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ivABSTRACT

In organic chemistry, predicting the products from the reactants is called reaction prediction, while

the design of synthetic routes in the opposite direction from the final products, which are the target

molecules, is called chemical synthesis planning. Reaction prediction and chemical synthesis

planning have been studied for more than 50 years. In recent years, advances in machine learning

have significantly improved the accuracy of reaction prediction and chemical synthesis planning.

However, most of prior researches have studied chemical synthesis planning as a separate problem

from reaction prediction. Machine-learning models were designed to predict the reactants from

a given product directly. As the products of a reaction consist of the target compound and other

side products, in most cases predicting the reactants from the target compound in reverse without

the information of the side products is an ill-posed problem. This ill-posed nature of backward

prediction induced a limited predictive power of backward prediction models. Compared to the

prediction accuracy of over 90% for forward prediction models that predict the products from

the reactants, previously reported accuracy for backward prediction models ranged from 37% to

52%. In addition, most candidate reactants simulated from such backward prediction models are

rarely contained within a given set of purchasable compounds that span the feasible solution space.

For example, if a synthetic target is decomposed into A and B by a backward reaction prediction

model, both the reactants will typically be non-purchasable. In such a case, further identification

of synthesis routes to both A and B will be necessary.

In this thesis, we define the problem of chemical synthesis planning as a combinatorial optimiza-

tion task with the solution space subject to the combinatorial complexity of all possible pairs of

purchasable reactants. We propose a two-stage approach consisting of forward and backward pre-

dictions to solve the chemical synthesis planning. A trained forward model with high predictability

defines the mapping . = 5 (() from a set of reactants ( to their product . . By solving the inverse

mapping ( = 5 −1(. ∗) with a synthetic target . ∗ with respect to possible combinations ( of com-



mercially available reactants, we could obtain an algorithm for chemical synthesis planning that

has high synthetic accessibility. As machine-learning models are not perfect prediction models, it

is possible that all candidate reactants will never reach the target compound with the given forward

model. Furthermore, if the model is incorrect, true reactants are expected to be close to the optimal

solution. Considering that the purpose of chemical synthesis planning tools is to enumerate a wide

variety of reaction routes and to facilitate the creativity of chemists, we addressed the problem of

reaction mining within the framework of Bayesian inference:

?(( |. = H∗) ∝ ?(. = H∗, () = ?(. = H∗ |()?((). (1)

The posterior is a discrete probability distribution that defines the probability of reactants ( that

can synthesize a given target compound H∗. The posterior probability is proportional to the joint

distribution, which is formed by the forward prediction model. The support of the posterior consists

of all possible combinations of reactants involved in a synthetic route. As exact computation across

all candidates is unfeasible, the primary objective in the Bayesian computation is to identify

a reduced set of reactant combinations with large joint probability, while those with ignorable

probability are effectively eliminated. A diverse candidate set can help chemists find appropriate

reaction routes to synthesize the target compound.

To enhance the search efficiency and exhaustively enumerate alternative pathways, a sequential

Monte Carlo algorithm to sample in the discrete chemical space was developed. Cluster-level

sampling was introduced to prevent particle impoverishment in the sampling step. In addition, a

surrogate model was used to save on the cost of repeatedly evaluating the computationally expensive

forward prediction model. Using a forward model with a prediction accuracy of approximately

87%, the Bayesian retrosynthesis algorithm successfully rediscovered 81.8% and 33. 3% of

known synthetic routes of one-step and two-step reactions, respectively, with top-10 accuracy.

Remarkably, as the Monte Carlo algorithm is specifically designed to exhaustively explore highly

probably reaction sequences ending with a given synthetic target, over 500 synthetic routes on

average for each target were identified by the Bayesian retrosynthesis algorithm. In addition, we
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investigated the potential applicability of such diverse candidates based on the expert knowledge

of organic chemistry and revealed the influence of the publication bias in reaction datasets.
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1C h a p t e r 1

INTRODUCTION

The synthesis of compounds is one of the most important topics in chemistry. In material and drug

research, if a new compound is designed and expected to have desirable properties or efficacies, it

must be synthesized and demonstrated. Therefore, the design of an effective synthetic route is an

important issue. In recent years, with the development of machine learning, various new molecular

design methods have been proposed since around 2010 (Ikebata et al., 2017; Jin, Barzilay, and

Jaakkola, 2018; Cao and Kipf, 2018; You et al., 2018). These methods use existing datasets

to train models, such as deep neural networks, to design molecules automatically, which satisfy

the specified chemical properties. Compared to traditional methods, such as expert design and

molecular screening, machine-learning methods can design a large number of new molecules in a

shorter period; however, the accuracy of these methods depend on the training data and models.

To validate the chemical properties of novel, automatically designed molecules, an automated

synthetic route design, synthesis, and instrumentation system is necessary. Although the planning

of synthetic pathways has traditionally been conducted by experts, automatic synthesis planning

has been studied for more than 50 years. In 1969, Corey and Wipke developed the first computer-

aided synthesis planning system, known as Organic Chemical Simulation of Synthesis (E. J.

Corey and Wipke, 1969), which was followed by the LHASA(Pensak and E J Corey, 1977),

SYNCHEM(Gelernter et al., 1977), WODCA(Gasteiger et al., 2000) and others. These early

synthetic route design systems relied on hand-coded reaction rules or reaction rules extracted

from reaction databases by algorithms. Knowledge-based algorithms and more recently, machine-

learning algorithms have been used to determine which rules to select. The transformations of

chemical bonds described in the rule are applied to the current molecules to derive structurally

simpler precursors until the compounds are finally available for purchase (Figure 1.1)



Figure 1.1: Workflow of synthetic route design. The synthetic target molecule is transformed into
structurally simpler precursors based on the reaction rule. For non-purchasable precursors, further
transformations are necessary until the compounds are available for purchase, which are shown in
red.

A rule-based system can only support interpolated predictions. If the reaction mechanism is beyond

the synthetic knowledge encoded in the rule set, the rule-based system is no longer applicable. In

recent years, a variety of machine-learning techniques have been proposed for synthesis planning

to cover a larger reaction space. However, most of the machine-learning methods take the target

compound as input and predict the reactants that can synthesis the target compound. As will

be described, the ill-posed nature of the inverse problem can induce a significant decline in the

prediction accuracy.

This thesis is organized as follows: Chapter 2 summarizes machine-learning applications in reac-

tion prediction and chemical synthesis planning. In reaction prediction, machine-learning models

take the reactants as input and predict the products. In chemical synthesis planning, a general ap-

proach commences from the target compound and decomposes it into easy-to-synthesize precursor

molecules, which is also called retrosynthesis. The machine-learning methods mimic the retrosyn-

thesis approach by predicting the precursor molecules from the target compound. The reaction

prediction and retrosynthesis prediction are referred to as forward prediction and backward predic-

tion in this thesis, respectively, according to the directions of actual chemical reactions. In chapter
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3, the mathematical formulation of chemical synthesis planning is given. In a chemical reaction,

the products often consist of the target product and other by-products. Without the by-products,

predicting reactants from the target compound can be an ill-posed problem. We define chemical

synthesis planning as a combinatorial optimization problem, with the solution space subject to the

combinatorial complexity of all possible combinations of purchasable reactants. As the forward

prediction methods have achieved substantially high accuracy, the framework of the Bayesian in-

ference is used to invert the forward model to the backward predicting system. In chapter 4, we

propose a sequential Monte Carlo algorithm to sample in the discrete chemical space efficiently.

Due to the large computational cost of the forward prediction model, a surrogate model is also

introduced in the algorithm to filter synthetic routes with low probabilities and to accelerate the

searching. The efficiency of the Bayesian algorithm is demonstrated by using a benchmark dataset

and is compared with other methods. Chapters 5 and 6 conclude the proposed algorithm and discuss

prospects for chemical synthesis planning. In contrast to other methods, the Bayesian algorithm

for chemical synthesis planning can locate a diverse set of reaction routes to the synthetic target.

By investigating the identified candidates based on expert knowledge, we determined that there are

many false discoveries owing to no or exceedingly low reactivity. The paucity of negative data

prevent the machine-learning model from being capable of determining the presence or absence

of reactivity for the synthetic route. A comprehensive dataset is necessary to design evaluation

methods to identify practical synthetic routes.
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4C h a p t e r 2

MACHINE LEARNING IN REACTION PREDICTION AND CHEMICAL
SYNTHESIS PLANNING

This chapter describes the machine-learning applications in reaction prediction and synthetic route

design.

2.1 Descriptors of chemical compounds

For most machine-learning models, the input is numerical data, such as a matrix and the output

is also numerical data. For language, image and graph data, the raw data is transformed to

numerical data and models are designed to extract the information from the data efficiently to

perform predictions and other tasks. To apply machine-learning methods to reaction prediction and

synthetic route design, descriptors of chemical compounds are selected based on the models and

perform important roles in the prediction.

Molecular graph

The most natural representation for a chemical compound is the labeled undirected graph (Figure

2.1a). A molecular graph � = (+, �, !+ , !� ) consists of a set of vertices + and a set of edges � .

Each vertex of the graph corresponds to an atom in the compound and has an attribute representing

its elemental symbol (!+ = {C,O,N, F, . . .}); each edge in the graph corresponds to a bond in the

compound and has an attribute representing its bond type (e.g., !� = 1, 1.5, 2, . . .).

SMILES specification

SMILES (Simplified Molecular Input Line Entry System) (Weininger, 1988) describes chemical

structures in the form of a line notation using ASCII strings (Figure 2.1b). Atoms are represented by

elemental symbols and various grammar rules are specified to rigorously describe ring structures,

branches, bond orders, isotopes, chiral centers, etc. All chemical structures can be converted into



SMILES strings.

For example, the structural formula of ibuprofen (C13H18O2) shown in Figure 2.1a is written

as CC(C)Cc1ccc(cc1)C(C)C(=O)O. The ring structure is labeled with the same number (“1” in

CC(C)Cc1ccc(cc1)C(C)C(=O)O) after the atoms at the beginning and end of the ring. Parentheses

indicate a branch (side chain). The equal sign “=” denotes a double bond. Since atoms in an

aromatic ring are denoted by lowercase letters, the ring’s constituent carbons are denoted by the

lowercase “c” and all other carbons are denoted by the uppercase “C”. Hydrogen atoms are omitted

in SMILES specifications, except in special cases.

The main grammar rules of SMILES are summarized below.

(1) The elemental symbol is enclosed in square brackets to represent an atom (e.g., [Au]).

However, square brackets may be omitted for B, C, N, O, P, S, F, Cl, Br, and I.

(2) In general, the hydrogen atom H is omitted.

(3) The same number is added after atoms at the beginning and end of the ring. For example,

cyclohexane (C6H12) is C1CCCCC1.

(4) The branches are shown in parentheses.

(5) The atoms constituting the aromatic ring are written in lower case.

(6) Single bond, double bond and triple bond are denoted by −, =, #, respectively. Except in

special cases, the symbol − for single bonds are omitted.

(7) Add @ or @@ after the chiral center to indicates that the following neighbors are listed

anticlockwise or clockwise, respectively.

(8) Disconnected structures are separated by a period ..

(9) Add +, − after the charged atoms (e.g., [Fe + 2]).
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(10) The mass number is given before the elemental symbol to express the isotope explicitly (e.g.,

carbon-14 is [14C]).

(11) / and \ are used to specify the configuration of double-bond cis-trans isomer. For example,

C/C = C\C, C/C = C/C.

(12) The wildcard ∗ represents any atom.

A SMILES specification can be understood intuitively and allows for a linear representation of the

chemical structures with minimal byte length. Given a SMILES string, the structural formula of

the molecule is uniquely determined. These advantages have resulted in SMILES being the most

widely used format in chemical informatics.

In contrast, there aremultiple SMILESnotations for one structural formula. For example, acetic acid

can be written in various ways, such as CC(=O)O or O(=O)CC, by substituting the initiating atom.

Therefore, it is not possible to determine the identity of chemical structures from strings alone. A

canonicalization method using the Morgan algorithm (Morgan, 1965) has been developed to define

the priorities of atoms uniquely and generate canonical SMILES from any generic SMILES.

In addition, the SMARTS notation, which is a modification of the SMILES notation, is widely

used for structural searches in databases. For example, if written as C∼N, it represents all the bond

types (either single, double or triple bonds) that connect carbon C and nitrogen N. If written as X3,

it represents an atom with a bond degree of 3. The [C, N] denotes an OR search of C and N. Thus,

SMARTS notation is a special form of grammar introduced into SMILES for structural search.

Molecular fingerprint

Molecular fingerprint is the most basic descriptor of chemical compounds. Given a set of sub-

structures (fragments) F , the element 8 of a binary fingerprint is set to 1 if the fragment 58 is in the

molecule, otherwise, it is set to 0 (Figure 2.1c). The counting fingerprint records the number of 58

fragments in the molecule. Usually, the length of the fingerprint is $ (102) to $ (104).
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Table 2.1: Molecular fingerprint in RDKit

Molecular Fingerprint Algorithm
RDK Daylight-like fingerprinting
Layered Daylight-like fingerprinting
Atom-pairs Carhart et al. JCICS (1985) (Carhart, Smith, and Venkataraghavan, 1985)
Morgan Similar to ECFP/FCFP
MACCSkeys 166 bits MDL MACCS keys
TopologicalTorsion Topological torsion fingerprint (Nilakantan et al., 1987)
Pattern Pre-defined structural pattern
E-state Hall et al. JCICS (1995) (Hall and Kier, 1995)

Several algorithms to generatemolecular fingerprints have been developed thus far. Table 2.1 depicts

a list of fingerprints implemented in the Python chemoinformatics library RDKit (G. Landrum et al.,

2006). The difference between these algorithms is how the fragment set is organized. There are

two types of fingerprints: 1) A set of fragments is predefined (predefined type) and 2) The set of

fragments is an automatic enumeration of fragments from a set of input compounds (enumeration

type).

A predefined-type fingerprint uses a set of fragments that are predefined for a task. For example, the

4,860 fragments of theKlekota-Roth fingerprintwere selected based on the pharmacological activity

of drug molecules, which are constituted of substructures frequently occurring in compounds with

high levels of activity (Klekota and Roth, 2008). The PubChem fingerprint is an 881-dimensional

binary fingerprint, (Wang et al., 2017). PubChem is a database of chemical compounds owned

by the U.S. National Institutes of Health (NIH). PubChem fingerprint can be used for similarity

searches in a web interface. Another renowned predefined-type fingerprint is MACCS Keys (166

fragments), which was developed by MDL (Durant et al., 2002).

The fragment set of an enumeration-type fingerprint consists of all the fragments of less than or

equal to a certain size in the input set of compounds. A binary fingerprint encodes the presence

or absence of each fragment in the molecule. Whereas, a counting fingerprint encodes the number

of each fragment in the molecule. Morgan fingerprints (aka circular fingerprint), ECFP (extended

connectivity fingerprint) and FCFP (functional-class fingerprint) (D. Rogers and Hahn, 2010) are

7



classified as enumeration type. The basic concept and method of a fragment enumeration algorithm

are derived from theMorgan algorithm (Morgan, 1965), as described in Algorithm 1. The objective

is to calculate the atom-specific attribute values of atom 1, . . . , # , which condense the information

of the surrounding environment. After assigning an initial attribute value, such as an atomic number

to each atom, the attribute values are updated by calculating the summations of the attribute values

of the neighboring atoms. By repeating this operation ' times (as a radius parameter), we can

obtain the attribute values reflecting the bonding pattern of the neighboring atoms up to the '

proximity. Such operations on molecular graphs are inherited by ECFP. In the algorithm of an

ECFP calculation, each atom is assigned a vector of attribute values and the attribute vectors of

the neighboring atoms are propagated to each atom. A hash function is applied to obtain a unique

integer value, which is a numerical representation of the substructure around the target atom.

Dividing the hash value by the length � of the fingerprint vector, the address of the remainder is

set to one to indicate the presence of a substructure. The remainder operation can cause multiple

substructures to be assigned to a single element of a vector, which is called as a “bit collision

problem”. To evade this problem, researches on positive definite kernels for graphs (graph kernels)

were actively conducted in the 2000s (Yamashita, Higuchi, and Yoshida, 2014).

Algorithm 1Morgan Algorithm
Input: chemical compound (, radius '
Output: attribute values {01, . . . , 0# } of atom 1, . . . , # .

1: Initialize: Assign an attribute value to each atom (e.g., atomic number).
2: for A ∈ {1, . . . , '} do
3: for = ∈ {1, . . . , #} do
4: Takes the sum of the attribute values of the neighboring atomsA= and updates its own

attribute value.

0= ← 0= =
∑
8∈A=

08

5: end for
6: end for

8



Figure 2.1: Descriptors of chemical compounds. a. The structure formula of ibuprofen. b. The
SMILES string of ibuprofen. c. The fingerprint of ibuprofen.

2.2 Chemical reaction and reaction prediction models

A chemical reaction can be expressed by the reaction equation A + B C−−−→ D + E. This signifies

that reactants A and B produce product D and E under the reaction condition C. Chemical reactions

are essentially the interaction between molecular orbitals, resulting in the breakage of bonds and

formation of new bonds between atoms. Thus, by focusing on the functional groups present in

the molecule, experts can predict how the reaction will proceed. Rule-based reaction prediction

systems use similar techniques, such as graph matching, to locate the functional groups present in

the reactants and compare them to a rule set to predict how they will interact within and between

molecules. When multiple rules in a rule set are applicable, the scoring function is used to compute

the score of each rule and to determine which rule should be applied. The scoring function for

traditional rule-based prediction systems is determined by experts using rules of thumb; however,

as the size of the rule set increases, it becomes more challenging to select the correct rules.

Therefore, machine-learning methods have been proposed to learn the scoring function from an

existing reaction dataset. Furthermore, deep neural network models that do not rely on rule sets and

9



learn the mechanisms of reactions from data have emerged with the development of deep neural

networks.

Machine learning in rule-based reaction prediction model

The rule-based response prediction model consists of a rule set and a scoring function. Rule sets

are often defined by experts, however, recently, heuristic methods have been established to extract

them from the data (Coley, Barzilay, et al., 2017). There are databases for chemical reactions,

such as Reaxys (Reaxys 2021) and Scifinder (SciFinder 2021), however, since they are proprietary

and lack datasets for machine learning, the open source United States Patent and Trademark Office

(USPTO) datasets is used in most cases. This dataset was extracted from the reactions published in

the US patent and describes the reactants and products of each reaction, as well as the temperature,

catalyst, solvent, etc. (Daniel Mark Lowe, 2012). Each reaction is described in SMILES notation

(Figure 2.2), the reactants, the reagents and the products are separated by “>” signs. SMILES

notations of molecules and reactions are supported by major chemoinformatics software, making

it useful for machine-learning models of chemical reactions.

Figure 2.2: SMILES notation of reaction. Isobutylbenzen is acetylated in the Friedel-Crafts reaction
using acetic anhydride and aluminum chloride. In the reaction SMILES, reactants (isobutylbenzen
and acetic anhydride), reagent (aluminum chloride), and product (4’-Isobutylacetophenone) are
separated by “>” signs.

The first step of the rule extraction is Atom-mapping for the reactants and products of the reaction

(Figure 2.3). The type and number of atoms in a chemical reaction do not change before and

after the reaction, although the bonds between the atoms change. Toolkits, such as Indigo, (Pavlov

10



et al., 2011) compare reactants and products, determine the type of reaction and describe the

correspondence between atoms in reactants and the product in terms of atom-mapping. However,

in some cases, more than one product exists for some reactions and only the target compound is

listed in the reaction dataset, but not the by-products. Therefore, all the atoms of the product are

in reactants, but some of the atoms of the reactants are not in the product. In such cases, the

chemoinformatics toolkit maps each atom in the product to the atoms in the reactant from which

they are derived.

N

H
N

NH2
O

H

H

N N

N

Derived reaction template

Original reaction

Reaction prediction based on the template 

a

b

c

Figure 2.3: Rule-based reaction prediction. a. The original reaction in the dataset. b. The reaction
template is extracted by comparing the bond charge before and after the reaction. c. The extracted
reaction template is used for reaction prediction.

Based on the results of atom-mapping, the atoms that change their bonding before and after the

reaction are defined as the reaction centers and the atoms in and around the centers are defined as the

11



rules of the changes before and after the reaction. Changes can be extracted as rules in SMARTS

notation, which is originally an extension of SMILES notation for searching substructures in

databases. Since the reaction centers are substructures of molecules, SMARTS notations can be

used to define the rules for reactions.

To predict reactions using the rule set extracted from the dataset, rules that are applicable to a given

reactant are identified from the rule set. When a SMILES notation is provided, it is possible to

determine whether the reaction center of each rule is in the reactants by performing a substructure

search by using the SMARTS notation. If there is more than one rule that can be applied, each rule

is applied to predict the product. The reactions are scored against the given reactants and predicted

products by using a scoring function to determine the most likely reactions and their products.

When building scoring functions using machine-learning models, the choice of descriptors and

models is important: Segler and Waller used the Extended-Connectivity Fingerprint (D. Rogers

and Hahn, 2010) as a descriptor and compared the accuracy of expert systems, logistic regression

and two neural networks using as a scoring function (Segler and Waller, 2017). For a rule set size

of 103, the accuracy of the expert system was 0.07 as compared to 0.86 for the logistic regression

and 0.92 for both types of neural networks. Furthermore, when the size of the rule set increased to

8720, the accuracy of the expert system was 0.02 versus 0.41 for the logistic regression and 0.78

and 0.77 for the two types of neural networks. Compared to expert systems that use expert-designed

scoring functions, machine-learning models achieved higher prediction accuracy. In addition, for

problems with large rule sets, neural networks have indicated a high predictive capability. Coley

et al. designed a descriptor based on the bond formation or breakage at the reaction center and

constructed a scoring function using neural networks (Coley, Barzilay, et al., 2017). For a rule set

size of 1689, the accuracy of the neural network was 0.685.

By introducing machine learning into the rule-based reaction prediction model, not only was the

accuracy of the scoring function improved, but the difficulty of expert designs for large rule set

sizes was also solved, allowing us to cover a wide range of responses.
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Reaction prediction model based on deep neural network

The coverage of reactions that can be predicted by a rule-based reaction prediction model is

determined by the size of the rule set. As the reaction data increases, the size of the rule set

increases and the design of the scoring function becomes more difficult. In addition, as the size of

the rule set increases, a problem arises: The time for substructure retrieval and product prediction

increases. However, limiting the size of the rule set reduces the predictive ability of the model.

Thus, rule-based models for reaction predictions have an inherent scalability problem. To solve

this problem, reaction prediction models based on deep neural networks have been proposed.

Jin et al. considered the molecule as a labelled graph and formulated the reaction prediction as a

graph transformation problem (Jin, Coley, et al., 2017). Rather than using a rule set, they used a

graph neural network named Weisfeiler-Lehman Network (WLN) to locate the reaction centers of

the reactants and predict the products. The molecular graph � = (+, �) is represented as a set of

{(2(!)D , 1DE, 2
(!)
E | (D, E) ∈ �}, where 2(!)E is the label of atom E and 1DE is the bond type between D

and E. For a node E ∈ � with neighbor nodes # (E), node features 5E, and edge features 5DE, the

relabeling function is defined as

A (E) = g(U1fE + U2
∑

D∈# (E)
g(V[fD, fDE])) (2.1)

where g(·) could be any non-linear function. The relabeling operation is applied iteratively to

obtain context-dependent atom vectors

h(;)E = g(U1h(;−1)E + U2
∑

D∈# (E)
g(V[h(;−1)D , fDE])) (1 ≤ ; ≤ !) (2.2)

where h(0)E = fE and U1,U2,V are shared across layers. The final atom representations is

cE =
∑

D∈# (E)
W(0)h(!)D �W(1)fDE �W(2)h(!)E (2.3)

The representation of the whole graph � is defined as c� =
∑
E cE
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For two atoms D, E, the reactivity score of (D, E) is predicted using another neural network:

BDE = f(u)g(M0cD +M0cE +M1bDE)) (2.4)

where f(·) is the sigmoid function, cD, cE are the atom representation for atoms D, E, and bDE is an

additional feature vector encoding auxiliary information.

The model is trained to minimize the following loss function:

L(T ) = −
∑
'∈T

∑
D≠E∈'

HDE log(BDE) + (1 − HDE) log(1 − BDE) (2.5)

Specifically, the WLN was trained to identify the reaction centers in the reactants at first. The

products were predicted by breaking the bonds between the atoms in the reaction centers or

creating new bonds between the atoms in different molecules. This corresponds to increasing or

decreasing the number of edges between nodes when considering the molecule as a graph. When

there are several atoms in the reaction center, bond formation or breakage is conducted for  

atoms with a high probability. As  increases, the number of new graphs that can be created

increases combinatorically; however, the chemical constraints can be used to exclude molecules

that cannot exist. Conventional rule-based reaction prediction models use substructure searches to

identify the reaction centers, while graph neural network-based methods allow the model to predict

the reaction centers. This method generates multiple predicted products based on different graph

transformations. However, similar to rule-based methods, a scoring function was used to rank

the predicted products and determine the most plausible one. The method of using graph neural

networks can predict products with an accuracy of 85.6% in the USPTO dataset. It is a natural

development of rule-based response prediction models to overcome the scalability problem derived

from rule sets by using graph neural networks instead of rule sets. However, enumerating the

possible graphical transformations is a time-consuming task, requiring an estimated 0.5 seconds

for each response. For the virtual screening of molecules using a reaction prediction model and

other applications, a more efficient prediction model is desired.
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Focusing on the SMILES notation of molecules, a study that utilized seq2seq model to predict

chemical reactions was published around the same time as the study of graph neural networks

(Schwaller, Gaudin, et al., 2018). The seq2seq model is a deep neural networks model used in

machine translation. The architecture of seq2seq is largely divided into two components, namely,

the encoder and decoder (Sutskever, Vinyals, and Le, 2014) (Figure 2.4). For example, when

translating from Japanese to English, the encoder a Japanese sentence as the input and encodes its

meaning into an embedding vector. The decoder takes the embedding vector and decodes it into an

English sentence. In the seq2seq model, the long short-term memory (LSTM) was used in the two

RNN. An LSTM consists of units that process the input data sequentially. At time step C, the unit

processes input GC and the previous hidden state ℎC−1 to obtain the output and hidden state transition

8C = f(,8GC +*8ℎC−1 + 18) (2.6)

5C = f(, 5 GC +* 5 ℎC−1 + 1 5 ) (2.7)

>C = f(,>GC +*>ℎC−1 + 1>) (2.8)

2C = 5C ⊗ 2C−1 + 8C ⊗ C0=ℎ(,2GC +*2ℎC−1 + 12) (2.9)

ℎC = >C ⊗ C0=ℎ(2C−1), (2.10)

where 8C , 5C and >C are the input, forget, output gates; 2 is the cell state vector;,,* and 1 are model

parameters; and f is the sigmoid function.

In addition, an attention mechanism is used to find out important word in the input for generating

particular word in the output sequence. The attention weights U is:

U8C =
exp(B)

8
,UℎC)∑)

C ′=0 exp(B)8 ,UℎC ′)
(2.11)

28 =

)∑
C=0

U8CℎC , (2.12)

where B8, ℎC are the hidden state of decoder and encoder, respectively.

The attention vector is defined by

08 = tanh(,0{28; B8}) (2.13)
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Both,U and,0 are learned weights. The probability for a single token follows:

?(H8 |{H1, . . . , H8−1, 28}) = softmax(,?08) (2.14)

where,? are also trainable.

Formally, the neural network of machine translation takes a Japanese string and predicts the

corresponding English string as output. Since SMILES notations of molecules are ASCII strings, it

is possible to predict product strings from the reactant strings if the neural network of the machine

translation can be trained. In machine translation, a pre-processing process called tokenization,

which includes word separation, is necessary for a sentence with no words separated by spaces,

such as Japanese. Since a SMILES notation is a string of non-separated characters, Schwaller

et al. proposed a tokenization method (Figure 2.5) which takes each atom as a single word. In

conjunction with the tokenization, the neural networks of machine translation can predict reactions

with a precision of 90.4% in the USPTO dataset (Schwaller, Laino, et al., 2019). Compared

to graph neural networks, machine translation neural networks do not enumerate and rank the

possible products, thus allowing for high throughput predictions. The average prediction time for

one response is about 30ms when using Transformer (Vaswani et al., 2017), which is a type of

neural network for machine translation. By using the beam search, the decoder can deliver multiple

predictions with a high probability. However, since the neural network of machine translation treats

a SMILES notation as a string, it sometimes predicts strings that do not conform to the SMILES

grammar. Verification of a reaction prediction model using the Transformer indicated that 0.5% of

the output was an invalid SMILES. In addition, because the model does not explicitly estimate the

reaction center or mechanism of reaction progression, the interpretability of predictions is lower

than that of rule-based prediction models and models using graph neural networks.

2.3 Computer-assisted synthetic routes design

Given a target molecule, the synthetic routes have been designed by experts. The general strategy is

to convert the target molecule into a simpler precursor molecule. When all the precursor molecules
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Figure 2.4: Architecture of seq2seq model. The encoder encodes the input to an embedding vector
and the decoder decodes the embedding vector to the output. The attention mechanism determines
important words in the input to generate a particular word in the output sequence.

Figure 2.5: Tokenization for SMILES

are available for purchase, the design of the synthetic route is completed. If unpurchaseable

molecules appeared in the intermediate step, it is further converted into a simple precursormolecule.

This method is also named retrosynthesis. The rule-based retrosynthesis software selects rules from

the rule set that can synthesize the target compound and predict the reactants, which will serve

as precursor molecules. When there are several applicable rules, a rational rule is selected by a

scoring function, as in the reaction prediction model. In recent years, scoring functions can achieve

higher prediction accuracy by using machine-learning models than those designed by experts. In

addition, a rule-set-independent method for predicting precursor molecules directly from a target

compound was also proposed, which considers a synthetic route design as a prediction problem.

However, there are multiple synthetic pathways to synthesize a single compound. In most cases,

the choice of the synthetic pathway is ultimately left to the synthetic scientist, depending on the
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available compounds and the experimental environment. Therefore, methods of proposing multiple

synthetic routes for experimental implementation are also an important research target.

Rule-based synthetic route design and machine learning

The rule-based synthetic route design uses a rule set similar to the rule-based reaction prediction

model. The rules extracted from the reaction data describe the atoms that changed their bonds and

other properties before and after the reaction. In the reaction prediction, the given reactants are

compared with the structure of the reaction center on the left hand of the reaction equation, which

is the structure before the reaction, and the applicable rules are identified. In contrast, in synthetic

route design, the target products are compared with the structure of the reaction center on the right

hand of the reaction equation, which is the structure post the reaction, and the reactants are inferred

using the applicable rules. If there is more than one rule that can be applied, the scoring function is

used for ranking. If products with a high degree of similarity are present in the reaction data, Coley

et al. proposed a scoring function based on the degree of similarity (Coley, L. Rogers, et al., 2017).

Based on the Tanimoto similarity (Tanimoto, 1958) of the target compound and the products in

the reaction data, as well as the Tanimoto similarity of the predicted reactants and the reactants in

the reaction data, the similarity to the existing reactions was calculated. This was used as a score

of the rule for application to a target compound. Such a simple scoring function was able to find

reactions that matched the data with an accuracy of 37.3%.

Tanimoto(x, y) =
∑
G8H8∑

G2
8
+∑

H2
8
−∑

G8H8
(2.15)

where x, y are the fingerprint of two molecules.

Dai et al. proposed a graph neural network model-based scoring function (Dai et al., 2019). For

the applicable rules, the score of each atom in the reaction center of the target compound was

calculated by the neural network and the rule with the highest overall score was selected. The

scoring function using the machine-learning model was able to find the reactions to synthesize the

target compounds that matched the data with a 52.5% accuracy.
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All the above results have the accuracy of models trained on 50,000 reactions extracted from

USPTO data (USPTO-50k), of which 80% were used as training data, 10% were used as validation

data and 10% were used as test data. However, the USPTO contains more than one million reaction

data and as the size of the dataset increases, the size of the rule set is expected to increase, making

the design of the scoring function more burdensome and increasing the computation time. To

overcome the problems caused by the rule set, we require a rule-set-independent method.

End-to-end retrosynthesis

Retrosynthesis is a method to design a synthetic pathway to a target compound by commencing

from a target compound and converting it into simple molecules, which are finally purchasable.

The conversion from a molecule that cannot be purchased into a simple precursor molecule can be

viewed as a task to predict a reactant from a product. Henceforth, predicting the products from

the reactants is a forward prediction in the same direction as the reaction proceeds and predicting

the reactants from the products is a backward prediction. The deep neural network model used in

forward reaction prediction has also been implemented in retrosynthesis. In particular, a number of

end-to-end retrosynthesis methods have been proposed that use the models of machine translation

with SMILES. Liu et al. first attempted to predict the SMILES of the reactants from the SMILES

of the products by using the model of seq2seq (B. Liu et al., 2017). In the USPTO-50k dataset,

the seq2seq model was able to achieve an accuracy of 37.4%. However, since the predictions

are using the information of reaction type in addition to the reactants, they cannot be directly

compared to other methods. Furthermore, more than 10% of the output string were not conformed

to the SMILES grammar. This is a specific challenge of machine translation models. Zheng et

al. attempted to improve the prediction accuracy by adding a self-correction feature to another

machine translation model, Transformer (Zheng et al., 2020). Without the self-correction function,

the prediction accuracy on the USPTO-50k dataset was 43.3%, while the accuracy was improved

to 43.7% by correcting the SMILES using a corrector. In addition, another study compared the

accuracy by using different SMILES tokenization (Lin et al., 2020).
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2.4 Mulitstep synthetic route design

For a multistep synthesis route design, Segler et al. proposed a method combining the deep

neural networks and Monte Carlo tree search (MCTS) (Segler, Preuss, and Waller, 2018). Since

a target molecule can be synthesized by using different precursor molecules, finding synthetic

routes connecting the target molecule and the given purchasable compound set is a pathfinding

problem. Tree search algorithms, such as a heuristic best first search, require hand-design heuristic

functions to determine the position values in the search tree, which is difficult to design in synthesis

planning. For example, since protecting group can increase the complexity, the premise that

simpler precursors are better choice is not true. In addition, the position value is dependent on

the purchasable molecule set. To evade the problem of the position value function, Segler et al.

used MCTS with three neural networks to plan the synthetic routes. For each node in the search

tree, the position value was determined by the rollout policy network, which performed a random

search without branching until a solution had been found or the maximum depth was reached. The

expansion policy network was used to predict the best transformation for the given product. Over

300 thousand rules constituted the reaction rule collection used in the expansion policy network.

The top 50 transformations were performed to generate the child nodes. For each child node,

the rollout policy network estimates the position values. Seventeen thousand rules constituted the

reaction rule collection for the rollout policy network. The target molecule was deconstructed

recursively and was called solved if all the building blocks were in the set of available chemical

compounds. In addition, the in-scope filter network was used to decide whether the proposed

reaction is feasible. Since the predicted reactant by expansion policy sometimes failed to react as

predicted, the in-scope filter network was trained to predict whether the reaction corresponding to

the transformations selected by policy networks are actually feasible. Since there were no failed

reactions recorded in the reaction dataset, a set of negative data were generated by applying the

reaction rules to the reactants of reported reactions and the products not matching the reported

product were considered as a failed product. The three neural networks were trained by using 12.4

million single-step reactions from Reaxys. In a double AB test, a chemist assessed the synthetic
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routes generated by a computer as an equivalent to the recorded synthetic routes.

For planning the syntheses of complex natural products, Mikulak-Klucznik et al. developed a

hybrid expert-AI system (Mikulak-Klucznik et al., 2020), which is based on a commercial software

named Chemitica (Szymkuć et al., 2016). In contrast to the pure machine-learning approach, a

>100,000 hand-coded reaction rule set was used in Chematica. In the planning of the synthesis

of natural products, the stereochemical control is necessary, which is complicated to capture by

the machine-learning approach. In Chematica, the applicability of the hand-coded rules were

evaluated by the machine-learning or quantum-chemistry methods, which reviewed the site- or

regio-selectivity. Decisions regarding subsequent reaction moves were made by a heuristic or

best-in-class neural-network scoring function. A multiple beam-like searches algorithm was used

to explore the synthetic space. Several queues were used to keep a given number of encountered

nodes with the lowest score at each search depth. Typically, two queues were used, one with a

score function that preferred wide searches and another with a scoring function that preferred to

go deeply. The first queue discovered a promising beginning of routes, which could be quickly

completed with the assistance of the second queue. The total chemical space being evaluated in

a search was up to $ (107). Most of the CPU time was not spent on performing the reaction and

search operations but on enforcing the proper stereochemistry of the reaction and evaluating the

molecule by using the scoring function. In a Turing test administered to synthesis experts, the

routes designed by such a program were largely indistinguishable from those designed by humans.

Three computer-designed syntheses of natural products were validated in the laboratory.

2.5 Molecule design using reaction prediction models

Machine-learning methods for chemical synthetic planning are used in de novo drug design. Most

machine-learning generative approaches cannot warrant the synthesizability of a proposedmolecule

nor provide the synthesis routes of a proposed molecule. Gottipati et al. proposed a method based

on reinforcement learning (Gottipati et al., 2020). In their research, a molecule was considered

as a sequence of unimolecular or bimolecular reactions applied to an initial molecule. The state
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of the system at each step was a product molecule and the rewards were computed according to

the properties of the product. The actions of synthetic step were decomposed in two sub-actions.

A reaction template was first selected and was followed by the selection of a reactant compatible

with it. The agent consisted of three neural networks: 5 , c and &. The 5 network predicted

the best reaction template )C given the current molecule 'C . The c neural network computed the

action 0C based on the template )C and 'C . The & network estimated the Q-value of the state-action

pair. The environment took the current molecule 'C , best reaction template )C and action 0C as the

input to compute the reward AC , next state BC+1 and a Boolean to determine whether the episode

had ended. Since the actions must be reactants in the predefined set, k reactants from the set that

were closest to the predicted action were selected and then passed through a reaction predictor to

obtain the corresponding k products. The reward associated with the product was computed using

a scoring function. The reward and product corresponding to the maximum reward were returned.

The episode terminated when either the maximum number of reaction steps was reached or when

the next state had no valid templates. Gottipati et al. demonstrated this reinforcement learning

approach achieved state-of-the-art performance in generating a molecule with several benchmark

properties and HIV targets.

Liu et al. also discussed the challenge of unfeasible molecules, which appeared in the de novo

molecule generation (C.-H. Liu et al., 2020). They trained deep graph neural networks to approx-

imate the synthetic accessibility score provided by retrosynthesis planning software and used it to

bias the search process. To find synthesizable and drug-like antibiotics, they defined three scores:

SynthScore, as an estimate of synthesizability; QEDScore, as an estimate of drug-likeness and

AntibioticScore, reflecting the probability of being an antibiotic. The score function was defined

as

score(G) = AntibioticScore(G) · QEDScore(G) · SynthScore(G) (2.16)

The search was performed in a graph edit search space, which included actions such as adding

an atom, mutating an atom/bond and adding an aliphatic ring or an aromatic ring. For each
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optimization step for the antibiotics, the value of each action was estimated by evaluating the

score of the resulting molecules. One of the actions was sampled based on the score. Since the

evaluation of the synthetic accessibility score was time-consuming, this approach accelerated the

de novo molecule design by filtering out molecules that were difficult to synthesize.

23



24C h a p t e r 3

MATHEMATICAL FORMULATION OF SYNTHETIC ROUTE DESIGN

3.1 Ill-posed nature of machine-learning-based retrosynthesis task

Using the backward predictionmodels, the simulated candidate reactants are rarely containedwithin

a given set of purchasable compounds that span the feasible solution space. Many non-purchasable

reactants will likely appear in the intermediate steps of a proposed reaction sequence that are

obtained by decomposing a target product in the reverse several times. For example, if a synthetic

product is decomposed into A and B by a retrosynthetic prediction model, both the reactants will

typically be non-purchasable. In such a case, further identification of the synthesis routes to both

A and B will be necessary. However, by restricting one or both reactants to be purchasable, we can

make the proposed reaction simpler to implement experimentally. This study aimed to improve the

synthetic accessibility of proposed reactions by explicitly restricting the search space to a set of

available reactants.

Another shortcoming arises from the limited predictive power of backward reaction models due

to the ill-posed nature of the machine-learning-based retrosynthesis task. One reason for this is

the loss of information in the reaction data as the side products of synthetic reactions are often

unrecorded in the dataset. For example, consider a reaction A + B→ C + D. The reaction database

often omits the byproduct D, in other words, it records only A + B→ C. In a conventional scenario,

where the missing structure of D is included in A and B, the prediction of A and B from a given C

alone is an ill-posed problem. As summarized in Table 3.1, the previously reported accuracy in the

retrosynthetic prediction of known reactants ranged from 37% to 52% in the top-1 accuracy. The

ill-posed nature of the retrosynthesis problem is one of the reasons for the limited performance.

This chapter is a modified version of Guo et al. Bayesian Algorithm for Retrosynthesis. J. Chem. Inf. Model.
2020, 60, 10, 4474–4486 (doi.org/10.1021/acs.jcim.0c00320) published in Journal of Chemical Information and
Modeling. Copyright 2020 American Chemical Society.



In contrast, the forward prediction of reaction outcomes has achieved substantially better accuracy

than retrosynthetic prediction for known reactions(Coley, Barzilay, et al., 2017; Jin, Coley, et

al., 2017; Schwaller, Laino, et al., 2019). As summarized in Table 3.1, the reported prediction

accuracy is up to 90.4% for the Molecular Transformer, which is almost twice the accuracy of the

backward prediction. The retrosynthetic mapping is essentially one-to-many, as there inherently

exists multiple synthetic routes to the same product. Therefore, it is inevitable that the accuracy of

the retrosynthetic prediction will be much lower than that of the forward prediction. In addition, as

mentioned above, the ill-posed nature of the retrosynthetic problem could be causing the significant

decline in the prediction accuracy that cannot be improved without reformulating the problem.

Here, it should be remarked that it is not meaningful to compare the accuracy of predictions in the

forward and reverse directions as they have different purposes. The objective of retrosynthesis is

to propose multiple diverse synthetic routes of the target product. However, a higher accuracy of

retrosynthetic prediction indicates more bias based on the prevalence of the reaction data, which

can result in limiting the diversity of the retrosynthetic suggestion.

25



Task Model Top-1 Top-3 Top-5 Top-10

Backward

similarity (Coley, L. Rogers, et al., 2017) a 37.3 54.7 63.3 74.1

SCROP (Zheng et al., 2020) b 43.7 60.0 65.2 68.7

Lin et al. 2019 (Lin et al., 2020) b 43.1 64.6 71.8 78.7

GLN (Dai et al., 2019) a 52.5 69.0 75.6 83.7

Forward

template-based (Coley, Barzilay, et al., 2017) c 71.8 86.7 90.8 94.6

WLDN (Jin, Coley, et al., 2017) d 79.6 87.7 89.2 -

modified WLDN (Coley, Jin, et al., 2019) d 85.6 90.5 92.8 93.4

Molecular Transformer (Schwaller, Laino, et al., 2019) e 90.4 94.6 95.3 -

Table 3.1: Performances of existing methods on the prediction of synthetic reactions in forward and backward

directions. The top-1, top-3, top-5 and top-10 accuracies in [%] are presented for each. Note that different datasets

were used in the training and performance evaluations of these models. Symbols in the second column represent

references to the source datasets. a: 50k reactions extracted from USPTO granted patents, where the atom mapping

for each reaction was kept; b: 50k reactions extracted from USPTO granted patents without atom mappings; c: 15k

reactions extracted from USPTO granted patents, where the stereochemical information was kept; d: 500k reactions

from USPTO granted patents without stereochemical information; e: 1M reactions from USPTO granted patents,

where the stereochemical information was kept.

3.2 A two-stage approach for the synthetic route design

Considering the above, we propose a two-stage approach consisting of forward and backward

predictions (Figure 3.1). The key concept of this study is quite simple. A trained forward model

with high predictability defines the mapping . = 5 (() from a set of reactants ( to their product

. . By solving the inverse mapping ( = 5 −1(. ∗) with a synthetic target . ∗ with respect to possible

combinations S of commercially available reactants, we could obtain a retrosynthesis algorithm

that has a high synthetic accessibility. The problem to be solved is a combinatorial optimization
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problem with the solution space subject to the combinatorial complexity of all possible pairs of

purchasable reactants in the catalog. The complexity increases exponentially with the number

of candidate reactants as well as the number of the reaction steps considered. In this study, we

addressed the task of reaction mining within the framework of the Bayesian inference, namely,

the Bayesian retrosynthesis, which provides a principled means of inverting any given forward

model into a retrosynthetic prediction system. To enhance the search efficiency and exhaustively

enumerate alternative pathways, we developed a sequential Monte Carlo (SMC) algorithm using a

surrogate model accelerator.

Figure 3.1: Workflow of Bayesian retrosynthesis algorithm. A synthetic reaction model . = 5 (()
that forwardly predicts a product . of any given reactants ( is inverted into the backward model
using Bayes’ law of conditional probability. Monte Carlo sampling from the posterior distribution
conditioned by a desired product . = H∗ provides a diverse set of " highly probable reactant pairs,
P = {(1, . . . , ("} that meet the requirement H∗ ' 5 (().
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3.3 Mathematic formulation

In a single-step reaction prediction model 5 ((), a product . is described as a function of a set of

reactants (, where ( is composed of ? reactants {<1, . . . , <?}. Using such a model, a single-step

reaction for any ( can be simulated (( → . ). Herein, the function 5 is treated as deterministic.

Solvents, reagents and catalysts can be augmented into the input variable as required.

A :-step reaction sequence ending with a final product . can be generated by convoluting the

single-step model 5 (() : times with randomly selected reactant sets (1, . . . , (: at each step:

(1 → .1 + (2 → . . .→ . :−1 + (: → ., (3.1)

where . 8 = 5 (. 8−1, (8) denotes an intermediate product from the product . 8−1 at the previous

step and the currently selected reactants (8. For clarity, the multi-step model is denoted as

. = 5 (() := 5 ((1, . . . , (: ), where 5 (() is a composite function that convolves the single-step

reaction : times and all reactants are concatenated into a sequence ( = 2>=20C ( [(1, . . . , (: ]) =

[<11, . . . , <
1
?1
, . . . , <:

1 , . . . , <
:

?:
]. Hereafter, we assume that a fixed-length sequence ( contains

A =
∑:
8=1 ?

8 reactants involved in a :-step reaction.

The ultimate goal of retrosynthetic prediction is to enumerate all possible ( ∈ S satisfying H∗ = 5 (()

for a given synthetic target . = H∗, or equivalently, to solve the inverse mapping of the forward

model ( = 5 −1(H∗). The solution space S is composed of all combinations of the A reactants

that are purchasable. The number of the candidate reactants is typically $ (106), resulting in the

cardinality of the solution space expanding to |S| = $ (106×A) because A reactants are involved in

the synthetic route planning.

In certain cases, wemaywant to identify an ensemble of ( that approximatelymeets the requirement,

i.e., H∗ ' 5 ((), rather than obtaining a strict solution. First, it is possible that all candidate reactants

will never reach the target product with the given forward model 5 ((). Furthermore, if the model

is incorrect, true reactants are expected to be close to the optimal solutions H∗ ' 5 ((). Technically,

all models of machine learning are incorrect, and therefore, the strict solution of the forward model
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is not always true in the real world. Retrosynthetic prediction models are essentially tools to

facilitate the creativity of synthetic chemists. After a wide variety of candidates are identified,

the final decision should be left to synthetic chemists. In such scenarios, it is more beneficial to

investigate the distribution of ( as approximately satisfying H∗ ' 5 (() than to obtain only an strict

solution. This is the underlying concept for addressing a retrosynthetic analysis within the Bayesian

framework.

Bayesian retrosynthesis relies on Bayes’ law of conditional probability:

?(( |. = H∗) ∝ ?(. = H∗, () = ?(. = H∗ |()?((). (3.2)

This law states that the posterior probability distribution ?(( |. = H∗) is proportional to the joint

distribution ?(. = H∗, () that consists of the product of the likelihood ?(. = H∗ |() and prior

?((). The forward prediction model forms the joint probability distribution, which is given by the

Boltzmann distribution with an inverse temperature V, as follows:

?(. = H∗, () ∝ exp
(
−V�

(
H∗, 5 (()

) )
. (3.3)

The energy function � is provided by the Euclidean distance or Tanimoto distance (Tanimoto, 1958)

between the chemical structures of the target . = H∗ and the predicted product 5 ((). The distance

is calculated with the extended-connectivity fingerprint (ECFP) (D. Rogers and Hahn, 2010) with

a diameter of four using the open-source cheminformatics toolkit RDKit in Python. The diversity

of the identified solutions can be increased or decreased by setting lower or higher values to V,

respectively. In our implementation, we applied an annealing schedule using a non-decreasing

sequence of V in the iterative algorithm.

The posterior is a discrete probability distribution ?(( |. = H∗) ∝ ∑|S|
8=1 ?(. = H

∗, ()XB8 ((), where

XB8 (() denotes an indicator function that takes the value of 1 if ( = B8 and 0, otherwise. The

support of this discrete measure consists of all possible combinations of A reactants involved in a

synthetic route. As exact computation across |S| candidates is generally infeasible, we explore the
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approximated form ?̂(( |. = H∗) as follows.

?̂(( |. = H∗) ∝
=∑
8=1

?(. = H∗, ()XB8 ((). (3.4)

The primary objective in the Bayesian computation is to identify the reduced set of = reactant

pairs, {B8}=8=1, possibly with = � |S|. Candidates with greater ?(. = H∗, ( = B8) should have a

better chance of surviving, while those that are ignorable B8 with low ?(. = H∗, ( = B8) values are

effectively eliminated.
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31C h a p t e r 4

BAYESIAN INFERENCE ON RETROSYNTHESIS

4.1 Difficulties for ordinary heuristic algorithms

Sampling from a posterior distribution over a huge discrete space is an extremely difficult task.

Conventional heuristic algorithms cannot be applied to solve this task. To demonstrate this, we first

present the simplest form of the SMC algorithm (Moral, Doucet, and Jasra, 2006). The SMC has the

same structure as that of genetic algorithms, which have been applied to various machine-learning

problems and molecular design tasks (e.g., an inverse analysis of quantitative structure–property

relationships.) (Ikebata et al., 2017; Venkatasubramanian, Chan, and Caruthers, 1995; Kawai,

Nagata, and Takahashi, 2014; Miyao, Kaneko, and Funatsu, 2016; Douguet, Thoreau, and Grassy,

2000; Lameĳer et al., 2006). It begins with an arbitrary set of ? particles, P0 = {B08 }
?

8=1, which

represent an ensemble of candidate reactant pairs, followed by the iteration of two operations,

hereafter referred to as sampling and resampling.

Algorithm 2 Simple SMC
1: Initialize a set of ? particles P0 = {B08 }

?

8=1.
2: for C = 1, . . . , ) do
3: for 8 = 1, . . . , ? do
4: Generate a new particle B∗

8
∼ 6(B∗

8
|BC−1
8
) according to a proposal distribution 6.

5: Evaluate the importance weight as

F8 =
?(. = H∗, ( = B∗

8
)

6(B∗
8
|BC−1
8
)

.

6: end for
7: Resample {B∗

8
}?
8=1 with the probability proportional to {F8}?8=1 to obtain a new set PC =

{BC
8
}?
8=1.

8: end for

This chapter is a modified version of Guo et al. Bayesian Algorithm for Retrosynthesis. J. Chem. Inf. Model.
2020, 60, 10, 4474–4486 (doi.org/10.1021/acs.jcim.0c00320) published in Journal of Chemical Information and
Modeling. Copyright 2020 American Chemical Society.



To reveal the associated technical difficulties, we consider an elementary version of the SMC

algorithm, as shown in Algorithm 2. For a given particle set PC−1 at step C − 1, a particle BC−1
8

is tentatively replaced with a new B∗
8
according to a prescribed proposal distribution 6(B∗

8
|BC−1
8
).

Specifically, we sample B∗
8
with equal probability from the :-nearest neighbors of BC−1

8
in the

candidate set S of available reactant pairs. For the neighbor search, all candidates in S and

reactants in B∗
8
are fingerprinted by ECFP with a diameter of four, followed by calculation of the

Tanimoto distance(Tanimoto, 1958). For each candidate particle, the goodness-of-fit F8 to the

synthetic target, which is referred to as the importance weight, is evaluated by simulating the

product using the Molecular Transformer. It should be noted that the importance weight is reduced

to F8 ∝ ?(. = H∗, ( = B∗8 ), when using the :-nearest neighbor proposal 6(B∗
8
|BC−1
8
) = 1/: . {B∗

8
}?
8=1

is then resampled based on the selection probability proportional to {F8}?8=1, which yields a new

particle set PC = {BC8 }
?

8=1. For a given BC
8
, as the predicted product moves closer to the given

synthetic target, its reactant set has a greater chance of surviving in the resampling step. By

repeating the sampling and resampling ) times, we obtain = = ? × ) samples in P1, . . . ,P) with

?(. = H∗, ( = B8), forming the approximated posterior (Eq. 3.4).

The experimental parameters and conditions are summarized in Table 4.1. To evaluate the perfor-

mance of the simple SMC, we randomly sampled 40 reactions. Each selected reaction consisted of

two reactants and one product. We verified that all the 40 reactions were successfully predicted by a

pre-trained forward prediction model, called the Weisfeiler–Lehman Difference Network (WLDN)

(Jin, Coley, et al., 2017). This model was the state-of-the-art forward prediction model for chemical

reactions before the emergence of the Molecular Transformer (Schwaller, Laino, et al., 2019). To

further simplify the analysis, one of the two reactants in a reaction was assumed to be known and

the simple SMC was applied to search for only one unknown reactant.

This simple SMC performed very poorly as it failed to discover approximately 50% of known

one-step reactions in the performance test. This is due to two common drawbacks in conventional

heuristic search methods, including genetic algorithms. The first drawback is the underlying
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Description Parameter
Forward model WLDN (Jin, Coley, et al., 2017)
Particles One reactant in each particle
Number of reactants |S| 325,995
Size of population ? 100
Number of iterations ) 1,000
Energy function � (H∗, 5 (()) Tanimoto distance
Importance weight F (1 − � [C ) × UWLDN with

[C = 1 + 9/C
Number of neighbors : 100
Random sampling ratio 0.05

Table 4.1: Parameters and experimental conditions for the simple SMC. UWLDN denotes the output
probability of the WLDN model for a predicted product.

diversity of the solutions. Our analysis demonstrated that a large number of synthetic routes ended

with the same product in the search space. Using an extended algorithm (presented later), an

average of over 500 different routes were identified for a synthetic target. In general, it is difficult

to identify a diverse set of highly probable solutions comprehensively using ordinary heuristic

methods. In the SMC workflow, the repeated resampling induces a rapid loss of diversity among

the particle sets, which is known as particle impoverishment (Stavropoulos and Titterington, 2001).

The other drawback is the cost of repeated calculations of a reaction prediction model. For example,

on average, a single-step reaction prediction using the Molecular Transformer required 30 to 40

ms on a Linux server with an NVIDIA V100 or P100 GPU, thereby leading to a total execution

time of over seven hours for ? = 1, 000 and ) = 600. In summary, a surrogate model-assisted

Monte Carlo algorithm was required to save the cost of repeatedly evaluating the computationally

expensive reaction prediction model, while maintaining the diversity of particles, including highly

probable solutions.
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4.2 SMC accelerated by surrogate posterior distribution

Surrogate posterior based on gradient boosting

A key concept behind our strategy is the use of a computationally inexpensive surrogate model,

such as a gradient boosting regression (Schapire and Freund, 2012), to approximately evaluate the

posterior probability in Eq. 3.3 of the Molecular Transformer for any given reactants with high

accuracy. For < randomly selected instances {B8}<8=1 of reactant pairs, their posterior probability

up to the normalizing constant, F8 = ?(. = H∗, ( = B8) (8 = 1, . . . , <), can be calculated using

the top-1 proposed product of a forward model or an observed product for any B8 with a given

target H∗. Using this dataset, we trained a gradient boosting regression tree FGBM((), which can

be used to predict F8 of ( = B8 without passing through the Molecular Transformer (Figure 4.1a).

The ECFPs in the RDKit package were used as inputs for the gradient boosting regression based

on the LightGBM package (Ke et al., 2017) in Python. Details on the parameter settings of the

gradient boosting regression in the numerical experiments described later are presented in Table

4.2. As the logarithmic posterior probability is proportional to the Euclidean distance between

the fingerprinted target product and predicted product of the Molecular Transformer, the gradient

boosting surrogate was trained to predict the distance directly from the input reactions. Figure 4.1b

illustrates the performance of the surrogate models for two different target molecules. The true

reactants are scored as the most likely for each target molecule among the test data. The strong

correlation between the predicted and true F8 made the surrogate posterior distribution a reliable

alternative to the true one, which is expensive to calculate.

Modified SMC with cluster-level sampling

The proposed retrosynthesis algorithm is described in Algorithm 3. It relies on the evolutionary

strategy involving the sampling and resampling operations, as in Algorithm 2. Sampling from the

proposal distribution is modified in three ways to reduce the computational cost and maintain the

diversity of the final candidates. First, the currently provided top-; particles are expanded into

; × < particles by taking the <-nearest neighbors of each particle (line 12). This operation aims
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Figure 4.1: a. The energies (proportional to the negative logarithmic posterior probability) predicted
by a surrogate model are used to prioritize the promising reactants before conducting expensive
reaction prediction using the Molecular Transformer. b. For two synthetic targets, the predicted
energies of surrogate models trained on 40,000 instances of randomly selected reactants from a set
of candidate reactants are displayed against the true energies of 5,000 unseen reactants. The orange
points represent the ground-truth reactants. The dashed lines indicate the predicted values of the
ground-truth reactants. The target molecules are displayed in the top right corners.

35



Description Parameter
Model Gradient boosting machine (LightGBM (Ke et al., 2017))
Boosting type gradient boosting decision tree
Objective regression
Metric l1 and l2
Number of boost rounds 500
Number of leaves 63
Learning rate 0.1
Early stopping rounds 5
Minimum child samples 10
Bagging fraction 1
Feature fraction 0.8

Table 4.2: Hyperparameters used to train the surrogate model.

to increase the heterogeneity of the sample population in the following generation. The fast-to-

evaluate surrogate model can efficiently prioritize increasingly heterogeneous particles according

to the surrogate posterior (line 13). Moreover, the ; × < particles are clustered into  subgroups

according to the fingerprints of the chemical structures (ECFPs with a diameter of four; line 14).

From each cluster, one particle is sampled to maintain the population diversity (line 15). The

surrogate posterior probabilities are transformed into cluster-level goodness-of-fit scores by taking

the within-cluster average (line 16). As a result, a new set of particles is created by performing

the sampling of the ; ×< particles such that the number of particles in each cluster is proportional

to the within-cluster posterior probability (line 17). This sampling improves the efficiency in

searching {( ∈ S| 5 (() ' H∗} as giving the priority to reactant pairs with a high surrogate posterior

probability. Finally, the set of randomly selected candidates is augmented with the new set of

particles (line 19). The sampled particles are excluded from the candidate set to avoid repeated

calculation of the Molecular Transformer.
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Algorithm 3 Surrogate-accelerated SMC
1: Initialize a set of ? particles: P0 = {B08 }

?

8=1.
2: Initialize the active candidate set A1 = S \ P0, which consists of all reactant pairs in S that

have not been sampled.
3: Generate a training set D = {B8, F8}=8=1 to construct a surrogate posterior probability function,

whereF8 are calculated using the top-1 predicted product of B8 or an observed product in dataset
for each B8.

4: Build the surrogate model FGBM(() (gradient boosting) on D.
5: Compute the pairwise similarity of all candidate reactants.
6: Set an annealing schedule as V0 ≤ V1 ≤ . . . ≤ V) .
7: for C = 1, . . . , ) do
8: Resampling based on importance weights
9: CalculateWC−1 = {FC−18 }

?

8=1 of all entries in PC−1 with VC−1.
10: Select the top ; of ? particles from PC−1 in terms of the importance weights inWC−1.
11: Sampling PC from a proposal distribution
12: Generate ; × < particles P∗ = {B∗

8
};×<
8=1 by taking the <-nearest neighbors of each BC−1

8

(8 = 1, . . . , ;) selected from AC .
13: Calculate FGBM(B∗8 ) of B∗8 ∈ P∗.
14: By performing  -means clustering with the fingerprints of P∗, the ; × < temporally

proposed particles are grouped into  non-overlapping clusters C1, . . . , C .
15: From each cluster, sample one particle randomly to generate a set S∗1 .
16: Calculate the cluster-level surrogate importance weight as,GBM(C: ) =

(1/|C: |)
∑
8∈C: FGBM(B∗8 ).

17: Sample ?/2 particles from P∗, denoted by S∗2 , such that the number of particles in
each C: is proportional to,GBM(C: ). Within each cluster, particles are sampled with
probabilities proportional to FGBM(B∗8 ).

18: Generate the remaining (?/2 −  ) particles, S∗3 , with equal probabilities from AC .
19: Set the new particles as PC = S∗1 + S

∗
2 + S

∗
3 .

20: Set AC+1 = AC \ PC
21: end for
22: CalculateW) = {F)8 }

?

8=1 of all entries in P) with V) .
23: Return PC andWC (C = 1, . . . , )) to calculate the approximate posterior with Eq. 3.4.
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The sampling process in the surrogate-accelerated SMC involved three operations: Sampling one

particle from each cluster, sampling based on the surrogate importanceweight and random sampling

from the candidate set. For each operation, one particle is sampled from a specific proposal, which

is determined by the surrogate importance weights and the result of the clustering. The proposal of

the sampling process can be approximately represented as a mixture of the three proposals of the

three operations described above. It should be noted that the compositionmethod, which is typically

used for sampling from amixture proposal (Rubinstein andKroese, 2007), uses an auxiliary discrete

random variable to determine the component to sample from. In the surrogate-accelerated SMC,

each operation in the sampling process is performed a predetermined number of times: Once

for sampling a particle from each cluster, ?/2 times for the surrogate importance weight-based

sampling and ?/2 −  times for the random sampling. Using the predetermined number of times

as the mixture weights for the three components, the proposal of the surrogate-accelerated SMC

can be approximated as

?(BC∗ |PC−1) '



1
?

1
|� (BC∗) |

+ 12
1∑ 

:=1,GBM (�: )
FGBM (BC∗)
|� (BC∗) |

+ ?/2− 
?

1
|AC | if BC∗ ∈ Ω(PC−1)

?/2− 
?

1
|AC | if BC∗ ∈ AC \Ω(PC−1)

0 otherwise

(4.1)

where Ω(PC−1) =
⋃;
8=1 ## (BC−18 )

⋂AC is the nearest neighbors of BC−18 (8 = 1, . . . , ;) that have the

top ; importance weights in PC−1, and � (BC∗) represents the set of particles belonging to the same

cluster as BC∗. The probabilities of the particles in the nearest neighbors of the previous generation

consist of the three terms (the first equation in E.q 4.1). The first term denotes the probability of

sampling BC∗ as the representative from cluster � (BC∗). It is inversely proportional to the number of

particles in the same cluster. Therefore, the particles in minor clusters have a greater chance to

survive in surrogate-accelerate SMC. The second term denotes the probability of sampling based

on surrogate importance weights. Considering the summation over the cluster � (BC∗), � (BC∗) with

large,GBM(� (BC∗)) =
∑
B8 ∈� (BC∗)

FGBM (B8)
|� (BC∗) |

will have more particles to be sampled. In other words, the
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surrogate-accelerated SMC gives the priority to sampling from the area in the reaction space with

high surrogate importance weights. For all particles in the candidate set AC , random sampling is

performed with equal probabilities, which is the third term in the first equation and appears in the

second equation for BC
8
∈ AC \Ω(PC−1).

The experimental parameters and conditions for one-step and two-step retrosynthesis are summa-

rized in Table 4.3 and Table 4.4, respectively. Note that the pairwise similarity of all given candidate

reactants is computed before running the SMC (line 5). While the SMC is running, it only reads

the already calculated similarity values to select the neighboring particles. In our implementation

(see the Results section for details), a GPU was used to compute the pairwise similarity. It took

approximately three hours to compute the pairwise similarity of 600k reactants. It should be noted

that in practice, it is not necessary to include all the millions of reactants in the candidate list

(Nicolaou, Watson, Hu, et al., 2016; Yu and Bakken, 2009). Based on the chemical substructure

of a given target product, we can exclude seemingly unrelated reactants from the candidate list in

advance. Similarly, we can rule out blacklisted reactants.

Description Parameter
Forward model Molecular Transformer (Schwaller, Laino, et al., 2019)
Particles One reactant in each particle for C < 100

Two reactants in each particle for 100 ≤ C < 600
Number of reactants |S| 637,637
Size of population ? 1,000
Number of iterations ) 600
Energy function � (H∗, 5 (()) Euclidean distance
Importance weight F exp{−VC�} with

VC = 1/max{1, 20/(C mod 100 + 0.1)}
Number of selected particles ; 100
Number of neighbors < 100
Random sampling ratio 0.5

Table 4.3: Parameters and experimental conditions for one-step retrosynthesis using the surrogate-
assisted SMC algorithm.
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Description Parameter
Forward model Molecular Transformer (Schwaller, Laino, et al., 2019)
Particles Three reactants in each particle
Number of reactants |S| 637,637
Size of population ? 2,000
Number of iterations ) 1,000
Energy function � (H∗, 5 (()) Euclidean distance
Importance weight F exp{−VC�} with

VC = 1/max(1, 20/(C mod 200 + 0.1))
Number of selected particles ; 200
Number of neighbors < 100
Random sampling ratio 0.5

Table 4.4: Parameters and experimental conditions for two-step retrosynthesis using the surrogate-
assisted SMC algorithm.

4.3 Ranking and prioritization

In the result section, we demonstrate that the surrogate-accelerated SMC algorithm generally

discovers an excessive number of hypothetical routes to a given product — several hundred in

many cases for one-step reactions. The majority of these candidates are chemically unrealistic

and are false discoveries, which may result from the unavailability of failed reactions or data of

low-yielding reactions in the machine-learning workflow. Indeed, in the following applications, our

expert chemists determined that approximately 65% of the proposed solutions were irrational due

to exceedingly low or no reactivity in the identified reaction routes. Here, we consider two means

of prioritizing more promising candidates by using a heuristic ranking method or reaction-type

grouping.

The ranking method scores a given sequence ( of reactants as

W(() = U(()max{?({.(, (} ∈ �1), . . . , ?({.(, (} ∈ �10)}, (4.2)

where U(() represents the output probability of the Molecular Transformer with respect to a

candidate (, ?({.(, (} ∈ �8) indicates the probability of {.(, (} belonging to a prescribed known
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reaction class �8. In this study, we considered 10 reaction classes defined by Schneider et al.

(Schneider, Stiefl, and G. A. Landrum, 2016), as described in Table 4.5. A total of 50k reactions

from the United States Patent and Trademark Office (USPTO) dataset (Daniel Mark Lowe, 2012)

were categorized into the 10 reaction classes. A sparse logistic regression model (Friedman, Hastie,

and Tibshirani, 2010) was trained on a randomly selected 80% of the dataset, where the ECFPs of

.( and ( were calculated with diameter 4 and concatenated to obtain a descriptor. The prediction

accuracy reached 97.3% on the test set. The trained model was used to evaluate ?({.(, (} ∈ �8)

and the most probable reaction class was selected to define the score. The underlying strategy of

the hand-designed heuristic score is that candidate reactions that are highly discriminable into one

of the known reaction classes are expected to be reliable. This ranking method aims to assign a

high priority to candidates that are close to the already known response types. A similar idea was

presented in a recently published paper (Nicolaou, Watson, LeMasters, et al., 2020) where they

used building block collections of the available reaction data to develop a model to recommend

synthetic routes matching a precedent-derived template. It should be noted that the purpose of

the ranking is only to assign priority when examining a large number of candidates under limited

resources in practice. However, in some cases, it would be unnecessary to prioritize higher-ranked

ones. We should examine the distribution of all the proposed candidates to see the various potential

routes to the desired products.

Another method to select promising candidates is based on the grouping of the reaction patterns.

To visualize the distribution of the identified synthetic routes in a low-dimensional space, t-

distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) was performed

on the augmented fingerprints of all given ( which was projected onto a two-dimensional space.

In addition, X-means clustering (Dau Pelleg, 2000) has been performed on t-SNE projections to

automate the determination of the number of clusters and the grouping of reaction patterns, as

shown in Figure 4.2. For each cluster, we selected a representative reaction that exhibited the best

within-cluster score. In this manner, we could infer the number of different types of synthetic routes,
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which potentially existed or were feasible to design with a given set of purchasable compounds.

Reaction class Reaction name Number of reactions
1 heteroatom alkylation and arylation 15,122
2 acylation and related processes 11,913
3 C-C bond formation 5,639
4 heterocycle formation 900
5 pretections 650
6 deprotections 8,353
7 reductions 4,585
8 oxidations 814
9 functional group interconversion (FGI) 1,834
10 functional group addition (FGA) 227

Table 4.5: Summary of 10 reaction classes and number of recorded reactions in each reaction class
(B. Liu et al., 2017).
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4.4 Results

Data

We used a collection of 50k single-step reactions (Schneider, Stiefl, and G. A. Landrum, 2016)

extracted from nine million patent applications and issued patents from 1976 to 2016. This dataset

has served as a benchmark set in previous studies to evaluate retrosynthesis methods(B. Liu et al.,

2017; Coley, L. Rogers, et al., 2017; Zheng et al., 2020; Lin et al., 2020). In this study, the dataset

was used to train a forward model and to create ground-truth sets of one-step and two-step reactions,

as described below. Following a previous study(B. Liu et al., 2017), we divided the dataset into 80%

for training, 10% for validation and 10% for testing. Note that the recorded reactions were classified

into 10 reaction classes according to an expert system (Schneider, Stiefl, and G. A. Landrum, 2016)

(Table 4.5). While most existing methods have employed one of the pre-defined reaction classes as

the input for a retrosynthetic prediction system to reduce the solution space, we applied the Bayesian

algorithm with no such prior knowledge. For a candidate set of reactants, we used approximately

600k reactants from a dataset called USPTO_STEREO, which was cleaned by Schwaller et al.

(Schwaller, Laino, et al., 2019) and used to train the original Molecular Transformer. The solution

space S was spanned by all possible combinations of the 600k reactants.

Forward prediction model

We used a pre-trained Molecular Transformer (Schwaller, Laino, et al., 2019), which was trained

on a dataset from USPTO. This attention-based neural translation model defines the translation

between the SMILES strings of reactants and their products. For simplicity, the reagents were

removed from the input. Any number of reactants could be an input and they were separated by

“.” symbols. All the reactions were canonicalized using RDKit. The inputs were tokenized with

the regular expression according to a previous study (Schwaller, Laino, et al., 2019). With direct

application to our test set, the distributed pre-trained model achieved a top-1 accuracy of 70.7% and

a top-5 accuracy of 86.4%. However, with a fine-tuned model using the training and validation data,

the top-1 and top-5 accuracies reached 86.9% and 95.5%, respectively. The prediction accuracy
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was slightly lower than the best benchmark performance reported thus far (top-1 accuracy of 90.4%

and top-5 accuracy of 95.3% for the Molecular Transformer).

It should be noted that there was a risk of data leakage in the fine-tuned forward model since our

test set included a part of the training set for the pretrained Molecular Transformer. To stabilize the

training of the Molecular Transformer, the public pretrained model was used as a starting point for

training and we performed early stopping based on the accuracy on the validation set. In addition,

the USPTO reactants were used to form S for demonstration but some of these reactants were also

included in the training data of the forwardmodel. Therefore, the prediction accuracy of this forward

model should have an upward bias for the reactants in the USPTO dataset. In the interpretation

of the performance evaluation presented below, it is important to note that the reported accuracy

on the ground-truth sets represent the performance of the backward prediction method under the

condition that a forward prediction model is given with an accuracy of approximately 87%. One

of the objectives here is to confirm that the backward prediction can reach almost the same level of

accuracy on the ground-truth sets as in the forward direction.

Implementation

The surrogate-accelerated SMC was implemented in Python (version 3.6.8), coupled with RDKit

and scikit-learn. The Molecular Transformer was developed using PyTorch was plugged into the

forward model (Schwaller, Laino, et al., 2019). All experiments were run on the AI Bridging

Infrastructure (ABCI) at National Institute of Advanced Industrial Science and Technology. The

computation was performed with 25 nodes and 100 NVIDIA Tesla V100 devices. We used

the supercomputer system to conduct repeated experiments under different initial conditions for

performance evaluation across many target products. In terms of a single run on the one-step or two-

step retrosynthetic prediction of one product, the average computation times were approximately six

and thirty hours, respectively. Most of the computation time was spent on hundreds of thousands of

calculations of the Molecular Transformer. Detailed experimental conditions, such as the number

of particles and number of steps in the SMC, are presented below.
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Number of

reactions

Detection of reactants ending

with target product [%]

Inclusion of ground-truth

reactants [%]

Random1000 1,000 98.0 92.0

MT-predictable 855 99.9 98.1

Table 4.6: Performance of the surrogate-accelerated SMC on 1,000 randomly selected ground-truth reactions
(“Random1000”). “MT-predictable” denotes the subset of 855 reactions that theMolecular Transformer could forwardly
predict their products as top-1 candidates. The average success rate for detecting one or more synthetic routes ending
with each target product is indicated in the third column. The fourth column indicates the percentage of target
products whose ground-truth reactants were detected out of the 1,000 target products or 855 products predictable by
the Molecular Transformer.

One-step retrosynthesis

For the one-step retrosynthesis prediction, we randomly selected 1,000 test reactions from the test

set consisting of one or two reactants. Among the 1,000 reactions, the Molecular Transformer

could predict the true products as top-1 candidates for 855 reactions. The number of particles was

set to 1,000. For the surrogate-accelerated SMC, we selected the 1,000 initial particles completely

at random from S. However, in practice, the candidates of the initial particles can be narrowed

down substantially based on the structural similarity to the given synthetic targets. In the first

100 steps of the SMC, each particle consisted of one reactant to explore the one-reactant reaction

space. The reaction space of two reactants was explored in the subsequent 500 steps, in which a

combination of two reactants constituted a particle. The surrogate-accelerated SMC was used to

perform a total of 600,000 (= 600 × 1, 000) evaluations of the forward reaction models in each test

reaction, corresponding with approximately 0.0001% of the entire search space |S| = $ (1011). For

98.0% of the 1,000 target molecules, the Bayesian retrosynthesis algorithm proposed one or more

solutions exactly ending with each target. The ground-truth reactants were found in the identified

solutions for 92.0% of the 1,000 targets. Focusing on the 855 reactions for which the Molecular

Transformer could forwardly predict their products as top-1 candidates, the ground-truth reactants

were found with a 98.1% success rate (Table 4.6).

In this experiment, the Bayesian retrosynthesis algorithm revealed an average of over 500 synthetic

routes for each design target. Figure 4.2 shows the diversity of the detected reaction routes on two
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synthetic targets. The ECFPs q((1), . . . , q((<) of < reactants in ( were reduced to an augmented

descriptor as q(() = ∑<
8=1 q((8) and these were embedded in the two-dimensional subspace for

visualization using the t-SNE algorithm. The distribution of the projected reactants indicates that

there are multiple motifs of synthetic routes to the same product. A comprehensive detection of

the candidate synthetic routes and their visualization-based summary may help facilitate chemists’

investigations and decision-making in synthetic route design.

In some cases, it would be difficult to investigate the validity of all such candidate routes. Here, we

demonstrate the use of the ranking method to narrow them down to a small number of prioritized

candidates. For each of the 1,000 ground-truth reactions, we obtained a ranked list of the top-#

most probable candidates based on their ranking and investigated whether to include the ground-

truth reactants. As summarized in Table 4.7, the top-# accuracy of the Bayesian retrosynthesis

was slightly lower than or comparable to the previously reported accuracy of the Conditional Graph

Logic Network (GLN) (Dai et al., 2019). This is one of the current best performing models and it

outperformed other models for any # ∈ {1, 3, 5, 10}. In particular, 75.2% and 81.8% of the top-5

and top-10 accuracies were achieved by our method, respectively. Within the 855 ground-truth

reactions for which the Molecular Transformer successfully predicted the products in the forward

manner, the top-5 and top-10 accuracies reached 84.1% and 90.9%, respectively. For the GLN, we

conducted an additional experiment: The model was trained from scratch using the same dataset

as for the Bayesian retrosynthesis and we evaluated the accuracy for the same 1,000 ground-truth

reactions. The top-5 and top-10 accuracies were 74.9% and 81.9%, respectively, which were similar

to those of our method.

Furthermore, to investigate the sensitivity to different reaction classes, we experimented with an

additional test set on the one-step retrosynthesis. Since the number of reactions attributed to each

reaction class was highly unbalanced, we randomly selected 50 reactions from each class to form

the test datasets to avoid bias towards a certain class. Class 10 had only 23 reactions from the

5,000 test data, so all 23 reactions were selected for this test. With this test set of 473 reactions,
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the top-10 accuracies of the proposed method for each of the 10 classes were evaluated. The

results are summarized in Table 4.8, along with those of the four existing algorithms. Table 4.8

also provides the forward prediction accuracy of the Molecular Transformer (Schneider, Stiefl, and

G. A. Landrum, 2016) as a reference. We observed a positive correlation across the reaction classes

between the retrosynthetic prediction performance of the proposed method and forward prediction

performance of the Molecular Transformer, which is implemented in our method as the forward

model.

According to the comparison presented in Table 4.7, our method also outperformed other existing

methods using the reaction class explicitly as an extra input in the retrosynthetic prediction. With

a given reaction class, such prediction models can reduce the reaction space to a focused region

to enhance the prediction performance. However, such prior knowledge is rarely available in

real applications. As a reference, we performed modified Bayesian retrosynthesis. Given a true

reaction class �8 and its class probability ?({.(, (} ∈ �8), we calculated the ranking score as

W(() = U(()?({.(, (} ∈ �8) instead of taking the maximum with respect to the classification

probabilities, as discussed in the Methods section. The top-5 and top-10 accuracies were further

improved to 80.3% and 85.6%, respectively, for the 1,000 ground-truth reactions (Table 4.7).

When considering the results of the comparative experiments, it is important to note that the

Bayesian retrosynthesis made its prediction in a predefined search space composed of combinations

of the given reactants. However, the search spaces of the other methods were much larger, and

the prediction task can be made more or less difficult. The primary objective of this study was to

provide a diverse set of synthetic routes using randomly selected candidate reactants to improve the

synthetic feasibility rather than finding the so-called ground-truth reactions.
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Data Model Top-1 Top-3 Top-5 Top-10

Without
reaction
class

similarity (Coley, L. Rogers, et al., 2017) 37.3 54.7 63.3 74.1

SCROP (Zheng et al., 2020) 43.7 60.0 65.2 68.7

Lin et al. 2020 (Lin et al., 2020) 43.1 64.6 71.8 78.7

GLN (Dai et al., 2019) 52.5 69.0 75.6 83.7

Bayesian-Retro 47.5 (0.92) 68.1 (0.87) 75.2 (1.10) 81.8 (1.00)

GLN-Random1000 52.7 67.4 74.9 81.9

Bayesian-Retro (MT-predictable) 53.8 (1.06) 76.5 (0.90) 84.1 (1.40) 90.9 (1.16)

With
reaction
class

baseline (B. Liu et al., 2017) 35.4 52.3 59.1 65.1

seq2seq (B. Liu et al., 2017) 37.4 52.4 57.0 61.7

similarity (Coley, L. Rogers, et al., 2017) 52.9 73.8 81.2 88.1

SCROP (Zheng et al., 2020) 59.0 74.8 78.1 81.1

Lin et al. 2020 (Lin et al., 2020) 54.6 74.8 80.2 84.9

GLN (Dai et al., 2019) 64.2 79.1 85.2 90.0

Bayesian-Retro 55.1 (1.08) 74.9 (1.04) 80.3 (1.02) 85.6 (0.92)

GLN-Random1000 62.9 78.1 82.7 87.7

Bayesian-Retro (MT-predictable) 62.1 (1.17) 83.4 (1.05) 88.8 (1.17) 94.3 (1.06)

Table 4.7: performance of various retrosynthetic predictionmethods with or without reaction class labels. “Bayesian-
Retro” denotes the proposed method; “MT-predictable” denotes the performance on the 855 ground-truth reactions
with their products forwardly predictable by the Molecular Transformer. The top-1, top-3, top-5 and top-10 accuracies
in [%] are indicated for each case. Previously reported performances from the literature are shown here, except for
that of “GLN-Random1000”, where a retrained GLN was used to predict the same 1,000 ground-truth reactions in
the present study. Moreover, we repeatedly calculated the accuracy of the proposed method over 100 reactions, which
were taken from the 1,000 ground-truths 10 times. The corresponding standard deviations are shown in parentheses.

Model 1 2 3 4 5 6 7 8 9 10
baseline (B. Liu et al., 2017) 77.2 84.9 53.4 54.4 6.2 26.9 74.7 68.4 46.7 73.9
seq2seq (B. Liu et al., 2017) 57.5 74.6 46.1 27.8 80.0 62.8 67.8 69.1 47.3 56.5
similarity (Coley, L. Rogers, et al., 2017) 86.7 94.2 74.6 67.0 97.1 95.5 88.3 98.8 71.2 91.3
Lin et al. 2020 (Lin et al., 2020) 83.1 90.4 76.2 60.0 92.3 88.6 88.2 86.4 73.9 82.6
Bayesian-Retro 90.0 96.0 82.0 76.0 90.0 86.0 68.0 38.0 70.0 65.2
Molecular Transformer (top-1) 88.0 98.0 94.0 84.0 94.0 88.0 68.0 76.0 78.0 78.3

Table 4.8: Top-10 accuracies (%) of five retrosynthetic prediction methods on 10 different reaction
classes. The last row shows the top-1 forward prediction accuracy of the Molecular Transformer
on each of the 10 classes.
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Figure 4.2: Results of the surrogate-accelerated SMC for the two synthetic targets. a. t-SNE
projection and X-means clustering of the candidate reactions. + denotes the ground-truth reactions.
In the left panel, the data points are color-coded according to the ranking scores, normalized to
[0, 1]. In the right panel, the clusters identified by X-means are indicated in different colors. ×
denotes the candidate reactions with the highest score in each cluster. The corresponding reactions
are shown in b and c. b. 34 candidate reactions with highest scores, which correspond to the 34
clusters in the top panel of a. c. 32 candidate reactions with highest scores, which correspond to
the 32 clusters in the bottom panel of a.
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To investigate when the surrogate-accelerated SMC fails in finding the ground-truth synthetic

routes, we randomly selected 100 reactions and applied the Bayesian retrosynthesis algorithm 10

times with different initial points for each reaction. Table 4.9 shows that the surrogate-accelerated

SMC succeeded in most reactions regardless of the initial points. For the nine reactions which the

surrogate-accelerated SMC failed, the Molecular Transformer failed to predict the true product for

all except one (Table 4.10).

Num. of successful trials 0 1 2 3 4 5 6 7 8 9 10
Num. of reactions 9 0 1 1 1 0 0 1 1 1 85

Table 4.9: Number of times that the surrogate-accelerated SMC found the recorded synthetic route in 10 trials.
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Table 4.10: Reactions for which the surrogate-accelerated SMC failed to find the ground-truth synthetic route.
“MT-predictable” denotes if the product can be predicted by the Molecular Transformer or not.

No. Reaction MT-predictable

1 False

2 False

3 False

4 False

5 False

6 False

7 False
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No. Reaction MT-predictable

8 True

9 False

To elucidate the failure of the Bayesian retrosynthesis algorithm in reaction No. 8, we plotted

the prediction of the surrogate model for reaction No. 8 and another successful reaction (Figure

4.3). For all other 99 reactions, the predicted energies of the ground-truth reactants were lower

than most other reactant pairs, which do not generate the target product. For reaction No. 8, the

predicted energy of the ground-truth reactants was located near themode of the predicted energies of

randomly selected reactant pairs. In the surrogate-accelerated SMC, the surrogate model modified

the proposal distribution to the sample reactants with a high surrogate posterior efficiently, and the

Molecular Transformer was used to predict products of sampled reactants. The posterior probability

were calculated based on the predicted product. Therefore, the surrogate-accelerated SMC was

able to find the ground-truth reactants in limited steps if the surrogate posterior probability of the

ground-truth is a high amount of the generated reactant pairs. If the surrogate posterior probability

of the ground-truth is lower than many other reactant pairs, the surrogate model worked as a filter to

omit reactant pairs with a low surrogate posterior probability, which may include the ground-truth

reactants. In other words, it is indispensable for the surrogate-accelerate SMC to find the true

reactants in a few steps that the predicted posterior of the ground-truth by the surrogate model is

higher than most random generate reactant pairs.
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Figure 4.3: The predicted energy of surrogate models for reaction No. 8 in Table 4.10 and another
successful reaction. The orange points represent the ground-truth reactants. The dash lines indicate
the predicted values of the ground-truth reactants.

Multi-step retrosynthesis

The surrogate-accelerated SMCwas applied to the design of the two-step synthetic routes. Here, we

considered the two-step reactions of the form (1 + (2 → - + (3 → . . Here, - is the intermediate

product made by the first step and . represents the desired final product. The three reactants

( = 2>=20C ( [(1, (2, (3]) were treated as unknown. By combining the single-step reactions that

were predictable with the Molecular Transformer in the test reaction set and USPTO_STEREO

reaction set, we generated a ground-truth set of the two-step reactions as follows: If a product of a

recorded reaction appeared in a different reaction as a reactant, the two reactions were connected to

form a two-step synthetic route. The product of the former reaction was involved as a reactant of the

second-step reaction as an intermediate product. A total of 21 two-step reactions were constructed.

Since the database may contain incorrect reactions or reactions with omitted intermediate steps, the

extracted reaction sequences were verified by our expert chemists, as summarized in Table 4.11.
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According to their evaluations, in which unrecorded reagents and reaction conditions were inferred

based on experts’ knowledge, reactions 3, 19 and 21 were determined to be chemically unrealistic.

However, instead of excluding them from the ground-truth set, we tested whether the Bayesian

retrosynthesis could determine alternative synthetic routes to the target product.

The Bayesian retrosynthesis algorithm was performed 10 times for each reaction. The number

of particles was set to 2,000 and each particle consisted of two and one reactants in the first and

second reactions, respectively. We randomly selected the initial particles from S. The number of

steps in the SMC was set to 1,000, representing a total of 2 × 106 searches in each test case. This

number corresponds to approximately 10−11 of the entire search space. In 16 of the 21 reactions,

the recorded reactants could be successfully identified at least once among the 10 repeated tests.

An average of over 16,000 candidate routes were identified for each target product. Hence, we

aggregated all the candidate synthetic routes and performed the ranking procedure. The recorded

reactions were ranked as top-10 candidates in six cases and as top-100 in 13 cases (Table 4.11).

To investigate the kinds of reaction routes captured by the two-step retrosynthetic predictions, we

selected the most representative candidate synthetic route from each cluster in all 21 test cases.

Specifically, after performing the X-means clustering, the highest ranked candidate in each cluster

was selected and the top 10 candidateswere selected from among them. According to the assessment

made by the expert chemists, 35% of the identified synthetic routes were determined to be valid.

To observe the distribution of the candidate synthetic routes, the t-SNE projection of the detected

reactants for reaction nine is presented in Figure 4.4a. Candidate reactants closer to the recorded

reactants exhibited higher scores. To identify the different motifs in the candidate synthetic routes,

the X-means clustering was applied to the ECFPs of the reactants, which were grouped into 98

clusters. We investigated the synthesis feasibility of the 10 proposed reactions exhibiting the highest

score in each of the 10 clusters (Figure 4.4a). According to evaluations by expert chemists, seven

of the 10 proposed routes would be chemically reactive and synthesizable. In candidate routes one

to three, the first and second steps are known as Williamson ether synthesis (Williamson, 1852)
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and palladium-catalyzed coupling reaction (Miyaura and Suzuki, 1995), respectively. In candidate

route nine, the second step involves ether synthesis. It should be emphasized that ranking only by

the score does not always reveal such promising synthetic routes. It is important to extract a diverse

set of candidates based on the clustering procedure to enhance the investigations of the chemists.

For ground-truth reaction three, which the chemists determined to be chemically infeasible, the

Bayesian retrosynthesis algorithm identified 2,280 alternative synthetic routes to the target molecule

(Figure 4.5). Based on our ranking and clustering procedures, 10 synthetic routes were selected

and two reactions with different side-chain modifications were determined to be reactive and

synthesizable based on the chemists’ evaluations (Figure 4.5b). A ring-forming synthesis was also

proposed by the algorithm (route indicated at the top of Figure 4.5c). Although the orthoformic acid

monoester used in the first step is chemically unstable, it is expected that the proposed synthetic

route will be beneficial for chemists when considering alternative synthetic routes. In fact, a

different ring-forming synthetic route was manually designed using formaldehyde instead of the

orthoformic acid monoester.
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4.5 Availability

A Python implementation of the Bayesian retrosynthesis algorithm is available at GitHub (Guo et

al., 2020). All results shown in the Results section can be reproduced by following the instructions.

The program is applicable to any numbers of reaction steps and reactants.
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Figure 4.4: a. t-SNE projection of 6,613 candidates for two-step synthetic routes to target product
in reaction 9, where + denotes the ground-truth reaction route. In the left panel, the data points are
color-coded according to the scores, normalized to [0, 1]. The right panel shows that the X-means
clustering classified the 6,613 candidate routes into 98 groups, which are mapped onto the t-SNE
plot. The identified clusters are indicated in different colors. × denotes the 10 candidate routes
presented in b. b. 10 candidate routes belonging to different clusters. A score from {1, 2, 3} is
assigned to each reaction step, indicating 1: feasible, 2: contentious, or 3: infeasible, as judged by
expert chemists. 62
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64C h a p t e r 5

CONCLUSIONS

In this thesis, we developed a Bayesian retrosynthesis algorithm. Most previous studies have

focused on the direct backward prediction of reaction inputs from a target product. In general,

backward prediction is significantly more difficult than the forward prediction as the model must

reconstruct several building blocks of reactant molecules that are generally missing in the target

product. Moreover, most reactants resulting from such backward predictions are non-purchasable,

making the reactants themselves synthetic targets. To overcome these obstacles, we first re-posed

the problem of retrosynthetic prediction. We obtained a forward reaction model to define the

mapping from the reactants to the products, achieving a high level of accuracy. Thereafter, a

retrosynthetic prediction was performed by exploring the inverse mapping from a target product

to a pair of reactants in the given forward model, where all possible combinations of purchasable

compounds spanned the feasible solution space.

Themost important contribution of this study is the development of a methodology that can improve

the prediction capability of retrosynthesis by improving the performance of forward prediction

models. Thus far, the problems of forward and backward prediction on synthetic reactions have

been independently studied. In this paper, we demonstrated Bayesian retrosynthesis using the

Molecular Transformer; however, any forward model can be applied. In the near future, a forward

prediction model exhibiting higher accuracy is expected to emerge. In addition, the computation

speed of forward prediction models, which is a bottleneck in the computation of the Bayesian

retrosynthesis, may be improved. This will enable us to apply the proposed method to the design

of more multi-step reaction pathways.

The Bayesian retrosynthesis algorithm revealed the presence of numerous alternative routes to the

target product. These routes were programmed in the trained reaction prediction model. The



identification of such diverse candidate routes may help to stimulate the researchers’ ideas in

organic synthesis. However, our expert chemists concluded that almost 65% of the proposed two-

step reactions would be false discoveries owing to no or exceedingly low reactivity. The prediction

of the presence or absence of reactivity is currently beyond the capability of any synthetic prediction

models since these models are trained only on highly reactive instances which are extracted from

published data. The lack of negative data on failed and low-yield reactions prevents us from

obtaining effective machine-learning models capable of determining the presence or absence of

reactivity in a candidate synthetic route. Several previous studies generated artificial negative

examples by perturbing and shuffling reported known reactions. In this study, we introduced a

heuristic rule for the ranking and prioritization of the candidate reaction routes. However, none of

these methods can solve the problem on a fundamental level. Eventually, a comprehensive dataset

of negative reactions must be created from experimental observations in laboratory synthesis, the

literature, chemists’ hand-coded heuristics and/or high-throughput quantum chemistry calculations.
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66C h a p t e r 6

FUTURE PROSPECTS

In the Bayesian retrosynthesis algorithm, the computational cost of the forward model Molecular

Transformer is high; therefore, we developed an efficient searchmethod by introducing the surrogate

model. As the average computing times for one-step or two-step synthetic route design of one target

molecule were approximately six and thirty hours, respectively, a low-cost forward predictionmodel

is necessary for its practical use. In particular, as the number of the reaction steps increase, the

number of reactants increase and the search space increases exponentially. The time required is

also expected to increase exponentially.

In this study, we defined the problem of chemical synthesis planning as a discrete optimization

problem and proposed an approach in the Bayesian framework; however, different approaches also

exist. One commonly used approach is beginning from the target compound and converting it to

a simple precursor molecule recursively to determine the synthetic route, based on the concept

of retrosynthesis. In this approach, dynamic optimization can be used, however, it is expected

that the algorithm will have a lengthy duration as the number of steps increases since there are an

enormous amount of combinations of compounds for chemical reactions and the prediction model

is time-consuming. In addition, due to the difficulty in defining the evaluation function of the state

in chemical synthesis planning, algorithms, such as MCTS and beam search have been proposed

to overcome these problems (section 2.4, Segler, Preuss, and Waller, 2018; Gottipati et al., 2020).

The Bayesian retrosynthesis algorithm proposed multiple synthetic routes, which can assist experts

in chemical synthesis planning. However, some of the proposed routes are not valid. In this study,

we developed a ranking method based on the similarity to existing reactions and used clustering to

determine reactions of the different types. Since it is necessary to consider the availability of the

raw materials, cost and reaction efficiency for practical use, a comprehensive evaluation method



including other data is essential to identify the effective synthetic route.

Finally, we hope that we can conduct demonstration experiments on useful synthetic routes dis-

covered by the Bayesian algorithm for retrosynthesis. It will have a huge impact on chemistry and

machine learning if new reaction routes can be identified by computer-assisted synthetic planning.
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