of the gradient is used to compute IT1; 1. This
comparison clearly illustrates that considering the outer boundary (not inner one) as the characteristic position of the
gradient is preferred. Is is also seen that the free parameter n affect the dependence of the oscillatory components’
amplitude; for instance, it seems that n = 1/4 is best producing the numerical results.

2.3 Attempts to describe AP, pattern of realistic stellar models

In this section, oscillatory AP, patterns of realistic stellar models, where the Brunt-Véisala fre-
quency profile is no longer simple as that is assumed in the analyses in the preceding section, with
masses of 1.4Mg and 2.0M are presented. We firstly attempt to interpret the numerically calcu-
lated AP, patterns based on the theoretical formulations developed in the last subsection 2.2. In
particular, we would like to concentrate on the ratio between II; L and H;l, and on the magnitude
of a discontinuity (or sharpness) in the Brunt-Viisila frequency, which are theoretically expected
to determine the period of the oscillatory components of AP, patterns. The second purpose of this
section is to demonstrate the way different prescriptions for mixing processes inside stars during
evolution affect the Brunt-Vaisild frequencies and the resultant oscillatory AP, patterns. Calcu-
lations of 1-dimensional stellar evolution and that of eigenfrequencies are via MESA and GYRE,
respectively.

2.3.1 Relation between Brunt-Vaiisila frequency distribution and AP, pattern
The case of a 2.0My model

We start with an example of a series of 2.0M, evolutionary models, which obviously exhibit oscil-
latory AP, patterns (the right panel in Figure 2.9). We see that as the 2.0Mg star evolves (or, as

50



2.0Mx model

-4 0.05
. ol ,A\/—/"_T 0 045 :- \. - - - //:_’.\\.\:/.’_?.\.k
& . \ /D
& M
S -t Xc=0.605 7 0.04 7
X0=0.455 —
Xem0.155 o
Xc=0.005 ~
-10 T T 0.035 N
Xc=0.605 o
Xc=0.455 o
Ye=0.155 <
v—|<o 0.8 | Xc=0.005 B 0.03 - .
=
-—4\ 0.6 |- -
|
I:'H 0.4 7 0.025 | Xc=0.605 —— |
Xc=0.455
0.2 | R Xc=0.305
Xc=0.155
, ) ‘ | Xe=0.155
0
0 0.1 0.2 0.3 0.4 0.8 1.2 1.6 2
r/R .
Period (d)

Figure 2.9: Brunt-Viiséld frequencies (top left) and buoyancy radii (bottom left) for a series of evolutionary models
with 2.0Me. Each of the buoyancy radii II;* is normalized by that for the whole g-mode cavity Iy ! (see the
definition 2.12) of each model, directly indicating the periods of the oscillatory AP, patterns (see the text). The
corresponding AP, patterns for the models are shown in the right panel. The asymptotic values for AP, computed
with the expression (2.7) are indicated by dotted lines. It seems that the AP, patterns are mainly composed by two
oscillatory components; one with a longer period An ~ 10 and one with shorter period An ~ a few.

the central hydrogen content of the star decreases), the convective core shrinks, and the chemical
composition gradient develops just above the core, leading to a trapezoidal structure in the Brunt-
Vaisélé frequency around r/R ~ 0.1 (see the top left panel in Figure 2.9). This change in structure
along with the evolution can also be confirmed in the mean value of AP, shown by the dotted line
in the right panel in the figure, which decrease as the star evolves. The previous discussions in
Subsection 2.1.2 about the relation between stellar evolution and temporal variation of the mean
value of AP, are simply repeated here.

Then, let us take a closer look at the AP, patterns (Figure 2.10), for example, the one for
the evolutionary stage where the central hydrogen content X, is 0.305 (cyan curves in the figure).
One of the most important quantities to interpret the AP, pattern is the ratio between H;l (the
buoyancy radius of the position of a sharp feature in the Brunt-Véisild frequency) and I ! (that
for the whole g-mode cavity). In the case of the model whose X, is 0.305, there seems to be two
sharp features in the Brunt-Véiséla frequency; one is located around /R = 0.075 and the feature is
almost a discontinuity, and the other one is located around r/R = 0.095 and this feature is smoother
than the former one (see the top left panel). We can easily find the ratios H;l /Iy L for the two
sharp features based on the bottom left panel in Figure 2.10; roughly saying, ~ 0.04 and ~ 0.25,
respectively. According to, e.g., the expression (2.16), the period of the oscillatory component is
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Figure 2.10: Expanded looks into the three panels in Figure 2.9.

given by IT,, /TIy, the inverse of the quantity we have just obtained, leading to the analytically derived
periods An ~ 25 and An ~ 4 for the almost-discontinuity-like structure and the rather smoother
feature, respectively. Interestingly, there seemingly exist such double oscillatory components in the
numerically computed AP, patterns, which is somehow consistent with the analytical expressions
such as (2.20).

We can also measure the periods of the numerically computed AP, pattern in the right panel
in Figure 2.9 by directly counting the number of the points between a certain pair of neighboring
peaks. In the case of the X, = 0.305 model (cyan in Figure 2.10), there seem to be two oscillatory
components as mentioned in the last paragraph, and the periods are An ~ 30 and An ~ 4 showing
a rather satisfactory consistency between the analytical and the numerical periods.

Although we qualitatively succeed in explaining the periods of the two oscillatory components
in the numerically computed AP, pattern, it is much more difficult to discuss the amplitudes of
them. This is because the amplitude is dependent on various factors such as the strength of the
sharp feature, the g-mode period (note that this ”period” is the period of the eigenoscillation), the
buoyancy radius of the position of the sharp feature, and so on. This point is discussed later in the
last section of this chapter where the AP, pattern of KIC 11145123 is studied in detail.

The case of a 1.4M; model

Another example is a 1.4Ms model, which does show oscillatory AP, patterns (Figure 2.11).
Though it seems that there exists only one oscillatory component (with a longer period) in each of
the AP, patterns, it is just the matter of the amplitudes; if we look closer at the patterns (Figure
2.12), we find another oscillatory component with a shorter period as has seen in Figure 2.9.

In order to interpret the AP, patterns, the same approach as in the last small subsection is taken
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Figure 2.11: Same figures for a series of 1.4M; evolutionary models. The Brunt-Viisild frequencies are more
smoother than those for 2.0M¢ models in Figure 2.9. In addition, the Brunt-V4isila frequencies are also larger than
the counterparts in Figure 2.9. Both of the two differences above are leading to different degrees of asymptoticity,
which causes the AP, patterns in this figure and those in Figure 2.9 behave differently (see texts for more details).

here. First, based on the Figure 2.11, we determine positions of sharp features in the Brunt-Vaisala
frequency and the corresponding ratios II,,/IIp with which analytically predicted periods for the
oscillatory components in the AP, patterns is obtained. Finally, we compare the analytical periods
with those obtained by directly measuring the periods in the numerically computed AP, patterns.
In the case of the X, = 0.155 model (green), analytically determined periods are An ~ 25 and
An ~ 3 for a longer and a shorter oscillatory component, respectively, and those directly obtained
are An ~ 30 and An ~ 4, thus showing a rather fair agreement.

It should be noticed that the period for the longer oscillatory component is almost the same
during the evolution (see the purple, the cyan, and the green curves in the right panel of Figure 2.11,
indicating that the position of the sharpness which is located just above the convective boundary
is not changed as the 1.4M star evolves. This can be qualitatively explained in terms of the
pressure scale height, defined as H, = —dr/dlnp, at the convective boundary. As it is shown later
in Section 2.4.2, the thickness of the overshooting region is, in MESA, set to be proportional to the
pressure scale height H,,, which can be expressed as RT'/ g based on assumptions of the hydrostatic
equilibrium (dp/dr = —pg) and the equation of state for an ideal gas (p = pRT/p) where R stands
for the gas constant. The temporal variation of H) is determined by the mean molecular weight,
which increases as the star evolves, and by the local gravitational acceleration, which decreases as
the star evolves, and thus, two factors counteract each other, leading to mostly the same values of
H, (if the temperature at the convective boundary does not significantly differ) and the thickness
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Figure 2.12: Expanded looks into the three panels in Figure 2.11. Note that ranges for the abscissae and the
ordinates are slightly different from those in Figure 2.10.

of the overshooting region during the evolution.

Before we close this small subsection, we would like to discuss a difference between the 1.4M, and
the 2.0M models; the former model exhibits much smoother AP, patterns than the other model
does. The difference can be qualitatively explained based on the theoretical expression (2.29) with
an alternative definition of the magnitude of a sharp feature (2.32). The important point is that the
amplitudes are dependent on two factors. One is a relative difference of the Brunt-Vaisalé frequency
(N2 — N1)/N1, where the index one corresponds to the lower side of a sharp feature and the index
two to the upper side. The other factor is the asymptoticity, namely, the ratio between the local
wavenumber of the eigenfunctions and the local scale height of the Brunt-Vaisala frequency.

Remembering the two factors, let us consider the oscillatory components with the shorter pe-
riods; we have to focus on the bump-like feature of the Brunt-Viisala frequency. In the case of
the 2Mg model, the feature is basically described by a plateau-like structure and then a sharp
negative gradient. The width of the gradient (A in Equation 2.32) is thus narrower than that for
the Brunt-Viisala frequency of the 2M model, in which there is no plateau-like structure and a
less steeper negative gradient. Therefore, the 1.4Mg model has a stronger asymptoticity than that
of the 2.0M model, resulting in the smoother profile of the AP, pattern. In addition to the width
A, the value of the Brunt-Vaiiséld frequency in the negative gradient of the 1.4My model is larger
than that of the 2Mg model (see the top left panels in Figures 2.9 and 2.11), also causing the
strong asymptoticity for the 1.4Ms model because the eigenfunctions has a larger wavenumber for
the 1.4Ms model (remember the wavenumber k, ~ LN/wr).

We can also explain the oscillatory components with the longer periods in the same manner,
but the situation is opposite in this case; we find an almost discontinuous structure for the 1.4Mg
model and a steep feature with finite positive gradient for the 2.0M model (see the inner sides
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Figure 2.13: Brunt-Viisild frequencies of various models at two different evolutionary stages (X. = 0.455, repre-
sented by blue and cyan, and X. = 0.155, represented by red and magenta) with different prescriptions for mixing
processes which are at work inside the models, namely, a prescription with overshooting and without diffusion (red and
blue), and one without overshooting and with diffusion (magenta and cyan) (see the top rows). It is clearly seen that
the Brunt-Vaiséla frequency has a different structure depending on which prescription we adopt. The models without
diffusion especially shows multiple jumps of the Brunt-Viisila frequencies in their chemical composition gradients,
leading to much larger amplitudes of their corresponding AP, patterns (bottom rows).

of the bump-like structures in the Brunt-Viisila frequencies shown in Figures 2.9 and 2.11). Such
opposite structures lead to a trend opposite to that for the oscillatory components with the shorter
periods, namely, the amplitudes of the oscillatory components with the longer periods are larger in
the 1.4M¢ model as seen in Figures 2.9 and 2.11.

2.3.2 Origin of Brunt-Vaisala frequency distribution

The previous sections and subsections are devoted to reveal the relation between the Brunt-Vaisala
frequency and the AP, patterns; we are now able to at least qualitatively predict a AP, pattern
once a particular Brunt-Véiséld frequency is given (not depending on whether the Brunt-Viisala
frequency is a physically realistic one or not) without numerically calculating the AP, patterns.
The next question is what determines a distribution of Brunt-Viisala frequency along with stellar
evolution. As described in Subsection 1.1.1, the Brunt-Viisald frequency is affected by multiple
factors such as mass, chemical composition, internal mixing processes, evolutionary stage, and so
on. In this subsection, we would like to focus on the effects of two mixing processes, namely, diffusion
and overshooting, on the Brunt-Vaisala frequency because both of them are frequently adopted in
calculations of stellar structure and evolution though they are difficult to calibrate as well. The
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resulting AP, patterns computed based on the corresponding models are also presented.

Figure 2.13 shows the Brunt-Viisila frequencies (top row) and the AP, patterns (bottom row)
for models with different prescriptions of mixing processes at almost the same age (in terms of the
hydrogen mass content at the center of the model X.). There are two prominent points in terms of
structural differences in the Brunt-Véisala frequencies. One is the existence of jump-like structures
in N2 of models computed without diffusion (see the red and blue curves in the top row of Figure
2.13). This is mainly because there are jumps in the chemical composition gradients V, in the
case of the no-diffusion models (remember the expression for N 2 1.2); if diffusion is activated in
1-dimensional stellar evolutionary calculations, such jumps are erased. These jump-like structures
also affect the AP, patterns as is obviously seen in Figure 2.13, and the amplitudes of the AP,
patterns of the no-diffusion models are much larger than those of the with-diffusion models.

The other is the presence of chemical composition gradients with positive slopes just above the
convective core boundary, which are seen in the with-overshooting models (sece the magenta and
cyan curves in the top row of Figure 2.13). These gradual positive gradients of N? just above
the convective core boundary arise from the subadiabaticity V.q > Vyaq in the overshooting zones,
leading to finite values of N2. Though these features seem to be trivial, the gradient of N? gets fairly
large around the outer edge of the overshooting zone at which the temperature gradient abruptly
changes, and such discontinuity-like structure definitely affects the AP, patterns as we see in Figure
2.13.

Note that the demonstrations shown here are just examples; we have a large number of other
choices with respect to which mixing processes (such as semiconvection, rotationally-induced mixing,
thermohaline mixing, etc.) we activate and what parameters we adopt in stellar evolutionary
computations (see, e.g., Paxton et al., 2011), and each resultant AP, pattern differs from one
another, which on one hand complicates the analysis of the AP, patterns and on the other hand
allows us to investigate the physics deep inside the stars.

2.4 The case of KIC 11145123

The final section in this chapter is devoted to the study of oscillatory AP, patterns of KIC 11145123
to see, as an example, to what extent the theoretical considerations discussed in the previous
sections are helpful for inferring deep interiors of stars, especially regions above a convective core
where chemical composition gradients exist. This section is also relevant to the modeling of the
star (performed in Chapter 4). In the first place, the observed AP, pattern of KIC 11145123 is
shown in addition to other basic quantities as observational uncertainties. A rough picture about
the deep interior of the star which is brought about by the comparison between the theory and
the observation is also given (Subsection 2.4.1). Secondly, fitting procedures to obtain equilibrium
stellar models which moderately reproduce the observed AP, pattern are presented (Subsection
2.4.2), and then, the results are (Subsection 2.4.3). Finally, we would like to discuss a cause of the
discrepancy between the theoretically calculated AP, patterns for the equilibrium models and the
observed ones. For detailed information on KIC 11145123 and the previous studies of the star, see
Section 1.3.

2.4.1 Data

First, we present the observed AP, patterns of KIC 11145123. Figure 2.14 shows comparison of
the observed AP, pattern (red) with the theoretically computed ones (black and blue). The AP,
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Figure 2.14: The same figure as Figure 1.15 in Section 1.3. See more details in the caption of Figure 1.15

patterns computed based on the best model in Kurtz et al. (2014) is represented by blue curves.
The comparison clearly indicates that, not depending on which model we choose, models with fairly
low central hydrogen contents tend to match the observation; this is the way Kurtz et al. (2014)
concluded that the star is at the TAMS stage. Note, however, that what they fitted is the mean
value of the observed g-mode period spacings A_Pg, not the observed AP, pattern itself, thus there
being room for inferring more detailed information on the deep interior of the star. It should be
also instructive to mention the observational uncertainties of the g-mode period spacings. Actually,
they are so small that we cannot see the uncertainties in Figure 2.14.

Then, let me explain the observed AP, pattern based on the discussions in the previous sections.
We especially focus on interpreting periods of oscillatory components, if they exist. One obvious
thing is that there exists an oscillatory component with a short period of about An ~ a few.
Remembering that the period is determined by a ratio H;l /Iy 1 the short-period oscillation in
the AP, pattern suggests that H;l is relatively large and that the region of chemical composition
gradient might be rather broad. Another thing that must be mentioned is that there seems to be a
linear trend in the AP, pattern, namely, a positive slope. That could be related another oscillatory
component with a longer period, which might be caused by the existence of the overshooting zone as
discussed in Subsection 2.3.2. It is nevertheless difficult to directly extract the period of the longer-
period oscillatory component because there are only 14 g-mode period spacings in the observation,
and a typical period for a longer-period oscillatory component is An ~ 30 as we see in Subsection
2.3.1.

In the following subsections, we would like to carry out grid-based modeling to infer the present
structure of the Brunt-Vaiséla frequency of the star and also to understand how such structure has
been formed along with the evolution.
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2.4.2 Fitting procedure

A few procedures to carry out grid-based modeling are given in this subsection.

Parameter range

The number of parameters in the grid-based modeling is three. They are mass, the extent of
overshooting (fovs), and age (represented by AP,). The initial helium abundance is fixed to be 0.26,
and this is because of the fact that the numerically computed A P, patterns are almost independent
of the initial helium abundance as shown later. The initial metallicity is fixed to be 0.003, which is
based on the results of spectroscopic study of the star (Takada-Hidai et al., 2017).

We determined the grid for each parameter as below: mass (1.30 — 1.70Mg, by 0.05M) and
fovs (0.010, 0.015, then 0.022-0.030, by 0.001). The mass range is chosen based on the previous
studies (e.g. Kurtz et al., 2014) suggesting that relatively lower mass models (~ 1.4Mg) favor
the observations. The extent of overshooting is determined based on often recommended values
around foys ~ 0.01 — 0.02. For the grid of age, we have one hundred points between the age when
A_Pg ~ 2150s and the one when A_Pg ~ 1950s, corresponding to around 100,000 years for one
timestep for this mass range. Note that A_Pg is a quantity computed based on N? of the models
following the equation (2.7), not numerically computed one.

In total, we have about 10,000 stellar models.

Settings in MESA

For calculating stellar evolutionary models, a community 1-dimensional stellar evolutionary code
MESA (Paxton et al., 2019), version 9793, is used. The tabulated forms of the OPAL equation of
state and opacity are used in my calculation. The nuclear network is composed by eight elements
whose name is given as ’basic.net’ in MESA, based on which nuclear reaction rates are computed.
The abundances of heavy elements are scaled by the solar values. The outermost atmospheres are
solved assuming Eddington-Grey approximation. We assume no rotation, no magnetic fields, no
mass accretion/gain in the calculation. The convective region is solved via Mixing Length Theory
with anr = 1.7, which is calibrated to reproduce the solar observations (Kurtz et al., 2014). The
Schwartzschild criterion for the convective boundary is chosen. The references are found in Paxton
et al. (2011).

MESA has many options for prescriptions of mixing processes, such as diffusion, overshooting,
semiconvection, thermohaline mixing, rotationally induced mixing, magnetically driven mixing.
Among them, we determine to activate diffusion and overshooting, which are relatively easier to
implement and understand the physics behind compared with the other mixing processes. The
effect of the diffusion is incorporated into the evolutionary calculation by solving so-called Burger’s
equation which is based on Boltzman’s equation in kinematics (Burgers, 1969). Though the scheme
for diffusion is considered to be working well for models with ~ 1Mg, it has been long pointed
out that the scheme often overestimates the diffusion velocity of helium in the outermost layer of
models with > 1.3M, sometimes leading to the depletion of helium there, which has not been
observationally confirmed (Morel and Thevenin, 2002). To avoid such depletion of helium in the
outermost layer of the models, some special scheme are implemented (Morel and Thevenin, 2002).

There are basically two ways of incorporating overshooting in the stellar evolutionary calculation.
In one, overshooting regions are treated as just an extension of convective regions (determined by
the Schwartzschild critetion), and the uniform chemical composition is assumed in the regions (e.g.
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Pedersen et al., 2018). In the other, overshooting regions are not assumed to be fully mixed regions,
and the efficiency of the mixing there is given by a diffusion coefficient which starts with the diffusion
coefficient around the convective core boundary (given based on the Mixing Length Theory) and
exponentially decays with a free parameter (Herwig , 2000). We adopt the latter scheme in this
study. The free parameter (foys) determines the extent of overshooting region, which is one of the
parameters in our grid.

For mesh control in space and time, we use the default settings in MESA. For more information,
see (e.g. Paxton et al., 2011).

Specific procedures

Based on the settings described in the previous small subsection, we calculated a grid of models for
the parameter range defined in the second last small subsection. Below is the way how we chose a
series of models which moderately reproduces the observed AP, pattern.

For a certain mass M, an initial chemical composition (X,Y, Z), and an extent of the ovreshoot-
ing fovs, one evolutionary track is computed with default timesteps in MESA until AP, (included in
MESA outputs) reaches 2200s. Then, we change the timesteps to much smaller ones, correspond-
ing to about 100,000 years. The evolutionary calculation is restarted with the new timesteps and
it is stopped when AP, reaches 1900s. The procedure above is done because the mean value of
the observed AP, of the star is about 2100s, and it is time-consuming if we conduct evolutionary
calculations from ZAMS to TAMS with small timesteps.

All the models whose AP, are between 2200s and 1900's are retained, and the (g-mode) eigenfre-
quencies of the models are computed based on a linear adiabatic oscillation code GYRE (Townsend
and Teitler, 2013). We thus obtain the numerically computed g-mode period spacings APy num
based on the results of oscillation calculation, and look for a model which minimizes the residual
between AP, ,um and the observed AF,. The above procedure is repeated for every set of mass
and chemical composition (the number of the latter parameter is just one in this case, and thus the
procedure is repeated for every mass, practically).

2.4.3 Results

As a result of the fitting procedure described above, we obtained the best model with a certain value
of foys for each mass. The sum of the residuals normalized by the observational uncertainties are
significantly lower of ~ 3 x 10°, than that of Kurtz et al. (2014), which is ~ 10°, obviously showing
the advantage of fitting the observed AP, pattern rather than fitting just the mean value AP,.

Figure 2.15 shows the numerically computed AP, patterns (left panel) and the Brunt-Vaisila
frequencies (right panels) of some of the models chosen based on the procedures described in the
previous subsections. Models with masses ranging from 1.30Mg to 1.60M, are exhibiting almost
the same AP, pattern, i.e. they are basically represented by an oscillatory component with a long
period, which has succeeded in reproducing the gradual positive slope of the observed AP, pattern.
It is also common that another oscillatory component with a shorter period is not evident for models
in the mass range. The value of the extent of overshooting is fovs = 0.027.

The relatively more massive model with 1.70M, is showing a AP, pattern different from those
of lower-mass chosen models. The value of the extent of overshooting is f,,s = 0.015 in this case,
which is smaller than that for low-mass counterparts. We see the outcomes in the AP, pattern and
in N2 for the 1.70M model; the oscillatory component in the numerically computed AP, pattern
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Figure 2.15: AP, patterns of some of the best models obtained based on the procedure (see the text) (colored
curves), and the observed AP, pattern of the star is represented by the black curves (left panel). The corresponding
Brunt-Viisila frequencies for the models are presented in the right column. The lower panel is a closer look of the
upper panel. Note that the observational uncertainties are so small ~ 107%d (Kurtz et al., 2014) that there scem to
be no error bars.

(the purple curve in Figure 2.15) has a longer period than that of low-mass best models, resulted
from the much smaller overshooting region (see the purple curve in the bottom right panel in Figure
2.15) which renders the ratio IT,/TIj larger.

Note that the observed oscillatory component with a shorter period has not been confirmed in
any of the selected models; the amplitudes of the numerical computed ones are much smaller than
the observation. It is thus suggesting the possibility that there should be much steeper features in
the Brunt-Viisila frequency of the star (see the discussions in the small subsection 2.3.2), and we
have to consider what processes during the evolution renders such structure to exist, which is one
of the main topics in the discussion part in this section.

2.4.4 Discussions

As it is demonstrated in the previous section, we have partly succeeded in reproducing the observed
AP, pattern of KIC 11145123; the oscillatory component with the longer period An > 15 can be
fitted by changing fovs, the extent of overshooting. The models obtained show the residuals smaller
than the model of Kurtz et al. (2014), which is definitely an improvement. However, the observed
oscillatory component with the shorter period An ~ a few cannot be reproduced by any of the best
models found in our grid. In this section, we investigate the reason why the tentative models cannot
reproduce the shorter-period oscillation in the observed A P, pattern. First, the dependence of some
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Figure 2.16: Numerically computed AP, patterns of models with a variety of initial helium abundances (colored
curves), which almost completely overlap with one another. The observation is represented by the black curve (left
panel). The corresponding hydrogen profiles and Brunt-Véiséla frequencies are in the upper right panel and in the
lower right panel, respectively. We see little difference in the AP, patterns, the hydrogen profiles, and the Brunt-
Vaisala frequencies. For settings of the evolutionary calculations, see the text.

parameters, namely, initial helium abundance, metallicity, and mass on the numerically computed
AP, pattern is checked. It is shown that dependence on the initial chemical composition is too
small to significantly affect the amplitudes of the oscillatory AP, pattern. We instead confirm the
mass dependence of the AP, patterns. Secondly, perturbations in the Brunt-Vaiiséla frequency 6N
are artificially added to those of the somewhat smooth models in order to check what features can
cause the shorter-period oscillation of the observed AP, pattern.

Little dependence of numerically computed AP, patterns on initial chemical composi-
tions

It is generally considered that the initial chemical compositions (X,Y,Z) are one of the most
important parameters which strongly affect the stellar structure and evolution. In particular, the
size of the convective core is largely dependent on the initial chemical compositions as introduced
in Subsection 1.1.1 for the low-mass stars in this mass range. Thus, they could also affect the
Brunt-Viiséla frequency, and accordingly, the AP, pattern. This is the reason why we check the
dependence in this small subsection.

Figure 2.16 illustrates numerically computed AP, patterns of several models with various initial
helium abundances. The mass of the models is 1.30My, and foys = 0.027 is adopted to carry out
the evolutionary calculations. The metallicity is fixed to be 0.003. The models are fitted to the
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Figure 2.17: Numerically computed AP, patterns of models with a variety of initial metallicities (colored curves),
which partly overlap with one another. The observation is represented by the black curve (left panel). The corre-
sponding hydrogen profiles and Brunt-Vaisila frequencies are in the upper right panel and in the lower right panel,
respectively. For settings of the evolutionary calculations, see the text.

observed AP, pattern in the same way as explained in Subsection 2.4.2. Actually, there is little, or
no, dependence of the initial helium abundance on the AP, pattern, the fact which is later utilized
in non-standard modeling of the star in Chapter 4.

The absence of the initial-Y-dependence (here, Y represents the helium abundance) can be
understood based on the fact that there apparently is no difference in hydrogen abundances of the
models (see the upper right panel in Figure 2.16). The core properties are almost the same, and thus,
so are the pressure scale heights at the convective boundary, rendering the longer-period oscillatory
component of the AP, pattern similar to each other (see discussions in Subsection 2.3.1). In other
words, given a particular set of mass, initial metallicity, and the extent of overshooting, there
exists just one unique (not completely unique, of course) hydrogen abundance profile (and helium
abundance profile as well) which reproduces a mean value of the AP, patterns, and importantly,
such uniqueness inevitably leads to a similarity in the pressure scale heights at the convective
boundaries resulting in the similar AP, patterns. Note that the age is different from each other
because of the different initial chemical compositions; models with lower initial helium abundances
tend to be younger because they usually reach an evolutionary stage with a certain value of central
hydrogen abundance faster.

Figure 2.17 is produced in the same way as Figure 2.16 except that the initial metallicity is the
variable here and the initial helium abundance is fixed to be 0.255. Although the hydrogen abun-
dance profiles are certainly dependent on the initial metallicity (see the upper right panel in Figure
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2.17), the shorter-period oscillatory component of the observed AP, pattern is not reproduced as in
the case where we check the initial-Y-dependence in the last paragraphs (Figure 2.16). This might
be because negative gradients just outside the bump-like structures in the Brunt-Vaiiséla frequency
are rather smooth so that the asymptoticity of the high-order g modes is high there, leading to the
absence of the shorter-period oscillatory components in the modeled AP, patterns (see discussions
in Subsection 2.3.1). Actually, the asymptoticity of the g modes is strongly dependent on mass as
it is explained in the next small subsection.

Therefore, changing the initial chemical compositions is not leading to resolve the discrepancy
between the tentative models” AP, patterns and the observation.

Dependence of numerically computed AP, patterns on mass

As it is shown in the preceding small subsection, changing the initial chemical compositions is not
affecting the numerically computed AP, patterns so much, and we are not able to reproduce, in
particular, the shorter-period component in the observed AP, pattern of KIC 11145123. In this
small subsection, we are going to focus on another important stellar parameter, namely, stellar
mass. It has been already mentioned in Subsection 2.4.3 that the relatively high-mass model with
1.7Mg reproduces the amplitude of the observed AP, pattern better (see the purple curve in Figure
2.15) compared with the other lower mass models, suggesting the potential benefit of checking the
mass dependence of the AP, pattern in a broader mass range.

Figure 2.18 shows numerically computed AP, patterns (left), the hydrogen profiles (upper right),
and the Brunt-Vaiiséld frequencies (lower right) for models with different masses obtained in the
same way as described in Subsection 2.4.2. The initial helium abundance, metallicity, and the extent
of overshooting are fixed to be 0.026, 0.003, and 0.027, respectively. It is evident that amplitudes
of the AP, patterns calculated based on the higher-mass models (more massive than 1.7M) are
relatively large compared with those of low-mass models.

The difference between low-mass models and more massive models in the amplitudes of the
shorter-period components in the numerically computed AP, patterns can be attributed to the
difference in the hydrogen profiles or the Brunt-Viisila frequency. We find such a signature, for
instance, in the negative gradients just outside the bump-like structures in the Brunt-Vaisila fre-
quency (see a sector between 0.06 < r/R < 0.08 of the lower right panel in Figure 2.18); as
mass increases, the absolute value of the negative gradient increases, and thus, the asymptoticity
of high-order g modes becomes less prominent. Furthermore, the Brunt-Vaisila frequency of the
higher-mass models are smaller than those of the lower-mass models (see again a sector between
0.06 < r/R < 0.08 of the lower right panel in Figure 2.18, and compare curves, for example, the
pink one and the green one), which decreases the wavenumber of g modes (k, ~ LN/wr) of the
higher-mass models, weakening the asymptoticity of the g modes more.

Then, what is a cause of the different hydrogen profiles (or the Brunt-Viisila frequencies)?
One possible answer is the balance between the CNO cycle and the pp-chain reaction which are
at work in the deep interiors, namely, the convective core and a part of deep radiative region, the
latter of which has a profound impact on the hydrogen profiles because there is usually no other
mechanisms modifying the chemical composition in the radiative region. In the case of lower-mass
models (roughly speaking, 1.2Ms < M < 1.6My), the pp-chain reaction occurs in a part of the
deep radiative region and the hydrogen profile is prone to be smooth. However, as models has
larger masses, the CNO cycle dominates the pp-chain reaction even in the deep radiative region,
and the hydrogen profile gradually becomes less smooth (or flat) because the ex-radiative region is
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Figure 2.18: Numerically computed AP, patterns of models with a variety of masses (colored curves), which partly
overlap with one another. The observation is represented by the black curve (left panel). The corresponding hydrogen
profiles and Brunt-Viisédla frequencies are in the upper right panel and in the lower right panel, respectively. We
clearly see some improvements in the amplitudes of the computed A P, patterns, especially in the case of more-massive
models (yellow, green, and cyan). For settings of the evolutionary calculations, see the text.

now convective due to the conversion from the pp-chain cycle to the CNO cycle there.

How has the observed short-period oscillatory component been reproduced?

The previous discussion presents one possible resolution; we have to model the star with a more
massive model to reproduce the observed A P, pattern better than the tentative models do. However,
the spectroscopic study of the star indicates that the star is rather a low mass star, with log g ~ 4.2
(in cgs units) and Tog ~ 7450 K. We thus would like to find an alternative resolution persisting to
lower mass models.

To this end, we artificially add perturbations 6 N to the Brunt-Vaisila frequency of one of the
tentative models, namely, a 1.34M; model with Yipie = 0.26 and Zinie = 0.003 (Figure 2.19). We
subsequently compute the asymptotic eigenfrequencies obtained by solving the equation (2.1) where
the perturbed N2 is used. Figure 2.19 illustrates the AP, patterns computed based on the perturbed
N2, Though the mean values AP, are smaller than that of the observation (which is because we
just add positive 0N, and thus the integral [ Ndlnr increases, leading to the decrease in A_Pg), the
perturbed AP, patterns have much larger amplitudes for the shorter-period oscillatory components
than the unperturbed one does. Such perturbations seem to be too large to develop inside the real
stars, but we can find a similar structure in the no-diffusion models (see Figure 2.13), suggesting
the possibility that weakening the diffusion process might lead to a better agreement between the
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leads to better agreements between the models and the observation.

model and the observation, which is discussed in Subsection 4.2.3.

2.5 Summary of this chapter

Theoretical attempts to relate the A P, pattern with some parameters characterizing the distribution
of the Brunt-Vaisila frequency have been given based on the asymptotic approximation for high-
order g modes. Following the two different treatments, one by Miglio et al. (2008) and one by Cunha
et al. (2019), we have presented several new analytical expressions for the AP, pattern, which are
validated by comparing them with AP, patterns numerically computed based on simple artificial
Brunt-Viiséla frequencies. Then, we have attempted to explain AP, patterns computed based on
realistic Brunt-Vaisala frequencies with the analytical expressions. Though it is still challenging for
us to completely explain the AP, patterns of the realistic stellar models, we have found that a longer
periodic component in the AP, patterns are due to sharp features in the Brunt-Vaiiséld frequency
caused by the convective overshooting. By changing the extent of overshooting fos in stellar
evolutionary computations, we have found that foys = 0.027 is most appropriate for reproducing
the positive slope seen in the observed AP, pattern of KIC 11145123, which is incorporated to
the non-standard modeling demonstrated in Chapter 4. We finally propose that the discrepancy
between the AP, pattern of the current best model and the observed one could be resolved by
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adopting more massive models or by considering some physical mechanisms such as much weaker
diffusion which render the chemical composition gradient of the best model much steeper.
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Chapter 3

Non-standard modified-envelope
modeling

Chapter 3 is primarily devoted to a novel scheme of non-standard modeling developed by us. Af-
ter the current status of the non-standard modeling of stars, especially those treating mass ac-
cretion/loss, is briefly introduced in the first section 3.1, the basic concepts and the theoretical
formulations in our scheme of the non-standard modeling are presented (section 3.2). The validity
of the developed scheme is checked in detail in the third section 3.3 for each step in the scheme.
Then, eigenfrequencies of envelope-modified models computed based on our scheme are compared
with those of the original unperturbed models. Structural differences are also discussed in Sec-
tion 3.4. The scheme is applied for constructing an alternative model of KIC 11145123, which has
succeeded in reproducing the observed frequencies of the star with the initial helium abundance of
~ 0.26, lower than ~ 0.34 for the model obtained by Kurtz et al. (2014) (section 3.5). Other possible
applications of the developed scheme in a broader perspective with respect to stellar physics are
given in Section 3.6, and finally the summary of this chapter is presented in Section 3.7.

3.1 A brief introduction

As is described in Subsection 1.1.2, non-single-star evolution is not uncommon for a significant
fraction of stars such as those in multiple stellar systems; they are sometimes interacting with
the other stars in the system or they have experienced such interactions at some time during the
evolution. There are a large number of stars which are thought to have experienced interactions with
other stars, for instance, stars in Algol-type binaries or those of blue straggler stars (see Subsection
1.1.2), and thus, it should be not appropriate to compute stellar models of these stars with ordinary
1-dimensional stellar evolutionary codes as are introduced in Subsection 1.1.1; we need to rely on
models calculated in non-standard ways to understand the internal structures to some extent.
There have currently been multiple 1-dimensional stellar evolutionary codes in which mass ac-
cretion onto the star or mass loss from the star is taken into account for computing the structure
and evolution of the stars (e.g. Paxton et al., 2011). Some codes are also able to simultaneously
compute evolutions of stars in a binary system, in which mass transfer from the more massive
model to the less massive one via Roche Lobe Overflow can be treated in addition to the orbital
evolution of the system (e.g. Paxton et al., 2015). These codes have been frequently utilized for
studies of, for instance, mass accretion onto a white dwarf (Nomoto, 1982), mass accretion onto
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a pre-main-sequence star (Kunitomo et al., 2017), instability of Roche Lobe Overflow in a binary
system (Boffin et al., 2015), etc.

However, we can hardly claim that the schemes treating binary interactions in these stellar
evolutionary codes are complete; it is especially the case for the schemes concerning mass accretion,
where we have to accept several assumptions in terms of the extent to which the envelope are
affected, the thermodynamical states and the chemical compositions of accreted materials, how
much angular momentum is transferred to the envelope, and so on (Kunitomo et al., 2017). With
phenomenological prescriptions, we need to calibrate the schemes by comparing with observational
studies, but it is of a great challenge for us to observationally extract information on the interiors
of stars (Chen et al., 2020), hindering us from testing the schemes. We have to, instead, rely on
numerical simulations of mass accretion onto a star to put constraints on free parameters in the
phenomenological prescriptions (Kley and Lin, 1996).

Another issue is related to how to determine the structure of regions affected by mass accretion.
The relaxation methods such as the Newton-Raphson method are often used to calculate the mass
accreted region (e.g. Paxton et al., 2011). Though the model thus computed satisfies a set of
equations (namely, the hydrostatic equation, the equation of mass conservation, the equation of
temperature gradient, and the equation of energy conservation; explicit forms can be found in
Paxton et al., 2011), it is not obvious whether the regions affected by mass accretion are always
retaining the thermal equilibrium states or not, and there is room for incorporating more realistic
physics with dynamical timescale into the schemes.

3.2 Formulation

This section concentrates on establishing a new scheme of non-standard modeling taking into ac-
count chemical composition modification in the envelope of stars (which is thought to be caused
by mass accretion). First, we demonstrate how to model the effects of such modifications of the
chemical compositions on the structure of a stellar equilibrium model. We assume that the effects of
chemical composition modification can be expressed with four elementary steps (subsection 3.2.1).
We also present the mathematical formulations for the steps (subsection 3.2.2), which are to be
numerically solved in the non-standard modeling of real stars including KIC 11145123 in the later
section 3.4.

Note that, in this section, the alphabet [ and m mean not the spherically degree and the
azimuthal order used in helio- and asteroseismology, but the local luminosity and the mass inside
concentric sphere to describe a stellar model (see Subsection 3.2.1).

3.2.1 Basic concept

Throughout this dissertation, a model of a star at a certain age is considered as a sphere whose
interior is divided into multiple spherical layers called mass shells. The mass inside the concentric
sphere m is often taken as an independent variable. Dependent variables as functions of m (strictly
speaking, they are also functions of time which is assumed to be fixed here), namely, the distance
from the center of the star r, the pressure P, the temperature T, the local luminosity [, and the
mass fractions for each chemical element X; (the index i represents each chemical element), together
with other parameters such as the thermodynamic quantities (the density p, the adiabatic sound
speed c?, and so on), the opacity &, and the nuclear energy generation rate ¢ are assigned for each
mass shell so that the set of the equations for stellar structure and evolution (see, in particular,
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Figure 3.1: Schematic view of the three models and the relations among them.

Section 6 in Paxton et al., 2011) is satisfied with the variables above with certain precisions. This
is the standard view of a stellar model, and let us call the model Mj (see Figure 3.1).

Then, how do we model the effects of the chemical composition modification (which is assumed
to be caused by, for instance, mass accretion) on the stellar model My defined in the last paragraph
and incorporate the effects on the structural variables (r, P,T,1, X;)? We simplify the effects with
four steps as described in the following paragraphs.

First, we determine a particular mass shell in the model above which the chemical compositions
X, are to be changed. The amount of the modification to X; is arbitrary, and an example of the
explicit forms for the amount is given in the next subsection 3.2.2 as a function of m. We fix the
structural parameters other than X; (namely, r, P, T, and ). The thermodynamic parameters, the
opacity, the nuclear energy generation rate, and so on are accordingly changed based on the already
computed tables such as OPAL. Note that there are usually two degrees of freedom in terms of the
variation in thermodynamic quantities when X; are changed. In this study, the density p (in other
words, the distance of the mass shell from the center r) and the temperature T are assumed to
be fixed. We can instead select the other sets of parameters to be fixed, for example, the specific
entropy s and the density p.

The modification introduced in the first step results in the change of the mean molecular weights
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w of the modified mass shells, also leading to the change of the pressure P. This spherical model My
is thus no longer in hydrostatic equilibrium state; the hydrostatic equation is not satisfied with the
new set of modified parameters (remember that r is assumed to be fixed, and thus the gravitational
force is not changed though the pressure gradient is). Let us call this model the perturbed model
M. We have to resettle the model M to a hydrostatic equilibrium state by considering that
the perturbed state is caused by radial displacements added to another hydrostatic equilibrium
state (denoted as M in Figure 3.1) different from the unperturbed model. The model M; can be
obtained by solving the second order differential equation formulated based on the linear adiabatic
radial oscillation which is derived in Subsection 3.2.2. This is the second step.

In the second step, the modification is assumed to be small enough that we can treat the
modification as a perturbation, which is required to guarantee the validity of the radial displacements
determined by solving the linear differential equation. Therefore, we have to repeat the step 1 and
2 many times to obtain a model whose outer region is significantly modified compared with the
unperturbed model My. We denote the model obtained in this way as M;’.

Finally, because the model M;’ is considered to be deviated from a thermal equilibrium state,
we have to again resettle the model toward a thermal equilibrium state. This final step can be done
by, for instance, applying the Henyey method to the model M;’. In principle, this stage is somehow
similar to the contraction phase of the pre-main-sequence stars for which rates of gravitational
energy generation €, is negative. Some explanations for £, can be found in Subsection 3.3.2.

3.2.2 Equations in the scheme

The mathematical formulations to describe the steps in the last subsection are presented in this
subsection. Let me start with the set of equations for stellar structure which the parameters of the
unperturbed model My satisfy, expressed as below:

ary __Gm

= 3.1
dm 4rrg’ (3.1)
drg 1

-0 - 3.2
dm  Anrdpo’ (3:2)

dTo Gm To
=V _ - 3.3
dm 4rrd Py 0 (3.3)

and dl

ﬁ == 571,0 — 5,/,0, (3.4)

where the subscripts 0 are representing the unperturbed state of the model My. The actual tem-
perature gradient Vo is defined as (dIlnTp/dIn Py). The other parameters have the same meaning
as in the last subsection.

In the first step, the outer envelope is modified to some extent, i.e. we artificially add a small
perturbation to the chemical composition p of the unperturbed model M

o — p1 = po + g (3.5)

It is totally up to us to decide how to modify the envelope. For example, in the following section
3.3, we exchange hydrogen with helium assuming that the mass coordinate m is unchanged. The
corresponding explicit form for du is given there.
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We also assume that the temperature and the density are the same as those of the starting model
Mjy. Based on these assumptions, we can calculate the perturbed pressure P,q by interpolating
tables of equation of state such as OPAL,

Py = P(po, To, pro) — Pma = P(po, To, p1). (3.6)

It is then obvious that the perturbed model M| is not in a hydrostatic equilibrium state as described
in Subsection 3.2.2.

In the second step, we consider that the deviation from the hydrostatic equilibrium state is
caused by adding the radial displacement &, to another hydrostatic equilibrium model M; (see
Figure 3.1). The structural parameters of the model M; must satisfy the hydrostatic equation as

bellow: P a
L= (3.7)

dm — dmrd
where the subscripts 1 are representing the model M;. We can relate the new parameters to those
of M as

TN =Ty — fr, (38)
Py = P, — 6P,
Ty =Ty — 6T, (3.10)
and
p1 = po — dp. (3.11)
If we substitute relations (3.8) to (3.11) for expressions (3.7), we have the following equation
d(Pua—0P) ___ Gm (31
dm Art(rg — & )*

Note that we are not considering perturbed equations for the temperature gradient. For an alter-
native scheme where the equation of the temperature gradient is taken into account as well can be
found in Appendix A. The equation of the energy conservation is also not considered here, and it
is validated by the fact that we assume that the local luminosity [ is fixed, and that [ is strongly
dependent on the innermost region to which the modification is added in this case; 6l = 0.

Assuming that the perturbations are small enough to neglect the perturbed quantities of higher
than the first order, the equation above can be further simplified as bellow:

_d(éP) _ Gm &
dm 47rr§ )

— 5h, (3.13)

where 0h is defined as

dpmd Gm
==

5h = (3.14)

dm 4rrg’

The perturbed (thermodynamic) quantities are dependent on how we take the pathway from
M to M{. We discuss the simplest way where the adiabatic process is assumed. For another way
to deal with it, see Appendix A. In the adiabatic processes, there is no heat transfer among the
mass shells of the model. We can relate the small perturbations of the thermodynamic quantities
such as 0P, 6T, and dp to their values P4, Ty, and pg with adiabatic exponents as follows:

oP op
22
Pra Po

(3.15)
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and

oT op
— =T3—-1)—/, 3.16
T Ts—1) p (3.16)
where the two adiabatic exponents are defined as
0ln P
I = 3.17
! <a In p )ad ( )
and Sl T
n
I's—1= , 3.18
’ < 0 In p )ad/ ( )

and they can be obtained from tables for equation of state.
When we insert expression (3.15) into equation (3.13), it can be rewritten as

Gm 45,
47r7“§ A

d
f%(cfndap) =— — 0h. (3.19)

The adiabatic sound speed for the model M} is expressed as c?nd. Let us then consider the mass
conservation in the case of the linear oscillation, namely,

P+ V- (po€) =0, (3.20)

based on which we can relate the density perturbation §p and the radial perturbation &, in the

following way L
2
6/) = —porg dro (T0£T)~ (321)

We have used a relation between the Eulerian perturbation (p') and the Lagrangian perturbation
(6p), and we adopt the spherical coordinate to articulate the specific form of the differentiation.
For the convenience in later discussions, we express the differentiation in expression (3.21) in terms
of the mass coordinate using the expression (3.2)

2
op = -4, — 4mrdpd
To

dg,

e (3.22)

Combining the expressions (3.19) and (3.22), we finally have a linear differential equation for
the radial displacement &, in the case of the adiabatic process as follows:
20 &4 d

2p02 d¢ d 2,002 Gm
2 2 22 md md
47 Topocmd B + (47( Topocmd) + o :| " + |: < To ) + T8:|§7- + 6h - O (323)

Equation (3.23) can be numerically solved when we have all the properties of the perturbed model
M. We can compute the density perturbation dp based on expression (3.22), and subsequently,
the temperature perturbation §7" based on expression (3.16). Because the differential equation has
been the linearization of the perturbed equation (3.12), we have to iterate the procedure explained
above.

After we resettle the perturbed model with one perturbation in the mean molecular weight, we
just repeat the same procedure until we obtain the model whose envelope is as modified as we would
like to. There are thus no special mathematical formulations in the third step and the fourth step.
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3.3 Demonstration of the scheme

In this section, the mathematical formulations developed in the last section are applied for stellar
models. There are two primary goals in this section; one is to present numerical procedures to
practically carry out the scheme, and the other is to validate the numerical calculations for future
applications (as shown in Sections, 3.5, 3.6, and those in Chapter 4). In particular, one of the
essential roles of the developed scheme, namely, reestablishing hydrostatic states of stellar models,
is mainly tested.

Stellar models are computed via MESA (version 9793 Paxton et al., 2015). Neither rotation
nor magnetic fields are assumed in the computation. The OPAL tables are used for both the
equation of state and the opacity, and the nuclear reaction rate is obtained by interpolation based
on a built-in table in MESA, called ‘basic.net’. As mixing processes during the evolution, diffusion
and overshooting are activated (for information on prescriptions of the two mixing processes, see
Subsection 2.4.2). The free parameter in the Mixing Length Theory aypr is 1.7. The mass, the
initial helium abundance, and the initial metallicity of the models are ~ 1.4Mq, ~ 0.26, and 0.003,
respectively. These settings are determined following those of the best model of Takada-Hidai et al.
(2017).

3.3.1 A resettled model obtained for just-once perturbation; step 1 and 2
Perturbation to mean molecular weight in stellar envelope

First, we have to determine an explicit form for the modification in the mean molecular weight u as
has been already mentioned in Subsection 3.2.2. In practice, the equation of state is tabulated as
functions of the density p, the temperature 7', the hydrogen mass fraction X, and the metallicity Z,
and the mean molecular weight is provided as one of the outputs in the case of MESA. Therefore,
what we perturb are not g but X and Z. We assume that the metallicity is fixed in the scheme,
and the modification in X as a function of the mass coordinate m is expressed as

6X = Xypd — Xo = —f % tanh(m n 1), (3.24)
«

in which X4 and X are hydrogen mass fractions for the perturbed model M/, and the unperturbed
model My. There are three free parameters in the expression (3.24), namely, 3, «, and m. which
determine the extent, the width of a transition, and the depth of the modification, respectively (see
Figure 3.2). Note that the modification in the helium mass fractions JY is given as 6.X so that the
sum of the mass fractions remains to be one.

Deviation from hydrostatic equilibrium

Based on the modified chemical compositions (X4, Yind, Zo) in addition to the density pg and the
temperature Ty of the perturbed model (remember that these two variables are assumed to be fixed
in the modification of chemical compositions), the thermodynamic quantities such as the pressure
P4, the mean molecular weight pn,q, the sound speed cfnd can be obtained by interpolating the
equation of state table. A module for interpolating the table for equation of state which is built in
MESA is used.

Then, we can compute the deviation from the hydrostatic equilibrium state dh with the ex-
pression (3.14). Figure 3.3 illustrates dh computed for the corresponding perturbations in X and
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Figure 3.2: Examples of the modifications in the hydrogen mass fraction computed following the equation (3.24),
with different abscissas, namely, the fractional radius r/R (top), the fractional mass m/M (middle), and the mesh
number (bottom). Note that the fractional mass is represented by 1 — m/M. Four ways of modification are shown
changing the parameters o and 5. The parameter m. is fixed to be 0.99976. It is seen that as 8 increases the amount
of the modification increases as well. Increasing « leads to the shallower transition from the unperturbed region to
the perturbed one.

Y (see Figure 3.2). We can qualitatively explain dh based on the equation of state for an ideal
gas assuming the full ionization. In that case, du can be expressed as §(u~!) ~ 4/50X, where a
simple formulation p=! = 2X + 3/4Y + 1/2Z and the assumption that §Y = —6X and 6Z = 0
(the metallicity is fixed) are used. Because the pressure of an ideal gas is inversely proportional
to p, 6P can be expressed as Pyud(p~!). The deviation from the hydrostatic equilibrium state is
essentially given as the first order derivative of the 6P caused by du (see the equation 3.14), and
thus, we can readily compute §h without actually interpolating the table for equation of state. The
semi-analytically computed dh is illustrated in Figure 3.3, and showing a good agreement between
the semi-analytical one and those obtained based on the table for equation of state. Nevertheless,
the discrepancy gets relatively large in the outermost envelopes where partial ionization of chemical
elements is becoming significant.

Resettling to hydrostatic equilibrium

Now we have all the quantities required to solve the ordinary second-order linear differential equa-
tion (3.23). As an inner boundary condition, & = 0 at the center of the model is imposed because
the radial displacements are considered here. An outer boundary condition is (d¢,/dm) = 0 at the
surface, which is derived from the so-called zero boundary condition P = 0 (the Lagrangian per-
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Figure 3.3: Deviation from the hydrostatic equilibrium defined in the expression (3.14), with different abscissae /R
(top), m/M, and the mesh number. The deviation §h is computed following the procedure described in text based
on the modification expressed with the parameters a = 10~*, 8 = 0.0015, and m.=0.99976, corresponding to the red
curve in Figure 3.2 (also red solid curve in this figure). The black dotted curve is computed suming the equation
of state for an ideal monatomic gas, and it is clearly seen that the two curves are almost identical except for the
outermost regions where the effect of the partial ionization gradually becomes significant. See text for more details.

turbation of the pressure is zero at the surface) often adopted in calculating stellar linear adiabatic
oscillations (Unno et al., 1989).

The differential equation is solved based on the second-order implicit scheme where the staggered
mesh is adopted to describe the quantities and their derivatives (see, for example, Figure 9 in Paxton
et al., 2011) In the scheme, numerical integration is carried out from the center with the boundary
condition for & and two arbitrary initial guesses for d&,/dm there. Each integration provides us
with the corresponding surface value of d¢,/dm, and by interpolating the two initial guesses so that
the interpolated d&./dm to be zero, we determine a new value ¢ with which numerical integration
is conducted again to obtain the final solution of the equation (3.23).

The radial displacement &, thus obtained is substituted for the relations (3.8) and (3.10) to
compute structural variables r; and 77 of the resettled model M;. The equation (3.16) is used to
compute 07. The expression (3.22) combined with &, presents dp, leading to p; via the relation
(3.11). Based on the newly defined variables, the thermodynamic quantities and the deviation dh
are calculated, and if dh is larger than a certain threshold (~ 10~% in relative difference, which is
of almost the same order as that in MESA), the above differential equation is solved again with
the new variables. This iteration continues until §h becomes smaller than the threshold (see Figure
3.4).
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Figure 3.4: A series of deviations from the hydrostatic equilibrium §h iteratively obtained for just once perturbation
in the hydrogen fraction. The same set of the parameters «, 8, and m. are used, as is in Figure 3.3, to describe the
perturbation. It is evident that Jh becomes smaller and smaller (red to pink) as the linear differential equation (3.23)
is iteratively solved. Though it seems that dh obtained after the procedure has been iterated seven times (orange)
is so small that it is almost totally overlapped with the fifteenth 6k (pink), the seventh §h is quite large around the
central region (0-50), which is the reason why we needed to iterate the procedure fifteen times to acquire the fifteenth

oh.

3.3.2 A resettled model obtained for many-times perturbations; step 3 and 4

In the previous subsections, the numerical implementations of the developed scheme for computing
stellar equilibrium models, where effects of the chemical composition modification (thought to be
caused by, for instance, mass accretion) are taken into account, are demonstrated in detail, and the
validity of the scheme for just-once perturbation has been confirmed. Then, the next thing to be
done is to repeat the procedure until the envelope of the model is “significantly” modified compared
with the unperturbed one; remember that it has been assumed that the modifications are small
enough to be treated as a perturbation terms higher than the first order of which can be negligible.

This subsection is devoted to discussions about the validity of an envelope-modified model which
is obtained by repeating the procedure (step 1 and 2) 10* times. The modification to the hydrogen
fraction is the same on the course of the repetition, and it is given by the expression (3.24) with
the following parameters: o = 1074, 8 = 0.0015, and m.=0.99976.

Is it in hydrostatic equilibrium?

It is possible, for instance, that numerical round-off errors which have propagated to be larger and
larger during the iterative process lead to some problems in the obtained model. To check such
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Figure 3.5: Hydrogen fractions for the envelope-modified model (green) and for the unperturbed model (black).

kinds of numerically arising problems, the deviation from the hydrostatic equilibrium dh of the
model (obtained after 10* repetitions of the steps 1 and 2) is computed and it has been confirmed
that dh is at most of the order of 107 which is almost the same as those for ordinary stellar models
computed via MESA. The hydrogen fraction of the envelope-modified model is shown in Figure 3.5.

Toward thermal equilibrium

The envelope-modified model is in a hydrostatic equilibrium state, but it is, generally speaking, not
in a thermal equilibrium state. This is because we adopt the assumption of the adiabaticity when
the perturbed model is resettled; the timescale for the resettlement is thought to be the dynamical
one, and the heat exchange is assumed to be negligible. To check whether the envelope-modified
model is really in the thermal equilibrium state or not, we have to compute residuals between the
right hand side and the left hand side of the set of the equations for stellar structure (3.1) to (3.4),
and if necessary, we also have to resettle the model to the thermal equilibrium state. This can be
done, for instance, by putting the model into the Newton-Raphson-style iteration module built in
MESA (Paxton et al., 2011).

Figure 3.6 shows a result of such computations, namely, the envelope modified model is put
into MESA, and the subsequent evolution is computed based on the Newton-Raphson method
incorporated in the code. We see temporal changes of the rates of gravitational energy generation
€g, in units of erg/g/s, for the two models (note that the age of the modified model is fixed during the
steps 1 to 4). The energy generation rate e, is related to the deviation from a thermal equilibrium
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Figure 3.6: Time evolution of the rates of gravitational energy generation €, (see text for the definition) in the
envelope of the model, after the envelope-modified model is put into MESA to compute the subsequent evolution. It
is obvious that €, decrease as the model evolves, and additionally, it decreases linearly in terms of time, which enables
us to roughly estimate the time scale for an envelope-modified model to regain the thermal equilibrium state.

state (see, e.g. Kippenhahn et al., 2012), and in MESA, it is defined as

o OT 00P

ot —CPE + ; o’ (325)

where ¢, is the specific heat at the constant pressure, and 4 is one of the thermodynamic quantities

defined as below: 91
np
o= . 2
<:é)lll j“j> Pﬂu (3 6)

Roughly speaking, e, decreases linearly in terms of the time as the model evolves. Since typical
values for €4 are around 1072 in the envelope of an ordinary stellar model, we have a crude estimate
for the thermal relaxation time as a few million years, which corresponds to the thermal timescale
of the stars in this mass range (~ 1.4Mg). Therefore, for the coming discussions from now on
(especially in Chapter 4), we evolve the modified-envelope model for the thermal timescale to
regain the thermal equilibrium state.

Comparison with a rather simple scheme based on MESA modules

As a final test of our developed scheme, we construct a rather simple scheme based on MESA
modules which can, in a way slightly different from our scheme, compute internal structures affected
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Figure 3.7: Hydrogen profiles of the modified envelope models obtained based on our scheme (purple) and the
simple scheme described in the text (cyan) against three different horizontal axes, namely, the fractional radius (top),
the fractional mass (middle), and the mesh number of the cell (bottom). Note that the fractional radius is normalized
by not the radius of the corresponding model but the solar radius in order to emphasize a difference in the radii of the
two models. It should be also noted that the mesh number is arranged from the surface to the center of the model.
There does not seem to be a significant difference between the two envelope-modified models.

by chemical composition perturbations. Then, we compare the internal structures determined by
our scheme and those determined by the simple one.

The simple scheme is constructed basically in the same way as described in the previous sub-
sections 3.3.1 and 3.3.2. We prepare a stellar equilibrium model and perturb the envelope following
the expression (3.24), and the perturbed model deviated from both hydrostatic and thermal equi-
librium states are somehow resettled to new equilibrium states. In contrast to the scheme developed
by us, where the hydrostatic equilibrium of the deviated model is first retained (by adding radial
displacements) and secondly the thermal equilibrium is (based on the Newton-Raphson method
equipped with MESA), the simpler scheme simultancously allows the deviated model to be reset-
tled to the hydrostatic and thermal equilibria by directly carrying out the Newton-Raphson method
for the deviated model, which is relatively easy to implement; we just have to exchange the chemical
compositions in a MESA input file from the unperturbed one to the perturbed one, put the file in
MESA | and run evolutionary calculation, again and again.

Figures 3.7 and 3.8 compare some of the structural variables obtained with our scheme and
those obtained with the simpler scheme. Global stellar parameters for the unperturbed model are
M = 1.36 Mg, Yinit = 0.250, Ziniy = 0.002, and foys = 0.027. The age is determined to reproduce the
mean AP, which is about 2050s. The parameters for one chemical composition perturbation are as
follows: a = 5x 1074, 8 = 0.001, and 1 —m./M ~ 4x10~°. The perturbation is added two hundred
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Figure 3.8: Rates of gravitational energy generation £, of the envelope-modified models obtained based on our
scheme (purple) and the simple scheme described in the text (cyan). The meanings of the horizontal axes are the
same as in Figure 3.7. Both models have evolved, in total, 2 Myrs from the same age of a certain (unperturbed)
equilibrium model to retain thermal equilibrium state. It is obviously seen that the envelope-modified model computed
based on our scheme requires, though quite small (see, for instance, Figure 3.6), some more time to resettle to the
thermal equilibrium states.

times. In the case of the simple scheme, the perturbed chemical composition is put into MESA (for
carrying out the Newton-Raphson method to obtain the corresponding envelope-modified model)
and the model has evolved for 10,000 years every perturbation; a series of envelope-modified models
are always in the thermal equilibrium states, which is different from an approach taken in our
scheme where the model perturbed two hundred times is resettled to the thermal equilibrium at
once (by evolving the model for 200 x 10,000 = 2 Myr via MESA).

Although the chemical composition perturbation at once is set to be the same, the hydrogen
profile is slightly different from each other (see Figure 3.7). This is partly because the parameter
m. gradually changes as iteration proceeds in the case of the simpler scheme, i.e. the chemical
composition perturbation is accordingly different. We nevertheless see a resemblance in the way the
hydrogen profiles are modified in the envelopes between the two schemes. Such similarity can be
found also in the rates of the gravitational energy generation in a relatively deep region (deeper than
r/R < 1.4, see the top panel of Figure 3.8), though the envelope region (deeper than r/R > 1.4, see
the top panel of Figure 3.8) of which exhibits a significant difference, showing that it is necessary for
us to evolve the envelope-modified model computed by our scheme for a while to realize its thermal
equilibrium state. However, the deviation from the thermal equilibrium state itself is quite small
(see Figure 3.6).

In any case, we do not see a significant difference in the outputs of the two schemes, and thus,
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Figure 3.9: Modified hydrogen fractions (left) and the corresponding eigenfrequencies (right). The envelope-modified
models (left) are obtained after 2500 (blue), 5000 (turquoise), 7500 (gold), and 10* (red) times perturbations. The
hydrogen abundance decreases more as the envelope is perturbed more. P-mode eigenfrequencies for radial modes
(blue), dipole modes (red), and quadrupole modes (green) are shown in the right panels because the modification of
the envelope should mainly affect not the g-mode cavity but the p-mode cavity, leading to the frequency variations
for p modes. As expected, the more the envelope is modified, the more the eigenfrequencies is shifted.

our scheme can be validated in this respect as well. Finally, it should be instructive to mention
that the whole computation time to obtain a modified model is slightly smaller for our scheme,
suggesting a slight advantage of using our scheme. In addition, our scheme allows us to purposely
compute stellar structures not in thermal equilibrium states, which might be too rare for us to
observe in reality, but is valuable at the same time as later discussed in Subsection 4.2.3 where the
possibility of KIC 11145123 being out of the thermal equilibrium states is tested with our scheme.

3.4 Frequency calculation for envelope-modified models

This section is partly independent from the preceding ones, and there is no additional prescriptions
for the scheme to be shown. Instead, eigenfrequencies of an envelope-modified model which is in
the hydrostatic and thermal equilibrium states are presented because to compute the frequencies
is one of the most prominent ingredients for carrying out asterosesimic modeling as is described in
Chapter 4.

The basic settings for the eigenfrequency calculation follows. First, we prepare an unperturbed
model. The mass and the initial helium abundance is 1.30Mg and 0.260. The metallicity is 0.003,
and it is unaltered during the envelope-modifying modeling. The age of the model is determined
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(2500, 5000, 7500, or 10* times) and a particular mode, respectively. The unperturbed model is designated with i = 0.
The envelope mode inertia is computed by integrating p|€;|? in a part of the envelope determined by us before hand
(here, the envelope is defined as a region /R > 0.7). Note that the total mode inertia (obtained by carrying out the
integration throughout the model) is normalized to be 1/47. Rough proportionality of the relative frequency variation
with respect to the extent of modification and the envelope mode inertia can be confirmed.

based on the asymptotic value of the AP, (see the definition in Chapter 2), and the evolutionary
calculation is stopped when AP, (computed with the Brunt-Viisild frequency of the model) is
2100s. The extent of overshooting fous (see Chapter 2) is set to be 0.014. The diffusion process is
activated. The default settings in MESA are used for the other prescriptions. Then, the envelope-
modifying scheme is applied to the model, with the modifications parameterized as o = 107,
B =5x 1075 and m. = 0.99976. The modification is added to the unperturbed model 104
times, and models perturbed 2500, 5000, 7500, and 10* times are preserved for calculations of the
eigenfrequencies. The calculation of eigenfrequencies is via GYRE (Townsend and Teitler, 2013),
which is a linear adiabatic oscillation code.

The results of the computations are presented in Figure 3.9. We clearly see that the hydrogen
is less abundant as the envelope is modified more. The eigenfrequencies for the models (see the
right panels in Figure 3.9) are also varying as we perturb the envelope more. Interestingly (and
importantly), the amounts of the frequency variations are, roughly speaking, proportional to the
amounts of the modification, though the dependence should be non-linear. In addition, the amounts
of the frequency variations are different from mode to mode, which is readily confirmed when we
see the right panels in Figure 3.9 (compare, for instance, the blue one and the red ones). To see
relations between the amounts of frequency variations and the mode properties more clearly, we
plot the relative frequency variation against the corresponding (envelope) mode inertia (normalized
by the total mode inertia which is here fixed to be 1/47) in Figure 3.10 because the ratio between
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an envelope mode inertia and the total one contains information on which part of the star the
mode mainly propagates. It is seen that, for an envelope mode inertia, the relative frequency
variation is proportional to the extent of modification. We can also see that, for an extent of
modification, the relative frequency variation is roughly proportional to the envelope mode inertia,
which is understandable because the chemical composition modification in the envelope does not
affect properties of a mode if the mode does not have sensitivity (which is represented by the envelope
mode inertia) in the modified envelope. These properties are to be utilized in the following section
3.5 and in the forthcoming Chapter 4 where asteroseismic non-standard modeling of one of the
Kepler targets, KIC 11145123, is performed.

3.5 The case of KIC 11141523

Why do we need the newly developed scheme for computing stellar models whose envelope is
modified but otherwise is in a hydrostatic and thermal equilibrium states? The answer is simple;
because such modified envelope structures are believed to be rather common for some types of
stars as blue straggler stars (see Subsection 1.1.2) which are thought to have experienced some
interactions with other stars. In this final section, a case study of non-standard modeling of one
of the Kepler target KIC 11145123, which is spectroscopically a blue straggler, is presented based
on our scheme described in the previous sections. Information on KIC 11145123 (the amplitude
spectrum, the observed eigenfrequencies, and so on) and the backgrounds of astcorseismic studies
of the star can be found in Section 1.3.

Before discussing the non-standard modeling of the star, we would like to emphasize one issue
concerning the understanding of the star; the initial helium abundance of the equilibrium model of
the star is suggested to be Yinir > 0.30 which is too high for an ordinary single star (Kurtz et al., 2014;
Takada-Hidai et al., 2017) considering the helium abundance of the primordial gases in the current
Universe. Though there have recently a number of reports on the existence of stars having Y ~ 0.40
in some globular clusters (Bastian and Lardo, 2018) (they are somewhat tentatively believed to be
the second generation of stars born from gasses expelled from asymptotic giant branch), we rely on
the spectroscopic analyses carried out by Takada-Hidai et al. (2017) and assume that KIC 11145123
is not such a second generation star but a blue straggler star which was born as a single star with
an ordinary initial helium abundance and later experienced some interactions with other objects.
Then here is one question. Can we construct an alternative stellar equilibrium model of the star
whose initial helium abundance is relatively low and whose envelope is modified? This question is
closely related to the formation history of the star, and thus, to find an answer to the question is a
primary goal in this section.

3.5.1 Fitting procedure

Based on our assumption that the star was born with relatively low initial helium abundance (~
0.260) and experienced some interactions with other stars later at some point during the evolution,
we carry out asterosesimic and non-standard modeling of the star with two procedures. First, a
stellar model with typical initial helium abundance is computed assuming single-star evolution.
This model is fitted to reproduce the mean value of the observed g-mode period spacings of the star
AP, ~2050s. Let me call this model as the “candidate model.” Secondly, we modify the envelope
of the candidate model to obtain multiple envelope-modified models with different values for the
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parameters describing the modification (see the equation 3.24). For each modified model, the p-
mode frequencies of the model are computed via GYRE, and we compare those with the observed
p-mode frequencies, letting models reproducing the observation best be the best model for the star.

A few procedures to carry out asteroseismic and non-standard modeling are given in this sub-
section. Specific settings are the same as explained in Subsection 2.4.2.

Parameter range

We have two sets of parameter range, one for the first procedure (constructing candidate models) and
the other for the second procedure (seeking for the best model among modified-envelope models).

The first set of parameter range consists of four (essentially three, excepting the age) variables,
namely, mass M, initial helium abundance Yiuit, the extent of overshooting fos, and age (represented
by AP;) of the model, and the ranges are determined as follows: 1.36-1.44M¢), by 0.02M, 0.24—
0.27, by 0.01, 0.023-0.027, by 0.0002, and 2050 (fixed, observed value), respectively. The initial
metallicity Zinit is fixed to be 0.003 (Takada-Hidai et al., 2017). The mass range is chosen following
that of the best model of Takada-Hidai et al. (2017) which is 1.4M. The range for the extent
of overshooting is selected based on the discussion in Chapter 2. The initial helium is limited to
relatively low values because of our assumption as mentioned in the first sentence of Subsection
3.5.1.

The second set of parameter range comprises three variables. They are m. (representing the
depth of the modification), a (representing the width of the transition region between the unmodified
region and the modified one), and the number of modifications added to a candidate model, the
former two of which are in the equation (3.24). In practice, the depth parameter is expressed in not
m. but 7. (fractional radius) to help intuitively understand the position of the depth, and we choose
four values for r. (0.67, 0.70, 0.73, and 0.76). For a, we choose eight values ranging from 1077 to
1073, and the number of modifications added to a candidate model is 600, and envelope-modified
models are retained every five modifications. The parameter § in the equation (3.24) is fixed to be
5x 1074

Specific procedures

At first, candidate models are obtained for each set of mass, the initial helium abundance, and
the extent of overshooting in the parameter range by stopping the evolutionary calculations when
AP, of the model reaches the observed value of 2050s. Because AP, monotonously decreases as
the star evolves, there must, in principle, be a certain evolutionary stage at which AP, is identical
to the observed value. Then, the candidate models are evaluated based on a comparison between
the p-mode (actually some of them are mixed-mode) frequencies of the candidate models and the
observed ones. As we see in Section 3.4, the amount of the frequency variations are almost linearly
proportional to the extent of the modification and the envelope mode inertia (normalized by the total
mode inertia fixed to be 1/4m) Therefore, though we need to have some assumptions on the mode
identification, we can roughly prospect which frequencies can be fitted to the observed ones before
we actually carry out the envelope-modifying scheme. More specifically, the radial-mode frequency
differences between the candidate models and the observation are used as a standard measure,
based on which and also on the radial-mode energy density, the theoretically expected deviations
can be estimated for all the other modes. Comparison between the theoretically expected deviations
and the observed ones enables us to choose which candidate models are appropriate candidates for
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Figure 3.11: Hydrogen fractions for the candidate model (black curve in the left panel) and that for one of
the best models obtained via the scheme described in text (red curve in the left pane.) The right column shows
the corresponding eigenfrequencies (for high-frequency region ~ 20d~") for the candidate (upper) and that for the
best model (lower). The observed frequencies of the star are represented by dotted lines, where radial, dipole, and
quadrupole modes are expressed by blue, red, and green lines, respectively.

further envelope-modifying modeling. Several candidate models are chosen in this first procedure.

In the second procedure, the envelopes of the chosen candidate models are gradually modified
changing the parameters described in the preceding small subsection. For every five modifications,
the eigenfrequencies of the corresponding envelope-modified model are computed via GYRE. This
step has been repeated with different sets of parameters in the determined parameter range. Among
the envelope-modified models thus calculated, ones reproducing the observed frequencies best are
selected as the best models.

3.5.2 Results

As a result of the asteroseismic and non-standard modeling of the star demonstrated in the last
small subsection, we obtain a few best models, one of which is discussed below. The model has
the following parameters: 1.38Mg), Yinix = 0.26, fous = 0.023, and r. = 0.70. Figure 3.11 shows
the hydrogen fraction (bottom left) and the eigenfrequencies (bottom right) of the model. Tt is
seen that the frequencies of the candidate model (starting model in Figure 3.11) are shifted much
closer in frequency to the observed ones by modifying the envelope (tentative model in the figure).
Note that the observed frequencies are represented by dotted lines, and that radial, dipole, and
quadrupole modes are expressed by blue, red, and green lines, respectively.

Figure 3.12 compares the frequencies of the tentative model and those of Kurtz et al. (2014),
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Figure 3.12: Modeled eigenfrequencies, of the previous model of the star of Kurtz et al. (2014) (upper) and those
of the tentative model obtained in the previous section, are compared with the observed p-mode frequencies of KIC
11145123 (dashed lines). The meanings of the colors and the types of the lines are the same as those in Figure 3.11.

showing that we have succeeded in constructing an equilibrium model with the non-standard scheme
which reproduced the observed p-mode frequencies essentially as precisely as the pervious one. The
important point is that this is the first case where such non-standard scheme has been applied to
carry out asteroseismic modeling of the star, and the results favor the scenario in which the star was
born with an ordinary helium initial abundance and then experienced the envelope modification.

3.5.3 Discussions

The envelope modified model reproduces the observed p-mode frequencies reasonably well compared
with the previous model of Kurtz et al. (2014) as we see in the last subsection. Then, how different
are the structures of the two models? We especially focus on internal structures, namely, the density
and the sound speed, of the models in this subsection. For simplicity, let us denote the previous
model of Kurtz et al. (2014) as Mg, and the envelope-modified model as My,,q in the following
small subsections.

Structures of deep regions

Because both of the models are fitted to reproduce the mean value of the observed AP, it is
immediately expected that the structures of a deep region should be almost the same when we
compare those of Mg, and M,,,q. However, as it is discussed in Subsection 2.4.4, there exists,
for example, the mass-dependence of the AP, patterns, and we have to be aware that the core
properties can be different. This is actually the case where the stellar masses of My, and My,,q are
1.46 Mg and 1.38M); though the difference in mass seems to be small, it certainly affects the size of
the convective cores (see Figure 3.13, the convective boundaries are indicated as positions at where
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Figure 3.13: Comparisons of internal structures (the sound speed, top, and the density, bottom) of the two models
Mxk, and M4 focusing on the deep region. Due to slight differences in global parameters such as mass and the initial
metallicity, the sizes of the convective core, whose boundaries can be confirmed as positions at which the gradients of
the structural parameters abruptly change (r/R ~ 0.05), are different.

the gradient of the sound speed abruptly changes). We confirm a similar mass-dependence when we
see Figure 2.18 in which 1.30Ms model has a larger convective core compared with 1.50Ms model
does. Note that there is no significant difference in the g-mode frequencies of the two models even
though the detailed structures are slightly different as exhibited in Figure 3.13. This is because the
g modes considered for KIC 11145123 are high-order modes and they are not as sensitive to the
detailed structures in deep regions as lower-order modes are. In other words, there are moderate
degeneracies among the parameters in terms of the AF;.

Structures of envelope regions

In this small subsection, we focus on envelope structures of the models M, and M,,,q which are
generally considered to be relevant to p-mode frequencies. Figure 3.14 shows the density and the
sound speed of the two models as Figure 3.14, but those in the envelopes in this case. It is quite
evident that envelope structures of one model are similar to those of the other model, supporting
the fact that the modeled p-mode frequencies are almost the same as seen in Figure 3.12.
Combined with the discussions in the preceding small subsection, we are also able to explain
the reason why there are larger difference in the modeled | = 2 mode frequencies (green ones in
Figure 3.12) compared with the other p-mode ones (I = 0, 1, blue, red ones in Figure 3.12) between
the models Mgk, and My,,q. The point is that the | = 2 modes are mostly mixed ones and that
they propagate both in the deep radiative region and the envelope. Therefore, if the deep radiative
region is modified (e.g., fixing the mean value of the AP,) while the envelope is fixed, the balance
between the two region changes, causing mixed-mode frequencies to vary, which is the case for the
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Figure 3.14: Comparisons of internal structures (the sound speed, top, and the density, bottom) of the two models
Mxk, and Mpyea focusing on the envelope. There seems to be little difference in the envelope structures of the two
models.

two models.

3.6 Other applications of the developed scheme

This section is mostly independent of the previous themes discussed so far, and a part of the non-
standard scheme developed by us is re-considerred based on perspectives different from the ones
in the preceding sections. We in particular concentrate on one useful function implemented in the
scheme, that is, to resettle models deviated from the hydrostatic equilibrium states. Below are
two subsections briefly demonstrating the possibility of some applications of the resettling function
which may be further extended in the future studies.

Reestablishing hydrostatic states

The first example is related to models computed via any 1-dimensional ordinary stellar evolutionary
codes. Even though we do not perturb such ordinary stellar models, any of the models are intrin-
sically deviated from the hydrostatic equilibrium states, because of numerical limitations; what we
actually solve in stellar evolutionary calculations is not the set of non-linear differential equations
but the set of non-linear difference equations, inevitably leading to numerical errors caused by the
discreteness. It is usually the case that some iterative strategies are taken to solve such a set of non-
linear difference equations and some criteria are set to decide when to stop the iteration process.
Obviously, as we set stricter criteria, deviations (defined, for instance, as the sum of differences
between righthand side and lefthand side of each difference equation) become smaller. There is,
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Figure 3.15: Numerically computed AP, patterns (colored curves) and the observed AP, pattern (black) are
shown in the left panel. The corresponding internal structures, namely, the hydrogen profiles and the Brunt-V&isala
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becomes larger in the order of blue, green, and red, and correspondingly, an amplitude of an oscillatory component
of a numerically computed AP, pattern becomes larger. We can confirm that the chemical composition gradient is
successfully steepened with our scheme (see the hydrogen profiles or the Brunt-Viisélé frequencies at r/R ~ 0.08).

of course, a trade-off because stricter criteria for iteration should lead to a longer computation
time. From that point of view, the resettling function in our scheme could help render deviations
smaller with less computation time than other existing stellar evolutionary codes. Since such devi-
ation demonstrated above should also affect frequency computations, it is fairly instructive for us
to check the relation between deviations and computed frequencies for a range of stellar models in
terms of mass, initial chemical compositions, and stellar evolutionary stages, in the near future.

Realizing steeper chemical composition gradients

The second example is related to oscillatory behaviors of the AP, patterns deeply discussed in
Chapter 2. We here revisit the observed AP, pattern of KIC 11145123. As it is demonstrated in
Subsection 2.4.4, one possible approach to reproduce the shorter-period components of the observed
AP, pattern is to add artificial perturbations in the Brunt-Viisilé frequency 6 N 2 (see Figure 2.19).
However, the perturbation 6 N2 is not physically motivated one and we do not know whether such
structures are really feasible inside stars or not. There is thus room for us to consider more physically
motivated perturbations to the Brunt-Vaisild frequency, which can be achieved by the resettling
function as shown in the following paragraphs.

Figure 3.15 illustrates AP, patterns which are numerically computed based on the perturbed
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Brunt-Vaisala frequencies of the stellar models obtained using the resettling function; they are
in both hydrostatic and thermal equilibrium states. In order to obtain the perturbed models,
we perturb the deep radiative region, instead of the envelope as in the previous sections, so that
the chemical composition gradient becomes steeper (for reasons why we focus on the chemical
composition gradients, see discussions in Chapter 2), and then, the deviated models are resettled
to hydrostatic states with our scheme (see details in Subsection 3.3). It is clearly seen that our
scheme successfully provides us with the equilibrium stellar models with the chemical composition
gradients much steeper than that of the unperturbed model. It is also verified that an amplitude of
the shorter-period component of a numerically computed AP, pattern becomes larger as the model
is perturbed more (from blue to red in Figure 3.15). As such, our scheme (especially the resettling
function) is also of great use for purposes other than carrying out the non-standard modeling of
stars.

3.7 Summary of this chapter

A novel scheme for computing 1-dimensional stellar models whose chemical compositions in the
envelope are modified has been established based on formulations of the stellar radial oscillation.
The scheme has been validated with simple numerical tests for each step, and it has been applied to
the coarse-grid-based modeling of KIC 11145123 to find models reproducing the observed A_Pg and
radial-mode frequency. We have successfully obtained a model which is comparable to the previous
model of the star computed assuming a single-star evolution. Therefore, the result of the “rough”
non-standard modeling suggests the possibility that it is possible to construct a stellar model of
the star which was originally born as a single star with an ordinary initial helium abundance of
~ 0.26 and then experienced some modifications in the envelope. This is the first time that such an
envelope-modified model is calculated for the star, and the result is consistent with the formation
scenario of the star which is spectroscopically a blue straggler, motivating us to carry out the non-
standard modeling of the star with the developed scheme in a more systematic and thorough way
as described in Chapter 4. Finally, two applications of a part of our scheme, namely, the function
resettling deviated models, are shown, demonstrating the high potential of the scheme developed
by us in a broader context of stellar physics.
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Chapter 4

Asteroseismic analyses of KIC
11145123

The asterosesimic study of KIC 11145123 is of great importance as described in the previous chap-
ters 1 to 3 in various contexts such as the investigation of chemical composition gradients in the deep
radiative region of low-mass (1.2-2.1Ms) main-sequence stars (e.g. in Subsection 1.1.1), the aster-
osesimic modeling of hybrid pulsators for calibrating the existing schemes in 1-dimensional stellar
evolutionary codes (e.g. in Subsection 1.2.3), the study of the formation history of blue straggler
stars (e.g. in Subsection 1.1.2), and the inversion analysis to infer internal rotation profiles of stars
(e.g. in Subsection 1.2.3). Numerous other examples can be found throughout this dissertation.

In this chapter, we have two primary goals; one is to understand the formation history of the star
more, and the other is to infer the internal rotation of the star. We first articulate the motivation
for the two goals and subsequently present a brief review on what we have learned so far about the
star in Section 4.1. A thorough and systematic strategy is then taken to obtain a best model of the
star based on the scheme of the non-standard modeling developed by us (section 4.2). Considering
the obtained model as a reference model, we perform rotation inversion to infer the internal rotation
profile of the star (section 4.3). The final section is dedicated to comprehensive discussions about
the internal physics of the star based on the results we have obtained in this dissertation.

4.1 A brief introduction

4.1.1 Motivation

Though the previous asteroseismic sudies of KIC 11145123 have provided us with a number of
fascinating results concerning the interior of the star and the evolutionary stage the star is in, there
are, of course, also several issues remained to be solved (see Section 1.3).

The most prominent issue among them is that there has never been an attempt to calculate a
1-dimensional equilibrium model of the star based on the assumption that the star was born as an
ordinary star with a relatively low initial helium abundance of e.g. ~ 0.26, then experienced some
interactions with other stars during the evolution, and ended up with a chemically modified envelope.
Because the spectroscopic analyses (Takada-Hidai et al., 2017) indicate the star to be a blue straggler
star (sec Subsection 1.1.2), there is room for us to take into account such a non-standard treatment.
This may not only solve the problem that the previous models of the star constructed based on
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the assumption of single-star evolution cannot reproduce the observed p-mode frequencies well (see
Subsection 1.3.3), but also lead to a better understanding of the formation history of the star, i.e. if
we succeed in calculating a asterosesimically better model than the previous ones in a non-standard
way, a formation scenario of the star via, for instance, binary interactions is favored. This is the
reason why we attempt to carry out the asterosesimic and non-standard modeling of the star, and
the goal of this investigation is to obtain a hint for the formation history of the star.

The issue mentioned in the last paragraph is also relevant to another issue on a possible existence
of the fast-core rotation of the star (Hatta et al., 2019). The inference of the convective-core rotation
is strongly dependent on where rotational splitting kernels of mixed modes have sensitivity inside
the star (see Subsection 1.3.2), which can vary for an alternative model of the star obtained in a
non-standard way. Therefore, resultant inferences can be also different to some degree from those
of Hatta et al. (2019). This is the reason why we again perform rotation inversion for the new
alternative model, and the primary goal is to discuss the presence of the fast-core rotation.

4.1.2 The physical properties of the star so far known

Before starting specific discussions on the non-standard modeling and the rotation inversion of the
star, we present a brief summary of the current understanding of the star focusing on the physical
properties, which should be helpful for readers to roughly grasp the star.

According to the spectroscopic study of the star (Takada-Hidai et al., 2017) with Subaru/HDS,
the effective temperature of the star, the logarithm of the surface gravitational acceleration, the
metallicity, and the radial velocity are To.g = T600K, logg = 4.2 (cgs units), Z = 0.003, and
—135.4kms ™! respectively. The study also suggested that the star is spectroscopically a blue strag-
gler star, based on the surface abundance pattern. The eigenfrequency analysis results in the
detections of multiple peaks in the amplitude spectrum which consists of low-order p, high-order g,
and low-order mixed modes (Kurtz et al., 2014), thus showing that the star is a § Sct and v Dor
hybrid pulsator. Phase modulation analysis (Murphy et al., 2016) mostly disfavors the possibility
that the star is a member of a binary system. Recently, kinematical analysis of the star based on
the Gaia observation has revealed that the star belongs to the thick disc population (Murphy 2019,
private communication).

The tentative models of the star computed assuming single-star evolution favor relatively low
masses around 1.4Mq, and thus, the models have a convective core, a deep broad radiative region
above, and a thin outermost convective layer. The models also prefer fairly high initial helium
abundances of > 0.30 and they are at a TAMS stage (the star has almost exhausted the hydrogen
around the nuclear burning convective core).

Frequency splitting is detected for the star, based on which the following features have been
indicated: that the star is rotating almost rigidly with the rotation period of ~ 100 d and the
envelope of the star rotates slightly faster than the deep radiative region (Kurtz et al., 2014), that
the convective core might be rotating around 5 times faster than the other regions of the star (Hatta
et al., 2019), that there is latitudinally differential rotation detected with significance more than
20 (Hatta et al., 2019), and that the star is less oblate than expected from its rotational velocity
(Gizon et al., 2016).

For more detailed information, see Section 1.3.
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4.2 Non-standard modeling of KIC 11145123

Non-standard modeling of the star is discussed in this section. For computations of stellar structure
and evolution, the 1-dimensional stellar evolutionary code MESA (version 9793) is utilized. The
default settings of MESA (see, e.g. Paxton et al., 2011) are used unless we explicitly mention oth-
erwise in the text. In our non-standard modeling, modifications to the chemical compositions are
added to stellar models computed by MESA maintaining the hydrostatic and thermal equilibrium
states. The basic concepts and the numerical scheme to carry out such envelope-modifying mod-
eling are demonstrated in detail in Chapter 3. Eigenfrequencies of stellar equilibrium models are
computed via linear oscillation code GYRE. The effects of rotation, magnetic fields, asphericity, and
nonadiabaticity on the eigenoscillations of a certain model is not taken into account; these effects
are considered to be significantly small for the star and there is no observational hint for the effects
(e.g. Kurtz et al., 2014).

We basically follow the same procedures as adopted in Section 3.5 to perform non-standard mod-
eling of the star, namely, candidate models are at first constructed via MESA assuming single-star
evolution to reproduce the observed g-more period spacings, and then, the chemical compositions
in the envelopes of the candidate models are modified with the scheme developed by us to fit the
observed p-mode frequencies while fixing the deep region not to affect the g-mode period spacing
already fitted in the first step. One major difference is parameter ranges surveyed for the grid-based
modeling; the parameter range is chosen based on those of the previous models (e.g. Kurtz et al.,
2014) in Section 3.5, but a broader parameter range is to be surveyed in this section in a more
systematic way in order to find a model of the star which reproduces all of the observables as well
as possible.

Finally, before going into details, we would like to clarify some physics behind the non-standard
modeling. We assume that the star is (or, used to be) in a binary system and that certain amounts
of mass has been accreted on the star for a while during the evolution, which was not such a violent
event that only structures in the envelope have been affected. We adopt the framework described
above based on the fact that the envelope of the star is rotating slightly faster than the deep radiative
region is; we attribute the cause of the faster-envelope rotation to mass accretion from the outside.
Another reason for the framework is the seemingly ordinary behavior of the observed g-mode period
spacing; we can model the deep radiative region relatively well as the previous studies suggested
(e.g. Kurtz et al., 2014), and there is no firm reason for us to modify the deep radiative region.

Other possible mechanisms to produce blue straggler stars are stellar collision or binary merger.
To conduct non-standard stellar modeling based on either mechanism, we at first have to compute
dynamical states via numerical computations, which are beyond our study and should be investi-
gated in future studies.

4.2.1 Strategy

First of all, we would like to elucidate the parameters to be surveyed. They are divided into two
groups corresponding to the two steps in the non-standard modeling. The set pf parameters for the
first step, in which candidate models are computed, consists of mass M, initial helium abundance
Yinit, initial metallicity Zinit, age (represented by the mean value of g-mode period spacings A_Pg),
and the extent of overshooting fovs. The other set of parameters for the second step, in which
envelope-modified models are computed, comprises the depth r., the width «, and the extent of the
modification (the number of the modifications added to the envelope) (see Section 3.5 for the exact
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definitions of the variables above).

Then, the non-standard modeling of the star can be alternatively expressed in the following
way: to find sets of the eight parameters with which stellar models reproducing the observables of
the star are constructed. In principle, it should be possible to find some solutions to the problem if
we search for the whole parameter range with infinitely small grids. But this is, of course, almost
impossible to achieve. Therefore, we start with a broader parameter range with coarse grids to
find candidate models which reproduce the observed global parameters of the star such as Ty
and logg. This coarse-grid-based modeling enables us to exclude parts of the parameter range
where there is little chance of finding the solution to the problem, and based on the results, we
can redetermine another narrower parameter range with finer grids to again find candidate models
by imposing tighter constraints on asteroseismic quantities such as AP, frequency separations,
individual frequencies, and so on (because this parameter range is determined to reproduce the
global parameters, we do not have to care about them and they are naturally satisfied with the
obtained candidate models). How we impose the constraints on the asteroseismic quantities is such
a technical part to describe that it is deeply explained in the following small subsection.

In any case, the same procedures as in Section 3.1 are taken after we obtain the candidate models,
i.e. we gradually modify the envelope of the candidate models, compare the eigenfrequencies of the
envelope-modified models with the observed ones, and finally select several models which reproduce
the observables as well as possible.

Specific procedures

We firstly prepare the following grids of parameters: mass M (1.1-2.1Mg, with the step of 0.1M,
between 1.1-1.7Mg, and with the step of 0.2M¢, between 1.7-2.1 M, initial helium abundance Yjpnj;
(0.25-0.27, with the step of 0.01), initial metallicity Zinit (0.002-0.004, with the step of 0.001), and
the extent of overshooting fovs (0.010, 0.020, and 0.027). Most of the previous models are relatively
low-mass stars with M ~ 1.4Mg,, which is the reason why the grids of the lower mass range is finer
than that of the higher mass range. We assume that the star was born as an ordinary single star with
the initial helium abundance of ~ 0.26, lower than that of the previous models (Yinit > 0.30), and the
range for initial helium abundance is thus chosen. For the extent of overshooting, foys ~ 0.01-0.02
is often recommended by the literatures (e.g. Paxton et al., 2011), but here we include fous = 0.027
because such broader overshooting region is suggested based on the analysis of the g-mode period
spacing AP, pattern (see Section 2.4). Let us call the parameter range defined above “the coarse
grid”.

Then, we compute evolutionary tracks for all the points in the coarse grid. The evolution is
stopped when the mean g-mode period spacing of the model A_Pg (one of the outputs of MESA,
computed based on the integration of the Brunt-Viisila frequency) reaches 2100s, which is around
the mean value of the observed g-mode period spacings 2070s. We separate the models thus
computed into three groups based on their atmospheric parameters (Tog and log g), namely, the
1o group whose models reproduce the observed atmospheric parameters within 1o, the 20 groups
which is determined in the same way as the 1o group except that the criterion is 20, and the rest
which consists of the models left.

Finer grids are constructed based on the input parameters of the 1o group and the 20 group.
The details are shown in the next subsection 4.2.2 (because we do not know where should be finer
grids until results of the coarse-grid-based modeling are obtained). Let us call the newly determined
parameter range “the finer grid”.
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We again compute evolutionary tracks for the finer grid to obtain candidate models whose
envelopes are to be modified to fit the observed p-mode frequencies. Evolution is stopped first when
AP, of the model reaches 2150s, then the timestep for evolutionary calculation is changed from
the default value (around 107 years) to much smaller one around 10° years. Evolution is restarted
with the smaller timestep until A_Pg reaches 1950 s, and all the equilibrium models computed along
the evolution between AP, = 1950s and AP, = 2150ss are saved, for which the corresponding
eigenfrequencies (of both p and g modes) are computed via GYRE. Among a series of evolutionary
models for a certain set of the parameters (M, Yinit, Zinit, and foys), one model which minimizes the
sum of the squared residuals (normalized by the observational uncertainties) between the modeled
frequencies and the observed ones is chosen as a candidate for “candidate models”. Let us call them
“pre-candidate models”.

The modeled p-mode frequencies are subsequently checked to determine which pre-candidate
models are appropriate for “candidate models”. As is described in Section 3.4, the amount of the
frequency variations caused by envelope modifications via our non-standard scheme is seemingly
proportional to a ratio of the envelope mode inertia to the total one (see discussions in Section 3.4).
We exploit the feature to select candidate models in the following steps. First, a modeled radial-
mode frequency which is closest to the observed frequency of the singlet (v = 17.9635133+£5 x 107
d~1) is chosen. Then, the difference between them (Av)mod—obs is computed (be careful not to be
confused by the expression, this is not the large separation Av, see, e.g., Subsection 1.2.3), which
ideally becomes zero after we suitably modify the envelope of the model. Based on the assumption
of the proportionality for the frequency variation caused by the envelope modification in addition
to the difference (Avg)mod—obs; We can calculate an expected frequency variation for each mode as

follows:
Jenv

(AV'i)expect = IlcT (AVO)modfobs; (41)
0

where [7% is defined as an integration of the mode energy density, over the modified region, for
the mode j (see the definition in Section 3.4), and it can be computed with the outputs of GYRE.
For more information, see, e.g., Aerts et al. (2010). Finally, we compare the expected frequency
variation for a particular mode with the difference between one of the observed frequencies and
its closest modeled frequency (Av;)mod—obs, Namely, we compute the following quantities for each
detected peaks:

((Aw)expect - (Al/i)mod—obs>2' (4.2)

By imposing an arbitrary criterion for the sum, several models which render the sum of the quantities
(4.2) below the criterion are chosen as “candidate models”. Before moving on to the envelope-
modifying modeling, we have a subtle step where models are computed with the same sets of the
parameters as those of the selected candidates except for the ages; the newly computed models are
younger than the original candidate models by thermal timescale for the models. This is because
we have to evolve envelope-modified models until they settle to the thermal equilibrium states, and
it is possible that the evolution leads to deviations in fitted g-mode frequencies. Such deviations
can be avoided by using the younger candidate models.

The final procedure for the envelope-modifying modeling is the same as demonstrated in Section
3.5, we do not intend to repeat it here.
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Figure 4.1: Evolutionary tracks for some of the models obtained via the coarse-grid-based modeling. Models
belonging to the 1o (20) group are represented by black (blue) curves. Note that two models (a model with M =
1.20Mg, Yinit = 0.25, Zinir = 0.002, and fovs = 0.027 and one with M = 1.20M¢, Yinit = 0.25, Zinit = 0.002, and
fovs = 0.020) overlap each other; the parameters are the same except for fovs.

4.2.2 Results
Coarse grids

There are two main results about the coarse-grid-based modeling. One is that low-mass models (with
masses ranging from 1.10-1.50M¢)) are favored to reproduce the observed atmospheric parameters
T.g and log g; all of the models in either the 1o model or 20 model have masses lower than 1.5Mg
not depending on the other parameters. This trend can be confirmed even when we construct the
30 group in the same way as the other groups; the mass of the most massive model in the 30 group
is 1.70M. We therefore exclude 1.7-2.1M¢ from the parameter range from now on.

Another result is that there is no model in the 1o group which favors fovs = 0.027. Because
fovs = 0.027 is suggested based on the analysis of the observed AP, pattern, this result implies
that the models in the 1o group are not appropriate (asteroseismically) as candidate models. Thus,
we also exclude the 1o group for further analyses (though the group is still useful for checking,
for instance, the possibility that the star has evolved as a single star). Meanwhile, there are some
models with foys = 0.027 in the 20 group, and we concentrate on the parameter range in the
following small subsections.

Figure 4.1 shows some examples of evolutionary tracks of the models obtained via the coarse-
grid-based modeling. In spite of the relatively higher logg ~ 4.2 + 0.1 (cgs units), the mean of
g-mode period spacings AP, favor the TAMS stage at which stars are less denser compared with
when they are on the main sequence, possibly leading to the preference for low-mass stellar models
in the coarse-grid-based modeling.
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Figure 4.2: AP, pattern for the model obtained based on the non-standard modeling (red) and that for the
observation (black). The model successfully reproduces the positive slope of the observed A P, pattern, but the other
oscillatory component with a shorter period (An ~ a few) cannot be confirmed with this model. Right panels show
the Brunt-Vaiséla frequency of the model for the whole interior of the model (top) and for an expanded look into
a region just above the convective core where the chemical composition gradient develops. We see two dips in the
Brunt-Viiséla frequency (top right), which are caused by the envelope modification implemented to the scheme of
non-standard modeling. These features nevertheless affect the g-mode frequencies.

Finer grids

The results in the previous small subsection allow us to determine a new parameter range with finer
grids. Below is the set of the finer grids: mass M (1.16-1.44M.,, with the step of 0.02M), initial
helium abundance Y, (0.25-0.27, with the step of 0.01), initial metallicity Zi,i; (0.002, fixed),
and the extent of overshooting fovs (0.027, fixed). The extent of overshooting fovs = 0.027 is fixed
because of the analysis of the observed AP, pattern of the star. The initial metallicity is fixed since
all the models with fu,s = 0.027 in the 20 group have Z = 0.002.

Based on the grids, we carry out the finer-grid-based modeling as described in detail in Sub-
section 4.2.1. We adopt 0.39 as the criterion (expressed as the sum of the quantities 4.2) above
which the corresponding models are discarded, and not taken as candidate models. The criterion
is determined so that about a tenth of pre-candidate models is chosen as a candidate model. With
this criterion, we have selected five models as candidate models to which the envelope-modifying
scheme is applied.
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Figure 4.3: Comparison of the modeled frequencies (solid lines) with the observed ones (dashed lines) for the
envelope-modified model obtained based on the non-standard modeling (bottom) and for the model of Kurtz et al.
(2014). The radial, dipole, quadrupole, and octupole modes are represented by blue, red, green, and grey, respectively.
Note that the colors of the observed frequencies are based on the mode identification by Kurtz et al. (2014) (see
Subsection 1.3.2). In the case of the tentative model, octupole modes are sometimes better to reproduce the observed
frequencies than the dipole-mode frequencies of the model, implying the possibility of a different mode identification.

Envelope-modifying modeling

The envelope-modifying modeling is applied for the five candidate models, and we end up with
a tentatively best model (within the non-standard scheme) demonstrated as below. The set of
the parameters of this model is M = 1.36My, Yinie = 0.26, Zinie = 0.002, fovs = 0.027, and
Age = 2.169 x 10? years old. The parameters for the modifications are r. = 0.67, a = 5 x 1073, and
the number of modifications is 115 which corresponds to AX ~ 0.06 (AX is a difference in hydrogen
abundance between the candidate model and the modified model) at the surface. The logarithm
of the surface gravitational acceleration and that of the effective temperature of the model are 3.9
(cgs units) and 3.87.

The AP, pattern computed for the model via GYRE is reproducing the observed positive trend
which is thought to be caused by the overshooting (see Figure 4.2) (also see Section 2.4) though
there is still a significant discrepancy between the observed AP, and the modeled one, especially
with respect to the oscillatory component with a short period of An ~ a few. However, the sum
of the squared residuals (between the model and the observation) normalized by the observed
uncertainties for g-mode frequencies is significantly smaller (~ 3 x 10°) than that in the case of the
previous studies (e.g. Kurtz et al., 2014) (~ 10°).

Figure 4.3 shows the comparison of the modeled p-mode frequencies with the observed ones.
The radial- (blue), dipole- (red), and quadrupole- (green) mode frequencies are presented. For our
tentative model, | = 3 modes (grey) are also illustrated. The envelope-modified model obtained in
this study fits the observed radial-mode frequency better than the model of Kurtz et al. (2014).
The other p-mode frequencies, nevertheless, are not fitted well in the tentative model, especially
when we follow the mode identification adopted in Kurtz et al. (2014) (see the caption of Figure
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4.3 for more details). The mean deviation, which is defined as the mean of the absolute value of
the difference between the modeled frequencies and the modeled ones, for our model is 0.2 d~! and
that of Kurtz et al. (2014) is 0.1 d~!. Interestingly, when we include = 3 modes in the mode
identification, the mean deviation for our model reduces to be 0.1 d~' which is comparable to that
of Kurtz et al. (2014). We discuss the point later in Section 4.4.

4.2.3 Discussions

In the preceding subsections, a totally new stellar model of KIC 11145123 has been presented via
the non-standard scheme based on the assumption that the star was born as a single star with the
ordinary initial helium abundance and, during the evolution, experienced some chemical composition
modifications in the envelope thought be caused by, for instance, mass accretion from the outside.
Though this is the first case where such non-standard modeling has been successfully carried out
for the star (and based on the obtained envelope-modified model, we infer the internal rotation in
the following section 4.3), several issues related to the envelope-modified model are discussed in this
subsection focusing on the possibility of further improvements on the non-standard model of the
star.

AP, pattern revisited

As demonstrated in Subsection 4.2.2, the envelope-modified model successfully reproduces the pos-
itive slope of the observed AP, pattern (Figure 4.2). Still, there seems to be a discrepancy between
the modeled AP, pattern (red in Figure 4.2) and the observed one (black in Figure 4.2) especially
in terms of a short periodic component (An ~ a few) seen in the observed AP, pattern. This dis-
crepancy has been already pointed out in Subsections 2.4.3 and 2.4.4, and it has been also suggested
that to consider a perturbation to the Brunt-Viisilé frequency § N2 could be helpful for reproducing
the short periodic component based on the direct numerical computations of the eigenfrequencies
for several perturbed Brunt-Viisili frequency. In particular, adding 6 N? so that the chemical com-
position gradient becomes steeper is a possible solution to reproduce the shorter-period component
of the observed AP, pattern as shown in Section 3.6. Then, the question is what is the mechanism
that is at work during the evolution and produces such structures?

In this small subsection, diffusion process much weaker than usually expected is assumed to
be playing a key role in reproducing a Brunt-Vaisélé frequency which leads to the short periodic
component in the observed AP, pattern. The validity of the assumption is partly confirmed by
stellar equilibrium models computed without diffusion processes during evolution (see Subsection
2.3.2 and Figure 2.13); the AP, patterns calculated based on the models exhibit short periodic
component with high amplitudes. Actually, the amplitudes are too large to represent the observed
pattern for KIC 11145123. Here we therefore consider a model with diffusion, but “much weaker”
diffusion processes during evolution.

We implement such “much weaker” diffusion by changing the default criterion for the max-
imum diffusion velocity (diffusion.v.max = 1.d—3 adopted in MESA) to a much smaller one
(diffusion_v_max = 1.d—10). In MESA, the diffusion velocity of each element in each mass shell
is computed by solving Burger’s equation (Burgers, 1969), which sometimes leads to unphysically
large diffusion velocities in, for instance, the outermost envelope. The criterion diffusion_v_max
in MESA is thus usually set to avoid such problems, and our implementation is rather crude in a
sense. Nevertheless, we clearly see improvements in the behavior of a short periodic component in
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Figure 4.4: Observed g-mode period spacings AP, (black thick line) and modeled ones (the red line and the blue line)
in the left panel. The red line is calculated based on the envelope-modified model, and the blue line is based on another
model with weaker diffusion. The latter model successfully reproduces the short-periodic oscillatory component of the
observed AP, pattern. The right panels show the corresponding hydrogen profiles (top) and Brunt-Véisala frequencies
(bottom). It is obvious that the chemical composition gradient of the weaker-diffusion model is much steeper than
that of the envelope-modified model.

the AP, pattern computed with the much weaker diffusion processes during evolution (see Figure
4.4), showing a high potential of the implementation for further asterosesimic researches.

It should be, however, noted that the implementation is computationally fairly time-consuming,
and that it is still hard to incorporate the scheme into, for example, the grid-based modeling of
stars.

A discrepancy between the observation and the model in terms of atmospheric param-
eters

Although we have seen a moderate agreement between the modeled frequencies and the observed
ones, there is a discrepancy between the model and the observation in terms of the atmospheric
parameters, which amounts to more than 2.50. Actually, this discrepancy has been reported in the
previous studies as well (e.g. Takada-Hidai et al., 2017), as shown in Figure 4.5. It is easily con-
firmed that when we focus on fitting eigenfrequencies better, the modeled atmospheric parameters,
especially the surface gravitational acceleration, deviate more from the observed values (see blue
lines), and vice versa (see red lines). In Figure 4.5, we plot the values of our envelope-modified
model (orange diamonds), and we see the same trend that the seismic parameters are reproduced
relatively well though the atmospheric parameters are not.
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Figure 4.5: Mean deviation between the modeled frequencies and the observed ones (top), the logarithm of effective
temperatures (middle), and that of the gravitational accelerations (bottom), computed for various stellar models
represented by the mass (horizontal axis) and the initial helium abundance (the square, the circle, and the triangle,
corresponds to the initial helium abundance of 0.75, 0.70, and 0.60, respectively). The orange diamonds are the values
of our envelop-modified model. Solid green lines in the middle and the bottom panels are expressing the observed
values, and the dashed lines are indicating 1o observational uncertainties. The observed frequency of the singlet is
expressed as vy, and F, 10vt, 20vt are representing the fundamental, the first overtone, and the second overtone,
respectively. Thus, “F = v1” (red lines) means that “the the singlet is identified as the fundamental mode in the case
of the model”. This figure is cited from Takada-Hidai et al. (2017), and is overplotted by us.

Such signature is also found when we check frequency separations between neighboring [ = 1
modes (which are quantities considered to be related to the dynamical timescale of the model)
assumed to be identified as the two observed triplets (v = 18.366 d~! and v = 22.001 d~!). For
instance, stellar evolutionary calculations show that, in the case of a stellar model with M = 1.3Mg,
the radius around 2R, is favored to reproduce the observed frequency separation Av ~ 3.6 d~!.
However, the observed value of the gravitational acceleration log g ~ 4.2 (cgs) with the assumed
mass (1.3M) indicates that the radius should be 1.4Rs. There is thus a fundamental discrepancy
between stellar global parameters of the star inferred seismically and those based on spectroscopy.

If we assume that the current mode identification is right, one of the possibilities to resolve the
discrepancy is that the star is currently not in thermal equilibrium states and seismically estimable
parameters are not physically related to spectroscopically estimable ones. To test the possibility, we
investigate temporal variations of modeled atmospheric parameters from non-thermal equilibrium
states (defined as just after the envelope-modification stops) to the thermal equilibrium states for
a variety of the extent of the envelop modifications (Figure 4.6). We nevertheless do not find
any drastic changes of the atmospheric parameters during the thermal relaxation processes, clearly
ruling out our suggestion. There might be thus room for reconsidering the mode identification, but
that is difficult to perform until we obtain further observations and is beyond our scope so far.
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Figure 4.6: Temporal evolution of the atmospheric parameters of stellar models from when the envelop modification
just stops (leftmost squares) to when the model resettles to the thermal equilibrium states (rightmost squares) for
several values of the extent of the envelope modification (blue to red, smaller to larger). The pink point and the
blue oval represent the values of the unperturbed model and the observed ones with rough observational uncertainties
indicated. Though it is seen that the larger the extent of the modification is, the closer to observed values the
modeled ones are, the temporal variations from non-thermal equilibrium states to the thermal equilibrium states are
fairly small.

Is there any model reproducing the observed p-mode frequencies more precisely?

The envelope-modified model obtained via the non-standard scheme is comparable with that of
Kurtz et al. (2014) in terms of the modeled p-mode frequencies (the mean deviations are both ~
0.2d~1), but there is, in principle, still room for improving the models to reproduce all the observed
frequencies within the observational uncertainties. To find such an ideal model, we probably have to
survey infinitely large parameter ranges if we persist to performing forward modeling. But we can
alternatively search for models in an inverse manner; deviations between the modeled frequencies
and the observed ones tell us to what extent we have to modify internal structures of the current
(reference) model in order to reduce the deviation, which is called structure inversion in helio- and
asteroseismology (see, e.g., Gough and Thompson, 1991).

In structure inversion, we have to solve a set of 1-dimensional linear integral equations expressed
in the following way:

(&)@ N /01 [K&)}(m)%(x) ™ Kl()lg(x)%(x)} = % /01 Kgf)v(x)dﬂf + €, (4.3)

w

where Aq/q expresses the relative difference of the quantity ¢ between a reference model and obser-
vation (Aq¢ = gstar — Gret). The mode index is denoted as 4, and e; is the observational uncertainty
for the mode. The fractional radius is represented by x. There are two kinds of sensitivity functions
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called structure kernels, one for the density K ,(,Q(x), and the other for the sound speed K C(?,),(:L‘) The
structure kernels can be computed given a certain reference model together with eigenfrequencies
and eigenfunctions of the model. Therefore, variables to be estimated here are Ac/e, Ap/p, and
AR/R. More details, for example, the explicit forms for the structure kernels, can be found in
Appendix B.

We show an example of results obtained via structure inversion when we take the envelope-
modified model as a reference model in Figure 4.7, where the so-called Regularized Least-Squares
method is used (see Appendix C). The relative difference of the radius (between the reference model
and KIC 11145123) is estimated to be AR/R = 0.00748 4-0.00009, suggesting that the radius of the
model is smaller than the real one. The sum of the residuals between the right-hand side and the left-
hand side of the expression (4.3), which can be obtained after we substitute the estimated relative
differences Ac/c, Ap/p, and AR/R for the expression, is ~ 28 which can be considered to behave
well if the observations behave as Gaussian (and the number of the modes used in this analysis is
21). Therefore, if we modify the sound speed, the density, and the radius of the envelope-modified
model based on the estimated relative differences, the newly constructed model can reproduce the
observed frequencies quite well.

Nonetheless, there are a number of difficulties to correctly interpret the results. In the first
place, we do not have any hints for the cause of the expected modification, and thus, we would
end up with carrying out a series of stellar evolutionary computations after all. Another issue is
related to the mode identification. Because sensitivity of structure kernels are different from mode
to mode, different mode identification easily misleads us to multiple possible conclusions. Finally,
for stars with outer convective envelopes, it is generally recognized that there exists a systematic
deviation from the modeled frequencies and the observed ones, which is called the “surface effect”
(e.g. Sonoi et al., 2017) (because the origin of the deviation is believed to be interactions between
the oscillation and the near-surface superadiabatic convection). In asteroseismology, this surface
effect is difficult to distinguish with the structural-origin frequency deviations, and thus, we have to
be careful when we carry out asteroseismic structure inversion (see also Kosovichev and Kitiashvili,
2020).

In any case, the demonstrations in the previous paragraphs rule out the possibility that there
does not exist a solution for a better model, showing that we are more or less on the right track for
further modeling of the star in the forthcoming studies.

Possibility for different mode identifications

As already discussed in the previous small subsections, mode identification of the observed fre-
quencies different from that of Kurtz et al. (2014) might help us to resolve some discrepancies we
are faced with, for instance, a discrepancy between the model and the observation in terms of the
atmospheric parameters. We can also find another hint suggesting the possibility of different mode
identification when we see Figure 4.3; the mean deviation of frequencies decreases from 0.2 d~! to
0.1 d—! if we include I = 3 modes in the mode identification of the observed frequencies. However,
we have to be cautious about changing the mode identification so passively. One of the advantages
in the mode identification of Kurtz et al. (2014) is their assumption that a triplet (quintuplet)
should be al =1 (I = 2) mode, which is a fairly reasonable assumption to take. In other words, we
have to answer the following question in order to rely on a new mode identification different from
that adopted in Kurtz et al. (2014): what is the reason for [ = 3 modes observed as quintuplets?
From that point of view, we have decided to be conservative in terms of the mode identification,
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Figure 4.7: Estimated relative difference of the sound speed (top) and that of the density (bottom) between the
envelope-modified model and KIC 11145123. The difference is defined as, for instance, Ap = pstar — pret- Note that
the estimated uncertainties are too small to see. The corresponding AR/ R is 0.00748 £+ 0.00009.

and we continue to follow the way of Kurtz et al. (2014) to identify the observed frequencies for the
time being. It should be instructive to mention that the frequency splitting can be used for mode
identification if the split frequencies are simultaneously fit combined with rotation inferences as in
Benomar et al. (2009), which can be worth investigating.

4.3 Internal rotation of KIC 11145123 !

This section is devoted to the topic of rotation inversion, to infer the internal rotation profile of KIC
11145123. Rotation is universal, and it is generally recognized that rotation plays important roles in
various types of physical processes inside stars such as dynamo mechanisms (Thompson et al., 2017)
and chemical elements transport (Aerts et al., 2019). Thus, stellar rotation affects the structure and
evolution of the stars (Maeder, 2009). As such, to observationally infer internal rotation profiles of
stars definitely helps us to better understand the physics described above by, for instance, putting
constraints on the theoretical or numerical studies as has been done in helioseismology. See Chapter
1, for more backgrounds and significance of estimation of stellar rotation.

There are several ways to infer internal rotation of stars via asteroseismology (see Sections 1.2
and 1.3). We concentrate on an perturbative approach where the internal rotation Q(z,u) as a
function of the radial coordinate z and the latitude variable p (defined as p = cosf where 6 is
the colatitude in the spherical coordinate) is considered as a small perturbation, and thus, the
frequency splitting caused by the rotation (rotational splitting dwy,) can be related to the internal

'Partly cited from Hatta ct al. (2019)
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Figure 4.8: Rotational splitting of some of the p modes for KIC 11145123. The same figure as in Subsection 1.2.3.

rotation Q(z, u) with some sensitivity kernels (rotational splitting kernels) computed based on the
eigenfunctions of a reference model. We have the relations for all the modes for which the rotational
splitting is observed, and the set of the relations can be expressed as a set of linear integral equations
based on which the estimation of the internal rotation Q(z, i) is performed; this procedure is called
rotation inversion.

A brief introduction of the mathematical formulations necessary for conducting rotation in-
version is given in the first subsection 4.3.1. Then, specific techniques for rotation inversion are
presented in the next subsection 4.3.2, which include a new way of estimation based on the Bayesian
statistics. We demonstrate a reference stellar model (this is actually the envelope-modified model
obtained in the preceding section 4.2) and rotational splitting kernels calculated based on the refer-
ence model in Subsection 4.3.3. The results of rotation inversion are shown in the final subsection
4.3.4.

4.3.1 Mathematical formulations for rotation inversion

When we consider eigenfrequencies wyy, of a 1-dimensional (spherically symmetric) stellar model,
they are degenerate with respect to the azimuthal order m, i.e. wpy, = wpo (M = =1, ..., +1).
This degeneracy arises from the fact that the spherical symmetric stellar model has no preferential
direction in terms of the axis of the oscillation. In other words, if there exist some mechanisms
which cause deviations from the spherical symmetry, the degeneracy is broken, namely, wy;;j # wWhik
(j,k = —l,...,+l and j # k). Such frequency splitting has been observationally confirmed for a
number of stars including KIC 11145123, and the frequency splitting caused by internal rotation is
especially called the rotational splitting (Figure 4.8).

Then, how can we mathematically describe the rotational splitting? Based on the assumption
that the internal rotation Q(z,p) is so small that we can treat it as a small perturbation, the
terms higher than the first order of which are neglected, we formulate the rotational splitting in the
following paragraphs.

The starting point is the equation (1.20) in Subsection 1.2.1:

£ ALE)AV —w? | |€PApdV
AwQ—/ ( w/H ! , (4.4)

/IEIdeV
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which is derived based on the stationarity of the eigenfunctions € (the variational principle). For
the meanings of the parameters, see Subsection 1.2.1. Note that it is assumed that Ap = 0 in the
following analysis in this section, because we are concentrating on the effect of internal rotation on
the eigenfrequencies.

The next thing to do is to explicitly express AL; we have to formulate the perturbed linear
operator to the first order in the presence of the stationary velocity field vy which is represented
by the internal rotation Q(x, ) with a relation vy = @ x 7, where the components of the rotation
vector are 2 = (Qcos 6, —Qsin ), 0). The expression for AL(E) is as below:

AL(E) = 2iwp(vg - V)E. (4.5)

For more information on the derivations, (see, e.g., Aerts et al., 2010).
Substituting the expression (4.5) for the equation (4.4), after some manipulations, leads to an
expression for the rotational shift as follows:
]
Onim_ // K (1,0)Q(r, 0) 1% drsin 0d, (4.6)
m
where the explicit form of the rotational splitting kernel K, (r,6) is

d (sin®0 d
Kum(r,6) = £ |{€ 1+ D& — 266 HP (o)) + 6 9<Sm2 — G{le(COSQ)}2>

d
2 m 2
+ gh’cosa—dcosf){Pl (cos0)} }, (4.7)

where &, and &, are the radial and the horizontal components of the eigenfunction &, which can
be obtained by calculating the linear adiabatic oscillation of the model. The associated Legendre
function is denoted by P;"(cos#). The quantity I,; is defined as below:

R
Iu= [ (€ +10+Deh)prar (4.8)
0
We can separate the radial and latitudinal component of the rotational splitting kernel as follows

Knlm(xv :u) = Knl(x)nflm(u) + Lnl(x)le(.u)v (49)

where x and p are fractional radius (x = r/R) and cosine of the colatitude 6, respectively. The
radial components K,;(z) and L,;(z) have the following explicit forms

2
T
K() = (€ + 10+ D& = 26:60), (4.10)
n
pa*
Lnl('x) = ——%&- (4‘11)
Inl
And the latitudinal components Wi, (1) and Xj,,, (1) have the following explicit forms
VVlm(,u) = {le(u)}27 (412)
d apPm
X () = (1 — pi®)—( P™ —l> 4.1
1) = (1= )2 (B S (113)
Finally, we have another expression for the rotational shift
dw
% = // |:Knl(x)VVlm(.u) + Lnl(x>le(M)] Q(‘T* M)dxd;u“ (414)
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4.3.2 Methods 2

This subsection is dedicated to presenting some techniques for rotation inversion to estimate the
internal rotation of the star based on the expression (4.14). We have a set of the equations (4.14),
the number of which is identical to that of observed rotational shifts (more precisely, the number
of the so-called generalized rotational splittings defined by the expression 4.38 as shown later).
Rotational splitting kernels for the corresponding observed rotational shifts can be computed based
on the calculation of the linear adiabatic oscillation of the model once the mode identification has
been carried out. Then, what we have to do to estimate the unknown in the set of the equations (the
internal rotation Q(z, 1)) is to solve it. This is, however, almost an impossible thing to do, because
the number of the equations is finite while the number of parameters describing the internal rotation
Q(x, ) is ultimately infinite (Q(z, p) is a continuous function); this is an ill-posed problem, and we
need some techniques for (not solving but) inverting the set of the equations such as the Regularized
Least-Squares (RLS) method and the Optimally Localized Averaging (OLA) method, both of which
are well established and have been frequently used in helioseismology (see, e.g., Thompson et al.,
2017).

We would like to here present one of the standard methods, the OLA method, as well as two
techniques, namely, a-few-zone modeling of the internal rotation and a newly developed Bayesian
scheme. The reason for introducing the latter two methods is that we do not have a large number
of rotational shifts in the case of asteroseismology compared with the case in helioseismology (see
Subsection 1.2.1), and thus, it is sometimes difficult to draw definitive conclusions based on just
one method (even when it is one of the standard methods) and comparisons of results obtained via
different methods can help us to better understand the inversion results. In other words, there is
no all-round method which enables us to solve any inverse problems completely, i.e., each inversion
technique provides us with the corresponding estimate based on a particular criterion adopted for
the technique as are shown in the following small subsections. Therefore, we should be cautious
not to jump to seemingly satisfactory conclusions, which is especially the case in asteroseismology
where the relative scarcity of observed rotational shifts easily leads to the ill-posedness of the inverse
problems. (For more information on other techniques and comparisons among them, see Appendix
C)

Before moving on to the demonstrations of the three methods, we have a few remarks on what
are usually common for all the inversion techniques. We usually have uncertainties arising from
observation, instruments, and so on. Thus, the set of equations can be rewritten in the following
form

d; = / / Ki(z, )0, p)dadp + e, (4.15)

where we have replaced dwy, /m with d;, and the mode indices (n,l,m) are replaced with a single
index ¢ identifying modes. The left-hand sides of the equation (4.14) is now represented by d;. It is
assumed that means of the uncertainties are zero

<e; >=0, (4.16)

and that the observational uncertainty is statistically independent from each other.

2Partly cited from my master thesis.
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Optimally Localized Averaging method

The first method we describe is the Optimally Localized Averaging (OLA) method. In OLA, we
estimate a value of the internal rotation at a certain target point Q(xg, po) as a linear combination
of the dataset {d;}

Q(zo, po)
M

= > ci(xo, po)d;

i=1

- ;Mlci(ﬂ?o,uo)</ / Kz»(:c,u)fz(:c,u)d:cdwei)

M
= [ D s, o) 2w )y + Y ciCao, po)es (4.17)

i=1
where the equation (4.15) is used to derive the expression above, and D(z, u; zo, j10) is the averaging
kernel which is defined as

M

D(x, 5 20, o) = Y ¢i(@o, pr0) K, o). (4.18)
=1

|2 > is evaluated as below

The variance of the estimate < |6Q(zo, 1o)

M
< ‘(59(1‘0,”0)‘2 > = < |ZC¢€¢|2 >
i=1

M

M
= < Zciei Z Cj€;j >
i=1 =1

M
= Z ciCjEij, (4'19)
ij=1
where the covariance matrix ;; is defined as
E;j =<eiej > . (4.20)

In an ideal case where D(z, p; xo, pro) — 0(x — o, ft — o), the expression (4.17) can be altered
to

M
Q(xo, po) = /5(17 — 20, b — po) U, p)dadp + > ci(wo, to)e;
i—1
M

= Qw0 po) + Y ci(wo, po)e, (4.21)
i=1

which indicates that < Q(a:o, 1) > would be the true value of the function at the target point
Q(xg, o). Therefore, the goal of the OLA method is to have the averaging kernel as well localized
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around the target point as possible. The condition is fulfilled, for instance, by determining the
coefficients {¢;} which minimize the following value

M
S = // D(%M;wo,uo){(l' —20)* + 2 (u — Mo)Q}dmdﬂ +a Y ciciEyj, (4.22)

1,7=1

Minimizing S allows the averaging kernel to be large near the target point and to be small far
from it (Backus-Gilbert method; Backus and Gilbert, 1967). In order to determine the absolute
values of the inversion coefficients, a unimodular condition of the averaging kernel is considered

/D(w,u;wo,uo)dwdu =1 (4.23)

Furthermore, to keep the estimated errors small, the variance of the estimate is also included in the
equation (4.22). Thus, what we minimize is, for example,

M

Sx= /D(%M;IEO,MO)Q{@$0)2+(MM0)2}d$d/~L+0¢ > CiCjEij+2>\(1_/D(xa/HiUOaMO)dxdﬂ)a
- ij=1 :

’ (4.24)
where « is a free parameter and A is a Lagrangian multiplier introduced to achieve the condition
(4.23).

Minimizing the Sy is completed by requiring (95y/dcx) = 0 for all k. The condition is expressed
using matrices

@ 1 0

Q 1 : =1 (4.25)
am cM 0
@ - oqu| 0 CM+1 1

where A is replaced with ¢pr41, and @ is a M x M matrix whose (i, 7) element is

Qij = /Kz(mu 1 Kj(z, M){(@" —x0)% + (1 — HO)Q}dl’dﬂ + k. (4.26)
The integration of each kernel ¢; is used in the expression (4.25), and it is defined as

i = /Ki(w, p)dzdp. (4.27)

Since the matrix @ is a real and symmetric matrix, we can invert the equation (4.25) via, for
example, LU-decomposition of ). We thus obtain the inversion coefficients {¢;}. Substituting them
for equations (4.17) and (4.19) provides us with the estimate at the target point.

This is not the end. After we have determined {¢;}, we have to check whether the averaging
kernel is really localized around the target point or not. We also have to investigate the variance
of the estimate, error magnification. Actually, error magnification is dependent on the choice of
a trade-off parameter «, and there is a trade-off relation between the resolution of the averaging
kernel and error magnification. This feature is explainable when we look at equation (4.24). If «
is close to zero, the importance of the second term in equation (4.24) decreases and we have to
concentrate on minimizing the first term. Whereas, if « is so large that the first term is negligible,
we do not need to care about minimizing the first term. Therefore, we should find an o with which
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the importance of the resolution and that of error magnification is well balanced in minimizing S).
We describe how to find an appropriate a in detail in Subsection 4.3.4.

Finally, we would like to mention one advantage of the OLA method, that is, we can simply
relate an estimated internal rotation rate at a target point Q(xo, o) to the real internal rotational
profile Q(z, 1) via the equation (4.17) with the corresponding averaging kernel D(z, u; xo, o), which
allows us to interpret the estimate as an averaged internal rotation rate weighted by the averaging
kernel. As such, not only estimates but also the averaging kernels and the inversion coefficients
contain important information on the internal rotation of stars. This is partly the reason why
we primarily focus on the rotation inversion via the OLA method in Subsection 4.3.4, and the
subsequent discussions are mostly based on the results of the OLA method as we see in Subsection
4.3.5.

A-few-zone modeling 3

A-few-zone modeling is a kind of the least-square methods where the sum of squared residuals
between rotational shifts computed based on the parameterized internal rotation and the observed
rotational shifts is minimized. We parameterize the internal rotation with just a few zones, which
is the reason for the name of the method. Here, the case of three-zone modeling is presented below,
though the essential procedures are the same for numbers other than three.

We assume a constant angular velocity for each of the regions, namely, the innermost region
(0 < < 24,0 < pu < 1): region 1, the inner region (x, < z < 3,0 < p < 1): region 2, and the
outer region (1 < < 1,0 < p < 1): region 3. The positions of boundaries, denoted by z, and
xyp, are treated as free parameters. The linear integral equation (4.15) can be expressed in a much
simpler form as below:

3
di = K;Q+e, i=1,.,M, j=123 (4.28)
j=1

where K;; is defined as

K;; = //J K;(x, p)dzdp, (4.29)

and the integration is carried out over the region j.
Equation (4.28) can be rewritten in the following form

d=KQ+e, (4.30)

where K is a 23 x 3 matrix (in the case of KIC 11145123, the number of the observed rotational shifts
is 23). The data, the angular velocities, and the errors are denoted by d, €2, and e, respectively.
The linear inverse problem (4.30) was relatively easy to solve in a least-squares sense because the
rank of the observation matrix K is found to be full.

Bayesian inversion; NEW

In this small subsection, we present novel formulations to conduct Bayesian rotation inversion. In
Bayesian statistics, we have to accept an assumption that we can define ‘probabilities of param-
eters’, which are not considered to be random variables in the ordinary statistical context where

3Mostly cited from Hatta et al. (2019)
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a probability can be defined only for repeatedly observable quantities. But once we accept the
concept of such a subjective probability, Bayesian statistics allows us to, for example, investigate
global properties of probabilities of parameters or compute probabilities of models, based on the
latter of which we can conduct model comparison among possible models. In particular, such ca-
pability of the model comparison strongly motivates us to construct an inversion scheme based on
Bayesian statistics, and the application can be found in Subsection 4.3.5, in which the possibility of
the fast-convective-core rotation of KIC 11145123 is tested. For more thorough introductions and
discussions on Bayesian statistics in astronomical contexts, readers should refer to e.g. Gregory
(2005D).

First of all, let us start with one of the most fundamental equations in Bayesian statistics, the
Bayes’ theorem, which has the following form:

P(AIB)(B)

p(Bl4) = P

(4.31)
The equation (4.31) can be derived based on definitions of the joint probability p(A, B) and the
conditional probabilities p(A|B) and p(B|A), where A and B represent some events. For clarity
(and also for the coming formulations), we rewrite the equation (4.31) as below:

p(d[6)p(0)
p(d) '

where the symbols are changed from A and B to d and 6, and the newly introduced symbols
have more specific meanings, namely, d and @ represent datasets (obtained by observation) and
parameters (to be estimated). The probabilities p(8|d), p(d|@), p(@), and p(d) should read the
posterior probability of the parameters given the dataset, the probability of the dataset given the
parameters (or, the likelihood of the parameters), the prior probability of the parameters, and
the probability of the dataset marginalized by all the parameters (the so-called global likelihood),
respectively.

What the Bayes’ theorem (4.32) indicates is actually not complex to interpret; though we have
to begin with uninformative states (represented by the prior probability p(@)), once we conduct
observations, we can evaluate the probability of obtaining the resultant datasets assuming a set
of parameters (represented by the likelihood of the parameters p(d|@)), and finally, combining the
prior probability and the likelihood enables us to update our understanding of the parameters
(represented by the posterior probability p(€|d)).

Then, what do we have to do to apply Bayesian statistics to rotation inversion? The final
goal is to compute the posterior probability of parameters describing a rotational profile given the
observed rotational shifts p(Q(z, u)|d), and as shown in the last paragraph, we need to determine
functional forms of the prior probability p(Q(z, 1)) and the likelihood p(d|2(x, 1)) beforehand.
For the prior probability, it is often recommended to adopt the uniform distribution, whose range
should be reasonably broad, unless we, a priori, have strong constraints on the parameters to be
estimated. Thus, we follow the recommendation in this dissertation, and the specific range for the
prior probability is later shown. In the case of the likelihood, we assume that an observed rotational
shift d; is a realization from a Gaussian distribution whose mean is given by the first term on the
right-hand side in the expression (4.15) with its standard deviation identical to the corresponding
observational uncertainty e;. Based on the assumption, the explicit form for the likelihood of the

p(0|d) = (4.32)
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parameters given the rotational shift is as below:

{ (d — | Ki(z, 1)z, u)dwdu> }

€

Pl 1) = (4.33)

V2 67
By further assuming that the observed rotational shift is statistically independent from each other,
the explicit form for the likelihood of the parameters given the set of the observed rotational shifts
is the product of the expressions (4.33) as in the following way:

p(d|Q(z, 1)) Hp(d |z, 1)), (4.34)

where the number of the observed rotational shifts is denoted as M.

Based on the determined prior probability and the likelihood of the parameters given the set of
the observed rotational shifts, we can calculate the posterior probability of the parameters following
the expression (4.32), and we can subsequently obtain estimates for the parameters by, for instance,
choosing a set of the parameters at which the posterior probability is maximum (called Maximum
A Posterior estimation). Note that we have not determined an explicit functional form for the
rotational profile Q(z, 1) yet, which is a necessary step for us to compute the likelihood (we have
to compute the integration inside the expression 4.33). Several specific rotational profiles and
the corresponding results of the Bayesian rotation inversion are presented in Subsection 4.3.5. It
should also be noted that calculation of the posterior probability requires us to carry out numerical
integrations via the Markov-Chain Monte Carlo (MCMC) method if the number of the parameters
used to describe a rotational profile is so large that it is computationally impossible to directly
evaluate the posterior probability.

In the end of this small subsection, we would like to mention a model comparison based on
Bayesian statistics. The important quantity is the global likelihood p(d), which seems to be merely
a normalization constant in the expression (4.32). We can confirm the importance of the global
likelihood by reconsidering the Bayes’ theorem (4.32), which can be rewritten as

p(0la, ) = PES TR,

(4.35)

where a model M; representing a certain set of parameters is explicitly expressed, and the global
likelihood can read the likelihood of the model M; given the dataset. Then, let us consider the
posterior probability of the model M; (which could be totally a nonsense for “frequentists”) as

below:
p(d[M;)p(M;)

p(d) 7
and let us compare the posterior probability of the model M; and that of another model M;,. Taking
the ratio between the two posterior probabilities (called odds ratio OMjﬂ M) leads to

p(M;|d) = (4.36)

_ p(Mj|d) _ p(d|M;)
M= p(Myld) — p(d[My)’

(4.37)

in which the ratio of the posterior probabilities of the models is represented by the ratio of the
global likelihoods of the models (note that it is assumed that p(M;) = p(M},) here). In this way, the
global likelihoods p(d|M) are such essential quantities that we can select the most probable model
given the dataset, which is practically demonstrated in Subsection 4.3.5.
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4.3.3 Rotational splitting kernels for reference models

One of the most important quantities in rotation inversion is the rotational splitting kernel K;(z, i)
which relates the internal rotation Q(z, u) with the rotational shift dwy,,,, /m as seen in the expression
(4.15). What the rotational splitting kernel tells us is regions where we can probe the internal
rotation; for example, if the rotational splitting kernel is zero around some region, [ K;Qdzdpy is
also zero in the region, leading to no effects on the rotational shift dw; no matter what the internal
rotation rates are there. In that sense, the rotational splitting kernel is the sensitivity kernel as
well, and we can roughly grasp where we can infer the internal rotation rate by looking at splitting
kernels before we carry out, for instance, the OLA method.

In this subsection, two sets of the splitting kernels computed based on two different stellar
equilibrium models (the model of Kurtz et al. and the envelope-modified model obtained in Section
4.2) are shown, based on which we also propose where we can probe the internal rotation rates.

The model of Kurtz et al. (2014)

The model of Kurtz et al. (2014) is described by the following parameters: M = 1.46 Mg, (X, Y, Z)init
(0.65,0.34,0.01), foys ~ 0.005, and AP, ~ 2050s.

The eigenfunctions and the frequencies for the model are computed via linear adiabatic oscilla-
tion code developed by M. Takata (see Kurtz et al., 2014), and following the explicit expressions
(4.10) to (4.13), the rotational splitting kernels for 23 modes (23 is the number of the detected
rotational shifts in the case of KIC 11145123) are computed. The rotational splitting kernels thus
computed are roughly divided into three groups based on where they have sensitivity inside the
model. Fifteen of the twenty three kernels are those for high-order g modes with (I,m) = (1,1)
(upper left in Figure 4.9), two of them are for low-order p modes with (I,m) = (1,1) (middle left in
Figure 4.9), three of them are for low-order mixed modes with (I, m) = (2,1) (bottom left in Figure
4.9), and the rest are for low-order mixed modes with (I,m) = (2,2) having sensitivity similar to
that of low-order p modes with [ = 1.

Because we cannot probe internal rotation rates of regions where any of the computed rotational
splitting kernels do not have sensitivity, we have selected three target points for the subsequent
analyses via the OLA method, namely, points in the low-latitude deep radiative region (probed
by g modes), the low-latitude envelope (probed with p modes with [ = 1), and the high-latitude
envelope (probed by mixed modes with [ =2 and m = 1).

The envelope-modified model

The stellar parameters for the envelope-modified model is as follows: M = 1.36 Mg, (X,Y, Z)iniy =
(0.738,0.260,0.002), fovs = 0.027, and Age = 2.169 x 107 years old. The eigenfunctions and the
eigenfrequencies are computed via GYRE, based on which the rotational splitting kernels for the
detected rotational shifts are calculated. Though the mode identification is not the same as that in
the case of Kurtz et al.’s model (regarding the radial order n), basic characteristics of the splitting
kernels are almost the same, and we divide the rotational splitting kernels into three groups as seen
in Figure 4.9.

A slight difference can be found between [ = 2 mixed-mode kernels of Kurtz et al.’s model
and our tentative envelope-modified one, namely, the former kernel has stronger sensitivity in the
outer envelope than the latter has. This difference might be caused by a difference in the envelope
structures between the two models, and we see little difference between the g-mode kernels for the
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Figure 4.9: Examples of splitting kernels for the model of Kurtz et al. (2014) (left column) and splitting kernels for
the envelope-modified model we have obtained in Section 4.2 (right column). We do not see a clear difference between
the corresponding splitting kernels (compare left and right for each row). The kernels for a high-order g mode have
sensitivity in the deep radiative region just above the convective core (top row) while the kernels for a low-order p
mode have sensitivity in the envelope (middle row). The kernels for a low-order mixed mode have sensitivity both the
deep radiative region and the envelope (bottom row), and in particular, they also have sensitivity in the high-latitude
region. Note that the color contour level are different for each panel.
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Figure 4.10: Trade-off curve in the case of rotation inversion with a target point (z, u) = (0.05,0.00) for the model
of Kurtz et al. (2014). It is easily seen that error magnification V' becomes larger as the width of the averaging kernels
S becomes smaller, and vice versa. The red and blue diamonds show the values of (S,V) with which the estimates
(4.39) and (4.40) are obtained, respectively.

two models, maybe resulting from the fact that we essentially do not modify the deep radiative
region.

Therefore, we have three target points for carrying out rotation inversion via OLA, namely,
points in the low-latitude deep radiative region, the low-latitude envelope, and the high-latitude
envelope, in the same way as in the case of the model of Kurtz et al. (2014).

4.3.4 Results obtained based on OLA

With the rotational splitting kernels illustrated in the previous subsection 4.3.3 and the observed
rotational shifts, we can perform rotation inversion. In this subsection, we use the OLA method,
which provides us with quantities such as the averaging kernels and the inversion coefficients useful
for interpreting internal rotation rates, to estimate the internal rotation rate Q(:r, w) for the se-
lected target points after we determine a value of the trade-off parameter « (see, e.g., the equation
4.26). We would like to briefly demonstrate how to determine the most probable value of « before
presenting the results obtained via OLA.

We have repeated the rotation inversion 40 times for different values of «, and then, quantified
the width of averaging kernels S, which corresponds to the first term in expression (4.24), and error
magnification V', which corresponds to the second term divided by alpha in the same expression
(4.24). We have plotted the trade-off curves (e.g. Figure 4.10), and we have chosen several values
of a with which both the width of the averaging kernel S and error magnification V are sufficiently
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suppressed. After the selection of the candidates for a final value of «, we looked at each of
the candidate’s averaging kernel, and we excluded values of o with which the localization of the
averaging kernel is not well achieved. Eventually, we select one or two values of o and we obtain
the corresponding estimates. The same procedures have been conducted for each target point. We
describe the estimates thus obtained in the following small subsections.

In the following analyses, the rotational shifts in frequencies or “generalized rotational splittings”
(Goupil , 2011), are used, which are simply computed as below:

6wnlm - nl,m ;wnl’ima (438)

where n, [, and m are the radial order, the spherical degree, and the azimuthal order, respectively.

The model of Kurtz et al. (2014)*

For the target point (x, ) = (0.05,0.00), we present two equally reasonable estimates (4.39) and
(4.40). The first estimate is obtained for a = 10%, and the estimate and its standard deviation are:

€2(0.05,0.00) = (0.9940 + 0.0003) 100, (4.39)

where Q190 = 27 x 0.01d™!. The averaging kernel is localized well around the core region at low
latitude (the upper panel in Figure 4.11), suggesting the high reliability of the estimate. The second
estimate is obtained for a = 10'°, and the estimate and its standard deviation are:

Q(0.05,0.00) = (0.9492 & 0.0001) €100 (4.40)

The averaging kernel is, again, localized well around the core region at low latitude (the bottom
panel in Figure 4.11).

Though we have achieved the localization of the averaging kernels reasonably well in both cases,
there is a significant difference between the estimates (4.39) and (4.40). This difference can be
attributed to the trade-off relation between resolution and error magnification. With the larger
trade-off parameter o = 10'°, suppressing error magnification is emphasized (see equation 4.24),
leading to the smaller estimated standard deviation in the estimate (4.40) than that in the estimate
(4.39). Meanwhile, localizing the averaging kernel is prioritized in the case of o = 10%, and thus,
the corresponding averaging kernel behaves better than that with oo = 10'°; when we carefully look
into the averaging kernel with a = 10'°, we find that it has an oscillatory component between
x = 0.05 and x = 0.075 compared with that with ac = 10%. Therefore, we can qualitatively explain
the behavior of the estimates.

For more quantitative hints, we take a look at inversion coefficients determined by rotation
inversion with o = 10® and those with o = 10'° (Figure 4.12). It is apparent that the averaging
kernel for a = 10' is mainly composed of the g-mode splitting kernels. On the other hand, we
have also found that the averaging kernel for o = 108 is composed not only of the g-mode splitting
kernels but also of the mixed-mode splitting kernels. Thus, the distribution of the averaging kernels
are slightly different. One possible explanation is as follows: there is a shear of the angular velocities
around the core region, and thus, small differences between the two averaging kernels lead to the
substantial difference in the two estimates. To test the possibility of such a fast-rotating core is one
of the purposes in our three-zone modeling introduced in Subsection 4.3.5.

*Mostly cited from Hatta ct al. (2019)
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Figure 4.11: Averaging kernels for the estimate at (x, 1) = (0.05,0.00), marked by the red cross, with o = 10® (the
upper-left figure in the upper panel) and with a = 10*° (the upper-left figure in the bottom panel). The model of
Kurtz et al. (2014) is used. The bottom-left and the upper-right figures are slices of the averaging kernel, taken at
= 0.00 and x = 0.05, respectively.
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For the target point in the low-latitude envelope, we again show two equally reasonable estimates
for the target point (x, 1) = (0.95,0.00) as follows:

€2(0.95,0.00) = (0.9511 = 0.0005) 2400, (4.41)

which has been obtained with o = 108, and

€2(0.95,0.00) = (0.9706 + 0.0002) 100, (4.42)

which has been obtained with o = 101°.

The averaging kernels for both estimates have peaks in the outer envelope (Figure 4.13), and
both of them are apparently localized around the target point. Nevertheless, we see that the
averaging kernel for o = 10® has a higher peak than for o = 10! because more emphasis is put on
resolving the averaging kernel in the case of a = 10%. On the other hand, the estimate (4.41) has a
larger standard deviation than the estimate (4.42) has since suppressing error magnification is less
focused on in the case of & = 10% than in the case of o = 1019, Thus, we clearly see the trade-off
relation.

In order to see the origins of the significant difference in the two estimates, we assessed the
inversion coefficients (Figure 4.12) as is done for the first estimate. In the case of a = 108, the
mixed-mode (I = 2) splitting kernels are mainly used for the averaging kernel. However, in the case
of = 10'°, the p-mode (I = 1) splitting kernels are mostly used for the averaging kernel. The
above difference should lead to the two equally reasonable estimates.

For the target point (z, 1) = (0.95,0.70), one estimate is obtained with o = 10® as follows:

2(0.95,0.70) = (0.9564 = 0.0006) 2100 (4.43)

The weak dependence of the estimate on the trade-off parameter « is due to the small number of
splitting kernels which have sensitivity in high-latitude regions; we do not have any other choice.
When we increased the importance of error magnification by increasing «, we have failed in localizing
the averaging kernel (the bottom panel in Figure 4.14) in contrast to the case with the smaller value
of « (the upper panel in Figure 4.14). By comparing the estimate (4.43) with the estimates (4.41)
or (4.42), we find the possibility that there is latitudinally differential rotation in the outer envelope.
We would like to expand our discussion on the existence of the latitudinally differential rotation in
Subsection 4.3.5.

The envelope-modified model

As in the last small subsection, the results of rotation inversion via the OLA method based on the
envelope-modified model for the three target points, in the low-latitude deep radiative region, the
low-latitude envelope, and the high-latitude envelope, are shown. The basic procedure to determine
the trade-off parameter « is the same as that in the last small subsection.

The first target point is (x, x) = (0.05,0.00), and there is one estimate as follows:

€2(0.05,0.00) = (0.9765 £ 0.0004) 210o. (4.44)
The corresponding averaging kernel is shown in Figure 4.15, and the sensitivity of the averaging

kernels are not so changed depending on values of «, which is the reason why we have selected
one estimate for the target point. The estimate is somewhat between those in the case of Hatta et
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Figure 4.13: Averaging kernels for the internal rotation estimate at (w, ) = (0.95,0.00), marked by the red cross,
with a = 10® (the upper-left figure in the upper panel) and with o = 10*° (the upper-left figure in the bottom panel).
The model of Kurtz et al. (2014) is used. The bottom-left figure is a slice of the averaging kernel, at y = 0.00, showing
that the averaging kernel is distributed in the outer envelope. The upper-right figure is another slice of the averaging
kernel, at x = 0.95.
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Figure 4.14: Averaging kernels for the estimate at (x, 1) = (0.95,0.70), marked by the red cross, with o = 10® (the
upper-left figure in the upper panel) and with a = 10*° (the upper-left figure in the bottom panel). The model of
Kurtz et al. (2014) is used. The bottom-left figure is a slice of the averaging kernel, at p = 0.70, showing that the
averaging kernel is distributed in the outer envelope. The upper-right figure is another slice of the averaging kernel,
at x = 0.95 which indicates that the maximum of the averaging kernel is located in high-latitude region.
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Figure 4.15: Averaging kernel for the estimate at (z, ) = (0.05,0.00), marked by the red cross, with o = 10% (the
upper-left figure). The envelope-modified model is used. The bottom-left and the upper-right figures are slices of the
averaging kernel, taken at p = 0.00 and = = 0.05, respectively. It should be noticed that the slice of the averaging
kernel at the fixed colatitude (the bottom-left figure) shows a structure different from that in the case of the model of
Kurtz et al. (2014) (Figure 4.11); while this averaging kernel is mainly composed by the mixed-mode splitting kernels,
the other averaging kernel is mainly composed by the g-mode splitting kernels.

al. (2019), and this is due to the sensitivity of the mixed-mode rotational splitting kernels of the
envelope-modified model. As seen in Figure 4.9, the mixed-mode splitting kernels with [ = 2 are
more concentrated on the deep radiative region than those for Kurtz et al. (2014), and thus, they
are more likely to be used to localize the averaging kernel; instead, the g-mode splitting kernels are
not used, which is a difference between the estimate (4.40) and the one (4.44). When we carry out
rotation inversion only with the g-mode splitting kernels, almost the same result as the estimate
(4.40) is obtained. This is reasonable because we fixed the deep radiative region of the envelope-
modified model, and the g-mode splitting kernels are accordingly not affected much, leading to
similar inferences.
The second target point is (x, 1) = (0.95,0.00), and there is again one estimate as follows:

€2(0.95,0.00) = (0.9809 + 0.0007) Q1. (4.45)

The averaging kernel is illustrated in Figure 4.16, and it is clearly seen that it is successfully localized
around the target point, although the contour shows a less smooth structure compared with the
averaging kernels in the case of the model of Kurtz et al. (2014) (see Figure 4.13). This is also
attributed the fact that the averaging kernel here is mainly composed by the mixed-mode splitting
kernels, some of which are negatively contributing to the averaging kernel, and such non-smooth
structure in the averaging kernel can be seen.
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Figure 4.16: Averaging kernel for the estimate at (z, ) = (0.95,0.00), marked by the red cross, with o = 10% (the
upper-left figure in the left panel). The envelope-modified model is used. The bottom-left and the upper-right figures
are slices of the averaging kernel, taken at © = 0.00 and =z = 0.05, respectively.

The third target point is (z, u) = (0.95,0.70), and we have one estimate as below:

€2(0.95,0.70) = (0.988 =+ 0.002) Q100 (4.46)

which is obtained so that the corresponding averaging kernel is well localized around the target point.
When suppressing error magnification is more prioritized, we cannot guarantee the localization of
the averaging kernel, and it also has sensitivity in the low-latitude region (the bottom panel in
Figure 4.17).

Though we have seemingly different estimations for the three target points depending on which
model (Kurtz et al.’s model or the envelope-modified one) to be used, it should be pointed out that
a general trend is common for both cases, as shown in later discussions (Subsection 4.3.5).

4.3.5 Discussions

First, we would like to compare the results of the OLA method obtained based on the model of Kurtz
et al. (2014) with those obtained based on the envelope-modified model. The apparent difference
between them can be explained by carefully investigating the inversion coeflicients and the averaging
kernels, based on which a general trend of the internal rotation of the star is inferred. Then, we would
like to discuss the inferred internal rotational profile of the star from several different perspectives
using inversion techniques introduced in Subsection 4.3.2, especially focusing on the existence of
the fast-convective-core rotation. The latitudinally differential rotation is also discussed.
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Figure 4.17: Averaging kernels for the estimate at (x, 1) = (0.95,0.70), marked by the red cross, with o = 10® (the
upper-left figure in the upper panel) and with a = 10'° (the upper-left figure in the bottom panel). The envelope-
modified model is used. The bottom-left and the upper-right figures are slices of the averaging kernel, taken at
©=0.95 and x = 0.70, respectively. The same feature as in Figure 4.14 can be observed here, namely, the averaging

kernel is more localized around the target point, as the trade-off parameter « is smaller.
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General trend of the internal rotation of the star obtained via the OLA method

Kurtz et al. (2014) have model-independently shown that the envelope of the star is rotating slightly
faster than the deep radiative region is (see Subsection 1.3.2). But such trend is difficult to confirm
with the estimates we obtained in the previous subsection; for example, in the case based on the
model of Kurtz et al. (2014), the two possible estimates for the outer region (4.41) and (4.42) are
between the two possible ones for the deep radiative region (4.39) and (4.40). These somewhat
broader ranges of the estimates are attributed to different sets of inversion coefficients.

In the case based on the model of Kurtz et al. (2014) (blue and turquoise in Figure 4.18), it is
casily seen that the g-mode rotational shifts are mainly contributing to the estimate (4.40) where the
trade-off parameter « is 10!° (see turquoise symbols). On the other hand, when o = 10® is adopted
(blue symbols), not only the g-mode but also the mixed-mode (I = 2) rotational shifts are used for
the faster estimate (4.39). Because high-order g modes cannot propagate the convective region and
their mode energy density is much smaller in the envelope than that in the deep radiative region
(see Figure 4.19), we consider the slower estimate (4.40), which are mainly composed by the g-
mode rotational shifts, as a conservative estimate for the internal rotation rate in the deep radiative
region. This conservative estimate is also reproduced in the case with the envelope-modified model
if we carry out rotation inversion via OLA to infer the internal rotation rate at the target point
(z, ) = (0.05,0.00) without p or mixed modes, indicating little model dependence of the inference.
We have thus confirmed the same trend as suggested by Kurtz et al. (2014) that the envelope of
the star rotates slightly faster than the deep radiative region does, since the conservative estimate
(4.40) is always significantly smaller than all the estimates for the target point (z, ) = (0.95,0.00)
no matter which model is used.

Then, what renders the estimate (4.39) to be so large? The faster estimate should result from
the internal rotation of some regions where the high-order g modes cannot propagate with large
amplitudes, i.e. the convective core or the outer envelope. To check the origin of the faster estimate
is one of the reasons why we carry out the three-zone modeling of the internal rotation profile of
the star and the Bayesian rotation inversion in the following small subsections.

We finally would like to mention the latitudinal dependence of the internal rotation of the
star. Although it is difficult to draw any model-independent conclusion from the estimates for the
high- and low-latitude regions in the envelope because they cover a large range of the rotational
velocities, both of the two models are suggesting a trend that the high-latitude region is rotating
slightly faster than the low-latitude region (compare the estimates 4.45 and 4.46 in the case of the
envelope-modified model, and also see discussions that the estimate 4.41, which is slower than the
only possible estimate for the high-latitude region 4.43 in the case based on the model of Kurtz et
al. (2014), is more favored in terms of the localization of the averaging kernels).

Such trend has been later confirmed as well in a rather model-independent manner in one of the
following small subsections.

A hint for the fast-core rotation °

The discussions in the preceding small subsection have allowed us to confirm one of the results of
Kurtz et al. (2014) that the envelope of the star is rotating slightly faster than the deep radiative
region. Then, why are the estimates, for example, (4.39), for which the mixed-mode rotational
shifts are mainly used, significantly larger than the estimate obtained only by g-mode rotational

SMostly cited from Hatta et al. (2019)
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Figure 4.18: Inversion coefficients for the estimates (4.39) (blue), (4.40) (turquoise), and (4.44) (red). The definition
of the horizontal axis and the meanings of the symbols are explained in the caption of Figure 4.12. In the case of
the model of Kurtz et al. (2014) (blue and turquoise), the g-mode rotational shifts are more frequently used as the
trade-off parameter o becomes larger. On the other hand, in the case of the envelope modified model (red), both
the g-mode and the mixed-mode rotational shifts are used, leading to the estimate (4.44) which is between the two
estimates (4.39) and (4.40).

shifts? One possible explanation is that there exists a velocity shear around the boundary of the
convective core in which high-order g modes cannot propagate but low-order mixed modes can (see
Figure 4.19). If such a velocity shear exists and the convective core is rotating much faster than
the the deep radiative region above is, the estimate mainly composed by the mixed-mode rotational
shifts can be affected by the fast-core rotation, leading to the relatively large estimate. To test the
possibility and to obtain a hint for how fast the convective core is rotating, we have carried out
the three-zone modeling of the internal rotation of the star. For detailed information about the
method, see Subsection 4.3.2.

The estimates of the internal rotation which makes the residual of the inversion minimum (in
the case based on the model of Kurtz et al., 2014) is as follows:

Qy = (5.57 £ 0.03) Qu00, (4.47)
Qy = (0.9348 & 0.0001) Qy0, (4.48)
Q3 = (1.0930 & 0.0006) Q100, (4.49)

which are obtained when x, is 0.046 and xy is 0.905. Interestingly, we have obtained a result which
suggests that the innermost region rotates about 6 times faster than the other parts of the star.

126



70
60

50

40

30

Splitting Kernel

20

10

T T[T T T T T T T T T T T T T T T T T
[RETERERE SRRNRRRRNE ARRRRRRAE ARRRRNRARE FRRRRRRERE RARNRRRRRE AARRRREETI

AN !

0.05 0.10  0.15 0.20  0.25 0.30
X

5
o
S

Figure 4.19: Slices of rotational splitting kernels of a high-order g mode (black), a low-order p mode (blue, almost
completely overlap with the horizontal axis), and a mixed mode (red). The convective core is indicated by the area
colored by turquoise. Because the buoyancy force cannot act as a restoring force, g modes cannot propagate the
convective region, which is why the g-mode splitting kernel has no sensitivity inside the convective core. In contrast,
the mixed-mode kernel has, though quite small, sensitivity inside the convective core.

Moreover, the inner boundary z, is almost identical to the edge of the convective core. This result
indeed indicates the existence of the shear of the angular velocities, as suggested in the last small
subsection. We also see that the deep radiative region (region 2) rotates slightly slower than the
outer region (region 3), which is the same trend as indicated by the result of the two-zone modeling
in Kurtz et al. (2014).

The estimates of the internal rotation based on the envelope-modified model is as follows:

Q = (13.48 £ 0.09) Q100, (4.50)
Qy = (0.9412 = 0.0001) €210, (4.51)
Qs = (1.1023 = 0.0006) 2100, (4.52)

which are obtained when x, is 0.046 and x} is 0.900, showing the same trend as seen in the estimates
obtained by the three-zone modeling (4.47) to (4.49). Therefore, we have found a hint for the fast-
convective-core rotation for both the previous model of Kurtz et al. (2014) and the envelope-modified
one, indicating little qualitative model dependence of the inference.
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Figure 4.20: Schematic pictures for two ways of parameterizing the function Qo(z) in the expression (4.53). The
linear profile is described with two parameters, the rotation rate at the center (). and that at the surface s, linearly
connected to each other (left). The other profile contains a velocity shear, and the profile is described by four
parameters, namely, the rotation rate inside the core Qcore, that at the outer boundary of the velocity shear a4, that
at the surface )5, and the position of one of the boundaries of the velocity shear xsh. Note that another boundary of
the velocity shear is fixed to be the convective boundary; xs, could be either the inside or the outside of the convective
core. Except for the inner core which is assumed to be rotating rigidly with Qcore, rotation rates of the other regions
are linearly expressed.

Bayesian inversion for further quantitative model selection

The three-zone modeling of the internal rotation carried out in the previous small subsection has
succeeded in, qualitatively, showing that there is only a small model dependence of the inference of
the fast-convective-core rotation. In this small subsection, we attempt to evaluate the plausibility
of the fast-core rotation, in a more quantitative way, based on the Bayesian scheme introduced in
Subsection 4.3.2, which enables us to compute the probability of a model (in this case, a certain
rotational profile somehow parameterized) and also allows us to compare models to choose one best
model.

The first step for the Bayesian model comparison is to define sets of models to be considered,
or to determine how to parameterize the rotational profile Q(z, i), based on which we compute the
likelihood of parameters (see the equation 4.33). We parameterize the rotational profile as below:

Oz, j1) = Qo) + 4 (2), (4.53)

where Qq(z) can have a linear profile (with two parameters, namely, the rotation rate at the center €2,
and that at the surface €)5) or can have a velocity shear (with four parameters, namely, the rotation
rate below a velocity shear boundary xg, which is assumed to be uniform Qcore, the rotation rate
at another edge of the shear boundary fixed to be the convective core boundary €,,4, and that
at the surface €) (see Figure 4.20). Another function ©4(z), which is related to the latitudinal
dependence of the internal rotation, can be zero elsewhere (with no parameters) or can have a
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Figure 4.21: Samples obtained by the Metropolis method (Metropolis et al., 1953) which are considered to be
distributed following the posterior probability. Here is the case of the parameterization Miqs4p, which can have a
velocity shear (for the definition of the denotation, see the text). It is clearly seen that the parameters are distributed
around some mean values (converged) after the iteration number reaches around 10?. The period during which the
parameters have not converged is called the burn-in period. We can also roughly estimate parameters by just looking
at the converged values. For example, it is seen that a rough mean value of Qcore (in the bottom panel) is about 0.13
a*t.

linear profile (with two parameters, in almost the same way as a linear profile of Qy(z) but with
additional indices as Q1. and €y5). With the definitions for Qg (z) and Q;(x), there are four ways
of parameterization of the rotational profile in total. Let us denote the models as follows: Mq2p
for linear Qo and zero €2y, Mjq4;, for shear {29 and zero €y, Maqyp, for linear {2y and linear €2, and
Mpsqgep for shear 2y and linear €.

Then, for each way of parameterization, the posterior probability of the parameters is computed
based on the likelihood of the parameters and the prior probability. As described in Subsection
4.3.2, each prior probability for a certain parameter is assumed to be uniform as below:

Qe, sy Qeorer Lrads Qe, Qs ~ U[0.001,0.3] (in units of d~1) (4.54)

and
xgn ~ U[0.00,0.075], (4.55)

where g ~ Ula,b] means that q is a random variable uniformly distributed in a range from a to
b. The joint prior probability is computed by taking products of prior probabilities assuming that
the parameters are statistically independent from each other. The likelihood is calculated with the
expressions (4.33) and (4.34). The number of the mode is 23. The rotational splitting kernels of
Kurtz et al.’s model are used in this analysis. We carry out the Metropolis method (Metropolis et
al., 1953), which is one of the standard algorithms to carry out MCMC, to evaluate the posterior
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Figure 4.22: Example of the contour of the joint posterior probability of Qcore and xsn marginalized by the other

parameters. If we estimate Qcore based on the Maximum A Posteriori estimation (see the text in Section 4.3.3), Qcore
would be 0.135 d~'. The estimated uncertainty can be also determined by, for instance, the width of the posterior
probability.

probability. The convergence of samples generated via the Metropolis method has been checked
by visual inspection (see Figure 4.21). A typical number of iterations is of the order of 10°, and
about a fraction of samples are discarded from the final samples as they are considered as samples
in the burn-in periods (which is the period during which obtained samples are not thought to be
realizations from the posterior probability distribution we would like to sample). More information
on principles of MCMC, how to manage the outcomes of MCMC and so on, can be found in Gregory
(2005D).

The most important part in the Bayesian model comparison is to compute the global likeli-
hood for each way of parameterization of the rotational profile. For the computations of the global
likelihoods, we follow the procedures proposed by Chib and Jeliazkov (2001) in which an exact
value of the posterior probability of a particular set of the parameters is directly evaluated, and
then, the global likelihood is calculated based on the relation (4.32). We have confirmed that the
method correctly works for simple cases where we can analytically compute the posterior proba-
bility and the global likelihood. The logarithm of the thus obtained global likelihoods for the four
models Miq2p, Maqap (no-velocity-shear profiles), Miqap, and Magep (with-velocity-shear profiles)
arc —55430, —53988, —44587, and —42977, clearly indicating that the rotational profiles with the
velocity shear (the latter two) are more favored than those without the shear (the former two). We
can also confirm that based on the posterior probability of .o for the models with the velocity
shear, the fast-core rotation is again inferred (Figure 4.22).
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Is the fast-core rotation reasonable? ¢

Aerts et al. (2017) summarized the studies on the internal rotation of main-sequence A-F type stars,
and they concluded that almost all the stars investigated so far exhibited nearly rigid rotation. This
is different from the result we have obtained through the present study; there can be a strong velocity
shear between the convective core and the radiative region above. Our result, however, is actually
not incompatible with their view because all the studies in Aerts et al. (2017) have estimated the
“core” rotation based on g modes with which we cannot extract the information on the convective
core. Thus, what they have inferred are internal rotation of the “deep radiative” region above the
convective core. Meanwhile, our estimation of “core” rotation is based on a mixed mode which has
sensitivity inside the convective core. We have succeeded in extracting information on the convective
core, which enables us to reveal the fast-core rotation of KIC11145123. Furthermore, our results
show that the radiative region of the star rotates nearly rigidly (e.g. see the estimates 4.48 and
4.49). This result is consistent with the current understanding of the internal rotation of A-F stars.

From the theoretical point of view, there have been a series of numerical simulations of the
dynamo mechanism inside the convective core of A type stars (e.g. Browning et al., 2004; Brun et
al., 2005; Featherstone et al., 2009) where internal differential rotation has been also calculated. In
particular, though they focused more on the magnetism of A stars, one of their studies (Browning
et al., 2004) reproduced internal rotation profile in which the convective core rotates a few times
faster than the radiative region above, which is similar to what we have found in this study. The
fast-core rotation in an A star might be theoretically feasible.

Latitudinally differential rotation *

Based on the estimates (4.45) and (4.46), we can simply conclude that the high-latitude region is
rotating faster than the low-latitude region. However, this is not the case for the model of Kurtz et
al. (2014); the estimates are ordered as: €2(0.95,0.00),_10s < £2(0.95,0.70)) < €(0.95,0.00),_;010.
Actually, we probably obtain innumerable estimates by changing the value of o between 10% and
1019, and thus, it is possible that there exist estimates based on which we do not find any latitudinal
dependence of the internal rotation in the outer envelope.

In order to check whether latitudinally differential rotation does exist or not, we focus on the
three quintuplets which are identified as [ = 2 and we directly compute so-called “a-coefficients” of
the three multiplets. The a-coefficients are coefficients which are used in an expansion of a frequency
shift as follows:

Wnim — Wnlo = Z ak(”a l)pk(mv l)7 (456)

k

where k is the order of the expanding polynomial Py (m;l) (Ritzwoller and Lavely, 1991). In the
present paper, we followed the formulation of Schou et al. (1994). It is easily shown that the odd-
order terms agry1 correspond to rotational splitting by substituting the expression (4.56) into the
definition (4.38). In particular, the sign of the a3 coefficient represents the latitudinal dependence of
the internal rotation; the positive (negative) value corresponds to the faster internal rotation in the
low (high) latitude region. From the observed rotational shifts, we computed three as coefficients
for the quintuplets (n,l) = (—1,2),(0,2), (2,2) with the propagated standard deviations as below:

aS™(—1,2) = (=6.743.3) x 1076 d 7!

SMostly cited from Hatta et al. (2019)
"Mostly cited from Hatta et al. (2019)
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ag™(0,2) = (0.15+1.3) x 10 ¢ d !
ag™(2,2) = (-1.8 £8.6) x 1075 d .

As we see, a$”(—1,2) is smaller than zero with more than 20 significance, suggesting that the
high-latitude region rotates faster than the low-latitude region does. Nevertheless, both agbs(O, 2)
and a3 (2, 2) are zero within the error bars. For assessing whether there is latitudinal dependence of
the internal rotation or not based on all the three as coeflicients, we carried out a simple statistical
test. The null hypothesis we would like to reject is that az(n,l) = 0 for any multiplet, and we assume
that the probability density function of each observed as coefficient is distributed as Gaussian with
the mean and the standard deviation equal to zero and its observational estimate, respectively.
Then, we calculated probability that we measure a3 coefficient whose absolute value is larger than

that of the actually observed one, a$”(n, 1), as below:

S N ol
p(n’ l) N out \/%J(TL, l)exp< 2 O'(TL, l)2 )dx’

where z is a dummy variable and o(n,[) is an observational estimate of the standard deviation of
a$™(n, ). The integration is carried out over the region, —oc < x < —a$”(n, 1) or a§®®(n,l) < z <
oo. Note that agbs(n, I) represents the actual observed value here. Thus, the probability that we

measure a set of a3 coefficients {az(—1,2), a3(0,2),a3(2,2)} which satisfies the following conditions

las(—1,2)| > [a3™(~1,2)|
|a3(0,2)] > [ag™(0,2)]
las(2,2)] > |ag™(2,2)]

are simply calculated as below:

b= p(*l, 2) X p(o, 2) X p(272):

and we found that the value of p is 0.033. This is more than 20 significance but less than 3o
significance, and thus, we conclude that it is marginal to reject the null hypothesis and to claim
that as # 0. Nonetheless, if we admit the existence of the latitudinally differential rotation, it
is implied that the high-latitude region rotates faster than the low-latitude region does since the
observed a3 coefficients seem to favor negative values. This feature is sometimes called anti-solar
differential rotation (e.g. Brun et al., 2017).

4.4 Discussions overall

Detailed asterosesimic analyses of KIC 11145123 in Sections 4.2.3 and 4.3.5 have revealed a number
of fascinating characteristics of the star. Firstly, based on the non-standard modeling of the star, it
is shown that the star may well have experienced some chemical composition modifications during
its evolution, supporting the fact that the star is spectroscopically a blue straggler (Takada-Hidai
et al., 2017). Secondly, a deviation from the observed AP, pattern between that of the obtained
envelope-modified model tells us that the chemical composition gradient in the deep radiative region
of the star should be much steeper than that in the current envelope-modified model, and one of
the most promising candidates to render the chemical composition gradient steeper is the diffusion
processes which are much weaker than those usually assumed in the ordinary stellar evolutionary
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calculation. Thirdly, a hint for the fast-convective-core rotation of the star has been found via
several inversion techniques, while the other regions are rotating almost rigidly throughout the star
as already reported by Kurtz et al. (2014).

Then, are there any relations among these results which have been independently inferred? To
find answers to the question above is a major goal of this section, and the physical properties of the
star inferred so far are reviewed from broader perspectives.

4.4.1 Relation between the inferred velocity shear and the internal structure

It is generally considered that a velocity shear causes instabilities around the shear boundary and
finally mixes the region to some extent. Therefore, for KIC 11145123, it is expected that the
inferred fast-core rotation, or the inferred rotational velocity shear between the convective core and
the radiative region above, can cause instabilities which lead to mixing around the convective core
boundary. Although it is almost impossible to directly observe such “extra” mixing which is at work
deep inside the star, we can find a signature of the extra mixing based on the discussions about
the observed AP, pattern; it is necessary for us to somehow weaken the diffusion process inside
the star to reproduce the observed AP, pattern, and it is possible that the extra mixing caused by
the rotational velocity shear around the convective boundary counteracts and effectively weakens
the diffusion processes. We thus find a hint for a relation between the internal dynamics and the
structure of the star.

A similar relation between internal dynamics and structure can be also found in the case of the
Sun. According to results of helioseismic structure inversion, there is a discrepancy between the
sound speed profile of the real Sun and that of the standard solar model at the bottom of the solar
convective envelope (Christensen-Dalsgaard et al., 1996). Interestingly, the bottom of the convec-
tive envelope where the discrepancy has been found is identical to the so-called solar tachochline, a
relatively strong rotational velocity shear inferred based on helioseismic rotation inversion (Thomp-
son et al., 1996), and it is currently a commonly accepted idea in the helioseismology community
that the discrepancy can be resolved if we consider extra mixing caused by the velocity shear at the
solar tachochline. (See more detailed discussions in Gough et al., 1996).

Here is one caveat; in helioseismology, extra mixings at the solar tachochline are believed to mix
the region uniformly (reducing effectiveness of the helium gravitational settling), but in the case
of KIC 11145123, we have an opposite trend where extra mixings around the convective boundary
render the chemical composition gradient to be steeper somewhere. The latter process might sound
peculiar for us because mixing processes, literally, mix the chemical composition uniformly. How-
ever, whether a mixing process really leads to a locally uniform chemical composition profile or not
strongly depends on the scaleheight of the mixing process and the position where the mixing is at
work; if the mixing region is too thin and the mixing is occurring at the edge of the boundary (in
terms of the chemical composition profile, for instance), the gradient of the chemical composition
profile can be maintained though the chemical composition is uniform inside the thin mixing region,
which might be the case for KIC 11145123.

4.4.2 Comparison with the case of KIC 9244992

Though it is definitely the case that the star is exhibiting a large number of intriguing physical
properties in terms of the evolutionary stage, the internal structure, the internal dynamics, and
the interrelations among them, difficulties arise when we consider whether the inferred properties
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are universal in the case of the other stars or just unique to the star; because there is only KIC
11145123, for which the convective core rotation has been inferred, we do not know that the fast-
core rotation is a rare phenomena which is somehow caused by envelope-modification events the
star has experienced, or that it is rather common phenomena and just a consequence of ordinary
angular momentum transfer expected to be at work inside stars.

One simple way of testing the universality of the properties inferred for KIC 11145123 is to
increase the number of targets and carry out statistical tests to draw general conclusions, which,
unfortunately, is very difficult to realize because the number of stars for which we can perform
asteroseimic analyses as done in this dissertation is fairy few (see Subsection 1.3.1); we definitely
need more pulsators exhibiting, especially, resolved frequency splitting.

We nevertheless have one pulsator, KIC 9244992, which is one of the three main-sequence stars
exhibiting resolved frequency splitting found by D. W. Kurtz in the Kepler targets (see Subsection
1.3.1). Asteroseismic analyses of KIC 9244992 have been already done by Saio et al. (2015) in the
way mostly the same as those in Kurtz et al. (2014) (the authors are actually almost the same).
The star is an F-type star (Huber et al., 2014) and the best asteroseismic model of the star has
M = 1.45Mgy, Xinit = 0.724, Ziniy = 0.01, and fovs = 0.010 (note that fous is the extent of the
overshooting, see Subsection 2.4.2). Rotation inversion indicates that the star is rotating almost
rigidly with Prot ~ 65d from the core to the surface and that the core is rotating slightly faster
than the envelope. As such, KIC 9244992 is roughly similar to KIC 11145123 in terms the global
properties, though the former star seems to be more normal than the latter one.

We thus would like to compare properties, namely, the AP, pattern and the convective core
rotation, of KIC 11145123 and those of KIC 9244992; though the number is of course not satisfactory
in a statistical sense yet, the comparison might lead us to the better understanding of interiors of
stars. Firstly, we compare the observed AP, patterns in Figure 4.23 which is cited from Saio et
al. (2015). It is clearly seen that the AP, pattern of KIC 9244992 is smoother than that of KIC
11145123, suggesting that we do not need any steep chemical composition gradient in the deep
radiative region of KIC 9244992.

Secondly, we compare the convective-core rotations of the stars. Because Saio et al. (2015)
did not use mixed modes in their rotation inversion (and mixed modes are essential to infer the
convective core rotation as discussed in Subsection 4.3.5), we include the observed mixed-mode
rotational shifts and carry out rotation inversion again. The number of the rotational shifts is 18
(12 high-order g modes with { = 1, 2 low-order p modes with [ = 1, and 5 mixed modes with
[ higher than 3). We reproduce the equilibrium model of KIC 9244992 via MESA based on the
parameters given in Saio et al. (2015), based on which the eigenfrequencies, the eigenfunctions,
and the rotational splitting kernels are computed with GYRE. By using the three-zone modeling
of the rotational profile, we have carried out rotation inversion, and we have found little hint of a
fast-convective-core rotation in the case of KIC 9244992.

The above two comparisons might imply an interesting trend that when there (does not) exists
a rotational velocity shear between the convective boundary, the AP, pattern (does not have) has
a short-periodic component with an observable amplitude. Of course, it is obvious that we cannot
have a clear answer to the original question “is the inferred properties for KIC 11145123 universal?”
based on the implication. Different evolutionary stages of the two stars can cause the difference
in the inferred properties. Still, we also cannot rule out the possibility that the peculiarity of
KIC 11145123 in terms of experiencing the envelope modifications during the evolution leads to
the difference in the inferences of the two stars. In addition, the inference of the absence of the
fast-convective-core rotation for KIC 9244992 suffers from the model-dependence problem, and it
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Figure 4.23: Comparison of observed modulated AP, patterns for KIC 9244992 (blue Saio et al., 2015) and for KIC
11145123 (red Kurtz et al., 2014) with theoretically calculated patterns with diffusion (black) and without diffusion
(green) via a linear adiabatic oscillation code developed by M. Takata. This figure is the same as Figure 2.4, and it
is cited from Saio et al. (2015).

is potentially questionable that the mixed modes assigned the spherical degrees larger than 3 in
Saio et al. (2015) are correctly identified. However, this is the first case in which relations (between
internal dynamics and the structure) of two different stars have been compared, which could be a
good test case for further comprehensive studies on interiors of stars to be achieved in the future.

4.5 Summary of this chapter

Detailed asteroseismic analyses have been carried out for KIC 11145123.

First, The envelope-modified model of the star, whose initial helium abundance is ~ 0.26, has
been constructed based on the novel scheme of the non-standard modeling developed by us. The
model is also fine-tuned to reproduce the positive slope seen in the observed A P, pattern by adopting
fovs = 0.027. The discrepancy between the model and the observation for the envelope-modified
model is comparable to those for previous models of the star computed assuming a single-star
evolution, suggesting that the star may well have experienced non single-star evolution.

Secondly, rotation inversion has been carried out based on the envelope-modified model to
infer the internal rotation of the star, especially focusing on the existence of the fast core rotation
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suggested by Hatta et al. (2019). Comparison of the results with previous ones by Hatta et al.
(2019), in which an ordinary single-star evolutionary model obtained by Kurtz et al. (2014) is used
as a reference model, shows the little qualitative model dependence of the inferences. A Bayesian
scheme newly developed by us is also favoring the existence of the fast-convective-core rotation. In
particular, the fast-convective-core (that the convective core is rotating around 5-10 times faster
than the other regions of the star) is inferred for the both cases. Such a strong velocity shear might
be triggering some kinds of extra mixing which is thought to be a cause for the short periodic
component seen in the observed AP, pattern of the star, which is totally opposite to the case of
KIC 9244992 for which the fast-convective-core has not been inferred and the observed A P, pattern
does not show the short periodic component with an observable amplitude, though the analyses for
KIC 9244992 are rather experimental.
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Chapter 5

Conclusions

This dissertation is dedicated to detailed asteroseismic analyses of a possible blue straggler star
KIC 11145123. Three main conclusions have been obtained and they are listed in the following
paragraphs. In addition, some remarks on future prospects of this study are also made.

The first conclusion is that the star might have been born as a single star with an ordinary initial
helium abundance of ~ 0.26 and then experienced some interactions with other stars, leading to
the modification of the chemical composition in the envelope. This conclusion is obtained based on
the non-standard modeling of the star where modifications of the chemical compositions are taken
into account for constructing 1-dimensional stellar models. A novel scheme to compute such non-
standard models has been developed in this dissertation, which is applied to the comprehensive grid-
based modeling of the star, resulting in the envelope-modified model with fundamental parameters
as below: M = 1.36M), Yinit = 0.26, Zinit = 0.002, fovs = 0.027, and Age = 2.169 x 10° years old.
The modification is down to the depth of r/R ~ 0.67 and the extent is AX ~ 0.06 (AX is the
difference in hydrogen abundance between the unmodified model and the modified model) at the
surface. This is the first time such an envelope-modified model (which is still in both hydrostatic
and thermal equilibrium states) is obtained for the star, and the discrepancy between the modeled
eigenfrequencies and the observed ones is comparable to those for previous models computed based
on an assumption of a single-star evolution. The conclusion that this star may well have experienced
some interactions with other stars during the evolution is consistent with the formation channels
of blue straggler stars, thus strengthening the argument that the star is a (probable rather than
possible) blue straggler star.

Secondly, we have found that the convective core of the star is rotating around 5—10 times faster
than the other regions of the star, and we have shown the little model dependence of the inference
by comparing the results of rotation inversion carried out based on the envelope-modified model
and the previous model of Kurtz et al. (2014), which also leads to other inferences such as that
the envelope is rotating slightly faster than the deep radiative region (confirmation of the results of
Kurtz et al., 2014) and that the high-latitude region is rotating slightly faster than the low-latitude
region (the inference of the latitudinally differential rotation). The indication of the fast core
rotation is, especially, significant given the consensus regarding the stellar internal rotation probed
by other asteroseismic analyses, that main-sequence stars are rotating almost rigidly throughout
the stars and there is no strong velocity shear inside them. The apparent contradiction between
the finding in this dissertation and the current understanding in the community of asteroseismology
can be understood based on which type of modes we mainly use in rotation inversion. In the case
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of the analyses in this dissertation, mixed modes (which have, though slightly, sensitivity inside
the convective core) are mainly used for probing the rotation rates in deep regions of the star,
and on the other hand, high-order g modes (which have almost no sensitivity inside the convective
core) are mainly used for the other asteroseismic analyses of v Dor stars. Therefore, the second
conclusion also opens a window into a series of new asteroseismic analyses of the stellar deep internal
rotation focusing on mixed modes. The conclusion is of great importance as well because the fast-
convective-core rotation might place a constraint on numerical simulations of angular momentum
transfer inside stars which have not been established yet.

The final conclusion is that there might be an extra mixing caused by the rotational velocity
shear which are thought to be at work around the convective core boundary of the star. Though
exact mechanisms are not clear yet, the analysis of the observed AP, pattern of the star evidently
suggests that there should be some sharp features in the Brunt-Vaiiséld frequency and that “much
weaker” diffusion than that adopted in ordinary 1-dimensional stellar evolutionary codes such as
MESA is favorable to the observation. Interestingly enough, another § Sct and « Dor hybrid star
KIC 9244992 exhibits a much smoother AP, pattern and there is no hint for the fast core rotation,
thus also showing the possibility that there is a relationship between the current rotational profile
and the structure of the stars. To establish the relationship is one of the most highly prioritized
subjects to research.
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Appendix A

Another resettling scheme without
assuming adiabatic processes

In Chapter 3, we develop a novel numerical scheme which enables us to obtain a hydrostatic equi-
librium model based on the assumption that a perturbed state oscillates around a new equilibrium
point adiabatically. We can expand the formulation by assuming non-adiabatic oscillation as well,
and the newly developed scheme might be helpful for further carrying out the non-standard modeling

of KIC 11145123 including other possible mass accretors.

The starting point of the formulation is to express the pressure perturbation § P with the density

perturbation dp and the temperature perturbation ¢7" via formal equation of state as below:

5P 5p 5T

5 = Xp ot X
Pra ? po 1o

where partial derivatives of thermodynamic quantities are defined as
- (8 In Pmd>
X =\"9m p )T

| :<3land>
M=\omr ),

Inserting the expression (A.1) into the equation (3.13) leads to the following form
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and

which can be further converted using the relation (3.22)
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Since we do not assume the adiabatic oscillation to resettle perturbed models, the temperature
perturbation cannot be expressed only with the density perturbation (as the expression 3.16), and
thus, there are two (unknown) variables, namely, &. and §7', to be determined by solving a set of
differential equations; we need one more equation. To have one more differential equation, we focus
on the equation for the temperature gradient (3.3). For simplicity, we assume that the temperature
gradient is equal to the radiative one (it is quite challenging to consider perturbed temperature
gradients in convective region because we have to couple, for example, the mixing length theory to
describe relations among the perturbed quantities), and the equation for an unperturbed state is
as below:

Ty - _3’{—0107 (A.6)
dm 64m2aconri Ty
where a and cp), are the radiative constant and the speed of light in vacuum.

Let the opacity of the perturbed model be denoted as kg, and it can be computed by inter-
polating, for instance, the OPAL opacity table in a way similar to that when we compute P4,
namely,

ko = K(po, To, o) = Kma = K(po, To, p11)- (A.7)

We can derive a linear perturbed differential equation for the equation (A.6) following the way we
derive the one (A.5) (see details in Subsection 3.2.2), and the linear differential equation has the
following form:

Kmdpo lO dgr Kmd lO
0 Sy fmd 0 90 4y
4rrg con Pdm 16721 cph( p DG

4aT3 d(6T) { 5dTh  Kma o er ,
— 0 4T —— + B — 6T +6Q =0
3  dm “ogm + 16721 cpn T +0Q ’
(A.8)

in which the local luminosity lp is assumed to be fixed, and we also have partial derivatives with
respect to the perturbed opacity g as follows:

0 In Kmg
E — A.
Gp < dInp )T (A.9)
and 91
. N Kmd
e = <—a Lo )p, (A.10)

which satisfies the relation in the following way,

1) 1) oT
oK _ o,

=€,— +er—. A1l
fma  Cpo o ( )
The deviation from the radiative equilibrium () is defined as
4aT$ dT,
50 = 24T 4T Fwa o (A.12)

3 dm  1672rd E'

The set of the two linear differential equations (A.5) and (A.8) can be solved for an appropriate
set of the boundary conditions. In addition to the two existing ones (which can be found in Section
3.3), the third boundary condition is, for instance, ds = 0 in a moderately deep interior where the
oscillation is considered to be adiabatic.
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Appendix B

A brief introduction to structure
inversion °©

As briefly demonstrated in Subsection 4.2.3, in asteroseismology and helioseismology, what we would
like to estimate are differences in structure variables, for example, density and sound speed, between
a real star and the model of the star. If we assume that the differences are so small that we can
treat them as perturbations, then, the differences in eigenfrequencies can be related to those of the
structures using equation (1.20). Actually, the relation can be rewritten in the following form

(22) = [ [r960 %0 + K00 2| ar (B.1)

The differences of eigenfrequencies, density, and sound speed between a real star and the model are
denoted as Aw, Ac, and Ap, respectively. They are defined as below

AW = Wstar — Wref (B.2)
AcC = Cspar — Crof (B.3)
Ap = pstar — Pret- (B4)

These differences are related to each other via two functions called sound speed kernel (Kc(fﬁ),(r)) and

density kernel (K ,()fg(r)), both of which can be calculated based on the reference model. Here, an
index ¢ is used to represent a certain eigenmode.

We are able to observe the eigenfrequencies of a star, thus, we can calculate the value (B.2).
Though there still remains two unknown functions, namely, Ac/c and Ap/p, the set of equations
(B.1) enables us to estimate the unknowns via inversion techniques that we explain in Subsection
4.3.2 and Appendix C. After we estimate these two relative differences, a new model can be obtained
by adding the estimated differences to the original reference model in the following manner

Cstar = Cref T KC, (B5)
Pstar = Pref + Z; (BG)

8This appendix is mostly based on Subsection 2.3.1 in my master thesis, and most parts are citations from the
original article.
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The mark "~ has been used to emphasize that they are just estimates. The above procedure is
called structure inversion. We can model a star more precisely based on the differences of the
eigenfrequencies.

Explicit forms of the structure kernels are complex and the derivation of them requires some
efforts, but the procedure is basically the same as we derive the rotational splitting kernels in
Subsection 4.3.1; what we have to do is to obtain an explicit form for AL in the presence of the
density and sound speed perturbations, and substitute AL for the expression (1.20). After some
manipulations (see e.g. Gough and Thompson, 1991), explicit forms of the structure kernels can be
obtained as below:

wQIanc(fl),(r) = pc?x*r?, (B.7)

for the sound speed kernel K (1), and

WQIan;()f():(T)
= - %uﬂ(ﬁf + UL+ 1)gR)pr* + %p62x2r2
R 1dl g
— GM,p&x — 4nGpr® / (x np&«) ()& (s)ds + 2 Gp*r?E; + GM, di &

&G
20+ 1

T

for the density kernel K ,()f'();(r), where the mode inertia is expressed by I, (for the definition, see
Section 3.4) and the quantity yx is defined as follows:

(1) = 54 2, - LD

—<n (B.9)
which corresponds to the radial component of the divergence of the cigenfunction (V - £).

In the expressions (B.7) and (B.8), all the variables are dimensional. Let us consider the structure
kernels for dimensional variables as below:

x=r/R (B.10)

R
c = B.11
=\aLt (B.11)

__ R

*

R3
Onim = \| =———Wnim- B.1
nim = | s (B.13)

Based on the fact that the structure kernels for dimensional variables are invariant even though
they are converted for dimensionless variables, the following two identities can be derived (Takata
and Gough, 2003)

/K“ )da + / K)(x)dz = % (B.14)
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P dlnr dln

with which we have an altered expression for the one (B.1)

(22) - [[&@ 2w + KoL w)]a- 58 [ ke (B.16)

/K(z)( )dln(c/r)d /K(l)( )dlnpd =0, (B.15)

w

Equation (B.16) is different from equation (B.1) in terms of the existence of an effect of AR/R
on Aw/w. In helioseismology, it is usually assumed that AR/R is zero because the radius of the
solar model is fitted to the observed radius (Christensen-Dalsgaard et al., 1996). Thus, equation
(B.1) is frequently used to infer the solar interior. However, in asteroseismology, there is an un-
certainty in the radius of the model except for the case in which the radius has been determined
interferometrically. So we have to take the effects of AR/R on Aw/w into account as the expression
(B.16). Actually, there are a few studies (Takata and Gough, 2001) which attempt to estimate the
solar AR/ R using equation (B.16) in order to measure the solar radius more precisely; in this case,
what we obtain as “the solar radius” is the radius of the Sun sensed by the p modes, which can be
slightly different from the one defined as the radius, for instance, at the solar photosphere.
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Appendix C

Methods for linear inverse problems

A part of Chapter 4 is devoted to introducing a few methods for linear inverse problems, but
we do not explain one standard method which is frequently used in helio- and asteroseismology,
namely, the Regularized Least-Squares (RLS) method. In this appendix, a basic framework of
the RLS method is briefly presented, and then, we compare the two standard methods, the OLA
method demonstrated in Section 4.3 and the RLS method. Since inverse problems in helio- and
asteroseismology are often ill-posed, obtaining estimates via several different methods is helpful for
us to interpret behaviors of estimates.

The starting point

What we would like to solve in helio- and asteroseismology are 1-dimensional integral equation

(2) =[x %@+ ko Lw]a - 58 [kt (©1)

w
or 2-dimensional integral equation as follows:

5Wnlm

//Knlm (2, 1), p)dxdp. (C.2)

We usually have errors arising from observation, instruments, and so on. Thus, the sets of equations
can be rewritten in the following forms

-1 ) .
d,;:/ {Kgg(x)ﬁ(x)u(,g@g( )A” } / K{)(x)dz + ¢; (C.3)
0 ’ c ' p

and

where the mode indices (n, [, m) are replaced with a single index i identifying modes. The left-hand
sides of equations (C.1) and (C.2) are now represented by d;. It is assumed that means of the errors
are zero

<e >=0. <C5)

9This appendix is mostly based on Chapter 3 in my master thesis, and some parts are citations from the original
article.
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Equations (C.1) and (C.2) have different characteristics in terms of the number of unknowns
and the dimensions. However, the fundamental procedures to solve them are almost the same as
solving the following 1-dimensional integral equation with one unknown function, namely,

di:/Ki(r)f(r)dr—i—ei, (i=1,..., M), (C.6)

where the number of the identified modes is denoted by M, and f(r) is an unknown function which
we would like to estimate. Therefore, from now on, we focus on how to solve equation (C.6).
Regularized Least-Squares (RLS)

The RLS method is a variation of Least-Squares fitting methods, and ill-posedness of an original set
of linear equations can be lifted by imposing certain regularizations as we see below. Let us start
with discretizing equation (C.6)

N
di =Y Ki(rj)f(rj)Arj +ei, (i=1,..,M), (C.7)
=1

where N is the number of mesh points, and Ar; is defined as below:

A?”1 =T9—T1
Arg = (g1 — rp-1)/2 (C.8)
AT‘N =TN —TN-1.

Then, the set of the integral equation (C.6) can be expressed using matrices
d=Kf+e, (C.9)

where K is a M x N matrix. The data, the function, and the errors are denoted by an M-
dimensional vector d, an N-dimensional vector f, and an M-dimensional vector e, respectively.
The (i, ) element of K is defined as

Equation (C.9) can be solved if there exists K —1 but, this is scarcely the case owing to the
irregularity of K. Not to mention that K is usually not square. Instead of finding the exact solution
f which satisfies equation (C.9), we attempt to find least-squares solutions f which minimize the
restdual

Sis = |d— K f]%. (C.11)
The least-squares solutions are given by requiring V fSLS = 0 which leads to the following conver-
sions

Vf(|d—Kf|2> =0 (C.12)

= Vf((d, d)—2(f, K7d) + (£, KTKf)> 0, (C.13)
where (a,b) = a’b for arbitrary vectors a and b is used. The above equation can be continued as

=2K"Kf-2K"d =0, (C.14)
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using Vf(a, f) = a and Vf(Mf,Mf') = (M + MT)f, for an arbitrary matrix M. We thus
obtain the least-squares solution A
f=(KTK)"'K"d, (C.15)

if (KTK)~! exists. This solution is a more practical one because KT K is square. Nevertheless,
the rank of the matrix K7 K is the same as that of the matrix K. Therefore, it is necessary to
modify KT K so that it has an inverse. This procedure is called regularization.

Regularization is frequently conducted based on an assumption that the unknown function f
should be flat or smooth. In other words, the integral of the first or the second derivative of f
should be small

d 2
/ ‘—f dr, for flatness (C.16)
dr
or
d2f 2
/ ol dr, for smoothness. (C.17)
These expressions can also be discretized to the following vector form

ILfP?, (C.18)

where L is a differential operator.
Let us consider minimizing the sum of the residual Spg and the flatness (or smoothness) of f,
namely,

Sris = |d — Kf|> + a|Lf|. (C.19)

A trade-off parameter « is used. Then, a condition similar to equation (C.12) should be valid:
Vf<|d—Kf|2+a|Lf2> —0 (C.20)

which can be solved in the same way as solving equation (C.12), and we have
f=(K"K+oL"L)'K"d. (C.21)

In the above equation, KT K is regularized by adding the regularizing term aL” L. The f in
equation (C.21) is the regularized least-squares solution. In the RLS method, all the components
of f are estimated at once.

This is nevertheless not the end. We have to see whether the residual |d — K f |2 is small
or not. We also need to confirm if the flatness or the smoothness of f is reasonable or not.
They are related to each other and the behavior is determined by the choice of the free parameter
a. After compromising to select an acceptable «, we obtain the corresponding inversion matrix
R = (K"K + oLTL)"'K”. Subsequently, the sum of the variances of the estimates at all the
mesh points can be derived using the following equation

<|6f*> = <|Rel*>
= < (Re)'Re >

= < tr(Re(Re)T> >
= tr(R <eel > R)

- tr(RER), (C.22)
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where we use a relation (c,¢) = ¢l'e = tr(ecl), for an arbitrary vector ¢. The mark 7 denotes
transpose of a matrix. The fourth line in (C.22) is justified because the matrix R is not statistical.

Though the RLS method does not put a priority on optimizing the averaging kernels, it is still
meaningful to take a look at the averaging kernels since RLS is also one of the linear inversion
techniques. We obtain an averaging kernel at a certain mesh point, say, the i-th point of the meshes
as the ¢ th row of RK.

Comparison of OLA and RLS

The OLA method (details can be found in Section 4.3) and the RLS method are both linear inversion
techniques, which means that we estimate an unknown as a linear combination of a dataset

f = Rd. (C.23)

The goal of the OLA method is to have an averaging kernel as localized around the target point
as possible. Remember that equation (C.6) can be discretized and expressed as a matrix equation

d=Kf +e, (C.24)

equation (C.23) can be rewritten in the following manners

A~

F = R(Kf+e)
= RK{f + Re. (C.25)

Then, the OLA’s goal can be interpreted as
RK — Iy (C.26)

where Iy is an N-dimensional identity matrix. Here is a reason why we can estimate only one
unknown value in the OLA method. The i-th row of f, namely, fz is calculated as the inner
product of the i-th row of RK and f, if we neglect the errors. To calculate the i-th row of RK, we
need the i-th row of R and all the components of K. In other words, we do not have to determine
all the components of R to estimate ﬁ

On the other hand, we aim to minimize a residual |d — K f |2 in the RLS method. Inserting
equation (C.24) results in

d— Kf|> = |d— KRdJ
= |(In — KR)d|*. (C.27)

where I is an M-dimensional identity matrix. Thus, the goal of the RLS method is achieved by
KR — Iy,. (C.28)

Here is a big difference from the OLA method. In order to estimate f;, we need the i-th row of K
and all the components of R. It is required for us to determine all the components of R for just
one estimate fz However, once we determine R completely, we also obtain other estimates than fl
This is the reason why we obtain the estimates at once in the RLS method.

Note that, in the ideal case where the ill-posedness of inverse problems is negligible (of course
this is never the case), solutions obtained by the RLS method and those obtained by the OLA
method should be almost identical to one another.
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We describe a common property between OLA and RLS as a final topic in this subsection. It is
the treatment of error magnifications. We would like to reconsider the condition (C.26) in the OLA
method with respect to the norm of the difference between the true vector f and the estimated
vector f

If —fI> = |f - Rd
= |f-R(Kf+e)
= |(Iy — RK)f + Rel*. (C.29)

Though the condition (C.26) can cause the first term in the last line of equation (C.29) to be close
to zero, the second term remains. It is not always the case that the condition (C.26) can lead to a
small |(Iy — RK)f+ Re|?. In fact, it is very difficult for us to evaluate |(Iy — RK) f + Rel|? directly
because there are an unknown vector f and an unknown matrix R. Moreover, we do not know the
exact elements of the error vector e. Therefore, in the OLA method, we consider |(Iy — RK)f|?
and |Re|? separately using the free parameter a.

Then, let us look at the residual (C.27). We notice that there is no term corresponding to the
error magnification. However, it is known that the sum of the estimated variances (C.22) in the RLS
method decreases with the increasing a. So, error magnification is controlled by a free parameter
« as in the OLA method.
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