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abstract

The non-perturbative dynamics plays important roles in quantum field theories and su-

perstring theory. Monte Carlo calculation of the systems is one of the useful methods

to study non-perturbative dynamics. There are many successful works. However, the

usual Monte Carlo methods are not applicable, for example, in the Lorentzian metric

case, theories with a θ term, theories at finite density, and so on. In such cases, since

the Boltzmann weight becomes complex, it is not possible to interpret the weight as the

probability. This problem is called the sign problem. Some methods to overcome the

sign problem have been proposed. The complex Langevin method (CLM) is one of such

methods. An advantage of the method compared with others is that the numerical cost

for increasing the system size is reasonable.

This method was applied to many toy models, in which it worked well. However, the

applications to physically interesting models are not so many. In our work, we apply the

CLM to the gauge theories with a θ term and the Lorentzian type IIB matrix model.

As a validity test of the CLM for the gauge theories with a θ term, we first apply

the CLM to the 2d U(1) gauge theory on the torus with a θ term which is solvable with

finite lattice spacing and finite volume on an arbitrary manifold. We find that a naive

implementation of the method fails because of the topological nature of the θ term. In

order to circumvent this problem, we simulate the same theory on a punctured torus,

which is equivalent to the original model in the infinite volume limit for |θ| < π. Rather

surprisingly, we find that the CLM works and reproduces the exact results for a punctured

torus even at large θ, where the link variables near the puncture become very far from

being unitary.

Since the application of the CLM to the 2d U(1) case is successful, we next apply

the CLM to the 4d SU(2) case. There are interesting predictions for the phase structure

around θ = π by using ’t Hooft anomaly matching condition. Therefore our aim is to

investigate the phase structure by the first principle calculation. We apply the CLM to

the theory on a torus and find that, in the coarse lattice case, there is no freezing of

topological charge. Although the CLM works well even at large θ, we cannot see the

2π periodicity due to the finite lattice spacing effects. Therefore, we need to decrease

the lattice spacing. However, there is the freezing problem in the fine lattice case. We

try to solve the problem by imposing the periodic boundary conditions We find that

imposing the open boundary condition in all spatial directions alleviates the topology

freezing sufficiently, and the CLM works well at large θ. However, the finite volume effect

occurs as a drawback of the open boundary conditions. We also discuss the possible way

to investigate the phase structure.

The Lorentzian type IIB matrix model was proposed as a non-perturbative formulation

of superstring theory in 1996. The emergence of (3+1)-dimensional expanding space-time

in the model is an intriguing phenomenon which was observed in Monte Carlo studies of
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this model. In this work we investigate the space-time structure of the matrices generated

by simulating this model and its simplified versions by using the hybrid Monte Carlo

method, and find that the expanding part of the space is described essentially by the

Pauli matrices. We argue that this is due to an approximation used in the simulation to

avoid the sign problem, which actually amounts to replacing eiSb by eβSb (β > 0) in the

partition function, where Sb is the bosonic part of the action.

In order to treat the weight eiSb appropriately, we use the CLM instead of the ap-

proximation to overcome the sign problem. We generalize the model by introducing two

parameters which correspond to the Wick rotation on the world sheet and that in the tar-

get space. This generalized model interpolates among the Lorentzian case, the Euclidean

case, and a model with eβSb . We apply the CLM to this generalized model and find that

the singular structure phase is not stable in the Lorentzian case. We also find that a new

phase appears in the Lorentzian case where the CLM works well although the Boltzmann

weight becomes a pure phase factor. In the bosonic model which is a simplified model of

the type IIB matrix model, we cannot see the spontaneous breaking of SO(9) symmetry

as in the case of the Euclidean bosonic model. We also discuss the possible scenario

for emerging a regular space-time with the (3+1)-dimensional expanding behavior in the

original model.
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Chapter 1

Introduction

Sign problem is the main obstacle in studying the non-perturbative dynamics of some

systems by using Monte Carlo simulations. The sign problem occurs in the Lorentzian

metric cases, theories with a θ term, theories at finite density, and so on. In such cases,

since the Boltzmann weight becomes complex, it is not possible to interpret the weight as

the probability. Therefore, usual Monte Carlo methods are not applicable. This problem

is called the sign problem.

Some methods to overcome the sign problem have been proposed. For example, the

complex Langevin method [1, 2, 3, 4, 5, 6], the tensor renormalization method [7, 8,

9, 10, 11], the generalized Lefschetz thimble method [12, 13, 14, 15, 16, 17], the path

optimization method[18, 19, 20, 21], and so on. Each method has its pros and cons. In

this thesis, we mainly focus on the complex Langevin method (CLM). An advantage of

the method compared with others is that the numerical cost for increasing the system size

is reasonable. This method was applied to many toy models, in which they worked well.

However, the applications for physically interesting models are not so many.

In this thesis, we apply the CLM to gauge theories with a θ term and the Lorentzian

type IIB matrix model.

1.1 Gauge theories with a θ term

The θ term provides an interesting avenue of research in quantum field theories. Due

to its topological nature, its effects on physics should be genuinely nonperturbative, if

present at all. In particular, it does not affect the equation of motion, which implies that

θ is a parameter that does not exist in the corresponding classical theory. For instance,

the θ term in QCD is given by Sθ = −iθQ, where Q is the topological charge defined by

Q =
1

32π2
εµνρσ

∫
d4x trFµνFρσ , (1.1.1)

which takes integer values on a compact space. The θ term breaks parity and time-reversal

symmetries, and hence the CP symmetry. This leads to a non-vanishing electric dipole
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moment of a neutron, which is severely restricted by experiments. The current upper

bound on θ thus obtained is |θ| . 10−10 [22, 23], which is extremely small although there

is no reason for it theoretically. This is a naturalness problem known as the strong CP

problem.

A popular solution to this problem is the Peccei-Quinn mechanism [24, 25, 26, 27],

which introduces axions as a pseudo Nambu-Goldstone boson of a hypothetical global

U(1)PQ symmetry. In this mechanism, the potential for the axions induced by QCD

chooses a CP invariant vacuum automatically. Recently, gauge theories with a θ term have

attracted attention also from the viewpoint of the ’t Hooft anomaly matching condition

[28, 29, 30] and the gauge-gravity correspondence [31, 32, 33, 34]. In particular, there

is an interesting prediction for a phase transition at θ = π, which claims that either

spontaneous CP breaking or deconfinement should occur there [28, 29, 35]. In order to

investigate gauge theories from first principles in the presence of a θ term motivated either

by the physics related to axions or by the recent predictions, one needs to perform non-

perturbative calculations based on Monte Carlo methods. However, this is known to be

extremely difficult because the θ term appears as a purely imaginary term in the Euclidean

action S. The Boltzmann weight e−S becomes complex, and one cannot interpret it as

the probability distribution as one does in Monte Carlo methods.

One can still use the reweighting method by treating the phase of the complex weight

as a part of the observable. In the case at hand, this amounts to obtaining the histogram

of the topological charge at θ = 0 and taking an average over the topological sectors

characterized by the integer Q with the weight eiθQ. Various results obtained in this way

are nicely reviewed in Ref. [36]. Clearly, the calculation becomes extremely difficult due to

huge cancellations between topological sectors when topological sectors with |Q| � π/|θ|
make significant contributions to the partition function, which occurs either for |θ| ∼ π

or for smaller |θ| with sufficiently large volume.

1.1.1 2D U(1) lattice gauge theory with a θ term

In chapter 3, we apply the CLM to the 2D U(1) lattice gauge theory with a θ term on

the torus [37]. The model can be solved analytically with finite lattice spacing and finite

volume on an arbitrary manifold [38, 39, 40]. Therefore this model is a useful testing

ground for new methods [38, 41, 42, 43, 44] aiming at solving the sign problem. By using

the reweighting method [42], for instance, one can only reach θ ∼ 2.2 with a 16 × 16

lattice, and in particular, it seems almost impossible to approach θ = π by this method.

Note also that the region of θ that can be explored by this method shrinks to zero as one

increases the lattice size.

We find that a naive implementation of the CLM fails. The reason for this is that the

configurations that appear when the topology change occurs during the Langevin process

necessarily result in a large drift term. Due to this fact, the criterion [6] for the validity
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of the method based on the histogram of the drift term cannot be satisfied. If one tries to

suppress the appearance of the problematic configurations by approaching the continuum

limit, the criterion can be satisfied, but the topology change does not occur during the

Langevin process, hence the ergodicity is lost.

In order to cure this problem, we introduce a puncture on the torus, which makes the

base manifold noncompact. We have obtained exact results for this punctured model as

well. Even in the continuum limit, the topological charge is no longer restricted to integer

values and the 2π periodicity in θ does not hold. However, if we take the infinite volume

limit with |θ| < π, one cannot distinguish the model from the original non-punctured

model as far as the observables that make sense in that limit are concerned. Note that in

that limit, the topological charge can take arbitrarily large values and therefore it does

not really matter whether it is an integer or not.

On the other hand, the situation of the complex Langevin simulation changes drasti-

cally for the punctured model. The topology change occurs freely and the appearance of

the problematic configurations can be suppressed by simply approaching the continuum

limit. Thus the criterion for the validity of the CLM is met without losing the ergodicity,

and we are able to reproduce the exact results for the punctured model.

The most striking aspect of our results is that the CLM works even if the link variables

close to the puncture become very far from being unitary. This can happen because the

direct effect of the θ term on the complex Langevin dynamics is actually concentrated

on these link variables. While the link variables are allowed to be non-unitary in the

CLM in general in order to include the effects of the complex action, all the previous

work suggested that the condition for the validity cannot be satisfied unless the non-

unitarity is sufficiently suppressed. Precisely for this reason, the gauge cooling [45, 5, 6]

was invented as a crucial technique in applying the CLM to gauge theories. In fact, we

also use the gauge cooling in our simulation, but the link variables close to the puncture

nevertheless become far from being unitary when θ or the physical volume gets large.

Yet the criterion for the drift term is not violated and the exact results are perfectly

reproduced.

1.1.2 4D SU(2) lattice gauge theory with a θ term

In chapter 4, we study the 4D SU(2) gauge theory with a θ term. In pure SU(2) gauge

theory, there is a mixed ’t Hooft anomaly between CP and the center symmetry at θ = π.

Due to the ’t Hooft anomaly matching condition, there are some constraints on the phase

structure. Therefore, some possible phase diagrams are expected depending on the nature

of the vacuum at θ = π [28].

Assuming that the theory is in the confined phase at the low temperature, the condition

indicates that the CP symmetry should be spontaneously broken in the confined phase

because the center symmetry is preserved. Therefore the following relation should be
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satisfied

Tdec(θ = π) ≤ TCP, (1.1.2)

where Tdec(θ = π) is the critical temperature for the confinement-deconfinement phase

transition at θ = π.

The holographic Yang-Mills model with N � 1 supports Tdec(θ = π) = TCP scenario

[33]. On the other hand, softly-broken N = 1 supersymmetric SU(2) Yang-Mills theory

supports Tdec(θ = π) < TCP scenario [46]. Therefore, our aim is to determine the phase

diagram by the first principle calculation. Since there is the sign problem, we apply the

CLM to the 4D SU(2) lattice gauge theory with a θ term.

First, we naively apply the CLM to the theory, and we find that, unlike the case of the

2D U(1) model, there is a region where the simulations are free from both the topology

freezing problem and the wrong convergence problem for |θ| < 2π. However, we cannot

see the 2π periodicity in this region due to the large UV fluctuations. Since we cannot

use a cooling procedure such as the gradient flow in the CLM, we need to decrease the

lattice spacing to see the 2π periodicity. We find that, in the fine lattice case, the topology

freezing problem also occurs in the 4D SU(2) case.

It is known that the open boundary conditions alleviate the topology freezing. There-

fore, we impose the boundary conditions and find that the open boundaries for all spatial

directions alleviate the problem sufficiently. The criterion is satisfied for |θ| < 2π also in

this case. However, we find that the finite volume effects occur as a drawback of the open

boundary condition. We will discuss a possible way to investigate the phase diagram.

1.2 The Lorentzian type IIB matrix model

Superstring theory is one of the promising candidates for quantum gravity. The theory is

defined on 10d instead of 4d space-time due to the consistency. One of the most amazing

things for the theory is that all of the four fundamental interactions are treated in one

quantum theory. However, there are still many open problems that must be answered.

One of the problems in superstring theory is the relation between the 4d universe and

the 10d space-time. Compactification is a procedure to obtain the 4d space-time from

the 10d space-time. However, there is an enormous number of perturbative vacua. This

circumstance is called the string landscape. It is difficult to determine the vacuum which

actually describes our universe.

The type IIB matrix model was proposed as a non-perturbative formulation of su-

perstring theory [47]. The action of the model is formally obtained by the dimensional

reduction [48] of the action for 10d N = 1 SYM theory to 0d [49]. Therefore, in this

model, the space-time does not exist a priori, and it emerges from dynamical degrees

of the matrices. There is evidence that the model is considered as one of the promis-

ing candidates for the non-perturbative formulation. One reason is that this model can
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be interpreted as the matrix regularization of the type IIB matrix model in the Schild

gauge [50]. Another reason is that this model describes the well known interaction be-

tween D-branes. In addition, this model reproduces the light-cone string filed theory [51]

in the large N limit [52]. Therefore, this model has the potential to clarify a possible

non-perturbative mechanism for dynamical compactification in superstring theory.

The Euclidean version of the theory was investigated, and the SSB of SO(10) symmetry

was suggested by some approaches [53, 54, 55, 56, 57, 58, 59]. However, latest calculation

based on the CLM suggested that the SO(10) symmetry spontaneously breaks to SO(3)

instead of SO(4).

These results provided a strong motivation to study the Lorentzian type IIB matrix

model. In the previous works, the Monte Carlo simulation of this model was performed,

and interesting results are obtained. At some point in time, the SO(9) symmetry sponta-

neously breaks to SO(3) [60]. After the SSB, the 3d space expands exponentially in early

time [61]. And the expansion law changes from exponential to power-law as time proceeds

[62]. These results are interesting also from the viewpoint of cosmology. However, the

structure of the space has not been investigated in detail yet.

In chapter 5, we study the space-time structure in detail [63]. In order to study the

space-time structure, we investigate how the space spreads in the radial direction. We

find that the space is essentially described by the Pauli matrices. Namely, the space

is actually more like a fuzzy sphere. We call this structure the Pauli matrix structure.

We also observed the situation remains in the late time or in the continuum limit. This

structure is different from the space-time we observe. We consider that the cause of the

problem is an approximation that was used to avoid the sign problem. The approximation

corresponds to replacing eiS by eβS (β is a real positive value) in the partition function.

It is expected that, when the complex-valued weight is appropriately treated, the smooth

structure dynamically appears without losing the (3+1)d expanding behavior.

In chapter 6, we use the CLM to overcome the sign problem instead of the approxi-

mation which was used so far. We generalize the model by introducing two parameters

that correspond to the Wick rotation on the world sheet and that in the target space.

This generalized model interpolates among the Lorentzian case, the Euclidean case, and

a model with eβSb . We applied the CLM to the generalized model, and find that a new

phase appears at the Lorentzian case. In this phase, continuous space appears, however,

there is no clear expansion and the SSB either yet in this preliminary study. We also find

that the new phase is smoothly connected to a phase that appears in the Euclidean model.

We also discuss, the possible scenario for the emergence of expanding (3+1)d space-time.
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Chapter 2

Sign problem

First of all, we consider the case of a real-valued action S(x) ∈ R where x is a set of real

variables x = (x1, x2, ..., xN) ∈ RN . The partition function is given by

Z =

∫
dxe−S(x). (2.0.1)

In usual Monte Carlo case, we consider the Boltzmann weight e−S(x) as a probability and

generate configurations under the probability:

P (x) ∝ e−S(x). (2.0.2)

The expectation values of a observable O(x) is calculated by the ensemble average as

〈O(x)〉 =
1

Nconfig

Nconfig∑
n=1

On(x), (2.0.3)

where Nconfig is the number of configurations.

However, in a complex-valued action S(x) ∈ C case, since the Boltzmann weight

becomes complex, it is impossible to interpret the weight as the probability. This problem

is called “sign problem”. In principle, we can calculate the expectation value of the

observable O(x) by using the reweighting method,

〈O(x)〉 =
〈O(x)e−i Im(S(x))〉e−Re(S(x))

〈e−i Im(S(x))〉e−Re(S(x))

(2.0.4)

where the brackets of the right-hand side are expectation value evaluated by using config-

urations which are obtained under the weight e−Re(S(x)). This method is useful when the

phase of the weight does not highly oscillate. However, when the phase highly oscillates

the denominator and the numerator become very small, and we need to obtain the finite

value from two very small values. In order to do that, we need a very large number of

configurations. Thus the reweighting method is not useful in that situation.
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2.1 Review of the complex Langevin method

The real Langevin method was introduced by Parisi and Wu in [64] as a stochastic quan-

tization approach to quantum field theories. This method widely used in particle physics.

However, in general, we cannot use this method for systems with the sign problem.

In 1983, Klauder and Parisi proposed the complex Langevin method independently as a

method to overcome the sign problem [1, 2]. After the proposals, the method applied many

systems, and a problem that the method sometimes gives wrong results was reported. This

problem is called as the wrong convergence problem. The mechanism of this problem was

not understood completely. Due to this situation, results obtained by this method was

not reliable and the application of the method was limited.

Recently, the conditions for the correct convergence was studied in [3], and a practical

criterion for correct convergence was proposed in [6]. After the breakthrough, the method

applied many systems.

2.1.1 Real Langevin method

First, we review the real Langevin method. Therefore, we consider a system with a real-

valued action S(x) ∈ R. In this method, the configuration is generated by the Langevin

equation as

xi(t+ ∆t) = xi(t)−∆t
∂S(x)

∂x
+
√

(∆t)ηi(t), (2.1.1)

where t is a fictitious time so-called the Langevin time, ∆t is the Langevin step size, and

ηi(t) is the Gaussian noise. The noise satisfies

〈ηi(s)ηj(t)〉η = 2δi,jδs,t, (2.1.2)

where the expectation value 〈· · ·〉η is defined by

〈· · ·〉η =

∫ ∏
k dη(tk) · · · e−

1
4

∆t
∑
k η

2(tk)∫ ∏
k dη(tk)e

− 1
4

∆t
∑
k η

2(tk)
. (2.1.3)

Here we consider an arbitrary f(x) and its expectation value

〈
f
(
x(t)

)〉
η

=

∫
dxf(x)P (x; t), (2.1.4)

where P (x; t) is the probability distribution of x(t) defined by

P (x; t) =

〈∏
i

δ

(
xi − xi(t)

)〉
η

. (2.1.5)
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If we consider the evolution of f(x), one obtains

〈
f
(
x(t+ ∆t)

)〉
η
−
〈
f
(
x(t)

)〉
η

=

〈
∂f

∂xi

(
−∆t

∂S

∂xi

)
+

1

2

∂2f

∂xi∂xj
(
√

∆t)2ηi(t)ηj(t)

〉
η

+O
(
∆t2
)

= ∆t

∫
dx

(
− ∂f

∂xk

∂S

∂xk
+
∂2f

∂x2
k

)
P (x; t) +O

(
∆t2
)

= ∆t

∫
dxf(x)

∂

∂xk

(
∂S

∂xk
+

∂

∂xk

)
P (x; t) +O

(
∆t2
)
.

(2.1.6)

Using (2.1.4), this quantity should be rewritten as

〈
f
(
x(t+ ∆t)

)〉
η
−
〈
f
(
x(t)

)〉
η

=

∫
dxf(x)

(
P (x; t+ ∆t)− P (x; t)

)
. (2.1.7)

Comparing (2.1.6) and (2.1.7), one obtains

P (x; t+ ∆t)− P (x; t) = ∆t
∂

∂xk

(
∂S

∂xk
+

∂

∂xk

)
P (x; t) +O

(
∆t2
)
. (2.1.8)

(2.1.8) is the discretized version of the Fokker-Planck equation 1. After the thermalization,

the probability distribution is independent from t, therefore, the distribution is obtained

by solving

∆t
∂

∂xk

(
∂S

∂xk
+

∂

∂xk

)
P (x) +O

(
∆t2
)

= 0, (2.1.9)

where P (x) is the time independent probability distribution. The solution is

P (x) = e−S(x)+O(∆t). (2.1.10)

Therefore, in the Langevin process, the configurations are generated under this probabil-

ity.

2.1.2 Complex Langevin method

Next we review the complex Langevin method. In the CLM, a real variable xi is promoted

to a complex variable zi ∈ C:

xi → zi = xi + iyi (2.1.11)

This variable is updated by the complex Langevin equation:

zi(t+ ∆t) = zi(t)−∆t
∂S(z)

∂zi
+
√

(∆t)ηi(t), (2.1.12)

1The Fokker-Plank equation

∂P (x; t)

∂t
=

∂

∂xk

(
∂S

∂xk
+

∂

∂xk

)
P (x; t)

is obtained by taking ∆t→ 0 limit of (2.1.8).

14



where t is a fictitious time so-called the Langevin time, ∆t is the Langevin step size, and

ηi(t) is the Gaussian noise. ηi(t) is construct from two independent real-valued Gaussian

noise as

ηi(t) =
√
cRη

(R)
i (t) + i

√
cIη

(I)
i (t), (2.1.13)

where ηi,R(t) and ηi,I(t) satisfy

〈η(R)
i (s)η

(R)
j (t)〉

η
= 2δi,jδs,t ,

〈η(I)
i (s)η

(I)
j (t)〉

η
= 2δi,jδs,t ,

〈η(R)
i (s)η

(I)
j (t)〉

η
= 0 ,

(2.1.14)

where the expectation value 〈· · ·〉η is defined by

〈· · ·〉η =

∫ ∏
k dη

(R)(tk)dη
(I)(tk) · · · e−

1
4

∆t
∑
k{η(R)(tk)2+η(I)(tk)2}∫ ∏

k dη
(R)(tk)dη(I)(tk)e

− 1
4

∆t
∑
k{η(R)(tk)2+η(I)(tk)2}

. (2.1.15)

The coefficients
√
cR and

√
cI in (2.1.13) should be satisfy cI ≥ 0 and cR − cI = 1.

The time evolution of the expectation value of a holomorphic observable O(x+ iy) is

given by 〈
O
(
x(t+ ∆t) + iy(t+ ∆t)

)〉
η

=

∫
dxdyO∆t(x+ iy)P (x, y; t), (2.1.16)

where O∆t(x+ iy) is defined as

O∆t(x+ iy) =
1

2π

∫
dη(R)dη(I)e−

1
4
{(η(R))2+(η(I))2}O(z + ∆tv(z) +

√
∆tη), (2.1.17)

where v(z) is the drift term defined by

v(z) =
∂S(z)

∂z
. (2.1.18)

Note that we assume v(z) is a holomorphic quantity. We expand (2.1.17) with respect to

∆t and we perform the integration for η, then we obtain

O∆t(z) =
∞∑
n=0

1

n!
(∆t)n : Ln : O(z), (2.1.19)

where L is defined by

L =

(
Re vi(z) + cR

∂

∂xi

)
∂

∂xi
+

(
Im vi(z) + cI

∂

∂yi

)
∂

∂yi
, (2.1.20)

and : · · · : means that the operators are ordered in such a way that derivative operators

appear on the right. Since the observable is holomorphic quantity, we obtain

LO(z) =

(
vi(z) + (cR − cI)

∂

∂zi

)
∂O
∂zi

= L̃O(z)

(2.1.21)
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Using (2.1.19) and (2.1.21) in (2.1.16), we obtain

〈
O
(
x(t+ ∆t) + iy(t+ ∆t)

)〉
η

=
∞∑
n 0

1

n!
(∆t)n

∫
dxdy

(
: L̃n : O(z)

)
P (x, y; t). (2.1.22)

If (2.1.22) is valid, we can neglect higher order terms for sufficiently small ∆t as〈
O
(
x(t+ ∆t) + iy(t+ ∆t)

)〉
η

=
〈
O
(
x(t) + iy(t)

)〉
η

+ ∆t

∫
dxdy

(
L̃O(z)

)
P (x, y; t) +O

(
(∆t)2

)
.

(2.1.23)

We consider the condition for the validity of the expansion (2.1.22) to have a finite

convergence radius. Here we consider the magnitude of the drift term defined as

u(z) = max
i
|vi(z)| (2.1.24)

which has the largest contribution to the radius. The integral in (2.1.22) involves∫
dxdyu(z)nP (x, y; t) =

∫ ∞
0

duunp(u, t), (2.1.25)

where the probability distribution of the magnitude of the drift term is defined as

p(u, t) =

∫
dxdyδ(u(z)− u)P (x, y; t). (2.1.26)

If the p(u, t) is suppressed faster than exponential, the expansion (2.1.22) has a finite

convergence radius. Therefore, it is needed for the correct convergence that p(u, t) falls

off faster than exponential in the CLM.

It is better to set
√
cI = 0, because the fluctuation for the imaginary direction some-

times causes a large excursion from real-value, that is one of the reasons for the wrong

convergence [3, 4, 65]. Therefore, the rest of this thesis, we set cR = 1 and cI = 0.

2.2 Some techniques in the complex Langevin method

There are two main reasons for the failure of the CLM. One is that when the variables

have a large excursion in the imaginary direction, the CLM sometimes fails. This problem

is called the excursion problem. The other is that when the drift term has singularities

if the complexifyed variables approach the singularities frequently the CLM fails. This

problem is called the singular drift problem.

There are some techniques to avoid these problems. Here we explain the adaptive step

size algorithm, the gauge cooling technique, and the deformation technique.
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2.2.1 Adaptive step size

The large drift term is a trigger for that the variables to go away from the real value. If

the large drift terms appear frequently the CLM fails. Choosing a small Langevin step

size is one of the ways to avoid the excursion problem, however, this small Langevin step

makes the simulation inefficiency. The adaptive step size algorithm [66] is a method to

avoid the excursion problem efficiently.

In the adaptive step size algorithm, the step size is decreased when the large drift term

appears. Therefore, we choose the step size as

∆t =

{
∆t0 for u < v0 ,
v0

u
∆t0 otherwise ,

(2.2.1)

where ∆t0 is the default stepsize, u is the magnitude of drift term, and v0 is the threshold

for the magnitude of drift term.

2.2.2 Gauge cooling

Instead of the real variable x, here we consider a dynamical variable U which belongs to

a gauge group G, namely U ∈ G. In the CLM, we “complexify” the variable U ∈ G to

U ∈ H because the drift term belongs to H when the system has the sign problem. For

example, if G is SU(3) then H becomes SL(3,C). When U has a large excursion from the

original group G large drift term may appear frequently, as the result, the CLM fails.

The idea of gauge cooling [45] is to reduce the deviation of the complexifyed variables

from the original gauge group as much as possible by making gauge transformations

corresponding to the complexified group H after each Langevin step. The details of the

technique are shown in 3.2.2 and 4.2.1.

It is proofed that this procedure does not affect the holomorphic observables. More-

over, this procedure can be added without affecting the argument for justifying the CLM

as demonstrated explicitly in Refs. [5, 6]. Recently, the mechanism of the gauge cooling

for stabilizing the complex Langevin simulation has been investigated [67].

2.2.3 Deformation

When the theory has fermion Tr logM is included in the effective action which is obtained

after the path integration for fermionic variables. In the Langevin simulation, we need to

evaluate the drift term for Tr logM which is Tr (M−1 ∂M
∂x

) where x is a dynamical variable.

Therefore, if the Dirac operator M has near-zero eigenvalues the drift term becomes large.

If such drift terms appear frequently the CLM fails, that problem is called the singular

drift problem.

In order to avoid the near-zero eigenvalues, we introduce the additional term like a

fictitious mass term to the action of the system. This additional term is called the defor-
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mation term. Since this term modifies the theory, extrapolation for vanishing deformation

term. The details of the algorithm are shown in 6.3.2.
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Chapter 3

2D U(1) lattice gauge theory with a

θ term

3.1 Lattice formulation of the 2D U(1) gauge theory

with a θ term

In this section, we review pure 2D U(1) gauge theory with a θ term and discuss how to

define it on a lattice.

In the continuum 2D U(1) gauge theory on a Euclidean space, the action for the gauge

field Aµ(x) (µ = 1, 2) is given by

Sg =
1

4g2

∫
d2x (Fµν)

2 , (3.1.1)

where g is the gauge coupling constant and Fµν is the field strength defined as

Fµν = ∂µAν(x)− ∂νAµ(x) . (3.1.2)

We add a θ term

Sθ = −iθQ (3.1.3)

in the action, where Q is the topological charge defined by

Q =
1

4π

∫
d2x εµνFµν , (3.1.4)

which takes integer values if the space is compact.

We put this theory on a 2D torus, which is discretized into an L× L periodic lattice

with the lattice spacing a. On the lattice, we define the link variables Un,µ ∈ U(1), where

n = (n1, n2) labels the lattice site as xµ = anµ. We also define the plaquette

Pn = Un,1̂Un+1̂,2U
−1

n+2̂,1
U−1
n,2 , (3.1.5)
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where µ̂ is a unit vector in the µ direction. This plaquette is invariant under the gauge

transformation:

Un,µ̂ 7→ gn Un,µ̂ g
−1
n+µ̂. (3.1.6)

Here we write U−1
n,µ instead of U †n,µ, which will be important later in applying the CLM,

where we complexify the dynamical variables respecting holomorphicity.

The lattice counterpart of the field strength (3.1.2) can be defined as

Fn,12 =
1

ia2
logPn , (3.1.7)

where we take the principal value for the complex log; namely log z = log |z|+ i arg z with

−π < arg z ≤ π. Since the plaquette can then be written in terms of Fn,µν as

Pn = eia
2Fn,12 , (3.1.8)

the lattice counterpart of the gauge action (3.1.1) can be defined as

Sg = −β
2

∑
n

(
Pn + P−1

n

)
= −β

∑
n

cos
(
a2Fn,12

)
, (3.1.9)

which approaches

Sg '
1

4g2

∑
n

a2(Fn,µν)
2 , (3.1.10)

in the continuum limit up to an irrelevant constant with the identification

β =
1

(ga)2
. (3.1.11)

In the present 2D U(1) theory, the topological charge can be defined as

Qlog =
1

4π

∑
n

a2εµνFn,µν

=
1

2π

∑
n

a2Fn,12

= − i

2π

∑
n

logPn ,

(3.1.12)

which gives an integer value even at finite a. This can be proved easily by noting that∏
n Pn = 1 since each link variable appears twice in this product with opposite directions.

We call this definition (3.1.12) the “log definition”. As an alternative definition, we

consider

Qsin = − i

4π

∑
n

(
Pn − P−1

n

)
=

1

2π

∑
n

sin
(
a2Fn,12

)
, (3.1.13)

which approaches (3.1.4) in the continuum limit recalling (3.1.8). Note, however, that the

topological charge defined on the lattice in this way can take non-integer values in general
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before taking the continuum limit. We call this definition (3.1.13) the “sine definition”.

Thus the lattice theory is given by

S = Sg + Sθ , (3.1.14)

where Sg is given by (3.1.9) and Sθ is given by (3.1.3) with Q defined either by (3.1.12)

or by (3.1.13).

Since this theory is superrenormalizable, we can take the continuum limit a→ 0 with

fixed g, which is set to unity throughout this work without loss of generality. In this unit,

the physical volume of the 2D torus is given by

Vphys = (La)2 =
L2

β
, (3.1.15)

where we have used (3.1.11).

3.2 Applying the CLM to the 2D U(1) gauge theory

3.2.1 The complex Langevin equation for the 2D U(1)

The first step of the CLM is to complexify the dynamical variables. In the present case

of U(1) gauge theory, we extend the link variables Un,µ ∈ U(1) to Un,µ ∈ C \ {0}, which

corresponds to extending the gauge field Aµ(x) ∈ R to Aµ(x) ∈ C in the continuum

theory. Then we consider a fictitious time evolution Un,µ(t) of the link variables governed

by the complex Langevin equation

Un,µ(t+ ∆t) = Un,µ(t) exp
[
i
{
−∆tDn,µS +

√
∆t ηn,µ(t)

}]
, (3.2.1)

where ηn,µ(t) is a real Gaussian noise normalized by 〈ηn,µ(s)ηk,ν(t)〉 = 2δn,kδµ,νδs,t. The

term Dn,µS is the drift term defined by

Dn,µS = lim
ε→0

S(eiεUn,µ)− S(Un,µ)

ε
, (3.2.2)

first for the unitary link variables Un,µ(t), and then it is defined for the complexified link

variables Un,µ(t) by analytic continuation in order to respect holomorphicity. Using the

action (3.1.14), we obtain Dn,µS = Dn,µSg +Dn,µSθ, where the first term is given as

Dn,1Sg =− iβ
2

(Pn − P−1
n − Pn−2̂ + P−1

n−2̂
) ,

Dn,2Sg =− iβ
2

(−Pn + P−1
n + Pn−1̂ − P−1

n−1̂
) . (3.2.3)

The second term Dn,µSθ depends on the definition of the topological charge. If one uses

the log definition (3.1.12), Eq. (3.2.2) for the θ term becomes a δ-function, which vanishes

identically except for configurations with Pn = −1 for some n, reflecting the topological
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nature of the definition. Such configurations are precisely the ones that appear when the

topology change occurs within the configuration space of Un,µ. It is not straightforward

to extend such a term to a holomorphic function of Un,µ.

On the other hand, if one uses the sine definition (3.1.13), the drift term becomes

Dn,1Sθ =− i θ
4π

(Pn + P−1
n − Pn−2̂ − P−1

n−2̂
) ,

Dn,2Sθ =− i θ
4π

(−Pn − P−1
n + Pn−1̂ + P−1

n−1̂
) , (3.2.4)

which may be viewed as an approximation of the δ-function mentioned above. Moreover,

it can be readily extended to a holomorphic function of Un,µ. For this reason, we use the

sine definition for the non-punctured model.

The criterion [6] for the validity of the CLM states that the histogram of the drift

term should fall off exponentially or faster. There are two cases in which this criterion

cannot be met. The first case occurs when the configuration comes close to the poles

of the drift terms (3.2.3), (3.2.4), which correspond to configurations with Pn = 0 for

some n. If this happens during the Langevin process, there is a possibility of violating

the criterion. This problem is called the singular-drift problem [68, 69], which was found

first in simple models [70, 71]. In the present model, the same problem is caused also by

approaching configurations with |Pn| = ∞ for some n, which are related to the poles by

the parity transformation.

The second case occurs when the dynamical variables make large excursions in the

imaginary directions [3]. This problem is called the excursion problem. In the present

model, this corresponds to the situation in which the link variables have absolute values

|Un,µ| far from unity.

Both the singular-drift problem and the excursion problem can occur because the

link variables Un,µ are not restricted to be unitary in the CLM. In order to avoid these

problems, it is important to perform the gauge cooling, which we explain in the next

section.

3.2.2 Gauge cooling for the 2D U(1)

The idea of gauge cooling [45] is to reduce the non-unitarity of link variables as much as

possible by making gauge transformations corresponding to the complexified Lie group

after each step (3.2.1) of the Langevin process.

The deviation of the link variables from U(1) can be defined by the unitarity norm

N =
1

2L2

∑
n,µ

{
U∗n,µUn,µ + (U∗n,µUn,µ)−1 − 2

}
. (3.2.5)

The gauge cooling reduces this quantity by a complexified gauge transformation, which

is determined as follows.
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First we consider an infinitesimal gauge transformation

δUn,µ = (εn − εn+µ̂)Un,µ , (3.2.6)

where εn ∈ R. The change of the unitarity norm due to the transformation is given by

δN =
1

2L2

∑
n,µ

{
2(εn − εn+µ̂)U∗n,µUn,µ − 2(εn − εn+µ̂)(U∗n,µUn,µ)−1

}
=

1

2L2

∑
n

2εnGn , (3.2.7)

where Gn is defined as

Gn =
∑
µ

{
U∗n,µUn,µ − U∗n−µ̂,µUn−µ̂,µ − (U∗n,µUn,µ)−1 + (U∗n−µ̂,µUn−µ̂,µ)−1

}
. (3.2.8)

Therefore, we find that the unitarity norm is reduced most efficiently by choosing εn ∝
−Gn.

Using this result, we consider a finite gauge transformation

Un,µ 7→ gn Un,µ g−1
n+µ̂ ; gn = e−αGn , (3.2.9)

which makes the unitarity norm

N (α) =
1

2L2

∑
n,µ

{
U∗n,µUn,µe−2α(Gn−Gn+µ̂) + (U∗n,µUn,µ)−1e2α(Gn−Gn+µ̂) − 2

}
, (3.2.10)

depending on α in (3.2.9). We search for an optimal α that minimizes (3.2.10). Note here

that it is typically a small number since the gauge cooling is performed after each step

of the Langevin process. We therefore expand Eq. (3.2.10) with respect to α up to the

second order and obtain the value of α that minimizes it as

α =
1

2

∑
nG

2
n∑

n,µ[(Gn −Gn+µ̂)2{U∗n,µUn,µ + (U∗n,µUn,µ)−1}] . (3.2.11)

We repeat this procedure until the unitarity norm changes by a fraction less than 10−5.

3.2.3 Adaptive stepsize

When we solve the complex Langevin equation in its discretized version (3.2.1), it occa-

sionally happens that the drift term becomes extremely large, in particular during the

thermalization process. This causes a large discretization error, which either makes the

thermalization slow or destabilizes the simulation. We can avoid this problem by using a

small stepsize ∆t, but the computational cost for a fixed Langevin time increases propor-

tionally to (∆t)−1 and the calculation becomes easily unfeasible. The adaptive stepsize

[66] is a useful technique, which amounts to reducing the stepsize only when the drift

term becomes large.
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Figure 3.1: The results obtained by the CLM for the non-punctured model using the sine

definition Qsin of the topological charge. (Left) The histogram of the magnitude u of the

drift term defined by (3.2.12) is shown for (β, L) = (3, 10), (12, 20) with θ = π. (Right)

The histogram of ReQsin is shown for (β, L) = (12, 20) with θ = π. The exact result

obtained for (β, L) = (12, 20) with θ = 0 is shown by the solid line for comparison.

In our simulation, we measure the magnitude of the drift term defined as

u = max
n,µ
|Dn,µS| (3.2.12)

at each step, and choose the Langevin stepsize ∆t in (3.2.1) as

∆t =

{
∆t0 for u < v0 ,
v0

u
∆t0 otherwise ,

(3.2.13)

where ∆t0 is the default stepsize, and v0 is the threshold for the magnitude of drift term.

In the present work, the default stepsize is set to ∆t0 = 10−5, and the threshold is set

to v0 = 2β, considering a bound u ≤ 2β for θ = 0, where the CLM reduces to the real

Langevin method. The measurement of the observables should be made with the same

interval in terms of the Langevin time but not in terms of the number of steps.

3.2.4 Results with the naive implementation

In this section, we present our results obtained by the CLM, which is implemented naively

using the non-punctured model explained above as opposed to the punctured model, which

we use later. As for the definition of the topological charge, we adopt the sine definition

(3.1.13) for the reason given in Section 3.2.1.

We have performed simulations at various θ for (β, L) = (3, 10), (12, 20) corresponding

to a fixed physical volume Vphys ≡ L2/β = 102/3. Below we show our results only for

θ = π, where the sign problem becomes severest, but the situation is the same for all

values of θ.

24



In Fig. 3.1(Left), we show the histogram of the magnitude u of the drift term. The

distribution falls off rapidly for (β, L) = (12, 20), but it decays slowly with a power law for

(β, L) = (3, 10). Thus the criterion for correct convergence is satisfied for (β, L) = (12, 20)

but not for (β, L) = (3, 10) due to the large drifts.

In Fig. 3.1(Right), we plot the histogram of ReQsin obtained by the CLM for (β, L) =

(12, 20) with θ = π, which has a sharp peak at ReQsin ∼ 0. In the same figure, we also

plot the exact result for (β, L) = (12, 20) with θ = 0 for comparison, which exhibits a

few sharp peaks at integer values within the range −2 . ReQsin . 2. From these two

plots, we conclude that the transitions between different topological sectors are highly

suppressed in the simulation, which causes a problem with the ergodicity.

This occurs also at θ = 0 for large β, and it is called the “topology freezing problem” in

the literature. In fact, the results one obtains by simulations suffering from this problem

correspond to the expectation values restricted to the topological sector specified by the

initial configuration. This is true for both θ = 0 and θ 6= 0. In this case, however, the

effect of the θ term cancels between the numerator and the denominator of the expectation

values, and the calculation essentially reduces to that of the real Langevin method at

θ = 0.

For (β, L) = (3, 10) with θ = π, on the other hand, the histogram of ReQsin obtained

by the CLM has broad peaks that overlap with each other, which looks similar to the

exact result for (β, L) = (3, 10) with θ = 0. This implies that the topology freezing

problem does not occur for (β, L) = (3, 10). See also Fig. 3.3.

Below we define the observables we investigate. First, we define the average plaquette

by

w =
1

V

∂

∂β
logZ . (3.2.14)

Hereafter, V denotes the number of plaquettes in the action, which is V = L2 for the

non-punctured model and V = L2− 1 for the punctured model we define in Section 3.3.1.

The topological charge density is defined by

1

V
〈Q〉 = −i 1

V

∂

∂θ
logZ , (3.2.15)

which is zero at θ = 0 and purely imaginary for θ 6= 0. Finally, the topological suscepti-

bility is defined by

χ =
1

V

(
〈Q2〉 − 〈Q〉2

)
= − 1

V

∂2

∂θ2
logZ , (3.2.16)

which is real for all θ. In fact, the topological susceptibility χ is related to the topological

charge density (3.2.15) through

χ = −i 1

V

∂

∂θ
〈Q〉 . (3.2.17)

Note, however, that this relation can be violated if the CLM fails to calculate the expec-

tation values correctly.
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Figure 3.2: The results for various observables obtained by the CLM for the non-punctured

model with the sine definitionQsin. The average plaquette (Top), the imaginary part of the

topological charge density (Middle), the topological susceptibility (Bottom) are plotted

against θ for (β, L) = (3, 10) (Left) and (12, 20) (Right). The exact results for the same

(β, L) are shown by the dashed lines for comparison.
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In Fig. 3.2, we show the results obtained by the CLM for the non-punctured model.

We also plot the exact results for comparison, which are derived in Appendix A.4. In the

left column, we present our results for (β, L) = (3, 10), which suffer from the incorrect

convergence, whereas in the right column, we present our results for (β, L) = (12, 20),

which suffer from the topology freezing problem. In either case, our results do not repro-

duce the exact results as anticipated. Note that our results at θ = 0 agree with the exact

results for (β, L) = (3, 10) but not for (β, L) = (12, 20). This is because the topology

freezing problem occurs for large β even at θ = 0, where the sign problem is absent.

Thus we find that the CLM with the naive implementation fails for both (β, L) =

(3, 10) and (β, L) = (12, 20) for different reasons. For (β, L) = (3, 10), the topology

change occurs but the criterion for correct convergence is not satisfied due to the large

drifts. For (β, L) = (12, 20), the criterion for correct convergence is satisfied, but the

ergodicity is violated due to the topology freezing problem. We have searched for a

parameter region in which neither of the problems occur, but we could not find one. In

fact, we will see in the next section that these problems are related to each other at least

in the present model.

3.2.5 The appearance of large drifts and the topology change

In this section, we provide more in-depth discussions on the relationship between the

appearance of large drifts and the topology change in the non-punctured model. Let us

first recall that the drift terms are given by (3.2.3) and (3.2.4), which depend on Pn.

When β is large, the gauge action Sg favors configurations with Pn ∼ 1 for all n, which

implies that the drift terms are small.

On the other hand, the notion of topological sectors can be defined by the real part of

(3.1.12), which takes integer values, even for complexified configurations that are gener-

ated in the CLM. In order for a transition between different topological sectors to occur,

one of the plaquettes has to cross the branch cut; namely the phase of the plaquette has

to jump from −π to π or vice versa. When this occurs, large drift terms can appear as

can be seen from Fig. 3.3, where we plot the histories of ReQlog and the magnitude of

the drift term (3.2.12). We observe clear correlation between the large drift term and the

topology change. We have also confirmed that the large drift term appears for the link

variables composing the plaquette that crosses the branch cut.

In order to understand this observation better, we focus on a particular link variable

Uk,1, and consider the corresponding drift term, which depends on the plaquettes Pk and

Pk−2̂ sharing the link. For simplicity, we set Pk−2̂ = 1 and consider the drift term v as a

function of Pk

v = β sinφ− i θ
2π

(cosφ− 1) , (3.2.18)

where we have defined a complex parameter φ by φ = −i logPk. A large drift appears
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Figure 3.3: The results obtained by the CLM for the non-punctured model with the sine

definition Qsin for (β, L) = (3, 10) with θ = π. The upper plot shows the history of the

topological charge Qlog with the log definition, whereas the lower plot shows the history

of the magnitude u of the drift term in the log scale.

when |Imφ| → ∞. In Fig. 3.4(Left), we plot the drift term as a flow diagram for β = θ = 1.

Considering that the contribution of the drift term v to the change of φ at a Langevin

step is given by ∆φ = −v∆t, we actually plot (−v) in the complex φ plane.

In what follows we assume that β > θ/2π. Then we find from Eq. (3.2.18) that

there are two fixed points corresponding to v = 0. One is φ = 0 and the other is

φ = i log[(θ/2π+β)/(θ/2π−β)], which is close to ±π for β � θ/2π. As one can see from

Fig. 3.4(Left), the fixed point φ = 0 is attractive, which confirms that Pk tends to become

unity when β is large. The other fixed point φ ∼ ±π is repulsive, and the magnitude |v|
grows exponentially as one flows away in the imaginary direction; See Fig.3.4(Right). As

we mentioned above, when the transition between topological sectors occurs, one of the

plaquettes crosses the branch cut, which corresponds to Reφ = ±π in the flow diagram.

When this happens, the configuration can flow in the imaginary direction, which causes

a large drift.

3.3 Introducing a puncture on the 2D torus

Since the problem we encounter in the previous section occurs due to the topological

nature of the θ term, a simple remedy would be to change the topology of the base

manifold to a noncompact one. Here we consider introducing a puncture on the 2D

torus. Once we introduce a puncture, the drift term Dn,µSθ with the log definition of

the topological charge has nonzero contributions for the link variables surrounding the

puncture, which enable us to include the effect of the θ term correctly in the CLM as
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Figure 3.4: (Left) A flow diagram representing −v defined by (3.2.18) is shown as a

function of φ for β = θ = 1. (Right) The absolute value |v(φ)| is plotted against Imφ for

Reφ = π.

we will see in Section 3.4. Therefore, for the rest of this study, we basically use the log

definition to simplify our discussions. Unlike the non-punctured model, the topological

charge is no more restricted to integer values, and it can be changed freely.

Since the puncture affects the theory only locally, its effect is expected to die out in

the infinite volume limit for |θ| < π as we demonstrate explicitly in this section using

the exact results. Thus unless we are interested in a theory with a finite volume, the

punctured model is as good as the original model, the difference simply being a different

choice of “boundary conditions”. In fact, we will see that the non-punctured model has

slow convergence to the infinite volume limit for θ ∼ π, which is not the case in the

punctured model.

3.3.1 Defining the punctured model on the lattice

There are various ways to introduce a puncture on the periodic lattice. Here we consider

removing a plaquette as a simple choice. More precisely, we define the punctured model

by removing one plaquette, let say PK , from the sum appearing in the gauge action (3.1.9)

and the topological charge (3.1.12) when we define the action (3.1.14).

As an alternative method, we have also tried introducing a slit at a particular link,

which amounts to duplicating the corresponding link variable and including each of them

in the plaquettes that share the link. The results turn out to be qualitatively the same

as the ones obtained by removing a plaquette. There are, of course, many others, but in

any case, one can obtain exact results for a finite lattice as we explain in Appendix A,

and using them, one can demonstrate explicitly that the punctured model is equivalent

to the original non-punctured model in the infinite volume limit for |θ| < π.
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3.3.2 Equivalence in the infinite volume limit

In this section, we show the equivalence of the non-punctured model and the punctured

model in the infinite volume limit. Here we use the log definition of the topological charge,

but a similar statement holds as far as the same definition is used for the two models.1

The partition function for the non-punctured model is given by (See Appendix A.2

for derivation.)

Znonpunc =
+∞∑

n=−∞

[I(n, θ, β)]V (3.3.1)

for finite V = L2, where the function I(n, θ, β) is defined by

I(n, θ, β) =
1

2π

∫ π

−π
dφ eβ cosφ+i( θ

2π
−n)φ . (3.3.2)

Let us take the infinite volume limit V → ∞, in which the sum over n in (3.3.1) is

dominated by the term that gives the largest absolute value |I(n, θ, β)|. This corresponds

to the n that minimizes | θ
2π
− n|. Thus in the infinite volume limit, the free energy is

obtained as

lim
V→∞

1

V
logZnonpunc = log I(0, θ̃, β) , (3.3.3)

where θ̃ is defined by θ̃ = θ − 2πk with the integer k chosen so that −π < θ̃ ≤ π.

On the other hand, the partition function for the punctured model is given by (See

Appendix A.3 for derivation.)

Zpunc = [I (0, θ, β)]V (3.3.4)

for finite V = L2 − 1, which implies that the free energy

1

V
logZpunc = log [I (0, θ, β)] (3.3.5)

is actually V independent. Hence all the observables that can be derived from it has

no finite size effects. Note also that this model does not have the 2π periodicity in θ.

By comparing (3.3.3) and (3.3.5), one can see that the two models are equivalent in the

infinite volume limit for |θ| < π.

The observables defined in Section 3.2.4 can be calculated for the two models us-

ing (3.3.1) and (3.3.4) by numerical integration (See Appendix A.4 for the details.). In

Fig. 3.5, we plot the average plaquette (Top) defined by (3.2.14), the imaginary part of the

topological charge density (Middle) defined by (3.2.15) and the topological susceptibility

(Bottom) defined by (3.2.16) for L = 10 (Left) and L = 20 (Right), respectively, with the

same β = 12. The results for the two models tend to agree as L increases for |θ| < π.

1In the case of the sine definition, the equivalence of the two models in the infinite volume limit holds

for |θ| < θc(β), where θc(β) ∼ π{1 + 1/(2β)} for large β.
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Figure 3.5: The exact results for various observables obtained by using the log definition

Qlog of the topological charge. The average plaquette (Top), the imaginary part of the

topological charge density (Middle), the topological susceptibility (Bottom) obtained for

the non-punctured (solid line) and punctured (dashed line) models are plotted against θ

for L = 10 (Left) and L = 20 (Right) with the same β = 12. Note that the results for the

punctured model are actually independent of L. For the non-punctured model, we also

plot the results in the infinite volume limit L→∞ with β = 12 by the dash-dotted lines

for comparison.
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We can evaluate the free energy (3.3.5) for the punctured model more explicitly for

large β, which is relevant in the continuum limit. By integrating over φ in Eq. (3.3.2) as

I(n, θ, β) ' 1√
2πβ

eβ−
1

2β ( θ
2π
−n)

2

, (3.3.6)

we get
1

V
logZpunc ' β − 1

2
log 2πβ − θ2

8π2β
. (3.3.7)

From this, we can obtain various observables for the punctured model as

w ' 1− 1

2β
+

θ2

8π2β2
, (3.3.8)

〈Q〉
V
' iθ

4π2β
, (3.3.9)

χ ' 1

4π2β
(3.3.10)

for finite V , which explains the θ dependence observed in Fig. 3.5.

From Fig. 3.5, we also find that the results for the non-punctured model have sizable

finite volume effects, in particular around θ ∼ π, which is absent in the punctured model.

While the volume independence of the punctured model may well be peculiar to the

present 2D gauge theory case, the advantage of the punctured model compared with the

non-punctured model from the viewpoint of finite volume effects may hold more generally.

3.4 Application of the CLM to the punctured model

In this section, we apply the CLM to the punctured model using the log definition Qlog of

the topological charge. Our results reproduce the exact results discussed in the previous

section as long as we are close enough to the continuum limit. We also show that the

topology freezing problem is circumvented without causing large drifts thanks to the

puncture.

3.4.1 The drift terms for the punctured model

We have discussed the drift terms in the non-punctured model in Section 3.2.1. For

the punctured model, we only have to modify the drift terms for the four link variables

surrounding the puncture; i.e., UK,1, UK+2̂,1, UK,2 and UK+1̂,2. Thus we obtain

Dn,1S =


−iβ

2
(Pn − P−1

n − Pn−2̂ + P−1

n−2̂
) for n 6= K, K + 2̂ ,

−iβ
2
(−PK−2̂ + P−1

K−2̂
) + i θ

2π
for n = K ,

−iβ
2
(PK+2̂ − P−1

K+2̂
)− i θ

2π
for n = K + 2̂ ,

(3.4.1)

Dn,2S =


−iβ

2
(−Pn + P−1

n + Pn−1̂ − P−1

n−1̂
) for n 6= K, K + 1̂ ,

−iβ
2
(PK−1̂ − P−1

K−1̂
)− i θ

2π
for n = K ,

−iβ
2
(−PK+1̂ + P−1

K+1̂
) + i θ

2π
for n = K + 1̂ ,

(3.4.2)
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Figure 3.6: The topological charge distribution for θ = 0 obtained by the CLM for the

punctured model using the log definition Qlog is plotted for (β, L) = (3, 10) (Left) and

(β, L) = (12, 20) (Right). The solid lines represent the exact results obtained by evaluating

(3.4.4) using the partition function (3.3.4).

where we have ignored the issue of δ-function discussed in Section 3.2.1. This is justified

if all the plaquettes in the action never cross the branch cut; i.e., |Im logPn| ≤ π − ε for

∀n 6= K with a strictly positive ε during the Langevin simulation. We will see that this

assumption is justified at sufficiently large β in Section 3.4.3.

Note that the drift term from the θ term appears only for the link variables surrounding

the puncture, and it is actually a constant independent of the configuration. While these

properties are peculiar to the log definition Qlog, similar properties hold also for the sine

definition Qsin at large β, where all the plaquettes Pn approach unity except for PK , which

corresponds to the puncture. We discuss the case with the sine definition in Appendix B,

where we see that the obtained results are qualitatively the same as those obtained with

the log definition.

3.4.2 The θ dependence of the partition function

As we have seen in Section 3.3.2, the punctured model is equivalent to the non-punctured

model in the infinite volume limit for |θ| < π, beyond which the equivalence ceases to

hold. In particular, the punctured model does not have the 2π periodicity in θ, which

exists in the non-punctured model.

In order to understand this point better, we discuss the θ dependence of the partition

function in this section. Let us first note that the partition function for arbitrary θ is re-

lated to the topological charge distribution ρ(q) for θ = 0 through Fourier transformation
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as

Z(θ) =

∫
dUe−Sg [U ]+iθQ[U ]

=

∫
dUe−Sg [U ]

∫
dq eiθqδ(Q[U ]− q)

= Z(0)

∫
dq eiθqρ(q) . (3.4.3)

Therefore, the absence of the 2π periodicity in θ in the punctured model is directly related

to its property that the topological charge can take non-integer values even if we use the

log definition Qlog. Going beyond the fundamental region −π < θ ≤ π simply amounts to

probing the fine structure of the topological charge distribution ρ(q), which is irrelevant

in the infinite volume limit.

By making an inverse Fourier transform, we can obtain the topological charge distri-

bution ρ(q) for θ = 0 as

ρ(q) =
1

Z(0)

∫ ∞
−∞

dθ

2π
Z(θ) e−iθq . (3.4.4)

We calculate this quantity for the punctured model by the CLM for θ = 0. In Fig. 3.6, we

show the results for (β, L) = (3, 10) (Left) and (β, L) = (12, 20) (Right), which agree well

with the exact results obtained by evaluating (3.4.4) using the partition function (3.3.4).

Note that the calculation actually reduces to that of the real Langevin method due to the

absence of the sign problem for θ = 0. We therefore have no concerns about the criterion

for correct convergence here.

While the sign problem is absent for θ = 0, the topology freezing problem can still

be an issue for large β. The agreement we see for (β, L) = (12, 20) confirms that this

problem is resolved in the punctured model at least for θ = 0.

3.4.3 Validity of the CLM

In this section, we discuss the validity of the CLM for the punctured model. Fig. 3.7(Left)

shows the histogram of the drift term for (β, L) = (3, 10) and (β, L) = (12, 20) with θ = π,

which are the parameters used in Section 3.2.4 for the non-punctured model. We find that

the criterion is satisfied for (β, L) = (12, 20) but not for (β, L) = (3, 10), similarly to the

situation in the non-punctured model. The difference from the non-punctured model is

seen, however, in Fig. 3.7(Right), where we show the histogram of ReQlog obtained by

the CLM for (β, L) = (12, 20) with θ = π. (The result for (β, L) = (3, 10) looks quite

similar to this plot.) It is widely distributed within the range −3 . ReQlog . 3, which is

in sharp contrast to the plot in Fig. 3.1(Right) for the same (β, L) = (12, 20) in the case

of the non-punctured model. In fact, it turns out to be close2 to the exact result obtained

2Note, however, that precise agreement is not expected here since the histogram of ReQlog is a non-

holomorphic quantity, for which the CLM does not allow a clear interpretation.
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Figure 3.7: The results obtained by the CLM for the punctured model using the log

definition Qlog of the topological charge. (Left) The histogram of the magnitude u of

the drift term defined by (3.2.12) is shown for (β, L) = (3, 10) and (12, 20) with θ = π.

(Right) The histogram of ReQlog is shown for (β, L) = (12, 20) with θ = π. The exact

result obtained for (β, L) = (12, 20) with θ = 0 is shown by the solid line for comparison.

for the same (β, L) = (12, 20) with θ = 0, which is plotted in the same figure. Thus we

find that the topology freezing problem at large β is circumvented in the punctured model

and yet the CLM remains valid.

Next we discuss the reason why the punctured model can avoid the topology freezing

problem without causing large drifts. The difference from the non-punctured model is

that one of the plaquettes, PK , is removed from the action. Note that the topological

charge Qlog for the punctured model is given by

Qlog = − i

2π

∑
n

logPn +
i

2π
logPK , (3.4.5)

where the first term is nothing but the topological charge defined for the non-punctured

model, whose real part takes integer values. The second term has a real part which lies

within the interval [−1
2
, 1

2
). Therefore it makes sense to define the “topology change” in

the punctured model as the situation in which the real part of the first term changes by

±1. As we discussed in Section 3.2.5 for the non-punctured model, one of the plaquettes

should inevitably cross the branch cut in order for the topology change to occur in the

above sense. When β is large, this process is highly suppressed for all the plaquettes that

are included in the action. In the non-punctured model, the topology freezing problem

occurs precisely for this reason. However, in the punctured model, the particular plaquette

PK is removed from the action, and therefore it can change freely even for large β.

This is demonstrated in Fig. 3.8, where we plot the probability distribution of the phase

of the plaquette PK as well as that of the other plaquettes Pn (n 6= K) for (β, L) = (3, 10)

(Left) and (β, L) = (12, 20) (Right). We find that the phase of the removed plaquette

PK is almost uniformly distributed for both (β, L). On the other hand, the distribution

35



10
-3

10
-2

10
-1

10
0

-1 -0.5  0  0.5  1

Im( log P
n
 ) / π

(β, L) = (3, 10)

n = K

n ≠ K

10
-6

10
-4

10
-2

10
0

-1 -0.5  0  0.5  1

Im( log P
n
 ) / π

(β, L) = (12, 20)

n = K

n ≠ K

Figure 3.8: The distribution of the phase of the plaquettes is plotted for the punctured

model with the log definition (3.1.12) of the topological charge for (β, L) = (3, 10) (Left)

and (β, L) = (12, 20) (Right) with θ = π. We show the results for the plaquette (n = K)

removed from the action and those for all the other plaquettes (n 6= K) separately.

of the phase of the other plaquettes depends on (β, L). It has a compact support for

(β, L) = (12, 20) but not for (β, L) = (3, 10). In the former case, there is no distribution

at the branch cut, which implies that the branch cut crossing of the plaquettes Pn (n 6= K)

does not occur at all. In the latter case, there is a small but finite distribution at the

branch cut, which means that the value of β is not large enough to suppress the branch

cut crossing of the plaquettes Pn (n 6= K) completely.

This is consistent with the fact that the histogram of the drift term has fast fall-off for

(β, L) = (12, 20) but not for (β, L) = (3, 10) considering the discussion given in Section

3.2.5. While the flow diagram in Fig. 3.4(Left) is obtained for the sine definition of the

topological charge, it looks similar for the log definition, which simply corresponds to

setting θ = 0 in (3.2.18). Therefore, large drifts can appear when one of the plaquettes

Pn (n 6= K) crosses the branch cut, which indeed occurs for (β, L) = (3, 10) also for the

punctured model. For (β, L) = (12, 20), on the other hand, the topology change is made

possible by allowing the removed plaquette PK to cross the branch cut freely, but all

the plaquettes that are included in the action are forced to stay close to unity because

of large β. This justifies our assumption that the issue of δ-function can be neglected in

deriving the drift terms (3.4.1) and (3.4.2). Since the plaquette PK does not appear in the

drift terms, it does not cause large drifts even if it crosses the branch cut. This makes it

possible for the punctured model to avoid the topology freezing problem without causing

large drifts.

Let us next discuss how the unitarity norm (3.2.5) behaves in our complex Langevin

simulations. As we can see from (3.4.1) and (3.4.2), the link variables surrounding the

puncture have a drift term in the imaginary direction coming from the θ term. At each

Langevin step, two of the link variables are multiplied by eθ∆t/2π and the other two

are multiplied by e−θ∆t/2π so that the removed plaquette is multiplied by e2θ∆t/π due
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Figure 3.9: The history of the unitarity norm N is plotted for the punctured model with

the log definition (3.1.12) of the topological charge for various θ with (β, L) = (5, 16).

to this drift term. Therefore, there is a danger that the magnitude of these four link

variables increases or decreases exponentially and hence the unitarity norm (3.2.5) grows

exponentially with the Langevin time.

In Fig. 3.9, we plot the history of the unitarity norm (3.2.5) for various θ with (β, L) =

(5, 16). Similar results are obtained for other (β, L). (Here and for the rest of this

subsection, we restrict ourselves to the parameter sets, for which the histogram of the

drift term has fast fall-off.) Indeed we observe an exponential growth at early stage, but

the unitarity norm actually saturates to a constant depending on θ at sufficiently long

Langevin time. This saturation occurs since the non-unitarity of the four link variables

surrounding the puncture propagates to all the other link variables on the lattice due to

the interaction caused by the gauge action Sg, which tries to make each plaquette except

the removed one close to unity. We find that thermalization of various observables can

be achieved only after the saturation of the unitarity norm.

In fact, we find that the unitarity norm is not distributed uniformly on the lattice due

to the existence of the puncture, as is also expected from the above discussion. In order

to see this, we define the “local unitarity norm” by

N (n) =
1

4

∑
(k,µ)∈Pn

{
U∗k,µUk,µ + (U∗k,µUk,µ)−1 − 2

}
, (3.4.6)

which is an average of the unitarity norm for the four link variables surrounding each

plaquette Pn. The unitarity norm defined by (3.2.5) is simply an average of N (n) over all

the plaquettes including the removed one; namely N = 1
L2

∑
nN (n). In Fig. 3.10(Left),

we plot this quantity N (n) against n = (n1, n2) for (β, L) = (12, 20) with θ = π, where

the puncture is located at n = K = (10, 10). We observe a sharp peak at the puncture,
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Figure 3.10: (Left) The local unitarity norm N (n) for each plaquette Pn defined by

(3.4.6) is plotted against n = (n1, n2) for the punctured model with the log definition

(3.1.12) of the topological charge for (β, L) = (12, 20) with θ = π. The removed plaquette

corresponds to n = K = (10, 10) in this figure. (Right) The local unitarity normN (K) for

the removed plaquette PK obtained for various β, L and θ is plotted against x = |θ|L2/β.

The solid line represents a fit to xp exp(c1x + c2) with c1 = 0.079(5), c2 = −3(1) and

p = 0.8(4).

which goes up to N (K) ∼ 6× 103. The plaquettes adjacent to the puncture have a local

unitarity norm ∼ 1.5× 103. This implies that the unitarity norm is mostly dominated by

the four link variables surrounding the puncture.

The local unitarity norm N (K) at the puncture depends not only on θ but also on β

and L. In Fig. 3.10(Right), we plot this value against x = |θ|Vphys = |θ|L2/β for various

θ, β and L. All the data can be fitted to a single curve N (K) = xp exp(c1x + c2), which

reveals an exponential behavior at large x.

What actually matters for the validity of the CLM is not so much the local unitarity

norm N (n) as the absolute value of each plaquette Pn, which we plot in Fig. 3.11 against

n = (n1, n2) for the same parameters as in Fig. 3.10(Left). The absolute value of PK

corresponding to the removed plaquette is close to (
√
N (K))4 ∼ 3.6× 107, which implies

that |UK,1|, |UK+1̂,2|, |U−1

K+2̂,1
| and |U−1

K,2| are close to
√
N (K). Except for this removed

plaquette, the absolute value of the plaquette deviates only slightly from unity due to

large β.

In fact, this deviation of |Pn| from unity for n 6= K has a physical meaning since

Im 〈Qlog〉 = − 1
2π

∑
n 6=K〈log |Pn|〉 as one can see from (3.4.5). From the exact result (3.3.9)

obtained at large β, we find that |Pn| ∼ e−θ/(2πβ) for n 6= K, which is ∼ 0.96 for θ = π

and β = 12 in agreement with the value observed in Fig. 3.11. If we flip the sign of θ,

which corresponds to the parity transformation, we find that |Pn| 7→ |Pn|−1 for all n.

Note also that PK does not appear in the drift term, which implies that its absolute

value can become large without causing large drifts. We have confirmed that the criterion

for correct convergence is satisfied for sufficiently large β, and indeed the exact results
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for the punctured model with the log definition (3.1.12) of the topological charge for

(β, L) = (12, 20) with θ = π. The removed plaquette corresponds to n = K = (10, 10) in

this figure.

for various observables can be reproduced correctly as we will see in the next section.

This remains to be the case even for large θ and/or large Vphys, where the unitarity

norm becomes large.3 Thus the present model provides a counterexample to the common

wisdom that the CLM fails when the unitarity norm becomes large.

3.4.4 Results for the observables

In this section, we calculate the observables for the punctured model by the CLM and

compare our results with the exact results derived in Appendix A.4. Let us recall that,

in the definitions (3.2.14), (3.2.15) and (3.2.16), V denotes the number of plaquettes in

the action, which is V = L2 − 1 for the punctured model. In contrast, we define the

physical volume Vphys by Eq. (3.1.15) not only for the non-punctured model but also for

the punctured model, which simplifies the relationship between β and L for fixed Vphys.

In Fig. 3.12, we show our results for the average plaquette w (Top), the topological

charge (Middle) and the topological susceptibility χ (Bottom) against θ for (β, L) = (3, 10)

and (12, 20) in the left and right columns, respectively, which correspond to a fixed physical

volume Vphys ≡ L2/β = 102/3. The exact results obtained for the same model with the

same parameter sets are also shown for comparison. We find from our results for the

average plaquette that the exact results are reproduced for (β, L) = (12, 20), but there

3We find, however, that the fluctuation of the local unitarity norm is small even for the one N (K) at

the puncture, which implies that the distribution of each link variable has fast fall-off. Therefore, it is

suggested that the problem due to the boundary terms discussed in Refs. [3, 4, 72, 73] does not occur.
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(β, L) are shown by the dashed lines for comparison.
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is slight deviation for (β, L) = (3, 10). This is consistent with our observation in Section

3.4.3 that the condition for correct convergence is met for (β, L) = (12, 20) but not for

(β, L) = (3, 10).

For the topological charge, we find that our results reproduce the exact results not

only for (β, L) = (12, 20) but also for (β, L) = (3, 10). The same holds for the topological

susceptibility. We consider that the agreement observed here for (β, L) = (3, 10) is acci-

dental, though, since the condition for correct convergence is not satisfied. The fact that

the results of the CLM for the punctured model with (β, L) = (3, 10) is not as bad as

those for the non-punctured model with the same (β, L) shown in Fig. 3.2(Left) can be

understood by considering that the effect of the θ term is included correctly by the drift

terms for the link variables composing the removed plaquette, but it is only the infrequent

branch cut crossing of the other plaquettes that spoils the validity of the CLM.
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Chapter 4

4D SU(2) gauge theory with a θ term

There are some predictions about the phase structure around θ = π by using the ’t Hooft

anomaly matching condition. The aim of this work is to investigate the phase structure

around θ = π by using the CLM.

4.1 Lattice formulation of the 4D SU(2) gauge theory

In this section, we review 4D SU(2) gauge theory with a θ term and discuss how to define

it on a lattice.

In the continuum 4D SU(N) gauge theory, the kinetic term for gauge field Aµ = Aaµt
a

is given by

Sg =
1

2g2

∫
d4xTr [FµνFµν ] =

1

4g2

∫
d4xF a

µνF
a
µν , (4.1.1)

where µ, ν run from 1 to 4, an index a labels the generators of SU(N), g is the gauge

coupling constant, and Fµν is the field strength defined by

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] = F a
µνt

a. (4.1.2)

We use the Hermitian generators ta which satisfy the following relations:

(ta)† = ta, (4.1.3)

Tr ta = 0, (4.1.4)

[ta, tb] = ifabctc, (4.1.5)

Tr tatb = 1
2
δab. (4.1.6)

In 4D gauge theories, the topological charge is defined by

Q =
1

32π2

∫
d4xεµνρσ Tr [FµνFρσ] =

1

64π2

∫
d4xεµνρσF

a
µνF

a
ρσ, (4.1.7)

which becomes some integer when the base manifold is compact. Therefore, the total

action is composed by the kinetic term and the θ term as

S = Sg + Sθ, (4.1.8)
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Sθ = −iθQ, (4.1.9)

where Sg is given by (4.1.1).

We put this theory on the L1 × L2 × L3 × L4 lattice. In the rest of this section, we

set L1 = L2 = L3 = Ls and L4 = Lt. For the lattice formulation of gauge theories, we

introduce link variables Un,µ which are related to gauge fields An,µ as

Un,µ = eiaAn,µ , (4.1.10)

where n = (n1, n2, n3, n4) represents the position on the lattice, and a is a lattice spacing.

The simplest gauge action is the plaquette action which is sometimes called as the

Wilson action. The action is defined as

Slat
g =

β

2N

∑
n

∑
µ 6=ν

Tr (I − P µν
n )

= 6βV − β

2N

∑
n

∑
µ<ν

Tr [P µν
n + (P µν

n )−1],

(4.1.11)

where V = L3
s × Lt is the lattice volume, β is related to the gauge coupling as

β =
2N

g2
, (4.1.12)

and P µν
n is a plaquette which is defined by

P µν
n = Un,µUn+µ̂,νU

−1
n+ν̂,µU

−1
n,ν . (4.1.13)

Next, we consider the lattice formulation of the topological charge. There are some

definitions of the topological charge on the lattice. Comparisons between different defini-

tions have been discussed in [74, 75].

In this work, we use the most commonly used definition, namely the cloverleaf defi-

nition which is introduced in [76]. The cloverleaf definition of the topological charge is

given by

QL := − 1

32π2

∑
n

1

24

±4∑
µ,ν,ρ,σ=±1

ε̃µνρσ Tr [P µν
n P ρσ

n ] , (4.1.14)

where ε̃µνρσ is defined as

ε̃µνρσ = sgn(µνρσ)ε|µ||ν||ρ||σ|, (4.1.15)

where εµνρσ is the Levi-Civita symbol. The plaquettes for the negative directions are

defined as

P−µνn = U−1
n−µ̂,µUn−µ̂,νUn−µ̂+ν̂,µU

−1
n,ν ,

P µ−ν
n = Un,µU

−1
n+µ̂−ν̂,νU

−1
n−ν̂,µUn−ν̂,ν ,

P−µ−νn = U−1
n−µ̂,µU

−1
n−µ̂−ν̂,νUn−µ̂−ν̂,µUn−ν̂,ν .

(4.1.16)
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By introducing the cloverleaf P̄ µν
n whose definition is

P̄ µν
n = P µν

n − P−µνn − P µ−ν
n + P−µ−νn , (4.1.17)

then the definition (4.1.14) can be rewritten as

QL = − 1

32π2

∑
n

1

24

4∑
µ,ν,ρ,σ=1

εµνρσ Tr
[
P̄ µν
n P̄ ρσ

n

]
. (4.1.18)

Moreover, the lattice definition of topological charge (4.1.18) can be rewritten in a

simpler form as

QL = − 1

256π2

∑
n

Tr
[
R12
n R

34
n +R13

n R
42
n +R23

n R
14
n

]
, (4.1.19)

where Rµν
n is defined as

Rµν
n := P̄ µν

n − P̄ νµ
n . (4.1.20)

Rµν
n is anti-symmetric under a swapping of indices µ and ν as Rµν

n = −Rνµ
n .

This topological charge is not an integer when the lattice spacing a is finite. In the

continuum limit, the lattice topological charge becomes some integer.

4.2 Application of the CLM to the 4D SU(2) lattice

gauge theory

We apply the CLM to the 4D SU(2) lattice gauge theory with a θ term. The link variables

are extended from Un,µ ∈ SU(2) to Un,µ ∈ SL(2,C). Then we consider a fictitious time

evolution of the link variables Un,µ(t) governed by the complex Langevin equation

Un,µ(t+ ∆t) = Un,µ(t) exp
[
i
{
−∆tDa

n,µS ta +
√

∆t ηn,µ(t)
}]

, (4.2.1)

where t is the fictitious time, ∆t is a step size, and ηn,µ(t) is the Gaussian noise. The drift

term Da
n,µS is defined by

Da
n,µS = lim

ε→0

S(eiεt
a
Un,µ)− S(Un,µ)

ε
, (4.2.2)

first for the unitary link variables Un,µ(t), and then it is defined for the complexified link

variables Un,µ(t) by analytic continuation in order to respect holomorphicity.

The drift term Da
n,µS is consist of two part

Da
n,µS = Da

n,µSg +Da
n,µSθ, (4.2.3)

where the first term is defined as

Da
n,µSg = −iβTr

[
ta
∑
ν 6=µ

(P µν
n + P µ−ν

n − P−νµn − P νµ
n )

]
, (4.2.4)
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and the second term is defined as

Da
n,µSθ =

iθ

256π2
Da
n,µ

∑
n

Tr [R12
n R

34
n −R13

n R
24
n +R14

n R
23]

= − θ

256π2
Tr [ta{δµ1(K34

n,12 −K24
n,13 +K23

n,14)

+ δµ2(−K34
n,21 −K13

n,24 +K23
n,14)

+ δµ3(K12
n,34 +K24

n,31 −K23
n,14)

+ δµ4(−K12
n,43 +K13

n,24 −K23
n,41)}]

=: − θ

256π2
Tr [taJ (θ)

n,µ],

(4.2.5)

Kρσ
n,µν := Un,µf

ρσ
n,µν(U) + gρσn,µν(U)U−1

n,µ, (4.2.6)

fρσn,µν(U) : = Un+µ̂,νU
−1
n+ν̂,µU

−1
n,νR

ρσ
n − U−1

n+µ̂−ν̂,νU
−1
n−ν̂,µR

ρσ
n−ν̂Un−ν̂,ν

+ Un+µ̂,νU
−1
n+ν̂,µR

ρσ
n+ν̂U

−1
n,ν − U−1

n+µ̂−ν̂,νR
ρσ
n+µ̂−ν̂U

−1
n−ν̂,µUn−ν̂,ν

+Rρσ
n+ν̂Un+µ̂,νU

−1
n+ν̂,µU

−1
n,ν − U−1

n+µ̂−ν̂,νU
−1
n−ν̂,µUn−ν̂,νR

ρσ
n

+ Un+µ̂,νR
ρσ
n+µ̂+ν̂U

−1
n+ν̂,µU

−1
n,ν −Rρσ

n+µ̂U
−1
n−µ̂+ν̂,νU

−1
n−ν̂,µUn−ν̂,ν ,

(4.2.7)

gρσn,µν(U) : = Rρσ
n Un,νUn+ν̂,µU

−1
n+ν̂,ν − U−1

n−ν̂,νR
ρσ
n−ν̂Un−ν̂,µUn+µ̂−ν̂,ν

+ Un,νUn+ν̂,µU
−1
n+µ̂,νR

ρσ
n+µ̂ −Rρσ

n U
−1
n−ν̂,νUn−ν̂,µUn+µ̂−ν̂,ν

+ Un,νR
ρσ
n+µ̂Un+ν̂,µU

−1
n+µ̂,ν − U−1

n−ν̂,νUn−ν̂,µR
ρσ
n+µ̂−ν̂Un+µ̂−ν̂,ν

+ Un,νUn+ν̂,µRn+µ̂+ν̂U
−1
n+µ̂,ν − U−1

n−µ̂,νUn−µ̂,µUn+µ̂−ν̂,νR
ρσ
n+µ̂ .

(4.2.8)

Therefore, the total drift term is

Da
n,µ(Sg + Sθ) = iTr [Jn,µt

a], (4.2.9)

Jn,µ := −βJ (g)
n,µ +

iθ

256π2
J (θ)
n,µ. (4.2.10)

In this work, we use the second-order Runge-Kutta algorithm [77, 78] to reduce the

finite step size effects. When we evolve the gauge configuration by (4.2.1), the probability

for a gauge configuration P (U) which is realized after the thermalization is given by

P (U) ∝ exp (−S̃), (4.2.11)

where S̃ is

S̃ =

(
1 +

∆t CA

12

)
S +

∆t

4

∑
n,µ

{
2(Da

n,µ)2S − (Da
n,µS)2

}
+O

(
(∆t)2

)
, (4.2.12)

and CA is the Casimir invariant for the adjoint representation. Note that, in the SU(N)

case, CA = N . In other words, when we evolve the gauge configuration by (4.2.1) the

observables have O(∆t) systematic errors.
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In the second-order Runge-Kutta algorithm, the Langevin evolution is described by

the following equations:

Un,µ(t+ ∆t) = Un,µ(t) exp
[
i
{
− ∆t

2

(
1 +

∆t CA

6

)
vanµ t

a +
√

∆t ηn,µ(t)
}]

,

vanµ =
(
Da
n,µS

(
U(t)

)
+Da

n,µS
(
U(t′)

))
,

(4.2.13)

where a gauge configuration U(t′) is obtained by a tentative update as

Un,µ(t′) = Un,µ(t) exp
[
i
{
−∆tDa

n,µS
(
U(t)

)
ta +
√

∆t ηn,µ(t)
}]

. (4.2.14)

By this algorithm, the first order of ∆t in (4.2.12) is removed, therefore the probability

for a gauge configuration becomes

P (U) ∝ exp
(
−S +O

(
(∆t)2

))
. (4.2.15)

Thus, the systematic errors are reduced from O(∆t) to O((∆t)2). As a result, we can use

a larger ∆t, which means that the simulations are more efficient.

4.2.1 Gauge cooling

We define a semi-positive definite norm so called the unitarity norm as

N =
1

4NV

∑
n,µ

Tr [U †n,µUn,µ − I]. (4.2.16)

This norm describes how the link variables are far from being unitary. If and only if all

link variables are unitary Un,µ ∈ SU(2), their Hermite conjugates are equivalent to their

inverse matrices U †n,µ = U−1
n,µ, therefore the norm is equal to zero. We reduce the norm by

a gauge transformation for the extended gauge group as

Un,µ −→ gnUn,µg−1
n+µ gn ∈ SL(2,C). (4.2.17)

This procedure is called the gauge cooling. The gauge cooling does not affect the expec-

tation values for holomorphic quantities [3].

Next we consider how to choose the gauge transformation. Here we consider the

SL(2,C) gauge transformation for an infinitesimal parameter ∆a
n ∈ R such as

gn = e∆a
nt
a ∼ 1 + ∆a

nt
a,

gnUn,µg−1
n+µ = Un,µ + ∆a

nUn,µ −∆a
n+µ̂Un,µta,

g−1
n+µ̂U †n,µgn = U †n,µ −∆a

n+µ̂U †n,µ + ∆a
nU †n,µta.

(4.2.18)

The change of the unitarity norm is given by

∆N =
1

2NV

∑
n

Tr [∆a
nĜnt

a], (4.2.19)
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where Ĝn is defined as

Ĝn :=
∑
µ

(Un,µU †n,µ − U †n−µ̂,µUn−µ̂,µ), (4.2.20)

which satisfies Ĝn = Ĝn

†
. Therefore, we find that the unitarity norm is reduced most

efficiently by choosing ∆a
n ∝ −Ĝnt

a.

Using this result, we consider following gauge transformation

Un,µ −→ gnUn,µg−1
n+µ; gn = e−αGn , (4.2.21)

where Gn is defined as

Gn := Tr [Ĝnt
a]ta. (4.2.22)

After this gauge transformation, the unitarity norm becomes

N ′(α) :=
1

4NV
Tr [U †n,µe−2αGnUn,µe2αGn+µ̂ − 1]. (4.2.23)

We search for an optimal value for α that minimize N ′(α). Since we perform the gauge

cooling after each Langevin step, the α is typically a small number. Therefore, we expand

Eq. (4.2.23) with respect to α up to first order, and we estimate optimal value for α. The

optimal value is given by

α =

∑
n ||Gn||2∑

n,µ ||GnUn,µ − Un,µGn+µ̂||2
, (4.2.24)

where || · || is the Frobenius norm which is defined as ||A||2 = Tr (AAT ). We repeat this

procedure until the change of the unitarity norm becomes less than 10−4.

4.2.2 Adaptive step size

In order to avoid the excursion problem, we also use the adaptive step size algorithm. We

measure maximum of the magnitude of the drift term defined as

u = max
n,µ
|Da

n,µS| (4.2.25)

at each Langevin step. When the magnitude of drift term is larger than a threshold u0,

we modify the step size ∆t as

∆t =

{
∆t0 for u < v0 ,
v0

u
∆t0 otherwise ,

(4.2.26)

where ∆t0 is a default step size. In our simulation, we choose the threshold as u0 = 3β/Nc

because when θ = 0 the drift term is bounded by this value.
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Figure 4.1: We plot the histories of the topological charge for θ = 0. Here we consider

Ls = Lt = L where Ls is a number of the lattice point in spatial directions and Lt is that

in the temporal direction. The simulations start from random SU(2) configurations (hot

start). Different lines correspond to different initial configurations. In (L, β) = (16, 3)

case (Left), the topological charge seems to change frequently. On the other hand, in

(L, β) = (16, 6) case (Right), the topology does not change during a simulation.

4.3 Result for a naive implementation

First, we impose periodic boundary for all directions.

4.3.1 Autocorrelation of the topological charge

First of all, we study the behaviors of the topological charge at θ = 0 where the CLM

turns out to be the real Langevin method. We show the histories of the topological

charge in Fig. 4.1. In the small β case, the topological charge seems to change during a

simulation. On the other hand, in the large β case, the topology freezing problem occurs.

This situation resembles the 2D U(1) case.

We also measure the distributions of the topological charge, and we show them in

Fig. 4.2. The width becomes large as the β becomes small. Note that, unlike in the

2D U(1) with the sine definition case, we cannot find the region where the comb-shaped

distribution of the charge appears because of the large UV fluctuations.

We can reduce the UV fluctuations by a cooling procedure such as the gradient flow.

In the gradient flow technique, the gauge configurations are evolved by the following

equation:

Vn,µ(τ + ∆τ) = Vn,µ(τ) exp
[
i
{
−∆τ Da

n,µS ta
}]

,

Vn,µ(0) = Un,µ,
(4.3.1)

where τ is called as the flow time. Eq. (4.3.1) is equivalent to the Langevin evolution

(4.2.1) without the noise term. After the gradient flow, the comb-shaped distribution
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Figure 4.2: We plot the histograms of the topological charge for θ = 0. Here, we set

Ls = Lt = 16. In β = 3 case (Left), the topological charge is distributed in (−3, 3). On

the other hands, in β = 6 case (Right), the topological charge is distributed in (−1, 1).
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Figure 4.3: The charge distributions before and after the gradient flow. The parameters

are Ls = Lt = 8, β = 1.0 and θ = 0. We use ∆t = 10−3 for generating the configurations

by real Langevin method, and we use ∆τ = 10−1 for the gradient flow. The total flow

time is 10.
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Figure 4.4: The results obtained by the CLM for various θ with Ls = Lt = 16 and

β = 3.25. (Left) The histogram of the magnitude of the drift term defined by (4.2.25).

(Right) The imaginary part of the topological charge.

of the topological charge appears (see Fig. 4.3). However, the gradient flow technique

cannot be justified in the CLM, therefore we cannot use this technique at θ 6= 0.

4.3.2 Finite θ simulation

We turn on the θ at small β where the topology freezing problem does not occur. In

Fig. 4.4 (Left), we plot the histogram of the drift terms for various θ. We find that

the criterion for the correct convergence of the CLM is satisfied up to θ = 2π. In Fig.

4.4 (Right), the imaginary part of the topological charge whose gradient becomes the

topological susceptibility is plotted against the θ. We cannot see the 2π periodicity which

the theory has. We consider the reason for this problem is the large UV fluctuations. Since

we cannot use the gradient flow in the CLM, a possible way to reduce the UV fluctuations

is increasing β, which corresponds to decreasing the lattice spacing a. However, in the

large β region, there is the topology freezing problem. Therefore, we need to solve this

problem.

4.4 Modifying the boundary condition

4.4.1 Open boundary condition for one spatial direction

Some methods to overcome the topology freezing problem have been studied [79, 80, 81, 82,

83, 84]. In particular, Luscher and Schaefer suggested modifying the boundary condition.

In [79], they impose the open boundary condition in the imaginary time direction focusing

on the zero temperature case. They found that the topology freezing problem is alleviated

by this method. They also found that a drawback of this method is a strong finite volume

effect.
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In this study, since we want to study the theory at finite temperature, we need to

impose the periodic boundary condition for the imaginary time direction. Thus, we

impose the open boundary condition in the spatial directions. Since we want to avoid

large finite volume effects from the boundaries, first we try to impose the open boundary

condition for only one of the spatial directions.

Here we impose the open boundary condition for n1 direction. In this case the Wilson

gauge action is rewritten as

S(lat, obc)
g =

β

2N

∑
n

∑
µ6=ν

wµνn Tr (I − P µν
n ), (4.4.1)

where wµνn are weights. Except for at the boundary (n1 = 1 or n1 = L1), these weights

are unity. At the boundary these weights are

wµνn =


0 (n1, µ) = (L1, 1)|ν 6=µ,
1
2

(n1, µ, ν) = (1, 2, 3), (1, 2, 4), (1, 3, 4), (L1, 2, 3), (L1, 2, 4), (L1, 3, 4),

1 otherwise,

(4.4.2)

where we consider only for µ < ν case because these weights are symmetric wµνn = wνµn .

In the periodic boundary case, each of the plaquettes belongs to 4 unit hypercubes. On

the other hands, in the open boundary for one spatial direction case, at the boundary,

half of the hypercubes are absent for some plaquettes. Therefore, some plaquettes at the

boundary belong to only 2 unit hypercubes. In this reason we use wµνn = 2
4

= 1
2

for such

plaquettes.

In the open boundary case, we removed the cloverleaves at the boundary from the

summation in the definition of the topological charge (4.1.18). In Fig. 4.5, we plot the

histories of the topological charge at β = 6 in the periodic boundary case (Left) and that

in the open boundary case (Right). We find that the topology freezing problem seems to

be alleviated. However, the autocorrelation time is still long even if we impose the open

boundary condition. We expect that the autocorrelation time decreases if we impose the

open boundary condition for all spatial directions.

4.4.2 Open boundary condition for all spatial directions

We impose the open boundary conditions for all spatial directions to solve the topology

freezing problem. The weights in (4.4.1) are determined by the same way as we explained

in the previous subsection.

In Fig. 4.6, we plot the histories of the topological charge in the case of the open

boundaries for all spatial directions. We find that the topology freezing is more milder

than that for the case of open boundary for one of the spatial directions.
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Figure 4.5: We plot the histories of the topological charge for θ = 0 with (L, β) =

(16, 6). The simulations start from random SU(2) configurations (hot start). Different

lines correspond to different initial configurations. We plot the histories in the periodic

boundary case in (Left), on the other hand, that in the open boundary for only one spatial

direction is plotted in (Right). We cannot see the qualitative difference between them.
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Figure 4.6: We plots the histories of the topological charge for θ = 0 with (L, β) = (16, 6).

We impose the open boundary condition for all spatial directions. The simulations start

from random SU(2) configurations (hot start). Different lines correspond to different

initial configurations.
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Figure 4.7: We plot the results for Lt = 4, β = 6 and various Ls at finite θ. Here we

impose the open boundary condition for all spatial directions. In all cases, the criterion for

the correct convergence of the CLM is satisfied. (Top-Left) The Polyakov loop is plotted

against θ for various Ls. (Top-Right) We plot the density of the imaginary part of the

topological charge against θ/π. (Bottom) We plot ImQ/(θV ) against 1/Vs for Ls = 32, 64

and 80 cases.

In Fig. 4.7 (Top-Left), the Polyakov loop is plotted against θ for various Ls. The

Polyakov loop is defined by

P =
1

L3
s

∑
n1,n2,n3

∏
n4

Un,4, (4.4.3)

which is an order parameter to distinguish between the confined and deconfined phases.

〈P 〉 = 0 corresponds to the confined phase, while, 〈P 〉 6= 0 corresponds to the deconfined

phase. This figure shows that the Polyakov loop has a nonzero value for all cases. This

result implies that the theory is in the deconfined phase. In Fig. 4.7 (Top-Right), we plot

the density of the imaginary part of Q against θ for various Ls. We find that Im(Q) linearly

increases. We also find that the density of Im(Q) gradually decreases as Ls increases. In

Fig. 4.7 (Bottom), we plot Im(Q)/(θV ) against 1/Vs, where Vs = L3
s is a spatial lattice

volume. We cannot see the finite volume scaling. Therefore, we need to increase Vs more

to take Vs →∞ extrapolation.
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Chapter 5

On the emergence of the space-time

structure in the type IIB matrix

model

5.1 Brief review of the Lorentzian type IIB matrix

model

In this section, we define the Lorentzian type IIB matrix model and its simplified versions,

and review some results obtained by Monte Carlo simulations.

5.1.1 Definition of the Lorentzian type IIB matrix model

The action of the type IIB matrix model is given as [47]

S = Sb + Sf , (5.1.1)

Sb = −1

4
Tr
(

[Aµ, Aν ] [Aµ, Aν ]
)
, (5.1.2)

Sf = −1

2
Tr
(

Ψα (CΓµ)αβ [Aµ,Ψβ]
)
, (5.1.3)

where Aµ (µ = 0, 1, · · · , 9) and Ψα (α = 1, · · · , 16) are bosonic and fermionic N × N

traceless Hermitian matrices. The indices µ and ν are contracted with the Lorentzian

metric ηµν = diag(−1, 1, . . . , 1). The 16 × 16 matrices Γµ and C are the 10-dimensional

gamma matrices and the charge conjugation matrix, respectively, obtained after the Weyl

projection. The action (5.1.1) has a manifest SO(9,1) Lorentz symmetry, under which Aµ

and Ψα transform as a Lorentz vector and a Majorana-Weyl spinor, respectively.

This model is invariant under the following transformations

δ(1)Aµ = iε̄1ΓµΨ,

δ(1)Ψ =
i

2
Γµν [Aµ, Aν ]ε1,

(5.1.4)
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δ(2)Aµ = 0,

δ(2)Ψ = ε21,
(5.1.5)

δTAµ = cµ1,

δTΨ = 0,
(5.1.6)

δGAµ = i[λ,Aµ],

δGΨ = i[λ,Ψ],
(5.1.7)

where ε1 and ε2 are Majorana-Weyl spinors, cµ is a 10D vector, 1 is N ×N unit matrix,

and λ is a N ×N Hermitian matrix. The transformation (5.1.7) is the zero volume limit

of the 10-dimensional SU(N) gauge transformation.

Here we write the generators of (5.1.4), (5.1.5), and (5.1.6) as Q(1), Q(2), and Pµ

respectively. And we define Q̃(1) and Q̃(2) as

Q̃(1) = Q(1) +Q(2),

Q̃(2) = i(Q(1) −Q(2)).
(5.1.8)

These generator satisfies the following relation

[ε̄1Q̃
(i), ε̄2Q̃

(j)] = −2δij ε̄1Γµε2Pµ, (5.1.9)

up to the gauge symmetry (5.1.7) and the equation of motion for fermionic matrices as

Γµ[Aµ,Ψ] = 0. (5.1.10)

If we identify Pµ as the momentum, the relation corresponds to the algebra of 10 dimen-

sional N = 2 supersymmetry. Therefore (5.1.6) corresponds to translation, which means

that we can identify the eigenvalues of the matrices as the space-time coordinates.

There is evidence that the model is considered a promising candidate for the non-

perturbative formulation of superstring theory. One is that the action (5.1.1) is recognized

as a matrix regularization for the action of the type IIB string theory. Another is that this

model can realize the correct interaction between D-branes. Other is that the light-cone

string field theory is derived from this model.

The partition function of the Lorentzian type IIB matrix model is defined as [60]

Z =

∫
dAdΨ eiS[A,Ψ] =

∫
dAPfM(A) eiSb , (5.1.11)

where the “i” in front of the action is motivated from the fact that the string worldsheet

metric has a Lorentzian signature. Note that the bosonic action Sb can be written as

Sb =
1

4
Tr (FµνF

µν) =
1

4

{
−2Tr (F0i)

2 + Tr (Fij)
2} , (5.1.12)

where we have introduced the Hermitian matrices Fµν = i [Aµ, Aν ]. Hence Sb is not

positive semi-definite unlike in the Euclidean case. Note also that, unlike in the Euclidean
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version [85, 86], the matrix integral in (5.1.11) is divergent because eiSb is a pure phase

factor and the Pfaffian PfM(A) obtained by integrating out the fermionic matrices is a

polynomial in Aµ.

In order to make the partition function (5.1.11) finite, we need to introduce the IR

cutoffs both in the temporal and spatial directions, for instance, as

1

N
Tr
{

(A0)2}p ≤ κp
1

N
Tr
{

(Ai)
2}p , (5.1.13)

1

N
Tr
{

(Ai)
2}p ≤ L2p . (5.1.14)

The power p is a parameter, which can be used to test how much the obtained results

depend on the way the IR cutoff is introduced [87]. While p = 1 would be a natural

choice, it was proposed that p should be chosen to be a slightly larger value in order

to make the results almost independent of p. Too large values of p lead to pathological

behaviors, however.

The Pfaffian PfM(A) in (5.1.11) is real in the Lorentzian version unlike in the Eu-

clidean version, where it becomes complex due to the replacement A0 = iA10. However,

the phase factor eiSb causes the sign problem when one tries to investigate the Lorentzian

model by Monte Carlo methods. Here, we avoid this problem1 following previous work

[60, 88, 62] by rewriting the partition function (5.1.11) as

Z =

∫
dAPfM(A) δ

( 1

N
TrFµνF

µν − C
)
δ
( 1

N
Tr{(Ai)2}p − 1

)
θ
(
κp − 1

N
Tr{(A0)2}p

)
,

(5.1.15)

where θ(x) is the Heaviside step function. This can be obtained by integrating out the

overall scale factor of the bosonic matrices Aµ first and using certain approximation

as discussed in section 5.3. The parameter C should be set to zero according to the

“derivation”, but we generalize the model by choosing C 6= 0, which allows us to obtain

results for larger matrices in the original C = 0 model by using smaller matrices [89, 88].

See Appendix B of ref. [88] for the details of the Monte Carlo simulation of the model

(5.1.15).

5.1.2 SSB of rotational SO(9) symmetry

Next we discuss how one can extract the time-evolution from a given matrix configuration

generated by Monte Carlo simulation [60]. Since the eigenvalues of the temporal matrix

A0 represents time, we work in an SU(N) basis which diagonalizes A0 as

A0 = diag(α1, . . . , αN) , where α1 < · · · < αN . (5.1.16)

1Strictly speaking, the model (5.1.15) is not completely free of sign-problem because the Pfaffian is

real but not positive semi-definite. However, configurations with positive Pfaffian dominates the path

integral (5.1.15) at large N , and therefore one can safely replace the Pfaffian by its absolute value in the

simulation.
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In this basis, the spatial matrices Ai turn out to have an approximate band-diagonal

structure. By this, we mean that there exists2 some integer n such that the elements of

the spatial matrices (Ai)ab for |a − b| > n are much smaller than those for |a − b| < n.

Thanks to this structure, we can naturally consider the n× n submatrices Āi(
Āi
)
IJ

(t) ≡ (Ai)ν+I,ν+J (5.1.17)

representing the state at time t defined by

t ≡ 1

n

n∑
I=1

αν+I , (5.1.18)

where I, J = 1, . . . , n and ν = 0, 1, . . . , N − n. For example, we can define the extent of

the 9d space at time t using Āi(t) as

R2(t) =

〈
9∑
i=1

1

n
tr
(
Āi(t)

)2

〉
, (5.1.19)

where the symbol “tr” represents a trace over the n × n submatrix. We can also define

the “moment of inertia tensor”

Tij(t) =
1

n
tr
(
Āi(t)Āj(t)

)
, (5.1.20)

which is a 9 × 9 real symmetric tensor. The eigenvalues of Tij(t) represent the spatial

extent in each of the nine directions at time t, and we denote them by λi(t) with the

ordering

λ1(t) > λ2(t) > · · · > λ9(t) . (5.1.21)

Note that R2(t) and λi(t) are related as

R2(t) = 〈trT 〉 =
9∑
i=1

〈λi(t)〉 . (5.1.22)

The expectation values 〈λi(t)〉 can be used as the order parameters for the spontaneous

breaking of the rotational SO(9) symmetry of the model. If the nine eigenvalues do not

approach a common value in the large-N limit, we conclude that the SO(9) symmetry is

spontaneously broken. From the Monte Carlo simulations of the model (5.1.15), it was

found [60] that the three eigenvalues 〈λi(t)〉 (i = 1, 2, 3) start to grow with t after a critical

time tc, which implies that the SO(9) symmetry is spontaneously broken down to SO(3)

for t > tc. (See refs. [88, 62] for a precise definition of the critical time tc, which we use

in this work.)

2In practice, the integer n can be determined by observing the scaling behavior for
∑

i |(Ai)ab|2 with

(a+ b)/2 fixed to different values corresponding to different time slices. See section 5 of ref. [62] for the

details.
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5.1.3 Expanding behaviors in the simplified models

It is interesting to investigate how the 3d space expands with time. For that, one clearly

needs to increase the matrix size, which is very time-consuming due to the existence of

the Pfaffian in (5.1.15). This led to the proposal of the simplified models, the VDM model

[88] and the bosonic model [62], which amounts to replacing the Pfaffian as

PfM(A) =⇒

∆(α)16 for the VDM model ,

1 for the bosonic model ,
(5.1.23)

where ∆(α) ≡∏N
a>b(αa−αb) is the van der Monde (VDM) determinant. This replacement

reduces the computational cost from O(N5) to O(N3), which enables simulations with

considerably large matrix size. These two models are expected to describe the qualitative

behaviors of the original model at early times and at late times, respectively.

In both these models, the spontaneous breaking of the SO(9) rotational symmetry

to SO(3) was observed after some critical time as in the original model, and the rate of

expansion at late times was investigated. In the VDM model, the extent of space R(t)

defined in (5.1.19) exhibits an exponential growth [88]

R(t) ∼ eΛt , (5.1.24)

which is reminiscent of inflation3 , and this behavior does not seem to change with in-

creasing t. In the bosonic model, on the other hand, the exponential expansion observed

at early times changes into a power-law expansion [62]

R(t) ∼ t1/2 (5.1.25)

at later times, which is reminiscent of the Friedmann-Robertson-Walker Universe at the

radiation dominated era. Based on these results, it has been speculated that the extent

of space R(t) in the original model shows an exponential growth at early times and a

power-law expansion at later times. If true, it implies that the e-folding or the duration

of the cosmic inflation may be determined dynamically in the original model.

5.2 Space-time structure of the matrix configurations

In this section, we investigate the space-time structure of the matrix configurations gen-

erated by the Monte Carlo simulation of the model (5.1.15) and the simplified models

(5.1.23).
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Figure 5.1: The extent of space R2(t)/R2(tc) (Top-Left) and the normalized eigenvalues

〈λi(t)〉/R2(tc) of Tij(t) (Top-Right) are plotted against time (t− tc)/R(tc) for the bosonic

model with N = 256, C = 100, κ = 1, p = 1.5 and the block size n = 18. Similarly,

the eigenvalues of Q(t)/R2(tc) (Middle-Left), the eigenvalues of Ā(1)(t)/R(tc) (Middle-

Right, Bottom-Left, the latter being the zoom-up version of the former), the eigenvalues

of Ā(4)(t)/R(tc) (Bottom-Right) are plotted against time (t− tc)/R(tc).
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5.2.1 Results for the bosonic model

In this subsection, we consider the bosonic model, which is a simplified model for the late

time behaviors. Let us first look at the basic quantities such as the extent of space R2(t)

and the eigenvalues 〈λi(t)〉 of Tij(t). In Fig. 5.1 we plot the extent of space R2(t)/R2(tc)

(Top-Left) and the normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) (Top-Right) against

(t − tc)/R(tc) for N = 256, C = 100, κ = 1.0 with the block size n = 18 in (5.1.19).

Here and for all the other plots in Fig. 5.1, we only present the results in the t < 0 region

since the results are symmetric4 under the time reflection t 7→ −t. The power p in the IR

cutoff (5.1.13) and (5.1.14) is chosen to be p = 1.5, which is found to be large enough to

make the results almost independent of p (See Appendix C.). Let us recall that R2(t) is

related to 〈λi(t)〉 through (5.1.22). While the extent of space R2(t)/R2(tc) grows with t

for t > tc, it is only three out of nine eigenvalues of Tij(t) that grow with t, which suggests

that the rotational SO(9) symmetry is broken spontaneously to SO(3). These results are

analogous to the previous results obtained for p = 1 [62].

The simplest way to probe the space-time structure is to define an n× n matrix

Q(t) ≡
9∑
i=1

(Āi(t))
2, (5.2.1)

which is invariant under SO(9) rotations. Let us denote its eigenvalues as qk(t) (k =

1, · · · , n) with the ordering

q1(t) < · · · < qn(t) . (5.2.2)

These eigenvalues tell us how the space spreads in the radial direction at each time t.

In Fig. 5.1 (Middle-Left), we plot the eigenvalues qk(t)/R
2(tc) against (t − tc)/R(tc).

We find that the two largest eigenvalues grow with t, but not the others. Let us note that

the eigenvalues of Q(t) are related to the extent of space R2(t) as

R2(t) =

〈
1

n
trQ(t)

〉
=

〈
1

n

n∑
k=1

qk(t)

〉
. (5.2.3)

This implies that the time-dependence of R2(t) seen in the Top-Left panel is caused only

by the two largest eigenvalues of Q(t).

Let us next discuss the space-time structure in the three extended directions and

the six shrunken directions separately. Since we are dealing with spontaneous symmetry

breaking, we need to choose the frame properly in order to distinguish these directions.

Suppose v
(i)
j (t) (j = 1, · · · , 9) are the normalized eigenvectors of the “moment of inertia

3This behavior was observed also in the original model [61] although the matrix size used was not

large enough to confirm the long-time behavior.
4This does not mean that the Big Crunch occurs in this model because the time difference between

the symmetric point t = 0 and the critical time t = tc seems to diverge in physical units in an appropriate

large-N limit. See section 5.2.3.
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tensor” (5.1.20) corresponding to the eigenvalues λi(t) with the ordering (5.1.21). Then,

we can define the n× n matrix corresponding to the spatial direction with the extent λi

as

Ā(i)(t) =
9∑
j=1

v
(i)
j (t) Āj(t) (5.2.4)

and its eigenvalues a
(i)
k (t) (k = 1, · · · , n) with the ordering

a
(i)
1 (t) < · · · < a(i)

n (t) . (5.2.5)

In Fig. 5.1 (Middle-Right), we plot the eigenvalues a
(1)
k (t)/R(tc) against (t− tc)/R(tc).

We find that only two eigenvalues a
(1)
1 (t) and a

(1)
n (t) grow in magnitude with time t, and

all the others remain close to zero. Similar behaviors are seen also for the eigenvalues

a
(2)
k (t) and a

(3)
k (t) obtained for the other extended directions. In Fig. 5.1 (Bottom-Left),

we zoom up the same plot to make visible the eigenvalues close to zero. In Fig. 5.1

(Bottom-Right), we plot the eigenvalues a
(4)
k (t)/R(tc) against (t − tc)/R(tc). We find

that all the eigenvalues remain close to zero. Similar behaviors are seen also for the

eigenvalues a
(5)
k (t), · · · , a(9)

k (t) obtained for the other shrunken directions. Comparing the

two plots at the bottom of Fig. 5.1, we notice that the eigenvalue distribution of Ā(i) is

almost identical for the extended directions and the shrunken directions except for the

two eigenvalues with large magnitude.

Similarly to (5.2.3), the eigenvalues of Ā(i)(t) are related to the extent of space λi(t)

in the ith direction as

λi(t) =
1

n

n∑
k=1

(
a

(i)
k (t)

)2

. (5.2.6)

Our observation implies that the spontaneous symmetry breaking of the SO(9) rotational

symmetry seen in the Top-Right panel is caused only by the two eigenvalues of Ā(i)(t)

with large magnitude.

5.2.2 Including fermionic contributions

In order to seek for the possibility to obtain a regular space-time, we repeat the analysis

in the previous subsection in the case of the original model (5.1.15) including fermionic

contributions. Since the cost of Monte Carlo simulations increases from O(N3) to O(N5),

here we restrict ourselves to a rather small matrix size N = 16.

In Fig. 5.2 we plot the same quantities as in Fig. 5.1 for the original model with

N = 16, C = 3.91, κ = 0.38 and the block size n = 6. The power p in the IR cutoff

(5.1.13) and (5.1.14) is chosen to be p = 1.6, which is found to be large enough to make

the results almost independent of p (See Appendix C.). These results are qualitatively the

same as those obtained for the bosonic model. While the fermionic matrices are expected

to play an important role in the properties of the model such as the expanding behavior,

they do not seem to affect the singular space-time structure.
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Figure 5.2: The extent of space R2(t)/R2(tc) (Top-Left) and the normalized eigenvalues

〈λi(t)〉/R2(tc) of Tij(t) (Top-Right) are plotted against time (t− tc)/R(tc) for the original

model with N = 16, C = 3.91, κ = 0.38, p = 1.6 and the block size n = 6. Similarly, the

eigenvalues of Q(t)/R2(tc) (Middle-Left), the eigenvalues of A(1)(t)/R(tc) (Middle-Right)

and the eigenvalues of A(4)(t)/R(tc) (Bottom) are plotted against time (t− tc)/R(tc).
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N C κ n ∆ ε

64 8.81 0.14 24 1.0990(16) 0.0550(1)

96 0 2.00 14 1.3811(41) 0.1151(3)

64 0 2.00 10 1.2726(63) 0.1591(8)

64 0 4.00 7 1.3762(87) 0.2752(17)

Table 5.1: The parameter sets (N , C, κ) used for the simulation of the VDM model are

listed. We also present the block size n, the “volume” ∆ and the “lattice spacing” ε

determined from the data for each parameter set.

5.2.3 Taking the continuum limit

As yet another possibility to obtain a regular space-time, let us consider taking the con-

tinuum limit. Here we use the VDM model, which is a simplified model for the early time

behaviors. In Fig. 5.3 (Top-Left), we plot the extent of space R2(t)/R2(tc) against time

(t− tc)/R(tc) for various N , C and κ with the block size n listed in table 5.1. The power

p in the IR cutoff (5.1.13) and (5.1.14) is chosen as p = 1.4 following ref. [87]. From this

plot, we observe a clear scaling behavior for (t− tc)/R(tc) . 0.40.

In Fig. 5.3 (Top-Right), we plot the normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) for

the VDM model with N = 96, C = 0 and κ = 2. Similar behaviors are obtained for the

other parameter sets. We find that three out of nine eigenvalues of Tij(t) grow with time,

which suggests that the rotational SO(9) symmetry is broken spontaneously to SO(3) for

t > tc. These results are similar to those obtained in refs. [88, 87].

In order to discuss the continuum limit, let us define the “volume” and the “lattice

spacing” in the temporal direction as [88]

∆ ≡ tpeak − tc
R (tc)

, ε ≡ ∆

ν
, (5.2.7)

where tpeak represents the position of the peak in R2(t) and ν is the number of data points

of R2(t) contained within tc < t ≤ tpeak. Roughly speaking, the lattice spacing ε represents

the average horizontal spacing between the adjacent data points of R2(t)/R2(tc). In

table 5.1, we present the volume ∆ and the lattice spacing ε obtained for each parameter

set (N,C, κ) used in Fig. 5.3. The deviation from the scaling behavior for (t− tc)/R(tc) >

0.40 seen in Fig. 5.3 can be understood either as the finite volume effects or as the finite

lattice spacing effects depending on the parameter set.

In what follows, we focus on the point (t − tc)/R(tc) ∼ 0.40, at which the results for

R2(t)/R2(tc) with the four parameter sets agree with each other. In Fig. 5.3 (Middle-

Left), we plot the normalized eigenvalues 〈qk(t)〉/R2(tc) (k = 1, · · · , n) of Q(t) against

their label (k−1)/(n−1) for the four parameter sets. This reveals a clear scaling behavior

except for the two largest eigenvalues, which grow as the lattice spacing ε decreases. Note

that the time dependence of R2(t)/R2(tc) is caused by the two largest eigenvalues of Q(t)
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Figure 5.3: (Top-Left) The extent of space R2(t)/R2(tc) is plotted against time (t −
tc)/R(tc) for the VDM model with the parameter sets (N , C, κ) and the block size n

listed in table 5.1. The power p in the IR cutoff (5.1.13) and (5.1.14) is chosen as p = 1.4.

(Top-Right) The normalized eigenvalues 〈λi(t)〉/R2(tc) of Tij(t) are plotted against time

(t−tc)/R(tc) for N = 96, C = 0, κ = 2. The eigenvalues of Q(t)/R2(tc) (Middle-Left), the

eigenvalues of Ā(1)(t)/R(tc) (Middle-Right) and the eigenvalues of Ā(4)(t)/R(tc) (Bottom)

obtained at (t − tc)/R(tc) ∼ 0.40 are plotted against their labels (k − 1)/(n − 1) for the

four parameter sets listed in table 5.1.
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Figure 5.4: (Left) The largest eigenvalue qn(t) of the matrix Q(t) obtained at (t −
tc)/R(tc) ∼ 0.40 and normalized by R2(tc) and n is plotted against 1/n. (Right) The

largest eigenvalue a
(1)
n (t) of the matrix Ā(1)(t) obtained at (t − tc)/R(tc) ∼ 0.40 and

normalized by R(tc) and
√
n is plotted against 1/n.

as we have seen in the previous subsections. Therefore, the scaling of R2(t)/R2(tc) implies

that the two largest eigenvalues of Q(t) should grow linearly in n in the continuum limit.

This is confirmed numerically in Fig. 5.4 (Left) assuming the presence of 1/n corrections.

Let us next consider the space-time structure in the extended directions and the

shrunken directions separately. In Fig. 5.3 (Middle-Right), we plot the eigenvalues of

Ā(1)(t)/R(tc) obtained at (t − tc)/R(tc) ≈ 0.40 against the label (k − 1)/(n − 1). Here

again we observe a clear scaling behavior except for the ones at both ends of the spectrum.

Similar behaviors are obtained for the other extended directions. According to the same

argument as in the previous paragraph, we can deduce that the normalized eigenvalues

at both ends of the spectrum grow in magnitude as O(
√
n) in the continuum limit, which

is confirmed in Fig. 5.4 (Right) assuming the presence of 1/n corrections.

In Fig. 5.3 (Bottom), we plot the eigenvalues of Ā(4)(t)/R(tc) obtained at (t−tc)/R(tc) ≈
0.40 against the label (k−1)/(n−1). We observe a clear scaling behavior here as well. In

fact, the eigenvalues are almost the same as those for the extended directions except for

the ones at both ends. Similar behaviors are obtained for the other shrunken directions.

Thus we find in the VDM model that the singular space-time structure becomes even

more pronounced in the continuum limit instead of getting milder. It is surprising that

the two eigenvalues of Ā(i)(t)/R(tc) (i = 1, 2, 3 ) actually diverges in the continuum

limit although the extent of space defined by R2(t)/R2(tc) remains finite. It is these

two eigenvalues that cause the spontaneous breaking of the SO(9) rotational symmetry

and the expansion of space. All the other eigenvalues of Ā(i)(t)/R(tc) remain finite and

contribute only to the time-independent SO(9) symmetric part of the “moment of inertia

tensor” Tij(t).
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5.2.4 The Pauli-matrix structure

In this subsection, we provide deeper understanding of the singular space-time structure

observed in the previous subsections. Let us work in the SU(n) basis which diagonalizes

Q(t) at each time t with the ordering (5.2.2), and consider the 2 × 2 submatrix Xi(t) in

the bottom-right corner of

Ā(i)(t) =

(
∗ ∗
∗ Xi(t)

)
(5.2.8)

for the extended directions i = 1, 2, 3. Here we use the VDM model with the parameter

sets given in table 5.1 and take the continuum limit focusing on the time (t− tc)/R(tc) ≈
0.40 as we did in section 5.2.3.

We show below that the three matrices Xi in (5.2.8) tend to satisfy the SU(2) Lie

algebra

[Xi, Xj] = icεijkXk (5.2.9)

for some real constant c in the continuum limit. In order to determine the optimal value

of c, we consider a quantity

S(c) ≡ tr(iεijk[Xi, Xj] + 2cXk)
2 , (5.2.10)

which represents the violation of the relation (5.2.9). The value of c that minimizes S(c)

can be readily obtained as

c̃ = −iεijktr(Xk[Xi, Xj])

2tr(X2
l )

. (5.2.11)

Using c = c̃ as the optimal value for each configuration, we investigate to what extent the

relation (5.2.9) is satisfied.

In Fig. 5.5, we show a scatter plot for the real part (Left) and the imaginary part

(Right) of each side of (5.2.9). The quantities on both sides are normalized by tr(X2
l ) so

that they become invariant under the scale transformation Xi 7→ const.Xi. We observe

that the data points tend to converge to the line y = x as one goes from the top to the

bottom corresponding to decreasing the lattice spacing ε (See table 5.1.). This shows that

the 2× 2 matrices Xi (i = 1, 2, 3) tend to satisfy (5.2.9) in the continuum limit.

Thus we conclude that the singular space-time structure observed for the matrix con-

figurations generated by simulations is essentially associated with the Pauli matrices. The

Pauli matrices may be regarded as the simplest matrix configuration that has SO(3) sym-

metry in the sense that their SO(3) rotation can be absorbed by an appropriate SU(N)

transformation. Given the situation characterized by the two large eigenvalues of Q(t),

the appearance of the Pauli-matrix structure may not be that surprising.
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Figure 5.5: (Left) A scatter plot for the real part x = Re(ic̃εijk(Xk)ab)/tr(X
2
l ) and

y = Re([Xi, Xj]ab)/tr(X
2
l ) of each side of (5.2.9) with (5.2.11) is shown for (i, j) =

(1, 2), (2, 3), (3, 1) and (a, b) = (1, 1), (1, 2), (2, 2) using 10 configurations obtained by simu-

lating the VDM model with the parameter sets given in table 5.1. The solid line represents

y = x. (Right) A scatter plot for the imaginary part x = Im(ic̃εijk(Xk)ab)/tr(X
2
l ) and

y = Im([Xi, Xj]ab)/tr(X
2
l ) of each side of (5.2.9) with (5.2.11) is shown in the same way.
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5.3 The new interpretation of the simulation

In this section, we attribute the observed Pauli-matrix structure to the approximation

involved in deriving the partition function (5.1.15), which was used in Monte Carlo simu-

lation. We point out a subtlety in the approximation, and argue that the approximation

amounts to replacing eiSb by eβSb in the original partition function (5.1.11). This new

interpretation of the simulation provides us with a natural understanding of the (3+1)d

expanding behavior with the Pauli-matrix structure discussed in section 5.2. We also

speculate on a possible scenario for the original model with the correct eiSb factor.

5.3.1 The “derivation” of the partition function (5.1.15)

Let us first review how one can obtain the partition function (5.1.15) used in Monte Carlo

simulation from the original partition function (5.1.11). (This was done in Appendix A

of ref. [88] for p = 1, but here we generalize it to arbitrary p.)

Note that the integrand of the partition function (5.1.11) involves a phase factor eiSb .

As is commonly done in integrating oscillating functions, we introduce the convergence

factor e−ε|Sb| and take the ε→ 0 limit after the integration.

The partition function can then be rewritten as

Z =

∫
dA

∫ L2p

0

d(rp) δ

(
1

N
Tr
{

(Ai)
2
}p − rp) θ(κprp − 1

N
Tr (A0)2p

)
eiSb−ε|Sb| PfM ,

(5.3.1)

where κ and L are the cutoff parameters introduced in (5.1.13) and (5.1.14), respectively.

Rescaling the variables Aµ 7→ r1/2Aµ in the integrand, we get

Z =

∫
dAPfM(A) f(Sb) δ

(
1

N
Tr {(Ai)2}p − 1

)
θ

(
κp − 1

N
Tr (A0)2p

)
. (5.3.2)

Here we have defined the function f(Sb) by

f(Sb) ≡
∫ L2p

0

d(rp) r9(N2−1)−1er
2(iSb−ε|Sb|) , (5.3.3)

which is a complex-valued function with the property f(−Sb) = f(Sb)∗.

For |Sb| � 1
L4 , the function can be well approximated by

f(Sb) ≈ p

9(N2 − 1) + p− 1
(L2)9(N2−1)+p−1 . (5.3.4)

For |Sb| & 1
L4 , on the other hand, the phase of the integrand in (5.3.3) starts to oscillate

violently in the region r & 1/
√
|Sb|, and hence the integral decreases rapidly in magnitude

for increasing |Sb|. In particular, the asymptotic behavior of f(Sb) for Sb � 1
L4 can be

estimated as

|f(Sb)|
f(0)

= Γ

(
9(N2 − 1) + p+ 1

2

) (
1

L4|Sb|

) 9(N2−1)+p−1
2

+O(e−εL
4|Sb|) (5.3.5)
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by deforming the integration contour in (5.3.3).

Recalling eq. (5.1.12), the condition |Sb| � 1
L4 for (5.3.4) can be rewritten as∣∣∣∣ 1

N
Tr (FµνF

µν)

∣∣∣∣� 4

NL4
. (5.3.6)

Therefore, assuming that the right-hand side 4
NL4 of (5.3.6) becomes small at large N , we

may make a replacement

f(Sb) =⇒ δ

(
1

N
Tr (FµνF

µν)

)
(5.3.7)

up to a normalization constant. For the bosonic model and the VDM model, one simply

has to replace the Pfaffian in (5.3.1) and (5.3.2) as (5.1.23).

5.3.2 Subtlety in the derivation and the new interpretation

The only step in the derivation that may go wrong is the replacement (5.3.7). The subtlety

in this replacement can be seen as follows. Note that the phase factor eiSb in the partition

function (5.1.11) favors configurations at which the bosonic action Sb is stationary. On

the other hand, the above approximation essentially replaces the phase factor eiSb by the

delta function δ(Sb), which amounts to picking up configurations at which Sb is stationary

only under rescaling Aµ 7→ const.Aµ. While it is true that |f(Sb)| is sharply peaked at

Sb = 0, the function f(Sb) is actually a complex-valued function, whose phase rotates

violently around Sb = 0. This effect of the phase should be responsible for favoring the

configurations at which Sb is stationary. The approximation ignores this effect completely,

and hence it cannot be justified.

If the model (5.1.15) is not equivalent to the original model (5.1.11), what kind of

model does it actually correspond to? Here we point out that the constraint on Sb that

appears in (5.1.15) may be regarded as the constraint one uses in defining a microcanonical

ensemble. From this viewpoint, we consider that the model (5.1.15) is actually equiva-

lent to the corresponding canonical ensemble with the Boltzmann weight eβSb . The real

parameter β depends on the parameter C in the constraint5. As we will see below, we

consider that the model (5.1.15) corresponds essentially to replacing eiSb by eβSb with

β > 0.

For β > 0, the first term in (5.1.12) that appears in eβSb favors configurations in which

A0 and Ai commute. This means that the spatial matrices Ai tend to become diagonal in

the SU(N) basis which diagonalizes A0. On the other hand, the second term in (5.1.12)

favors configurations in which the noncommutativity among the spatial matrices Ai is

large. The band-diagonal structure, which plays a crucial role in extracting the real-time

5This connection also provides clear justification of the renormalization-group-like method [88, 89],

which amounts to tuning the parameter C in order to obtain the late-time behaviors with smaller matrix

size.
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evolution as in section 5.1.2, can be understood as a consequence of the balance of these

two effects.

We can also understand the reason for the (3+1)d expanding behavior with the Pauli-

matrix structure. Here we assume that the first term in (5.1.12) is not important except

in realizing the band-diagonal structure and focus on the effect of the second term in

(5.1.12), which favors large Tr (Fij)
2, where Fij = i [Ai, Aj]. We also have to take into

account the constraint 1
N

Tr
{

(Ai)
2}p = 1, where we set p = 1 in what follows.

Simplifying the band-diagonal structure of the spatial matrices Ai (i = 1, · · · , 9), we

consider the block-diagonal structure given as

Ai =


Ā

(1)
i

Ā
(2)
i

. . .

Ā
(B)
i

 , (5.3.8)

where n is the common block size and B is the number of blocks satisfying N = nB.

Within this ansatz, we would like to maximize Tr (Fij)
2 under the constraint 1

N
Tr (Ai)

2 =

1. Note that we have

1

N
Tr (Ai)

2 =
1

B

B∑
b=1

1

n
Tr (Ā

(b)
i )2 , (5.3.9)

1

N
Tr (Fij)

2 =
1

B

B∑
b=1

1

n
Tr (F̄

(b)
ij )2 , (5.3.10)

where we have defined F̄
(b)
ij = i[Ā

(b)
i , Ā

(b)
j ] for each block b.

Let us solve the maximization problem in two steps. First we fix

1

n
Tr (Ā

(b)
i )2 = (rb)

2 , (5.3.11)

1

B

B∑
b=1

(rb)
2 = 1 , (5.3.12)

and maximize Tr (Fij)
2 under this constraint. Following the discussion given in ref. [60],

the solution to this first maximization problem can be written in terms of the Pauli

matrices σi as

Ā
(b)
i =

1√
6
rb(σi ⊕ 0n−2) , (5.3.13)

for i = 1, 2, 3 and Ā
(b)
i = 0 otherwise, up to the symmetries of the problem such as the

SO(9) rotational symmetry and the SU(n) symmetry within each block. The value of

Tr (Fij)
2 for (5.3.13) is given as

Tr (Fij)
2 =

2

3

B∑
b=1

(rb)
4 . (5.3.14)
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As the second step of the maximization, we maximize (5.3.14) under the constraint

(5.3.12). The maximum is given when all but one of the rb’s are zero.

In reality, one should also take into account the entropic factor due to quantum fluc-

tuations, which is expected to favor certain distribution of rb. Due to the time-reversal

symmetry A0 7→ −A0 of the model, the most natural distribution would be that rb is

large around t = 0 and decreases with |t|. Thus we can understand the appearance of the

(3+1)d expanding behavior with the Pauli-matrix structure.
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Chapter 6

Complex Langevin simulation of the

Lorentzian type IIB matrix model

We use the CLM to overcome the sign problem instead of the approximation which was

used so far. Since the sign problem is severe for the Lorentzian model, we generalize the

model by introducing two parameters which are related to the Wick rotation on the world

sheet and that in the target space. We apply the CLM to the generalized model.

6.1 Generalization of the model

The partition function of the generalized model is given by

Z =

∫
dAdψe−S̃ δ

(
1

N
Tr (A0)2 − κ

)
δ

(
1

N
Tr (Ai)

2 − 1

)
, (6.1.1)

S̃ = S̃b + S̃f , (6.1.2)

where β = 1/(g2N). S̃b and S̃f are the bosonic and fermionic part of the action respec-

tively. The bosonic part and the fermionic part are defined as

S̃b = −iNβeisπ/2
(
−1

2
e−ikπTr (F0i)

2 +
1

4
Tr (Fij)

2

)
,

S̃f = −iNβeisπ/2
(
−1

2
e−ikπ/2ψ̄Γ0[A0, ψ] +

1

2
ψ̄Γi[Ai, ψ]

)
,

(6.1.3)

where Fµν = i[Aµ, Aν ], e
isπ/2 comes from the Wick rotation on the world sheet, and e−ikπ/2

comes from the Wick rotation in the target space as A0 → e−ikπ/2A0.

After the path integration for the fermionic matrices, the partition function is rewritten

as

Z =

∫
dAdψe−S̃eff δ

(
1

N
Tr (A0)2 − κ

)
δ

(
1

N
Tr (Ai)

2 − 1

)
,

S̃eff = −iNβeisπ/2S̃b − log PfM(e−ikπ/2A0, Ai),

(6.1.4)
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where M(e−ikπ/2A0, Ai) is the Dirac operator which acts on the fermionic matrices ψ.

The Pfaffian PfM is complex in general.

The Lorentzian model corresponds to setting (s, k) = (0, 0), whereas the Euclidean

model corresponds to setting (s, k) = (1, 1). Note that the approximation (5.3.7) corre-

sponds to setting (s, k) = (−1, 0) where the sign problem is absent.

6.2 Complex Langevin simulation of the model

In the CLM, since it is difficult to impose the cutoffs by using the usual way, we choose

an alternative way to impose the cutoffs which are explained in 6.2.1. In our simulations,

we choose an SU(N) basis as (5.1.16) which diagonalizes the temporal matrix. Therefore,

in 6.2.2, we explain how to realize the order of diagonal elements of the temporal matrix

in the simulations. At the end of this section 6.2.3, we explain the application of CLM to

the generalized model.

6.2.1 Treatment of the cutoffs

In the previous works, quadratic functions are used to impose two cutoffs as

δ

(
1

N
Tr (A0)2 − κ

)
δ

(
1

N
Tr (Ai)

2 − 1

)
→ e−Spot ,

Spot =
1

2
cs(

1

N
Tr (A0)2 − κ)2 +

1

2
ct(

1

N
Tr (Ai)

2 − 1)2,

(6.2.1)

where cs and ct are the some constants. In order to impose the cutoffs correctly, we

need to use very large coefficients for the quadratic functions. However, these very large

coefficients sometimes cause very large drift terms. If these large drifts appear frequently

in the complex Langevin simulations, the criterion for the correct convergence is not

satisfied. Therefore, we treat the cutoffs by using another way.

Actually, by the change of variables, we can impose the cutoffs correctly. First, we

introduce two auxiliary variables u and v, and rewrite the partition function as

Z =

∫ ∞
0

dudv

∫
dAdψupvqe−f(u)−g(v)e−S̃eff(A0,Ai)

× δ
(

1

N
Tr (A0)2 − κ

)
δ

(
1

N
Tr (Ai)

2 − 1

)
,

(6.2.2)

where p and q are some positive constants, and f(u) and g(v) should be chosen so that

the integrations for u and v converge.

Next, we make a change the variables as

X0 =

√
u

κ
A0, Xi =

√
vAi. (6.2.3)
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The measure becomes

dX =

(
u

κ

) 1
2
N2

v
1
2

(D−1)N2

dA, (6.2.4)

and the constraints become

δ

(
1

N
Tr (A0)2 − κ

)
=
u

κ
δ

(
1

N
Tr (X0)2 − u

)
,

δ

(
1

N
Tr (Ai)

2 − 1

)
= v δ

(
1

N
Tr (Xi)

2 − v
)
.

(6.2.5)

When we choose p = 1
2
N2 − 1 and q = 1

2
(D − 1)N2 − 1 the exponents of u and v vanish.

Therefore the partition function becomes

Z =

∫ ∞
0

dudv

∫
dXdψκ

1
2
N2−1e−f(u)−g(v)e−S̃eff(

√
κ/uX0,

√
1/vXi)

× δ
(

1

N
Tr (X0)2 − u

)
δ

(
1

N
Tr (Xi)

2 − v
)
.

(6.2.6)

After Integrations of u and v, we obtain

Z =

∫
dXdψe−S,

S = S̃

( √
κX0√

1
N

Tr (X0)2
,

Xi√
1
N

Tr (Xi)2

)
+ f
( 1

N
Tr (X0)2

)
+ g
( 1

N
Tr (Xi)

2
) (6.2.7)

where we neglect an irrelevant overall factor. In this work, we choose f(x) = g(x) = 1
2
N2x

because we can obtain the analytic results for this choice. We will show the analytic results

later.

6.2.2 A way to realize the order of diagonal elements of the

temporal matrix.

We use SU(N) symmetry to diagonalize the temporal matrix X0 as

X0 = diag(x1, x2, ..., xN), where x1 < x2 < · · · < xN . (6.2.8)

By using “the gauge fixing”, we can rewrite the partition function as

Z =

∫ N∏
a=1

dxa∆(x)2

∫
dAie

−S,

∆(x) =
N∏
a>b

(xa − xb),
(6.2.9)

where ∆(x) is the van der Monde determinant.
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In order to to realize the order (6.2.8), we use a method which is proposed in [90]. We

perform the change of variable by introducing new variables τa as

x1 = 0, x2 = eτ1 , x3 = eτ1 + eτ2 , ..., xN =
N−1∑
a=1

eτa , (6.2.10)

where we use the shift symmetry1 to setting x1 = 0. By treating the τa as dynamical

variables, the order of the diagonal elements of X0 is automatically realized. The effective

action becomes

Seff = Nβe−i
π
2

(1−s)

1

2
e−ikπ

κTr [X0, Xi]
2

1
N

Tr
(
X̃0

)2
1
N

Tr (Xi)
2
− 1

4

Tr [Xi, Xj]
2(

1
N

Tr (Xi)
2)2


+

1

2
N Tr

(
X̃0

)2

+
1

2
N Tr (Xi)

2 − 2 log ∆(x)−
N−1∑
a=1

τa,

(6.2.11)

where the last term comes from the change of the variables (6.2.10), and X̃0 = X0 −
1
N

Tr (X0). We can obtain the exact results for X0 and Xi as〈
1

N
Tr (X̃0)2

〉
= 1− 1

N2
,〈

1

N
Tr (Xi)

2

〉
= D − 1.

(6.2.12)

These analytic results can be used as a validity check for complex Langevin simulations.

When we calculate observables, we should use Aµ which are obtained from Xµ by

rescaling as

A0 =

√
κX̃0√

1
N

Tr (X̃0)2

, Ai =
Xi√

1
N

Tr (Xi)2
. (6.2.13)

6.2.3 Application of the CLM

First of all we extend the degrees of freedom of the dynamical variables which correspond

to Xi ∈ SU(N)→ Xi ∈ SL(N,C) and τa ∈ R→ τa ∈ C. These variables are updated by

the following complex Langevin equations:

dτa
dtL

= −∂Seff

∂τa
+ ηa(tL),

d(Xi)ab
dtL

= − ∂Seff

∂(Xi)ba
+ (ηi)ab(tL),

(6.2.14)

where tL is a fictitious time for the Langevin simulations, and η are Gaussian noises. The

drift terms ∂Seff

∂τa
and ∂Seff

∂(Xi)ba
are defined first for the real variables τa and the Hermitian

1The action (6.1.2) is invariant under the shift of A0: A0 → A0 + c1, where c ∈ R is some constant.
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matrices Xi, and then it is defined for the complexified variables τa and Xi by analytic

continuation in order to respect holomorphicity.

The drift terms are given explicitly as

∂Seff

∂τa
=βe−i

π
2

(1−s)e−ikπ
κ

L
eτa{

−2N

K

N∑
b=a+1

∑
c 6=b

(xb − xc) (Xi)bc (Xi)cb

+
1

K2

N∑
b=a+1

(
xb −

1

N

∑
c

xc

)∑
de

(xd − xe)2 (Xi)de (Xi)ed

}

− eτa
N∑

b=a+1

∑
c 6=b

2

xb − xc
− 1 +Neτa

N∑
b=a+1

(
xb −

1

N

∑
c

xc

)
,

(6.2.15)

∂Seff

∂ (Xi)ba
=− βe−iπ2 (1−s)e−ikπ

κ

K{
N

L
[X0, [X0, Xi]]ab +

Tr [X0, Xj]
2

L2
(Xi)ab

}

+ βe−i
π
2

(1−s)

{
N [Xj, [Xj, Xi]]ab

L2
+

Tr [Xj, Xk]
2

L3
(Xi)ab

}
+N (Xi)ab ,

(6.2.16)

where we define

K =
1

N
Tr (X̃0)2 =

1

N

N∑
a=1

(xa)
2 −

(
1

N

N∑
a=1

xa

)2

, (6.2.17)

L =
1

N
Tr (Xi)

2. (6.2.18)

6.2.4 Hermiticity of the extended matrices

In the simulations, we calculate a quantity that measures how the extended matrices Xi
are far from Hermitian matrices as an indication for the excursion problem. Here, we

define the Hermiticity norm as

H =
−Tr (Xi −X †i )2

4Tr (X †i Xi)
, (6.2.19)

whose lower bound is 0 and the upper bound is 1. This quantity becomes 0 for Hermitian

matrices and 1 for anti-Hermitian matrices. Note that, in our simulation, since we fix the

gauge to diagonalize X0, we cannot use the gauge cooling technique.
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6.2.5 Adaptive step size

In order to avoid the excursion problem, we use the adaptive step size algorithm in the

simulations. We modify the Langevin step size depending on the magnitude for drift

terms as

∆t =

{
∆t0 for u < v0 ,
v0

u
∆t0 otherwise ,

(6.2.20)

where ∆t0 is a default step size, v0 is a threshold for the algorithm, and u is defined as

u = max (uτ , us),

uτ =

√√√√ 1

N3

N−1∑
a=1

∣∣∣∣∂Seff

∂τa

∣∣∣∣2,
us =

√√√√ 1

N3(D − 1)

D−1∑
i=1

N∑
a=1

N∑
b=1

∣∣∣∣ ∂Seff

∂(Xi)ab

∣∣∣∣2.
(6.2.21)

In this work, we set v0 = 10 because we found that the typical value is O(1).

6.3 Results

In this section, we will show the results for a simplified model and the original model.

Note that the observables which we will show later are snapshots obtained by the final

configuration for each simulation.

6.3.1 Results for the 10D bosonic model

Here, we study the bosonic model, which is a simplified model obtained by omitting the

fermionic part S̃f from the action (6.1.2). In the simulations for the bosonic model, we

use the 2nd-order RK algorithm to reduce the finite step size effects.

First we set k = 0 which means that the signature in the target space is the Lorentzian.

We find that the complex Langevin simulations starting from the Pauli-matrix configura-

tions which are obtained at s = −1 seem to be unstable at s 6= −1. In Fig. 6.1, we plot

the results for N = 32 case. The Hermiticity norm gradually increases and finally reaches

0.5. In this case, the drift histogram has a long tail, which means that the criterion for

the correct convergence of the CLM is not satisfied. In Fig. 6.2, we plot the results for

N = 256 case. Although the Hermiticity norm has not reached 0.5 so far, the norm is

gradually increasing. Moreover, there is no tendency for the norm to be stable at some

small value which is less than 0.5. It is possible that if one continues the simulation for

a long time, the norm finally reaches 0.5. Therefore, we expect that this simulation is

unstable.
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Figure 6.1: We plot the results for the bosonic model with N = 32, β = 2.5, κ = 0.4

and (s, k) = (−0.8, 0). The simulation starts from the Pauli-matrix configuration which

is obtained from a simulation at (s, k) = (−1, 0) with the same parameter setting. (Left)

A Hermiticity norm is plotted against the Langevin time. The norm gradually increases

and finally reaches 0.5. (Right) We plot a histogram of the drift terms. We can see a long

tail in the histogram.
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Figure 6.2: We plot the results for the bosonic model with N = 256, β = 2.5, κ = 1.0

and (s, k) = (−0.8, 0). The simulation starts from the Pauli-matrix configuration which

is obtained from a simulation at (s, k) = (−1, 0) with the same parameter setting. A

Hermiticity norm is plotted against the Langevin time. We cannot see a tendency for the

norm to be stable at some small value which is less than 0.5.
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Figure 6.3: We plot the results for the bosonic model with N = 32, β = 2.5, κ = 0.8 and

(s, k) = (−0.8, 0). (Top-Left) A history of the Hermiticity norm where the horizontal axis

is the Langevin time. The Hermiticity seems to be controlled. (Top-Right) A histogram of

the drift term. This histogram falls off faster than exponential which means the criterion

for the correct convergence is satisfied. (Middle-Left) We plot the real and imaginary part

of R2(t) against the time. (Middle-Right) The eigenvalues of Q(t) are plotted against time.

This plot shows that the space is continuous. (Bottom) We plot the eigenvalues of Tij(t)

which shows that there is no SSB of SO(9).
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On the other hand, when simulations start from scratch at s = −0.8, the CLM works

well. In Fig. 6.3 (Top-Left), we plot a history of the Hermiticity norm which is stable

for a long time at a small value. Therefore, the excursion problem does not occur in this

simulation. In Fig. 6.3 (Top-Right), we plot the histogram of the drift terms which falls

off very quickly. This means that the criterion for correct convergence is satisfied. We

show the extent of space R2(t) whose definition is (5.1.19) in Fig. 6.3 (Middle-Left). The

space slightly expands as time proceeds. In Fig. 6.3 (Middle-Right) and (Bottom), we

also show the eigenvalues of the moment of inertia tensor Tij(t) defined by (5.1.20) and

the eigenvalus of Q(t) defined by (5.2.1). When we calculate Tij(t) and Q(t), instead of

Āi(t), we use Hermitian matrices ĀHerm
i (t) which are defined as

ĀHerm
i (t) =

1

2

(
Āi(t) + Ā†i (t)

)
, (6.3.1)

where Ai are obtained by rescaling Xi as (6.2.13), and Āi(t) is the block matrices defined

like (5.1.17). Since the Hermiticity norm is very small, using these Hermitian matrices is

a good approximation. The spectrum for the eigenvalues of Q(t) looks very continuous,

therefore the space continuously spreads in the radial direction. However, the 9 eigenvalues

of Tij(t) are almost the same value, therefore the SO(9) symmetry is preserved. We also

found that this new phase appears at N = 128 (see Fig. 6.4).

We increase s to approach the Lorentzian model. In Fig. 6.5, we show the results for

various values of s. We found that the CLM works well even at the Lorentzian model.

We also found that the shape of R2(t) changes from a bell-shaped curve to a parabola like

curve which we have seen in the classical solutions [91]. In Fig. 6.6, we plots the results

of the s = 0 case. At least, in this parameter choice (β = 2.5 and κ = 0.8), we cannot see

the SSB of SO(9) even if we reach the Lorentzian model.

It is possible that the reason for no SSB of the SO(9) is the parameter choice for β and

κ. When we decrease β or κ, although the criterion for correct convergence is satisfied,

the SSB does not occur. Therefore, we try to increase β or κ at N = 128. However, in

the large β or the large κ region, the criterion is not satisfied.

This no SSB behavior reminds us of results for the Euclidean bosonic model case in

which there is no SSB of SO(10) [59]. Therefore, we study whether this new phase is

smoothly connected to (s, k) = (1, 1) which corresponds to the Euclidean model with the

constraints2.

In Fig. 6.7 and Fig. 6.8, we plot the results at k = s line which lineally connects the

Lorentzian case and the Euclidean case. We find that there are no qualitative differences

between them. Therefore this new phase which we found at (s, k) = (0, 0) is smoothly

connected to the Euclidean case.

2Actually, the Euclidean model is well defined without the cutoffs. Therefore, strictly speaking, the

generalized model at (s, k) = (1, 1) is not the Euclidean type IIB matrix model.
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Figure 6.4: We plot the results for the bosonic model with N = 128, β = 2.5, κ = 0.8 and

(s, k) = (−0.8, 0). (Top-Left) The history of the Hermiticity norm where the horizontal

axis is the Langevin time. The Hermiticity seems to be controlled. (Top-Right) The

histogram of the drift term. This histogram falls off faster than exponential which means

the criterion for the correct convergence is satisfied. (Middle-Left) We plot the real and

imaginary part of R2(t) against the time. There is a little expansion. (Middle-Right) The

eigenvalues of Q(t) are plotted against time. This plot shows that the space is continuous.

(Bottom) We plot the eigenvalues of Tij(t) which shows that there is no SSB of SO(9).
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Figure 6.5: We plot the R2(t) against time for the bosonic model with N = 128, β =

2.5, κ = 0.8, and k = 0. (Top-Left), (Top-right), (Bottom-Left), and (Bottom-right)

correspond to s = −0.8,−0.6,−0.4, and 0 respectively.
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Figure 6.6: We plot the results for the bosonic model with N = 128, β = 2.5, κ = 0.8 and

(s, k) = (0, 0). (Top-Left) A history of the Hermiticity norm where the horizontal axis is

the Langevin time. The Hermiticity seems to be controlled. (Top-Right) A histogram of

the drift term. This histogram falls off faster than exponential which means the criterion

for the correct convergence is satisfied. (Middle-Left) We plot the real and imaginary part

of the R2(t) against the time. There is a little expansion. (Middle-Right) The eigenvalues

of Q(t) are plotted against time. This plot shows that the space is continuous. (Bottom)

We plot the eigenvalues of Tij(t) which shows that there is no SSB of SO(9).
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Figure 6.7: We plot the eigenvalues of Q(t) against time for the bosonic model with

N = 32, β = 1.4, and κ = 1.0. (Top-Left), (Top-right), (Bottom-Left), and (Bottom-

right) correspond to s = k = 0, 0.3, 0.7, and 1 respectively.
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Figure 6.8: We plot the eigenvalues of Tij(t) against time for the bosonic model with

N = 32, β = 1.4, and κ = 1.0. (Top-Left), (Top-right), (Bottom-Left), and (Bottom-

right) correspond to s = k = 0, 0.3, 0.7, and 1 respectively.
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6.3.2 Effects from the fermionic part

In the Euclidean type IIB matrix model, the phase of the Pfaffian plays an essential role

in the SSB of the rotational SO(10) symmetry [59]. Therefore, it is expected that the

Pfaffian plays an important role also in the Lorentzian type IIB matrix model.

When some of the eigenvalues of the Dirac operator approach 0 the drift term becomes

very large. The appearance of such drift terms causes the failure of the CLM. This

problem is known as the singular drift problem. In order to avoid this problem, usually,

the deformation term is added to the action. The suitable deformation term depends on

the model, especially the spectrum of the Dirac operator.

Here we focus on the 6d type IIB matrix model due to the numerical cost. In the

6d model, after the integration for the fermionic matrices, the determinant of the Dirac

operator appears instead of Pfaffian which appears in the 10d case. In the Lorentzian

type IIB matrix model, the Dirac operator is defined as

M(e−ikπ/2A0,Ai) := −Γ0[e−ikπ/2A0 , · ] + Γi[Ai , · ], (6.3.2)

where matrices Γµ are constructed from Pauli matrices σi as

Γ0 = 1⊗ 1, Γ1 = σ1 ⊗ σ2, Γ2 = σ2 ⊗ σ2

Γ3 = σ3 ⊗ σ2, Γ4 = 1⊗ σ2, ,Γ5 = 1⊗ σ3.
(6.3.3)

When the matrices Aµ are Hermitian A†µ = Aµ this Dirac operator satisfies the following

relation:

M(e−ikπ/2A0,Ai) =M†(e−ikπ/2A0,Ai). (6.3.4)

Therefore the eigenvalues of the Dirac operator are real.

In this case, a suitable deformation term is

imfΓ0ψ̄ψ (6.3.5)

where mf ∈ R is called as the deformation parameter. By adding this term to the action,

the eigenvalues of the Dirac operator shift to the imaginary direction. As a result, we

can avoid the singular drift problem. Since this term modifies the theory, taking mf → 0

limit is needed.

In Fig. 6.9 and Fig. 6.10, we plot the results at s = k line for the mf = 5 case. We

find that there is no qualitative difference between them. Moreover, we cannot see the

qualitative differences between the results obtained for the bosonic model and that for

the fermionic model. We expect that the reason is the large deformation parameter. We

plot the results for the mf = 2 and mf = 1 cases in Fig. 6.11, the results are almost the

same as the results for mf = 5 case. Therefore, we consider that mf = 1 is still large to

see the fermionic effects.

In Fig. 6.12, we plot the eigenvalues of the Dirac operator. We find that the average

of the imaginary part of the eigenvalues is close to the values of mf . Note that, since
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Figure 6.9: We plot the eigenvalues of Q(t) against time for the 6d model with N = 32

and mf = 5. (Top-Left), (Top-right), (Bottom-Left), and (Bottom-right) correspond to

s = k = 0, 0.3, 0.7, and 1 respectively.
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Figure 6.10: We plot the eigenvalues of Tij(t) against time for the 6d model with N = 32

and mf = 5. (Top-Left), (Top-right), (Bottom-Left), and (Bottom-right) correspond to

s = k = 0, 0.3, 0.7, and 1 respectively.
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Figure 6.11: The results for the 6d model with N = 32. We plot the eigenvalues of

Q(t) in (Top) and the eigenvalues of Tij(t) against time in (Bottom). (Left) and (Right)

correspond to mf = 2, and 1 respectively.
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Figure 6.12: The results for the 6d model with N = 32. (Top) The eigenvalues of

M(e−ikπ/2A0,Ai) where the horizontal and vertical axes correspond to real and imaginary

part of the eigenvalues respectively. (Bottom) We plot the Hermiticity norm against the

Langevin time. (Left) and (Right) correspond to mf = 2, and 1 respectively.

the matrices Aµ are deviated from being Hermitian, the eigenvalues are distributed with

some width in the imaginary direction. Even at mf = 1, the near-zero eigenvalues do not

appear. Therefore it is possible to decrease mf more.

90



Chapter 7

Summary and discussions

In this thesis, we applied the CLM to gauge theories with a θ term and the Lorentzian

type IIB matrix model.

7.1 Gauge theories with a θ term

7.1.1 2D U(1) lattice gauge theory with a θ term

In this work, we have made an attempt to apply the CLM to gauge theories with a θ

term. As a first step, we applied the CLM to the 2D U(1) case, which is exactly solvable

on a finite lattice with various boundary conditions. We find that a naive implementation

of the method fails due to the topological nature of the θ term.

While the gauge configurations are complexified in the CLM, one can still define

the notion of topological sectors by ReQlog ∈ Z. When a transition between different

topological sectors occurs, one of the plaquettes has to cross the branch cut inevitably,

which causes the appearance of large drift terms. This indeed happens at small β, where

we find that the criterion for correct convergence of the CLM is not satisfied. Increasing

β makes all the plaquettes close to unity. The large drift terms do not appear in this

case, and the criterion for correct convergence of the CLM is satisfied. However, the

topology change does not occur during the simulation and the ergodicity is violated.

This is analogous to the topology freezing problem, which is known to occur for θ = 0.

The results obtained in this case correspond to the expectation values for an ensemble

restricted to a particular topological sector specified by the initial configuration.

In order to avoid this problem, we have considered the punctured model, which can

be obtained by removing one plaquette from the action, both from the gauge action and

from the θ term. While the quantity ReQlog is no more restricted to integer values, we

can still formally classify the complexified configurations into “topological sectors” by

adding back the contribution of the removed plaquette to ReQlog. Even for large β, the

removed plaquette can cross the branch cut easily, which results in frequent transitions

91



between different “topological sectors”. Note also that, as far as β is sufficiently large, all

the other plaquettes are close to unity, and hence large drift terms do not appear. Thus

the criterion for correct convergence of the CLM can be satisfied by simply approaching

the continuum limit without causing the topology freezing problem. Indeed our results

obtained by the CLM for the punctured model reproduce the exact results even at large

θ.

In the case of the punctured model, the drift term from the θ term appears only for

the link variables composing the removed plaquette, and it is given by ±i θ
2π

, which causes

multiplication by a constant factor e∓∆t θ
2π to these link variables at each Langevin step.

The local unitarity norm of these link variables grows exponentially at early Langevin

times, but it saturates at some point to some constant, which increases exponentially for

large |θ|Vphys. We have seen that the CLM works perfectly even in this situation as far

as β is sufficiently large. This provides a counterexample to the common wisdom that

the CLM fails when the unitarity norm becomes large. Thus our results also give us new

insights into the method itself.

The punctured model is actually equivalent to the non-punctured model in the infinite

volume limit for |θ| < π. In that limit, the topological charge can take arbitrarily large

values, so the discretization of Q to integers is no more important. This equivalence has

been confirmed explicitly by obtaining exact results for the punctured model. In fact, the

exact results also reveal the absence of finite volume effects in the punctured model as

opposed to the non-punctured model, which exhibits sizable finite volume effects around

θ ∼ π. It is conceivable that the smearing of the topological charge somehow results in the

reduction of finite volume effects. If so, a similar conclusion should hold more generally.

7.1.2 4D SU(2) lattice gauge theory with a θ term

Since the application of the CLM to the 2D U(1) case was successful, we next applied

the CLM to the SU(2) gauge theory with a θ term. First, we naively applied the CLM

to the theory. At very small β, the topological charge freely changes during a simulation,

however, the criterion for the correct convergence of the CLM is not satisfied. In 4D

SU(2) case, unlike in the 2D U(1) case, there is a region for β where the simulations are

free from both the topology freezing problem and the wrong convergence. At β = 3.25,

the criterion is satisfied for |θ| ≤ 2π, however we cannot see the 2π periodicity which the

theory has. A possible reason for the absence of 2π periodicity is the UV fluctuations.

The fluctuations hinder the appearance of the comb-shaped distribution of the topological

charge, as a result, the 2π periodicity does not appear.

One of the ways to reduce the UV fluctuations is using the cooling procedure such

as the gradient flow. We applied the gradient flow for θ = 0 case, and then we saw

the appearance of the comb-shaped distribution of the topological charge. However, we

cannot use the gradient flow in the CLM because this procedure is cannot be justified in
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the method. Another way to reduce the UV fluctuations is decreasing the lattice spacing

a, which corresponds to increasing β. However, we found that the topology freezing

problem occurs at large β.

It is known that the open boundary conditions alleviate the topology freezing problem,

however, as a drawback, the strong finite volume effects appear. Therefore, we tried to

solve the problem by imposing the open boundary condition for only one of the spatial

directions. At β = 6, we found that the topology freezing is alleviated, however, the

alleviation is not enough. Thus, we imposed the open boundary condition for all spatial

directions, and we found that the topology freezing is milder than that for the case of

open boundary for a spatial direction.

We apply the CLM to the theory with the open boundary condition for all spatial

directions and found that the criterion is satisfied for |θ| < 2π. In order to study phase

structure, we measured the Im Q which is an order parameter for the SSB of the CP

symmetry, and the result shows that the Im Q 6= 0 at θ = π in the deconfined region. It

seems that this result naively implies the CP symmetry is spontaneously broken there.

There are two possibilities. One is that critical temperatures satisfy Tdec(θ = π) < TCP,

and the other is that we cannot see the CP restoration due to the finite volume effects

and the finite lattice spacing effects.

In order to study the finite volume effects, we performed the simulation for various

spatial volume up to L3
s = 803. We cannot see the finite volume scaling so far, therefore,

we need to increase Ls more to take the extrapolation for infinite volume limit. Since

the CLM works well at sufficiently large θ, we expect that the phase diagram can be

determined by the complex Langevin simulations if we take the infinite volume and the

continuum limits.

7.2 The Lorentzian type IIB matrix model

7.2.1 On the emergence of the space-time structure in the type

IIB matrix model

In this work, we have investigated the space-time structure of the matrix configurations

obtained in Monte Carlo studies of the Lorentzian type IIB matrix model and the sim-

plified models. In these models, the time-evolution can be extracted from the matrix

configurations by working in the SU(N) basis which diagonalizes the temporal matrix A0.

The n×n spatial submatrices Āi(t) (i = 1, · · · , 9) at each time t show that only three out

of nine directions expand after some critical time suggesting the SSB of rotational SO(9)

symmetry to SO(3). By calculating the eigenvalues of Āi(t) at each t, however, we have

found that only two of them increase in magnitude with t in the extended directions, while

the rest are independent of t and SO(9) symmetric. This implies that the SSB is caused
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only by the two eigenvalues. In the continuum limit, the magnitude of the two eigenvalues

diverges in physical units and the spatial matrices Āi(t) approach a configuration which

is essentially described by the Pauli matrices.

We have attributed this problem to the approximation used in Monte Carlo simulation

to avoid the sign problem, which actually amounts to replacing eiSb by eβSb in the partition

function (5.1.11) of the Lorentzian type IIB matrix model. This new interpretation of the

Monte Carlo simulation enables us to understand the interesting aspects of the obtained

results such as the band-diagonal structure of the spatial matrices Ai as well as the

appearance of the (3+1)d expanding behavior with the Pauli-matrix structure.

7.2.2 Complex Langevin simulation of the Lorentzian type IIB

matrix model

In order to treat the weight eiSb appropriately, we applied the CLM instead of the ap-

proximation. We generalized the model by introducing two parameters s and k which

are related to the Wick rotation on the world sheet and that in target space respectively.

This generalized model interpolates among the Lorentzian case, the Euclidean case, and

a model with eβSb , which correspond to setting (s, k) = (0, 0), (1, 1), and (−1, 0) respec-

tively.

In the complex Langevin simulation, when we use quadratic functions for the IR

cutoffs, we need to use large coefficients, which sometimes results in the appearance of

large drift terms. If these large drift terms appear frequently, the criterion for the correct

convergence of the CLM is not satisfied. Therefore, we improved the treatment of the

cutoffs by changes of the variables (6.2.3).

We first applied the CLM to the bosonic version of the generalized model which is

obtained by neglecting the fermionic part in S̃. We found that, in (s, k) 6= (−1, 0) case, if

the simulation starts from a configuration obtained from a simulation at (s, k) = (−1, 0)

then the excursion problem occurs, as a result, the criterion for the correct convergence

of the CLM was not satisfied for small matrix size case (N = 32). In the N = 256

case, although the excursion has not been horrible so far, however, if one continues the

simulation for a long time the excursion problem might occur. In other words, the singular

structure phase which we observed in a model with the weight eβSb seems to be unstable

at the Lorentzian case.

On the other hand, when the complex Langevin simulation started from scratch the

CLM worked well and a new phase appeared. In a new phase, the space is continuous

but the spontaneously breaking of the SO(9) symmetry doesn’t occur in our preliminary

studies. The behaviors in the new phase remind us of the Euclidean bosonic case in which

the SO(9) does not break spontaneously. In order to clarify this point, we studied the

model on the s = k line, and found the phase in the Lorentzian case is smoothly connected

to that in the Euclidean case.
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According to the study of the Euclidean type IIB matrix model, the fermionic part

plays an important role in the SSB of SO(9). We expect that the same is true in the

Lorentzian case. Therefore we applied the CLM to see the 6D version of the generalized

model to study the effects of the fermion. When the action includes the fermionic part,

in order to avoid the singular drift problem, we add a “mass term” mf which is called

a deformation term to the action. We simulated the model at various values of the

deformation parameter, and we found that the values which we studied are too large to

see the fermionic effects. Fortunately, according to the spectrum of the eigenvalues of

the Dirac operator, it may be possible to decrease the value of the parameter more. We

expect that the SSB of the SO(9) occurs in the Lorentzian model after taking both the

large N and the mf →∞ limit as in the case of the Euclidean model.
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Appendix A

Derivation of the exact result

In 2D lattice gauge theory, we can obtain the partition function explicitly on any manifold

at finite lattice spacing and finite volume [40], from which various observables can be

obtained. In this section, we review the derivation using the so-called K-functional [39].

A.1 The K-functional

Let us consider a lattice gauge theory with a θ term on a 2D lattice manifold M. Here

we take the gauge group to be U(N), which is a generalization of U(1) considered so far.

Note that the topology of the gauge field becomes trivial for SU(N) in 2D gauge theories.

As a building block for evaluating the partition function, we define the K-functional

KA for the region A ⊂M defined by [39]

KA(Γ) =

∫  ∏
Ui∈A\C

dUi

 e−SA , (A.1.1)

where the integral goes over the link variables inside A leaving out those on the boundary

C. (See Fig. A.1.) The action SA in Eq. (A.1.1) is given by

SA =
∑
Pi∈A

Tr

[
−β

2

(
Pi + P−1

i

)
− θ

2π
logPi

]
, (A.1.2)

where the sum goes over the plaquettes Pi included in the region A. Here we use the log

definition (3.1.12) of the topological charge, but the results for the sine definition (3.1.13)

can be obtained in a similar manner as we mention at the end of Section A.4.

The K-functional depends on the link variables on the boundary C = ∂A, but due to

the gauge invariance, it actually depends only on

Γ =
∏
Ui∈C

Ui , (A.1.3)
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A
C

Figure A.1: An example of the region A, which has a boundary C = ∂A. The K-functional

for this region is defined by integrating out the link variables represented by the dashed

lines. The result depends on Γ defined by (A.1.3) for the loop C represented by the solid

line with arrows.

which is a consecutive product of link variables along the loop C. The choice of the

starting point of the loop C does not matter since a different choice simply corresponds

to making a gauge transformation of Γ, which leaves the K-functional invariant.

We can calculate the K-functional for any A by gluing the K-functional for a single

plaquette P , which is nothing but

K(P ) = exp Tr

[
β

2

(
P + P−1

)
+

θ

2π
logP

]
. (A.1.4)

Note here that (A.1.4) is a function of the group element P ∈ U(N), which is invariant

under

P → gPg−1 ; g ∈ U(N) . (A.1.5)

It is known that any function having this property can be expressed by the so-called

character expansion

K(P ) =
∑
r

λrχr(P ) , (A.1.6)

which is analogous to the Fourier expansion for periodic functions. Here χr(P ) is the

group character, which is defined by the trace of P for an irreducible representation r,

and it satisfies the orthogonality relation∫
dU χr1(U−1)χr2(U) = δr1,r2 . (A.1.7)

Using this relation, the coefficient λr in the expansion (A.1.6) can be readily obtained as

λr =

∫
dU χr(U

−1)K(U) . (A.1.8)

As an example, let us obtain the K-functional K2×1 for a 2 × 1 rectangle by gluing

two neighboring plaquettes P1 = U1Ω and P2 = Ω−1U2 as shown in Fig. A.2. The group
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P1 P2ΩU1 U2

Figure A.2: The K-functional K2×1 for a 2 × 1 rectangle is obtained by considering the

K-functional for the two plaquettes P1 = U1Ω and P2 = Ω−1U2, which are glued together

by integrating out the shared link variable Ω.

elements U1 and U2 are the products of three link variables, and Ω represents the link

variable shared by P1 and P2. Integrating out the shared link variable Ω, we get

K2×1(U1U2) =

∫
dΩK(P1)K(P2)

=
∑
r1,r2

λr1λr2

∫
dΩχr1(U1Ω)χr2(Ω−1U2)

=
∑
r

dr

(
λr
dr

)2

χr(U1U2) , (A.1.9)

where dr = χr(1) is the dimension of the representation r and we have used a formula∫
dΩχr1(U1Ω)χr2(Ω−1U2) =

1

dr1
χr1(U1U2)δr1,r2 . (A.1.10)

Iterating this procedure, we obtain the K-functional for any simply connected region A

as

KA(Γ) =
∑
r

dr

(
λr
dr

)|A|
χr(Γ) , (A.1.11)

where |A| is the number of plaquettes in A, and Γ is defined by (A.1.3).

In the U(1) case, the representation can be labeled by the charge n ∈ Z, and the

dimension of the representation is dn = 1 for ∀n ∈ Z. Since the character for the plaquette

P = eiφ is given by χn(P ) = einφ, the K-functional for a single plaquette (A.1.6) reduces

to

K(P ) =
+∞∑

n=−∞

λne
inφ , (A.1.12)

where the coefficient λn is a function of θ and β given explicitly as

λn ≡ I(n, θ, β)

=
1

2π

∫ π

−π
dφ e−inφK

(
P = eiφ

)
=

1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
(A.1.13)
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using (A.1.4) with P = eiφ. This function reduces to the modified Bessel function of the

first kind for θ = 0.

The character expansion in the U(N) case is more complicated, so we only show the

end results referring the reader, for instance, to the appendix of Ref. [92] for the details.

The representation of the U(N) group is labeled by N integers

ρ = (ρ1, ρ2, · · · , ρN) ∈ ZN (A.1.14)

satisfying ρi ≥ ρi+1, and the dimension of the representation ρ can be calculated by

dρ = χρ(1) =
N∏
i>j

(
1− ρi − ρj

i− j

)
. (A.1.15)

The coefficient λρ in (A.1.6) that corresponds to the representation ρ is expressed as a

determinant

λρ = detM(ρ, θ, β) , (A.1.16)

where the matrix M(ρ, θ, β) is given as

Mjk(ρ, θ, β) =
1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

(
θ

2π
+ ρk + j − k

)
φ

]
, (A.1.17)

which may be viewed as a generalization of (A.1.13).

A.2 Partition function for the non-punctured model

Let us evaluate the partition function for the 2D U(N) lattice gauge theory on a torus. For

that, we first consider the K-functional KL1×L2 for a rectangle composed of V = L1 × L2

plaquettes, which can be expressed as (A.1.11). As is shown in Fig. A.3, we identify the

top and bottom sides represented by U−1 and U , respectively, and identify the left and

right sides represented by W−1 and W , respectively. Integrating out the group elements

U and W , we obtain the partition function for the non-punctured model as

Znonpunc =

∫
dUdW KL1×L2(UWU−1W−1)

=
∑
r

dr

(
λr
dr

)V ∫
dUdWχr(UWU−1W−1)

=
∑
r

(
λr
dr

)V ∫
dUχr(U)χr(U

−1)

=
∑
r

(
λr
dr

)V
, (A.2.1)
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W

U

W−1

U−1

Figure A.3: The partition function for the 2D U(N) gauge theory on a torus is obtained

from the K-functional for the rectangle by integrating out the group elements U and W

corresponding to the identified sides.

where we have used the orthogonality relation (A.1.7) and a formula∫
dΩχr(UΩWΩ−1) =

1

dr
χr(U)χr(W ) . (A.2.2)

In the U(1) case, the partition function (A.2.1) reduces to

Znonpunc =
+∞∑

n=−∞

[I(n, θ, β)]V . (A.2.3)

As one can see from (A.1.13), the integral I(n, θ, β) has a property I(n, θ + 2πk, β) =

I(n− k, θ, β) for ∀k ∈ Z, which guarantees the 2π periodicity of (A.2.3) in θ.

Let us consider taking the V → ∞ and β → ∞ limits simultaneously with fixed

Vphys ≡ V/β, which corresponds to the continuum limit. In this limit, the integral (A.1.13)

can be evaluated as

I(n, θ, β) ' 1√
2πβ

eβ−
1

2β ( θ
2π
−n)

2

. (A.2.4)

Plugging this into (A.2.3), we obtain

Znonpunc '
(

eβ√
2πβ

)V +∞∑
n=−∞

exp

[
− V

2β

(
θ

2π
− n

)2
]

∼
+∞∑

n=−∞

exp

[
−1

2
Vphys

(
θ

2π
− n

)2
]
, (A.2.5)

omitting the divergent constant factor.

A.3 Partition function for the punctured model

Let us extend the calculation in the previous section to the punctured model. First, we

calculate the K-functional for a rectangle with a hole shown in Fig. A.4, which we divide
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U1

Ω2

ω1

Ω1

ω2 U2

A1

A2

Figure A.4: The K-functional for a rectangle with a hole is obtained by gluing the two

regions A1 and A2. From this, the K-functional for the punctured torus is obtained

similarly to what we did in Fig. A.3. Integrating out the link variables surrounding the

puncture, we obtain the partition function for the 2D U(N) gauge theory on a punctured

torus.

into two regions A1 and A2 by cutting along two segments Ω1 and Ω2. The outer and

inner boundaries of the rectangle are divided into two segments (U1, U2) and (ω1, ω2),

respectively. Then, the K-functional for each region is given, respectively, as

KA1(U1Ω2ω1Ω1) =
∑
r1

dr1

(
λr1
dr1

)|A1|

χr1(U1Ω2ω1Ω1) , (A.3.1)

KA2(Ω−1
1 ω2Ω−1

2 U2) =
∑
r2

dr2

(
λr2
dr2

)|A2|

χr2(Ω−1
1 ω2Ω−1

2 U2) . (A.3.2)

By gluing the two regions A1 and A2 together at Ω1 and Ω2, we obtain the K-functional

for the rectangle with a hole as

KA1∪A2 =

∫
dΩ1dΩ2KA1(U1Ω2ω1Ω1)KA2(Ω−1

1 ω2Ω−1
2 U2)

=
∑
r1,r2

dr1dr2

(
λr1
dr1

)|A1|(λr2
dr2

)|A2| ∫
dΩ1dΩ2χr1(U1Ω2ω1Ω1)χr2(Ω−1

1 ω2Ω−1
2 U2)

=
∑
r

dr

(
λr
dr

)|A1|(λr
dr

)|A2| ∫
dΩ2χr(U1Ω2ω1ω2Ω−1

2 U2)

=
∑
r

(
λr
dr

)V
χr(U1U2)χr(ω1ω2) , (A.3.3)

where we have defined V = |A1 ∪ A2| = |A1|+ |A2|.
Let us introduce the group elements U and W for the outer boundary as we did

in Fig. A.3 so that U1U2 = UWU−1W−1, and define ω = ω1ω2 for the inner boundary.

Integrating out the group elements U andW , we obtain the K-functional for the punctured
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torus as

Kpunc(ω) =
∑
r

(
λr
dr

)V
χr(ω)

∫
dUdWχr(UWU−1W−1)

=
∑
r

(
λr
dr

)V
χr(ω)

∫
dU

1

dr
χr(U)χr(U

−1)

=
∑
r

1

dr

(
λr
dr

)V
χr(ω) . (A.3.4)

Finally, we integrate out the link variables surrounding the puncture to get the partition

function for the punctured model as

Zpunc =

∫
dωKpunc(ω) =

∑
r

1

dr

(
λr
dr

)V
δr,0 = (λ0)V , (A.3.5)

where r = 0 corresponds to the trivial representation, which has d0 = 1.

In the U(1) case, the partition function reduces to

Zpunc = [I(0, θ, β)]V , (A.3.6)

which does not have the 2π periodicity in θ.

Let us consider taking the V → ∞ and β → ∞ limits simultaneously with fixed

Vphys ≡ V/β, which corresponds to the continuum limit. Similarly to the case of the

non-punctured model discussed in Section A.2, we obtain

Zpunc '
(

eβ√
2πβ

)V
exp

[
− V

2β

(
θ

2π

)2
]

∼ exp

[
−1

2
Vphys

(
θ

2π

)2
]
, (A.3.7)

omitting the divergent constant factor. This coincides with (A.2.5) in the Vphys → ∞
limit for |θ| < π. Note, however, that the equivalence between the punctured and non-

punctured models does not hold for finite Vphys.

A.4 Evaluation of the observables

We can evaluate the expectation values of various observables defined in Section 3.2.4

from the partition function derived above, namely (A.2.3) for the non-punctured model

and (A.3.6) for the punctured model. Since the latter case is easier due to the absence of

an infinite sum, we only discuss the former case in what follows.

The average plaquette w defined by (3.2.14) is given as

w =
1

Znonpunc

+∞∑
n=−∞

A(n, θ, β) [I(n, θ, β)]V , (A.4.1)
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where we have defined

A(n, θ, β) =
∂

∂β
log I(n, θ, β)

=
1

I(n, θ, β)

1

2π

∫ π

−π
dφ cosφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
=
I(n− 1, θ, β) + I(n+ 1, θ, β)

2I(n, θ, β)
. (A.4.2)

Similarly, the topological charge density defined by (3.2.15) can be obtained from

〈Q〉 = −i V

Znonpunc

+∞∑
n=−∞

B(n, θ, β) [I(n, θ, β)]V , (A.4.3)

where we have defined

B(n, θ, β) =
1

I(n, θ, β)

∂

∂θ
I(n, θ, β)

=
i

I(n, θ, β)

1

4π2

∫ π

−π
dφφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
. (A.4.4)

Finally, the topological susceptibility defined by (3.2.16) can be obtained from

〈Q2〉 = − V

Znonpunc

+∞∑
n=−∞

[
C(n, θ, β) + (V − 1)B(n, θ, β)2

]
[I(n, θ, β)]V , (A.4.5)

where we have defined

C(n, θ, β) =
1

I(n, θ, β)

∂2

∂θ2
I(n, θ, β)

= − 1

I(n, θ, β)

1

8π3

∫ π

−π
dφφ2 exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
. (A.4.6)

Note that I(n, θ, β) and the functions (A.4.2), (A.4.4) and (A.4.6) derived from it

are all real-valued, and we can calculate them by numerical integration with sufficient

precision. Also, when we evaluate the infinite sum in the expressions (A.4.1), (A.4.3) and

(A.4.5), we have to truncate it at some n. Note here that |I(n, θ, β)| vanishes quickly as

|θ/2π − n| increases. We can therefore evaluate the infinite sum with sufficient precision

by keeping only a few terms when the lattice volume V is sufficiently large.

In this section, we have derived the exact results for the log definition (3.1.12) of the

topological charge. As is clear from the derivation, we can obtain the exact results for

the sine definition (3.1.13) by simply replacing I(n, θ, β) with

Ĩ(n, θ, β) =
1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

θ

2π
sinφ− inφ

]
. (A.4.7)
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Appendix B

The punctured model with the sine

definition Qsin

In Sections 3.3 and 3.4, we have discussed the punctured model with the log definition

(3.1.12) of the topological charge for simplicity. In fact, we can also use the sine definition

(3.1.13) in the punctured model. Here we discuss what happens in this case.

The drift terms for the sine definition are given already for the non-punctured model

in Section 3.2.1. When we consider the punctured model, the only modification from the

non-punctured model appears in the drift terms for the four link variables surrounding

the puncture; i.e., UK,1, UK+2̂,1, UK,2 and UK+1̂,2. Thus the drift terms are given as

Dn,1S =


−iβ

2
(Pn − P−1

n − Pn−2̂ + P−1

n−2̂
)− i θ

4π
(Pn + P−1

n − Pn−2̂ − P−1

n−2̂
)

for n 6= K, K + 2̂ ,

−iβ
2
(−PK−2̂ + P−1

K−2̂
) + i θ

4π
(PK−2̂ + P−1

K−2̂
) for n = K ,

−iβ
2
(PK+2̂ − P−1

K+2̂
)− i θ

4π
(PK+2̂ + P−1

K+2̂
) for n = K + 2̂ ,

(B.0.1)

Dn,2S =


−iβ

2
(−Pn + P−1

n + Pn−1̂ − P−1

n−1̂
)− i θ

4π
(−Pn − P−1

n + Pn−1̂ + P−1

n−1̂
)

for n 6= K, K + 1̂ ,

−iβ
2
(PK−1̂ − P−1

K−1̂
)− i θ

4π
(PK−1̂ + P−1

K−1̂
) for n = K ,

−iβ
2
(−PK+1̂ + P−1

K+1̂
) + i θ

4π
(PK+1̂ + P−1

K+1̂
) for n = K + 1̂ .

(B.0.2)

At large β, all the plaquettes except PK , namely the one that is removed, approach unity.

The drift term from the θ term therefore vanishes for all the link variables except for

those surrounding the puncture, which have constant drifts ±i θ
2π

. Thus in the continuum

limit, the drift terms for the sine definition agree with those for the log definition given

by (3.4.1) and (3.4.2). This connection makes it easier to understand why we can safely

ignore the issue of δ-function in the drift term for the log definition described in Section

3.2.1.
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Figure B.1: The results obtained by the CLM for the punctured model using the sine

definition of the topological charge. (Left) The histogram of the magnitude u of the drift

term is shown for (β, L) = (3, 10) and (12, 20) with θ = π. (Right) The histogram of

ReQsin for the punctured model is shown for (β, L) = (12, 20) with θ = π. The exact

result obtained for (β, L) = (12, 20) with θ = 0 is shown by the solid line for comparison.

It is therefore expected that the results of the CLM for the sine definition are essentially

the same as those for the log definition for large β. In Fig. B.1, we show our results for

the punctured model with the sine definition for the same (β, L) as those in Fig. 3.7 with

the log definition. For (β, L) = (12, 20), we find that the histogram of the magnitude u

of the drift term falls off rapidly, and that the histogram of ReQsin obtained by the CLM

is widely distributed within the range −3 . ReQsin . 3. Hence the topology freezing

problem is circumvented without causing large drifts similarly to the situation with the

log definition.

On the other hand, for (β, L) = (3, 10), we find that the histogram of the magnitude

u of the drift term falls off fast and that the condition for the validity of the CLM is

satisfied unlike the case of the log definition. As a result, all the observables are in

complete agreement with the exact results for all values of θ even with (β, L) = (3, 10).

This can be seen from Fig. B.2, where we show our results for the punctured model

with the sine definition for the same values of (β, L) as the ones used in Fig. 3.12. For

(β, L) = (1.92, 8) corresponding to the same Vphys ≡ L2/β, however, we actually find that

the histogram has a power-law tail similarly to the case of the log definition. Therefore,

the difference between the two definitions is merely a small shift in the validity region of

the CLM.

We also show the exact results for the punctured model with the log and sine defini-

tions, which tend to agree as β is increased with fixed Vphys ≡ L2/β, which corresponds

to the continuum limit.
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Figure B.2: The results for various observables obtained by the CLM for the punctured

model with the sine definition Qsin. The average plaquette (Top), the imaginary part

of the topological charge density (Middle), the topological susceptibility (Bottom) are

plotted against θ for (β, L) = (3, 10) (Left) and (12, 20) (Right). The exact results for the

punctured model with the log and sine definitions are shown for the same (β, L) by the

dashed lines and the dash-dotted lines, respectively, for comparison.
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Appendix C

The determination of the parameter

p

In this appendix, we explain how we determine the parameter p in the IR cutoff (5.1.13)

and (5.1.14). While a naive choice would be p = 1, it was proposed in ref. [87] that one

should choose a slightly larger value so that the results become almost independent of

p. There it was found in the VDM model that the results for the extent of space R2(t)

become independent of p when p is larger1 than pc = 1.2 ∼ 1.3. Based on this observation,

we used p = 1.4 when we simulate the VDM model in section 5.2.3.

Here we repeat the same analysis in the case of the bosonic model and the original

model. In Fig. C.1, we plot the extent of space R2(t)/R2(tc) against time (t − tc)/R(tc)

for the bosonic model (Left) and the original model (Right), respectively, with various

values of p. For all values of p, we find that only three directions start to expand at some

critical time tc. In the bosonic model, the results scale for p = 1.3, 1.4, 1.5 except for the

data around the peak of R2(t). Similar scaling behavior is observed for the original model

for p = 1.4, 1.5, 1.6. Based on these results, we use p = 1.5 for the bosonic model and

p = 1.6 for the original model in sections 5.2.1 and 5.2.2, respectively.

1For the values of p in this region, it was also observed [87] from the analysis of the Schwinger-Dyson

equations that the effect of the IR cutoff decreases as one takes the infinite volume limit.
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Figure C.1: (Left) The extent of space R2(t)/R2(tc) obtained for the bosonic model is

plotted against x = (t− tc)/R(tc) for various values of p with N = 256, C = 100, κ = 1.0.

The block size is chosen as n = 32, 24, 20, 18 for p = 1.0, 1.3, 1.4, 1.5, respectively. The

solid line represents a fit to the p = 1.4 data with R2(t)/R2(tc) = a+(1−a) exp(bx), which

gives a = 0.92(5), b = 7.3(6). (Right) The extent of space R2(t)/R2(tc) obtained for the

original model is plotted against x = (t − tc)/R(tc) for various values of p with N = 16,

C = 5, κ = 0.46. The block size is chosen as n = 7, 6, 6 for p = 1.4, 1.5, 1.6, respectively.

The solid line represents a fit to the p = 1.6 data with R2(t)/R2(tc) = a+ (1−a) exp(bx),

which gives a = 0.83(4), b = 5.3(7).
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