
Algebraic Abstraction in Formal Methods
(形式手法における代数的抽象化)

by

Takamasa Okudono
奥殿 貴仁

Dissertation

submitted to the Department of Informatics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
博士(情報学)

総合研究大学院大学

The Graduate University for Advanced Studies, SOKENDAI
March 2021

Acknowledgements

I would like to express my deepest gratitude to my supervisor Ichiro Hasuo. He invited
me to join the Ph.D. course and gave me the opportunity to pursue my research. He shared
the joy of my discoveries with me, and guided me with great patience when my research was
not going well. I would also like to thank the thesis committee members Yasuhiko Minamide,
Katsumi Inoue, Mahito Sugiyama, Taro Sekiyama for their comments and discussions.
I would like to thank all my collaborators. First, I would like to thank Andy King of the

University of Kent. He and I met at APLAS 2017 held in Suzhou and discussed Craig’s
interpolants, and then he invited me to Canterbury. The research in Chapter 4 of this thesis
was completed based on the research there. In this research, he provided me a good problem,
listened carefully to my ideas, taught me the basics of performance tuning, and taught me
research techniques. He also took me to great restaurants in Canterbury, which were my
favorite memories of the UK. I would like to thank Elena Gutiérrez, Masaki Waga, Yuki
Nishida, Kensuke Kojima, Kohei Suenaga, Kengo Kido for working with me on my research.
I would also like to thank Rafael Wisniewski, Hayato Waki, for accepting my research visit.
I would also like to thank the anonymous reviewers for their interesting comments on our
submitted papers.
I thank Jérémy Dubut for discussing with me and reading my thesis. He quickly understood

my vague research ideas and gave me advice based on his solid understanding of mathematics.
He read my draft of this thesis carefully and gave me many comments.
I would like to thank ERATO MMSD project. Without the support of the office, I would

have missed many critical deadlines. I would also like to thank Ikuo Ishimura of SOKENDAI’s
mental health counseling team for his help and support during my difficult time.
Finally, I express my gratitude to my family and friends for various supports.

Takamasa Okudono / 奥殿 貴仁
Tokyo, March 2021

Abstract

Formal methods are development techniques to describe and analyze systems and specifi-
cations mathematically and help to ensure the safety of systems. As computer programs are
being used in safety-critical systems, formal methods are becoming increasingly important.
Model checking is a style of formal methods. For a system described as an automaton and
a specification for the system, model checking constructs a proof of safety in an algorithmic
manner. By transforming a program into an automaton in a proper way, model checking
can be applied to verifying program, and program verification by model checking is realized.
As model checking automatically constructs safety proofs, it needs less expertise in formal
methods to use than other formal methods, but it has problems with applicability to complex
systems and scalability.
This thesis aims to expand the range of problems that model checking can be efficiently

applied to by looking at algebraic structures underlying target systems. We expect that it im-
proves the applicability of formal methods and encourages the industry to use model checking.
There are multiple benefits of using the properties of algebraic structures in model checking.
Firstly, writing a target system as an algebraic system leads to the algebraic description of the
abstract states, i.e., the subsets of the memory states of the systems. Algebraic descriptions
of the abstract states allow us to manipulate them so that we can check the properties of the
system computationally. Secondly, as many algebraic structures satisfy the associative law, if
a system is compatible with an algebraic structure, the exhaustive search of the system can
be done efficiently with memoization or parallelization. Thirdly, we researchers can get an
insight by inspecting the underlying structure of a target system and connecting it with other
mathematical objects.
In Chapters 3 and 4, we develop methods of interpolant generation, which can be regarded

as abstraction methods in program verification. Interpolants (or Craig intepolants) are con-
sidered to be essential predicates to analyze the properties of programs, and commonly used
in model checking of various types of programs. Chapter 3 aims to improve interpolant gen-
eration for programs with polynomials. Dai et al.’s technique could not generate interpolants
when the given data are “barely disjoint.” We make the technique works in this situation by
(1) proposing a substructure of the polynomial ring R[~X], called the strict cone, and by (2)
proposing a simplification of ratios to deal with numerical erros that occurs in interpolant
generation. Chapter 4 aims to improve interpolant generation in the bit-vector theory for pro-
grams in which integer variables cause the overflow and wraparound. For this task, Griggio’s

technique uses an interpolant generation in the linear integer arithmetic, and it has an advan-
tage that it generates interpolants while preserving the semantics of the program. However,
they reported that it sometimes fails at generating interpolants by failing to deal with the
overflow. We look at the group (Z/nZ)d, which represents the memory space, combine it with
a torus, and propose a new technique, called boxing and gapping, for this task.
Chapters 5 and 6 aim to approximate a complex system with a weighted finite automaton

(WFA). A WFA is a quantitative extension of a deterministic finite automaton, and models a
function from words to real numbers. Applying model checking to complex systems is often
impractical. We advocate that the scenario of applying a formal method to an approximated
system to certify the safety of the approximated system is useful to know the partial safety
of the original system. Chapter 5 aims to approximate a recurrent neural network with a
weighted finite automaton over R. For this task, we propose a method to compare a candidate
approximated WFA with an recurrent neural network to be approximated. The approximation
is driven by Balle and Mohri’s algorithm, which learns a weighted finite automata from given
data, and the comparing method is used as a subroutine of Balle and Mohri’s algorithm.
Chapter 6 aims to extend Balle and Mohri’s algorithm for general semirings, including the max-
plus semiring, and improve the flexibility of techniques to approximate complex systems with
weighted finite automata. We show that the naive extension of Balle and Mohri’s algorithm
outputs an “unfaithful” weighted finite automaton, which ignores some given data, as some
properties of fields do not necessarily hold in general semirings. We prove that column-
closedness is necessary to ensure “faithfulness,” and propose a new algorithm to assure the
column-closedness.

2

Table of Contents

Chapter 1 Introduction 10
1.1 Program Verification and Model Checking 10
1.2 Abstraction . 11
1.3 Algebraic Abstraction . 12

1.3.1 Algebraic Structure in Chapter 3 13
1.3.2 Algebraic Structure in Chapter 4 14
1.3.3 Algebraic Structure in Chapter 5 15
1.3.4 Algebraic Structure in Chapter 6 15
1.3.5 Algebraic Abstraction: Examples and Non-examples 16
1.3.6 Algebraic Structure as Universal Algebra 18

1.4 Overview of the Contributions . 18
1.4.1 Overview of Chapter 3 . 18
1.4.2 Overview of Chapter 4 . 19
1.4.3 Overview of Chapter 5 . 19
1.4.4 Overview of Chapter 6 . 20

1.5 Organization of the Thesis . 20

Chapter 2 Preliminaries 21
2.1 Automata Learning . 21

2.1.1 Angluin’s L∗ Algorithm . 21
2.1.1.1 Problem Formulation . 21
2.1.1.2 Example . 22
2.1.1.3 Principle . 24

2.1.2 Balle and Mohri’s Weighted Automata Learning 27
2.1.2.1 Weighted Finite Automaton (WFA) 27
2.1.2.2 Problem Formulation . 32
2.1.2.3 Principle . 32

2.2 IMPACT Algorithm: Program Verification Using Interpolants 35

1

2.2.1 Overview of the IMPACT Algorithm 35
2.2.2 Flow . 38
2.2.3 Refinement Using Interpolants . 40

Chapter 3 Sharper and Simpler Nonlinear Interpolants for Program Verification 42
3.1 Introduction . 42

3.1.1 Interpolation for Program Verification 42
3.1.2 Interpolation via Optimization and Real Algebraic Geometry . . . 43
3.1.3 Contribution . 43
3.1.4 Related Work . 46
3.1.5 Organization of the Chapter . 47

3.2 Preliminaries . 47
3.2.1 Real Algebraic Geometry and Stengle’s Positivstellensatz 47
3.2.2 The Interpolation Algorithm by Dai et al. 49

3.3 Positivstellensatz and Interpolation, Revisited 53
3.3.1 Analysis of the Interpolation Algorithm by Dai et al. 53
3.3.2 Topological and Algebraic Closure 54
3.3.3 Interpolation via Positivstellensatz, Sharpened 55
3.3.4 Relationship of the Two Algorithms 60

3.4 Implementation: Numerical Errors and Rounding 61
3.4.1 Rounding . 63
3.4.2 Validation . 64

3.5 Experiments . 65
3.5.1 Geometric Examples . 65
3.5.2 Program Verification Example I: Infeasibility Checking 67
3.5.3 Program Verification Example II: CEGAR 68
3.5.4 Program Verification Example III: CEGAR 69

3.6 Conclusions . 69
3.7 Future Work . 70

Chapter 4 Mind the Gap: Bit-vector Interpolation Recast over Linear Integer Arithmetic 71
4.1 Introduction . 71

4.1.1 Interpolant . 71
4.1.2 Context . 72
4.1.3 Contribution . 73
4.1.4 Use Case (Motivation) . 74

2

4.1.5 Related Work . 74
4.1.6 Organization of the Chapter . 75

4.2 Boxing and Gapping in Pictures . 76
4.2.1 Enumeration . 77
4.2.2 Boxing . 77
4.2.3 Gapping . 78

4.3 Formal Correctness of Boxing and Gapping 78
4.3.1 Boxing . 79
4.3.2 Boxing and Gapping . 83
4.3.3 Boxing, Gapping and Flipping . 88
4.3.4 Boxing, Gapping, Flipping and Demoding 91

4.4 Experiments . 93
4.4.1 Overall Result . 94
4.4.2 Runtime for Naive Encoding and Boxing 94
4.4.3 Interpolant Size for Naive Encoding and Boxing 94

4.5 Conclusions . 95
4.6 Future Work . 96

Chapter 5 Weighted Automata Extraction from Recurrent Neural Networks via Regres-
sion on State Spaces 97

5.1 Introduction . 97
5.1.1 Background . 97
5.1.2 Extracting WFAs from RNNs . 98
5.1.3 Contribution: Regression-Based WFA Extraction from RNNs . . . 98
5.1.4 Potential Applications . 99
5.1.5 Related Work . 99
5.1.6 Organization of the Chapter . 100

5.2 Preliminaries . 100
5.2.1 Recurrent Neural Networks . 102
5.2.2 Angluin’s L∗ Algorithm . 102
5.2.3 L∗ Algorithm for WFA Learning 104

5.3 WFA Extraction from an RNN . 105
5.3.1 Procedure Outline . 105
5.3.2 Equivalence Queries for WFAs and RNNs 106

5.3.2.1 Best-First Search for a Counterexample 106
5.3.2.2 Configuration Abstraction Function p 108

3

5.3.2.3 Consistency Checking by Consistent? 108
5.3.2.4 Equivalence Relation 'A 109
5.3.2.5 A Heuristic for Equivalence Checking of a WFA and an

RNN . 109
5.3.2.6 Termination of the Procedure 109

5.3.3 Comparison with Weiss et al., 2018 109
5.4 Experiments . 110

5.4.1 RQ1: Extraction from RNNs Modeling WFAs 110
5.4.2 RQ2: Expressivity beyond WFAs 113
5.4.3 RQ3: Accelerating Inference Time 115

5.5 Conclusions . 116
5.6 Future Work . 116

Chapter 6 Learning Weighted Finite Automata over the Max-Plus Semiring, and Beyond 117
6.1 Introduction . 117

6.1.1 Background . 117
6.1.2 Active WFA Learning over General Semirings 118
6.1.3 Outline of L∗-Style Algorithms . 118
6.1.4 Closedness and Consistency in L∗ 120
6.1.5 Consistency Issue in the Max-Plus WFA Learning 120
6.1.6 Contributions . 121
6.1.7 Notations . 122
6.1.8 Related Work . 122
6.1.9 Organization of the Chapter . 122

6.2 Preliminaries . 122
6.2.1 The Max-Plus Semiring . 122
6.2.2 Weighted Automata . 124

6.3 WFA Learning for General Semirings . 124
6.3.1 Row-Closedness and Column-Closedness 125
6.3.2 Generic WFA Learning Algorithm 126
6.3.3 Comparison with Other WFA Learning Algorithms 127

6.4 Further on the Max-Plus WFA Learning 129
6.4.1 Non-Termination and Non-Minimality 129
6.4.2 Best-Effort Minimization . 131
6.4.3 Tolerating Noise and Numeric Errors 132

6.5 Conclusions . 132

4

6.6 Future Work . 133

Chapter 7 Conclusions and Future Work 135
7.1 Reviewing Chapters 3-6 . 135
7.2 Future Work . 136

Appendix A Appendix of Chapter 5 139
A.1 Detailed WFAs Extracted from wparen . 139

A.1.1 The WFA Extracted by RGR(5) 139
A.1.2 The WFA Extracted by RGR(15) 140

Bibliography 144

5

Tables

1.1 Relationship of target systems, algebraic structures, and properties of the
structures used in this thesis . 14

2.1 Hankel matrix of L = {w ∈ Σ∗ | Both a and b appear an even number of times in w } 24
2.2 The table of f ′A(ei, w) (i = 1, 2, . . . , d and w ∈ Σ∗) of Example 2.5 29
2.3 The behavior of WFA A′ . 31
2.4 Hankel matrix of the weighted language of Example 2.5 33
2.5 The table of i, Qi, and Ri . 41

3.1 The application of Algorithm 3 to (871465, 55625, 359255) 62
3.2 Experiment results. T and T ′ are inputs, and S is our output (see Figure

3.2 too). The “time” column shows the execution time (in seconds) of the
generated MATLAB code, b and c show the successful choice of parameters,
and d is the depth for which the workflow in Figure 3.1 terminated. 66

4.1 The Karnaugh map of A,B, I1, I2 . 72
4.2 Comparison of the theories: performance and correctness 93

5.1 Experiment results, where we extracted a WFA A from an RNN R that is
trained to mimic the original WFA A•. In each cell “n/m”, “n” denotes the
average of MSEs between A and R (the unit is 10−4), taken over five random
WFAs A• of the designated alphabet size |Σ| and the state-space size |QA• |.
“m” denotes the average running time (the unit is second). The “Total” row
describes the average over all the experiment settings. The highlighted cell
designates the best performer in terms of errors. Timeout was set at 10,000
sec. RGR(2–5) are our regression-based methods; BFS(500–5000) are the
baseline. BFS(5000) is added to compare the accuracy when the running
time is much longer. 111

6

6.1 A Hankel submatrix in the setting of real-number weights 119
6.2 A Hankel submatrix made from the WFA A (left) and the next rows of the

Hankel submatrix (right) . 128

7

Figures

1.1 Family of lines x + y = c with parameters c = 0, 1/4, 1/2, 3/4 on the torus
R2/Z2 (Left). Values x + y on (Z/4Z)2 (Right). Note that the same line
appears many times on the left picture because of the quotient by Z2. 15

2.1 The problem of unclosedness (left) and the problem of inconsistency (right) . 26
2.2 The graphical interpretation of the run of Example 2.5. The transition of “a”

is drawn with red arrows, and the transition of “b” is drawn with blue arrows.
The tokens on the nodes are written by green triangles. The texts on the
nodes are of form “(ID of the node)/(the corresponding entry of β)”. 30

2.3 A control flow graph given in [89]. Unsafe nodes are marked by lightning. The
IDs of nodes are written as N**. The IDs of edges are written as E**. The
assignments are written along the edges. The conditions of condition branches
are written along the edges with brackets. Note that edge E4b do nothing. . . 36

2.4 An unwinding graph satisfying C1-10 and C12-C13 of the CFG in Figure 2.3.
Unsafe nodes are marked by lightning. Conditions on nodes and whether nodes
are expanded are written with balloons. 38

2.5 An unwinding graph satisfying C1-13 of the CFG in Figure 2.3. Unsafe nodes
are marked by lightning. Covering edges are written with dotted arrows.
Conditions on nodes and whether nodes are expanded and covered are written
with balloons. 39

2.6 The flow of IMPACT algorithm . 39

3.1 The workflow of our tool SSInt . 61
3.2 Interpolants from Table 3.2. The blue, orange and green areas are for T , T ′,

S, respectively. 66

4.1 Gapping and boxing for x+ y ≤ 3 and x+ y ≤ 7 76
4.2 Gapping and boxing for x+ 2y ≤ 5 . 83
4.3 Gapping and boxing for 7x+ 3y ≤ 17 where ~c = 〈7, 3〉, m = 8 and S = 4 . . . 87

8

4.4 Flipping φ = 7x− 3y ≤ −4 where m = 8, ~x = 〈x, y〉, ~x+ = 〈x〉 and ~x− = 〈y〉 . 91
4.5 Runtime of boxing versus naive: scatter plot and ratio plot 95
4.6 Size of interpolants in boxing versus naive and its impact on performance . . 95

5.1 An illustration of WFA A in Example 5.4. In a state label “q/m/n”, q is a
state name and m and n are the initial and final values at q’s, respectively. In
the label “σ, p” of the transition from qi to qj , p is Aσ[i, j], where σ ∈ Σ and
Aσ[i, j] is the entry of Aσ at row i and column j. 102

5.2 An outline of Angluin’s L∗ algorithm. The target DFA is B; a table T gets
gradually extended, yielding a DFA AT when it is closed. See also Figure 5.3a 103

5.3 Observation tables for L∗-style algorithms . 103
5.4 An outline of our WFA extraction . 105
5.5 The WFAs extracted by RGR(5) (left) and RGR(15) (right). In a state label

“q/m/n”, q is the state name, m is the initial value and n is the final value.
Bigger values are underlined; other values are negligibly small. The dotted and
solid edges are labelled with “(” and “)” respectively; the edges with labels
0, 1, . . . , 9 are omitted. The edge weights are omitted for simplicity too; the
weight threshold for showing transitions is 0.01. Full details on these WFAs
are in Appendix A.1. 115

6.1 L∗-style algorithms, an outline. Dashed lines indicate interaction with the
oracles. Algorithms differ in what exactly they require in “closedness” and
“consistency.” . 119

A.1 The extracted WFAs by RGR(5) . 139
A.2 The initial and accepting vector of the extracted WFAs by RGR(5) 139
A.3 The extracted WFAs by RGR(15) . 140
A.4 The initial and accepting vector of the extracted WFAs by RGR(15) 140
A.5 The transition matrices of the extracted WFAs by RGR(5) 141
A.6 The transition matrices of the extracted WFAs by RGR(15) (for

σ ∈ {(,), 1, 2, 3, 4}) . 142
A.7 The transition matrices of the extracted WFAs by RGR(15) (for

σ ∈ {5, 6, 7, 8, 9}) . 143

9

Chapter 1

Introduction

This thesis aims to broaden the range of systems that we can efficiently verify by inspecting
the algebraic structures found in the target class of the systems. We can then discover veri-
fication techniques by inspecting the algebraic structures, observing the structure’s property,
and applying appropriate algorithms corresponding to the structure.

1.1 Program Verification and Model Checking
Assuring the safety of a program is an important problem, as many industrial products are

controlled by computers and softwares. Such products include automotive control systems
[66, 137, 138], flight assistance [68], artificial pancreas [23], and pacemakers [5]. The flaws in
such systems can seriously damage people’s property, health, and lives.
Formal methods are techniques to describe and analyze systems and specifications in a

mathematical manner. A class of such, called formal verification (or verification), certifies
that a system is safe in any situation if there is a proof that the system satisfies a specification
describing the safety of the system. There are two main types of formal verification: deductive
verification and model checking.
Deductive verification is a method to certify the safety property of a system by describing

the system as a definition and the property as a theorem, and proving that the system satisfies
the property in a formal logic. We usually use proof assistants like Coq [15], Isabelle [100],
or Lean [40] for deductive verification. The pro is its flexibility: any system and specification
described in a formal logic can be targets. The con is that describing systems and specifications
in the formal logic needs many man-months and a high level of expertise. Though automated
theorem proving technologies like Sledgehammer [108] partially automate to write proofs, the
end-to-end automation for complex systems is not realistic yet. CompCert [83], which aims to
a formally verified C compiler, and the finding of a vulnerability in OpenSSL [75] are examples

10

that deductive verification works well.
On the other hand, model checking takes a state machine as a system and a specification for

the system, and checks whether the system satisfies the specification in an algorithmic manner.
In other words, it generates a proof of safety if the system is safe, and returns a counterexample
if the system is unsafe. The pro is its facility: once a system and a specification are given,
a model checking algorithm automatically finds a proof, or a counterexample. Its user does
not have to do anything. The cons are the inapplicability to complex systems and the lack of
scalability:

• Inapplicability to complex systems: As the operations supported by a target system
become richer or a specification becomes more complex, the complexity of the predicates
describing abstract states also increases during model checking. Since the cost of model
checking is dominated by the manipulation of abstract states, the complexity of systems
leads to the difficulty of model checking.
• Lack of scalability: Since model checking examines all the execution paths of a target
system, the time and space to run model checking explode as the system becomes larger.

One of the most successful model checking techniques is for ω-automata and LTL specifications
[130], and is supported by popular model checkers, such as SPIN [63] and NuSMV [31]. Various
types of model checkers are researched and developed for various purposes and systems: SLAM
[10] for the safety checking of device drivers, CBMC [79] for programs written in C language,
Java PathFinder [131] to inspect concurrent programs written in Java, and MoCHi [77] for
higher-order programs.
Model checking is being accepted by the software industry. Amazon reported that they

found some bugs in Amazon Web Service using TLA+ and TLC model checker [81, 98, 99].
SQUARE ENIX (a video game company in Japan) reported that they applied TLA+ and
TLC model checker to check the validity of the database of FINAL FANTASY XV POCKET
EDITION [64].

1.2 Abstraction
To inspect more complex systems with model checking, we need abstraction, which creates a

simpler system that inherits the properties of an original system by combining multiple states
of the system under consideration as one state. By applying an appropriate abstraction, the
complexity problem is solved by transforming transitions as simple transitions on some kinds
of automata or labeled transition systems, and the size problem is solved by combining states.
For example, let’s think about the following state machine:

11

• The states are (x, v) ∈ R2,
• the transition is replacing the current state (x, v) with (x+ v, v + 0.01), and
• the initial state is (x, v) = (0, 0).

The run looks like

→ (0, 0)→ (0, 0.01)→ (0.01, 0.02)→ (0.03, 0.03)→ (0.06, 0.04)→ (0.1, 0.05)→

We want to prove that the state x is always nonnegative. Of course, as the state machine has
infinite states R2, it is impossible to conclude the safety by checking all the states and the
transitions. An useful abstraction here is to separate the state space into four abstract states
A1 = { (x, v) | x ≥ 0, v ≥ 0 }, A2 = { (x, v) | x < 0, v ≥ 0 }, A3 = { (x, v) | x ≥ 0, v < 0 }, and
A4 = { (x, v) | x < 0, v < 0 }. As the initial state (0, 0) belongs to A1, A1 is the initial abstract
state. Any state (x, v) in A1 goes to A1 again by applying the transition, which can be solved
by SMT solvers supporting the linear arithmetic, and we know that the run on the abstract
state machine is

→ A1 → A1 → A1 →

This concludes that our goal “x is always nonnegative” is proved. Finding good predicates,
“x ≥ 0 and v ≥ 0” in the above example, is important in the abstraction. Craig interpolants
play an important role in finding good predicates for it in Chapters 3 and 4.

1.3 Algebraic Abstraction
The aim of this thesis is to make the abstraction of a target system by looking at the

algebraic structure*1 under the system, and broaden the range of systems that can be verified.
The philosophy underlying this thesis is

Look at an algebraic system whose underlying set corresponds to the state space of the
system and whose operations describe the transition of the system. It leads us to find
an efficient verification method.

Each chapter in this thesis is a practice of this philosophy.
There are three advantages of using algebraic structures for abstraction.

• In model checking, an abstract state is a subset of the memory space defined by a propo-
sition. By restricting the operations we use to describe abstract states and transitions,
we can make it easy to compute the image of an abstract state through a function and

*1 Refer to Section 1.3.6 for the discussion about “algebraic structures.”

12

to compute the relationship between two abstract states. If the operations are derived
from an algebraic structure, we can use this structure for those calculations. The the-
orems make it easier to manipulate the abstract states, and thus make model checking
easier.
Popular structures are vector spaces on a field (typically R or Q). Programs with linear
operations can be covered with the analysis using vector spaces. An abstract state in
this situation is represented with polytopes, and they can be manipulated with various
algorithms like the computation of convex hulls, linear programming, or Fourier-Motzkin
elimination [35]. Using vector spaces is also effective in interpolation techniques [116].
• Many algebraic structures satisfy the associative law, and in a computational perspec-
tive, this means that operations can be done in any order. This allows us to memoize
and reuse some of the computations, or parallelize the computations to inspect the prop-
erty of a target system. Gutiérrez [56] used the associativity of matrix multiplications,
and invstigated the properties of weighted finite automata.
• As major algebraic structures are investigated well by mathematicians, we can research
the target system described by an algebraic structure with plenty of intuition by con-
necting the target with other mathematical objects.

The target systems, algebraic structures, and properties of the algebraic systems used in
this thesis are shown in Table 1.1, and let’s see the role of them in the following sections.

1.3.1 Algebraic Structure in Chapter 3

In Chapter 3 and its previous work [39], we focus on the ring R[~X] for the verification of
programs containing polynomials. Deriving from the fact that the real field R is an ordered
field, R[~X] has a substructure called cone. A theorem called Positivstellensatz holds, which
converts a problem to check the emptiness of a shape defined by polynomials and inequalities
into a problem to find appropriate polynomials in cones, ideals, and multiplicative monoids.
Conditions written with cones, ideals, and multiplicative monoids can be written as an opti-
mization problem called sum-of-squares optimization, and it is finally reduced to semidefinite
programming, which can be solved efficiently. The previous work proposed a way to construct
an optimization problem to compute an interpolant, which is an overapproximation of an
abstract state, using this theorem as a hint.
Our algebraic contribution is to propose a new substructure in R[~X], called the strict cone,

replace the multiplicative monoid with a strict cone, and propose a new way to compute an
interpolant.

13

Table 1.1: Relationship of target systems, algebraic structures, and properties of the structures
used in this thesis

Chap. system algebraic structure property of the structure

3 programs
with polyno-
mials

ring (R[~X]) Positivstellensatz is applicable. Sub-
structures of R[~X] are compatible
with sum-of-squares constraints.

4 programs
with the
overflow

group ((Z/nZ)d) Direct products of Z/nZ form tori.

5 RNN monoid (Σ∗), vector
space over R (RΣ∗)

Balle and Mohri’s algorithm is appli-
cable to WFA over R. Systems of
linear equations over R are efficiently
solvable.

6 (potentially)
RNN

monoid (Σ∗), the max-
plus semiring (Rmax),
semimodule over the
max-plus semiring
(RΣ∗

max)

Systems of linear equations over the
max-plus semiring are efficiently solv-
able.

1.3.2 Algebraic Structure in Chapter 4

Chapter 4 targets a program in which an integer variable overflows, which means the
wraparound occurs and the number following the maximum value is zero. To verify such
a program, calculating an interpolant in the theory of Linear Integer Arithmetic is impor-
tant. A useful algebraic structure to express the memory space is (Z/nZ)d assuming that the
number of variables is d and the maximum value of a variable is n− 1.
As we shall see later, it is important to investigate shapes in the memory space (Z/nZ)d that

are defined by a linear inequality. For simplicity, let’s think the case d = 2 and the constraint
is the inequality ax+ by = c, where a, b, c ∈ Z. The set (Z/nZ)2 can be regarded as a discrete
version of the torus S2

1 ' R2/Z2. It is known that a straight line with a rational slope forms
a closed curve in the torus (see Section 15 of [128]). Using this fact as a hint, we know that
the family of straight lines ax + by = c with parameter c forms a “stratum” in (Z/nZ)2 (see
Figure 1.1). This observation is the idea of gapping in Chapter 4, and we could come up with
this by writing the system as an algebraic structure and expand the mathematical association.

14

O 1 x

y

1

x+y=0

x+y=1/4

x+y=1/2

x+y=3/4

x+y=0

x+y=1/4

x+y=1/2

x+y=3/4

x+y=0

3 3 0 1 2
2 2 3 0 1
1 1 2 3 0
0 0 1 2 3

y/x 0 1 2 3

Figure 1.1: Family of lines x+ y = c with parameters c = 0, 1/4, 1/2, 3/4 on the torus R2/Z2

(Left). Values x+ y on (Z/4Z)2 (Right). Note that the same line appears many times on the
left picture because of the quotient by Z2.

1.3.3 Algebraic Structure in Chapter 5

Chapter 5 aims at approximating a target RNN by a weighted finite automata (WFA) over
R. A weighted finite automaton is an automaton whose memory space is a finite-dimensional
vector space Rd and whose transitions are endomorphisms in the vector space.
For WFAs on R, Balle and Mohri algorithm [12] is known, and it dynamically learns a target

system and generates a WFA on R.
As the WFA inference proceeds by matrix products and since matrix multiplication is as-

sociative, it can reuse the partial calculations by memoization and parallelization. This is in
contrast to an RNN inference, which requires sequential processing of input.

1.3.4 Algebraic Structure in Chapter 6

Chapter 6 aims at extending Balle and Mohri’s algorithm, which is used in Chapter 5, for
general semirings including the max-plus semiring. The max-plus semiring is defined as follows
(the precise definition is given in Chapter 6). Its underlying set is R∪{−∞}, where −∞ is a
symbol. The zero (the identity element of addition) is −∞ and the one (the identity element

15

of multiplication) is 0 ∈ R. The addition and multiplication are defined by

x⊕ y =


maxR(x, y) (x, y ∈ R)
x (y = −∞)
y otherwise

, (1.1)

x⊗ y =
{
x+R y (x, y ∈ R)
−∞ otherwise

. (1.2)

Semirings have strange properties compared to fields, and these are obstacles to the extension
of Balle and Mohri’s algorithm. For example, for d-tuples in a semiring S v1, . . . , vn, v

′ ∈
Sd, even if v1, . . . , vn are “linearly independent” and v′ cannot be expressed as a “linear
combination” of v1, . . . , vn, v1 could be expressed as a combination of v2, . . . , vn, v

′. This
phenomenon cannot happen in fields because of the subtraction, and causes a problem for the
extension.

1.3.5 Algebraic Abstraction: Examples and Non-examples

In this thesis, abstraction refers to the transformation of a mathematically-described system
into a simple and verifiable system by combining multiple states together. Abstractions where
algebraic theorems can be used in the process, or where algebraic theorems can be used to
analyze the transformed system are called “algebraic abstractions.” To make the meaning of
“algebraic” clear, we are giving some examples of what we call “algebraic” abstraction and
what we do not call “algebraic” abstraction in this paper.
Examples of “algebraic” theorems or algorithms for abstraction are below:

• Simplex method / Fourier-Motzkin algorithm (in the vector space Rn): For a system
whose state space is expressed as the vector space Rn, a technique to combine multiple
states into one abstract state by linear inequalities is often used. An abstract state made
in this manner is a region defined by the conjunction of linear inequalities, which is a
polytope. The algorithms like simplex method or Fourier-Motzkin algorithm enables
operations on polyhedra (projection, simplification, and so on), and they are used for
program verification [35].
• Farkas’ lemma / Motzkin’s theorem (in the vector space Rn): Rybalchenko proposed
an interpolation method in linear arithmetic using linear optimization, and applied it
to program verification. To fit the interpolation problem into a linear optimization
problem, they used Motkin’s theorem (a variant of Farkas’ lemma), which enables us
to transform “less than (<)” conditions into “less than or equal to (≤)” conditions.
• Positivstellensatz (in the polynomial ring R[~X]): For a system whose state space is ex-

16

pressed as the Euclidean space Rn, there are abstraction techniques to combine multiple
states into one abstract state by polynomial inequalities. An abstract state made in this
manner is a region defined by polynomial inequalities, which is called a semialgebraic
set. We can use real algebraic geometry to investigate semialgebraic sets. Dai et al.
proposed a method to calculate interpolants of the system of real inequalities based on
Positivstellensatz, which is a theorem of real algebraic geometry [39].
• Gröbner basis / Buchberger’s algorithm (in the polynomial ring R[~X]): Sankara-
narayanan et al. proposed a method to investigate a program using Buchberger’s
algorithm, which is an algorithm of computational algebraic geometry [117]. Their
method tries to find a loop invariant, an invariant of the variables, described as
algebraic varieties, shapes written with polynomial equalities. Gröbner basis is a
normal expression of algebraic varieties, and Buchberger’s algorithm enables us to
compute Gröbner basis.
• Bezout’s identity (in the integer ring Z): Griggio’s work [53] worked on finding inter-
polants in Linear Integer Arithmetic, a logic supporting linear inequalities and moduli.
The algebraic property of the integer ring Z is used as follows. Interpolants of formulae
A and B are typically calculated from the proof that A∧B is unsatisfiable. If A and B
are systems of linear equalities, we have to construct the proof that the system of linear
inequalities A ∧B has no solution. This problem is reduced to calculating the GCD of
the coefficients according to Bezout’s identity, which is a theorem of elementary number
theory.

Examples of “non-algebraic” abstraction are below:

• Discretization for continuous systems: For a system whose state space is expressed as an
Euclidean space and whose transition is expressed as a differential equation, there is a
technique to split the state space into meshes so that the abstract system is a finite LTS
(explained in [118]). The transition of the abstract system is constructed by following
the differential equation of the original system. After the abstraction, the verification of
the original system is reduced to the verification of the finite LTS. As the construction
of the transition does not use any theorems of algebraic structures and the analysis
of the abstract system is straightforward, we do not regard this technique as algebraic
abstraction.
• Partial order reduction: For a parallel system, there is a verification technique called
partial order reduction. It searches the target parallel system in depth-first manner,
bunches up execution paths whose results are the same, and construct a smaller abstract
system than the target system. As both the constructed abstract system and the target

17

parallel system are just an LTSs, theorems of algebraic structures are not used to verify
the abstract system. The point of the process of the abstraction is to find paths whose
results are the same, and usually theorems of algebraic structures are not used. Hence
we do not regard partial order reduction as algebraic abstraction. See [9,33] for details.

1.3.6 Algebraic Structure as Universal Algebra

In this section, we divert to the topic about a definition of “algebraic structure.” Readers
can safely skip over this section.
One of the most standard definitions of “algebraic structure” is in the context of universal

algebra. An algebraic structure in universal algebra consists of a signature Σ and equational
formulae E. A signature Σ = (Σn)n∈N, where each Σn is a set of symbols, defines the
operations in the algebraic structure, and a set of equational formulae E defines the axioms,
i.e., the relationships of the signatures required to hold in the algebraic structure. A pair
(Σ, E) is called algebraic specification. A set X with n-arity functions Xn → X for every
symbol of Σn respecting E is called a (Σ, E)-algebra or a model of the algebraic structure
(Σ, E). The set X (forgetting the structure) is called the underlying set. Most of the algebraic
structures used in this thesis are described in universal algebra. For example, the signature
Σ for monoids is defined by Σ0 = { e } (unit), Σ2 = { · } (multiplication), and Σn = ∅ for
n /∈ { 0, 2 }. The equational formulae E are e · x = x · e = x and (x · y) · z = x · (y · z).
For another example, The signature for Σ of semimodules over a semiring S is defined by
Σ0 = { 0 } (zero), Σ1 = { (c·) | c ∈ S } (scalars), Σ2 = {+ } (addition), Σn = for n ≥ 3. The
equational formulae E are (1) 0 + x = x, (2) (x+ y) + z = x+ (y + z), (3) x+ y = y + x, (4)
c ·(x+y) = c ·x+c ·y for c ∈ S, (5) (c⊕c′) ·x = c ·x+c′ ·x for c, c′ ∈ S, (6) (c⊗c′) ·x = c ·(c′ ·x)
for c, c′ ∈ S, (7) 1S · x = x, (8) 0S · x = 0, and (9) c · 0 = 0 for all c ∈ S. As we saw in this
example, a signature does not have to be finite.

1.4 Overview of the Contributions
First two chapters (Chapters 3 and 4) are about interpolation, which is a technique of

abstraction in model checking.

1.4.1 Overview of Chapter 3

Interpolation of jointly infeasible predicates plays important roles in various program veri-
fication techniques such as invariant synthesis and CEGAR. Intrigued by the recent result by

18

Dai et al. that combines real algebraic geometry and SDP optimization in synthesis of poly-
nomial interpolants, this chapter contributes its enhancement that yields sharper and simpler
interpolants. The enhancement is made possible by: theoretical observations in real algebraic
geometry; and our continued fraction-based algorithm that rounds off (potentially erroneous)
numerical solutions of SDP solvers. Experiment results support our tool’s effectiveness; we also
demonstrate the benefit of sharp and simple interpolants on program verification examples.

1.4.2 Overview of Chapter 4

Much of an interpolation engine for bit-vector (BV) arithmetic can be constructed by ob-
serving that BV arithmetic can be modeled with linear integer arithmetic (LIA). Two BV
formulae can thus be translated into two LIA formulae and then an interpolation engine for
LIA is used to derive an interpolant, albeit one expressed in LIA. The construction is com-
pleted by back-translating the LIA interpolant into a BV formula whose models coincide with
those of the LIA interpolant. This chapter develops a back-translation algorithm showing,
for the first time, how back-translation can be universally applied, whatever the LIA inter-
polants. This avoids the need for deriving a BV interpolant by bit-blasting the BV formulae,
as a backup process when back-translation fails. The new back-translation process relies on
a novel geometric technique, called gapping, the correctness and practicality of which are
demonstrated.

Next two chapters (Chapter 5 and Chapter 6) are about approximation of complex systems
with automata learning methods.

1.4.3 Overview of Chapter 5

We present a method to extract a weighted finite automaton (WFA) from a recurrent neural
network (RNN). Our algorithm is based on the WFA learning algorithm by Balle and Mohri,
which is in turn an extension of Angluin’s classic L∗algorithm. Our technical novelty is
in the use of regression methods for the so-called equivalence queries, thus exploiting the
internal state space of an RNN to prioritize counterexample candidates. This way we achieve
a quantitative/weighted extension of the recent work by Weiss, Goldberg and Yahav that
extracts DFAs. We experimentally evaluate the accuracy, expressivity and efficiency of the
extracted WFAs.

19

1.4.4 Overview of Chapter 6

Active learning of finite automata has been vigorously pursued for the purposes of analysis
and explanation of black-box systems. In this chapter, we study an L∗-style learning algo-
rithm for weighted automata over the max-plus semiring. The max-plus setting exposes a
“consistency” issue in the previously studied semiring-generic extension of L∗: we show that it
can fail to maintain consistency of tables, and can thus make equivalence queries on obviously
wrong hypothesis automata. We present a theoretical fix by a mathematically clean notion of
column-closedness. Our algorithm is applicable to general semirings.

1.5 Organization of the Thesis
Chapters 3–6 present our contributions we have looked over in Section 1.4. For each, we

conclude the chapter and discuss the future work. Chapter 7 concludes the thesis.

20

Chapter 2

Preliminaries

In this chapter, we will provide some background knowledge of the general concepts that
appear throughout this thesis. First, we describe automata learning, a technique for inter-
actively inferring a regular language from a limited access to it. Next, we will explain the
interpolation of logical expressions, which is commonly used in program verification, and its
specific applications to program verification.

2.1 Automata Learning

2.1.1 Angluin’s L∗ Algorithm

2.1.1.1 Problem Formulation
In this section, we describe Angluin’s L∗ algorithm, which is the basis of automata learning.

Angluin’s L∗ algorithm is an algorithm for identifying black box regular languages. The algo-
rithm uses limited access to the regular language, namely through called membership queries
and equivalence queries, and raises them multiple times to identify the regular language.
Henceforth, Angluin’s L* algorithm will be referred to simply as the L* algorithm.
Mathematically, the L* algorithm takes as input an oracle answering the membership

query m : Σ∗ → { 0, 1 } and an oracle answering the equivalence query e : {DFAs } →
{ Equivalent } t Σ∗ and outputs a minimum DFA A. The relationship between the two
input oracles m, e and the output minimum DFA A is as follows:

Let L ⊂ Σ∗ be a regular language. If m satisfies

m(w) =
{

tt ;w ∈ L
ff ;w /∈ L

for w ∈ Σ∗, (2.1)

21

and e satisfies

e(A′) =
{

Equivalent ;L(A′) = L

w ;w ∈ L(A′)4L
for a DFA A′ (2.2)

then the algorithm terminates, and L = L(A) holds*1.

Intuitively, the above property means that if m determines whether a given word w belongs
to the regular language L, and e determines whether the language recognized by a given DFA
A′ is equal to L, then the algorithm correctly find a DFA A that recognizes L.
The pair (m, e) is called a teacher, and the entity running the algorithm is called a learner.

This is because the teacher is capable of answering queries about the language L, and the entity
raising the queries seems to be trying to learn the language from the information provided by
the teacher.
The word returned by e is called a counterexample, because it shows the difference bewteen

the learner’s guess and the teacher’s answer. The learner uses the counterexample to improve
the guess.

2.1.1.2 Example
An execution of the L∗ algorithm is shown using an example*2. Let the alphabet be Σ =
{ a, b } and the learned language L be

L = {w ∈ Σ∗ | Both a and b appear an even number of times in w } . (2.3)

We use the language L to define m and e to create a teacher. Learning by the L∗ algorithm
in this language L leads to the following access to the teacher (m, e). We represent this as a
dialogue between Learner and Answerer.

1. Learner queries “Is ‘ε’ in L?” Teacher answers “Yes”.
2. Learner queries “Is ‘a’ in L?” Teacher answers “No”.
3. Learner queries “Is ‘b’ in L?” Teacher answers “No”.
4. Learner queries “Is ‘aa’ in L?” Teacher answers “Yes”.
5. Learner queries “Is ‘ab’ in L?” Teacher answers “No”.

*1 For sets S1 and S2, S14S2 represents the symmetric difference of S1 and S2, which is (S1 \S2)∪(S2 \S1)
*2 Our demo to see the process of L∗ algorithm for an arbitrary language is provided online: https:

//colab.research.google.com/drive/1zdFtXE1UpVJKmEFIWzaPh5ow8PS7Idf4

22

https://colab.research.google.com/drive/1zdFtXE1UpVJKmEFIWzaPh5ow8PS7Idf4
https://colab.research.google.com/drive/1zdFtXE1UpVJKmEFIWzaPh5ow8PS7Idf4

6. Learner queries “Does q0start

q1

a b a

b

recognize L? ” Teacher answers “No”,

and returns a counterexample “aba ∈ L(this autom.) \ L”.
7. Learner queries “Is ‘abb’ in L?” Teacher answers “No”.
8. Learner queries “Is ‘abaa’ in L?” Teacher answers “No”.
9. Learner queries “Is ‘abab’ in L?” Teacher answers “Yes”.

10. Learner queries “Is ‘ba’ in L?” Teacher answers “No”.
11. Learner queries “Is ‘aaa’ in L?” Teacher answers “No”.
12. Learner queries “Is ‘abba’ in L?” Teacher answers “Yes”.
13. Learner queries “Is ‘abaaa’ in L?” Teacher answers “No”.
14. Learner queries “Is ‘ababa’ in L?” Teacher answers “No”.
15. Learner queries “Is ‘bb’ in L?” Teacher answers “Yes”.
16. Learner queries “Is ‘bba’ in L?” Teacher answers “No”.
17. Learner queries “Is ‘aab’ in L?” Teacher answers “No”.
18. Learner queries “Is ‘aaba’ in L?” Teacher answers “No”.
19. Learner queries “Is ‘abbb’ in L?” Teacher answers “No”.
20. Learner queries “Is ‘abbba’ in L?” Teacher answers “No”.
21. Learner queries “Is ‘abaab’ in L?” Teacher answers “No”.
22. Learner queries “Is ‘abaaba’ in L?” Teacher answers “Yes”.
23. Learner queries “Is ‘ababb’ in L?” Teacher answers “No”.
24. Learner queries “Is ‘ababba’ in L?” Teacher answers “No”.

25. Learner queries “Does
q0start q1

q2q3

a
b b

a

a
bb

a

recognize L? ” Teacher an-

swers “Yes”, and returns the atom “Equivalent”.

23

Table 2.1: Hankel matrix of L = {w ∈ Σ∗ | Both a and b appear an even number of times in w }

prefix\suffix ε a b ab · · ·
ε tt ff ff ff · · ·
a ff tt ff ff · · ·
aa tt ff ff ff · · ·
ab ff ff ff tt · · ·
aba ff ff tt ff · · ·
abb ff tt ff ff · · ·
abaa ff ff ff tt · · ·
abab tt ff ff ff · · ·
...

...
...

...
...

. . .

2.1.1.3 Principle
■Constructing an automaton from a Hankel matrix The Hankel matrix of a language L ⊆ Σ∗

is a table of inifinite rows and infinite columns labeled by Σ∗ whose cell at the p-th row and
s-th column indicates whether p · s belongs to L or not. For example, the hankel matrix of
the above language L = {w ∈ Σ∗ | Both a and b appear an even number of times in w } looks
like Table 2.1.
The r-th row of the Hankel matrix of L, where r is a word, contains the complete information

of the (Brzozowski) derivative by r, which is [r]L ∈ Σ∗/ ∼L*3: the c-th column of the r-th
row is tt if and only if c ∈ [r]L. Since the Myhill-Nerode theorem states that a language L
is regular if and only if the quotient set Σ∗/ ∼L is a finite set, the language L is regular if
and only if there are only a finite number of different row contents in the Hankel matrix of
L. By following the proof of the Myhill-Nerode theorem, we can construct the minimal DFA
recognizing L as follow:

1. Let the states Q be the row contents in the Hankel matrix of L, which is identified with
{ [w]L | w ∈ Σ∗ }. The size #Q is finite if L is regular.

2. For each [w]L ∈ Q and σ ∈ Σ, which is identified with the w-th row, the transition
δ([w]L, σ) is defined by the wσ-th row, which is identified with [wσ]L ∈ Q. The well-
definedness follows from the definition of ∼L.

*3 Recall that the relation is defined by w ∼L w′ :⇐⇒ (ww′′ ∈ L ⇐⇒ w′w′′ ∈ L) for words w,w′, w′′ ∈
Σ∗.

24

3. Let the ε-th row, which is identified with [ε]L ∈ Q, be the initial state q0.
4. Let the final states be the rows whose ε-th columns are tt, which correspond to the

elements [w]L ∈ Q such that ε ∈ [w]L.

For example, we can construct the automaton in the above example from Table 2.1 as
follows.

1. The table consists of four types of rows: (tt, ff, ff, ff, . . .), (ff, tt, ff, ff, . . .),
(ff, ff, tt, ff, . . .), and (ff, ff, ff, tt, . . .), so Q is defined by

Q = { (tt, ff, ff, ff, . . .), (ff, tt, ff, ff, . . .), (ff, ff, tt, ff, . . .), (ff, ff, ff, tt, . . .) } .
(2.4)

2. We are finding where to go from the state (tt, ff, ff, ff, . . .) ∈ Q by reading “a”. Words
whose rows are (tt, ff, ff, ff, . . .) are ε, “aa”, “abab”, and so on, so we pick ε as a
representative. As the concatination of the representative ε and the input character “a”
is “a”, and the row content of the “a”-th row is (ff, tt, ff, ff, . . .), we find the transition
is (tt, ff, ff, ff, . . .) a−→ (ff, tt, ff, ff, . . .). By repeating this procedure for each a, b ∈ Σ
and element in Q, we find that

(tt, ff, ff, ff, . . .) a−→ (ff, tt, ff, ff, . . .),(tt, ff, ff, ff, . . .) b−→ (ff, ff, tt, ff, . . .) (2.5)

(ff, tt, ff, ff, . . .) a−→ (tt, ff, ff, ff, . . .),(ff, tt, ff, ff, . . .) b−→ (ff, ff, ff, tt, . . .) (2.6)

(ff, ff, tt, ff, . . .) a−→ (ff, ff, ff, tt, . . .),(ff, ff, tt, ff, . . .) b−→ (tt, ff, ff, ff, . . .) (2.7)

(ff, ff, ff, tt, . . .) a−→ (ff, ff, tt, ff, . . .),(ff, ff, ff, tt, . . .) b−→ (ff, tt, ff, ff, . . .). (2.8)

3. The initial state q0 is q0 = (tt, ff, ff, ff, . . .) ∈ Q, which is the content of the ε-th row.
4. The set of final states F ⊂ Q is:

F = { q ∈ Q | the ε-th element of q is tt } = { (tt, ff, ff, ff, . . .) } . (2.9)

■Hankel Submatrix / Observation Table A Hankel matrix has an infinite amount of infor-
mation and cannot be handled by a computer. Therefore, we need to consider its finite
approximation. A Hankel submatrix of a language L ⊂ Σ∗ is a table of row labels P and
column labels S with the p-th row and the s-th column indicating whether p · s belongs to
L or not, where P is a finite prefix-closed set of words and S is a finite suffix-closed set of
words. We call this table a Hankel submatrix for consistency with later discussions, but in
the context of the L∗ algorithm, it is usually referred to as an observation table.
If we try to apply the same procedure above to the observation table, instead of the Hankel

matrix, the following problems can occur:

25

𝑝

𝑝𝜎

𝜎

?

𝑝 (=)𝑝′

𝑝𝜎 𝑝′𝜎?

𝜎 𝜎 𝜎

Figure 2.1: The problem of unclosedness (left) and the problem of inconsistency (right)

Unclosedness There can exist a row label p ∈ P and a character σ ∈ Σ such that the row
content λs.χ(ps ∈ L)*4 does not appear in the observation table, where s is a word
in the column label set S. From the automata viewpoint, this problem means there is
nowhere to go from the state corresponding to p reading σ. An observation table is said
to be closed when there is no unclosedness problem in the observation table. See Figure
2.1 (left).

Inconsistency There can exist row labels p, p′ ∈ P whose corresponding row contents are the
same λs.ps = λs.p′s and a character σ ∈ Σ such that the row contents corresponding to
the row labels pσ and p′σ are different λs.pσs 6= λs.p′σs. From the automata viewpoint,
this problem means there are two different states to go from the state corresponding to
p, which is the same as the state corresponding to p′, reading σ. An observation table
is said to be consistent when there is no inconsistency problem in the observation table.
See Figure 2.1 (right).

Conversely, if an observation table is closed and consistent, then the same procedure above
constructs an automaton that is compatible with the content of the observation table.

■Algorithm The basic idea of the L∗ algorithm is to start with P = { ε } and S = { ε } and
extend the observation table so that it is closed and consistent. Raising queries only when it is
necessary to make the observation table closed and consistent reduces the number of queries.
To resolve the unclosedness, for p ∈ P and σ ∈ Σ making the observation table unclosed,

we add pσ to the row label set P , and raise membership queries to fill the unknown cells in

*4 Here χ is the characteristic function. For a predicate P (x), χ(x) is tt if P (x) holds, and is ff if P (x)
does not hold.

26

the pσ-th row.
To resolve the inconsistency, for p, p′ ∈ P and σ ∈ Σ making the observation table inconsis-

tent, we add {σs | s ∈ S } to the column label set S, and raise membership queries to fill the
unknwon cells in the new columns. The new columns makes the row contents corresponding
p and p′ different because of the property of p, p′ and σ, and resolves the inconsistency.
Wrapping up the above discussion yields the L∗ algorithm below:

1. Let the row label set P = { ε } and the column label set S = { ε }, and fill the observation
table by raising membership queries.

2. Check the closedness of the observation table determined by (P, S). If it is not closed,
update P by the procedure above.

3. Check the concistency of the observation table determined by (P, S). If it is not consis-
tent, update S by the procedure above.

4. Repeat Step 2 and 3 until the update of P and S stops. When the update stops, the
observation table is closed and consistent.

5. Construct a DFA from the closed and consistent observation table.
6. Raise an equivalence query by the constructed DFA.
7. If the answer is Equivalent, the learning is done. If the answer is a counterexample
w ∈ Σ∗, add all the prefixes of w to P , and go back to Step 2. This modification of P
makes the observation table contain whether w ∈ L.

2.1.2 Balle and Mohri’s Weighted Automata Learning

Balle and Mohri’s algorithm [12] is an extension of the L∗ algorithm, and extracts a weighted
finite automaton (instead of a deterministic finite automaton) from a rational weighted lan-
guage (instead of a regular language).

2.1.2.1 Weighted Finite Automaton (WFA)
■Definition A weighted finite automaton (WFA) is an automaton to define a weighted lan-
guage, which is a function taking a word and returning a value in a semiring. In Chapter 5,
this semiring will be assumed to be the real field R.

Definition 2.1 (weighted language). A weighted language is a function of type Σ∗ → S,
where S is a semiring and Σ is an alphabet.

Definition 2.2 (Weighted finite automaton (WFA)). A weighted finite automaton (WFA)
over a semiring S is a quadruple A = (Σ, α, β, (Aσ)σ∈Σ) of:

27

• a finite set called alphabet: Σ,
• an initial vector: α ∈ Sd,
• a final vector: β ∈ Sd,
• a transition matrix: (Aσ)σ∈Σ ∈ Sd×d (assuming the WFA is named A).

The natural number d is referred to as the number of states.

A WFA A induces a weighted language fA : Σ∗ → S.

Definition 2.3 (induced weighted language of a WFA / rational weighted language). Let A
be the WFA in Definition 2.2. The weighted language induced by A is

fA(w1 . . . wn) = α>Aw1 . . . Awn
β. (2.10)

A weighted language f : Σ∗ → S is rational if and only if it is induced by a WFA.

The intuition of a run of the WFA A is to put the initial vector in the memory first. For each
input character σ ∈ Σ, the vector in the memory is multiplied by the corresponding transition
matrix Aσ. When the input sequence (word) reaches EOF, the inner product of the vector in
the memory and the final vector becomes the result of the run.
We refer the memory state in the running process to as the configuration.

Definition 2.4 (configuration of a WFA). Let A be a WFA as in Definition 2.2. The config-
uration function of A is

δ∗A(w1 . . . wn) = α>Aw1 . . . Awn
. (2.11)

The configuration of A at a word w1 . . . wn is defined by δ∗A(w1 . . . wn).

Obviously, fA(w1 . . . wn) = δ∗A(w1 . . . wn)β holds.

Example 2.5. Let A = (Σ, α, β, (Aσ)σ∈Σ) be the following WFA over the real field R:

Σ = { a, b } , α =

1
0
0

 , β =

0
1
1

 , Aa =

1 −1 0
2 1 1
0 3 1

 , Ab =

0 1 1
1 1 0
1 −1 −2

 . (2.12)

The run of the WFA A on the word “ab” is:

δA(“ab”) = α>AaAb =
(
1 0 0

)1 −1 0
2 1 1
0 3 1

0 1 1
1 1 0
1 −1 −2

 =
(
−1 0 1

)
, (2.13)

fA(“ab”) = δA(“ab”)β =
(
−1 0 1

)0
1
1

 = 1. (2.14)

28

Table 2.2: The table of f ′A(ei, w) (i = 1, 2, . . . , d and w ∈ Σ∗) of Example 2.5

configuration \ w ε a b aa ab ba bb . . .

(1, 0, 0) 0 −1 2 −3 1 6 −2 . . .

(0, 1, 0) 1 2 1 4 2 1 3 . . .

(0, 0, 1) 1 4 −3 10 0 −11 7 . . .

A WFA can also be interpreted graphically. In the graphical interpretation, the number of
states corresponds to the number of nodes, and the entry at the i-th row and j-th column
of the transition matrix Aσ(σ ∈ Σ) corresponds to the weight of the σ-labeled edge from the
i-th node to the j-th node. The entries of the final vector β are written on the nodes as
“weighted accepting state”. At the beginning of the run, αi number of tokens are put on the
i-th node. For each input character σ and for each node, the token placed there is multiplied
by the weight of the edge labeled by σ, and placed on the destination node. The tokens on
the node are accumulated by the addition of the semiring S. When the input word reaches
EOF, the result is the sum of the multiplications of the number of tokens on the nodes and
the corresponding entry of β. The graphical interpretation of Example 2.5 is in Figure 2.2.

■Linear Dependency of the Configurations A theory similar to the equivalence of the states
of a DFA can be developed for WFAs. For a DFA A = (Σ, Q, δ, q0, F), two states q and q′ are
equivalent if and only if δ∗(q, w) ∈ F ⇐⇒ δ∗(q′, w) ∈ F for all words w ∈ Σ∗. If q and q′ are
not equivalent, then they are distinguishable. When they are equivalent, we can merge them,
and shrink the number of states while preserving the behavior of A. We obtain the minimized
DFA of A by repeating mergings.
To discuss the “equivalence” of configurations of WFAs, we define f ′A : Rd × Σ∗ → R as:

f ′A(v, w1 . . . wn) = vAw1Aw2 . . . Awn
. (2.15)

Obviously, fA(w) = f ′A(α>, w) holds for all words w ∈ Σ∗. Intuitionally, f ′A resumes the
run from a given configuration. We define the equivalence of the configurations v and v′ as
f ′A(v, w) = f ′A(v′, w) for all words w ∈ Σ∗.
We can consider the table of f ′A(ei, w) for i = 1, 2, . . . , d and w ∈ Σ∗ as we consisdered

δ∗(q, w) in the discussion on DFAs. For example, the table for Example 2.5 is shown in Table
2.2.
A relation

(3rd row) = (−2)(1st row) + (2nd row) (2.16)

is observed in this case, and it suggests that the 3rd state is redundant. In the graphical

29

Step 1
Initialize

1st / 0

2nd / 1

3rd / 1

b/1
a/-1

a/2

b/1

b/-1 a/3 a/1

b/1

b/1

a/-1

a/1

b/-2 a/1

a/1

b/1

1

Step 2
Read ‘a’

1st / 0

2nd / 1

3rd / 1

b/1
a/-1

a/2

b/1

b/-1 a/3 a/1

b/1

b/1

a/-1

a/1

b/-2 a/1

a/1

b/1

1

1

-1

Step 3
Accumulate

1st / 0

2nd / 1

3rd / 1

b/1
a/-1

a/2

b/1

b/-1 a/3 a/1

b/1

b/1

a/-1

a/1

b/-2 a/1

a/1

b/1

1

-1 Step 4
Read ‘b’

1st / 0

2nd / 1

3rd / 1

b/1
a/-1

a/2

b/1

b/-1 a/3 a/1

b/1

b/1

a/-1

a/1

b/-2 a/1

a/1

b/1

1

-1

-1

1

-1

1

Step 5
Accumulate

1st / 0

2nd / 1

3rd / 1

b/1
a/-1

a/2

b/1

b/-1 a/3 a/1

b/1

b/1

a/-1

a/1

b/-2 a/1

a/1

b/1

-1

1

Step 6
Finalize

1st / 0-1 ×× + 2nd / 10 ×× + 3rd / 11 ××

= −1 × 0 + 0 × 1 + 1 × 1
= 1.

Figure 2.2: The graphical interpretation of the run of Example 2.5. The transition of “a”
is drawn with red arrows, and the transition of “b” is drawn with blue arrows. The tokens
on the nodes are written by green triangles. The texts on the nodes are of form “(ID of the
node)/(the corresponding entry of β)”.

30

Table 2.3: The behavior of WFA A′

ε a b aa ab ba bb . . .

0 −1 2 −3 1 6 −2 . . .

interpretation, putting one token on the 3rd state is equivalent to putting (−2) number of
tokens on the 1st state and one token on the 2nd state. By reducing the 3rd state and
reconnecting the transitions, we obtain a WFA A′ = (Σ, α′, β′, (A′σ)σ∈Σ):

α′ =
(

1
0

)
, β′ =

(
0
1

)
, A′a =

(
1 −1
0 2

)
, A′b =

(
−2 2
1 1

)
(2.17)

The behavior of A′ is shown in Table 2.3. Comparing the first row of Table 2.2 and Table 2.3
shows that the behaviors of A and A′ are the same.
We can interpret this reconnecting by matrix operations as follows. Let matrices X ∈ R2×3

and Y ∈ R3×2 be

X =
(

1 0 0
0 1 0

)
, Y =

 1 0
0 1
−2 1

 . (2.18)

The matrix X shows the translating rule of tokens from A′ to A: The first row means that
putting one token on the first state of A′ corresponds to putting one token on the first state of
A. The second row means the similar rule. As we are getting rid of the third state of A, the
third column of X is filled with zero. The matrix Y shows the translating rule of tokens from
A to A′: The first row means that putting one token on the first state of A corresponds to
putting one token on the first state of A′. The second row means the similar rule. The third
row means that putting one token on the third state of A corresponds to putting (−2) tokens
on the first state and putting one token on the second state of A′ (remember Equation 2.16).
Applying these translating rules to A as

(α′)> = α>Y, β′ = Xβ,A′σ = XAσY for each σ ∈ Σ (2.19)

yields the WFA A′ above. For a formal discussion about reducing unnecessary states, see
Section 6.4.2.
The same procedure to reduce the number of states cannot be applied to A′. Such WFAs

are called minimal.

Definition 2.6 (minimal WFA). A WFA A with d states is minimal if there exists no WFA
A′ with d′ < d states on the same alphabet such that fA = f ′A.

31

Though the expression of the minimal WFA of an arbitrary WFA is not unique, it is unique
up to change of basis. For the theory of minimality, see [13].
As the above discussion suggests, the linear independency (and dependency) of λw.f ′(v, w)

for each v ∈ Sd plays an important role in the theory of WFAs. Balle and Mohri’s WFA
learning algorithm works by taking advantage of this fact.

2.1.2.2 Problem Formulation
As the L∗algorithm uses a teacher to learn a black box regular language, Balle and Mohri’s

algorithm uses a teacher to learn a black box rational weighted language over R. Remark that
the algorithm does not work for general semirings.
Formally, Balle and Mohri’s algorithm takes as inputs an oracle answering the member-

ship query m : Σ∗ → R and an oracle answering the equivalence query e : {WFAs } →
{ Equivalent } tΣ∗ and outputs a minimal WFA A. The relationship between the two input
oracles and the output minimal WFA is as follows:

Let f : Σ∗ → R be a rational weighted language. If m satisfies

m(w) = f(w), (2.20)

and e satisfies

e(A′) =
{

Equivalent ; fA′ = f,

w ; fA′(w) 6= f(w)
(2.21)

then the algorithm terminates, and f = fA holds.

The situation is almost the same as L∗ algorithm explained in Section 2.1.1.1, but remark that
m is of form Σ? → R (asking “What is the value f(w) for a word w?”), not Σ?×R→ { tt, ff }
(asking “For a word w, is the value f(w) equivalent to this value?”).

2.1.2.3 Principle
■Constructing a WFA from a Hankel matrix As we defined the Hankel matrix for a language,
we define the Hankel matrix for a weighted language. The Hankel matrix of a weighted
language f : Σ∗ → R is a table of infinite numbers of rows and columns labeled by words in
Σ∗ with the p-th row and s-th column indicating the value f(p · s). For example, the Hankel
matrix of the weighted language of Example 2.5 is shown in Table 2.4.
We saw in Section 2.1.1.3 that the row contents of the Hankel matrix of a regular language

are finite. The Hankel matrix of a rational weighted language also has a “good” property
about the row contents. It follows from the following theorem.

32

Table 2.4: Hankel matrix of the weighted language of Example 2.5

prefix\suffix ε a b ab · · · combination of the rows
ε 0 −1 2 1 · · · (ε-th row)
a −1 −3 1 −1 · · · (a-th row)
b 2 6 −2 2 · · · (−2)(a-th row)
aa −3 −7 −1 −5 · · · (−2)(ε-th row) + 3(a-th row)
ab 1 5 −5 −1 · · · (−2)(ε-th row) + (−1)(a-th row)
aba 5 13 −1 7 · · · 2(ε-th row) + (−5)(a-th row)
abb −5 −17 9 −3 · · · 2(ε-th row) + 5(a-th row)
abaa 13 29 7 23 · · · 20(ε-th row) + (−13)(a-th row)
abab −1 −13 21 9 · · · 10(ε-th row) + (a-th row)
...

...
...

...
...

. . .

Theorem 2.7 (Fliess [48]). Let S be a semiring. A weighted language f : Σ∗ → S is rational
if and only if the linear space spanned by the rows of its Hankel matrices is finitely generated.

Of course, if S is the real field R, the latter condition means the rank of the Hankel matrix
is finite. We can observe that the rank of the Hankel matrix shown in Table 2.4 is two, and it
reflects the number of states of the WFA of Example 2.5.
Based on this theory, we can extract the WFA from the Hankel matrix in the following

procedure:

1. Pick row labels w1, . . . , wn ∈ Σ∗ from the Hankel matrix so that the corresponding rows
form a basis of the linear space generated by the rows. Let the number of states of the
target WFA be n. In the graphical representation, we make n number of states and
label the states by the row labels.

2. For each i = 1, . . . , n and σ ∈ Σ, the i-th row (c1, . . . , cn) of the transition matrix Aσ is
determined by the relation on the rows of the Hankel matrices

(the wiσ-th row) = c1(the w1-th row) + · · ·+ cn(the wn-th row). (2.22)

In the graphical representation, this step calculates the weights of the transitions de-
parting i-th node with label σ.

3. The initial vector α = (α1, . . . , αn)> ∈ Rn is determined by the relation on the rows of
the Hankel matrices

(the ε-th row) = α1(the w1-th row) + · · ·+ αn(the wn-th row). (2.23)

33

4. The i-th element of the final vector β ∈ Rn is the entry at the wi-th row and ε-th
column of the Hankel matrix.

For example, we can get a WFA A′′ = (Σ, α′′, β′′, (A′′σ)σ∈Σ) by the procedure in Example
2.5 as follows: We pick row labels ε and a (of course, the choice is arbitrary). The transition
matrices can be determined by looking at “combination of the rows” in Table 2.2 as

A′′a =
(

0 1
−2 3

)
, A′′b =

(
0 −2
−2 −1

)
. (2.24)

The initial vector α′′ is (1, 0) since ε itself is picked in the first step. The final vector β′′ is
(0,−1) as the ε-th and “a”-th rows show. Though the represenation is different from Example
2.5, the induced weighted language is the same. The equivalence of A′ and A′′ is easily checked
by the relations

(α′)> = (α′′)>T, β′ = T−1β′′, A′a = T−1A′′aT, A′b = T−1A′′bT, (2.25)

where

T = T−1 =
(

1 0
1 −1

)
. (2.26)

■Constructing a WFA from a Hankel submatrix (observation table) As we did in Section 2.1.1.3,
we define Hankel submatrices, which are finite versions of the Hankel matrix, for WFAs and
consinder the condition, which is called completeness, that the procedure above works. A
Hankel submatrix of a weighted language f : Σ∗ → R is a table of row labels P and column
labels S such that its p-th row and s-th column indicates the value f(p · s), where P is a finite
prefix-closed set and S is a finite suffix-closed set.
When a Hankel submatrix is incomplete, we cannot construct a WFA from the Hankel

submatrix because of the lack of data.

Definition 2.8 (complete/incomplete). A Hankel submatrix with row labels P and column
labels S is complete if and only if the rank of the Hankel submatrix is equal to the rank of a
Hankel matrix whose row labels are extended to P ∪PΣ. If it is not complete, it is incomplete.

Intuitionally, it means for any configuration of the WFA and any character σ ∈ Σ, the
configuration after reading the character σ can be represented by a superposition of the knwon
configurations. This completeness property corresponds to the closedness in the DFA case.
To resolve the incompleteness, find p ∈ P and σ ∈ Σ such that rank(the Hankel submatrix) 6=

rank(the Hankel matrix whose row label set is extended to P ∪ { pσ }), and add pσ to P .

34

■Algorithm The idea is the same as Section 2.1.1.3: start with the Hankel submatrix with
P = { ε } , S = { ε }, and extend it so that it becomes complete. The procedure overall is:

1. Let the row label set P = { ε } and the column label set S = { ε }, and fill the Hankel
submatrix by raising membership queries.

2. Check the completeness of the Hankel submatrix determined by (P, S). If it is not
complete, extend the row label set P by the procedure above. Repeat this step until
the Hankel submatrix becomes complete.

3. Construct a WFA from the complete Hankel submatrix.
4. Raise an equivalence query by the constructed WFA.
5. If the answer is Equivalent, the learning is done. If the answer is a counterexample
w ∈ Σ∗, find the longest prefix p ∈ P of w, decompose w into pσs, where σ ∈ Σ and
s ∈ Σ∗, and add all the suffixes of s into S. This modification of S makes the Hankel
submatrix contain the value for the counterexample w. Go back to Step 2.

2.2 IMPACT Algorithm: Program Verification Using Interpolants
As the preliminary for Chapter 3 and Chapter 4, whose interests are in interpolants, we

introduce the IMPACT algorithm [89], which uses interpolation for program verification. Note
that we use our own notations to make this section self-contained. We also fixed some seeming
errors in the original paper.

2.2.1 Overview of the IMPACT Algorithm

The IMPACT algorithm takes a control flow graph (CFG) and verifies whether it reaches
the unsafe state with interpolant computation. A CFG is a graph expressing a program with
assignment and branching edges. Specifically, a CFG is an LTS that consists of nodes and
labeled edges, both with unique IDs. The internal states of a CFG are the position of the
token and the assignments of the variables. There are two types of edges: edges for variable
assignments and edges for condition branching. When an edge for variable assignments is
chosen, the variables are updated by the assignment command on the edge. When an edge
for condition branching is chosen, and the current variables do not satisfy the condition on
the edge, the variables are updated to be ⊥. This behavior means an edge can be chosen
only when the current variables satisfy the condition. Hence the safety of a CFG is that the
variable assignments are ⊥ when the token reaches the unsafe nodes on the CFG. Figure 2.3
shows an example of the CFG given in [89].

35

N1 N2

N3

N4 N5 N6
E1:
L=0

E2a:
[L!=0]

E2b:
L=1;
old=new

E4a:
L=0;
new++

E5a:
[new==old]

E5b: [new!=old]

E4b

Figure 2.3: A control flow graph given in [89]. Unsafe nodes are marked by lightning. The
IDs of nodes are written as N**. The IDs of edges are written as E**. The assignments are
written along the edges. The conditions of condition branches are written along the edges
with brackets. Note that edge E4b do nothing.

The IMPACT algorithm aims to construct a graph called an unwinding graph as a proof of
safety. An unwinding graph is informally an expansion of the executions of the CFG into a
tree. It is equipped with covering edges to go back to an ancestor from a descendant, and each
node has an overapproximation of the state of the variables. An unwinding graph is formally
described as the following conditions C1-C10:

C1 The number of nodes and edges is finite.
C2 A node has a CFG-ID, which is the ID of a node of the CFG. Multiple nodes with the

same CFG-ID can exist.
C3 Each node is equipped with a predicate over the variables. This predicate is called an

overapproximation.
C4 Each edge is either a transition edge or a covering edge.
C5 Each transition edge is equipped with the ID of a CFG edge. Multiple transition edges

with the same ID can exist.
C6 The subgraph formed by the transition edges is a tree whose root has the ID of the

initial node of the CFG.

36

C7 The path made by following transition edges starting from the root is an execution path
in the CFG.

C8 The ID on the source of a covering edge is the same as the ID on the target of the edge.
C9 The predicate on the source of a covering edge implies the predicate on the target of

the edge.
C10 For any covering edge e and for any descendant (including itself) v of the source of e,

there exists no covering edge e′ such that the target of e′ is v.

We can interpret an unwinding graph as an LTS as follows: It takes the IDs of the edges of
the CFG as inputs, and outputs a proposition about the variables. At the beginning of the
execution of the unwinding graph, the token is put on the root. The token moves along the
edge corresponding to the input. When the token reaches the source of a covering edge, the
token is immediately moved to the target of the edge. It returns the property on the node as
the output.
In this interpretation, the token never reach the descendants (including itself) of the sources

of the covering edges, and the descendants are “not necessary.” The descendants (including
itself) of the covering edges are called covered. The condition C10 prevents the token from
moving to a covered node by a covering edge.
We are defining “expandedness” to describe the condition that an unwinding graph can

mimic the behavior of a CFG. A node v of an unwinding graph is called expanded if

{ ID of e | e is a transition edge whose source is v } (2.27)
= { ID of e | e is an edge of the CFG whose source is the edge corresponding to v } (2.28)

holds. If the token is on an expanded node, the unwinding graph can mimic any transition of
the CFG.
The condition of an unwinding graph to mimic any transitions of a CFG is described as

follows:

C11 Any node of the unwinding graph is covered or expanded.

The IMPACT algorithm constructs an unwinding graph from a CFG satisfying the following
property:

C12 For any execution path of the CFG, the state of the variables determined by the exe-
cution path satisfies the output of the unwinding graph.

If the constructed unwinding graph from a CFG satisfies C1-C12 and the following C13, it
works as a proof of safety of the CFG.

37

N1 N2 N4 N5 N2

N3N3

E1 E2b E4a E5b

E2a E2a

T
(Exp)

L=0
(Exp)

old=new L=0 L=0

⊥
(Exp)

T
(Exp)

Figure 2.4: An unwinding graph satisfying C1-10 and C12-C13 of the CFG in Figure 2.3.
Unsafe nodes are marked by lightning. Conditions on nodes and whether nodes are expanded
are written with balloons.

C13 The predicate on any non-covered node corresponding to an unsafe node is ⊥.

Figure 2.4 shows an example of an unwinding graph satisfying C1-10 and C12-C13 of the
CFG in Figure 2.3. Note that the unwinding graph does not satisfy C11 because some nodes
are non-expanded and non-covered. Figure 2.5 shows an example of an unwinding graph
satisfying C1-13.
The IMPACT algorithm tries to construct an unwinding graph from a given CFG by a

depth-first search. If an unwinding graph satisfying C1-13 is found during the search, it
returns “safe.” If the reach to the unsafe node is found during the search, it returns “unsafe”
with a witness.

2.2.2 Flow

The flow of the IMPACT algorithm is shown in Figure 2.6.

Step 1 Make an initial unwinding graph that consists of one node. The predicate associated
with the node is >, which obviously satisfies the conditions C1-C10 and C12. The ID
of the node is the ID of the initial node of the target CFG.

38

N1 N2 N4 N5 N2

N3N3

E1 E2b E4a E5b

E2a E2a

⊥
(Exp)

N5 N2 N3

N6

E4b

E5b E2a

T
(Exp)

L=0
(Exp)

old=new
(Exp)

L=0 (Exp) L=0
(Cov)

⊥
(Cov, Exp)

old=new
(Exp) ⊥ (Cov) ⊥ (Cov, Exp)

N6

T
(Exp)

T
(Exp)

E5a

E5a

Figure 2.5: An unwinding graph satisfying C1-13 of the CFG in Figure 2.3. Unsafe nodes are
marked by lightning. Covering edges are written with dotted arrows. Conditions on nodes
and whether nodes are expanded and covered are written with balloons.

(1) Construct
Initial

Unwinding
Graph

(2)

Safe

(3)

There is a node 𝑣 s.t.
non-covered
& non-expanded

Any node is covered
or expanded

(4)

𝑣 is unsafe

Unsafe

The path to 𝑣
is feasible

(5) Refine
predicates

on the nodes

(6)
Reconstruct

coverings

(7) Add next
nodes of 𝑣
(expand)

𝑣 is safe

The path to 𝑣
is spurious

Figure 2.6: The flow of IMPACT algorithm

39

Step 2 Pick a non-covered and non-expanded node v from the unwinding graph (as a step
of the DFS). If there is no such node, it means the unwinding graph is constructed to
satisfy the conditions C1-C13, and the safety is proved.

Step 3 If the CFG node whose ID is the CFG-ID of v is unsafe, go to Step 4 to investigate
if the corresponding execution path is feasible. If it is not, go to Step 7 to continue the
search.

Step 4 Check if the execution path corresponding to the path on the unwinding graph from
the root to the node v actually happens or not. If it does not happen, the path is called
spurious. Spurious paths can exist because the construction of the unwinding graph
is ignoring the branch conditions of the target CFG. This step is explained in Section
2.2.3.

Step 5 Strengthen the predicates on the nodes so that the condition C12 is satisfied and the
predicate on the unsafe node is ⊥.

Step 6 Construct covering edges so that the conditions C8, C9, C10 are satisfied.
Step 7 Look at the node v′ of the CFG corresponding to v, get the edges whose sources are v′,

and copy the edges into the unwinding graph so that the sources are v and the targets
are fresh nodes. The predicates associated with the fresh nodes are >. After this step,
the node v is expanded.

2.2.3 Refinement Using Interpolants

We are explaining how we use SMT solvers and interpolant computation in Steps 5 and 6 in
the previous section. For the node v fixed in Step 3, we get the corresponding execution path
from the path on the unwinding graph from the root to v. To determine whether the execution
path can happen, we convert the operations of the execution path into a sequence of predicates.
We introduce indexed variables x0, x1, . . . for a variable x, and make them represent the
changes of the value of x. Specifically, the assignment operation y = f(y, x(1), x(2), . . . , x(n))
is converted into the predicate yi+1 = f(yi, x(1)

j1
, . . . , x

(n)
jn

), where i is the index of y and jk is
the index of x(k), and the branching f(x(1), . . . , x(n)) = g(x(1), . . . , x(n)) is converted into the
predicate f(x(1)

i1
, . . . , x

(n)
in

) = g(x(1)
i1
, . . . , x

(n)
in

).
Assume that we obtain the sequence of predicates P1, . . . , Pn by the conversion above for

the path on the unwinding graph

v0
o1−→ v1

o2−→ . . .
on−→ vn. (2.29)

For each i, let Qi be a predicate satisfying P1 ∧ · · · ∧ Pi ⇒ Qi, and Ri be the predicate
obtained by removing indices from Qi. The state of the variables after executing o1, . . . , on

40

Table 2.5: The table of i, Qi, and Ri

i A B Qi: Interpolant of A and B Ri: Generated predicate
0 (Empty) P1 ∧ · · · ∧ P5 > >
1 P1 P2 ∧ · · · ∧ P5 > >
2 P1 ∧ P2 P3 ∧ P4 ∧ P5 old1 = new0 old = new

3 P1 ∧ P2 ∧ P3 P4 ∧ P5 L2 = 0 L = 0
4 P1 ∧ . . . P4 P5 L2 = 0 L = 0
5 P1 ∧ . . . P5 (Empty) ⊥ ⊥

on the CFG satisfies Ri by construction. Hence we can refine the predicates on the nodes
by strengthening with Ri so that the unwinding graph satisfies the condition C12. [89] uses
interpolant computation to find such predicates, as the interpolant of P1 ∧ · · · ∧Pi and Pi+1 ∧
· · · ∧ Pn satisfies the condition of Qi.
For example, assume that the unsafe path of the CFG in Figure 2.3

N1 E1−−→ N2 E2b−−→ N4 E4a−−→ N5 E5b−−→ N2 E2a−−→ N3 (2.30)

is picked in Step 4. The operations are converted into the list of predicates

L0 = 0︸ ︷︷ ︸
P1

→ L1 = 1 ∧ old1 = new0︸ ︷︷ ︸
P2

→ L2 = 0 ∧ new1 = new0 + 1︸ ︷︷ ︸
P3

→ new1 6= old1︸ ︷︷ ︸
P4

→ L2 6= 0︸ ︷︷ ︸
P5

.

(2.31)

We obtain Table 2.5 by applying the procedure above to the list. By using these predicates
R0, . . . , R5, we strengthen the predicates on the nodes of the unwinding graph.

41

Chapter 3

Sharper and Simpler Nonlinear
Interpolants for Program Verification

This chapter is based on joint work [102] with Yuki Nishida, Kensuke Kojima, Kohei Sue-
naga, Kengo Kido, and Ichiro Hasuo.

3.1 Introduction

3.1.1 Interpolation for Program Verification

Interpolation in logic is a classic problem. Given formulae ϕ and ψ that are jointly unsat-
isfiable (meaning |= ϕ ∧ ψ ⇒ ⊥), one asks for a “simple” formula ξ such that |= ϕ ⇒ ξ and
|= ξ ∧ψ ⇒ ⊥. The simplicity requirement on ξ can be a formal one (like the common variable
condition, see Definition 3.10) but it can also be informal, like “ξ is desirably much simpler
than ϕ and ψ (that are gigantic).” Anyway, the intention is that ξ should be a simple witness
for the joint unsatisfiability of ϕ and ψ, that is, an “essential reason” why ϕ and ψ cannot
coexist.
This classic problem of interpolation has found various applications in static analysis and

program verification [55,61, 69, 89–91]. This is particularly the case with techniques based on
automated reasoning, where one relies on symbolic predicate abstraction in order to deal with
infinite-state systems like (behaviors of) programs. It is crucial for the success of such tech-
niques that we discover “good” predicates that capture the essence of the systems’ properties.
Interpolants—as simple witnesses of incompatibility—have proved to be potent candidates for
these “good” predicates.

42

3.1.2 Interpolation via Optimization and Real Algebraic Geometry

A lot of research efforts have been made towards efficient interpolation algorithms. One
of the earliest is [34]: it relies on Farkas’ lemma for synthesizing linear interpolants (i.e.,
interpolants expressed by linear inequalities). This work and subsequent ones have signified
the roles of optimization problems and their algorithms in efficient synthesis of interpolants.
In this line of research we find the recent contribution by Dai et al. [39] remarkable, from

both theoretical and implementation viewpoints. Towards synthesis of nonlinear interpolants
(that are expressed by polynomial inequalities), their framework in [39] works as follows.

• On the theory side it relies on Stengle’s Positivstellensatz—a fundamental result in real
algebraic geometry [18, 124]—and relaxes the interpolation problem to the problem of
finding a suitable “disjointness certificate.” This certificate consists of a few polynomials
subject to certain conditions.
• On the implementation side it relies on state-of-the-art SDP solvers to efficiently solve
the SDP problem that results from the above relaxation.

In [39] it is reported that the above framework successfully synthesizes nontrivial nonlinear
interpolants, where some examples are taken from program verification scenarios.

3.1.3 Contribution

The current work contributes an enhancement of the framework from [39]. Our specific
concerns are in sharpness and simplicity of interpolants.

Example 3.1 (sharp interpolant) Let T := (y > x ∧ x > −y) and
T ′ := (y ≤ −x2). These designate the blue and red areas in the figure,
respectively. We would like an interpolant S so that T implies S and S is
disjoint from T ′. Note however that such an interpolant S must be “sharp.”
The areas of T and T ′ almost intersect with each other at (x, y) = (0, 0).
That is, the conditions T and T ′ are barely disjoint in the sense that, once
we replace > with ≥ in T , they are no longer disjoint. (See Definition 3.16
for formal definitions.)

The original framework in [39] fails to synthesize such “sharp” interpolants; and this failure
is theoretically guaranteed (see Section 3.3.1). In contrast our modification of the framework

43

succeeds: it yields an interpolant 8y + 4x2 > 0 (the green hatched area).

Example 3.2 (simple interpolant) Let T := (y ≥ x2 + 1) and T ′ := (y ≤
−x2 − 1). The implementation aiSat [37] of the workflow in [39] succeeds
and synthesizes an interpolant 284.3340y + 0.0012x2y > 0. In contrast our
tool synthesizes 5y + 2 > 0 that is much simpler.

The last two examples demonstrate two issues that we found in the original framework in [39].
Our enhanced framework shall address these issues of sharpness and simplicity, employing the
following two main technical pieces.
The first piece is sharpened Positivstellensatz-inspired relaxation (Section 3.3). We start

with the relaxation in [39] that reduces interpolation to finding polynomial certificates. We
devise its “sharp” variant that features: the use of strict inequalities > (instead of disequalities
6=); and a corresponding adaptation of Positivstellensatz that uses a notion we call strict cone.
Our sharpened relaxation allows encoding to SDP problems, much like in [39].
The second technical piece that we rely on is our continued fraction-based rounding algo-

rithm. We employ the algorithm in what we call the rounding-validation loop (see Section
3.4), a workflow from [58] that addresses the challenge of numerical errors.
Numerical relaxation of problems in automated reasoning—such as the SDP relaxation

in [39] and in the current work—is nowadays common, because of potential performance im-
provement brought by numerical solvers. However a numerical solution is subject to numerical
errors, and due to those errors, the solution may not satisfy the original constraint. This chal-
lenge is identified by many authors [16,58,72,109,110,114].
Moreover, even if a numerical solution satisfies the original constraint, the solution often

involves floating-point numbers and thus is not simple. See Example 3.2, where one may
wonder if the coefficient 0.0012 should be simply 0. Such complication is a disadvantage
in applications in program verification, where we use interpolants as candidates for “useful”
predicates. These predicates should grasp the essence and reflect insights of programmers; it
is our hypothesis that such predicates should be simple. Similar arguments have been made
in previous works such as [70,126].
To cope with the last challenges of potential unsoundness and lack of simplicity, we employ

a workflow that we call the rounding-validation loop. The workflow has been used e.g. in [58];
see Figure 3.1 for a schematic overview. In the “rounding” phase we apply our continued
fraction-based rounding algorithm to a candidate obtained as a numerical solution of an SDP
solver. In the “validation” phase the rounded candidate is fed back to the original constraints
and their satisfaction is checked by purely symbolic means. If validation fails, we increment

44

the depth of rounding—so that the candidate becomes less simple but closer to the original
candidate—and we run the loop again.

Example 3.3 (invalid interpolant candicate) Let T = (y ≤ −1), T ′ =
(x2+y2 < 1), as shown in the figure. These are barely disjoint and hence the
algorithm in [39] does not apply to it. In our workflow, the first interpolant
candidate that an SDP solver yields is f(x, y) ≥ 0, where

f(x, y) =

−3.370437975 + 8.1145 × 10−14x − 2.2469y + 1.1235y2 − 2.2607 ×
10−10y3 +9.5379×10−11x2−2.2607×10−10x2y−4.8497×10−11x2y2−
1.1519× 10−14x3 + 4.8935× 10−11x4 − 9.7433× 10−11y4

 .

Being the output of a numerical solver the coefficients are far from simple integers. Here
coefficients in very different scales coexist—for example one may wonder if the coefficient
8.1145 × 10−14 for x could just have been 0. Worse, the above candidate is in fact not an
interpolant: x = 0, y = −1 is in the region of T but we have f(0,−1) < 0.
By subsequently applying our rounding-validation loop, we eventually obtain a candidate

34y2 − 68y − 102 ≥ 0, and its validity is guaranteed by our tool.
This workflow of the rounding-validation loop is adopted from [58]. Our technical contri-

bution lies in the rounding algorithm that we use therein. It can be seen as an extension of
the well-known rounding procedure by continued fraction expansion. The original procedure,
employed for example in [109], rounds a real number into a rational number (i.e., a ratio k1 : k2

between two integers). In contrast, our current extension rounds a ratio r1 : · · · : rn between
n real numbers into a simpler ratio k1 : · · · : kn.
We have implemented our enhancement of [39], calling our tool SSInt, (Sharp and Simple

Interpolants) *1. Our experiment results support its effectiveness: the tool succeeds in synthe-
sizing sharp interpolants (while the workflow in [39] is guaranteed to fail); and our program
verification examples demonstrate the benefit of sharp and simple interpolants (synthesized
by our tool) in verification. The latter benefit is demonstrated by the following example,
discussed in further details later in Section 3.5.

Example 3.4 (program verification) Consider the imperative program in Listing 3.1 (pp.
65). Let us verify its assertion (the last line) by counterexample-guided abstraction refinement
(CEGAR) [32], in which we try to synthesize suitable predicates that separate the reachable
region (that is under-approximated by finitely many samples of execution traces) and the
unsafe region ((xa) + 2(ya) < 0). The use of interpolants as candidates for such separating
predicates has been advocated by many authors, including [61].

*1 The tool is available online: https://github.com/ERATOMMSD/polysat_aplas2017

45

https://github.com/ERATOMMSD/polysat_aplas2017

Let us say that the first execution trace we sampled is the one in which the while loop is not
executed at all (1 → 2 → 3 → 4 → 16 in line numbers). Following the workflow of CEGAR
by interpolation, we are now required to compute an interpolant of T := (xa = 0 ∧ ya = 0)
and T ′ := ((xa) + 2(ya) < 0). Because T and T ′ are “barely disjoint” (in the sense of
Example 3.1, that is, the closures of T and T ′ are no longer disjoint), the procedure in [39]
cannot generate any interpolant. In contrast, our implementation—based on our refined use
of Stengle’s positivstellensatz, see Section 3.3—successfully discovers an interpolant (xa) +
2(ya) ≥ 0. This interpolant happens to be an invariant of the program and proves its safety.

3.1.4 Related Work

Aside from the work by Dai et al. [39] on which we are based, there are several approaches
to polynomial interpolation in the literature. Gan et al. [49] consider interpolation for poly-
nomial inequalities that involve uninterpreted functions, with the restriction that the degree
of polynomials is quadratic. An earlier work with a similar aim is [80] by Kupferschmid et al.
Gao and Zufferey [50] study nonlinear interpolant synthesis over real numbers. Their method
can handle transcendental functions as well as polynomials. Interpolants are generated from
refutation, and represented as union of rectangular regions. Because of this representation, al-
though their method enjoys δ-completeness (a notion of approximate completeness), it cannot
synthesize sharp interpolants like Example 3.1. Their interpolants tend to be fairly com-
plicated formulae, too, and therefore would not necessarily be suitable for applications like
program verification (where we seek simple predicates; see Section 3.5).
Putinar’s positivstellensatz [112] is a well-known variation of Stengle’s positivstellensatz; it is

known to allow simpler SDP relaxation than Stengle’s. However it does not suit the purpose of
the current chapter because: 1) it does not allow mixture of strict and non-strict inequalities;
and 2) it requires a compactness condition. There is a common trick to force strict inequalities
in a framework that only allows non-strict inequalities, namely to add a small perturbation.
We find that this trick does not work in our program verification examples; see Section 3.5.
The problem with numerical errors in SDP solving has been discussed in the literature.

Harrison [58] is one of the first to tackle the problem: the work introduces the workflow of the
rounding-validation loop; the rounding algorithm used there increments a denominator at each
step and thus is simpler than our continued fraction-based one. The same rounding algorithm
is used in [16], as we observe in the code. Peyrl & Parrilo [109], towards the goal of sum-
of-square decomposition in rational coefficients, employs a rounding algorithm by continued
fractions. The difference from our current algorithm is that they apply continued fraction ex-

46

pansion to each of the coefficients, while our generalized algorithm simplifies the ratio between
the coefficients altogether. The main technical novelty of [109] lies in the identification of a
condition for validity of a rounded candidate. This framework is further extended in Kaltofen
et al. [72] for a different optimization problem, combined with Gauss–Newton iteration.
More recently, an approach using a simultaneous Diophantine approximation algorithm—

that computes the best approximation within a given bound of denominators—is considered
by Lin et al. [85]. They focus on finding a fine rational approximation to the output of
SDP solvers, and do not aim at simpler certificates. Roux et al. [114] proposes methods that
guarantee existence of a solution relying on numerical solutions of SDP solvers. They mainly
focus on strictly feasible problems, and therefore some of our examples in Section 3.5 are out
of their scope. Dai et al. [38] address the same problem of numerical errors in the context of
barrier-certificate synthesis. They use quantifier elimination (QE) for validation, while our
validation method relies on a well-known characterization of positive semidefiniteness (whose
check is less expensive than QE; see Section 3.4.2).

3.1.5 Organization of the Chapter

In Section 3.2 we review the framework in [39]. Its lack of sharpness is established in Section
3.3.1; this motivates our sharpened Positivstellensatz-inspired relaxation of interpolation in
Section 3.3.3. In Section 3.4 we describe our whole workflow and its implementation, describing
the rounding-validation loop and the continued fraction-based algorithm used therein. In
Section 3.5 we present experimental results and discuss the benefits in program verification.
In Section 3.6 we conclude this chapter. In Section 3.7 we discuss the future work. Some
details are deferred to appendices.

3.2 Preliminaries
Here we review the previous interpolation algorithm by Dai et al. [39]. It is preceded by its

mathematical bedrock, namely Stengle’s Positivstellensatz [124].

3.2.1 Real Algebraic Geometry and Stengle’s Positivstellensatz

We write ~X for a sequence X1, X2, . . . , Xk of variables, and R[~X] for the set of polynomials
in X1, . . . , Xk over R. We sometimes write f(~X) for a polynomial f ∈ R[~X] in order to signify
that the variables in f are restricted to those in ~X.

Definition 3.5 (SAS6=) A semialgebraic system with disequalities (SAS6=) T , in variables

47

X1, X2, . . . , Xk, is a sequence

T =
(
f1(~X) ≥ 0 , . . . , fs(~X) ≥ 0 , g1(~X) 6= 0 , . . . , gt(~X) 6= 0 ,

h1(~X) = 0 , . . . , hu(~X) = 0

)
(3.1)

of inequalities fi(~X) ≥ 0, disequalities gj(~X) 6= 0 and equalities hk(~X) = 0. Here fi′ , gj′ , hk′ ∈
R[~X] are polynomials, for i′ ∈ [1, s], j′ ∈ [1, t] and k′ ∈ [1, u].
For the SAS6= T in (3.1) in k variables, we say ~x ∈ Rk satisfies T if fi(~x) ≥ 0, gj(~x) 6= 0

and hk(~x) = 0 hold for all i, j, k. We let JT K ⊆ Rk denote the set of all such ~x, that is,
JT K := { ~x ∈ Rk | ~x satisfies T }.

Definition 3.6 (cone, multiplicative monoid, ideal) A set C ⊆ R[~X] is a cone if it satisfies
the following closure properties: 1) f, g ∈ C implies f + g ∈ C; 2) f, g ∈ C implies fg ∈ C;
and 3) f2 ∈ C for any f ∈ R[~X].
A set M ⊆ R[~X] is a multiplicative monoid if it satisfies the following: 1) 1 ∈ M ; and 2)

f, g ∈M implies fg ∈M .
A set I ⊆ R[~X] is an ideal if it satisfies: 1) 0 ∈ I; 2) f, g ∈ I implies f + g ∈ I; and 3)

fg ∈ I for any f ∈ R[~X] and g ∈ I.
For a subset A of R[~X], we write: C(A),M(A), and I(A) for the smallest cone, multiplicative

monoid, and ideal, respectively, that includes A.

The last notions encapsulate closure properties of inequality/disequality/equality predicates,
respectively, in the following sense. The definition of JT K ⊆ Rk is in Definition 3.5.

Lemma 3.7. Let ~x ∈ Rk and fi, gj , hk ∈ R[~X].

1. If ~x ∈ Jf1 ≥ 0, . . . , fs ≥ 0K, then f(~x) ≥ 0 for all f ∈ C(f1, . . . , fs).
2. If ~x ∈ Jg1 6= 0, . . . , gt 6= 0K, then g(~x) 6= 0 for all g ∈M(g1, . . . , gt).
3. If ~x ∈ Jh1 = 0, . . . , hu = 0K, then h(~x) = 0 for all h ∈ I(h1, . . . , hu).

The following theorem is commonly attributed to [124]. See also [18].

Theorem 3.8 (Stengle’s Positivstellensatz). Let T be the SAS6= in (3.1) (Definition 3.5). It
is infeasible (meaning JT K = ∅) if and only if there exist f ∈ C(f1, . . . , fs), g ∈ M(g1, . . . , gt)
and h ∈ I(h1, . . . , hu) such that f + g2 + h = 0.

The polynomials f, g, h can be seen as an infeasible certificate of the SAS6= T . The “if”
direction is shown easily: if ~x ∈ JT K then we have f(~x) ≥ 0, g(~x)2 > 0 and h(~x) = 0 (by
Lemma 3.7), leading to a contradiction. The “only if” direction is nontrivial and remarkable;
it is however not used in the algorithm of [39] nor in this chapter.
SOS polynomials play important roles, both theoretically and in the implementation.

48

Definition 3.9 (sum of squares (SOS)) A polynomial is called a sum of squares (SOS) if it
can be written in the form p2

1 + · · ·+ p2
N (for some polynomials p1, . . . , pN). Note that C(∅) is

exactly the set of sums of squares (Definition 3.6).

3.2.2 The Interpolation Algorithm by Dai et al.

Definition 3.10 (interpolant) Let T and T ′ be SAS6=’s, in variables ~X, ~Y and in ~X, ~Z,
respectively, given in the following form. Here we assume that each variable in ~X occurs both
in T and T ′, and that ~Y ∩ ~Z = ∅.

T =
(
f1(~X, ~Y) ≥ 0, . . . , fs(~X, ~Y) ≥ 0, g1(~X, ~Y) 6= 0, . . . , gt(~X, ~Y) 6= 0,
h1(~X, ~Y) = 0, . . . , hu(~X, ~Y) = 0

)
T ′ =

(
f ′1(~X, ~Z) ≥ 0, . . . , f ′s′(~X, ~Z) ≥ 0, g′1(~X, ~Z) 6= 0, . . . , g′t′(~X, ~Z) 6= 0,
h′1(~X, ~Z) = 0, . . . , h′u′(~X, ~Z) = 0

) (3.2)

Assume further that T and T ′ are disjoint, that is, JT K ∩ JT ′K = ∅.
An SAS 6= S is an interpolant of T and T ′ if it satisfies the following:

1. JT K ⊆ JSK;
2. JSK ∩ JT ′K = ∅; and
3. (the common variable condition) the SAS6= S is in the variables ~X, that is, S contains

only those variables which occur both in T and T ′.

Towards efficient synthesis of nonlinear interpolants, Dai et al. [39] introduced a workflow
that hinges on the following variation of the Positivstellensatz.

Theorem 3.11 (disjointness certificate in [39, Section 4]). Let T , T ′ be the SAS6=’s in (3.2).
Assume there exist

f̃ ∈ C(f1, . . . , fs, f
′
1, . . . , f

′
s′) , g ∈M(g1, . . . , gt, g

′
1, . . . , g

′
t′) and

h̃ ∈ I(h1, . . . , hu, h
′
1, . . . , h

′
u′) , such that 1 + f̃ + g2 + h̃ = 0 .

(3.3)

Assume further that f̃ allows a decomposition f̃ = f + f ′, with some f ∈ C(f1, . . . , fs) and
f ′ ∈ C(f ′1, . . . , f ′s′). (An element h̃ in the ideal always allows a decomposition h̃ = h+ h′ such
that h ∈ I(h1, . . . , hu) and h′ ∈ I(h′1, . . . , h′u′).)
Under the assumptions T and T ′ are disjoint. Moreover the SAS6=

S :=
(

1/2 + f + g2 + h > 0
)

(3.4)

satisfies the conditions of an interpolant of T and T ′ (Definition 3.10), except for Cond. 3.
(the common variable condition).

49

Algorithm 1 The interpolation algorithm by Dai et al. [39]. Here 2 = {0, 1}
1: input: SAS 6=’s T , T ′ in (3.2), and b ∈ N (the maximum degree)
2: output: either an interpolant S of T and T ′, or FAIL
3: g̃ := (

∏t
i=1 gi)(

∏t′

i′=1 g
′
i′) ; g := g̃bb/2 deg(h)c . g is roughly of degree b/2

4: Solve PDiophSOS to find (−→α ,
−→
α′ ,
−→
β ,
−→
β′). Here:

• αi ∈ C(∅)≤b (for i ∈ 2s) and α′i′ ∈ C(∅)≤b (for i′ ∈ 2s′) are SOSs,
• βj ∈ R[~X]≤b (for j ∈ [1, u]) and β′j′ ∈ R[~X]≤b (for j′ ∈ [1, u′]) are polynomials,
• and they are subject to the constraint

1 +
∑
i∈2s

αif
i1
1 · · · f iss +

∑
i′∈2s′

α′i′f
′i′1
1 · · · f ′

i′
s′
s′ + g2 +

u∑
j=1

βjhj +
u′∑
j′=1

β′j′h
′
j′ = 0 . (3.6)

(Such (−→α ,
−→
α′ ,
−→
β ,
−→
β′) may not be found, in which case return FAIL)

5: f :=
∑
i∈2s αif

i1
1 · · · f iss ; h :=

∑u
j=1 βjhj

6: return S :=
(
1/2 + f + g2 + h > 0

)
Proof. The proof is much like the “if” part of Theorem 3.8. It suffices to show that S is an
interpolant; then the disjointness of T and T ′ follows.
To see JT K ⊆ JSK, assume ~x ∈ JT K. Then we have f(~x) ≥ 0 and h(~x) = 0 by Lemma 3.7;

additionally
(
g(~x)

)2 ≥ 0 holds too. Thus 1/2 + f(~x) +
(
g(~x)

)2 + h(~x) ≥ 1/2 > 0 and we have
~x ∈ JSK.
To see JSK ∩ JT ′K = ∅, we firstly observe that the following holds for any ~x.

0 = 1 + f(~x) + f ′(~x) +
(
g(~x)

)2 + h(~x) + h′(~x) by (3.3)
=
(

1/2 + f(~x) + (g(~x))2 + h(~x)
)

+
(

1/2 + f ′(~x) + h′(~x)
)
.

(3.5)

Assume ~x ∈ JSK∩JT ′K. By ~x ∈ JSK we have 1/2+f(~x)+(g(~x))2 +h(~x) > 0; and by ~x ∈ JT ′K
we have f ′(~x) ≥ 0 and h′(~x) = 0 (Lemma 3.7), hence 1/2 + f ′(~x) +h′(~x) ≥ 1/2 > 0. Thus the
right-hand side of (3.5) is strictly positive, a contradiction. �

Note that we no longer have completeness: existence of an interpolant like (3.4) is not
guaranteed. Nevertheless Theorem 3.11 offers a sound method to construct an interpolant,
namely by finding a suitable disjointness certificate f, f ′, g, h, h′.
The interpolation algorithm in [39] is shown in Algorithm 1, where the search for a disjoint-

ness certificate f, f ′, g, h, h′ is relaxed to the following problem.

50

Definition 3.12 (PDiophSOS) Let PDiophSOS stand for the following problem.

Input: polynomials ϕ1, . . . , ϕn, ψ1, . . . , ψm, ξ ∈ R[~X], and
maximum degrees d1, . . . , dn, e1, . . . , em ∈ N

Output: SOSs s1 ∈ C(∅)≤d1 , . . . , sn ∈ C(∅)≤dn
and

polynomials t1 ∈ R[~X]≤e1 , . . . , tm ∈ R[~X]≤em

such that s1ϕ1 + · · ·+ snϕn + t1ψ1 + · · ·+ tmψm + ξ = 0

Here R[~X]≤e denotes the set of polynomials in ~X whose degree is no bigger than e. Similarly
C(∅)≤d is the set of SOSs with degree ≤ d.

The problem PDiophSOS is principally about finding polynomials si, tj subject to
∑
i siϕi+∑

j tjψj + ξ = 0; this problem is known as polynomial Diophantine equations. In PDiophSOS

SOS requirements are additionally imposed on part of a solution (namely si); degrees are
bounded, too, for algorithmic purposes.
In Algorithm 1 we rely on Theorem 3.11 to generate an interpolant: roughly speaking,

one looks for a disjointness certificate f, f ′, g, h, h′ within a predetermined maximum degree
b. This search is relaxed to an instance of PDiophSOS (Definition 3.12), with n = 2s + 2s′ ,
m = u + u′, and ξ = 1 + g2, as in Line 4. The last relaxation, introduced in [39], is derived
from the following representation of elements of the cone C(

−→
f ,
−→
f ′), the multiplicative monoid

M(−→g ,
−→
g′) and the ideal I(

−→
h ,
−→
h′), respectively.

• Each element h of I(
−→
h ,
−→
h′) is of the form h =

∑u
j=1 βjhj+

∑u′

j′=1 β
′
j′h
′
j′ , where βj , βj′ ∈

R[~X]. This is a standard fact in ring theory.
• Each element ofM(−→g ,

−→
g′) is given by the product of finitely many elements from −→g ,

−→
g′

(here multiplicity matters). In Algorithm 1 a polynomial g is fixed to a “big” one. This
is justified as follows: in case the constraint (3.6) is satisfiable using a smaller polynomial
g′ instead of g, by multiplying the whole equality (3.6) by 1 + (g/g′)2 we see that (3.6)
is satisfiable using g, too.
• For the cone C(

−→
f ,
−→
f ′) we use the following fact (here 2 = {0, 1}). The lemma seems to

be widely known but we present a proof for the record.

Lemma 3.13. An arbitrary element f of the cone C(f1, . . . , fs) can be expressed as f =∑
i∈2s αif

i1
1 . . . f iss , using SOSs αi (where i ∈ 2s).

We need to define quadratic module to prove this lemma.

Definition 3.14 (quadratic module) A quadratic module generated byM = (mλ)λ∈Λ ∈ R[~X]Λ

51

(Λ is an index set) is the set

QM(M) :=
{
q +

∑
λ∈Λ

qλmλ

∣∣∣∣∣ q ∈ C(∅), (qλ)λ∈Λ ∈ C(∅)Λ, and
qλ = 0 except for finitely many λ’s

}
. (3.7)

Lemma 3.13 is an immediate consequence of the following lemma.

Lemma 3.15 (Proof of Lemma 3.13). Let f1, . . . , fs ∈ R[~X]. Then,

C(f1, . . . , fs) = QM(f i11 · · · f iss | i ∈ 2s) (3.8)

where i = (i1, . . . , is).

Proof. The left-to-right direction is proved by induction on the construction of C(f1, . . . , fs).
Let f ∈ C(f1, . . . , fs).

1. Case: f = fλ for some λ = 1, . . . , s.

f = fλ = f0
1 · · · f1

λ · · · f0
s ∈ QM(f i11 · · · f iss | i ∈ 2s). (3.9)

2. Case: f = g2 for some g ∈ R[~X].

f = g2 ∈ C(∅) ⊂ QM(f i11 · · · f iss | i ∈ 2s). (3.10)

3. Case: f = g + h for some g, h ∈ C(f1, . . . , fs) ∩ QM(f i11 · · · f iss | i ∈ 2s). Obvious,
because QM(f i11 · · · f iss | i ∈ 2s) is closed under addition.

4. Case: f = gh for some g, h ∈ C(f1, . . . , fs)∩QM(f i11 · · · f iss | i ∈ 2s). g and h have the
form

g =
∑
i∈2s

qif
i1
1 · · · f iss , h =

∑
j∈2s

rjf
j1
1 · · · f js

s , (3.11)

where qi, rj ∈ C(∅). Let pλ =
∑
i+j=λ qirj ∈ C(∅). Then

gh =
∑
i∈2s

∑
j∈2s

qirjf
i1+j1
1 · · · f is+js

s (3.12)

=
∑
λ∈2s

∑
i+j=λ

qirjf
λ1
1 · · · fλs

s (3.13)

=
∑
λ∈2s

pλf
λ1
1 · · · fλs

s (3.14)

=
∑
λ∈2s

(
pλf

2bλ1/2c
1 · · · f2bλs/2c

s

)
fλ1 mod 2

1 · · · fλs mod 2
s . (3.15)

Because pλf
2bλ1/2c
1 · · · f2bλs/2c

s ∈ C(∅) for each λ ∈ 2s, we have f = gh ∈
QM(f i11 · · · f iss | i ∈ 2s).

52

For the converse, let f ∈ QM(f i11 · · · f iss | i ∈ 2s). Then f has the form f =∑
i∈2s qif

i1
1 · · · f iss where qi ∈ C(∅) ⊆ C(f1, . . . , fs). Then f indeed belongs to C(f1, . . . , fs),

because cones are closed under addition and multiplication. �

The last representation in Lemma 3.13 justifies the definition of f and h in Algorithm 1
(Line 5). We also observe that Line 6 of Algorithm 1 corresponds to (3.4) of Theorem 3.11.
In implementing Algorithm 1 the following fact is crucial (see [39, Section 3.5] and also

[106, 107] for details): the problem PDiophSOS (Definition 3.12) can be reduced to an SDP
problem, the latter allowing an efficient solution by state-of-the-art SDP solvers. It should be
noted, however, that numerical errors (inevitable in interior point methods) can pose a serious
issue for our application: the constraint (3.6) is an equality and hence fragile.

3.3 Positivstellensatz and Interpolation, Revisited

3.3.1 Analysis of the Interpolation Algorithm by Dai et al.

Intrigued by its solid mathematical foundation in real algebraic geometry as well as its
efficient implementation that exploits state-of-the-art SDP solvers, we studied the framework
by Dai et al. [39] (it was sketched in Section 3.2.2). In its course we obtained the following
observations that motivate our current technical contributions.
We first observed that Algorithm 1 from [39] fails to find “sharp” interpolants for “barely

disjoint” predicates (see Example 3.1). This turns out to be a general phenomenon (see Prop.
3.18).

Definition 3.16 (symbolic closure) Let T be the SAS 6=’s in (3.1). The symbolic closure T• of
T is the SAS 6= that is obtained by dropping all the disequality constraints gj(~x) 6= 0 in T .

T• =
(
f1(~X, ~Y) ≥ 0 , . . . , fs(~X, ~Y) ≥ 0 , h1(~X, ~Y) = 0 , . . . , hu(~X, ~Y) = 0

)
(3.16)

The intuition of symbolic closure of T is to replace all strict inequalities g′j(~X, ~Y) > 0 in T
with the corresponding non-strict ones g′j(~X, ~Y) ≥ 0. Since only ≥, 6= and = are allowed in
SAS6=’s, strict inequalities g′j(~X, ~Y) > 0 are presented in the SAS6= T by using both g′j(~X, ~Y) ≥
0 and g′j(~X, ~Y) 6= 0. The last definition drops the latter disequality (6=) requirement.
The notion of symbolic closure most of the time coincides with closure with respect to the

usual Euclidean topology, but not in some singular cases. See Appendix 3.3.2 for details.

Definition 3.17 (bare disjointness) Let T and T ′ be SAS6=’s. T and T ′ are barely disjoint if
JT K ∩ JT ′K = ∅ and JT•K ∩ JT ′• K 6= ∅.
An interpolant S of barely disjoint SAS6=’s T and T ′ shall be said to be sharp.

53

An example of barely disjoint SAS 6=’s is in Example 3.1: (0, 0) ∈ JT•K ∩ JT ′• K 6= ∅.
Algorithm 1 does not work if the SAS6=’s T and T ′ are only barely disjoint. In fact, such a

failure is theoretically guaranteed, as the following result states. Its proof is very similar to
the proof of Theorem 3.11.

Proposition 3.18. Let T and T ′ be the SAS 6=’s in (3.2). If T and T ′ are barely disjoint (in
the sense of Definition 3.17), there do not exist polynomials f̃ ∈ C(

−→
f ,
−→
f ′), g ∈M(−→g ,

−→
g′) and

h̃ ∈ I(
−→
h ,
−→
h′) such that 1 + f̃ + g2 + h̃ = 0.

Proof. We argue by contradiction. Assume that there exist polynomials f̃ , g, h̃ that satisfy the
conditions in the proposition. By the feasibility assumption there exists some ~r ∈ JT•K∩ JT ′• K.
For this ~r we have f̃(~r) + h̃(~r) ≥ 0 by Lemma 3.7, while by 1 + f̃ + g2 + h̃ = 0 we have
f̃(~r) + h̃(~r) = −1−

(
g(~r)

)2
< 0. Contradiction. �

The conditions in Prop. 3.18 on the polynomials f̃ , g, h̃ are those for disjointness certificates for
T and T ′ (Theorem 3.11). As a consequence: if T and T ′ are only barely disjoint, interpolation
relying on Theorem 3.11—that underlies the framework in [39]—never succeeds.

3.3.2 Topological and Algebraic Closure

In this section, let us consider the difference between topological closure and algebraic
closure, that is, the difference between JT•K ⊆ Rk (where T• is from Definition 3.16) and
JT K ⊆ Rk. Here () refers to the closure with respect to the Euclidean topology of Rk.
Readers can safely skip over this section.
Those closures coincide in many cases but not always do so. For example, for T = (x3 −

2x2 + x ≤ 0, x3 − 2x2 + x 6= 0), we have JT•K = Jx3 − 2x2 + x ≤ 0K = (−∞, 0] ∪ { 1 }, but
JT K = (−∞, 0) = (−∞, 0].
We can show the following inclusion in general.

Proposition 3.19. Let n ≥ 1 and A = (f1.10, . . . , fn.n0) be an SAS 6=, where .i ∈ {≥, 6=,=}.
Then

JAK ⊆ JA•K. (3.17)

Proof. The proof is by induction on n.

• Base cases: The cases .1 = (=) and .1 = (≥) are easy because f1 is continuous and
both { 0 } and [0,∞) are closed in R. For the remaining case where .1 = (6=), we have
Jf1 6= 0K ⊆ Rk = J()K = JA•K.

54

• Step case: Let B = (f1 .1 0, . . . , fn .n 0).

JAK = JB, fn+1 .n+1 0K

= JBK ∩ Jfn+1 .n+1 0K

⊆ JBK ∩ Jfn+1 .n+1 0K
⊆ JB•K ∩ J(fn+1 .n+1 0)•K

(by the induction hypothesis and arguments similar to the base case)
= JA•K.

�

It follows that JT K ∩ JT ′K ⊆ JT•K ∩ JT ′• K. The opposite inclusion fails in general: for T =
(x3 − 2x2 + x ≤ 0, x3 − 2x2 + x 6= 0), T ′ = (x ≥ 0), JT K ∩ JT ′K = (−∞, 0) ∩ [0,∞) = ∅ and
JT•K ∩ JT ′• K = ((−∞, 0) ∪ { 1 }) ∩ [0,∞) = { 1 }.

3.3.3 Interpolation via Positivstellensatz, Sharpened

The last observation motivates our “sharper” variant of Theorem 3.11—a technical contri-
bution that we shall present shortly in Theorem 3.24. We switch input formats by replacing
disequalities 6= (Definition 3.5) with <. This small change turns out to be useful when we
formulate our main result (Theorem 3.24).

Definition 3.20 (SAS<) A semialgebraic system with strict inequalities (SAS<) T , in vari-
ables X1, X2, . . . , Xk, is a sequence

T =
(
f1(~X) ≥ 0 , . . . , fs(~X) ≥ 0 , g1(~X) > 0 , . . . , gt(~X) > 0 ,

h1(~X) = 0 , . . . , hu(~X) = 0

)
(3.18)

of inequalities fi(~X) ≥ 0, strict inequalities gj(~X) > 0 and equalities hk(~X) = 0. Here
fi, gj , hk ∈ R[~X] are polynomials; JT K ⊆ Rk is defined like in Definition 3.5.

SAS<’s have the same expressive power as SAS6=’s, as witnessed by the following mutual
translation. For the SAS6= T in (3.1), the SAS< T̃ :=

(
fi(~X) ≥ 0, g2

j (~X) > 0, hk(~X) =
0
)
i,j,k

satisfies JT K = JT̃ K. Conversely, for the SAS< T in (3.18), the SAS 6= T̂ :=
(
fi(~X) ≥

0, gj(~X) ≥ 0, gj(~X) 6= 0, hk(~X) = 0
)
i,j,k

satisfies JT K = JT̂ K.
One crucial piece for the Positivstellensatz was the closure properties of inequalities/dise-

qualities/equalities encapsulated in the notions of cone/multiplicative monoid/ideal (Lemma
3.7). We devise a counterpart for strict inequalities.

Definition 3.21 (strict cone) A set S ⊆ R[~X] is a strict cone if it satisfies the following
closure properties: 1) f, g ∈ S implies f + g ∈ S; 2) f, g ∈ S implies fg ∈ S; and 3) r ∈ S

55

for any positive real r ∈ R>0. For a subset A of R[~X], we write SC(A) for the smallest strict
cone that includes A.

Lemma 3.22. Let ~x ∈ Rk and gj ∈ R[~X]. If ~x ∈ Jg1 > 0, . . . , gt > 0K, then g(~x) > 0 for all
g ∈ SC(g1, . . . , gt).

We can now formulate adaptation of Positivstellensatz.

Theorem 3.23 (Positivstellensatz for SAS<). Let T be the SAS< in (3.18). It is infeasible
(i.e. JT K = ∅) if and only if there exist f ∈ C(f1, . . . , fs, g1, . . . , gt), g ∈ SC(g1, . . . , gt) and
h ∈ I(h1, . . . , hu) such that f + g + h = 0.

Proof. The “if” direction is easy. Suppose there exist such polynomials f, g, h as required.
Assume ~r ∈ JT K; then we have f(~r) ≥ 0, g(~r) > 0, and h(~r) = 0 by Lemma 3.7 and 3.22. Thus
we have f(~r) + g(~r) + h(~r) > 0, which contradicts with f + g + h = 0. Therefore JT K = ∅.
For the “only if” direction we rely on Theorem 3.8, via the translation of SAS<’s to SAS6=’s

that we described after Definition 3.20, and use the fact thatM(g1, . . . , gt) ⊆ SC(g1, . . . , gt).
�

From this we derive the following adaptation of Theorem 3.11 that allows to synthesize sharp
interpolants. The idea is as follows. In Theorem 3.11, the constants 1 (in (3.3)) and 1/2 (in
(3.4)) are there to enforce strict positivity. This is a useful trick but sometimes too “dull”:
one can get rid of these constants and still make the proof of Theorem 3.11 work, for example
when g(~x) happens to belong to SC(g1, . . . , gt) instead ofM(g1, . . . , gt, g

′
1, . . . , g

′
t′).

Theorem 3.24 (disjointness certificate from strict cones). Let T and T ′ be the following
SAS<’s, where ~X denotes the variables that occur in both of T , T ′.

T =
(
f1(~X, ~Y) ≥ 0 , . . . , fs(~X, ~Y) ≥ 0 , g1(~X, ~Y) > 0 , . . . , gt(~X, ~Y) > 0 ,

h1(~X, ~Y) = 0 , . . . , hu(~X, ~Y) = 0

)
,

T ′ =
(
f ′1(~X, ~Z) ≥ 0 , . . . , f ′s′(~X, ~Z) ≥ 0 , g′1(~X, ~Z) > 0 , . . . , g′t′(~X, ~Z) > 0 ,

h′1(~X, ~Z) = 0 , . . . , h′u′(~X, ~Z) = 0

)
.

(3.19)

Assume there exist

f ∈ C(f1, . . . , fs, g1, . . . , gt) , f ′ ∈ C(f ′1, . . . , f ′s′ , g′1, . . . , g′t′) ,
g ∈ SC(g1, . . . , gt) , h ∈ I(h1, . . . , hu) , and h′ ∈ I(h′1, . . . , h′u′)
such that f + f ′ + g + h+ h′ = 0 . (3.20)

Then the SAS<’s T and T ′ are disjoint. Moreover the SAS<

S := (f + g + h > 0) (3.21)

56

satisfies the conditions of an interpolant of T and T ′ (Definition 3.10), except for Cond. 3.
(the common variable condition).

The proof is similar to the proof of Theorem 3.11. We also have the following symmetric
variant.

Theorem 3.25. Assume the conditions of Theorem 3.24, but let us now require
g ∈ SC(g′1, . . . , g′t′) (instead of g ∈ SC(g1, . . . , gt)). Then S = (f + h ≥ 0) is an inter-
polant of T and T ′ (except for the common variable condition).

Example 3.26 Let us apply Theorem 3.24 to T = (−y > 0) and T ′ = (y − x ≥ 0, y + x ≥ 0)
(these are only barely disjoint). There exists a disjointness certificate f, f ′, g, h, h′: indeed, we
can take f = 0 ∈ C(−y), f ′ = 2y = (y − x) + (y + x) ∈ C(y − x, y + x), g = 2(−y) ∈ SC(−y),
and h = h′ = 0 ∈ I(∅); for these we have f + f ′ + g + h + h′ = 0. This way an interpolant
S = (f + g + h > 0) = (−2y > 0) is derived.

Remark 3.27 Our use of strict cones allows to use a polynomial g in (3.21). This is in contrast
with g2 in (3.4) and yields an interpolant of a potentially smaller degree.

We derive an interpolation algorithm from Theorem 3.24; see Algorithm 2. An algorithm
based on Theorem 3.25 can be derived similarly, too.
Algorithm 2 the reduces search for a disjointness certificate f, f ′, g, h, h′ (from Theorem

3.24) to a problem similar to PDiophSOS (Line 3). Unlike the original definition of PDiophSOS

(Definition 3.12), here we impose additional constraints (3.23–3.24) other than the equality
(3.22) that comes from (3.20). It turns out that, much like PDiophSOS allows relaxation to
SDP problems [39,106,107], the problem in Line 3 can also be reduced to an SDP problem.
The constraint (3.23) is there to force g =

∑
k∈bt γkg

k1
1 · · · g

kt
t (see (4)) to belong to the

strict cone SC(g1, . . . , gt). A natural requirement
∑
k∈bt γk > 0 for that purpose does not

allow encoding to an SDP constraint so we do not use it. Our relaxation from
∑
k∈bt γk > 0

to
∑
k∈bt γk ≥ 1 is inspired by [116]; it does not lead to a loss of generality in our current task

of finding polynomial certificates.
The constraints (3.24) are extracted in the following straightforward manner: we look at

the coefficient of each monomial in f +g+h (see Line 5); and for each monomial that involves
variables other than ~X we require the coefficient to be equal to 0. The constraint is linear
in the SDP variables, that we can roughly consider as the coefficients of the monomials in
−→α ,
−→
α′ ,
−→
β ,
−→
β′ ,−→γ .

Derivation of Algorithm 2 from Theorem 3.25 also relies on the following analogue of Lemma
3.13.

57

Algorithm 2 Our interpolation algorithm based on Theorem 3.24. Here 2 = {0, 1} and
σ(b) = {(k1, . . . , kt) ∈ Nt | k1 + · · ·+ kt ≤ b+ 1}
1: input: SAS<’s T , T ′ in (3.19), and b ∈ N (the maximum degree)
2: output: either an interpolant S of T and T ′, or FAIL
3: Solve (an extension of) PDiophSOS to find (−→α ,

−→
α′ ,
−→
β ,
−→
β′ ,−→γ). Here:

• αij ∈ C(∅)≤b (for i ∈ 2s, j ∈ 2t) and α′i′,j′ ∈ C(∅)≤b (for i′ ∈ 2s′ , j′ ∈ 2t′) are SOSs,
• βj ∈ R[~X]≤b (for j ∈ [1, u]) and β′j′ ∈ R[~X]≤b (for j′ ∈ [1, u′]) are polynomials,
• and γk ∈ R≥0 (for k ∈ σ(b)) are nonnegative real numbers,

that are subject to the constraints∑
i∈2s, j∈2t αijf

i1
1 · · · f iss g

j1
1 · · · g

jt

t

+
∑
i′∈2s′ , j′∈2t′ α′i′j′f

′
1
i′1 · · · f ′i

′
s′
s′ g
′j
′
1

1 · · · g′
j′

t′
t′

+
∑
k∈σ(b) γkg

k1
1 · · · g

kt
t +

∑u
j=1 βjhj +

∑u′

j′=1 β
′
j′h
′
j′ = 0 ,

(3.22)

∑
k∈σ(b) γk ≥ 1 , and (3.23)

some equality constraints that forces the common variable condition. (3.24)

(Such (−→α ,
−→
α′ ,
−→
β ,
−→
β′ ,−→γ) may not be found, in which case return FAIL)

4: f :=
∑
i∈2s, j∈2t αijf

i1
1 · · · f iss g

j1
1 · · · g

jt

t ; g :=
∑
k∈σ(b) γkg

k1
1 · · · g

kt
t ; h :=

∑u
j=1 βjhj

5: return S := (f + g + h > 0)

Lemma 3.28. An arbitrary element of the strict cone SC(f1, . . . , fs) can be expressed as∑
i∈Ns αif

i1
1 · · · f iss , where αi ∈ R≥0 are nonnegative reals (for i ∈ Ns) such that: there exists

i such that αi > 0; and αi 6= 0 for only finitely many i.

We introduce a notion similar to quadratic module to represent strict cones to prove this
lemma.

Definition 3.29 (positive module) An positive module generated by M = (mλ)λ∈Λ ∈ R[~X]Λ

(Λ is an index set) is the set

PM(M) :=

 r +
∑
λ∈Λ

rλmλ

∣∣∣∣∣∣∣
r ∈ R≥0, (rλ)λ∈Λ ∈ RΛ

≥0,
rλ = 0 except for finitely many λ’s, and
either rλ > 0 for at least one λ, or r > 0

 . (3.25)

Then Lemma 3.28 is an immediate consequence of the following lemma.

Lemma 3.30. Let f1, . . . , fs ∈ R[~X]. Then,

SC(f1, . . . , fs) = PM(f i11 · · · f iss | i ∈ Ns). (3.26)

58

Proof of Lemma 3.28. The left-to-right direction is proved by induction on the construction
of SC(f1, . . . , fs). Let f ∈ SC(f1, . . . , fs).

1. Case: f = fλ for some λ = 1, . . . , s.

f = fλ = f0
1 · · · f1

λ · · · f0
s ∈ PM(f i11 · · · f iss | i ∈ Ns). (3.27)

2. Case: f = r for some r ∈ R>0.

f = r ∈ PM(f i11 · · · f iss | i ∈ Ns). (3.28)

3. Case: f = g + h for some g, h ∈ SC(f1, . . . , fs) ∩ PM(f i11 · · · f iss | i ∈ Ns). Obvious,
because PM(f i11 . . . f iss | i ∈ Ns) is closed under addition.

4. Case: f = gh for some g, h ∈ SC(f1, . . . , fs) ∩ PM(f i11 · · · f iss | i ∈ Ns). g and h have
the form of

g =
∑
i∈Ns

rif
i1
1 · · · f iss , h =

∑
j∈Ns

r′jf
j1
1 · · · f js

s , (3.29)

where ri, r′j ∈ R≥0. Let qλ =
∑
i+j=λ rir

′
j . Then obviously there are only finitely many

λ such that qλ > 0. Moreover, there exists λ such that qλ > 0. Indeed, for i and j such
that ri, r′j > 0, we have

qi+j =
∑

i′+j′=i+j
ri′r
′
j′ ≥ rir′j > 0. (3.30)

Therefore,

gh =
∑
i∈Ns

∑
j∈Ns

rir
′
jf
i1+j1
1 · · · f is+js

s (3.31)

=
∑
λ∈Ns

∑
i+j=λ

rir
′
jf
i1+j1
1 · · · f is+js

s (3.32)

=
∑
λ∈Ns

qλf
λ1
1 · · · fλs

s (3.33)

∈ PM(f i11 · · · f iss | i ∈ Ns). (3.34)

For the converse, let us consider f = r +
∑
i rif

i1
1 · · · f iss ∈ PM(f i11 · · · f iss | i ∈ Ns). For each

i such that ri > 0, we have ri, f i11 , . . . , f
is
s ∈ SC(f1, . . . , fs). Moreover, either r > 0 or there

exists at least one such i. Therefore we conclude that f ∈ SC(f1, . . . , fs), because strict cones
are closed under addition and multiplication. �

To summarize: our analysis of the framework of [39] has led to a new algorithm (Algorithm
2) that allows “sharp” interpolation of barely disjoint SASs. This algorithm is based on strict
inequalities (>) instead of disequalities (6=); we introduced the corresponding notion of strict

59

cone. The algorithm allows solution by numeric SDP solvers. Moreover we observe that the
common variable condition—that seems to be only partially addressed in [39]—can be encoded
as SDP constraints.
We conclude by noting that our algorithm (Algorithm 2) generalizes Algorithm 1 from [39].

More specifically, given SAS6=’s T and T ′ that are disjoint, if Algorithm 1 finds an interpolant,
then Algorithm 2 also finds an interpolant after suitable translation of T and T ′ to SAS<’s.
See Section 3.3.4 for details.

3.3.4 Relationship of the Two Algorithms

We show that if Algorithm 1 generates an interpolant for two SAS 6=’s, then Algorithm 2
generates an interpolant for two SAS<’s that are equivalent to those two SAS 6=’s. Readers
can safely skip over this section.

Proposition 3.31. Let T and T ′ be the SAS 6=’s in (3.2). Let U and U ′ be the following
SAS<’s.

U =
(
f1(~X, ~Y) ≥ 0 , . . . , fs(~X, ~Y) ≥ 0 , g2

1(~X, ~Y) > 0 , . . . , g2
t (~X, ~Y) > 0 ,

h1(~X, ~Y) = 0 , . . . , hu(~X, ~Y) = 0

)
,

U ′ =
(
f ′1(~X, ~Z) ≥ 0 , . . . , f ′s′(~X, ~Z) ≥ 0 , g′

2
1(~X, ~Z) > 0 , . . . , g′

2
t′(~X, ~Z) > 0 ,

h′1(~X, ~Z) = 0 , . . . , h′u′(~X, ~Z) = 0

)
.

(3.35)

Obviously we have JT K = JUK and JT ′K = JU ′K.
Assume there exist polynomials f, f ′, g, h, h′ that satisfy the following conditions (cf. Theo-

rem 3.11).

• f ∈ C(f1, . . . , fs), f ′ ∈ C(f ′1, . . . , f ′s′), g ∈ M(g1, . . . , gt, g
′
1, . . . , g

′
t′), h ∈ I(h1, . . . , hu),

h′ ∈ I(h′1, . . . , h′u′), and
• 1 + f + f ′ + g2 + h+ h′ = 0.

Then there exist polynomials f̃ , f̃ ′, g̃, h̃, h̃′ that satisfy the following (cf. Theorem 3.24).

• f̃ ∈ C(f1, . . . , fs, g
2
1 , . . . , g

2
t), f̃ ′ ∈ C(f ′1, . . . , f ′s, g′

2
1, . . . , g

′2
t), g̃ ∈ SC(g2

1 , . . . , g
2
t), h̃ ∈

I(h1, . . . , hu), h̃′ ∈ I(h′1, . . . , h′u′) and
• f̃ + f̃ ′ + g̃ + h̃+ h̃′ = 0.

Proof. Set

f̃ = g2 + f , f̃ ′ = f ′ , g̃ = 1 , h̃ = h , h̃′ = h′ . (3.36)

The equality f̃ + f̃ ′ + g̃ + h̃ + h̃′ = 0 is easy. Because g2 is an SOS and f ∈ C(f1, . . . , fs),

60

T , T ′, b
//
Alg. 2
(SDP)

original
candidate

~v

d := 1
// rounding

rounded
candidate

~vd // validation
pass

//

fail
��

interpolant

~vd = ~v?
yes

//

d := d+ 1
no

OO

FAIL

Figure 3.1: The workflow of our tool SSInt

f̃ ∈ C(f1, . . . , fs, g
2
1 , . . . , g

2
t) hold. f̃ ′ ∈ C(f ′1, . . . , f ′s, g′

2
1, . . . , g

′2
t) is obvious. By the definition

of strict cone, g̃ = 1 ∈ SC(g1, . . . , gt). h̃ ∈ I(h1, . . . , hu), h̃′ ∈ I(h′1, . . . , h′u′) are obvious. �

Recall that Algorithm 1 generates an interpolant based on Theorem 3.11, and that Algorithm
2 is based on Theorem 3.24. Therefore by Prop. 3.31, if the former succeeds, so does the latter.

3.4 Implementation: Numerical Errors and Rounding
Our implementation, which we named SSInt (Sharp and Simple Interpolants), is essentially

Algorithm 2, for which we use an SDP solver to solve Line 3. Specifically, we use the SDP
solver SDPT3 [127] via YALMIP as backend.
The biggest issue in the course of the implementation is numerical errors—they are in-

evitable due to (numerical) interior point methods underlying most state-of-the-art SDP
solvers. On one hand, we often get incorrect interpolants due to numerical errors (Example
3.3). On another hand, in the context of program verification simpler interpolants are often
more useful, reflecting simplicity of human insights (see Section 3.1). Numerical solutions, on
the contrary, do not very often provide humans with clear-cut understanding.
In our implementation we cope with numerical errors by rounding numbers. More specifically

we round ratios x1 : x2 : · · · : xn because our goal is to simplify a polynomial inequality
f + g + h > 0 (imagine the ratio between coefficients). For this purpose we employ an
extension of continued fraction expansion, a procedure used for the purpose of Diophantine
approximation [82] (i.e., finding the best rational approximation k1/k2 of a given real r).
Concretely, our extension takes a ratio x1 : · · · : xn of natural numbers (and a parameter d
that we call depth), and returns a simplified ratio y1 : · · · : yn.
Overall the workflow of our tool SSInt is as in Figure 3.1.

• We first run Algorithm 2. Its output—more precisely the solution of the SDP problem in
Line 3—may not yield an interpolant, due to numerical errors. The output is therefore
called a candidate ~v.

61

Table 3.1: The application of Algorithm 3 to (871465, 55625, 359255)

d CFE(x, d)

1 (15, 1, 6)
2 (31, 2, 13)
3 (172, 11, 71)
4 (204, 13, 84)
5 (11515, 735, 4747)
6 (81389, 5195, 33552)
7 (174293, 11125, 71851)
8 (174293, 11125, 71851)
x (871465, 55625, 359255)

• We then round the candidate ~v iteratively, starting with the depth d = 1 (the coarsest
approximation that yields the simplest candidate ~v1) and incrementing it. The bigger
the depth d is, the less simple and the closer to the original candidate ~v the rounded
candidate ~vd becomes.
• In each iteration, we check if the candidate ~vd yields a valid interpolant. This validation
phase is conducted purely symbolically, ensuring soundness of our tool.
• Our rounding algorithm eventually converges and we have ~vd = ~v for a sufficiently large
d (Lemma 3.32). In case we do not succeed by then we return FAIL.

In other words, we try candidates ~v1, ~v2, . . . , from simpler to more complex, until we obtain a
symbolically certified interpolant (or fail). This is the rounding and validation workflow that
we adopted from [58].
Our workflow involves another parameter c ∈ N that we call precision. It is used as an

empirical implementation trick that we apply to the original candidate ~v: we round it off to c
decimals.
The tool SSInt is implemented in OCaml. When run with SAS<’s T , T ′ (and a parameter

b ∈ N for the maximum degree, see Algorithm 2) as inputs, the tool generates MATLAB code
that conducts the workflow in Figure 3.1. The latter relies on the SDP solver SDPT3 [127] via
YALMIP as backend.

62

Algorithm 3 Extended continued fraction expansion CFE
1: input: x = (x1, . . . , xn) ∈ Nn (at least one of x1, . . . , xn is nonzero), and depth d ∈ N>0

2: Pick p so that xp is the smallest among the nonzero elements in x1, . . . , xn

(say the smallest among such p’s)
3: a := (bx1/xpc, . . . , bxn/xpc)
4: if d = 1 then
5: y := a/ gcd(a)
6: return y

7: else

8: r := (x1 − a1xp, . . . ,

p−1
∨

xp−1 − ap−1xp,

p
∨
xp,

p+1
∨

xp+1 − ap+1xp, . . . , xn − anxp)
9: r′ := CFE(r, d− 1) . a recursive call

10: y := (a1r
′
p + r′1, . . . ,

p−1
∨

ap−1r
′
p + r′p−1,

p
∨
r′p,

p+1
∨

ap+1r
′
p + r′p+1, . . . , anr

′
p + r′n)

11: return y/ gcd(y)

3.4.1 Rounding

Continued fraction expansion is a well-known method for rounding a real number to a rational;
it is known to satisfy an optimality condition called Diophantine approximation. One can think
of it as a procedure that simplifies ratios x1 : x2 of two numbers.
In our tool we use an extension of the procedure to simplify ratios x1 : · · · : xn; it is the

algorithm CFE in Algorithm 3. An example is in Table 3.1, where x = (871465, 55625, 359255).
One sees that the ratio gets more complicated as the depth d becomes bigger. For the depth
d = 7, 8 the output is equivalent to the input x.
Our algorithm CFE enjoys the following pleasant properties.

Lemma 3.32. 1. (Convergence) The output CFE(x, d) stabilizes for sufficiently large d;
moreover the limit coincides with the input ratio x. That is: for each x there exists M
such that CFE(x,M) = CFE(x,M + 1) = · · · = x (as ratios).

2. (Well-definedness) CFE respects equivalence of ratios. That is, if x, x′ ∈ Nn represent
the same ratio, then CFE(x, d) = CFE(x′, d) (as ratios) for each d.

Proof. We first notice that in case where the output of CFE(r, d− 1) in Line 10 equals r, then
we can check that the value of y at Line 11 equals x by a straightforward calculation.
We can prove the lemma by induction on max{xi | 1 ≤ i ≤ n}. We check several cases in

turn.

63

1. In the case where there is only one nonzero element in x, set M = 1. For simplicity, we
consider the case x = (k, 0, 0). Then p = 1 and a = (1, 0, 0). Therefore if d = 1, then
y = a = x (as ratios). If d > 1, then r = (k, 0, 0), so by induction on d we obtain r′ = r,
and thus y = x by the remark above.

2. In the case where there are more than one nonzero elements, and all of them are the
same, set M = 2. For simplicity, we consider the case x = (k, k, k, 0, 0). Then p = 1
and a = (1, 1, 1, 0, 0). If d ≥ M = 2, then else-branch is taken, and r = (k, 0, 0, 0, 0).
By the previous case, we have r′ = r. Therefore y = x by the remark.

3. In other cases, let r as in Line 9, and M be the depth d for which CFE(r, d) stabilizes
(such M exists by the induction hypothesis). Then for any d ≥ M + 1 we have r′ = r,
and thus y = x by the remark.

The second claim is obvious from the construction of the algorithm. �

The algorithm CFE takes a positive ratio x as input. In the workflow in Figure 3.1 CFE is
applied to ratios with both positive and negative numbers; we deal with such input by first
taking absolute values and later adjusting signs.

3.4.2 Validation

Potential unsoundness of verification methods due to numerical errors has been identified as
a major challenge (see for example [16,58,72,109,110,114]). In our tool we enforce soundness
(i.e., that the output is indeed an interpolant) by the validation phase in Figure 3.1.
There the candidate ~vd in question is fed back to the constraints in (the SDP problem that is

solved in) Algorithm 2,*2 and we check the constraints are satisfied. The check must be sym-
bolic. For equality constraints such a symbolic check is easy. For semidefiniteness constraints,
we rely on the following well-known fact: a symmetric real matrix M is positive semidefinite
if and only if all the principal minors ofM are nonnegative. This characterization allows us to
check semidefiniteness using only addition and multiplication. We find no computation in our
validation phase to be overly expensive. This is in contrast with QE-based validation methods
employed in [38] for example: while symbolic and exact, the CAD algorithm for QE is known
to be limited in scalability.

*2 In Algorithm 2 we introduced the constraint
∑

k∈bt γk ≥ 1 in (3.23) as a relaxation of a natural
constraint

∑
k∈bt γk > 0; see Section 3.3.3. In the validation phase of our implementation we wind back

the relaxation
∑

k∈bt γk ≥ 1 to the original constraint with > 0.

64

3.5 Experiments
We now present some experiment results. In the first part we present some simple geometric

examples that call for “sharp” interpolants; in the second we discuss some program verification
scenarios. These examples demonstrate our tool’s capability of producing simple and sharp
interpolants, together with the benefits of such interpolants in program verification techniques.
The experiments were done on Apple MacBook Pro with 2.7 GHz Intel Core i5 CPU and 16

GB memory. As described in Section 3.4, our tool SSInt consists of OCaml code generating
MATLAB code; the latter runs the workflow in Figure 3.1. Running the OCaml code finishes
in milliseconds; running the resulting MATLAB code takes longer, typically for seconds. The
execution time shown here is the average of 10 runs.
Our tool has two parameters: the maximum degree b and the precision c (Section 3.4). In

all our examples the common variable condition (in Definition 3.10) is successfully enforced.

3.5.1 Geometric Examples

Table 3.2 summarizes the performance of our tool on interpolation problems. For the input
6, we tried parameters (b, c) = (1, 1), (1, 2), . . . , (1, 5) and (2, 5) but all failed, leading to FAIL
in Figure 3.1. The input 9 contains disjunctions, which is not allowed in SAS<’s. It is dealt
with using the technique described in [39, Section 3.1]: an interpolant of T and T ′ is given
by
∨
i

∧
j Sij , where Sij is an interpolant of each pair of disjuncts Ti and T ′j of T and T ′,

respectively.

Listing 3.1: Code 1.3 of [39]

r e a l x , y ;
r e a l xa = 0 ;
r e a l ya = 0 ;
whi l e (nondet ()) {
x = xa + 2∗ya ;
y = −2∗xa + ya ;
x++;
i f (nondet ()) {
y = y + x ;

} e l s e {
y = y − x ;

65

Table 3.2: Experiment results. T and T ′ are inputs, and S is our output (see Figure 3.2 too).
The “time” column shows the execution time (in seconds) of the generated MATLAB code, b
and c show the successful choice of parameters, and d is the depth for which the workflow in
Figure 3.1 terminated.

T T ′ S time [s] b c d

1 y > x, x > −y 0 ≥ y 4y > 0 2.19 0 5 1
2 y ≤ 0 y > x2 −2y ≥ 0 5.68 2 3 1
3 y > x, x > −y y ≤ x, x ≤ −y 4y > 0 2.67 0 5 1
4 y > x, x > −y y ≤ −x2 8y + 4x2 > 0 5.09 2 1 1
5 y ≤ −1 x2 + y2 < 1 34y2 − 68y − 102 ≥ 0 7.58 2 5 3
6 x2 + (y − 1)2 ≤ 1 x2 + (y − 2)2 > 4 FAIL 14.0 2 5 8

7 x2 + (y + 1)2 ≤ 1 x2 + (y − 1)2 < 1
18x2y − 14x2y2 − 144y
+28y2 − 7x4 + 18y3 − 7y4 ≥ 0

6.45 2 2 2

8 x ≥ z2 x < −y2 2x ≥ 0 7.67 2 3 1

9
(y ≥ (x− 1)2) ∨
(y > (x+ 1)2)

(y < −(x− 1)2) ∨
(y ≤ −(x+ 1)2)

((586x+ 293y + 119 > 0) ∧ (333y ≥ 0)) ∨
((333y > 0) ∧ (374y − 748x− 117 ≥ 0))

43.7 2 3 3

Input 1 Input 2 Input 3 Input 4 Input 5

Input 7

� ≥ ��

Input 8, T

� < -��

Input 8, T ′

� � ≥ �

Input 8, S Input 9

Figure 3.2: Interpolants from Table 3.2. The blue, orange and green areas are for T , T ′, S,
respectively.

66

}
xa = x − 2∗y ;
ya = 2∗x + y ;

}
a s s e r t (xa + 2∗ya >= 0) ;

Listing 3.2: Constant Acceleration

r e a l x , v ;
(x , v) = (0 , 0) ;
whi l e (nondet ()) {
(x , v) = (x+2∗v , v+2);

}
a s s e r t (x >= 0) ;

3.5.2 Program Verification Example I: Infeasibility Checking

Consider the code in Listing 3.1; this is from [39, Section 7]. We shall solve Subproblem 1
in [39, Section 7]: if the property (xa) + 2(ya) ≥ 0 holds at Line 5, then it holds too after the
execution along 5→ 6→ 7→ 8→ 9→ 13→ 14. The execution is expressed as the SAS T :

T =


(xa) + 2(ya) ≥ 0, x = (xa) + 2(ya),
y = −2(xa) + (ya), x1 = x+ 1,
y1 = x1 + y, (xa1) = x1 − 2y1,
(ya1) = 2x1 + y1

 .

Then our goal is to show that the negation T ′ = ((xa1) + 2(ya1) < 0) of the desired property
is disjoint from T .
Our tool yields S =

(
8 − 14(ya1) − 7(xa1) ≥ 0

)
as an interpolant of these T and T ′ (in

14.1 seconds, with parameters b = 0, c = 3 and depth d = 11). The interpolant witnesses
disjointness. Our interpolant is far simpler than the interpolant given in [39].*3

Here the simplicity of our interpolant brings robustness as its benefit. Consider the other
path 5 → · · · → 8 → 11 → 13 → 14 of execution from Line 5 to 14, and let T0 be the
SAS that expresses the execution similarly to T in the previous example. It turns out that

*3 An interpolant 716.77 + 1326.74(ya) + 1.33(ya)2 + 433.90(ya)3 + 668.16(xa) − 155.86(xa)(ya) +
317.29(xa)(ya)2 + 222.00(xa)2 + 592.39(xa)2(ya) + 271.11(xa)3 > 0 is given in [39]. We note that,
to show disjointness of T and T ′, an interpolant of any splitting of T ∪ T ′ would suffice. It is not
specified in [39] which splitting they used.

67

our interpolant S in the above is also an interpolant of T0 and T ′. Thus our algorithm has
managed, aiming at simpler interpolants, to automatically discover −14(ya)− 7(xa) (that is,
(xa) + 2(ya)) as a value that is significant regardless of the choice made in Line 8.

3.5.3 Program Verification Example II: CEGAR

This is the example we discussed in Example 3.4. Here we provide further details, aiming
at readers familiar with CEGAR.
One of the most important applications of interpolation in verification is in counterexample-

guided abstraction refinement (CEGAR) [32]. There an interpolant S is used as (a candidate
for) the “essential reason” to distinguish positive examples T from negative counterexamples
T ′.
As an example let us verify Listing 3.1 by CEGAR. Starting from the empty set of abstraction

predicates, CEGAR would find the path p1 := (1→ 2→ 3→ 4→ 16) as a counterexample.*4

This counterexample path turns out to be spurious: let T := (xa = 0, ya = 0) express the
path and T ′ := ((xa) + 2(ya) < 0) express the negation of the assertion; our tool SSInt
yields 189346(xa) + 378692(ya) ≥ 0 (i.e. (xa) + 2(ya) ≥ 0) as an interpolant, proving their
disjointness. For the interpolation the tool SSInt took 4.32 seconds; we used the parameters
b = 0 and c = 5.
Consequently we add (xa) + 2(ya) ≥ 0 as a new abstraction predicate and run the CEGAR

loop again. This second run succeeds, since (xa) + 2(ya) ≥ 0 turns out to be a suitable
invariant for the loop in Line 4. We conclude safety of Listing 3.1.
We tried to do the same with the tool aiSat [37, 39] instead of our SSInt. It does not

succeed in interpolating T = (xa = 0, ya = 0) and T ′ = ((xa) + 2(ya) < 0), since sharpness is
required here (Prop. 3.18). As a workaround we tried strengthening T ′ = ((xa) + 2(ya) < 0)
into T ′0 = ((xa) + 2(ya) ≤ −10−7); aiSat then succeeded and yielded an interpolant S =
(137.3430 + 5493721088(ya) + 2746860544(xa) > 0). This predicate, however, cannot exclude
the spurious path p1 because S and the negation (xa)+2(ya) < 0 of the assertion are satisfiable
with xa = 0 and ya = −1.25× 10−8.

*4 Here we use a path-based CEGAR workflow that uses an execution path as a counterexample. Since we
do not have any abstraction predicates, xa and ya can be any integers; in this case the assertion in Line
16 can potentially fail.

68

3.5.4 Program Verification Example III: CEGAR

Here is another CEGAR example. Consider the code in Listing 3.2 that models movement
with constant acceleration. We initially have the empty set of abstraction predicates. After the
first run of the CEGAR loop we would obtain a counterexample path p1 := (1→ 2→ 3→ 6);
note that, since there are no predicates yet, x can be anything and thus the assertion may fail.
We let T1 := (x = 0, v = 0) express the counterexample p1 and T ′1 := (x < 0) express the

negation of the assertion. For these T1, T ′1 our tool SSInt synthesizes S1 := (2x ≥ 0) as their
interpolant (in 1.92 seconds, with b = 0, c = 5, and d = 1).
Thus we add 2x ≥ 0 as an abstraction predicate and run the CEGAR loop again. We

would then find the path p2 := (1 → 2 → 3 → 4 → 5 → 6) as a counterexample—note
that the previous counterexample p1 is successfully excluded by the new predicate 2x ≥ 0.
Much like before, we let T2 := (v1 = 0) express an initial segment of the path p2 and let
T ′2 := (x1 = 0, v2 = v1 + 2, x2 = x1 + 2v1, x2 < 0) express the rest of the path p2 (together
with the negation of the assertion), and we shall look for their interpolant S2 as the witness
of infeasibility of the path p2. SSInt succeeds, yielding S2 := (8v1 ≥ 0) in 2.87 seconds with
b = 0, c = 5, d = 1.
In the third run of the CEGAR loop we use both 2x ≥ 0 and 8v ≥ 0 (from S1,S2) as

abstraction predicates. The proof then succeeds and we conclude safety of Listing 3.2.
We did not succeed in doing the same with aiSat. In the first CEGAR loop an interpolant of
T1 and T ′1 cannot be computed because it has to be sharp. As we did in the previous example
we could strengthen T ′1 to T ′′1 := (x ≤ 10−7) and use an interpolant of T1 and T ′′1 instead for
the next iteration. aiSat generated an interpolant 3790.1050 + 75802091520.0000x > 0 of T1

and T ′′1 ; however this fails to exclude the spurious counterexample path p1.
Overall this example demonstrates that sharpness of interpolants can be a decisive issue in

their application in program verification.

3.6 Conclusions
We proposed a new method to find an polynomial interpolant for a pair of semialgebraic

systems which can be “barely disjoint”. As the existing method by Dai et al. does not generate
any interpolants in this case and our method works when the existing method works, our
method is a proper extension of Dai et al.’s method. For our method, we proposed strict cone,
which is an algebraic structure in R[~X], and designed an numerical optimization problem with
it.

69

To find an exact and simple interpolant, we proposed a technique to round the result of the
numerical optimization with an extension of the fractional expansion.

3.7 Future Work
The workflow of the rounding-validation loop [58] is simple but potentially effective: in

combination with our rounding algorithm based on continued fractions, we speculate that the
workflow can offer a general methodology for coping with numerical errors in verification and
in symbolic reasoning. Certainly our current implementation is not the best of the workflow:
for example, the validation phase of Section 3.4 could be further improved by techniques from
interval arithmetic, as in [115].
The collaboration between numerical and symbolic computation in general (as in [4]) inter-

ests us, too. For example in our workflow (Figure 3.1, pp. 61) there is a disconnection between
the SDP phase and later: passing additional information (such as gradients) from the SDP
phase can make the rounding-validation loop more effective.
Our current examples are rather simple and small. While they serve as a feasibility study

of the proposed interpolation method, practical applicability of the method in the context of
program verification is yet to be confirmed. We plan to conduct more extensive case studies,
using common program verification benchmarks such as in [121], making comparison with
other methods, and further refining our method in its course.

70

Chapter 4

Mind the Gap: Bit-vector Interpolation
Recast over Linear Integer Arithmetic

This chapter is based on joint work [101] with Andy King. The original work is published
open access licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/).

4.1 Introduction

4.1.1 Interpolant

For a pair of logical formula A and B such that A and B are inconsistent, an interpolant I
of A and B is a formula such that (1) A implies I, (2) B and I are inconsistent, and (3) the
variables in I are covered with the intersection of the variables of A and the variables of B.
From a set-theoretic viewpoint, the conditions (1) and (2) means that

{ p | A(p) holds } ⊆ { p | I(p) holds } ⊆ { p | B(p) holds }c . (4.1)

As the condition (3) restricts the expressivity of I, an interpolant of A and B means “a simple
formula separating the region of A and B”. Note that many different interpolants can exist
for a pair 〈A,B〉.
For example, in propositional logic, letting A = (P1 ∧ P2 ∧ P4) and B = ¬(P1 ∨ P2 ∨ P3),

formulae I1 = P3 and I2 = (P1 ∨ P3) are interpolants of A and B. By the Karnaugh map
shown in Table 4.1, we can easily check that I1 and I2 are interpolants. Note that A does not
satisfy (3), so it is not an interpolant of A and B even though it satisfies (1) and (2).
We can think of interpolants in the theory of linear inequalites. For example, letting A =

(x = y + 1) ∧ (y = 0) and B = (x = z + 2) ∧ (1 ≤ z), formulae I1 = (x = 1), I2 = (x ≤ 1) and
I3 = (x < 3) are interpolants of A and B.

71

http://creativecommons.org/licenses/by/4.0/

Table 4.1: The Karnaugh map of A,B, I1, I2

P3, P4 P3, P4 P3, P4 P3, P4

P1, P2 A, I1, I2 I1, I2 I2 I2

P1, P2 A, I1, I2 I1, I2 I2 I2

P1, P2 I1, I2 I1, I2 B B

P1, P2 I1, I2 I1, I2

Interpolant has been used as a technique for program verification [92]. Specifically, inter-
polant computation is combined with the techniques of constructing graphs between abstract
program states to discover invariants [51] and lazy abstractions [60], and interpolant com-
putation is performed to discover propositions in those techniques that are useful for their
verification. BLAST [17] and IMPACT [89] have been produced as successful tools using such
techniques.
For example, in the case of IMPACT [17], it constructs a program invariant by preparing

a graph whose nodes are pairs of program counters and overapproximations of the conditions
to reach the nodes, and then refine those conditions. This technique uses an SMT solver to
determine whether the path from the initial state to an error state on the graph is possible or
impossible due to an incorrect overapproximation. If the latter occurs, i.e., the overapproxima-
tion is incorrect, then the program’s sequence of instructions along the path does not actually
occur, and the sequence of propositions converted from the instruction sequence becomes un-
satisfiable. By calculating interpolants from the sequence of propositions and strengthening
the conditions of the nodes on the path by the interpolants, the abstraction of the program
becomes elaborate, and the verification of the program proceeds.
The condition that the variables of an interpolant have to be covered with the intersection

of the variables of the original formulae makes the interpolant simple, and it is considered that
the simplicity contributes to extracting the essence of the target program.

4.1.2 Context

The interpolant computation has been investigated for various theories [29, 30, 67, 73, 78,
88, 116]. Among them, [52] and [8] worked on the bit-vector theory [8]. Backeman et al.
developed a richer theory based on Presburger arithmetic, and proposed a method to calculate
interpolants over the theory. (Hence, the work is not actually an interpolation over the bit-
vector theory.)
Griggio proposed a method to calculate interpolants over the bit-vector theory by the fol-

72

lowing steps: (1) convert the target pair of formulae into the pair of formulae over linear
integer arithmetic (LIA) preserving the semantics, (2) calculate an interpolant of the pair
of the converted formulae by existing LIA interpolation engines [53], and (3) translate the
interpolant back to the bit-vector theory [52]. The advantage of the method compared to bit-
blasting is the compactness and the “beautifulness” (its benefit is discussed in [2]) of resulting
interpolants derived from respecting the syntax of the target formulae. A challenge reported
in his paper is that translating back in (3) does not always succeed. When it fails, the method
uses bit-blasting as a backup. The failure is that translating back is done by reinterpreting
the interpolant in the bit-vector theory as a formula in LIA without changing the syntax. The
two semantics can differ mainly because of the overflow: integers in LIA are unbounded, but
integers in the bit-vector are bounded, and the wraparound can happen.

4.1.3 Contribution

We propose a technique for transforming LIA formulae into BV formulae while preserving
semantics so that the step of Griggio’s approach of transforming LIA interpolants into BV
formulae always succeeds.
First, we define the problem precisely, observe that the cause of the overflow problem consists

mainly of formulae involving inequalities, and we see that the transformation of inequalities
of a particular form is essential. Next, we see that there is an obvious way to convert an
LIA formula into a BV (bit-vector) formula while preserving semantics, but the obvious ap-
proach destroys the structure of the original LIA formula and further increases the size of the
expression drastically. Next, we discuss the first element of our approach: boxing. We see
that, for inequalities in the LIA satisfying a special condition, we can create equivalent LIA
inequalities such that the naïve transformation to a BV formula preserves its semantics by a
small modification. This result shows that if an LIA inequality satisfies the special condition,
then the LIA inequality can be converted into the corresponding BV formula without any
problem concerning the preservation of its semantics. Next, we discuss the second element
of our approach: gapping *1. This is a technique to transform arbitrary LIA inequalities into
combinations of LIA inequalities satisfying the special condition of the boxing. Therefore,
by using “boxing & gapping”, we can convert arbitrary LIA inequalities into BV formulas
while preserving their semantics. Finally, we discuss how to deal with the remaining cause of
conversion failure, namely, expressions with mods.
To check the effectiveness of the above theoretical approach, we implemented an IMPACT-

*1 The title of the chapter alludes to both this geometric technique, the conceptual gap in previous work,
and collaboration which entailed traveling through London.

73

based program verifier using Griggio’s interpolation technique. In the first experiment, we
show that our “boxing & gapping” process does not take much time by comparing it with
program verification in LIA (in this case, we simplify the program interpretation). In the
second experiment, we see that the verification in bit-vector theory is faster with “boxing &
gapping” than with the obvious conversion described above.
In summary, our contributions can be summarized as follows:

• We propose a method to calculate a compact interpolant of BV formulae by using a
method to compute LIA interpolants.
• We propose and mathematically justify the conversion of a BV formula into an LIA
formula without increasing its size too much while preserving its semantics.
• We implement an IMPACT-based [89] program verifier using our interpolant computa-
tion technique and show the effectiveness of our technique with experiments.

4.1.4 Use Case (Motivation)

We explain the motivation for using our technique, which realizes interpolation within BV
theory, instead of embedding formulae in another theory supporting interpolation and compute
interpolants in the theory.
First, Griggio’s technique is an ensemble method that layers multiple BV interpolation

techniques, and the propositions used in his program verification are in the BV theory. Our
method can generate BV interpolants rather than computing interpolants on a different theory
as Backeman does. Thus, we can naturally incorporate our method as one of the layers of
Griggio’s technique.
Secondly, the interpolant calculation over the LIA is still being developed and the possibility

of bugs in SMT solvers cannot be ruled out, so we cannot be sure that the interpolant in LIA
is correct*2. If we generate a BV interpolant by our method, we can double-check the validity
of the interpolant in both the LIA and the BV theory.

4.1.5 Related Work

The problem of reasoning about machine arithmetic and wrapping arises not only in model
checking, but abstract interpretation too, where solvers are augmented with support for re-

*2 The only SMT solver that currently supports interpolant computation over LIA is MathSAT5 [28], but
its source code is not publicly available. We have reported one bug that causes a crash during our
experiments with MathSAT5.

74

laxing abstraction rather than interpolation.
Despite the long-standing work [14, 20, 96] in deciding BV theories, there has been a lot of

work on BV interpolation. Although not focussing on BV interpolation, early work on deriving
work-level interpolants [78] uses bit-vectors to interpolate equality logic. This logic supports
equations of the form x = y and x = c where x and y are variables and c is drawn from a finite
set of symbols C. Bit-vectors with width dlog2(|C|)e are used to bit-blast equations [111] so
that formulae are encoded entirely propositionally. Then a propositional resolution proof of
the inconsistency of two formulae is lifted to the work-level.
Seminal work by Griggio [52] advocated encoding BV formulae in theories of increasing

complexity. The pair of BV formulae are encoded in a theory whose interpolation engine is used
to find an interpolant in that theory. The interpolant is then reinterpreted as a BV formula
and tested to see if it is still an interpolant for the pair of BV formulae. The approach resorts
to bit-blasting if no simpler theory can find an interpolant, at the cost of losing world-level
information. By way of contrast, Backeman et al. [8] proposed a calculus over a core language,
which supports interpolation and is rich enough to describe BV formulae, even making use of
Groebner bases to express polynomial equality relationships. Since interpolation is performed
within their core language, they do not aim to derive a BV interpolant, and therefore their
work is orthogonal to ours. Yet, if Backeman’s procedure returns an interpolant in their core
language and if this interpolant could be interpreted as an LIA formula, which seems likely in
many cases, then our work would convert the LIA formula back to the BV theory.
Further afield, polynomial algorithms for interpolation have been developed for systems of

linear congruence equations [67, section 4], conjunctions of linear Diophantine equations and
disequations [67, section 6], and systems of mixed integer linear equations [67, section 7]. This
comprehensive study stops short of using LIA to interpolate BV formulae, mentioning the
problem as future work.
Abstract domains have been proposed for tracking linear modulo relationships where the

module is a power of 2 [47, 76, 97]. These domains, which are essentially specialist solvers,
express more than linear equalities [74], while enabling the domain operations to be realized
using the machine arithmetic. Surprisingly, systems of linear inequalities can be reinterpreted
to the model machine arithmetic by just changing the concretization function [123] and the
handling of guards [123].

4.1.6 Organization of the Chapter

In Section 4.2, we give the intuition of boxing and gapping by simple examples. In Section
4.3, we give a formal discussion of our approach. In Section 4.4, we give the experimental

75

(a) x+ y ≤ 3 (b) x+ y ≤ 3 with box (c) x+ y ≤ 7

(d) x+ y − 4 ≤ 3 (e) x+ y − 4 ≤ 3 with box 1 (f) x+ y − 4 ≤ 3 with box 2

Figure 4.1: Gapping and boxing for x+ y ≤ 3 and x+ y ≤ 7

result. Section 4.5 concludes, and Section 4.6 presents future work.

4.2 Boxing and Gapping in Pictures
We consider the problem of finding a BV equation ` such that for a given linear inequality f ,

q
f
y
LIA =

q
`
y
BV, where

q
f
y
LIA is the set of points satisfying f in the LIA and

q
`
y
BV is the set of

points satisfying ` in the BV theory. Roughly speaking, we can usually interpret formulae in
the usual way in the LIA, and we have to take into account the overflow to interpret formulae
in the BV theory (the precise definition is given in the next section). Our task is to find
efficiently a formula ` of compact size, where the size of a formula is measured by the number
of its atomic propositions.
We are explaining the idea of our technique boxing and gapping with motivating examples.

We assume here that unsigned integers are in [0, . . . ,m − 1]. First, letting m = 8 and f =
(x + y ≤ 3), we are finding ` such that

q
f
y
LIA =

q
`
y
BV ⊆ [0, . . . , 7(= m − 1)]2. The points of

q
f
y
LIA are shown as blue points in Figure 4.1(a). Note that

q
f
y
LIA 6=

q
f
y
BV, so we cannot set

l = f , as 〈x, y〉 = 〈3, 5〉 ∈
q
f
y
BV \

q
f
y
LIA (

q
f
y
BV is shown as red points in Figure 4.1(a)). The

reason of the belonging 〈3, 5〉 ∈
q
f
y
BV is that the overflow in the BV theory as

x+ y = (3 + 5) mod m = 0 ≤ 3. (4.2)

Hence, finding ` is not an obvious problem.

76

4.2.1 Enumeration

A straightforward way is to enumerate points of
q
f
y
LIA and represent them as the formula

`. If f = (x+ y ≤ 3), ` can be chosen as

` =[(x = 0 ∧ y = 0) ∨ (x = 0 ∧ y = 1) ∨ (x = 0 ∧ y = 2) ∨ (x = 0 ∧ y = 3) (4.3)
∨ (x = 1 ∧ y = 0) ∨ (x = 1 ∧ y = 1) ∨ (x = 1 ∧ y = 2) (4.4)
∨ (x = 2 ∧ y = 0) ∨ (x = 2 ∧ y = 1) (4.5)
∨ (x = 3 ∨ y = 0)]. (4.6)

In this way, there is no concern of overflow because there are no numerical operations, and
obviously

q
f
y
LIA =

q
`
y
BV holds. The order of the size of ` is approximately md.

A little better way is to make “pillars” by getting the interval of y for each x, and enumerate
the pillars. If f = (x+ y ≤ 3), ` is

` = [(x = 0 ∧ y ≤ 3) ∨ (x = 1 ∧ y ≤ 2) ∨ (x = 2 ∧ y ≤ 1) ∨ (x = 3 ∧ y ≤ 0)]. (4.7)

This method can be applied recursively even if the number of variables in f is larger than two.
Although this method is more efficient than the previous enumerating method, the order of
the size of ` is still large.

4.2.2 Boxing

Observing Figure 4.1(a), we see that the points of
q
f
y
BV \

q
f
y
LIA, which are shown as purely

red points in the figure, appears as a band in the upper right corner. Thus, we add a “box”
predicate x ≤ 3 ∧ y ≤ 3 into f , and make ` be

` = (x+ y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 3)), (4.8)

then
q
f
y
LIA =

q
`
y
BV holds (see Figure 4.1(b)). This works because no numerical operations

appear in the box x ≤ 3∧y ≤ 3 and there is no concern of overflow. This technique reduces the
growth in the size of `. For example, if we consider the case m = 1024 and f = (x+ y ≤ 511),
the corresponding ` is

` = (x+ y ≤ 511 ∧ (x ≤ 511 ∧ y ≤ 511)). (4.9)

This technique is called boxing and formalized in the next section.
This boxing described above may not always be applicable. For example, letting f = (x+y ≤

7), there is no gap between
q
f
y
LIA ∩

q
f
y
BV (red and blue points) and

q
f
y
BV \

q
f
y
LIA (purely

red points) in Figure 4.1(c), and we cannot separate these two sets by a box.

77

4.2.3 Gapping

Our gapping is a technique to transform a linear inequality f into a formula f ′ such that
q
f
y
LIA =

q
f ′

y
LIA and the boxing above is applicable. This solves the above problem. We

are applying the gapping to the case f = (x + y ≤ 7) and m = 8 as an example. As
[0, . . . , 7] = [0, . . . , 3] ∪ [4, . . . , 7],
q
x+ y ≤ 7

y
LIA =

q
x+ y ≤ 3

y
LIA ∪

q
4 ≤ x+ y ≤ 7

y
LIA =

q
x+ y ≤ 3

y
LIA ∪

q
x+ y − 4 ≤ 3

y
LIA.

(4.10)

The first set on the righthand side is the same as the example in the previous section so that
our boxing is applicable. The second set on the righthand side looks like Figure 4.1(d). By
adding a pair of boxes x ≤ 3 ∨ y ≤ 3 into f and making ` be

` = [((x+ y ≤ 3) ∧ (x ≤ 3 ∧ y ≤ 3)) ∨ ((x+ y − 4 ≤ 3) ∧ (x ≤ 3 ∨ y ≤ 3))], (4.11)

we can find ` such that
q
f
y
LIA =

q
`
y
BV (see Figure 4.1(e, f)).

This gapping is also formalized in the next section.

4.3 Formal Correctness of Boxing and Gapping
We use x1, . . . , xd as variables in the linear inequalities for some d > 1. We consider bit-

vectors of fixed-width w > 1 and interpret LIA and BV formulae over the product space Md

where M = { 0, 1, 2, . . . ,m− 1 } and m = 2w as follows:

Definition 4.1. Let ~c, ~c′ ∈ Zd and b, b′ ∈ Z. If ` ≡ (
∑d
i=1 cixi) + b ≤ (

∑d
i=1 c

′
ixi) + b′ then

q
`
y
LIA = { ~x ∈Md

∣∣∣∑d
i=1 cixi + b ≤

∑d
i=1 c

′
ixi + b′ }

q
`
y
BV = { ~x ∈Md

∣∣∣(∑d
i=1 cixi + b) mod m ≤ (

∑d
i=1 c

′
ixi + b′) mod m }

Furthermore, the LIA semantics can be lifted from inequalities to LIA formulae by:
q
f1 ∨ f2

y
LIA =

q
f1

y
LIA ∪

q
f2

y
LIA,

q
f1 ∧ f2

y
LIA =

q
f1

y
LIA ∩

q
f2

y
LIA and

q
¬f

y
LIA = Md \

q
f
y
LIA.

Likewise for BV formulae.
In the sequel, N denotes the set of (strictly) positive integers, R the set of real numbers,

and R≥0 the set of non-negative real numbers. We extend the floor and ceiling function to
sequences in Rd in a component-wise manner: b~xci = bxic and d~xei = dxie. If ~x ∈ Rd then
|~x| = d. The partial order ≤ on Rd is defined by ~x ≤ ~y if and only if xi ≤ yi for all i = 1, . . . , d.

78

4.3.1 Boxing

The following lemma tells us the boxing in a very basic case, which is the case when the
coefficients of the left-hand side of the linear inequality f are all ones and the right-hand side
is a constant:

Lemma 4.2. Let d > 1 and L ∈ N. Then:

{ ~x ∈ Rd≥0

∣∣∣∑d
i=1 xi ≤ L · (m/2)− 1 }

⊆
⋃
~p∈Id((d−1)(L+1))

⋂d
i=1 { ~x ∈ Rd≥0 | xi <

pi·(m/2)
d−1 }

⊆ { ~x ∈ Rd≥0

∣∣∣∑d
i=1 xi < (L+ 1) · (m/2) }

where Id(n) = { (i1, . . . , id) ∈ Nd | i1 + · · ·+ id = n }.

Proof. To prove the first inclusion, let ~x ∈ Rd≥0 satisfy
∑d
i=1 xi ≤ L · (m/2) − 1. Let ai =

b2(d−1)xi/m+1c for each i = 1, . . . , d. Since the elements of ~x are nonnegative, the elements
of ~a are strictly positive.

d∑
i=1

ai ≤
d∑
i=1

(
(d− 1)xi
m/2 + 1

)
(4.12)

= d− 1
m/2

(
d∑
i=1

xi

)
+ d (4.13)

≤ d− 1
m/2 (L(m/2)− 1) + d (4.14)

= (d− 1)L− d− 1
m/2 + d (4.15)

= (L+ 1)(d− 1) +
(

1− d− 1
m/2

)
. (4.16)

By assumption 1 < d, 1 − (d − 1)/(m/2) < 1 holds. Since
∑d
i=1 ai is integral,

∑d
i=1 ai ≤

(L+ 1)(d− 1) holds. We define ~p by

pi =
{

(d− 1)(L+ 1)−
∑d
j=2 aj i = 1

ai i > 1
(4.17)

for each i = 1, . . . , d. By the positivity of ~a, the positivity of p2, . . . , pd is obvious. The value
p1 is also strictly positive because 0 < a1 ≤ p1. The sum of the elements of ~p is equal to
(d− 1)(L+ 1) by definition. Hence ~p ∈ Id((d− 1)(L+ 1)) holds. Because (d− 1)xi/(m/2) <
ai ≤ pi it follows ~a, xi < pi(m/2)/(d − 1) holds. This concludes the first inclusion. For the
second inclusion, let ~x ∈ Rd≥0 such that xi < pi(m/2)/(d− 1) for some ~p ∈ Id((d− 1)(L+ 1)).
Then

∑d
i=1 xi < (m/2)/(d− 1)

∑d
i=1 pi = (m/2)(L+ 1) as required. �

79

By applying a linear transformation to the sets above and considering the intersection with
Zd≥0, we get the following corollary.

Corollary 4.3. Let d > 1, L ∈ N and ~c ∈ Nd. Then:

{ ~x ∈ Zd≥0 |
∑d
i=1 cixi ≤ L · (m/2)− 1 }

⊆
⋃
~p∈Id((d−1)(L+1))

⋂d
j=1 { ~x ∈ Zd≥0 | xj ≤ d

pj ·(m/2)
ci(d−1) e − 1 }

⊆ { ~x ∈ Zd≥0 |
∑d
i=1 cixi ≤ (L+ 1) · (m/2)− 1 }

Proof. By scaling the sets of lemma 4.2 by diag(1/c1, . . . , 1/cd)

{ ~x ∈ Rd≥0 |
∑d
i=1 cixi ≤ L · (m/2)− 1 }

⊆
⋃
~p∈Id((d−1)(L+1))

⋂d
j=1 { ~x ∈ Rd≥0 | xj <

pj ·(m/2)
ci(d−1) }

⊆ { ~x ∈ Rd≥0 |
∑d
i=1 cixi < (L+ 1) · (m/2) }

hence
{ ~x ∈ Zd≥0 |

∑d
i=1 cixi ≤ L · (m/2)− 1 }

⊆
⋃
~p∈Id((d−1)(L+1))

⋂d
j=1 { ~x ∈ Zd≥0 | xj <

pj ·(m/2)
ci(d−1) }

⊆ { ~x ∈ Zd≥0 |
∑d
i=1 cixi < (L+ 1) · (m/2) }

and the result follows. �

By using this corollary many times, we get the sequence of inclusions by increasing L:

{ ~x ∈ Zd≥0 |
∑d
i=1 cixi ≤ L · (m/2)− 1 }

⊆
⋃
~p∈Id((d−1)(L+1))

⋂d
j=1 { ~x ∈ Zd≥0 | xj ≤ d

pj ·(m/2)
ci(d−1) e − 1 }

⊆{ ~x ∈ Zd≥0 |
∑d
i=1 cixi ≤ (L+ 1) · (m/2)− 1 }

⊆
⋃
~p∈Id((d−1)(L+2))

⋂d
j=1 { ~x ∈ Zd≥0 | xj ≤ d

pj ·(m/2)
ci(d−1) e − 1 }

⊆{ ~x ∈ Zd≥0 |
∑d
i=1 cixi ≤ (L+ 2) · (m/2)− 1 }

. . . .

This idea is used in the proofs of this chapter.
Based on Corollary 4.3, we define boxLIA(~c; b) for a linear inequality

∑d
i=1 cixi ≤ b. As the

semantics of the inequality x ≤ b is different between the BV and the LIA when b is large, we
also define a reduced boxing boxBV(~c; b), the BV version of boxLIA(~c; b), to avoid the trouble of
the difference of the semantics.

Definition 4.4. Let ~c ∈ Nd, b ∈ N and L ∈ N be the unique natural number such that
(L − 1) · (m/2) ≤ b ≤ L · (m/2) − 1. The boxing and reduced boxing of

∑d
i=1 cixi ≤ b are

formulae defined as follows:

boxLIA(~c; b) ≡
∨

~p∈Id((d−1)(L+1))

d∧
j=1

(
xj ≤ d

pj · (m/2)
cj(d− 1) e − 1

)
(4.18)

80

boxBV(~c; b) ≡
∨

~p∈Id((d−1)(L+1))

d∧
j=1

(
xj ≤ min

(
dpj · (m/2)
cj(d− 1) e − 1,m− 1

))
(4.19)

Givenm and b ∈ N, it is always possible to find a unique L ∈ N which satisfies Definition 4.4 by
putting L = b 2b

m c+1. Then L−1 = b 2b
m c ≤

2b
m < b 2b

m c+1 = L hence (L−1)(m/2) ≤ b < L(m/2)
whence (L− 1)(m/2) ≤ b ≤ L(m/2)− 1 because b and L(m/2) are integral.
The following proposition asserts that the boxing and reduced boxing formulae share the

same solution set when interpreted with, the LIA and BV semantics respectively.

Proposition 4.5.
q
boxLIA(~c; b)

y
LIA =

q
boxBV(~c; b)

y
BV

Proof. Put L = bb/(n/2)c. Let ~x ∈
q
boxLIA(~c; b)

y
LIA and j ∈ {1, . . . , d}. Then there exists

~p ∈ Id((d− 1)(L+ 1)) such that xj ≤ dpj ·(m/2)
cj(d−1) e − 1.

• Suppose dpj ·(m/2)
cj(d−1) e − 1 ≤ m − 1. Then xj ≤ dpj ·(m/2)

cj(d−1) e − 1 = min(dpj ·(m/2)
cj(d−1) e − 1,m −

1) mod m.
• Suppose dpj ·(m/2)

cj(d−1) e − 1 ≥ m. Since xj ∈ M it follows xj ≤ m − 1 = min(dpj ·(m/2)
cj(d−1) e −

1,m− 1) mod m.

Thus ~x ∈
q
boxBV(~c; b)

y
BV. Now let ~x ∈

q
boxBV(~c; b)

y
BV and j ∈ {1, . . . , d}. There exists

~p ∈ Id((d− 1)(L+ 1)) such that xj ≤ min(dpj ·(m/2)
cj(d−1) e − 1,m− 1) mod m.

• Suppose dpj ·(m/2)
cj(d−1) e − 1 ≤ m− 1. Then xj ≤ dpj ·(m/2)

cj(d−1) e − 1.
• Suppose dpj ·(m/2)

cj(d−1) e − 1 ≥ m. Then xj ≤ m− 1 < dpj ·(m/2)
cj(d−1) e − 1.

Therefore ~x ∈
q
boxLIA(~c; b)

y
LIA. �

Example 4.6. To demonstrate this equivalence, consider again x + y ≤ 3 for m = 8. Then
put L = b6/8c+ 1 = 1 and I2((d− 1)(L+ 1)) = I2(2) = {〈1, 1〉}. Observe boxLIA(〈1, 1〉; 3) =
boxBV(〈1, 1〉; 3) since

boxLIA(〈1, 1〉; 3) = (x ≤ d4/1e − 1 = 3) ∧ (y ≤ d4/1e − 1 = 3)

boxBV(〈1, 1〉; 3) = (x ≤ min(3, 7) = 3) ∧ (y ≤ min(3, 7) = 3)

Example 4.7. Although
q
boxLIA(~c; b)

y
LIA =

q
boxBV(~c; b)

y
BV, it does not necessarily follow

that
q
boxLIA(~c; b)

y
LIA =

q
boxLIA(~c; b)

y
BV. To illustrate this fact, consider x + y ≤ 7 for d = 2

and m = 4. Thus ~c = 〈1, 1〉 and b = 7. Then L = b14/4c + 1 = 4 and I2((d − 1)(L + 1)) =
I2(5) = {〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉} hence

boxLIA(~c; b) = (x ≤ 1 ∧ y ≤ 7) ∨ (x ≤ 3 ∧ y ≤ 5)∨
(x ≤ 5 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1)

Therefore
q
boxLIA(~c; b)

y
LIA = M2 but (2, 2) 6∈

q
boxLIA(~c; b)

y
BV.

81

The following lemma shows that the solution sets for boxing grow monotonically as the
constant of the inequality is relaxed.

Lemma 4.8. If b ≤ b′ then
q
boxLIA(~c; b)

y
LIA ⊆

q
boxLIA(~c; b′)

y
LIA.

Proof. Let L = b 2b
m c+ 1 and L′ = b 2b′

m c+ 1. Then L ≤ L′.

• Suppose L = L′. Then
q
boxLIA(~c; b)

y
LIA =

q
boxLIA(~c; b′)

y
LIA.

• Suppose L+ 1 ≤ L′. Let ~x ∈
q
boxLIA(~c; b)

y
LIA. By the second inclusion of Corollary 4.3∑d

i=1 cixi ≤ (L+ 1)(m/2)− 1 ≤ L′(m/2)− 1. By the first inclusion of Corollary 4.3 it
then follows ~x ∈

q
boxLIA(~c; b′)

y
LIA.

�

The following theorem shows the special case of our boxing when b is small:

Theorem 4.9 (boxing without gapping). Let ~c ∈ Nd and b ∈ N. If b < m/2 then

q d∑
i=1

cixi ≤ b
y

LIA

=
q
(
d∑
i=1

cixi ≤ b) ∧ boxBV(~c; b)
y

BV

Proof. Let ~x ∈ LHS. Since
∑d
i=1 cixi ≤ b < m/2 it follows

(
d∑
i=i

cixi) mod m =
d∑
i=i

cixi ≤ b = b mod m

hence ~x ∈
q∑d

i=1 cixi ≤ b
y
BV. By the first inclusion of Corollary 4.3 with L = 1, ~x ∈

q
boxLIA(~c; b)

y
LIA. By Proposition 4.5 ~x ∈

q
boxBV(~c; b)

y
BV hence

~x ∈
q d∑
i=1

cixi ≤ b
y

BV

∩
q
boxBV(~c; b)

y
BV = (RHS).

Let ~x ∈ RHS. Since ~x ∈
q
boxBV(~c; b)

y
LIA by Proposition 4.5 it follows ~x ∈

q
boxLIA(~c; b)

y
LIA.

By the second part of inclusion of Corollary 4.3 with L = 1

d∑
i=i

cixi ≤ (L+ 1) · (m/2)− 1 < m.

hence (
∑d
i=i cixi) mod m =

∑d
i=i cixi. Moreover b mod m = b since b < m/2. Because

~x ∈
q∑d

i=1 cixi ≤ b
y
BV it follows

d∑
i=i

cixi = (
d∑
i=i

cixi) mod m ≤ b mod m = b

hence ~x ∈ LHS. �

82

(a) x+ 2y ≤ 5 with boxes (b) x+ 2y ≤ 3 with box (c) 0 ≤ x+ 2y − 4 ≤ 1 with boxes

Figure 4.2: Gapping and boxing for x+ 2y ≤ 5

Observe that the result requires b < m/2. In this circumstance L = b2b/mc + 1 = 1 and
the number of logical connectives in boxBV(~c; b) is determined by the cardinality of the set
Id((d− 1)(L+ 1)) = Id(2(d− 1)), which is given below:

d 2(d− 1) Id(2(d− 1)) |Id(2(d− 1))|
2 2 Π(〈1, 1〉) 1
3 4 Π(〈1, 1, 2〉) 3
4 6 Π(〈1, 1, 1, 3〉) ∪Π(〈1, 1, 2, 2〉) 10
5 8 Π(〈1, 1, 1, 1, 4〉) ∪Π(〈1, 1, 1, 2, 3〉) ∪Π(〈1, 1, 2, 2, 2〉) 35

where Π(v) denote the set of permutations of the vector v. For d = 4, boxBV(~c; b) thus requires
10(d− 1) = 30 binary conjunctions and 10− 1 = 9 disjunctions.
One might think that this boxing is still inefficient, since the number of boxes increases

as d and L increase. The cardinality of Id((d − 1)(L + 1)) in Definition 4.4 is bounded by
((d − 1)(L + 1) − 1)d−1, and since boxing is used for interpolants and d is the number of
variables in the interpolant, d is expected to be small in practice (remember that the variables
in an interpolant are the intersection of the variables in the target formulae). Also, if L is
large, boxBV(~c; b) is small in practice because redundant boxes are omitted by the min in the
definition of the reduced boxing. From the above two points, the number of resulting boxes is
not so large in practice.

4.3.2 Boxing and Gapping

Example 4.10. Consider
q
x+ 2y ≤ 5

y
BV and

q
x+ 2y ≤ 5

y
LIA for m = 8 as shown in Figure

4.2(a). Observe
boxBV(〈1, 2〉; 5) = (x ≤ 3 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1)

which is illustrated by the two grey rectangles. Hence 〈2, 3〉 /∈
q
x+ 2y ≤ 5

y
LIA but 〈2, 3〉 ∈

q
x+ 2y ≤ 5 ∧ boxBV(〈1, 2〉; 5)

y
BV therefore using boxing alone is not sufficient to encode the

83

LIA inequality x + 2y ≤ 5. This example means that applying boxing from Theorem 4.9
ignoring the assumption b < m/2 does not work.

Example 4.11. Yet the LIA inequality x+ 2y ≤ 5 can be decomposed as follows:
q
x+ 2y ≤ 5

y
LIA =

q
x+ 2y ≤ 3

y
LIA ∪

q
4 ≤ x+ 2y ≤ 5

y
LIA

=
q
x+ 2y ≤ 3

y
LIA ∪

q
0 ≤ x+ 2y − 4 ≤ 1

y
LIA

Figures 4.2(b, c) illustrates boxing for x+ 2y ≤ 3 and 0 ≤ x+ 2y − 4 ≤ 1 where:
q
x+ 2y ≤ 3

y
LIA =

q
x+ 2y ≤ 3 ∧ boxBV(〈1, 2〉; 3)

y
BV

=
q
x+ 2y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 1)

y
BV

Observe from Figure 4.2(c) that
q
0 ≤ x+ 2y − 4 ≤ 1

y
LIA =

q
0 ≤ x+ 2y − 4 ≤ 1

y
BV ∩

q
boxBV(〈1, 2〉; 5)

y
BV

and moreover 0 mod 8 = 0 ≤ (x+ 2y − 4) mod 8 for all (x, y) ∈M2 thus
q
0 ≤ x+ 2y − 4 ≤ 1

y
LIA =

q
x+ 2y − 4 ≤ 1 ∧ boxBV(〈1, 2〉; 5)

y
BV

therefore cumulatively
q
x+ 2y ≤ 5

y
LIA =

q
ϕ1 ∨ ϕ2

y
BV where

ϕ1 = [x+ 2y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 1)]
ϕ2 = [x+ 2y − 4 ≤ 1 ∧ ((x ≤ 3 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1))]

The general rule of the separation of the given inequality and the boxing is shown in this
theorem:

Theorem 4.12 (boxing with gapping). Let ~c ∈ Nd and b ∈ N.
q∑d

i=1 cixi ≤ b
y
LIA =

q
φ0 ∨ φ1 ∨ φ2

y
BV where S = bb/(m/2)c and

φ0 ≡
(∑d

i=1 cixi − (S − 2)(m/2) ≤ m/2− 1
)
∧ boxBV(~c; (S − 1)(m/2)− 1)

φ1 ≡
(∑d

i=1 cixi − (S − 1)(m/2) ≤ m/2− 1
)
∧ boxBV(~c;S(m/2)− 1)

φ2 ≡
(∑d

i=1 cixi − S(m/2) ≤ b mod (m/2)
)

∧ boxBV(~c; b)

Proof. Let ~x ∈ LHS. Put S′ = b
∑d
i=1 cixi/(m/2)c and observe S′ ≤ S.

• Suppose S′ < S and S ≡ S′ mod 2. Then there exists n ∈ N such that S = S′ + 2n.[∑d
i=1 cixi − (S − 2)(m/2)

]
mod m =

[∑d
i=1 cixi − S′(m/2)− nm+m

]
mod m

=
[∑d

i=1 cixi − S′(m/2)
]

mod m

But recall S′ = b
∑d
i=1 cixi/(m/2)c hence

∑d
i=1 cixi − S′(m/2) < m/2 and there-

fore ~x ∈
q∑d

i=1 cixi − (S − 2)(m/2) ≤ m/2− 1
y
BV. But observe (

∑d
i=1 cixi)/(m/2) <

84

b(
∑d
i=1 cixi)/(m/2)c+ 1 therefore∑d

i=1 cixi < (b(
∑d
i=1 cixi)/(m/2)c+ 1)(m/2)

= (S′ + 1)(m/2)
≤ (S − 1)(m/2).

Thus
∑d
i=1 cixi ≤ (S − 1)(m/2)− 1. By first inclusion of Collorary 4.3 with L = S − 1

and Proposition 4.5, ~x ∈
q
boxBV(~c; (S − 1) · (m/2)− 1)

y
BV. Hence ~x ∈

q
φ0

y
BV.

• Suppose S′ < S and S ≡ S′ + 1 mod 2. Then there exists n ∈ N such that S =
S′ + 2n+ 1.[∑d

i=1 cixi − (S − 1)(m/2)
]

mod m =
[∑d

i=1 cixi − S′(m/2)− nm
]

mod m

=
[∑d

i=1 cixi − S′(m/2)
]

mod m

Recall that S′ = b
∑d
i=1 cixi/(m/2)c hence

∑d
i=1 cixi − S′(m/2) < m/2 and therefore

~x ∈
q∑d

i=1 cixi − (S − 1)(m/2) ≤ m/2− 1
y
BV. But again∑d

i=1 cixi < (b(
∑d
i=1 cixi)/(m/2)c+ 1)(m/2)

= (S′ + 1)(m/2)
≤ S(m/2).

Thus
∑d
i=1 cixi ≤ S(m/2) − 1. By first inclusion of Corollary 4.3 with L = S and

Proposition 4.5, ~x ∈
q
boxBV(~c;S · (m/2)− 1)

y
BV. Hence ~x ∈

q
φ1

y
BV.

• Suppose S = S′. Since
∑d
i=1 cixi − S(m/2) =

∑d
i=1 cixi − S′(m/2) = (

∑d
i=1 cixi) mod

(m/2), it follows
∑d
i=1 cixi − S(m/2) ≤ b mod (m/2) < m.

Hence ~x ∈
q∑d

i=1 cixi − S(m/2) ≤ b mod (m/2)
y
BV. By first inclusion of Collorary 4.3

with L = bb/(m/2)c + 1 and Proposition 4.5, ~x ∈ boxBV(~c; b) from which it follows
~x ∈

q
φ2

y
BV.

These three cases prove that ~x ∈ RHS. For the other direction, let ~x ∈ RHS.

• Suppose ~x ∈
q
φ0

y
BV. By Proposition 4.5, ~x ∈

q
boxLIA(~c; (S − 1) · (m/2)− 1)

y
LIA. By

the second inclusion of collorary 4.3 with L = S − 1 it follows

d∑
i=1

cixi ≤ S · (m/2)− 1 = bb/(m/2)c · (m/2)− 1 ≤ b

• Suppose ~x ∈
q
φ1

y
BV. By Proposition 4.5, ~x ∈

q
boxLIA(~c;S · (m/2)− 1)

y
LIA and∑d

i=1 cixi ≤ (S + 1) · (m/2) − 1 by the second inclusion of Corollary 4.3 with L = S.
Because ~x ∈

q∑d
i=1 cixi − (S − 1)(m/2) ≤ m/2− 1

y
BV there exists n ∈ Z such that

0 ≤
d∑
i=1

cixi − (S − 1)(m/2)−mn ≤ m/2− 1

85

hence

(S + 2n− 1)(m/2) ≤
d∑
i=1

cixi ≤ (S + 2n)(m/2)− 1

By combining inequalities (S + 2n− 1)(m/2) ≤
∑d
i=1 cixi ≤ (S + 1) · (m/2)− 1 hence

(2n− 1)(m/2) < m/2 from which it follows that n ≤ 0. Therefore

d∑
i=1

cixi ≤ S · (m/2)− 1 = bb/(m/2)c · (m/2)− 1 ≤ b.

• Suppose ~x ∈
q
φ2

y
BV. By Proposition 4.5 it follows ~x ∈

q
boxLIA(~c; b)

y
LIA. Since b <

(S + 1)(m/2),
∑d
i=1 cixi ≤ (S + 2)(m/2) − 1 by the second inclusion of Collorary 4.3

with L = S + 1. Since ~x ∈
q∑d

i=1 cixi − S(m/2) ≤ b mod (m/2)
y
BV there exists n ∈ Z

such that

0 ≤
d∑
i=1

cixi − S(m/2)−mn < b mod (m/2)

hence

(S + 2n)(m/2) ≤
d∑
i=1

cixi ≤ b mod (m/2) + (S + 2n)(m/2)

By combining inequalities (S+2n)(m/2) ≤
∑d
i=1 cixi ≤ (S+2)(m/2)−1 hence nm < m

from which it follows n ≤ 0 hence

d∑
i=1

cixi ≤ b mod (m/2) + S · (m/2)

But b mod (m/2) + S · (m/2) = b mod (m/2) + bb/(m/2)c · (m/2) = b therefore∑d
i=1 cixi ≤ b.

These three cases prove that ~x ∈ LHS. �

Corollary 4.13 (boxing and gapping with simplification). If bb/(m/2)c = 1 or b mod m =
m/2− 1 then

q∑d
i=1 cixi ≤ b

y
LIA =

q
φ1 ∨ φ2

y
BV.

Proof. Let S = bb/(m/2)c.

• Suppose S = 1. Then (S − 1) · (m/2) − 1 < 0, L ≤ 0 thus Id((d − 1)(L + 1)) = ∅ and
q
φ0

y
BV = ∅ hence

q
φ0 ∨ φ1 ∨ φ2

y
BV =

q
φ1 ∨ φ2

y
BV.

• Suppose S ≥ 2. By theorem 4.12
q∑d

i=1 cixi ≤ b
y
LIA =

q
φ0 ∨ φ1 ∨ φ2

y
BV. Now consider

φ2 =
(

d∑
i=1

cixi − S(m/2) ≤ b mod (m/2)
)
∧ boxBV(~c; b)

86

(a) 7x+ 3y ≤ 17 (b) φ0 = 7x+ 3y − 8 ≤ 3 ∧ boxBV(~c; 11)

(c) φ1 = 7x+ 3y − 12 ≤ 3 ∧ boxBV(~c; 15) (d) φ2 = 7x+ 3y − 16 ≤ 1 ∧ boxBV(~c; 17)

Figure 4.3: Gapping and boxing for 7x+ 3y ≤ 17 where ~c = 〈7, 3〉, m = 8 and S = 4

Since b mod m = m/2− 1 it follows b mod (m/2) = m/2− 1. Since S ≥ 2,
∑d
i=1 cixi −

S(m/2) mod m =
∑d
i=1 cixi − (S − 2)(m/2). Therefore

q d∑
i=1

cixi − S(m/2) ≤ b mod (m/2)
y

BV

=
q d∑
i=1

cixi − (S − 2)(m/2) ≤ m/2− 1
y

BV

Since S = bb/(m/2)c, S(m/2) ≤ b hence (S − 1)(m/2) − 1 ≤ S(m/2) ≤ b. By
lemma 4.8

q
boxBV(~c; (S − 1) · (m/2)− 1)

y
LIA ⊆

q
boxBV(~c; b)

y
LIA and by proposition 4.5

q
boxBV(~c; (S − 1) · (m/2)− 1)

y
BV ⊆

q
boxBV(~c; b)

y
BV. Thus

q
φ0

y
BV ⊆

q
φ2

y
BV hence

q
φ0 ∨ φ1 ∨ φ2

y
BV =

q
φ1 ∨ φ2

y
BV

�

Example 4.14. Let m = 8 and consider again x + 2y ≤ 5 so that ~c = 〈1, 2〉. Then S =
b5/4c = 1 and, applying corollary 4.13,

q
x+ 2y ≤ 5

y
LIA =

q
φ1 ∨ φ2

y
BV where

φ1 ≡ (x+ 2y − 0 · 4 ≤ 4− 1) ∧ boxBV(~c; 1 · 4− 1) = ϕ1
φ2 ≡ (x+ 2y − 1 · 4 ≤ 5 mod 4) ∧ boxBV(~c; 5) = ϕ2

aligning with the intuition given in Example 4.11.

Example 4.15. Figure 4.3 illustrates Theorem 4.12 for 7x + 3y ≤ 17 and m = 8. Then

87

S = b17/(8/2)c = 4 and
q
7x+ 3y ≤ 17

y
LIA =

q
φ0 ∨ φ1 ∨ φ2

y
BV where

φ0 = 7x+ 3y− 8 ≤ 3 ∧ boxBV(~c; 11)
φ1 = 7x+ 3y− 12 ≤ 3 ∧ boxBV(~c; 15)
φ2 = 7x+ 3y− 16 ≤ 1 ∧ boxBV(~c; 17)

The boxBV(~c; 11),boxBV(~c, 15),boxBV(~c; 17) formulae are again depicted in grey. For example,

boxBV(~c; 11) = (x ≤ 0 ∧ y ≤ 3) ∨ (x ≤ 1 ∧ y ≤ 2) ∨ (x ≤ 1 ∧ y ≤ 1)

because d = 2, L = 3 and I2((d− 1)(L+ 1)) = {〈1, 3〉, 〈2, 2〉, 〈3, 1〉}. From Figure 4.3 observe
q
7x+ 3y ≤ 17

y
LIA =

q
φ0

y
BV ∪

q
φ1

y
BV ∪

q
φ2

y
BV.

Example 4.16. Consider again example 4.14 where S = 1. Then φ0 = false because
boxBV(~c; (S − 1)(m/2) − 1) = boxBV(~c;−1) = false. This is because L = 0 and Id((d −
1)(L+1)) = I2(1) = ∅. Theorem 4.12 then gives

q
x+ 2y ≤ 5

y
LIA =

q
φ1 ∨ φ2

y
BV which squares

with Corollary 4.13.

4.3.3 Boxing, Gapping and Flipping

In order to apply the boxing and gapping above to linear inequalities with negative co-
efficients, we introduce a new technique called flipping. Flipping is defined for inequalities
syntactically and semantically, and they are compatible in a compatible manner. The idea to
apply boxing and gapping for general inequalities is to (1) apply flipping to the target linear
inequality so that the signs of negative coefficients are inverted, (2) apply boxing and gapping
to the inequality made by (1), and (3) apply the same flipping as (1) to the result of (2). To
detail the transformation, we assume without loss of generality, that an inequality takes the
syntactic form ~c+ · ~x+ + ~c− · ~x− ≤ b where ~c+ > ~0 and ~c− < ~0. Hence ~x = ~x+ ◦ ~x− where
◦ denotes vector concatenation. The act of flipping reflects the solutions of the inequality si-
multaneously around the axes x−1 = (m− 1)/2, . . . , x−e = (m− 1)/2 where ~x− = 〈x−1 , . . . , x−e 〉
and e is the dimension of x−. We define the semantic flipping first:

Definition 4.17 (semantic flipping). Given e ∈ {1, . . . , d}, then the (semantic) flipping func-
tion Fe : Md →Md is defined:

Fe(〈x+
1 , . . . , x

+
d−e, x

−
1 , . . . , x

−
e 〉) = 〈x+

1 , . . . , x
+
d−e,m− 1− x−1 , . . . ,m− 1− x−e 〉.

Next, we define the syntactic flipping:

Definition 4.18. Given a partition of ~x into the sub-vectors ~x+ = 〈x+
1 , . . . , x

+
d−e〉 and ~x− =

88

〈x−1 , . . . , x−e 〉, then the (syntactic) flipping function F~x− is defined:

F~x−(~c+ · ~x+ + ~c− · ~x− ≤ b) = ~c+ · ~x+ − ~c− · ~x− + (m− 1)(~c− ·~1) ≤ b
F~x−(f1 ∨ f2) = F~x−(f1) ∨ F~x−(f2)
F~x−(f1 ∧ f2) = F~x−(f1) ∧ F~x−(f2)

F~x−(¬f) = ¬F~x−(f)

The semantic flipping and syntactic flipping are compatible in LIA and BV:

Proposition 4.19. If |~x−| = e then

•
q
F~x−(f)

y
LIA = Fe(

q
f
y
LIA)

•
q
F~x−(f)

y
BV = Fe(

q
f
y
BV)

We prepares one lemma to prove the proposition.

Lemma 4.20. If X,Y ⊆Md then Fe(X) \ Fe(Y) = Fe(X \ Y)

Proof for lemma 4.20. Observe ~x ∈ Fe(X) \ Fe(Y) if and only if F−1
e (~x) ∈ X \ Y if and only

if ~x ∈ Fe(X \ Y). �

Proof for proposition 4.19. Structural induction on the formula f is used to show
q
F~x−(f)

y
LIA = Fe(

q
f
y
LIA).

• Suppose f = ~c+ · ~x+ + ~c− · ~x− ≤ b. Let ~x ∈
q
f
y
LIA, ~x = ~x+ ◦ ~x− and ~y = Fe(~x+ ◦ ~x−).

Put ~y = ~y+ ◦ ~y− where ~y+ = ~x+ and ~y− = (m− 1)~1− ~x−. Observe

~c+ · ~x+ + ~c− · ~x− = ~c+ · ~x+ + ~c− · ~x− − ~c− · (m− 1)~1 + (m− 1)(~c− ·~1)
= ~c+ · ~x+ − ~c− · ((m− 1)~1− ~x−) + (m− 1)(~c− ·~1)
= ~c+ · ~y+ − ~c− · ~y− + (m− 1)(~c− ·~1)

Therefore ~y ∈
q
F~x−(f)

y
LIA.

• Suppose f = f1 ∨ f2. By induction
q
F~x−(f1)

y
LIA = Fe(

q
f1

y
LIA) and likewise

q
F~x−(f1)

y
LIA = Fe(

q
f1

y
LIA). Therefore

q
F~x−(f)

y
LIA =

q
F~x−(f1)

y
LIA ∪

q
F~x−(f2)

y
LIA

= Fe(
q
f1

y
LIA) ∪ Fe(

q
f2

y
LIA)

= Fe(f)

• Suppose f = f1 ∧ f2. Analogous to the previous case.

89

• Suppose f = ¬f ′. By lemma 4.20 it follows
q
F~x−(f)

y
LIA =

q
¬F~x−(f ′)

y
LIA

= Md \
q
F~x−(f ′)

y
LIA

= Md \ Fe(
q
f ′

y
LIA)

= Fe(Md) \ Fe(
q
f ′

y
LIA)

= Fe(Md \
q
f ′

y
LIA)

= Fe(
q
¬f ′

y
LIA)

= Fe(
q
f
y
LIA)

The
q
F~x−(f)

y
BV = Fe(

q
f
y
BV) case is analogous. �

The following corollary shows the boxing and gapping with flipping.

Corollary 4.21. Suppose ~c+ > ~0, ~c− < ~0 and
q
~c+ · ~x+ − ~c− · ~x− ≤ b+ (1−m)(~c− ·~1)

y
LIA =

q
φ0 ∨ φ1 ∨ φ2

y
BV

Then
q
~c+ · ~x+ + ~c− · ~x− ≤ b

y
LIA =

q
F~x−(φ0) ∨ F~x−(φ1) ∨ F~x−(φ2)

y
BV

Proof. Suppose
q
~c+ · ~x+ − ~c− · ~x− ≤ b+ (1−m)(~c− ·~1)

y
LIA =

q
φ0 ∨ φ1 ∨ φ2

y
BV

Then
q
~c+ · ~x+ + ~c− · ~x− ≤ b

y
LIA = Fe(Fe(

q
~c+ · ~x+ + ~c− · ~x− ≤ b)

y
LIA))

= Fe(
q
F~x−(~c+ · ~x+ + ~c− · ~x− ≤ b)

y
LIA)

= Fe(
q
~c+ · ~x+ − ~c− · ~x− + (m− 1)(~c− ·~1) ≤ b

y
LIA)

= Fe(
q
~c+ · ~x+ − ~c− · ~x− ≤ b+ (1−m)(~c− ·~1)

y
LIA)

= Fe(
q
φ0 ∨ φ1 ∨ φ2

y
BV)

=
q
F~x−(φ0 ∨ φ1 ∨ φ2)

y
BV

=
q
F~x−(φ0) ∨ F~x−(φ1) ∨ F~x−(φ2)

y
BV

�

Example 4.22. Consider φ = 7x − 3y ≤ −4 which is illustrated in Figure 4.4(a).
Then ~x+ = 〈x〉, ~x− = 〈y〉 and F~x−(φ) = F〈y〉(φ) = 7x + 3y − 21 ≤ −4. Fig-
ure 4.3(a) shows

q
7x+ 3y − 21 ≤ −4

y
LIA =

q
7x+ 3y ≤ 17

y
LIA and so building on

example 4.15
q
7x+ 3y ≤ 17

y
LIA =

q
φ0 ∨ φ1 ∨ φ2

y
BV. By corollary 4.21 it follows

q
φ
y
LIA =

q
F〈y〉(φ0) ∨ F〈y〉(φ1) ∨ F〈y〉(φ2)

y
BV where F〈y〉(φ0), F〈y〉(φ1) and F〈y〉(φ2) are

given in Figure 4.4(b), (c) and (d) respectively. Finally, to illustrate the handling of boxing,
recall boxBV(~c; 11) from example 4.15 and

boxBV(~c; 11) = (x ≤ 0 ∧ y ≤ 3)
∨ (x ≤ 1 ∧ y ≤ 2)
∨ (x ≤ 1 ∧ y ≤ 1)

F〈y〉(boxBV(~c; 11)) = (x ≤ 0 ∧ (−y + 7 ≤ 3))
∨ (x ≤ 1 ∧ (−y + 7 ≤ 2))
∨ (x ≤ 1 ∧ (−y + 7 ≤ 1))

90

(a)
q
φ
y
LIA (b)

F〈y〉(φ0) = 7x− 3y + 13 ≤ 3
∧ F〈y〉(boxBV(~c; 11))

(c)
F〈y〉(φ1) = 7x− 3y − 9 ≤ 3

∧ F〈y〉(boxBV(~c; 15))
(d)

F〈y〉(φ2) = 7x− 3y + 5 ≤ 1
∧ F〈y〉(boxBV(~c; 17))

Figure 4.4: Flipping φ = 7x− 3y ≤ −4 where m = 8, ~x = 〈x, y〉, ~x+ = 〈x〉 and ~x− = 〈y〉

Finally observe
q
x ≤ 0 ∧ (−y + 7 ≤ 3)

y
LIA = {(0, y) ∈M2 | 4 ≤ y ≤ 7}q

x ≤ 1 ∧ (−y + 7 ≤ 2)
y
LIA = {(x, y) ∈M2 | 0 ≤ x ≤ 1 ∧ 5 ≤ y ≤ 7}

and that the disjunct (x ≤ 1 ∧ (−y + 7 ≤ 1)) is actually redundant.

4.3.4 Boxing, Gapping, Flipping and Demoding

In this section, we discuss how to translate back an LIA interpolant including the floor
function into a BV interpolant. Griggio reported that formulae including the floor function
like −x2 + x3 − 256b−x2/256c ≤ 255 occurs while computing LIA interpolants, and it is an
obstacle to get a BV interpolant [52, Example 5]. As the technique of LIA interpolation can
return formulae of the form ~c · ~x + n′b~c′ · ~x/nc ≤ b [28] or ~c · ~x + n′d~c′ · ~x/ne ≤ b [53], this
obstacle is inevitable.
We experimentally observe that the divisors are the powers of two and the formulae are of

91

the form ~c · ~x + n′2nb~c′ · ~x/2nc ≤ b, which is due to the wrap-around of the BV theory, and
we propose a method of translating back such formulae. In this assumption, we can use the
property (~c · ~x mod 2n) mod m = ~c · ~x mod 2n for n ≤ w.
First we define the semantics for the formulae including the floor function:

Definition 4.23. If ` ≡ ~c · ~x+ n′b~c′ · ~x/2nc ≤ b then
q
`
y
LIA = { ~x ∈Md|~c · ~x+ n′b~c′ · ~x/2nc ≤ b }

q
`
y
BV = { ~x ∈Md|(~c · ~x+ n′b~c′ · ~x/2nc) mod m ≤ b mod m }

The following proposition gives the technique to translate back the formulae into the BV
theory. The idea is (1) to rewrite the floor function with mod and transform the formulae so
that it is supported by the BV theory, and (2) to replace the term including mod with a fresh
variable y, translate the formula into a linear inequality with variables ~x, y.

Proposition 4.24. Suppose 0 ≤ n ≤ w and
q
(~c+ n′~c′) · ~x− n′y ≤ b

y
LIA =

q
φ
y
BV. If y does

not occur in ~x then
q
~c · ~x+ n′2nb~c′ · ~x/2nc ≤ b

y
LIA =

q
φ[y 7→ ~c′ · ~x mod 2n]

y
BV

Proof. Suppose
q
(~c+ n′~c′) · ~x− n′y ≤ b

y
LIA =

q
φ
y
BV and that y does not occur in ~x. Then

~x ∈
q
~c · ~x+ n′2nb~c′ · ~x/2nc

y
LIA iff

~c · ~x+ n′2nb~c′ · ~x/2nc ≤ b iff
~c · ~x+ n′(~c′ · ~x− (~c′ · ~x mod 2n)) ≤ b iff
∃y.(~c+ n′~c′) · ~x− n′y ≤ b ∧ y = ~c′ · ~x mod 2n iff
∃y.~x · y ∈

q
(~c+ n′~c′) · ~x− n′y ≤ b

y
LIA ∧ y = ~c′ · ~x mod 2n iff

∃y.~x · y ∈
q
φ
y
BV ∧ y = ~c′ · ~x mod 2n iff

~x ∈
q
φ[y 7→ ~c′ · ~x mod 2n]

y
BV

�

Inequalities such as ~c · ~x + n′2nd~c′ · ~x/2ne ≤ b can be handled similarly. For completeness,
we note that expansion can be applied for general inequalities including mod by the naive
expansion, though it is not sufficient:

Proposition 4.25. Suppose n > 0. Then

q
~c · ~x+ n′b~c′ · ~x/nc ≤ b

y
LIA =

q u∨
i=`

(~c · ~x ≤ b− n′i ∧ ni ≤ ~c′ · ~x ≤ ni− 1)
y

LIA

where ` = min{b~c′ · ~x/nc | ~x ∈Md} and u = max{b~c′ · ~x/nc | ~x ∈Md}.

92

Table 4.2: Comparison of the theories: performance and correctness

Theory Safety Solved Time (seconds) Size (inequalities)

LIA
safe 165 15.1 440

unsafe 41 9.0 392
(total) 206 13.9 431

BV
(naive)

safe 87 30.1 32583
unsafe 57 24.2 49138
(total) 144 27.8 39136

BV
(boxing)

safe 99 20.0 6938
unsafe 66 20.1 15246
(total) 165 20.0 10261

LIA
safe unsafe

BV safe 90 1
unsafe 17 34

4.4 Experiments
To evaluate the performance of boxing we implemented a model checker based on the lazy

abstraction (IMPACT) [89] algorithm. The model checker is implemented in Python 3.7.2
and uses MathSAT5 [28] for satisfiability checking and interpolation over the LIA. The model
checker parses a subset of the C language, but is rich enough to handle 312 benchmarks drawn
from [8,43]. The model checker was instantiated with: (1) the LIA interpolation [53]; (2) the
BV interpolation by covering the solutions of an LIA interpolate with columns (recall f2 of
section 4.2); and (3) the BV interpolation by covering the solutions of an LIA interpolate using
boxing, gapping and flipping. Experiments were performed using an Amazon Web Service EC2
c3.xlarge cloud architecture of 14 EC2 Computing Units [120] each equipped with 4 cores and
7.5 GB of RAM. The timeout for each run of IMPACT was set to 600 seconds.
Arithmetic is idealized in configuration (1) taking no account of integer overflow and under-

flow. This is not, in general, safe. In configurations (2) and (3) the model checker interprets
machine arithmetic and bit operations using the LIA encoding of BV operations outlined
in [52, Fig 1]. This is safe but complicates the LIA formulae, often substantially. One would
expect this to enlarge the interpolants, even before boxing and gapping are deployed. We
would also expect (1) to be substantially faster than (2) and (3). Due to differences in the
semantics of arithmetic, we might also see differences in the number of programs proved to
be safe or found to be unsafe. The experiments quantify these predictions. To discuss the
experiments, (2) will be referred to as the naive encoding, even though it improves on complete
enumeration (recall f1 of section 4.2).

93

4.4.1 Overall Result

Table 4.2 summarises the outcomes of running IMPACT on all 312 programs, using the
three different instances of interpolation, categorized as to whether the run proved the safety
(safe rows) or found a counterexample (unsafe rows). The Solved column of the left-hand
table gives the total of the programs that were either shown to be safe or unsafe within 600
seconds. Time is the mean execution of a run (for all those programs which did not timeout).
Size is the mean of total number of atomic constraints in all interpolants encountered over
a run (for those programs which did not timeout). We observe that more programs can be
analyzed to completion with LIA than with BV, as one would expect, but that BV (boxing)
improves on BV (naive), the speedup being significant when proving safety.
The right-hand table compares a terminating run of LIA to a terminating run of BV (box-

ing). For 17 of these 142 runs, LIA (incorrectly) verified the program to be safe whereas BV
found a counter-example. Unexpectedly for trex03_true-unreach-call.i.annot.c from
[43], LIA found a counter-example but BV verified safety. This program contains three inte-
gers, x1, x2 and x3, which can become negative in the idealized arithmetic employed in LIA,
triggering an assertion. But x1, x2 and x3 are actually unsigned.

4.4.2 Runtime for Naive Encoding and Boxing

The scatter plot of Figure 4.5 compares the runtime of the naive encoding against that of
boxing and its allied techniques of gapping and flipping. The scatter plot excludes timeouts
and depicts 151 pairs of runs. Almost all points are under the dotted line, indicating the
boxing significantly improves performance. The line graph plots the ratio of the execution
times, from which we observe that boxing does not accelerate the verification for almost half
of the runs, but does speed it up between 2- and 256-fold for the other half.

4.4.3 Interpolant Size for Naive Encoding and Boxing

The line graph on Figure 4.6 compares the relative size of interpolants for boxing versus the
naive encoding. Size is the sum of the sizes of all the interpolants generated during a run,
where the size of an interpolant is itself defined as the number of atomic constraints that occur
within it. We observe that the size ratio is around one for most problems, but a second peak
occurs at 1/32, giving an overall size reduction. The scatter plot explores how interpolant
size correlates with runtime, showing how the relative size of interpolants varies with relative
runtimes. We observe that reducing the size of interpolants improves runtime, and that two

94

0 100 200 300 400 500 600
Time to verify (naive encoding) [s]

0

100

200

300

400

500

600
Ti

m
e

to
 v

er
ify

 (b
ox

in
g)

 [s
]

x1
/2 x1 x2 x4 x8 x1
6

x3
2

x6
4

x1
28

x2
56

Runtimes of BV with boxing relative to BV with naive encoding

0

20

40

60

80

100

Nu
m

be
r o

f t
ar

ge
t p

ro
gr

am
s

Figure 4.5: Runtime of boxing versus naive: scatter plot and ratio plot

x1
/1

02
4

x1
/5

12

x1
/2

56

x1
/1

28

x1
/6

4

x1
/3

2

x1
/1

6

x1
/8

x1
/4

x1
/2 x1 x2 x4 x8 x1
6

Total size of interpolants of BV with boxing relative to BV with naive encoding

0

10

20

30

40

50

60

70

Nu
m

be
r o

f t
ar

ge
t p

ro
gr

am
s

10 4 10 2 100 102

Total size of interpolants of BV
 with boxing relative to BV with naive encoding

10 3

10 2

10 1

100

101

Ru
nt

im
e

of
 in

te
rp

ol
an

ts
 o

f B
V

 w
ith

 b
ox

in
g

re
la

tiv
e

to
 B

V
wi

th
 n

ai
ve

 e
nc

od
in

g

Figure 4.6: Size of interpolants in boxing versus naive and its impact on performance

peaks of the line graph manifesting themselves as two clusters of points in the scatter plot.

4.5 Conclusions
To repurpose efficient LIA interpolation engines to BV, we have shown how to systematically

construct a BV formula so that its solutions are exactly those of an LIA interpolant. Since
an LIA interpolant summarises the reason for a conflict between two LIA formulae, we seek
to retain its compact structure by introducing no more than simple boxes around the LIA
solutions which block extraneous BV solutions. When this encoding tactic, called boxing, is not
applicable, gapping is used to decompose an LIA inequality into two or more inequalities which
are amenable to boxing. We show how the size of the resulting BV interpolants are smaller
than BV interpolants constructed by merely partitioning the LIA solutions into columns, and
demonstrate how boxing and gapping improves the runtime of an interpolation-based model
checker. We instantiate a model checker with LIA and BV to compare their performance,
and conclude that with this encoding BV interpolation is feasible. Because of wrap-arounds,

95

the BV theory is substantially more complicated than the LIA for interpolation, yet the BV
theory is no more than twice as slow as the LIA for over half the benchmarks. Furthermore,
the resulting BV interpolants can be validated, independently of the LIA, just using a BV
solver.

4.6 Future Work
Griggio originally proposed a multi-layered interpolation, which combines multiple methods

to compute interpolants in the BV theory. The method using interpolation in the LIA theory
was one layer of Griggio’s work, and our work’s aim was to improve this layer. Measuring
the end-to-end performance of the multi-layered interpolation combined with our work, and
investigating the effect of our work in total would be interesting.

96

Chapter 5

Weighted Automata Extraction from
Recurrent Neural Networks via
Regression on State Spaces

This chapter is based on joint work [103] with Masaki Waga, Taro Sekiyama, and Ichiro
Hasuo.

5.1 Introduction

5.1.1 Background

Deep neural networks (DNNs) have been successfully applied to domains such as text,
speech, and image processing. Recurrent neural networks (RNNs) [27, 62] is a class of DNNs
equipped with the capability of processing sequential data of variable length. The great success
of RNNs has been seen in machine translation [125], speech recognition [140], and anomaly
detection [86,136].
While it has been experimentally shown that RNNs are a powerful tool to process, predict,

and model sequential data, there are known drawbacks in RNNs such as interpretability and
costly inference. A research line that attacks this challenge is automata extraction [104, 134].
Focusing on RNNs’ use as acceptors (i.e., receiving an input sequence and producing a single
Boolean output), these pieces of works extract a finite-state automaton from an RNN as a
succinct and interpretable surrogate. Automata extraction exposes internal transition between
the states of an RNN in the form of an automaton, which is then amenable to algorithmic
analyses such as reachability and model checking [9]. Automata extraction can also be seen
as model compression: finite-state automata are usually more compact, and cheaper to run,

97

than neural networks.

5.1.2 Extracting WFAs from RNNs

Most of the existing automata extraction techniques target Boolean-output RNNs, which
however excludes many applications. In sentiment analysis, it is desired to know the quan-
titative strength of sentiment, besides its (Boolean) existence [25]. RNNs with real values as
their outputs are also useful in classification tasks. For example, predicting class probabilities
is a key in some approaches to semi-supervised learning [139] and ensemble [19].
This motivates extraction of quantitative finite-state machines as abstraction of RNNs. We

find the formalism of weighted finite automata (WFAs) suited for this purpose. A WFA is a
finite-state machine—much like a deterministic finite automaton (DFA)—but its transitions
as well as acceptance values are real numbers (instead of Booleans).

5.1.3 Contribution: Regression-Based WFA Extraction from RNNs

Our main contribution is a procedure that takes a (real-output) RNN R, and returns a
WFA AR that abstracts R. The procedure is based on the WFA learning algorithm in [12],
that is in turn based on the famous L∗ algorithm for learning DFAs [6]. These algorithms
learn automata by a series of so-called membership queries and equivalence queries. In our
procedure, a membership query is implemented by an inference of the given RNN R. We
iterate membership queries and use their results to construct a WFA A.
The role of equivalence queries is to say when to stop this iteration: it asks if A and R

are “equivalent,” that is, if the WFA A obtained so far is comprehensive enough to cover all
the possible behaviors of R. This is not possible in general—RNNs are more expressive than
WFAs—therefore we inevitably resort to an approximate method. Our technical novelty lies
in the method for answering equivalence queries; notably it uses a regression method—e.g., the
Gaussian process regression (GPR) and the kernel ridge regression (KRR)—for abstraction of
the state space of R.
We conducted experiments to evaluate the effectiveness of our approach. In particular, we

are concerned with the following questions: 1) how similar the behavior of the extracted WFA
AR, and that of the original RNN R, are; 2) how applicable our method is to an RNN that
is a more expressive model than WFAs; and 3) how efficient the inference of the WFA AR

is, when compared with the inference of R. The experiments we designed for the questions
1) and 3) are with RNNs trained using randomly generated WFAs. The results show, on
the question 1), that the WFAs extracted by our method approximate the original RNNs

98

accurately. This is especially so when compared with a baseline algorithm (a straightforward
adaptation of [12]). On the question 3), the inference of the extracted WFAs are about 1300
times faster than that of the original RNNs. On the question 2), we devised an RNN that
models a weighted variant of a (non-regular) language of balanced parentheses. Although this
weighted language is beyond WFAs’ expressivity, we found that our method extracts WFAs
that successfully approximate the RNN up-to a certain depth bound.
The chapter is organized as follows. Angluin’s L∗ algorithm and its weighted adaptation are

recalled in Section 5.2. Our WFA extraction procedure is described in Section 5.3 focusing on
our novelty, namely the regression-based procedure for answering equivalence queries. Com-
parison with the DFA extraction by [134] is given there, too. In Section 5.4 we discuss our
experiment results.

5.1.4 Potential Applications

Amajor potential application of WFA extraction is to analyze an RNNR via its interpretable
surrogate AR. The theory of WFAs offers a number of analysis methods, such as bisimulation
metric [11]—a distance notion between WFAs—that will allow us to tell how apart two RNNs
are.
Another major potential application is as “a poor man’s RNN R.” While RNN inference

is recognized to be rather expensive (especially for edge devices), simpler models by WFAs
should be cheaper to run. Indeed, our experimental results show (Section refsec:implExpr)
that WFA inference is about 1300 times faster than inference of original RNNs.
Since WFAs are defined over a finite alphabet, we restrict to RNNs R that take sequences

over a finite alphabet. This restriction should not severely limit the applicability of our
method. Indeed, such RNNs (over a finite alphabet) have successfully applications in many
domains, including intrusion prediction [86], malware detection [136], and DNA-protein bind-
ing prediction [122]. Moreover, even if inputs are real numbers, quantization is commonly
employed without losing a lot of precision. See [54] for example.

5.1.5 Related Work

The relationship between RNNs and automata has been studied in both non-quantitative
[93,104,134,135] and quantitative [7,113] settings. Some of them feature automata extraction
from RNNs; we shall now discuss recent ones among them.
The work by [134] is a pioneer in automata extraction from RNNs. They extract DFAs

from RNNs, using a variation of L∗algorithm, much like this work. We provide a systematic

99

comparison in Section 5.3.3, identifying some notable similarities and differences.
[7] extract a WFA from a black-box sequence acceptor whose example is an RNN. Their

method does not use equivalence queries; in contrast, we exploit the internal state space of an
RNN to approximately answer equivalence queries.
DeepStellar [46] extracts Markov chains from RNNs, and uses them for coverage-based test-

ing and adversarial sample detection. Their extraction, differently from our L∗-like method,
uses profiling from the training data and discrete abstraction of the state space.

[133] propose a new RNN architecture that makes it easier to extract a DFA from a trained
model. To apply their method, one has to modify the structure of an RNN before training,
while our method does not need any special structure to RNNs and can be applied to already
trained RNNs.

[119] introduce a neural network architecture that can represent (restricted forms of) CNNs
and RNNs. WFAs could also be expressed by their architecture, but extraction of automata
is out of their interest.
A major approach to optimizing neural networks is by compression: model pruning [57],

quantization [54], and distillation [21]. Combination and comparison with these techniques is
an interesting future work.

5.1.6 Organization of the Chapter

In Section 5.2, we introduce some preliminary definitions. In Section 5.3, we propose our
algorithm and discuss the details. In Section 5.4, we give some research questions and the
experimental result. Section 5.5 concludes the chapter, and in Section 5.6 we discuss the
future work.

5.2 Preliminaries
We fix a finite alphabet Σ. The set of (finite-length) words over Σ is Σ∗. The empty word

(of length 0) is denoted by ε. The length of a word w ∈ Σ∗ is denoted by |w|.
We recall basic notions on WFAs. See [45] for details.

Definition 5.1 (WFA). A weighted finite automaton (WFA) over Σ is a quadruple A =(
QA, αA, βA, (Aσ)σ∈Σ). Here QA is a finite set of states; αA, βA are row vectors of size |QA|
called the initial and final vectors; and Aσ is a transition matrix of σ, given for each σ ∈ Σ.
For each σ ∈ Σ, Aσ is a matrix of size |QA| × |QA|.

Definition 5.2 (configuration of a WFA). Let A be the WFA in Definition 5.1. A configu-

100

ration of A is a row vector x ∈ RQA . For a word w = σ1σ2 . . . σn ∈ Σ∗ (where σi ∈ Σ), the
configuration of A at w is defined by δA(w) = α>A ·

(∏n
i=1Aσi

)
.

Obviously δA(w) ∈ RQA is a row vector of size |QA|; it records the weight at each state
q ∈ QA after reading w.

Definition 5.3 (weight fA(w) of a word in a WFA). Let a WFA A and a word w = σ1 . . . σn

be as in Definition 5.2. The weight of w in A is given by fA(w) = α>A ·
(∏n

i=1Aσi

)
· βA,

multiplying the final vector to the configuration at w.

Example 5.4. Let Σ = {a, b}, QA = {q1, q2, q3}, αA = (1 2 3)>, βA = (0 −1 1)>, Aa =
1 2 −1
3 0 0
0 4 0

, and Ab =


−1 1 0
0 3 0
−2 4 0

. For the WFA A = (QA, αA, βA, (Aσ)σ∈Σ) over

Σ, and w = ba, the configuration δA(w) and the weight fA(w) are as follows.

δA(w) = α>AAbAa

=
(
1 2 3

)−1 1 0
0 3 0
−2 4 0

1 2 −1
3 0 0
0 4 0


=
(
50 −14 7

)
fA(w) = α>AAbAaβA

=
(
1 2 3

)−1 1 0
0 3 0
−2 4 0

1 2 −1
3 0 0
0 4 0

 0
−1
1


= 21

Figure 5.1 illustrates the WFA A = (QA, αA, βA, (Aσ)σ∈Σ), where the transitions with weight
0 are omitted.

Definition 5.5 (DFA). A DFA is defined much like in Definition 5.1, except that 1) the
entries of matrices are tt and ff; 2) we replace the use of +,× with ∨,∧, respectively; and
3) we impose determinacy, that exactly one entry is tt in each row of Aσ, and that only one
entry is tt in the initial vector αA.
The definitions of δA and fA in Definition 5.2–5.3 adapt to DFAs. For w ∈ Σ∗, the config-

uration vector δA(w) ∈ {tt, ff}QA has exactly one tt; the state q whose entry is tt is called
the w-successor of A. w is accepted by A if fA(w) = tt.

101

q1/1/0

q2/2/− 1 q3/3/1

a, 1b,−1

a, 2
b, 1

a,−1a, 3

b, 3

b,−2

a, 4

b, 4

Figure 5.1: An illustration of WFA A in Example 5.4. In a state label “q/m/n”, q is a state
name and m and n are the initial and final values at q’s, respectively. In the label “σ, p” of
the transition from qi to qj , p is Aσ[i, j], where σ ∈ Σ and Aσ[i, j] is the entry of Aσ at row i

and column j.

5.2.1 Recurrent Neural Networks

Our view of a recurrent neural network (RNN) is almost a black-box. We need only the
following two operations: feeding an input word w ∈ Σ∗ and observing its output (a real
number); and additionally, observing the internal state (a vector) after feeding a word. This
allows us to model RNNs in the following abstract way.

Definition 5.6 (RNN). Let d ∈ N be a natural number called a dimension. A (real-valued)
RNN is a triple R = (αR, βR, gR), where αR ∈ Rd is an initial state, βR : Rd → R is an
output function, and gR : Rd ×Σ→ Rd is called a transition function. The set Rd is called a
state space.

Definition 5.7 (RNN configuration δR(w), output fR(w)). Let R be the RNN in Definition
5.6. The transition function gR naturally extends to words as follows: g∗R : Rd × Σ∗ → Rd,
defined inductively by g∗R(x, ε) = x and g∗R(x,wσ) = gR

(
g∗R(x,w), σ

)
, where w ∈ Σ∗ and

σ ∈ Σ.
The configuration δR(w) of the RNN R at a word w is defined by δR(w) = g∗R(αR, w). The

output fR(w) ∈ R, of R for the input w, is defined by fR(w) = βR
(
δR(w)

)
.

5.2.2 Angluin’s L∗ Algorithm

Angluin’s L∗-algorithm learns a given DFA B by a series of membership and equivalence
queries. We sketch the algorithm; see [6] for details. Its outline is in Figure 5.2.

102

membership
query

fB(w) = ?

extend the
table T

equivalence query
AT ∼=? B

(
w, fB(w)

)
T is not closed
⇒ pick new w

T is closed ⇒
T induces a DFA AT

no
⇒ use a counterexample
(w s.t. fAT

(w) 6= fB(w))
as the next w

done
yes

Figure 5.2: An outline of Angluin’s L∗ algorithm. The target DFA is B; a table T gets
gradually extended, yielding a DFA AT when it is closed. See also Figure 5.3a

A\T ε 0 1
ε tt ff ff

0 ff tt ff
...

...
...

...
011 ff tt ff

(a) A table T for DFA learning

A\T ε 0 1
ε 0.5 0 0.5
0 0 1 0
...

...
...

...
001 0.2 0.4 0.4

(b) A table T for WFA learning

Figure 5.3: Observation tables for L∗-style algorithms

A membership query is a black-box observation of the DFA B: it feeds B with a word
w ∈ Σ∗; and obtains fB(w) ∈ {tt, ff}, i.e., whether w is accepted by B.
The core of the algorithm is to construct the observation table T ; see Figure 5.3a. The table

has words as the row and column labels; its entries are either tt or ff. The row labels are
called access words; the column labels are test words. We let A, T stand for the sets of access
and test words. The entry of T at row u ∈ A and column v ∈ T is given by fB(uv)—a value
that we can obtain from a suitable membership query.
Therefore we extend a table T by a series of membership queries. We do so until T becomes

closed; this is the top loop in Figure 5.2. A table T is closed if, for any access word u ∈ A and
σ ∈ Σ, there is an access word u′ ∈ A such that

fB(uσ v) = fB(u′v) for each test word v ∈ T . (5.1)

The closedness condition essentially says that the role of the extended word uσ is already
covered by some existing word u′ ∈ A. The notion of “role” here, formalized in (5.1), is a
restriction of the well-known Myhill–Nerode relation, from all words v ∈ Σ∗ to v ∈ T .

103

A closed table T induces a DFA AT (Figure 5.2), much like in the Myhill–Nerode theo-
rem. We note that the resulting DFA AT is necessarily minimized. The DFA AT under-
goes an equivalence query that asks if AT ∼= B; an equivalence query is answered with a
counterexample—i.e., w ∈ Σ∗ such that fAT

(w) 6= fB(w)—if AT 6∼= B.
The L∗ algorithm is a deterministic learning algorithm (at least in its original form), unlike

many recent learning algorithms that are statistical. The greatest challenge in practical use of
the L∗ algorithm is to answer equivalence queries. When B is a finite automaton that generates
a regular language, there is a complete algorithm for deciding the language equivalence AT ∼=
B. However, if we use a more expressive model in place of a DFA B, checking AT ∼= B

becomes a nontrivial task.

5.2.3 L∗ Algorithm for WFA Learning

The classic L∗ algorithm for learning DFAs has seen a weighted extension [12]: it learns a
WFA B, again via a series of membership and equivalence queries. The overall structure of the
WFA learning algorithm stays the same as in Figure 5.2; here we highlight major differences.
Firstly, the entries of an observation table T are now real numbers, reflecting the fact that

the value fB(uv) for a WFA B is in R instead of in {tt, ff} (see Definition 5.3). An example
of an observation table is given in Figure 5.3b.
Secondly, the notion of closedness is adapted to the weighted (i.e., linear-algebraic)

setting, as follows. A table T is closed if, for any access word u ∈ A and σ ∈ Σ, the
vector

(
fB(uσ v)

)
v∈T ∈ R|T | can be expressed as a linear combination of the vectors in{ (

fB(u′v)
)
v∈T

∣∣u′ ∈ A}. Note that the vector
(
fB(u′v)

)>
v∈T in the latter set is precisely

the row vector in T at row u′.
For example, the table T in Figure 5.3b is obviously closed, since the three row vectors are

linearly independent and thus span the whole R3. The above definition of closedness comes
natural in view of Definition 5.2. For a WFA, a configuration (during its execution) is not a
single state, but a weighted superposition x ∈ RQA of states. The closedness condition asserts
that the role of uσ is covered by a suitable superposition of words u′ ∈ A. The construction of
the WFA AT from a closed table T (see Figure 5.2) reflects this intuition. See [12]. We note
that the resulting AT is minimal, much like in Section 5.2.2.
In the literature [12], an observation table T is presented as a so-called Hankel matrix. This

opens the way to further extensions of the method, such as an approximate learning algorithm
via the singular-value decomposition (SVD).

104

RNN R

Rd: state space =
configuration
space

WFA M

QA : state space
RQA : configuration spaceextract

configuration abstraction by p : Rd → RQA

Figure 5.4: An outline of our WFA extraction

5.3 WFA Extraction from an RNN
We present our main contribution, namely a procedure that extracts a WFA from a given

RNN. After briefly describing its outline (that is the same as Figure 5.2), we focus on the
greatest challenge of answering equivalence queries.

5.3.1 Procedure Outline

Our procedure uses the weighted L∗ algorithm sketched in Section 5.2.3. As we discussed in
Section 5.2.2, the greatest challenge is how to answer equivalence queries; our novel approach
is to use regression and synthesize what we call a configuration abstraction function p : Rd →
RQA . See Figure 5.4.
The outline of our procedure thus stays the same as in Figure 5.2, but we need to take

care about noisy outputs from an RNN because they prevent the observation table from being
precisely closed (in the sense of Section 5.2.3). To resolve this issue, we use a noise-tolerant
algorithm [12] which approximately determines whether the observation table is closed. This
approximate algorithm employs SVD and cuts off singular values that are smaller than a
threshold called rank tolerance. In the choice of a rank tolerance, we face the trade off between
accuracy and regularity. A small rank tolerance results in accurate learning basically but can
cause overfitting for short words and huge error for long words. A large rank tolerance results
in rough learning but prevents such overfitting. To balance the rank tolerance, we start
from a big initial rank tolerance τ , and if it is too big then we decay it by multiplying by
r(0 < r < 1). We know that the rank tolerance is too big if the equivalence query returns
the same counterexample twice because it means the counterexample was ignored. Overall,
we obtain the WFA Extraction procedure (Algorithm 4).

105

Algorithm 4 WFA Extraction
1: Input: Target RNN R, initial rank tolerance τ , decay rate of rank tolerance r(0 < r < 1)
2: result← None

3: result′ ← None

4: observed← { (ε, fR(ε)) }
5: Construct a WFA A by observed

6: loop
7: result′ ← (result of equivalence query for A)
8: insert (result′, fR(result′)) to observed

9: if result = result′ then . The latest counterexample did not work.
10: τ ← rτ . Decrease the rank tolerance τ
11: else
12: Update A by (result′, fR(result′)) with τ . τ is the current rank tolerance.

13: if result = Equivalent then
14: break
15: result← result′

16: return A

5.3.2 Equivalence Queries for WFAs and RNNs

Algorithm 5 shows our procedure to answer an equivalence query. The procedure Ans-EqQ
is the main procedure, and it returns either Equivalent or a counterexample word (as in
Figure 5.2). It calls the auxiliary procedure Consistent?, which decides whether we refine
the current configuration abstraction function p : Rd → RQA in Figure 5.4 (Line 10).

5.3.2.1 Best-First Search for a Counterexample
The procedure Ans-EqQ is essentially a best-first search for a counterexample, that is, a

word h ∈ Σ∗ such that the difference of the output values fR(h) from the RNN and fA(h)
from the WFA is larger than error tolerance e(> 0). We first outline Ans-EqQ and then go
into the technical detail.
We manage counterexample candidates by the priority queue queue, which gives a higher

priority to a candidate more likely to be a counterexample. The already investigated words
are in the set visited. The queue queue initially contains only the empty word ε (Line 3).
We search for a counterexample in the main loop starting from Line 4. Let h be a word

popped from queue, that is, the candidate most likely to be a proper counterexample among

106

Algorithm 5 Answering equivalence queries
1: procedure Ans-EqQ

Input: RNN R = (αR, βR, gR), WFA A = (QA, αA, βA, (Aσ)σ∈Σ), error tolerance e > 0
and concentration threshold M ∈ N
Output: a counterexample, or Equivalent

2: Initialize p : Rd → RQA so that p(δR(ε)) = δA(ε)
3: queue← 〈ε〉; visited← ∅
4: while queue is non-empty do
5: h← pop(queue) . Pop the element of the maximum priority
6: if |fR(h)− fA(h)| ≥ e then
7: return h . return a counterexample

8: result← Consistent?(h, visited, p)
9: if result = NG then

10: learn p by regression, so that p(δR(h′)) = δA(h′) holds for all h′ ∈ visited ∪ {h}

11: visited← visited ∪ {h }
12: visited′ ← p(δR(visited))
13: #vn ← |{x ∈ visited′ | x 'A p(δR(h)) }|
14: if #vn ≤M then
15: pr← min

h′∈visited\{h}
d(p(δR(h)), p(δR(h′))) . d is the Euclidean distance

16: push hσ to queue with priority pr for σ ∈ Σ

17: return Equivalent

the words in the queue. If h is a counterexample, Ans-EqQ returns it (Lines 6–7). Otherwise,
after refining the configuration abstraction function p (Lines 8–10), new candidates hσ, the
extension of h with character σ, are pushed to queue with their priorities only if the neigh-
borhood of h in the state space of the WFA A does not contain sufficiently many already
investigated words—i.e., only if it has not been investigated sufficiently (Lines 13–16). This is
because, if the neighborhood of h has been investigated sufficiently, we expect that the neigh-
borhoods of the new candidates hσ have also been investigated and, therefore, that the words
hσ do not have to be investigated furthermore. We use p: 1) to decide if the neighborhood
of h has been investigated sufficiently (Line 13); and 2) to calculate the priorities of the new
candidates (Line 15). Note that we add h to visited in Line 11 since it has been investigated
there. If all the candidates are not a counterexample, Ans-EqQ returns Equivalent (Line
17).

107

5.3.2.2 Configuration Abstraction Function p
To use p for the aformationed purposes, the property we expect from the configuration

abstraction function p : Rd → RQA is as follows:

p(δR(h)) ≈ δA(h) for as many h ∈ Σ∗ as possible. (5.2)

See Definition 5.2 and 5.7 for δA : Σ∗ → RQA and δR : Σ∗ → Rd, respectively. To synthesize
such a function p, we employ regression using the data

{ (
δR(h′), δA(h′)

)
∈ Rd × RQA

∣∣h ∈
visited

}
. See Line 10. Note that we can use any regression method to learn p.

We refine p during the best-first counterexample search. Specifically, in Line 8, we use the
procedure Consistent? to check if the current p—obtained by regression—is consistent with
a counterexample candidate h. The consistency means that p(δR(h)) and δA(h) are close to
each other, which is formalized by the relation 'A defined later. If the check fails (i.e., if
Consistent? returns NG), we refine p by regression to make p consistent with h (and the
already investigated words in visited). See Line 10.

5.3.2.3 Consistency Checking by Consistent?
The procedure Consistent? in Line 8 is defined as follows: it returns NG if there exists

h′ ∈ visited such that

δA(h′) 6'A p(δR(h′)) and p(δR(h′)) 'A p(δR(h)), (5.3)

and returns OK otherwise. The basic idea of Consistent? is to return NG if p(δR(h)) 6'A δA(h)
because it means the violation of the desired property (5.2). However, to reduce the run-time
cost of refining p and to prevent learning from outliers, we adopt the alternative approach
presented above, which is taken from [134].
The existence of h′ satisfying the condition (5.3) approximates the violation of the property

(5.2) in the following sense. If there is a word h′ satisfying the first part of the condition (5.3),
p has to be refined because we find the property (5.2) violated with h′. The second part of the
condition (5.3) means that h′ seems to behave similarly to h according to the configuration
abstraction function p. We expect the second part to prevent p from being refined with outliers
because the neighborhoods of the words used for refining p must have been investigated twice
or more.

108

5.3.2.4 Equivalence Relation 'A
For a given WFA A, we define the relation 'A in the configuration space RQA by

~x 'A ~y ⇐⇒
|QA|∑
i=1

β2
i (xi − yi)2 <

e2

|QA|
, (5.4)

where β is the final vector of the WFA A. It satisfies the following.

1. If x 'A y holds, the difference of the output values for the configurations x and y of
the WFA A is smaller than the error tolerance e, that is, |(x− y) · β| < e.

2. If the i-th element of the final vector β becomes large, the neighborhood { y ∈ RQA | x 'A y }
of x shrinks in the direction of the i-th axis.

3. The neighborhood defined by 'A is an ellipsoid—a reasonable variant of an open ball
as a neighborhood.

5.3.2.5 A Heuristic for Equivalence Checking of a WFA and an RNN
Although the best-first search above works well, we introduce an additional heuristic to

improve the run-time performance of our algorithm furthermore. The heuristic deems R and
A to be equivalent if word h previously popped from queue is so long that it is impossible to
occur in the training of the RNN. This heuristic is based on the expectation that, when an
impossible word is the most likely to be a counterexample, all possible words are unlikely to be
a counterexample, and so R and A are considered to be equivalent. This heuristic is adopted
immediately after popping h (Line 5), as follows: we suppose that the maximum length L of
possible words is given; and, if the length of h is larger than L, Ans-EqQ returns Equivalent.
We confirm the usefulness of this heuristic in Section 5.4 empirically.

5.3.2.6 Termination of the Procedure
Algorithm 5 does not always terminate in a finite amount of time. If the procedure does

not find any counterexample at Line 7 and the points p(δR(visited)) are so scattered in the
configuration space that the value #vn at Line 13 is always small, words are always pushed to
queue at Line 16. In that case, the condition to exit the main loop at Line 4 is never satisfied.

5.3.3 Comparison with Weiss et al., 2018

Our WFA extraction method can be seen as a weighted extension of the L∗-based procedure
[134] to extract a DFA from an RNN. Note that a WFA defines a function of type Σ∗ → R
and a DFA defines a function of type Σ∗ → { tt, ff }.

109

The main technical novelty of the method in [134] is how to answer equivalence queries.
It features the clustering of the state space Rd of an RNN into finitely many clusters, using
support-vector machines (SVMs). Each cluster of Rd is associated with a state q ∈ QA of the
DFA.
Our theoretical observation is that such clustering amounts to giving a function p : Rd → QA.

Moreover, for a DFA, QA is the configuration space (as well as the state space, see Definition
5.5). Therefore, our WFA extraction method can be seen as an extension of the DFA extraction
procedure in [134].

5.4 Experiments
We conducted experiments to evaluate the utility of our regression-based WFA extraction

method. Specifically, we pose the following questions.

RQ1 Do the WFAs extracted by our algorithm approximate the original RNNs accurately?
RQ2 Does our algorithm work well with RNNs whose expressivity is beyond WFAs?
RQ3 Do the extracted WFAs run more efficiently, specifically in inference time, than given

RNNs?

For RQ1, we compared the performance with a baseline algorithm (a straightforward adap-
tation of [12]’s L∗algorithm). Here we focused on “automata-like” RNNs, that is, those RNNs
trained from an original WFA A•. For RQ2, we used an RNN that exhibits “context-free”
behaviors.
Experimental Setting We implemented our method in Python. We write RGR(n) for the
algorithm where the concentration threshold M in Ans-EqQ is set to n; other parameters
are fixed as follows: error tolerance e = 0.05 and heuristic parameter L = 20. We adopt
the Gaussian process regression (GPR) provided by scikit-learn as a configuration abstraction
function p (we also tried the kernel ridge regression but GPR worked empirically better).
Throughout the experiments, our RNNs are 2-layer LSTM networks with dimension size 50,
implemented by TensorFlow. The experiments were on a g3s.xlarge instance on Amazon
Web Service (May 2019), with a NVIDIA Tesla M60 GPU, 4 vCPUs of Xeon E5-2686 v4
(Broadwell), and 8GiB memory.

5.4.1 RQ1: Extraction from RNNs Modeling WFAs

This experiment examines how well our algorithm work for RNNs modeling WFAs. To do
so, we first train RNNs using randomly generated WFAs; we call those WFAs the origins.

110

Table 5.1: Experiment results, where we extracted a WFA A from an RNN R that is trained
to mimic the original WFA A•. In each cell “n/m”, “n” denotes the average of MSEs between
A and R (the unit is 10−4), taken over five random WFAs A• of the designated alphabet size
|Σ| and the state-space size |QA• |. “m” denotes the average running time (the unit is second).
The “Total” row describes the average over all the experiment settings. The highlighted cell
designates the best performer in terms of errors. Timeout was set at 10,000 sec. RGR(2–5)
are our regression-based methods; BFS(500–5000) are the baseline. BFS(5000) is added to
compare the accuracy when the running time is much longer.
� Results for “more WFA-like” RNNs R, i.e., those RNNs R which are
trained from WFAs A• using a uniformly sampled data set T ⊆ Σ∗

(|Σ|, |QA• |) RGR(2) RGR(5) BFS(500) BFS(1000) BFS(2000) BFS(3000) BFS(5000)

(4, 10) 2.17 / 286 2.39 / 338 26.8 / 165 9.77 / 279 4.36 / 545 4.07 / 716 2.33 / 1390
(6, 10) 2.45 / 1787 2.54 / 1302 6.99 / 386 4.48 / 641 4.08 / 1218 3.15 / 1410 2.28 / 2480
(10, 10) 4.68 / 7462 4.46 / 5311 22.5 / 928 11.9 / 1562 5.90 / 3521 4.55 / 3638 3.55 / 5571
(10, 15) 5.62 / 8941 5.78 / 8564 21.2 / 2155 10.6 / 4750 7.87 / 5692 5.71 / 7344 5.27 / 7612
(10, 20) 3.70 / 7610 3.79 / 7799 6.24 / 2465 10.1 / 2188 6.13 / 3106 3.70 / 5729 3.63 / 7473
(15, 10) 7.34 / 9569 5.52 / 10000 13.5 / 3227 8.01 / 6765 6.07 / 7916 5.98 / 8911 6.17 / 8979
(15, 15) 8.44 / 10000 5.58 / 9981 16.3 / 2675 9.24 / 4850 7.28 / 5135 9.88 / 7204 6.44 / 8425
(15, 20) 9.16 / 7344 5.15 / 7857 13.7 / 2224 7.26 / 3823 6.60 / 5744 4.96 / 5674 4.01 / 9464
Total 5.45 / 6625 4.40 / 6394 15.9 / 1778 8.92 / 3107 6.04 / 4110 5.25 / 5078 4.21 / 6549

� Results for “realistic” RNNs R with nonuniform input domains, i.e., those R which are
trained from WFAs A• using a data set T ⊆ Σ∗ in which some specific patterns are prohibited

(|Σ|, |QA• |) RGR(2) RGR(5) BFS(500) BFS(1000) BFS(2000) BFS(3000) BFS(5000)

(4, 10) 7.73 / 696 7.07 / 1135 15.0 / 199 7.96 / 424 6.62 / 650 6.61 / 762 9.06 / 1693
(6, 10) 4.92 / 1442 7.43 / 1247 1.46 / 552 6.95 / 660 5.90 / 1217 8.78 / 1557 3.54 / 2237
(10, 10) 5.02 / 5536 4.28 / 5951 7.70 / 1117 11.0 / 1738 4.77 / 2635 3.52 / 3926 4.52 / 4777
(10, 15) 7.15 / 6977 4.35 / 8315 19.4 / 1552 13.8 / 3271 16.8 / 3209 8.57 / 5293 5.08 / 6522
(10, 20) 6.98 / 4697 8.06 / 6704 18.6 / 1465 11.8 / 2046 12.7 / 2851 9.03 / 4259 8.01 / 4856
(15, 10) 5.97 / 8747 6.77 / 8882 23.3 / 2359 11.2 / 4668 9.88 / 6186 6.24 / 7557 6.02 / 8245
(15, 15) 5.78 / 8325 8.71 / 7546 16.6 / 2874 7.31 / 4380 9.92 / 6015 9.89 / 7110 6.40 / 8358
(15, 20) 4.60 / 7652 8.56 / 8334 36.9 / 1893 23.7 / 3069 12.8 / 3987 12.0 / 5262 8.38 / 6441
Total 6.02 / 5510 6.90 / 6015 19.0 / 1502 11.7 / 2532 9.92 / 3344 8.08 / 4466 6.38 / 5391

Then, we evaluate our algorithm compared with a baseline from two points: accuracy of the
extracted WFAs against the trained RNNs and running times of the algorithms. We report
the results after presenting the details of the baseline, how to train RNNs, and how to evaluate
the two algorithms.
The Baseline Algorithm: BFS(n) As our extraction algorithm, the baseline algorithm
BFS(n), which is parameterized over an integer n, is a straightforward adaptation of [12]’s
L∗algorithm. The difference is that equivalence queries in the baseline are implemented in

111

breath-first search, as follows. Let R be a given RNN and A be a WFA being constructed.
For each equivalence query, the baseline searches for a word w such that |fA(w)− fR(w)| > e

(where e = 0.05), in the breadth-first manner. If such a word w is found it is returned as
a counterexample. The search is restricted to the first i + n words, where i is the index
of the counterexample word found in the previous equivalence query. If no counterexample
w is found within this search space, the baseline algorithm deems A to be equivalent to R.
Obviously, if n is larger, more counterexample candidates are investigated.
Target RNNs R trained from WFAs A• Table 5.1 reports the accuracy of the extracted
WFAs A, where the target RNNs R are obtained from original WFAs A• in the following
manner. Given an alphabet Σ of a designated size (the leftmost column), we first generated a
WFA A• such that 1) the state-space size |QA• | is as designated (the leftmost column), and 2)
the initial vector α•A, the final vector β•A, and the transition matrix A•σ are randomly chosen
(with normalization so that its outputs are in [0, 1]). Then we constructed a dataset T by
sampling 9000 words w such that w ∈ Σ∗ and |w| ≤ 20; this T was used to train an RNN R,
on the set of input-output pairs of w ∈ T and fA•(w) for 10 epochs.
A simple way to sample words w ∈ T is by the uniform distribution. With T covering the

input space of the WFA A• uniformly, we expect the resulting RNN R to inherit properties
of A• well. The top table in Table 5.1 reports the results in this “more WFA-like” setting.
However, in many applications, the input domain of the data used for training RNNs are

nonuniform, sometimes even excluding some specific patterns. To evaluate our method in
such realistic settings, we conducted another set of experiments whose results are in the
bottom of Table 5.1. Specifically, for training R from A•, we used a dataset T that only
contains those words σ1σ2 . . . σn which satisfy the following condition: if σi = σj (i < j), then
σi = σi+1 = . . . = σj−1 = σj . For example, for Σ = {a, b, c}, aabccc and baaccc may be in T ,
but aaba may not.
Evaluation In order to evaluate accuracy, we calculated the mean square error (MSE) of the
extracted WFA A against the RNN R, using a dataset V of words sampled from an appropriate
distribution, namely the one used in training the RNN R from A•. The dataset V is sampled
so that it does not overlap with the training dataset T for R.
Results and Discussions In the experiments in Table 5.1, we considered 8 configurations
for generating the original WFA A• (the leftmost column). The unit of MSEs are −4—given
also that the outputs of the original WFAs A• are normalized to [0, 1], we can say that the
MSEs are small enough.
In the top table in Table 5.1 (the “more WFA-like” setting), BFS(5000) and RGR(5)

achieved the first- and second-best performance in terms of accuracy, respectively (see the
“Total” row). More generally, we can find the trend that, as an extraction runs longer, it

112

performs better. We conjecture its reason as follows. Recall that all the RNNs are trained on
words sampled from the uniform distribution. This means that all words would be somewhat
informative to approximate the RNNs. As a result, the performance is more influenced by the
amount of counterexamples—i.e., how long time extraction takes—than on their “qualities.”
The exception of this trend is RGR(2), which took a longer time but performed worse than

BFS(3000), BFS(5000), and RGR(5). In particular, RGR(2) performed well for smaller
alphabets (|Σ| ∈ {4, 6, 10}) but not so when |Σ| = 15. The role of the parameter M in
RGR(M) (i.e., in Algorithm 5) is a threshold to control how many words configuration regions
of a WFA are investigated with. Thus, we conjecture that the use of too small M limits the
input space to be investigated excessively, which is more critical as the input space gets larger,
eventually biasing the counterexamples h (in Algorithm 5), though the RNNs are trained on
the uniform distribution, and making refinement of WFAs less effective.
In the bottom table in Table 5.1 (the “realistic” setting), RGR(2) performs significantly

better than the other (and the best among all the procedures) in terms of accuracy. This is
the case even for a large alphabet (|Σ| = 15). This indicates that, in the cases that an RNN
is trained with a nonuniform dataset, making the investigated input space larger with a big
M could even degrade the accuracy performance. A possible reason for this degradation is
as follows. Some words (such as aba) are prohibited in the sample set T , and the behaviors
of the RNN R for those prohibited words are unexpected. Therefore, those prohibited words
should not be useful to refine a WFA. The use of small M could prevent such meaningless
(or even harmful) counterexamples h from being investigated. This discussion raises another
question: how can we find an optimal M? We leave it as a future work.
Let us briefly discuss the sizes of the extractedWFAs. The general trend is that the extracted

WFAs A have a few times greater number of states than the original WFAs A• used in training
R. For example, in the setting of the top table in Table 5.1, for |Σ| = 15 and |QA• | = 20, the
average number of the states of the extracted A was 38.2.

5.4.2 RQ2: Expressivity beyond WFAs

We conducted experiments to examine how well our method works for RNNs modeling
languages that cannot be expressed by any WFA. Specifically, we used an RNN that models the
following function wparen : Σ∗ → [0, 1]: Σ = {(,), 0, 1, ..., 9}, wparen(w) = 1−(1/2)N if all the
parentheses in w are balanced (here N is the depth of the deepest balanced parentheses in w);
and wparen(w) = 0 otherwise. This wparen is a weighted variant of a (non-regular) language
of balanced parentheses. For instance, wparen(“((3)(7))))”) = 0, wparen(“((3)(7))”) = 1 −
(1/2)2 = 3/4, and wparen(“(a)(b)(c)”) = 1/2.

113

We trained an RNN R as follows. We generated datasets Tgood and Tbad, and trained an
RNN R on the set of input-output pairs of w ∈ Tgood ∪ Tbad and wparen(w). The dataset
Tgood consists of randomly generated words where all the parentheses are balanced; Tbad is
constructed similarly, except that we apply suitable mutation to each word, which most likely
makes the parentheses unbalanced. The detailed procedure is as follows:

1. We make 5000 words of random balanced parentheses made only of { (,) }. There is
a one-to-one correspondence between words of balanced parentheses of length 2n and
paths from the bottom-left to the top-right in the grid of size n×n whose bottom-right
half is removed, so we can obtain such random words by generating the paths randomly
and converting them into the words. For example, “(())” or “(()())” can be made.

2. We insert random characters in { 0, 1, . . . , 9 } into the words generated in Step 1. This
generates 5000 words of random balanced words made of { (,), 0, 1, . . . , 9 }. For example,
“(0(1))” or “((12340)())” can be made.

3. We run the same procedure as Step 1 and obtain 5000 words of random balanced
parentheses.

4. We mutate the words in Step 3 and make them into 5000 random unbalanced parentheses
made only of { (,) }. The mutation rules are as follows: 1) duplicate a random character;
2) delete a random character; and 3) exchange a random pair of adjacent characters.
These rules are repeatedly applied—each time throwing a fair coin—until we get the
head of the coin. Note that the mutation can make a balanced word into another
balanced word. For example, “(()”, “((((”, or “()” can be made (only the last one is
balanced).

5. We insert random characters in { 0, 1, . . . , 9 } into the words generated in Step 4. This
generates 5000 words of random unbalanced words made of { (,), 0, 1, . . . , 9 }.

6. We combine the result of Step 2 and 5 and get 10000 words. Almost the half of the
words are balanced and the other half are unbalanced. We pick 9000 random words
from the words and use them as the training data; the remaining 1000 are used as the
test data.

Figure 5.5 shows the WFAs extracted from R. Remarkable observations here are as follows.

• The shapes of the WFAs—obtained by ignoring clearly negligible weights—give rise to
NFAs that recognize balanced parentheses up-to a certain depth.
• As the parameter M in RGR(M) grows, the recognizable depth bound grows: depth
one with RGR(5); and depth two with RGR(15).

We believe these observations demonstrate important features, as well as limitations, of our

114

q1 / -4.25e-01 / -5.26e-01

q2 / -1.11e-16 / 0.00e+00

q3 / -2.62e-01 / 8.51e-01

q1 / -8.04e-01 / -4.41e-01

q2 / -8.52e-17 / 1.67e-16

q6 / -2.54e-02 / 2.32e-01

q5 / -5.36e-17 / 4.15e-16 q3 / 8.63e-18 / 1.99e-18q4 / -4.02e-01 / 8.67e-01

Figure 5.5: The WFAs extracted by RGR(5) (left) and RGR(15) (right). In a state label
“q/m/n”, q is the state name, m is the initial value and n is the final value. Bigger values
are underlined; other values are negligibly small. The dotted and solid edges are labelled with
“(” and “)” respectively; the edges with labels 0, 1, . . . , 9 are omitted. The edge weights are
omitted for simplicity too; the weight threshold for showing transitions is 0.01. Full details on
these WFAs are in Appendix A.1.

method. Overall, the extracted WFAs expose interpretable structures hidden in an RNN: the
NFA structures in Figure 5.5 are human-interpretable (they are easily seen to encode bounded
balancedness) and machine-processable (such as determinization and minimization). It is also
suggested that the parameter M gives us flexibility in the trade-off of extraction cost and
accuracy. At the same time, we can only obtain a truncated and regularized version of the
RNN structure—this is an inevitable limitation as long as we use the formalism of WFAs.
We also note that, in each of the two extracted WFAs, the transition matrices Aσ are

similar for all σ ∈ {0, 1, . . . , 9} (the entries at the same position have the same order). This is
as expected too, since the function wparen does not distinguish the characters 0, 1, . . . , 9.

5.4.3 RQ3: Accelerating Inference Time

We conducted experiments about inference times, comparing the original RNNs R with the
WFAs A that we extracted from R. We used the same RNNs R and WFAs A as in Section
5.4.1, where the latter are extracted using RGR(2–5) and BFS(500–5000). We note that the
inference of RNNs utilizes GPUs while that of WFAs is solely done by CPUs.
On average, the inference time of the target RNNs was 29.975 milliseconds, while that of the

extracted WFAs was 0.023 milliseconds. Therefore, on average, the inference of the extracted
WFAs was about 1300 times faster than that of the target RNNs.
This demonstrates the potential use of the extracted WFAs as a computationally cheaper

surrogate for RNNs. We attribute the acceleration to the following: 1) WFAs use only linear
computation while RNNs involve nonlinear ones; and 2) overall, extracted WFAs are smaller
in size. Provided that the accuracy of extracted WFAs can be high (as we observed in Section

115

5.4.1), we believe the replacement of RNNs by WFAs is a viable option in some application
scenarios.

5.5 Conclusions
We proposed a method that extracts a WFA from an RNN, focusing on RNNs that take

a word w ∈ Σ∗ and return a real value. We used regression to investigate and abstract the
internal states of RNNs. We experimentally evaluated our method, comparing its performance
with a baseline whose equivalence queries are based on simple breadth-first search.

5.6 Future Work
One future work is a detailed comparison with other methods for model compression. An-

other future work is to use machine learning methods to find a counterexample in the equiv-
alence query, such as reinforcement learning [94] adversarial attacks [105], and acquisition
functions of GPR. Finally, we need a means to optimize the parameter M of our method
for a specific problem. It may also be helpful to extend our method so that the investigated
words can be restricted to a fixed language L ⊂ Σ∗. If L identifies the input space of the
training dataset for RNNs, we could avoid investigating the input space on which the RNNs
are not trained, and therefore we could seek only “meaningful” counterexamples even when
using large M .

116

Chapter 6

Learning Weighted Finite Automata over
the Max-Plus Semiring, and Beyond

This chapter is based on joint work with Masaki Waga, Taro Sekiyama, and Ichiro Hasuo.

6.1 Introduction

6.1.1 Background

The topic of active automata learning has seen years of extensive study. The initial suc-
cess is brought by Angluin’s L∗ algorithm [6], which repeatedly issues so-called membership
queries, organize their answers in a table, and use the table to construct a deterministic finite
automaton (DFA). A black-box system can be thought of as an oracle that answers member-
ship queries. This way, the algorithm constructs a DFA that serves as a white-box surrogate
of the black-box system.
The mathematical cleanness of the L∗ algorithm has led to a number of extensions. A notable

one is a quantitative weighted extension [12], where membership queries are answered by real
numbers instead of Boolean values (accept or reject). The algorithm is best understood in
linear algebra terms, where the notion of table is alternatively described by (a finite subblock
of) the so-called Hankel matrix. The output of the algorithm is a weighted finite automaton
(WFA), where the notions of initial state, final state, and transition are all weighted by real
numbers.
WFA is a general notion that is parametric in the choice of an underlying semiring. A

semiring S is an algebraic structure with operations ⊕ and ⊗, subject to certain equation
axioms. In a WFA over a semiring S, weights are taken from its underlying set; they are
aggregated along a path (i.e. a sequence of transitions) by ⊗; and these path weights are

117

“summed up” by ⊕ over different paths.
The aforementioned work [12] is over the real semiring, which is carried by the set of real

numbers and whose semiring operations ⊕ and ⊗ are the usual addition (+) and multiplication
(×) of real numbers. Another well-known example of a semiring is the max-plus semiring, a
member of the family called tropical semirings, where ⊕ takes the maximum of real numbers
and ⊗ is the usual addition +. WFAs over tropical semirings have applications in multiple
domains, from computer science [3, 24] to control theory [41, 42]. One viable intuition is that
weights are rewards: they are accumulated along a path; and a strategy chooses the path that
gives the maximum reward.

6.1.2 Active WFA Learning over General Semirings

In this chapter, we study active WFA learning over the max-plus semiring. L∗-style WFA
learning over general semirings is recently studied in [129]. We found that the algorithm
used there—a natural adaptation of the algorithm in [12]—has a “consistency” issue, one that
makes the tables bigger than necessary, increases the number of queries and thus potentially
harms the performance. We present a theoretical fix—by a mathematically clean notion of
column-closedness—and an algorithm that implements the fix.

6.1.3 Outline of L∗-Style Algorithms

We first illustrate the issue in the max-plus WFA learning that we identified. It arises from
the notion of consistency of L∗ tables. Towards its explanation, we first give an outline of
L∗-style algorithms.
The problem of active WFA learning in the style of L∗ is formulated as follows. Here S is

the underlying semiring. Some notions here will be formally introduced later.

Problem 1 (active WFA learning) Let f : Σ∗ → S be a function (called a weighted language);
it is hidden from us. We are given the following two oracles.

• A membership oracle m that takes a word w ∈ Σ∗ and returns f(w) ∈ S.
• An equivalence oracle e that takes a WFA A′ over S, and

– returns the symbol Eq. if the weighted language fA′ induced by the WFA A′ coin-
cides with f ; and

– returns w otherwise, where w is a word such that fA′(w) 6= f(w). This w is called
a counterexample.

The desired output is a WFA A′ that mimics f (i.e. fA′(w) = f(w) for any word w ∈ Σ∗,

118

(1) Initialize
the table size

(2) Expand
the table size

(3) Fill
the table

(4)
(5) Make

hypothesis
autom. A′

(6) Expand
the table size

with w Return
the autom.

membership oracle m equivalence oracle e

the table is
closed and
consistent

the table is not
closed or consistent e(A′)

= Eq.

e(A′) = w

(counter-ex.)

What’s the
weight for w?

m(w) f = fA′? e(A′)

Figure 6.1: L∗-style algorithms, an outline. Dashed lines indicate interaction with the oracles.
Algorithms differ in what exactly they require in “closedness” and “consistency.”

Table 6.1: A Hankel submatrix in the setting of real-number weights

P\S ε a

ε 1.3 2.6
a 2.6 3.4
ab 3.5 4.0
b 2.8 3.0

using the notation introduced later).

An L∗-style algorithm solves the problem in the following way (Figure 6.1). It issues multiple
membership queries, recording the oracle’s answers in a table. An example of a table is shown
in Table 6.1 (for real-number weights), where rows and columns are indexed by words p ∈ P
and s ∈ S (where P, S ⊆ Σ∗). The entry at (p, s) is the weight f(ps) returned by the
membership oracle. Such tables amount mathematically to subblocks of the so-called Hankel
matrix.
Once the table is closed and consistent in a suitable sense, the table can induce a WFA

(Step 5 in Figure 6.1). The resulting WFA is examined in an equivalence query. If the oracle’s
answer is not Eq., the oracle returns a counterexample word w as a witness of non-equivalence,
which is in turn used for further expanding the table.

119

6.1.4 Closedness and Consistency in L∗

The technical core of L∗-style algorithms is expanding a table so that it is closed and con-
sistent (Step 2-4 in Figure 6.1). The bottom line here is that a row of a table corresponds to
a state in a WFA. Closedness is about having enough rows: it requires that, from each row,
its “successor states” should be representable using the existing states (i.e. rows). Here repre-
sentable means identical in the original L∗ for DFAs, and linearly dependent in the extensions
for WFAs. Consistency of a table requires that such representations are consistent with the
transition behaviors. Another way of putting it is that consistency means that the “successor
state” is unique for each row.
Different L∗-style algorithms use different mechanisms to ensure consistency. The original

L∗ [6] conducts explicit check of both closedness and consistency. It adds rows if the table is
not closed (i.e. not enough rows). When the table is not consistent, It means that successor
states are ambiguous in the currently exposed transition relations. To resolve this ambiguity,
the algorithm adds new columns.
In the semiring-weighted setting, consistency is hard to check directly, due to the use of linear

combinations for state representation. Therefore the WFA learning algorithms in [12, 129]
employ alternative indirect measures inspired by or similar to [87]. These measures consist of
clever handling of counterexamples (Step 6 in Figure 6.1).

6.1.5 Consistency Issue in the Max-Plus WFA Learning

For the max-plus semiring, we first tried an implementation of the semiring-generic algorithm
in [129], and unexpectedly found that some hypothesis automata A′ are unfaithful, in the sense
that they return a weight fA′(w) that is different from the weight m(w) that the membership
oracle answered previously.*1 Here hypothesis automata refer to those in Step 5 in Figure 6.1,
that is, those which are induced by tables that may not yet have passed the equivalence check.
In other words, in the algorithm from [129], some hypothesis automata may be unfaithful

to the tables that induce them. We found its cause to be in the failure of consistency, which
in turn is because the notion of linear (in)dependence is fragile for the max-plus semiring. For
example, even if a row vector r∗ is linearly independent of row vectors r1, . . . , rm, the vector
rm can be linearly dependent on r∗, r1, . . . , rm−1.

*1 We note that the focus of the paper [129] is on the termination of learning (i.e. whether tables can
be closed in finite steps), which is orthogonal to ours. It does not claim the faithfulness of hypothesis
automata; thus this chapter does not show any of their results to be wrong.

120

This potential unfaithfulness of hypothesis automata A′ does not mean that the algorithm
in [129] can give a wrong final answer: in fact, words w such that fA′(w) 6= m(w) will be eventu-
ally identified by the equivalence oracle e as counterexamples, and A′ will be fixed accordingly.
However, complete equivalence oracles are rare in reality, which makes this “ultimate correct-
ness” argument unrealistic. Given the possibility of using a hypothesis automaton A′ itself
as a surrogate model (without A′ passing the equivalence check), A′ being unfaithful even
to previous membership queries should better be avoided. Moreover, the algorithm in [129]
relies on the equivalence oracle for resolution of unfaithfulness, but (precise or approximate)
equivalence queries are usually expensive.
Our countermeasure is to identify the notion of column-closedness as a substitute for con-

sistency, and to enforce column-closedness in the course of L∗-style WFA learning (which
excludes potential unfaithfulness). We call the usual closedness notion row-closedness for dis-
tinction. Column-closedness is a clean algebraic condition that is dual to row-closedness. This
cleanness makes the notion a pleasantly robust one, allowing a simple equational proof of
the faithfulness of hypothesis automata for an arbitrary semiring. Column-closedness can be
checked as efficiently as row-closedness.

6.1.6 Contributions

We summarize our contributions.

• In the setting of WFAs over the max-plus semiring, we find that the WFA learning
algorithm in [129] can return hypothesis automata that are unfaithful to previous mem-
bership queries (Section 6.3.3).
• We introduce the notion of column-closedness that replaces consistency. We also present
a WFA learning algorithm based on it, which works for an arbitrary semiring. We prove
that the learned WFA is always faithful (Section 6.3).
• Focusing on the max-plus semiring, we further study properties and extensions of the
algorithm (Section 6.4). We show 1) that our algorithm may not terminate or yield a
minimal WFA and identify the reason, 2) that “best-effort” minimization is still possible,
and 3) that we can make it noise-tolerant by relaxing equality constraints.

Some proofs are deferred to the appendix.

121

6.1.7 Notations

We use NumPy-like notations: for a matrix A, A(p, :) is its p-th row and A(:, s) is its s-th
column. For a set of words P ⊆ Σ∗ and a character σ ∈ Σ, we define σP := {σw | w ∈ P} ⊆
Σ∗, and similarly Pσ := {wσ | w ∈ P}. For a word w, wi stands for the i-th character of w.

6.1.8 Related Work

Most of related work have been discussed so far. The WFA learning algorithms in [12, 129]
are discussed in detail and compared with our algorithm in Section 6.3.3. Here we cover other
pieces of work. In addition to the class of automata mentioned in §6.1, L∗-style automata
learning have been extended to various type of automata, such as timed automata [59], nominal
automata [95], and symbolic automata [44]. L∗-style automata learning algorithms are also
applied to approximate recurrent neural networks for explainability and acceleration [7, 103,
134].

6.1.9 Organization of the Chapter

In Section 6.2, we give basic definitions. In Section 6.3, we discuss properties of weighted
finite automata on semirings and present our algorithm. In Section 6.4, we discuss mathemat-
ical properties of the L∗-style automata learning on the max-plus semiring. In Section 6.5, we
conclude the chapter. In Section 6.6, we discuss the future work.

6.2 Preliminaries

6.2.1 The Max-Plus Semiring

In this chapter, we use the max-plus semiring whose base set consists of real numbers. This
choice is inessential and our results apply to other base sets such as Z∪{−∞} and Q∪{−∞}.
The notation Rmax is standard in the community; see e.g. [1]. Refer to [45] for the general
theory of semirings and semimodules.

Definition 6.1 (the max-plus semiring Rmax) The max-plus semiring Rmax is a semiring
defined as follows.

• The base set is R ∪ {−∞}, where −∞ is a symbol denoting the negative infinity.
• (Addition ⊕Rmax) a ⊕Rmax b is maxR(a, b) if a, b ∈ R; it is a if b = −∞; and it is b if

122

a = −∞.
• (Multiplication ⊗Rmax) a⊗Rmax b = a+R b if a, b ∈ R; a⊗Rmax b = −∞ otherwise.
• (Units) 0Rmax = −∞, and 1Rmax = 0R.

The subscripts •Rmax may be omitted when they are clear from the context. Obviously, Rmax

is commutative.

Over the max-plus semiring, a particular form of linear equations can be solved efficiently
[22]. The procedure consists of 1) a solution candidate—it is called a principal solution,
following the convention in the community [22], but we emphasize that a principal solution
may not be a solution—and 2) checking whether the candidate is indeed a solution or not. This
procedure is known to be complete: if the principal solution turns out to be not a solution,
then the linear equation has no solution.

Definition 6.2 (principal solution) Consider a system of linear equations xA = b, where
A ∈ Rn×mmax is a coefficient matrix, b ∈ Rmmax is a row vector and x ∈ Rnmax is an indeterminate
row vector. Its principal solution is defined by

x(i) =
{

minj∈[1,m](b(j)−A(i, j)) if A(i, :) 6= (−∞, . . . ,−∞)
−∞ if A(i, :) = (−∞, . . . ,−∞)

for i = 1, . . . , n.

�

Although the usual definition (e.g. in [22]) assumes that no row of A is (−∞, . . . ,−∞), we
do not do so; instead we add the second clause as a workaround. Notice that this second clause
resolves the apparent problem in min in the first clause: if A(i, j) = −∞ then b(j) − A(i, j)
should be +∞ that does not belong to Rmax; but the condition A(i, :) 6= (−∞, . . . ,−∞)
ensures that there is some j for which b(j)−A(i, j) is well-defined.
We note that multiple solutions may exist for xA = b. It is known that, if the principal

solution is a solution and there is no row filled with −∞ in A, then it is the maximum among
the solutions in the pointwise order. It is also obvious that a system of the form XA = B can
be solved, where X,A,B are matrices, by solving X(k, :) ·A = B(k, :) for each k [36].
There are several definitions known for linear independence in the max-plus semiring (they

are not mutually equivalent). We find the following one suited for our purpose.

Definition 6.3 (weak linear (in)dependence [36]) LetM be a semimodule over a commutative
semiring S, and X ⊆ M be a subset. X is weakly linearly dependent if there exists an
element x ∈ X such that x can be expressed as a linear combination

⊕
λ cλ ⊗ xλ of elements

xλ ∈ X\{x }. IfX is not weakly linearly dependent, it is said to be weakly linearly independent.
�

123

6.2.2 Weighted Automata

Definition 6.4 (WFA) A weighted finite automaton (WFA) over a semiring S is a tuple
(Σ, α, β, (Aσ)σ∈Σ), where Σ is a finite set (alphabet), α is a row vector in Sd (initial vector),
β is a column vector in Sd (final vector), and Aσ is a matrix of size d × d called transition
matrix of σ ∈ Σ. The size d of the vectors and matrices is called the number of states and
denoted by |A|. �

Definition 6.5 (weighted language induced from WFA) A WFA A = (Σ, α, β, (Aσ)σ∈Σ) in-
duces a function fA : Σ∗ → S defined by fA(w1 . . . wn) = αAw1 . . . Awnβ. This function fA is
called the weighted language induced by A.
A weighted language that is induced by some WFA is said to be rational. For a WFA A,

if there is no WFA that has the same weighted language and has a smaller number of states
than A, then A is said to be minimal. �

We use matrices whose rows and columns are indexed by words. For label sets P, S ⊆ Σ∗

and a matrix A ∈ SP×S , A(p, s) ∈ S is the entry at the p-th row and the s-th column.
The Hankel matrix of a language L is a mathematical construct that is behind L∗-style

automata learning. Its p-th row, for p ∈ Σ∗, is the left-derivative of L by p.

Definition 6.6 (Hankel matrix) Let Σ be an alphabet and S be a semiring. A Hankel matrix
H is a matrix SΣ∗×Σ∗ such that H(rσ, s) = H(r, σs) for any r, s ∈ Σ∗ and σ ∈ Σ. A weighted
language f : Σ∗ → S induces a Hankel matrix, denoted by Hf ∈ SΣ∗×Σ∗ , by Hf (p, s) = f(p ·s)
for words p, s ∈ Σ∗. �

Hankel matrices are of infinite size, so algorithms use the following finite restrictions. In
particular, Hankel subblocks correspond to the tables in L∗-style algorithms (Figure 6.1).

Definition 6.7 (Hankel mask, Hankel subblock) For an alphabet Σ, a Hankel mask (P, S) is
a pair of subsets of Σ∗. The Hankel subblock of a Hankel matrix H masked by (P, S), denoted
by H(P,S), is the matrix SP×S such that H(P,S)(p, s) = H(p, s) for any p ∈ P, s ∈ S. �

6.3 WFA Learning for General Semirings
Here we introduce our algorithm, in which our new notion of column-closedness replaces

consistency (see Section 6.1). We present the algorithm for a general semiring S, and prove its
“correctness” (we say faithfulness), i.e. that the learned WFA respects the weights given by the

124

membership oracle. Later in Section 6.3.3 we show the problem with the existing algorithm
from [129] how it is resolved.

6.3.1 Row-Closedness and Column-Closedness

Definition 6.8 (row-closedness, column-closedness) Let H ∈ SΣ∗×Σ∗ be a Hankel matrix,
P ⊆ Σ∗ be prefix-closed, and S ⊆ Σ∗ be suffix-closed. The Hankel subblock H(P,S) is row-
closed if the system of linear equations XσH(P,S) = H(Pσ,S) has a solution for any σ ∈ Σ.
Here Xσ ∈ SP×P is the indeterminate matrix. Dually, H(P,S) is column-closed if the system
of linear equations H(P,S)Yσ = H(P,σS) has a solution for any σ ∈ Σ. Here Yσ ∈ SS×S is the
indeterminate matrix. �

These Xσ and Yσ are used in the whole section.
Row-closedness means that each row of H(Pσ,S) is a linear combination of the rows of

H(P,S); this is the usual condition of closedness used in WFA learning [12,129]. Our notion of
column-closedness is its dual, meaning that each column of H(P,σS) is a linear combination of
the columns of H(P,S). Note that, in column-closedness, the column-index set S is extended
backward to σS.

Lemma 6.9. Let H(P,S) be row-closed and column-closed, and Xσ and Yσ be solutions of the
equations in Definition 6.8. Then we have XσH(P,S) = H(P,S)Yσ.

Proof. XσH(P,S) = H(Pσ,S) = H(P,σS) = H(P,S)Yσ. �

Lemma 6.10 (shifting). Let P ⊆ Σ∗ be prefix-closed, S ⊆ Σ∗ be suffix-closed, and
s, w ∈ Σ∗ be such that sw ∈ S. If the Hankel subblock H(P,S) is row-closed, then we have
(Xs1 . . . XsnH(P,S))(:, w) = H(P,S)(:, sw). Dually, let w, p ∈ Σ∗ be such that wp ∈ P . If
H(P,S) is column-closed, then we have (H(P,S)Yp1 . . . Ypn

)(w, :) = H(P,S)(wp, :). �

Proof. We prove the first half of Lemma 6.10 by induction on the length of s. If s is empty, it
is obvious. If s is nonempty, because S is suffix-closed, s2 . . . snw ∈ S holds, and thus, we have
(Xs2 . . . XsnH(P,S))(:, w) = H(P,S)(:, s2 . . . snw) by the induction hypothesis. By definition,
Xs1H(P,S)(:, s2 . . . snw) = H(Ps1,S)(:, s2 . . . snw) holds, and we have Xs1H(P,S)(:, s2 . . . snw) =
H(Ps1,S)(:, s2 . . . snw) = H(P,s1S)(:, s2 . . . snw) = H(P,S)(:, sw). The proof for the second half
of Lemma 6.10 is similar. �

Theorem 6.11 (WFA construction). Let H be a Hankel matrix, P ⊆ Σ∗ be prefix-closed,
and S ⊆ Σ∗ be suffix-closed. Assume further that H(P,S) is both row-closed and column-closed.
Let A = (Σ, α, β,Aσ) be the following WFA: α = (0,−∞, . . . ,−∞) (0 is at the position ε),

125

β = H(P,S)(:, ε), for σ ∈ Σ, Aσ is a solution of XσH(P,S) = H(Pσ,S). Then for p ∈ P, s ∈ S,
we have fA(ps) = H(P,S)(p, s).

Note that the above construction of the WFA A only requires row-closedness to go through—
it uses Xσ but no Yσ. However, for the correctness property fA(ps) = H(P,S)(p, s) (that
the constructed WFA returns the value recorded in the Hankel subblock), we need column-
closedness. This is seen in the proof below, and the necessity of the column-closedness is
shown in Section 6.3.3 with an example.

Proof. Let |p| = n and |s| = m. We write ew for (−∞, . . . , 0, . . . ,−∞) (0 is at the position
w), for w ∈ Σ∗.

fA(ps) = eεXp1 . . . XpnXs1 . . . XsmH(P,S)(:, ε)
Lemma6.10= eεXp1 . . . Xpn

H(P,S)(:, s)
= eεXp1 . . . Xpn

H(P,S)e
>
s

Lemma 6.9= eεH(P,S)Yp1 . . . Ypn
e>s

= H(P,S)(ε, :)Yp1 . . . Ypn
e>s

Lemma 6.10= H(P,S)(p, :) e>s = H(P,S)(p, s).
�

We note the simplicity of the above proof. It uses algebraic laws from Lemma 6.9–6.10, and
does not rely on any matrix constructions such as rank factorization. This is in contrast with
existing proofs such as [12, Theorem 3].

6.3.2 Generic WFA Learning Algorithm

The theoretical development in Section 6.3.1 yields an L∗-style WFA learning algorithm in a
straightforward manner: we add the check of column-closedness to the algorithm in [12, 129].
Fortunately, column-closedness is a linear-algebraic dual to row-closedness (Definition 6.8), so
checking it is no harder than row-closedness.
Our algorithm is in Algorithm 6. It follows the outline in Figure 6.1, where Step 4 (check of

closedness and consistency) is replaced by check of row- and column-closedness. It expands
the table (i.e. the Hankel mask (P, S)), filling the entries by issuing membership queries, until
the Hankel subblock H(P,S) is row- and column-closed (Line 15–18).
The Enclose-Row procedure for checking and enforcing row-closedness is much like in the

existing algorithms [12], where the pσ-th row is checked if it is a linear combination of existing
rows, and if the answer is no, it is added to the row set P .
The Enclose-Column procedure is totally dual to Enclose-Row. If the closedness check

fails, a new word σs is added to the column set S.
The feasibility of the Enclose-Row and Enclose-Column procedures depends on

126

whether the equation in Line 25 and the corresponding equation in Enclose-Column can
be solved, more precisely, whether we can detect the existence of a solution. We can do so
efficiently with the max-plus semiring, as we discussed in Section 6.2.1. Once H(P,S) is seen
to be row- and column-closed, a WFA is constructed by the recipe in Theorem 6.11 (Line
19 in Algorithm 6). When the constructed WFA is not the answer, the equivalence oracle
returns a counterexample word w. The way in which w is handled (Step 6 in Figure 6.1) is
the same as in [12,87,129], adding all relevant suffixes of w to the column set S (Line 9–11).
As in the previous work [12, 129], our algorithm terminates on some semrings such as the

real semiring and PIDs. However, it is not guaranteed to terminate on an arbitrary semiring—
for example, our algorithm may diverge in learning a WFA over the max-plus semiring. We
believe that this non-termination is due to the nature of the underlying semirings, instead
of the choice of an algorithm. Even if the linear equations in Enclose-Row and Enclose-
Column are feasible (Line 25 and the corresponding line in Enclose-Column), there is no
guarantee that finite repetitions of them lead to a row- and column-closed table. This is indeed
the case with the max-plus semiring, as we discuss in Section 6.4.1. Another issue is that the
resulting WFA is not necessarily minimal (see Section 6.4.1).
We conclude with the following correctness theorem.

Definition 6.12 (faithfulness) Let m : Σ∗ → S be a membership oracle, and
w(1), . . . , w(K) be words (intuitively, these are the membership queries that have been issued).
We say that a WFA A is faithful to m on w(1), . . . , w(K) if fA(w(k)) = m(w(k)) for each
k ∈ [1,K].

Theorem 6.13. In an execution of Algorithm 6, each hypothesis WFA Aext produced in Line
3 is faithful to the oracle m, on the words w(1), . . . , w(K) that were queried to m previously
during the algorithm’s execution. �

Proof. Note first that each w(k) can be written as p · s using elements p ∈ P and s ∈ S (Line
37). We have fA(ps) = Subblock(P, S)(p, s) by Theorem 6.11 (this uses column-closedness;
see also Line 19). The latter is equal to m(p · s) by Line 37. �

6.3.3 Comparison with Other WFA Learning Algorithms

Van Heerdt et al.’s algorithm [129] and our algorithm have the same goal, but they differ in
two techniques: (1) When a counterexample w at Line 8 is reflected in the Hankel submatrix,
our algorithm uses the Balle-inspired refinement [12]: take a prefix p of the counterexample
w, and add all the suffixes of s into the column set S to keep S compact (Line 9-11). On the

127

Table 6.2: A Hankel submatrix made from the WFA A (left) and the next rows of the Hankel
submatrix (right)

H(P,S) ε a
ε 13 26
a 26 34
ab 35 40
b 28 30

H(P{ a,b },S) ε a comb.
aa 34 42 8⊗ a
aba 40 48 14⊗ a
abb 44 49 9⊗ ab
ba 30 39 13⊗ ε⊕ 2⊗ b
bb 37 42 2⊗ ab

other hand, van Heerdt et al.’s algorithm uses the Maler-Pnueli-inspired refinement [87]: add
all the suffixes of the counterexample w into the column set instead of Line 9-11 in Algorithm
6. (2) Our algorithm extends the Hankel submatrix so that it becomes column-closed (Line
17), but van Heerdt et al.’s algorithm does not need this step.
As van Heerdt et al.’s algorithm does not ensure the column-closedness at the moment of the

WFA construction (Line 12), the constructed WFA Aext might be unfaithful to the previous
answers of membership queries, i.e., there can be a word w such that m(w) 6= fAext(w) and
the membership query of w has already been issued. Even if the Hankel submatrix is not
column-closed, the following property holds for the constructed WFA*2:

Theorem 6.14 (constructed WFA in [129]). Let H,P, S,A be the same as in Theorem 6.11.
If H(P,S) is row-closed, then we have fA(s) = H(P,S)(ε, s) for s ∈ S.

The proof is almost the same as the proof of Theorem 6.11. By this property and the way
the column set S is updated, the WFA Aext is updated to satisfy fAext(w) = fA(w) for the
counterexample w, and the learning successfully progresses.
One might expect that using Balle-inspired refinement and omitting to ensure the

column-closedness will keep S compact and accelerate the learning. However, this “hybrid”
method does not actually work. There exists a target WFA A that is learnable both
by our algorithm and by van Heerdt et al.’s algorithm, but makes this hybrid method
diverge. The WFA A = ({ a, b } , α, β, (Aσ)σ∈Σ) with αA = (6, 11, 1), βA = (7, 0, 6)>,
Aa = ((2, 3, 1), (2, 0, 9), (3, 0, 8))>, Ab = ((9, 6, 2), (10, 3, 2), (8, 5, 4))> is such an example.
Assume that the Hankel submatrix is as shown in the Table 6.2 and Aext is the WFA
constructed from the Hankel submatrix at Line 4 in Algorithm 6. This Hankel matrix is

*2 This property is pointed out by an anonymous reviewer of AAAI20, which we were not aware of at first.
We thank the anonymous reviewer for the useful comment.

128

row-closed, but not column-closed (the “comb.” column shows that it is row-closed). In this
situation, fA(ab) = H(P,S)(ab, ε) = 35 but fAext(ab) = 36. If the answer of the equivalence
query res at Line 5 is ab, then s is set to ε at Line 10 and S is not updated at Line 11. In
total, the Hankel matrix is not updated and Aext is also not updated. Then, the equivalence
query e return ab at Line 5, and this leads to the infinite loop. The problem is that the
counterexample ab is not reflected to the Hankel matrix, so we have to choose either our
algorithm or van Heerdt et al.’s algorithm to make the learning progress.
When we turn to the real semiring, the algorithm in [12] does not explicitly check column-

closedness nor consistency. The resulting WFA is nevertheless faithful (Definition 6.12). This is
because column-closed is automatically maintained in the following way. Since Enclose-Row
adds a row H(Pσ, S) only when it is not a linear combination of the rows of H(P,S), the Hankel
subblock H(P,S) is maintained to be full-rank and landscape (meaning |P | ≤ |S|). Hence the
subspace generated by the columns of H(P,S) coincides with the whole space RP , and thus
in particular, any column of H(P,σS) is expressed as a linear combination of the columns of
H(P,S). The latter means that it is column-closed.
In the max-plus setting, however, the Enclose-Row procedure does not maintain column-

closedness. For illustration, observe that the ab-th row of H(P,S) in (6.1) cannot be expressed
as a linear combination of the ε-th and a-th rows, but the a-th row is 8⊗ (ε-th row)⊕ (−9)⊗
(ab-th row). This example shows that even if a new row cannot be expressed as a linear
combination of the existing rows, adding the row can destroy the weak linear independency
of the matrix (Definition 6.3).

6.4 Further on the Max-Plus WFA Learning

6.4.1 Non-Termination and Non-Minimality

In general, our Algorithm 6 does not terminate: even if the
P \ S ε b c · · ·
ε 0 0 0 · · ·
a 0 1 2 · · ·
aa 0 2 4 · · ·
...

...
...

... · · ·
an 0 n 2× n · · ·
...

...
...

...
. . .

key conditions in Enclose-Row and Enclose-Column are
effectively checkable (Line 25 and the corresponding line in
Enclose-Column), we may never get the Hankel subblock
row- or column-closed.
To see it, consider the following example: for the WFA B =

({a, b, c}, αB , βB , (Bσ)σ∈Σ) with αB = (0, 0, 0), βB = e1,

Ba =

 e1
1⊗ e2
2⊗ e3

 , Bb =

−∞e1
−∞

 , Bc =

−∞−∞
e1

 , (6.1)

129

where −∞ means the row filled with −∞. The Hankel matrix of fB is as shown on the right.
It is not hard to see that no choice of finite rows generates the semimodule spanned by all the
rows. Therefore Hankel subblocks are never row-closed from a certain moment on (specifically
after b, c ∈ S), making Algorithm 6 diverge.
However, this does not mean that the semimodule spanned by all the rows is not finitely

generated. In fact, since the Hankel matrix comes from the 3-state WFA B, there is a canonical
choice of generators r1, r2, r3 that span all the rows: ri = λw.eiBw1 . . . Bw|w|βB for i = 1, 2, 3.
Once we find generators spanning the rows of a Hankel subblock, we can construct a WFA

that is compatible with the Hankel subblock. This is by the following procedure. (The problem
is how to find such row vectors. L∗-style algorithms search only in rows of the Hankel matrix,
and for the max-plus semiring this is not enough, as shown by the above example B.)
For a Hankel matrix H over the max-plus semiring, if there are vectors r1, . . . , rn ∈ RΣ∗

max

such that (1) the row H(w, :) is expressed as cw,1⊗r1⊕· · ·⊕cw,n⊗rn for any w ∈ Σ∗, and (2)
there exists a homomorphism ϕσ : Rnmax → Rnmax for any σ ∈ Σ such that ϕ(cw,1, . . . , cw,n) =
(cwσ,1, . . . , cwσ,n) for any w ∈ Σ∗, then a WFA A = (Σ, αA, βA, (Aσ)σ∈Σ) which is consistent
with H can be constructed as follows:
• αA = (cε,1, . . . , cε,n),
• βA = (r1(ε), . . . , rn(ε))>,
• For σ ∈ Σ, Aσ is the matrix induced from ϕσ.

The validity of the WFA is easy:

fA(w) = αAAw1 . . . AwmβA

= (cε,1, . . . , cε,n)Aw1 . . . Awm
βA

= (cw1,1, . . . , cw1,n)Aw2 . . . Awm
βA

= . . .

= (cw,1, . . . , cw,n)βA

= (cw,1, . . . , cw,n)

r1
...
rn

 e>ε

= H(w, :)e>ε
= H(w, ε).

The problem is that L∗-style algorithms (including Algorithm 6) restricts its search for
generators of the rows of the Hankel matrix. Lifting this restriction is at the cost of greater
computational cost, and is a topic of future work.

130

6.4.2 Best-Effort Minimization

The example B in Section 6.4.1 is also an extreme witness that Algorithm 6 may not yield
a minimal WFA: it yields infinitely many states while the minimal WFA has three states.
A similar problem of finding a minimal representation of max-plus linear systems has been
studied in control theory [41,42]. In general, minimization of such systems is considered to be
a computationally expensive problem.
Although it is not always possible to obtain the minimal WFA from Algorithm 6, we can

still try to eliminate linearly dependent rows during the execution, so that we obtain a smaller
WFA. When the rows of the Hankel subblock H(P,S) are weakly linearly dependent, we can
reduce some rows and shrink the number of states of the constructed WFA in Theorem 6.11.
The reduction of the Hankel subblock is possible just by repeatedly sweeping the rows and find
a row that can be expreessed by the other rows and removing it. It is known that the order of
removing the row does not affect the number of the resulting weakly linear denpendent rows
(see Theorem 3.3.9 in [22]).
We assume that we get a WFA A = (Σ, α, β, (Aσ)σ∈Σ) as a result, and the Hankel subblock

H(P,S) is weakly linearly dependent. In this section, we index the matrices by numbers as

the usual matrix theory, and (−∞, . . . ,
i-th
∨
0 , . . . ,−∞) is abbreviated as ei. Without loss of

generality, we can assume that the first n rows of H(P,S) are weakly linearly independent. By
the definition of weak linear dependency, for i = n + 1, . . . , |P |, H(P,S)(i, :) can be expressed
as ci1H(P,S)(1, :) ⊕ · · · ⊕ cinH(P,S)(n, :) by coefficients ci1, . . . , cin ∈ Rmax. Hence, letting
C ∈ R|P |×nmax be

C =



0 −∞ · · · −∞
...

.
...

n-th > −∞ · · · −∞ 0
(n+ 1)-th > cn+1,1 · · · · · · cn+1,n

...
.

...
|P |-th > c|P |,1 · · · · · · c|P |,n


, (6.2)

and D ∈ Rn×|P |max be

D =

e1
...
en

 , (6.3)

H(P,S) = CDH(P,S) holds (remark that CD is not the identity). Then the WFA B =
(Σ, αC,Dβ, (DAσC)σ∈Σ) yields the same language fA, and its number of states is n, which

131

is smaller than the number of states of A. We give the sketch of the proof by showing
fB(στ) = fA(στ) for a word στ ∈ Σ∗. The idea is to reduce CDH(P,S) to H(P,S) by the
relation above, and make the form of CDH(P,S) by using Lemma 6.9.

fB(στ) = (αC)(DAσC)(DAτC)(Dβ)
= αCDAσCDAτCDH(P,S)e

>
ε

= αCDAσCDAτH(P,S)e
>
ε

= αCDAσCDH(P,S)Bτe
>
ε

= αCDAσH(P,S)Bτe
>
ε

= αCDH(P,S)BσBτe
>
ε

= αH(P,S)BσBτe
>
ε

= αAσAτH(P,S)e
>
ε

= αAσAτβ

= fA(στ).

6.4.3 Tolerating Noise and Numeric Errors

In most real-world applications, Algorithm 6 is too sensitive to noise and numeric errors. For
a Hankel subblock to be row- or column-closed, we need suitable equalities to hold (namely
Line 25 and the corresponding line in Enclose-Column), which would hardly hold under
potentially noisy data and numeric errors.
We can make Algorithm 6 noise-tolerant, by replacing the above equality check with the

following procedure. Let A ∈ Rm×nmax be a matrix, and b ∈ Rnmax. Then it is known [36] that
we can effectively find a vector x ∈ Rmmax minimizing maxi |(xA)i − bi|. We can regard this
x as an approximate solution. Using this x and checking whether maxi |(xA)i − bi| is below
a pre-fixed threshold ε > 0 can replace the equality checks in Line 25 and the corresponding
line in Enclose-Column.

6.5 Conclusions
We proposed the column-closedness as the condition to construct a faithful WFA from a

Hankel subblock, and proved the validity in a semiring-generic way without using the spe-
cific linear algebra over fields. Based on this theory, we developed a new WFA learning
method over general semirings including the max-plus semiring. We proved that the column-
closedness is necessary to ensure the faithfulness of the constructed WFAs. We discussed the
non-termination and the hardness of minimization by a concrete example over the max-plus

132

semiring, and identified the reason of them. We proposed a noise-tolerant variant of our algo-
rithm over the max-plus semiring towards the application of the WFA learning in a realistic
setting.

6.6 Future Work
As future work, it is interesting to identify the subclass of the rational weighted lan-

guages over the max-plus semiring on which van Heerdt et al.’s and our learning algorithms
terminate. Investigating the practical performance of various WFA learning algorithms is
also important. For experiments we have implemented van Heerdt et al.’s and our algo-
rithms, but the evaluation of the implementations is left open. The program is available on
https://github.com/ERATOMMSD/tropical_learning_public.

133

https://github.com/ERATOMMSD/tropical_learning_public

Algorithm 6 Our WFA learning algorithm over an arbitrary semiring S. “Step n” refers to
those in Figure 6.1. Given: Σ (alphabet), m (membership oracle), e (equivalence oracle)
1: procedure Learn . Main procedure
2: P ← { ε } , S ← { ε } . Step 1
3: Aext ← Extract(P, S) . Steps 2–5
4: loop
5: res← e(Aext)
6: if res = Eq. then
7: break
8: else if res = w for a word w ∈ Σ∗ then . Step 6
9: p← (the longest prefix of w within P)
10: s← (the tail of w of length |w| − 1− |p|)

. If the length is negative, it is empty
11: S ← S ∪ (all the suffixes of s)
12: Aext ← Extract(P, S) . Steps 2–5
13: return Aext

14: procedure Extract(P , S)
15: do
16: (P, updatedR?)← Enclose-Row(P, S)
17: (S, updatedC?)← Enclose-Column(P, S)
18: while updatedR? or updatedC? is updated
19: return WFA (Σ, α, β, (Aσ)σ∈Σ) of H(P, S)

. The construction of Theorem 6.11

20: procedure Enclose-Row(P , S)
21: updated?← not_updated
22: loop
23: adding← nil
24: for (p, σ) ∈ P × Σ do
25: if 6∃x s.t. x ·H(P, S) = H({ pσ } , S) then
26: adding← pσ

27: break
28: if adding = nil then
29: break
30: else
31: P ← P ∪ { adding }
32: updated?← updated

33: return (P, updated?) . Now H(P,S) is row-closed

34: procedure Enclose-Column(P , S)
. Omitted as it is almost the same as Enclose-Row

35: return (S, updated?) . Now H(P,S) is column-closed

36: procedure H(P , S) . Returns H(P,S)
37: return matrix λ(p, s) ∈ P × S. m(p · s)

. Memoize answers of m and implicitly process Step 3

134

Chapter 7

Conclusions and Future Work

Abstraction is a method to combine multiple states of a target system and construct a
simpler system, and makes it easy to apply formal methods to verify systems. The goal of this
thesis was to looking at the algebraic structure behind a target system for efficient abstraction
and to extend the range of systems that can be efficiently verified. By looking at such an
algebraic structure, we can use the theorems holding in the algebraic structure to efficiently
abstract states or to verify the abstracted system. Algebraic structures used in abstraction
are typically vector spaces Rn, the polynomial ring R[~X], the integer ring Z (discussed in
Section 1.3.5). The work discussed in Chapters 3-6 are in this context. We are reviewing the
conclusion and future work for each chapter, and discussing the possibility of combining them.

7.1 Reviewing Chapters 3-6
In Chapter 3, we developed a method to find polynomial interpolants by looking at the

algebraic structure R[~X] based on Dai et al’s work [39]. A challenge of their work is that, for
a formulae A and B, if shapes described by A and B are “touching”, their method cannot
find any interpolant of A and B. Our work coped this challenge so that interpolants are
constructed even if the shapes are “touching.” An algebraic technique used in our work was
that, in addition to ideals and cone structures known as substructures of R[~X], we proposed
the strict cone. By constructing an SOS programming problem based on these structures,
our motivating example was solved by using solvers, and our method successfully constructed
polynomial interpolants for various “touching” problems. Another work [26] in this direction
was also proposed after this work, and we believe that our work contributed to the validation
of polynomial programs.
In Chapter 4, we studied bit-vector (BV) interpolant generation technique to verify a pro-

gram in which an integer variable causes overflow and wraparound. This work is based on

135

Griggio’s work [53], which generate bit-vector interpolants by converting a BV interpolant
generation problem into a LIA interpolant generation and translating the LIA interpolant
into a BV interpolant. The challenge of the previous work was that the translating back is
incomplete and sometimes fails at generating BV interpolants. Our algebraic technique boxing
and gapping wes developed by the hint that (Z/nZ)d, which models the memory space, forms
a torus. The experimental result showed that our technique generates compact interpolants
and accelerates the verification. As the overflow is a major cause of bugs and realistic, we
believe this work contributes to the verification of realistic programs.
In Chapter 5, we approximated RNNs by WFAs, which are state machines with states in Rd.

This work was based on Weiss et al.’s work [134], which extracts a DFA from a target RNN by
looking at the state space of the target RNN. We showed that a method to approximate RNNs
with WFAs efficiently, and showed the applicability of the approximation to explainability.
As the benefit of the algebraic property of WFAs, we can use the associative law of matrix
multiplication. Gutiérrez et al. [56] showed that the associative law is useful to maximize the
output of a WFA with an example of ours, and this shows the usefulness of the approximation.
In Chapter 6, we proposed the faithful WFA learning for the max-plus semiring, and proved

that it is semiring generic. We also investigated WFA learning mathematically, and showed
that the termination and minimality of L∗-style WFA learnings over generic semirings cannot
be guaranteed with the concrete example. This shows the limitation of L∗-style WFA learnings
over generic semirings, and that we have to modify the style of learning to guarantee the
termination.
In this thesis, we made philosophy

Look at an algebraic system whose underlying set corresponds to the state space of the
system and whose operations describe the transition of the system. It leads us to find
an efficient verification method.

and practiced it. Firstly, we proposed new verification techniques by using algebraic structures
and their theorems (Chapters 3-4). Secondly, we proposed new techniques to approximate
complex models into simple models so that the approximated models can be verified with
formal methods (Chapters 5-6).

7.2 Future Work
As the future work of Chapter 3, we could use rigorous numerical methods to solve the

numerical optimization problems in the process. We can transform the SDP problems in the
process by using facial reduction [132] into simplified and equivalent SDP problems. As the

136

problems in the chapter were artificial and simple, making a good benchmark of programs with
polynomials and developing our method based on the observations on the benchmark would
be important. In a general point of view, this work was about going forward and backward
between symbolic techniques, which provide exact correctness, and numeric techniques, which
provide the quickness. Developing this kind of research could lead to scalable verification
supported by numerical optimization. The opposite direction of this technique can also be
interesting: an inaccurate and quick verification to support partial correctness of a target
system.
As the future work of Chapter 4, we are curious about the performance of the Griggio’s multi-

layered interpolation combined with our method, as our method developed in the chapter was
the improvement of one layer of the Griggio’s multi-layered interpolation.
As the future work of Chapter 5, we can compare our method with other simplification

methods of RNNs. It would be interesting to find an extension of our work using linear 2-
RNNs as simplified models, which takes a sequence of RΣ as input, instead of WFAs and
automata learning for them [113]. This extension can be a good solution to the problem of
scalability about the alphabet size. More practical experiments and evaluations are needed by
using RNNs used in industry. Problems about the relationship between RNNs and DFAs still
remain. For example, we can think of a problem like this hinted by interpolation problems: for
an RNN R expressing a language L ⊂ Σ∗, find sequences {An }n , {Bn }n of regular languages
such that An ⊆ L ⊆ Bn holds for any n and ‖An −Bn‖ → 0 (n→∞) for a norm.
As the future work of Chapter 6, it would be interesting to investigate what oracles in

addition to membership query answerers and equivalence query answerers can guarantee the
termination of the learning. The limitation also raises an interesting problem in formal lan-
guage theory: what is the characterization of a rational language on max-plus semiring where
L∗-style learnings actually terminate?
Combining Chapter 5 and Chapter 6 and apply the automata learning on the max-plus

semiring to RNNs will be also interesting, as there is a possiblity that the max operation can
go along with ReLU functions in RNNs. In this research, we would need a fast library that
enables us to manipulate the max-plus semiring.
From a high-level perspective, it will be needed to research programming languages that

are compatible with program verification based on algebraic abstraction, not only to develop
verification techniques.
There are two reasons why it is needed. Firstly, the complexity of program verification is

sometimes due to simple operations are embedded into complex features, and we are not sure
which part of programs definitely needs an advanced verification techniques. Encouraging
programmers to write programs straightly by the design of languages should make program

137

verification easier and lead to identifying real needs of advanced techniques. For example, an
integer variable is often used as a sequence of flags. If an integer variable is used in such a way in
a program, the verifier needs to support bit-shifting and the modulo operation and the program
gets unnecessarily complex for program verifiers. Secondly, it is known that the operations
on the algebraic structures currently used in program verification are costly, and richening
the expressivity does not seem to useful for industry programmers. Identifying important
operations used in realistic programs and finding a subclass of algebraic structures induced
from the operations could lead to applicable and mathematically-interesting techniques.
For the research of this direction, it would be a good starting to analyze the use cases of

features of programming languages. Using the approach of software engineering and making
questionnaires would be one way to do this. There is a machine learning technique to generate
comments from a program [84], so applying such techniques can be another way.

138

Appendix A

Appendix of Chapter 5

A.1 Detailed WFAs Extracted from wparen

A.1.1 The WFA Extracted by RGR(5)

Figure A.1 illustrates the WFA extracted from the RNN trained by wparen by RGR(5).
The initial and final vectors, and the transition matrices are in Figure A.2 and A.5.

[0]/-4.25e-01/-5.26e-01

[1]/-1.11e-16/0.00e+00

(/-8.51e-01)/-1.38e+00

[2]/-2.62e-01/8.51e-01

)/3.25e-01 (/-5.26e-01

Figure A.1: The extracted WFAs by RGR(5)

αA =

−4.24538470e− 01
−1.10824765e− 16
−2.62446661e− 01

 , βA =

−0.52582891
0

0.85059036


Figure A.2: The initial and accepting vector of the extracted WFAs by RGR(5)

139

A.1.2 The WFA Extracted by RGR(15)

Figure A.3 illustrates the WFA extracted from the RNN trained by wparen by RGR(15).
The initial and final vectors, and the transition matrices are in Figure A.4, A.6, and A.7.

[0]/-8.04e-01/-4.41e-01

[1]/-8.52e-17/1.67e-16

(/-8.97e-01

[4]/-5.36e-17/4.15e-16

(/-2.30e-02

)/-1.18e+00

[2]/8.63e-18/1.99e-18

(/-7.63e-01

[3]/-4.02e-01/8.67e-01

)/1.41e-01

[5]/-2.54e-02/2.32e-01

)/1.10e-02

)/-1.41e+00

)/1.15e-01

(/-4.19e-01

(/-2.69e-01

)/3.13e-01

(/-6.46e-01)/-9.32e-01

)/7.91e-01

(/-1.38e-01

(/9.63e-01

Figure A.3: The extracted WFAs by RGR(15)

αA =


−8.03989494e− 01
−8.52463864e− 17
8.62805331e− 18
−4.02164050e− 01
−5.35508802e− 17
−2.54365543e− 02

 , βA =


−4.41053365e− 01
1.66533454e− 16
1.99459802e− 18
8.67087989e− 01
4.14765037e− 16
2.31582271e− 01


Figure A.4: The initial and accepting vector of the extracted WFAs by RGR(15)

140

A(=

0.00000000e+ 00 −8.50590360e− 01 0.00000000e+ 00
0.00000000e+ 00 −8.59785403e− 17 0.00000000e+ 00
0.00000000e+ 00 −5.25828907e− 01 0.00000000e+ 00


A) =

(
0.00000000e+ 00 0.00000000e+ 00 0.00000000e+ 00
−1.37593037e+ 00 0.00000000e+ 00 3.25063688e− 01

)

A0 =

9.97100655e− 01 0.00000000e+ 00 −6.69023024e− 04
2.91425732e− 19 9.99289799e− 01 1.63393525e− 16
1.78230607e− 03 −3.85026199e− 16 9.99284687e− 01


A1 =

9.97754767e− 01 0.00000000e+ 00 −1.10479143e− 03
1.51485831e− 19 1.00062565e+ 00 1.63529229e− 16
9.26459427e− 04 −3.85540902e− 16 1.00011463e+ 00


A2 =

9.97342696e− 01 0.00000000e+ 00 −7.41831462e− 04
2.47685043e− 19 1.00090522e+ 00 1.63425319e− 16
1.51479608e− 03 −3.85648619e− 16 9.99479132e− 01


A3 =

9.97152196e− 01 0.00000000e+ 00 −5.48790930e− 04
2.62410313e− 19 1.00054480e+ 00 1.63352215e− 16
1.60485312e− 03 −3.85509751e− 16 9.99032039e− 01


A4 =

9.97528034e− 01 0.00000000e+ 00 −9.46331754e− 04
2.49455242e− 19 1.00138911e+ 00 1.63510808e− 16
1.52562229e− 03 −3.85835064e− 16 1.00000197e+ 00


A5 =

9.97514811e− 01 0.00000000e+ 00 −1.16262080e− 03
1.67099898e− 19 9.99657498e− 01 1.63514942e− 16
1.02195218e− 03 −3.85167873e− 16 1.00002725e+ 00


A6 =

9.98021793e− 01 0.00000000e+ 00 −1.24638991e− 03
1.41062546e− 19 9.99932885e− 01 1.63603900e− 16
8.62712533e− 04 −3.85273980e− 16 1.00057130e+ 00


A7 =

9.97351931e− 01 0.00000000e+ 00 −1.02957965e− 03
2.34439773e− 19 1.00063437e+ 00 1.63494750e− 16
1.43379045e− 03 −3.85544261e− 16 9.99903757e− 01


A8 =

9.97459514e− 01 0.00000000e+ 00 −7.96005125e− 04
2.27400184e− 19 1.00190830e+ 00 1.63446209e− 16
1.39073761e− 03 −3.86035107e− 16 9.99606890e− 01


A9 =

9.97267117e− 01 0.00000000e+ 00 −5.40868994e− 04
3.80598316e− 19 9.99770233e− 01 1.63441973e− 16
2.32766916e− 03 −3.85211310e− 16 9.99580985e− 01



Figure A.5: The transition matrices of the extracted WFAs by RGR(5)

141

A
(

=

   −
8.

13
45

52
45
e
−

17
−

8.
97

18
72

48
e
−

01
−

9.
14

35
35

77
e
−

17
6.

05
26

11
78
e
−

17
−

2.
29

55
83

42
e
−

02
2.

63
29

32
40
e
−

16
4.

66
22

88
82
e
−

33
4.

35
16

09
82
e
−

16
−

7.
63

48
57

24
e
−

01
−

8.
48

07
51

60
e
−

17
2.

11
40

11
64
e
−

16
−

2.
35

49
23

23
e
−

16
−

5.
15

55
19

62
e
−

33
−

4.
68

27
49

18
e
−

17
1.

26
66

27
96
e
−

16
1.

62
13

00
62
e
−

32
1.

23
27

49
83
e
−

17
4.

28
76

96
62
e
−

32
−

2.
06

61
45

61
e
−

17
−

4.
19

37
77

65
e
−

01
1.

32
49

92
55
e
−

16
4.

76
75

44
07
e
−

17
−

2.
68

85
07

20
e
−

01
3.

12
64

34
72
e
−

16
−

3.
44

41
42

30
e
−

32
1.

23
96

32
11
e
−

16
−

6.
45

82
47

05
e
−

01
−

7.
17

37
80

37
e
−

17
4.

14
16

06
93
e
−

16
−

1.
99

20
05

29
e
−

16
−

7.
75

63
86

89
e
−

17
−

1.
38

48
22

43
e
−

01
1.

60
06

70
44
e
−

15
−

6.
32

32
62

15
e
−

17
9.

62
90

82
62
e
−

01
−

6.
69

14
89

36
e
−

16

   

A
)

=

   −
5.

54
14

88
72
e
−

17
−

1.
97

20
79

74
e
−

20
2.

03
67

17
09
e
−

33
7.

46
64

26
68
e
−

18
1.

61
21

87
26
e
−

21
−

2.
61

48
63

21
e
−

19
−

1.
18

21
13

03
e

+
00

2.
82

08
40

78
e
−

16
2.

75
19

82
55
e
−

17
1.

40
58

90
69
e
−

01
−

3.
46

76
21

35
e
−

17
1.

09
96

88
04
e
−

02
1.

29
59

98
06
e
−

16
−

1.
41

19
50

49
e

+
00

−
5.

84
24

75
92
e
−

17
3.

14
91

11
92
e
−

18
1.

15
42

78
17
e
−

01
3.

43
91

39
31
e
−

16
2.

33
22

54
09
e
−

16
−

7.
98

89
29

97
e
−

17
4.

54
19

07
36
e
−

32
3.

57
23

30
72
e
−

17
6.

53
09

99
13
e
−

18
−

5.
84

63
62

07
e
−

17
3.

13
33

68
42
e
−

01
−

1.
07

42
21

25
e
−

15
−

7.
71

19
11

44
e
−

16
−

9.
32

43
92

97
e
−

01
4.

01
72

51
10
e
−

16
7.

91
16

35
83
e
−

01
1.

01
49

56
16
e
−

15
−

8.
56

76
79

27
e
−

16
6.

25
08

61
45
e
−

31
6.

81
03

31
12
e
−

16
7.

00
41

30
22
e
−

17
−

7.
20

64
00

86
e
−

16

   

A
0

=

   9.
99

29
66

32
e
−

01
−

5.
59

80
00

79
e
−

17
4.

40
35

41
06
e
−

17
3.

98
07

58
85
e
−

04
6.

13
72

82
32
e
−

17
−

2.
01

40
84

42
e
−

04
1.

15
54

10
74
e
−

17
1.

00
08

28
87
e

+
00

−
1.

21
73

19
26
e
−

17
−

4.
17

68
26

88
e
−

18
7.

78
83

41
99
e
−

04
−

2.
67

09
17

00
e
−

16
2.

98
17

68
61
e
−

19
−

7.
22

56
48

66
e
−

16
1.

00
02

99
33
e

+
00

2.
09

48
82

98
e
−

16
−

2.
31

00
00

82
e
−

16
3.

49
20

83
48
e
−

16
−

1.
56

17
90

92
e
−

03
2.

15
91

89
79
e
−

16
6.

43
24

30
81
e
−

16
9.

98
43

46
36
e
−

01
2.

04
61

72
42
e
−

16
−

1.
60

95
19

35
e
−

03
1.

17
51

95
61
e
−

16
1.

17
50

79
40
e
−

03
6.

82
68

56
92
e
−

16
−

5.
63

81
23

48
e
−

17
1.

00
48

61
86
e

+
00

−
4.

86
95

72
36
e
−

16
1.

32
70

34
93
e
−

02
−

1.
04

78
58

34
e
−

15
3.

03
64

16
15
e
−

16
9.

09
41

28
23
e
−

05
−

1.
50

12
67

14
e
−

16
1.

01
29

33
07
e

+
00

   

A
1

=

   9.
99

40
79

98
e
−

01
−

5.
60

11
74

74
e
−

17
4.

39
62

54
14
e
−

17
3.

24
68

20
67
e
−

04
6.

14
44

24
52
e
−

17
−

8.
59

14
43

55
e
−

05
1.

15
30

49
60
e
−

17
1.

00
10

20
65
e

+
00

−
1.

22
27

25
83
e
−

17
−

4.
15

17
79

85
e
−

18
6.

91
56

40
23
e
−

04
−

2.
67

08
36

20
e
−

16
1.

30
84

39
06
e
−

19
−

7.
22

76
67

25
e
−

16
1.

00
09

77
99
e

+
00

2.
09

74
94

93
e
−

16
−

2.
31

36
66

61
e
−

16
3.

49
44

72
87
e
−

16
−

1.
64

67
60

70
e
−

03
2.

15
50

49
79
e
−

16
6.

43
08

77
12
e
−

16
9.

98
10

93
29
e
−

01
2.

04
78

64
38
e
−

16
−

1.
61

26
98

69
e
−

03
1.

17
10

82
23
e
−

16
4.

56
50

72
50
e
−

03
6.

82
50

38
84
e
−

16
−

5.
50

18
38

67
e
−

17
1.

00
13

58
70
e

+
00

−
4.

85
11

02
92
e
−

16
9.

32
70

71
90
e
−

03
−

1.
04

83
21

90
e
−

15
3.

06
83

13
09
e
−

16
5.

49
54

88
65
e
−

03
−

1.
45

08
87

95
e
−

16
1.

01
36

75
66
e

+
00

   

A
2

=

   9.
99

29
35

46
e
−

01
−

5.
59

12
02

44
e
−

17
4.

40
55

36
25
e
−

17
5.

06
85

46
06
e
−

04
6.

14
99

66
19
e
−

17
−

5.
55

03
42

62
e
−

05
1.

15
90

38
28
e
−

17
1.

00
11

93
03
e

+
00

−
1.

22
19

42
61
e
−

17
−

4.
19

66
78

87
e
−

18
4.

98
70

20
32
e
−

04
−

2.
66

99
77

09
e
−

16
2.

26
52

33
67
e
−

19
−

7.
22

50
98

04
e
−

16
1.

00
04

56
05
e

+
00

2.
09

57
53

72
e
−

16
−

2.
31

08
96

02
e
−

16
3.

49
28

04
10
e
−

16
−

1.
60

08
11

45
e
−

03
2.

15
32

45
16
e
−

16
6.

42
96

23
43
e
−

16
9.

97
88

43
13
e
−

01
2.

04
57

08
62
e
−

16
−

1.
72

69
00

27
e
−

03
1.

17
58

82
25
e
−

16
5.

06
28

41
91
e
−

03
6.

82
60

23
41
e
−

16
−

5.
57

20
54

63
e
−

17
1.

00
29

53
79
e

+
00

−
4.

86
38

20
94
e
−

16
1.

15
88

13
99
e
−

02
−

1.
05

01
91

47
e
−

15
3.

05
20

49
65
e
−

16
3.

16
45

45
35
e
−

03
−

1.
46

71
37

71
e
−

16
1.

01
38

08
81
e

+
00

   

A
3

=

   9.
99

28
12

68
e
−

01
−

5.
59

57
33

83
e
−

17
4.

40
18

08
42
e
−

17
3.

78
55

79
78
e
−

04
6.

13
50

60
59
e
−

17
−

1.
84

06
84

66
e
−

04
1.

16
38

84
81
e
−

17
1.

00
14

20
57
e

+
00

−
1.

23
07

07
29
e
−

17
−

4.
17

72
88

83
e
−

18
1.

77
93

40
70
e
−

04
−

2.
66

81
86

63
e
−

16
2.

71
16

61
06
e
−

19
−

7.
23

09
45

24
e
−

16
1.

00
09

74
09
e

+
00

2.
09

52
72

52
e
−

16
−

2.
31

02
84

83
e
−

16
3.

49
37

55
82
e
−

16
−

1.
70

72
04

01
e
−

03
2.

15
87

92
44
e
−

16
6.

43
23

16
98
e
−

16
9.

98
41

22
35
e
−

01
2.

04
75

80
28
e
−

16
−

1.
50

93
97

36
e
−

03
1.

17
28

90
83
e
−

16
7.

79
52

25
48
e
−

05
6.

83
08

22
52
e
−

16
−

5.
65

72
11

81
e
−

17
1.

00
55

37
29
e

+
00

−
4.

87
45

94
12
e
−

16
1.

29
55

65
96
e
−

02
−

1.
04

79
18

65
e
−

15
3.

03
92

29
00
e
−

16
−

7.
47

38
89

94
e
−

04
−

1.
51

25
76

32
e
−

16
1.

01
16

73
98
e

+
00

   

A
4

=

   9.
99

27
27

30
e
−

01
−

5.
58

84
36

34
e
−

17
4.

40
80

45
24
e
−

17
5.

68
76

02
10
e
−

04
6.

15
52

97
53
e
−

17
−

2.
10

16
10

70
e
−

05
1.

15
82

01
52
e
−

17
1.

00
11

70
00
e

+
00

−
1.

21
94

52
97
e
−

17
−

4.
20

58
65

79
e
−

18
6.

86
12

21
71
e
−

04
−

2.
67

11
93

34
e
−

16
1.

91
33

69
29
e
−

19
−

7.
22

47
90

04
e
−

16
1.

00
06

18
98
e

+
00

2.
09

69
38

20
e
−

16
−

2.
31

35
16

87
e
−

16
3.

49
38

27
51
e
−

16
−

1.
30

99
63

89
e
−

03
2.

15
02

95
36
e
−

16
6.

42
79

49
41
e
−

16
9.

97
58

27
88
e
−

01
2.

04
72

34
07
e
−

16
−

1.
68

58
84

44
e
−

03
1.

17
59

79
80
e
−

16
7.

06
02

27
86
e
−

03
6.

82
14

90
76
e
−

16
−

5.
48

03
23

46
e
−

17
9.

99
73

37
13
e
−

01
−

4.
84

26
28

87
e
−

16
1.

00
04

29
19
e
−

02
−

1.
05

03
35

02
e
−

15
3.

06
77

13
31
e
−

16
6.

39
11

47
90
e
−

03
−

1.
42

35
54

72
e
−

16
1.

01
50

00
77
e

+
00

   
Fi
gu

re
A
.6
:
T
he

tr
an

sit
io
n
m
at
ric

es
of

th
e
ex
tr
ac
te
d
W

FA
s
by

R
G

R
(1

5)
(f
or
σ
∈
{(
,)
,1
,2
,3
,4
})

142

A
5

=

   9.
99

46
34

69
e
−

01
−

5.
61

08
28

20
e
−

17
4.

38
81

45
86
e
−

17
1.

22
06

73
77
e
−

04
6.

12
97

80
77
e
−

17
−

2.
04

09
39

19
e
−

04
1.

15
31

81
76
e
−

17
1.

00
10

08
69
e

+
00

−
1.

21
91

21
17
e
−

17
−

4.
11

42
49

46
e
−

18
6.

36
06

42
47
e
−

04
−

2.
67

03
30

33
e
−

16
2.

02
69

95
32
e
−

19
−

7.
22

60
75

34
e
−

16
1.

00
02

95
43
e

+
00

2.
09

62
33

45
e
−

16
−

2.
30

96
18

54
e
−

16
3.

49
22

46
54
e
−

16
−

1.
93

12
36

58
e
−

03
2.

16
06

47
99
e
−

16
6.

43
41

99
14
e
−

16
9.

98
75

57
32
e
−

01
2.

04
69

37
83
e
−

16
−

1.
62

51
42

01
e
−

03
1.

17
15

96
85
e
−

16
1.

05
55

74
06
e
−

03
6.

82
70

20
60
e
−

16
−

5.
57

87
55

40
e
−

17
1.

00
49

87
03
e

+
00

−
4.

86
89

98
33
e
−

16
1.

18
05

10
58
e
−

02
−

1.
04

66
58

78
e
−

15
3.

04
94

55
78
e
−

16
2.

66
65

31
21
e
−

03
−

1.
49

10
86

01
e
−

16
1.

01
34

05
63
e

+
00

   

A
6

=

   9.
99

27
06

06
e
−

01
−

5.
58

88
09

77
e
−

17
4.

41
09

85
81
e
−

17
5.

54
90

52
78
e
−

04
6.

14
46

93
89
e
−

17
−

1.
46

37
96

86
e
−

04
1.

15
94

18
65
e
−

17
1.

00
11

80
61
e

+
00

−
1.

22
84

35
92
e
−

17
−

4.
16

28
33

61
e
−

18
5.

63
90

10
04
e
−

04
−

2.
67

02
41

45
e
−

16
7.

64
01

28
31
e
−

20
−

7.
23

40
19

42
e
−

16
1.

00
15

58
01
e

+
00

2.
09

96
09

87
e
−

16
−

2.
31

39
56

81
e
−

16
3.

49
61

66
62
e
−

16
−

6.
63

38
77

48
e
−

04
2.

15
54

26
30
e
−

16
6.

42
80

05
51
e
−

16
9.

97
57

46
78
e
−

01
2.

04
70

57
18
e
−

16
−

1.
44

91
15

55
e
−

03
1.

15
51

83
42
e
−

16
−

1.
02

79
78

53
e
−

03
6.

82
86

25
61
e
−

16
−

5.
35

40
75

56
e
−

17
1.

00
33

65
56
e

+
00

−
4.

85
21

37
52
e
−

16
5.

57
25

80
16
e
−

03
−

1.
04

09
88

87
e
−

15
3.

10
11

96
57
e
−

16
1.

04
51

15
11
e
−

02
−

1.
46

07
52

33
e
−

16
1.

01
30

39
30
e

+
00

   

A
7

=

   9.
99

23
74

02
e
−

01
−

5.
58

95
23

74
e
−

17
4.

40
90

75
25
e
−

17
5.

48
69

51
23
e
−

04
6.

14
79

96
65
e
−

17
−

9.
97

70
16

60
e
−

05
1.

15
84

95
61
e
−

17
1.

00
10

85
12
e

+
00

−
1.

21
85

38
31
e
−

17
−

4.
18

84
49

28
e
−

18
6.

02
38

39
79
e
−

04
−

2.
67

03
70

89
e
−

16
2.

12
97

15
26
e
−

19
−

7.
22

35
54

38
e
−

16
1.

00
01

78
87
e

+
00

2.
09

64
59

78
e
−

16
−

2.
31

03
93

10
e
−

16
3.

49
23

09
16
e
−

16
−

1.
36

32
11

95
e
−

03
2.

15
24

01
06
e
−

16
6.

42
86

16
86
e
−

16
9.

97
67

32
35
e
−

01
2.

04
44

31
37
e
−

16
−

1.
82

20
82

22
e
−

03
1.

17
34

65
70
e
−

16
4.

88
06

87
35
e
−

03
6.

82
43

32
69
e
−

16
−

5.
49

43
09

77
e
−

17
1.

00
28

27
69
e

+
00

−
4.

85
96

99
00
e
−

16
1.

06
71

08
08
e
−

02
−

1.
04

84
46

37
e
−

15
3.

06
43

87
34
e
−

16
6.

19
59

60
29
e
−

03
−

1.
45

09
64

16
e
−

16
1.

01
49

34
48
e

+
00

   

A
8

=

   9.
99

48
56

93
e
−

01
−

5.
60

46
34

91
e
−

17
4.

38
94

59
78
e
−

17
2.

23
94

56
15
e
−

04
6.

14
35

45
82
e
−

17
−

4.
53

25
35

26
e
−

05
1.

15
87

47
26
e
−

17
1.

00
14

02
98
e

+
00

−
1.

21
94

11
68
e
−

17
−

4.
15

36
91

61
e
−

18
3.

55
80

49
59
e
−

04
−

2.
66

94
97

92
e
−

16
2.

41
90

58
49
e
−

19
−

7.
22

11
57

84
e
−

16
9.

99
85

90
58
e
−

01
2.

09
47

96
15
e
−

16
−

2.
30

97
30

28
e
−

16
3.

49
09

38
81
e
−

16
−

2.
07

58
20

58
e
−

03
2.

15
46

37
44
e
−

16
6.

43
31

02
94
e
−

16
9.

98
59

41
24
e
−

01
2.

04
91

37
86
e
−

16
−

1.
67

94
10

50
e
−

03
1.

18
32

75
79
e
−

16
7.

51
63

40
97
e
−

03
6.

82
14

72
38
e
−

16
−

5.
64

15
48

54
e
−

17
1.

00
14

10
82
e

+
00

−
4.

85
96

35
75
e
−

16
1.

31
31

17
88
e
−

02
−

1.
05

38
54

06
e
−

15
3.

03
51

49
70
e
−

16
6.

98
58

83
31
e
−

04
−

1.
45

89
36

67
e
−

16
1.

01
36

33
45
e

+
00

   

A
9

=

   9.
99

31
51

11
e
−

01
−

5.
59

70
08

58
e
−

17
4.

39
95

50
85
e
−

17
3.

37
85

40
24
e
−

04
6.

13
37

40
84
e
−

17
−

1.
83

55
46

95
e
−

04
1.

16
75

91
38
e
−

17
1.

00
14

97
06
e

+
00

−
1.

22
97

90
62
e
−

17
−

4.
16

20
86

93
e
−

18
1.

23
48

75
42
e
−

04
−

2.
66

76
64

91
e
−

16
3.

37
88

59
84
e
−

19
−

7.
23

26
23

50
e
−

16
1.

00
07

50
52
e

+
00

2.
09

52
85

96
e
−

16
−

2.
30

85
00

79
e
−

16
3.

49
37

26
65
e
−

16
−

1.
33

70
27

92
e
−

03
2.

16
27

15
56
e
−

16
6.

43
19

84
14
e
−

16
9.

98
59

20
80
e
−

01
2.

05
06

04
44
e
−

16
−

1.
03

47
77

15
e
−

03
1.

16
91

20
96
e
−

16
−

4.
78

82
45

93
e
−

03
6.

83
07

26
26
e
−

16
−

5.
63

46
76

80
e
−

17
1.

00
74

23
99
e

+
00

−
4.

87
38

05
76
e
−

16
1.

37
06

11
63
e
−

02
−

1.
04

36
06

30
e
−

15
3.

03
79

97
27
e
−

16
−

5.
37

63
42

24
e
−

04
−

1.
52

42
86

25
e
−

16
1.

01
21

52
21
e

+
00

   
Fi
gu

re
A
.7
:
T
he

tr
an

sit
io
n
m
at
ric

es
of

th
e
ex
tr
ac
te
d
W

FA
s
by

R
G

R
(1

5)
(f
or
σ
∈
{5
,6
,7
,8
,9
})

143

Bibliography

[1] Marianne Akian, Stéphane Gaubert, and Alexander Guterman. Linear independence
over tropical semirings and beyond. Contemporary Mathematics, 495:1, 2009.

[2] A. Albarghouthi and K. L. McMillan. Beautiful Interpolants. In Computer Aided Ver-
ification, volume 8044 of Lecture Notes in Computer Science, pages 313–329. Springer,
2013.

[3] Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online
algorithms with weighted automata. In Claire Mathieu, editor, Proc. SODA 2009, pages
835–844. SIAM, 2009.

[4] Hirokazu Anai and Pablo A. Parrilo. Convex quantifier elimination for semidefinite
programming. In Proceedings of the International Workshop on Computer Algebra in
Scientific Computing, CASC, 2003.

[5] Sidharta Andalam, Avinash Malik, Partha S. Roop, and Mark L. Trew. Hybrid automata
model of the heart for formal verification of pacemakers. In Goran Frehse and Matthias
Althoff, editors, ARCH at CPSWeek 2016, 3rd International Workshop on Applied Veri-
fication for Continuous and Hybrid Systems, Vienna, Austria, volume 43 of EPiC Series
in Computing, pages 9–17. EasyChair, 2016.

[6] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

[7] Stéphane Ayache, Rémi Eyraud, and Noé Goudian. Explaining black boxes on sequential
data using weighted automata. In Olgierd Unold, Witold Dyrka, and Wojciech Wiec-
zorek, editors, Proc. ICGI 2018, volume 93 of Proceedings of Machine Learning Research,
pages 81–103. PMLR, 2018.

[8] P. Backeman, P. Rümmer, and A. Zeljic. Bit-Vector Interpolation and Quantifier Elimi-
nation by Lazy Reduction. In Formal Methods in Computer Aided Design, pages 1–10.
IEEE, 2018.

[9] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008.

144

[10] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and static
driver verifier: Technology transfer of formal methods inside microsoft. In IFM, volume
2999 of Lecture Notes in Computer Science, pages 1–20. Springer, 2004.

[11] Borja Balle, Pascale Gourdeau, and Prakash Panangaden. Bisimulation metrics for
weighted automata. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, Proc. ICALP 2017, volume 80 of LIPIcs, pages 103:1–103:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[12] Borja Balle and Mehryar Mohri. Learning weighted automata. In Andreas Maletti,
editor, Proc. CAI 2015, volume 9270 of Lecture Notes in Computer Science, pages 1–21.
Springer, 2015.

[13] Borja Balle, Prakash Panangaden, and Doina Precup. A canonical form for weighted
automata and applications to approximate minimization. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015,
pages 701–712. IEEE Computer Society, 2015.

[14] C. Barrett, D. Dill, and J. Levitt. A Decision Procedure for Bit-Vector Arithmetic. In
Design and Automation Conference, pages 522–527, 1998.

[15] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Develop-
ment: Coq’Art The Calculus of Inductive Constructions. Springer Publishing Company,
Incorporated, 1st edition, 2010.

[16] Frédéric Besson. Fast reflexive arithmetic tactics the linear case and beyond. In Thorsten
Altenkirch and Conor McBride, editors, Types for Proofs and Programs, International
Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers,
volume 4502 of Lecture Notes in Computer Science, pages 48–62. Springer, 2006.

[17] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker
BLAST. International Journal on Software Tools for Technology Transfer, 9(5-6):505–
525, 2007.

[18] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry. Springer, 1999.
[19] Max Bramer. Ensemble Classification, pages 209–220. Springer London, London, 2013.
[20] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady.

Deciding Bit-Vector Arithmetic with Abstraction. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 4424 of Lecture Notes in Computer Science,
pages 358–372. Springer, 2007.

[21] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proc. KDD 2006, pages 535–541, 2006.

[22] Peter Butkovič. Max-linear systems : theory and algorithms. Springer monographs in
mathematics. Springer, 2010.

145

[23] Fraser Cameron, Georgios E. Fainekos, David M. Maahs, and Sriram Sankaranarayanan.
Towards a verified artificial pancreas: Challenges and solutions for runtime verification.
In Ezio Bartocci and Rupak Majumdar, editors, Runtime Verification - 6th International
Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, volume 9333
of Lecture Notes in Computer Science, pages 3–17. Springer, 2015.

[24] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative lan-
guages. ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010.

[25] Arindam Chaudhuri. Visual and Text Sentiment Analysis through Hierarchical Deep
Learning Networks. Springer Briefs in Computer Science. Springer, 2019.

[26] Mingshuai Chen, Jian Wang, Jie An, Bohua Zhan, Deepak Kapur, and Naijun Zhan.
NIL: learning nonlinear interpolants. In Pascal Fontaine, editor, Automated Deduction
- CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil,
August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in Computer Science,
pages 178–196. Springer, 2019.

[27] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014.

[28] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems, volume 7795 of
Lecture Notes in Computer Science, pages 93–107. Springer, 2013.

[29] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation in Satisfia-
bility Modulo Theories. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 4963 of Lecture Notes in Computer Science, pages 397–412. Springer,
2008.

[30] A. Cimatti, A. Griggio, and R. Sebastiani. Interpolant Generation for UTVPI. In CADE,
pages 167–182, 2009.

[31] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A new symbolic model verifier. In Nicolas Halbwachs and Doron A. Peled,
editors, Computer Aided Verification, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings, volume 1633 of Lecture Notes in Computer Science,
pages 495–499. Springer, 1999.

[32] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[33] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
[34] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant genera-

146

tion using non-linear constraint solving. In Hunt Jr. and Somenzi [65], pages 420–432.
[35] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski,
editors, Conference Record of the Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages, Tucson, Arizona, USA, January 1978, pages 84–96. ACM Press,
1978.

[36] Raymond A. Cuninghame-Green. Minimax algebra. Number 166 in Lecture notes in
economics and mathematical systems. Springer-Verlag, 1979.

[37] Liyun Dai. The tool aiSat. github.com/djuanbei/aiSat, cloned on January 17th,
2017.

[38] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. Barrier certificates revisited. J.
Symb. Comput., 80:62–86, 2017.

[39] Liyun Dai, Bican Xia, and Naijun Zhan. Generating non-linear interpolants by semidef-
inite programming. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages
364–380. Springer, 2013.

[40] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. The lean theorem prover (system description). In Amy P. Felty
and Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings,
volume 9195 of Lecture Notes in Computer Science, pages 378–388. Springer, 2015.

[41] B. De Schutter and B. De Moor. Matrix factorization and minimal state space realization
in the max-plus algebra. In Proc. ACC 1997 (Cat. No.97CH36041), volume 5, pages
3136–3140, 1997.

[42] Bart De Schutter and Bart De Moor. Minimal realization in the max algebra is an
extended linear complementarity problem. Systems & Control Letters, 25:103–111, 07
2000.

[43] Y. Demyanova, P. Rümmer, and F. Zuleger. Systematic Predicate Abstraction Using
Variable Roles. In NASA Formal Methods, volume 10227 of Lecture Notes in Computer
Science, pages 265–281. Springer, 2017.

[44] Samuel Drews and Loris D’Antoni. Learning symbolic automata. In Axel Legay and
Tiziana Margaria, editors, Proc. TACAS 2017, volume 10205 of LNCS, pages 173–189,
2017.

[45] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2009.

147

[46] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. Deepstellar:
model-based quantitative analysis of stateful deep learning systems. In Marlon Dumas,
Dietmar Pfahl, Sven Apel, and Alessandra Russo, editors, Proc. ESEC/FSE 2019, pages
477–487. ACM, 2019.

[47] M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract Domains of Affine
Relations. ACM Transactions on Programming Languages and Systems, 36, 2014.

[48] Michel Fliess. Matrices de hankel. J. Math. Pures Appl, 53(9):197–222, 1974.
[49] Ting Gan, Liyun Dai, Bican Xia, Naijun Zhan, Deepak Kapur, and Mingshuai Chen.

Interpolant synthesis for quadratic polynomial inequalities and combination with EUF.
In Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning - 8th International
Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings,
volume 9706 of Lecture Notes in Computer Science, pages 195–212. Springer, 2016.

[50] Sicun Gao and Damien Zufferey. Interpolants in nonlinear theories over the reals. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture
Notes in Computer Science, pages 625–641. Springer, 2016.

[51] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS. In Computer
Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 72–83.
Springer, 1997.

[52] A. Griggio. Effective Word-Level Interpolation for Software Verification. In Formal
Methods in Computer-Aided Design, pages 28–36. IEEE, 2011.

[53] A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient Interpolant Generation in Satisfi-
ability Modulo Linear Integer Arithmetic. Logical Methods in Computer Science, 8(3),
2010.

[54] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep
learning with limited numerical precision. In Proc. ICML 2015, pages 1737–1746, 2015.

[55] Arie Gurfinkel, Simone Fulvio Rollini, and Natasha Sharygina. Interpolation properties
and sat-based model checking. In Dang Van Hung and Mizuhito Ogawa, editors, Auto-
mated Technology for Verification and Analysis - 11th International Symposium, ATVA
2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, volume 8172 of Lecture Notes
in Computer Science, pages 255–271. Springer, 2013.

[56] Elena Gutiérrez, Takamasa Okudono, Masaki Waga, and Ichiro Hasuo. Genetic algo-
rithm for the weight maximization problem on weighted automata. In Carlos Artemio
Coello Coello, editor, GECCO ’20: Genetic and Evolutionary Computation Conference,

148

Cancún Mexico, July 8-12, 2020, pages 699–707. ACM, 2020.
[57] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and

connections for efficient neural network. In Proc. NIPS 2015, pages 1135–1143, 2015.
[58] John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus Schneider

and Jens Brandt, editors, Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceed-
ings, volume 4732 of Lecture Notes in Computer Science, pages 102–118. Springer, 2007.

[59] Léo Henry, Thierry Jéron, and Nicolas Markey. Active learning of timed automata with
unobservable resets. In Nathalie Bertrand and Nils Jansen, editors, Proc. FORMATS
2020, volume 12288 of LNCS, pages 144–160. Springer, 2020.

[60] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Principles
of Programming Languages, pages 58–70, 2002.

[61] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Ab-
stractions from proofs. In Jones and Leroy [71], pages 232–244.

[62] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

[63] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–
295, 1997.

[64] Yosuke Horiuchi. FINAL FANTASY XV POCKET EDITIONを支えるAWSサーバレス
技術, 2016. https://d1.awsstatic.com/events/jp/2018/summit/tokyo/customer/

37.pdf, Accessed in 2020.
[65] Warren A. Hunt Jr. and Fabio Somenzi, editors. Computer Aided Verification, 15th

International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,
volume 2725 of Lecture Notes in Computer Science. Springer, 2003.

[66] Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas,
and Insup Lee. Case study: verifying the safety of an autonomous racing car with a neural
network controller. In Aaron D. Ames, Sanjit A. Seshia, and Jyotirmoy Deshmukh, edi-
tors, HSCC ’20: 23rd ACM International Conference on Hybrid Systems: Computation
and Control, Sydney, New South Wales, Australia, April 21-24, 2020, pages 28:1–28:7.
ACM, 2020.

[67] H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craig interpolation for linear Diophan-
tine (dis)equations and linear modular equations. Formal Methods in System Design,
35(1):6–39, 2009.

[68] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan Gardner, Aurora
Schmidt, Erik Zawadzki, and André Platzer. Formal verification of ACAS x, an indus-
trial airborne collision avoidance system. In Alain Girault and Nan Guan, editors, 2015

149

https://d1.awsstatic.com/events/jp/2018/summit/tokyo/customer/37.pdf
https://d1.awsstatic.com/events/jp/2018/summit/tokyo/customer/37.pdf

International Conference on Embedded Software, EMSOFT 2015, Amsterdam, Nether-
lands, October 4-9, 2015, pages 127–136. IEEE, 2015.

[69] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition relation approxima-
tion. In Kousha Etessami and SriramK. Rajamani, editors, Computer Aided Verification,
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings, volume 3576 of Lecture Notes in Computer Science, pages 39–51. Springer,
2005.

[70] Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach to predicate
refinement. In Holger Hermanns and Jens Palsberg, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 12th International Conference, TACAS 2006
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings, volume 3920 of
Lecture Notes in Computer Science, pages 459–473. Springer, 2006.

[71] Neil D. Jones and Xavier Leroy, editors. Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004. ACM, 2004.

[72] Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification of global
optimality of approximate factorizations via rationalizing sums-of-squares with float-
ing point scalars. In J. Rafael Sendra and Laureano González-Vega, editors, Symbolic
and Algebraic Computation, International Symposium, ISSAC 2008, Linz/Hagenberg,
Austria, July 20-23, 2008, Proceedings, pages 155–164. ACM, 2008.

[73] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for Data Structures. In Foun-
dations of Software Engineering, pages 105–116, 2006.

[74] M. Karr. Affine Relationships among Variables of a Program. Acta Informatica, 6:133–
151, 1976.

[75] Masashi Kikuchi. CCS Injection脆弱性(CVE-2014-0224)発見の経緯についての紹介｜株
式会社レピダム, 2020. https://lepidum.co.jp/blog/2014-06-05/CCS-Injection/.

[76] A. King and H. Søndergaard. Automatic Abstraction for Congruences. In Verification,
Model Checking, and Abstract Interpretation, volume 9583 of Lecture Notes in Computer
Science, pages 197–213. Springer, 2010.

[77] Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–20:62,
2013.

[78] D. Kroening and G.Weissenbacher. Lifting Propositional Interpolants to the Word-Level.
In Formal Methods in Computer-Aided Design, pages 85–89. IEEE, 2007.

[79] Daniel Kroening and Michael Tautschnig. CBMC - C bounded model checker - (competi-
tion contribution). In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms

150

https://lepidum.co.jp/blog/2014-06-05/CCS-Injection/

for the Construction and Analysis of Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, volume 8413 of
Lecture Notes in Computer Science, pages 389–391. Springer, 2014.

[80] Stefan Kupferschmid and Bernd Becker. Craig interpolation in the presence of non-
linear constraints. In Uli Fahrenberg and Stavros Tripakis, editors, Formal Modeling
and Analysis of Timed Systems - 9th International Conference, FORMATS 2011, Aal-
borg, Denmark, September 21-23, 2011. Proceedings, volume 6919 of Lecture Notes in
Computer Science, pages 240–255. Springer, 2011.

[81] Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+ toolbox.
In Rosemary Monahan, Virgile Prevosto, and José Proença, editors, Proceedings Fifth
Workshop on Formal Integrated Development Environment, F-IDE at FM 2019, Porto,
Portugal, 7th October 2019, volume 310 of EPTCS, pages 50–62, 2019.

[82] S. Lang. Introduction to Diophantine Approximations. Springer books on elementary
mathematics. Springer, 1995.

[83] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and
Christian Ferdinand. Compcert – a formally verified optimizing compiler. In ERTS
2016: Embedded Real Time Software and Systems. SEE, 2016.

[84] Yuding Liang and Kenny Qili Zhu. Automatic generation of text descriptive comments
for code blocks. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th in-
novative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 5229–5236. AAAI Press, 2018.

[85] Wang Lin, Min Wu, Zhengfeng Yang, and Zhenbing Zeng. Proving total correctness and
generating preconditions for loop programs via symbolic-numeric computation methods.
Frontiers of Computer Science, 8(2):192–202, 2014.

[86] ShaoHua Lv, Jian Wang, YinQi Yang, and Jiqiang Liu. Intrusion prediction with system-
call sequence-to-sequence model. IEEE Access, 6:71413–71421, 2018.

[87] Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets. Inf. Comput.,
118(2):316–326, 1995.

[88] K. McMillan. An Interpolating Theorem Prover. Theoretical Computer Science,
345(1):101–121, 2005.

[89] K. L. McMillan. Lazy Abstraction with Interpolants. In Computer Aided Verification,
volume 4144 of Lecture Notes in Computer Science, pages 123–136. Springer, 2006.

[90] Kenneth L. McMillan. Interpolation and sat-based model checking. In Hunt Jr. and

151

Somenzi [65], pages 1–13.
[91] Kenneth L. McMillan. Applications of craig interpolants in model checking. In Nicolas

Halbwachs and Lenore D. Zuck, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3440 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2005.

[92] Kenneth L. McMillan. Interpolation and Model Checking. In Handbook of Model Check-
ing, pages 421–446. Springer, 2018.

[93] Joshua J. Michalenko, Ameesh Shah, Abhinav Verma, Richard G. Baraniuk, Swarat
Chaudhuri, and Ankit B. Patel. Representing formal languages: A comparison between
finite automata and recurrent neural networks. In Proc. ICLR 2019. OpenReview.net,
2019.

[94] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc
G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dhar-
shan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[95] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szyn-
welski. Learning nominal automata. In Giuseppe Castagna and Andrew D. Gordon,
editors, Proc. POPL 2017, pages 613–625. ACM, 2017.

[96] M. Möller and H. Rue. Solving Bit-Vector Equations. In Formal Methods in Computer-
Aided Design, volume 1522 of Lecture Notes in Computer Science, pages 36–48, 1998.

[97] M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. ACM Transactions on
Programming Languages and Systems, 29(5):29, 2007.

[98] Chris Newcombe. Why amazon chose TLA +. In Yamine Aït Ameur and Klaus-Dieter
Schewe, editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z - 4th Interna-
tional Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings, volume
8477 of Lecture Notes in Computer Science, pages 25–39. Springer, 2014.

[99] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael
Deardeuff. Use of Formal Methods at Amazon Web Services, 2014. https://lamport.

azurewebsites.net/tla/formal-methods-amazon.pdf, Accessed in 2020.
[100] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.
[101] Takamasa Okudono and Andy King. Mind the gap: Bit-vector interpolation recast over

linear integer arithmetic. In Armin Biere and David Parker, editors, Tools and Algo-

152

https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf

rithms for the Construction and Analysis of Systems - 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume
12078 of Lecture Notes in Computer Science, pages 79–96. Springer, 2020.

[102] Takamasa Okudono, Yuki Nishida, Kensuke Kojima, Kohei Suenaga, Kengo Kido, and
Ichiro Hasuo. Sharper and simpler nonlinear interpolants for program verification. In
Bor-Yuh Evan Chang, editor, Programming Languages and Systems - 15th Asian Sympo-
sium, APLAS 2017, Suzhou, China, November 27-29, 2017, Proceedings, volume 10695
of Lecture Notes in Computer Science, pages 491–513. Springer, 2017.

[103] Takamasa Okudono, Masaki Waga, Taro Sekiyama, and Ichiro Hasuo. Weighted au-
tomata extraction from recurrent neural networks via regression on state spaces. In
Proc. AAAI 2020, pages 5306–5314. AAAI Press, 2020.

[104] Christian W. Omlin and C. Lee Giles. Extraction of rules from discrete-time recurrent
neural networks. Neural Networks, 9(1):41–52, 1996.

[105] Nicolas Papernot, Patrick D. McDaniel, Ananthram Swami, and Richard E. Harang.
Crafting adversarial input sequences for recurrent neural networks. In Jerry Brand,
Matthew C. Valenti, Akinwale Akinpelu, Bharat T. Doshi, and Bonnie L. Gorsic, editors,
Proc. MILCOM 2016, pages 49–54. IEEE, 2016.

[106] P.A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Inst. of Tech., 2000.

[107] Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming, 96(2):293–320, 2003.

[108] Lawrence C. Paulson. Three years of experience with sledgehammer, a practical link
between automatic and interactive theorem provers. In Renate A. Schmidt, Stephan
Schulz, and Boris Konev, editors, Proceedings of the 2nd Workshop on Practical Aspects
of Automated Reasoning, PAAR-2010, Edinburgh, Scotland, UK, July 14, 2010, volume
9 of EPiC Series in Computing, pages 1–10. EasyChair, 2010.

[109] Helfried Peyrl and Pablo A. Parrilo. Computing sum of squares decompositions with
rational coefficients. Theor. Comput. Sci., 409(2):269–281, 2008.

[110] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verification. In
Renate A. Schmidt, editor, Automated Deduction - CADE-22, 22nd International Con-
ference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings,
volume 5663 of Lecture Notes in Computer Science, pages 485–501. Springer, 2009.

[111] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The Small Model Property: How
small can it be? Information and Computation, 178(1):279–293, 2002.

[112] M Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math.

153

Journ., 42(3):969–984, 1993.
[113] Guillaume Rabusseau, Tianyu Li, and Doina Precup. Connecting weighted automata

and recurrent neural networks through spectral learning. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, Proc. AISTATS 2019, volume 89 of Proceedings of Machine
Learning Research, pages 1630–1639. PMLR, 2019.

[114] Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Validating numerical
semidefinite programming solvers for polynomial invariants. In Xavier Rival, editor,
Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September
8-10, 2016, Proceedings, volume 9837 of Lecture Notes in Computer Science, pages 424–
446. Springer, 2016.

[115] S.M. Rump. Verification of positive definiteness. BIT Numerical Mathematics,
46(2):433–452, 2006.

[116] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. Constraint solving for inter-
polation. In Byron Cook and Andreas Podelski, editors, Verification, Model Checking,
and Abstract Interpretation, 8th International Conference, VMCAI 2007, Nice, France,
January 14-16, 2007, Proceedings, volume 4349 of Lecture Notes in Computer Science,
pages 346–362. Springer, 2007.

[117] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Non-linear loop invariant
generation using gröbner bases. In Jones and Leroy [71], pages 318–329.

[118] Stefano Schivo and Rom Langerak. Discretization of continuous dynamical systems
using UPPAAL. In Joost-Pieter Katoen, Rom Langerak, and Arend Rensink, editors,
ModelEd, TestEd, TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His
60th Birthday, volume 10500 of Lecture Notes in Computer Science, pages 297–315.
Springer, 2017.

[119] Roy Schwartz, Sam Thomson, and Noah A. Smith. Bridging CNNs, RNNs, and weighted
finite-state machines. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 295–305, Melbourne,
Australia, July 2018. Association for Computational Linguistics.

[120] Amazon Web Services. Amazon EC2 FAQs, 2019. https://aws.amazon.com/ec2/

faqs/, accessed in 2019.
[121] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and

Aditya V. Nori. A data driven approach for algebraic loop invariants. In Matthias
Felleisen and Philippa Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages

154

https://aws.amazon.com/ec2/faqs/
https://aws.amazon.com/ec2/faqs/

574–592. Springer, 2013.
[122] Zhen Shen, Wenzheng Bao, and De-Shuang Huang. Recurrent neural network for pre-

dicting transcription factor binding sites. Scientific reports, 8(1):15270, 2018.
[123] A. Simon and A. King. Taming the Wrapping of Integer Arithmetic. In Static Analysis

Symposium, volume 4634 of Lecture Notes in Computer Science, pages 121–136. Springer,
2007.

[124] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry.
Mathematische Annalen, 207(2):87–97, 1974.

[125] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and
Kilian Q. Weinberger, editors, Proc. NIPS 2014, pages 3104–3112, 2014.

[126] Tachio Terauchi. Explaining the effectiveness of small refinement heuristics in program
verification with CEGAR. In Sandrine Blazy and Thomas Jensen, editors, Static Anal-
ysis - 22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11,
2015, Proceedings, volume 9291 of Lecture Notes in Computer Science, pages 128–144.
Springer, 2015.

[127] K. C. Toh, M.J. Todd, and R. H. Tütüncü. Sdpt3 – a matlab software package for
semidefinite programming. OPTIMIZATION METHODS AND SOFTWARE, 11:545–
581, 1999.

[128] L.W. Tu. An Introduction to Manifolds. Universitext. Springer New York, 2007.
[129] Gerco van Heerdt, Clemens Kupke, Jurriaan Rot, and Alexandra Silva. Learning

weighted automata over principal ideal domains. In Jean Goubault-Larrecq and Barbara
König, editors, Proc. FoSSaCS, volume 12077 of LNCS, pages 602–621. Springer, 2020.

[130] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Faron
Moller and Graham Birtwistle, editors, Logics for Concurrency, volume 1043 of Lect.
Notes Comp. Sci., pages 238–266. Springer Berlin Heidelberg, 1996.

[131] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda.
Model checking programs. Autom. Softw. Eng., 10(2):203–232, 2003.

[132] Hayato Waki and Masakazu Muramatsu. A facial reduction algorithm for finding sparse
SOS representations. Oper. Res. Lett., 38(5):361–365, 2010.

[133] Cheng Wang and Mathias Niepert. State-regularized recurrent neural networks. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 6596–
6606. PMLR, 2019.

[134] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural

155

networks using queries and counterexamples. In Jennifer G. Dy and Andreas Krause,
editors, Proc. ICML 2018, volume 80 of JMLR Workshop and Conference Proceedings,
pages 5244–5253. JMLR.org, 2018.

[135] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of
finite precision rnns for language recognition. In Iryna Gurevych and Yusuke Miyao,
editors, Proc. ACL 2018, Volume 2: Short Papers, pages 740–745. Association for Com-
putational Linguistics, 2018.

[136] Xi Xiao, Shaofeng Zhang, Francesco Mercaldo, Guangwu Hu, and Arun Kumar Sanga-
iah. Android malware detection based on system call sequences and LSTM. Multimedia
Tools Appl., 78(4):3979–3999, 2019.

[137] Tomoya Yamaguchi, Martin Brain, Chirs Ryder, Yosikazu Imai, and Yoshiumi Kawa-
mura. Application of abstract interpretation to the automotive electronic control system.
In Constantin Enea and Ruzica Piskac, editors, Verification, Model Checking, and Ab-
stract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal,
January 13-15, 2019, Proceedings, volume 11388 of Lecture Notes in Computer Science,
pages 425–445. Springer, 2019.

[138] Tomoya Yamaguchi, Tomoyuki Kaga, Alexandre Donzé, and Sanjit A. Seshia. Combin-
ing requirement mining, software model checking and simulation-based verification for
industrial automotive systems. In Ruzica Piskac and Muralidhar Talupur, editors, 2016
Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA,
October 3-6, 2016, pages 201–204. IEEE, 2016.

[139] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods.
In Proc. ACL 1995, pages 189–196, 1995.

[140] Geoffrey Zweig, Chengzhu Yu, Jasha Droppo, and Andreas Stolcke. Advances in all-
neural speech recognition. In Proc. ICASSP 2017, pages 4805–4809. IEEE, 2017.

156

	Introduction
	Program Verification and Model Checking
	Abstraction
	Algebraic Abstraction
	Algebraic Structure in Chapter3
	Algebraic Structure in Chapter4
	Algebraic Structure in Chapter5
	Algebraic Structure in Chapter6
	Algebraic Abstraction: Examples and Non-examples
	Algebraic Structure as Universal Algebra

	Overview of the Contributions
	Overview of Chapter3
	Overview of Chapter4
	Overview of Chapter5
	Overview of Chapter6

	Organization of the Thesis

	Preliminaries
	Automata Learning
	Angluin's L* Algorithm
	Problem Formulation
	Example
	Principle

	Balle and Mohri's Weighted Automata Learning
	Weighted Finite Automaton (WFA)
	Problem Formulation
	Principle

	IMPACT Algorithm: Program Verification Using Interpolants
	Overview of the IMPACT Algorithm
	Flow
	Refinement Using Interpolants

	Sharper and Simpler Nonlinear Interpolants for Program Verification
	Introduction
	Interpolation for Program Verification
	Interpolation via Optimization and Real Algebraic Geometry
	Contribution
	Related Work
	Organization of the Chapter

	Preliminaries
	Real Algebraic Geometry and Stengle's Positivstellensatz
	 The Interpolation Algorithm by Dai et al.

	Positivstellensatz and Interpolation, Revisited
	Analysis of the Interpolation Algorithm by Dai et al.
	Topological and Algebraic Closure
	Interpolation via Positivstellensatz, Sharpened
	Relationship of the Two Algorithms

	Implementation: Numerical Errors and Rounding
	Rounding
	Validation

	Experiments
	Geometric Examples
	Program Verification Example I: Infeasibility Checking
	Program Verification Example II: CEGAR
	Program Verification Example III: CEGAR

	Conclusions
	Future Work

	Mind the Gap: Bit-vector Interpolation Recast over Linear Integer Arithmetic
	Introduction
	Interpolant
	Context
	Contribution
	Use Case (Motivation)
	Related Work
	Organization of the Chapter

	Boxing and Gapping in Pictures
	Enumeration
	Boxing
	Gapping

	Formal Correctness of Boxing and Gapping
	Boxing
	Boxing and Gapping
	Boxing, Gapping and Flipping
	Boxing, Gapping, Flipping and Demoding

	Experiments
	Overall Result
	Runtime for Naive Encoding and Boxing
	Interpolant Size for Naive Encoding and Boxing

	Conclusions
	Future Work

	Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces
	Introduction
	Background
	Extracting WFAs from RNNs
	Contribution: Regression-Based WFA Extraction from RNNs
	Potential Applications
	Related Work
	Organization of the Chapter

	Preliminaries
	Recurrent Neural Networks
	Angluin's L*Algorithm
	L*Algorithm for WFA Learning

	WFA Extraction from an RNN
	Procedure Outline
	Equivalence Queries for WFAs and RNNs
	Best-First Search for a Counterexample
	Configuration Abstraction Function p
	Consistency Checking by Consistent?
	Equivalence Relation A
	A Heuristic for Equivalence Checking of a WFA and an RNN
	Termination of the Procedure

	Comparison with Weiss et al., 2018

	Experiments
	RQ1: Extraction from RNNs Modeling WFAs
	RQ2: Expressivity beyond WFAs
	RQ3: Accelerating Inference Time

	Conclusions
	Future Work

	Learning Weighted Finite Automata over the Max-Plus Semiring, and Beyond
	Introduction
	Background
	Active WFA Learning over General Semirings
	Outline of L*-Style Algorithms
	Closedness and Consistency in L*
	Consistency Issue in the Max-Plus WFA Learning
	Contributions
	Notations
	Related Work
	Organization of the Chapter

	Preliminaries
	The Max-Plus Semiring
	Weighted Automata

	WFA Learning for General Semirings
	Row-Closedness and Column-Closedness
	Generic WFA Learning Algorithm
	Comparison with Other WFA Learning Algorithms

	Further on the Max-Plus WFA Learning
	Non-Termination and Non-Minimality
	Best-Effort Minimization
	Tolerating Noise and Numeric Errors

	Conclusions
	Future Work

	Conclusions and Future Work
	Reviewing Chapters3-6
	Future Work

	Appendix of Chapter5
	Detailed WFAs Extracted from wparen
	The WFA Extracted by RGR(5)
	The WFA Extracted by RGR(15)

	Bibliography

