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The International Linear Collider (ILC) is a proposed international e+e−

linear collider with beam energies ranging from 250 GeV to 1 TeV. ILC is sup-
posed to start at the center-of-mass energy of 250 GeV in its initial stage to
obtain high statistics measurements of the Higgs. Note that this center-of-
mass energy was used for the calculations in this thesis.

Owing to parity violation in weak interactions, beam polarization effects
are essential to resolve new phenomena beyond the Standard Model (BSM),
and hence, studying these effects is necessary. Beam polarization and its im-
portance in studying the physics at the e+e− collider have been discussed in
detail over decades. A precise measurement to study the properties of the
Higgs boson is one of the key targets of the ILC experiments. However, to
achieve this, one needs to know the O(α) corrections to the underlying pro-
cesses.

In this thesis, I studied nine processes of e+e− → f f̄ H with the ILC polar-
ized electron and positron beams of 250 GeV center-of-mass energy, which
present the production of: (1) muon pair and Higgs boson, (2) electron-
positron pair and Higgs boson, (3) tau pair and Higgs boson, (4) muon-
neutrino pair and Higgs boson, (5) electron-neutrino pair and Higgs boson,
(6) up-quark pair and Higgs boson, (7) down-quark pair and the Higgs bo-
son, (8) charm-quark pair and Higgs boson, and finally (9) bottom-quark pair
and the Higgs boson (note that I did not consider the production of top quark,
strange quark, and tau-neutrino). I calculated theO(α) corrections to each of
these nine elementary particle reactions as well as the one-photon emission
process using the on-shell renormalization scheme.

In this thesis, I used the GRACE-Loop system to calculate the amplitudes
automatically. I developed two sets of Fortran codes. The first set was used
to calculate the O(α) corrections corresponding to the one-loop diagrams and
the one-photon emission processes; in this case, all the fermion masses were
kept non-zero, except the neutrino mass, and the arbitrary longitudinal po-
larizations of the input electron and positron beams were available. The sec-
ond set was used to treat the effects of initial-state radiation (ISR). The effects
of one-loop weak corrections were determined by comparing the O(α) cor-
rections with the ISR effects.

I verified the one-loop ampitudes generated by the GRACE-Loop system
numerically by performing the following checks: (1) renormalization; (2) in-
frared (IR) finiteness by adding the one-loop amplitudes and soft-photon ef-
fects, while introducing a fictitious photon mass; (3) gauge-parameter inde-
pendence of the one-loop amplitudes with a set of five non-linear gauge fix-
ing parameters; (4) soft-photon energy cut independence between the one-
loop and the hard-photon emission amplitudes; in this check, I needed to
perform a phase-space integration of the one-loop amplitudes. The one-loop
amplitudes of the full Lagrangian are very large; and hence, challenging to
compute numerically.
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Considering the above points, I introduced "NOLLS approximation", where
the couplings between the light-fermions (except for the bottom- and top-
quarks) and scalar particles are neglected, and the masses of all fermions are
retained. I confirmed the one-loop amplitudes generated using the NOLLS
approximation to be consistent with those obtained from the Monte-Carlo in-
tegration of the full Lagrangian. Therefore, in this thesis, I only present and
discuss the results obtained using the NOLLS approximation.

In this work, I also present a comparison with the cross-sections of Hνν̄
obtained without beam polarization in previous work. The integration errors
for all cases are presented. Moreover, I confirm the kc independence for all
the cases. The accuracy of myO(α) calculations is approximately 0.2% for all
the processes.

I also calculated the O(α) corrections to nine processes e+e− → f f̄ H us-
ing the beam polarizations of the proposed ILC. The size of O(α) corrections
reached appoximately−10% for these polarized beams, i.e., in the absence of
any experimental cut.

Originally the GRACE-Loop system can produce the codes of the po-
larized O(α)corrections, but there is no function to generate such common
codes to treat arbitrary beam polarization then I added this part. It is my
contribution to the GRACE-Loop system.

Note that the analysis of the recoil mass distribution is crucial, as it allows
the analysis of the gHZZ coupling without any assumptions of the branching
ratio of the Higgs boson decay. The O(α) corrections induce a significant
change, especially by the initial state radiation, so-called the radiative tail. I
calculated the recoil mass distribution after applying three kinds of experi-
mental cuts on theO(α) corrections to the process e+e− → µ+µ−H and by in-
cluding the ISR effects. I obtained the following corrections δTotal = −16.9%
and δISR = −13.8%; thus the weak correction was estimated to be −3%.
Therefore, if one wants to measure the gHZZ coupling within an accuracy of
1%, a weak corrections of −3% cannot be neglected.

I also compared the channels of leptons and quarks. With leptons, δISR
for the s-channel and t-channel processes were approximately 10%, and 18%,
respectively; whereas with quarks, δISR(s) were approximately 10% for all
cases, using the polarized beams of the ILC and without any experimental
cuts. Comparing the channels of leptons and quarks, reveals the difference
between the up-type and down-type quarks; however, it is not the case for
the leptons.

In conclusion, my calculations have the following features: (1) the beam
polarization effects were considered, (2) mass effects of all the fermions ex-
cept neutrinos were retained, and (3) Yukawa coupling of the bottom quark
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was included. To the best of my knowledge, this is the first detailed dis-
cussion of the e+e− → f f̄ H processes all over the world. Furthermore, I
compared the cross-sections and the total ratios, which are obtained by elec-
troweak O(α) corrections and those of the ISR effects. This discussion is also
performed for the first time ever, which is important for the analysis of ex-
perimental data.
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4.3.1 e+e− → uūH . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 e+e− → dd̄H . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 e+e− → cc̄H . . . . . . . . . . . . . . . . . . . . . . . . . 30



xvi

4.3.4 e+e− → bb̄H . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Recoil mass distribution of e+e− → µ+µ−H with beam polar-

ization effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion 33

A The input parameters 39

B Electroweak theory and the on-shell renormalizaton scheme 41
B.1 Electroweak theory . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.3 On-shell renormalization . . . . . . . . . . . . . . . . . . . . . . 55

B.3.1 Gauge boson renormalization . . . . . . . . . . . . . . . 56
B.3.2 Higgs scalar renormalization . . . . . . . . . . . . . . . 59



xvii

List of Figures

1.1 Percentage of ordinary matter, dark matter, and dark energy
in the universe, as measured by the Planck satellite[1]. . . . . . 1

1.2 The SM of elementary particles. . . . . . . . . . . . . . . . . . . 2
1.3 Summary of interactions between particles described by the

SM. The blue lines represent interactions of the gauge bosons
and the Higgs boson with quarks and leptons. . . . . . . . . . 3

2.1 Schematic layout of the ILC, indicating all the major subsys-
tems [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Recoil mass distribution of the Higgs-strahlung process e+e− →
µ+µ−H (e+e− → ZH followed by Z → µ+µ−) with 250 fb−1

for mh = 120 GeV at
√

s = 250 GeV [3]. . . . . . . . . . . . . . . 11

3.1 GRACE structure . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Typical final and initial vertex correction Feynman diagrams
of e+e− → µ+µ−H . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Typical 4 point and 5 point function Feynman diagrams of
e+e− → µ+µ−H . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Typical Fish Feynman diagram of e+e− → µ+µ−H . . . . . . 25
4.4 Recoil mass distribution of e+e− → µ+µ−H after applying the

experimental cuts as in Eqs (4.3), (4.4),(4.5) at √s = 250 GeV.
The bin width is 0.3 GeV. . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Cross-sections of the leptonic processes with the ILC proposed
beam polarization at

√
s = 250 GeV and without experimental

cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Ratios of the leptonic processes with the ILC proposed beam

polarization at
√

s = 250 GeV and without experimental cuts. 35
5.3 Cross-sections of the quark processes with the ILC proposed

beam polarization at
√

s = 250 GeV and without experimental
cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Ratios of the quark processes with the ILC proposed beam po-
larization at

√
s = 250 GeV and without experimental cuts. . . 36





xix

List of Tables

3.1 The result for mW is calculated by a Fortran program MW1.f
with mu = 58 MeV, md= 58 MeV, ms= 92 MeV mc= 1.5 GeV and
mb= 4.7 GeV as the same as Appendix A. . . . . . . . . . . . . 16

4.1 Changing CUV from 0 to 100 of e+e− → µ+µ−H with kc =
10−1 GeV and λ = 10−17 GeV at

√
s = 250 GeV. . . . . . . . . 19

4.2 Non-linear gauge parameters independence by changing α̃, β̃, δ̃, κ̃, ε̃
from (0,0,0,0,0) to (10,20,30,40,50) of e+e− → µ+µ−H with kc =
10−1 GeV and λ = 10−17 GeV at

√
s = 250 GeV . . . . . . . . . 20

4.3 λ independence by changing from 10−17 GeV to 10−19 GeV
with CUV = 100 and with kc = 10−1 GeV of e+e− → µ+µ−H
at
√

s = 250 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 The numbers of Feynman diagrams for the NOLLS approxi-

mation and the FULL model of nine processes . . . . . . . . . 21
4.5 Numbers of Feynman diagrams between the NOLLS approxi-

mation and the FULL model of nine processes . . . . . . . . . 21
4.6 Evaluation of the 1 loop amplitude at a phase space point for

the e+e− → µ+µ−H with kc = 10−1 GeV at
√

s = 250 GeV . . 22
4.7 δTotal with various kc values: kc = 10−1 GeV, kc = 10−3 GeV

and kc = 10−5 GeV for all nine processes (µ+µ−H, e+e−H,
τ+τ−H, νµν̄µH, νeν̄eH, uūH, dd̄H, cc̄H, bb̄H) without polariza-
tion at

√
s = 250 GeV. . . . . . . . . . . . . . . . . . . . . . . . . 22

4.8 δTotal with various kc values: kc = 10−1 GeV, kc = 10−3 GeV
and kc = 10−5 GeV for all nine processes (µ+µ−H, e+e−H,
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Chapter 1

The Standard Model

1.1 Brief introduction to the Standard Model

One of the main objectives of modern physics is to find the answer to
the question: What is the universe made of?. However, the answer is still
elusive. The universe is composed of dark energy, dark matter, and ordinary
matter. According to the current data, dark energy dominates and makes up
approximately 68.3% of the universe, followed by dark matter and ordinary
matter, which make up 26.8% and 4.9% of of the universe, respectively [4].
Fig. 1.1 shows the composition of the universe.

FIGURE 1.1: Percentage of ordinary matter, dark matter, and
dark energy in the universe, as measured by the Planck

satellite[1].

Ordinary matter in the universe is composed of particles that can be de-
scribed by the field of particle physics. An elementary particle is a particle
without any determinable substructure; however, it is not known whether
such a particle is composed of other particles. Known elementary parti-
cles include the fundamental fermions (i.e., quarks, anti-quarks, leptons, and
anti-leptons), which are the matter or anti-matter particles, and the vector
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bosons (i.e., gauge bosons), which are the "force particles" that mediate in-
teractions among particles. The Higgs boson, after its recent discovery, has
been added to this list. The Higgs field is responsible for the spontaneous
symmetry breaking of the electroweak symmetry, and, it consequently gives
particles in the Standard Model (SM), namely, quarks, leptons, the W and Z
gauge bosons, and their masses. There are six types of quarks: known as up
(u), down (d), charm (c), strange (s), bottom (b), and top (t). Each of these
quarks also has a corresponding anti-particle. There are also six types of lep-
tons: electron (e), muon (µ), tau (τ) and their corresponding neutrinos, νe,
νµ, ντ. These quarks and leptons are paired into three left-handed doublets
and six right-handed singlets. Conversely, right-handed particles can only
form singlets. These doublets and singlets constitue three generations of the
quarks and leptons. Fig. 1.2 illustrates the particles of the SM.

FIGURE 1.2: The SM of elementary particles.

There are four types of interactions among elementary particles: elec-
tromagnetic, weak, strong, and gravitational. The gravitational interactions
are much weaker than the strong, weak, and electromagnetic interactions
and hence are usually neglected. The fundamental interactions among el-
ementary particles are described using gauge theories, as demonstrated by
Fig. 1.3. The gauge theory describing the weak and electromagnetic interac-
tions among quarks and leptons is represented by the gauge group SU(2)L⊗
U(1)Y, which spontaneously breaks to give rise to the electromagnetic gauge
group U(1)em, consequently, the massive W and Z bosons and a massless
photon. The strong interactions among quarks are described by the color
gauge group SU(3)c, consiting of eight gluons. The gauge group describ-
ing the strong, weak, and electromagnetic interactions of quarks and leptons
represented by SU(3)c ⊗ SU(2)L ⊗U(1)Y. These interactions are consistent
with the experimental data obtained at various accelerators at both low and
high energies.

A very important aspect of the SM is the presence of the Higgs field,
whose non-vanishing vacuum expectation value spontaneously breaks the



1.1. Brief introduction to the Standard Model 3

FIGURE 1.3: Summary of interactions between particles de-
scribed by the SM. The blue lines represent interactions of the

gauge bosons and the Higgs boson with quarks and leptons.

electroweak symmetry of SU(2)L ⊗ U(1)Y to U(1)em. During this process,
the weak gauge bosons W± and Z as well as the quarks and leptons, obtain
masses. This is commonly referred to as the Brout-Englert-Higgs mechanism.
On July 4, 2012, the discovery of a new particle with properties similar to the
Higgs boson was announced, which led to a Nobel Prize in physics for Pe-
ter Higgs and Francois Englert. After more data were analyzed, physicists
confirmed that the Higgs boson indeed exists. The Higgs boson is the first
fundamental scalar particle discovered in nature and is the key to affirming
the existence of the Higgs field.

The top quark is the heaviest particle in the SM, and it couples strongly
to the Higgs field. Moreover, the masses of the Higgs boson and top quark
affect the vacuum stability of the SM. Therefore, the precise measurement of
these particles is crucial, and is one of the major goals of physicists to under-
stand the laws of nature.

Although the SM is very successful in describing the known fundamental
interactions, it cannot answer several basic questions such as: Why are there
three generations of quarks and leptons? What are the features of quark (as
well as lepton) mass hierarchy and mixing? What is the nature of dark mat-
ter?

To answer some of the aforementioned questions, one needs to explore
theories beyond the Standard Model (BSM). More importantly, to search for
signals from BSM, one needs to know the precise measurements of particles
in the SM. The International Linear Collider (ILC), which is a complementary
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accelerator to the Large Hadron Collider (LHC), may pave the way to solve
some of these mysteries.



5

Chapter 2

The International Linear Collider

2.1 Introduction

The ILC is a future linear electron-positron collider, operating at 250 to 500
GeV center-of-mass energies with high luminosity which can be extended to
1 TeV in the upgrade stage. It is, based on 1.3 GHz superconducting radio-
frequency (SCRF) accelerating technology [5]. The ILC is proposed to be
constructed in the Kitakami Mountains inTohoku area, Japan. It is an in-
ternational project running for more than 20 years collaborated by more than
300 institutes, universities, and laboratories.

The major physics aim of the ILC is to determine the future direction of
particle physics via precise measurements of the couplings of the Higgs bo-
son with other elementary particles. A wide variety of elementary particle
and nuclear physics can be studied. ILC accelerator consists of electron gun,
positron generator, two 5 GeV injectors, two 5 GeV damping rings, transport
lines to the far end of Linacs, and two 125 GeV superconducting linear accel-
erators, two final focus beam lines and two beam dumps.

The ILC parameters have been chosen by the particle physics community
based on the requirements from 2003 to date. The ILC design is the result of
over twenty years of R&D. The superconducting cavities, which are the most
essential parts of the ILC, are based on decades of groundbreaking research
by the TESLA technology collaboration in the 1990s.

2.2 Physics targets of the ILC

On July 4, 2012, the Higgs boson discovery was announced by physi-
cists in two experiments (CMS and ATLAS) of the LHC at CERN. A new
subatomic particle with a mass of approximately 125 GeV and several other
properties of the Higgs boson, as predicted by the SM, were observed [6],[7].
The Higgs boson discovery made the SM of particle physics complete.

The prediction of additional Higgs bosons is one of the prominent fea-
tures of possible physics BSM, which leads to an extended Higgs-boson sec-
tor. Searching for higher-mass Higgs bosons is also very interesting to physi-
cists. However, the hypothesis that the Higgs boson is heavy and approaches
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the theoretical upper bound has been validated by the expected exclusion re-
gions with 300 fb−1 and 3 ab−1 LHC data, if no BSM is present. Therefore,
the ILC is an exemplary collider to study the Higgs boson particle at 125 GeV.
Irrespective of whether this newly discovered particle is one of the various
possible Higgs boson or a completely different boson that mainly contributes
to the masses of the Z and W bosons, it will be observed at the ILC.

If this new particle is one of various Higgs bosons and a different boson
is the one that mainly contributes to the Z-boson and W-boson masses, that
particle will also be observed at the ILC.

The ILC thus points to a bright future for the study of the Higgs field and
its implications for high energy physics.
With 125 GeV Higgs particle, the first course at the ILC would be at thresh-
old around

√
s = 250 GeV, which displays the clear peak cross section for

the process e+e− → ZH. At that energy, the precise measurements of Higgs
recoil mass for the Higgs-strahlung process e+e− → ZH with subsequent
Z → l+l−(l = e, µ) decay is the most important measurement. This mea-
surement allows a model-independent absolute measurement of the gHZZ
coupling. In this setting, measuring the proportion for all of Higgs boson de-
cays including common final states or invisible decays with great accuracy is
possible.
It is not necessary to observe the Higgs decay because corresponding hidden
decay is observable. Nevertheless, the e+e− → ZH process can be used to
measure diverse branching ratios for various Higgs decay processes. I in-
cluded the Z → qq̄ and Z → νν̄ processes in my analysis to increase the
statistical accuracy. The Higgs boson can also decay into a pair of W-bosons.
However, the measurement of the WW-fusion process at

√
s = 250 GeV is

quite difficult. Conversely, the W-pair production process becomes active at√
s = 500 GeV, and hence the energy setting of the ILC needs to be changed

accordingly, [7].

At
√

s = 500 GeV, the W-pair production process e+e− → νν̄H dominates
over the Higgs-strahlung process e+e− → ZH. For the σ × BR measure-
ments, this WW-fusion process is needed.
To make accurate measurements of the Higgs boson coupling to top quarks,
the energy must be increased further. The top-Yukawa coupling measure-
ments using the e+e− → tt̄h process is probably even more exciting than the
measurements of the branching ratio because it is the largest coupling among
all the matter fermions.
The Higgs self-coupling measurement is another interesting study because
we would like to detect the force that constructs the Higgs boson condense in
the vacuum for the purpose of uncovering the electroweak symmetry break-
ing secret.

At higher energies, the WW-fusion processes become increasingly impor-
tant. Note that the collider luminosity scales with the center-of-mass energy.
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Thus, combining these factors together with the higher sensitivity of the ILC
permits us to make a considerably better measurement of the Higgs self-
coupling using the e+e− → νν̄HH process with

√
s = 1000 GeV.

At
√

s = 1000 GeV, the top quark production process e+e− → tt̄h is also near
its maximal cross section, thus making the simultaneous measurements of
the top-Yukawa coupling and the Higgs self-coupling feasible.

The ILC will also contribute to BSM by searching for new particles associ-
ated with dark matter, the Higgs field and other unsolved problems in parti-
cle physics. The LHC collider has limitations on detecting such electroweakly-
interacting particles, which are associated with a large background and strong
interaction induced processes. ILC experiments will either confirm or elimi-
nate these particles based on the beam energies at each stage.

In conclusion, the ILC experiments will reveal unseen interactions by ob-
serving the pair-production of top quarks, Z and W bosons at higher energy.
The precise measurement of Z boson’s characteristics in a e+e− collider will
also enhance our knowledge on the SM. This collider will improve the level
of accuracy to the top quark and W-boson properties. The mass of the top
quark will be measured at the ILC in a theoretically clean way that is impos-
sible at LHC, fixing an important input to high energy physics calculations.
The mass of top quark is the highest among particles of the SM, thus must
have especially characteristic such as strong coupling to the Higgs field. The
precise measurement of the top quark electroweak couplings might show
some composite structure in the Higgs boson.
Note that one expects to observe characteristic effects of strong interactions
in the Higgs field models, as well as in other models, where asymmetrical
interactions associated with the Higgs fields are signs of hidden, extra space
dimensions.

2.3 Design of the ILC

Fig. 2.1 shows a general view of the collider indicating the locations of the
major sub-systems which are:

• A photocathode DC gun that creates a polarized electron beam.

• The electron main linac beam that passes through a long helical un-
dulator to generate a multi-MeV photon beam and then bumps onto a
thin metal target to generate longitudinally polarized positrons in elec-
tromagnetic showers. The ILC positron source generates the positron
beam.

• Two 5 GeV electron and positron damping rings (DR);

• Two 5 GeV injectors.

• Two 125 GeV superconducting linear accelerators.
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FIGURE 2.1: Schematic layout of the ILC, indicating all the ma-
jor subsystems [2].

• Transport lines to the far end of the linacs.

• Two final focus beam lines.

• Two beam dumps.

2.4 Analysis of the ILC experiments

2.4.1 Beam polarization effects

Definitions and realistic polarization effects

The left-handed polarization degree of the electron beam is defined as,

pe = (NeR − NeL)/(NeL + NeR), (2.1)

where NeR and NeL are the number of the right-handed and left-handed elec-
trons in the beam, respectively [8],
and

pp = (NpR − NpL)/(NpR + NpL), (2.2)

NpR and NpL are the number of the right-handed and left-handed positrons
in the beam, respectively.
When a normalization NL + NR = 1 is used, the normalized number of
left-handed and right-handed electrons can be obtained as NL = 1−pe

2 and
NR = 1+pe

2 , respectively.
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Therefore, the cross-sections for a given combination of the electron and
positron beam polarizations can be written as:

σ(pe, pp) =
1
4
{(1− pe)(1 + pp)σLR + (1 + pe)(1− pp)σRL

+(1− pe)(1− pp)σLL + (1 + pe)(1 + pp)σRR

where σLR stands, for the cross-section with the 100 % left-handed polarized
electron (pe = −1) and the 100 % right-handed polarized positron (pp = +1)
beams. The cross-sections σRL, σLL and σRR are defined analogously.
Because of ignoring negligibly small (oder of 10−11) cross-sections of σLL and
σRR thus we have

σ(pe, pp) =
(1− pe)(1 + pp)

4
σLR +

(1 + pe)(1− pp)

4
σRL (2.3)

The cross-sections with ILC proposed polarizations of the design value

pe =
0.1− 0.9

1
= −0.8 (2.4)

and

pp =
0.65− 0.35

1
= 0.3 (2.5)

can be obtained from those with 100% polarized results (pe,pp).

• pe = 0, pp = 0 UP: unpolarized

• pe = +1, pp = +1 RR: right-right polarization

• pe = −1, pp = −1 LL: left-left polarization

• pe = +1, pp = −1 RL: right-left polarization

• pe = −1, pp = +1 LR: left-right polarization

• pe = −0.8, pp = 0.3 ILC: ILC proposed polarization

where UP, RR, LL, RL, LR, and ILC stand for unpolarized; right-handed
positron right-handed electron with full polarization; left-handed positron
left-handed electron with full polarization; right-handed positron left-handed
electron with full polarization; left-handed positron right-handed electron
with full polarization; and with ILC proposed polarization +30% for e+R and
−80% for e−L , respectively.

2.4.2 Recoil mass analysis

I introduce the recoil mass analysis that I conducted to make a model-
independent measurement of the coupling between the Higgs and Z bosons,
(i.e., gHZZ coupling), using the recoil mass distribution in e+e− → ZH with
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Z → µµ [4].

In electron-positron collisions at √s =250 GeV, the main Higgs produc-
tion mechanism is the Higgs-strahlung process e+e− → HZ. For mH = 125
GeV, the cross section for the s-channel process is maximal close to √s =
250GeV.
The total HZ cross section is proportional to the square of the coupling be-
tween Higgs and Z bosons, that is, σ(e+e− → HZ) ∝ g2

HZZ, and the cross-
sections of the decays to the final state in H → XX̄ can be expressed as

σ(e+e− → HZ)× BR(H → XX̄) ∝
g2

HZZ × g2
HXX

ΓH
(2.6)

In this study, the cross-section of e+e− → HZ was measured using the recoil
mass technique. I considerd σ(e+e− → HZ), and the recoil mass can be
expressed as

m2
rec = s− 2√s(Eµ+ + Eµ−) + m2

µ+µ− ,

where √s is the center-of-mass energy, and Eµ+ and Eµ− are the energies of
the two muons and m2

µ+µ− is the invariant mass of muon and anti-muon from
Z decay.

At √s = 250 GeV, where the energy of the muons from Z decay approx-
imately scales as √s, the width of recoil mass distribution increases signifi-
cantly with increasing center-of-mass energy. Therefore, the leptonic (in par-
ticular, muonic) recoil mass analysis leads to a higher precision on gHZZ for√

s = 250 GeV, where σ(HZ) is the largest and the recoil mass peak is rela-
tively narrow.
Using this technique, one can determine the absolute branching ratios of
Higgs boson decays, including those of the invisible decays.
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FIGURE 2.2: Recoil mass distribution of the Higgs-strahlung
process e+e− → µ+µ−H (e+e− → ZH followed by Z → µ+µ−)

with 250 fb−1 for mh = 120 GeV at
√

s = 250 GeV [3].

It should be noted that in this recoil mass distribution, the simple ISR and the
detector resolution effects are included, which leads to the apperance of the
tail structure in Fig. 2.2.
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Chapter 3

Calculation methods

3.1 The GRACE-Loop system

In this section, I discuss the GRACE-Loop system [9]. First, I explain
the necessity of automatic calculation. It is the motivation for GRACE to
be created. Secondly, we introduce what GRACE is and its structure. Next,
I confirm that GRACE satisfies the renormalization condition and performs
the required system check. Finally, the beam polarization included in GRACE
is described.

3.1.1 Motivation for automatic calculation

Collecting and analyzing data from high-energy experiments at large ac-
celerators, such as LHC and ILC, are very complicated and tedious tasks.
There are many steps that physicists need to do carefully and precisely. Briefly,
the data are obtained from the collisions of beams then we analyze them by
using some methods to reduce the background and gain the signal. Based on
pertubation theory, theoretical calculation must treat both of the background
and the signal exactly. The cross-sections (decay widths) which corresponds
to events are simulated. In the end, one obtains the real events which fit to
the collected data with the acceptable errors. From this, the precise theoreti-
cal calculation is one of the essential steps. With the traditional method (hand
calculating), it is almost impossible to calculate the complicated processes.
Thanks to the improvement of science and technology, numerical calculation
method has become popular and contribute to high energy physics.

3.1.2 Introduction to the GRACE-Loop system

Definition

The GRACE-Loop system is a programming system for calculating at the
tree level and full one-loop electroweak cross-sections automatically with
beam-polarization based on the SM and the MSSM (Minimal Supersymmet-
ric Standard Model) at high energy physics. This program was created and
has been developed by MINAMI-TATEYA group at High Energy Accelera-
tor Research Organization (KEK) [10]. The GRACE-Loop system primarily
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focuses on evaluating one loop correction to the SM processes at electron-
positron collision. Besides that, with the GRACE-Loop system, one can cal-
culate one-loop corrections to the MSSM [11].

Structure

The structure of the GRACE-Loop system is quite complicated, as demon-
strated by Fig. 3.1. The GRACE-Loop system uses the symbolic manipulation

Model/
Process 

Feynman	  	  
Diagrams 

Symbolic	  
Codes	  (Form) 

Fortran	  
Codes 

Numerical	  	  
Integra=on 

What	  is	  GRACE? 

Histograms	  
Events 

Total/differen=al	  
cross	  sec=on 

FIGURE 3.1: GRACE structure

system FORM [12] to calculate all Dirac and tensor algebra in n dimensions.

3.2 Renormalization and system check

In the GRACE-Loop system, renormalization is carried out with the on-
shell condition in the Kyoto scheme [13]. The non-linear gauge fixing La-
grangian condition [14] is written as follows:

LGF = − 1
ξW
| (∂µ − ieα̃Aµ − igcW β̃Zµ)Wµ+ + ξW

g
2
(v + δ̃H + iκ̃χ3)χ

+ |2

− 1
2ξZ

(∂.Z + ξZ
g

2cW
(v + ε̃H)χ3)

2 − 1
2ξA

(∂.A)2.

To satisfy this condition, the results must be independent of the non-linear
gauge parameters α̃, β̃, δ̃, κ̃, and ε̃. Thus, various checks are required to con-
firm the precision of the system. The total cross-sections are given by

σOα=σTree+σLoop(CUV ,λ,α̃,β̃,δ̃,ε̃,κ̃)+σTreeδso f t(λ,Eγ<kc)+σHard(kc)
(3.1)



3.2. Renormalization and system check 15

where kc is the parameter used to define the soft photon (Eγ < kc) and hard
photon (Eγ ≥ kc) energy cutt-off. By performing numerical checks using the
GRACE-Loop system, I confirmed the following: ultraviolet coefficient (CUV)
independence, photon mass (λ) independence, gauge invariance (α̃, β̃, δ̃, κ̃, ε̃)
and kc independence. The fictitious photon mass (λ) is added as a general
treatment to regulate the infrared divergence. The reason why we choose the
non-linear gauge parameters in our GRACE-Loop system instead of using
the linear-gauge parameters: the non-linear gauge parameters only appear in
the numerator, thus we can use the same Loop library to calculate while the
linear-gauge parameters also appear in the denomerator . It is much more
simple and avoids having unnecessary problems when we use non-linear
gauge parameters.

3.2.1 One-loop renormalization

Renormalization scheme

Based on the experimental data, I determined a set of independent pa-
rameters to make the theoretical predictions. Renormalization theory yields
the relations between the parameters and fields. Renormalization theory is
very important because it provides a systematic way in which to deal with
the divergences. A renormalization scheme is a way to pick for all inter-
action Lagrangians in these affine spaces, making them finite dimensional
vector spaces relative to this specific choice. If the measured quantity can
be evaluated exactly through considering all order of perturbation theory,
it must be renormalization scheme independent. Nonetheless, the calculated
observables depends on the different choices of schemes in the truncated per-
turbation theory, which is so-called scheme dependence. I chose the on-shell
renormalization Kyoto scheme [13]. Since for most calculations in QED (as
well as for many calculations in the theory of electroweak interactions), this
is the most convenient renormalization scheme for my thesis. More detail
on the electroweak on-shell renormalization scheme is presented at the Ap-
pendix B.

In this scheme, the renormalized mass and coupling constant are related
to well-measured physical constants (e.g., the mass of the electron and the
fine-structure constant α), and in which the renormalized fields are defined
such that the propagator poles are located at the physical mass and the pole
residues in the propagator remain equal to unity.

In the on-shell renormalization scheme, the input parameter set is chosen
as {α, mW , mZ, and Higgs mass as well as fermion masses } [8]. The Z bo-
son mass has been precisely measured to be mZ = 91.1876± 0.0021 GeV as
reported in [15]. This uncertainty is enough to probe the new physics signals
at the future colliders. The W boson mass mW = 80.379± 0.012 GeV and the
physical mass of the top quark mt = 172.9± 0.4 GeV are reported in [2]. The
most updated precision at the LHC experiments, δmW = 12 MeV is small
enough to clarify the observational data. With highly accurate program at
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the prospective colliders, the uncertainty of δmW approximates to 4 MeV is
expectable. For the purpose of reducing theoretical uncertainties, the mW will
be calculated as a function of mZ, mH and Gµ as following

m2
W = m2

Z

{
1
2
+

√
1
4
− πα√

2Gµm2
Z
[1 + ∆r(mW , mZ, mH, mt, ...)]

}
, (3.2)

where ∆r summarizes radiative corrections to the muon decay width. Be-
cause ∆r is dependent on the W-boson mass, the calculation of mW is per-
formed through iterative procedure from Eq.(3.1).

At the loop corrections, ∆r is related to the large contributions of the mass
of top quark.

Table 3.1 shows numerical values of mW and ∆r with the higher order
corrections by means of MW1.f based on [16] provided by Prof. Z. Hioki as
a function of of mH, mZ = 91.1876 GeV, mt = 172.9 GeV and all other fermion
masses.

mH [GeV] ∆r mW [GeV]
125.1 0.02636986 80.3625

TABLE 3.1: The result for mW is calculated by a Fortran program
MW1.f with mu = 58 MeV, md= 58 MeV, ms= 92 MeV mc= 1.5

GeV and mb= 4.7 GeV as the same as Appendix A.

After chosing the input parameters, the total cross-section, σO(α) is calculated
at one-loop radiative corrections, the electroweak corrections can be read in
this on-shell scheme as

δTotal =
σOα

σTree
− 1, (3.3)

where σTree is the cross-sections at the tree level. Because α is the input at
Thomson limit, the δTotal is called the electroweak correction in α-scheme.
Consequently, δTotal will be affected by a large contribution from the two-
point function with the exchange of light-fermions. This contribution is of
the form log(s/m2

f ) with energy scale s and the light-fermion masses m f .

3.2.2 Input parameters

For the calculation of the nine processes: (µ+µ−H, e+e−H, τ+τ−H, νµν̄µH,
νeν̄eH, uūH, dd̄H, cc̄H, and bb̄H) at the ILC, we use the following input pa-
rameters. The masses of five types of quarks were chosen as: up quark mass
58.0× 10−3 GeV, down quark mass 58.0× 10−3 GeV, charm quark mass 1.5
GeV, strange quark mass 92.0 × 10−3 GeV, and the bottom quark mass 4.7
GeV. The reason I chose a set of light quark masses, is because these yields
a "perturbative" value of mW that is compatible with the current experimen-
tally observed W-boson mass. I also set the masses of the top quark: 172.9
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GeV. We use the mass of Z boson is 91.1876 GeV and the value of W mass of
80.379 GeV. We input Higgs boson mass of 125.1 GeV. Thomson limit is given
by the fine structure constant alpha of 1/137.0359895. The Weinberg angle or

weak mixing angle can be defined as sin2 θW = 1− m2
W

m2
Z

. A summary of the

input parameters is provided in the Appendix A.

3.2.3 Polarization

In the GRACE-Loop system, at the tree level, polarization is taken into ac-
count from beginning with helicity amplitude method: using numerical cal-
culation. Nevertheless, at the full one-loop electroweak correction, it is much
more complicated hence the trace method by summing the square of the am-
plitude is used then to include polarization effect, we multiply the projection
operators 1±γ5

2 into amplitude. It makes program size become much larger.

3.3 Radiator method

The effect of the initial photon emission can be factorized when the total en-
ergy of the emitted photons is sufficiently small compared to the beam en-
ergy or for small angle (co-linear) emissions.This approximation is referred
as to the "soft-colinear photon approximation(SPA)". Under SPA, the cor-
rected cross-sections with ISR, that is, σISR, can be obtained from the tree
cross-sections σTree using a structure function H(x, s) as follows:

σISR =
∫ 1

0
dx H(x, s)σTree (s(1− x)) , (3.4)

where s is the square of the CM energy and x is the energy fraction of an
emitted photon.

The total cross-section with higher-order QED corrections to ISR can be
calculated using the following function [17];

σISR =
∫ k2

c /s

0
dx1

∫ 1−x1

0
dx2 D(x1, s)D(x2, s)σTree (sx1x2) . (3.5)

The structure function D(x, s), which is corresponding to square root of the
radiator function, gives a probability to emit a photon with energy fraction of
x at the CM energy square s. In this method, electron and positron can emit
different energies, and thus finite boost of the CM system can be treated. The
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structure function can be obtained as

D(1− x, s)2 = H(x, s) = ∆2βxβ−1 − ∆1β
(

1− x
2

)
+

β2

8

[
−4(2− x) log x− 1 + 3(1− x)2

x
log (1− x)− 2x

]
,

(3.6)

where

β =
2α

π

(
log

s
m2

e
− 1
)

,

∆2 = 1 + δ1, ∆1 = 1 + δ1

δ1 =
α

π

(
3
2

log
s

m2
e
+

π2

3
− 2
)

.

This result is obtained based on perturbative calculations of initial-state pho-
ton emission diagrams up to one-loop order.
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Chapter 4

Full one-loop electroweak radiative
corrections to e+e− → f f̄ H
processes with beam polarization
effects

4.1 Selected e+e− → f f̄ H processes

As discussed in Chapter 2, several runs will be conducted at the ILC with
beam energies starting from 250 GeV, which will be and then upgrade to 1
TeV. In this work, I focused on the first run with a center-of-mass energy of
250 GeV. I discuss nine e+e− → f f̄ H processes, namely, e+e− → µ+µ−H,
e+e−H, τ+τ−H, νµν̄µH, νeν̄eH, uūH, dd̄H, cc̄H, and bb̄H. I do not discuss the
ντ ν̄τ H and ss̄H processes, which will be explained in later. In this chapter,
I present the main findings of this thesis, that is, results obtained using the
GRACE-Loop system.

First, I confirmed that our GRACE-Loop system can show the good con-
sistency by varying the dimensional regularization parameter CUV , the non-
linear gauge parameters α̃, β̃, δ̃, κ̃, ε̃ and the fictitious photon mass λ.
By varying CUV from 0 to 100 for the e+e− → µ+µ−H process with kc = 10−1

GeV and λ = 10−17 GeV at
√

s = 250 GeV, I obtained CUV independence
with an agreement up tp 33 digits as shown in Table 4.1.

CUV Evaluation of the 1 loop amplitude at a phase space point
0 0.130606410758568158847481299744686

100 0.130606410758568158847481299744686

TABLE 4.1: Changing CUV from 0 to 100 of e+e− → µ+µ−H
with kc = 10−1 GeV and λ = 10−17 GeV at

√
s = 250 GeV.

Non-linear gauge parameter independence was confirmed by varying α̃, β̃, δ̃, κ̃, ε̃
from (0, 0, 0, 0, 0) to (10, 20, 30, 40, 50) with CUV = 100, which resulted in an
agreement up to 15 digits as shown in Table 4.2.
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α̃, β̃, δ̃, κ̃, ε̃ Evaluation of the 1 loop amplitude at a phase space point
0,0,0,0,0 0.130606410758568158847481299744686

10,20,30,40,50 0.130606410758568491914388687291648

TABLE 4.2: Non-linear gauge parameters independence
by changing α̃, β̃, δ̃, κ̃, ε̃ from (0,0,0,0,0) to (10,20,30,40,50) of
e+e− → µ+µ−H with kc = 10−1 GeV and λ = 10−17 GeV at√

s = 250 GeV

Fictitious photon mass independence was achieved by varying λ from 10−17

GeV to 10−19 GeV with CUV = 100 has up to 14-digit agreement as shown in
Table 4.3. Next, I discuss the kc independence of all nine processes (µ+µ−H,

λ [GeV] Evaluation of the 1 loop amplitude at a phase space point
10−17 0.130606410758568158847481299744686
10−19 0.130606410758569241314930309272313

TABLE 4.3: λ independence by changing from 10−17 GeV to
10−19 GeV with CUV = 100 and with kc = 10−1 GeV of e+e− →

µ+µ−H at
√

s = 250 GeV

e+e−H, τ+τ−H, νµν̄µH, νeν̄eH, uūH, dd̄H, cc̄H, bb̄H) without polarization.
To achieve kc independence, phase-space integration must be performed to
obtain the total cross-sections. For this, I used the adaptive Monte Carlo inte-
gration package of the BASES [18]. In the BASES operation, I set 10 iteration
steps for the grid optimization and 50 iteration steps for the accumulation
with 40,000 sampling point to integrate one-loop amplitude, it takes 4.5 hours
for µ+µ−H and other processes; almost 52 hours for bb̄H with 16 Xeon 3.20
GHz CPU with the size of memory 128 GB. The typical integration errors are
0.01% for the loop calculation.

It should be noted that in the FULL model, all of the couplings of the
scalar particles such as the Higgs boson or pseudo-Goldstone scalar bosons
and fermions in the SM are included. On the contrary, I define the NOLLS
approximation which has the NOn Light-fermion Light-fermion Scalar cou-
pling except for bottom quark and top quark. In this work, the bottom- and
top quark are considered to be heavy fermions and other fermions are recog-
nized to be light ones. When the two cases are compared, the number of tree
diagrams and one-loop Feynman diagrams in the FULL model were found
to be much larger than in the NOLLS approximation; thus, the integration
over phase space is not practical in the former, as shown in Table 4.5.
From Table 4.5, we observe that the number of one-loop Feynman diagrams
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the NOLLS approximation the FULL model
Graph information one-loop Tree 5-point one-loop Tree 5-point

µ+µ−H 208 1 10 2235 21 170
e+e−H 416 2 20 4470 42 340
τ+τ−H 208 1 28 2235 21 188
νµν̄µH 122 1 6 604 4 36
νeν̄eH 219 2 15 1350 12 113
uūH 209 1 10 2327 21 174
dd̄H 209 1 10 2327 21 174
cc̄H 209 1 10 2327 21 174
bb̄H 651 6 29 2327 21 193

TABLE 4.4: The numbers of Feynman diagrams for the NOLLS
approximation and the FULL model of nine processes

the NOLLS approx. the FULL model
Processes one-loop Tree one-loop Tree
µ+µ−H 208 1 2235 21
e+e−H 416 2 4470 42
τ+τ−H 208 1 2235 21
νµν̄µH 122 1 604 4
νeν̄eH 219 2 1350 12
uūH 209 1 2327 21
dd̄H 209 1 2327 21
cc̄H 209 1 2327 21
bb̄H 651 6 2327 21

TABLE 4.5: Numbers of Feynman diagrams between the
NOLLS approximation and the FULL model of nine processes

for the µ+µ−H and τ+τ−H processes is the same, with 208 and 2235 dia-
grams with the NOLLS approximation and the FULL model, respectively.
Similarly, the number of one-loop Feynman diagrams for uūH and cc̄H pro-
cesses is the same, with 209 and 2327 diagrams according to one-loop level
with the NOLLS approximation and the FULL model, respectively. However,
numbers of Feynman diagrams at one-loop for dd̄H are 209 at the NOLLS
approximation and 2327 at the FULL model; numbers of Feynman diagrams
one-loop for bb̄H are 651 at the NOLLS approximation and 2327 at the FULL
model.
Therefore the first check is to see the agreement between the FULL model
and the NOLLS approximation at one phase space point. It should be no-
ticed that the non-linear gauge independence is destroyed due to the missing
of LLS (light light fermion scalar) couplings in the NOLLS approximation.
You also see the four-digit agreement between the FULL model and NOLLS
approximation for the 1 loop amplitude at a phase space point at the Table
4.6. This accuracy is good enough for the phase space integration because
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the error of the Monte-Carlo integration is approximately 0.1% To confirm

Evaluation of the 1 loop amplitude at a phase space point
FULL 0.130606410758568158847481299744686

NOLLS 0.130654433763982613658782838683692

TABLE 4.6: Evaluation of the 1 loop amplitude at a phase space
point for the e+e− → µ+µ−H with kc = 10−1 GeV at

√
s = 250

GeV

the kc independence, I compare the total ratio δTotal with various kc values:
kc = 10−1 GeV, kc = 10−3 GeV and kc = 10−5 GeV where the cross-sections
for the NOLLS approximation is the sum of cross-sections at the tree level,
Loop, Soft and Hard photon.

σOα
= σTree + σLoop + σSo f t + σHard

= σTree + σLoop(CUV , λ, α̃, β̃, δ̃, ε̃, κ̃) + σTreeδso f t(λ, Eγ < kc) + σHard(kc)

as in Eq 3.1.
The total ratio between Oα correction and the tree level cross-sections

δTotal =
( σOα

σTree
− 1
)
× 100. (4.1)

δTotal(%)
Processes kc = 10−1 GeV kc = 10−3 GeV kc = 10−5 GeV
µ+µ−H not converged -4.039 -4.017
e+e−H -4.850 -4.807 -4.787
τ+τ−H -3.642 -3.731 -3.787
νµν̄µH -4.294 -4.302 -4.298
νeν̄eH -3.341 -3.332 -3.328
uūH -6.754 -6.826 -6.763
dd̄H -4.554 -4.605 -4.773
cc̄H -6.763 -6.875 -6.770
bb̄H -6.110 -6.163 -6.247

TABLE 4.7: δTotal with various kc values: kc = 10−1 GeV, kc =
10−3 GeV and kc = 10−5 GeV for all nine processes (µ+µ−H,
e+e−H, τ+τ−H, νµν̄µH, νeν̄eH, uūH, dd̄H, cc̄H, bb̄H) without

polarization at
√

s = 250 GeV.

The difference in percentage of the total ratios δTotal with kc = 10−3 GeV
and kc = 10−5 GeV without polarization at

√
s = 250 GeV is shown in Table

4.9.
Here, I define ∆(%) = δTotalkc=10−3GeV

− δTotalkc=10−5GeV
.
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δTotal(%)
Processes kc = 10−3 GeV kc = 10−5 GeV
µ+µ−H -4.039 -4.017
e+e−H -4.807 -4.787
τ+τ−H -3.731 -3.787
νµν̄µH -4.302 -4.298
νeν̄eH -3.332 -3.328
uūH -6.826 -6.763
dd̄H -4.605 -4.773
cc̄H -6.875 -6.770
bb̄H -6.163 -6.247

TABLE 4.8: δTotal with various kc values: kc = 10−1 GeV, kc =
10−3 GeV and kc = 10−5 GeV for all nine processes (µ+µ−H,
e+e−H, τ+τ−H, νµν̄µH, νeν̄eH, uūH, dd̄H, cc̄H, bb̄H) without

polarization at
√

s = 250 GeV.

Processes ∆(%)
µ+µ−H -0.022
e+e−H -0.020
τ+τ−H -0.054
νµν̄µH -0.001
νeν̄eH -0.004
uūH -0.063
dd̄H 0.169
cc̄H -0.105
bb̄H 0.084

TABLE 4.9: The difference in percentage of the total ratio δTotal
and kc = 10−5 GeV without polarization at

√
s = 250 GeV.

With the above results, one can see that the least accurate is for dd̄H with
0.169% thus I can guarantee of the accuracy of my O(α) calculations approx-
imately 0.2% for all processes.

Now I am going to show five types of typical one-loop Feynman diagrams
in three-point Fig. 4.1, four-point, five-point function Fig. 4.2 and fish type
Fig. 4.3 Feynman diagrams of e+e− → µ+µ−H which are discussed in detail
in [19].
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FIGURE 4.1: Typical final and initial vertex correction Feynman
diagrams of e+e− → µ+µ−H
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FIGURE 4.2: Typical 4 point and 5 point function Feynman dia-
grams of e+e− → µ+µ−H

Next, I compare the unpolarized cross-sections of e+e− → νν̄H at the
center-of-mass energy

√
s = 500 GeV. I denote "Current" for current work

and [20] for previous work. The comparison is presented in Table 4.20. I
observed that the consistent results in the integration errosr for all cases. I list
for each Higgs-boson mass and the corresponding calculated W-boson mass
calculated by German group together with my current results. I observed
that the agreement is good. The correction factors (δTotal) to the lowest-order
cross-sections agree within 0.3%.
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FIGURE 4.3: Typical Fish Feynman diagram of e+e− → µ+µ−H

MH (GeV) MW (GeV) σTree (pb) σOα
(pb) δTotal%

150 80.3767 6.1072(9)E-02 6.075(6)E-02 -0.51 Current
6.1076(5)E-02 6.080(2)E-02 -0.44 Ref.[20]

200 80.3571 3.7302(5)E-02 3.703(4)E-02 -0.71 Current
3.7293(3)E-02 3.709(2)E-02 -0.56 Ref.[20]

250 80.3411 2.110(2)E-02 2.059(2)E-02 -2.42 Current
2.1134(1)E-02 2.060(1)E-02 -2.53 Ref.[20]

300 80.3275 1.0744(7)E-02 1.0258(7)E-02 -4.51 Current
1.07552(7)E-02 1.0282(4)E-02 -4.40 Ref.[20]

350 80.3158 4.6077(4)E-03 4.172(2)E-03 -9.46 Current
4.6077(2)E-03 4.181(1)E-03 -9.27 Ref.[20]

TABLE 4.10: Comparison between the unpolarized cross-
sections of e+e− → νν̄H between the current results and those

of German group
at center-of-mass energy

√
s = 500 GeV.

4.2 Lepton processes with the polarization

4.2.1 e+e− → µ+µ−H

Table 4.11 shows the cross-sections of the tree level, the cross-sections for
the NOLLS approximation and those of ISR effects, total ratios for the NOLLS
approximation and those with the ISR effects for various polarization condi-
tions (i.e., UP, RR, LL, RL, LR and ILC) which are defined in Chapter 2.

The total cross section for the NOLLS approximation is the sum of cross-
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σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 7.041(7)E-03 6.756(6)E-03 -4.04E+00 6.326(4)E-03 -1.02E+01
RR 2.16(1)E-11 8.4(2)E-07 3.91E+06 9.62(3)E-13 4.44E+05
LL 2.16(1)E-11 8.45(2)E-07 3.91E+06 7(2)E-11 3.72E+05
RL 1.108(1)E-02 1.196(1)E-02 7.71E+00 9.94(2)E-03 -1.02E+01
LR 1.709(2)E-02 1.504(1)E-02 -1.20E+01 1.534(3)E-02 -1.02E+01
ILC 1.039(8)E-02 9.200(1)E-03 -1.14E+01 9.320(4)E-03 -1.03E+01

TABLE 4.11: The cross section of e+e− → µ+µ−H with various
conditions of the beam polarization and without experimental

cuts.

sections at the tree level, Loop, Soft and Hard photon after applying the ex-
perimental cut and polarization 30% for e+R and 80% for e−L .

σOα
= σTree + σLoop + σSo f t + σHard (4.2)

The total ratio between Oα correction and the tree level cross-sections

δTotal =
( σOα

σTree
− 1
)
× 100. (4.3)

In the s-channel, Z boson has spin 1. LL and RR collisions can not form spin-
1 state, but I keep the electron mass then the spin flipping can occur to form

spin-1 state. The amplitude must have terms
∣∣∣m2

e
s

∣∣∣ ∝
(10−3

102

)2 ∼ 10−10 that is

why cross section of LL and RR have the order of 10−11. The cross-sections
of LL and RR at the tree level are very small but still exist as you can see in
Table 4.11. For LL and RR, you will see large total ratio δTotal ∼ 106 because
of the radiation effect. Unfortunately it cannot be observed directly in the
experiments. However the ILC experiment includes this effect so it should
be noticed.

σOα ILCµ+µ−H = 1.039(8)× 10−2 pb is larger than σOαUPµ+µ−H = 7.041(7)×
10−3 pb thanks to the advantages of the beam polarization of the linear col-
lider. It has significantly better statistics of Higgs with the same luminosity.

The difference between δTotal and δISR is approximately 1%. δTotal includes
the effect electroweak one-loop corrections but δISR is the result of high order
QED corrections. It is not easy to confirm which one is more important but
one should know this point.

4.2.2 e+e− → e+e−H

Note that the notations and symbols used for the e+e− → e+e−H and
other processes are the same as those for the e+e− → µ+µ−H process, for the
UP, RR, LL, RL, LR, and ILC. In this process, because of sizable t-channel
amplitude contribution, σOα ILCe+e−H = 9.919(2) × 10−3 pb is larger than
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σOα ILCµ+µ−H = 9.200(1)× 10−3 pb in section 4.2.1 approximately 1% at the
proposed ILC because of sizable t-channel amplitude contribution. Because
it is not needed to form spin-1 state at t-channel, LL and RR cross-sections
are sizable even at the tree level. Table 4.12 shows detailed values.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 7.731(1)E-03 7.360(1)E-03 -4.81E+00 1.583(1)E-03 -7.95E+01
RR 6.87(4)E-04 6.22(1)E-04 -9.52E+00 7.71(4)E-05 -8.88E+01
LL 6.87(4)E-04 6.2(3)E-04 -9.41E+00 3.09(2)E-04 -8.88E+01
RL 1.149(2)E-02 1.235(1)E-02 7.53E+00 2.443(5)E-03 -7.87E+01
LR 1.806(3)E-02 1.580(2)E-02 -1.25E+01 3.734(8)E-03 -7.93E+01
ILC 1.123(9)E-02 9.919(2)E-03 -1.17E+01 9.196(4)E-03 -1.81E+01

TABLE 4.12: The cross section of e+e− → e+e−H with various
conditions of the beam polarization and without experimental

cuts.

4.2.3 e+e− → τ+τ−H

There is a question about tau particle which we are interested in: whether the
tau mass can be neglected or not.

σOα ILCτ+τ−H = 9.309(2)× 10−3 pb and σOα ILCµ+µ−H = 9.2100(1)× 10−3

pb in section 4.2.1 are quite similar as we expected because all of final radia-

tion effects like ln
(

m2
τ

s

)
are canceled of each other according to the Kinoshita-

Lee-Nauenberg theorem [21, 22]. The terms from the initial state radiation of

ln
(

m2
e

s

)
of e+e− still remains. More numbers will be shown in Table 4.13.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 7.037(7)E-03 6.774(7)E-03 -3.73E+00 5.573(1)E-03 -2.08E+01
RR 2.10(2)E-09 8.44(3)E-07 4.02E+04 8.20(7)E-12 -9.96E+01
LL 2.10(2)E-09 8.44(3)E-07 4.01E+04 8.3(7)E-12 -9.96E+01
RL 1.107(1)E-02 1.193(6)E-02 7.45E+00 9.944(2)E-03 6.32E+04
LR 6.311(4)E-02 1.520(1)E-02 -1.10E+01 6.311(1)E-02 1.16E+04
ILC 1.038(8)E-02 9.309(2)E-03 -1.03E+01 9.299(4)E-03 -1.04E+01

TABLE 4.13: The cross section of e+e− → τ+τ−H with various
conditions of the beam polarization and without experimental

cuts.
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4.2.4 e+e− → νµν̄µH

The difference between δTotal and δISR is approximately 1%. I skip e+e− →
ντ ν̄τ H process because it is quite similar to this one. Table 4.14 provides us
more data.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 1.392(2)E-02 1.332(3)E-02 -4.30E+00 1.25(1)E-02 -1.01E+01
RR 2.71(1)E-12 1.669(7)E-06 6.16E+07 1.971(6)E-12 -2.73E+01
LL 2.71(1)E-12 1.669(7)E-06 6.15E+07 2.307(7)E-12 -1.49E+01
RL 2.190(8)E-02 2.414(7)E-02 1.02E+01 1.965(6)E-02 -1.03E+01
LR 3.377(1)E-02 2.914(1)E-02 -1.37E+01 3.034(1)E-02 -1.02E+01
ILC 2.053(2)E-02 1.790(1)E-02 -1.28E+01 1.845(1)E-02 -1.02E+01

TABLE 4.14: The cross section of e+e− → νµν̄µH with various
conditions of the beam polarization and without experimental

cuts.

4.2.5 e+e− → νeν̄eH

e+e− → νeν̄eH has t-channel. Table 4.15 shows the results of e+e− → νeν̄eH
process.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 2.071(9)E-02 2.002(9)E-02 -3.33E+00 1.74(2)E-02 -1.59E+01
RR 3.05(2)E-12 3.53(2)E-06 1.16E+08 2.043(8)E-12 -3.30E+01
LL 3.05(2)E-12 3.53(2)E-06 1.16E+08 2.385(9)E-12 -2.18E+01
RL 2.190(8)E-02 2.414(7)E-02 1.02E+01 1.925(6)E-02 -1.21E+01
LR 6.09(4)E-02 5.614(2)E-02 -7.89E+00 5.031(2)E-02 -1.74E+01
ILC 3.641(5)E-02 3.336(3)E-02 -8.80E+00 3.221(2)E-02 -1.73E+01

TABLE 4.15: The cross section of e+e− → νeν̄eH with various
conditions of the beam polarization and without experimental

cuts.
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4.3 Quark processes

4.3.1 e+e− → uūH

QCD corrections up to 4-loop level is well known, and with just in one-
loop corrections is popular as the simple factor of 1 + αs

π ' 1.03%, where αs
is the coupling constant of the strong interaction (αs ' 1/10) thus I will not
discuss about it in my thesis. Table 4.16 shows calculation results of the first
quark process e+e− → uūH.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 2.431(3)E-02 2.265(1)E-02 -6.76E+00 2.185(2)E-02 -1.13E+01
RR 3.65(2)E-11 2.915(1)E-06 7.98E+06 8.(4)E-11 1.30E+02
LL 3.65(2)E-11 2.92(1)E-06 7.98E+06 8.(4)E-11 1.31E+02
RL 3.825(1)E-02 4.310(3)E-02 1.28E+01 5.298(3)E-02 -1.10E+01
LR 5.899(2)E-02 5.899(2)E-02 -1.92E+01 3.433(8)E-02 -1.10E+01
ILC 3.586(3)E-02 2.948(4)E-02 -1.80E+01 3.221(2)E-02 -1.02E+01

TABLE 4.16: The cross section of e+e− → uūH with various
conditions of the beam polarization and without experimental

cuts.

4.3.2 e+e− → dd̄H

The iso-spin of u quark is up, on the other hand, the iso-spin of d quark
is down, which explains the difference between σOα ILCdd̄H = 3.970(6)× 10−2

pb and σOα ILCuūH = 2.948(4)× 10−2 pb as in section 4.3.1. Table 4.17 shows
the results of e+e− → dd̄H process.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 3.119(4)E-02 2.98(2)E-02 -4.61E+00 2.803(5)E-02 -1.01E+01
RR 1.40(1)E-11 3.74(2)E-06 2.67E+07 1.9(8)E-10 1.24E+03
LL 1.40(1)E-11 3.74(2)E-06 2.68E+07 1.8(8)E-10 1.19E+03
RL 7.567(3)E-02 5.205(4)E-02 6.08E+00 4.404(3)E-02 -1.03E+01
LR 4.907(2)E-02 6.650(4)E-02 -1.21E+01 6.798(4)E-02 -1.02E+01
ILC 4.600(5)E-02 3.970(6)E-02 -1.37E+01 4.132(2)E-02 -1.02E+01

TABLE 4.17: The cross section of e+e− → dd̄H with various
conditions of the beam polarization and without experimental

cuts.
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4.3.3 e+e− → cc̄H

Table 4.18 shows the cross-sections of e+e− → cc̄H. The mass of charm
quark is 1.5 Ge V and the mass of up quark is 58 MeV. Because there is no
large mass effect from the final state radiation, the results are quite similar as
expected. Because of above observation, I skip e+e− → ss̄H process because
this process has the same characteristic of e+e− → dd̄H process.

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 2.427(3)E-02 2.260(1)E-02 -6.76E+00 2.181(2)E-02 -1.01E+01
RR 1.482(7)E-11 2.91(1)E-06 1.96E+07 1.4155(8)E-11 -4.46E+00
LL 1.482(7)E-11 2.91(1)E-06 1.96E+07 1.4600(8)E-11 -1.49E+00
RL 3.819(1)E-02 4.303(2)E-02 1.26E+01 3.427(7)E-02 -1.03E+01
LR 5.891(1)E-02 4.763(4)E-02 -1.91E+01 5.297(1)E-02 -1.02E+01
ILC 3.580(3)E-02 2.940(4)E-02 -1.78E+01 3.215(2)E-02 -1.02E+01

TABLE 4.18: The cross section of e+e− → cc̄H with various
conditions of the beam polarization and without experimental

cuts.

4.3.4 e+e− → bb̄H

Table 4.19 summaries cross-sections of e+e− → bb̄H. I keep the bottom-
Yukawa coupling with NOLLS approximation for e+e− → bb̄H but not in
other processes. Let’s compare the results of e+e− → dd̄H and e+e− → bb̄H
of the proposed ILC at the Oα. The different is approximately 1% due to the
bottom-Yukawa coupling which we are excited to know. With ISR the results
for e+e− → dd̄H and e+e− → bb̄H are quite similar. The difference between
δTotal and σISR is very interesting. Because this 1% difference originated from
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σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 3.085(4)E-02 2.90(1)E-02 -6.16E+00 2.673(6)E-02 -1.33E+01
RR 7.40(4)E-12 3.69(2)E-06 4.99E+07 5.70(3)E-12 -2.29E+01
LL 7.40(4)E-12 3.69(2)E-06 4.99E+07 6.31(3)E-12 -1.46E+01
RL 4.853(2)E-02 5.075(4)E-02 4.56E+00 4.201(1)E-02 -1.34E+01
LR 7.485(3)E-02 7.485(3)E-02 -1.34E+01 6.483(2)E-02 -1.34E+01
ILC 4.550(5)E-02 3.974(6)E-02 -1.26E+01 4.093(2)E-02 -1.01E+01

TABLE 4.19: The cross section of e+e− → bb̄H with various
conditions of the beam polarization and without experimental

cuts.

the bottom-Yukawa coupling of the bottom quark, though it may be hard to
observe at the experiments.

4.4 Recoil mass distribution of e+e− → µ+µ−H with
beam polarization effects

In this section, I discuss the ZH recoil mass distribution ZH → µ+µ−H
with O(α) corrections and beam polarization effects. To conduct a more re-
alistic analysis, I apply the following three experimental cuts:
1. The angular cuts on θµ+ , θµ−

10o < θµ+ , θµ− < 170o, (4.4)

where θµ+ and θµ− are the scattering angles of anti-muon and muon, respec-
tively.
2. The energy cuts on Eµ+ , Eµ−

Eµ+ , Eµ− > 10 GeV, (4.5)

where Eµ+ and Eµ− are the energies of anti-muon and muon, respectively.
3. The invariant mass cut Mµ+µ−

mZ − 3ΓZ < Mµ+µ− < mZ + 3ΓZ. (4.6)

where Mµ+µ− is the invariant mass of anti-muon and muon particles; ΓZ =
2.49 GeV [15] is the width of the Z-boson.
Next, I present the results of the ZH recoil mass distribution with the O(α)
corrections of e+e− → µ+µ−H at √s = 250 GeV, after applying the three
types of experimental cuts as defined above. The recoil mass distribution is
shown in Fig. 4.4.
The black line shows the tree level distribution, the blue line shows the ISR
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FIGURE 4.4: Recoil mass distribution of e+e− → µ+µ−H after
applying the experimental cuts as in Eqs (4.3), (4.4),(4.5) at√s =

250 GeV. The bin width is 0.3 GeV.

corrected distribution and the red line shows theO(α) corrected distribution.
The black line only shows the one bin peak and of which position indicates
the mass of Higgs boson. On including the O(α) corrections, a tail structure
appears owing to the ISR effects, which is called the radiative tail. The height
of peak is substantially reduced owing to the one-photon emission effect.
However, the ISR effects are included, the height of the peak increases again
because of the higher-order radiation effect. This swing back effect can be
seen, occasionally when comparing the higher-order and O(α) corrections.

After applying the three experimental cuts, I obtained the total cross-
sections at O(α) and those including ISR effects and the total ratios at O(α)
and those including ISR effects as shown in Table 4.20 From this table, I see

σTree (pb) σOα
(pb) σISR (pb) δOα

% δISR%
9.55E-03 7.94E-03 8.24E-03 -16.9 -13.8

TABLE 4.20: Summary table of cross-sections and total ratios of
e+e− → µ+µ−H with experimental cuts and with ILC proposed

polarization pe = −0.8 , pp = 0.3.

that the total ratio at O(α) is −16.9% and the total ratio with the ISR effects
is −13.8%. The difference is approximately 3%. The analysts might be inter-
ested in this finding, especially the bottom quark case.
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Conclusion

In this thesis, I performed three kinds of tests on the GRACE-Loop system
to confirm that the amplitudes are independent of all redundant parameters
at random phase-space points before calculating all the cross-sections. These
tests checked

1. the finiteness of the result in the absence of the ultraviolet coefficient
CUV ,

2. IR finiteness by introducing a fictitious photon mass parameter λ,

3. non-linear-gauge parameter independence, which was performed us-
ing a set of five-gauge-fixing parameters- α̃, β̃, δ̃, κ̃, and ε̃.

I introduced the NOLLS approximation and also confirmed its accuracy. In
addition to the above checks, I checked the hard photon cut-off kc indepen-
dence, which had a precision within 0.2% for all the processes. Using NOLLS
approximation, I calculated the total cross-sections and total ratios at the
O(α) corrections and those by including ISR effects for nine e+e− → f f̄ H
processes µ+µ−H, e+e−H, τ+τ−H, νµν̄µH, νeν̄eH, uūH, dd̄H, cc̄H, bb̄H for
various beam polarization conditions (i.e., UP, RR, LL, RL, LR, and ILC).

First, I discuss the behavior of high-order corrections for the e+e− →
µ+µ−H process in detail. For this process, various conditions of beam po-
larization without experimental cuts are shown in Table 5.1. At the tree level,

σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

UP 7.041(7)E-03 6.756(6)E-03 -4.04E+00 6.326(4)E-03 -1.02E+01
RR 2.16(1)E-11 8.4(2)E-07 3.91E+06 9.62(3)E-13 4.44E+05
LL 2.16(1)E-11 8.45(2)E-07 3.91E+06 7(2)E-11 3.72E+05
RL 1.108(1)E-02 1.196(1)E-02 7.71E+00 9.94(2)E-03 -1.02E+01
LR 1.709(2)E-02 1.504(1)E-02 -1.20E+01 1.534(3)E-02 -1.02E+01
ILC 1.039(8)E-02 9.200(1)E-03 -1.14E+01 9.320(4)E-03 -1.03E+01

TABLE 5.1: The cross section of e+e− → µ+µ−H with various
conditions of the beam polarization and without experimental

cuts.

the cross-sections corresponding to the RR and LL are negligibly small com-
pared with those of RL and LR since RR and LL polarizations cannot produce
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spin-1 boson. Small cross-sections of RR and LL polarizations are resulted

from spin-flip effect, which are propotional to |me2

s | ∝
(

10−3

102

)2
∼ 10−10.

These results are consistent with
LL + RR
LR + RL

∼ 10−11. Moreover, σOα
gives

sizeable cross-sections on RR and LL polarizations, because Oα amplitude
includes spin-flip diagrams of the initial state radiation. For LL and RR, al-
though the cross-sections of LL and RR at the tree level are very small, the
very large total ratios δTotal ∼ 106 are observed. σOα ILCµ+µ−H = 1.039(8)×
10−2 pb is larger than σOαUPµ+µ−H = 7.041(7)× 10−3 pb thanks to the advan-
tages of the beam polarization of the linear collider. It has significantly better
statistics of Higgs with the same luminosity.

Next, I discuss the effect of higher-order corrections on weak interac-
tions and photonic interactions. Note that σOα

includes both QED and weak
corrections. However, it is impossible in general to clearly separate theses
two effects. I calculated δISR as an approximation for QED corrections be-
cause ISR corrections dominate over all QED corrections. In this approxima-
tion, the weak corrections can be estimated as σweak = σOα

− σISR. δISRRL
and δISRLR were both obtained to be 10.2%; however, δTotalRL = 7.71%, and
δTotalLR = −12%. Thus the weak correction corresponding to RL is 17% but
that corresponding to LR is only−2%. From these results, it is clear that beam
polarization and precise calculations are very important. δTotal ILC = −11.4%,
δISRILC = 10.3%, and the weak correction for the proposed ILC polarization
is approximately 1%. This result is sufficient to motivate the ILC to consider
the contribution of the weak correction. Additionally, σOα

corrections are
necessary to compare with a running alpha of 14%.

I summarize lepton processes e+e− → f f̄ H (i.e., µ+µ−H, e+e−H, τ+τ−H,
νµν̄µH, and νeν̄eH) in Table 5.2 . I present two separate figures for the cross-

Processes σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

µ+µ−H 1.039(8)E-02 9.200(1)E-03 -1.14E+01 9.320(4)E-03 -1.03E+01
e+e−H 1.123(9)E-02 9.919(2)E-03 -1.17E+01 9.196(4)E-03 -1.81E+01
τ+τ−H 1.038(8)E-02 9.309(2)E-03 -1.03E+01 9.299(4)E-03 -1.04E+01
νµν̄µH 2.053(2)E-02 1.790(1)E-02 -1.28E+01 1.845(1)E-02 -1.02E+01
νeν̄eH 3.641(5)E-02 3.336(3)E-02 -8.80E+00 3.221(2)E-02 -1.73E+01

TABLE 5.2: Lepton processes with the ILC proposed beam po-
larization at

√
s = 250 GeV and without experimental cuts.

sections and total ratios, for convenience. Fig. 5.1 shows the cross-sections
at the tree level, as well as σOα

, and ISR cross-sections. Fig. 5.2 shows
δTotal and δISR of the four leptonic processes. Owing to the sizable con-
tribution of the t-channel amplitude, σOα ILCνe ν̄e H = 3.336(3) × 10−2 pb is
larger than σOα ILCνµν̄µ H = 1.790(1)× 10−2 pb. δTotal ILCνµ ν̄µ H = −12.8% and
δISRILCνµ ν̄µ H = −10.2%, and hence, the weak correction for νµν̄µH is approx-
imately -3% whereas, δTotal ILCνe ν̄e H = −8.8% and δISRILCνe ν̄e H = −17.3%,
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FIGURE 5.1: Cross-sections of the leptonic processes with the
ILC proposed beam polarization at

√
s = 250 GeV and without

experimental cuts.

FIGURE 5.2: Ratios of the leptonic processes with the ILC pro-
posed beam polarization at

√
s = 250 GeV and without experi-

mental cuts.

hence the weak correction for νeν̄eH is approximately 8%. Moreover, µ+µ−H
and e+e−H have the same tendency as νµν̄µH and νeν̄eH. From this discus-
sion, it is clear that although t-channel cross-sections at the tree level are
small, they are important for σOα

. Tau particle is heavier than muon particle
thus cross section of τ+τ−H is expected to be smaller than that of µ+µ−H.
However, σOα ILCτ+τ−H = 9.309(2) × 10−3 pb is larger than σOα ILCµ+µ−H =

9.2100(1)× 10−3 pb. This opposite tendency is very interesting and should be
noted. δTotal ILCνµ ν̄µ H = −12.8% and δTotal ILCµ+µ−H = −11.4%; this 1.4% dif-
ference maybe owing to the charge/neutral channel or up/down type. This
finding is also interesting for further study. δTotal ILCµ+µ−H = −11.4% and
δISRµ+µ−H = −10.3% while δTotal ILCτ+τ−H = −10.3%, and δISRILCτ+τ−H =

−10.4%. Furthermore, the weak correction for τ+τ−H is only 0.1%, but the
weak correction for µ+µ−H is 1.1%.

Next, I discuss the quark processes. e+e− → f f̄ H (i.e., uūH, dd̄H, cc̄H,
bb̄H), which are summarized in the Table 5.3. Again, I present two sepa-
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Processes σTree (pb) σOα
(pb) δTotal% σISR (pb) δISR%

uūH 3.586(3)E-02 2.948(4)E-02 -1.80E+01 3.221(2)E-02 -1.02E+01
dd̄H 4.600(5)E-02 3.970(6)E-02 -1.37E+01 4.132(2)E-02 -1.02E+01
cc̄H 3.580(3)E-02 2.940(4)E-02 -1.78E+01 3.215(2)E-02 -1.02E+01
bb̄H 4.550(5)E-02 3.974(6)E-02 -1.27E+01 4.093(2)E-02 -1.01E+01

TABLE 5.3: Quark processes with the ILC proposed beam po-
larization at

√
s = 250 GeV and without experimental cuts.

rate figures for the cross-sections and total ratios. Fig. 5.3 shows the cross-
sections at the tree level, as well as the σOα

, and ISR cross-sections. Fig 5.4
shows δTotal and δISR of the four quark processes. δISR is approximately

FIGURE 5.3: Cross-sections of the quark processes with the ILC
proposed beam polarization at

√
s = 250 GeV and without ex-

perimental cuts.

FIGURE 5.4: Ratios of the quark processes with the ILC pro-
posed beam polarization at

√
s = 250 GeV and without experi-

mental cuts.

10% for all processes. δTotal of the up-type quarks is -18%, while δTotal of
the down-type quarks is -13% because of the charge difference or up/down
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type with different iso-spins. σOα ILCuūH = 2.948(4)× 10−2 pb is larger than
σOα ILCcc̄H = 2.940(4)× 10−2 pb as expected. These exhibit the opposite ten-
dency to leptons. δTotaldd̄H = −13.7% and δTotalbb̄H = −12.7, with the 1%
difference arising because of the Yukawa coupling. Weak corrections for the
up-type and down-type quarks are approximately -8% and 3%, respectively.

Next, I compare the lepton and quark channels. For leptons, δISR for s-
channel and t-channel processes is proximately 10% and 18%, respectively;
for quarks, δISR is approximately 10% for all the cases with the ILC polar-
ized beams and without experimental cuts. Comparing the lepton and quark
channels, the difference between the up-type and the down-type are clearly
observed in quarks; however, this is not observed for lepton.

I also calculated the recoil mass distribution after applying three experi-
mental cuts for the e+e− → µ+µ−H process at the O(α) corrections and in-
cluding the ISR effects. The following results were obtained: δTotal = −16.90%
and δISR = −13.77%, such that the weak correction was estimated to be−3%.
Thus, to measure the gHZZ coupling within 1% accuracy, the weak correction
of −3% cannot be neglected.

The bottom quark-Yukawa coupling was retained for the e+e− → bb̄H
process. Originally the GRACE-Loop system could produce the codes of the
polarizedO(α) corrections. However, there was no function to generate such
common codes to treat the collisions with various beam polarization condi-
tions. I contributed making the new routine for treating the beam polariza-
tion for the GRACE-Loop system by adding two more variables for phase
space integration.
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Appendix A

The input parameters

mu 58.0× 10−3 GeV mZ 91.1876 GeV
md 58.0× 10−3 GeV mW 80.379 GeV
mc 1.5 GeV mH 125.1 GeV
ms 92.0× 10−3 GeV α 1/137.035999084

mb 4.7 GeV sin2 θW 1− m2
W

m2
Z

mt 172.9 GeV ΓZ 2.49 GeV

TABLE A.1: Parameters





41

Appendix B

Electroweak theory and the
on-shell renormalizaton scheme

B.1 Electroweak theory

The basic theory in this ILC energy region is the unified theory of elec-
tromagnetic and weak interactions discovered by Glashow, Weinberg and
Salam about sity years ago. Here I will summarize the electroweak theoty
in the Standard model. Because I do not treat QCD corrections in this thesis,
then I do not mention about QCD. Later of the discovery of the electroweak
theory, one of the most remarkable features of the theory, renormalizability,
has been proved by ’tHooft thanks to which we are able to make the theory
finite order by order of pertubation by introducing finite number of countert-
erms consistently.

Since then many authors have proposed various kinds of renormalization
schemes suitable for higher order calculations of reactions observed in high
energy colliding beam experiments. The difference among them comes from,
roughly speaking, different choices in

1. physical observables by which constant parameters in the theory are to
be fixed,

2. definition of wave function renormalization constants.

The most fundamental constants in the Lagrangian of the electroweak
theory are g, g

′
, 〈φ〉 , that is, two coupling constants of SU(2) and U(1) gauge

interactions and the vacuum expectation value of the neutral Higgs scalar to
make spontaneously symmetry breaking. These three parameters or their
equivalents, namely, the minimal parameters of the theory. For the moment
the fermion and purely Higgs sectors are postpone and I restrict myself to
the gauge boson sector which is the key ingredient of the theory with sym-
metry breaking.

The mass dimension is carried solely by 〈φ〉, which gives rise to heavy
boson masses, mZ and mW , through Higgs-gauge field interaction, which are
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they are given by

m2
Z =

1
4
(g2 + g

′2)〈φ〉2,

m2
W =

1
4

g2〈φ〉2, intheclassicalleve. (B.1)

from which we have
mW

mZ
=

g√
g2 + g′2

. (B.2)

Since the theory defines the electric charge as

e =
gg
′√

g2 + g′2
, (B.3)

it is clear that the theory can also be fixed by the parameters e, mW , mZ in-
stead of g, g

′
, 〈φ〉. This choice of the minimal parameters would be the most

natural one provided that we can measure mZ and mW by their direct pro-
ductions in colliding experiments. Thus the theory is defined by physically
observable quantities.

Historically other choices of minimal parameters have been used. Since
the production of heavy bosons requires very high energies

√
s > mZ, it has

been difficult to know precise values of masses. People have been rendered
to use observables available at low energies, that is

e, Rν, Γµ(µ→ eν̄eνµ), (B.4)

where Rν is the ratio of cross-sections for charged- and neutral-current pro-
cesses induced by νµ-nucleon or νµ-e interactions and Γµ is the decay width of
µ±. Among them, the electric charge e is already known as the fine structure
constant, α = e2/(4π). On the other hand, to express Rν, the weak mixing
angle, sin2 θW , has been used. Then Rν is given by a function of sin θW , if
fermion masses and the square of momentum transfer, q2, are neglected, as
being much smaller than compared with gauge boson masses,

Rν = f (sin θW), (B.5)

by dimensional argument. In a similar way the muon decay width can be
written as

Γµ = mW · g(α, sin2 θW). (B.6)

By measuring Rν, one can determine sin2 θW , which gives mW because we
know Γµ precisely. Thus all three parameters can be determined by lower
energy experiments without recourse to producing heavy bosons. This is of
course oversimplified as Higgs mass mH or heavy top quark mt being ne-
glected. In reality the experimental data have been carefully analyzed and
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compared with precise calculation up to one-loop order to deduce reliable
numerical values for parameters. This is because sin2 θW is rather an arti-
ficial parameter than a physical observable. When one is going to use this
variable as one of minimal parameters, one should give its specified defini-
tionof sin2 θW . Once we fix parameters as e, mW , and mZ, we have no room
for the mixing angle; it will not play a primary role in the theory. All the
renormalized Green’s functions and thus physical quantities such as S-matrix
elements and decay widths are expressed by these parameters entirely. Nev-
ertheless we may define sin2 θW as an auxiliary constant through

sin2 θW = 1−
m2

W
m2

Z
. (B.7)

Since W± and Z0 bosons were achieved in the collider experiments, the
most convenient choice of parameters is undoubtedly the set of e, mW , and
mZ. Therefore,in the following, I will use this scheme to renormalize the
theory throughout this article and I call it canonical scheme. The muon decay
width, Eq. (B.6) is again relied on. In the canonical scheme it is expressed in
another form.

Γµ = mW · g̃(α, m2
W/m2

Z), (B.8)

and it determines mW implicitly with possible dependence on mH and mt for
given mZ. Solving this equation and using the experimental value for Γµ, we
can get mW as a function of other parameters,

mW = mZ · h(α, Γµ/mZ). (B.9)

Actually a scheme has been proposed which essentially takes

e, Γµ, mZ, (B.10)

as the minimal parameters of the theory.
The second point is concerned with the stage at which one introduces

wave function renormalization constants or rescaling factors for fields. If
one renormalizes the wave function before the symmertry broken, one has
the relations for gauge boson and fermions sectors,

Aa
µ0 = Z1/2

W Aa
µ,

Bµ0 = Z1/2
B Bµ,

ψL0 = Z1/2
L ψL, (B.11)

ψ
(I)
R0 = Z(I)1/2

R ψ
(I)
R ,

ψ
(i)
R0 = Z(i)1/2

R ψ
(i)
R

with

ψL =

(
ψ
(I)
L

ψ
(i)
L

)
, (B.12)
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where all the fields appearing on the right-hand side are renormalized and
those with subscript 0 on the left-hand side are in bared. The fields Aa

µ,
(a = 1, 2, 3) correspond to the original SU(2) gauge symmetry and Bµ to
U(1). The left-handed fermion doublet and its upper and lower components
are designated by the subscript (L) and superscripts (I) and (i), respectively.
Thus there are five constants ZW , ZB, ZL, Z(I)

R and Z(i)
R .

On the other hand, after the symmertry is broken, one has to introduce
more renormalization constants corresponding to the fields of physical par-
ticles; denoting photon and Z0 fields as Aµ and Zµ, we have

W±µ0 = Z1/2
W W±µ ,(

A0
µ

Z0
µ

)
=

(
Z1/2

AA Z1/2
AZ

Z1/2
ZA Z1/2

ZZ

)(
Aµ

Zµ

)
, (B.13)

ψ
(I)
L0 = Z(I)1/2

L ψ
(I)
L ,

ψ
(i)
L0 = Z(i)1/2

L ψ
(i)
L ,

ψ
(I)
R0 = Z(I)1/2

R ψ
(I)
R ,

ψ
(i)
R0 = Z(i)1/2

R ψ
(i)
R ,

i.e., nine parameters in all should be determined. Note that photon and Z0

fields can mix with each other in the course of rescaling and that upper and
lower left-handed fermions fields should be renormalized separately.

In accordance with these definitions of field rescaling, the renormaliza-
tion of coupling constants is performed in different ways depending on the
schemes. In the gauge symmertric scheme, it is natural to introduce the coun-
terterms for two original gauge coupling constants and Higgs vacuum expec-
tation value v0 = 〈φ0〉 and to renormalize them by

g0 = g + δg,

g
′
0 = g

′
+ δg

′
, (B.14)

v0 = v + δv,

to respect the symmetry as far as possible. In the canonical scheme the renor-
malized parameters g, g

′
, and v should be fixed by the observables e, mZ,

and mW or their equivalents. Therefore we have to give three relations which
connect two sets of renormalized parameters,

g = f1(e, mZ, mW),

g
′

= f2(e, mZ, mW), (B.15)
v = f3(e, mZ, mW).
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The merit of the symmetric scheme is that the original gauge symmetries
are manifest in renormalization constants and thus the counterterms gener-
ated by Eqs. (B.11) and (B.14) are simple thanks to the fact that the mini-
mal number of them are introduced. The demerit would be that the way
to connect them with observables are somewhat obscure and complicated.
Different from the ordinary way of renormalization, the renormalized fields
are defined before symmertry breaking and thus they themselves do not cor-
respond to any physical particles except W± boson. Thus the on-shell con-
ditions cannot be applied to gauge bosons and fermion doublets in a direct
way. As long as the theory is fixed only by three parameters g, g

′
, and v the

relations eqs are uniquely determined. This is, however, not the only way
to relate the renormalized parameters g, g

′
, and v in one scheme to those in

another scheme. It is possible to give relations different from Eq. (B.15) by
introducing a redundant parameter ρ, which requires a further renormaliza-
tion condition or a constrained equation. In fact it is this type of redundancy
which often leads to the confusion in the definition of the weak mixing angle
sin2 θW .

On the other hand, when the symmetry is broken before the renormaliza-
tion, one must re-express all the constants in the Lagrangian by the bare e,
mZ0, and mW0. Renormalization is done on these parameters,

e0 = e + δe,
m2

Z0 = m2
Z + δm2

Z, (B.16)
m2

W0 = m2
W + δm2

W .

In the on-shell scheme, the renormalization constants show no trace of
the original gauge symmetries either in rescaling of fields or in renormal-
izing constant parameters. However, since all physical particles are treated
independently, the on-shell renormalization condition can be applied in a
straightforward way. Further the parameters of the theory are fixed unam-
biguously by observables e, mZ, and mW . I can say this is the principal merit
of this scheme. The coupling constants attached at the vertices, however,
have complicated forms when they are rewritten in terms of these basic pa-
rameters, which in turn gives rise to lengthy counterterms. Needless to say,
any two schemes should give the same physical results provided that they
are constructed in a self-consistent way.

B.2 Lagrangian

The electroweak Lagrangian is composed of two parts; the first part has
the same form as the classical Lagrangian, containing physical objects and
the second one is related to the subsidiary conditions to fix the ambiguity of
gauge freedom,

L = Lcl + Lgauge fix. (B.17)
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In this section, I present the derivation of renormalized Lagrangian from the
original gauge symmetric, unrenormalized one. Since I follow the scheme of
[13], I simply review and reproduce the results obtained with brief explana-
tions. All the complicated theoretical arguments such as renormalizability,
BRS tranformation, Slavnov-Taylor identity or gauge fixing procedure, etc.,
are omitted; they are left to other literatures, for example, to [13].

In the first half of this section I present Lcl. In order to stress tha we
have only unrenormalized fields and constants at the beginning, I put the
subscript 0 to all of them. The renormalized quantities appearing later are
denoted by the same ones without 0. Decomposing the Lagrangian Lcl into
several parts, I write them as

Lcl = LG + LF + LH + LM, (B.18)

where LG is the gauge boson part, LF is the fermion kinetic part, LH is the
Higgs scalar part and LM is the fermion- Higgs interaction. The pure gauge
boson part is expressed by the field strengths of SU(2) and U(1) gauge fields,

LG = −1
4

Ga
µν0Ga

µν0 −
1
4

Fµν0Fµν0, (B.19)

where

Ga
µν0 = ∂µ Aa

ν0 − ∂ν Aa
µ0 + g0εabc Ab

µ0Ac
ν0,

Fµν0 = ∂µBν0 − ∂νBµ0, (B.20)

are field strengths for gauge fields Aa
µ0(a = 1, 2, 3), and Bµ0, respectively;

and the repeated indices imply the sum over a, b or c. The kinetic part of
fermions, both quarks and leptons, including gauge interactions is given by

LF = ∑
L

ψ̄L0(i 6∂ + g0Ta Aa
µ0)ψL0 + ∑

f=i,I
ψ̄
( f )
R0 (i 6∂ + g

′
0Ba

µ0)ψ
( f )
R0 , (B.21)

where ψL0 and ψR0 represent SU(2) doublet and singlet fermion fields, re-
spectively, with

ψL0 =

ψ
(I)
L0

ψ
(i)
L0

 , (B.22)

and the sum of left-handed fermions is taken over all doublets. Throughout
this article, the subscript (L), and the superscripts (I), (i), and ( f ) stand
for left-handed fermion doublet and upper, lower and all kinds of fermions,
respectively. The coupling constant g0 corresponds to SU(2) and g

′
0 to U(1)

gauge interactions and the Ta’s are related to SU(2) Pauli matrices,

Ta =
τa

2
. (a = 1, 2, 3) (B.23)
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The Higgs scalar part with gauge interaction is

LH =
∣∣∣(∂µ − ig0Ta Aa

µ0 − i
g
′
0

2
Bµ0

)
Φ0

∣∣∣2 + µ2
0Φ†

0Φ0 − λ0(Φ†
0Φ0)

2, (B.24)

and the fermion-Higgs interactions are written in the form,

LM = −∑
i

f (i)0 Ψ̄(i)
L0Φ0ψ

(i)
R0 −∑

I
f (I)
0 Ψ̄(I)

L0 (iτ2Φ†
0)ψ

(I)
R0 + h.c., (B.25)

where f (i)0 and f (I)
0 are Yukawa couplings which generate fermion masses

through the symmetry breaking. Two new combinations of fields, Ψ(i)
L0 and

Ψ(I)
L0 , for left-handed fermions are introduced so as to make the mass matrix

diagonal from the outset,

Ψ(i)
L0 =

∑
I

UiIψ
(I)
L0

ψ
(i)
L0

 ,

Ψ(I)
L0 =

 ψ
(I)
L0

∑
I

U−1
iI ψ

(i)
L0

 , (B.26)

(B.27)

where UiI is the Kobayashi-Maskawa mixing matrix for quarks.

Next task is to break the symmetries by introducing the vacuum expecta-
tion value of the Higgs field Φ0. It is achieved by putting in the form,

Φ0 =

(
iχ+

0
v0+φ0−iχ30√

2

)
, (B.28)

where v0 is the bare vacuum expectation value, φ0 is the physical Higgs scalar
field, χ30 is the neutral Goldstone boson, and χ+ is the charged Goldstone
boson

χ±0 =
1√
2
(χ10 ∓ iχ20). (B.29)

Substituting this into the Lagrangian and redefining new fields for physical
gauge bosons,

W±µ0 =
1√
2
(A1

µ0 ∓ iAµ0),

Zµ0 =
1√

g2
0 + g′20

(g0A3
µ0 − g

′
0Bµ0), (B.30)

Aµ0 =
1√

g2
0 + g′20

(g
′
0A3

µ0 + g0Bµ0),



48Appendix B. Electroweak theory and the on-shell renormalizaton scheme

I get unrenormalized Lagrangian for physical particles. The bosonic part
then becomes

LG = −1
2

∣∣∣∂µW+
ν0 − ∂νW+

µ0

∣∣∣2 − 1
4
(∂µZν0 − ∂νZµ0)

2 − 1
4
(∂µ Aν0 − ∂ν Aµ0)

2

+
ig0√

g2
0 + g′20

(gαγgβδ − gαδgβγ)

[
g0

{
(∂αW+

β0)W
−
γ0Zδ0 + (∂αW−β0)W

+
δ0Zγ0 + (∂αZβ0)W+

γ0Zδ0

}
+g

′
0

{
(∂αW+

β0)W
−
γ0Aδ0 + (∂αW−β0)Aγ0W+

δ0 + (∂α Aβ0)W+
γ0W−δ0

}]
+

g2
0

g2
0 + g′20

[
(gαβgγδ − gαγgβδ)W+

α0W−β0(g2
0Zγ0Zδ0 + g

′
0Aγ0Aδ0)

+(2gαβgγδ − gαγgβδ − gαδgβγ)g0g
′
0W+

α0W−β0Aγ0Zδ0

]
+(gαβgγδ − gαγgβδ)

g2
0

2
W+

α0W+
β0W−γ0W−δ0, (B.31)

and the fermion part is

LF = ∑
f

iψ̄( f )
0 6∂ψ

( f )
0

+
g0√

2
∑
i,I
(ψ̄

(I)
0 U†

iIγµ
1− γ5

2
ψ
(i)
0 W+

µ0 + ψ̄
(i)
0 UiIγµ

1− γ5

2
ψ
(I)
0 W−µ0)

+e0 ∑
f

Q f ψ̄
( f )
0 γµψ

( f )
0 Aµ0√

g2
0 + g′20
2 ∑

f
ψ̄
( f )
0 γµ

[
T3 f (1− γ5)− 2Q f

g
′2
0

g2
0 + g′20

]
ψ
( f )
0 Zµ0, (B.32)

where the ψ without L or R is the Dirac spinor by which I define

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ (B.33)

namely, ψ = ψL + ψR. Further we have introduced the bare electric charge
by

e0 =
g0g

′
0√

g2
0 + g′20

(B.34)

to stress the fermion-photon interaction and Q f is the charge of f -th fermion
in units of e0. Since the Higgs scalar part is very complicated and develops
too many terms, we divide it further into four parts,

LH = L(2)H + L(3)H + L(4)H + LV . (B.35)
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The first part contains kinetic terms for scalar particles and bilinear terms in
fields,

L(2)H = +
1
2
(∂µφ0)

2 +
1
2
(∂µχ30)

2 + (∂µχ+
0 )(∂µχ−0 )

+m2
W0W+

µ0W−µ0 +
1
2

m2
Z0Zµ0Zµ0 (B.36)

−1
2

g0v0[W+
µ0(∂µχ−0 ) + W−µ0(∂µχ+

0 )]−
1
2

√
g2

0 + g′20 v0Zµ0(∂µχ30),

where the bare mass terms of gauge bosons have been rewritten by using the
bare relations,

m2
Z0 =

1
4
(g2

0 + g
′2
0 )v

2
0,

m2
W0 =

1
4

g2
0v2

0. (B.37)

The cubic and quartic parts in fields contain interaction terms between Higgs
and gauge fields,

L(3)H =
1
2

g0W+
µ0(χ

−
0
←→
∂ µφ0) +

1
2

g0W−µ0(χ
+
0
←→
∂ µφ0)

+
i
2

g0W+
µ0(χ30

←→
∂ µχ−0 )−

i
2

g0W−µ0(χ30
←→
∂ µχ+

0 )

+
1
2

√
g2

0 + g′20 Zµ0(χ30
←→
∂ µφ0) (B.38)

+
i
2

g2
0 − g

′2
0√

g2
0 + g′20

Zµ0(χ
−
0
←→
∂ µχ+

0 )

+
ig0g

′
0√

g2
0 + g′20

Aµ0(χ
−
0
←→
∂ µχ+

0 ),
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L(4)H =
1
4

g2
0W+

µ0W−µ0(2v0φ0 + φ2
0 + 2χ+

0 χ−0 + χ2
30)

+
1
4
(g2

0 − g
′2
0 )

2

g2
0 + g′20

Zµ0Zµ0(χ
−
0 χ+

0 ) +
1
8
(g2

0 + g
′2
0 )Zµ0Zµ0(2v0φ0 + φ2

0 + χ2
30)

+
g2

0g
′2
0

g2
0 + g′20

Aµ0Aµ0(χ
+
0 χ−0 ) +

g0g
′
0(g2

0 − g
′2
0 )

g2
0 + g′20

Aµ0Zµ0(χ
+
0 χ−0 )

+
1
2

g0g
′2
0√

g2
0 + g′20

(Zµ0W+
µ0χ−0 )(χ30 + iv0 + iφ0) (B.39)

+
1
2

g0g
′2
0√

g2
0 + g′20

(Zµ0W−µ0χ+
0 )(χ30 − iv0 − iφ0)

−1
2

g2
0g
′
0√

g2
0 + g′20

(Aµ0W+
µ0χ−0 )(χ30 + iv0 + iφ0)

−1
2

g2
0g
′
0√

g2
0 + g′20

(Aµ0W−µ0χ+
0 )(χ30 − iv0 − iφ0)

The last part is the potential term for Higgs particle,

LV = T0φ0 + (µ2
0 − λ0v2

0)χ
+
0 χ−0

+
1
2
(µ2

0 − λ0v2
0)χ

2
30 +

1
2
(µ2

0 − 3λ0v2
0)φ

2
0

−2v0λ0(φ0χ+
0 χ−0 )− v0λ0(φ0χ30χ30)− v0λ0φ3

0 (B.40)

−λ0(χ
+
0 χ−0 )

2 − λ0(χ
+
0 χ−0 )χ

2
30 − λ0(χ

+
0 χ−0 )φ

2
0

−1
4

λ0χ4
30 −

1
4

λ0φ4
0 −

1
2

λ0χ2
30φ2

0,

where the coefficient of the counterterm for tadpole diagrams is re written as

T0 = v0(µ
2
0 − λ0v2

0). (B.41)

The fermion mass part yields

LM = −∑
f

m f 0ψ̄
( f )
0 ψ

( f )
0

− i
2 ∑

i,I
ψ̄
(I)
0 U†

Ii

[
( f (i)0 − f (I)

0 ) + ( f (i)0 + f (I)
0 )γ5

]
ψ
(i)
0 χ+

0

− i
2 ∑

i,I
ψ̄
(i)
0 UIi

[
( f (I)

0 − f (i)0 ) + ( f (i)0 + f (I))
0 γ5

]
ψ
(I)
0 χ−0 (B.42)

−∑
i

f ( f )
0√

2
φ0ψ̄

( f )
0 ψ

( f )
0 + ∑

f

i f (i)0√
2

χ30ψ̄
(i)
0 γ5ψ

(i)
0 −∑

I

i f (I)
0√
2

χ30ψ̄
(I)
0 γ5ψ

(I)
0 .
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According to our choice of minimal parameters, we rewrite all the bare con-
stants, g0, g

′
0, and v0 by bare parameters, e0, mZ0, and mW0, in the following

way:

g0 = e0
mZ0√

m2
Z0 −m2

W0

, g
′
0 = e0

mZ0

mW0
,

v0 =
2
e0

mW0

mZ0

√
m2

Z0 −m2
W0,

λ0 =
e2

0m2
Z0

8m2
W0(m

2
Z0 −m2

W0)
(m2

H0 −
e0T0mZ0

mW0

√
m2

Z0 −m2
W0

), (B.43)

µ2
0 = m2

H0/2,

f ( f )
0 =

√
2m f 0/v0.

By these replacements, we can get the final form of the bare Lagrangian by
which we have to describe all physical phenomena.

The next step is to renormalize the bare Lagrangian. It consists of two
procedures; one is redefinition of the constants and the other is rescaling of
particle fields. The first one is to express the bare constants by a sum of finite
renormalized quantities and their counterterms,

m2
W0 = m2

W + δm2
W ,

m2
Z0 = m2

Z + δm2
Z,

m2
H0 = m2

H + δm2
H, (B.44)

m2
f 0 = m f + δm f ,

e0 = Ye.

The rescalings of gauge fields (Z0, W±, γ) are defined by

W±µ0 = Z1/2
W W±µ ,(

A0
µ

Z0
µ

)
=

(
Z1/2

AA Z1/2
AZ

Z1/2
ZA Z1/2

ZZ

)(
Aµ

Zµ

)
, (B.45)

and those for left- and right-handed fermions are

ψ
(I)
L0 = Z(I)1/2

L ψ
(I)
L ,

ψ
(i)
L0 = Z(i)1/2

L ψ
(i)
L ,

ψ
(I)
R0 = Z(I)1/2

R ψ
(I)
R , (B.46)

ψ
(i)
R0 = Z(i)1/2

R ψ
(i)
R .
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In the presence of quark mixing, ZL and ZR become matrices which connect
bare and renormalized fermion fields of the same charge:

ψ
( f )
R,L0 = ∑

f ′
(Z1/2

R,L ) f , f ′ψ
( f ′)
R,L ,

ψ̄
( f )
R,L0 = ∑

f ′
ψ̄
( f ′)
R,L (Z1/2†

R,L ) f ′, f . (B.47)

The Higgs boson is rescaled as

φ0 = Z1/2
φ φ. (B.48)

Now we turn to the gauge fixing part of the original Lagrangian. This con-
tains physical particles, Goldstone bosons and ghosts, that is, the gauge fix-
ing term and the Faddeev-Povov ghost parts,

Lgauge fix. = LGF + LFP (B.49)

The gauge fixing term is written in the renormalized form,

LGF = − 1
αW

(∂µW+
µ + αWmWχ+) · (∂µW−µ + αWmWχ−)

− 1
2αZ

(∂µZµ + αZmZχ3)
2 − 1

2αA
(∂µ Aµ)

2. (B.50)

Renormalzation of bare gauge paraneters, αW0, αZ0, and αA0, and rescalings
of Goldstone boson fields χ±0 , χ30 are follows: Those for gauge parameters
are given by

αW0 = αW Z1/2
W Z−1/2

χ /
√

1 + δm2
W/m2

W ,

αZ0 = αZZ1/2
ZZ Z−1/2

χ3 /
√

1 + δm2
Z/m2

Z, (B.51)

βZ0 = αZZ1/2
AZ Z−1/2

χ3 /
√

1 + δm2
Z/m2

Z,

and field rescaling are by

χ±0 = Z1/2
χ χ±,

χ30 = Z1/2
χ3

χ3. (B.52)

A few words should be given on the choice of numerical values for these
parameters: They Feynman gauge, which has often been used in literature,
is defined by

αW = αZ = αA = 1, (B.53)

while the unitary gauge is chosen by letting all these parameters infinity.
When one calculates loop diagrams, the former gauge is convenient because
the gauge boson propagators take the simplest forms without longitudinal
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parts. However, one has to include all possible diagrams which contain un-
physical particles, i.e., Goldstone bosons and ghosts. Thus there are a lot of
diagrams to be considered. On the other hand, the Lagrangian with unitary
gauge has no such unphysical particles at all. The number of diagrams is,
thus, much less than the former. The propagators of gauge bosons, however,
develop longitudinal parts, which cause much complications in the calcula-
tions, because of the appearance of the double-pole like term. Decomposing
this into a sum of single-pole term, we have a lenghty expression for general
gauge parameters. Generally speaking, the ’tHooft-Feynman gauge is conve-
nient in higher order calculations. Needless to say, the final answers should
be independent of the choice of gauge parameters.

The last part of the Lagrangian os the Faddeev-Povov ghost part. In ac-
cordance with the gauge fixing term, it is given by

LFP = −c̄+0 δBRS(∂µW−µ0 + αW0mW0χ−0 )− c̄−0 δBRS(∂µW+
µ0 + αW0mZ0χ+

0 )

−c̄Z
0 δBRS(∂µZµ0 + αZ0mZ0χ30)− c̄A

0 δBRS(∂µ Aµ0 + βZ0mW0χ30),
(B.54)

where every quantity is bare and the BRS transformations for the fields are
defined by

δBRSW±µ0 = ∂µcµ
0 ±

ig0√
g2

0 + g′20
[W±µ0(g0cZ

0 + g
′
0cA

0 )− (g0Zµ0 + g
′
0Aµ0)c±0 ],

δBRSZµ0 = −
ig2

0√
g2

0 + g′20
(W+

µ0c−0 −W−µ0c+0 ) + ∂µcZ
0 ,

δBRS Aµ0 = − ig0g
′
0√

g2
0 + g′20

(W+
µ0c−0 −W−µ0c+0 ) + ∂µcA

0 ,

δBRSφ0 = −g0

2
(χ+

0 c−0 + χ−0 c+0 )−

√
g2

0 + g′20
2

χ30cZ
0 ,

δBRSχ±0 = +
g0

2
[(v0 + φ0)c±0 ∓ χ30c±0 ]±

i

2
√

g2
0 + g′20

χ±0 [(g2
0 − g

′2
0 )c

Z
0 + 2g0g

′
0cA],

δBRSχ30 =

√
g2

0 + g′20
2

(v0 + φ0)cZ
0 −

ig0

2
(χ+

0 c−0 − χ−0 c+0 ). (B.55)

Here the original ghost field c3
0, c0

0 are replaced by

cZ
0 =

1√
g2 + g′2

· (g0c3
0 − g

′
0c0

0),

cA
0 =

1√
g2 + g′2

· (g
′
0c3

0 − gc
0), (B.56)
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in the same way as the mixing between physical Z0 and photon fields. Thus
the Faddeev-Povov ghost part, divided into bilinear and curbic terms in
fields, is given by

LFP = L(2)FP + L(3)FP , (B.57)

where

L(2) = −c̄+0 (∂
2
µ + αW0m2

W0)c
−
0 − c̄−0 (∂

2
µ + αW0m2

W0)c
+
0

−c̄Z
0 (∂

2
µ + αZ0m2

Z0)c
Z
0 − c̄A

0 ∂2
µcA

0 − c̄A
0 (β0m2

W0)c
Z
0 (B.58)

and

L(3) =
ig2

0√
g2

0 + g′20
W+

µ0[∂µ c̄−0 · c
Z
0 − ∂µ c̄Z

0 · c−0 ]

−
ig2

0√
g2

0 + g′20
W−µ0[∂µ c̄+0 · c

Z
0 − ∂µ c̄Z

0 · c+0 ]

+ie0W+
µ0[∂µ c̄−0 · c

A
0 − ∂µ c̄A

0 · c−0 ]− ie0W−µ0[∂µ c̄+0 · c
A
0 − ∂µ c̄A

0 · c+0 ]

+
ig2

0√
g2

0 + g′20
Zµ0[∂µ c̄+0 · c

−
0 − ∂µ c̄−0 · c

+
0 ] + ie0A+

µ0[∂µ c̄+0 · c
−
0 − ∂µ c̄−0 · c

+
0 ]

+iχ+
0

[−αW0mW0(−g
′2
0 + g2

0)

2
√

g′20 + g2
0

c̄−0 cZ
0 − αW0mW0e0c̄−0 cA

0

+
β0

2
mZ0g0c̄A

0 c−0 +
αZ0

2
mZ0g0c̄Z

0 c−0
]

(B.59)

+iχ−0
[+αW0mW0(−g

′2
0 + g2

0)

2
√

g′20 + g2
0

c̄+0 cZ
0 + αW0mW0e0c̄+0 cA

0

−β0

2
mZ0g0c̄A

0 c+0 −
αZ0

2
mZ0g0c̄Z

0 c+0
]

+
iαW0

2
mW0g0χ30[−c̄+0 c−0 + c̄−0 c+0 ]−

αW0

2
mW0g0φ0[−c̄+0 c−0 + c̄−0 c+0 ]

−αZ0

2
mZ0

√
g′20 + g2

0φc̄Z
0 cZ

0 −
βZ0

2
mZ0

√
g′20 + g2

0φc̄A
0 cZ

0 .

Renormalizations of gauge parameters are given in Eq. (B.51) and those for
ghost fields are defined by the following equations,

c±0 = Z̃3c±,(
cZ

0

cA
0

)
=

(
Z̃ZZ Z̃ZA

Z̃AZ Z̃AA

)(
cZ

cA

)
, (B.60)

c̄±0 = c̄±, c̄Z
0 = c̄Z, c̄A

0 = c̄A.
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It should be noted that the ghost field c and anti-ghost c̄ are rescaled in differ-
ent ways. This is because these two fields are not connected by particle and
anti-particle relation but rather independent objects.

Now we can re-expess the orriginal Lagrangian L by both renormalized
fields and constants. It is straightforward to divide it into free and interac-
tion parts as defined in the last paragraph of the previous section. The free
Lagrangian Ltree is obtained from the bilinear terms in fields in L by letting
all rescaling factors to be unity, Zi = 1, and all mass counterterms to vanish,
δm2

i = 0. Thus we have

Ltree = W+
µ

[
gµν(∂2

α + m2
W)− (1− 1

αW
∂µ∂ν)

]
W−ν

+
1
2

Zµ

[
gµν(∂2

α + m2
Z)− (1− 1

αZ
∂µ∂ν)

]
Zν

+
1
2

Aµ

[
gµν∂2

α − (1− 1
αA

∂µ∂ν)
]

Aν

+∑
f

ψ̄( f )(i 6∂−m f )ψ
( f ) 1

2
φ(∂2

α + m2
H)φ (B.61)

−χ+(∂2
α + αWm2

W)χ− − 1
2

χ3(∂
2
α + αZm2

Z)χ3

−c̄+(∂2
α + αWm2

W)c− − c̄−(∂2
α + αZm2

W)c+

−c̄Z(∂2
α + αZm2

Z)c
Z − c̄A∂2

αcA

and define the interaction part by

Lint = L−Ltree, (B.62)

which contains all of the counterterms as well as tree interactions.

B.3 On-shell renormalization

The counterterms for all the physical particles introduced in Eqs. (B.44),
(B.45), and (B.46) should be fixed by the renormalization conditions. They
are the charge renormaliation and the on-shell conditions. The former is ex-
actly the same as in QED. By "on-shell renormalization", I mean that,

1. the pole position of propagators should locate at physical mass,

2. residue of propagators at the pole should be unity.

The second condition allows one to omit any diagram whose external line
contain self-energy insertion. This reduces the numbers of diagrams to be
considered When one renormalizes gauge boson and fermion fields before
symmetry breaking as discussed in the previous section, the resudes happen
not to be unity, which means that the finite renormalition constants for wave
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funtions of the external fields remains in the self-energy insertion diagrams.
In the following, we do not expand the wave function renormalization con-
stants to make the expressions compact. Writing them in a pertubation series,
one can easily get the counterterms order by order.

B.3.1 Gauge boson renormalization

According to these requirements we can fix all counterterms for the prop-
agators of physical particles. First, we consider the case of W± boson. We
denote the contribution from irreducible self-energy diagram (vacuum po-
larization) as

ΠW
µν(q) = (gµν −

qµqν

q2 )aW(q2) +
qµqν

q2 bW(q2). (B.63)

The corresponding counterterm, which is obtained from the Lagrangian
by rescaling of the fields and mass counterterm, is given by

ΠW
cµν(q) = (gµν −

qµqν

q2 )[δm2
W · ZW − (q2−m2

W)ZW ]

+
qµqν

q2 (δm2
W · ZW + m2

W ZW). (B.64)

Adding these two and requiring that the ultraviolet divergence is can-
celled, we define the renormalized self-energy functions of transverse and
longitudinal parts,

ãW(q2) = aW(q2) + δm2
W · ZW − (q2 −m2

W)ZW ,

b̃W(q2) = bW(q2) + δm2
W · ZW + m2

W ZW . (B.65)

The renormalization conditions are imposed on the transverse part of self-
energy as

ãW(m2
W) = 0, ã

′
W(m2

W) = 0, (B.66)

where the prime means the derivative with respect to q2. Hence we have, at
one loop level,

δm2
W = −a(m2

W),

ZW = a
′
(m2

W). (B.67)

Note that both δm2
W and ZW are fixed by these equations and the longitudinal

part bW(q2) is automatically made finite by these constants by virtue of the
gauge invariance.
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Next I discuss the neutral gauge boson sector and deal with the γ − Z0

mixing term. The bare Lagrangian is diagonalized in terms of bare γ and Z0

fields. Due to the renormalization procedure Eq... however, the renormalized
γ and Z0 fields make transition with each other, again. In other words we
need the condition to determine ZAZ and ZZA separately, while ZAA and
ZZZ are determined by the conditions (1) and (2). Let us consider the part of
the Lagrangian which is bilinear in bare γ and Z0 fields,

Lγ,Z0 = −
1
4

Zµν0Zµν0 −
1
2

m2
Z0Zµ0Zµ0 −

1
4

Fµν0Fµν0 + (gauge fix.), (B.68)

where Zµν0 and Fµν0 are field strengths defined by bare Z0 and photon fields,
Zµ0 and Aµ0 like as Zµν0 = ∂µZν0− ∂νZµ0. Rewriting this by renormalization
fields, we have

Lγ,Z0 = −1
4
[(Z1/2

ZZ )2 + (Z1/2
AZ )

2]ZµνZµν −
1
2
(m2

Z + δm2
Z)(Z1/2

ZZ )2ZµZµ

−1
4
[(Z1/2

ZA )2 + (Z1/2
AA )

2]FµνFµν −
1
2
(m2

Z + δm2
Z)(Z1/2

ZA )2Aµ Aµ

−1
2
[Z1/2

ZA Z1/2
ZZ + Z1/2

AA Z1/2
AZ ]FµνFµν − (m2

Z + δm2
Z)Z1/2

ZA Z1/2
ZZ AµZµ.

(B.69)

Thus the rescaling induces mixing among renormalized fields.

The contribution from a set of irreducible loop diagrams can be written in
a form similar to for W±. We denote them as follows:

ΠZ
µν(q) = (gµν −

qµqν

q2 )aZ(q2) +
qµqν

q2 bZ(q2) (B.70)

for Z0-Z0 boson,

ΠA
µν(q) = (gµν −

qµqν

q2 )aA(q2) +
qµqν

q2 bA(q2) (B.71)

for photon-photon and

ΠZA
µν (q) = (gµν −

qµqν

q2 )aZA(q2) +
qµqν

q2 bZA(q2) (B.72)

for photon-Z0 mixing. The corresponding counterterms read from Eq.... are
given by
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ΠZ
cµν(q) = (gµν −

qµqν

q2 )[(δm2
Z + m2

Z)(Z1/2
ZZ )2 − q2((Z1/2

ZZ )2 + (Z1/2
AZ )

2)]

+
qµqν

q2 (δm2
Z + m2

Z)(Z1/2
ZZ )2,

ΠA
cµν(q) = (gµν −

qµqν

q2 )[(δm2
Z + m2

Z)(Z1/2
ZA )2 − q2((Z1/2

ZA )2 + (Z1/2
AA )

2)]

+
qµqν

q2 (δm2
Z + m2

Z)(Z1/2
ZA )2,

ΠZ Acµν(q) = (gµν −
qµqν

q2 )[(δm2
Z + m2

Z)Z1/2
ZZ Z1/2

ZA − q2(Z1/2
ZZ Z1/2

ZA + Z1/2
AA Z1/2

ZA )]

+
qµqν

q2 (δm2
Z + m2

Z)Z1/2
ZZ Z1/2

ZA . (B.73)

In order to make the renormalized self-energies finite, which are defined by

ãZ(q2) = aZ(q2) + (δm2
Z + m2

Z)(Z1/2
ZZ )2 − q2((Z1/2

ZZ )2 + (Z1/2
AZ )

2),

ãZ(q2) = aA(q2) + (δm2
Z + m2

Z)(Z1/2
ZA )2 − q2((Z1/2

ZA )2 + (Z1/2
AA )

2),

ãZA(q2) = aZA(q2) + (δm2
Z + m2

Z)Z1/2
ZZ Z1/2

ZA − q2(Z1/2
ZZ Z1/2

ZA + Z1/2
AA Z1/2

ZA ),
(B.74)

we require the following renormalization conditions:

ãZ(m2
Z) = 0, ã

′
Z(m

2
Z) = 0,

ãZ(0) = 0, ã
′
Z(0) = 0,

ãZA(m2
Z) = 0, ã

′
ZA(0) = 0.

It should be noted that two conditions ãZ(0) and ã
′
ZA(0) = 0 are identical

due to the Ward-Takahashi identity for the electromagnatic interation. The
later condition has the meaning that the γ-Z0 mixing diagram should not
develope a pole at q2 = 0. Thus we have five conditions by which four
Z’s and one m2

Z are determined. The longitudinal parts bZ(q2), bA(q2) and
bZA(q2) are again renormalized by these constants. A comment is in order;
including the lowest order corrections, two constants, Z1/2

ZZ and Z1/2
AA , are the

quantities of 1 + O(α), while the other two, Z1/2
ZA and Z1/2

AZ , are O(α) by
themselves. General solutions for the Z’s are very complicated, but in the
one-loop order we can express them by self-energies in the following simple
forms:

δm2
Z = −aZ(m2

Z),

2Z1/2
ZZ = a

′
Z(m

2
Z),

2Z1/2
AA = a

′
Z(0), (B.75)

Z1/2
ZA = −a

′
ZA(0)/m2

Z,

Z1/2
AZ = a

′
ZA(m

2
Z)/m2

Z.
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B.3.2 Higgs scalar renormalization

The renormalization of Higgs field can be done in the same way as other
physical particles. The counterterm is given by

ΣφC(q2) = −δm2
HZφ + (q2 −m2

H)Zφ + 3T0Y
eMZ

2mW

√
m2

Z −m2
W

G3H−1Zφ,

(B.76)

which defines the renormalized self-energy by

Σ̃φC(q2) = ΣφC(q2) + Σφ(q2) (B.77)

which the on-shell conditions,

Σ̃φ(m2
H) = 0,

Σ̃′φ(m
2
H) = 0, (B.78)

which determines both Zφ and δm2
H.

I do not show the explicit procedure to renormalize Goldstone bosons
and ghost particles, because they are not necessary for the subjects discussed
in this article. It is performed in a way similar to the above prescription.
Interested readers can find its details in [13]. It is sufficient to point out here
that these unphysical particles never appear in the external lines and only
contribute to the loop diagrams.
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