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Abstract

A long-standing goal in reinforcement learning is to create agents that can solve complex
decision-making tasks through trial and error interactions with the environment. While
reinforcement learning has shown impressive advances in a plethora of simulated tasks
including game-playing, board-games, or robot control, these results are shyly echoed in
the real world. This is often due to huge amounts of interactions required to reach decent
performance, which can be intractable in real-world settings. One underlying reason for
the above-mentioned shortcomings is the poor cognitive capabilities of RL agents.

In this thesis, we start by tackling one of the key problems in reinforcement learning:
how to overcome the lack of curiosity in reinforcement learning algorithms? One natu-
ral form of learning is to explore the environment and accumulate knowledge. However,
in the real world, rewards are naturally sparse or poorly-defined, which is an important
issue since hoping to stumble into a goal state by chance (in the absence of curiosity)
within an acceptable number of interactions is unlikely. Inspired by curious behaviors
in animals, we develop curiosity-driven agents that can learn to solve complex problems
featuring extremely sparse rewards. Precisely, our aim is at modeling and reproducing
the development of a natural cognitive process in artificial agents: curiosity. In this dis-
sertation, we focus on self-exploration algorithms that can deal with: 1) the problem of
gradual skill acquisition based on the agent’s knowledge of the environment in the pres-
ence of high-dimensional observations and complex dynamics, 2) stochastic environments
to escape from local optima, and the “vanishing curiosity” issues of prior work that use
the absolute prediction error to guide exploration - curiosity rewards soon exhaust as the
prediction becomes perfect or does not improve, prematurely converging to sub-optimal
policies, and 3) global exploration to encourage long-term exploration behaviors (i.e. co-
ordinated decisions over long time horizons).

To solve challenging tasks, an agent may not solely rely on internal guidance but
also leverage human knowledge of how to solve these tasks. Precisely, unlike humans
that rely on their common sense priors, traditional reinforcement learning agents do not
have such an ability - they learn a task from scratch. In this dissertation, we address
one of the key problems in reinforcement learning: how can agents efficiently leverage
human guidance to drive the learning process? Thus, we propose generic mechanisms
that employ human guidance to transfer human knowledge into reinforcement learning.
Our core idea is to develop novel types of guidance that require minimal human effort and
provide additional meaningful information to the agent. First, we introduce guidance via
the concept of high-level information and human-like planning, based on simple domain
knowledge and visual recognition. Second, we propose an interpretable model whose
internal representation is symbols and rules automatically extracted from existing datasets
(domain knowledge), drastically reducing the amount of necessary human effort. Finally,
in order to ensure that the learner’s goal matches the domain knowledge provided, we
propose active demonstrations ; an approach operating in the low data regime that actively
shares insights between the agent and the teacher. Additionally, our agent learns a wide
range of skills from the same set of goal-driven demonstrations.

Developmental studies show that interactive capabilities in humans emerge incremen-
tally through the aggregation of multiple internal and external feedback signals. Hence,
one natural question that arises is: how to simultaneously learn from these two classes
of supervision (i.e. curiosity and human guidance) to achieve human-like sample-efficient
learning? To answer this question, we propose a hierarchical framework that exploits the
hierarchical structure of the task to integrate different modes of supervision. Our key
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design principle is to introduce (non-expert) human guidance at the high-level for long-
term planning and common sense reasoning, while curiosity is employed at the low-level
to drive the learning of sub-tasks. These hybrid agents can be used in domains where
humans struggle to provide demonstrations while reducing the amount of required feed-
back and interactions with the environment by several orders of magnitude. Moreover, it
produces agents that exceeded the expert performance in various domains.

iii





Table of contents

Acknowledgments i

Abstract ii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Curiosity-Driven Exploration for Sample-Efficient Learning . . . . . . . . 5

1.2.2 Human Guidance for Sample-Efficient Learning . . . . . . . . . . . . . . . 6

1.2.3 Self-Supervision and Human Guidance for Sample-Efficient Learning . . . 8

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Temporal-Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 State-of-the-art On-Policy Algorithms . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Goal-Conditioned Reinforcement Learning . . . . . . . . . . . . . . . . . . 15

2.1.6 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 15

2.2 Unsupervised Image Representation Learning . . . . . . . . . . . . . . . . . . . . 16

I Learning to Act via Curiosity-Driven Exploration 19

3 Skill-Based Curiosity for Intrinsically Motivated Reinforcement Learning 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Skill-Based Curiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Goal-Based Curiosity Module (GCM) . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Reward Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 Training the Goal-Based Curiosity Module . . . . . . . . . . . . . . . . . 29

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Ablation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Maze Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.5 Simulated Robotics Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.6 Game Playing Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Exploration via Progress-Driven Intrinsic Rewards 37

v



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Progress-Driven Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Learning Progress as Intrinsic Reward . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Policy-based Progress (PoBP) . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Representation-based Progess (ReBP) . . . . . . . . . . . . . . . . . . . . 41

4.3.4 Episodic Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Environmental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Ablation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.3 Fixed Versus Randomly Generated Environments . . . . . . . . . . . . . . 45

4.4.4 Exploration With Sparse Extrinsic Rewards . . . . . . . . . . . . . . . . . 47

4.4.5 Dense Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.6 No Extrinsic Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Fast and Slow Curiosity for High-Level Exploration 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Fast and Slow Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Reconstruction-Based Curiosity . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2 Image Reconstruction Architecture . . . . . . . . . . . . . . . . . . . . . . 57

5.3.3 Combining Fast and Slow Rewards . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Ablation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Fixed Versus Randomly Generated Environments . . . . . . . . . . . . . . 69

5.4.3 No Extrinsic Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.4 Dense Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.5 Exploration with Sparse Extrinsic Rewards . . . . . . . . . . . . . . . . . 71

5.5 Intrinsically Motivated Lifelong Exploration . . . . . . . . . . . . . . . . . . . . . 74

5.5.1 Integrating Motion Dynamics in Reconstruction-based Curiosity . . . . . 74

5.5.2 Integrating Lifelong Curiosity . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.3 Comparison Between FaSo and IML . . . . . . . . . . . . . . . . . . . . . 76

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

II Bridging the Gap Between Reinforcement Learning and
Human Guidance 79

6 Combining Deep Reinforcement Learning with Prior Knowledge and Reason-
ing 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Task & Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Eating a Healthy Diet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Finding a Target in a Maze . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Deep Reinforcement Learning Augmented With External Knowledge . . . . . . . 84

6.3.1 Object Recognition Module . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.2 Reinforcement Learning Module . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.3 Knowledge Based Decision Module . . . . . . . . . . . . . . . . . . . . . . 88

6.3.4 Action Selection Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.1 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vi



6.4.2 Knowledge Reasoning Model . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.3 Meta-feature Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.4 Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.5 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Towards Interpretable Reinforcement Learning with State Abstraction
Driven by External Knowledge 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Rule-based Sarsa(_) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Rule Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.3 Estimation of the Q-values . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Trading Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.2 Visual Navigation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Active Goal-Driven Learning 117

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3 Goal-Driven Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3.1 Goal-Driven Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3.2 Expert Relabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3.3 Query Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3.4 Prioritized Goal Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4.1 Implementation Details and Tasks . . . . . . . . . . . . . . . . . . . . . . 126

8.4.2 Fetch Robotic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4.3 ShadowHand Robotic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4.4 Ablation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

III Leveraging Human Guidance and Curiosity for Sample-
Efficient Learning 135

9 Hierarchical Learning from Human Preferences and Curiosity 137

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Leveraging Preferences and Curiosity . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3.1 High-Level Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3.2 Combining Low-level Policies with Curiosity . . . . . . . . . . . . . . . . . 144

9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.4.2 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.4.3 Ablation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.4.4 Procedurally Generated Environments . . . . . . . . . . . . . . . . . . . . 150

9.4.5 Robotic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.4.6 Hard Exploration Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

vii



10 Conclusion 155
10.1 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References 167

viii



List of Figures

1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Structure of agent-environment interactions in reinforcement learning . . . 11
2.2 Hierarchical reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Architecture of an autoencoder and a variational autoencoder . . . . . . . 16

3.1 Skill-Based Curiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Goal-based curiosity module . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Examples of environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 PPO+GoCu for different number of goals . . . . . . . . . . . . . . . . . . . 31
3.5 Result of GoCu in Minigrid . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Comparison of GoCu to baselines . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Illustration of the idea of episodic skills . . . . . . . . . . . . . . . . . . . . 42
4.2 State visitation heatmaps for different models . . . . . . . . . . . . . . . . 45
4.3 Results of progress-driven intrinsic motivation. . . . . . . . . . . . . . . . . 46
4.4 Reward as a function of training step for a variety of hard exploration tasks 46
4.5 Number of rooms found during the exploration phase in Montezuma’s Re-

venge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Examples of contexts created from one frame . . . . . . . . . . . . . . . . . 52
5.2 The reconstructor architecture . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Fast and slow exploration model architecture . . . . . . . . . . . . . . . . . 59
5.4 Evolution of 𝛼 and 𝛽 across learning on the Montezuma’s Revenge envi-

ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 State visitation heatmaps of Faso . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Maximum distance achieved with no extrinsic reward on Super Mario Bros 70
5.7 Comparison of PPO+FaSo with baselines with no curiosity and agents

augmented with an exploration bonus . . . . . . . . . . . . . . . . . . . . . 71
5.8 Average task reward of FaSo obtained in the Super Mario Bros environment

with sparse reward setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 Average number of rooms found by FaSo during the training phase on

Montezuma’s Revenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.10 Model architecture of intrinsically motivated lifelong exploration . . . . . . 74
5.11 Training architecture of fast and slow intrinsic motivation . . . . . . . . . . 75
5.12 Average results of FaSo over 10 random seeds on Minigrid (Door & key) . 77

6.1 Screenshot of the environment . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Global architecture of DRL-EK . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Important areas of an image . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Injection of new features into the reinforcement learning module . . . . . . 87
6.5 Data labeling using average reward as tag . . . . . . . . . . . . . . . . . . 91
6.6 Average precision over all the classes obtained by the object recognition

module (Task 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



6.7 Evolution of the reward of the knowledge reasoning model . . . . . . . . . 93
6.8 Average rewards of the meta-feature learning model . . . . . . . . . . . . . 94
6.9 Average reward using meta-feature learning . . . . . . . . . . . . . . . . . 94
6.10 Frequency of selection of each action . . . . . . . . . . . . . . . . . . . . . 95
6.11 Performance of DRL-EK comparing to baselines . . . . . . . . . . . . . . . 96
6.12 Comparison of performance curves between DEL-EK and other agents . . . 97

7.1 Rule-based Sarsa(_) architecture . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Deep unsupervised rule extraction method . . . . . . . . . . . . . . . . . . 104
7.3 Overview of the symbol color extraction method . . . . . . . . . . . . . . . 105
7.4 Relative position extraction method . . . . . . . . . . . . . . . . . . . . . . 106
7.5 An illustration of the update of the Q-function . . . . . . . . . . . . . . . . 106
7.6 Estimation of a Q-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.7 Example of a sample of data from the environment . . . . . . . . . . . . . 111
7.8 Performance curves of Sarsa-rb using a selection of techniques to create the

rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.9 Performance curves for a selection of algorithms . . . . . . . . . . . . . . . 113
7.10 A board of the visual navigation environment . . . . . . . . . . . . . . . . 114

8.1 Active Goal-Driven Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Relabeling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3 Learning curves of GoAL on Fetch tasks . . . . . . . . . . . . . . . . . . . 127
8.4 Learning curves of GoAL on ShadowHand tasks . . . . . . . . . . . . . . . 128
8.5 State visitation heatmaps of the demonstrations queried by the goAL agent 131
8.6 Learning curves of GoAL with different query budgets. . . . . . . . . . . . 132

9.1 Hierarchical learning from human preferences and curiosity . . . . . . . . . 140
9.2 Frames from Door & Key, Fetch Push, and Montezuma’s Revenge . . . . . 145
9.3 Examples of manually created sub-goals and automatically discovered sub-

goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.4 Performance of the components of HhP on Atari games . . . . . . . . . . . 149
9.5 Performance of HhP on Atari games . . . . . . . . . . . . . . . . . . . . . 150
9.6 Performance of HhP in Minigrid . . . . . . . . . . . . . . . . . . . . . . . . 151
9.7 Performance of HhP on Fetch taks . . . . . . . . . . . . . . . . . . . . . . 152

x



List of Tables

1.1 Comparison between pure reinforcement learning (RL), a curiosity-driven
exploration baseline (ICM) and the proposed curiosity-driven agents. . . . 6

1.2 Comparison between pure imitation learning (DQfD) and the proposed
agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Comparison between various goal generation strategies . . . . . . . . . . . 32
3.2 Scores of GoCu on five robotic tasks . . . . . . . . . . . . . . . . . . . . . 34
3.3 Final mean score of GoCu and baselines on Atari games . . . . . . . . . . 35

4.1 Reward in Montezuma’s revenge with varying batch size for PoBP and ReBP 44
4.2 Score in Montezuma’s revenge using different number of prior models 𝑀.

Averages over 10 runs are shown after 600M steps. . . . . . . . . . . . . . 45
4.3 Mean score of PoBP, ReBP and baselines on Atari games . . . . . . . . . . 47
4.4 Average success rate tasks from the Minigrid domain with dense and sparse

settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Ablative performance comparisons of FaSo on Door & key 16×16, Super
Mario Bros sparse, and Montezuma’s Revenge . . . . . . . . . . . . . . . . 64

5.2 Final mean score of FaSo with various scaling strategies . . . . . . . . . . . 66
5.3 Average reward in the randomized-TV versions of Montezuma’s Revenge . 68
5.4 Average success rate of FaSo on fixed and randomly generated tasks from

the Minigrid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Average success rate of FaSo on tasks from the Minigrid domain with dense

and sparse settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Final mean score of FaSo and baselines on Atari games . . . . . . . . . . . 73
5.7 Final mean score of FaSo and baselines on Atari games . . . . . . . . . . . 76

6.1 Frequency of time the agent reaches the target . . . . . . . . . . . . . . . . 94
6.2 Average reward for various features injected into A3C . . . . . . . . . . . . 96

7.1 Performance in terms of average reward of Sarsa-rb(_) . . . . . . . . . . . 115

8.1 Different relabeling thresholds and loss weights . . . . . . . . . . . . . . . . 129
8.2 Percentage of goals achieved from imperfect demonstrations . . . . . . . . 130
8.3 Evaluation of the agent trained on several Mujoco tasks with and without

querying new demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4 Learning locomotion in Mujoco, with and without prioritized goal sampling 132

9.1 Final mean performance of HhP with various sub-goal creation strategies
on Atari games and Minigrid . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Final mean performance of HhP and baselines on Atari games . . . . . . . 152

10.1 Characteristics of the environments used to evaluate our methods. . . . . . 157

xi



Chapter 1

Introduction

1.1 Motivation

Over the course of the last decade, AI systems have transitioned from science fiction to
science fact. The framework of reinforcement learning has begun to make substantial
progress on many complex sequential decision-making problems. A lot of effort has been
directed towards game-playing [1, 2, 3], robot control [4, 5], or even autonomous vehicles
[6, 7]. Despite all the recent breakthroughs and advances for learning a rich set of behaviors
in simulated tasks, reinforcement learning agents are not yet in wide-spread use in the
real world. In fact, these advances have been made possible largely thanks to the ability
of reinforcement learning to learn from huge amounts of data through trial and error
interactions with the environment. Some advances also lie the design of task-specific
reward functions, which is a notoriously challenging engineering problem - shaping a
good reward function is not suitable for real-world tasks that involve versatility, different
objectives, or very large state spaces.

All these considerations lead to one fundamental question: how to improve sample effi-
ciency in reinforcement learning agents enough that they can be practically applied to
real-world tasks? We believe that developing methods which integrate human-like cog-
nitive capabilities is the key to this answer. Cognitive capabilities are aspects of mental
functioning, which include the capability of planning, memorizing, thinking abstractly,
learning from experience, common sense reasoning [8], and making intrinsically moti-
vated choices [9, 10, 11]. These capabilities are one of the skill sets that distinguishes
efficient learning in humans from data-consuming learning in artificial agents. Thus, this
thesis outlines this ideology in detail and concretizes these ideas into algorithms that are
embodied with cognitive capabilities.

In particular, reinforcement learning algorithms may require prohibitive amounts of data
when the extrinsic reward function is sparse - the agent receives no incentive for most of the
time steps. This drawback will become pressing when attempting to scale reinforcement
learning to practical tasks where the observations are often high-dimensional sensor inputs
such as images and rewards naturally extremely sparse. Furthermore, while learning from
scratch (also called end-to-end learning) is one of the most popular paradigms in the field
of machine learning, this will require the agent to directly solve the overall task without
relying on any specific domain knowledge. Hence, putting reinforcement learning agents
into complex diverse real-world environments to do a variety of different tasks remains
very challenging and currently often not feasible.

On the other hand, humans heavily rely on their sense of curiosity, common sense priors
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(domain knowledge), and external feedback to rapidly learn new tasks - their cognitive
capabilities allow them to master new skills in a few attempts. For example, suppose a
child walking in a park. The child is surrounded by a small lake, pine trees, and a hill.
Considering the number of possible activities and continuous changes in the world, in
order to gradually acquire a new skill this child will have to make well-chosen decisions
that fulfill a particular objective. For instance, to climb the large pine tree, this child
will use his sense of curiosity to try new behaviors, but, he will also extract initial biases
and strategies based on his common sense priors. Common sense priors in humans are
extracted from previously learned tasks, and/or external guidance (e.g. parents advice,
imitation of other children). In addition, the human brain will naturally reward him once
the goal being pursued is achieved [12] - after climbing the tree. Somehow, mapping this
continual stream of observations and internal/external guidance is natural for humans but
remains an open challenge in reinforcement learning. In the same situation, an end-to-end
reinforcement learning agent would only make use of the goal reward - that is, when it
reaches the top of the tree. Therefore, it is likely that a reinforcement learning agent will
take a huge amount of trials before mastering this skill.

Motivated to expand the availability of reinforcement learning to real-world domains, we
present our contributions towards endowing reinforcement learning agents with a human-
like ability to achieve sample-efficient learning. We consider that such agents must be
endowed with a number of “building blocks”, aimed at fulfilling vital cognitive capabilities.
Precisely, we propose solutions for giving RL agents cognitive capabilities to address the
issues discussed above:

1. Self-supervision via curiosity-driven exploration to deal with sparse reward environ-
ments,

2. Methods for facilitating various forms of common sense reasoning via novel types of
external guidance and domain knowledge,

3. Techniques for combining intrinsic motivation and human guidance.

First, we design and study curiosity-driven approaches, which aim to speed up the learning
time and improve the performance of reinforcement learning agents. As mentioned above,
in many real-world scenarios, learning becomes impractical or even impossible when re-
wards extrinsic to the agent are very sparse or missing altogether. While humans are
accustomed to operating with rewards that are extremely sparse, reinforcement learning
agents lack an essential cognitive capability: curiosity [11]. Curiosity refers to the capabil-
ity to make intrinsically motivated choices. In detail, humans constantly seek information
and knowledge about their environment, independently of an extrinsic profit [13]. Tak-
ing inspiration from these observations, multiple work have been devoted to reproducing
the computations underlying such a capability. In the context of reinforcement learning,
motivation/curiosity has been used to explain the need to explore complex environments
and discover novel states [14, 15]. In particular, making intrinsically motivated choices
was shown to allow a learner to autonomously and actively acquire complex skills and
order its own learning experiences. However, in order to be useful for real-world tasks,
several major limitations inherent in curiosity must be addressed:
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• Most prior work in the curiosity literature maintains a model of environmental
dynamics and encourages visits of states with large prediction errors. Nevertheless,
this does not take into account the agent’s knowledge of the environment - rather
than visiting all the states, curiosity should encourage exploration of task-relevant
regions of the state space (task-relevant exploration). Besides, the model may drift
over time, which limits the long-term performance of such techniques. (Chapter 3)

• Another serious limitation of prior approaches is that curiosity was shown to vanish
quickly with further visitations. That is, the intrinsic reward goes to zero as soon as
the model becomes sufficiently accurate or the agent does not improve. In the ab-
sence of curiosity reaching the final goal becomes unlikely, prematurely converging
to sub-optimal policies. A further challenge is the handling of stochastic environ-
ments. If the transitions or observations in the environment are random, then even
with a perfect dynamic model, an agent trying to maximize a prediction error will
tend to continuously seek out such local sources of entropy in the environment,
getting trapped in local optima. (Chapter 4)

• While current methods focus on improving local exploration - exploring the conse-
quences of short-term decisions, global exploration that involves coordinated deci-
sions over long time horizons is beyond their reach. Namely, they do not explicitly
encourage the agent to discover deep exploration strategies, failing in long-term
tasks. (Chapter 5)

Second, we focus on giving agents the capability of leveraging external guidance in order
to enable common sense reasoning. In the real world, reinforcement learning requires
large amounts of data due to reward sparsity, but also because most systems learn tasks
from scratch, i.e., without any prior knowledge. While this is convenient in simulated
domains where interactions are virtually unlimited, this assumption rarely holds in the real
world - training an end-to-end reinforcement learning system with no prior assumptions
about the domain often induces millions or billions of interactions to reach reasonable
performance. To overcome this key challenge, one solution is to integrate human guidance
to facilitate various forms of common sense reasoning [8, 16] - the cognitive capability to
make presumptions about the type and essence of ordinary situations based on prior
experiences and domain knowledge (also called common sense priors) [17], which cannot
be achieved using end-to-end reinforcement learning.

However, the problem of endowing AI systems with common sense reasoning remains
a major challenge in the quest for efficient learning. In the context of reinforcement
learning, human knowledge how to approach a new task is often incorporated via imitation
learning, where the agent learns to imitate human demonstrated decisions. Hence, the
learner develops prior assumptions about the environment and initial biases, which can
be used to face a new situation that is similar or analogous to one in the demonstration
data. However, imitation learning raises several serious problems: to provide meaningful
demonstrations the human demonstrator has to have some good familiarity with the
task, it significantly puts more burden on humans, and these approaches are not directly
applicable to behaviors that are difficult for humans to demonstrate. Therefore, in this
dissertation, we focus on novel forms of guidance that reduce the cost of human effort
while significantly improving efficiency - by exploiting domain knowledge and the tight
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coupling between reasoning and learning we seek to greatly improve sample-efficiency. In
this thesis, we focus on improving three aspects of human guidance:

• First, it is not clear how to represent knowledge in a way that they are easy to inter-
pret for the agent and can generalize to many situations. That is, while demonstra-
tions carry state-action trajectory information (i.e. low-level knowledge), it remains
uncertain how to represent high-level information about the environment in a mean-
ingful way; and how to use the information for high-level control such as planning.
Moreover, since human guidance is subject to errors, it motivates one question: how
to correct possible human mistakes to exceed expert-level performance? (Chapter
6)

• Second, prior work expressly create domain knowledge or demonstrations to solve
the task being learned. On the other hand, many datasets exist but they cannot
be used in the context of reinforcement learning - agents do not have the capability
to extract task-relevant information from a dataset. This observation motivates
the need for leveraging existing datasets, in order to substantially reduce human
workload and learn from large amounts of prior knowledge. (Chapter 7)

• Finally, most approaches focus on a passive access to domain knowledge - the agent
and the teacher cannot communicate or share information during the training pro-
cess. Thus, they cannot cope with the changes in the environment (also called
distribution mismatch) or may suffer from low state coverage. Moreover, we argue
that human guidance should be primarily focused on hard-to-learn regions. (Chap-
ter 8)

Finally, one natural question that arises is: how to simultaneously learn from these two
forms of supervision to achieve human-like sample-efficient learning? As explained above,
curiosity is an effective form of intrinsic supervision for control and execution (low-level
tasks), particularly when rewards are sparse. On the other hand, human guidance is
effective to enable optimal planning or reasoning, but can increase human effort and
knowledge is often incomplete/imperfect. Thus, in Chapter 9, we aimed to achieve human-
like sample-efficient learning by incorporating different combinations of supervision at
different levels of our agent.

1.2 Summary of Contributions

The ability to achieve sample-efficient learning in complex and changing scenarios is essen-
tial for reinforcement learning agents to function in real-world environments. As discussed
above, it is critical to improve the cognitive capabilities of agents in order to reflect re-
cent successes in simulated tasks to the real world. To this aim, we considered three
open challenges, namely: (1) learning from sparse rewards via curiosity-driven explo-
ration (self-supervision), (2) bridging the gap between reinforcement learning and human
guidance, and (3) leveraging multiple sources of intrinsic and extrinsic supervision for
sample-efficient learning. We briefly summarize our contributions in the following sec-
tion.
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1.2.1 Curiosity-Driven Exploration for Sample-Efficient Learn-
ing

In Part I, our key emphasis is on building agents that continuously learn skills just from
their own collected experience by using data as its own supervision - curiosity. Curiosity-
driven exploration is a flexible class of self-supervision inspired by curious behaviors in
animals (visiting novel states should be rewarded). It can be used to encourage agents
to learn about their environments even when extrinsic feedback is rarely provided (also
called sparse rewards). For example, count-based exploration [18] keeps visit counts for
states and favors the exploration of states rarely visited. Another class of methods relies
on building a model of environmental dynamics of the environment [19]. For instance,
ICM [14] predicts the feature representation of the next state based on the current state
and the action taken by the agent. Nevertheless, maximizing the prediction error tends to
attract the agent to stochastic transitions, where the consequences of actions are hardly
predictable [20]. This issue has motivated several recent works [20, 21] where the problem
is a deterministic function of its inputs.

This thesis addresses several issues and limitations inherent in curiosity, as summarized
below:

• Skill-Based Curiosity for Intrinsically Motivated Reinforcement Learn-
ing: First, we propose a formulation of intrinsic curiosity that can deal with complex
environmental dynamics, large observation spaces, and very sparse rewards. Many
prior work such as the famous ICM algorithm [14] learn a model of environmen-
tal dynamics and encourage the agent to visit regions with large prediction errors.
However, they do not directly consider the agent’s knowledge (i.e. the policy being
learned) and its ability to reach the goal being pursued. Moreover, it tends to limit
long-horizon performance due to model drift. On the other hand, the proposed
method (GoCu) generates an exploration bonus based on the agent’s knowledge
about its environment in order to encourage the gradual acquisition of new skills,
focusing its attention on task-relevant parts of the state space to speed up learning
and improve sample efficiency. To this end, we propose to automatically decompose
the task into easier sub-tasks and to evaluate the agent’s ability to master multiple
skills at once. We further present and evaluate a technique to embed skills into
a latent space, in order to improve generalization of skills. The depicted method
scales to high-dimensional problems, avoids the need for maintaining a model of the
world, and can perform in sequential decision scenarios.

• Exploration via Progress-Driven Intrinsic Rewards: In spite of curiosity-
driven approaches’ ability to deal with some hard exploration tasks, they tend to
get stuck in local optima in tasks featuring stochastic dynamics or local sources of
entropy. Furthermore, these algorithms face a fundamental limitation: the intrinsic
reward may vanish quickly with additional visitations, converging prematurely to
sub-optimal policies. To address these pitfalls, we introduce a robust definition of
curiosity that considers the agent’s learning progress in terms of “quantity” and
“quality” on a multi-step horizon. We postulate that focusing on hard-to-learn
regions of the state space is crucial to efficiently explore. To quantify the agent’s
learning progress, we propose to measure the divergence between a parametric model



6 1.2. SUMMARY OF CONTRIBUTIONS

Table 1.1: Comparison between pure reinforcement learning (RL), a curiosity-driven ex-
ploration baseline (ICM) and the proposed curiosity-driven agents.

Challenge

Method Sparse Rewards Task-relevant Exploration Vanishing Curiosity Stochasticity Global Exploration

RL X X X X X
ICM X X X X X
GoCu X X X X X
PoBP, ReBP X X X X X
FaSo, IML X X X X X

(i.e. the current model) and prior models. We develop and evaluate two types of
models based on: 1) the agent’s understanding of the world (ReBP), 2) the agent’s
policy (PoBP). We further adopt a mechanism called episodic-skills to promote
faster learning of key skills.

• Fast and Slow Curiosity for High-Level Exploration: While intrinsically
motivated agents hold the promise of better local exploration, solving problems that
require coordinated decisions over long-time horizons remains an open problem. To
overcome this drawback, we found that high-level exploration - the combination of
local and deep dominant exploration phases, is essential. To this end, we introduce
the concept of fast and slow curiosity that aims to incentive high-level exploration
by flexibility integrating two reward components (FaSo). Our method decomposes
the curiosity bonus into a fast reward that deals with local exploration and a slow
reward that encourages deep exploration. We then derive another algorithm for
the better incorporation of action-dependent information into the existing intrinsic
calculation and a different strategy (IML) to flexibly combine intrinsic rewards,
promoting lifelong learning. By doing so, the proposed method reduces the amount
of interactions with the environment by several orders of magnitude while enabling
deep exploration even in the presence of sparse rewards and temporally-extended
exploration patterns.

Overall, we develop the means for integrating curiosity into reinforcement learning.
Through evaluations on benchmark tasks, we show that curiosity is vital to rapidly
acquire new skills and improve exploration efficiency in extremely sparse reward envi-
ronments. Besides, even in the absence of explicit extrinsic reward, curiosity provides
enough indirect supervision for learning interesting behaviors and skills. Furthermore,
we demonstrate that introducing this cognitive capability enables our agents to mas-
ter tasks featuring real-world characteristics (e.g. stochasticity, poorly-defined rewards,
temporally-extended exploration patterns) that traditional methods fail to solve (Table
1.1).

1.2.2 Human Guidance for Sample-Efficient Learning

In Part I, we focus on guiding an end-to-end agent learning via its own supervision (i.e.
curiosity). Part II takes inspiration from development in humans, they rarely attempt
to learn from scratch but instead also heavily rely on their common sense priors. They
extract common sense priors from guidance of other humans, and/or previously learned
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tasks. Such guidance is often available in real-world domains and is essential to scale
reinforcement learning to practical tasks.

In the context of reinforcement learning, the most common form of external guidance
is the human policy itself [22] (also called imitation learning). A human demonstrator
communicates the policy by performing the task in person and providing the correct
actions to the agent. Most imitation learning algorithms assume this type of guidance
[23, 24]. Another form of imitation learning, inverse reinforcement learning, extracts a
reward function from the demonstration data [25, 26, 27]. However, these approaches are
not directly applicable to behaviors that are difficult for humans to demonstrate such as
robot control or in long-time horizon tasks [28]. Moreover, this type of domain feedback
can significantly increase human workload. These considerations motivate the need for
designing RL systems with the capability of integrating different forms of guidance more
suitable for real-world scenarios. In this dissertation, we propose initial directions towards
novel types of guidance, which are less expensive than policy demonstrations and more
intuitive for humans. Overall, we aim to reduce the cost of human effort far enough that
it can be practically applied to real-world systems.

This thesis introduces novels types of guidance and domain knowledge as summarized
below:

• Combining Deep Reinforcement Learning with Prior Knowledge and
Reasoning: This chapter focuses on introducing human-like reasoning and domain
knowledge to supervise the agent’s learning. As an intuition, we enhance infor-
mation given to the agent by providing human expertise. Our method (DRL-EK)
augments the input of a reinforcement learning model whose input is raw pixels
by adding high-level information created from simple knowledge about the task
and recognized objects within frames. This type of guidance is less expensive than
policy demonstrations and easy to understand for the agent, while providing addi-
tional information that can be generalized to many situations. We then extend this
framework to integrate human-based reasoning and planning to improve the overall
exploration strategy followed by agent. Since domain knowledge is often incomplete,
we simultaneously train the reinforcement learning model to correct possible human
errors. Further benefits stem from combining multiple sources of decisions (prior vs
learned) to improve the robustness in the action selection.

• Towards interpretable reinforcement learning with state abstraction
driven by external knowledge: In the above Chapter, we found that it is hard
to generalize domain knowledge to new tasks. Another general issue is that most
imitation-based reinforcement learning agents lack interpretability - while deep neu-
ral networks have been shown to be very effective, the structure of these models
makes them difficult to be interpreted, which restricts their use to non-safety crit-
ical domains. We propose a learning framework (Sarsa-rb(_)) that addresses all of
these issues at once by combining a novel reinforcement learning architecture with
large amounts of domain knowledge to significantly accelerate learning, without the
need for demonstrations or specific human engineering. Namely, we propose to ex-
tract symbols and first-order logic rules, and then use them to represent the internal
states of our reinforcement learning model, making decisions fully interpretable and
reducing the state space to be explored. Critically, these rules can be extracted from
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Table 1.2: Comparison between pure imitation learning (DQfD) and the proposed agents.

Challenge

Method Guidance Robust to Noise Intrepretable Existing Datasets Cooperation Target Goal(s)

DQfD Demonstrations No No No Passive Single
DRL-EK High-level Knowledge / Planning Yes No No Passive Single
Sarsa-rb(_) First-order rules Yes Yes Yes Passive Single
goAL Goal-driven demonstrations Yes No No Active Multiple

existing datasets related to the task being learned and during the training process.
To do so, we present three novel methods to extract rules, which includes analyzing
the learned representation of an autoencoder. Besides, the structure of the rules
can be used to maximize the benefit of past experience to face new situations. This
is the key idea of the sub-states mechanism that exploits similarities among rules.

• Active Goal-Driven Learning: Above chapters focus on a passive access to the
demonstrator. That is, there is no active cooperation between the agent and the
human demonstrator (or the provided domain knowledge). However, to be useful in
changing real-world tasks it may be necessary to promote active cooperation: learn-
ing from a fixed set of demonstrations/domain knowledge may be impracticable due
to lack of state coverage or distribution mismatch - when the learner’s goal deviates
from the demonstrated behaviors. Besides, we are interested in learning how to
reach a wide range of goals from the same set of domain knowledge. We contribute
an active goal-conditioned approach (goAL) that drastically reduces expert work-
load by incrementally requesting partial demonstrations (i.e. short demonstrations)
towards specific goals (goal-driven demonstrations). Goal-driven demonstrations
are actively queried based on the agent’s confidence and the agent’s ability to reach
the goal being pursued. We found this type of guidance to be easier to demon-
strate and more intuitive for a human than full demonstrations, while significantly
increasing the value information of the queries by matching the agent’s needs. We
then contribute a relabeling strategy to artificially generate more expert data. Fi-
nally, the proposed framework further incentivizes the sampling of goals where the
disagreement between the expert and the policy is maximized.

In this part, we build generic models embodied with the capability of leveraging novel
types of human guidance. We show that the proposed approaches improve various forms
of common sense reasoning, enhancing data efficiency and final performance (Table 1.2).
They reduce the number of required interactions and human effort enough to scale RL to
practical tasks such as robot control, trading, 3D navigation, or game-playing.

1.2.3 Self-Supervision and Human Guidance for Sample-
Efficient Learning

Parts I and II discuss how an agent could integrate internal or external guidance to achieve
sample-efficient learning in the real world. However, in practice, the agent will eventually
have access to multiple types of supervision (e.g. curiosity, goal-driven demonstrations,
preferences). Hence, it motivates the necessity for developing methods that can utilize
multiple intermediate learning signals.
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Figure 1.1: Outline of the thesis.

• Hierarchical learning from human preferences and curiosity: Inspired by
learning in humans - they utilize all possible intermediate learning signals to solve
challenging tasks, we design a novel hierarchical reinforcement learning method
that introduces non-expert human preferences at the high-level, and curiosity to
drastically speed up the convergence of subpolicies to reach any sub-goals (even
in tasks with very sparse rewards). In this work, we only request human high-
level feedback to the supervisor in states where the agent is unsure and struggles.
Moreover, the proposed form of human guidance does not necessarily require the
human trainer to be an expert at performing the task since it only requires the
human to judge outcomes. We further formulate a strategy based on curiosity to
automatically discover sub-goals, eliminating the need for manually designing sub-
goals.

Overall, we aim to mimic the human brain’s capability of aggregating a continual stream
of internal and external guidance. This cognitive capability allows us to solve extremely
challenging tasks in a few interactions. The method can be practically applied to a wide
range of tasks, and shows substantial improvements over prior artificial agents. Moreover,
we can exceed expert-level performance in several domains by actively sharing insights
between the agent and a human.

1.3 Outline of the Thesis

The contributions of this thesis can be separated into three main parts (Figure 1.1). Each
part introduces a class of approaches aimed at improving a different aspect of human-like
sample-efficient learning.

• Part 1 focuses on learning in the absence of dense or well-designed rewards. In-
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spired by early stages of development in animals and humans [29, 30], we build
systems that drive the agent’s learning via its own supervision (curiosity). First, we
develop a method for learning in large state-space environments based on the agent’s
knowledge of the task (Chapter 3). Second, we propose a method for avoiding the
well-known “vanishing curiosity” issues inherent in curiosity and handling stochastic
dynamics (Chapter 4). Finally, we propose an algorithm for long-term exploration,
to avoid local optima and capture the consequences of long-term decisions (Chapter
5).

• Part 2 introduces techniques for learning in cooperation with humans via domain
knowledge and human guidance. More precisely, we focus on novel forms of guidance
that add a minimal human effort to improve both sample efficiency and the perfor-
mance of our agent. 1) We introduce high-level domain knowledge and human-based
planning to augment the agent’s decision making (Chapter 6). 2) We represent the
internal representation of our agent with first-order rules extracted from existing
datasets related to the task being learned (Chapter 7). 3) The agent can actively
query goal-driven demonstrations in hard-to-learn and uncertain regions of the state
space (Chapter 8).

• In Part 3 we then address the problem of learning from multiple types of guidance.
That is, we propose a hierarchical framework that can incorporate different com-
binations of curiosity and human guidance at different levels, leading to dramatic
reductions in both human effort and cost of exploration (Chapter 9).

In the final chapter of this thesis, we summarize our findings and discuss future avenues
of research.



Chapter 2

Background

This chapter provides the necessary background to understand the research topics pre-
sented in the following chapters. This chapter begins with a discussion on the foun-
dations of reinforcement learning (overview of reinforcement learning, Markov decision
process, Bellman equation, and temporal-difference methods), followed by a brief intro-
duction on different broad classes of approaches, including recent on-policy-algorithms,
goal-conditioned reinforcement learning, and hierarchical reinforcement learning. Finally,
we present an overview of the unsupervised image representation learning algorithms that
we make use in this thesis.

2.1 Reinforcement Learning (RL)

Reinforcement learning [31] (RL) consists of an agent learning a policy 𝜋 by interacting
with an environment (Figure 2.1). At each time-step the agent receives an observation 𝑠𝑡
and chooses an action 𝑎𝑡 . The agent gets a feedback from the environment called reward,
𝑟𝑡 . Rewards are given to the agent when it reaches certain desired states and are used for
policy learning.

Given this reward and the current observation, the agent can update its policy to improve
the future expected rewards. Assuming a discount factor 𝛾, the future discounted rewards,
called return R𝑡 , is defined as:

R𝑡 =
𝑇∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟𝑡 ′ (2.1)

Figure 2.1: Structure of agent-environment interactions in reinforcement learning.
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where 𝑇 is the time-step at which the epoch terminates. The agent learns to select the
action with the maximum return R𝑡 achievable for a given observation [32].

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) [32] is defined as a 5-tuple (𝑆, 𝐴, 𝑃, 𝑟, 𝛾), where 𝑆 is
a set of states, 𝐴 is a set of possible actions, 𝑃 : 𝑆 × 𝐴 × 𝑆 → R is a transition function,
𝑟 : 𝑆 × 𝐴 → R is a reward function, and 𝛾 ∈ [0, 1] is a discount factor. We aim to find a
policy 𝜋 : 𝑆 → 𝐴 that maximizes the excepted discounted rewards:

𝑅𝑡 = E[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)] (2.2)

In other words, the agent selects the action in each specified state using its policy. For
every state 𝑠 ∈ 𝑆, 𝜋(𝑠, ·) forms a probability distribution:∑︁

𝑎∈𝐴
𝜋(𝑠, 𝑎) = 1,∀𝑠 ∈ 𝑆 (2.3)

The characteristic of an MDP is that the environment and the task follow the Markov
property, which is defined as follows:

𝑃(𝑠𝑡+1 = 𝑠, 𝑟𝑡+1 = 𝑟 |𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , ..., 𝑟1, 𝑠0, 𝑎0) = 𝑃(𝑠𝑡+1 = 𝑠, 𝑟𝑡+1 = 𝑟 |𝑠𝑡 , 𝑎𝑡),∀𝑠, 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴
(2.4)

where 𝑃 is the probability distribution. The above property guarantees that the proba-
bility distribution of future actions of the process depends only upon the present state,
not on the sequence of events that preceded it.

2.1.2 Bellman Equation

The agent tries to get the most expected sum of rewards from every state it lands in.
In order to achieve that, we must try to get the optimal value function. The Bellman
equation defines this notion of value of a state.

The value function 𝑉𝜋 (𝑠) which represents the expected return for a state 𝑠 following a
policy 𝜋 is defined as follows:

𝑉𝜋 (𝑠) = max
𝑎∈𝐴
(
∑︁
𝑠
′∈𝑆

𝑃(𝑠, 𝑎, 𝑠′) [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋 (𝑠′)]),∀𝑠 ∈ 𝑆 (2.5)

The optimal value function 𝑉∗(𝑠) can then be calculated by using a policy evaluation
technique:

𝑉∗(𝑠) = max
𝑎∈𝐴
(
∑︁
𝑠
′∈𝑆

𝑃(𝑠, 𝑎, 𝑠′) [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)]),∀𝑠 ∈ 𝑆 (2.6)

We can then derive the optimal policy 𝜋∗ that selects actions that lead to states with the
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highest value:

𝜋∗(𝑠) = argmax
𝑎∈𝐴

(
∑︁
𝑠
′∈𝑆

𝑃(𝑠, 𝑎, 𝑠′) [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)]),∀𝑠 ∈ 𝑆 (2.7)

Rather than directly estimating the value function, it is common to estimate a state-action
function. The state-action value function is called the Q-value function, 𝑄 : 𝑆 × 𝐴 → R,
which represents the expected sum of the discounted rewards for an agent starting at
state 𝑠, selecting an action 𝑎, and then following a policy 𝜋 - whether a particular (s,a)
tuple is valuable in the long run:

𝑄𝜋 (𝑠, 𝑎) = E [𝑅𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]
=
∑︁
𝑠
′∈𝑆

𝑃(𝑠, 𝑎, 𝑠′) [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋 (𝑠′)],∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (2.8)

The optimal policy 𝜋∗ is defined as selecting the action with the optimal Q-value, the
highest expected return, followed by an optimal sequence of actions. This obeys the
Bellman optimality equation:

𝑄∗(𝑠, 𝑎) = E
[
𝑟 + 𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎 ′) | 𝑠, 𝑎

]
(2.9)

and the optimal policy is defined as follows:

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎),∀𝑠 ∈ 𝑆 (2.10)

2.1.3 Temporal-Difference Methods

Temporal Difference (TD) methods enable reinforcement learning in model-free settings,
where no explicit knowledge of the environment model is needed. TD methods use policy
iteration, which can be grouped into two broad classes: on-policy, and off-policy algo-
rithms. They are widely used to learn an optimal policy.

A common off-policy technique to approximate 𝜋 ≈ 𝜋∗ is Q-learning [33]. The estimation
of the action value function is performed iteratively by updating 𝑄(𝑠, 𝑎). This algorithm
is considered as an off-policy method since the update rule is unrelated to the policy that
is learned, as follows:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼
[
𝑟𝑡+1 + 𝛾 ∗max

𝑎
𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡 , 𝑎𝑡)

]
(2.11)

where 0 < 𝛼 < 1 is a learning rate that generally decreases over time. The choice of the
action follows a policy derived from 𝑄. Balancing exploration and exploitation can be
done via an 𝜖-greedy strategy, which trade-off the exploration/exploitation dilemma [32]
by decreasing the probability of exploration over time, 𝜖 . During exploitation, the action
with the highest estimated return is selected whereas a random action is sampled during
exploration.

On the other hand, the on-policy algorithm, Sarsa [34], is a variant of the Q-learning
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algorithm. The key difference between Q-learning and Sarsa is that Sarsa is an on-policy
method, which implies that the Q-values are learned based on the action performed by
the current policy instead of a greedy policy. Sarsa is more conservative, meaning that
Sarsa tends to avoid dangerous actions that may trigger negative rewards. This may be
critical in real-world tasks where mistakes are costly such as in trading or autonomous
driving. The update rule becomes:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡 , 𝑎𝑡)] (2.12)

Sarsa converges with probability 1 to an optimal policy as long as all the action-value
states are visited an infinite number of times.

2.1.4 State-of-the-art On-Policy Algorithms

We now review two state-of-the-art on-policy algorithms which are used as learning meth-
ods in this thesis. Please note that the main difference with the temporal-difference
approaches previously presented lies in the use of deep neural networks used as function
approximators. When dealing with high-dimensional state spaces, table-based representa-
tions (e.g. Q-value function) may become infeasible and they do not generalize to unseen
transition samples. This issue is tackled by representing value functions using function
approximators, such as linear functions [35, 36] or artificial neural networks. In this dis-
sertation, we use deep neural networks as function approximators. Therefore, we present
more in detail two deep on-policy algorithms: A2C [37] and PPO [38].

As mentioned above, in contrast with off-policy methods such as DQN [1] that decouple
the behavior and target policies, on-policy methods update their value functions based
on the trajectories generated following the current policy. A2C is a synchronous variant
of A3C [37] that takes advantage of parallel learning to efficiently learn. It consists in a
critic that estimates the value function to criticize the actions made by the actor, and an
actor that learns a policy 𝜋(𝑎 |𝑠, \) by minimizing the following loss function:

L𝑎𝑐𝑡𝑜𝑟 (\) = −E𝑠,𝑎∼𝜋 [R𝑡 −𝑉𝜋 (𝑠) + 𝛽𝐻 (𝜋(.|𝑠, \))] (2.13)

where 𝐻 (𝜋(.|𝑠, \)) is the entropy to encourage exploration and avoid convergence towards
a sub-optimal policy, 𝛽 controls the importance of exploration during training, and R is
an estimation of the return. As mentioned above, the value function 𝑉𝜋 (𝑠) represents the
excepted return for a state 𝑠 following the policy 𝜋: 𝑉𝜋 (𝑠) = E𝑎∼𝜋(𝑎 |𝑠) [R𝑡 |𝑠𝑡 = 𝑠]

We now review Proximal Policy Optimization (PPO), a specific technique for optimizing
policies. PPO introduces a penalty which controls the change of the policy at each
iteration to reduce oscillating behaviors. The objective function becomes:

L𝐶𝐿𝐼𝑃 (\) = E𝑡 [min(𝜚𝑡 (\)𝐴𝑡 , clip(𝜚𝑡 (\), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)] (2.14)

where 𝜚𝑡 is the probability ratio, 𝜚𝑡 = 𝜋\ (𝑎 |𝑠)/𝜋\𝑜𝑙𝑑 (𝑎 |𝑠), and 𝜖 is a hyperparameter. The
ratio 𝜚𝑡 is clipped to fall between (1− 𝜖) and (1+ 𝜖). 𝐴𝑡 represents the advantage function
𝐴𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) − 𝑉 (𝑠𝑡) - the benefits of taking an action compared to the others, in
a state.
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Figure 2.2: Hierarchical reinforcement learning.

2.1.5 Goal-Conditioned Reinforcement Learning

Here we present a brief overview of the theory of goal-conditioned reinforcement learning
[39, 40]. Goal-conditioned reinforcement learning is an extension of RL to the setup where
there are multiple goals we may try to reach.

Hence, rather than maintaining a policy trained to reach a single target goal (e.g. drive
a car to a target position), it aims to obtain a policy that can accomplish a variety of
tasks (e.g. drive a car to a target position, park the car, change of lane). To this end, we
assume a set of goals 𝐺. The reward function and the policy are additionally conditioned
on a goal, 𝑔 ∈ 𝐺.

At every timestep 𝑡 the agent receives as input not only the current state 𝑠𝑡 but also the
current goal 𝑔, 𝜋 : 𝑆 × 𝐺 → 𝐴. The reward function becomes 𝑟𝑡 = 𝑟𝑔 (𝑠𝑡 , 𝑎𝑡) where 𝑟𝑔
is often a binary function which represents whether the agent could reach the goal (i.e.
1[𝑠𝑡+1 == 𝑔]). The policy is trained to optimize the excepted return with respect to a
goal distribution:

E𝑔∼𝐺 [E𝑟𝑖 ,𝑠𝑖∼𝐸,𝑎𝑖∼𝜋 [𝑅0]] (2.15)

where 𝐺 is the set of goals, and 𝐸 is a data-set of state-action-goal tuples. Goal-
conditioned RL often employs a replay strategy called Hindsight Experience Replay (HER)
[41] to artificially generate new transitions by relabeling goals seen along the state tra-
jectory. Since the transition probability is not affected by the goal being pursued 𝑔, 𝑔
can be relabeled in hindsight. Thus, a transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑔, 𝑟 = 0) can be treated as
(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑔

′
= 𝑠𝑡+1, 𝑟 = 1).

2.1.6 Hierarchical Reinforcement Learning

In this section we introduce notations of hierarchical reinforcement learning [42] that we
use in Part III. The possibility of learning temporally extended actions (as opposed to
primitive actions that last for only one time-step) has been introduced under the concept
of options [43]. This idea plays a central role in hierarchical reinforcement learning.

In our dissertation, we consider a hierarchical RL agent with a two-level hierarchy (Figure
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(a) Autoencoder architecture.

(b) Variational autoencoder architecture.

Figure 2.3: Architecture of an autoencoder (top) and a variational autoencoder (bottom).

2.2). The high-level policy (also called master policy or meta-controller) chooses a sub-goal
that a low-level policy tries to reach. For instance, a sub-goal could be “reach the door”
and the corresponding subpolicy “go left” → “jump” → “go down” → “use key”. Each
sub-goal corresponds to one subpolicy that can be executed by the low-level component.
We denote a sub-goal as 𝑔 ∈ G and a low-level action is denoted by 𝑎 ∈ A. The high-
level policy iteratively selects a sub-goal 𝑔 which is then executed by the corresponding
subpolicy until completion or failure. To choose this sub-goal, the high-level policy takes as
input the current state 𝑠 ∈ S. This problem can be formalized as simultaneously learning
the high-level policy 𝜏 : S → G and a set of low-level policies 𝜋𝑔 : S → A. Low-level
policies receive a positive reward when the sub-goal being pursued is achieved. On the
other hand, the meta-controller receives an extrinsic reward provided by the environment,
which indicates whether the agent is improving at solving the overall task.

2.2 Unsupervised Image Representation Learning

We now briefly summarize unsupervised image representation learning techniques that
we build on in our methods. Unsupervised image representation learning is a popular
research topic in machine learning. For instance, these approaches have been used to
extract meaningful features from rich sensory inputs [44], denoise images [45], or for images
compression [46]. In this section we present two common techniques: 1) autoencoders,
and 2) variational autoencoders.

An autoencoder (AE) [47] consists in an encoder network learning how to compress the
input data 𝑥 into an encoded representation 𝜙(𝑥), and then the original image is recon-
structed 𝑥 by a decoder network (Figure 2.3a). By using a low-dimensional middle layer
(i.e. bottleneck layer), the model is forced to extract relevant features. The parameters
of the neural network are trained to optimize a loss function 𝐿𝐴𝐸 where the first term
L penalizes the reconstruction error of the target given the input and the second term



CHAPTER 2. BACKGROUND 17

prevents overfitting, such as L1 regularization:

L𝐴𝐸 = L(𝑥, 𝑥) + _
∑︁
𝑖

|𝑎 (ℎ)
𝑖
| (2.16)

where 𝑎 (ℎ)
𝑖

represents the activation values in layer ℎ for observation 𝑖, and _ is a scaling
parameter.

In contrast, variational autoencoders (VAEs) [48] are generative models used to learn
latent representation of high dimensional data such as images (Figure 2.3b). The input
image is passed through an encoder network 𝑞𝜙 which outputs the parameters ` and 𝜎 of
a multivariate Gaussian distribution. A latent vector is sampled and the decoder network
𝑝𝜓 decodes it into the original state space. The parameters 𝜙 and 𝜓 of the encoder and
decoder are jointly optimized to maximize:

L(𝜓, 𝜙; 𝑠(𝑖)) = 𝛽𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑠(𝑖)) | |𝑝(𝑧)) − E𝑞𝜙 (𝑧 |𝑠 (𝑖) )
[
log 𝑝𝜓 (𝑠(𝑖) |𝑧)

]
(2.17)

where the first term is a regularizer, the Kullback-Leibler divergence between the encoder
distribution 𝑞𝜙 (𝑧 |𝑠(𝑖)) and 𝑝(𝑧). 𝑝(𝑧) is some prior specified as a standard normal dis-
tribution 𝑝(𝑧) = N(0, 1). The second term is the expected negative log-likelihood - the
reconstruction loss.
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Learning to Act via Curiosity-Driven
Exploration
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Chapter 3

Skill-Based Curiosity for Intrinsically
Motivated Reinforcement Learning

One of the most important problems in reinforcement learning currently is arguably to
improve the agents’ efficiency when rewards are sparse or poorly-defined, which is an issue
for many real-world applications. Classic methods rely on getting feedback via extrinsic
rewards to train the agent. However, when rewards are sparse - rewards are not frequently
emitted, the agent learns very slowly or cannot learn at all.

Motivated to overcome this drawback, we present a novel curiosity-driven approach that
(1) encourages the agent to gradually acquire new skills based on its knowledge of the
task, (2) promotes the revisits of hard-to-learn skills, and (3) improves generalization of
skills to unseen situations.

3.1 Introduction

Combining reinforcement learning (RL) with neural networks has led to a large number
of breakthroughs in many domains. They work by maximizing extrinsic rewards provided
by the environment. In well-specified reward function tasks, such as game-playing [49] or
robotic control [50], RL is able to achieve human performance. In reality, many real-world
domains involve reward functions that are sparse or poorly-defined.

Overcoming sparse reward scenarios is a major issue in RL since the agent can only
reinforce its policy when the final goal is reached. In such scenarios, motivating the
agent to explore the environment is necessary. Several works have attempted to facilitate
exploration by combining the original reward with an additional reward. For instance,
reward shaping [51] guides the policy optimization towards promising solutions with a
supplementary reward, but, the necessity of engineering limits the applicability to specific
domains. An alternative approach to address the reward design problem is to motivate the
agent to explore novel states using its own curiosity - the ability to acquire new skills that
might become useful in the future. Curiosity is motivated by early stages of development
in humans: babies reward themselves for acquiring increasingly difficult new skills. Many
formulations aim to measure the novelty of the states in order to encourage exploration
of novel states. For instance, an approach [52] bases the exploration of the agent on the
surprise - the ability of the agent to predict the future. Similarly, ICM [14] formulates
curiosity as the error in an agent’s ability to predict the consequence of its own actions
on the environment. However, maintaining a model of environmental dynamics may be
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computationally costly, and does not consider the usefulness of the agent’s knowledge
to solve the task. Precisely, rather than visiting all possible states, the agent should
focus on task-relevant information. Moreover, these models remain hard to train in high-
dimensional state spaces such as images and tend to limit long-horizon performance due
to model drift.

In this chapter, we introduce a novel technique called goal-based curiosity (GoCu). We
propose an alternative solution to the curiosity mechanism by generating an exploration
bonus based on the agent’s knowledge about its environment. To do so, we use the idea
of goals to automatically decompose a task into several easier sub-tasks, and, skills, the
ability to achieve a goal given an observation. In summary, our main contribution is that
we manage to bypass most pitfalls of previous curiosity-based works with the following
idea: GoCU is not based on the ability to predict the future nor the novelty of the
states, but on learning which skills are mastered. That is, often visiting a state will result
in a high intrinsic reward unless the agent perceives that it has good knowledge about
the associated skills. In detail, given an observation the agent predicts which goals it
masters. We then reward the agent when the uncertainty to achieve them is high, thereby
encouraging curious behaviors. Our method relies on two deep neural networks: (1) a
deep neural network to embed the states and goals into a latent space and (2) a predictor
network to predict the capabilities of the agent. In order to improve generalization of skills
to novel scenarios, we embed the goals into a latent space using a variational autoencoder
[48]. Note that skill-discovery is done in a curriculum fashion by letting the agent uses
its experience to gradually discover task-relevant skills.

We first evaluate our approach on a set of sequential sparse tasks (several sequential
steps are required in order to achieve the final goal) in the Minigrid [53] environment.
Next, we show that our approach can scale to large environments. It can also learn
policies in the MuJoCo environment, as well as in several Atari games, in a small number
of steps. We compare our algorithm against proximal policy optimization (PPO) [38],
and advantage actor-critic (A2C) [37] agent as well as state-of-the-art curiosity-based RL
methods. We show that curiosity-driven exploration is crucial in tasks with sparse rewards
and demonstrate that the proposed agent explores faster as compared to other methods.

3.2 Related Work

The problem of motivating the agent to explore sparse reward environments was stud-
ied in the works that we discuss in this section. Most approaches can be grouped into
three classes: reward shaping and auxiliary tasks, goal conditioned learning, and intrinsic
curiosity.

Reward Shaping and Auxiliary Tasks. Reward shaping [51] aims to guide the agent
towards potentially promising solutions with an additional hand-crafted reward. However,
this idea is limited to specific domains by the necessity of human engineering. Other
attempts have been made to design this additional reward without supervision. For
instance, Stadie et al. [54] improve exploration by estimating visitation frequencies for
states and state-action pairs. When a state-action is not visited enough, a novelty bonus
is assigned. Similarly, several works [55, 56] are based on a pseudo-count reward bonus
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to encourage the exploration of novel states. These methods assume that the states need
to be equally visited. Obviously, this assumption is no longer valid in sequential tasks.
By contrast, we let the agent learn which states need to be explored in priority. Another
solution [57] learns the reward function based on an adversarial reward learning but is
limited to behaviors that are easy to demonstrate. UNREAL [58] trains the agent on
unsupervised auxiliary tasks. In order to perform well, the agent must acquire a good
representation of the states which entails that it must explore the environment. However,
this method requires experts to design the auxiliary tasks. On the other hand, our method
enables the agent to discover sub-tasks without any prior belief about the target task.

Goal Conditioned Learning. Goal conditioned learning motivates an agent to explore
by constructing a goal-conditioned policy and then optimize the rewards with respect to
a goal distribution. For instance, the approach, universal value function approximators
[40], trains a goal-conditioned policy but is limited to a single goal. Andrychowicz et
al. propose an implicit curriculum by using visited states as target and improve sample
efficiency by replaying episodes with different goals [41]. However, selecting relevant goals
is not easy. Another work [59] presets an algorithmic framework to generate a series of
increasing distant initial states from a goal or to embed the goals into a latent space
and then sample the goals [60]. Similarly, Reinforcement Learning with Imagined Goals
(RIG) [61] trains a policy to reach a latent goal sampled from a VAE. However, this
formulation does not have a notion of which goals are hard for the learner. Instead, our
method considers how difficult is to achieve a goal to help the agent to find more efficient
solutions to reach it. Besides, we focus on the problem of optimizing learning of multiple
skills simultaneously to improve data efficiency. Despite successes in robotic manipulation
tasks, generating increasingly difficult goals is still challenging [62], especially in sequential
tasks. In contrast, the proposed method bypasses this issue by training the agent to
gradually acquire new skills using multiple goals at once, and adapts curiosity based on
the complexity of each skill.

Intrinsic Curiosity. Intrinsic curiosity refers to the idea of self-motivating the agent
through an intrinsic reward signal, in order to guide the agent towards the desired out-
come. Most techniques can be grouped into two approaches.

The first approach to generate curiosity relies on estimating a novelty measure, in order
to encourage the exploration of novel states. Schmidhuber et al. propose for the first
time a curiosity reward proportional to the predictability of the task [63] and then, based
on the learning progress [64]. To give another example [65], the agent receives a reward
proportional to the Bayesian surprise, the estimation of which data affect the prior belief
about the world of the observer. Several other works focused on maximizing a measure
such as empowerment [66] or, competence progress [67]. Recently, a solution was proposed
to measure uncertainty to generalize count-based exploration [55]. Nevertheless, these
models are hard to train in high-dimensional state spaces such as images, or, in stochastic
environments.

The second approach consists in optimizing the ability of the agent to predict the conse-
quences of its actions. Racanière et al. base the exploration of the agent on the surprise -
the ability of the agent to predict future [52]. A related concept [68] estimates the surprise
of the agent by predicting the consequences of the actions of the agent on the environment.
Namely, they use an inverse model to learn feature representations of controllable aspects
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Figure 3.1: In a state 𝑠, the agent interacts with the environment by performing an action
𝑎, and receives an extrinsic reward 𝑟𝑒. A policy 𝜋(𝑠𝑡 ; \𝑃) is trained to optimize the sum
of 𝑟𝑒 and 𝑟𝑔𝑐. The intrinsic reward 𝑟𝑔𝑐 is generated by the goal-based curiosity module to
favor the exploration of novel or complex states.

of the environment. Nonetheless, predicting the future is unsuitable for domains in which
variability is high, and tend to limit long-horizon performance due to model drift. In that
work, the intrinsic curiosity combines the agent’s experiences and a predictor to estimate
how complex are the future states surrounding the current state; while embedding states
into a latent space to improve generalization. Another line of work aims to predict the
features of a fixed random neural network on the observation of the agent [20]. How-
ever, the low sample efficiency does not show clearly how to adapt this method to large
scale tasks. The intrinsic motivation may include the comparison between the current
observation and the observations in an episodic memory [21]. This comparison uses the
concept of reachability, but is limited to episodic tasks and does not use the idea of skill
learning. Our work differs by using proposing a technique that scales to continuous tasks
and let the agent discover new skills and reinforce them based on their difficulty. Our
solution is also more data efficient since we only need to do predictions on a small number
of skills instead of on the full episodic memory. By embedding the skills and states, we
also improve generalization capability of our agent. Finally, our method enables the use
of efficient goal sampling strategies to reduce training time. A solution is to [69] maintain
a list of behaviors, and reward the agent for exploring novel behaviors. In this chapter,
we step towards this idea by considering the impact of the agent’s actions on its ability to
achieve skills. In the depicted method, only the agent’s experience is required to predict
the uncertainty to master skills, thus alleviating the need of predicting complex changes
in the environment. Besides, skill discovery is carried in a curriculum way to let the agent
gradually acquire task-relevant skills.

3.3 Skill-Based Curiosity

We consider an agent interacting with an environment; at each time step 𝑡 the agent
performs an action and receives an extrinsic reward 𝑟𝑒𝑡 supplied by the environment. In
sparse reward tasks, rewards are infrequent or delayed which entails that agents learn
slowly.

We propose to introduce a new reward signal - goal-based curiosity reward 𝑟𝑔𝑐, to encour-
age the agent to discover new skills (Figure 3.1). In our approach, at time 𝑡 the agent
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Algorithm 1 PPO + GoCu pseudo-code

1: Collect 𝐷 = {𝑠(𝑖)} using random exploration
2: Train VAE on 𝐷 by optimizing (2.17)
3: Initialize replay buffer 𝑅
4: Initialize goal buffer 𝑅𝑔
5: Initialize environment env
6: Initialize goal-based curiosity module GCM
7: 𝑡 = 0
8: for rollout r=1 to 𝑀 do
9: Sample K goals from 𝑅𝑔 𝑔

′ = {𝜙(𝑔) ∼ 𝑓𝑝 (𝑔)}
10: for l=1 to N do
11: Sample 𝑎𝑡 ∼ 𝜋(𝑎𝑡 |𝑠𝑡)
12: Collect 𝑠𝑡+1, 𝑟𝑒𝑡 ∼ env(𝑠𝑡+1, 𝑟𝑒𝑡 |𝑠𝑡 , 𝑎𝑡))
13: Calculate curiosity-based reward 𝑟

𝑔𝑐
𝑡 = GCM(𝑠𝑡+1)

14: Add 𝑠𝑡 , 𝑠𝑡+1, 𝑟𝑒𝑡 , 𝑎𝑡 , 𝑟
𝑔𝑐
𝑡 to 𝑅𝑟

15: 𝑡+ = 1
16: Calculate returns 𝑅𝑒,𝑟 ,𝑅𝑔𝑐,𝑟 for extrinsic and curiosity-based reward
17: Calculate advantages 𝐴𝑒,𝑟 ,𝐴𝑔𝑐,𝑟 for extrinsic and curiosity-based reward
18: Calculate the new advantage 𝐴𝑟 = 𝐴𝑒,𝑟 + 𝜎𝐴𝑔𝑐,𝑟
19: Optimize PPO using on 𝑅𝑟 and 𝐴𝑟
20: Update GCM every K episodes on 𝑅
21: Add new goals to 𝑅𝑔 given 𝑅𝑟

receives the sum of these two rewards 𝑟𝑡 = 𝑟
𝑒
𝑡 + 𝑟

𝑔𝑐
𝑡 . To encourage the agent to explore the

environment and favor the discovery of new skills, we design 𝑟𝑔𝑐 to be higher in complex
states. To do so, a curiosity signal is produced in novel states, and, in states involving
skills that the agent seeks to reinforce. The policy 𝜋(𝑠𝑡 ; \𝑃) is represented by a deep neural
networks. Its parameters \𝑃 are optimized to maximize the following equation:

max
\𝑃
E𝜋(𝑠𝑡 ;\𝑃) [

∑︁
𝑡

𝑟𝑡] (3.1)

Any RL algorithm could be used to learn the policy 𝜋(𝑠𝑡 ; \𝑃). In this work, we use proximal
policy optimization (PPO) [38] as policy learning method. Our main contribution is the
goal-based curiosity module (GCM) module that helps the agent in the quest of new
knowledge. We describe more details of each step below. See Alg. 1 for a more formal
description of the algorithm. In order to combine the extrinsic 𝑟𝑒 and the goal-based
curiosity 𝑟𝑔𝑐 reward, we decompose the return into two terms 𝑅 = 𝑅𝑒 + 𝑅𝑔𝑐. These two
terms are estimated by collecting samples from the environment. The state values 𝑉𝑒 and
𝑉𝑔𝑐 are computed by the same critic neural network with two heads, one for each value
function. Finally, we combine them to obtain the advantage function:

𝐴𝑟 = 𝐴𝑒,𝑟 + 𝜎𝐴𝑔𝑐,𝑟 (3.2)

where 𝜎 controls the importance of the goal-based curiosity advantage. Note that the
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Figure 3.2: Goal-based curiosity module. The module takes as input an observation 𝑠,
and, at the beginning of every episode samples K goals. The goals and the observation
are embedded during step 2, 𝜙(𝑔) and 𝜙(𝑠) respectively. Step 3 predicts the probability
that each goal is mastered; and given this vector of probabilities calculates the curiosity
reward signal 𝑟𝑔𝑐. At the end of each episode, multiple new goals are added to the goal
buffer based on the states experienced.

measure performance that we aim to improve with GoCu is the extrinsic rewards; the
intrinsic rewards only intend to guide exploration of the environment.

3.3.1 Goal-Based Curiosity Module (GCM)

We build the goal-based curiosity module (GCM) on the following idea. Rather than
using count-based exploration, or next frame prediction error as exploration bonus, GCM
rewards the states based on the uncertainty to master skills. We introduce the concept
of skill that represents the ability of the agent to achieve a goal 𝑔 in a state 𝑠. A skill
is mastered when the agent can achieve 𝑔 from 𝑠 with a high degree of confidence. The
confidence is measured in two ways: (1) the difficulty to go from 𝑠 to 𝑔, (2) the progress
of the agent to achieve this skill. As a result, curiosity incentivizes the agent to seek new
knowledge and discover new skills that might lead to the final goal.

A straightforward solution is to consider the final goal as the goal to be achieved in any
state. However, in sparse reward environments, reaching the final goal may be infrequent,
entailing that for most of the episodes the agent only experiences failures. Therefore,
training a probabilistic model for predicting if the final goal is mastered is highly inaccu-
rate. Instead, we propose to estimate if the agent can solve multiple intermediate goals.
Since these goals are easier to master - encountered more frequently, the estimation be-
comes more accurate while carrying information about the final goal. In the absence of
domain knowledge, a general choice is to set the goals as states experienced by the agent
during exploration.

In details, the goal-based curiosity module takes as input the current observation and
produces the curiosity based reward 𝑟𝑔𝑐. The algorithm can be broken down in fours
parts (Figure 3.2). First, at the beginning of each episode, 𝐾 goals are sampled with
1 ≤ 𝐾 ∈ N (Section 3.3.2). Second, at each step, we embed the current observation
and the goals into a latent space using a variational autoencoder 𝑣𝑒 : 𝑂 → R𝑛 (Figure
2.3b). Third, the agent predicts the probability that each goal can be achieved from
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the current state. Our implementation relies on a deep predictor neural network which
predicts the probability that a goal is mastered 𝑚 : R𝑛 × R𝑛 → [0,1] and the curiosity
based reward is calculated. To help the agent in the quest of new knowledge, we design
the reward to encourage the agent to move towards regions of the state-action space that
are simultaneously novels and for which the skills are ”hard-to-learn”. Namely, we take
advantage of uncertainty given the probabilities that the goals are mastered by the agent.
We give details about the reward calculation in Section 3.3.3. Finally, at the end of the
episode, the GCM is updated according to the experienced observations and the predictor
neural network is retrained to fit with the new knowledge of the agent (Section 3.3.4).

3.3.2 Goals

As described earlier, estimating if the agent can solve the entire task is challenging.
Instead, we introduce the concept of skill to decompose the problem of reaching a distant
final goal into multiple easier goals. A skill is the ability of the agent to reach a goal from
a given state. Let 𝐺 be the space of possible goals. We suppose that every goal 𝑔 ∈ 𝐺
corresponds to some predicate 𝑓𝑔 : 𝑆 → {0, 1} and that a skill is mastered given a state 𝑠
when 𝑓𝑔 (𝑠) = 1. In order to keep a consistent representation, we suppose the goal space
𝐺 to be the same as the state space 𝑆, 𝐺 = R𝑛.

Working with high-dimensional state spaces such as images is complex. Instead, we
embed the goals and states into a latent space 𝑍 using a variational autoencoder 𝑣𝑒,
𝜙(𝑠) = 𝑣𝑒(𝑠) and 𝜙(𝑔) = 𝑣𝑒(𝑔). In addition to improve data efficiency, it crucially
improves generalization capability of our model [70, 71]. That is, the deep predictor
network can generalize knowledge for two goals sharing a similar embedded representation.
We initialize the parameters of a VAE by stepping a random agent for a small number
of iterations before beginning training. Then, we train a VAE on observations seen along
trajectories. The goals are stored in a goal buffer 𝑅𝑔.

In practice, every episode starts with sampling a sub-set 𝑔′ of latent goals given a distri-
bution function 𝑓𝑝:

𝑔′ = {𝜙(𝑔) ∼ 𝑓𝑝 (𝑔)} sample K goals ∈ 𝐺 (3.3)

In the current implementation, the probability of sampling a goal 𝑓𝑝 (𝑔) is uniform for all
the goals. In future work, we anticipate more complex distributions to take into account
the difficulty of the goals.

During training, the goals aim to provide additional feedback to the agent to improve
exploration. At the end of an episode, we add a mechanism to further enable sample-
efficient learning. In addition to the state reached at the end of the episode, we artificially
generate new goals by selecting states experienced during the episode. We discuss in
Section 3.4.3 the strategies to select the new goals after experiencing an epoch. To keep
the goals as different as possible, we only add the goals that are different from the existing
ones. To do so, we measure the similarity between the embedded goals in a similar manner
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to that of the RIG [61].

𝑠𝑖𝑚(g1, g2) = −‖𝜙(𝑔1) − 𝜙(𝑔2)‖𝐴 ∝
√︃
log ve𝜙 (𝜙(𝑔2) |g1) (3.4)

where 𝑔1 and 𝑔2 are two goals, their embedded representation denoted by 𝜙(𝑔1), 𝜙(𝑔2)
respectively, and ve𝜙 the VAE encoder.

3.3.3 Reward Calculation

Given the embedding representations of the current state 𝜙(𝑠) and the goals, GCM pro-
duces the curiosity reward 𝑟𝑔𝑐. We propose to train a predictor network to predict the
probability that a skill is mastered - the probability that a goal 𝜙(𝑔) can be achieved from
𝜙(𝑠), 𝑚(𝜙(𝑠), 𝜙(𝑔)). The prediction is made for each pair of current state - goal, and the
concatenation produces a vector: 𝑔𝑎𝑐𝑡𝑖𝑣𝑒 = 〈(𝑚(𝜙(𝑠), 𝜙(𝑔1)), ..., 𝑚(𝜙(𝑠), 𝜙(𝑔𝐾)))〉. Given
these predictions we define the goal-based curiosity reward:

𝑟𝑔𝑐 =

[
(〈𝛼〉 − ℎ〈(𝑚(𝜙(𝑠), 𝜙(𝑔1)), ..., 𝑚(𝜙(𝑠), 𝜙(𝑔𝐾)))〉)

𝛿

]
(3.5)

where ℎ is a function mapping the probability vector 𝑔𝑎𝑐𝑡𝑖𝑣𝑒 to a real number which
expresses the complexity of the state. A state is complex when skills are hard-to-learn - the
goals can be achieved with small probabilities. The parameter 𝛿 controls the scale of the
curiosity reward, and 〈𝛼〉 the sign of the intrinsic reward. In the current implementation,
we use 𝛼 = 〈1.0〉, a uniform vector of 1, and ℎ = max(). The choice of ℎ depends on the
desired exploration behavior. In practice, ℎ = max() results in a positive reward unless
all skills are considered as mastered by the agent, forcing a complete exploration of the
environment. Another choice could be ℎ = mean(); the curiosity signal would decrease
when a majority of skills (but not necessarily all) are mastered with high probabilities. As
a consequence, the agent is forced to explore novel states, leading to a faster but possibly
partial exploration of the state space.

In other words, predicting that the agent cannot achieve a goal results in a positive
curiosity-based reward, 𝑟𝑔𝑐 > 0. Curiosity pushes the agent to explore novel regions of the
state space, and discover more efficient solutions to achieve the goals. One issue with the
combination of extrinsic reward and curiosity-based reward is the scaling of the intrinsic
reward which may vary between tasks. In order to mitigate this scaling problem, we
normalize the curiosity-based reward:

𝑟
𝑔𝑐
𝑡 =

𝑟
𝑔𝑐
𝑡

𝜎(𝑅𝑔𝑐)
(3.6)

with 𝜎(𝑅𝑔𝑐) an estimation of the standard deviations of the curiosity-based reward re-
turns.
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3.3.4 Training the Goal-Based Curiosity Module

The VAE network and predictor network are optimized every 𝑃𝑣𝑎𝑒 and 𝑃𝑚 time-steps
respectively. The agent’s observations are collected in a memory bank and every 𝑃𝑣𝑎𝑒 time-
steps the VAE is retrained for 20 epochs. When the memory bank is full, a random element
is replaced with the new observation. This is necessary to ensure that the representation
of the goals adapts over exploration.

The update of the predictor network can be broken down into three parts: (1) training
samples are collected during exploration, (2) a label is assigned to each example, and (3)
the network is optimized. First, the policy interacts with the environment to produce a set
of trajectories {𝜏1, ..., 𝜏𝑖}. Within each trajectory, each visited states 𝑠𝑡 is concatenated
with the 𝑑𝑚𝑎𝑥 next states {(𝑠𝑡 · 𝑠𝑡+1), (𝑠𝑡 · 𝑠𝑡+2), ..., (𝑠𝑡 · 𝑠𝑡+𝑑𝑚𝑎𝑥

)}. For each training sample
(𝑠𝑡 , 𝑠𝑡+𝑦), we consider the left element to be the initial state (s), and the right element the
goal that the agent aims to achieve (g).

Second, a label (mastered/unmastered) is assigned to each example - skill, (𝑠, 𝑔). To do
so, we compute a complexity score for each example 𝑠𝑐(𝑠, 𝑔) that takes into account the
difficulty to go from 𝑠 to 𝑔, and the progress of the agent to achieve this skill. In details,
we use a linear combination of the prior knowledge of the predictor network 𝑝(𝑠, 𝑔) and
the number of time-steps 𝑑𝑖𝑠𝑡 (𝑠, 𝑔) between the state 𝑠 and the goal 𝑔 - skill difficulty:

𝑠𝑐(𝑠, 𝑔) = _𝑝𝑟𝑖𝑜𝑟 (𝑠, 𝑔) + 𝛽𝑑𝑖𝑠𝑡 (𝑠, 𝑔) (3.7)

where 𝑝𝑟𝑖𝑜𝑟 (𝑠, 𝑔) is the belief of the predictor network about the skill, and the scalars _
and 𝛽 weight each component. Given 𝑠𝑐(𝑠, 𝑔), the probability that in a state 𝑠 the skill
(𝑠, 𝑔) is considered mastered 𝑝𝑠𝑘𝑖𝑙𝑙 (𝑠, 𝑔) (label +1) follows:

𝑝𝑠𝑘𝑖𝑙𝑙 (𝑠, 𝑔) = 1.0 − 1.0

1.0 + 𝑒−𝑏(𝑠𝑐(𝑠,𝑔)−𝑎)
(3.8)

where 𝑎 > 0 controls the boundary between the two classes. The term 𝑎 acts as the degree
of certainty to decide whether the agent should explore new parts of the environment or
continue to acquire knowledge about this skill. It can be interpreted as follows: to ensure
that the skills can be achieved with high certainty, 𝑎 should be small. Hence, only low
difficulty skills are labeled as mastered (label +1). Thereby, during exploration, GCM
produces a positive reward (Eq. 3.5) in states involving skills that the agent seeks to
reinforce (label 0). Finally, the predictor network is optimized every 𝑃𝑚 = 20000 time-
steps via supervised learning.

3.4 Experiments

3.4.1 Environments

We evaluate our agent on a set of tasks in the MiniGrid environment [53]. The tasks are
partially observable, with varying components such as navigation, sequential solving, and
planning. We consider the Door & key task domain that we modify to generate RGB
images. An example is depicted in Figure 3.3a. It consists in a board surrounded by grey
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(a) Door & key environment (Minigrid) (b) Visual reacher environment (Mujoco)

Figure 3.3: Examples of training environments. Door & key environment with a board of
size 16 × 16 (left). Example of task in the MuJoCo domain consisting in a 7-DoF Sawyer
arm that aims to reach a target (right).

walls that the agent cannot cross. The agent is represented by a red triangle, and the final
goal to reach by a green square. In order to reach the final goal, the agent has first to pick
a key randomly positioned on the map, then unlock a door and finally get to the green
square. The agent receives as input a 32×32 RGB image of the visible cells, represented
by a light gray rectangle. The agent can choose among the 7 possible actions: turn left,
turn right, move forward, pick up an object, drop the object being carried, open doors -
interact with objects and complete the task. Solving such sparse tasks is challenging since
the agent only receives a positive reward +1 when it reaches the final goal. Most of the
times, the agent only receives 0 as reward. Using efficient exploration strategies such as
curiosity is crucial.

3.4.2 Implementation details

The agent was trained for 5000000 frames. Any RL algorithm could be used to train our
model. In our experiments, we combine PPO and GoCu that indicates to perform well.
The PPO agent processes the input with a convolutional neural network that consists
in a serie of three convolution layers, with 16,32,64 filters respectively, kernel size 2×2,
stride of size 2 and padding 1, with rectified linear unit (ReLU) function as the activation
function. In the experiments, we use a rollout of length 128, an entropy coefficient 0.01,
batch size 256, a discount rate _ = 0.99, value loss term coefficient 0.5, and a clipping
𝜖 = 0.2. The experiments were run with 16 parallel environments and optimized with
Adam [72] for 4 optimization steps and a learning rate 𝛼 = 0.0001. At the beginning of an
episode, 𝐾 = 50 goals are sampled from the goal buffer with a maximum size 1500. The
intrinsic advantage is combined in PPO with 𝜎 = 0.25 and 𝛿 = 10 as scaling factor of the
curiosity-based reward (Eq 3.5). We use _ = 3, 𝛽 = 1 to weight the prior belief against new
knowledge, and 𝑏 = 0.8, 𝑎 = 15 to assign the label of training samples. In our experiments,
we observed that when _ > 10, the agent struggles to integrate new knowledge - discover
new skills, whereas a small value (i.e. _ 6 2) may result in overfitting of observations.
The parameter 𝑎 controls the difficulty threshold to classify whether the skill is mastered
or not. We found that a value 10 < 𝑎 < 30 performs well in most tasks. Since 𝑏 controls
the boundary between the two classes, keeping a large value 𝑏 > 0.7 makes the boundary
large, crucial to improving performance of the predictor network.

We pretrained the VAE with 10 000 images collected with a random exploration policy.
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Figure 3.4: Extrinsic rewards achieved by PPO+GoCu for different number of goals in
the task Door & key 8×8.

The encoder neural network consists in 3 convolutional layers with the following param-
eters (filter: 32,32,32 kernel size: 3×3, 3×3,3×3, stride size: 2,1,1) and apply a rectifier
non-linearity. They are followed by a fully connected layer of size 128. The latent vector
` and 𝜎 are of size 10. The 4 last layers are the corresponding decoding layers. We use
the compressed representation, the fully connected layer that follows the encoder network,
to embed the goals and states. To measure the distance between two goals (Eq 3.4), we
found that 𝐴 = 𝐼 corresponding to Euclidean distance, performs better than cosine or
Mahalanobis distance.

The predictor network is a fully-connected network with 5 hidden layers of size 512. It
takes as input the concatenation of the embedding of a state and a goal and outputs
(softmax function) the probability that the skill is mastered. The input of each layer is
batch normalized and followed by a ReLu activation function. We use Adam to opti-
mize the predictor network, with learning rate 0.0005 on batch of size 128. Every 20000
training-steps, the network is optimized on the new training samples for 15 epochs.

3.4.3 Ablation Analysis

Learning with Variable Numbers of Goals

To isolate how much the number of goals contributes to our algorithm, we vary the
number of active goals while fixing other parts of our method. We compare the perfor-
mance of PPO+GoCu trained with the same hyperparameters and a number of goals
𝐾 ∈ {5, 10, 50, 200}. For this experiment, the agents were trained on the Door & key task
with a board of size 8 × 8. The goal was to evaluate the gain we can have by increasing
the number of goals sampled at each epoch.

The results shown in Figure 3.4 show that increasing the number of goals greatly im-
proves performance. However, we also note a too large number of goals, 𝐾 = 200, makes
the curiosity saturate. Experiments suggest that an excessive number of goals increases
prediction errors of the predictor network. In contrast, learning an insufficient number of
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Table 3.1: The table compares the average reward for various goal generation strategies,
and on different tasks.

Time-steps to converge (in millions) Average Reward (at convergence)

Method 5×5 8×8 11×11 5×5 8×8 11×11
random 0.22 ± 0.05 2.20 ± 0.10 4.1± 0.42 0.96± 0.04 0.94 ± 0.05 0.94 ± 0.07
proportional 0.25 ± 0.01 1.60 ± 0.04 3.3± 0.16 0.96± 0.03 0.95 ± 0.05 0.95 ± 0.08
late 0.32 ± 0.03 2.56± 0.21 3.75± 0.36 0.94± 0.04 0.95 ± 0.06 0.94 ± 0.10

skills (𝐾 ∈ {5, 10}) decreases convergence speed. Note that in the 11 × 11 environment
the results show similar trends. We observe that 𝐾 = 50 was optimal, and in practice,
𝐾 ∈ {10, 50} works on many tasks.

Goal Generation Strategies

In this section we experimentally evaluate different strategies for adding new goals to the
goal buffer. At the end of an episode, 𝑙 new goals are added to the goal buffer, with 𝑙
a hyper-parameter that we empirically set to 7. We consider the following strategies to
generate the new goals:

• random - 𝑙 states encountered during the last epoch are randomly added to the goal
buffer,

• proportional - 𝑙 states are added to the goal buffer with a probability inversely
proportional to their order of visit (the final state has the highest probability),

• late - 𝑙 states encountered during the 𝑙 ∗4 last time-steps of the epoch are randomly
added to the goal buffer.

All the strategies were tested with the same hyper-parameters. The results comparing
these strategies can be found in Table 3.1. We found that in the task 5×5, all the strategies
lead to similar performance. As can also be seen, the proportional strategy is the most
efficient one in term of convergence speed and average reward (at convergence) in the task
8×8 and 11×11. The proportional strategy achieves an almost perfect score in the three
tasks.

3.4.4 Maze Tasks

In this section, we perform a set of two experiments to evaluate the overall performance
of our algorithm. First, we verify if GoCu achieves better performance than traditional
RL methods. Second, we compare GoCu against state-of-the-art curiosity-based learners.

In order to verify that GoCu improves performance, we evaluate PPO [38] with and
without GoCu on the Door & key task. Moreover, we compare against A2C [37] and DQN
[73, 1]. We report the average extrinsic reward supplied by the environment. We present
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(a) Door & key 5 × 5 (b) Door & key 8 × 8 (c) Door & key 11 × 11

Figure 3.5: Extrinsic rewards achieved by the agent on the Door & key task. An episode
is considered successful when the agent reaches the final goal resulting in a +1 reward.

(a) Door & key 5 × 5 (b) Door & key 8 × 8 (c) Door & key 11 × 11

Figure 3.6: Comparison of GoCu algorithm (green) to other algorithms on several envi-
ronments with varying size (degree of sparsity).

in Figure 3.5 the evolution of the extrinsic reward achieved by the agent. In such sparse
tasks, the DQN agent fails to solve the task. The learning curve shows that our agent
outperforms PPO trained without GoCu as well as A2C. After converging, PPO+GoCu
achieves an almost perfect score in 95% of the runs, slightly higher than PPO trained
without curiosity, 93%. Only our method scales with the size of the environment and is
significantly faster in term of convergence speed.

In addition, we also conduct a set of experiments to compare GoCu with RND [20],
PPO+EC [21], A3C+ICM [68], and PPO+ICM [68]. We perform an evaluation using the
same open-source implementation with exactly the same hyper-parameters of the original
works. We ran the agents for 3 runs each for 1 millions time-steps on the Door & key
5 × 5 task, 10 millions time-steps on Door & key 8 × 8, and 15 millions time-steps for
the board of size 11 × 11. We can see in Figure 3.6 that in 2 out 3 domains our method
is significantly faster than the baselines and improves the performance of PPO, while on
task 5 × 5, we obtain similar performance with RND. We also observe that PPO + ICM
and A3C+ICM result in poor performance in the early stages of learning in the three
tasks and was not able to reach the goal. Note that we didn’t fine-tune hyper-parameters
for each domain, that might be an opportunity to further improve performance.

3.4.5 Simulated Robotics Tasks

Our second set of experiments explores domains from the Mujoco control benchmark [74].
We evaluate performance on five tasks. (1) Visual Reacher : a 7-DoF Sawyer arm learns
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Table 3.2: Comparison of seven models over five tasks in the Mujoco domain. We report
the final distance to goal for 5 runs that were performed for 500K simulations steps.

Final Distance Goal (at convergence)

Method Visual Reacher Visual Door Hook Visual Pusher Visual Multi-Object pusher Visual Pick and Place

HER 0.09 ± 0.01 0.42 ± 0.02 0.26 ± 0.02 0.36 ± 0.03 0.19±0.01
A3C+ICM 0.15 ± 0.03 0.41 ± 0.04 0.32 ±0.04 0.35 ± 0.03 0.17 ± 0.02
PPO+ICM 0.08 ± 0.01 0.32 ± 0.02 0.11 ±0.01 0.21 ± 0.02 0.12 ± 0.01
PPO+EC 0.08 ± 0.02 0.11 ± 0.01 0.12 ±0.02 0.18 ± 0.03 0.11 ± 0.01
RIG 0.07 ± 0.02 0.08 ± 0.01 0.17 ± 0.02 0.10 ± 0.02 0.08 ± 0.01
DSAE 0.10 ± 0.01 0.28 ± 0.05 0.25 ± 0.01 0.27 ± 0.02 0.13 ± 0.01
PPO+GoCu 0.07 ± 0.01 0.06 ± 0.02 0.09 ± 0.02 0.06 ± 0.03 0.13 ± 0.02

to reach goal positions. The end-effector (EE) is constrained to a 2-dimensional rectangle.
(2) Visual Door Hook : a 7-DoF Sawyer arm with a hook on the end of the effector to
handle a door hook. (3) Visual Pusher and (4) Visual Multi-Object pusher : the arm aims
to push one or two pucks to a target. Note that the end-effector is constrained to only
move in the XY plane. (5) Visual Pick and Place: a Sawyer arm with a grab at the end
of the effector to grab a small ball that the agent has to place at a target. We extend the
tasks to produce 32×32 RGB observations. The rewards are sparse indicator functions
being the distance in the final state between the objects and their goals. We show an
example of two tasks in Figure 3.3b.

For these tasks, we keep the hyper-parameters of PPO unchanged for both augmented
and baseline agents. We use Adam to optimize the predictor network as well as PPO. For
these tasks, we pretrained the VAE with 10000 images. We compare our method with the
following prior works: A3C+ICM [68], PPO+ICM [68], PPO+EC [21], HER (Hindsight
Experience Replay) [41], RIG (RL with Imagined Goals) [61], and DSAE (Deep Spatial
Autoencoders) [75].

The parameters of GoCu are similar as for the minigrid domain. For this range of tasks,
the predictor network consists in a fully-connected network with 3 hidden layers of size
512. Adam optimizer was used with learning rate 0.0003 and batch size 64. We decrease
the number of active goals to 25 and the capacity of the goal buffer to 1000.

Agents were trained for 500K time steps. We trained 5 agents separately without addi-
tional parameters tuning. Table 3.2 reports the final distance to the goal of our method
against six baselines. In these experiments, we observe that HER tends to perform poorly
due to the visual representation of the tasks. RIG achieves higher performance in the
visual pick and place task thanks to the use of sub-goals that guide the agent towards the
goal. From Table 3.2, it is clear that PPO+ICM is significantly outperformed, we suspect
that the high similarity among states results in small rewards. On the other hand, our
curiosity-based approach outperforms the prior methods only using visual information in
3 out of 5 domains. Overall, the results show that our method can learn policies in the
robotic domain. It confirms that GoCu is a crucial element which makes learning from
sparse rewards possible.
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Table 3.3: Final mean score of our method and baselines on Atari games. We report the
results achieved over total 100M timesteps of training, averaged over 3 seeds.

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Pitfall

A2C [37] 13 574 -15
PPO [38] 2,497 105 -32
RND [20] 8,152 8,666 -3
PPO+EC [21] 8,032 9,258 -10
PPO+ICM [68] 351 503 -14
DeepCS [76] - 1105 -186

Average Human [77] 4,753 69,571 6,464

PPO+GoCu (Ours) 10,958 12,546 -4

3.4.6 Game Playing Tasks

We also evaluate the proposed curiosity method on three difficult exploration Atari 2600
games from the Arcade Learning Environment (ALE) [49]: Montezuma's Revenge, Private
Eye, and Pitfall. In the selected games, training an agent with a poor exploration strategy
often results in a suboptimal policy. We first compare to the performance of a baseline
A2C and PPO implementation without intrinsic reward. The results are shown in Table
3.3. In these games, training an agent with a poor exploration strategy results in a score
close to zero, except for Montezuma's Revenge that pure PPO could partially solve.

In addition, we also compare our method against other techniques using alternative explo-
ration bonus (Table 3.3). In Pitfall, PPO+GoCu achieves similar performance as RND.
Many interactions yield negative rewards that dissuade our agent and other baselines
from exploring efficiently the environment. Despite this issue, PPO+GoCu performs bet-
ter than algorithms without curiosity. However, in Montezuma's Revenge, PPO+GoCu
outperforms average human performance and previous state of the art. On Private
PPO+GoCu's performance are higher than other baselines. The strong performance
of PPO+GoCu on these tasks suggests that encouraging the agent to learn new skills is
a powerful form of intrinsic motivation to enable learning in sparse-reward domains.

3.5 Discussion

In this chapter, we introduced a new mechanism for generating curiosity that is easy to
implement, scales to high-dimensional inputs such as images, and bypasses the need for
maintaining a model of the environmental dynamics. A key concept is to reward the
states with associated skills difficult to master; to move the agent towards task-relevant
regions of the state-action space. That is, we encourage the agent to gradually acquire
novel task-relevant skills. Furthermore, by embedding the states and skills into a latent
space and then working in the latent space, we can improve data efficiency as well as
generalization to unseen observations.
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We have shown its ability to solve complex tasks with continuous state spaces, and ex-
ceeds baseline agents in terms of overall performance and convergence speed. To support
these claims, we presented an evaluation on a set of complex and sparse visual tasks from
Minigrid, MuJoCo, and Atari games. The experiments have demonstrated clear improve-
ments in the agent’s capability to make intrinsically motivated choices, greatly improving
sample efficiency.

A potential limitation of our proposed method as well as prior approaches is the vanishing
issue inherent in curiosity. As the agent explores the environment and becomes more
familiar with it, the intrinsic bonus may disappear and then learning is only driven by
extrinsic rewards, which are often sparse in the real world. In the absence of dense
rewards, hoping to stumble into a goal state by chance within an acceptable number of
interactions is unlikely, which can lead the agent to prematurely converge to sub-optimal
policies.

Another limitation of our proposed framework as well as most prior curiosity-driven agents
is that they can get stuck in local optima. This can happen if the environment contains
random state-action transitions. The intrinsic reward will be maximized by exploiting
such actions which lead to hardly predictable consequences - the intrinsic novelty will be
the entropy of the transition. This issue may lead the agent to fall and stay trapped in poor
local optima during exploration. Since stochasticity is quite common in the real world
(e.g. fine-grained details in the images) or unpredictability caused by a poor learning
algorithm, making the intrinsic curiosity robust to such nuisance would be necessary to
scale the method to practical problems.

In the next chapter, we propose a formulation for exploration which is able to handle the
vanishing curiosity issue as well as stochastic environments.



Chapter 4

Exploration via Progress-Driven In-
trinsic Rewards

In the previous chapter, we described a first agent whose developmental trajectory is
motivated based on its knowledge of the environment. In retrospect, we concluded that
a major limitation is the vanishing issue inherent in curiosity. In curiosity-driven ex-
ploration literature, most prior work employ the absolute prediction error as a drive to
explore novel stimuli. Nevertheless, it was shown that such approaches will exhaust their
curiosity very quickly [21, 20, 78], prematurely converging to sub-optimal policies. That
is, curiosity rewards soon exhaust as the prediction becomes perfect or does not improve,
letting the agent with no incentive to encourage revisits of states, regardless of the down-
stream learning opportunities.

Beyond overcoming the known “vanishing issue”, another challenge for curiosity-driven
agents is random environments. The agent may get trapped in local optima due to
stochasticity in the environment: 1) noisy environment observations, and 2) noise in the
actions. In this chapter, we discuss a method to guide the agent’s learning that can handle
randomness in both observations and actions.

We address both challenges by proposing a robust formulation of curiosity that uses the
agent’s learning progress on a multi-step horizon scale, and we study its potential in terms
of developmental trajectories and sample-efficiency.

4.1 Introduction

Inspired by curious behavior in animals, one solution to the exploration problem in sparse
reward tasks is to let the agent discover skills that will be useful later (i.e. curiosity-driven
learning). A number of curiosity measurement strategies have been proposed such as
count-based exploration [56] or the use of information gain [79]. Some other approaches
generate a bonus based on the inability to predict the future [14]; but tend to attract
the agent to states with stochastic transitions due to hardly predictable environmental
dynamics, local optima. If the transitions or observations in the environment are random
or contain stochasticity, then even with a perfect dynamics model, an agent trying to
maximize a prediction error will tend to continuously seek out such local sources of entropy
in the environment. In GoCu [80], curiosity utilizes the agent’s knowledge to discover and
acquire task-relevant skills. Another line of work aims to predict the features of a fixed
random neural network on the observation of the agent [20]. However, capturing complex
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visual features remains challenging, and, in spite of their ability to capture short-term
novelty, they tend to be computationally expensive. Furthermore, when using prediction
errors as an intrinsic reward, the intrinsic reward may vanish quickly with additional
visitations, converging prematurely to sub-optimal policies.

In this chapter, we introduce a novel definition of curiosity that considers the agent’s
learning progress on a multi-step horizon as exploration bonus. We postulate that re-
warding hard-to-learn regions of the state space is crucial to efficiently explore. By doing
so, it drives the agent to seek more knowledge about such regions. To quantify the agent’s
learning progress in terms of “quantity” and “quality”, we propose to measure the diver-
gence between a parametric model (i.e. the current model) and prior models. We build
and evaluate two types of models based on: 1) the agent’s understanding of the world, 2)
the agent’s policy. A key idea in our work is to measure progress on a multi-step horizon
scale. This allows us to overcome the known “vanishing curiosity” issues of prior work that
use the absolute prediction error to guide exploration - curiosity rewards soon exhaust
as the prediction becomes perfect or does not improve. To further improve the benefits
of our method, we introduce a mechanism called episodic-skills to repeatably revisit key
regions/skills. In other words, we let the agent discover which skills are important in the
environment and encourage the visits of states carrying information about them. Overall,
our agent will not receive rewards for reaching states that are inherently unpredictable,
making exploration robust with respect to local sources of entropy in the environment.

We benchmark our approach on a set of hard exploration tasks from Minigrid, Super
Mario Bros., and Atari games. We compare our method with state-of-the-art curiosity
methods. The experimental results show that our agent can escape from local optima
in sparse or deceptive reward environments, to learn comparable or superior policies in
most of the tasks. Results also demonstrate that progress-driven exploration is vital in
tasks with stochasticity in both transitions and observations, and, that our agent explores
faster as compared to other techniques.

4.2 Related Work

Our method is related to encouraging exploration in RL. Most techniques can be grouped
into three classes: goal-based, count-based, and curiosity-based exploration.

Goal conditioned learning [39] constructs a goal-conditioned policy to push the agent to
acquire new skills and explore novel states. Namely, they optimize average reward with
respect to a goal distribution. Universal value function approximators [40] samples a fixed
goal at the beginning of each episode and rewards the agent when the current goal can be
achieved. Nonetheless, selecting relevant goals remains an open problem. A solution [81]
and its recent follow-up [61], proposed to generate increasingly difficult goals to drive the
agent towards the final goal.

Another group of works keeps visit counts for states to favor exploration of rarely visited
states [82]. To extend count-based exploration to continuous state spaces, a technique
[56] is to train an observation density model to supply counts. An alternative solution
[83] is to discretize the states by hashing and then apply a simple count-based strategy.
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However, one can expect these methods to be less effective when some valuable states
require more attention - more visits.

This work belongs to the category of approaches that consider curiosity as exploration
bonus. Some methods [14] rely on predicting environment dynamics using an inverse or a
forward dynamic model. Another class of work uses prediction error in the feature space
as a measure of the importance of states [20]. On the other hand, in GoCu [80] curiosity
utilizes the agent’s knowledge to acquire and discover task-relevant skills. The exploration
can also be motivated by introducing a new term in the loss function that measures state
diversity [84]. In contrast, our work aims to learn intrinsic rewards by measuring the
agent’s learning progress. The crucial difference here, however, is that rather than sim-
ply estimating diversity, we measure the quantity and quality of the learning progress.
Additionally, our algorithm can be trained using policy-based or visual-based progress.
Finally, we aim to ameliorate the performance of exploration by efficiently sampling key
states (i.e. episodic skills). Exploration bonus can also be based on maximizing informa-
tion gain about the agent’s knowledge of the environment [79]. Another work [85] guides
exploration by maximizing an entropy objective. Episodic curiosity through reachability
[21] uses the number of time-steps between two states as curiosity measure. Nonetheless,
one problem with these approaches is that the curiosity exhausts quickly during train-
ing. Moreover, dealing only with local novelty makes it likely for agents to get stuck in
undesirable local optima. In our framework, we introduce temporally-extended learning
progress to overcome these pitfalls.

4.3 Progress-Driven Exploration

We consider an agent performing actions in an environment. In this work we focus on
environments where extrinsic rewards are sparse or missing - zero for most of the time
steps. At each time step 𝑡, the agent collects an observation 𝑠𝑡 , samples an action 𝑎𝑡 from
a set of actions 𝐴 following a policy 𝜋\𝑃 (𝑠𝑡), and then receives an extrinsic reward 𝑟𝑒𝑡 . We
augment the task reward with an intrinsic exploration bonus 𝑟𝑖𝑡 , 𝑟𝑡 = 𝛼𝑟

𝑒
𝑡 + 𝛽𝑟𝑖𝑡 , where 𝛼

and 𝛽 are hyperparameters to weight the importance of both rewards. The policy 𝜋\𝑃 (𝑠𝑡)
is represented by a deep neural network and its parameters \𝑃 are optimized to maximize
the sum of these two rewards, max\𝑃 E𝜋\𝑃 [

∑
𝑡 𝑟𝑡].

Our main contribution is a novel intrinsic reward based on the agent’s learning progress.
Since learning progress is non stationary, it is useful to normalize it by diving the original
intrinsic reward by a running estimate of the standard deviations of the intrinsic rewards
𝑅𝑖𝑏. We can assign a curiosity bonus via:

𝑟𝑖𝑡 =

[
𝑟𝑖𝑡

𝜎(𝑅𝑖𝑏)

]
(4.1)

where 𝑟𝑖𝑡 is the progress-driven reward before normalization.

In the following section we present the key components of our progress-driven curiosity
reward.
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4.3.1 Learning Progress as Intrinsic Reward

Progress-driven exploration is a method to motivate the agent to explore hard-to-learn
regions of the state space and escape local optima induced by poorly defined or deceptive
extrinsic rewards. To this end, we aim to measure the agent’s progress during training.
We assume a parametric model that given the current state 𝑠𝑡 outputs a probability distri-
bution which can be interpreted as the agent’s knowledge of 𝑠𝑡 . In this work, we compare
two models: policy-based progress, and representation-based progress. We propose as
intrinsic motivation to measure the distance between the current distribution and prior
distributions. Concretely, we measure learning progress in terms of quantity and quality.
To deal with global exploration, i.e. exploring the consequences of long-term decisions, we
further propose to estimate progress at different time-scales on a batch of observations.

This process drives the agent to gather unseen observations which would maximize long-
time horizon learning progress, while encouraging the revisit of hard-to-learn state tra-
jectories. Moreover, using progress instead of absolute prediction errors allows us to
overcome the known “vanishing curiosity” shortcoming. Our exploration bonus remains
large independently of the number of visits, by adapting curiosity based on the agent’s
understanding of the world. In the next section, we detail how is calculated the intrinsic
reward for the policy-based and the representation-based model.

4.3.2 Policy-based Progress (PoBP)

The policy-based progress model (PoBP) works as follows. The agent fills an observation
memory with the latest observations. At every time step, we estimate the probability
distributions over actions associated with the agent’s policy and a set of recent policies
for each observation. Given those distributions, we evaluate the agent’s learning progress
(along the state trajectory stored in the memory) by measuring the distance between the
current policy and prior policies. Then we produce an intrinsic bonus to promote effective
exploration strategies, based on learning progress. We describe more details of each step
below.

Let’s consider a policy 𝜋\ (𝑎 |𝑠) which quantifies the importance of an action 𝑎 in a state
𝑠. We first define the probability distribution over actions:

𝜋\ (𝑎 |𝑠) =
𝑒𝜋\ (𝑎 |𝑠)∑
𝑧∈𝐴 𝑒𝜋\ (𝑧 |𝑠)

(4.2)

Please note that this step is only performed when the policy does not estimate a proba-
bility distribution over actions given a state. With a slight abuse of notation, we refer to
the probabilistic policy as 𝜋\ .

We assume a batch Ψ = {𝑠1, ..., 𝑠𝑁 } of the 𝑁 most recent observations and Ω a set of 𝑀
prior policies. To fill Ω, every 𝐾 time steps we substitute the oldest policy in memory
with the current policy. Note that at the beginning of each episode the memory Ψ is
empty. Policy-based progress can now be estimated as the average distance between the
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current policy and previous policies over batch of observations:

𝑟𝑖𝑡 =
1
|Ψ|

∑
𝑠∈Ψ

1
|Ω|+1

[ ∑
\𝑜𝑙𝑑∈Ω

[
η𝐷 (𝜋\𝑜𝑙𝑑 (𝑠) | |𝜋𝑢𝑛𝑖 (𝑠)) + ν𝐷 (𝜋\𝑜𝑙𝑑 (𝑠) | |𝜋\ (𝑠))

]
+ γ𝐷 (𝜋\ (𝑠) | |𝜋𝑢𝑛𝑖 (𝑠))

]
(4.3)

where 𝜋\ is the current policy, 𝜋\𝑜𝑙𝑑 refers to a prior policy, and 𝜋𝑢𝑛𝑖 is a fixed uni-
form policy - the probability distribution over the actions is uniform. The first term,
𝐷 (𝜋\𝑜𝑙𝑑 (𝑠) | |𝜋𝑢𝑛𝑖 (𝑠)), measures the learning progress quality of prior policy 𝜋\𝑜𝑙𝑑 - it en-
courages the policy to be as distant as possible to the uniform distribution, which
quantifies whether some actions are certainly better than others. The second term,
𝐷 (𝜋\𝑜𝑙𝑑 (𝑠) | |𝜋\ (𝑠)) measures the quantity of learning progress; it is expressed in the dis-
tance between the current policy and a prior policy. The third term, 𝐷 (𝜋\ (𝑠) | |𝜋𝑢𝑛𝑖 (𝑠)), is
the quality of the current policy.

The distance function 𝐷 can be any distance measure such as KL-divergence or euclidean
distance. Theoretically, the KL divergence would be a robust choice. We define the
Kullback-Leibler (KL) divergence between two policies as:

𝐷𝐾𝐿 (𝜋(𝑠) | |𝜋′(𝑠)) =
∑︁
𝑎∈𝐴

𝜋(𝑎 |𝑠) log( 𝜋(𝑎 |𝑠)
𝜋′(𝑎 |𝑠) ) (4.4)

Although KL measure performs well in many tasks, performance can degrade in some en-
vironments with deceptive rewards. In such environments, encountering negative rewards
can greatly deteriorate the quality of the learned policy, occasionally causing instability in
the training phase. Instead, we propose to embrace the Jensen-Shannon (JS) divergence.
We extend it to calculate the distance between two policies as the following:

𝐷𝐽𝑆 (𝜋(𝑠) | |𝜋′(𝑠)) =
1

2
𝐷𝐾𝐿 (𝜋(𝑠) | |𝜋*(𝑠)) +

1

2
𝐷𝐾𝐿 (𝜋′(𝑠) | |𝜋*(𝑠)) (4.5)

where 𝜋*(𝑠) = 1
2 (𝜋(𝑠) + 𝜋

′(𝑠)). We compare in Section 4.4.4 the impact of using KL-
divergence or JS-divergence on our method.

4.3.3 Representation-based Progess (ReBP)

The reconstruction-based model (ReBP) assesses learning progress based on the agent’s
understanding of the visual features of its environment. Instead of using the probabil-
ity distribution over actions, we seek to measure the agent’s progress to reconstruct the
observations. This approach is motivated by the idea that, to accurately reconstruct a
region of the state space, the agent needs to acquire good knowledge about the environ-
ment’s dynamics and objects, by interacting with them (without the need to learn or
model dynamics).

To do so, we propose to measure the quality of a variational autoencoder (VAE) [48] for
encoding the latent representations in the data. We assume that an observation 𝑠 of an
agent is generated by a random latent process 𝑧. Learning progress can be estimated by
measuring the distance between the posterior distribution 𝑝(𝑧 |𝑠) after experiencing new
observation and the prior 𝑝(𝑧). Several measures such as KL divergence can be used.
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Figure 4.1: Illustration of the idea of episodic skills. Some states (in green) should be
given more weight because they are hard-to-learn.

However, computing the posterior distribution 𝑝(𝑧 |𝑠) is often intractable. Instead, we
use a VAE with encoder parameters 𝜙 to model the approximate posterior distribution
𝑞𝜙 (𝑧 |𝑠).

Formally, let Ψ = {𝑠1, ..., 𝑠𝑁 } be a set of observations and Ω a set of prior VAEs. Similarly
to PoBP, every 𝐾 time steps the oldest VAE is substituted with the current version. For
online training of the VAE, we store the experience and make 5 epochs of training every
50,000 steps. We express the intrinsic reward as:

𝑟𝑖𝑡 =
1
|Ψ|

∑
𝑠∈Ψ

1
|Ω|+1

[ ∑
𝜙𝑜𝑙𝑑∈Ω

[
η𝐷𝐾𝐿 (𝑞𝜙𝑜𝑙𝑑 (𝑧 |𝑠) | |𝑝(𝑧)) + ν𝐷𝐾𝐿 (𝑞𝜙𝑜𝑙𝑑 (𝑧 |𝑠) | |𝑞𝜙 (𝑧 |𝑠))

]
+ γ𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑠) | |𝑝(𝑧))

]
(4.6)

As a result, the agent seeks out states as diverse as possible and in doing so increases
the distance between 𝑞𝜙 (𝑧 |𝑠) and 𝑝(𝑧) in average - agent’s learning quality. In practice,
𝑝(𝑧) is specified as a standard normal distribution. On the other hand, it also favors to
revisit state trajectories where the agent can improve its understanding by maximizing
the distance (progress) between the current VAE 𝑞𝜙 (𝑧 |𝑠) and prior VAE 𝑞𝜙𝑜𝑙𝑑 (𝑧 |𝑠).

4.3.4 Episodic Skills

When performing informed exploration, we observed that 1) some states may need more
attention because they are hard-to-learn or more task-relevant, 2) high-level exploration
requires to balance the loss of easy immediate reward [20]. We propose a simple mechanism
relying on an episodic memory to address all of these issues at once (Figure 4.1). We call
a skill, 𝑠𝑘, a sequence of 𝑇 observations (i.e. a specific region of the state-space). In the
absence of domain knowledge, a general-purpose choice is to set 𝑇 = 𝑁. The key insight
is to prioritize the agent’s learning of important skills, which entails that they should be
given more weight. Therefore, visiting a state should trigger a positive intrinsic reward
not only because it is locally informative (i.e. progress along the current trajectory), but
also because it is informative about previously encountered hard-to-learn skills. That is,
visiting such a state enables progress in other skills.
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Episodic Memory

The episodic memory stores a set of important skills {𝑠𝑘1 : (𝑠1, .., 𝑠𝑇 ), ..., 𝑠𝑘𝐶 : (𝑠1, .., 𝑠𝑇 )}.
It has a limited capacity of size 𝐶. We define an embedding function, later used to
efficiently compare or measure a distance in the episodic memory. We can embed an
observation 𝑠 to a latent space, 𝜑(𝑠). When employing policy-based progress, we use the
representation extracted after passing the input through the sequence of convolutional
layers of the policy network, whereas for visual-based progress, we use the mean of the
VAE’s encoder as the state encoding. Intuitively, we extend the above definition to skill
embedding, 𝜑(𝑠𝑘) = (𝜑(𝑠1), .., 𝜑(𝑠𝑇 )).

Reward Calculation

During intrinsic reward calculation, we compute an exploration bonus independently for
each skill 𝑠𝑘, similarly to the policy-based or representation-based method. To avoid
unstable behaviors, we weight each skill reward, 𝑟𝑖

𝑠𝑘
, as being proportional to the similarity

with the current observation, 𝑠𝑡 . This approach is justified by the common sense that
progress on distant states is unlikely to be related to the exploration of the current state.
The sum of the weighted bonus of each skill is added to the intrinsic reward:

𝑟𝑖𝑡 += E𝑠𝑘∼𝑀
[
𝛼𝑠𝑘𝑟

𝑖
𝑠𝑘

]
(4.7)

where 𝛼𝑠𝑘 is the similarity between 𝜑(𝑠𝑡) and 𝜑(𝑠𝑘). In this work, we use the average
pairwise cosine distance as similarity measure.

Memory Update

At the end of the episode, to decide if a skill should be added in memory, we first measure
if the skill novelty is larger than a threshold 𝑡𝑛𝑜𝑣𝑒𝑙𝑡𝑦. Rather than operating directly in
the state space, we utilize the cosine distance on skill embeddings to perform this check.
This induces a discretization of the embedding space which guarantees to store skills as
diverse as possible. Then, hard-to-learn skills are added to the memory if the bonus 𝑟𝑖

𝑠𝑘
is

less than 𝑡ℎ𝑙 . As a result, this process keeps skills for which the agent has poor knowledge
and made little progress. When the capacity is exceeded we randomly substitute a skill
with the new skill.

4.4 Experiments

4.4.1 Environmental Settings

In this section, we first evaluate our method trained on a fixed and randomly generated
environments from the Minigrid [53] domain. Second, we compare progress-driven ex-
ploration against standard RL and intrinsic reward-based approaches on five Atari 2600
games [86] as well as Super Mario Bros [87], combining intrinsic rewards with sparse
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Table 4.1: Reward in Montezuma’s revenge with varying batch size 𝑁. Averages over 10
trials are reported after 600M steps of training.

Maximum Mean Score (at convergence)

Method 𝑁=2 𝑁=6 𝑁=8 𝑁=10 𝑁=15 𝑁=20

PPO+PoBP(KL-divergence) 7.553 9,478 9.521 8.620 5.231 5.787
PPO+PoBP(JS-divergence) 6.542 9,125 9.024 6.785 4.023 4.008
PPO+ReBP 6.989 9,125 7.568 5.874 2.210 2.087

or deceptive extrinsic rewards. Third, we test the proposed method in the absence of
any exploration bonus on Super Mario Bros. Finally, we provide an ablation study on
Montezuma Revenge [86].

As our policy learning method, we use PPO with similar hyperparameters as in the original
implementation of RND [20]. The input is passed through three convolutional layers (for
Minigrid) or four (other domains). We estimate learning progress on a batch of states of
size 𝑁 = 6 over 𝑀 = 4 prior models. We utilize an episodic memory of capacity 15, and
𝑡𝑛𝑜𝑣𝑒𝑙𝑡𝑦 = 0.10 (Minigrid) or 𝑡𝑛𝑜𝑣𝑒𝑙𝑡𝑦 = 0.25. The frequency update 𝐾 of the prior model
buffer, Ψ, is set to 50,000. The value of η, ν, γ is 1.0,0.8,0.2 respectively for PoBP, and
1.0,1.0,0.2 for ReBP. If not specified differently, we employ the JS-divergence (Eq. 4.5) to
measure the divergence between two policies. To combine 𝑟𝑒𝑡 and 𝑟

𝑖
𝑡 , we set the coefficient

of extrinsic reward 𝛼 = 2, and 𝛽 = 1.

4.4.2 Ablation Analysis

We also present an ablation study to investigate: 1) the size of batch of observations, 2)
the number of prior models.

Batch Size of Observations

Our technique relies on batch of last observations. One legitimate question is to study the
impact of the batch size, 𝑁, on the performance of the algorithm. We conduct a study
with 𝑁 varying between 2 and 20. As shown in Table 4.1, when using 𝑁 = 6 both models
(PoBP, ReBP) can achieve high scores. We observed that progress-driven exploration’s
performance is reasonably robust to the choice of 𝑁, as long as 𝑁 ≤ 8. We can draw the
observation that increasing 𝑁 contributes positively to the capturing of global progress,
by providing more information about the current observation.

Number of Prior Models

We report experiments showing the effect of increased number of prior models, 𝑀. Table
4.2 shows that agents trained with a larger number of prior models obtain higher mean
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Table 4.2: Score in Montezuma’s revenge using different number of prior models 𝑀.
Averages over 10 runs are shown after 600M steps.

Maximum Mean Score (at convergence)

Method 𝑀=2 𝑀=3 𝑀=4 𝑀=6 𝑀=8

PPO+PoBP(KL-divergence) 7,254 8,452 9,478 8,767 3,571
PPO+PoBP(JS-divergence) 7,642 9,250 9,125 7,187 2,028
PPO+ReBP 6,988 7,125 8,934 6,245 3,698

(a) Random (b) RND (c) ICM (d) PoBP (e) ReBP

(f) Random (g) RND (h) ICM (i) PoBP (j) ReBP

Figure 4.2: State visitation heatmaps averaged over 10 runs for different models: random,
RND, ICM, PPO+PoBP, and PPO+ReBP. The models are trained for 40m frames on a
fixed maze (top row) and on randomly generated mazes (bottom row) in MultiRoomN10.

returns after similar numbers of updates. On the other hand, when more than 6 prior
policies are used, it tends to make progress-driven exploration unstable. We hypothesize
that when using a large number of prior models, progress scores of the oldest models are
much larger and therefore saturate the intrinsic rewards. The experimental results show
that M=4 is a reasonable choice in most domains.

4.4.3 Fixed Versus Randomly Generated Environments

To investigate the ability of our agent to learn from randomly generated environments and
generalize to unseen appearances, we trained the models on a fixed maze and on randomly
generated mazes from the MultiRoomN10 (Figure 4.2) [53]. It consists of a board divided
into several rooms. To reach the final goal (red square), it requires to discover rooms and
open doors. The environment is challenging due to its sparsity - the agent only receives
a positive reward (+1) when it reaches the final goal. The observations are given in the
form of grayscale images of size 84×84 of the visible cells surrounding the agent.

We compare PPO+PoBP and PPO+ReBP with three baselines: random agent, RND
[20], and ICM [14]. A random policy can only explore the first room. We observe that
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(a) Sparse reward setting (b) No reward

Figure 4.3: Average extrinsic reward obtained with sparse reward setting (left) and maxi-
mum distance achieved with no extrinsic reward (right) in the Super Mario Bros environ-
ment. We run every algorithm with a repeat of 10 and show all runs. Mean and standard
error of the mean over trials are plotted.

(a) MultiRoom (b) Door & Key (c) PrivateEye (d) Montezuma

Figure 4.4: Reward as a function of training step for a variety of hard exploration tasks.
We run every algorithm with a repeat of 10.

ICM fails to efficiently explore the environments in both scenarios. While RND is able to
solve the fixed maze task, it struggles in randomly generated mazes. On the other hand,
our methods could learn efficient strategies to discover all the rooms. This suggests that
progress-driven exploration allows generalization across the environments and is more
robust to changes in randomly generated mazes.

Figure 4.5: Number of rooms found during the exploration phase in Montezuma’s Re-
venge. We run every method 10 times.
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Table 4.3: Mean score of our method and baselines on Atari games. We report the results
achieved over total 600M timesteps of training, averaged over 10 seeds.

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest

A2C [37] 22 650 2,452 -25 1,525
PPO [38] 2,475 98 3,438 -41 1,785
RND [20] 8,654 9,026 4,621 -2 3,280
PPO+EC [21] 7,022 6,254 3,521 -20 3,485
PPO+ICM [14] 554 773 4,784 -13 2,865
PPO+GoCu [80] 9,123 10,223 550 -2 2,055
DeepCS [76] 3,500 1,105 881 -186 3,343

Average Human [77] 4,753 69,571 3351 6,464 20,182

PPO+PoBP(KL-divergence) 9,478 10,876 5,112 -1 2,874
PPO+PoBP(JS-divergence) 9,125 11,124 5,069 109 2,958
PPO+ReBP 8,934 8,598 4,915 0 3,165

4.4.4 Exploration With Sparse Extrinsic Rewards

We now report results in three sparse domains including Super Mario Bros (Figure 4.3a),
Minigrid, and Atari games (Figure 4.4). We observe that the gap between our ap-
proach and the others is increasing with the degree of sparsity. On Montezuma’s revenge
PPO+PoBP achieves state of the art performance. It is likely caused by its ability to
discover more rooms than RND model (Figure 4.5). Furthermore, when environments do
not involve complex dynamics such as Minigrid, representation-based models can quickly
achieve high-performance, whereas on more challenging games, policy-based models out-
perform other approaches. Please note that PPO+PoBP(KL-divergence) is less ideal than
PPO+PoBP(JS-divergence) in tasks with deceptive rewards. It might be related to the
fact that the former is more affected by a deterioration of the policy. In other tasks, the
choice of distance measure has a limited impact on the performance.

Next, we further consider more exploration bonus as baselines. We conduct experiments
on tasks featuring complex control dynamics, sparse extrinsic rewards, or deceptive re-
wards. We selected five hard exploration Atari 2600 games [86]: Montezuma’s Revenge,
Private Eye, Gravitar, Pitfall, and Seaquest. In these games, a poor exploration strategy
often results in a suboptimal policy. The results are shown in Table 4.3. In 4 out 5
games, our agents consistently exceed the performance of baselines techniques. Precisely,
it takes much less trial-and-error interactions to reach similar or superior scores than
other curiosity-driven approaches. Moreover, on Montezuma’s Revenge and Gravitar,
they could surpass average human performance as well as the previous state of the art.
On Seaquest our model’s performance is comparable to that of the state of the art. We fur-
ther observe that on Pitfall most algorithms fail to find any positive rewards, which entails
that they cannot reinforce their policy. On the other hand, by using policy-based learning
progress combined with JS-divergence, PPO+PoBP could achieve a positive score. These
results demonstrate that the depicted methods achieve much greater sample-efficiency
and are more robust than prior work to local sources of entropy in the environment.
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Table 4.4: Average success rate on tasks from the Minigrid domain with dense and sparse
settings. The results are averaged over 10 runs after 15 millions training steps.

Sparse Dense

Method MultiRoomN10 Door&Key 16×16 MultiRoomN10 Door&Key 16×16
PPO 0.2±2.4 0.5±3.5 14±2.9 47±2.2
PPO+PoBP(KL-divergence) 78±0.3 92±4.8 75± 0.8 87 ± 4.6

PPO+PoBP(JS-divergence) 81±0.1 94±5.1 77 ± 0.4 90 ± 3.9

PPO+ReBP 77± 0.2 93 ± 4.6 72 ± 1.2 86 ± 4.1

4.4.5 Dense Rewards

An important characteristic of a good curiosity bonus is to avoid hurting performance in
dense-reward tasks. We test this setting in MultiRoomN10 and Door&Key 16×16. In
the sparse setting, the agent solely receives a (sparse) terminal reward of +1 if it reach
the target and 0 otherwise. In the dense setting, the agent is rewarded for picking keys
(+0.3) and opening doors (+0.3), as well as reaching the goal (+1). The results highlight
(Table 4.4) that the depicted methods do not significantly deteriorate performance in
dense reward tasks. Even though PPO+PoBP and PPO+ReBP perform slightly worse
in the dense setting, they still greatly improve performance as compared to plain PPO.

4.4.6 No Extrinsic Reward

For testing the good exploration coverage of our method, we trained our agent without any
extrinsic reward from the environment. Our agent only receives a curiosity-based signal
to reinforce its policy. We evaluate our approach in the Super Mario Bros environment
[87]. Initially, this game is played using a joystick which requires pressing simultaneously
multiple buttons. In our implementation, each combination of buttons is mapped to a
unique action resulting in 12 possible actions. As can be seen in Figure 4.3b, in order to
remain curious the agent is pushed to explore distant regions of the state space, which
entails that the overall state coverage increases over time. It highlights that in the absence
of extrinsic rewards, our method provides indirect supervision for learning meaningful and
diverse behaviors.

4.5 Discussion

In this chapter, we employed learning progress as a central theme in building sample-
efficient agents that can explore the environment on their own from just raw sensory
data. We proposed to measure the agent’s learning progress in terms of quantity and
quality at different time-scales on a batch of observations. We compared and evaluated
two methods to estimate the agent’s progress: 1) policy-based progress, 2) representation-
based progress. We further contributed a method to give more attention to hard-to-learn
regions of the state space - the episodic-skill module encourages the exploration of state-
action trajectories carrying information about many skills.
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We have experimentally demonstrated that our agents trained with a curiosity reward
are able to learn useful behaviors in tasks featuring sparse and/or deceptive rewards, and
stochastic dynamics. This method allows us to overcome the known vanishing curiosity
issues of prior work and outperform previous state-of-the-art curiosity-driven methods on
robotic, maze navigation, and complex game-playing tasks. Moreover, the experiments
highlight that in the absence of extrinsic rewards, our method provides enough indirect
supervision for learning useful behaviors. Finally, we demonstrated that our agent is
capable of maintaining exploration in a meaningful way throughout the agent’s training
process, escaping from sub-optimal policies. Hence, improving the capability to make
intrinsically motivated choices has resulted in greater efficiency in terms of training time
and performance.

A limitation of our proposed as well as prior approaches is that they do not explicitly
encourage deep exploration behaviors. We found that these methods are sufficient to deal
with local exploration - exploring the consequences of short-term decisions, such as how
to pass an obstacle or interact with an object. Nonetheless, achieving deep exploration
- the future usefulness of decisions within some temporally-extended horizon, is beyond
the reach of most curiosity-driven methods. In detail, the agent should receive enough
intrinsic motivation for trying deep exploration strategies potentially leading to novel
learning opportunities later.

In the next chapter, we present a formulation for exploration inspired by developmental
sciences that explicitly favors deep exploration behaviors while maintaining consistent
exploration both within an episode and across episodes, escaping the vanishing curiosity
issue presented in this chapter.





Chapter 5

Fast and Slow Curiosity for High-
Level Exploration

In the above chapters, we discussed different strategies for motivating the agent’s explo-
ration in sparse reward environments, including those featuring high-dimensional obser-
vations, challenging motion features, and stochastic dynamics. In retrospect, we con-
cluded that even though these techniques lead to drastic reductions in both amounts of
required interactions and cost of exploration, explicitly promoting deep exploration be-
haviors remains an open question. This capability is critical for solving complex real-world
problems.

In this chapter, we present an approach that explicitly encourages deep exploration be-
haviors by maintaining exploration throughout the agent’s training process and providing
enough intrinsic reward for escaping from local optima. To do so, we introduce a novel
formulation of curiosity that can capture meaningful visual features and salient environ-
mental dynamics at different scales (e.g. character-level or word-level); and then build an
algorithmic framework that combines two curiosity bonus components. We further derive
a strategy for lifelong learning and the better incorporation of environmental motions.

5.1 Introduction

The problem of intrinsically-motivated deep exploration remains one of the major chal-
lenges in deep reinforcement learning. Several works attempt to tackle this challenge by
providing a new intrinsic exploration bonus (i.e. curiosity) to the agent. For example,
count-based exploration [18] keeps visit counts for states and favors the exploration of
states rarely visited. Another class of methods relies on predicting motion dynamics of
the environment [19]. For instance, ICM [14] predicts the feature representation of the
next state based on the current state and the action taken by the agent. Nevertheless,
maximizing the prediction error tends to attract the agent to stochastic transitions, where
the consequences of actions are hardly predictable [20]. This issue has motivated several
recent works [20, 21, 78]. Despite their ability to deal with local exploration - exploring the
consequences of short-term decisions (e.g. how to pass an obstacle or whether to interact
with a particular object), global exploration remains an open problem. Global exploration,
also referred to as “deep exploration”, considers the future usefulness of decisions within
some temporally-extended horizon. Therefore, these methods generally struggle in tasks
wherein a large enough intrinsic reward should be given to the agent to discover long-time
horizon strategies and avoid local optima.

51
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(a) Original Frame (b) Downsample Context (c) Noisy Context

Figure 5.1: Examples of contexts created from one frame (left column) of the Montezuma’s
Revenge environment. Middle column: downsample context. Right column: noisy con-
text.

Some recent works have suggested that what makes human learners so efficient at learning
is the brain’s computational capacities to act over multiple spatial-temporal scales [88, 89],
that is, humans employ fast and slow forms of learning. One natural question that
arises is: how these principles relate to exploration and how can we replicate them to
improve exploration? Inspired by this observation, we present Fast and Slow intrinsic
curiosity (FaSo) that can deal with high-level exploration, the combination of fast and slow
dominant exploration phases. We postulate that to efficiently explore its environment,
the agent should combine a short-time and long-time horizon strategy. To this end, the
proposed method decomposes the curiosity bonus into a fast and a slow intrinsic reward.
Fast rewards deal with local exploration by rapidly adapting to evaluate the novelty of
states. In contrast with fast rewards, slow rewards change slowly and remain large to
explicitly encourage the exploration of distant or hard-to-reach regions of the state space
(global exploration). We formulate intrinsic rewards as the reconstruction errors of the
observations given their contexts. Namely, a reconstructor network takes an observation
with missing or corrupted regions, the observation’s context (Figure 5.1), and attempts
to reconstruct the original image. We show that having two types of reconstruction tasks
(i.e. fast model and slow model) can lead to different exploration behaviors characterized
by different time horizons. A key difference between these models lies in their context
creation strategies. Moreover, using noisy inputs forces the model to capture meaningful
visual features and salient environmental dynamics at different scales (e.g. character-level
or word-level). We further propose an adaptive scaling technique to modulate fast and
slow rewards by measuring state diversity. Please note that since reconstruction tasks are
noisy by nature, we found that our model is not affected by local sources of entropy in
the environment.

We then derive a second model (IML) based on FaSo for lifelong learning and the better
incorporation of environmental motions. We develop and show how lifelong learning
can be achieved by modulating local rewards with deep rewards to maintain consistent
exploration both within an episode and across episodes. We further incorporate the
agent’s actions in the reconstruction tasks to capture motion dynamics.

In summary, our main contribution is a high-level exploration mechanism relying on fast
and slow rewards, which can scale to problems with complex visual observations and that
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is applicable to most on-policy algorithms. We propose as curiosity reward the recon-
struction errors of the observations given their contexts using two different architectures
of deep neural network inspired by auto-encoders. Furthermore, we trade-off local with
global exploration strategies by estimating state diversity. We evaluate the performance
of our method in a variety of sparse reward environments, including Minigrid, Super
Mario Bros, and Atari games. We demonstrate that FaSo is preferable to the previous
intrinsic reward methods in terms of exploration efficiency, especially in environments
featuring sparse rewards. Experimental results also show that high-level exploration is
crucial when the environment contains deceptive and extremely sparse rewards such as in
Pitfall (Atari). We also demonstrate how lifelong learning can improve sample-efficiency
on domains featuring very long delay between the initial state and goal states. Finally,
our experiments show that incorporating curiosity can lead to dramatic improvements in
performance compared to pure RL.

5.2 Related Work

Our work is also related to encouraging exploration in reinforcement learning. Most
approaches can be grouped into three classes: count-based strategies, goal conditioned
learning, and curiosity-driven exploration. This section provides a comprehensive com-
parison with those researches.

One line of work is to keep visit counts for states to favor exploration of rarely visited
states [18, 55, 82]. To apply count-based exploration to continuous state spaces, a solution
[56] is to train an observation density model to supply counts. Another solution [83] maps
states to hash codes and counts state visitations with a hash table. In order to reduce the
size of the count table, a method clusters states and keeps visit counts of clusters instead
of the original states [90]. A prior work [91] introduces a count-based optimistic algorithm
by estimating the uncertainty associated with each state. However, one can expect these
methods to be less effective when some valuable states require more attention - more
visits. In this setting an agent can visit a less frequently visited state many times, even
though the value in this state is already estimated. On the other hand, the proposed
curiosity formulation is based on the agent’s understanding of the world. Hence, states
easy to reconstruct will be less novel than states featuring sophisticated visual patterns.

Goal conditioned learning [39] motivates an agent to explore by constructing a goal-
conditioned policy, and then optimize the rewards with respect to a goal distribution.
While intrinsically motivated agents can easily get trapped in local optima, goal condi-
tioned methodologies aim to maximally cover a behavioral goal space, acting as a “global”
exploration strategy. For instance, universal value function approximators (UVFA) [40]
construct a set of optimal value functions by a single function approximator that can gen-
eralize over both states and goals. The recent work on hindsight experience replay (HER)
[41] forms an implicit curriculum by using visited states as a target. However, selecting
relevant goals is not easy. A class of work [67] and its recent follow-up [81, 61], proposed
to generate increasingly difficult goals to provide additional feed-back during exploration.
Rather than operating directly on observations, the approach [92] learns an embedding
for the goal space using unsupervised learning and then chooses the goals from that space.
Another line of work [93] improves exploration by focusing on goals that provide maximal
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learning progress. The recent work [94], Skew-fit, proposes an exploration objective that
maximizes state diversity. In particular, they use the density in a VAE latent space to
model state diversity. The key idea is to learn a maximum-entropy goal distribution to
match the weighted empirical distribution, where the rare states receive larger weights.
In contrast, we assume a fixed goal and train a VAE to reconstruct the original image
given a noisy input. Our method also works in the latent space to estimate state diver-
sity, but state diversity is used to adjust the scaling factors of intrinsic rewards. In a
similar fashion, option discovery methods [95, 96, 97] use options as sub-goals in order to
add high-level supervision during training. For instance, FeUdal network [98] employs a
manager and low-level policy. The manager policy guides the low-level policy by sending
sub-goal signals that are not explicitly defined.

This work belongs to the category of techniques that consider curiosity as a drive to
explore. Some methods [14, 54] rely on predicting environment dynamics using an inverse
or forward dynamic model. Another class of approaches uses prediction errors in the
feature space as measure of the importance of states [99]. For instance, RND [20] predicts
the output of a randomly initialized neural network on the current state. In a different
fashion, learning progress was shown to be an effective exploration bonus to escape from
local optima and avoid premature convergence to sub-optimal policies [78]. In contrast,
our work introduces the idea of reward decomposition to achieve flexible exploration
behaviors and explicitly encourage deep exploration. Another crucial difference here is
that each reward stream is independently calculated, by taking advantage of context-based
features. A recent solution [100] aims to leverage motion features in the observations.
They utilize the errors from a forward and backward optical flow estimation to asses
the novelty of observations. In [80], the authors formulate curiosity as the ability of the
agent to achieve a set of goals. By doing so, they incentivize the exploration of hard-to-
learn states. Introducing a new term in the loss function that attemps to maximize state
diversity was used to deal with local exploration [84]. Learning without extrinsic rewards
has also been studied and is referred to as novelty search [101] - an evolutionary algorithm
designed to escape from local optima by defining selection pressure in terms of behavior.
The novelty of an event is estimated as the distance of the current behavior features to
the k-nearest neighbors in a memory of behavior features. Episodic curiosity through
reachability [21] addresses the “noisy TV” problem by considering the number of time-
steps between two states as curiosity measure. Exploration bonus can also be based on
maximizing information gain about the agent’s knowledge of the environment [79]. As a
step towards addressing this problem, an algorithm [85] guides exploration by maximizing
an entropy objective. In this work, our formulation of curiosity is a deterministic problem
which not only deals with local exploration but aims to introduce high-level exploration
in reinforcement learning.

5.3 Fast and Slow Exploration

The main objective of the proposed fast and slow driven exploration (FaSo) method is to
encourage high-level exploration. We focus on tasks where extrinsic rewards 𝑟𝑒𝑡 are sparse;
zero for most of the time steps 𝑡. In addition to this reward, our method produces an
intrinsic curiosity-based bonus 𝑟𝑖𝑡 that can be decomposed into a fast reward 𝑟

𝑓 𝑎𝑠𝑡
𝑡 and a

slow reward 𝑟 𝑠𝑙𝑜𝑤𝑡 . The fast reward 𝑟
𝑓 𝑎𝑠𝑡
𝑡 deals with local exploration by rapidly changing
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Figure 5.2: The reconstructor 𝑅\ architecture. The image’s context is passed through an
encoder network and the features all around the feature map are connected using fully
connected layers. The reconstruction-based curiosity reward is calculated based on the
discrepancy between the original image and the reconstructed image.

over time based on the novelty of the current observation. The slow reward 𝑟 𝑠𝑙𝑜𝑤𝑡 acts
as a global exploration bonus to explicitly encourage deep exploration behaviors which
would move the agent towards regions of the state-action space that are novel or hard to
reach. 𝑟

𝑓 𝑎𝑠𝑡
𝑡 and 𝑟 𝑠𝑙𝑜𝑤𝑡 are assigned by using the idea of image reconstruction error given an

observation’s contexts. Formally, we consider an agent interacting with an environment;
at each time step 𝑡 the agent performs an action and receives an augmented reward:

𝑟𝑡 = 𝑟
𝑒
𝑡 + 𝑟𝑖𝑡 = 𝑟𝑒𝑡 +

[
𝛼𝑟

𝑓 𝑎𝑠𝑡
𝑡 + 𝛽𝑟 𝑠𝑙𝑜𝑤𝑡

]
(5.1)

where 𝛼 and 𝛽 are hyperparameters to weight the importance of both rewards. The policy
𝜋(𝑠𝑡 ; \𝑃) is represented by a deep neural network with parameters \𝑃. Its parameters are
optimized to maximize the excepted sum of these two rewards:

max
\𝑃
E𝜋(𝑠𝑡 ;\𝑃)

[∑︁
𝑡

𝑟𝑡

]
(5.2)

In the following section, we describe in detail the key components. First, we present how
an intrinsic reward signal is generated based on reconstruction error given observation’s
context. Second, we introduce two neural network models to reconstruct noisy images.
Finally, we formalize how fast and slow reconstruction-based rewards are combined to
achieve high-level exploration.

5.3.1 Reconstruction-Based Curiosity

We propose the concept of reconstruction-based curiosity as our novelty measurement
scheme (Figure 5.2). At every step, the module takes the context of the current observation
𝑠∗ as its input, and reconstructs the original image 𝑠. In this work, the context of an
observation refers to a version of it with one or more noisy, or corrupted regions. The
pixels can be recovered by propagating local features and capturing the overall structure
of the context. The discrepancy between the reconstructed image and the actual image
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then serves as the intrinsic reward.

We found that reconstructing an observation given its context is more robust to random
perturbations or small changes in the environment, and helps to capture important visual
features (see Section 5.3.1). Moreover, our formulation bypasses the need of predicting
the next observation given the current observation and the agent’s action [14], which
tends to attract the agent to stochastic transitions to maximize the prediction error [15].
In contrast with such stochastic approaches, we propose a curiosity measure where the
reconstruction is a deterministic problem.

Context Creation

We introduce two methods to artificially extract the context of an observation that we
present below.

• Downsample Context: The original image of size 𝑤 × 𝑤 is downscaled to a smaller
image of size 𝑤

𝐾
× 𝑤
𝐾
using a nearest-neighbor interpolation [102] and then upscaled

to the original size, introducing small artifacts. The hyperparameter 𝐾 controls the
amount of artifacts. As an intuition, it can be viewed as a simplified version of the
image.

• Noisy Context: The observation is augmented with a region of white noise which
makes 𝐾 × 𝐾 pixels. The white noise region position changes for each observation
to improve robustness. Theoretically, randomly choosing the position would be a
good choice, however, in practice this solution is less than ideal in some cases (e.g.
the region falls on the background). Empirically, we found that a random position
within a radius 𝐾/2 from the center of the frame works well as a robust substitute.

An example is shown in Figure 5.1. When using downsample context creation, the re-
constructor network attempts to reconstruct the detailed content of the original frame
(Figure 5.1a) given its blurry / corrupted context (Figure 5.1b). When using noisy con-
text creation, the reconstructor network aims to infer the original pixel values of a large
noisy region (Figure 5.1a) based on the context of the surrounding pixels (Figure 5.1c).

Reward Calculation

In this section we formulate the procedure to calculate reconstruction-based intrinsic re-
ward. This involves the prediction error of a reconstructor network trained to reconstruct
an observation given as input the observation’s context.

Formally, let 𝑠𝑡 be the original observation at time 𝑡 and 𝑠∗𝑡 its context. The reconstructor
network, 𝑅\ : 𝑠

∗ ↦→ 𝑠, takes the context of the observation and reconstructs the original
image 𝑠𝑡 . We denote the reconstructed image as �̂�𝑡 . The parametrization of 𝑅\ is discussed
further in the next section. The reconstruction process can be formulated as:

�̂�𝑡 = 𝑅\ (𝑠∗𝑡 ) (5.3)
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This reconstruction will have some errors that can be measured using a distance function
such as the euclidean distance. However, empirically we found that the euclidean dis-
tance is ineffective to distinguish noisy data (such as contexts) from the original images.
Instead, we propose to embrace SSIM metric [103], a popular technique used in the field
of computer vision for comparing the structural similarity of two images. Our novelty
measure is based on the single-scale SSIM metric that compares corresponding pixels and
their neighborhoods in two images with three metrics: luminance, contrast, and structure.
The reconstruction error 𝑒(𝑠𝑡 , �̂�𝑡) can therefore be expressed via:

𝑒(𝑠𝑡 , �̂�𝑡) = 1.0 −
[
1

𝑃

𝑃∑︁
𝑖=1

𝐿 (𝑠𝑖𝑡 , �̂�𝑖𝑡)Γ(𝑠𝑖𝑡 , �̂�𝑖𝑡)𝑆(𝑠𝑖𝑡 , �̂�𝑖𝑡)
]

(5.4)

where 𝑠𝑖𝑡 and �̂�
𝑖
𝑡 are the 𝑖𝑡ℎ sliding patch over 𝑠𝑡 and �̂�𝑡 , respectively, and 𝑃 is the number

of patchs per image. The luminance (L), contrast (Γ), and structure (S) can be computed
as follows:

𝐿 (𝑥, 𝑦) = 2`𝑥`𝑦+𝐶1

`2𝑥+`2𝑦+𝐶1
Γ(𝑥, 𝑦) = 2𝜎𝑥𝜎𝑦+𝐶2

𝜎2
𝑥 +𝜎2

𝑦 +𝐶2
𝑆(𝑥, 𝑦) = 𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
(5.5)

where `𝑥, `𝑦, 𝜎𝑥, 𝜎𝑦 denote the mean pixel intensity and the standard deviations of
pixel intensity of two image patchs 𝑥 and 𝑦. Following this work [103], we use a square
neighborhood of 5 × 5 pixels resulting in patches of size 11 × 11 pixels. 𝜎𝑥𝑦 is the sample
correlation coefficient between corresponding pixels in the two patches and 𝐶1, 𝐶2, 𝐶3 are
small constants for numerical stability.

When using reconstruction error as intrinsic reward, the reward function is non-stationary
and its scale can fluctuate greatly between different points in time. In order to keep
a consistent scale of the intrinsic rewards, it is useful to normalize them. This can be
achieved by dividing the intrinsic rewards by a running estimate of the standard deviations
of the sum of discounted intrinsic rewards R𝑖𝑏 [15]. We can now assign a curiosity bonus
𝑟𝑖𝑏 as:

𝑟𝑖𝑏 (𝑠𝑡) =
[
𝑒(𝑠𝑡 , 𝑅\ (𝑠∗𝑡 ))
𝜎(R𝑖𝑏)

]
(5.6)

This approach is motivated by the idea that, as our ability to model the dynamics and
salient features of a particular state improves, the agent has a better understanding and
hence the intrinsic motivation is lower. We show in Section 5.3.3 how the reconstruction-
based curiosity method can be used for estimating fast and slow rewards.

5.3.2 Image Reconstruction Architecture

In this section we consider the task of reconstructing an observation given its context. We
propose two different neural network architectures inspired by autoencoders (denoted by
Cb-AE and Cb-VAE) to learn �̂� = 𝑅\ (𝑠∗). They both consist of a number of convolutional
and de-convolutional layers for reconstructing the original image.
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Context-Based Autoencoder

Given the context of an observation, the most direct way to reconstruct the original
observation is to train an autoencoder (AE). However, autoencoder architectures cannot
propagate information from one part of the feature map to another. This is because the
encoder network directly feeds feature map to the decoder network and convolutional
layers never connect all the locations together within a feature map. To meet this need,
we introduce multiple fully connected layers between the encoder network and the decoder
network (Cb-AE)(Figure 5.2) like done in [104]. By connecting the features altogether,
we can expect to enable the propagation of information for all locations across the image
and hence improve image reconstruction. As an intuition, when a pixel is missing or
corrupted, only using the pixel’s neighborhoods only enables to capture local geometric
features, whereas our architecture (Cb-AE) can capture the general appearance structure
of images. Therefore, pixels are reconstructed to make the overall prediction look more
real. Please note that unlike autoencoders, the input image is different from the target
image that alleviates the need to have a small middle layer.

During training, we further propose a novel context-based loss function L𝑐𝑏 that captures
the overall structure of the observations. The objective is to favor the reconstruction of
regions that are noisy or corrupted, and hence require more attention. Given the context
𝑠∗ of a state 𝑠, the reconstructor network 𝑅\ generates an output 𝑅\ (𝑠∗) and is trained to
minimize the following loss function:

L𝑐𝑏 (𝑠, 𝑠∗) = ‖(𝑠 − 𝑅\ (𝑠∗)) � (1 − 𝑁)‖2 (5.7)

where 𝑁 is a mask with values between 0 and 1 of the same size as the reconstructed
image. The mask is automatically generated based on the type of context. When using
the downsample context, all the pixels are corrupted and hence the mask is filled with 0.
When the image is filled with white noise (i.e. noisy context), the mask is filled with +1
for the pixels not corrupted and 0 for the corresponding pixels within the noisy area.

Context-Based Variational Autoencoder

We propose context-based variational autoencoder (Cb-VAE) inspired by variational au-
toencoders (VAEs). VAEs are known to give representations with disentangled factors
[105] due to gaussian priors on the latent variables. They have been shown to be more
scalable to large datasets and to capture better representations than AEs. Cb-VAE resem-
bles a standard autoencoder, using an encoder network 𝑞𝜙 that outputs a latent variable
𝑧 given the image’s context 𝑠∗, and then a decoder network 𝑝𝜓 that maps 𝑧 to the original
image 𝑠. Its parameters are optimized by maximizing a variational lower bound on the
likelihood function:

L(𝜓, 𝜙; 𝑠, 𝑠∗) = 𝜏𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑠∗) | |𝑝(𝑧)) − E𝑞𝜙 (𝑧 |𝑠)
[
log 𝑝𝜓 (𝑠 |𝑧)

]
(5.8)

where the first term is a regularizer, the Kullback-Leibler divergence between the encoder
distribution 𝑞𝜙 (𝑧 |𝑠∗) and 𝑝(𝑧), and the second term is equivalent to a 𝑙2 loss. However,
VAEs suffer from the effect of 𝑙2 loss and therefore are prone to generate blurry images.
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Figure 5.3: Fast and slow exploration model architecture.

We observe that it can be written as:

L(𝜓, 𝜙; 𝑠, 𝑠∗) = 𝜏𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑠∗) | |𝑝(𝑧)) +
1

2𝜎2

𝑁∑︁
𝑖=1

(𝑠𝑖 − 𝑓𝜓 (𝑧(𝑖)))2 (5.9)

where 𝑓𝜓 (𝑧(𝑖)) is computed by the decoder network. Thus, we can rewrite this loss function
to integrate any differential loss 𝑔(𝑠, �̂�) that better captures small details and generates
more sharp images (see Section 5.4.1). The loss function that Cb-VAE optimizes then
becomes:

L(𝜓, 𝜙; 𝑠, 𝑠∗) = 𝜏𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑠∗) | |𝑝(𝑧)) + 𝜌 · E𝑞𝜙 (𝑧 |𝑠) [𝑔(𝑠, �̂�)] (5.10)

where 𝜏 and 𝜌 are scalars to weight the two components of the loss function, and �̂� = 𝑓𝜓 (𝑧).
Empirically, we found that minimizing the loss related to the sum of structural similarity
scores works well as a robust substitute to 𝑙2 [106]:

𝑔(𝑠, �̂�) = −
∑︁
𝑖

MS-SSIM(𝑠𝑖, �̂�𝑖) (5.11)

where 𝑖 is an index over scales and MS-SSIM is the multiscale SSIM [107]. While 𝑙2
ignores the intricate characteristics of the human visual system, MS-SSIM is sensitive to
changes in local structures and performs well on real-world images with different scales.
For training the MS-SSIM loss, we use 5 scales.

Similarly to Cb-AE, we further modified the original architecture by adding multiple fully
connected layers to connect features altogether.

5.3.3 Combining Fast and Slow Rewards

In this section we provide an algorithm built upon reconstruction-based curiosity to deal
with high-level exploration. Although a reconstruction-based curiosity bonus can improve
local exploration such as how to interact with a particular object or avoid a collision; global
exploration is beyond the reach of a single curiosity-based reward. We found that the agent
may get stuck in local optima or not receive enough intrinsic reward to promote long-time
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Algorithm 2 Fast and Slow intrinsic curiosity (FaSo)

1: Given:

• an on-policy RL algorithm 𝜋\𝑃 ⊲ PPO, A2C

• a replay buffer 𝑅

• a fast context buffer Ω 𝑓 and a slow context buffer Ω𝑠

• a fast model 𝑅\ 𝑓 and a slow 𝑅\𝑠 reconstructor model

• a context creation strategy ⊲ Noisy, Downsample

• context creation parameters 𝐾 𝑓 𝑎𝑠𝑡 and 𝐾𝑠𝑙𝑜𝑤

2: Initialize 𝜋\𝑃 , 𝑅\ 𝑓 and 𝑅\𝑠 ⊲ initialize neural networks
3: Initialize 𝑅 = {}, Ω 𝑓 = {}, and Ω𝑠 = {}
4: Initialize 𝛼 = 0.5 and 𝛽 = 0.5
5: for m=0,...,M do
6: for t=0,...,H-1 do
7: Get action 𝑎𝑡 = 𝜋(𝑠𝑡 |\𝑃)
8: Execute 𝑎𝑡 and observe next state 𝑠𝑡+1
9: Create fast 𝑠∗

𝑓
and slow contexts 𝑠∗𝑠 given the current observation

10: Calculate intrinsic reward 𝑟𝑖𝑡 = 𝛼

[
𝑒(𝑠𝑡 ,𝑅\ 𝑓

(𝑠∗
𝑓
))

𝜎(R 𝑓

𝑖𝑏
)

]
+ 𝛽

[
𝑒(𝑠𝑡 ,𝑅\𝑠 (𝑠∗𝑠))
𝜎(R𝑠

𝑖𝑏
)

]
11: Store transition 𝑅 = 𝑅 ∪ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑒𝑡 , 𝑟𝑖𝑡)
12: Store 𝑠∗

𝑓
in Ω 𝑓 and 𝑠

∗
𝑠 in Ω𝑠

13: Update reward normalization parameters using 𝑖𝑡

14: Normalize the intrinsic rewards contained in 𝑅
15: Update the RL model on 𝑅
16: Compute state diversity on Ω 𝑓 , and Ω𝑠

17: Assign 𝛼 and 𝛽 based on state diversity progress at time m and m+1
18: Periodically fine-tune 𝑅\ 𝑓
19: Periodically fine-tune 𝑅\𝑠

horizons strategies. This can happen after the novelty of a state has vanished, the agent
is not encouraged to visit it again, regardless of its importance on a long-time horizon. To
build intuition we consider a task wherein a robot has to reach a target location behind
a door. There are multiple levers but only the combination of two of them can unlock
this door. To use the correct levers, the agent must give up immediate rewards associated
with easy-to-reach levers and explore more distant areas. Solving such a task requires a
long-term exploration bonus to escape from sub-optimal policies by compensating the loss
of easy immediate extrinsic reward (i.e. keep the key) and incentivizing useful decisions
on a long-time horizon. One solution to the vanishing-curiosity issue could be to decrease
the learning rate of the reconstructor network, however, it tends to make the agent’s
learning slow as the curiosity continuously encourages the revisit of familiar states (not
all regions need to be revisited).

This work introduces a different approach where the intrinsic bonus 𝑟𝑖𝑡 is the combination
of two distinct reconstruction-based rewards:

𝑟𝑖𝑡 = 𝛼𝑟
𝑓 𝑎𝑠𝑡
𝑡 + 𝛽𝑟 𝑠𝑙𝑜𝑤𝑡 (5.12)
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where 𝑟
𝑓 𝑎𝑠𝑡
𝑡 deals with local exploration and 𝑟 𝑠𝑙𝑜𝑤𝑡 is the slow reconstruction-based reward

that aims to push the agent to explore long-time horizon strategies. In detail, the fast
context-based model quickly learns to reconstruct observations to assess the short-term
novelty of each state. On the other hand, 𝑟 𝑠𝑙𝑜𝑤𝑡 changes slowly and remains large to
encourage deep exploration. The scalars 𝛼 and 𝛽 weight the fast and slow reconstruction-
based rewards.

We now explain how 𝑟 𝑓 𝑎𝑠𝑡 and 𝑟 𝑠𝑙𝑜𝑤 are calculated. They are estimated by two distinct
reconstruction-based curiosity models which reconstruct the original observation 𝑠 given
its fast 𝑠∗

𝑓
and slow 𝑠∗𝑠 contexts respectively, 𝑅\ 𝑓 : 𝑠∗

𝑓
↦→ 𝑠 and 𝑅\𝑠 : 𝑠∗𝑠 ↦→ 𝑠 (see Figure

5.3). They are parameterized by a set of trainable parameters \ 𝑓 and \𝑠. The key
difference is how to generate frame contexts, 𝑠∗

𝑓
and 𝑠∗𝑠 , to achieve exploration behaviors

with different ranges of time horizons. Let 𝐾 𝑓 𝑎𝑠𝑡 the parameter used to create the fast
contexts, we typically used 𝐾 𝑓 𝑎𝑠𝑡×2 or 𝐾 𝑓 𝑎𝑠𝑡×4 to create the slow contexts - slow contexts
are more corrupted. Slow reward acts as a global exploration mechanism in two ways.
1) As the reconstruction task becomes more challenging when large regions of images
are noisy or corrupted (i.e. slow contexts), slow reward remains large even with further
state visitations. 2) The reconstruction error is maximized only in states that induce a
significant shift in the state distribution (e.g. visiting a new room), driving the agent to
seek out such richer and novel regions (i.e. global exploration). Please note that since
slow contexts have a more blurry representation of states, thus, the reconstructor network
will not see fine-grained local differences and will drive the agent to further explore novel
regions. In contrast, contexts of fast rewards are nearly unique which entails that slightly
deviating from previous policies - visiting novel states, or revisiting surprising states is
sufficient to significantly increase the reconstruction errors; encouraging to locally explore
the environment. Therefore, such a reward enables fast learning by encouraging local
exploration but swiftly downmodulates states that become more familiar across episodes.

Thus, the overall intrinsic reward provided by FaSo is calculated as:

𝑟𝑖𝑡 = 𝛼

[
𝑒(𝑠𝑡 , 𝑅\ 𝑓 (𝑠∗𝑓 ))

𝜎(R 𝑓
𝑖𝑏
)

]
+ 𝛽

[
𝑒(𝑠𝑡 , 𝑅\𝑠 (𝑠∗𝑠))
𝜎(R𝑠

𝑖𝑏
)

]
(5.13)

where 𝑒 is the reconstruction error defined in Equation 5.4. Algorithm 2 provides an
outline of the basic training loop.

One problem is how to select 𝛼 and 𝛽 to modulate local and global exploration strategies.
We found that a fixed value can be difficult to tune and not ideal. Instead, we propose an
adaptive solution to weight the fast and slow intrinsic rewards based on the idea of state
diversity. At the end of each epoch 𝛼 and 𝛽 are selected. We compared two methodologies
depending of the choice of the reconstructor network architecture:

1. Context-based autoencoder (Cb-AE): state diversity can be estimated by
maintaining an episodic memory of the last experienced contexts, and measuring
diversity progress between the memory and the memory augmented with the new
observation’s contexts. Let Ω = {𝑠∗0, 𝑠

∗
1, ..., 𝑠

∗
𝑁
} an episodic memory of the last con-

texts. We can estimate pairwise dissimilarities 𝑑 among the contexts as follows:
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𝑑 =
1

|Ω| ( |Ω| − 1)

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗=0
𝑖≠ 𝑗

| |𝑠∗𝑖 − 𝑠∗𝑗 | |2 (5.14)

State diversity progress can be measured as the difference between pairwise dissim-
ilarities at time 𝑡 + 1 and 𝑡.

𝑑 =
𝑑𝑡+1 − 𝑑𝑡
𝜎(𝐷) (5.15)

where 𝜎(𝐷) is an estimation of the standard deviations of the state diversity pro-
gresses. We then clip 𝑑 to be between 0 and 1 and the new experience are added to
the memory bank. When the capacity is exceeded a random element is substituted
in memory with the current element. The scaling factors 𝛼 and 𝛽 are independently
calculated based on their dedicated episodic memory and their value is equal to
respectively 𝑑 𝑓 𝑎𝑠𝑡 and 𝑑𝑠𝑙𝑜𝑤.

2. Context-based variational autoencoder (Cb-VAE): we indirectly estimate the
state diversity by measuring the quality of the Cb-VAE for encoding the latent rep-
resentations in the data. We assume that an observation’s context 𝑠∗ is generated
by a random latent process 𝑧. Learning progress can be measured by measuring
the distance between the posterior distribution 𝑝(𝑧 |𝑠∗) after experiencing new ob-
servation’ contexts and the prior 𝑝(𝑧). Several measures such as KL divergence can
be used. However, computing the posterior distribution 𝑝(𝑧 |𝑠∗) is often intractable.
Instead, we propose to use Cb-VAE to model the approximate posterior 𝑞𝜙 (𝑧 |𝑠∗).

Let Ω = {𝑠∗0, 𝑠
∗
1, ..., 𝑠

∗
𝑁
} a set of observation’s contexts, we define the state diversity

for the fast and slow models as:

𝑑 = 1.0 −
[
1

𝑁

𝑁∑︁
𝑖=0

𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑠∗(𝑖)) | |𝑝(𝑧))
]

(5.16)

To ensure state-diversity measure to adapt over time, Ω is filled with contexts ex-
perienced during the last episodes and contexts collected by executing a random
policy. The diversity progress is independently measured for fast and slow rewards,
𝛼 = 𝑑 𝑓 𝑎𝑠𝑡 , 𝛽 = 𝑑𝑠𝑙𝑜𝑤 respectively; and we clip the values to be within [0.1,1.0]. Since
state-diversity greatly decreases when more states become familiar, it is useful to
normalize 𝛼 and 𝛽 by diving the state diversity by a running estimate of the stan-
dard deviations of the state diversity. By doing so, the agent seeks out to explore
states as diverse as possible - this increases the distance between 𝑝(𝑧 |𝑠∗) and 𝑝(𝑧)
in average, to receive large intrinsic rewards induced by high values of 𝛼 and 𝛽.

5.4 Experiments

In this section, we first evaluate FaSo and present the experimental results on a variety
of environments including Minigrid, Super Mario Bros, and Atari games. In Minigrid, we
consider three types of hard exploration tasks: Door & Key, KeyCorridor, and Multiroom.
We first present an ablation analysis of FaSo. Second, we test FaSo trained on a fixed
and randomly generated mazes (Multiroom). Third, we evaluate the performance of our
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model on Super Mario Bros in the absence of any extrinsic reward signal. Fourth, we
measure the performance of FaSo on dense reward environments. Finally, we compare
the proposed algorithm with the previous curiosity-based approaches on five Atari games,
Door & Key, and Super Mario Bros, combining intrinsic rewards with sparse or deceptive
extrinsic rewards.

Implementation Details (FaSo)

In all the experiments the observations are given in the form of images. The RGB images
are converted to 84×84 grayscale images. The input given to the policy network consists
of the current observation concatenated with the previous three frames. We set the end
of an episode to when the game ends. As our policy learning method, we use PPO with
similar hyperparameters as in the original implementation of RND [20], but 32 learners.
The output of the last convolutional layer is fed into a fully connected layer with 256
units. It is followed by two separate fully connected layers of size 448, used to predict the
value function of each reward component (extrinsic and intrinsic advantage).

In order to find the hyperparameters for our method, we ran grid searches over the context
creation techniques as well as 𝐾 𝑓 𝑎𝑠𝑡 and 𝐾𝑠𝑙𝑜𝑤, which control the degree of fast and slow
contexts. On Minigrid, we select Cb-AE as the reconstructor network architecture and
downsample contexts created with 𝐾 𝑓 𝑎𝑠𝑡 = 2 and 𝐾𝑠𝑙𝑜𝑤 = 4. On Super Mario Bros, we
train a Cb-VAE to reconstruct the observations given their downsample contexts (𝐾 𝑓 𝑎𝑠𝑡 =

2, 𝐾𝑠𝑙𝑜𝑤 = 5). For Atari games, we compare our method trained with noisy contexts
(𝐾 𝑓 𝑎𝑠𝑡 = 24, 𝐾𝑠𝑙𝑜𝑤 = 46) with baselines. We set the coefficients 𝜏 = 0.5 and 𝜌 = 0.5.
The value of the memory size, 𝑁, is 80 for FaSo(Cb-AE), and 200 for FaSo(Cb-VAE). We
estimate the sum of discounted intrinsic rewards using a discount factor of 0.99 on rollouts
of length 128. 𝜎(R𝑖𝑏) (Eq 5.6) is defined as the running average of the standard deviations
of these discounted intrinsic rewards. The architectures of Cb-AE and Cb-VAE consist
of a sequence of four convolutional layers with 32 filters each, stride: 2,1,1, kernel size of
3×3, and padding 1. We apply a rectifier non-linearity after each convolutional layer. The
output of the last convolutional layer is passed to a serie of two fully connected layers of
size 256. The last layers are the corresponding decoding layers. For online training of the
reconstructor networks, we store the experience and make 5 epochs of training every 16K
time steps. We found that retraining the slow reconstructor network 𝑅\𝑠 once every 48K
steps is sufficient. Note that we decouple the training speed of the reconstructor models
to ensure that the models achieve the desired behaviors (fast learning or slow learning of
the reconstruction task). We observed that decoupling the training speed is only useful
in visually simple tasks such as Door & Key. Training is carried out with a fixed learning
rate of 0.0002 using the Adam optimizer [72], with a batch size of 256.

Environments

We test our method in multiple environments from Minigrid [53], Super Mario Bros [87],
DMLab [108], and Atari [86] games. The experiments in Minigrid and DMLab allows us
to verify that our method can improve learning in sparse reward environments and its
generality. The experiments in Atari games allows us to evaluate our method on tasks
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Table 5.1: Ablative performance comparisons on Door & key 16×16, Super Mario Bros
sparse, and Montezuma’s Revenge. Averages over 10 trials are reported at different
timesteps (in millions M). We report scores (mean±std) for each component of the pro-
posed method (line 1-4), different choices of context creation method (line 5-7), different
strategies to choose the position of noisy contexts (line 8-10), various predictor network
loss functions (line 11-14), and the overall method (line 15-16).

Door & key 16×16 Super Mario Bros sparse Montezuma’s Revenge

Method 2M 6M 15M 2M 6M 10M 50M 250M 500M

PPO+Fa(Cb-AE) 0.03±0.08 0.88±0.15 0.92±0.05 0.30±0.08 0.87±0.07 0.89±0.03 4,523±252 8,537±189 8,785±341
PPO+So(Cb-AE) 0.02±0.05 0.65±0.21 0.93±0.06 0.21±0.05 0.82±0.06 0.81±0.05 2,876±345 6,123±512 8,823±472
PPO+Fa(Cb-VAE) 0.02±0.10 0.75±0.18 0.86±0.08 0.35±0.09 0.90±0.03 0.88±0.05 5,524±157 9,762±212 9,340±464
PPO+So(Cb-VAE) 0.01±0.06 0.61±0.18 0.98±0.04 0.18±0.07 0.79±0.07 0.74±0.04 3,921±415 8,311±475 9,025±378
PPO+FaSo(downsample) 0.02±0.07 0.79±0.17 0.96±0.04 0.24±0.03 0.83±0.06 0.93±0.05 3.245±165 6.628±200 8.878±622
PPO+FaSo(noisy) 0.03±0.08 0.76±0.15 0.93±0.03 0.27±0.06 0.80±0.07 0.91±0.06 3,278±180 6,897±225 9,651±442
PPO+FaSo(original) 0.03±0.05 0.55±0.12 0.78±0.07 0.12±0.03 0.66±0.10 0.57±0.08 2,128±450 3,287±511 4,425±709
PPO+FaSo(random) 0.04±0.10 0.64±0.23 0.85±0.09 0.11±0.08 0.57±0.09 0.76±0.08 2,876±237 5,450±487 6,973±904
PPO+FaSo(noisy) 0.03±0.08 0.76±0.15 0.93±0.03 0.27±0.06 0.80±0.07 0.91±0.06 3,278±180 6,897±225 9,651±442
PPO+FaSo(fixed) 0.03±0.04 0.71±0.10 0.90±0.05 0.22±0.05 0.73±0.07 0.85±0.05 3,043±340 5,394±412 8,036±667
PPO+(Cb-AE/L𝑐𝑏) 0.02±0.07 0.79±0.17 0.96±0.06 0.24±0.03 0.83±0.06 0.93±0.05 3,278±180 6,897±225 9,651±442
PPO+FaSo(Cb-VAE/MS-SSIM) 0.01±0.09 0.64±0.15 0.91±0.08 0.30±0.04 0.96±0.05 0.97±0.04 5,325±208 9,363±345 11,466±584
FaSo+Cb-AE(MSE) 0.01±0.12 0.66±0.13 0.92±0.06 0.26±0.06 0.64±0.08 0.54±0.13 2,748±165 3,846±303 5,025±687
FaSo+Cb-VAE(MSE) 0.02±0.07 0.75±0.16 0.97±0.05 0.25±0.04 0.68±0.06 0.87±0.06 3,142±415 7,424±402 6,560±457
PPO+FaSo(Cb-AE) 0.02±0.07 0.79±0.17 0.96±0.06 0.24±0.03 0.83±0.06 0.93±0.05 3,278±180 6,897±225 9,651±442
PPO+FaSo(Cb-VAE) 0.01±0.08 0.64±0.15 0.91±0.04 0.30±0.04 0.96±0.05 0.97±0.04 5,325±208 9,363±345 11,466±584

that involve deep exploration.

5.4.1 Ablation Analysis

We have conducted ablation studies for all the three sets of tasks (Door & key 16×16, Super
Mario Bros sparse, Montezuma’s Revenge) to investigate: (1) the impact of a fast/slow
reward decomposition, (2) the effect of the choice of the context creation method, (3) the
influence of MS-SSIM (Eq 5.11) on our method, (4) the effect of using adaptive scaling
factors as part of the intrinsic reward, and (5) the performance of FaSo on “noisy-TV”
tasks.

Fast and Slow Reward Decomposition

As described in Section 5.3.3, our method decomposes the curiosity reward into a
fast reward and a slow reward. To isolate how much each reward contributes to our
method, we show in Table 5.1 the performance of FaSo trained only with fast rewards
(‘PPO+Fa(Cb-AE)’,‘PPO+Fa(Cb-VAE)’) and only with slow rewards (‘PPO+So(Cb-
AE)’,‘PPO+So(Cb-VAE)’). In Table 5.1 we see that methods trained only with fast re-
wards tend to learn faster during early training, but are outperformed later by models
guided using slow rewards. However, we found that only a slow reward model tends to
provide similar rewards for the observations of a same region of the state space, resulting
in an incomplete exploration. We also observe that PPO+FaSo achieves the highest per-
formance which indicates that it takes advantage of the two reward streams to discover
more efficient exploration strategies.
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The advantages of a fast and slow reward decomposition become more noticeable in
environments with sparse rewards, or harder exploration such as Montezuma’s revenge.
Similarly to RND [20], our agents trained using a single intrinsic reward stream cannot
explore all the rooms on Montezuma’s revenge. In the first stage, the agent has to pick
keys and open two doors. Without long-time exploration, baseline models open the first
easy doors to receive the associated rewards and therefore fail (i.e. local optima). On
the other hand, slow rewards compensate for the loss of immediate reward (no door are
open) to let the agent try more global exploration behaviors (e.g. save the keys for
later). In Pitfall, similar behaviors can be observed: slow rewards encourage the agent to
travel through tunnels, useful to later collect treasures (positive rewards). Since tunnels
are hard to explore and contain a lot of objects resulting in negative/deceptive rewards,
baselines tend to stay in the jungle but cannot finish the level. Slow rewards balance
negative rewards during early exploration to incentivize strategies that may result in
larger rewards on a long-time scale.

Choice of the Context Creation Method

To see the potential benefits of using observations’ contexts rather original frames, we ex-
plore the performance of FaSo(Cb-VAE) with contexts created using the following strate-
gies: downsample context, noisy context, original context (i.e. the context is the original
observation, 𝑠∗ = 𝑠) (Table 5.1). The agents trained with the original context method
perform poorly. This behavior is expected since fast contexts and slow contexts are iden-
tical. It might also be related to the fact that PPO+FaSo(original) is more affected by
small changes in the environment. However, for the other agents, using a context creation
method (downsample or noisy) greatly improves the performance.

When using noisy contexts, another question that arises is how to choose the noise po-
sition. We experimentally evaluate different strategies for choosing the position of the
white noise region. The choice of the position has a relative importance on the intrinsic
bonus and the state diversity. For example, if the noisy region falls on the background
or on relevant regions of the images, the reconstruction task may become easier or more
difficult.

So far, the location is randomly chosen around the center of the frame (see Sec 5.3.1).
Apart from it we consider the following strategies:

• full random: the location is randomly chosen within the frame without any con-
straint.

• fixed: the white noise region is fixed and located in the center of the observation.

We report the performance (mean±std) of the proposed method trained with noisy con-
texts where the noise region is: randomly selected (random), within a radius from the
center 𝐾/2 (noisy), and fixed (fixed). As shown in Table 5.1 (line 8-10), FaSo(noisy)
learns considerably faster and better than the models trained with the other strategies.
We also observe that FaSo(random) is more prone to outlier and more unstable than
FaSo(noisy). On the other hand, reconstructing the image from fixed noisy contexts
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Table 5.2: Final mean score (± std) of our method with various scaling strategies of
rewards on Atari games and average success rate (± std) on Door & Key 16×16 and
Super Mario Bros. Averages over 10 runs are shown after 500M steps (Atari), 15M steps
(Door & Key), and 10M steps (Super Mario Bros).

Maximum Mean Score (at convergence) Success rate

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest Door & Key Super Mario Bros

FaSo (Cb-AE) / N = 50 9,711±587 11,807±754 3,812±325 234±24 3,120±270 0.95 ±0.07 0.92 ± 0.04

FaSo (Cb-AE) / N = 80 9,651±442 13,423±775 3,656±280 247±28 4,989±311 0.96 ±0.06 0.93 ± 0.06

FaSo (Cb-AE) / N = 100 7,245±371 14,008±637 3,658±254 15±8 5,244±327 0.94±0.06 0.95 ± 0.07

FaSo (Cb-AE) / N = 150 6,388±356 13,996±588 3,125±266 -5±1 4,584±386 0.90±0.07 0.74 ± 0.12

FaSo (Cb-AE) / N = 200 6,461±425 11,652±752 2,718±303 2±2 4,256±297 0.84 ± 0.13 0.68 ± 0.11

FaSo (Cb-VAE) / N = 50 8,625±440 13,325±862 3,001±444 70±7 4,125 ± 645 0.72 ± 0.16 0.71 ± 0.12

FaSo (Cb-VAE) / N = 80 9,121±512 13,311±743 3,257±396 65±10 4,659 ± 587 0.77 ± 0.13 0.77 ± 0.10

FaSo (Cb-VAE) / N = 100 10,998±436 15,010±754 3,389±352 71±6 5,027 ± 463 0.82 ± 0.11 0.92 ± 0.08

FaSo (Cb-VAE) / N = 150 11,895±487 15,994±712 3,715±318 180±12 4,826 ± 327 0.90 ± 0.06 0.97 ± 0.05

FaSo (Cb-VAE) / N = 200 11,466±584 16,135±688 3,431±325 189±17 5,123±251 0.91 ± 0.04 0.97 ± 0.04

FaSo (Cb-AE) / (Schedule 1) 5,430 ± 462 11,927 ± 711 2,734 ± 523 -1 ± 4 3,871 ± 401 0.90 ± 0.08 0.71 ± 0.09

FaSo (Cb-VAE) / (Schedule 1) 8,046 ± 613 13,780 ± 499 2,508 ± 682 -3 ± 3 4,024 ± 455 0.86 ± 0.08 0.66 ± 0.08

FaSo (Cb-AE) / (Schedule 2) 5,712 ± 587 12,489 ± 539 2,115 ± 713 10 ± 6 3,915 ± 473 0.80 ± 0.07 0.72± 0.13

FaSo (Cb-VAE) / (Schedule 2) 7,369 ± 632 12,647 ± 500 2,828 ± 654 26 ± 12 4,687 ± 601 0.86 ± 0.11 0.69 ± 0.10

FaSo (Cb-AE) / (𝛼 = 0.5, 𝛽 = 0.5) 6,251±398 11,684±542 3,213±412 12±2 4,182±221 0.85 ± 0.06 0.75 ± 0.06

FaSo (Cb-VAE) / (𝛼 = 0.5, 𝛽 = 0.5) 8,750±467 12,459±493 3,312±338 85±6 4,701±186 0.82 ± 0.04 0.76 ± 0.08

FaSo (Cb-AE) / (𝛼 = 0.8, 𝛽 = 0.2) 7,465 ± 363 11,414 ± 522 3512 ± 564 15 ± 7 4,106 ± 328 0.82 ± 0.05 0.78 ± 0.04

FaSo (Cb-VAE) / (𝛼 = 0.8, 𝛽 = 0.2) 8,868 ± 484 11,988 ± 440 2532 ± 380 38 ± 8 4,789 ± 323 0.83 ± 0.06 0.81 ± 0.07

FaSo (Cb-AE) / (𝛼 = 0.2, 𝛽 = 0.8) 5,139 ± 526 8,234 ± 619 2234 ± 389 1 ± 2 3,401 ± 511 0.62 ± 0.15 0.65 ± 0.09

FaSo (Cb-VAE) / (𝛼 = 0.2, 𝛽 = 0.8) 5,340 ± 438 9,030 ± 782 2646 ± 401 -1 ± 3 3,876 ± 499 0.64 ± 0.10 0.70 ± 0.12

tends to not capture the novelty of states where small changes are located in the center
of it.

Predictor Network Loss Function Comparison

FaSo relies on two reconstructor networks. One legitimate question is to study the
impact of the choice of loss function on the performance. To answer this question,
we keep other components the same and only change the loss function during train-
ing. As shown in Table 5.1, the agents trained using ‘FaSo+Cb-VAE(MS-SSIM)’and
‘FaSo+Cb-AE(L𝑐𝑏)’outperform ‘FaSo+Cb-VAE(MSE)’and ‘FaSo+Cb-AE(MSE)’, re-
spectively. MSE loss successfully handles visually simple tasks such as on Door & key,
but gives unsatisfactory performance in more complex domains such as Atari games. We
conjecture that small details cannot be captured by the MSE loss and therefore MS-SSIM
loss is more suitable for reconstructing complex frames.

Adaptive Scaling of Rewards

We aim to understand the effect of using adaptive scaling of rewards. We compare the
performance of FaSo(Cb-AE) and FaSo(Cb-VAE) trained with fixed scaling of rewards
(𝛼 = 0.5, 𝛽 = 0.5),(𝛼 = 0.8, 𝛽 = 0.2),(𝛼 = 0.2, 𝛽 = 0.8) and adaptive scaling factors.
Adaptive scaling factors are obtained with 𝑁 varying between 50 and 200. We also
evaluate two schedule strategies that switch between fast (𝛼 = 0.8, 𝛽 = 0.2) and slow
(𝛼 = 0.2, 𝛽 = 0.8) regimes. We report the performance of Faso trained with a slow
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Figure 5.4: Evolution of 𝛼 and 𝛽 across learning on the Montezuma’s Revenge environ-
ment. We use Cb-VAE and downsample contexts to compute the coefficient values.

(Schedule 1) and a frequent switch in regimes (Schedule 2). Schedule 1 switches in regimes
every 10 epochs and Schedule 2 every 3 epochs.

As shown in Table 5.2, methods using adaptive factors perform significantly better in most
of the tasks. On Gravitar, there is only little difference between the variants although
the full model worked slightly better on average. On Montezuma’s revenge, the effect of
adaptive weights is more clear; the agent can discover more rooms and therefore achieves
a higher score. We further observe that FaSo(Cb-AE), 𝑁 = 80, and FaSo(Cb-VAE),
𝑁 = 200, perform well in most of the games. Similar trends can be observed on Door
& Key and Super Mario Bros as well. This experiment leads us to the conclusion that
FaSo is reasonably robust to the choice of 𝑁. In Private Eye and Door & Key, we found
that a frequent switch in the regimes improves the performance compared to fixed scaling
factors. However, these parameters can be difficult to tune in the absence of domain
knowledge. Under this lens, having an adaptive scaling of rewards appears to be the best
solution to trade-off local and global exploration strategies.

To further examine the importance of state-diversity automatic schedule, we plot the
evolution of 𝛼 and 𝛽 across learning on Montezuma’s Revenge. The results are plotted in
Figure 5.4. They show that 𝛼 maintains a relatively stable value. Intuitively, exploring
the state surrounding the agent enables sufficient state diversity. This is because their
fast context is nearly unique, which entails that the diversity progress does not sharply
decrease across many episodes. On the other hand, 𝛽 tends to produce spikes only in
states that significantly drift away from the known states (e.g. a new room, a new type of
obstacle). Overall, we can observe a frequent switch in regimes of fast and slow dominant
phases and that “fast exploration” phases tend to be longer. Rather than fixed 𝛼 and 𝛽,
we argue that a switch in regimes is closer to how humans explore and learn.

Randomized Environments

As pointed out by many authors [20, 21], agents that maximize the “surprise” - inability to
predict the future, tend to suffer from the TV noise problem. For example, let us consider
a curiosity formulation where the agent predicts the next observation given the current
observation and agent’s action. An agent maximizing this prediction error may seek out
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Table 5.3: Average reward in the randomized-TV versions of Montezuma’s Revenge
(mean±std). Results are average over 25 random seeds after 10M timesteps of train-
ing without seed tuning.

Maximum Mean Score (at convergence)

Method Original Noise Noise Action 𝜚 = 0.05 Noise Action 𝜚 = 0.10

RND [20] 8,152±653 3,642±902 6,224±647 5,824±733
PPO+EC [21] 8,025±770 4,008±823 7,160±845 6,860±862
PPO+ICM [14] 329±118 125±106 78±40 56±74
PPO+FaSo (Cb-AE) 9,651±442 3,854±779 8,734±611 7,487±884
PPO+FaSo (Cb-VAE) 11,466±584 3,708±806 9,965±599 8,609±740

stochasticity (e.g. randomized transitions, high-frequency images) in the environment to
maximize the error.

We now evaluate our method trained on randomized environments. We create versions
of the Montezuma’s Revenge environment with added sources of stochasticity. We test
several settings:

• “Original”: the original environment.

• “Noise”: if the agent selects the action jump, a noise pattern (32×32) is displayed
on the lower right of the observation - TV screen. The noise is sampled from [0,255]
independently for each pixel.

• “Noise Action”: if the agent selects the action jump, with a probability 𝜚 ∈
{0.05, 0.10}, the action performed by the agent is uniformly sampled among the
possible actions.

In almost all cases, the performance of all methods deteriorates due to the stochasticity
(Figure 5.3). Nevertheless, our method is reasonably robust to randomized transitions
(i.e. noise action 𝜚 = 0.05 and noise action 𝜚 = 0.10). We observed that ICM gets
stuck in local optima - the ICM agent frequently uses the action jump to maximize the
prediction error. On the other hand, our formulation does not rely on the agent’s action
and consequently is more robust to stochastic transitions. The scores for PPO+FaSo
(Cb-AE) and PPO+FaSo (Cb-VAE) are significantly higher compared to the baselines as
indicated by paired t-tests at 95% confidence level (𝑝 < 0.002).

When adding visual noise to the environment, the performance of FaSo appears to deteri-
orate more. It is quite likely that visiting a state with a noise pattern produces constantly
reward for such an area. That said, further analysis found that slow rewards may be large
enough to escape from local optima by incentivizing the agent to try other actions. This
observation motivated the use of formulations that quantify the relative improvement of
the reconstruction, rather than its absolute error, but we leave it to future work to explore
this direction further.
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(a) Random (b) RND (c) ICM (d) FaSo(AE) (e) FaSo(VAE)

(f) Random (g) RND (h) ICM (i) FaSo(AE) (j) FaSo(VAE)

Figure 5.5: State visitation heatmaps averaged over 10 runs for different models: random,
RND, ICM, FaSo(Cb-AE), and FaSo(Cb-VAE). We trained the models for 40m frames on
a fixed maze (top row) and on randomly generated mazes (bottom row) in MultiRoomN10.

Table 5.4: Average success rate on fixed and randomly generated tasks from the Minigrid
domain. The results are averaged over 100 runs after 40 millions training steps.

Fixed Random

Method MultiRoomN10 Door&Key 16×16 KeyCorridorS6R3 MultiRoomN10 Door&Key 16×16 KeyCorridorS6R3

RND 51±1.1 97±0.6 62±0.7 0±3.7 92±4.7 30±7.1
ICM 18±0.3 65±0.8 23±1.2 0±2.1 3±1.2 21±5.6
PPO+FaSo(Cb-AE) 91±0.8 98±0.5 88±0.9 87±2.9 97±3.5 81±3.5
PPO+FaSo(Cb-VAE) 89±0.6 99±0.2 94±1.2 88±3.8 96±2.9 90±3.6

5.4.2 Fixed Versus Randomly Generated Environments

In this experiment we aim to investigate the ability of our agent to learn from ran-
domly generated environments and generalize to unseen views or appearances. We use
MultiRoom tasks from the Minigrid [53] domain. We compare PPO+FaSo(AE) and
PPO+FaSo(VAE) with three baselines: random agent, RND [20], and ICM [14].

Figure 5.5 shows state visitation heatmaps on fixed (top row) and randomly generated
(bottom row) mazes. We found that a random agent can only explore the first room.
We also observe that ICM gets trapped in local optima in both scenarios. However,
our approach discovers a large number of rooms when trained from fixed or randomly
generated mazes. When trained on randomly generated mazes, existing methods are
exploring much less efficiently, resulting in a poor state coverage.

To further evaluate the robustness of FaSo to random perturbations, we report in Table
5.4 the average success rate of agents trained on more environments (fixed and randomly
generated) from the Minigrid domain. In all tasks, we observe that the proposed methods
considerably outperforms the baselines approaches. The results further suggest that FaSo
enables better generalization across the environments and is less distracted by small details
that change from on environment to another.
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Figure 5.6: Maximum distance achieved with no extrinsic reward on Super Mario Bros.
We report average distance over 10 seeds. Darker line represents mean and shaded area
represents standard error.

Table 5.5: Average success rate on tasks from the Minigrid domain with dense and sparse
settings. The results are averaged over 100 runs after 40 millions training steps.

Sparse Dense

Method MultiRoomN10 Door&Key 16×16 KeyCorridorS6R3 MultiRoomN10 Door&Key 16×16 KeyCorridorS6R3

PPO 0.3±4.3 0.0±2.1 0.0±1.1 22±3.1 63±1.8 16± 1.5

PPO+FaSo(Cb-AE) 87±2.9 97±3.5 81±3.5 74±1.1 93±1.3 77± 1.9

PPO+FaSo(Cb-VAE) 88±3.8 96±2.9 90±3.6 83±1.6 94±2.9 86±1.8

5.4.3 No Extrinsic Reward

For testing the good exploration coverage of our method, we trained our agent on Su-
per Mario Bros without any reward from the environment. Our agent only receives a
curiosity-based signal to reinforce its policy. As can be seen in Figure 5.6, in order to
remain curious the agent is pushed to explore distant regions of the state space, which
entails that its coverage increases over time. It highlights that in the absence of extrinsic
rewards, FaSo provides enough intrinsic supervision exploration signal for learning useful
behaviors. We found a statistically significant difference between PPO+FaSo(Cb-VAE)
and PPO+FaSo(Cb-AE) after 2.7M steps (paired t-test, 𝑝 < 0.05).

5.4.4 Dense Reward

A desirable property of the proposed method is to avoid hurting performance in tasks
where rewards are dense and well-defined. We evaluate this scenario in MultiRoomN10,
Door&Key 16×16, and KeyCorridorS6R3. In those tasks, the agent has to collect keys,
open doors, and reach a target position. In the sparse setting, the agent is only provided
a sparse terminal reward of +1 if it finds the target and 0 otherwise. In the dense
setting, the agent is rewarded for collecting keys (+0.3) and opening doors (+0.3), as
well as reaching the goal (+1). The results show (Table 5.5) that our method does not
significantly deteriorate performance in dense reward tasks (paired t-test p>0.05), with the
exception of FaSo(Cb-AE) on MultiroomN10 (p=0.0034). Even though PPO+FaSo(Cb-
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(a) 5×5 (b) 8×8 (c) 11×11 (d) 16×16

(e) 5×5 (f) 8×8 (g) 11×11 (h) 16×16

Figure 5.7: Comparison of PPO+FaSo with baselines with no curiosity (top row) and
agents augmented with an exploration bonus (bottom row) in Minigrid Door & Key. The
hardness of the exploration task (i.e. sparsity) is gradually increased from left to right.
Results are averaged over 10 random seeds. No seed tuning is performed. The shaded
area shows the standard errors of 10 runs.

AE) and PPO+FaSo(Cb-VAE) perform slightly worse in the dense setting, they still
greatly improve performance as compared to plain PPO.

5.4.5 Exploration with Sparse Extrinsic Rewards

We now report experimental results in three domains including Minigrid, Super Mario
Bros, and Atari games, characterized by sparse rewards. It aims to investigate how useful
our proposed method is for hard exploration tasks on which recent advanced exploration
methods mainly focused.

Minigrid

We performed a set of two experiments on Door & Key to evaluate the overall performance
of our algorithm. First, we verify if our model (PPO+FaSo) achieves better performance
than traditional RL methods (DQN [1], PPO [38], A2C [37]). Second, we compare it
against state-of-the-art curiosity-based learners for different degree of sparsity (i.e. size of
board). We evaluated our model against RND [20], PPO+EC [21], A3C+ICM [14], and,
PPO+ICM [14] that were shown to perform well in sparse reward environments.

We present in Figure 5.7 the evolution of the extrinsic reward achieved by the agents. The
results of each run are averaged to provide a mean curve in each figure, and the standard
error is used to make the shaded region surrounding each curve. In such sparse tasks,
the learning curve shows that our model always outperforms RL baselines. Moreover,
only our method scales with the size of the environment and is significantly faster in term
of convergence speed. The performance gap is more pronounced in levels hard to learn
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Figure 5.8: Average task reward obtained in the Super Mario Bros environment with
sparse reward setting. We run every method with a repeat of 10 and show all runs. Mean
and standard error of the mean over trials are plotted.

(i.e. size > 5) and a significant difference was found between our method and every other
baselines (paired t-test at 95% confidence, p<0.001). In Door & Key 5×5, the difference
between FaSo and PPO is, however, not statistically significant (t-test p>0.05).

We further observed that baseline methods will exhaust their curiosity quickly after expe-
riencing unexpected events such as after picking the key, and therefore struggle to reach
the final goal. On the other hand, we found that when using a slow curiosity reward, in-
trinsic reward remains large enough to encourage long-time horizon exploration strategies
such as opening the door after picking the key, which significantly improves performance.

Super Mario Bros

Next, we apply our method to the Super Mario Bros environment [87]. As a baseline,
we compare our model to the A3C, A2C+ICM and PPO+EC algorithms. For a fair
comparison with the state-of-the-art approach [14], we combine FaSo with A2C, from the
open-source implementation [109]. We use the same hyperparameters as in the work [14].
Fig 5.8 shows the normalized average reward (over 10 runs) obtained for each method.
The main result is that A2C+FaSo obtains a near perfect score in a smaller number of
epochs than any other method. The proposed method can significantly accelerate learning
compared to the state-of-the-art ICM algorithm (t-test p=0.023, t=2.26).

Atari Games

We also evaluate the proposed curiosity method on five difficult exploration Atari 2600
games from the Arcade Learning Environment (ALE) [86]: Montezuma’s Revenge, Private
Eye, Gravitar, Pitfall. In the selected games, training an agent with a poor exploration
strategy often results in a suboptimal policy. We compare our method to the performance
of A2C and PPO without intrinsic reward. The results are shown in Table 5.6. We
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Table 5.6: Final mean score of our method and baselines on Atari games. We report the
results achieved over total 500M timesteps of training, averaged over 10 seeds.

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest

A2C [37] 15±20 572±136 2,758±185 -17±2 1,613±244
PPO [38] 2,487±942 103±56 3,438±412 -31±5 1,548±341
RND [20] 8,152±653 8,666±1051 3,906±246 -3±1 3,179±378
PPO+EC [21] 8,025±770 9,244±634 3,521±246 -12±1 4,650±358
PPO+ICM [14] 329±118 485±71 3,447±242 -15±2 2,165±223
PPO+GoCu [80] 9,123±751 10,223±587 550±625 -2±1 2,055±259
PPO+PoBP [78] 9,125±856 11,124±601 5,069±256 109±11 2,958±311
PPO+ReBP [78] 8,934±911 8,598±599 4,915±187 0±2 3,165±325
DeepCS [76] 3,500 1,105 881 -186 3,343

Average Human [77] 4,753 69,571 3351 6,464 20,182

PPO+FaSo (Cb-AE) 9,651±442 13,423±775 3,656±280 247±28 4,989±311
PPO+FaSo (Cb-VAE) 11,466±584 16,135±688 3,431±325 189±17 5,123±251

Figure 5.9: Average number of rooms (± std-error) found during the training phase on
Montezuma’s Revenge. We run every algorithm with a repeat of 10.

consider the mean final reward of 10 training runs with the same set of hyperparameters.
It is observed that both baselines obtained a score close to zero and could not solve most
of the tasks.

We further compare PPO+FaSo against various methods using different exploration
strategies. To evaluate the significance of the scores, a paired t-test was conducted to com-
pare the received average total reward in the proposed method and the best-performing
methods on the five Atari 2600 games. A significant difference was found between our
agents and every other methods (p<0.001), except on Gravitar where no significant differ-
ence was found between between RND and PPO+FaSo(Cb-AE) (p=0.073). As presented
in Table 5.6, on Montezuma’s Revenge, Seaquest and Private Eye our model outperforms
other approaches that mainly deal with local exploration. It suggests that high-level ex-
ploration is vital for exploring in complex environments. For instance, on Montezuma’s
Revenge, FaSo(Cb-VAE) exceeds state of the art performance. It might be related to
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Figure 5.10: The reconstructor 𝑅𝜙 architecture. The current observation’s context and
the action are passed through an encoder network and the decoder network attempts to
reconstruct the original next frame. Novelty is measured as the discrepancy between the
original next frame and the reconstructed next frame.

the very fact that slow rewards are large enough to motivate the agent to discover and
visit new rooms. As a result, our agent explores a larger number of rooms as compared
to RND (Figure 5.9). In Pitfall, many interactions yield negative rewards that dissuade
baselines from exploring efficiently the environment. We found that while the baselines
focus on short-term rewards, they tend to converge prematurely to sub-optimal policies.
In this task, the cognitive capability to make long-term intrinsically motivated choices is
required for the agent to compensate deceptive extrinsic rewards and discover alternate
policies.

5.5 Intrinsically Motivated Lifelong Exploration

Intrinsically Motivated Lifelong Exploration (IML) extends the idea presented above. We
present a different strategy to flexibly combine intrinsic rewards - the deep signal modu-
lates the local novelty reward. This novel strategy alleviates the need for weighting reward
streams while effectively promoting lifelong learning. We also aim to develop means for
the better incorporation of action-dependent information into the existing intrinsic reward
formulation. To do so, the new formulation integrates the agent’s action and relies on
next-frame reconstruction errors. This is necessary since large changes in the environment
can lead to minor visual changes.

5.5.1 Integrating Motion Dynamics in Reconstruction-based
Curiosity

We propose a different measure of intrinsic motivation formulated as the quality of the
agent to reconstruct the next state given the current observation’s context and the ex-
ecuted action (Figure 5.10). The proposed architecture can be understood as a form of
forward model, however, a key difference lies in the use of context that discards irrelevant
details and forces the model to capture meaningful visual features and salient environmen-
tal dynamics at different scales (e.g. character-level or word-level), leading to different
exploration behaviors characterized by different time horizons.
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Figure 5.11: Training architecture of the proposed model. The reconstructor networks
are trained separately based on the local and deep contexts.

At every time step 𝑡, the module takes as input the current observation 𝑠𝑡 , the next state
𝑠𝑡+1, and the action 𝑎𝑡 executed at time 𝑡. Let 𝑠𝑡 be the original observation and 𝑠∗𝑡
its context. The reward calculation involves a reconstructor network 𝑅𝜙 : 𝑠∗ × 𝑎 ↦→ 𝑠

parameterized by 𝜙 that reconstructs the next state 𝑠𝑡+1 given the context of the obser-
vation and the current action. Write �̂�𝑡+1 denotes the reconstructed image. Formally, the
reconstruction task can be expressed as:

�̂�𝑡+1 = 𝑅𝜙 (𝑠∗𝑡 , 𝑎𝑡) (5.17)

The reconstruction will have some errors that can be interpreted as a measure of novelty
and serves as an intrinsic motivation signal to the agent, 𝑟𝑐𝑑:

𝑟𝑐𝑑 (𝑠𝑡 , 𝑎𝑡) =
[
𝑆𝑆𝐼𝑀 (𝑠𝑡+1, �̂�𝑡+1)

𝜎(𝑅𝑐𝑑)

]
=

[
𝑆𝑆𝐼𝑀 (𝑠𝑡+1, 𝑅𝜙 (𝑠∗𝑡 , 𝑎𝑡))

𝜎(𝑅𝑐𝑑)

]
(5.18)

where 𝑆𝑆𝐼𝑀 is the single-scale SSIM metric [103], 𝜎(𝑅𝑐𝑑) is the running estimate of the
standard deviations of the sum of discounted intrinsic rewards, and 𝑠∗𝑡 is the context of
the state 𝑠𝑡 .

5.5.2 Integrating Lifelong Curiosity

Similarly to FaSo, the local reward component and the deep exploration component are
calculated by two distinct context-driven curiosity models (Figure 5.11). However, in
IML the models reconstruct the original next state 𝑠𝑡+1 given the local 𝑠∗

𝑙
and deep 𝑠∗

𝑑

contexts of the current state and the executed action, respectively, 𝑅\𝑙 : 𝑠
∗
𝑙
× 𝑎 ↦→ 𝑠 and

𝑅\𝑑 : 𝑠∗
𝑑
× 𝑎 ↦→ 𝑠; with trainable parameters \𝑙 and \𝑑. A key difference also lies in

the combination of 𝑟𝑑𝑒𝑒𝑝 and 𝑟 𝑙𝑜𝑐𝑎𝑙 . We do so by multiplicatively modulating the local
reward with a deep curiosity factor. Thus, the overall intrinsic reward provided by IML
is calculated as:

𝑟𝑖𝑡 (𝑠𝑡 , 𝑎𝑡) = 𝑚𝑎𝑥(𝑟
𝑑𝑒𝑒𝑝
𝑡 , 1.0) · 𝑟 𝑙𝑜𝑐𝑎𝑙𝑡 (5.19)

This can be re-written as follows:

𝑟𝑖𝑡 (𝑠𝑡 , 𝑎𝑡) = 𝑚𝑎𝑥(𝑟
𝑑𝑒𝑒𝑝
𝑡 , 1.0) ·

[
𝑆𝑆𝐼𝑀 (𝑠𝑡+1, 𝑅\𝑙 (𝑠∗𝑙 , 𝑎𝑡))

𝜎(𝑅𝑙
𝑐𝑑
)

]
(5.20)
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Table 5.7: Final mean score (mean±std) of our method and baselines on Atari games. We
report the results achieved over total 600M timesteps of training, averaged over 10 seeds.

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest Solaris

PPO [38] 2,487±942 103±56 3,438±412 -31±5 1,548±341 1,387 ±248
PPO+RND [20] 8,152±653 8,666±1051 3,906±246 -3±1 3,179±378 3,282±281
PPO+EC [21] 8,025±770 9,244±634 3,521±246 -12±1 4,650±358 3,014 ±273
PPO+ICM [14] 329±118 485±71 3,447±242 -15±2 2,165±223 1,330 ±108
PPO+GoCu [80] 9,123±751 10,223±587 550±625 -2±1 2,055±259 2,726±199
PPO+PoBP [78] 9,125±856 11,124±601 5,069±256 109±11 2,958±311 2,875±223
PPO+ReBP [78] 8,934±911 8,598±599 4,915±187 0±2 3,165±325 2,945±187
PPO+FaSo [110] 9,651±442 13,423±775 3,656±280 247±28 4,589±311 3,154±217
Average Human [77] 4,753 69,571 3,351 6,464 20,182 12,327

PPO+IML (ours) 16,135±688 18,004±455 6,125±550 2,511±373 3,814 ± 504 3,120±338

where 𝑟
𝑑𝑒𝑒𝑝
𝑡 is the deep exploration bonus computed by the deep component:

[𝑆𝑆𝐼𝑀 (𝑠𝑡+1, 𝑅\𝑑 (𝑠∗𝑑 , 𝑎𝑡))/𝜎(𝑅
𝑑
𝑐𝑑
)]. Intuitively, modulating the local reward by the deep

reward results in a frequent switch in regimes of local and deep dominant phases, encour-
aging the agent to repeatedly revisit not fully explored states in its environment as well
as novel regions. This combination of intrinsic rewards maintains consistent exploration
throughout the agent’s training process and encourages in-depth exploration.

5.5.3 Comparison Between FaSo and IML

We now compare FaSo with IML on Atari games and procedurally generated tasks. We
selected those tasks because they require lifelong exploration strategies.

Implementation Details (IML)

On DMLab, we employ contexts created with 𝐾𝑙𝑜𝑐𝑎𝑙 = 2 and 𝐾𝑑𝑒𝑒𝑝 = 5. On Atari and
Minigrid, we compare our method trained with contexts 𝐾𝑙𝑜𝑐𝑎𝑙 = 2 and 𝐾𝑑𝑒𝑒𝑝 = 4. We set
the coefficient of intrinsic reward 𝛼 = 0.5. The architecture of the reconstructor networks
consists of a sequence of four convolutional layers with 32 filters each, stride: 2,1,1, kernel
size of 3 × 3, and padding 1. We apply a rectifier non-linearity after each convolutional
layer. For online training, we store the experience and make 5 epochs of training every
12K steps. We found that retraining the deep reconstructor network once every 30K
steps is sufficient. Note that we decouple the training speed of the reconstructor models
to ensure that the models achieve the desired behaviors. Training is carried out with a
fixed learning rate of 0.0003 using the Adam optimizer.

Atari Games

We first conduct experiments on six established hard exploration Atari 2600 games from
the Arcade Learning Environment (ALE) [86] that feature very sparse rewards and com-
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(a) Door & key 11×11 (b) Door & key 16×16

Figure 5.12: Average results over 10 random seeds on Minigrid (Door & key). The shaded
area shows the standard errors of 10 runs.

plex visual features. The average scores are reported and compared in Table 5.7. It can
be observed that IML outperforms the baselines in Montezuma’s Revenge, Gravitar, and
Pitfall, and Private Eye. In Seaquest, the scores of our method is comparable to those of
PPO+Faso and PPO+EC. The rationale is that these games demand long-term explo-
ration incentives, and thus are harder to be solved by using a curiosity-based bonus that
vanishes quickly. For instance, on Pitfall the agent must go through regions of the state
space that can yield negative rewards, which dissuade baselines from exploring efficiently.
On the other hand, since our formulation of curiosity does not vanish with further state
visitations while promoting lifelong exploration; it allows our agent to discover alternative
ways to obtain the optimal reward.

Procedurally Generated Environments

We now validate IML’s capability for solving procedurally generated environments and
generalizing to unseen views or appearances. Figure 5.12 shows the training curves on
Minigrid Door & key of our method against four baselines. We can observe that PPO
tends to perform poorly due to the sparsity of the tasks. From Figure 5.12, it is clear that
ICM is significantly outperformed, we suspect that the high similarity among states results
in small rewards. Moreover, learning effective controllable states using a simple inverse
dynamics model can be challenging. On the other hand, RND can learn near-optimal
policies but is slower than the proposed method. As can be further observed, IML achieves
higher sample-efficient than FaSo. Overall, the results show that our method can learn
effective policies in procedurally generated environments. Namely, IML can reasonably
adapt to ever-changing situations and environments. It confirms that IML is a vital
element that makes learning from extremely sparse rewards possible.

5.6 Discussion

Our work took a step towards achieving deep exploration in reinforcement learning. The
proposed formulation of curiosity explicitly promotes in-depth exploration across episodes.
We have constructed a mechanism based on reward decomposition and showed that the
method can help exploration in challenging sparse-reward environments. The intrinsic
rewards are estimated following the idea of context-driven reconstruction to capture salient
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visual features and motion dynamics at different scales of the environment. We developed
two algorithms for flexibility combining local and deep rewards based on the concept of:
1) state diversity, or 2) lifelong learning. The experiments demonstrated the effectiveness
of these approaches by achieving significant improvements in notoriously difficult tasks
such as Pitfall or Montezuma’s Revenge. Remarkably, to the best of our knowledge this
is the first work that obtained a positive score for all six Atari games. Altogether, the
experimental results suggested that enabling long-term motivation can greatly improve
performance and exploration efficiency.

We validated the effectiveness of our approach by achieving significant improvements in
long-horizon and challenging tasks. That being said, we acknowledge that our approach
has certain limitations. In order to be useful for real-world tasks, solely relying on internal
guidance seems to be an approach that is rarely taken in human and animal learning. That
is, learning from scratch may be impractical in the real-world and time-consuming. In
the long run, we believe that exploration algorithms should not be limited to modeling
intrinsic curiosity, but should also integrate other types of external guidance as well as
human expertise (prior assumptions about the domain).
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Chapter 6

Combining Deep Reinforcement
Learning with Prior Knowledge and
Reasoning

So far, we discussed how an agent can discover and acquire skills by using curiosity
as its own supervision. We have developed end-to-end reinforcement learning systems
that can cope with the problem of learning from sparse and poorly-defined extrinsic
rewards. However, in order to be useful for real-world tasks, the agent needs to also
develop capabilities for common sense reasoning by integrating external guidance such
as human expertise. In practice, solely relying on internal guidance (i.e. learning from
scratch) does not consider real-world scenarios where other types of external guidance are
often available. Knowledge how to approach a new task can be transferred from previously
learned tasks, and/or it can be extracted from the guidance a teacher. For instance, in
a simple robotic manipulation task, it seems straightforward to learn an optimal policy
through imitating a human demonstrator’s behaviors.

In the context of reinforcement learning, the most common form of external guidance
is imitation learning. Despite recent advances in imitation learning, in many cases it is
impractical to use human demonstrations as guidance because: (1) some of these tasks
are too challenging for even humans to perform well, (2) it often requires large amounts
of demonstrations, significantly increasing the burden on the human, and (3) the human
demonstrator must be highly familiar with the task and understand how to perform it. In
this thesis, we design novel types of external guidance, which are less expensive and more
intuitive for humans. Our central concept is to focus on forms of guidance that reduce
the cost of human effort and substantially improve sample efficiency.

In the following chapter, we aim to introduce human-like planning and domain knowledge
to enhance information given to the agent. The depicted method relies on (simple) high-
level domain knowledge and visual recognition. The intuition behind is that this form
of guidance is intuitive to provide even for a non-expert, can be easily exploited by the
agent, and generalizes to many aspects of the task. We then derive a framework for
the integration of human-like reasoning. It also deals with incomplete/imperfect human
knowledge by correcting possible human errors based on trial-and-error interactions.

81
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6.1 Introduction

Reinforcement learning is a technique that automatically learns a strategy to solve a task
by interacting with the environment and learning from its mistakes. However, end-to-
end RL agents often struggle in complex environments such as three-dimensional virtual
worlds, resulting in a prohibitive training time and an ineffective learned policy.

As mentioned above, it is often unrealistic to expect an end-to-end reinforcement learning
system to succeed with no prior assumptions about the domain (i.e. learning a task
from scratch). Therefore, several methods have attempted to introduce various types
of supervision into reinforcement learning systems. A powerful recent idea to tackle the
problem of computational expenses is to modularise the model into an ensemble of experts
[111]. Since each expert focuses on learning a different stage of the task, the reduction
of the actions to consider leads to a shorter learning period. Although this approach is
conceptually simple, it does not handle very challenging domains or environments with
large sets of actions. In a similar fashion, a method aims to simulate the core features
of human visual intelligence [112] by augmenting cognitive architecture with background
knowledge [113], but is not directly applicable to RL and is restricted to a supervised
classification problem. In detail, the idea is to leverage information about videos with
external ontologies to detect events in videos and augment a supervised model with prior
knowledge. A widely studied class of methods, imitation learning, provides supervision
via demonstrated trajectories [114]. Inverse reinforcement learning is another form of
imitation learning where a reward function is inferred from the demonstrations [25, 26,
115]. However, collecting large amounts of high-quality demonstrations is a notoriously
challenging problem, and is limited to domain knowledge in the form of sequences of
state-action pairs. Besides, demonstrations are only applicable to very similar situations
- it is difficult to generalize demonstration data to slightly different situations. Another
approach, Symbolic Reinforcement Learning [16, 116], combines a system that learns an
abstracted representation of the environment and high-order reasoning. Nevertheless, this
has several limitations, it cannot support ongoing adaptation to new environments and
cannot integrate other sources of knowledge.

In this chapter, our approach focuses on combining deep reinforcement learning and exter-
nal knowledge. Using external knowledge is a way to supervise the learning and enhance
information given to the agent by introducing human expertise. We augment the input of
a reinforcement learning model whose input is raw pixels by adding high-level information
created from simple knowledge about the task and recognized objects. High-level infor-
mation are easy to interpret for the agent and enable a significant speedup in the learning
speed. Furthermore, this type of guidance is less expensive than policy demonstrations
while providing additional information that can be generalized to many situations - a small
amount of high-level information is enough to extract strategies how to approach most
aspects of the task. In order to deal with the problem of imperfect domain knowledge, we
combine an action selection model trained via interactions (i.e. the learned policy) with a
knowledge-based decision algorithm using Q-learning [117] or a Support Vector Machine
[118]. The knowledge-based decision model relies on human-like planning and reasoning
to recommend the next optimal action. Therefore, we simultaneously leverage simple
domain knowledge to augment the agent’s inputs and introduce human-like planning and
reasoning, greatly reducing the learning workload and enabling common sense reasoning.
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Figure 6.1: Screenshot of the environment.

In our experiments, we demonstrate that our framework successfully learns in real-time
to solve a food gathering task and to find a target in a maze, in 3D partially observable
environments by only using visual inputs. We evaluate our technique on two challenging
3D environments built on top of the Malmo platform, Minecraft. Our model is especially
suitable for tasks involving navigation, orientation, or exploration.

6.2 Task & Environment

We built two environments on the top of the Malmo platform [119] to evaluate our idea.
Malmo is an open-source platform that allows us to create scenarios based on the Minecraft
engine. To test our model, we trained an agent to: 1) collect foods in a field with obstacles
and 2) find a target in a maze. The agent can only receive partial information of the
environment from his viewpoint. We only use image frames to solve the scenario. An
example of screenshot with the object recognition results is shown in Figure 6.1.

6.2.1 Eating a Healthy Diet

The goal of the agent is to learn to have a healthy diet (Task 1). It requires to recognize
the objects and learn to navigate into a 3D environment. The task consists in picking up
food from the ground for 30 seconds. Food is randomly spread across the environment
and four obstacles are randomly generated. Each of the 20 kinds of food has an associated
reward when the agent picks it up. This reward is a number between +2 (healthy) and
-2 (unhealthy). They are distributed equitably, meaning that a random agent should get
a reward of 0.

The settings were: window size: 400 × 400 pixels, actions: turn left, turn right, crouch,
jump, move straight and move back , number of objects: 200, number of obstacles: 4. The
actions turn left and turn right are continuous actions to make the learning smoother as
consecutive frames are more similar.
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Figure 6.2: Global architecture of DRL-EK.

6.2.2 Finding a Target in a Maze

We also evaluate the algorithm on an orientation task: finding a target in a maze (Task
2). A positive reward (+1) is given when the agent reaches the goal and a negative reward
is given in case of timeout (-900), after 45 seconds without finding the target. Several
objects are randomly placed in the maze. An episode is restarted if the agent collides
with a hazardous object and a negative reward is given (-1000). We generate the objects
such as the target, represented by a flag, is always reachable.

The settings and the actions are the same as in the Eating a healthy diet task except for
the number of different objects. We limit the possible objects to 15 including 5 hazardous
objects. In total, 30 objects are generated at each episode.

6.3 Deep Reinforcement Learning Augmented With

External Knowledge

Figure 6.2 describes the global architecture of our new framework called DRL-EK. It con-
sists of four modules: an Object Recognition Module, a Reinforcement Learning Module,
a Knowledge Based Decision Module, and an Action Selection Module.

The object recognition module identifies the objects within the current image and gen-
erates high-level features. These features of the environment are then used to augment
the raw image input to the reinforcement learning module. In parallel, the knowledge
based decision module selects another action by combining external knowledge and the
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object recognition module outputs. To manage the trade-off between these two sources of
decision we use an action selection module. The chosen action is then acted by the agent
and the modules are updated based on the obtained reward.

6.3.1 Object Recognition Module

Injecting external knowledge requires to understand the scene at a high-level in order to
be interpreted by a human. The easiest way to understand an image is to identify the
objects. For example, it is intuitive to give more importance to the actions 𝑡𝑢𝑟𝑛 or 𝑗𝑢𝑚𝑝
than the action 𝑚𝑜𝑣𝑒 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 when an obstacle is in front of the agent.

To recognize the objects, the module uses the You Only Look Once (YOLO) [120][121]
library which is based on a deep convolutional neural network. As input, we use an
RGB image of size 400×400 pixels. YOLO predicts in real time the bounding boxes, the
labels, and confidence scores between 0 and 100 of the objects. An example is shown in
Figure 6.1. We trained YOLO on a dataset of 25 000 images with twenty different classes
corresponding to the food that is presented in the environment.

The model is trained off-line before starting the learning into the environment. The neural
network architecture is adapted from the one proposed by Redmon et al. (2016) for the
Pascal VOC dataset [121]. In order to recognize small objects, the size of cells is decreased
from 7 to 5 pixels and the number of bounding boxes for each cell is increased from 2 to
4.

In addition to the identified objects, the module creates feature information about the
current frame. To generate these high-level abstraction features we combine the recognized
objects and external knowledge. They are then used as input by the reinforcement learning
module and the knowledge based decision module. We designed three types of features
presence of objects, important area and important area with eligibility traces.

Presence Of Objects Features

The first type of features is a vector of booleans which indicates whether an object appears
or not within the current image. The size of this vector is the number of different objects
in the environment. Since some objects are not helpful to solve the task, we can decide
to only take some of the objects into account based on our knowledge about the task.

Important Area Features

Since the position of the objects is important, we encode information about objects within
each area of the image. We split the image into 𝑘 rectangles vertically and horizontally.
So, the number of areas is 𝑘2 and for each one we compute a score (Figure 6.3). The score
of an area is the sum of the score of the objects within this area. External knowledge can
be introduced by shaping the score of the objects. Based on our knowledge about the
task, we manually defined the scores to indicate whether or not an object is important to
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Figure 6.3: Important areas of an image.

solve the task. To tackle problems with partially observable environments, we keep track
of recent information by concatenating the array of scores of the current frame with the
arrays of the two previous frames.

In our experiments, the top half of the images only contains the sky so we computed the
important area features on the half bottom of the images. We gave a score of -15/+5 to
foods we think is unhealthy (cake,cookie) / healthy (meat, fruit) and 0 for the others.
That way, if an area contains a healthy food such as a fruit and a sweet food, then the
score of the area will be lower than an area containing only a fruit or no object. We
set the number of rectangles to 3 (9 areas in total: 3×3). We found that with a higher
number of areas the amount of encoded information is bigger but information quality of
each area is worse than with 3 areas.

Important Area Features with Eligibility Traces

Important areas with eligibility traces [122] features is a variant of the important area
features (IAF) [123], suitable for orientation tasks such as finding a target in a maze. As
with IAF, we compute a score for each part of the image but the score associated to each
object is adapted over time depending on the observed rewards. The idea behind is that
some objects are more important than the others to solve the task. Adapting the scores
turned out to be critical in guiding the algorithm to solve tasks.

Our algorithm maintains a parametrized score-function which maps the objects to their
score. At the beginning of the training, we initialize the scores using our prior knowledge.
The scores are adapted over time to fit with the rewards. Instead of computing the value
of each part of the image with the fixed scores, we use the updated scores of the objects.

Since objects have not an immediate impact on the reward, we use an eligibility trace
mechanism to back-propagate the rewards. At each iteration, the new score 𝑠𝑐𝑜𝑟𝑒(𝑜𝑏 𝑗𝑖)′
of an object 𝑜𝑏 𝑗𝑖 is estimated as follows:

𝑠𝑐𝑜𝑟𝑒(𝑜𝑏 𝑗𝑖)′ = 𝑠𝑐𝑜𝑟𝑒(𝑜𝑏 𝑗𝑖) + 𝛼(𝑒𝑡 (𝑜𝑏 𝑗𝑖) × 𝑟) (6.1)
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Inputs

Figure 6.4: Injection of new features into the reinforcement learning module (A3C).

with 𝛼 the learning rate and 𝑒𝑡 (𝑜𝑏 𝑗𝑖) the eligibility trace of 𝑜𝑏 𝑗𝑖:

𝑒𝑡 (𝑜𝑏 𝑗𝑖) =
{
_𝑒𝑡−1(𝑜𝑏 𝑗𝑖) + 1, if 𝑠 = 𝑠𝑡 and 𝑎 = 𝑎𝑡

_𝑒𝑡−1(𝑜𝑏 𝑗𝑖) otherwise
(6.2)

Our contribution here is to provide a simple technique to adapt our prior knowledge to
fit the task. Please note that we used a linear learning rate decay to learn the eligibility
traces and an eligibility trace decay _ = 0.5.

6.3.2 Reinforcement Learning Module

For a computer, learning from an image is difficult and requires a lot of training steps. To
deal with it, the entry point of most of the reinforcement learning models is a recurrent
convolutional neural network [124] to extract temporal and spatial features of the image.

In this work, we trained a deep reinforcement learning model to perform policy learning
and we modified the neural network structure to incorporate external knowledge. In
addition to the image input, we injected presence of objects or important area features
which are created by the object recognition module. In the neural network, we give to
a Long Short Term Memory (LSTM) [125] the output of the last convolutional layer
concatenated with the new features (Figure 6.4). The next layers of the neural network
are two separated fully-connected layers to estimate the value function 𝑉 (𝑠) and the policy
𝜋(𝑎 |𝑠𝑡). The purpose is to help the model at the beginning of the training to recognize
and focus on objects. The new features augment the raw image input to the reinforcement
learning model by adding high-level information. For example, from presence of objects
features the model can decide which actions are allowed or not. If a 𝑑𝑜𝑜𝑟 is detected some
of the actions may become irrelevant such as 𝑗𝑢𝑚𝑝𝑖𝑛𝑔.

The choice of the reinforcement learning model highly depends on the environment. Since
the model at each time-step takes an input and outputs an action, we can easily substitute
most of the reinforcement learning techniques such as Deep Q-learning (DQN) [126], Deep
Deterministic Gradient Policy (DDPG) [127], Dueling Network [128] or Asynchronous
Actor-Critic Agents(A3C) [37] by using a recurrent convolutional neural network as state
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approximator.

A3C is the most suitable model to solve our task. We tested and empirically searched the
best parameters such as a good convolutional neural network architecture and the choice
of the optimizer of this model. It provides a baseline to evaluate the importance of each
module of our architecture on the final policy.

Working directly with 400×400 pixel images is too computationally demanding. We apply
image preprocessing before training A3C. The raw frame is resized to 200×200 pixels. To
decrease the storage cost of the images we convert the image scale from 0 − 255 to 0 − 1.

We set the number of workers of A3C to 3 and a convolutional recurrent neural network
is used to approximate the states. The reason why we use a recurrent neural network is
because the environment is partially observable. The input of the neural network of A3C
estimator consists in a 200×200×3 image. The 4 first layers convolve with the following
parameters (filter: 32,32,32,32, kernel size: 8×8, 4×4,3×3,2×2, stride size: 2,2,2,1) and
apply a rectifier nonlinearity. It is followed by a LSTM layer of size 128 to incorporate
the temporal features of the environment. Two separate fully connected layers predict
the value function and a policy function, a distribution of probability over the actions.
We use RMSProp [129] as optimization technique with 𝜖 = 10−6 and minibatches of size
32 for training.

6.3.3 Knowledge Based Decision Module

We believe that the agent is not able to accurately understand and take into account
the objects of the environment. A human can easily understand and make a decision
from high-level features such as the utility or name of an object. Getting this level of
abstraction is difficult but we can help the machine by giving it less low-level information
such as color of pixels but more high-level information such as the importance of an area
of the image.

Moreover, when the reinforcement learning module is fed with the images and the presence
of objects or important areas features, the training time is long due to the size of state
space. The knowledge based decision module is able to select an action using external
knowledge and high-level features generated by the object recognition module and without
direct access to the image. We propose two different approaches, a knowledge reasoning
model or a meta-feature learning model

Knowledge Reasoning Model

Our technique for solving the task relies on human reasoning and prior knowledge. Our
previous approach [123] hard encodes a set of rules. This may require many modifications
to be adapted to new environments. Our contribution here is to provide a new architecture
able to store, retrieve and reason on knowledge regardless of the environment. In addition,
abstracting rules from environments allow a better control and an easier transfer among
domains. To deal with environment abstraction, we divide the task into three steps:
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preprocessing, knowledge representation, and reasoning.

The preprocessing file enables us to deal with complex and non-intuitive inputs. This step
can be easily adapted to new environments. The purpose is to generate features that can
be interpreted and stored. In case of images, a preprocessing can be the recognition of the
objects within a frame. The output of the preprocessing file is then used to check which
rules are satisfied. The rules are saved in a second file. They associate a pattern to an
action and allow to introduce complex external knowledge about the task. An example
of a simple rule is, if the object cookie is on the left of the image then the action turn left
is forbidden.

A pattern is a conjunction of variables which can be arbitrarily complex. The variables
represent significant events in the task. For example, in task involving driving a car, a
variable could be (speed between 20 and 50 km/h) and an example of pattern is ((speed
between 20 and 50 km/h) ∧ (pedestrian crossing the road)).

Given an observation 𝑜𝑏𝑠𝑡 , the active rules are the rules for which all their variables are
active. Given a priority order previously defined, one rule is selected.

The recommended action is selected in the reasoning file which combines traditional test-
case algorithms and planning. It takes as input the selected rule and the output of the
preprocessing file. We store in an array the sequence of planned actions. At each time-
step, the model checks if the previously planned sequence of actions is still the optimal
one and if it is not the case (for example the next action is jump but there is no obstacle)
the algorithm updates it, otherwise the first action in the array is returned. If the selected
action is related to the movement, the model estimates the best angle and the necessary
number of steps to perform it. Finally, the first of the planned actions is returned.

Please note that to decrease the number of rules, we discretized the image space into four
areas: center, left, right, other. We designed 43 rules to prevent the agent from going in
the direction of the food we think is dangerous. To avoid static behavior, we give more
priority to the actions turn left, turn right, move straight than the others.

Meta-feature Learning Model

In our previous approach, we manually create rules for reasoning on high-level features.
Here, to automatically learn the rules and select the optimal action from them, we use a
deep reinforcement learning model such as DQN or dueling network. Unlike the reinforce-
ment learning module which uses the image, the only input is high-level features such as
important areas or presence of objects. As the input is much smaller than an image, a
simple neural network can be trained to approximate the states. The smaller number of
parameters leads to a faster learning than a model trained from visual information.

In experiments, we trained a dueling network combined with a double deep Q-learning
(DDQN). It empirically gives a smoother learning than most of the other reinforcement
learning models. A neural network approximates the states. It consists in 3 fully connected
layers of size 100 with a rectifier nonlinearity activation function. Network was trained
using the 𝐴𝑑𝑎𝑚 algorithm [130], learning rate of 10−3 and minibatches of size 32. As
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input, we used a slightly modified version of the important area features outputted by the
object recognition module. To create important area features, we filtered the objects too
far and the objects with a confidence score less than 0.25. Taking into account an object
such as grass is irrelevant and makes the learning more difficult. We only used dangerous
or very healthy (10 objects out of 20) objects and removed 2 objects that we know are
difficult to distinguish.

6.3.4 Action Selection Module

The module aggregates the actions proposed by the reinforcement learning module and
the knowledge based decision module to select the action that the agent will perform in
the environment. The goal is to take advantage of the fast learning of the knowledge
based decision module and the quality of the policy learned by the reinforcement learning
module. An important aspect of the action selection, is selecting an action with the
highest expected return but also detecting error patterns to correct them. An error must
be detected when an action which has not been proposed could offer a higher return. In
this section, we describe in detail a reinforcement learning approach and a supervised
learning approach.

Reinforcement Learning for Action Selection

We train a Deep Q-learning model to select the best action, detect and correct the error
patterns. There is no restriction on the possible actions meaning that the final action
may be different from the two proposed actions if an error is detected. We encode the
proposed action by the two modules into two indicator vectors. An indicator vector is
a binary vector with only one unit turned on to indicate the recommended action. The
neural network input is the concatenation of these two vectors.

The Q-learning algorithm is trained using a Boltzmann distribution (Equation 6.3) as
explorer and experience replay (each experience is stored into memory and the algorithm
is run on randomly sampled batch) with a memory of size 106. Equation 6.3 gives the
probability of selecting an action in a given state 𝑠.

𝑃𝑠 (𝑎) =
𝑒𝑥𝑝(𝑄(𝑠, 𝑎)/𝜏)∑

𝑎
′∈𝐴 𝑒𝑥𝑝(𝑄(𝑠, 𝑎

′)/𝜏) (6.3)

The Q-network is composed of 2 hidden fully connected layers of size 50 and are followed
by rectified linear units.

Supervised Learning for Action Selection

An alternative approach to the action selection problem is to train a supervised learning
model. It restricts the problem to a classification task with two possible classes: -1
reinforcement learning module and +1 knowledge-based decision module.
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Figure 6.5: Data labeling using average reward as tag.

We create the dataset during the training process. At each iteration, a new observation is
added to the examples and we label them according to performance of each module (Figure
6.5). First, each module is evaluated to estimate its average reward over iterations. In
order to compare the scores, we scale the rewards using a Min-Max normalization, with
min, the minimum reward of the two average rewards and reciprocally for the maximum.

The class assignment is performed as follows:

𝑃(𝑐𝑙𝑎𝑠𝑠) =
{
−1 if 𝛽𝑅𝐿 ≥ 𝛽𝐾𝐵𝐷
1 otherwise

(6.4)

with 𝛽𝑅𝐿𝑡 = N( ¯𝑟𝑒𝑤𝑎𝑟𝑑 (𝑅𝐿)𝑡 , 𝜎2), and 𝛽𝐾𝐵𝐷𝑡
= N( ¯𝑟𝑒𝑤𝑎𝑟𝑑 (𝐾𝐵𝐷)𝑡 , 𝜎2), where 𝜎2 = 0.05

and 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑥)𝑡 the scaled average reward of the module 𝑥 at the iteration 𝑡.

This means that we assign the label of the module with the highest average reward, and,
when the rewards for both modules are similar we randomly assign a label. To deal with
the classification problem, we build a support vector machine trained with a stochastic
gradient descent optimization. It allows us to update the model over time. The input
variables are the same as with the Reinforcement Learning approach. We convert the
predicted class by the SVM to an action and then act it in the environment. Please note
that the SVM was trained using a l2 regularization term ([131]), a Gaussian kernel [132]
and the penalty parameter 𝐶 = 5.0

6.4 Experiments

We conducted several experiments for evaluating our architecture. In all our experiments,
we set the discount factor to 1.0. According to our different tests, on average the best
reward that a perfect agent can get on task 1 in 30 seconds is 9.
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(a) Task 1 (b) Task 2

Figure 6.6: Average precision over all the classes obtained by the object recognition
module for Task 1 (left) and Task 2 (right).

6.4.1 Object Recognition

We evaluated our object recognition module for understanding the correctness of obtained
object information in the environment. Figure 6.6a reports the object recognition module
performance on the eating a healthy diet task. In this experiment, we measured the
mean average precision (mAP) as the error metric. The results are similar to the results
presented by the authors (Redmon et al., 2017) [121] on the Pascal VOC. dataset [133].
We obtained a mean average precision of 53.47. Although other libraries could offer higher
performance, the real-time detection was the main criterion for selecting YOLO.

We noticed that most of the errors are false positives (68.3%) whereas the false negatives
(31.7%) are uncommon. It leads to an agent with a policy more greedy and safer. As
shown in the figure, the average precision is similar for every class. We also report the
average precision for the objects of the task 2 (Figure 6.6b). On this task, we obtained a
mAP of 57.19. The best average precision was for the object 8 (lava block) and the worse
for the object 12 (obsidian block) with an average precision of 47.9 and 65.2 respectively.
The mean average precision is similar among the two tasks. Note that the performance
of YOLO is slightly affected by the complexity of the objects such as their shape, color,
or size. We could not establish a direct link between the visual complexity of an object
and the average precision. We hypothesize that it mostly depends on the quality of the
training examples.

6.4.2 Knowledge Reasoning Model

Next, we tested the knowledge reasoning model in the knowledge based decision module
to evaluate the effectiveness of this approach on the Task 1. We only utilized the object
recognition module and the knowledge based decision module in our framework. The
knowledge reasoning model performs much better than a random agent with an average
reward of 3.3 (Figure 6.7), since the expected reward of a random agent is 0. The most
likely cause of the wide variance is the difficulty to handle all possible cases with manually
created rules. For instance, the agent has difficulty in gathering food near obstacles. Since
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Figure 6.7: Evolution of the reward of the knowledge reasoning model.

there is no learning, the quality of the agent only depends of the quality of the rules and
is not able to converge. On the other hand, from the first episode the average reward is
much higher than any other learning based models.

6.4.3 Meta-feature Learning Model

To evaluate performance of the meta-feature learning model we use as a baseline the
knowledge reasoning model. We trained the model to gather food in a 3D environment
(task 1). We optimized its parameters, by sampling hyper-parameters from categorical
distributions:

• Number of areas sampled from {4, 9, 16, 25}

• Number of hidden layers from [1, 5]

• Size of hidden layers sampled from {25, 50, 100, 200, 300}

Figure 6.8 reports an example of hyper-parameter optimization results. Each cell corre-
sponds to a configuration of parameters. As can be seen on the figure, a number of hidden
layers larger than two or a large number of areas results in lower performance. The best
hyper-parameters are 9 areas, and a neural network with 3 hidden fully-connected layers
of size 100. Training time is about 4 hours for each configuration on a Nvidia Titan-X
GPU.

Figure 6.9 shows how the average total reward of the meta-feature learning model evolves
during training with the optimal settings. The dueling network architecture effectively
learns to solve the task from the important area features. The learning is fast during the
first 3000 episodes and the average reward quickly converges around 5.4. It is also inter-
esting to note that this approach rapidly achieves higher performance than the knowledge
reasoning model. Automatic rule learning is more effective than manual rule construction.
Unfortunately, the rules cannot be represented in a human-interpretable way.



94 6.4. EXPERIMENTS

Figure 6.8: Average rewards of the meta-feature learning model with different parameters.
The rewards were averaged over 200 episodes after 5000 training episodes.

Figure 6.9: Average reward using meta-feature learning.

6.4.4 Action Selection

Table 6.1 reports the frequency of time the agent is able to reach the target in the maze
(Task 2) using a supervised learning based action selection module and a reinforcement
learning based action selection module. We obtained the results by running the corre-
sponding agent 5 times. The agent was trained for 10000 episodes and then tested for
500 episodes.

Table 6.1: Frequency of time the agent reaches the target. The first row shows perfor-
mance for a SVM as classifier and the second row for a Deep Q-learning algorithm. The
last row consists in a random action selection between the two proposed actions.

Settings Frequency

SVM 0.421
Deep Q-learning 0.624

Random 0.372
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Figure 6.10: Frequency of selection of each action.

The Deep Q-learning method outperforms the SVM technique and a random selection. In
particular, the low performance of the supervised approach can be caused by the difficulty
to annotate the dataset. However, further analysis shows that the action selection module,
trained with a SVM exhibits higher performance during first 4000 iterations than with
a DQN. This indicates that the lack of adaption capability of the SVM is harming the
quality of the resulting policies.

We also evaluated the characteristics of the action selection module (task 1). We report
the percentage of actions which is selected from the knowledge based decision module
(action 1) and from the reinforcement learning module (action 2) against other actions.
We measured the frequency of selection of each action every 350 episodes. As shown in
Figure 6.10, the action selection module at the beginning selects equally the actions then
more the action 1 and gradually give more importance to the action 2. The results confirm
our intuition, the module selects the action of the most efficient module and adapts over
time the trade-off between the sources of decision to always select the best one.

6.4.5 Overall Performance

Finally, we report the average reward of our whole framework trained using the injection of
important areas features with eligibility traces into the reinforcement learning module and
a meta-feature learning model as knowledge based decision module. A Deep Q-learning
was used to select the best action. Figure 6.11 compares our proposed method with the
best performing reinforcement learning methods on the Task 1. These models learn the
policy only using raw pixels.

DRL-EK boosts A3C by injecting important area features with eligibility traces. To
select these features, we compared A3C+presence of objects features, A3C+important
area features(A3C*) and A3C+important area features with eligibility traces (Table 6.2).
In both cases, the results show that adding a new input to the reinforcement learning
module improves the quality of the policy.
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Figure 6.11: Performance of DRL-EK comparing to DQN, Dueling Network and A3C on
Task 1.

Table 6.2: The table compares average reward for various features injected into A3C. The
reinforcement learning module was evaluated alone for 12 000 episodes.

Settings Rewards

A3C 5.6
A3C + presence of objects features 5.8

A3C + important area features (A3C*) 6.1
A3C* + eligibility traces 7.3

As can be seen, DQN gives the worst results with an average reward of 3.2, ≈ 40% less
than A3C after converging. After 12 000 episodes, the average reward of the dueling
network architecture trained with a double deep Q-learning is around 4.4 while A3C is
able to achieve an average reward of 5.6. Surprisingly the meta-feature learning model
trained alone (Figure 6.9) achieves higher performance than learning only from the image
with a dueling network or a DQN model. Asynchronous advantage actor-critic tends to
learn faster than any other reinforcement learning based models. We believe this is due
to the 3 parallel workers of A3C that offer a nonlinear significant speedup. These results
show that the proposed architecture, DRL-EK, outperforms the baselines. Its average
reward is around 15% better than A3C after 14 000 episodes. Moreover, the performance
of DRL-EK at the beginning of the training is significantly better than all other baselines.
One thing to note is that the action selection module tends to select an action different
from action 1 and 2 (Figure 6.10). The continuous increase of the average reward of
DRL-EK and this observation indicates that the action selection module is partially able
to learn to correct the errors.

We also report learning curve on the Task 2 (Figure 6.12). We observe similar results
as in the task 1. DRL-EK converges to a higher average reward, and clearly improves
over A3C and A3C*. In average, our model is able to reach the target about 60% of
the time whereas A3C and A3C* achieve a score of 40% and 50% respectively. The
experiments demonstrate the importance of each module of our system. Please note that
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Figure 6.12: Comparison of performance curves between DEL-EK, A3C, A3C* on Task
2.

with an average time for one step of 0.43 seconds on a Nvidia Titan-X (Pascal) GPU,
DRL-EK can be trained in real time. In general we observed that the agent can generalize
a small amount of high-level knowledge to most situations encountered throughout the
training process, significantly improving the performance. For instance, the agent rapidly
understands how to survive by coupling its ability for learning and reasoning with the
provided domain knowledge. Moreover, learning from high-level knowledge reduces the
human effort and eliminates the need for demonstration data, enabling common sense
reasoning in tasks that are too challenging for even humans to perform well.

6.5 Discussion

We proposed a new architecture to combine deep reinforcement learning with external
knowledge. We demonstrated its ability to solve complex tasks in 3D partially observable
environments with images as input. Our central thesis is enhancing the agent’s inputs
by generating high-level features of the environment. These high-level features provide
general prior assumptions about the environment that can be applied to most situations.
Further benefits stem from efficiently combining two sources of decision and adapting prior
knowledge to fit the tasks. Moreover, our approach can be easily adapted to solve new
tasks with a very limited amount of human work. We have demonstrated the efficacy of the
proposed architecture to greatly reduce the learning time and learn more effective policies
by enhancing the agent’s decision-making with human-based planning and reasoning.

Our method opens several avenues of research. The depicted method and most prior
work integrate human guidance and domain knowledge designed expressly to solve the
task being learned. However, we feel that if we want to further reduce the amount of
human involvement and improve the performance of our agent, it is important to develop
means for the incorporation of existing datasets into reinforcement learning. This would
enable the agent to leverage large amounts of (already created) knowledge with a minimal
human workload. All these considerations lead to two fundamental questions: how to
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extract meaningful information from datasets related to the current task?, and how to
represent the information in a way that they can be understood by the agent?

Another limitation of our proposed as well as prior methods is that they lack interpretabil-
ity - their operation is largely opaque to humans, rendering them unsuitable for domains
in which verifiability is important. This issue limits the applicability of these methods
to non-critical real-world tasks, excluding for example autonomous vehicles, or medicine.
More troubling, the difficulty to extract a humanly-comprehensible chain of reasons for
the action choice makes these methods less suitable for active cooperation with humans.



Chapter 7

Towards Interpretable Reinforcement
Learning with State Abstraction
Driven by External Knowledge

In the previous chapter, we presented a first agent whose choice of action is augmented
with high-level human guidance, facilitating various forms of common sense reasoning. In
retrospect, we concluded that the agent lacked an important component: interpretability.
Furthermore, we did not take into account the possibility that already created datasets
related to the task being learned often exist. In the context of real-world tasks, it would be
desirable to automatically extract meaningful domain knowledge from existing datasets,
leading to a drastic reduction in human effort.

In this chapter, we focus on giving a reinforcement learning agent the capability of lever-
aging existing human expertise. To do so, we build an agent whose internal representation
is first-order logic rules automatically extracted from existing datasets related to the task
being learned. We propose different strategies to discover these rules; and we show that
the natural structure of the rules can be used to 1) improve generalization, and 2) extract
a humanly-comprehensible chain of reasons for the action choice of the agent.

7.1 Introduction

Deep reinforcement learning methods present a number of challenges. First, they suffer
from lack of interpretability. While deep neural networks have been shown to be very
effective, the structure of these models makes them difficult to be interpreted, which
restricts their use to non-safety critical domains, excluding for example, medicine or law.
Second, they require large datasets to be efficient. To build their representation from
complex data such as images, neural networks need a large amount of data which entails
that they learn slowly. They typically require millions of steps to learn good control
policies. As a consequence, DRL cannot be directly applicable to real-world tasks such as
robots [134] or recommendation systems [135], emphasizing the need of sample-efficient
RL. Third, they suffer from low generalization capability in the sense that their ability
to determine similarities among previously encountered situations is limited. In deep
reinforcement learning, this abstraction is achieved by a neural network. However, DRL
tends to generalize poorly on seemingly minor changes in the task [16, 136].

Motivated to overcome these shortcomings, we propose a learning framework that ad-
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dresses all of these issues at once by combining simple interpretable reinforcement learn-
ing and prior domain knowledge [137], adding a minimal human overhead. Our algorithm
leverages large amounts of domain knowledge to significantly accelerate learning without
the need for demonstrations [138] or specific human engineering. Namely, we propose a
new variant of the Sarsa(_) algorithm [122], which is based on the idea of learning poli-
cies that are humanly-comprehensible. The basic concept of this method is to represent
the states of the policy as understandable rules, reducing the state space as well as the
amount of data needed to learn an efficient state representation. In this work, we present
and compare different strategies to discover these first-order rules by analyzing the agent’s
experience and datasets relevant to the current task, based on: 1) human knowledge, 2)
the patterns learned by a random forest, and 3) the latent representation learned by a
deep neural network. Besides, their structure can be used to maximize the benefits of
past experiences to face new situations (i.e. generalization). This is the key idea of the
sub-states mechanism which exploits similarities among rules. Sub-states allow a more
frequent update of the Q-values thereby smoothing and speeding-up the learning. Fur-
thermore, we adapt eligibility traces and the learning rate, which turned out to be critical
in guiding the algorithm to solve tasks. Finally, we introduce extra supervision during
early training by using external knowledge to initialize the parameters of our model.

We demonstrate the effectiveness of this approach across various applications such as
visual tasks or time series. We find that our agent learns effective policies in a small
number of iterations and exhibits higher performance and faster training than the best
generally-applicable reinforcement learning methods.

7.2 Related Work

In this section, we outline the state-of-the-art methods in reinforcement learning to address
each of the shortcomings presented before, namely, interpretability, data efficiency, and
generalization.

A key component of many reinforcement learning algorithms is neural networks. They
contain a lot of implicit knowledge about the problems but need to be explainable - they
should provide easy-to-interpret reasons for the choice of an action. Kim et al. propose to
interpret neural networks using visual interpretation [139]. Specifically, a visual attention
model is used to train a convolution network. A causal filtering can determine which input
regions influence the output. However, this method cannot be easily interpreted by an
algorithm and is only suitable for visual domains. Symbolic reinforcement learning [116]
aims to solve the lack of interpretability of neural networks as well as improving their
generalization capabilities. For example, Garnelo et al. combine a back-end deep neural
network to learn a symbolic representation and a front-end interpretable reinforcement
model that learns the interactions between the objects [16]. Although the agent could
learn to master a navigation task, this has not yet been shown to work in rich visual
environments. Instead of representing policies by neural networks, Verma et al. represent
policies using a high-level interpretable language [140]. During the first step, a neural
policy network is trained, and then a high-level policy is ”extracted”. This approach
seems not to be directly applicable to environments in which simulations are costly.
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Another active area in reinforcement learning is improving data efficiency. A line of work
(Bougie et al.) involves external knowledge to help the agent to focus on important fea-
tures of the environment during training [137]. This gives prior assumptions about the
domain to the system, reducing training time of the agent. At present, only simple knowl-
edge can be introduced and the lack of interpretability limits the usability of this method.
Another line of work [141] proposes to use deep auto-encoders as pre-processing stage of
visual RL. Deep auto-encoders were shown capable to learn robust feature representations.
We manage to bypass the lack of interpretability issue by learning robust features using
an auto-encoder and then extracting interpretable state representations. In recent years,
one way of learning faster has been extensively studied: imitation learning. It enables
agents to learn an optimal policy through imitating a human demonstrator’s behaviors
[142, 138]. In a slightly different spirit, inverse reinforcement learning extracts a reward
function from demonstrations and then trains a policy to maximize it [25, 26]. However,
as mentioned above, these approaches are not directly applicable to behaviors that are
difficult for humans to demonstrate. Moreover, demonstrations are specifically collected
to solve the current task. On the other hand, in this work we hypothesize that leveraging
existing sources of task-relevant information such as datasets about the environment is
essential to reduce human workload. Moreover, integrating prior assumptions about the
domain directly onto the internal representation of our model provides additional and
richer information than state-action trajectories (i.e. imitation learning). For instance,
consider an autonomous vehicle. Rather than collecting a human demonstrator’s behav-
iors that are expensive, only contain trajectory information, and are solely designed for
one task; we aim to integrate general knowledge such as traffic rules or information about
potentially dangerous situations by analyzing widely available “driving” datasets.

Generalization capability field aims to facilitate transfer learning among observations,
central in reinforcement learning to reduce the amount of training data. Compact state
representation [143] area focuses on creating an abstract representation of the states [144].
It enables a faster learning than training the agent on the raw data without facing the
drawbacks of deep learning. For instance, Andre et al. hierarchically abstract the states
by decomposing the states into subroutines [145] but has been limited to simple domains.
Another method [146] applies a state aggregation technique to reduce the number of state-
action pairs that relies on estimating the similarity among the pairs of states. The main
drawback is how to compute the similarity between complex objects such as pixels or
time-series. All the previously cited approaches suffer from lack of interpretability which
reduces their usage in critical applications such as autonomous driving. Bougie et al. use
an abstract representation of the states to improve generalization while having decisions
fully interpretable [147]. This work extends this idea; we aim to reduce the amount of
human work by proposing a new deep unsupervised method to generate the rules. In
addition, we increase the generalization capability of the agent with better use of sub-
states. Finally, we conduct more extensive evaluations of our algorithm on two different
domains.

7.3 Rule-based Sarsa(_)

We propose a method, rule-based Sarsa (Sarsa-rb), to enable Sarsa in continuous spaces
by injecting external knowledge (Figure 7.1). Sarsa-rb is divided into two stages: rule
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Figure 7.1: Rule-based Sarsa(_) architecture. The extracted rules are fed into the rein-
forcement learning agent to learn efficient policies and improve state abstraction.

extraction, and, learning (e.g. reinforcement learning agent) (Sarsa-rb(_)).

At the top level, the rule extraction module extracts symbols from various sources of
(existing) data and then generates rules to describe the environment. We formalize this
problem as learning a mapping 𝜙 (i.e. a set of rules) from a state 𝑠𝑡 to its abstract
representation �̄�𝑡 , where �̄�𝑡 = 𝜙(𝑠𝑡); 𝜙(𝑠𝑡) ∈ 𝑆. Since the rules can be created using our
prior knowledge about the task and external source of data, we refer to them as external
knowledge. Besides the general idea that the state representation has the role of encoding
and compressing essential information about the task while discarding irrelevant states,
it enables to inject prior assumptions about the domain.

The second stage is a reinforcement learning system trained to maximize the reward sig-
nal. Training Sarsa in the raw state space is undesirable not only because the structure of
the images makes them difficult to interpret, but also because it is hard to predict pixels
directly. The rule-based representation constructed in stage one can now be jointly used
to enhance state representation in Sarsa and to efficiently initialize the Q-values. As in
Sarsa, the agent estimates the Q-values, however, each state is represented by a rule-based
representation. At this point, the advantage of representing the states by rules becomes
clear. Their compositional structure makes possible to combine and recombine the rules
and interpret them. Furthermore, the present architecture maps high-dimensional raw
input into a lower-dimensional rule space which reduces the number of Q-values to esti-
mate. In addition, we propose a new technique to update the Q-values of Sarsa that relies
on sub-states as generalization mechanism.

To further improve data efficiency and generalization ability of Sarsa-rb, we propose the
idea of sub-states. The key insight behind our new mechanism is to exploit the similarities
among the rules to help the agent to reason in similar situations. At each iteration, it
takes the current observation and instead of updating only one Q-value, the Q-values
sharing similarities are also updated, leading to a significant speed-up. Finally, to take
advantage of the sub-states, we adapt the original learning rate update and eligibility
trace _ used in Sarsa, Sarsa-rb(_).
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7.3.1 Rule Extraction

The purpose of this first stage is to extract the rules that can be used to represent and
compress the observations of our environment. One common solution for extracting rules
consists in extracting a set of meaningful features for each training example, and then
creating a rule describing the overall observation. However, such an approach often has
an abundance of irrelevant or redundant information. Moreover, describing a complex
environment may require a huge number of rules, drastically increasing the training time
of an agent whose internal representation is based on these rules. Rather than describ-
ing one observation with one rule, we propose to extract rules representing common and
task-relevant patterns in the dataset. Hence, one observation can be represented by a
combination of rules. By doing so, the depicted framework captures meaningful features
and ignores irrelevant details, reducing the number of rules necessary to represent a com-
plex environment. Moreover, during the agent’s training, we can update the Q-values of
states sharing common patterns/rules, significantly reducing the training time.

We present three methods to extract rules. One consists in manually creating them ac-
cording to our knowledge about the task. Supervised and deep unsupervised extraction
methods retrieve patterns from external sources of data. Specifically, the deep unsuper-
vised rule generation method was designed to extract rules from visual inputs by taking
advantage of deep learning [148] and extends the idea depicted by Garnelo et al. [16].
The core idea is to extract rules describing the environment based on local interactions
between objects. These sources of data can be various such as annotated datasets sim-
ilar to the current environment, or any datasets containing relevant information about
the task. For instance, for a trading task we can use as external sources of data several
stock market datasets from other companies. The intuition behind is that among other
companies, we can extract patterns that are shared with the current task.

Manual Rule Extraction

One technique to address the rule generation relies on human or background knowledge
about the domain. For instance, in a car driving task, such knowledge can be retrieved
from traffic rules. Another possible application of our model is automatic trading, for
which we can use expertise about time-series and stock markets. Moreover, several previ-
ous works about feature engineering can be integrated and combined such as candlestick
patterns [149]. This stock-market analysis technique estimates the trend of the share price
by identifying common patterns into time series.

Supervised Rule Extraction

In real-world environments, the rules can be automatically captured by supervised ma-
chine learning methods. We follow a similar idea of Mashayekhi et al. [150]. This method
extracts the rules from a random forest [151], an ensemble of decision trees [152]. A deci-
sion tree consists of several nodes that branch to two sub-trees based on a threshold value
on a variable. We call leaf nodes the terminal nodes. A single decision tree has a very
limited generalization capability and a high variance [153]. Several ensemble models such
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Figure 7.2: Deep unsupervised rule extraction method.

as random forest reduce the variance by building many trees and making prediction based
on a consensus to among the decision trees. A simple tree traversal method can directly
extract patterns from the trees. The recommended action associated to each pattern can
be retrieved using simple heuristics such as depicted in Section 7.4.1, manually annotated,
or, let empty without affecting much performance after convergence.

Deep Unsupervised Rule Extraction

The goal of this method (Figure 7.2) is to extract symbols and then generate rules in an
unsupervised manner, which represent local interactions between objects. This technique
is well-suited for visual environments.

The first stage consists in extracting and recognizing the objects from the latent rep-
resentation learned by a deep neural network. The next stage generates symbols that
represent these objects. Finally, we construct a set of rules by estimating the relevance
of each symbol: the position, the color, and the relative position of the objects.

The first stage extracts the objects within an image. We use a deep unsupervised neural
network in order to extract features from images. Specifically, we train a convolutional au-
toencoder [141] and use the compress representation (i.e. latent representation) to identify
where are the objects as well as recognize them. As shown by Garnelo et al. [16] objects
are characterized by high activation values throughout the layers of the compressed image
representation. Note that with natural images, state-of-the-art methods in unsupervised
learning such as PixelVAE [154] can be trained to learn a useful latent representation. In
addition, similar objects share a similar activation spectra independently of their position
in the image. Therefore, we can extract the position of the objects by extracting the areas
with high activation values. One way to classify an area as containing an object or not
relies on a fixed threshold. However, using a threshold [16] requires manual tuning to fit
the environment. Instead, our technique relies on salient areas of the original image. For
each pixel, the salient value is scaled between 0 and 1 and the probability that a pixel is
considered as part of an object is equal to this salient value. The corresponding activation
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Figure 7.3: Overview of the symbol color extraction method.

values in the compressed representation are then extracted and considered as potentially
representing an object.

The second stage characterizes the objects by comparing their activation spectra. This is
done by using an unsupervised clustering algorithm. Given the short length of activation
spectra, we applied a k -means method [155] to group the objects according to their
spectra. The idea behind is that similar objects have similar activation spectra and
therefore will belong to the same clusters. A k -means method is then trained using the
spectra extracted from the external sources of data (stage 1). When a new image is
observed by the agent, the image is processed following a similar pipeline, however, the k -
means method is not retrained but only used to predict the label of each identified objects.
Since we build an end-to-end model without supervision, we label the new objects with
the cluster ID number.

The information extracted at the end of this stage is the position of the objects within the
images, their label represented by an integer as well as their bounding boxes. In addition
to the type of objects and their positions, we construct two other symbols: the color of
the objects and their relative position.

The first symbol represents the colors of the objects. The color of an object is typically the
average RGB value of the pixels within the bounding box. This bounding box was found
by using the salient map areas. Given the average RGB values, we assign the symbol as
the closest color among: red, blue, green, yellow, red, blue, black, gray, purple. As can be
seen in Figure 7.3, the number of possible colors can be augmented to fit the complexity
of the task.

The second symbol describes the neighborhood of the objects. We encode the positions
of objects relative to other objects within a radius 𝑟. This approach is justified by the
common sense that the interactions of an object with its closest objects are more likely
to have an impact on the reward than the interactions with farther objects. To do this,
we divide the neighborhood of an object into areas of 45 degrees and for each one, we
store the label of the closest object. In case there is no object in any direction within
the radius 𝑟, we store −1. The final representation is an array, the concatenation of all
the objects for each angle. Figure 7.4 depicts the process of encoding the relative object
positions. There is only one object within the radius 𝑟 represented by the light gray circle
around the agent (dark gray pixel). Since its relative angle is around 330 ◦, the only value
different value of −1 in the array is 2, the label of the object.

Once the symbols are extracted, the last stage is to generate a set of rules describing the
objects within frames. Note that we only take into account the observed frames followed
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Figure 7.4: Relative position extraction method. The objects within a radius 𝑟 are taken
into account and ther clostest objects are saved as symbols according to their angle with
the considered object.

Figure 7.5: An illustration of the update of the Q-function. The Q-values of the active
state 𝑠2 and its sub-states are updated. The sub-states sharing similar information with
𝑠2, in blue, are also updated.

by a reward greater than zero or negative. This method is justified by the idea that
other symbols are not relevant since they don’t have an immediate impact on the rewards
received by the agent. Given the set of symbols, we construct the associated conjunctions
of variables 𝑠𝑦𝑚𝑏𝑜𝑙1 ∧ 𝑠𝑦𝑚𝑏𝑜𝑙2 ∧ ... ∧ 𝑠𝑦𝑚𝑏𝑜𝑙𝑛. We refer to them as patterns since each
one describes an image. The C most frequent patterns are kept and used to describe
frames as rules. These generated rules are then used to train our algorithm, Sarsa-rb(_).
Please note that in future work with richer environments, the proposed method can be
easily modified to integrate more sophisticated symbols based on simple prior assumptions
about the target environment.

7.3.2 Learning Algorithm

Once extracted, we use the rules in the reinforcement learning stage. The Sarsa algorithm
maintains a parametrized Q-function which maps the states to their Q-values:

𝑄 : 𝑆 × 𝐴→ R (7.1)
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Instead of extending Sarsa to continuous state space by discretizing it, our representation
relies on a rule-based representation. We propose to learn a Q-function which maps the
state representations 𝑆 to their Q-values:

𝑄 : 𝑆 × 𝐴→ R (7.2)

We propose to represent abstract states 𝑆 by the rules extracted in stage 1. A rule 𝑟
associates a pattern 𝑝 to a recommended action, which we denote as 𝑎𝑅

{𝜙(𝑠𝑡) = 𝑟 |𝑟 : 𝑝 → 𝑎𝑅} (7.3)

where the pattern 𝑝 is used as the activation function of the state. Specifically, a state
is active when the associated pattern 𝑝 satisfies the current observation. In addition,
we improve the Q-value initialization 𝑄(𝜙(𝑠), 𝑎)𝑡=0 by using the action recommended 𝑎𝑅
by the pattern. The recommended action belongs to the recommended action space 𝐴𝑟 ,
where we set 𝐴𝑟 = 𝐴 to ensure generality. Note that recommended actions are only used
to guide the agent at the start of learning, and then the Q-values are learned from agent’s
interactions with the environment.

As depicted before, a rule associates a pattern 𝑝 to an action 𝑎, 𝑝 → 𝑎𝑅. A pattern 𝑝 is
an arbitrarily complex conjunction of variables. The variables represent significant events
in the task. For example, in a task involving driving a car, a variable could be (speed
between 20 and 50 km/h) and an example of pattern is ((speed between 20 and 50 km/h)
∧ (pedestrian crossing the road)). Finally, the rule which links this pattern to an action
(e.g brake, turn left, etc.) could be:

(speed between 20 and 50 km/h) ∧ (pedestrian crossing the road) =⇒ brake (7.4)

When the agent receives an observation, the active state is the state for which its asso-
ciated pattern is satisfied, in other words, all its variables are active. Since no pattern is
always satisfied, we added an ”empty” state. This is the default state, active regardless
of the input. Note that we capture only important information by filtering out irrelevant
rules, the less frequent ones.

To improve generalization capability of our agent, we propose a sub-states mechanism.
The sub-states are constructed by augmenting each Q-value with an ensemble of sub-
states. We define the sub-states as its sub-patterns, the combinations of the variables.
For example, given two patterns 𝑝1: 𝐴 ∧ 𝐵 ∧ 𝐶 and 𝑝2: 𝐵 ∧ 𝐶 ∧ 𝐷 the sub-patterns are
𝐴∧𝐵, 𝐵∧𝐶, 𝐴∧𝐶 and 𝐵∧𝐶,𝐶∧𝐷, 𝐵∧𝐷 respectively. These two patterns are similar and
share one sub-state 𝐵 ∧ 𝐶, which indicates that the associated Q-values may be similar.

The Figure 7.5 shows our model structure. To simplify the representation we show the
structure for only one action, however, the agent maintains a parametrized Q-function
for each possible action. In summary, the states of Sarsa are replaced by rules. Their
associated patterns are used as activation functions of the states. In addition, each state
is augmented with one or more sub-states represented by the squares. The state 𝜙(𝑠2)
represented by the pattern 𝑝2 : 𝐴 ∧ 𝐵 has two possible sub-states corresponding to the
two possible sub-patterns 𝐴 and 𝐵.

In Sarsa, the Q-values are uniformly initialized. We introduce a new method to take
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advantage of prior knowledge by initializing the Q-values according to the recommended
actions of the rules:

𝑄(𝜙(𝑠), 𝑎)𝑡=0 =
{
N(`, 𝜎2), if 𝑎 = 𝑎𝑅

0 otherwise
(7.5)

where ` is the mean, 𝜎2 the variance, and 𝑎𝑅 the action recommended by the rule associ-
ated with 𝜙(𝑠) (Eq 7.3). In order to accelerate learning by appropriately specifying initial
Q-values, for a state 𝜙(𝑠), the initial value of the action recommended by the rule follows
a normal distribution centered around `, greater than 0, to follow our prior knowledge.
For the other Q-values, the agent starts out knowing nothing, they are initialized to zero.

This rule-based representation can now be used to learn an effective policy. Our contribu-
tion here is to propose a technique to jointly use prior knowledge and reinforcement learn-
ing to decrease training time of the agent (rule-based representation) and to avoid learning
from scratch (Q-value initialization). Since the number of abstract states is |𝑆 | (i.e. the
number of extracted rules), and the total of Q-values to estimate |𝑆 | × |𝐴| << |𝑆 | × |𝐴|,
our algorithm can be trained in large state space domains.

7.3.3 Estimation of the Q-values

Accurately estimate each Q-value would result in a very long training time due to the
infrequent visit of most of the states. However, our estimation relies on a sub-states
technique which aims to enable fast generalization across observations. We also provide
modifications of eligibility traces and learning rate to take advantage of sub-states during
the estimation of the Q-values.

Sub-states as Generalization Mechanism

We introduce a sub-states mechanism to improve data-efficiency and generalization ability
of our reinforcement learning agent. The main drawback of TD algorithms is that only one
Q-value is updated at each iteration, entailing that they learn slowly. These algorithms
can be augmented using eligibility traces to propagate the reward to the previous states.
This work introduces a novel approach to jointly update the similar states and back-
propagate the reward to the previous states. The goal is to get most of the benefits of the
shared information among the rules while keeping the rest of the Sarsa algorithm intact
and efficient. In order to implement this mechanism, we augment each Q-value with its
sub-patterns (Figure 7.5). Note that to limit the number of sub-states, we limit the size
of the sub-rules to conjunctions of at least 3 variables.

We provide modifications to the estimation and update of the Q-values inspired by Sarsa
to incorporate sub-states. Our estimation of a Q-value 𝑄

′ (𝜙(𝑠), 𝑎) takes into account
the Q-value itself 𝑄(𝜙(𝑠), 𝑎) and the value of its sub-states. Intuitively, this estimation
improves generalization among states by incorporating Q-values of similar states and
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Figure 7.6: Estimation of a Q-value, 𝑄
′ (𝜙(𝑠), 𝑎), with the sub-states technique. In addi-

tion to the Q-value 𝑄(𝜙(𝑠), 𝑎) itself, the sub-states values 𝑄(𝑠′, 𝑎) are taken into account.

sub-states encountered previously:

𝑄
′ (𝜙(𝑠), 𝑎) = 𝑄(𝜙(𝑠), 𝑎) +

∑︁
𝑠
′∈𝑠𝑢𝑏(𝜙(𝑠))

𝑄(𝑠′, 𝑎) (7.6)

with 𝑠𝑢𝑏(𝜙(𝑠)) the sub-states of a state 𝜙(𝑠). We modified the update rule of states to
incorporate sub-states:

𝑄
′

𝑡+1(𝜙(𝑠), 𝑎) = 𝑄𝑡 (𝜙(𝑠), 𝑎)+𝛼𝑄′ (𝜙(𝑠),𝑎)𝑡 [𝑟𝑡+1+𝛾𝑄
′
𝑡 (𝜙(𝑠)𝑡+1, 𝑎𝑡+1)−𝑄

′
𝑡 (𝜙(𝑠)𝑡 , 𝑎𝑡)]𝐸𝑡 (𝜙(𝑠), 𝑎)

(7.7)

and for sub-states 𝑠
′
, is defined as:

𝑄𝑡+1(𝑠
′
, 𝑎) = 𝑄𝑡 (𝑠

′
, 𝑎) + 𝛼[𝑟𝑡+1 + 𝛾𝑄𝑡 (𝑠

′

𝑡+1, 𝑎𝑡+1) − 𝑄𝑡 (𝑠
′
𝑡 , 𝑎𝑡)]𝐸𝑡 (𝑠

′
, 𝑎) (7.8)

where 𝐸𝑡 refers to the eligibility trace for a state-action pair, and 𝛼𝑄′ (𝜙(𝑠),𝑎)𝑡 indicates
the learning rate specific to the updated Q-value (Section 7.3.3). Our approach to back-
propagate the rewards to all similar Q-values is to increment the eligibility traces of the
similar sub-states. We illustrate the Q-value estimation process for a simple example in
Figure 7.6. 𝑄(𝑠′, 𝑎) refers to the estimation of the value of the sub-state 𝑠

′
given the

action 𝑎. Adding this term grounds the values of the unvisited states, and makes the
value induced by the values of the similar visited states.

A frequent and early update of the sub-states turned out to be critical in fast estimation
of the Q-values, inducing a much faster training.

Eligibility Traces

Directly implementing Sarsa-rb is proved to be slow learning in environments with sparse
rewards. Our method, Sarsa-rb(_), is derived from Sarsa(_). Adding n-steps returns
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helps to propagate the current reward 𝑟𝑡 to the earlier states. We allow a propagation of
𝑟𝑡 to the earlier sub-states by changing their eligibility traces. The idea behind is that
a sub-state similar to the current state is likely to get a similar reward by following the
same action. The update of the current state 𝜙(𝑠) remains unchanged from Sarsa(_):{

𝐸𝑡 (𝜙(𝑠), 𝑎) = _𝐸𝑡−1(𝜙(𝑠), 𝑎) + 1 if the current state is 𝜙(𝑠)
𝐸𝑡 (𝜙(𝑠), 𝑎) = _𝐸𝑡−1(𝜙(𝑠), 𝑎) otherwise

(7.9)

Similarly for sub-states:
𝐸𝑡 (𝑠

′
, 𝑎) = _𝐸𝑡−1(𝑠

′
, 𝑎) + 𝑒−𝑠𝑖𝑚(𝑠

′
,𝜙(𝑠)) , if 𝑠

′
is a sub-states of 𝜙(𝑠)

𝐸𝑡 (𝑠
′
, 𝑎) = _𝐸𝑡−1(𝑠

′
, 𝑎) + (𝑒

−𝑠𝑖𝑚(𝑠
′
,𝜙 (𝑠)) )2
𝑃

, for the sub-states sharing
at least 2 variables

𝐸𝑡 (𝑠
′
, 𝑎) = _𝐸𝑡−1(𝑠

′
, 𝑎) otherwise

(7.10)
where 𝐸 (𝜙(𝑠), 𝑎) represents the eligibility trace for state 𝜙(𝑠), 𝐸 (𝑠′, 𝑎) is the eligibility
trace of sub-state 𝑠

′
for a given action 𝑎, and 𝑠𝑖𝑚(𝑠′, 𝜙(𝑠)) denotes the similarity score

between the sub-state 𝑠
′
and the state 𝜙(𝑠). We define the similarity function as the

number of different variables between a sub-state 𝑠
′
and a state 𝜙(𝑠), 𝑠𝑖𝑚(𝑠′, 𝜙(𝑠)) =

|𝑠′ ∪ 𝜙(𝑠) | − |𝑠′ ∩ 𝜙(𝑠) |. We bounded the score between 0 (identical) and 1. Note that we
only take into account the sub-states sharing at least two variables.

Since sub-states are often updated, we avoid exploding eligibility trace values by adding
an exponential decay, and a constant 𝑃 which determines the scale of update signal.
Intuitively, a high value decreases the update of the sub-states sharing only a few sim-
ilar sub-patterns with the current state. Note that similarly to the original idea, when
the eligibility trace of a sub-state 𝐸𝑡 (𝑠

′
, 𝑎) ≈ 0, the associated Q-value is not updated,

but is always taken into account to estimate the Q-values of other states and sub-states.
Updates performed in this manner allow estimating Q-values more accurately. Our ex-
periments also suggest that sub-states technique decreases the number of necessary visits
to accurately estimate Q-values and yields faster convergent policies.

Adaptive Learning Rate

The linear learning rate 𝛼 in regular Sarsa assumes that the states are equally visited.
Obviously, this assumption is no longer valid. One approach to this problem is to change
the update rate of the states according to the frequency of visit of the states and their
sub-states. We turn to a learning rate specific to each Q-value 𝑄

′ (𝑠𝑡 , 𝑎𝑡):

𝛼𝑄′ (𝜙(𝑠),𝑎)𝑡 =
1.0

(1.0 + 𝑣𝑖𝑠𝑖𝑡 (𝜙(𝑠), 𝑎)𝑡 +
√︁
𝑣𝑖𝑠𝑖𝑡 (𝑠𝑢𝑏(𝜙(𝑠)), 𝑎)𝑡)

(7.11)

We add the term 𝑣𝑖𝑠𝑖𝑡 (𝜙(𝑠), 𝑎)𝑡 which refers to the number of visits of the Q-value
𝑄(𝜙(𝑠), 𝑎). The term 𝑠𝑢𝑏(𝜙(𝑠)) defines the ensemble of the sub-states of the state (𝜙(𝑠))
and 𝑣𝑖𝑠𝑖𝑡 (𝑠𝑢𝑏(𝜙(𝑠)), 𝑎)𝑡 is the total number of visits of all its sub-states. A state with its
sub-states 𝑠𝑢𝑏(𝜙(𝑠)) often visited will be estimated more accurately than a state without
sub-states and hence doesn’t need to be updated much.
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(a) An example of OHLC chart (open, high,
low, close)

(b) Strucure
of one obser-
vation

Figure 7.7: Example of a sample of data from the environment. The left plot shows the
time series and the right plot is the structure of one observation.

7.4 Experiments

For our experiments, we use two environments that both follow the Open-AI Gym struc-
ture [156]. The first environment is a trading task from real stock market data. This task
involves large continuous state spaces. We use this task to compare the two rule creation
methods (manual rule generation and supervised rule generation). The second task is
more challenging and consists of a visual navigation problem using images as the input of
our model. This task is used to evaluate our deep unsupervised rule extraction technique.
To ensure a fair evaluation, we pretrained the baseline algorithms on the datasets used
to generate the rules.

7.4.1 Trading Tasks

We evaluated our agent, Sarsa-rb(_), on the OpenAI trading environment, a complex
and fluctuating simulation from real stock market data (Figure 7.7a). The observations
(Figure 7.7b) are given to the agent in the form of a vector of 4 continuous variables
that were recorded during a one minute interval: the open price, the close price, and
the highest/lowest price. The action set consists of 3 actions: Buy, Hold and Sell. The
reward is computed according to the win/loose after buying or selling. Each training
episode is followed by a testing episode to evaluate the average reward of the agent on
another subset of the same stock price. Each episode was played until the training data
are consumed, approximatively 105 iterations.

Our system learns to trade on a minutely stock index. In total, we used 4 datasets with
a duration varying between 2 years and 5 years. One stock index was used to train the
agent, and the other three as external sources of knowledge to generate the rules. To
fairly evaluate the model, we trained it on 80% of the training examples and evaluate the
performance on the remaining 20%. We ran a grid search over the parameters to initialize
the Q-values and found that ` the mean equals to 0.25 and 𝜎 equals to 0.2 were the best
parameters. We use 𝑃 = 100 as decay factor of eligibility traces. In the case of manually
created rules, we first compute the percentage increase in the share price 14 days later
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Figure 7.8: Performance curves of Sarsa-rb using a selection of techniques to create the
rules: background knowledge based (blue) and extracted from a random forest (green).

and then estimate an optimal action associated with each pattern. In total, we took into
account 40 candlestick patterns.

We follow a simplified technique used by Mashayekhi et al. to generate the rules from
a random forest [150]. Briefly, we extract the patterns top to bottom and filter the
patterns to avoid redundancy. To construct the trees, we automatically annotate 6000
samples into 3 classes. Each sample is the aggregation of the last 5 prices. We labeled
the dataset according to the price 𝑝𝑑𝑖 𝑓 𝑓 increase 14 days later (𝑝𝑑𝑖 𝑓 𝑓 >=0.5%, 𝑝𝑑𝑖 𝑓 𝑓 <=-
0.5%, 0.5%< 𝑝𝑑𝑖 𝑓 𝑓 >-0.5%) to train a random forest. We compute 𝑝𝑑𝑖 𝑓 𝑓 as the average
between the open and close price. In order to limit the number of rules and since the
impact on accuracy was minimal, we build 20 trees with a maximum height of 4. In total,
we retrieved 855 rules. For each pattern, the predicted class (i.e. the trend of the stock
market) was used to recommended an action.

Rule Creation Performance

First, we evaluate the two rule creation techniques discussed in Section 7.3.1 and their
impact on the average reward. After creating the rules on 3 stock prices, we obtained
between 855 and 3240 rules, resulting in a maximum of 3240 × 3 Q-values to estimate.
Figure 7.8 shows the performance of Sarsa-rb with its internal states created using the
different methods. The results are obtained by running Sarsa-rb without sub-states and
eligibility traces, and the same hyper-parameters to allow a controlled experiment focused
on rule effectiveness.

As can be seen in Figure 7.8, the agent trained using background knowledge based rules
achieves the highest score on average. Performance of the agent was mainly affected by
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Figure 7.9: Performance curves for a selection of algorithms: original Deep Q-learning
algorithm (red), Deep Deterministic Policy Gradients algorithm (green) and Sarsa-rb(_)
(blue).

the quality of the rules, however, we could not establish a link between the number of rules
and the quality of the model. Furthermore, the rules can be combined to take advantage
of each technique - we can make use of rules extracted by different algorithms, which is
impossible when directly representing the policy by a neural network.

Overall Performance

We evaluated the performance of the learned policy using the proposed sub-states mecha-
nism. We compare Sarsa-rb(_) with two baselines, a deep recurrent Q-learning model[124]
and a DDPG model [4]. DDPG method was shown to perform well in trading tasks
[157, 158]. Since the feasible trading actions is in a discrete set, the output of the actor is
a vector of 𝑛 real numbers. The action to take corresponds to the index of the maximum
value.

For this evaluation, we individually tuned the hyper-parameters of each model. We de-
creased the learning rate from 𝛼 = 0.3 to 𝛼 = 0.0001, and increased the eligibility trace
from _ = 0.8 to _ = 0.995, then used _ = 0.9405 and 𝑃 = 100. Each parameter value
was sampled within the given interval, and the algorithm evaluated using those values.
We use an 𝜖-greedy policy as the behavior policy 𝜋. It chooses a random action with a
probability 𝜖 and an optimal action with a probability 1 − 𝜖 . In our experiments, 𝜖 is
set to 0.01. The plots are averaged over 5 runs. Finally, we used the external knowledge
based rules as the states of Sarsa-rb(_). Note that since Sarsa or Sarsa(_) cannot learn
from continuous state spaces, we don’t report their performance.

We report the learning curve on the testing data in Figure 7.9. Sarsa-rb(_) always achieve
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Figure 7.10: A board of the visual navigation environment. The agent is represented by
a gray square, the food to collect by the blue circles and the walls by the green squares.

a score higher than DQN and DDPG. From Figure 7.9, it is clear that Sarsa-rb(_) improves
over DQN - we observe after converging an average reward around 3.3 times higher. DDPG
appears less fluctuating than Sarsa-rb(_) but also less effective.

The key concepts of our algorithm are sub-states and their capacity to transfer knowledge.
By representing the observations with rules we can easily understand when a situation
is analogous to a previously encountered set of situations. Moreover, sub-states allow
to transfer knowledge from previous similar situations and even to transfer knowledge
from partially encountered events. In the current algorithm, this capability is achieved
through a simple similarity measure, but in the future we aim to develop a more efficient
similarity measure. Furthermore, it appears that grafting domain knowledge directly onto
the agent’s internal representation leads to better common sense reasoning - the agent
exhibits capabilities for generalizing commonsense priors to unseen situations, resulting in
higher performance. It turns out to be critical in complex environments where traditional
forms of human guidance such as demonstrations are deemed infeasible but datasets are
widely available.

7.4.2 Visual Navigation Tasks

As a benchmark for our visual rule extraction method, we developed a simple navigation
task. The environment consists of a board with obstacles, and objects of different shapes
and colors (Figure 7.10). The agent learns to collect food, represented as blue circles, and
to avoid walls, represented as green squares. The agent has to learn to navigate using
one of the possible actions (up,right,down,left). Encountering a food results in a positive
reward (+5), a wall, a negative reward (-5) while moving to an empty cell results in a
negative reward (-0.2).

The goal of the agent is to collect the five ”food” objects randomly positioned across the
map. Eating the last food object results in a positive reward (+20) whereas going out the
map gives a negative reward (-5) and restarts the game. The agent receives as input a
2D RGB image corresponding to what the agent sees around it. The raw frame is resized
to 84 × 84 pixels. To decrease the storage cost of the images we convert the image scale
from 0 − 255 to 0 − 1. Note that we limit the maximum time to 1 minute for the agent
to find a strategy to get a maximum reward. The rules were extracted from a dataset
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Table 7.1: The table evaluates performance in terms of average reward. We compare
Sarsa-rb(_) with Deep Q-learning (DQN) and Proximal Policy Optimization (PPO) al-
gorithm.

20000 episodes 80000 episodes 160000 episodes

Sarsa-rb(_) 2.01±0.23 9.4±1.18 16.6±1.4
DQN -3.2±0.85 -3.3±0.83 -3.2±0.83
PPO 1.8±1.0 8.9±3.0 13.2±3.4
DQfD 5.2 ± 0.33 9.2 ± 1.06 12.1 ± 1.01

of 100 000 images of the environment following the deep unsupervised rule extraction
method. We trained a convolutional autoencoder on 100 000 random boards in order to
extract features from images. To have an accurate representation of the environment, the
position of the agent varied randomly as well as the objects whose numbers were randomly
selected. For our experiments, the input of the neural network consists of a 84×84×3 RGB
image. The first 3 layers convolve with the following parameters (filter: 64,32,32, kernel
size: 3×3,3×3,3×3). Each one was followed by a 32×32 pooling layer. The last 4 layers
are the corresponding decoding layers. We use the compressed representation, the middle
layer, to recognize the objects. Since we do not assume strong prior knowledge about the
task, we set the number of clusters of the k -means model to 𝐾 = 8. Finally, We kept the
6000 most frequent patterns to build the rules.

Overall Performance

We compared our agent trained on the visual navigation task to several methods from
the literature, which are considered to be effective for visual problems. We compared
our algorithm against tuned versions of proximal policy optimization (PPO)[38], deep q-
learning (DQN), and, deep q-learning from demonstrations (DQfD) [138]. DQfD pretrains
a DQN agent with demonstrations as source of prior knowledge. For our experiments,
we had a human player play the game. In total, 6237 transitions were recorded and used
to pre-train DQN. We trained 5 agents for each algorithm with the same settings. The
average reward is shown in Table 7.1. Note that for these two deep learning algorithms,
we used the same policy network architecture as used by Mnih et al. [1].

The depicted approach outperforms standard DQN in terms of convergence speed and
quality of policy. Moreover, Sarsa-rb(_) is more stable than PPO. Although DQfD
achieves a higher average reward at the start of learning, our model converges towards
a better policy. We should emphasize that our method requires much less human effort
compared to DQfD since we eliminate the need to expressly create domain knowledge to
solve the task being learned (e.g. demonstrations). Besides, our technique preserves inter-
pretability while learning a good policy, making it more suitable for real-world tasks. By
representing the observations of the environment with understandable rules, we produced
a humanly-comprehensible model.
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7.5 Discussion

We discussed learning from existing sources of knowledge in the context of sample-efficient
reinforcement learning. By introducing large amounts of existing prior knowledge into
reinforcement learning architectures, our agent can learn interpretable and compact rep-
resentations of the environment without specific human engineering. Besides, since its
internal states are represented by first-order logic rules, we can analyze which objects, as
well as symbols, are involved in the choice of the action and their importance. Specifically,
the Q-values can be interpreted to evaluate the weight of each feature on the choice of
the action. Finally, we can control the importance of knowledge transfer by giving more
or less importance to sub-states (i.e. generalization capability). To support these claims,
we presented an exhaustive evaluation on time series tasks and visual tasks. We observed
that our system dramatically outperforms neural network-based methods in a range of
different domains - grafting domain knowledge onto the agent’s internal representation
improves various forms of common sense reasoning. We also studied the effect of rules
mined by analyzing the latent representation learned by a deep neural network, as well
as rules extracted from random decision trees. The evaluations demonstrated that our
approach efficiently learns and generalizes domain knowledge - rules, to setups which were
not demonstrated in the datasets. We have also shown its ability to solve complex tasks
with continuous state spaces, and exceeds baseline agents in terms of overall performance
and convergence speed.

One limitation of our approach is that we passively access to human guidance. That is,
there is no active cooperation during the training process between the teacher and the
student (the agent). It would be interesting to investigate ways for an agent to actively
cooperate and share insights with the teacher. Ensuring that the agent’s goal matches
the provided domain knowledge is necessary to scale the method to practical problems
characterized by changing complex scenarios. Additionally, we believe that the proposed
method should also enable the agent to identify the need for and communicate for specific
domain knowledge throughout the agent’s training.



Chapter 8

Active Goal-Driven Learning

In chapters 6 and 7, we have seen how utilizing human guidance can help us reduce training
time and improve final performance. However, these methods and most prior work are
still restricted to the setting in which there is no active cooperation between the teacher
and the agent. In other words, the agent cannot request feedback from the teacher when
it struggles or based on its knowledge of the task. Besides, in real tasks, the agent cannot
cope with the changes in the environment - learning from a fixed set of demonstrations
may be impracticable due to lack of state coverage or distribution mismatch (when the
learner’s goal deviates from the demonstrated behaviors).

This chapter presents a goal-conditioned reinforcement learning algorithm that can be
applied to such problems. Crucially, we introduce the concept of active goal-driven
demonstrations to query the demonstrator only in hard-to-learn and uncertain regions
of the state space. The algorithmic framework relies on a novel form of human feedback
called goal-driven demonstrations, which are easier and more intuitive to demonstrate for
a teacher than full demonstrations while precisely matching the agent’s needs.

8.1 Introduction

A line of work for overcoming the above-mentioned issues is goal-conditioned learning, a
form of self-supervision that constructs a goal-conditioned policy to learn how to reach
multiple goals [39, 40]. This idea was extended in Hindsight Experience Replay (HER)
[41] to artificially generate new transitions by relabeling goals seen along the state tra-
jectory. Nevertheless, it may still require a large amount of data to capture complex
policies. Since it is often unrealistic to expect an end-to-end reinforcement learning sys-
tem to rapidly succeed with no prior assumptions about the domain (i.e. learning a task
from scratch), several methods have attempted to introduce external supervision into
reinforcement learning systems. For instance, an approach [159] leverages human pref-
erences as feedback signal to reduce the amount of human involvement. Nonetheless, it
was shown that preferences are an inefficient way of soliciting information from humans
[159]. In the context of reinforcement learning, the most common form of external super-
vision is imitation learning. Imitation learning seeks to learn tasks from demonstrated
state-action trajectories [160, 22]. For instance, DQFD [114] improves initial performance
by pre-training the policy with demonstrations. However, learning from human demon-
strations suffers from three problems: (1) it is hard to obtain a broad state coverage of
task-relevant regions from trajectories demonstrated without a specific goal, (2) it usually
has an abundance of irrelevant or redundant information, (3) it assumes that the learner’s

117



118 8.1. INTRODUCTION

goal matches the teacher’s demonstrated behaviors. Additionally, most imitation learning
algorithms learn policies that achieve a single task.

In this chapter, we contribute an active goAL-conditioned approach (goAL) that drasti-
cally reduces expert workload by incrementally requesting partial demonstrations towards
specific goals, goal-driven demonstrations. Contrary to pure demonstrations, goal-driven
demonstrations do not aim to demonstrate the overall task or all possible situations. In-
stead, goal-driven demonstrations fulfill particular goals that are actively selected based
on the agent’s knowledge about its environment. Especially, the proposed framework al-
lows an agent to jointly identify states where feedback is most needed and communicate
for specific domain knowledge throughout the training process. Our method relies on an
imitator network trained to clone a novel form of human feedback: goal-driven demonstra-
tions. Given its prediction, we augment the policy loss with a simple auxiliary objective.
Rather than using a fixed set of demonstrations, goal-driven demonstrations are actively
queried based on the imitator’s confidence and the ability of the agent to reach the goal
being pursued. We build and compare two techniques to estimate the agent’s confidence:
1) Bayesian-confidence, 2) quantile-confidence; and study a relabeling strategy that ex-
tracts additional information from the demonstrated trajectories. We found goal-driven
demonstrations to be easier to demonstrate for a human than full demonstrations, while
significantly increasing the value information of the queries by matching the agent’s needs.
We further propose a method for prioritizing the sampling of important goals - in places
where the disagreement between the expert and the policy is large.

We evaluate our approach on several tasks from the Mujoco benchmark suite [74, 161]
including Fetch and ShadowHand. Experimental results show that goAL outperforms
previous approaches in most of the tasks with a significantly lower number of demonstra-
tions. We also show that our method can generalize to unseen states while being robust to
incomplete or noisy demonstrations. Remarkably, goAL produced agents that exceeded
the expert performance in multiple tasks.

The main contributions of this work are summarized as follows:

• We propose a new framework, Active Goal-Driven Learning, which is the first work
to use active goal-driven demonstrations to the best of our knowledge.

• We contribute a method to query the demonstrator only in states where the agent
struggles and is not confident, maximizing the expected value of information of the
queries and drastically reducing human effort.

• We propose two novel confidence-based query strategies to evaluate the confidence
along a state-action trajectory.

• We contribute a goal-sampling technique that maximizes the agent’s learning
progress.

• We provide a comprehensive comparison between the proposed methodology and a
number of baselines, evaluated on complex robotic tasks.
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8.2 Related Work

Methods for providing external supervision largely divide into two categories: imitation
learning and learning from interactive human feedback. Our work builds upon goal-
conditioned learning combines aspects of both. We briefly introduce these techniques in
this section.

Imitation learning and RL. Multiple works seek to combine deep reinforcement
learning with human demonstrations. For instance, DQfD [114] pre-trains a Q-learning
agent on the expert demonstration data. This idea was extended to handle continuous
action spaces such as in robotic tasks [162], as well as to actor-critic architectures [163].
POfD [164] proposes to follow demonstrations in early learning stages for exploration,
and then let the agent explores new states on its own. A recent follow-up [165] introduces
an expert loss in DDPG [4] and proposes to filter suboptimal demonstrations based on
the Q-values (Q-filter). It is assumed that there is a fixed set of demonstration data.
In contrast, we are interested in actively sharing insights between the teacher and the
agent. Therefore, we propose a novel imitation loss function which leverages goal-driven
demonstrations and a goal-conditioned framework to actively request feedback to the
teacher when the agent struggles, reducing both the training time and the number of
demonstrations while ensuring that the goal-driven demonstrations match the agent’s
needs during the training process. In this work, we use the Q-filter method [165] in a
goal-conditioned setting, and we further adapt it to filter transitions where the agent
action is significantly better than the demonstrator action. Another solution is to
represent a policy as a set of Gaussian mixture models [166]. However, they consider a
fixed target goal setting, and the method is not directly applicable to continuous action
spaces. In a different spirit, AlphaGo [2] trains a policy network to classify positions
according to expert moves. A way of dealing with sparse rewards consists in introducing
a curious replay mechanism and demonstrations [167]. In recent years, an emerging
strategy combines generative adversarial networks and reinforcement learning (GAIL)
[24]. However, GAIL was shown to suffer from the drift prediction error and instability
during training. DAGGER [50] requests supervision at each step, and takes an action
sampled from a mixture distribution of the demonstrator and the agent. The idea was
extended in Deeply AggreVaTeD [168] to work in environments with continuous action
spaces. Another method [169] constructs a goal-conditioned policy to visit similar states
as the expert. That is, they employ the idea of discriminability as a central theme in
building agents that can leverage demonstrations. Rather than solely using goals to con-
dition the policy, we use goals to enable active cooperation between the teacher and the
agent. Namely, we propose a novel form of human guidance, goal-driven demonstrations.
Goal-driven demonstrations do not intend to cover all possible scenarios or demonstrate
the overall task, but guide the agent to fulfill particular goals when the agent struggles,
drastically reducing the number of required queries and being more intuitive for the
demonstrator than pure demonstrations. In order to identify the need for specific domain
knowledge throughout the agent’s training, we also contribute a framework to identify
areas where feedback is most needed based on the agent’s confidence and its ability to
reach the goal pursued. The selected goals are then sent to the teacher, enabling the
demonstrator to understand the agent’s needs. In addition, the imitation loss is used
in a different way in our method; and we develop a different strategy for relabeling
goal-driven demonstrations, which ensures that only optimal transitions are recorded.
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The present work further differs by proposing a prioritized goal sampling method in
order to focus on task-relevant goals, reducing the overall learning time of the algorithm.
Another form of imitation learning is inverse reinforcement learning (IRL) [25] where a
reward function is inferred from the demonstrated trajectories. IRL has been applied
to several domains including navigation [142], and autonomous flight [22]. However, in
many cases it is impractical to demonstrate long-term tasks, and most agents focus on
learning a single task from a set of demonstrations. Finally, IRL algorithms assume that
the observed behavior is optimal.

Learning from interactive human feedback. Most methods that focus on
learning from interactive human feedback [170, 171, 172, 159, 173] query the human
to drive learning. For example, TAMER [174] trains the policy from feedback in
high-dimensional state space. The learner may receive feedback in the form of sequences
of actions planned by a teacher [175]. Uncertainty-based query was used in [176] but
is limited to DQN [1], limiting the possible applications of this method. In contrast,
our method can be combined with most of off-policy RL algorithms; and introduces the
idea of goal-driven demonstrations. Some authors [177] consider multiple demonstrators
performing different tasks and the agent must actively select which one to request for
advice. Another solution [178] is to block unsafe actions by training a module from
expert feedback. However, it requires the expert to identify all unsafe situations by
watching an agent play. To deal with the problem of query selection, it is possible to
select sufficiently different unqueried data [179]. In this work, we propose to only request
feedback to the supervisor in states where the agent is unsure and struggles.

Goal-conditioned RL. Goal-conditioned reinforcement learning [39] constructs a
goal-conditioned policy to push the agent to acquire new skills and explore novel states.
Universal value function approximators [40] samples a fixed goal at the beginning of
each episode and rewards the agent when the current goal can be achieved. Nonetheless,
selecting relevant goals remains an open problem. A solution [81] and its recent follow-up
[61], proposed to generate increasingly difficult goals to drive the agent towards the
final goal. The method [92] learns an embedding for the goal space using unsupervised
learning and then choose the goals from that space. The recent work [94], Skew-fit,
proposes an exploration objective that maximizes state diversity. The key idea is to
learn a maximum-entropy goal distribution to match the weighted empirical distribution,
where the rare states receive larger weights. Another line of work [93] focuses on goals
that provide maximal learning progress. Our method, which builds on top of HER,
provides an order of magnitude of speedup by taking advantage of very few goal-driven
demonstrations. We further introduce a novel goal sampling strategy based on the
disagreement with the demonstrator.

8.3 Goal-Driven Imitation

The challenges of injecting expert feedback into DRL are two folds. First, expert demon-
strations are limited, which entails that the agent needs to efficiently leverage a small
amount of demonstration data. Although a number of algorithms could in principle be
used to learn from demonstrations, standard methods can suffer from poor performance.
This can happen when the state coverage of the expert trajectories is too narrow, or due to
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Algorithm 3 Active Goal-Driven Learning (goAL)

1: Given:

• an off-policy RL algorithm 𝜋\𝜋 ⊲ DQN, DDPG, NAF

• a replay buffer 𝑅 and an expert trajectory buffer Ω

• an imitator network 𝑓\

• a reward function 𝑟𝑔 : 𝑆 × 𝐴 × 𝐺 → R ⊲ e.g. 𝑟𝑔 (𝑠, 𝑎, 𝑔) = | |𝑠 − 𝑔 | |22
2: Initialize 𝜋\𝜋 and 𝑓\
3: Initialize 𝑅 = {} and Ω = {} ⊲ initialize neural networks
4: for m=0,...,M do
5: Receive a goal 𝑔 and initial state 𝑠0
6: for t=0,...,H-1 do
7: Get action 𝑎𝑡 = 𝜋(𝑠𝑡 , 𝑔 |\𝜋)
8: Execute 𝑎𝑡 and observe next state 𝑠𝑡+1
9: Store transition 𝑅 = 𝑅 ∪ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑔, 𝑟)

10: Save the current trajectory 𝜑 = {𝑠0, 𝑎0, 𝑠1, ..., , 𝑔} and the final state 𝑠𝑘 = 𝑠𝐻−1
11: 𝐶 (𝜑) = 1[𝑠𝑘 ≠ 𝑔]E(𝑠𝑡 ,𝑔)∼𝜑𝑐(𝑠𝑡 , 𝑔) ⊲ Query Selection
12: if 𝐶 (𝜑) > 𝑡𝑞𝑟𝑦 then
13: Query the expert with 𝑔 as the target goal and receive 𝜏 =

{(𝑠0, 𝑎0), (𝑠1, 𝑎1), ..., (𝑠𝑘 , 𝑔)} ⊲ Query the demonstrator
14: Relabel 𝜏 and store tuples in Ω ⊲ Expert Relabeling
15: Fine-tune 𝑓\ on Ω

16: for t=0,...,H-1 do
17: Sample a set of additional goals 𝐺 ∈ {𝑠𝑡+1, .., 𝑠𝐻−1} with probability 𝑝(𝑠, 𝑔) ⊲

Prioritized Goal Sampling
18: for 𝑔

′ ∈ 𝐺 do
19: Store transition 𝑅 = 𝑅 ∪ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑔

′
, 𝑟𝑔 (𝑠𝑡 , 𝑎𝑡 , 𝑔

′))
20: for j=0,...,𝑁𝑜𝑝𝑡-1 do
21: Sample a minibatch 𝐵 from 𝑅

22: Calculate 𝐿𝐶 on 𝐵 ⊲ Goal-Driven Imitation Loss
23: Update policy loss 𝐿𝐷 = _1𝐿 − _2𝐿𝑒 and optimize \𝜋

a discrepancy between the agent’s goal and the demonstrated data. Second, demonstrat-
ing the entire task trajectory multiple times is an inefficient way of soliciting information
from humans, lacking generalization to new target goals.

The framework of active goal-driven learning (goAL) provides us a mechanism to mitigate
these problems by incrementally querying goal-driven demonstrations (Figure 8.1). Our
approach (Algorithm 3) introduces human feedback into goal-conditioned learning via
Hindsight Experience Replay. Specifically, the agent receives feedback in the form of short
goal-driven demonstrations - the tutor is requested to reach a specific goal. We decide how
to query goal-driven demonstrations based on the agent’s needs and the expected value
of information of the query, drastically reducing the number of required demonstrations.
In the following section we describe the key components of our method.
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Figure 8.1: Active Goal-Driven Learning (goAL). The imitator predicts the action the
demonstrator would have taken given a pair of state and goal (𝑠𝑡 , 𝑔𝑡). When the agent
fails to reach the goal being pursued 𝑔𝑡 , a new demonstration 𝜏 with 𝑔𝑡 as the target goal
may be queried.

8.3.1 Goal-Driven Imitation

We assume a small dataset of tuples (𝑠𝑖, 𝑔𝑖, 𝑎𝑖) extracted from expert trajectories, Ω. A
trajectory segment (also called goal-driven demonstration) is a sequence of observations
and actions, 𝜏 = {(𝑠0, 𝑎0), (𝑠1, 𝑎1), ..., (𝑠𝑘 , 𝑔)}, where 𝑔 indicates the goal pursued by the
demonstrator. Our method involves an imitator network 𝑓 : 𝑆 × 𝐺 → R𝑛 that mimics
expert behaviors, parameterized by a set of trainable parameters \. The imitator network
is trained with a regression loss �̄�: it predicts the action the demonstrator would have
taken given a pair of state and goal (𝑠𝑖, 𝑔𝑖), 𝑎∗𝑖 = 𝑓 (𝑠𝑖, 𝑔𝑖 |\). In the absence of domain
knowledge, a general-purpose choice is to train 𝑓\ with a regression loss, the mean-squared-

error, �̄� = 1
|Ω|

∑|Ω|
𝑖=1 | |𝑎

∗
𝑖
− 𝑎𝑖 | |22.

A contribution of this chapter consists in augmenting the policy loss with an extra term
to accommodate the goal-driven expert data. Given a minibatch of 𝑇 transitions, the
imitation loss is given by:

𝐿𝑒 =
1

𝑇

𝑇∑︁
𝑡=1

| |𝜋(𝑠𝑡 , 𝑔𝑡 |\𝜋) − 𝑓 (𝑠𝑡 , 𝑔𝑡 |\) | |22 (8.1)

where 𝜋 is the current policy parameterized by \𝜋. In order to allow the agent to signif-
icantly outperform the demonstrator - deviate significantly from the expert demonstra-
tions, we use a Q-filter function [165] in a goal-conditioned setting, which we extend to
increase the gap between “optimal” and “sub-optimal” transitions. In order to ensure that
a transition provided by the demonstrator is significantly better than the agent’s policy, we
propose to filter irrelevant transitions via: 1𝑄(𝑠𝑡 , 𝑓 (𝑠𝑡 ,𝑔𝑡 ),𝑔𝑡 )−(𝑄(𝑠𝑡 ,𝜋(𝑠𝑡 ,𝑔𝑡 ),𝑔𝑡 )−[ |𝑄(𝑠𝑡 ,𝜋(𝑠𝑡 ,𝑔𝑡 ),𝑔𝑡 ) |)>0,
where [ is a positive constant. This filtering enables our agent to improve significantly
beyond the expert demonstrations.



CHAPTER 8. ACTIVE GOAL-DRIVEN LEARNING 123

s0

s1
s2 s3

s5

s4

a0

a1 a2
a3

a4

t N

Relabeling

t>N

No Relabeling

Figure 8.2: Relabeling strategy. The states within a reachability threshold 𝑁 are used as
goals.

The overall loss used to update the policy network is a combination of two losses:

𝐿𝐷 = _1𝐿 + _2𝐿𝑒 (8.2)

where 𝐿 indicates the loss function of any arbitrary DRL algorithms, and _1 and _2
weight each loss components. Adding this auxiliary objective provides the agent both the
intention of the demonstrator and the ability to discover alternative strategies. Next, we
show how to artificially increase the amount of demonstrations by relabeling expert data.

8.3.2 Expert Relabeling

To further enable sample-efficient learning in the real world, we present a relabeling strat-
egy to artificially generate more expert data. In other words, expert relabeling is a type of
data augmentation on the provided goal-driven demonstrations. As mentioned earlier, we
collect expert demonstrations in the form of trajectories, 𝜏 = {(𝑠0, 𝑎0), (𝑠1, 𝑎1), ..., (𝑠𝑘 , 𝑔)},
where 𝑔 is the goal being pursued. The idea behind this method is that in a state 𝑠𝑖, the
associated action 𝑎𝑖 can be used to reach 𝑔, as well as new goals {𝑠𝑖+1, .., 𝑠𝑘 } - the tran-
sition probability is not affected by the goal being pursued 𝑔. We found that selecting
all the future states like done in goalGail [169] not an ideal solution, since distant goals
can be reached using different actions. Besides, in the context of active learning, adding
imaginary sub-optimal samples may create conflicts when the agent later on receives new
feedback from the overseer. Instead, we restrict the creation of new imaginary samples
to only short slices of the original trajectory. To do so, we propose to use the number
of times-steps to approximate the distance between two states. We relabel future states
when this distance is lower than a threshold 𝑁 (Figure 8.2): {𝑠𝑖+1, .., 𝑠𝑚𝑖𝑛(𝑖+𝑁,𝑘)}. By ar-
tificially generating new demonstrations, we can convert a single transition (𝑠, 𝑔, 𝑎) into
potentially many valid training examples, which is particularly useful to decrease the
number of queries to the demonstrator.

8.3.3 Query Selection

An important component in this method is query selection, in which the agent needs to
decide which goals to query for demonstration. Our approach to decide when to query
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is based on 1) the ability of the agent to reach the goal pursued in the episode, 2) the
confidence in the action prediction of the imitator network. By requesting demonstrations
in hard-to-learn and low confidence situations, the depicted algorithm eliminates repetitive
demonstrations of already learned goals of the task and provides human feedback to the
agent when it struggles.

After experiencing each episode 𝜑, we evaluate the confidence of the imitator along the
state-action trajectory, if the goal was failed. For simplicity, a slight abuse of notation
is made by using 𝐶 to denote the query score. A score above a threshold 𝑡𝑞𝑟𝑦 results in
a goal-driven query - the demonstrator is requested to demonstrate how to achieve the
failed goal. We formally define the overall function to estimate 𝐶 as:

𝐶 (𝜑) = 1[𝑠𝑘 ≠ 𝑔]E(𝑠𝑡 ,𝑔)∼𝜑𝑐(𝑠𝑡 , 𝑔) (8.3)

where 𝑠𝑘 is the final state of the trajectory, 𝑔 is the goal being pursued, and 𝑐 is an
estimation function of the confidence for the pair (𝑠𝑡 , 𝑔). Every time a new demonstra-
tion is collected, the training transitions are recorded in Ω and we make 50 epochs of
training. Rather than using bootstrapping as in prior work, which adds a significant
overload, we propose two novel methods (quantile-confidence and bayesian-confidence) to
estimate prediction confidence, 𝑐(𝑠𝑡 , 𝑔). The parametrization is discussed further in the
next section.

Quantile-Confidence

One common solution for estimating confidence in the prediction relies on ensemble-
based uncertainty estimates, as done by Christiano et al. (2017) [170]. However, such
an approach tends to be computationally expensive [159] and inaccurate when operating
in the low data regime (with very few data). Instead, we develop a simple architecture
for estimating confidence in the prediction, which has little/no computational cost, works
with most existing imitation-based models, and is more robust against outliers. We
propose to embrace deep quantile regression to estimate model confidence. Rather than
only predicting the mean, the last layer of 𝑓\ is used to predict each quantile separately.
Assuming a set of goal-driven demonstration data Ω, we run a regression algorithm to
train 𝑓\ with a novel loss:

�̄� (𝑞) = 1

|Ω|

|Ω|∑︁
𝑖=1

𝜌( 𝑓 (𝑠𝑖, 𝑔𝑖 |\) − 𝑎𝑖, 𝑞) (8.4)

where

𝜌(Y, 𝑞) =
{
𝑞Y, if Y ≥ 0

(𝑞 − 1)Y, if Y < 0
(8.5)

where 𝑞 is the required quantile (0 < 𝑞 < 1), and 𝑎𝑖 is the action the demonstrator took.
We typically use (0.3,0.5,0.8) as quantiles. We can express quantile-confidence, 𝑐(𝑠𝑡 , 𝑔),
by measuring the prediction interval between the largest 𝑞′′ and smallest 𝑞′ quantile,
𝑐(𝑠𝑡 , 𝑔) =

�� 𝑓 (𝑠𝑡 , 𝑔 |\)𝑞′′ − 𝑓 (𝑠𝑡 , 𝑔 |\)𝑞′��. Please note that we use the median quantile (q=0.5)
in Equation 8.1.
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Bayesian-Confidence

Imitator network confidence can also be modeled using bayesian models. However, in the
context of RL, their computational cost can be prohibitive. This problem can be mitigated
by using an estimation of Bayesian inference. It was shown that the use of dropout
can be interpreted as a Bayesian approximation of Gaussian process [180]. Therefore,
we introduce a dropout layer before every weight layer of our imitator network. To
estimate predictive confidence, we collect the results of stochastic forward passes through
the imitator network:

𝑐(𝑠𝑡 , 𝑔) = E𝑑 𝑗∼𝐷 [ 𝑓 𝑑 𝑗 (𝑠𝑡 , 𝑔 |\) − 𝑝]2 (8.6)

where 𝑓 𝑑 𝑗 (𝑠𝑡 , 𝑔 |\) represents the model with dropout mask 𝑑 𝑗 , 𝐷 is a set of dropout
masks, and 𝑝 is the predictive posterior mean, 𝑝 = E𝑑 𝑗∼𝐷 𝑓

𝑑 𝑗 (𝑠𝑡 , 𝑔 |\). Since the forward
passes can be done concurrently, the method results in a running time identical to that
of standard dropout. We can expect the variance of unknown and far-away tuples to be
larger than known tuples. Please note that one advantage of using dropout is that it
allows the imitator network to “smooth out” much of the noise in the data, making the
imitator network more robust to noise in the demonstration data. Besides, this technique
is particularly effective in the low-data regime to improve generalization of demonstrated
behaviors. We compare in Section 8.4.2 the impact of each strategy on our method.

8.3.4 Prioritized Goal Sampling

In the future HER sampling strategy, the new goals are randomly selected along the
future state-action trajectory. However, an RL agent can learn more effectively from
some goals than from others. Typically, some goals may be useful to the agent, but might
become less when the agent competence increases. Prioritized goal sampling (PGS) assigns
high sampling priority to key goals - in places where the expert and the agent strongly
disagree. As a criterion to quantify this disagreement, we measure the divergence in the
action recommendation between the imitator-network and the policy, which indicates how
“surprising” or “hard-to-learn” the goal is. Given a state 𝑠𝑡 seen along an episode of 𝑇
states and 𝑔 the current goal, we define the probability of sampling 𝑠𝑡 as a new goal:

𝑝(𝑠𝑡 , 𝑔) =
| |𝜋(𝑠𝑡 , 𝑔 |\𝜋) − 𝑓 (𝑠𝑡 , 𝑔 |\) | |22∑𝑇
𝑗=𝑡 | |𝜋(𝑠 𝑗 , 𝑔 |\𝜋) − 𝑓 (𝑠 𝑗 , 𝑔 |\) | |22

(8.7)

where | |𝜋(𝑠𝑡 , 𝑔 |\𝜋)− 𝑓 (𝑠𝑡 , 𝑔 |\) | |22 is the deviation between the policy and expert. As a result,
PGS capitalizes on large disagreement to encourage sampling of goals that potentially lead
to large learning progress.

8.4 Experiments

In this section, we first describe implementation details and the tasks to be completed
by the agent. Then, we conduct experiments in multiple tasks from the Mujoco suite
[74, 161]. Finally, we answer the following questions:
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• What is the impact of the relabeling threshold on the imitator network training?

• How important is the weight of the imitation loss?

• Is goAL robust to noisy demonstrations?

• Can goAL generalize to unseen goals?

• Does our method increase the state coverage of demonstrations?

• Is prioritized goal sampling an efficient way to select goals?

• What is the impact of the query budget on the performance?

8.4.1 Implementation Details and Tasks

Experiments are conducted on eight robotic tasks implemented in MujoCo. In the first
set of experiments, we consider four manipulation tasks (Fetch tasks) where the agent
controls a 7-DoF Sawyer arm: (1) Fetch Reach, (2) Fetch Push, (3) Fetch Pick & Place,
and (4) Fetch Slide. The end-effector (EE) is constrained to a 2-dimensional rectangle.
In the second set of experiments (ShadowHand tasks), we evaluate our framework on
significantly more challenging tasks with very sparse rewards and larger action spaces.
The agent is trained to manipulate physical objects via a human-like robot hand: (1)
Hand Manipulate Block, (2) Hand Manipulate Egg, (3) Hand Manipulate Pen, and (4)
Hand Reach. The observations are given in the form of continuous values and the action-
space is also continuous. The performance metric we use is the percentage of goals that
the agent is able to reach. An episode is considered successful if the distance between the
agent and the goal at the end of the episode is less than a threshold defined by the task.

As our policy learning method, we rely on DDPG with HER. We refer to our algorithm
as active goal-driven learning (goAL). The critic and imitator networks consist in 4 fully-
connected layers with 256 hidden units. ReLU is used as the activation function expect
for the last layer that used tanh, and the output value is scaled to the range of each action
dimension. Their parameters are optimized given as input pairs of state-goal. Training is
carried out with a fixed learning rate of 10−3 using the Adam optimizer [72], with a batch
size of 256.

In order to select the hyperparameters used for Fetch and ShadowHand tasks, we ran a
grid search with the ranges shown in Section 8.4.4 and we used 10 seeds on the eight tasks.
For Fetch tasks, we use a query budget of 20 and we set 𝑡𝑞𝑟𝑦 = 0.32 (Bayesian-confidence)
and 𝑡𝑞𝑟𝑦 = 0.43 (quantile-confidence). For ShadowHand tasks, we use a query budget of
50, 𝑡𝑞𝑟𝑦 = 0.58 (Bayesian-confidence), and 𝑡𝑞𝑟𝑦 = 0.27 (quantile-confidence). In all our
experiments, Bayesian-confidence is estimated based on 500 dropout masks with 𝑝 = 0.1.
The weights of loss components were _1 = 1 and _2 = 0.003 unless stated otherwise and
we anneal the imitation loss weight _2 by 0.98 per 500 rollouts collected. As relabeling
constant 𝑁, we set the constant equal to half of the maximum number of time-steps per
episode. Since we account for the possibility that the learned policy outperforms expert
demonstrations, we employ the depicted Q-filter strategy with [ = 0.015.
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(a) Fetch Reach (b) Fetch Push

(c) Fetch Pick & Place (d) Fetch Slide

Figure 8.3: Learning curves averaged over 10 runs (±std) for different models:
goAL(bayesian), goAL(quantile), DDPG, HER, DDPG+Demo, and goalGail. The models
are trained on robotic tasks from the Fetch environment.

8.4.2 Fetch Robotic Tasks

We first perform experiments on four different Fetch tasks from the robotic domain built
on top of Mujoco: Fetch Reach, Fetch Push, Fetch Pick and Place, and Fetch Slide.
We first evaluate DDPG with Hindsight Experience Replay (HER) [41] with and with-
out active-goal driven learning (goAL). Moreover, we compare our method against sev-
eral baselines including DDPG [4], DQfD [114], goalGail [169], and DDPG+Demo [165].
Please note that we replace DQN by DDPG as learning algorithm in DQfD. We use 20
demonstrations to guide goalGAIL and 128 for the other methods. To generate these
demonstrations, we randomly sample goals and request the expert to reach them. We
show learning curves in Figure 8.3. Our method can learn comparable or superior policies
using a significantly smaller number of demonstrations. For instance, on Pick and Place,
in average only 9 queries were made by goAL. As expected, it ends up reaching similar fi-
nal performance, however, our method has a faster convergence rate. As can be observed,
despite the fast early learning of baselines, their convergence speed becomes similar to
that of the original HER after extracting all the knowledge from the demonstrations. On
the other hand, incrementally querying new demonstrations enables us to overcome this
problem, while keeping the number of demonstrations very low. Quantile-confidence can
be useful to obtain a more comprehensive analysis of the agent’s confidence, and is more
robust to extreme outliers in the goal-driven demonstrations (e.g. providing the wrong
action). Therefore, we believe that this approach should be used when the feedback are
provided by a non-expert. On the other hand, Bayesian-confidence is particularly effective
to “smooth out” much of the noise in the demonstrations or randomness in the environ-
ment, and enables a better generalization of goal-driven demonstrations in the low-data
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(a) Hand Manipulate Block (b) Hand Manipulate Egg

(c) Hand Manipulate Pen (d) Hand Reach

Figure 8.4: Learning curves (mean±std) on ShadowHand tasks averaged over 10 runs
for different models: goAL(bayesian), goAL(quantile), DDPG, HER, DDPG+Demo, and
goalGail.

regime. Overall, this experiment highlights that goAL drastically reduces the training
time in complex environments and the number of necessary interactions with humans.

8.4.3 ShadowHand Robotic Tasks

In addition to the first robotic tasks, we evaluate our methodology in a more challenging
set of environments (ShadowHand): Hand Manipulate Block, Hand Manipulate Egg,
Hand Manipulate Pen, and Hand Reach. We provide an expert trajectory dataset of
100 demonstrations to goalGAIL and 400 to the other methods. Figure 8.4 plots the
learning curve of all the models. We can observe that our strategy helps to greatly
improve convergence speed. Unlike our algorithm, prior methods passively access the
demonstration data, so we actively provide help to our agent when it struggles. On these
tasks, we found that goalGAIL does not receive enough supervision to achieve optimal
policies. Results highlight that the gap between our approach and the others is increasing
with the degree of sparsity. Overall, these results show that our method is capable of
adapting the set of demonstration trajectories to match the learner’s goal and hence
escape the known “distribution mismatch” issue of prior work. Remarkably, the final
performance of goAL is not capped and can even exceed expert-level performance. To the
best of our knowledge, this is the first approach operating in the low demonstration regime
(less than 50 demonstrations) that achieves a near-optimal score on the four ShadowHand
tasks.
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Table 8.1: Learning locomotion in Mujoco using different positive thresholds 𝑁 when
training the imitator network (line 1-8) or using different imitation loss weights (line 9-
12). Results are averager over 10 random seeds (±std). No seed tuning is performed.

Percentage of goals achieved

Method Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

goAL(bayesian) / N=0.25 0.91±0.03 0.95±0.05 0.90±0.03 0.87±0.04
goAL(quantile) / N=0.25 0.90±0.04 0.92±0.02 0.92±0.04 0.90±0.02
goAL(bayesian) / N=0.50 0.97±0.02 0.96±0.04 0.96±0.04 0.87±0.06
goAL(quantile) / N=0.50 0.96±0.02 0.94±0.03 0.95±0.03 0.90±0.05
goAL(bayesian) / N=0.75 0.96±0.03 0.97±0.05 0.93±0.05 0.88±0.04
goAL(quantile) / N=0.75 0.95±0.04 0.94±0.03 0.93±0.04 0.86±0.04
goAL(bayesian) / N=1.0 0.93±0.04 0.94±0.05 0.88±0.05 0.79±0.08
goAL(quantile) / N=1.0 0.92±0.05 0.92±0.06 0.91±0.07 0.88±0.04
goAL(bayesian) / _2 = 0.001 0.95±0.03 0.93±0.05 0.94±0.07 0.88±0.08
goAL(quantile) / _2 = 0.001 0.96±0.04 0.92±0.04 0.91±0.05 0.89±0.05
goAL(bayesian) / _2 = 0.003 0.97±0.02 0.96±0.04 0.96±0.04 0.87±0.06
goAL(quantile) / _2 = 0.003 0.96±0.02 0.94±0.03 0.95±0.03 0.90±0.05
goAL(bayesian) / _2 = 0.006 0.97±0.02 0.95±0.06 0.92±0.05 0.90±0.04
goAL(quantile) / _2 = 0.006 0.94±0.04 0.93±0.03 0.93±0.04 0.86±0.06

8.4.4 Ablation Analysis

We also present an ablation study to investigate: 1) the importance of the relabeling
threshold, 2) the impact of the weight of the imitation loss, 3) the robustness to imperfect
demonstrations, 4) the generalization to unseen goals, 5) the state coverage of queries, 6)
the impact of prioritized goal sampling, and 7) the size of query budget.

Relabeling Threshold in Imitator Network Training

Relabeling the goal-driven demonstrations requires a threshold 𝑁 to separate “optimal”
from “sub-optimal” transitions. Thus, the trained policy implicitly depends on this
threshold. Precisely, adding potentially sub-optimal transitions may hurt the perfor-
mance of the agent. We conduct a study where the threshold 𝑁 is varied from 0.25 to 1.0.
A threshold of 0.25 means that N is equal to one-fourth of the maximum of time-steps per
episode. Table 8.1 (line 1-8) shows that relabeling all the goals hurts the performance.
This can happen for mainly two reasons: 1) conflicts arising from sub-optimal samples
recorded in the demonstration buffer, and 2) since the agent’s confidence for imaginary
sub-optimal samples is high, the agent struggles to identify regions where feedback is
the most needed. A reasonable choice of N is between 0.5 or 0.75. Hence, the depicted
relabeling strategy helps the performance of the algorithm.



130 8.4. EXPERIMENTS

Table 8.2: Percentage of goals achieved from imperfect demonstrations, where 𝜚 is the
probability of providing a sub-optimal action. The results are averaged across 10 random
seeds (±std). We set the number of queries to 20.

𝜚=0.05 𝜚=0.1 𝜚=0.2

Method Fetch Push Fetch Pick & Place Fetch Slide Fetch Push Fetch Pick & Place Fetch Slide Fetch Push Fetch Pick & Place Fetch Slide

goalGail 0.91±0.04 0.84±0.06 0.72±0.08 0.88±0.05 0.78±0.11 0.70±0.09 0.74±0.08 0.62±0.14 0.62±0.13
DDPG+Demo 0.89±0.05 0.81±0.07 0.48±0.08 0.72±0.08 0.62±0.14 0.30±0.12 0.51±0.15 0.47±0.18 0.21±0.20
goAL(bayesian) 0.94±0.06 0.83±0.06 0.90±0.10 0.91±0.08 0.80±0.10 0.87±0.12 0.85±0.06 0.77±0.08 0.84±0.14
goAL(quantile) 0.92±0.05 0.94±0.13 0.91±0.07 0.88±0.08 0.72±0.14 0.69±0.07 0.77±0.13 0.66±0.12 0.62±0.10

Weight of Imitation Loss

Combining the policy loss and imitation loss involves a hyperparameter _2, which weights
the importance of the imitation loss. One legitimate question is to study the impact of this
hyperparameter on the performance of the agent. Ideally, the policy performance should
not be too sensitive to this hyperparameter. We perform a study for various values of _2
in 0.001, 0.003, 0.006. Table 8.1 (line 9-12) shows that the goAL performance is robust to
the choice of this hyperparameter.

Robustness to Imperfect Demonstrations

In the above experiments, we assume perfect demonstrations. However, the expert might
select not the best action or even lack knowledge about a goal. We study how our agents
perform when imperfect demonstrations are generated by the demonstrators. In order to
generate imperfect demonstrations, we add normal noise N(0, 𝜎2) to the teacher actions
with a probability 𝜚 ∈ {0.05, 0.1, 0.2} and 𝜎 = 0.03. We report in Table 8.2 the perfor-
mance of our framework and several baselines. We observe that goAL can still achieve
acceptable performance. For instance, the success rate of the proposed method remains
larger than 0.80 on the three tasks (𝜚 = 0.05). Even though goAL(bayesian) performs
slightly worse in the imperfect setting, it still improves performance as compared to the
prior methods. A reason is that dropout allows the imitator to “smooth out” much of
the noise in the data, making goAL(bayesian) robust to noisy demonstrations. Moreover,
annealing the imitation loss weight and filtering the sub-optimal demonstrations allow us
to escape from poor local optima, improving significantly beyond the (imperfect) expert
demonstrations. The results demonstrate that our method is reasonably robust to noise
in the demonstrations, and hence non-expert can provide a feedback signal to the agent.

Generalization to unseen goals

In the previous section, we showed that our method learns to achieve a wide range of
goals. However, it remains unclear whether the agent has achieved this by “generalizing
demonstrated trajectories”. To investigate this question, we train our agent on a set of
goals and evaluate its performance on a different set of goals (without additional queries).
From Table 8.3, we see that the agent can generalize to unseen goals, with a slight loss
in the performance. As the agent has already learned about parts of the environment, it
can leverage known similar goals to face an unseen situation. We can further observe that
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Table 8.3: Evaluation of the agent trained on several Mujoco tasks (”fine-tuned”). We
then evaluate the agent’s performance on a different set of goals without querying new
demonstrations (”run as”). We report the results averaged over 10 seeds (±std).

Percentage of goals achieved

Method Fetch Reach (0.5M) Fetch Push (3M) Fetch Pick & Place (3M) Fetch Slide (3M)

Run as (bayesian) 0.95±0.03 0.84±0.08 0.93±0.11 0.85±0.10
Run as (quantile) 0.93±0.04 0.79±0.06 0.85±0.08 0.72±0.09
Fine-tuned(bayesian) 0.97±0.02 0.96±0.04 0.96±0.04 0.87±0.06
Fine-tuned(quantile) 0.96±0.02 0.94±0.03 0.95±0.03 0.90±0.05

(a) With confidence (b) Without confidence

Figure 8.5: State visitation heatmaps of the demonstrations queried by the goAL agent
with Bayesian-confidence (left) and without confidence prediction (right). The agent
starts in the middle of the board (white square).

goAL(bayesian) tends to generalize to unseen situations better than goAL(quantile). We
hypothesize that using dropout in the imitator network prevents the network to overfit
the provided goal-driven demonstrations. Moreover, the results highlight that Bayesian-
confidence is slightly more accurate to estimate the agent’s confidence than quantile-
confidence, improving the value information of the queries. Experimental results suggest
that this form of human guidance allows the learner to generalize domain knowledge to
unseen situations.

State Coverage of Queries

In this experiment, we show that our method is efficient at querying demonstrations and
can keep the level of redundancy at a minimum. To do so, we show state visitation
heatmaps of trajectories queried by our method over 100 runs on a simple 2D navigation
environment. The agent starts in the center of the box, and can take actions to directly
move its position. In this task, the agent needs to navigate itself to a target position (𝑥,𝑦)
that is randomly generated by the environment. Figure 8.5 illustrates that trajectories
requested using our method cover most of the states. One reason is that similar goals are
not requested for demonstrations since the confidence is large enough. Thus, the agent
explores further and make queries in places where it struggles. On the other hand, as
the agent (without Bayesian-confidence) fails to reach the goals being pursued, it quickly
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Table 8.4: Learning locomotion in Mujoco, with and without prioritized goal sampling
(PGS). Results are averager over 10 random seeds (±std). No seed tuning is performed.

Percentage of goals achieved (convergence speed ×103)
Method Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

goAL(bayesian) 0.97 (122) 0.96 (982) 0.96 (812) 0.87 (1850)
goAL(quantile) 0.96 (241) 0.94 (1023) 0.95 (1073) 0.90 (2609)
goAL(bayesian) without PGS 0.96 (157) 0.97 (1256) 0.95 (1229) 0.85(2044)
goAL(quantile) without PGS 0.96 (270) 0.95 (883) 0.94 (1627) 0.91 (2953)

(a) goAL(bayesian) (b) goAL(quantile)

Figure 8.6: Learning curves averaged over 10 runs (±std) on the Fetch Pick & Place task,
with different query budgets.

exhausts its query budget by making redundant queries. As a result, we can expect
imitation learning to be efficient only near the center of the box. This issue becomes
even more noticeable as the size or the complexity of the environment is increased. In
general we discovered that the depicted algorithm improves state coverage and eliminates
the need for unnecessary demonstrations of already acquired behaviors.

Using Prioritized Goal Sampling

One legitimate question is to study the impact of the prioritized goal sampling on the
performance of the algorithm. We conduct a study with and without prioritized goal
sampling (PGS). As shown in Table 8.4, PGS produces faster learning in all eight envi-
ronments. For example, on Fetch Push, PGS reduces the number of interactions to reach
converge by ≈ 27% for goAL(bayesian) and ≈ 15% for goAL(quantile). Furthermore, the
results show that indeed PGS does not deteriorate performance and in some cases our
agent can reach higher final performance than running pure goal sampling. It confirms
that the most important goals for replays are the ones where the disagreement in the
prediction is maximized.
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Query Budget

We finally report evaluations showing the effect of increased query budget. Figure 8.6
demonstrates that agents trained with a larger query budget obtain higher mean returns
after similar numbers of updates. However, despite a small query budget, our method
can still learn near optimal policies. We can draw the observation that as the query
budget increases, the learning effect on the agent gradually improves. However, for the
results with 20 and 50 queries, we can see that even if the number of queries significantly
differs, the difference in learning effect can be negligible. This can happen when queried
demonstrations cover a broad state space and therefore the agent does not need to make
additional queries. As a result, our method leverages a small amount of demonstrations
that cover task-relevant regions of the state space and outperforms the baselines by a
large margin (see Section 8.4.2).

8.5 Discussion

We have constructed a mechanism to utilize a novel form of human guidance, goal-driven
demonstrations, along with goal-conditioned reinforcement learning. Goal-driven demon-
strations do not intend to cover all the state-space or reach the final goal, but guide
the agent to fulfill particular intermediate goals when it struggles. In order to greatly
reduce the number of required demonstrations, we proposed to actively query the hu-
man demonstrator in states where the agent struggles and its confidence in the action
prediction is low. In this work, we introduced and studied the effect of two strategies
to measure the model’s confidence. This novel form of human guidance is less expensive
and more intuitive than policy demonstrations, and ensures that the provided knowledge
match the agent’s needs, hence escaping the known “distribution mismatch” issues of prior
work. Even very small amounts of feedback (less than 50 queries) let us outperform prior
imitation-based approaches on Fetch and ShadowHand tasks. We also study the effect
of doing expert relabeling as a type of data augmentation on the provided goal-driven
demonstrations. Remarkably, the depicted algorithmic framework can match the basic
demonstration-level performance and even exceed expert-level performance. Furthermore,
goAL learns to reach a wide range of configurations from the same set of demonstrated
trajectories. These results suggest that goAL improves the capability for common sense
reasoning in agents, which greatly enhances learning efficiency and could help to expand
the possible applications of RL.

The proposed approach opens several avenues of research. An exciting future direction is
to integrate curiosity into the proposed framework. In regions where the agent learns in
the absence of external guidance, curiosity could help to improve sample-efficiency and
incentivize the agent to outperform the performance of the expert. Another possible im-
provement is combining the idea of active feedback/queries with other forms of guidance,
less reliant on low-level human knowledge to enable non-expert feedback.





Part III

Leveraging Human Guidance and
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Chapter 9

Hierarchical Learning from Human
Preferences and Curiosity

So far, we have addressed the sample efficiency issue via internal or external supervision.
Nevertheless, contrary to humans that can simultaneously aggregate multiple intermediate
learning signals, we have not considered the scenario in the context of reinforcement
learning where multiple types of supervision are available. We believe that achieving
human-like sample-efficient learning is closely related to this capability of the human brain.
All these considerations lead to one fundamental question: how to integrate different forms
of supervision into reinforcement learning?

In this chapter, we propose to hierarchically decompose the task into a set of sub-tasks
and incorporate different combinations of supervision at different levels. We explore (non-
expert) human guidance in the form of high-level preferences between sub-goals, leading to
drastic reductions in both human effort and cost of exploration. Here, the human trainer
is not necessarily an expert at performing the task since it only requires the human to
judge outcomes. We also make use of curiosity to effectively drive the learning of low-level
subpolicies. Finally, we demonstrate how curiosity relates to sub-goal discovery.

9.1 Introduction

Reinforcement learning algorithms often require a large number of interactions to reach
decent performance, which can be intractable in real-world settings. A strategy to escape
these pitfalls is hierarchical reinforcement learning (HRL) [42] that decomposes the overall
task into easier short-term sub-tasks. However, it may be slow to learn subpolicies and
it remains challenging to order subpolicies in the absence of dense task rewards. Besides,
HRL usually requires to manually define a set of sub-goals.

Another successful class of methods for dealing with such problems is imitation learning
(IL) [23] in which the agent learns by observing and possibly querying an expert [181].
Nevertheless, these approaches are not directly applicable to behaviors that are difficult
for humans to demonstrate such as robot control or temporally-extended tasks, and as-
sume that the human demonstrator has some familiarity with the task. A solution is
to leverage other types of human guidance such as “preferences” [170] or “weak feed-
back” [28]. These types of human guidance were shown to be easier to demonstrate for
humans and reduce the amount of human involvement. For instance, preference-based
learning has been applied to game-playing as well as robot control [170, 159]. However,
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we argue that providing low-level preferences between pairs of trajectory segments may
be an inefficient way of soliciting humans, and could be expensive and/or subject to er-
ror. A different paradigm provides an intrinsic exploration bonus (i.e. curiosity) to the
agent. For example, count-based exploration [18] keeps visit counts for states and favors
the exploration of states rarely visited. Curiosity can also be measured as the error in
predicting the consequences of the agent’s actions on the environment [14], a prediction
task where the problem is a deterministic function of its inputs [20, 78], or explicitly
promote in-depth exploration [182]. Prior work have demonstrated that curiosity is a
sufficient exploration signal to improve control and execution in agents (e.g. learning
to reach a sub-goal in HRL), however, learning a task from scratch can still require a
prohibitively time-consuming amount of exploration of the state-action space in order to
find a good policy. Namely, reasoning and planning based on common sense priors [16]
is beyond the reach of agents trained with no prior assumptions about the domain. In
order to expand the availability of DRL, it is necessary to combine the strengths of both
of these techniques. In other words, human preferences is a good source of guidance for
high-level decision-making such as planning/reasoning, while curiosity is a good source of
endogenous motivation for exploring the consequences of low-level actions on the environ-
ment (control and execution), like how to pass an obstacle or whether to interact with a
particular object.

In this chapter, we propose a hierarchical reinforcement learning algorithm. At a high-
level, a meta-controller policy is trained to select sub-goals given (non-expert) human
high-level preferences between pairs of sub-goals as a feedback signal, leading to dramatic
reductions in both human workload and degree of familiarity necessary to provide feed-
back. Besides, human preferences provide prior assumptions about the domain to the
agent, avoiding learning from scratch and enabling common sense reasoning. We decide
how to query preferences based on an approximation to the confidence in the action se-
lection. At a low-level, we introduce curiosity to drive the learning of subpolicies (i.e.
low-level control and execution). Such an approach is motivated by learning in animals,
they utilize all possible intermediate learning signals (e.g. curiosity, preferences) to solve
challenging tasks. We further contribute a strategy to automatically discover sub-goals
that relies on the agent’s curiosity, alleviating the need for an expert to define sub-goals.
As an intuition, we found that manually created sub-goals are generally associated with
large spikes in the curiosity, which indicate meaningful events. This strategy promotes
active cooperation between levels of the policy by communicating potential novel mean-
ingful sub-goals throughout the training process. Our experiments take place in three
domains: 2D navigation tasks in Minigrid, robotics tasks in the physics simulator Mu-
JoCo, and Atari games in the Arcade Learning Environment (ALE). We show that a small
amount of feedback from a non-expert human suffices to rapidly learn both standard RL
tasks and novel hard-to-specify behaviors such as playing Montezuma’s Revenge or dex-
terous manipulation with robotic arms, notorious for their extremely sparse rewards and
complexity.

The key contributions of this article are as follows:

• We present a two-level hierarchical algorithm that introduces human high-level pref-
erences between pairs of sub-goals at the high-level to drastically reduce human
workload, while being more intuitive for humans and enabling non-expert feedback.
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• We introduce a technique to request very few preferences, in states where the agent’s
confidence is low.

• We propose to use curiosity at the low-level to drive exploration and reduce the
amount of interactions to learn subpolicies (i.e. low-level policies). Next, we derive
a method to automatically discover sub-goals through the idea of curiosity-driven
sub-goal discovery.

9.2 Related Work

Imitation Learning. DQfD [114] pre-trains a Q-learning agent on the expert demon-
stration data. This idea was extended to handle continuous action spaces such as in
robotic tasks [162], as well as to actor-critic architectures [163]. A recent follow-up [165]
introduces an expert loss in DDPG [4] and proposes to filter suboptimal demonstrations
based on the Q-values. Another solution is to represent a policy as a set of Gaussian
mixture models [166]. In a different spirit, AlphaGo [2] trains a policy network to classify
positions according to expert moves. A way of dealing with sparse rewards consists in
introducing a curious replay mechanism and demonstrations [167]. In recent years, an
emerging strategy combines generative adversarial networks and reinforcement learning
(GAIL) [24]. However, GAIL was shown to suffer from the drift prediction error and
instability during training. Another method [169] constructs a goal-conditioned policy
to visit similar states as the expert. A different form of imitation learning is inverse re-
inforcement learning (IRL) [25] that uses demonstrated trajectories to extract a reward
function. IRL has been applied to several domains including navigation [142, 27], and
autonomous flight [22]. However, in many cases it is impractical to demonstrate long-
term tasks and IRL algorithms assume that the observed behavior is optimal. Overall,
it is not clear how to scale imitation learning to much more complex behaviors that are
difficult to collect. Another limitation is how to learn when the agent’s goal deviates
from the demonstrated trajectories. This work differs by leveraging high-level guidance -
human preferences between pairs of sub-goals, alleviating the need for collecting low-level
trajectories.

Interactive Human Feedback. Most methods that focus on learning from interactive
human feedback [170, 171, 172, 159, 173] query the human to drive learning. Especially,
it is possible to query trajectory preferences [170], which can be combined with fixed
demonstrations [159]. In contrast, the depicted method introduces the idea of high-
level preferences, and combines human feedback with curiosity that yields better-than-
expert performance by guiding the agent in the quest of knowledge beyond the expert’s
knowledge. Another example, TAMER [174], trains the policy from feedback in high-
dimensional state spaces. The learner may also receive feedback in the form of sequences
of actions planned by a teacher [175]. Some authors [177] consider multiple demonstrators
performing different tasks and the agent must actively select which one to request for
advice. Another solution [178] is to block unsafe actions by training a module from
expert feedback. However, it requires the expert to identify all unsafe situations by
watching an agent play. To deal with the problem of query selection, it is possible to
select sufficiently different unqueried data [179]. In this work, we only request high-level
feedback to the supervisor in states where the agent is unsure and struggles. Moreover,
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state s

Figure 9.1: Hierarchical learning from human preferences and curiosity. The predictor
network is trained based on high-level preferences provided by a demonstrator. The
predictor network provides a bonus 𝑏 to the meta-controller for agreeing with human
preferences. In addition to the pseudo-reward 𝑟𝑒,𝑔, the subpolicies receive an intrinsic
reward 𝑟𝑖.

it does not necessarily require the human trainer to be an expert at performing the task
since the proposed form of guidance only requires the human to judge outcomes. We also
use the structure of the task and introduce curiosity to drive the agent’s exploration of
sub-tasks for which human feedback are not necessary, further reducing human effort.

Sample-Efficient Hierarchical Reinforcement Learning. Many tasks are hierar-
chically structured, which entails that they can be decomposed and gradually solved.
A closely related hierarchical RL work to ours is the approach named hg-DAgger [183]
in which the agent can request high-level and low-level demonstrations, and a signal
to indicate if the high-level sub-goal was chosen correctly. At each level, the learning
task becomes a typical imitation learning problem. In this work, we primarily focus on
preferences to enable non-expert feedback and expand the possible applications of HRL,
including in tasks with behaviors difficult to demonstrate. Moreover, we overcome the
need for expert-engineered sub-goals by introducing a method to automatically discover
sub-goals during exploration. Humans can also provide policy sketches that are high-
level sub-task labels [184]. A forward model has also been used as a measure of novelty
to improve sample efficiency in actor-critic HRL [185]. Integrating temporal abstraction
and intrinsic motivation has been applied to game-playing [186]. On the other hand, our
method is driven by a Random Network Distillation [20] error that gradually downmodu-
lates states that become progressively familiar across the agent’s learning, escaping from
the known “Noisy-TV” issue inherent in curiosity.

9.3 Leveraging Preferences and Curiosity

The challenges of injecting expert feedback into DRL are two folds. First, in many cases
it is impractical to use human policy as guidance because some of these tasks are too
challenging for even humans to perform well. Second, providing low-level feedback can
be time-consuming and significantly increase human workload.

The framework of hierarchical learning from human preferences (HhP) provides us a mech-
anism to mitigate these problems (Figure 9.1). Our approach introduces (non-expert)
human high-level feedback into hierarchical reinforcement learning via preferences over
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sub-goals. This provides a significant speedup in learning while requiring less human ef-
fort. Although a number of algorithms could in principle be used to learn the low-level
subpolicies, they often require to manually engineer sub-goals and rely on large amounts
of interactions. In contrast, our formulation introduces curiosity to enable self-discovery
of sub-goals and speed up the learning of subpolicies.

In the following section, we first describe high-level components of our method and then
low-level components.

9.3.1 High-Level Preferences

In this section, we describe high-level components of our algorithm. When learning from
demonstrated trajectories, the policy is trained to clone a human (expert) demonstrator
on the task. Nevertheless, to provide meaningful demonstrations, the demonstrator has
to have some knowledge and familiarity with the current task. As a result, learning from
direct demonstrations of trajectories or high-level actions (i.e. sub-goals) is significantly
more costly than requesting human (non-expert) preferences, which only uses the ability
to judge outcomes. Moreover, rather than relying on trajectory preferences (i.e. low-level
preferences) we propose to query high-level preferences, decreasing the amount of feedback
required by several orders of magnitude.

To this end, we assume a set of sub-goals G and access to a supervisor that can provide
preferences over sub-goals. Our method maintains a meta-controller (also called high-
level policy) 𝜏 : S → G and a predictor network that estimates a reward function from
the annotator’s preferences 𝑝 : S × G → R, each parametrized by deep neural networks.
Our predictor network takes a state and a sub-goal as input and outputs an estimate
of the corresponding reward. In our settings, preferences are collected while the agent
is training, during the experiment. The proposed framework can be divided into three
processes: (1) training the predictor network to fit the high-level preferences collected
from human so far, (2) optimizing the meta-controller, and (3) selecting new queries.

Training the Predictor Network

Our model maintains a predictor network 𝑝 that mimics human high-level preferences. It
takes as input the current state 𝑠𝑡 and the sub-goal 𝑔 recommended by the meta-controller,
and outputs a reward that “criticizes” the meta-controller’s recommendation, 𝑏𝑡 ∈ R.

In order to train the predictor model, the human overseer is given a visualization of a
state 𝑠 and a pair of two sub-goals (𝑔1, 𝑔2), in the form of images. The human then
indicates which sub-goal is favoured, that the two sub-goals are equally good, or that
the overseer is unable to compare the two sub-goals. We record tuples (𝑠, 𝑔1, 𝑔2, 𝑣) in a
database R, where 𝑠 is a state, 𝑔1 and 𝑔2 are two distinct sub-goals, and 𝑣 is the score
given by the demonstrator. Write 𝑔1 � 𝑔2 to indicate that the human preferred sub-goal
𝑔1 to sub-goal 𝑔2, and 𝑔1 ⊀ 𝑔2 to indicate that the two sub-goals are equally good. In
our implementation we use labels for encoding preferences (i.e. score 𝑣): [1, 0, 0] denotes
𝑔1 � 𝑔2, [0, 1, 0] denotes 𝑔2 � 𝑔1, and [0, 0, 1] denotes 𝑔1 ⊀ 𝑔2.
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Assuming the data-set R of tuples, R = {(𝑠, 𝑔1, 𝑔2, 𝑣), ...}, we train the predictor network 𝑝
to minimize the cross-entropy loss, L, between these predictions and the actual judgment
labels. Since we discard tuples that are incomparable, the loss function can be written as
follows:

L(𝑝, \∗,R) = − 1

|R |
∑︁

(𝑠,𝑔1,𝑔2,𝑣)∈R
log(𝑃[𝑔1 � 𝑔2])𝑣0 + log(𝑃[𝑔2 � 𝑔1])𝑣1 (9.1)

where \∗ is the set of parameters of the predictor network, 𝑣𝑖 corresponds to the 𝑖’th
element of one-hot encoded label of the sample (𝑠, 𝑔1, 𝑔2), (𝑔1, 𝑔2) is a pair of sub-goals,
and 𝑃 is the probability of preferring a sub-goal. We calculate this probability via:

𝑃[𝑔1 � 𝑔2] =
𝑒𝑝(𝑠,𝑔1 |\

∗)

𝑒𝑝(𝑠,𝑔1 |\∗) + 𝑒𝑝(𝑠,𝑔2 |\∗)
(9.2)

Therefore, the overall loss can be re-written as:

L(𝑝, \∗,R) = − 1

|R |
∑︁

(𝑠,𝑔1,𝑔2,𝑣)∈R
log

[
𝑒𝑝(𝑠,𝑔1 |\

∗)

(𝑒𝑝(𝑠,𝑔1 |\∗) + 𝑒𝑝(𝑠,𝑔2 |\∗))

]
𝑣0+log

[
𝑒𝑝(𝑠,𝑔2 |\

∗)

(𝑒𝑝(𝑠,𝑔2 |\∗) + 𝑒𝑝(𝑠,𝑔1 |\∗))

]
𝑣1

(9.3)

Please note that, 𝑝𝑖 (𝑠, 𝑔 |\∗) ≥ 0 since the output layer is a softmax. This loss function
is a specialization of the Bradley-Terry model [187] for estimating score functions from
pairwise preferences. Similarly to the low-level preference model [170], we resort to indirect
training of this model via preferences expressed by the teacher. However, here, rather than
working on low-level segment trajectories, our method operates on sub-goals, making the
training much less reliant on large amounts of preferences to be accurate and more intuitive
for the overseer while being computationally more efficient.

Besides, it has several advantages. 1) It is more natural and faster for a human to compare
a pair of sub-goals that coming with an optimal sub-goal. 2) When a new sub-goal is added
to memory, it only requires to compare the new sub-goal with current best sub-goals. 3)
Human with partial knowledge about the task (i.e. non-expert) can provide feedback
signal since they can provide information about pairs of sub-goals. That is, if an expert
has poor knowledge about one pair of sub-goals, it can still provide information about
other pairs of sub-goals. On the other hand, in standard imitation learning, human cannot
provide any feedback - the teacher cannot selects the next optimal sub-goal or action. As
a result, we found that a non-expert can provide valuable feedback that can be used to
expand the possible applications of deep reinforcement learning agents.

Optimizing the Meta-Controller

We can train the meta-controller 𝜏 based on high-level preference elicitation provided by
the predictor network. At time-step 𝑡, the meta-controller network receives the current
state 𝑠𝑡 and recommends the next sub-goal 𝑔. In this paper, we consider that, along
with the extrinsic reward, the meta-controller also receives a preference bonus 𝑏𝑡 that
rewards the meta-controller for agreeing with human preferences. Please note that since
the reward function 𝑏𝑡 is often non-stationary, it is useful to normalize the scale of the
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rewards. In order to keep the rewards on a consistent scale, we normalize the preference
reward by dividing it by a running estimate of the standard deviations of the preference
returns.

Thus, the reward 𝑟𝑒𝑡 that receives the meta-controller for selecting the sub-goal 𝑔 in a
state 𝑠𝑡 is the following:

𝑟𝑒𝑡 = 𝛽 · 𝑅𝑒 + (1 − 𝛽) · 𝑏𝑡 = 𝛽 · 𝑅𝑒 + (1 − 𝛽) · 𝑝(𝑠𝑡 , 𝑔 |\∗) (9.4)

where 𝑅𝑒 is the extrinsic return obtained by selecting the sub-goal 𝑔 and then following the
subpolicy 𝜋𝑔, 𝛽 is a hyperparameter to weight the importance of the preference bonus,

and 𝑝(𝑠𝑡 , 𝑔 |\∗) is the normalized reward calculated by the predictor network. Please
note that this formulation accounts for the possibility that human preferences can be
suboptimal. Rather than always selecting the preference-based sub-goal, we provide a
bonus to the meta-controller. This enables the meta-controller to correct possible human
mistakes based on interactions with the environment and discover alternative options that
are unknown to the demonstrator.

Selecting Queries

One common solution to decide how to query preferences relies on ensemble-based uncer-
tainty estimates, as done by Christiano et al. (2017) [170]. However, such an approach
tends to be computationally expensive [159]. Moreover, we found this strategy less accu-
rate when operating in the low data regime (with very few preferences), as in our work.

Therefore, we introduce a different approach to decide how to query preferences based on
the predictor’s confidence. This prompts the predictor to query preferences only for sub-
goals that are found with a low degree of confidence. The predictor network’s confidence
can be modeled using bayesian models. However, in the context of RL, their computa-
tional cost can be prohibitive. This problem can be mitigated by using an estimation of
Bayesian inference. It was shown that the use of dropout can be interpreted as a Bayesian
approximation of Gaussian process [180]. Therefore, we introduce a dropout layer before
every weight layer of our predictor network. To estimate predictive confidence 𝑐(𝑠, 𝑔) of
a tuple (𝑠, 𝑔), we collect the results of stochastic forward passes through the predictor
network and then measure the variance in the prediction:

𝑐(𝑠, 𝑔) = E𝑑 𝑗∼𝐷 [𝑝𝑑 𝑗 (𝑠, 𝑔 |\∗) − 𝑝]2 (9.5)

where 𝑝𝑑 𝑗 (𝑠, 𝑔 |\∗) represents the model’s prediction with dropout mask 𝑑 𝑗 , 𝐷 is a set of
dropout masks, and 𝑝 is the predictive posterior mean, 𝑝 = E𝑑 𝑗∼𝐷 𝑝

𝑑 𝑗 (𝑠, 𝑔 |\). A score
above a threshold 𝑡𝑞𝑟𝑦 results in a query. Since the forward passes can be done concur-
rently, the method results in a running time identical to that of standard dropout. We
can expect the variance of unknown and far-away tuples to be larger than known tuples.
Furthermore, using a large number of dropout masks makes this approach much more
accurate than training an ensemble of models, while preventing overfitting of recorded
preferences.
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9.3.2 Combining Low-level Policies with Curiosity

At the low-level, we train subpolicies 𝜋𝑔 where 𝑔 is the sub-goal pursued by the subpolicy.
In particular we can use any standard off-policy reinforcement learning algorithm like
DDPG where each learner accumulates its own experience. Similarly to prior work on
hierarchical reinforcement learning, we assume access to a terminal(s,g) function that
indicates the termination of the sub-task and a done(s,g) function that indicates a failure
or success of the goal being pursued. Hence, we can derive a pseudo-reward function 𝑟𝑒,𝑔.
The subpolicies are trained to maximize this excepted pseudo-reward, defined as follows:

𝑟𝑒,𝑔 =


1 if done(s,g)

−1 if terminal(s,g) ∧ ¬done(s,g)
0 otherwise

(9.6)

However, this pseudo-reward function 𝑟𝑒,𝑔 may be very sparse depending on the time-
horizon of the sub-task. This will become pressing when attempting to scale this method
to practical tasks where the number of steps to reach the sub-goal being pursued can be
large or the sub-task be very challenging. In this chapter, we extend the formulation of
the pseudo-reward to tackle sparse reward sub-tasks, drastically reducing the number of
interactions to learn subpolicies.

To this end, we propose to make use of a curiosity-based intrinsic reward, 𝑟𝑖. This bonus
is summed up with the sub-task reward (i.e. pseudo-reward), making rewards dense and
more suitable for learning, without the need for handcrafting a reward function for each
sub-goal.

Overall, at every time step 𝑡, 𝜋𝑔 receives the following reward:

𝑟𝑡 = 𝑟
𝑒,𝑔
𝑡 + 𝛼 · 𝑟𝑖𝑡 (9.7)

where 𝛼 is a hyperparameter of our method to weight reward components, 𝑟𝑒,𝑔 is the
pseudo-reward, and 𝑟𝑖 is the intrinsic reward. In all our experiments, we use Random
Network Distillation (RND) [20] as formulation of curiosity, which consists of two neural
networks. A fixed network takes an observation to an embedding 𝑓 : S → R𝑘 and a
reconstructor networks that aims to predict the output of 𝑓 on the current observation,
𝑓 : S → R𝑘 . Please note that only the reconstructor network is trained by gradient
descent to minimize the prediction distance with 𝑓 . The intrinsic reward 𝑟𝑖 is calculated
via:

𝑟𝑖𝑡 = | | 𝑓 (𝑠𝑡+1) − 𝑓 (𝑠𝑡+1) | |2 (9.8)

An important “trick” that we found is to use a global estimator of curiosity rather than
an estimator for each subpolicy. Intuitively, the agent does not need to revisit states
that have already been visited by other subpolicies. Furthermore, using a global curiosity
estimator ensures that only relevant parts of the state space are collected by the agent.
That is, the agent collects experience that has never been explored (or potentially not fully
explored) by other subpolicies and that are relevant for reaching the goal being pursued,
𝑔.
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(a) Door & key (b) Fetch Push (c) MR

Figure 9.2: Frames from Door & Key, Fetch Push, and Montezuma’s Revenge (MR).

Intrinsic Skill Discovery

Rather than relying on manually created sub-goals as done in most prior work, we intro-
duce Intrinsic Skill Discovery (ISD) to automatically discover sub-goals with a minimal
computational overhead. Intuitively, it has been shown that spikes in the intrinsic cu-
riosity mostly correspond to meaningful events [182, 20]. For instance, in Montezuma’s
Revenge, large spikes correspond to events such as passing an obstacle, picking an object,
interacting with a torch, or using a ladder. Therefore, we can hypothesize that some of
the states where curiosity spikes can be considered as potential sub-goals. Moreover, we
would like to emphasize that irrelevant sub-goals will be discarded (i.e. not selected) by
the high-level policy.

The proposed method works as follows. We consider Ω a set of 𝑀 prior curiosity models
(e.g. RND [20]). To fill Ω, every 𝑇 time steps we substitute the oldest model in memory
with the current model. By doing so, we can measure the curiosity progress at different
time-scales. Curiosity progress 𝜌(𝑠𝑡) in a state 𝑠𝑡 can now be estimated by measuring the
average distance between the current model and previous models at different time-scales:

𝜌(𝑠𝑡) =
1

|Ω|
∑︁
\𝑜𝑙𝑑∈Ω

[
| | 𝑓 (𝑠𝑡+1 |\) − 𝑓 (𝑠𝑡+1 |\) | |2 − || 𝑓 (𝑠𝑡+1 |\𝑜𝑙𝑑) − 𝑓 (𝑠𝑡+1 |\𝑜𝑙𝑑) | |2

]
(9.9)

where | | 𝑓 (𝑠𝑡+1 |·) − 𝑓 (𝑠𝑡+1 |·) | |2 is the curiosity estimation parametrized by a set of trainable
parameters \ (current model) or \𝑜𝑙𝑑 (prior model). After the curiosity progress score
computation, a new sub-goal with a score in the lowest 5-percentile is added to memory if
the similarity with any other sub-goals is smaller than a similary threshold 𝑏𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦. This
check is necessary for the following reason: the threshold 𝑏𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 induces a discretization
in the sub-goal space which enables to store “distinct enough” sub-goals.

9.4 Experiments

In this section, we first describe implementation details and the tasks to be completed by
the agent. Then, we answer the following questions:

• Is HhP robust to noisy human preferences?

• Is automatic sub-goal discovery an efficient way to design sub-goals?
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• How much do preferences and curiosity help?

• What is the impact of the query budget on the performance?

Finally, we conduct experiments in multiple tasks from the Minigrid environment, Mu-
JoCo suite, and Atari benchmark suite (Figure 9.2).

9.4.1 Implementation Details

In this section, we refer to our algorithm as hierarchical human preferences (HhP). In all
the experiments the observations are given in the form of images. The RGB images are
converted to 84×84 grayscale images. The input given to the policy network consists of
the current observation concatenated with the previous three frames. We use DDQN with
prioritized experience replay (Minigrid and Atari) or DDPG (MuJoCo) at the low-level of
our algorithm, and RND with similar hyperparameters as in the original implementation
[20]. At the high-level, the predictor network consists in a sequence of three convolutional
layers with (32,64,64) filters each, stride: 4,2,1, kernel size of: 8×8,4×4,3×3, and padding
1. We apply a rectifier non-linearity after each convolutional layer. The output of the last
convolutional layer is passed to a serie of two fully connected layers of size 256. Training is
carried out with a fixed learning rate of 10−3 using the Adam optimizer [72], with a batch
size of 128. For Minigrid tasks, we use 𝑡𝑞𝑟𝑦 = 0.26. For Atari games, we set 𝑡𝑞𝑟𝑦 = 0.42.
We set the coefficient of rewards 𝛽 = 0.7 and 𝛼 = 0.5. In MuJoCo we set the query budget
to 750 and 3000 in Atari games. The frequency update 𝑇 of the prior model buffer, Ω,
is set to 15,000 and we found 𝑀 = 4 to be sufficient. In all our experiments, predictor
confidence is estimated based on 500 dropout masks with 𝑝 = 0.1.

9.4.2 Environments

We conduct experiments on several sparse reward environments:

• Minigrid: In Minigrid [53], the world is a partially observable grid. Each tile in the
grid contains nothing or one object: ball, box, door, wall, or door. An observation
consists of the visible cells surrounding the agent. The agent can choose among 7
possible actions: turn left, turn right, move forward, pick up an object, drop the
object being carried, open a door, and complete the task. The Door & Key task
consists of two rooms connected by a door. The agent has to pick up the key in order
to unlock the door and then get to the goal. In KeyCorridor, the task is similar to
Door & Key but there are multiple rooms and multiple doors. In Multiroom, the
agent has to open a serie of doors to reach the final goal. In ObstrMaze, the doors
are locked, the keys are hidden in boxes and doors are obstructed by balls. Solving
such sparse tasks is challenging since the object locations are randomized and the
agent only receives a positive reward +1 when it reaches the final goal. These tasks
also require sequential decision making (e.g. saving the key to open a distant door)
to reach the final goal.

• MuJoCo: In the MuJoCo environment, the agent controls a 7-DoF Sawyer arm.
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Table 9.1: Final mean performance (± std) of our method with various sub-goal creation
strategies on Atari games and average success rate (± std) on KeyCorridorS4R3 and
Fetch Pick & Place. Averages over 10 runs are shown after 100M steps (Atari), 5M steps
(KeyCorridorS4R3), and 1.5M steps (Fetch Pick & Place).

Maximum Mean Score (at convergence) Success rate

Method Montezuma’s Revenge Private Eye Gravitar Pitfall KeyCorridorS4R3 Pick & Place

HhP / 𝜚=0.05 18,657±1,168 66,145±1,609 2,941±963 992±205 0.90±0.04 0.94 ±0.04
HhP / 𝜚=0.1 16,569±1,453 63,693±2,272 2,836±1,231 759±301 0.84±0.07 0.79 ±0.07
HhP / 𝜚=0.2 15,028±1,625 58,304±2,263 2,564±1,456 704±416 0.77±0.12 0.76 ±0.09
HhP / random 12,698±2,865 49,217±6,580 2,547±687 576±220 0.65±0.11 0.39 ±0.14
HhP / ISD 19,914±979 68,874±1,265 3,100±714 1,288±169 0.91±0.02 0.97 ±0.03

The end-effector (EE) is constrained to a 2-dimensional rectangle. We consider four
Fetch tasks where the agent controls the robotic arm: (1) Fetch Reach, (2) Fetch
Push, (3) Fetch Pick & Place, and (4) Fetch Slide.

• Atari: We conduct experiments in the Arcade Learning Environment [86], includ-
ing: Montezuma’s Revenge, Private Eye, Gravitar, Pitfall, Seaquest, and Solaris.
These are hard exploration games that might also contain deceptive rewards such
as in Pitfall. In these games, the agent has to navigate in complex environments,
explore labyrinths, avoid enemies, pass obstacles, or collect objects. In Montezuma’s
Revenge the player explores rooms filled with enemies, obstacles, traps, in an un-
derground labyrinth. In Pitfall, in order to recover 32 treasures, the player must
maneuver through numerous hazards, including pits, quicksands, and rolling logs.
In Seaquest, the agent must shoot enemies to survive.

9.4.3 Ablation Analysis

We have conducted ablation studies on some Atari games to investigate: (1) the robustness
to imperfect preferences, (2) the impact of the sub-goal discovery strategy, (3) the impact
of the components on the performance, and (4) the impact of the query budget on the
performance.

Robustness to Imperfect Preferences

In the above experiments, we assume perfect preferences (i.e. the demonstrator always
provides optimal feedback). However, the teacher might select not the best preferences or
even lack knowledge about a sub-goal. We study how our agent performs when imperfect
preferences are generated by the teacher. In order to generate imperfect preferences, we
randomly provide a non-optimal preference with a probability 𝜚 ∈ {0.05, 0.1, 0.2}. We
report in Table 9.1 (line 1-3) the performance of our framework. We observe that HhP
can still achieve acceptable performance. For instance, on Montezuma’s Revenge, scores
obtained by our method remain close to the best scores. Even though the proposed
method performs slightly worse in the imperfect setting, it still improves performance
as compared to the prior methods. A reason is that the agent can leverage high-level
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(a) Expert labelling (b) Automatic discovery

Figure 9.3: Screenshots from Montezuma’s Revenge: manually created sub-goals (left),
and automatically discovered sub-goals (right). The sub-goals (the agent’s position) are
denoted by a red dot.

preferences of similar sub-goals and learn from interactions to correct mistakes made by
humans. The experimental results demonstrate that our method is reasonably robust to
noise in the preferences, and hence a non-expert teacher can provide a feedback signal to
the agent.

Impact of the Sub-goal Discovery Strategy

To see the potential benefits of using an automatic sub-goal creation strategy, we explore
the performance of HhP with sub-goals created using the following strategies: randomly
discovered, and automatically discovered (ISD) (Table 9.1, line 4-5). Note that in complex
and temporally-extended tasks like Atari games, manually creating all sub-goals is deemed
infeasible. During late training, the agents trained with ISD always reached higher perfor-
mance. It validates that our strategy can discover a diverse range of sub-goals that cover
key events of the task. On the other hand, randomly selecting sub-goals deteriorates the
performance. Nevertheless, even with randomly discovered sub-goals, the meta-controller
and the teacher can still discard irrelevant sub-goals and select meaningful sub-goals,
keeping the performance in an acceptable range. However, the final performance of HhP
trained with randomly discovered sub-goals is capped since the agent cannot keep learning
once all the meaningful sub-goals are mastered.

To further validate the depicted strategy, we show the sub-goals discovered in the first
room of Montezuma’s Revenge and compare it against the optimal sub-goals created by
an expert [183]. For simplicity, we report in Figure 9.3 the location of the agent for each
sub-goal. We can see that the automatically discovered sub-goals are very similar with
manually created sub-goals. For instance the sub-goal pick a key was found by both
strategies. A noticeable difference is that our strategy found a larger number of sub-goals
compared to experts. Thus, this experiment validates that ISD can be used as a robust
alternative to manually created sub-goals.
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(a) Montezuma’s Revenge (b) Private Eye (c) Gravitar

(d) Pitfall (e) Seaquest (f) Solaris

Figure 9.4: Performance for different experimental setups on 6 Atari games after 100M
agent steps. Results are averaged over 10 runs (±std).

Impact of the Components on the Performance

In order to measure how much do high-level preferences and curiosity help, we compare
the following experimental setups:

• Curiosity (Cur): The model is trained solely based on its own curiosity.

• Preferences (Pref): The model is trained from human high-level preferences, without
curiosity.

• Full model (HhP): The model is trained from human high-level preferences and
curiosity.

As can be observed in Figure 9.4, Cur produces faster learning during the early stages of
the agent’s training. For instance, on Pitfall after 50M training steps the agent equipped
with curiosity achieves a score of ≈ 260. However, as selecting the next sub-goal becomes
increasingly difficult, learning without human preferences hurts the performance. We
generally observe that curiosity significantly reduces training time of subpolicies, but has
a limited impact on the gain in performance. On the other hand, learning from human
high-level preferences (Pref ) shows large improvements compared to Cur - human pref-
erences help the agent to rapidly order the subpolicies. Nevertheless, learning without
curiosity increases the exploration workload, requiring more interactions to reach simi-
lar performance as HhP. This experiment demonstrates that curiosity-driven exploration
plays a central role in reducing the number of trial-and-errors and human guidance enables
various forms of common sense reasoning, improving the overall performance.
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(a) Montezuma’s Revenge (b) Private Eye (c) Gravitar

(d) Pitfall (e) Seaquest (f) Solaris

Figure 9.5: Performance of our method on 6 Atari games after 100M agent steps, for
different query budgets. Results are averaged over 10 runs (±std).

Query Budget of Preferences

We finally report evaluations showing the effect of increased query budget. Figure 9.5
demonstrates that agents trained with a larger query budget obtain higher mean returns
after similar numbers of updates. However, despite a small query budget (less than 4000),
our method can still learn near-optimal policies. We can draw the observation that as the
query budget increases, the learning effect on the agent gradually improves. Nonetheless,
for the results with 3000 and 6000 queries, we can see that even though the number
of queries significantly differs, the difference in learning effect can be negligible. This
can happen when the queried preferences cover a broad enough number of sub-goals and
therefore the agent does not need to make additional queries. As a result, our method
leverages a small amount of preferences that cover critical sub-goals, leading to dramatic
reductions in both human effort and cost of exploration.

9.4.4 Procedurally Generated Environments

We now perform experiments on a set of four procedurally generated tasks in the Minigrid
environment to evaluate the overall performance of our algorithm and its generalization
ability to unseen views or appearances. Please note that due to a large number of random
environment instances, this domain requires a very large number of samples for tabular
algorithms. Figure 9.6 depicts the training performance on Door & 16 × 16, KeyCorri-
dorS4R3, ObstrMaze1Q, and MultiRoomN12S10. The results of each run are averaged to
provide a mean curve in each figure, and the standard error is used to make the shaded
region surrounding each curve. In all cases, the use of the proposed method results in
significant improvements in the performance of the policy, leading to near-optimal poli-
cies. Figure 9.6 shows that all the tasks can be solved with very few queries (i.e. less
than 200 queries). As can be further seen, on Door & 16 × 16 and ObstrMaze1Q, even
though HhP (50 queries) primarily progresses more slowly than HhP trained with a larger
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(a) Door & 16 × 16 (b) KeyCorridorS4R3

(c) ObstrMaze1Q (d) MultiRoomN12S10

Figure 9.6: Performance of HhP for different numbers of queries (labels) on a variety of
procedurally generated tasks in MiniGrid: Door & 16 × 16, KeyCorridorS4R3, Obstr-
Maze1Q, and MultiRoomN12S10. All curves (mean±std) are averaged over 10 random
runs.

query budget (HhP (150 queries), HhP (200 queries)), it is ultimately capable of achieving
similar performance. Overall, leveraging the proposed form of human guidance - high-
level preferences, enables our agent to rapidly reach good performance and generalize the
provided domain knowledge to unseen appearances.

9.4.5 Robotic Tasks

In this section we evaluate the agent on four different tasks (Fetch) from the robotic
domain built on top of MuJoCo: Fetch Reach, Fetch Push, Fetch Pick and Place, and
Fetch Slide. We compare our method against several baselines including DDPG [4],
HER [41], DDPG+Demo [165], and goalGail [169]. We show learning curves in Figure
9.7. Our method can learn comparable or superior policies using a significantly smaller
number of human feedback than goalGAIL and DDPG+Demo. For instance, on Pick and
Place, on average only 156 queries were made by HhP. As excepted, it ends up reaching
similar final performance, however, our method has a faster convergence rate, reducing the
amount of required interactions with the environment. Furthermore, unlike our algorithm,
DDPG+Demo passively access the demonstration data, so we actively provide help to our
agent when it struggles. We can further observe that incrementally querying preferences
over sub-goals keeps the number of required preferences very low, while enabling non-
expert demonstrations - it is more intuitive for a human to judge in which direction to
move the robotic arm than controlling the robotic arm. We conclude that our method
provides the capability to effectively learn from multiple types of internal and external
supervision.
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(a) Fetch Reach (b) Fetch Push (c) Fetch Pick & Place (d) Fetch Slide

Figure 9.7: Learning curves averaged over 10 runs for different models: HhP, DDPG,
HER, DDPG+Demo, and goalGail. The models are trained on robotic tasks from the
Fetch environment.

Table 9.2: Final mean performance (mean±std) of our method and baselines on Atari
games. We report the results of our method achieved over total 100M timesteps of training,
averaged over 10 seeds. Some historical papers did not consider games, in which case the
score is displayed as “-”.

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest Solaris

PPO [38] 1,259±610 50±37 1,826±255 -21±6 664±258 1,021 ±199
PPO+RND [20] 8,152±653 8,666±1051 3,906±246 -3±1 3,179±378 3,282±281
DQfD [114] 4,739 40,908 1,693 57 12,361 2,616
Imitation [114] 576 43,047 248 182 195 3,589
Pref (No-Demo) [170] 23 ± 5 256 ± 69 - - 1,011 ± 216 -
Pref (Demo) [159] 2,829 ± 714 50,159 ± 11,657 - - 515 142

Average Human [77] 4,753 69,571 3,351 6,464 20,182 12,327

HhP (ours) 19,914 ± 979 68,874 ± 8,265 3,100 ± 714 1,288 ± 169 17,143 ± 1,231 3,996 ± 511

9.4.6 Hard Exploration Games

We also test the proposed method on six difficult exploration Atari 2600 games from the
Arcade Learning Environment (ALE) [86]: Montezuma’s Revenge, Private Eye, Gravitar,
Pitfall, Seaquest, and Solaris. In the selected games, training an agent with a poor
exploration strategy often results in a suboptimal policy. We compare our method to
the performance of PPO [38], PPO+RND [20], DQfD [114], Imitation [114], Pref (No-
Demo) [170], and Pref (Demo) [159]. The results are shown in Table 9.2. We consider the
final mean performance of 10 training runs with the same set of hyperparameters. It is
observed the plain PPO algorithm obtained a score close to zero and could not solve most
of the tasks. On the other hand, a hierarchical decomposition of the tasks drastically
reduces the number of required interactions. We also found that human preferences is
vital - even with significantly more labels, DQfD fails to reach scores comparable to our
method. We hypothesize that human demonstrations often deviate from the agent’s goal
and do not enable efficient common sense reasoning - they cannot be used by the agent for
planning or reasoning but are limited to specific situations. Please note that Gravitar is an
exception, the curiosity-based approach PPO+RND is hard to beat. On Private Eye, our
method achieves a mean score higher than Pref (Demo) trained without curiosity. Overall,
on the six tasks, using human high-level guidance enables our agent to achieve various
forms of common sense reasoning and avoids learning from scratch, surpassing standard
reinforcement learning baselines. Moreover, even with access to a smaller number of
labels, our method outperforms other preference-based methods that make use of low-
level preferences. One reason is that HhP requires much less human queries to efficiently
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drive the agent’s learning. We observed a reduction by a factor of ≈ 2 over models
that use low-level preferences (Pref(No-Demo), Pref(Demo)). The depicted method also
drastically reduces the total amount of feedback compared to DQfD on Montezuma’s
Revenge (17949), Private Eye (10899), Gravitar (15377), Pitfall (35347), Seaquest (57453),
and Solaris (28552). We should also emphasize that comparing pairs of sub-goals appears
to be easier than providing an optimal action or comparing low-level trajectories. Besides,
we further observed that using curiosity is critical for reducing the number of low-level
interactions, especially in tasks with complex dynamics like Montezuma’s Revenge or
Private Eye.

9.5 Discussion

This chapter takes a step towards achieving human-like sample-efficient learning by ac-
quiring the capability to learn from multiple intermediate learning signals. We have con-
structed a mechanism to utilize high-level preferences along with curiosity. Precisely, to
greatly reduce the human involvement, we proposed to introduce non-expert human guid-
ance in the form of high-level preferences between sub-goals. Even very small amounts of
preferences let us outperform prior imitation-based approaches on multiple sparse reward
tasks. We further make use of curiosity to improve sample efficiency of low-level subpoli-
cies and we derive a technique to automatically discover sub-goals, which alleviates the
need to handcraft sub-goals. In the depicted work, human preferences provide prior as-
sumptions about the domain to the agent, avoiding learning from scratch and facilitating
various forms of common sense reasoning. Precisely, grafting human preferences onto the
agent allows it to make decisions based on its own common sense (without having to ex-
perience a situation) and improves the capability of the agent for planning. On the other
hand, curiosity is used for control of sub-tasks too challenging for even humans to perform
well. Furthermore, curiosity enables our agent to learn to outperform the demonstrator.

The experiments demonstrate the effectiveness of this approach by achieving signifi-
cant improvements on notoriously difficult tasks such as game-playing (Atari games),
visual navigation (Mingrid), and robot control (MuJoCo). Remarkably, our agent ex-
ceeds expert-level performance in several domains by a large margin. To the best of
our knowledge, we were among the first to integrate internal and external guidance for
sample-efficient reinforcement learning.

While these are just the initial steps, we believe that the proposed research direction is
promising and its exploration will be useful to the research community.





Chapter 10

Conclusion

10.1 Discussion and Future Work

In recent years, deep reinforcement learning has attracted attention in a variety of ap-
plication domains. In spite of recent successes in simulated domains featuring complex
motions and many degrees of freedom, solving real-world tasks remains an open problem.
For many of these tasks, significant amounts of data and/or computation is required to
reach reasonable performance. Namely, when working in the real world, learning from
massive amounts of data may be impractical or too costly. More troubling, real-world
tasks often involve poorly-defined or sparse rewards, further increasing the number of
training steps by several orders of magnitude.

This thesis contributes to the state-of-the-art in the domain of reinforcement learning. Our
specific focus was on sample-efficient learning to expand the availability of reinforcement
learning to real-world domains. Motivated by this ambition, we devoted our research
to make reinforcement learning agents much less reliant on large amounts of interac-
tions by improving their cognitive capabilities. Overall, we aimed to take a step towards
human-like sample-efficient learning. To this end, we considered three open problems:
(1) learning with sparse rewards via curiosity-driven exploration, (2) leveraging human
guidance and domain knowledge, (3) learning from heterogeneous types of internal and
external supervision. Our main contributions are summarized in the next section.

In Part I, we have proposed to improve exploration efficiency when extrinsic rewards
are sparse or poorly-defined. This is a serious problem since hoping to reach a goal
state by chance is most likely to be futile for all but the simplest of environments - the
agent cannot be improved until a reward is obtained. In contrast with humans that are
accustomed to operate with rewards that are so sparse, reinforcement learning lack an
important cognitive capability: curiosity. In order to enable learning in such a setting and
drastically reduce training time, we have designed curiosity-driven agents. Curiosity is a
way of encouraging the agent to visit unexplored regions and acquire new skills that might
come useful for pursuing rewards in the future. While several formulations of curiosity
have been proposed in the literature, modeling and reproducing the development of a
natural curiosity capability in artificial agents remains an open question. In this thesis,
we tackled three major limitations inherent in curiosity.

• First, we proposed to generate an exploration bonus based on the agent’s knowledge
about its environment in order to encourage the gradual acquisition of new skills.
Most prior work aims to model environmental dynamics, however, it tends to limit
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long-horizon performance due to model drift and does not directly consider the
agent’s knowledge - rather than visiting all possible states the agent should focus on
task-relevant regions. Our approach (GoCu) escapes these drawbacks by operating
directly on the agent’s policy and encouraging the acquisition of task-relevant skills
(Chapter 3).

• Second, a potential limitation of our proposed method as well as prior approaches is
the vanishing issue inherent in curiosity. As the agent becomes more familiar with
its environment, curiosity may vanish quickly during training, leaving the agent
with no incentive to further explore the environment and reducing its feedback
to extrinsic reward only. Moreover, curiosity-driven agents tend to fall and stay
trapped in poor local optima due to local sources of entropy in the environment
(e.g. random transitions). On the other hand, we addressed both challenges by
proposing a robust formulation of curiosity, PoBP, that uses the agent’s learning
progress on a multi-step horizon scale (Chapter 4).

• Finally, while very good results have been achieved on some hard exploration tasks,
these algorithms face a fundamental limitation: they do not explicitly encourage
and promote deep exploration. That is, curiosity only captures the consequences of
short-term decisions on the environment. Global exploration that involves coordi-
nated decisions over long time horizons is beyond the reach of most methods. In
Chapter 5, we presented a formulation of curiosity that can capture meaningful vi-
sual features and salient environmental dynamics at different scales; and then built
an algorithmic framework (FaSo) that combines two curiosity components, explic-
itly promoting deep exploration. Please note that exploration is robust with respect
to local sources of entropy in the environment.

A first contribution of this thesis has been to show that an agent consistently achieves the
tasks much faster and more efficiently with the proposed curiosity mechanisms. The ob-
jective was to reproduce a seemingly natural cognitive capability of humans: intrinsic mo-
tivation. Humans dedicate much time and energy to exploring and gathering information;
and often the search for information is unrelated of a foreseeable extrinsic gain/reward, as
if learning were reinforcing in and of itself. This behavior emerges through our capability
to make intrinsically motivated choices, our intrinsic desire to learn and understand. This
thesis partially reached this objective, as we have demonstrated that our methods drive
the agent to acquire novel skills, seek novel situations, and continuously reinforce its own
knowledge about the environment. In order to measure the improvements of this capa-
bility over prior work, we presented evaluations on a wide range of tasks and compared
the depicted methods to state-of-the-art curiosity-driven methods. To fairly compare the
algorithms, we utilized the same learning algorithms (PPO or A2C) and hyperparameters
(with the exception of a few prior work that are fundamentally different). Thus, our
methods and prior work only differ by the way they make intrinsically motivated choices.
To quantify the improvements of the above-mentioned cognitive capability, we mainly
focused on two criteria: the agent’s performance, and the number of training steps to
converge. For the three methods we presented results on multiple standard benchmark
tasks, providing general indications about the performance of each model and allowing
us to compare them together. Nevertheless, these criteria may not be enough to assess
specific properties such as whether the agent develops the capability to make intrinsically
motivated choices in the long term, or whether the agent’s motivation is robust to local
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Minigrid 3 3 3

Super Mario Bros 3 3 3

Atari 3 3 3 3

Malmo 3 3 3 3

DMLab 3 3 3 3

Trading 3 3 3
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Fetch Robotic 3 3 3

ShadowHand Robotic 3 3 3 3

Table 10.1: Characteristics of the environments used to evaluate our methods.

sources of entropy in the environment. Thus, we also carried numerous ablation analyses
and used additional environments based on the properties that we wanted to evaluate.
We summarize below which model is most suitable for each environment, as well as the
characteristics of each model.

In order to assess overall performance of our agents and specific properties that we wanted
to evaluate, we utilized a large number of environments featuring different characteris-
tics. The Minigrid environment provides a set of sequential tasks with various degrees
of sparsity. One difficulty is the very large number of instances since the tasks are ran-
domly generated; and the need for the agent to understand how to save/use objects. In
general, environmental dynamics are relatively simple. The Super Mario Bros environ-
ment involves much more delay between the rewards and more complex visual features.
In Atari games, the agent has to discover complex exploration patterns and learn from
extremely delayed rewards. Besides, some games feature deceptive rewards and a large
range of complex game mechanics even for human players, allowing a more diverse set of
behaviors as it includes multiple distinct objects/enemies with their own courses of evolu-
tion under the agent’s actions. In contrast to these environments, the Malmo environment
consists of a set of 3D tasks where the agent must learn to navigate, orientate and control.
The DMLab environment has similar properties but contains stochasticity in the actions
and/or observations. We also evaluated some approaches on non-visual tasks, a trading
environment. In this environment the actions are continuous and the observations are
given in the form of continuous values. Finally, we also used two robotic environments
where actions are continuous. In Fetch Robotic, rewards are sparse and tasks relatively
simple. In ShadowHand Robotic, rewards are extremely sparse and the large degree of
freedom in the action space makes these tasks much more complex. Moreover, these dex-
terous in-hand manipulation tasks have a huge number of controllable parameters and
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challenging simulated dynamics. We show a summary of the environmental characteris-
tics in Table 10.1. Note that in some experiments we modified the environments in order
to test additional properties (e.g. stochasticity, dense rewards).

Through evaluations on a wide range of domains, we found intrinsic motivation (i.e.
curiosity) to be an essential capability for enabling reinforcement learning in the real
world, where rewards are naturally extremely sparse. We demonstrated that the de-
picted approaches outperformed state-of-the-art methods both in sample-efficiency and
learning performance. We also studied whether curiosity may hurt the performance in
some settings. We found that curiosity always improves the performance compared to
pure reinforcement learning, except when rewards are dense. In this setting, curiosity
may encourage the agent to try sub-optimal exploration strategies, increasing the explo-
ration workload. We evaluated this scenario in multiple environments that we modified
to provide dense rewards. Even though curiosity may slightly increase the training time,
the experimental results showed that our methods did not significantly deteriorate the
performance. We conjecture that curiosity-driven agents have a relatively low chance to
occasionally perform notably worse when extrinsic rewards are dense. Please note that
curiosity may improve final performance when the dense rewards are poorly-defined, by
encouraging the agent to escape from local optima. Another possible issue with the pro-
posed formulations of motivation is that they solely deal with a single observation input.
Typically, we presented mechanisms that take as input an image or a set of continuous
values (e.g. gripper positions, sensor data). Although prior work and benchmark environ-
ments both use this setting, it remains unclear how to derive curiosity-driven mechanisms
that can handle multi-sensor tasks.

We now summarize our findings regarding the capabilities of our curiosity-driven ap-
proaches as well as the impact on the choice of the model. In Part I, we compared and
studied the three approaches on multiple (sparse) domains including Atari games, Super
Mario Bros, Minigrid, Mujoco, and DMLab. We observed that FaSo could achieve the
highest performance in the majority of domains. The capability to achieve high-level ex-
ploration makes FaSo the most suitable approach for long-term tasks and hard exploration
tasks - with extremely sparse rewards, such as Atari Games and Super Mario Bros. This
method is also the most effective to deal with procedurally generated tasks or changing
environments such as Minigrid. In the absence of task reward - tasks with no extrinsic
reward (e.g. Super Mario Bros (No-reward)), PoBP and FaSo generally achieve similar
performance, both receiving enough indirect supervision for learning useful behaviors.
One might question why this scenario is interesting. In fact, it can be used to determine
how likely it is to stumble into the task reward in the first place. Moreover, learning
without task reward may be useful to learn a set of skills/primitive actions, and reuse
them in a more complex hierarchical system. On the other hand, PoBP is very robust to
distractor rewards, as well as local sources of entropy in the environment (stochasticity).
Especially, PoBP is extremely robust to local optima and therefore should be prioritized
in tasks featuring randomness, such as in DMLab. In robotic environments (e.g. Mujoco),
it is natural to decompose the overall task into a set of skills and gradually learn them.
Thus, GoCu can be used to rapidly learn skills that could be applied to new settings.

In this thesis, we established results that show significant improvements in sample effi-
ciency. We would like to emphasize that these results translate to the agent’s training
time. Since the depicted curiosity-driven methods have a limited computational cost,
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we can expect to also significantly reduce the training time of our agents. Precisely,
we measured the additional computational cost of the proposed methods and estimated
that GoCu, PoBP, and FaSo are respectively ×1.23, ×1.07, ×1.45 slower than plain PPO.
These results were obtained for agents trained on visual inputs of size 84 × 84 × 3 pixels
and averaged over three tasks: Montezuma’s Revenge, Minigrid 16×16, and Super Mario
Bros. Note that indeed these results may slightly fluctuate depending on the machine
architecture. These observations suggest that curiosity is a vital cognitive capability to
enable learning from sparse rewards and reduce training time.

In Part II, we have developed the means for integrating human guidance into reinforcement
learning. While curiosity was shown to be a powerful incentive to guide an end-to-end
agent (i.e. learning from scratch) when rewards are sparse, human-like sample-efficient
learning is also closely related to the capability of the human brain for common sense
reasoning and leveraging prior assumptions about the domain. In the context of rein-
forcement learning, this capability can be achieved via the integration of human guidance.
Precisely, the most common form of guidance is imitation learning. However, in many
cases it is impractical to use human policy as guidance because demonstrations: 1) may
not be available when tasks are too challenging for even humans to perform well, and 2)
drastically increase human workload. In Part II, we presented initial directions towards
novel types of guidance that are less expensive and more intuitive for humans, enabling
human guidance in the real world and drastically improving sample efficiency.

• First, in Chapter 6 we introduced human-like planning and domain knowledge to
enhance information given to the agent (DRL-EK). The central concept is to aug-
ment the agent’s input with high-level information that are easy to interpret for
the agent and applicable to many situations. We then derived a framework for the
integration of human-like planning based on the high-level information and sim-
ple visual recognition, improving sample efficiency and facilitating various forms of
common sense reasoning.

• Second, in Chapter 7, we gave a reinforcement learning agent the capability of
leveraging existing human expertise. Rather than integrating human guidance and
domain knowledge designed expressly to solve the task being learned, we wanted to
reduce human effort by leveraging large datasets related to the task being learned.
Moreover, most methods in the reinforcement learning literature lack interpretabil-
ity which may limit their applicability in some real-world domains. Therefore, we
presented methods for extracting rules from existing datasets; and then built an in-
terpretable agent whose internal representation is based on these rules (Sarsa-rb(_)).

• Third, one limitation of our methods as well as most prior work is that the agent
and the teacher cannot actively share insights. Hence, the agent cannot cope with
the changes in the environment or query the teacher when it struggles. To overcome
these challenges, we introduced the concept of active goal-driven demonstrations to
query the demonstrator only in hard-to-learn and uncertain regions of the state
space (goAL). Active demonstrations are easier and more intuitive to provide for a
demonstrator than full demonstrations while precisely matching the agent’s needs
(Chapter 8).

The second contribution of this thesis has been to show that efficiency in reinforcement can
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be greatly improved by grafting suitable domain knowledge onto the agent. As described
above, deep reinforcement learning algorithms require huge amounts of interactions also
because they learn from scratch (i.e. with no prior assumptions about the domain), which
entails that they lack a vital cognitive capability: common sense reasoning. Learning
without prior knowledge seems to be an approach that is rarely taken in human - they
use their common sense reasoning to extract initial biases as well as strategies on how to
approach a problem. Humans are born with a part of the brain that is prewired to be
receptive to the world and they leverage knowledge from previously learned tasks that
lead to extremely efficient common sense reasoning, allowing them to learn new skills
within a few trials. To achieve this level of efficiency in AI systems, research in cognitive
systems has shown that many of these challenges can be addressed by exploiting domain
knowledge and the coupling between domain knowledge and learning [17, 188].

As mentioned above, we have proposed novel forms of human guidance that reduce human
effort and substantially improve the agent’s efficiency. We have evaluated the former by
comparing the number of queries to a demonstrator, the amount of demonstration data,
or the difficulty to create domain knowledge (e.g. the need for an expert to craft domain
knowledge, which tasks are suitable for a form of human guidance). On the other hand,
quantifying the improvements of our agents for common sense reasoning and the impact
on the agent’s performance is challenging. Especially, when comparing different forms of
human guidance, it is difficult to evaluate whether a form of guidance improves the agent’s
capability for common sense reasoning. An agent may perform better purely because it
receives much more domain knowledge (e.g. demonstrations of all the possible situations)
than prior work, but its capability for common sense reasoning may remain identical. In
order to evaluate the improvements in common sense reasoning, we have made choices
regarding which kind of environment to use and which properties to include in them. For
instance, we have evaluated Sarsa-rb(_) on a trading task and used distinct stock market
data as domain knowledge. By doing so, we have demonstrated the capability of the
agent to generalize knowledge to unseen situations. On the other hand, prior work (e.g.
DQfD) fail to generalize demonstrations, clearly showing improvements of Sarsa-rb(_)
for common sense reasoning. We have also used the following metrics: the agent’s final
performance, the training speed, and the amount of knowledge/interactions with humans.
We think that the combination of these metrics provides meaningful insights to compare
our methods to baselines, and measure progresses. Besides, these metrics are important
to understand and determine which form of guidance is more suitable for which task.
Finally, we have carried ablation analyses to specifically evaluate how much the proposed
forms of guidance help common sense reasoning and assess the efficiency of the different
components. For example, we have designed tasks to test whether the agents can use
their common sense prior when domain knowledge is corrupted / imperfect.

Overall, the depicted methods can be employed in complex tasks, depending on the avail-
able knowledge. For instance, in a task where only simple knowledge can be collected,
then DRL-EK should be prioritized. On the other hand, if a teacher is available, goAL is
likely to be the best performing technique. Please note that even though the active demon-
strations are expressly generated for the task being learned, in this work the agent learns
to reach a wide range of configurations from the same set of demonstrated trajectories.
We believe that this is a good trade-off between task-specific knowledge (Chapter 6) and
general knowledge (Chapter 7). Finally, when datasets are available and/or interpretabil-
ity is important, Sarsa-rb(_) can be used to learn a policy in a few trials. While these
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methods have yet not been combined, we can expect further improvements by integrating
together different sources of human guidance. Namely, it is straightforward to augment
the policy loss of DRL-EK with a simple auxiliary objective to integrate active goal-driven
demonstrations, in order to ensure that the provided knowledge match the agent’s goal.
The idea of high-level information (DRL-EK) could help learning of most reinforcement
learning agents or be integrated into Sarsa-rb(_) to augment the model’s input. Overall,
improving various forms of common sense reasoning is vital for substantially improving
sample efficiency in reinforcement learning.

In Part I and II, we studied the effects of internal and external guidance on the agents’
efficiency. We found curiosity to be effective for exploring the consequences of low-level
actions on the environment, especially when rewards are sparse. On the other hand,
optimal planning or reasoning can be improved via external supervision. In order to
expand the availability of reinforcement learning agents to real-world domains - make
them less reliant on large amounts of interactions, it is necessary to combine the strengths
of both of these approaches. In other words, human guidance should be used for high-
level decision-making such as planning/reasoning, while curiosity is a powerful source
of endogenous motivation. Especially, we cannot expect to always use human guidance
for low-level control or execution since human knowledge are often incomplete, noisy, or
difficult to collect.

• In Chapter 9, we proposed a hierarchical reinforcement learning model that leverages
the hierarchical structure of the task to integrate different modes of supervision at
different levels. At the high-level, we explored non-expert guidance in the form
of high-level preferences between sub-goals, leading to drastic reductions in both
human effort and cost of exploration. At the low-level, we made use of curiosity to
further improve sample efficiency and drive the learning of subpolicies, particularly
in tasks featuring sparse rewards. We further demonstrated how curiosity relates to
sub-goal discovery.

The central idea in Part III was to combine the strengths of curiosity and human guid-
ance. This idea can be built into a system by grafting human guidance and curiosity at
different levels of the agent’s decision making, greatly reducing the number of required
interactions to reach reasonable performance while keeping human effort at a minimum.
For instance, the depicted method reduces the total amount of feedback by a factor ≈ 6 on
Montezuma’s Revenge and ≈ 11 on Pitfall, compared to the well-known DQfD algorithm
(see details in Chapter 9). To assess how intrinsic motivation and common sense reasoning
interact together, we presented an evaluation in environments with specific properties. We
observed that common sense reasoning drastically improves the agent’s performance. On
the other hand, intrinsic motivation reduces the training time of the agent. Additionally,
curiosity is the key to better-than-expert performance by guiding the agent in the quest
of knowledge beyond the expert’s knowledge. We further evaluated the model with and
without human guidance / curiosity, in order to test how much “building blocks” con-
tribute to learning policies. Overall, the agent achieved much greater sample efficiency
and performance than pure curiosity-driven approaches and human-guided agents.

We should also emphasize that an important achievement in Section II and Section III
was to drastically reduce human effort and enable human guidance in tasks that are
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too challenging for even humans to perform well. So far, human guidance was often
limited to demonstrations, however, this form of guidance may be impractical in real-world
settings, narrowing down the possible applications of reinforcement learning. For instance,
demonstrating many possible situations in complex real-world tasks (e.g. autonomous
driving) is deemed infeasible. In light of this observation, we presented approaches that
leverage novel forms of guidance. In DRL-EK, rather than using low-level knowledge
(e.g. demonstrations), we leverage simple high-level information about the environment,
which can be created by a non-expert in just a few minutes. In Sarsa-rb(_), we eliminate
the need to expressly create domain knowledge by learning from existing datasets. In
goAL, we only request short goal-driven demonstrations when the agent struggles and is
not confident, reducing the number of demonstrations from several hundred to less than
50 (ShadowHand) or 20 (Fetch). To further reduce human involvement and enable non-
expert feedback, we have extended the idea of active cooperation to high-level human
preferences between sub-goals (HhP). The central theme in goAL and HhP is to allow the
agent to actively identify the need for and request domain knowledge for specific regions
or skills. As a result, the agents operate with increasing autonomy as they improve at the
tasks, eliminating the need for unnecessary domain knowledge of already acquired skills,
and reducing both the training time and the workload of the demonstrator.

Our contributions open several avenues of research. Now, we describe some of the future
directions that are linked to extending the approaches presented in this thesis.

Hierarchical Intrinsic Motivation. The presented curiosity-driven methods dealt with
different issues inherent in curiosity, such as how to discover long-term exploration be-
haviors. Ideally, it would be desirable to also take into account the hierarchy of the task
like done by humans [189]. It was shown that humans do not solely rely on their sense
of curiosity, but also generate intermediate goals. Integrating this finding is our research
is desirable, however, many questions remain open: How do humans select these goals?
How do these goals relate to curiosity? We believe that understanding human intelligence
and psychology is a key factor in solving these questions.

Few-Shot Style Exploration. In this dissertation (Part I), agents learn a set of skills
following their intrinsic motivation. However, we do not explore the idea that skills can be
reused in another task. Especially, in a new task, the intrinsic novelty of a state should
depend on the skills already mastered by the agent. For instance, if the agent knows
how to manipulate an object or avoid an obstacle, the agent should be encouraged to
acquire different skills. Even though transfer in reinforcement learning [190, 191, 192] has
been extensively studied, driving exploration in new tasks in a few-shot style remains an
open question. In the long run, we believe that formulations of curiosity should not be
limited to the task being learned, but should also take into account the situations already
encountered by the agent and prior knowledge.

Understanding the Limitations of Demonstrators. Leveraging human guidance to
train an agent often follows a teacher-student paradigm. In recent years a lot of effort has
been directed towards making the student (i.e. the agent) more knowledgeable. However,
we believe that mutual understanding is equally important. Especially, understanding
the limitations of humans would allow us to create more effective systems. In such a
setting, the student could select queries that can be easily understood by the teacher, or
queries where guidance is the most needed and human effort is minimal. It was shown
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that differences arise in behaviors when humans demonstrate or teach [193]. This study
has shown that understanding these differences can benefit when learning from showing
versus doing. Ultimately, we believe that understanding the limitations of demonstrators
for other types of guidance (e.g preferences) will help to create more functional AI systems.

10.2 Summary of Contributions

In Chapter 3 we looked at the exploration problem in complex environments where re-
wards are sparse or poorly-defined. We dealt with the question of how to drive the
agent’s learning based on its knowledge of the task in order to drastically improve its
sample efficiency. In contrast to classical approaches that maintain a model of environ-
mental dynamics, we introduced the concept of skill-based intrinsic motivation that works
directly on the agent’s policy. Our central idea is to incentivize the discovery of new skills
and guide exploration towards promising solutions, helping the agent to incrementally
and continually build up useful new skills and knowledge based on what it has already
learned. We also proposed and studied a technique to embed skills and states into a la-
tent space, in order to improve generalization to unseen situations. Evaluated on several
domains including Atari games and MuJoCo, our algorithm outperformed state-of-the-art
competitors both in terms of quality of learned policies and sample efficiency. In partic-
ular, this algorithm performed well in the presence of sequential decision problems, and
high-dimensional state spaces.

In Chapter 4 we then addressed the problem of local optima and premature convergence
to sub-optimal policies inherent in curiosity. Most prior curiosity-driven techniques in-
volve the absolute prediction error to guide immediate exploration [14, 15]. However, such
approaches suffer from two major limitations: 1) they tend to attract the agent to states
with stochastic transitions due to hardly predictable environmental dynamics - local op-
tima, and 2) the curiosity rewards soon exhaust as the prediction becomes perfect or does
not improve (also called the “vanishing curiosity” issue) - converging prematurely to sub-
optimal policies. On the other hand, the proposed model introduced a robust formulation
of curiosity that does not quickly vanish and escapes from local optima. We consider the
agent’s learning progress on a multi-step horizon as a curiosity signal. To quantify the
agent’s learning progress in terms of “quantity” and “quality”, we proposed to measure
the divergence between a parametric model (i.e. the current model) and prior models. We
introduced and evaluated two types of models based on: 1) the agent’s understanding of
the world, 2) the agent’s policy. We further developed a mechanism called episodic-skills
to direct the focus of attention on task-relevant skills. Our method significantly improved
exploration and sample-efficiency, especially in tasks featuring complex exploration pat-
terns, stochasticity, and/or deceptive rewards. To the best of our knowledge, we were
the first solving environments characterized by both sparse and deceptive rewards (e.g.
Pitfall).

In the first chapters of the thesis, curiosity does not explicitly encourage deep exploration.
While these methods hold the promise of better local exploration, solving problems that
require coordinated decisions over long-time horizons remains an open question. In Chap-
ter 5, we presented a framework that explicitly promotes deep exploration behaviors. The
central idea is to decompose the curiosity bonus into a fast reward that deals with lo-
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cal exploration and a slow reward that encourages deep exploration. These rewards are
calculated following the idea of noisy reconstruction, a novel technique that can cap-
ture meaningful visual features and salient environmental dynamics at different scales
(e.g. character-level or word-level). We further proposed an adaptive scaling technique to
modulate fast and slow rewards by measuring state diversity. We then derived a frame-
work for lifelong learning via the better incorporation of environmental motions and a
different strategy for combining reward components. As far as we are aware, this was the
first generic framework that can outperform prior state-of-the-art with much less trial and
error interactions by a large margin. Moreover, the proposed method is suitable for a wide
range of long-horizon domains where rewards are naturally extremely sparse; including
robotic, visual navigation, visual control, and sequential tasks.

In Chapter 6, we considered external forms of supervision via human guidance and domain
knowledge. We integrated human-like reasoning and domain knowledge to guide the
agent and enhance information given to the agent, thanks to human expertise. To do
so, the agent’s input is augmented with high-level information representing task-relevant
knowledge that can be easily interpreted by the agent and applicable to many aspects of
the task. To create high-level information, we designed an algorithm that relies on visual
recognition and simple domain knowledge. We further proposed to integrate human-based
reasoning and planning based on the high-level information. Our algorithmic framework
dealt with incomplete or noisy human knowledge by combining prior and learned action
selection. This generic framework introduced human guidance with a minimal human
workload, but drastically reduced the amount of required training data. Evaluated on
multiple domains, our algorithms outperformed state-of-the-art end-to-end methods by a
large margin. Overall, human guidance enables learning from very few interactions even
in fairly complex tasks such as 3D navigation, and enhances the agent’s decision-making
with planning and reasoning.

In the above Chapter, we did not address the interpretability issue. Moreover, we did not
consider the situation where already created datasets related to the task are available. In
the context of real-world scenarios, it would be desirable to automatically extract domain
knowledge from existing datasets to further reduce human involvement. Therefore, in
Chapter 7 we presented a novel reinforcement learning model that uses as its internal
representation first-order logic rules automatically extracted from datasets related to the
task being learned. Critically, such an internal representation makes the model fully inter-
pretable. To ground the rules, we proposed to analyze the latent representation learned
by an autoencoder, combining the strengths of deep learning and human knowledge. We
further make use of the structure of the rules for improving the generalization capabilities
of our agent. We evaluated the approach on a wide range of domains including trading
and visual navigation. We first observed that automatically created rules can achieve
similar performance as manually created rules. The evaluations also showed that our
approach efficiently learns and generalizes rules to setups which were not demonstrated
in the datasets, indicating improvements in the agent’s capability for common sense rea-
soning. To the best of our knowledge, we were among the first to propose approaches for
extracting rules from deep neural networks, and then to use these rules as the internal
representation of an interpretable reinforcement learning model.

In Chapters 6 and 7, we supposed passive access to external guidance. However, in
complex real-world tasks, we cannot always assume that the learner’s goal matches the
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(fixed) domain knowledge provided. Moreover, active cooperation between a teacher and
the agent is central for sample-efficient learning. In Chapter 8, we addressed these issues
by incrementally querying short demonstrations towards specific goals during the agent’s
training, goal-driven demonstrations. At the core, the method is based on the idea of active
goal-conditioned imitation learning. We formulated an algorithm to decide how to query
goal-driven demonstrations based on the expected value of information of the query and
the agent’s confidence, greatly reducing the number of queries. We further contributed
a relabeling strategy to artificially generate more expert demonstrations. Finally, we
proposed to give more weight to goals for which the agent’s learning will be maximized
(i.e. strong disagreement with the teacher). Through evaluation on benchmark robotic
tasks, we showed that our strategy allows our agent for substantially faster learning and
is particularly effective in the low data regime, where not many queries can be made.
This was the first approach that can achieve dexterous in-hand manipulation with less
than 50 (partial) demonstrations. Additionally, we were able to reach a wide range of
configurations with the same set of goal-driven demonstrations.

So far, we have presented techniques for introducing internal or external supervision into
reinforcement learning. However, we did take into account the possibility that multiple
types of (internal and external) supervision are available, common in the real world.
In Chapter 9, we aimed to achieve human-like sample-efficient learning by integrating
different modes of supervision into hierarchical reinforcement learning. Therefore, we
designed a hierarchical reinforcement learning model that can simultaneously integrate
high-level human preferences and curiosity. The intuition behind is that humans are good
at planning and high-level supervision, while control and low-level tasks can be “easily”
learned via curiosity-driven reinforcement learning. We further developed a strategy based
on curiosity to automatically discover sub-goals throughout the agent’s training process,
alleviating the need for an expert to design sub-goals. We evaluated our framework
in a wide range of tasks, including tasks that are too challenging for even humans to
perform well. The evaluations highlighted that a few high-level preferences is a sufficient
supervision signal for solving many tasks - grafting suitable domain knowledge onto the
agent’s decision-making facilitates various forms of common sense reasoning. Moreover,
experimental results demonstrated that curiosity enables our hybrid model to exceed
expert-level performance in several domains As far as we know, we were among the first
to integrate internal and external guidance for sample-efficient reinforcement learning.
Overall, our method radically reduced the number of trial and error interactions.

10.3 Summary of the Thesis

These contributions together demonstrate that improving cognitive capabilities in rein-
forcement learning agents is essential to drastically enhance sample efficiency and perfor-
mance. These capabilities inspired by learning in humans make artificial agents suitable
for real-world domains. Namely, curiosity is a vital capability for guiding exploration -
learning control and execution, particularly when rewards are sparse. On the other hand,
sample efficiency can also be greatly increased by leveraging human guidance, which en-
ables common sense reasoning and avoids learning from scratch. These two types of
supervision are not exclusive; they can be complementarily employed to facilitate dif-
ferent aspects of learning. Especially, leveraging both internal motivation and external
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guidance allowed us to reduce the number of interactions by several orders of magni-
tude and to outperform human experts in a wide range of domains such as game-playing,
trading, 3D navigation, or robot control. Hence, the proposed algorithms have improved
efficiency in reinforcement learning agents enough that they can be practically applied to
real-world tasks. In the future, these algorithms could be used to develop sample-efficient
and learning machines, with substantial benefits for society as a whole.
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