氏 名 MA Bing 学位(専攻分野) 博士(学術) 学 位 記 番 号 総研大甲第 2263 号 学位授与の日付 2021年9月 28日 学位授与の要件 物理科学研究科 核融合科学専攻 学位規則第6条第1項該当 学位論文題目 MA-HIP processing of yttria dispersion strengthened copper alloys for fusion application 論文審查委員 主 查 增﨑 貴 核融合科学専攻 教授 菱沼 良光 核融合科学専攻 准教授 市口 勝治 核融合科学専攻 教授 松田 健二 富山大学 学術研究部 教授 渡邉 英雄 九州大学 応用力学研究所 准教授 ## **Summary of Doctoral Thesis** Name in full MA Bing Title MA-HIP processing of yttria dispersion strengthened copper alloys for fusion application As a promising candidate for heat sink material of the diverter, which is expected to operate in an extreme environment with high heat flux and high irradiation damage, the oxide dispersion strengthened Cu (ODS-Cu) alloy exhibits a remarkably high strength and irradiation resistance. Compared to the commercial ODS-Cu alloy with Al₂O₃ particles (Glidcop®), the ODS-Cu alloy with Y₂O₃ particles has potential advantages because of the higher enthalpy of the Y₂O₃ formation, which is beneficial to thermal stability, and the lower solubility of Y in Cu matrix, which is beneficial to thermal conductivity. While, low solubility of Y leads to unacceptable to apply the conventional internal oxidation method, which is used to fabricate Glidcop®. The main way to fabricate the ODS-Cu alloy with Y2O3 must use a different process from the internal oxidation method, such as the mechanical alloying and hot isostatic pressing (MA-HIP). During the conventional MA-HIP process, the Y₂O₃ originated from the external addition is still remained larger size after HIP. These Y₂O₃ particles are thermodynamically unstable and easily aggregable. Considering the fine dispersive particles with a high number density is the key factor in developing highly strengthened ODS-Cu alloys, the objective of this doctoral thesis is developing the several processes to enhance the Y distribution, to refine the dispersive Y₂O₃ and to reduce the Fe impurities. In this thesis, an innovative MA-HIP process by an in-situ fabrication method was developed, in which Y₂O₃ particles were formed in-situ by a chemical reaction between the Y precursor and the O element. The in-situ formed dispersive particles are expected to be finer and thermodynamically stable, which can improve the mechanical strength under higher temperate and neutron irradiation. Based on this innovative MA-HIP process, the ODS-Cu alloys with in-situ formed Y₂O₃ particle were fabricated through the chemical reaction using the pure metal Y and the Cu-Y compounds. Especially, Cu-Y compounds with lower Y enrichment are brittle and they can expect to distribute homogeneously during the MA. For the comparisons, the ODS-Cu alloy with Y₂O₃ from the external addition was also fabricated by the conventional MA-HIP process. The influence of fabrication parameters (HIP temperature from 850 °C to 950°C, MA time from 32 h to 96 h) on the Y distribution, and size evolution of the MA powders were investigated based on pure metal Y sourced ODS-Cu. The influence of different Y₂O₃ sources (direct Y₂O₃, pure metal Y and Cu-Y compounds such as Cu₂Y and Cu₆Y) on Y₂O₃ distribution and Fe impurities were also investigated. For the influence of HIP temperature from 850 °C to 950 °C, the diffusivity of Y and O in the Cu matrix was increased with increasing temperature, promoting the in-situ formation of Y_2O_3 at high temperature. In addition, the increasing HIP temperature decreased the number density of the micro holes, corresponding to the increase in relative density from 95.8 % to 98.9 %. The higher HIP temperature is effective to enhance the in-situ formation of Y_2O_3 and decrease the porosity of ODS-Cu. For the influence of MA time from 32 h to 96 h, it was found that extending of the MA time enlarged the lattice parameter of MA powders from 3.596 Å to 3.6158 Å. This means that the increase amount of Y solid solubility, resulting in the increase in Vickers hardness of MA powders from 100 Hv to 380 Hv. The extending of the MA time can enhance the uniform each element distribution, while introducing more Fe impurities because of the abrasion between MA powders and grind mediums. For the size evolution of MA powders, the coarse MA powders ($d > 200 \,\mu m$) with a shell structure was formed and occupied the 80 wt. % of all MA powders. The shell of coarse MA powders had a larger Vickers hardness of 325 Hv and a higher oxygen content of 20 at. %, similar to the finer MA powders. On the other hand, the central area region of the coarse MA powders had a atomic ratio of Y and O being 2:3, same as the atomic ratio of Y₂O₃. Combing the morphology by SEM and diffraction patterns by TEM, the peeled O rich fragments from the surface of the coarse MA powders were main source of finer MA powders with oxide-like microstructures. This oxide-like O-rich fragment gave the great influence on the thermal conductivity. Therefore, the screening the alloyed MA powders before HIP treatment is an effective way to improve the thermal conductivity of the ODS-Cu alloy. For the Cu-Y sourced ODS-Cu without oxidant, the Y distribution of the Cu₆Y sourced sample was more uniform than that of the Cu₂Y sourced sample at a lower Y content (0.39 wt.%). The XRD results and thermodynamic analysis showed that Y₂O₃ was successfully formed by the oxidation between Y and the desorbed O impurity from the Cu matrix. The Cu-Y compounds can improve the purity of the Cu matrix. This method can expand the source material selection of dispersive particles for the ODS-Cu fabrication using Cu-containing intermetallic compounds. On the other hand, the most of the unoxidized Y was aggregated and precipitated during HIP for Cu-Y sourced samples with a higher Y content (2.36 wt.%). The TG-DTA results showed that the insitu reaction temperature of Cu₆Y and Cu₂O is 847 °C, and this temperature is lower than the melting point of the Cu₆Y (927 °C). The oxidant addition is feasible and necessary to oxidize the Cu₆Y before the melting under the in-situ fabrication process. Furthermore, the comparisons between the direct Y_2O_3 sourced sample, the pure metal Y sourced and the Cu_6Y sourced sample with oxidant were conducted using the ODS-Cu with 1.5 wt. % Y_2O_3 . The fine particle sized Y_2O_3 formation using the brittle Cu_6Y compound can enhance Y dissolution and suppress the growth of MA powders. Smaller (19±7 nm) Y₂O₃ particles with higher number density (18.0 x 10²⁰/m³) were formed in Cu₆Y sourced samples, compared to the direct Y₂O₃ sourced sample with larger (73±33 nm) Y₂O₃ particles having lower number density (2.5 x 10²⁰/m³), and the other ODS-Cu alloys in the world. The finer Y₂O₃ particles formed by Cu₆Y compound contributed to increase about 100 MPa on the estimated yield strength based on the Orowan mechanism. The estimated value had good agreement with the measured value, but there was small mismatch. This would be possibly caused by the unoxidized Y and the contamination in the Cu matrix. It should be noted that the improvement of the estimated yield strength will be expected to enhance mechanical stability under high temperature and neutron irradiation. The stable and finer Y₂O₃ particles and the interfaces between matrix and particles will act effectively as the pinning of the dislocation and the sink ability for irradiation defects. On the other hand, the Y and Cu₆Y sourced samples through the in-situ fabrication method had more Fe impurities, because of the oxidation of milling balls by O-rich layers, which are formed when oxidant was added in the middle of the MA process. More Fe impurities increased and hardened the surface layer of MA powders, introducing holes, thereby deteriorating the elongation of the ODS-Cu. In order to suppress the introduction of Fe impurities, reducing the Y_2O_3 content from 1.5 wt. % to 0.5 wt. % for Cu_6Y sourced samples with an oxidant was carried out. It was found that the sample with 0.5 wt. % Y_2O_3 still remained at a higher number density of Y_2O_3 ($10^{21}/m^3$), accompanied by a decrease of Y_2O_3 particle size from 19 nm to 14 nm. This is because the low concentrated solid solute Y is beneficial in forming finer Y_2O_3 during the HIP process. Furthermore, lower Y_2O_3 content decreased the introduction of Fe impurities, and reduced the thickness of the Fe accumulated boundaries and porosity, thereby improving ductility. The reducing Y_2O_3 content also improved the thermal conductivity from 68.6 % ICAS to 81.2 % ICAS, because of the forming the thinner oxide-like O rich layers and the lower Fe content impurities, which had great influence on the thermal conductivity. Finally, it should be noted that the Cu_6Y sourced sample with a fine Y_2O_3 in high number density has a larger potential for future application once the Fe impurities and holes are reduced by modifying the grind mediums and oxidant addition. For grind mediums, the Cu coating to the steel mediums or the use of the tungsten (W) mediums are also expected to be an effective method for reducing the impurity. The W with extremely higher Mohs hardness is insoluble in the Cu matrix, which is beneficial to maintain the high purity of the Cu matrix. The pre-refining the brittle Cu-Y precursor to nano-size range is a promising method for reducing the MA time and suppressing the growth of MA powders. Besides, doping the Y_2O_3 with minor alloying elements is a candidate method to further refine the dispersive particles and increase the number density. In my doctoral thesis, the innovative MA-HIP process of the ODS-Cu with Y₂O₃ by an in-situ fabrication method was developed. The brittle Cu₆Y compound with a lower Y enrichment was firstly proposed as the source of Y₂O₃. Several fabrication parameters, Y₂O₃ sources and contents were investigated to enhance the uniform distribution of Y, to form finer dispersive particles and to suppress the introduction of impurities. Further improvements were also presented. The main conclusions of my doctoral thesis are: - 1. For the in-situ fabrication process, an elevated HIP temperature, a longer MA time (but introducing more impurities) and classification of MA powders can effectively enhance uniform distribution of Y and O elements, and optimize the microstructure and properties of ODS-Cu alloys. - 2. Cu-Y compounds, especially the Cu_6Y compound can act as the source of Y_2O_3 and enhance the Y distribution and Y_2O_3 refinement. Besides, adding oxidant is available and necessary for an in-situ fabrication process. - 3. Compared to the direct Y_2O_3 sourced sample with Y_2O_3 in a size of 73 ± 33 nm and a number density of $2.5 \times 10^{20}/\text{m}^3$, the Cu_6Y sourced sample in-situ formed fine Y_2O_3 particles 19 ± 7 nm with a higher number density of $18.0 \times 10^{20}/\text{m}^3$, but more impurities were introduced during the in-situ fabrication process. - 4. Decreasing the Y₂O₃ content can refine the dispersive particles, maintain a high number density, and decrease the introduction of Fe impurities. ## Results of the doctoral thesis screening ## 博士論文審査結果 K 名 MA Bing 論文題首 MA-HIP processing of yttria dispersion strengthened copper alloys for fusion application 本論文は、将来の核融合炉に求められる高い除熱性能を有するダイバータ受熱構造体の実現に向け、その材料となる新たな銅合金の開発に関する研究をまとめたものである。一般的に純銅は他の金属と比較して圧倒的に高い熱伝導率を有する一方で、高温で機械強度が極端に低下する。加えて、核融合環境特有の中性子照射による照射軟化・硬化の問題も存在する。これらの課題解決に対して、CuCrZr等の析出強化合金やアルミナ(Al_2O_3)を用いた酸化物粒子分散強化銅が開発されており、これらの合金は純銅に比べて良好な性質を有している。特に、 Al_2O_3 粒子分散強化銅合金はすでにGlidcopという名称で製品化されているが、将来の核融合炉に対しては必ずしも十分な特性ではない。これに対し、酸化イットリウム(Y_2O_3)を用いた酸化物粒子分散強化銅合金は、 Al_2O_3 を用いた場合よりも高い安定性と機械特性が期待され、現在その開発が世界的に進められている。 そこで、出願者は機械的合金化(Mechanical Alloying; MA)と熱間等方静水圧焼結(Hot Isostatic Pressing; HIP)を経由した Y_2O_3 粒子分散強化銅合金の製造方法について、従来の製造方法の問題点を明らかにし、その改善と材料としての高性能化に取り組んだ。従来の製造方法では、 Y_2O_3 粉末と銅を直接 MA により合金化し、HIP により焼結体を製作しているが、焼結処理後の Y_2O_3 の凝集とそれによる Y_2O_3 粒子の粗大化が問題となっている。出願者は、銅合金内の Y_2O_3 粒子をより均質に分散させる方法として、直接 Y_2O_3 粒子を混入するのではなく、 Y 元素源としての金属 Y と酸素源として銅中の溶存酸素及び酸化銅(Cu_2O)による化学的な反応を MA 及び HIP 過程で促すことを考案し、 MA-HIP 処理後の銅合金中に化学的な反応によって Y_2O_3 粒子が形成されることを明らかにした。また、 Y_2O_3 粒子分散した銅合金の微細組織観察及びビッカース硬度特性計測等を詳細に行い、MA 処理後の金属 Y の分散状態が合金形成後の Y_2O_3 粒子分散状態を決めていることを明らかにした。 れた Y_2O_3 粒子分散した銅合金の引張強度は純銅と比較して向上していた。強度向上における粒子分散強化量は Y_2O_3 粒子の平均粒子径及び Y_2O_3 粒子の数密度を用いた Orowan モデル式に良く整合することを示し、細粒化された Y_2O_3 粒子の生成が引張強度の向上に効果的に作用したことを明らかにした。一方で、この製造プロセスでは MA 時の不純物混入が課題であることを明らかにし、この解決のために、 Cu_6Y の添加量を減じることを試みたところ、減じる前に比べて明瞭に不純物が低減し、結果としてより良い機械特性と熱伝導率特性が得られた。 最後に、更なる特性改善に向けた指針として、MA時の不純物抑制やTi添加が提案された。これらの実験結果は出願者独自のアイデアに基づく新しい酸化物分散強化銅合金の製造方法が、高性能の銅合金製造が可能な画期的な製造方法となる可能性を示唆するものである。 以上について出願者は、博士論文を論理的かつ明快に執筆した。研究成果は主著者として4編の査読付き英語論文にまとめられている。また主要な役割を果たした共著者として 2編の論文が出版されている。申請者による研究成果は博士論文の内容として相応しく、 本審査委員会は本論文が博士(学術)として十分な価値を有するものと判断した。