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by Han Namgi

Explaining the reason for the high performance of one system is as important as achieving high
performance by using that system. Recently the language model, a vector representation of
natural languages such as word2vec and BERT, has become an indispensable tool for natural
language processing. While researchers have reported the state-of-the-art accuracy for a variety
of downstream tasks by using language models, our understanding of this phenomenon usually
depends on the observation for accuracy. However, the accuracy does not explain why one
language model can obtain good accuracy and another can not. Furthermore, it is hard to find
the reason for the good or bad performance of one language model for various downstream tasks
from the accuracy. In other words, it indicates the lack of interpretability for language models.

Previous studies have tried to explain the quality of one language model in the aspect of encoded
linguistic knowledge on that language model. However, their essential assumption, “encoded
linguistic knowledge on one language model should affect the accuracy of the downstream task
solved by that language model”, has not been proved empirically and causally with enough sam-
ples. We present a novel framework employing the statistical method, Partial Least Squares Path
Modeling (PLSPM), to explain the causal relationship between encoded linguistic knowledge and
the accuracy of downstream tasks on the target language model. Our proposed framework starts
from a causal diagram consisting of causal assumptions between variables, including encoded
linguistic knowledge and the accuracy of downstream tasks. By validating whether the suggested
causal diagram can produce similar covariancematrices with observed variables, we can examine
our causal assumptions, for example, causal relationships between encoded linguistic knowledge
and the accuracy of downstream tasks.



iv

We present the usefulness of our proposed framework by following steps. First, we show that
our PLSPM framework can prove the causal diagram consisting of traditional assumptions for
encoded linguistic knowledge. In our PLSPM models, causal assumptions between encoded
linguistic knowledge and accuracies for downstream tasks are expressed as linear regression
equations. For fitting PLSPM models for our proposed causal diagrams, we prepare accuracies
of one word analogy dataset measuring encoded linguistic knowledge and 20 downstream tasks
solved by 600 word embedding models as observed variables. As a result, we find that our
PLSPM models can prove most causal assumptions of our causal diagrams with a variety of
reliability indexes for validating the estimated PLSPM model. Comparing to previous studies,
our PLSPM models provide more informative explanations for accuracies of downstream tasks
involving multiple linguistic knowledge and the effect of hyperparameters on language models.

In addition, we also apply our proposed framework to more complicated language models and
downstream tasks to prove that our proposed framework is also helpful in the practical setting.
We conduct another PLSPM analysis involving 24 BERT models, two probing tasks, and four
datasets of simple factoid question answering (SFQA), a subtask of question answering over a
knowledge base. Since this task requires external resources and a modularized structured system
to be solved, we select SFQA as a more complicated and practical target downstream task. The
BERT-based system achieves the upper bound accuracy of SimpleQuestions, the benchmark
dataset of SFQA. However, our PLSPM framework reports that this system depends on the
surface and syntactic information for solving simple factoid questions without understanding
semantic information. It indicates the possibility that the upper bound accuracy of existing
SFQA systems for SimpleQuestions may rely on the specific characteristic of the dataset itself.

We conduct an empirical analysis involving five SFQA systems, which have reported the upper
bound accuracy of SimpleQuestions, and four SFQA datasets to examine whether those systems
have the robustness and transferability for SFQA.We find that all existing SFQA systems can not
reach upper bound accuracies for other datasets like SimpleQuestions, and they show significantly
low accuracy when changing test data. According to our analysis, the size and the upper bound
accuracy of each dataset do not cause this phenomenon. We reveal that existing SFQA systems
report similar problems related to semantic understanding, such as disambiguation of the entity
and paraphrasing of the relation. Moreover, we suggest that the source of each dataset and
the evaluation method for SFQA make existing SFQA systems depend on surface and syntactic
information with the additional analysis.

In this thesis, we proposed a novel statistical framework to explain the accuracy and inner
working of language models as the causal relationship with encoded linguistic knowledge. We
also proved that our proposed framework could provide valuable information for understanding
and resolving the encountered issue of an existing NLP system. We hope that our study can
suggest a systematical and practical way to interpret the inner working of language models.
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Chapter

1
Introduction

For a long time, researchers have tried to develop a system that can understand human language.
This research field, Natural Language Processing (NLP), has been evaluated with NLP tasks,
which consist of carefully designed questions to assess the linguistic abilities of proposed systems.
If a proposed system can reach high accuracy for given questions of the target task, it means that
a proposed system should have the linguistic ability required for the target task. For evaluation
of the proposed system, understanding how the proposed system solves the target NLP task is
essential, as well as reaching high accuracy for the target NLP task. In other words, the evaluation
of the proposed system is related to examine whether the proposed system understands linguistic
knowledge like human being. However, the explanation for the accuracy of the proposed system
based on linguistic knowledge is not conducted sufficiently as much as its performance.

In recent years, word and contextual embeddings are the most well-known method for repre-
senting human language into low dimensional vector space in the NLP field. Because of its
versatility for various NLP tasks and inspiration from original paper proposing word embed-
dings, researchers often call this method as language modeling. Previous papers reported that
language modeling seems a successful translation from human language to vector representa-
tions showing interesting examples, such as understanding the relationship between words like
 8=6−"0=+,><0= = &D44= (Mikolov et al., 2013b), discovering syntactic structures within
encoded sentences (Tenney et al., 2019a), and reaching state-of-the-art accuracies for a variety
of NLP tasks (Devlin et al., 2019). However, previous papers did not consider to prove the causal
relationship between the existence of a linguistic pattern and a high accuracy for the NLP task.

1



Chapter 1. Introduction

Therefore, it is still an unresolved problem to interpret the performance of language models in
the aspect of encoded linguistic knowledge on language models.

This study suggests a novel framework to describe the causal relationship between encoded lin-
guistic knowledge and the accuracy of downstream tasks on the target languagemodel. Linguistic
knowledge encoded on language models, especially vector space representations, is hard to be
observed directly. Researchers have proposed a variety of tasks to evaluate encoded linguistic
knowledge in language models (Baroni et al., 2014, Conneau and Kiela, 2018, Gladkova et al.,
2016, Hill et al., 2015, Wang et al., 2019a). We explore how encoded linguistic knowledge can
explain the accuracies of downstream tasks in a statistical way. In the rest of this chapter, we
introduce a brief history of evaluating language models and our proposal to interpret language
models.

1.1 Probing encoded linguistic knowledge on language models

What language model is a good language model? To answer this question, researchers usually
have consulted with the accuracy of downstream NLP tasks using the language model they
want to evaluate. Despite its simplicity and easiness of understanding, this evaluation does
not explain why one language model can obtain higher accuracy than other language models.
To overcome this limitation, researchers have depended on one natural intuition that a good
language model should embed linguistic knowledge of human language (Baroni et al., 2014,
Chiu et al., 2016, Gladkova and Drozd, 2016, Rogers et al., 2018). It precipitated proposals
of the intrinsic evaluation (or sometimes called the probing task) (Conneau and Kiela, 2018,
Gladkova et al., 2016, Hill et al., 2015, Wang et al., 2019a) designed for examining whether
linguistic knowledge is encoded on the target language model or not. Thanks to previous studies
which examine encoded linguistic knowledge involving various intrinsic evaluations, we have
found that a variety of linguistic patterns exist on language models (Baroni et al., 2014, Lin et al.,
2019, Liu et al., 2019a, Rogers et al., 2018, 2020, Tenney et al., 2019a,b).

This way is very similar to how human being evaluates the ability of language fluency. Like
TOEIC or TOEFL, a famous language fluency test, researchers have evaluated basic linguistic
abilities of target language models such as understanding lexical similarity (Hill et al., 2015),
the relationship between words (Gladkova et al., 2016), and syntactic constituents of the given
sentence (Conneau and Kiela, 2018). This evaluation is based on another natural assumption that
encoded linguistic knowledge on one language model should affect accuracies of downstream
tasks of NLP solved by that language model. This assumption can be translated for human beings
that those who receive an appropriate education for linguistic knowledge achieve good accuracy
for the language fluency test. If those assumptions are valid, we can conclude that one language
model is good or bad with its evaluation results for intrinsic evaluations.

2



Necessity of statistical explanation for the causal relationship between linguistic knowledge and
the accuracy

1.2 Necessity of statistical explanation for the causal relationship
between linguistic knowledge and the accuracy

However, this evaluation method also has problems in examining the quality of a language
model. First, previous studies often reported conflicting results even for the same probing task
when previous studies take different methods or samples of the language model. For example,
Htut et al. (2019) shows that the change of linguistic formalism, such as universal dependency
(Schuster and Manning, 2016) and Stanford dependency (de Marneffe and Manning, 2008),
affects the result of probing task on the same language model. Second, this evaluation still can
not explain how encoded linguistic knowledge is used for solving given downstream tasks. In
other words, the natural assumption mentioned above, “encoded linguistic knowledge on one
language model should affect accuracies of downstream tasks of NLP solved by that language
model”, has not been tested statistically yet. Those limitations can cause a lack of robustness
and generality for understanding the relationship between encoded linguistic knowledge and the
accuracy of language models.

One reason for this phenomenon is how previous studies derive their conclusions from evaluation
results. Since they usually depended on observation for one or a few samples to conclude, slight
changes in experimental settings can cause the disagreement of interpretations among studies
(Rogers et al., 2020). Some previous studies tried to investigate accuracy for intrinsic evaluations
and accuracy for downstream tasks by simple correlation analysis (Chiu et al., 2016, Rogers
et al., 2018, Wang et al., 2019b). However, correlation analysis is still not enough to explain
how encoded linguistic knowledge is used for solving downstream tasks like a traditional quote
“correlation does not imply causality” (Pearl, 2009). Therefore, it requires another approach to
ensure the robustness of the interpretation and explain the causal relationships between encoded
linguistic knowledge and the accuracy of downstream tasks.

We focus on that previous studies usually have relied on many assumptions about linguistic
knowledge for language model. Researchers have proposed a variety of methods proving given
assumptions statistically with observed variables in the statistical field. One of their proposed
methods, Structural Equation Modeling (SEM) (Wright, 1921), tackles hypothesis test problems
by verifying a causal diagram with given observed variables. This method examines whether
the causal diagram, which consists of causal hypotheses between variables suggested by the
researcher, can produce statistically acceptable covariance matrices comparing to observed vari-
ables. Our study employs SEM as a framework to figure out the inner working of language
models involving encoded linguistic knowledge as the index of quality of language models. This
framework explains which and how encoded linguistic knowledge causally affects the accuracy
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x3
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Figure 1.1: A sample of our proposed analysis on the target language model.

of the target downstream task with statistical verification.

1.3 How statistical explanation for language models can help to
improve NLP applications?

Statistically explaining the accuracy of language models with linguistic knowledge is essential
to evaluate what language model is good, as we mentioned above. Moreover, it also can provide
valuable suggestions for improving existing systems designed for downstream tasks of NLP
depending on a strong pretrained language model in recent days. Since a recent language
model, which consists of complex neural network based structures, is hard to interpret the inner
working, many studies have been conducted to investigate how the language model is working
for target downstream tasks (Rogers et al., 2020). They usually have tackled this problem from
the engineering approach, such as assessing the effect of hyperparameters (Turc et al., 2019) or
an observation on each layer (Tenney et al., 2019a,b). On the contrary, we explain the accuracy
of the target language model by how encoded linguistic knowledge works for a given downstream
task.

Because of statistical verifications conducted in the SEM framework, we can report the effective-
ness of encoded linguistic knowledge on the evaluated language model for the target downstream
task as the concrete coefficient value. Figure 1.1 shows one sample of our proposed analysis. In
this sample case, we can explain that the accuracy of the target downstream task, H1, would be
predicted by the structural equation, 0.3047∗G1+0.4006∗G2+0.1409∗G3. This explanation has a
variety of advantages comparing to previous studies for the interpretability of a language model.
First of all, it is intuitive and easy to understand even for the people who are not the expert of
the NLP field. Since our explanation depends on the concept of linguistic knowledge evaluated
by intrinsic evaluations, it does not require any prior knowledge for machine learning or neural
network engineering. Furthermore, this explanation also provides clues to find limitations or
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unintended behaviors of the evaluated target language model. For example, the lower coefficient
of G3 in Figure 1.1 indicates that the evaluated language model may not depend on encoded se-
mantic knowledge well for solving the target downstream task. In this case, a researcher aiming
to improve this language model would start to investigate the issue related to encoding semantic
knowledge on the language model.

1.4 Outline of this study

This study suggests a novel framework for evaluating and explaining the inner working of
language models, which means the causal relationship between encoded linguistic knowledge
and the accuracy of language models in this study, employing a statistical method, SEM. Also,
we present a concrete application of our suggested framework for an existing downstream task
as a case study. We select simple factoid question answering (SFQA), a subtask of question
answering over a knowledge base, with the following reasons. First, researchers have reported
the upper bound accuracy of the benchmark dataset in this task, SimpleQuestions (Huang et al.,
2019, Lukovnikov et al., 2019, Mohammed et al., 2018, Petrochuk and Zettlemoyer, 2018, Yu
et al., 2017). However, the robustness and transferability of their proposed systems have not
been examined with other datasets. Second, we have interested in proving that we can apply
our proposed framework to a practical downstream task requiring external resources and a
complicated structure. Since existing systems for SFQA (Huang et al., 2019, Lukovnikov et al.,
2019, Mohammed et al., 2018, Petrochuk and Zettlemoyer, 2018, Yu et al., 2017) consists of
modularized structures and depends on external knowledge bases, this task is suitable for our
purpose.

To sum up, we should address the following problems in this study.

• Designing a suitable causal diagram representing causal relationships between encoded
linguistic knowledge and the performance for downstream tasks.

• Validating whether our proposed framework can produce reasonable and acceptable results
compared with previous studies.

• Applying our proposed framework into a concrete downstream task, SFQA, for under-
standing and verifying the inner working of existing systems.

• Proving that the result of our proposed framework is helpful to understand and resolve
problems at hand for SFQA.

In the rest of this study, we address those problems in order.
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• In Chapter 2, we explain fundamental and background knowledge of our proposed PLSPM
framework and SFQA.This chapter includes a brief introduction of languagemodels, SEM,
question answering over a knowledge base (QAKB), SFQA, and the evaluation of language
models and SFQA systems.

• InChapter 3, we present a novel framework employing Partial Least Squares PathModeling
(PLSPM), one method of SEM, to explain the inner working of word embedding models
word2vec and fasttext. We suggest causal diagrams following traditional assumptions
for linguistic knowledge encoded in language models suggested by previous studies. We
then prove that our proposed framework reports comparable results with previous studies,
including a novel finding of the structural problems.

• In Chapter 4, we apply our proposed PLSPM framework to investigate and understand
the inner working of the BERT-based system, BertQA, for SFQA. Our evaluation results
reveal that the existing system solves simple factoid questions mainly depending on surface
and syntactic knowledge. We also explain how this phenomenon is related to problems at
the hand of SFQA and why this phenomenon appears by additional analysis.

• In Chapter 5, we examines whether other SFQA systems can succeed in solving simple
factoid questions generally, which BertQA can not. Despite the success of the benchmark
dataset for SFQA, the robustness and transferability of existing systems for this task have
not been examined yet. We conduct an empirical analysis for this issue involving four
datasets and five existing SFQA systems. As a result, we reveal that existing systems
do not show the robustness and transferability for simple factoid questions outside of
SimpleQuestions. We also discuss this phenomenon in the aspect of linguistic knowledge
considering the PLSPM analysis of the previous chapter.

• In Chapter 6, we give conclusions and future works of our study.
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Chapter

2
Fundamentals and related work

This study involves the evaluation of the language model, statistical methods for hypothesis
testing, andQuestionAnswering over a Knowledge Base (QAKB). Hencewe present an overview
of those research fields in this chapter as fundamentals of this study. First, we suggest a brief
history of language modeling in Chapter 2.1. In the next part, we introduce statistical methods
for hypothesis testing in Chapter 2.2 since we address the evaluation of language modelings
as the hypothesis testing problem. We introduce simple factoid question answering (SFQA) in
Chapter 2.3, which is our target downstream task to be analyzed in this study. We explain this task
in the order of an introduction of a knowledge base, a brief review for QAKB and its datasets,
and a survey of a more concrete subtask of QAKB, SFQA. Finally, we move to Chapter 2.4
explaining how language models have been evaluated, which is a core part of this study. We also
introduce previous studies for SFQA related to the evaluation and the source of existing SFQA
datasets.

2.1 Language modeling

In the natural language processing field, representing an utterance for the machine learning
system is an important issue. One popular and successful method is to represent words and
documents as vectors. This approach have been called by several names, such as vector space
model (Salton et al., 1975), distributed representations (Hinton et al., 1986), neural network
language models (Bengio et al., 2003), word representations (Turian et al., 2010), vector space
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representation (Turney and Pantel, 2010), word embeddings (Levy and Goldberg, 2014), and
contextual embeddings (Liu et al., 2020). We use the name language modeling for mentioning
this method generally in our paper, referring to Bengio et al. (2003) which suggested the modern
concept and task definition of this approach. In this chapter, we present a brief history and survey
of language models.

2.1.1 Word embeddings

Early ideas that encoding words to vectors had developed many representations such as one-hot
vector and n-grams. However, the turning point of language modelings for NLP was suggested
by Bengio et al. (2003). The primary motivation of distributed representation is the curse of
dimensionality. Since earlier representations need the same length as the number of vocabulary in
the training corpus, those representations tend to become much longer sequences. Furthermore,
the length of earlier representations usually changes if the training corpus changes. Bengio
et al. (2003) tackled this problem by suggesting a new task, called language modeling, to train a
fixed-length vector of each word for a probability of semantically neighboring. Their idea was
based on distributional hypothesis (Harris, 1954), “words that occur in the same contexts tend
to have similar meanings.” If the trained distributed representations can predict context terms
for a given input term, it indicates that those representations contain semantic understanding for
the vocabulary in the training corpus.

Many researchers had proposed advanced versions of language modelings for words after Bengio
et al. (2003). During this period, Turian et al. (2010) reported that language modelings for words
could help to increase the downstream tasks of NLP, such as POS tagging and chunking. It
became one motivation to encourage researchers to participate in this field. Finally, Word2vec
(Mikolov et al., 2013b), which is the most popular word embedding model in this field, was
proposed. Mikolov et al. (2013b) suggested the skipgram model for training word embeddings
that exchanges the input data and output data of language modeling task. They proved that the
skipgram model could dramatically decrease training time and machine cost than the previous
study (Bengio et al., 2003), without any loss in the performance of the trained distributed
representations. In addition, Mikolov et al. (2013b) also reported that word2vec could learn
syntactic and semantic relationships like  8=6 − "0= +,><0= = &D44=. It is the reason why
various downstream tasks of NLP started to employ language models as pretrained standalone
features.

We introduce the formal definition of the skipgrammodel here. Figure 2.1 shows the overview of
the skipgram model. The skipgram model produces word embeddings for each term by training
the objective function to predict context terms of the given input term. Mikolov et al. (2013b)
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Figure 2.1: The architecture of the skipgram model suggested by Mikolov et al. (2013b). With
the given term F(C), the skipgram model predicts context terms of F(C). In this figure, the

number of context C is 5.

suggested that the objective function for training the skipgram model is to maximize the average
log probability of the following equation:

1
)

)∑
C=1

∑
−2≤ 9≤2, 9≠0

log ?(FC+ 9 |FC ) (2.1)

where a sequence of given words is F1, F2, F3, ...FC , and 2 is the size of the context window as a
hyperparameter. In the original definition of skipgram, ?(FC+ 9 |FC ) is defined like the following
equation:

?(F$ |F� ) =
exp(E′>F$EF� )∑,
F=1 exp(E′>F EF� )

(2.2)

where, is the number of terms in the training corpus, EF is the input word embedding, and E′F
is the output word embedding. Since this equation causes a computing cost in proportion to, ,
Mikolov et al. (2013b) employed other approaches including hierarchical softmax (Morin and
Bengio, 2005) and negative sampling (Gutmann and Hyvärinen, 2012). Hierarchical softmax
defines ?(FC+ 9 |FC ) as the following equation:
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?(F |F� ) =
! (F)−1∏
9=1

f( [[=(F, 9 + 1) = 2ℎ(=(F, 9))]] · E′>
=(F, 9)EF� ) (2.3)

with below conditions.

• The output layer for all, is represented as a binary tree.

• =(F, 9) is the 9-th node which we go through during the way from the root to the node for
F.

• ! (F) is the length of the path from the root to the node for F.

• 2ℎ(=) is an arbitrary child node of =.

• [[G]] is a binary function which becomes 1 if G is true and −1 if G is false.

Negative sampling defines ?(FC+ 9 |FC ) as the following equation:

logf(E′>F$EF� ) +
:∑
8=1
EF8∼%= (F) [logf(−E′>F8EF� )] (2.4)

where %= (F) is the noise distribution and : is the number of negative samples.

Bojanowski et al. (2017) extended the skipgram model considering n-grams of each term. The
fastText model proposed by Bojanowski et al. (2017) considers each term as a bag of n-grams of
that term. Where � is the number of given a bag of n-grams, they define that �F ⊂ {1, ..., �}
is the bag of n-grams for the given term F. The fastText model trains a vector representation
I6 for each n-gram 6 like the skipgram model. However, a vector representation for a term F

is represented as
∑�
6=1 I6 in the fastText model. Therefore, we can write the scoring function in

the fastText model below:

B(F, 2) =
∑
6∈�F

I>6 E2 . (2.5)

Table 2.1 shows a summary of word embedding models.

2.1.2 Contextual embeddings

While language models for words have been an indispensable tool for various downstream tasks
of NLP, they have lots of limitations. Those limitations are mainly caused by assigning one
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Model length Descriptions
One-hot vector indefinite a binary vector which index represent each

word in the given document
Distributed Representation
(Bengio et al., 2003)

fixed the output of the model which predict the
next word for a given sequence

word2vec (Mikolov et al.,
2013b)

fixed the output of the model which predict con-
textual words for a given word

fastText (Bojanowski et al.,
2017)

fixed the output of the model which is an ex-
tendedword2vecmodel using a bag of char-
acter n-grams

Table 2.1: List of popular word embedding models. Length means the length of a vector
representation for each term.

vector representation for each word. For example, the word “book” is used as different meanings
in “I read my book” and “I booked this room”. Since word embedding models only assign one
vector representation for “book”, it is hard to distinguish between two different meanings with
only one vector representation. Moreover, it is also hard to handle compound terms, including
the case of a named entity. It is the reason why new models considering the context information
of given words have been proposed recently.

The early idea of contextual embeddings can be found fromDai and Le (2015) andRamachandran
et al. (2017) since they employ a sequence encoder into language modeling. Though they did not
aim to develop embeddings themselves, their idea affects a newmodel, ELMo (Peters et al., 2018).
ELMo employed a bidirectional LSTM encoder to extract context and dependency information
from given sentences. Another advantage of ELMo is that it is adequate to involve a pre-trained
ELMo model into a neural network based system for downstream tasks of NLP. Peters et al.
(2018) proved it by applying ELMo into their baseline models with six downstream tasks of
NLP and reporting state-of-the-art performances. GPT (Radford et al., 2018, 2019) is another
important contextual embeddings, since it employ transformers model (Vaswani et al., 2017)
into language modeling task. Transformers have the advantage of learning context information
for given sentences than previous models such as LSTM. Radford et al. (2018) reported the
state-of-the-art performance with nine downstream tasks of NLP when applying the GPT model.

In recent days, BERT (Devlin et al., 2019) is the most popular contextual embedding. Here we
introduce details of BERT, which is the most representative model for contextual embedding.
BERT employs bi-directional transformers encoders (Vaswani et al., 2017), comparing with
GPT, which only uses a left-to-right encoder. Figure 2.2 shows an overview of the transformer
model. The transformer model consists of stacked self-attention and position-wise feed-forward
layers for both encoder and decoder stacks. The encoder of the transformer model converts a
given input sequence to a continuous vector representation. With the result of encoder stacks,
the decoder makes an output sequence. This process occurs auto-regressively when applying the
output of decoder stacks to an additional input sequence for the next step.
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Figure 2.2: The architecture of the transformer model suggested by Vaswani et al. (2017). The
left part represents encoder stacks, and the right part represents decoder stacks. # means the

number of layer.

Since the transformer model does not consider a recurrence or convolution network, Vaswani
et al. (2017) suggested positional encodings to encode information for the position of each token.
Positional encodings, %� , are calculated with the following equations:

%� (?>B,28) = sin(?>B/1000028/3<>34; )

%� (?>B,28+1) = cos(?>B/1000028/3<>34; )
(2.6)

where ?>B is the position, 8 is the dimension, and 3<>34; is the size of the dimension for the
given <>34;.

In the transformer model, multi-head attention is designed for a self-attention function that
mapping an input query and a set of key-value pairs to the output of the attention part. Note
that each query @, key : , value E, and output > is a vector representation here. The attention
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part of the transformer model, called scaled dot-product attention, computes the output with the
following equation:

�CC4=C8>=(&,  ,+) = softmax(& 
>

√
3:
)+ (2.7)

where&,  ,+ are packed matrices from a set of query, key, and value, respectively. A computed
output becomes one head, and those heads are jointed with the following equation:

"D;C8�403 (&,  ,+) = �>=20C (ℎ4031, ..., ℎ403ℎ),$

Fℎ4A4 ℎ4038 = �CC4=C8>=(&,&

8
,  , 

8 , +,
+
� )

(2.8)

where we denote ,&

8
∈ R3

<>34;
× 3: , , 

8
∈ R3

<>34;
× 3: , ,+

8
∈ R3

<>34;
× 3E , and ,$

8
∈

Rℎ3E × 3<>34;.

The result of multi-head attention becomes the input of position-wise feed-forward layers. It
consists of two fully connected layers with a ReLU activation. Therefore, the position-wise
feed-forward layer can be defined like below:

��# (G) = max(0, G,1 + 11),2 + 12 (2.9)

The main advantage of the transformer model is allowing the system to encode information for
global dependencies of input and output sequences. Therefore, BERT, the language model em-
ploying bi-directional transformers encoders, can understand context information more correctly
than previous language models.

Moreover, BERT suggested a new objective task for training, masked language modeling. Since
masked language modeling demands to predict randomly masked tokens in a given sentence, it
requiresmore complex information for context and dependency than previous languagemodeling.
Furthermore, BERT also proposed another objective task, next sentence prediction. They
aimed to train the ability to understand the relationship between sentences. Thanks to the
above improvements, Devlin et al. (2019) reported that applying BERT is effective for eleven
downstream tasks of NLP with state-of-the-art performance. In this way, contextual embeddings
such as BERT have become an indispensable tool for the natural language processing field in
recent years.
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2.2 Statistical method for causal analysis

In the NLP field, correlation analysis has been usually used to investigate the relationship
between two variables, such as the accuracy of two NLP tasks. However, correlation analysis
has limitations in proving the causal relation between given variables. At first, like traditional
quote correlation does not imply causality (Koller and Friedman, 2009, Pearl, 2009), the result
of correlation analysis can not indicate the causal relationship between variables. Secondly,
correlation analysis of previous studies, which considers the relationship between variables
as one by one relationship, does not consider external factors for calculating the correlation
coefficient between variables. Therefore, sometimes previous studies conducting correlation
analysis reported conflicting results for the same problem (Chiu et al., 2016, Rogers et al., 2018,
Schnabel et al., 2015, Wang et al., 2019b). This chapter introduces another statistical way for
testing hypotheses, Structural Equation Modeling (SEM) (Wright, 1921). Moreover, we also
provide an introduction of partial least squares pathmodeling (PLSPM) (Wold, 1982), themethod
we employ in this study, which is a widely accepted SEM method across the social science field.

2.2.1 Structural Equation Modeling

Structural Equation Modeling (SEM) was first proposed to model and investigate complex re-
lationships between variables by Wright (1921). Compared with correlation analysis, SEM
suggests the causal diagram, which consists of causal hypotheses among variables by the re-
searcher. In the causal diagram, each relationship is expressed as the structural equation. For
example, a structural equation is E0A801;41 = G1 ∗ E0A801;42 + G2 ∗ E0A801;43 + H, then condi-
tional changes of E0A801;41 can be estimated following this equation. It is hard tomathematically
prove the causal relationship with only an equation Pearl (2009). SEM tackles this problem by
suggesting the causal diagram and modeling causal assumptions from observed variables. Based
on prior and theoretical knowledge, the causal assumption can help an interpretation of the
structural equation as the causal relationship. Moreover, SEM aims to estimate a model consist-
ing of statistically fitted structural equations from observed variables and validate an estimated
model with statistical tests. For example, if an estimated model can produce similar population
covariance matrices with covariance matrices based on observed variables, the researcher can
accept suggested causal hypotheses within the proposed causal diagram and observed variables.

Figure 2.3 shows a sample of the causal diagram. It expresses the relationship between encoded
semantic information and the performance for the QAKB task on the same contextual embedding.
Note that encoded semantic information and the performance for the QAKB task are not directly
measured since they are abstract concepts. We call them as latent variables, as opposed to
observed variables. Each G1= is the result of tasks for evaluating encoded semantic information
on contextual embeddings, and each H1= is the result of subtasks on the QAKB. It is a natural
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Figure 2.3: A sample of the causal diagram. circles represent latent variables, rectangles
represent observed variables, and edge arrows represent causal relationships between variables.

assumption that encoded semantic information on the contextual embedding affects each G1=

of the same contextual embedding, thus by utilizing each G1= we can estimate a score for H1,
a latent variable for encoded semantic information. The same is also true of the case between
the performance for the QAKB task and its subtasks. In Figure 2.3, edge arrows between
latent variables and observed variables represent causal assumptions. The edge arrow between
latent variables represents another causal assumption that encoded semantic information on a
contextual embedding affects the performance of the QAKB task. Therefore, if we prepare each
G1=, H1= data as observed variables, SEM tries to prove that a given causal diagram can explain
covariance matrices produced by observed variables.

In general, structural equation modeling is separated into two submodels: (1) the measurement
model has relationships between the observed and latent variables, while (2) the structural model
consists of the relationships between latent variables. Any causal relationship can be expressed
by a linear regression equation, also called a structural equation. The measurement model for
the diagram in Figure 2.3 thus consists of the following equations:

G11 = _11H1 + Y11 G21 = _21H2 + Y21

G12 = _12H1 + Y12 G22 = _22H2 + Y22
...

G1= = _1=H1 + Y1=

(2.10)

where the G are observed variables, the H are latent variables, the _ denote weights for each factor,
and the Y represent error terms. The structural model also has the following linear equation:

H2 = V11H1 + Z1 (2.11)

where V is a weight and Z is an error term. Given a causal diagram and the values of observed
variables as input, we need to fit parameters, such as weights and error terms, of multiple
regression equations and latent variables to the input data. After fitting the model, we can
interpret the strength of a causal relation from the path coefficient and decide whether to accept
a tested hypothesis appropriately according to how well it fits the data.
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An SEM model includes parameters to be estimated, such as variances of latent variables and
path coefficients of structural equations. In the statistic field, a variety of methods have been
proposed depending on how to estimate those parameters and produce covariance matrices. One
popular method is fitting parameters for maximum likelihood estimation with given observed
variables (Jöreskog, 1970). However, this method requires heavy distributional assumptions and
large sample sizes for observed variables. Especially, experimental data, such as accuracies of
downstream tasks, usually do not follow normal distributions. Therefore, we introduce another
SEM method, PLSPM, which has fewer requirements for observed variables.

2.2.2 Partial least squares path modeling

Another approach for fitting the model in structural equation modeling is partial least square path
modeling (PLSPM), proposed by Wold (1982). It is often called a component-based approach
because it estimates the scores of latent variables from linear combinations of observed variables.
PLSPM does not require strict assumptions for observed variables, such as normal distribution
and independence (Tenenhaus et al., 2005). Because of the relaxed requirements for observed
variables, PLSPM has been accepted in various social science disciplines as a helpful tool for
exploratory research (Henseler et al., 2014).

Here, we explain the details of the algorithm for the PLSPM estimation procedure, follow-
ing Tenenhaus et al. (2005) and Sanchez (2013). To estimate parameters, PLSPM first aims to
calculate the scores of latent variables. The scores of the latent variables in Figure 2.3 are thus
written as below.

H 9 =
∑
:

l 9:G 9: + f9: (2.12)

Note that PLSPM does not use or estimate any _ and V before the estimation of H finishes.
Because the G is already given as observed variables, we need to estimate the parameter l.
PLSPM thus conducts an iterative procedure for updating l. First, it initializes all l to an
arbitrary number that allows the calculated scores of the latent variables to have unit variance.
For example, if alll are initialized as 1, then all latent variables in Equation 2.12 can be estimated
as sums of observed variables, as below.

H1 =
∑
: G1: + f1:

H2 =
∑
: G2: + f2:

(2.13)

In the next step, PLSPM tries to obtain the weights in the structural model, e.g., V11 in Equa-
tion 2.11. Note that we do not use the weights of the measurement model, l, in this step.
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Instead, V is only estimated from the scores of latent variables by using correlation coefficients
between adjacent latent variables. PLSPM has various options for how to obtain the weights
in the structural model. For example, the centroid scheme option receives V by the following
formula:

V 98 =

 B86=[2>A (H 9 , H8)] if H 9 , H8 are adjacent
0 otherwise

, (2.14)

where B86=[0] is the sign direction of 0, taking a value of ±1, and cor(0, 1) is the correlation
coefficient between 0 and 1. With the obtained V, PLSPM estimates other scores for the latent
variables, H′, as below:

H′9 =
∑
8↔ 9

V8H8 + Z8 (2.15)

where↔ means that H8 and H 9 are connected in the structural model. With these new scores for
the latent variables, H′, PLSPM can update the weights of the measurement model,l. In general,
it calculates l as a coefficient of ordinary least squares regression on l and H′. The estimation
formula for l depends on which variables are the cause; for example, when Equation 2.12 is
given, l will be estimated as below.

l 9: = (H′ 9
>
H′ 9)−1H′ 9

>
G 9: (2.16)

PLSPM then continues the above procedures until l convergences, usually via |l (4−1)
9:
−l (4)

9:
<

10−5 |, where 4 is an epoch number. When the iterative process is complete, PLSPM has already
finished estimating all weights and the scores of the latent variables. Therefore, it can estimate
the path coefficients in the structural model and correlation coefficients in the measurement
model, which indicate the prediction strength of each path in the PLSPM model. Here, path
coefficients in the PLSPM model are estimated by ordinary least squares regression.

Path coefficient 98 = (H>8 H8)−1H>8 H 9 (2.17)

A loading is usually calculated as the correlation coefficient between an observed variable and
a latent variable. During the estimation of the path coefficients and loadings, the weights in
the measurement model, _, and the weights in the structural model, V, are also fitted at once.
Therefore, this is the end of the PLSPM fitting process. We summary the fitting algorithm for
PLSPM in the following Algorithm 1.
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Algorithm 1 PLSPM estimation algorithm
Input: - = [-1, . . . , - 9 , . . . , -� ]
Output: H 9 , l 9 , f9 , V 9 , Z 9
1: for 9 = 1, . . . , � do
2: Initialize: l 9
3: H 9 ∝ ±

∑ 9

:=1 l 9:G 9: + f9: = ±- 9l 9 + f9
4: V 98 = B86=[2>A (H 9 , H8)]
5: H′

9
=

∑
8↔ 9 V8H8 + Z8

6: Update: l 9: = (H′ 9>H′ 9)−1H′ 9
>G 9:

7: end for
8: Repeat 1-7 until the convergence on the l is achieved
9: Upon the convergence:

Path coefficient 98 = (H>8 H8)−1H>
8
H 9

2.2.3 Validation of an estimated PLSPM model

To assess a PLSPM result whether it is reliable and reasonable to explain observed variables,
researchers use a variety of reliability indexes for the measurement model and the structural
model respectively. In this chapter, we explain reliability indexes commonly used in the statistic
discipline for assessing the PLSPM model.

First, the design of themeasurementmodel can be examinedwithCronbach’s U (Cronbach, 1951)
and Dillon–Goldstein’s d (Dillon and Goldstein, 1984) for internal consistency. The purpose
of employing Cronbach’s U and Dillon–Goldstein’s d is to examine whether observed variables
belonging to the same latent variable have a significant mutual association in the measurement
model (Sanchez, 2013). Cronbach’s U can be interpreted as an average value of inter-variable
correlation coefficients. When < is the number of observed variables in the target block and
cor(G, H) is the correlation efficient between G and H variables, Cronbach’s U is calculated as
below.

U =

∑
?≠?′ cor

(
G?, G?′

)
< +∑

?≠?′ cor
(
G?, G?′

) × <

< − 1
. (2.18)

Dillon–Goldstein’s d is used to examine the composite reliability of the measurement model.
When _? is the correlation between a latent variable and ?-th observed variable, it is estimated
as below.

d =

(∑<
?=1 _?

)2(∑<
?=1 _?

)2
+∑<

?=1
(
1 − _2

?

) . (2.19)
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Generally, the value of both metrics should be larger than 0.7 for the unidimensionality of the
proposed measurement model. In other words, Cronbach’s U and Dillon–Goldstein’s d over 0.7
indicate that validated observed variables, which are linked with the same latent variable, can be
represented in one-dimensional space for the latent variable.

The validation for the structural model depends on structural equations among latent variables.
Since these equations are estimated by ordinary least squares regression, we can validate each
equation with ? values and coefficients. The path representing a solid causal relationship is
acceptable by ? < 0.05 and has a significantly high path coefficient. Moreover, the determination
coefficient '2 and Goodness-of-Fit (GoF) are usually employed to assess the quality of the
structural model. '2 is defined as the proportion of how many independent variables can predict
the variance of dependent variables. It is calculated following the below equation:

'2 = 1 −
∑
8 (H8 − H̄)2∑
8 (H8 − 58)2

(2.20)

where 5 is a predicted value, and H̄ is the mean of H.

In evaluating a PLSPM model, we define GoF as the geometric mean of the average both for
the squared loading and '2. GoF indicates the whole explainability of a fitted PLSPM model
considering both the measurement model and the structural model. This evaluation method
is similar to other multiple regression analysis methods. In particular, a latent variable with
'2 > 0.6 is considered highly explained, and a PLSPM model is deemed to be strong when it
achieves a �>� value over 0.7 (Sanchez, 2013).

The result of validations for an estimated PLSPM model also indicates the necessity to revise
the suggested causal diagram sometimes. For example, if the Cronbach’s alpha value for one
latent variable is lower than 0.7, the researcher should suspect that observed variables for that
latent variable do not measure the same thing. In this case, loadings can provide a solid clue
to find which observed variable is not suitable for presenting target latent variable. Also, the
researcher should consider a revision of the structural model when most structural equations are
rejected by ? < 0.05 or the GoF value is too low. Therefore, we can utilize the validation of
an estimated PLSPM model to understand correct relationships among variables in the causal
diagram suggested by the researcher.

2.3 Question answering over a knowledge base

Question answering over a knowledge base is one important NLP task that has been researched
for a long time. This task can be said one particular type of question answering which depends on
external knowledge bases, such as DBpedia (Lehmann et al., 2015) and Freebase (Bollacker et al.,
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Name Entities Relations Triples
DBpedia 4,806,150 2,813 176,043,129
YAGO 4,595,906 77 25,946,870
Freebase 49,947,845 37,781 3,041,722,635
Wikidata 15,602,060 1,673 65,993,797
OpenCyc 118,499 18,526 2,413,894

Google’s Knowledge Graph 570,000,000 35,000 18,000,000,000

Table 2.2: The statistics for popular knowledge bases (Paulheim, 2017).

2008). Since a knowledge base is organized following a predefined formal structure, question
answering over a knowledge base demands a different approach from other question answering
tasks. In this chapter, we start from a brief introduction of a knowledge base for an introduction
of question answering over a knowledge base. Moreover, we also introduce SFQA, which is our
main target task in this paper. While many systems have reported the upper bound accuracy of
the benchmark dataset for this task, the robustness and transferability of those systems are not
examined. We are interested that existing systems can solve general simple factoid questions and
how they can solve them.

2.3.1 Knowledge base

A knowledge base is a set of structured knowledge representing facts. While this concept was
suggested for the expert system initially, it is widely used for various NLP tasks, such as data
integration, named entity recognition, topic detection, and document ranking (Lehmann et al.,
2014). The representative knowledge base is a knowledge graph, which stores knowledge with a
graphical structure. A node means the entity in the real world in a knowledge graph, and an edge
implies the relation between entities in a knowledge graph. It is formally defined as  � = (�, %)
for a knowledge graph  �, where � is a set of entities and % is a set of predicates.

A fact in the knowledge graph can be expressed as the Resource Description Framework (RDF)
format, which is proposed by W3C (Brickley et al., 1999). In RDF format, a fact is represented
as a triple consisting of a subject, a predicate, and an object. Both a subject and an object can
be regarded as the entity, the node in a knowledge graph. A predicate can be regarded as the
relation, the edge in a knowledge graph. In other words, a knowledge graph can be represented as
a set of triples for facts. Where � is the set of entities {41, 42, ...4=} and % is the set of predicates
{?1, ?2, ...?<}, we can formally define a knowledge base  as a set of triples (41, ?1, 42) ∈
� × % × � . For example, a RDF triple, (Michael_Jordan, people.person.nationality,
United_States) can be written in a plain sentence “The nationality of Michael Jordan is United
States”.
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The problem is that popular knowledge bases, such as Freebase, DBpedia, andWikidata, contain
a massive size of knowledge triples. It makes the cost and difficulty of the search for a concrete
entity or relation high. Table 2.2 shows the statistics of popular knowledge bases.

While structured query language (SQL) and relational database are representative methods to
manage structured data, they can not be applied to graphical data such as RDF. It is why SPARQL
Protocol and RDF Query Language (SPARQL), a semantic query language, are introduced for
retrieving and managing triples. SPARQL, proposed by W3C, allows humans to make queries
for searching the specific triple automatically. According to the official document of SPARQL
(Consortium et al., 2013), a simple SPARQL query consists of two parts; SELECT and WHERE.
A SELECT part shows what variable will appear in the result of the given query. A WHERE part
includes a pattern of triple what the user wants to match with a knowledge base. For example, if
the given SPARQL query is like below, this query will print United_States.

SELECT ?nation WHERE { Michael_Jordan people.person.nationality ?nation . } (2.21)

If a user executes Equation 2.21, then the systemfinds a node that is linked to the node Michael_-
Jordanwith the edge people.person.nationality. Using SPARQL, a user can retrieve any
entity or relation if that user knows the pattern of the correct triple, including the answer for
that user. This feature is strongly related to the specific NLP task, question answering over a
knowledge base.

2.3.2 Question answering over a knowledge base

Question answering over a knowledge base (QAKB) is a task of natural language processing
evaluating an ability to find the correct answer from a knowledge base from natural language
questions. Since this task can provide the natural language interface of a knowledge base to users,
it has become an essential task for bridging between users and a knowledge base (Chakraborty
et al., 2019, Lopez et al., 2011). For example, if a question is “Which country is Michael Jordan
from?”, then one SPARQL query for getting the answer to the given question is Equation 2.21.
QAKB task helps users reach the correct answer “Unite States” without any expert knowledge
for SPARQL.

Formally, if a given natural language question is @, the QAKB task is defined as returning a
correct answer 0 from all possible � in  for @. One of the traditional methods to solve the
QAKB task is semantic parsing, which aims to translate @ into an executable representation 5

(Berant et al., 2013, Reddy et al., 2014, Unger et al., 2014). 5 should return the correct answer
0 from a knowledge base, and 5 also can be understood as the meaning representation for @.
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Many formal query languages, such as SPARQL, _-DCS (Liang, 2013), and FunQL (Kate and
Mooney, 2006) are employed for generating 5 . However, all of them need the information of
entities and relations in @ for guaranteeing 5 to be the same semantic representation with @. It
is why parsing entities and relations from a given question is important in this task.

Thus, we can split question answering over a knowledge base into various subtasks in practice.
The first subtask is to find which entities in  appear in a given question @, and this subtask
is usually called entity linking. For example, if “Which country is Michael Jordan from?” is
a given question, then the predicted entity should be Michael_Jordan in a knowledge base.
One challenging problem for entity linking is that multiple entities can be written as the same
utterance. For example, let us assume that a user uses abbreviations for his question, such as
“Which country is MJ from?”. In this case, MJ can be interpreted as both “Michael Jordan”
and “Michael Jackson”. Furthermore, it is hard to train questions for all entities because of
the massive size of entities in a knowledge base. While many researchers have tried to solve
those problems (Mendes et al., 2011, Yang and Chang, 2016), it is still a challenging subtask in
question answering over a knowledge base.

Another subtask is to find which relations in  appear in a given question @, and this subtask
is usually called relation prediction. In our example of “Which country is Michael Jordan
from?”, one proper relation for this question in Freebase can be people.person.nationality.
However, we can not find the term “nationality” in “Which country is Michael Jordan from?”.
Moreover, we can paraphrase this question to various utterances without the term “nationality”,
such as “Where is Michael Jordan from?” and “Where is the birthplace of Michael Jordan?”. It
is why this subtask is a challenging problem.

While we can parse correct entities and relations from a given question, we need to generate
an executable representation with entities and relations for getting the right answer of @. In
the SPARQL case, an entity Michael_Jordan and a relation people.person.nationality
should be composed like Equation 2.21 for answering a given question “Which country isMichael
Jordan from?”. In practice, this subtask, we call it evidence integration, involves deciding the
structure of logical form and selecting suitable operators for logical form. Since a generated
logical form can become unexecutable with only one trivial miss, such as an exchange between
subject and object, evidence integration is critically important for question answering over a
knowledge base.

Many researchers have proposed benchmark datasets for question answering over a knowledge
base using various knowledge bases. In this chapter, we introduce popular datasets for Freebase.
Free917 (Cai and Yates, 2013) is the first dataset for machine learning-based semantic parsing
over Freebase. It contains 917 questions on a subset of Freebase, called Freebase Commons,
covering 81 domains. Berant et al. (2013) find that each question tends to contain words directly
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Dataset train valdiation test
Free917 512 129 276
WebQuestions 3,778 - 2,032
WebQSP 2,478 620 1,639
SimpleQuestions 75,910 10,845 21,687
GraphQuestions 2,608 - 2,608
ComplexWebQuestions 27,734 3,480 3,475
FreebaseQA 20,358 3,994 3,996

Table 2.3: The statistic of popular datasets for QAKB and SFQA.

related to the target Freebase relation. For example, “What genre of music is B12?” requires the
gold relation music.artist.genre to be answered.

Since 917 is too small for training and testing themachine learningmodel, WebQuestions (Berant
et al., 2013) was proposed with 5,810 questions. Aiming at creating more natural questions than
Free917, each question is derived from the Google Suggest API, followed by filtering by crowd
workers. Consequently, the authors observe a larger divergence between the question words
and relations, such as “What music did Beethoven compose?” for the fore-mentioned relation
music.artist.genre. One limitation of WebQuestions is a lack of formal queries as gold
data. Yih et al. (2016) suggestedWebQSP, a subset of WebQuestions including annotated formal
queries additionally.

FreebaseQA (Jiang et al., 2019) is the latest dataset aiming at more difficult factoid questions
than SimpleQuestions while maintaining the scale of data size. Specifically, the questions in this
dataset are first sampled fromTriviaQA (Joshi et al., 2017) and then filtered by heuristics to collect
factoid questions answerable on Freebase. Other datasets have been proposed continuously,
such as GraphQuestions (Su et al., 2016), ComplexWebQuestions (Talmor and Berant, 2018b).
Table 2.3 shows the list of popular datasets for QAKB.

2.3.3 Simple factoid question answering

While many datasets have been proposed for QAKB, QKAB is still a challenging and unsolved
task yet. Bordes et al. (2015) suggested a more straightforward task definition for QAKB that
questions only require one fact to be answered. We call this task as simple factoid question
answering (SFQA) after this. Formally, if a triple C for a given question @ is (41, ?1, 42), this task
demands to predict 41 and ?1 from a given question @. In other words, this task takes only one
template for the SPARQL query, "SELECT ?answer WHERE { 41 ?1 ?answer . }". Therefore, the
evaluation method of this task can be simplified as matching the predicted subject and relation
with the gold subject and relation, without considering to generate an executable logical form.
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Bordes et al. (2015) also proposed the benchmark dataset for SFQA in their paper. This dataset,
called SimpleQuestions, has an important difference with other datasets in that this dataset
only contains answerable questions by one fact. Furthermore, SimpleQuestions (Bordes et al.,
2015) is the most largest dataset containing with 108,442 questions. Like previous datasets for
QAKB, such as Free917 and WebQuestions, SimpleQuestions is also based on Freebase. In
particular, each question is created from a sampled fact in Freebase, which is then verbalized
and paraphrased by a crowd worker. Possibly due to this procedure starting from a KB fact, we
find that, as in Free917, this dataset also tends to verbalize a relation with directly related terms,
such as “What type of music . . .?” for music.artist.genre.1 Since this approach eases data
collection, it is popular in data creation for semantic parsing (Talmor and Berant, 2018a, Trivedi
et al., 2017, Wang et al., 2015). The authors also define a subset of Freebase called FB2M
covering 2M entities and 5K relations, including all entities appearing in WebQuestions, and
create all questions from this subset.

In Bordes et al. (2015), the proposed baseline system for SimpleQuestions reported 63.9% accu-
racy for SimpleQuestions. Subsequently, neural network based systems have been proposed for
SimpleQuestions. Ture and Jojic (2017) suggested the most successful system for SimpleQues-
tions with 86.8% accuracy. However, it is not confirmed since their system and result were not
reproducible. Except for this system, many systems have reported around 75% accuracies for
SimpleQuestions in recent days (Huang et al., 2019, Lukovnikov et al., 2019, Mohammed et al.,
2018, Petrochuk and Zettlemoyer, 2018, Yin et al., 2016, Yu et al., 2017).

Here, we introduce four systems proposed for SFQA, considering their high accuracy on Sim-
pleQuestions and the reproducibility of the system. 2 The basic assumption for those systems
is that all questions can be answered by correctly predicting a subject entity 4 and a relation A
on the knowledge base. For predicting the best pair, all systems employ a pipeline consisting of
three different submodules below:

1. entity linking, which outputs a set of candidate subject entities {4};

2. relation prediction, which outputs a set of candidate relations {A}; and

3. evidence integration, which finds the best (4̂, Â) pair by reranking the candidate pairs.

First, we introduce BuboQA (Mohammed et al., 2018). In this system3, both entity linking and
relation prediction are modeled with simple classifiers. Despite its simplicity, this approach

1Cai and Yates (2013) only mentions that questions are written by two native English speakers and do not state
whether they access a relation when writing questions, but we find two datasets are similar in this respect.

2When searching for open software, we often found that many systems along with a paper are not self-contained;
in particular, they often are missing an entity linking module. This is especially the case for systems targeting
WebQustions, for which many systems rely on the outputs of the entity linker used in (Yih et al., 2015) and found in
https://github.com/scottyih/STAGG, while the entity linker itself is not available.

3https://github.com/castorini/BuboQA
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outperforms several more complex architectures (Bordes et al., 2015, Yin et al., 2016). Specif-
ically, for entity linking, a trained LSTM first detects the entity spans. This procedure is called
entity detection in BuboQA. The predicted spans then heuristically mapped to the candidate KB
entities and scored with the Levenshtein distance to the canonical entity label in the entity linking
submodule in BuboQA.

Relation prediction is performed independently by another classifier on top of a different LSTM.
Finally, the best combination of (4̂, Â) is found according to a weighted sum of these two module
scores.4 This is an extension of an even simpler baseline of Ture and Jojic (2017), and a similar
approach is employed in Petrochuk and Zettlemoyer (2018). In addition, Lukovnikov et al. (2019)
proposed an extended system of BuboQA employing BERT. While they suggest minor changes
in the structure of BuboQA, such as unifying entity detection and relation prediction into the
same encoder, most parts of the proposed system are similar to BuboQA.

Note that BuboQA treats relation prediction as to the classification problem among relations
appearing in the training data. It means that it cannot solve zero-shot relation prediction, which
occurs to some extent, especially in the dataset transfer experiment. On the other hand, the other
three systems theoretically can handle them, as described in the following.

Next, we introduce Hierarchical Residual BiLSTM (HR-BiLSTM) (Yu et al., 2017). In this
system (and the next, KBQA-Adapter), relation prediction is performed differently, not by
classification on a fixed set of relations, but by mapping a shared embedding space for KB
relations and texts. This model encodes both question tokens and relation tokens (e.g., “music
artist genre” for music.artist.genre) by different encoders. Relation candidates are then
ranked by cosine similarity between the outputs of two encoders. This method allows us to
calculate the score of an unseen relation.

KBQA-Adapter (Wu et al., 2019) 5 is an improvement to HR-BiLSTM with an additional
adversarial adapter coupled with the relation encoder. The motivation of this adapter is to
improve the zero-shot relation prediction performance. To this end, the adapter receives a
relation embedding for A provided by KG embeddings, which is JointNRE (Han et al., 2018),
transforming it to an embedding space where unseen relations can be handled properly.

Knowledge Embedding-based QA (KEQA) (Huang et al., 2019) 6 also builds on an external
knowledge graph embedding, TransE (Bordes et al., 2013), which is used as the more direct
and central part in the system. Given a knowledge graph embedding, which is fixed, this model
tries to map each question into an entity embedding ê and relation embedding r̂, using separate
LSTMs. We expect ê to be close to the gold node embedding in the graph and r̂ to the gold

4Although the paper mentions that the two scores are multiplied, they are summed with fixed weights in their
official implementation.

5https://github.com/wudapeng268/KBQA-Adapter
6https://github.com/xhuang31/KEQA_WSDM19
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relation embedding. Also, we would expect that the transition defined by the embedding model
(e.g., addition for TransE), 5 (ê, r̂), will get close to the answer node embedding. The query
generation step of the system selects the (4̂, Â , >̂) triple based on this intuition, by minimizing
the summed distances from embeddings corresponding to 4̂, Â, and >̂ to the obtained encoded
embeddings.

2.4 Related works

One purpose of this study is to explain the inner working of language models on downstream
tasks of NLP. Though word and contextual embeddings have been widely used in the natural
language processing field, their inner working is not clearly explained yet. This chapter presents
an overview of previous studies for understanding and evaluating the inner working of language
models, primarily focusing on encoded linguistic knowledge on language models. Furthermore,
we also introduce essential issues for the evaluation and source for SFQA datasets. Those issues
are related to the application of our PLSPM framework for SFQA systems.

2.4.1 Measuring encoded linguistic knowledge on language models

Since various language models have been proposed, it has become a natural question for re-
searchers which language model is good. The most basic way to evaluate language models is
to compare the accuracy of downstream tasks using various language models. This approach
is based on a natural intuition; if one language model is used as a sound input feature of a
supervised model for a downstream task of NLP, then that model should be a good model.
Researchers have employed various NLP tasks for the evaluation, such as part-of-speech tagging,
named entity recognition, sentiment analysis, and so on (Schnabel et al., 2015, Turian et al.,
2010). Furthermore, researchers have proposed a package containing various NLP tasks and a
straightforward script for evaluating them to conduct this evaluation conveniently (Conneau and
Kiela, 2018, Nayak et al., 2016, Wang et al., 2019a).

This evaluation, called extrinsic evaluation, has limitations in evaluating the goodness and
usefulness of language models. First, we can not experiment with all downstream tasks of
NLP for language models for assessing language models. Second, a superior result for one
downstream task is sometimes not transferred to other tasks. Third, extrinsic evaluation can not
explain why a specific language model is more or less helpful for the target downstream task.
However, it also has a substantial advantage that the result of this evaluation is easy to interpret
whether one language model is helpful for the evaluated downstream task. In other words, it
indicates that this evaluation can be applied to researchers who want to find helpful language
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models for their interested downstream tasks. Therefore, extrinsic evaluation has been widely
employed for examining and evaluating language models despite many limitations.

Meanwhile, researchers assumed that a good language model should understand semantics
like human beings (Bakarov, 2018, Baroni et al., 2014, Batchkarov et al., 2016a, Gladkova
and Drozd, 2016). It implies that we can evaluate the general quality of language models by
examining encode linguistic knowledge on language models. Baroni et al. (2014) is one of earlier
studies suggesting the concept of intrinsic evaluation, which compares human judgments and the
result calculated by language models for evaluating language models. They employed semantic
relatedness (Agirre et al., 2009, Bruni et al., 2014, Finkelstein et al., 2001, Rubenstein and
Goodenough, 1965), synonym detection (Landauer and Dumais, 1997), concept categorization
(Almuhareb, 2006, Baroni et al., 2008, 2010), selectional preferences (McRae et al., 1998, Padó
and Lapata, 2007), and word analogy (Mikolov et al., 2013a) as the intrinsic evaluation for
evaluating word embedding models.

While many intrinsic evaluations have been proposed, word similarity (Hill et al., 2015, Miller
and Charles, 1991) had been a representatively employed task for the intrinsic evaluation. In
this task, a pair of words with a similarity score annotated by a human is given. The researcher
examines whether the distance of given words calculated with the target language models is
similar to the given annotated similarity score or not. For example, if a given input is “Cup,
Mug”, then the researcher calculates the cosine similarity between “Cup” and “Mug” on the target
language model. Calculated cosine similarity is compared with the human-annotated similarity
score to examine whether the target language model can understand the similarity between given
terms. Because of its intuitiveness and simplicity, researchers had employed word similarity as
the intrinsic task, especially word similarity, for evaluating language models (Baroni et al., 2014,
Chiu et al., 2016, Schnabel et al., 2015).

However, more recent studies argued that the result of word similarity does not report high corre-
lation coefficients with accuracies of downstream tasks of NLP on language models (Batchkarov
et al., 2016b, Chiu et al., 2016, Faruqui et al., 2016, Gladkova and Drozd, 2016, Schnabel et al.,
2015). For some datasets of the word similarity task, the similarity score of some word pair
means relatedness, while the similarity score of other word pair means semantic similarity. Hu-
man annotators often confused those definitions in one dataset, which causes the low reliability
of the word similarity task itself. Also, the size of many datasets for the word similarity task is
usually smaller than one thousand, which causes scaling problems for evaluating target language
models. Therefore, other intrinsic tasks have been proposed to overcome limitations of word
similarity (Camacho-Collados and Navigli, 2016b, Ettinger and Linzen, 2016, Gladkova et al.,
2016, Søgaard, 2016). Table 2.4 lists popular tasks for the intrinsic evaluation and their brief
descriptions.
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One popular task as an alternative for word similarity is word analogy, proposed by Mikolov
et al. (2013b). In word analogy, one question consists of two pairs of words that share the
same relationship. For example, two word pairs “day, days” and “year, years” share the same
relationship: the singular and plural representation for one noun. In the practical evaluation, one
word in the given question is masked and needed to be predicted by the target language model.
If a masked term is “years”, then the system needs to predict “years” with other terms in the
given question, “day, days, and year”. Since the relationship to be predicted is not ambiguous,
unlike word similarity, word analogy does not need to consider the limitation of word similarity
mentioned above. Also, word analogy usually does not need human annotators for creating
questions. We can automatically generate pairs of the word sharing the same relationship using
external knowledge sources, such as a dictionary and thesaurus. It allows the dataset of word
analogy to be a large-scale dataset, such as BATS (Gladkova et al., 2016) consisting of 98,000
questions.

Intrinsic evaluation is based on the assumption that encoded linguistic knowledge in language
models should help to solve downstream tasks in NLP (Batchkarov et al., 2016a, Chiu et al.,
2016). Word similarity is not employed for the intrinsic evaluation anymore since the accuracy
of word similarity does not correlate with the accuracy of downstream tasks. In this way,
proving correlations or causal relationships between intrinsic evaluation and downstream tasks
is essential when evaluating language models with intrinsic evaluations. Previous studies, such
as Chiu et al. (2016), Rogers et al. (2018) and Wang et al. (2019b), tried to prove this traditional
assumption using correlation analysis between accuracies of intrinsic tasks and downstream tasks
of NLP by existing language models. Chiu et al. (2016) conducted correlation analysis involving
ten word similarity datasets, one pos tagging dataset, one chunking dataset, one named entity
recognition dataset, and 30 word embedding models. They reported that accuracies of most word
similarity datasets do not correlate with accuracies of downstream tasks. Rogers et al. (2018)
examined correlations among seven word similarity datasets, one word analogy dataset, their
proposed linguistic diagnostics toolkit, seven downstream tasks of NLP, and 60 word embedding
models. Also, Wang et al. (2019b) reported the result of correlation analysis employing 13
word similarity datasets, two word analogy datasets, three concept categorization datasets, two
outlier detection datasets, one subspace alignment dataset, five downstream tasks, and six word
embedding models.

However, we find some conflicting results among previous studies. For example, Rogers et al.
(2018) and Wang et al. (2019b) suggested the conflicting conclusion about the effectiveness of
word analogy for the accuracy of downstream tasks. One important reason for this phenomenon
may be the difference between employed language models and downstream tasks in their studies.
It means that their results are not generally robust. We suppose that correlation analysis, the
primary method in their studies, caused their conflicting conclusions. The traditional quote,
correlation does not imply causality, indicates that depending on only the result of correlation
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analysis may derive the false interpretation for the relationship between two variables. Many
other possibilities are available for the high correlation coefficient, such as the existence of an
external factor, bidirectional causation, and a just coincidental case. In this study, we aim to
suggest a more robust way to investigate the causal relationship between the accuracy of intrinsic
evaluation and downstream tasks.

2.4.2 Probing the inner working of language models

Since contextual embeddings have become a new indispensable tool for downstream tasks of
NLP replacing word embeddings in recent days, researchers have tried to examine the quality
of contextual embeddings. In earlier studies, probing tasks, which were designed to examine
encoded linguistic knowledge for sentence embeddings, had been proposed (Adi et al., 2017,
Shi et al., 2016). SentEval (Conneau and Kiela, 2018) is an advanced package consisting
of ten probing tasks evaluating surface, syntactic, and semantic knowledge. They are binary
classification tasks with one dense layer to minimize the effect of the neural network based
model and focus on encoded knowledge in the result of the target sentence encoder. However,
the interest of researchers has moved to use downstream tasks for examining encoded linguistic
knowledge because of low correlation coefficients between accuracies of some probing tasks on
SentEval and other downstream tasks (Conneau and Kiela, 2018).

Many researchers have involved various downstream tasks of NLP as well as probing tasks
for evaluating contextual embeddings. We list some examples of previous studies involving
downstream tasks for evaluating contextual embeddings in Table 2.5. For example, SentEval also
provides 18 downstream tasks of NLP for extrinsic evaluations. General language understanding
evaluation (GLUE) dataset (Wang et al., 2019a) is a more recent toolkit for evaluating contextual
embeddings. It contains 11 downstream tasks of NLP across sentence-level classification tasks,
similarity and paraphrase tasks, and inference tasks. While those toolkits have been used to
examine contextual embeddings (Devlin et al., 2019, Kovaleva et al., 2019, Sanh et al., 2019),
researchers have also employed other downstream tasks for their research purpose not depending
on those toolkits (Liu et al., 2019a, Tenney et al., 2019a,b). Since most studies of them aimed
to reveal and understand the inner working of BERT (Devlin et al., 2019), they are named as
BERTology (Rogers et al., 2020).

Devlin et al. (2019) proved that a pretrained BERT could work an end-to-end system by adding
one output layer. BERTologies usually have investigated the end-to-end system using BERT
compared with previous studies focusing on language models themselves. They have tried
to examine encoded linguistic knowledge on BERT by various approaches, such as attention
analysis (Liu et al., 2019a), edge probing (Tenney et al., 2019a,b), and layerwise analysis with
diagnostic classifiers (Lin et al., 2019). As a result, they have proved that BERT contains a
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variety of linguistic knowledge including syntactic and semantic information. For example, Lin
et al. (2019) showed that each layer of BERT encoded different linguistic knowledge. They
proved that the lower layers tends to contain the information of word order, while the higher layer
tends to contain the information of hierarchical structured order. Liu et al. (2019a) suggested
that the middle layers of BERT is the best for syntactic knowledge, and the final layers of BERT
usually became to be the most specific for the target task.

Though they revealed that BERT encodes what linguistic knowledge in where, Rogers et al.
(2020) mentioned their limitations that observing linguistic knowledge from BERT does not
explain how observed linguistic knowledge is used for solving downstream tasks. Furthermore,
Rogers et al. (2020), Warstadt et al. (2019) also commented that a single observation, which most
BERTology studies conducted, can cause conflicting conclusions among BERTology studies.
Htut et al. (2019) showed that a change of the probing method could make a different conclusion
for examining contextual embeddings. In addition, Tenney et al. (2019a) and Liu et al. (2019a)
reported conflicting results which layer of BERT encoded syntactic knowledge mainly. Hence,
we need the robust and causal explanation for the inner working of BERT between encoded
linguistic knowledge the performance of BERT.

2.4.3 Evaluation of SFQA systems and datasets

Recently, Petrochuk and Zettlemoyer (2018) argued that existing SFQA systems nearly solve
SimpleQuestions. They reported that some questions in SimpleQuestions have unresolved
ambiguity for entities and relations. In the case of the question “who wrote gulliver’s travels?”,
Freebase contains a variety of entities for “gulliver’s travels”, such as the name of book, film,
and TV series. Since all those entities can be linked with a relation for “who wrote?”, the correct
entity for this question can not be a unique one. Petrochuk and Zettlemoyer (2018) calculated
the upper bound accuracy of SimpleQuestions by eliminating all ambiguous questions. As a
result, they concluded that existing SFQA systems already had nearly reached the upper bound
accuracy of SimpleQuestions, 83.4%.

This problem is related to the evaluation method of SFQA, to match the predicted subject and
relation with gold data (Bordes et al., 2015). The traditional evaluation method for QAKB
datasets is to match the predicted object with gold data (Berant et al., 2013). The predicted
object can be obtained by executing a SPARQL query consisting of predicted entities, relations,
and the predicted template of the SPARQL query. However, SFQA only handles one static
SPARQL query, "SELECT ?answer WHERE { subject relation ?answer .}". If the predicted subject
and relation are correct, we do not need to execute a SPARQL query to evaluate a predicted
object. It is the reason why SFQA takes a simplified evaluation method matching the predicted
subject and relation with gold data without executing a SPARQL query.

31



Chapter 2. Fundamentals and related work

St
ud

y
Ta
sk

Em
pl
oy
ed

su
bt
as
ks
/d
at
as
et
s

C
on

ne
au

an
d
K
ie
la
(2
01

8)
cl
as
si
fic

at
io
n

m
ov
ie
re
vi
ew

,p
ro
du

ct
re
vi
ew

,s
ub

je
ct
iv
ity

sta
tu
s,
op

in
io
n-
po

la
rit
y
(W

an
g
an
d
M
an
ni
ng

,
20

12
),
bi
na
ry

se
nt
im

en
ta

na
ly
si
s,
fin

e-
gr
ai
ne
d
se
nt
im

en
ta

na
ly
si
s
(S
oc
he
re

ta
l.,

20
13

),
qu
es
tio

n
cl
as
si
fic

at
io
n
(L
ia
nd

Ro
th
,2

00
6)

na
tu
ra
ll
an
gu

ag
e
in
fe
re
nc
e

na
tu
ra
ll
an
gu

ag
e
in
fe
re
nc
e
(M

ar
el
li
et
al
.,
20

14
),
SI
C
K-
E
(M

ar
el
li
et
al
.,
20

14
)

se
m
an
tic

te
xt
ua
ls
im

ila
rit
y

ST
S
20

12
(A

gi
rr
e
et
al
.,
20

12
),
ST

S
20

13
(A

gi
rr
e
et
al
.,
20

13
),
ST

S
20

14
(A

gi
rr
e
et
al
.,

20
14

),
ST

S
20

15
(A

gi
rr
e
et

al
.,
20

15
),
ST

S
20

16
(A

gi
rr
e
et

al
.,
20

16
),
ST

S
be
nc
hm

ar
k

(C
er

et
al
.,
20

17
),
SI
C
K-
R
(M

ar
el
li
et
al
.,
20

14
)

pa
ra
ph

ra
se

de
te
ct
io
n

pa
ra
ph

ra
se

de
te
ct
io
n
(D

ol
an

et
al
.,
20

04
)

im
ag
e
ca
pt
io
n
re
tri
ev
al

CO
CO

(C
on

ne
au

et
al
.,
20

18
)

W
an
g
et
al
.(
20

19
a)

si
ng

le
-s
en
te
nc
e

C
oL

A
(W

ar
sta

dt
et
al
.,
20

18
),
SS

T-
2
(S
oc
he
re

ta
l.,

20
13

)
si
m
ila

rit
y
&

pa
ra
ph

ra
se

M
R
PC

(D
ol
an

an
d
B
ro
ck
et
t,
20

05
),
ST

S-
B
(C

er
et
al
.,
20

17
),
Q
Q
P7

in
fe
re
nc
e

M
N
LI

(W
ill
ia
m
se

ta
l.,
20

18
),
Q
N
LI

(R
aj
pu

rk
ar
et
al
.,
20

16
),
RT

E
(B

ar
H
ai
m
et
al
.,
20

06
,

B
en
tiv

og
li
et
al
.,
20

09
,D

ag
an

et
al
.,
20

06
,G

ia
m
pi
cc
ol
o
et
al
.,
20

07
),
W
N
LI

(L
ev
es
qu
e

et
al
.,
20

11
)

Li
u
et
al
.(
20

19
a)

to
ke
n
la
be
lin

g
pa
rt-
of
-s
pe
ec
h
ta
gg

gi
ng

(M
ar
cu
s
et

al
.,
19

93
,S

ilv
ei
ra

et
al
.,
20

14
),
C
C
G

su
pe
rta

gg
in
g

(H
oc
ke
nm

ai
er

an
d
St
ee
dm

an
,2

00
7)
,s
yn

ta
ct
ic

co
ns
tit
ue
nc
y
an
ce
sto

rt
ag
gi
ng

,s
em

an
tic

ta
gg

in
g
(B

je
rv
a
et

al
.,
20

16
),
pr
ep
os
iti
on

su
pe
rs
en
se

di
sa
m
bi
gu

at
io
n
(S
ch
ne
id
er

et
al
.,

20
18

),
ev
en
tf
ac
tu
al
ity

(R
ud

in
ge
re

ta
l.,

20
18

)
se
gm

en
ta
tio

n
sy
nt
ac
tic

ch
un

ki
ng

(S
an
g
an
d
B
uc
hh

ol
z,
20

00
),
na
m
ed

en
tit
y
re
co
gn

iti
on

(S
an
g
an
d
Er
ik
,

20
02

),
gr
am

m
at
ic
al
er
ro
rd

et
ec
tio

n
(Y
an
na
ko
ud

ak
is
et
al
.,
20

11
),
co
nj
un

ct
id
en
tifi

ca
tio

n
(F
ic
le
ra

nd
G
ol
db

er
g,

20
16

)
pa
irw

is
e
re
la
tio

ns
sy
nt
ac
tic

de
pe
nd

en
cy

ar
c
pr
ed
ic
tio

n,
e
sy
nt
ac
tic

de
pe
nd

en
cy

ar
c
cl
as
si
fic

at
io
n,
se
m
an
tic

de
pe
nd

en
cy

ar
c
pr
ed
ic
tio

n,
se
m
an
tic

de
pe
nd

en
cy

ar
c
cl
as
si
fic

at
io
n
(O

ep
en

et
al
.,
20

15
),

co
re
fe
re
nc
e
ar
c
pr
ed
ic
tio

n
(P
ra
dh

an
et
al
.,
20

12
)

Te
nn

ey
et
al
.(
20

19
a,
b)

la
be
lin

g
ta
sk
s

pa
rt-
of
-s
pe
ec
h,

co
ns
tit
ue
nt
s,

na
m
ed

en
tit
ie
s,

se
m
an
tic

ro
le
s,

co
re
fe
re
nc
e
(W

ei
sc
he
de
l

et
al
.,
20

13
),
de
pe
nd

en
ci
es

(S
ilv
ei
ra

et
al
.,
20

14
),
se
m
an
tic

pr
ot
o-
ro
le
s(
Ru

di
ng
er

et
al
.,

20
18

,T
ei
ch
er
te
ta
l.,

20
17

),
re
la
tio

n
cl
as
si
fic

at
io
n
(H

en
dr
ic
kx

et
al
.,
20

10
)

Ta
bl
e
2.
5:

Sa
m
pl
e
stu

di
es

w
hi
ch

em
pl
oy
ed

do
w
ns
tre

am
ta
sk
sf
or

ev
al
ua
tin

g
or

in
ve
sti
ga
tin

g
th
e
in
ne
rw

or
k
of

co
nt
ex
tu
al
em

be
dd
in
gs
.

32



Related works

This simplified evaluation method makes the computing cost of the evaluation for SFQA low
by omitting the working process with the external knowledge base. However, it also caused the
problem of ambiguity for evaluating predicted entities and relations. If the final accuracy of
the SFQA system is evaluated by the predicted object like other QAKB datasets, then we need
only to consider whether the predicted object is Jonathan_swift for the given question “who
wrote gulliver’s travels?”. In practice, we need to resolve disambiguation problems both for
the predicted subject and relation. While “who worte?” can be represented in Freebase by a
variety way, such as film.film.story_by, film.film.written_by, and book.written_-
work.author, most of them are treat as a negative weight during training. Petrochuk and
Zettlemoyer (2018) just excluded questions containing ambiguous expressions as unanswerable
questions for calculating the upper bound accuracy. Therefore, the effect of those ambiguous
questions for the trained SFQA system has not been investigated yet.

Serban et al. (2016) and Jiang et al. (2019) commented another issue that questions in Sim-
pleQuestions tend to contain labels of the gold subject and relation directly. It is another
difference between SimpleQuestions and other QAKB datasets. Other QAKB datasets, such as
WebQuestions, tend to express the relation with paraphrasing. For example, a relation peo-
ple.person.profession is written like “what job does ... have?” or “who is ...?” in questions
of WebQuestions. On the contrary, the same relation people.person.profession is written
like “name the profession of ...” in questions of SimpleQuestions. According to Serban et al.
(2016) and Jiang et al. (2019), the creating process for questions is one reason for this phe-
nomenon. When creating questions of SimpleQuestions, crowd workers wrote a question with
the suggested Freebase fact (Bordes et al., 2015). As a result, SimpleQuestions becomes a more
simple dataset for predicting entities and relations than other QAKB datasets, literally.

In this way, we found some issues which make us consider whether the success of Simple-
Questions indicates the success of this task itself in general. This problem, which is called the
robustness of a model, has been studied in other natural language processing fields (Jia and
Liang, 2017, McCoy et al., 2019, Naik et al., 2018, Ribeiro et al., 2020). It is an important
problem since a practical system needs to be robust on outliers in the training data for actual
user queries. However, few studies have examined the robustness of a trained system on question
answering over a knowledge base. In this study, we aim to investigate whether the success of
SimpleQuestions also indicates the success of this task itself in general in the aspect of the inner
working of existing systems.
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Chapter

3
Validating causal relationships between
linguistic knowledge and downstream

tasks

This section presents a novel framework for explaining the inner working of language models
by employing PLSPM, a statistical method for testing causal hypotheses between variables.
First, we introduce the limitation of previous studies and our motivation for employing PLSPM
in evaluating language models. Since we need to examine whether employing PLSPM can
report comparable and reasonable results with previous studies, we conduct the experiment
examining causal hypothesis between linguistic knowledge and accuracies of the downstream task
of NLP, which was proposed in earlier studies. We also introduce causal diagrams representing
causal assumptions of previous studies. As a result of experiments, we find that employing
PLSPM can provide more robust and informative analysis results for the target language model in
understanding relationships between encoded linguistic knowledge and accuracy of downstream
tasks of NLP. Furthermore, PLSPM also reveals that word analogy may contain structural issues
for categorizing questions into linguistic knowledge, such as inflectional morphology.
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3.1 Motivation for employing the statistical method

Previous studies for evaluating language models had been conducted with an observation for few
samples (Liu et al., 2019a, Schnabel et al., 2015, Tenney et al., 2019a,b) or a simple correlation
analysis (Chiu et al., 2016, Rogers et al., 2018, Wang et al., 2019b). While they had contributed
to exploring what linguistic knowledge is encoded on language models, their methodologies have
limitations for explaining the inner working of languagemodels, as we discussed in Section 2.2.3.
For example, Chiu et al. (2016), Rogers et al. (2018), Schnabel et al. (2015), Wang et al. (2019b)
reported conflicting results for the traditional assumption, the accuracy of intrinsic evaluations
are correlated with the accuracy of downstream tasks of NLP, because of small sample sizes of
language models and a change of intrinsic tasks. Rogers et al. (2020) also mentioned that finding
a linguistic pattern on language models can not explain how linguistic knowledge on language
models is used. It indicates that a statistical method is required for more robust analysis and
causal explanation.

We try to explain the inner working of language models as one problem of hypothesis testing.
Previous studies are based onmany intuitive assumptions for languagemodels, such as accuracies
of intrinsic evaluations represent how well linguistic knowledge is encoded, encoded linguistic
knowledge on language models should affect accuracies of downstream tasks of NLP. Those
assumptions can be statistically tested by PLSPM, which we employ in this thesis if proper causal
diagrams and observed variables are prepared. PLSPM has many advantages in understanding
the inner working of language models compared with an observation or correlation analysis.
For example, a PLSPM model provides statistical indexes for verifying whether the suggested
causal diagram is acceptable or not, such as path coefficients for the strength of causal relations,
determination coefficients ('2) for the explanatory power of endogenous variables, andGoodness
of Fit (GoF) for the explanatory power of whole PLSPM model. Also, PLSPM can incorporate
multiple variables in one causal assumption, unlike simple correlation analysis in previous
studies.

In this chapter, we aim to investigate traditional assumptions about the relationship between
linguistic knowledge and the accuracy of downstream tasks on language models. For this
purpose, we suggest a statistical method that can provide a robust and causal explanation for the
inner working of language models.

3.2 Causal diagram
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Figure 3.1: Causal diagrams for BATS-VecEval. All abbreviations are defined in Table 3.1.

When starting PLSPM, defining the causal diagram to be validated is required at first. In our case,
the causal diagram should consist of causal relationships between encoded linguistic knowledge
and accuracies of downstream tasks on the same language model. Our main causal hypothesis is
that the accuracies of downstream tasks can be explained by the accuracy of intrinsic evaluation
with causal relations. This hypothesis also implies that the intrinsic evaluation can measure
encoded linguistic knowledge on the language model, another assumption from previous studies
(Baroni et al., 2014, Batchkarov et al., 2016a). Therefore, observed variables for our causal
diagram should be accuracies of intrinsic evaluations and downstream tasks.

We prepare BATS (Gladkova et al., 2016), one dataset of word analogy task, and VecEval (Nayak
et al., 2016) and SentEval (Conneau and Kiela, 2018), toolkits containing downstream tasks of
NLP, following experimental settings of previous studies (Chiu et al., 2016, Rogers et al., 2018,
Wang et al., 2019b). Note that we do not useword similarity datasets like previous studies (Baroni
et al., 2014, Chiu et al., 2016, Schnabel et al., 2015), because of the ambiguous definition of
similarity and the problem of inter-annotator agreement on the dataset (Batchkarov et al., 2016a).
The BATS dataset consists of four linguistic categories containing ten subcategories, such as
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Figure 3.2: Causal diagrams for BATS-SentEval. All abbreviations are defined in Table 3.1.

inflectional morphology, derivational morphology, lexicography knowledge, and encyclopedia
knowledge. Following Gladkova et al. (2016), we assume that each linguistic category is one
latent variable that reflects the accuracies of its ten subcategories for the measurement model in
our causal diagrams.

It has a variety of advantages in estimating PLSPM models to bind subcategories of BATS with
one latent variable. First, measuring one latent variable by various observed variables makes the
quality of measured one, encoded linguistic knowledge in this case, more robust and reliable. We
can examine whether the structure of linguistic knowledge on the BATS dataset can be applied
to word embedding by investigating the reliability of the measurement model. Moreover, we can
reduce the number of parameters in the PLSPM model, which allows us to fit the model with
fewer samples.

Note that we use the vector offset method (Mikolov et al., 2013b) to solve the BATS dataset,
well known as the Man + King = Woman + ?. While Gladkova et al. (2016) suggested a new
method LRCos, applying supervised learning to predict the answer term, we do not use it in
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Figure 3.3: Causal diagram for hyperparam-BATS. All abbreviations are defined in Table 3.1
and Table 3.2.

our experiments. Because we intend to avoid the effectiveness of machine learning methods for
evaluating how well linguistic knowledge is embedded.

For downstream tasks, we employ the VecEval (Nayak et al., 2016) and SentEval (Conneau
and Kiela, 2018) datasets. They classified their employed downstream tasks into NLP research
areas, more concretely syntactic and semantic properties in VecEval, and classification, natural
language inference, semantic textual similarity, and paraphrase detection in SentEval. We
design latent variables for downstream tasks with VecEval and SentEval in the same way as for
BATS. For example, the latent variable for syntactic properties has POS tagging accuracy and
chunking as observed variables. Table 3.1 lists details for the latent and observed variables from
BATS, VecEval, and SentEval. Hereafter, we refer to the PLSPM model using the BATS and
VecEval datasets as BATS-VecEval, and to the one using the BATS and SentEval datasets as
BATS-SentEval. Figure 3.1 and Figure 3.2 show our causal diagrams for BATS-VecEval and
BATS-SentEval.

In addition, we investigate the effectiveness of the hyperparameters of training language models
for encoding linguistic knowledge. While Levy et al. (2015) and Lai et al. (2016) already reported
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that the hyperparameters of word embedding have a critical role in the accuracies of intrinsic
evaluation and downstream tasks, they only conducted correlation analysis. We examine a causal
diagram consisting of hyperparameters and intrinsic evaluation using BATS. We prepare four
variables for the hyperparameter, including training algorithm, corpus, dimension, and context
window, as shown inTable 3.2. Figure 3.3 presents our causal diagram involving hyperparameters
and BATS. Note that the hyperparameters are independent variables with respect to each other,
and we do not bind them as one latent variable. Moreover, because they include non-metric
variables such as the algorithm and corpus, we use transformed scores of the hyperparameters
during PLSPM estimation, following Russolillo (2012). We refer to the PLSPM model for the
above causal diagram as hyperparam-BATS.
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Hyperparameter List
algorithm (ALG) CBOW, skipgram, fastText
corpus (COR) Wikipedia, New York Times
dimension size (DIM) 50, 100, 150, 200, 250, 300, 350, 400, 450, 500
context window (WIN) 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

Table 3.2: List of hyperparameters for training word embeddings.

Furthermore, we incorporate hyperparameters into BATS-VecEval and BATS-SentEval as illus-
trated in Figure 3.4 and Figure 3.5. Note that we do not directly connect the latent variables
of hyperparameters with the latent variables of downstream tasks in our causal diagram. In
other words, we assume that the effectiveness of hyperparameters for downstream tasks can
be explained only through the accuracies of intrinsic evaluation, which implies the ability of
linguistic knowledge. Our causal diagram follows the ideal assumption that intrinsic evaluation,
namely, that intrinsic evaluation examines the general quality of word embedding; therefore, it
should also predict the accuracy of downstream tasks. We aim to examine this hypothesis with
our PLSPM models using the above causal diagrams.

3.3 Experimental settings

When fitting a PLSPM model, both the causal diagrams and the observed variables are required
as input. According to previous studies, we train a number of word embeddings with various
sets of hyperparameters, according to previous studies (Chiu et al., 2016, Levy et al., 2015,
Rogers et al., 2018). Table 3.2 lists the hyperparameters used for increasing the number of word
embeddings. For other hyperparameters, we use the same values for all word embeddings, and
we use the fixed training seed to prevent random effects of initialization. As a result, we obtain
600 word embeddings. Hyperparameters of word embedding have already been reported to
affect the accuracies of intrinsic evaluation and downstream tasks significantly (Lai et al., 2016,
Levy et al., 2015). We thus regard the result of one task with one word embedding as one data
sample. Since we prepare results of solving each dataset by each word embedding model, our
observed variable is a 600-dimension vector consisting of the results of BATS, VecEval, and
SentEval on 600 word embeddings.

Note that the downstream tasks in VecEval and SentEval use various performance indicators,
such as the accuracy, F1 score, and Pearson’s A . However, we do not unify or transform them
because we need its performance indicator of each dataset as suggested by the original papers.
Therefore, we do not change the values of indicators except through normalization. Furthermore,
we distinguish the two causal diagrams for VecEval and SentEval and do not merge them. The
main reason is that they use different neural network models for solving downstream tasks. We
should avoid model effects for observed variables because we do not consider any impact of a
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INF DER LEX ENC '2

SYN - 0.773 1.310 - 0.656
SEM - -0.189 - 0.771 0.546

Table 3.3: Path coefficients for each path and '2 for the endogenous latent variables on
BATS-VecEval. Paths with ? > 0.05 are omitted.

machine learningmodel in our PLSPMmodels. Tominimize the effect of a neural networkmodel,
we turned off fine-tuning option when running the evaluation script for VecEval. Moreover, we
used a logistic regression model when running the evaluation script for SentEval.

We use the R package plspm1 for our experiments, and for reproducibility we share our experi-
mental scripts and all observed variable data2.

3.4 Experiments

3.4.1 Relationship between accuracies of intrinsic evaluation and downstream
tasks

First, we examine the reliability of the measurement model in BATS-VecEval. Cronbach’s U and
Dillon–Goldstein’s d, for validating the measurement model of BATS-VecEval, are both larger
than 0.7, indicating that the measurement model of BATS-VecEval is acceptable. The GoF of
BATS-VecEval is 0.6484, which is also considered an acceptable value (Akter et al., 2011).
Therefore, we can accept the causal hypothesis of the measurement model in BATS-VecEval that
questions in subcategories of BATS and VecEval can represent the same latent variable.

We can interpret the effectiveness of a path between latent variables with the path coefficient for
validating the structural model. In BATS-VecEval, there are eight paths between latent variables
for BATS and latent variables for VecEval. Table 3.3 lists their coefficients and the '2 values for
SYN (Syntactic properties tasks in VecEval) and SEM (Semantic properties tasks in VecEval).
Four paths, namely, DER (Derivational morphology questions in BATS)-SYN, DER-SEM,
LEX (Lexicography knowledge questions in BATS)-SYN, and ENC (Encyclopedia knowledge
questions in BATS)-SEM, have ? < 0.05, indicating significant causal relations. The high path
coefficients for DER-SYN and ENC-SEM are intuitively understandable because knowledge of
derivational morphology helps syntactic analysis tasks such as POS tagging, and encyclopedia
knowledge is indispensable in semantic analysis. The relation between lexicography and syntax
is not trivial, but it has already been reported that accuracy on SimLex-999 (Hill et al., 2015), a
dataset of word similarity to distinguish lexicographical relations, is correlated with POS tagging
and chunking (Chiu et al., 2016). Our result is consistent with that observation.

1https://github.com/gastonstat/plspm
2https://github.com/mynlp/embedding-evaluation-plspm
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Figure 3.6: The estimated PLSPM model by the accuracy of BATS and VecEval

Another interesting observation is that INF, the latent variable for inflectional morphology,
does not significantly affect the downstream tasks in VecEval. However, we further discuss
inflectional morphology in Chapter 3.4.3. Among the rejected paths, the rejection of the path
between lexicography knowledge and tasks of semantic properties seems counter-intuitive. We
hypothesize that themain reason derives from the components of SEM; named entity recognition,
sentiment classification, question classification, and natural language inference. Understandably,
lexicography knowledge may not have enough explanatory power for some tasks for the SEM
latent variable, such as named entity recognition. Figure 3.6 represents the estimated PLSPM
model based on the suggested causal diagram for BATS and VecEval.

Next, we investigate BATS-SentEval in the same way. For the measurement model, both
Cronbach’s U and Dillon–Goldstein’s d are larger than 0.7, indicating that the assumption of
the causal diagram between the observed and latent variables is acceptable. The GoF of BATS-
SentEval is 0.711, which is higher than that of BATS-SentEval. It implies that the accuracies
of BATS can better explain the accuracies of SentEval than those of VecEval. Therefore, we
conclude that BATS-SentEval is also acceptable.

As listed in Table 3.4, in the structural model of BATS-SentEval, all paths are accepted with
? < 0.05, except INF (Inflectional morphology questions in BATS) -NLI (Natural language
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INF DER LEX ENC '2

CLA -0.565 1.140 1.490 0.716 0.619
NLI - 0.368 0.640 0.647 0.807
STS - -0.397 -0.216 0.837 0.874
PD -0.358 -0.812 -0.321 0.448 0.482

Table 3.4: Path coefficients for each path and '2 for the endogenous latent variables on
BATS-SentEval. Paths with ? > 0.05 are omitted.

ALG COR DIM WIN '2

INF -0.312 -0.213 0.580 -0.249 0.541
DER 0.969 -0.031 0.136 -0.068 0.963
LEX -0.937 -0.106 0.150 -0.060 0.915
ENC -0.861 0.268 0.218 0.072 0.865

Table 3.5: Path coefficients for each path and '2 for the endogenous latent variables on
hyperparam-BATS.

inference tasks in SentEval) and INF-STS (Semantic textual similarity tasks in SentEval). The
results show that ENC, for encyclopedia knowledge, shows high path coefficients with all latent
variables for the SentEval dataset, as SEM shows for VecEval. Among the latent variables of
SentEval, classification tasks are well explained with derivational morphology, lexicography
knowledge, and encyclopedia knowledge. Because most of the CLA (Classification tasks in
SentEval) latent variable consists of sentiment analysis, this may indicate that such linguistic
knowledge is helpful for sentiment analysis tasks. However, the results also show that NLI
and STS are the best explained latent variables by the accuracy of BATS, according to the '2

values. When '2 > 0.8, it indicates an endogenous latent variable is excellently explained by its
independent latent variables. Therefore, we argue that encyclopedia knowledge is strong enough
to explain the evaluation results of semantic textual similarity, while the path coefficients of
DER-STS and LEX-STS are low.

In contrast, PD (Paraphrase detection tasks in SentEval) shows the lowest '2 value in BATS-
SentEval. Although the value is not under the cut-off for rejecting this latent variable, it may
indicate that the accuracy of BATS does not sufficiently explain the paraphrase detection task.
Figure 3.7 represents the estimated PLSPM model based on the suggested causal diagram for
BATS and SentEval.

3.4.2 Impact of hyperparameters

As Levy et al. (2015) and Lai et al. (2016) reported, hyperparameters for the training of word
embedding affect the performance on solving downstream tasks. We thus analyze the effect of
hyperparameters by adding new latent variables for hyperparameter values to the causal diagrams,
as shown in Figure 3.3, Figure 3.4 and Figure 3.5.
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Figure 3.7: The estimated PLSPM model by the accuracy of BATS and SentEval

First, we examine hyperparam-BATS. Note that ALG, COR, DIM, and WIN consist of one
observed variable; therefore, we do not need to validate the measurement model of hyperparam-
BATS. Other latent variables, such as INF, DER, LEX, and ENC, show higher Cronbach’s U and
Dillon–Goldstein’s d values than 0.7, as with BATS-VecEval and BATS-SentEval. Moreover,
the GoF of hyperparam-BATS is 0.7521, the best value among our PLSPM models. Therefore,
it is evident for hyperparam-BATS that the hyperparameters of word embedding are enormously
influential for the accuracy of intrinsic evaluation.

Table 3.5 lists that the path coefficients and '2 values for the structural model on hyperparam-
BATS. There is no rejected path with ? > 0.05, which indicates that all the hyperparameters
impact the tasks in the BATS dataset. Training algorithms have especially strong relations with
all categories of the BATS dataset, as indicated in the table. All hyperparameter values are
processed with the nominal scaling (Russolillo, 2012). It means that we can not use the sign of
path coefficients for interpretation. Therefore, we can conclude that the training algorithm is the
most substantial factor for explaining the accuracies of intrinsic evaluation on hyperparam-BATS
because of the high intensity of its path coefficient. Figure 3.8 represents the estimated PLSPM
model based on the suggested causal diagram for hyperparameters and BATS.

Other hyperparameters are much weaker for predicting latent variables in path coefficients than
the training algorithms. For encyclopedia knowledge, the path coefficients of the corpus and
dimension are relatively high. It implies that the accuracies of encyclopedia knowledge are

46



Experiments

INF

DER

LEX

ENC

-0.312

0.969

-0.937
-0.861

ALG
-0.213

-0.031

-0.106

0.268

COR

0.580

0.136

0.150

0.218

-0.249

-0.068

-0.060

0.072WIN

Algotithms

Corpora

Dimension
size

Context
window

regular
plurals 

3ps.sg : past

hypernyms
- animals 

antonyms -
binary

verb+ment

noun+less 

capitals

male:female

DIM

R2=0.865

R2=0.915

R2=0.963

R2=0.541

Goodness-of-Fit=0.7521

Figure 3.8: The estimated PLSPM model by the accuracy of BATS and hyperparameters

ALG COR DIM WIN '2

INF -0.687 0.281 0.353 -0.127 0.691
DER 0.974 - 0.119 -0.051 0.966
LEX -0.941 -0.061 0.153 -0.050 0.916
ENC -0.878 0.226 0.212 0.062 0.871

INF DER LEX ENC '2

SYN -0.335 0.953 1.390 0.497 0.688
SEM -0.447 - 0.183 0.992 0.578

Table 3.6: Path coefficients for each path and '2 for the endogenous latent variables on
hyperparam-BATS-VecEval. Paths with ? > 0.05 are omitted.

more related to the training corpus and dimension than those of other linguistic knowledge.
Meanwhile, most latent variables of intrinsic evaluation have salient '2 values greater than
0.85, with only the '2 value for inflectional morphology being low, at 0.541. This problem is
investigated in the next chapter.

Next, we investigate hyperparam-BATS-VecEval and hyperparam-BATS-SentEval to incorporate
hyperparameters into the analysis of relationships between accuracies of BATS and downstream
tasks. The main causal hypothesis of both hyperparam-BATS-VecEval and hyperparam-BATS-
SentEval is that the effectiveness of hyperparameters on downstream tasks can be explained
through the accuracy of intrinsic evaluation. To validate this hypothesis, we focus on the '2

and GoF values of hyperparam-BATS-VecEval and hyperparam-BATS-SentEval. If our causal
hypothesis helps explain the accuracy of downstream tasks, we should find that the '2 and GoF
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ALG COR DIM WIN '2

INF -0.456 - 0.540 -0.210 0.545
DER 0.976 - 0.113 -0.043 0.967
LEX -0.943 -0.059 0.147 -0.045 0.917
ENC -0.888 0.196 0.207 0.063 0.874

INF DER LEX ENC '2

CLA - 0.991 1.300 0.204 0.579
NLI - 0.232 0.516 0.545 0.810
STS - -0.455 -0.190 0.689 0.871
PD -0.555 - 0.430 0.282 0.522

Table 3.7: Path coefficients for each path and '2 for the endogenous latent variables on
hyperparam-BATS-SentEval. Paths with ? > 0.05 are omitted.

values of hyperparam-BATS-VecEval and hyperparam-BATS-SentEval are higher than those of
BATS-VecEval and BATS-SentEval.

Tables 3.6 and 3.7 list the path coefficients of hyperparam-BATS-VecEval and hyperpara
m-BATS-SentEval. For both models, the results show that the '2 values of most latent variables
increase. Specifically, both SYN and SEM in hyperparam-BATS-VecEval have better '2 values
than they do in BATS-VecEval. Moreover, Table 3.8 lists the GoF values for all the PLSPM
models. The GoF of hyperparam-BATS-VecEval is 0.7445, showing salient improvement over
the value for BATS-VecEval, 0.6484. Therefore, we can conclude that downstream tasks in
VecEval are more explainable with our causal hypothesis on hyperparam-BATS-VecEval.

On the other hand, it may not be easy to accept the same conclusion as that for hyperparam-
BATS-VecEval on hyperparam-BATS-SentEval. As listed in Table 3.7, the '2 values of CLA and
STS on hyperparam-BATS-SentEval decrease below those on BATS-SentEval. The '2 value of
PD increases but is still the lowest '2 value for hyperparam-BATS-SentEval. It indicates that the
structure of hyperparam-BATS-SentEval is not suitable in explaining many tasks in SentEval.
Though the GoF of hyperparam-BATS-SentEval is higher than that of BATS-SentEval, this
result depends on the structural equations between the hyperparameters and BATS, not on those
between BATS and SentEval.

As a result, our causal hypothesis, the effectiveness of hyperparameters for downstream tasks
can be explained only through the accuracy of intrinsic evaluation, is not proper for explaining
the accuracy of SentEval. This result implies two possible interpretations: that the accuracies of
downstream tasks can be explained directly by the hyperparameters or that the tasks of intrinsic
evaluation in BATS are not sufficient to explain the accuracy of SentEval.
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PLSPM model Goodness-of-Fit
BATS-VecEval 0.6484
BATS-SentEval 0.7110
hyperparam-BATS 0.7521
hyperparam-VecEval 0.7445
hyperparam-SentEval 0.7495

Table 3.8: GoF values for our PLSPM models.

3.4.3 Discussion with respect to previous studies

Our analysis using PLSPM reveals that the accuracy of intrinsic evaluation in BATS can explain
the accuracy of downstream tasks both in VecEval and SentEval. Some of these relations were
already reported in previous literature using correlation analysis. For example, the accuracy
of POS tagging and chunking can be explained by derivational morphology and lexicography
knowledge as reported in Chiu et al. (2016), Rogers et al. (2018), and Wang et al. (2019b).
Similarly, classification and natural language inference tasks require derivational morphology,
lexicography knowledge, and encyclopedia knowledge, which was also reported in Rogers et al.
(2018) and Wang et al. (2019b).

Meanwhile, our PLSPMmodels also suggest some counter-intuitive relations between accuracies
of intrinsic evaluation and downstream tasks. We already explained the reasons for some results
that conflict with previous studies, such as the lexicography knowledge and NLP tasks for
semantic properties in VecEval. The most significant problem is that, in this paper, the latent
variable of inflectional morphology shows many rejected structural equations with ? > 0.05,
negative path coefficients on accepted structural equations, and relatively low '2 values in the
overall PLSPM models. It indicates that the accuracy of inflectional morphology in BATS may
not have sufficient explanatory power for downstream tasks. This result conflicts with the results
of previous studies, which reported that the accuracies of inflectional morphology correlate with
the accuracy of downstream tasks (Rogers et al., 2018, Wang et al., 2019b).

The following reasons can explain this issue. First, we suppose that differences in the experi-
mental setting for word embedding lead to conflicting results on inflectional morphology. For
example, the accuracy of inflectional morphology in previous studies was calculated using the
LRCos method (Gladkova et al., 2016), which differs from our experimental setup. In addition,
the sample space of word embedding also differs, especially the conditions of the training al-
gorithm and corpus. We leave further analysis on the effectiveness of those differences in our
PLSPM models for future work.

Finally, we also investigate the relationships between the subcategories of inflectional morphol-
ogy and the estimated score of INF in our PLSPM models. The left side of Figure 3.9 shows
a plot with the loading of the observed variables, which is a correlation coefficient between the
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Figure 3.9: Left one presents loading plot of the observed variables for the INF latent variable.
A red arrow indicates a negative loading. Right one presents spearman correlation heatmap
for the INF questions in BATS. Here, I01 and I02 are noun plural questions, I03 and I04 are

degrees of adjective inflection, and the other questions are about verbs.

scores of latent and observed variables. The results show that some observed variables have
negative loadings, which indicates that subcategories of inflectional morphology on BATS may
not correlate well with each other. We can find the same problem in correlation analysis among
the observed variables of INF, as shown on the right side of Figure 3.9. The accuracies for noun
plural questions and degrees of adjective inflection do not correlate well. It implies that word
embedding may encode the inflectional morphology for nouns and adjectives in different ways,
unlike the structure of the BATS dataset. Therefore, we assume that it is the main reason why
the INF latent variable is not estimated well in our PLSPM models.

3.5 Summary

In this chapter, we employ the PLSPMmethod to explain the causal relationship between encoded
linguistic knowledge and the accuracy of downstream tasks on word embedding models. The
PLSPMmethod has an advantage in investigating comprehensive relations with causal diagrams
suggested by the researcher. We have found that our suggested PLSPM models enable statistical
analysis that is hard for correlation analysis, such as verifying the existence of causal relations
between intrinsic evaluation and downstream tasks, the explanatory power of intrinsic evaluation
for downstream tasks, and the effectiveness of hyperparameters on intrinsic evaluation and
downstream tasks. As a result, we have proven causal hypotheses in previous studies that the
accuracy of intrinsic evaluation can explain the accuracy of downstream tasks. For example, the
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accuracy of downstream tasks about syntactic properties, such as POS-tagging and chunking,
can be explained by the accuracy of linguistic knowledge for derivational morphology and
lexicography. In this way, we explain the accuracy of 20 downstream tasks with the accuracy
of one word analogy dataset representing four linguistic knowledge. Furthermore, Our PLSPM
models also provided additional valuable findings, such as the effectiveness of hyperparameters
to the accuracy of downstream tasks and the structural problem of inflection knowledge in the
BATS dataset.

Camacho-Collados and Navigli (2016a) argued that previous studies on relations between intrin-
sic evaluation and downstream tasks have salient limitations in terms of generality. We believe
that our contribution is to employ a statistical methodology to investigate causal relationships
between intrinsic evaluation and downstream tasks to prove themwith more generality. However,
we only handle basic experimental settings on this issue, such as word embeddings and simple
downstream tasks, which can be solved by one dense layer. In practice, downstream tasks of
NLP require a more complicated system consisting of multiple modules or involving external
resources. Furthermore, word embeddings have been replaced with contextual embeddings, a
more strong pretrained language model such as BERT. In the next chapter, we start an empirical
analysis as the preparation involving practical settings for downstream tasks into our PLSPM
framework.
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Chapter

4
Probing the causal relationship

between linguistic knowledge and the
accuracy of a SFQA system

In this chapter, we investigate the inner working of the existing system for SFQA and examine
its robustness. We are interested in whether our PLSPM framework is also applicable both
for contextual embeddings and complicated systems for practical downstream tasks. For this
purpose, we select SFQA as the target downstream task since this task requires a modularized
system and external resources, such as the knowledge base, to be solved. Moreover, we employ
the BERT-based system for SFQA proposed by Lukovnikov et al. (2019). Involving 24 BERT
models, two evaluation toolkits for BERT, and three SFQA datasets, we conduct PLSPM analysis
to investigate the inner working of the BERT-based SFQA system when solving simple factoid
questions. As a result, our PLSPM models show that accuracy of the BERT-based system has
a significant coefficient with latent variables for surface and syntactic features. It indicates that
the BERT-based system for SFQA strongly depends on the surface and syntactic features of the
dataset for solving given questions.
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4.1 Why apply PLSPM to SFQA systems?

In the previous chapter, we prove that our PLSPM framework can explain the accuracy of 20
downstream tasks by encoded linguistic knowledge on language models. However, analyzed
downstream tasks in previous chapters are too simple tasks that can usually be solved by one
dense end-to-end layer. Also, we do not consider contextual embeddings, which have become
an indispensable tool for NLP recently, such as BERT (Devlin et al., 2019). We thus expand the
target of our PLSPM framework involving the more complex downstream task, SFQA.

SFQA is one sub-task of QAKB since this task only handles questions that can be solved with
a single fact (Bordes et al., 2015). While it is a simplified version of QAKB, existing systems
proposed for SFQA also consist of submodules including entity linking, relation prediction,
and evidence integration (Huang et al., 2019, Lukovnikov et al., 2019, Mohammed et al., 2018,
Petrochuk and Zettlemoyer, 2018). In addition, submodules of SFQA, including entity linking
and relation prediction, should involve external information in Freebase since they need to predict
entities or relations in Freebase from a given question. Therefore, SFQA is a more complicated
and practical downstream task than 20 downstream tasks we employed in the previous chapter.

Another reason for selecting SFQA is recent arguments for the benchmark dataset of SFQA.
Lukovnikov et al. (2019) contended that existing systems for SimpleQuestions already reach
the upper bound accuracy of SimpleQuestions. However, the upper bound accuracy of Simple-
Questions is calculated by excluding ambiguous questions for predicting the gold subject and
relation. Furthermore, Serban et al. (2016) and Jiang et al. (2019) suggested that questions in
SimpleQuestions tend to contain labels of the gold subject and relation compared with other
QAKB datasets. It is the reason why we have an interest in investigating the inner working of
existing SFQA systems for solving simple factoid questions.

In this chapter, we examine whether we can apply our PLSPM framework to more complicated
language models and downstream tasks. By employing our PLSPM framework, we aim to
explain the causal relationship between encoded linguistic knowledge and the accuracy of SFQA
on BERT. We then inspect whether PLSPM models can provide an informative explanation for
the inner working of BERT like our previous study.

4.2 Causal diagram

In this chapter, we investigate the inner working of the existing SFQA system by our proposed
PLSPM framework. Our PLSPM analysis assumes that the same language model solves intrinsic
evaluations measuring encoded linguistic knowledge on the language model and downstream
tasks. Following this assumption, we employ a BERT-based SFQA system (Lukovnikov et al.,
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Causal diagram

Dataset-Category as a latent variable Tasks as an observed variable
SentEval-Surface Information (SUR) Length, Word Content
SentEval-Syntactic Information (SYN) Tree Depth, Bigram Shift, Top-constituent
SentEval-Semantic Information (SEM) Tense, Subj Number, Obj Number, Odd Man

Out, Coordination Inversion
GLUE-Single-Sentence (SS) CoLA, SST-2
GLUE-Similarity and Paraphrase (SP) MRPC, STS-B,���QQP
GLUE-Inference (IF) MNLI, QNLI, RTE,����WNLI
SFQA-Entity Detection (ED) Entity Detection
SFQA-Entity Linking (EL) Entity Linking
SFQA-Relation Prediction (RP) Relation Prediction
SFQA-Evidence Integration (EI) Evidence Integration

Table 4.1: List of tasks used for PLSPM models. Tasks with the strikethrough line are not
used in our experiments because of low correlation coefficients.

2019) for our PLSPM framework. Other SFQA systems, such as Mohammed et al. (2018),
Petrochuk and Zettlemoyer (2018) and Huang et al. (2019), are not easy to divide the effect of
their encoder networks and language models. Meanwhile, the system proposed by (Lukovnikov
et al., 2019) consists of a BERT model and a decoder of one dense layer. Therefore, we can
follow our assumption for the PLSPM analysis focusing encoded linguistic knowledge on BERT
models.

For the PLSPM analysis, causal assumptions for target variables should be expressed as a causal
diagram. We follow the traditional assumption that the accuracy of intrinsic evaluation can
explain accuracies of downstream tasks like Chapter 3. Referring to previous studies (Hao et al.,
2019, Jawahar et al., 2019, Kovaleva et al., 2019, Schneider et al., 2020), we employ SentEval
(Conneau and Kiela, 2018) and GLUE (Wang et al., 2019a) as intrinsic evaluations to examine
accuracies of encoded linguistic knowledge in BERT. Note that previous studies usually called
SentEval and GLUE as “probing tasks”. However, we treat them as one toolkit for the intrinsic
evaluation in this thesis since we examine encoded linguistic knowledge on language models by
employing SentEval and GLUE. Like BATS, SentEval and GLUE also classify their subtasks
into linguistic categories. We follow their classification when suggesting latent variables in our
causal diagram.

The system proposed by Lukovnikov et al. (2019) consists of four submodules, including entity
detection, entity linking, relation prediction, and evidence integration, similar to other QAKB
and SFQA systems. In our suggested causal diagrams, we treat each submodule as one latent and
observed variable. In other words, the accuracy of each submodule represents the performance
for each submodule in causal diagrams. Since each submodule on the system proposed by
Lukovnikov et al. (2019) has different characteristics distinguishing each other, we do not bind
them together.
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Figure 4.1: Causal diagrams for probing the inner working of the BERT-based system involving
SentEval. Observed variables are omitted.
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Figure 4.2: Causal diagrams for probing the inner working of the BERT-based system involving
GLUE. Observed variables are omitted.

Among submodules, only two submodules depend on the machine learning algorithm; entity
detection, predicting the span of entity for a given question, and relation prediction, predicting
the gold relation for a given question. We thus link encoded linguistic knowledge on language
models with only entity detection and relation prediction in our causal diagram. Since the
purpose of entity linking is to link the predicted span of a given question with the predicted
entity in Freebase, we set the causal relationship between the accuracy of entity detection and the
accuracy of entity linking. Evidence integration predicts the most suitable pair of the predicted
entity and relation from entity linking and relation prediction results. Therefore, we set causal
paths both from accuracies of entity linking and relation prediction to the accuracy of evidence
integration. Table 4.1 shows details of employed intrinsic evaluations and submodules of the
BERT-based SFQA system.

In this way, we suggest causal diagrams as Figure 4.1 and Figure 4.2, which consists of causal
hypotheses among encoded linguistic knowledge and SFQA. Our PLSPM models based on
Figure 4.1 and Figure 4.2 aim to estimate structural equations for the below hypotheses.

• Accuracies of intrinsic evaluations, SentEval and GLUE, can explain the accuracy of entity
detection and the accuracy of relation prediction.

• The accuracy of entity detection can explain the accuracy of entity linking.
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• The accuracy of entity linking and the accuracy of relation prediction can explain the
accuracy of evidence integration.

While previous studies have reported the significant effect of training parameters on BERT
(Karthikeyan et al., 2020, Turc et al., 2019), we do not include the latent variable for representing
training parameters in this experiment. As we will explain in the 4.3, we prepare 24 BERT
models for fitting PLSPM models based on suggested causal diagrams. Since the sample size is
not large, we do no include the latent variable for training parameters to decrease the parameters
of the PLSPM model to be trained.

4.3 Experimental settings

We employ three QA datasets over a knowledge base as our target datasets to investigate the inner
working of the BERT-based system. These datasets were selected because they share a common
knowledge base, Freebase, and a large portion of each dataset consists of factoid questions, which
are the main focus of this chapter. In addition, we intend to avoid that our PLSPM analysis only
focuses on a specific dataset, SimpleQuestions. We aim to the inner working of the BERT-based
system when solving simple factoid questions generally.

In this chapter, we prepare FreebaseQA (Jiang et al., 2019), SimpleQuestions (Bordes et al.,
2015), and WebQSP (Yih et al., 2016). While all of them were proposed for QAKB, they
have a variety of differences, such as the size of each dataset, how to create questions, and the
required number of facts to be solved. Because we aim to evaluate the behavior of a single
model across these three datasets, we perform some preprocessing on each dataset to eliminate
those factors. Specifically, from all datasets, we filter questions that do not match the domain
of SimpleQuestions; that is, we remove the questions that involve a multi-hop path or multi
constraints, such as "What character did Natalie Portman play in Star Wars?" in WebQSP, and
questions with entities or relations that are outside of FB2M.

Table 4.2 shows the resulting statistics of each dataset.1 Following Berant et al. (2013), we take
20% of the training split as the validation split for WebQSP.We abbreviate these three datasets as
FBQ, WQ, and SQ, respectively. Table 4.3 summarizes how much of the relations in one dataset
(validation split) are unseen (i.e., zero-shot) in another dataset (training split). Since zero-shot
prediction is hard for this task (Wu et al., 2019), we use these as a rough estimate of the difficulty
of each dataset.

SentEval, GLUE, and the BERT-based system requires BERT models for our causal diagrams.
However, trainingBERTmodels frompre-training needs high computational costs. Therefore, we

1The reason for the decrease in the first step for FreebaseQA is that it contains two-hop questions involving a
mediator node in Freebase, which we exclude from the target.
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Dataset Original Answerable by FB2M
Training Valid Test Training Valid Test

FreebaseQA 20,358 3,994 3,996 10,427 2,048 2,102
SimpleQuestions 75,910 10,845 21,687 75,895 10,843 21,680
WebQSP 2,478 620 1,639 1,292 323 861

Table 4.2: Data statistics after preprocessing (number of examples). We use “Answerable by
FB2M” subset in this study.

Training Validation # of questions
FBQ FBQ 71 ( 3.47%)

SQ 2,582 (23.87%)
WQ 52 (16.15%)

SQ FBQ 137 ( 6.69%)
SQ 71 ( 0.66%)
WQ 19 ( 5.90%)

WQ FBQ 1,068 (52.15%)
SQ 6,862 (63.45%)
WQ 26 ( 8.07%)

Table 4.3: Numbers of exampleswith unseen relations across one training set and one validation
set. The number in a bracket denotes a ratio in the validation split. For example, 71 (3.47%)
examples in the valid set of FBQ contain relations not appearing in the training set of FBQ.

employ 24 BERTmodels fromTurc et al. (2019) for this experiment. Even though PLSPM allows
a lower sample size compared with other structural equation modeling methods (Sanchez, 2013,
Tenenhaus et al., 2005), we do not combine SentEval and GLUE into one PLSPMmodel at once
to decrease the parameters of PLSPM models. Furthermore, we respectively estimate PLSPM
models for FBQ, SQ, and WQ. Therefore, we prepare 6 PLSPM models in total. Hereinafter,
we use the following naming convention for a PLSPM model estimated with accuracies of the
specific probing dataset and the BERT-based system for SFQA dataset: “the name of probing
dataset”-“the name of the dataset for SFQA”. For example, SentEval-FBQmeans that this PLSPM
model is estimated with the accuracy of SentEval and the accuracy of the BERT-based system
for the FBQ dataset.

Note that we implement the BERT-based system by ourselves because the official github repos-
itory of Lukovnikov et al. (2019) is expired. For implementation, we follow instructions in the
original paper as much as possible, except for the network design of entity detection and relation
prediction. In the original paper, they combined two submodules, entity detection and relation
prediction, into one classifier for improving accuracies of the proposed system. However, we
divide those submodules like other SFQA systems when we implement this system. We intend
to investigate respectively inner workings of the BERT-based system predicting the span of the
predicted entity and the predicted relation. Hereinafter, we call this system BertQA since we
distinguish this system from the suggested system by Lukovnikov et al. (2019).
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The classifier for entity detection, relation prediction, SentEval, and GLUE consists of one dense
layer in this experiment. We use the fixed seed to avoid random effects of initialization in the
training phase. Meanwhile, we allow fine-tuning when solving those tasks since the accuracy
of them drops significantly without fine-tuning. Previous studies have reported that encoded
linguistic information of the first layer is related to the received information at first (Lin et al.,
2019) and encoded linguistic information on each layer has changed gradually when training
(Liu et al., 2019a). Following previous studies, we suppose that fine-tuning for only one dense
layer may not hurt encoded linguistic knowledge on BERT significantly. This issue is still
controversial, for example Merchant et al. (2020) supported our assumption while Singh et al.
(2020) and Mosbach et al. (2020) argued that fine-tuning may hurt encoded linguistic knowledge
on language models. We leave further examination for this issue as one of our future works.

For observed variables in our PLSPM models, we prepare the results of SentEval, GLUE, and
submodules of BertQA with 24 BERT models. Note that we do not conduct any preprocessing
for observed variables except for normalization, while they use many kinds of performance
indicators, such as Top-= accuracy, F1-score, Matthew’s Corr. For our causal diagram, we need
the original indicator defined for measuring the performance on each task. Furthermore, we also
follow the structure of tasks written by their original paper to composite latent variables, only
except for QQP and WNLI in the GLUE dataset. They show low correlation coefficients with
other tasks in the same category. We already discuss how the low correlation coefficient among
observed variables for the same latent variable affects the explainability of a whole estimated
PLSPM model. Therefore, we do not use QQP and WNLI for our experiment.

Why the accuracy of QQP and WNLI shows a low correlation coefficient with the accuracy
of other datasets? For this issue, we have the below hypotheses. First, questions on QQP
tend to be noisy and duplicated following to previous study and our investigation. Sharma
et al. (2019) reported that preprocessing for eliminating non-ASCII character, punctuation, and
numbers make the number of vocabulary in QQP about half. They also reported that about
80% of questions on QQP appear more than once, including 158 appearances for one sentence.
The above features may be harmful when BERT tries to understand semantic information of a
given utterance. Furthermore, we found that sometimes a question on QQP shows too similar
sentences for judging their similarity. For example, one sentence pair in QQP is “What are the
best books on cosmology?” and “Which is the best book for cosmology?”. Since their difference
in the utterance is only “What are ... s on” and “Which is ... for”, the system can easily judge
that they have the same meaning. Therefore, we suppose that the characteristic of QQP makes
QQP have a low correlation coefficient with other similarity and paraphrase datasets.

Second, WNLI may be a more complicated and difficult dataset than other datasets in the
inference category. According to Levesque et al. (2012) and Kocĳan et al. (2020), this dataset
requires understanding a highly ambiguous pronoun written in two sentences pair. Since the

59



Chapter 4. Probing the causal relationship between linguistic knowledge and the accuracy of a
SFQA system

Dataset Final Accuracy Comparison with upper bound
FBQ 42.29 −41.71
SQ 74.07 −08.93
WQ 64.84 −22.16

Table 4.4: Results of BertQA for datasets. The upper bound accuracy of each dataset is
calculated referring to Petrochuk and Zettlemoyer (2018).

referent of this pronoun changes by differing in only one or two words, this dataset is also related
to coreference resolution. In contrast, other datasets in the inference category, such as MNLI,
tend to require only semantic understand and inference to the system. Moreover, the size of
WNLI, which contains only 780 questions both for training and test splits, is much smaller than
other datasets. Therefore, we suppose that the difficulty and complexity of WNLI make WNLI
have a low correlation coefficient with other inference datasets.

4.4 Experiments and PLSPM analysis

Before PLSPM analysis, we test the performance of BertQA for three datasets. Table 4.4 shows
the end-to-end accuracy of BertQA for FBQ, SQ, and WQ. While Lukovnikov et al. (2019)
reported 77.3% end-to-end accuracy for SimpleQuestions, 74.07% end-to-end accuracy of our
implemented BertQA is also acceptable considering the filtered dataset and the change of decoder
design in implementation.

The interesting point is that BertQA shows lower accuracies for FBQ andWQ than SQ. Petrochuk
and Zettlemoyer (2018) find that the upper bound accuracy of SQ is around 83% due to the
inherent ambiguity in the data; e.g., given a question “who wrote gulliver’s travels?”, there is
more than one equally plausible interpretation since there are multiple entities for “guliver’s
travels” such as the book, TV miniseries, and films, all of which could be compatible with
“who wrote . . .?”. To test the possibility that lower accuracies on WQ and FBQ are due to
even more severe ambiguity in the data, we perform the same analysis on FBQ and WQ, finding
that the upper bound accuracy is 86.85% for WQ and 84.16% for FBQ, respectively, which are
comparable to SQ. This result rejects the possibility that the upper bound accuracy for these two
datasets is low. As a result, BertQA does not reach near the upper bound accuracy of FBQ and
WQ. We will investigate this issue further in the next chapter.

Based on the above result, we examine how much accuracies of SentEval can explain accuracies
of BertQA by PLSPM analysis. Table 4.5 shows path coefficients of each path in SentEval-FBQ,
SentEval-SQ, and SentEval-WQ. When interpreting the PLSPM model in the statistical field,
the path coefficient is considered as the explainability of the target path. We do not list the
path where the ?-value is larger than 0.05. It is considered a meaningful index even though the
path coefficient is minus value since a meaningless path is rejected by ?-value. As a result, we
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FBQ SUR SYN SEM '2

Entity detection (ED) −0.544 +1.060 - 0.787
Relation prediction (RP) +0.327 +0.405 - 0.880
SQ SUR SYN SEM '2

Entity detection (ED) −0.674 +1.190 - 0.820
Relation prediction (RP) +0.462 - - 0.851
WQ SUR SYN SEM '2

Entity detection (ED) −0.590 +0.976 - 0.376
Relation prediction (RP) +0.418 - - 0.738

Table 4.5: Path coefficient for PLSPM models with SentEval. If ?-value of path equation is
higher than 0.05, we rejected that path.

FBQ SS SP IF '2

Entity detection (ED) - - +0.756 0.890
Relation prediction (RP) +1.460 - −0.780 0.868
SQ SS SP IF '2

Entity detection (ED) - - +1.090 0.884
Relation prediction (RP) +1.340 - −0.918 0.748
WQ SS SP IF '2

Entity detection (ED) - - +1.910 0.578
Relation prediction (RP) +1.400 - - 0.660

Table 4.6: Path coefficient for PLSPM models with GLUE. If ?-value of path equation is
higher than 0.05, we rejected that path.

can conclude that accuracies of SentEval can explain accuracies of BertQA meaningfully, only
except semantic tasks of SentEval. It indicates why BertQA can not overcome the gap between
different datasets since the gap of distribution for questions between each dataset is related to
surface and syntactic knowledge.

PLSPM models using the GLUE dataset report more difficult results to be interpreted as in
Table 4.6. While only the accuracy of inference tasks can explain the accuracy of entity detection
with the ?-value < 0.05 among GLUE tasks, they also report negative coefficients for explaining
the accuracy of relation prediction. For relation prediction, the accuracy of single-sentence tasks,
such as CoLA, mainly explain it. One interesting point is that the accuracy of similarity and
paraphrase tasks are rejected for explaining any accuracy of BertQA with the ?-value > 0.05.
Those tasks, such as MRPC, demand to understand semantic knowledge of given sentences for
solving questions. It means that encoded semantic knowledge and the ability to understand given
sentences are not so helpful to explain accuracies of BertQA, even in our PLSPM model with
the GLUE dataset.

For the overall results of our PLSPM models, we found another problem about the gap between
each SFQA dataset. Table 4.7 lists GoF indexes of each PLSPM model. The GoF value of
the PLSPM model indicates how much this model can explain observed and latent variables.
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Figure 4.4: The estimated PLSPM model by the accuracy of SentEval and WQ

PLSPM model Goodness-of-Fit
SentEval-FBQ 0.6826
SentEval-SQ 0.7448
SentEval-WQ 0.5533
GLUE-FBQ 0.8218
GLUE-SQ 0.8783
GLUE-WQ 0.6769

Table 4.7: Goodness-of-Fit index for each PLSPM models.

Though all PLSPM models share the same causal diagram, the PLSPM models for the WQ
dataset reported lower GoF indexes than the PLSPM models for other datasets. In particular,
SentEval-WQ shows a lower GoF index than 0.6, which indicates that this model is not well-
explained by a given causal diagram. This result implies thatWQ is solvedwith different encoded
linguistic knowledge comparing to FBQ and SQ. Figure 4.3 and Figure 4.4 show the significant
difference of '2 and GoF indexes between SentEval-SQ and SentEval-WQ.
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Dataset % of Questions
FBQ 22.17
SQ 46.25
WQ 12.73

Table 4.8: Percentage for how many questions contain a term appeared in the label of the gold
relation. Note that we examine each validation split of datasets.

4.5 Discussion

4.5.1 The effect of semantic understanding on BertQA

Table 4.5 shows that BertQA heavily depends on the encoded surface and syntactic knowledge.
On the other hand, the accuracies of semantic information tasks can not explain the accuracies
of BertQA at all. Semantic understanding is demanded to solve questions containing ambiguous
expressions, especially for relations such as people.person.profession. It indicates that
BertQA may be weak for predicting paraphrases or synonyms of the gold relation.

Depending on the surface and syntactic information for solving datasets also indicates that the
surface and syntactic features of each dataset affect the accuracy of BertQA. In other words, the
high final accuracy of BertQA from SimpleQuestions may be mainly caused by the surface and
syntactic features of SimpleQuestions. As we mentioned in Chapter 2.4.3, Serban et al. (2016)
and Jiang et al. (2019) mentioned that questions in SimpleQuestions tend to contain the label of
the gold subject and relation directly. For example, a given question “name the profession of
...” includes “profession”, a piece of the gold relation people.person.profession. Table 4.8
shows the result of our investigation for this issue. Following Table 4.8, we find that questions
in SQ tend to provide a direct clue for predicting the gold relation than FBQ and WQ. It is one
reason why BertQA, the system depending on the surface and syntactic information for solving
datasets, reported the better accuracy for SQ than FBQ and WQ.

4.5.2 The effect of specific characteristics on each dataset

As shown in Table 4.7, the Goodness-of-Fit values of PLSPM models for WQ are lower than
those of PLSPM models for other datasets. It indicates that the same causal diagram, which
assumes that encoded linguistic knowledge can explain accuracies of BertQA, does not match
forWQ, unlike other datasets. Table 4.5 and Table 4.6 lists '2 value of each latent variable in our
PLSPM models. '2 means the explanatory power for each variable. For example, the 0.787 '2

value for ED means that about 79% of the ED variable can be explained in the PLSPM model.
Following '2 values, we find that accuracies of entity detection (ED) and relation prediction
(RP) for WQ are not explained well by encoded linguistic knowledge measured by SentEval and
GLUE than ED and RP for other datasets.
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Dataset Average length of entity spans
FBQ 2.10(±1.29)
SQ 2.49(±1.56)
WQ 1.71(±0.77)

Table 4.9: Average length of the entity spans for each question of datasets. The value in the
bracket means the standard deviation. Note that we examine each validation split of datasets.

As Table 4.9 reports, we find that the length of the gold span is different among each dataset. The
longer span of the gold subject means that the gold subject consists of more tokens. It indicates
that the surface and syntactic features can be utilized more when solving FBQ and SQ than WQ.
Since BertQA does not depend on encoded semantic information following our PLSPM analysis,
the length of the gold span directly affects the '2 value of ED in our PLSPM models. In other
words, specific characteristics on each dataset can strongly affect the explanation for accuracies
of BertQA.

4.6 Summary

In this chapter, we examine the inner working of the BERT-based system for SFQA. BERT-based
systems have reported state-of-the-arts accuracies for a variety of downstream tasks (Devlin
et al., 2019), and they also have shown robustness in NLP areas (Devlin et al., 2019, Talmor
and Berant, 2019). However, we find that BertQA fails to reach upper bound accuracies of FBQ
and WQ like SQ. We conduct PLSPM analysis to investigate the inner working of BertQA when
solving FBQ, SQ, and WQ involving 24 BERT models, two intrinsic evaluations. As a result,
our experiment reveals that even BERT depends on the surface and syntactic features on each
dataset, not the semantic understanding required for general SFQA. It indicates that BertQA is
not enough to generalize the gap of distribution among FBQ, SQ, and WQ. Also, we discuss the
characteristic of each dataset which may affect accuracies and explainability of BertQA for each
dataset.

According to our PLSPM analysis, BertQA depends on the surface and syntactic characteristics
intrinsic to each dataset. It indicates that BertQA may lack the robustness and transferability for
solving simple factoid questions generally. It should be an interesting question whether other
language models, such as GPT series or T5, can overcome the limitation of BERT in solving
simple factoid questions. However, it seems a bit difficult because of the below reasons. First,
other language models usually share the same structure, transformers, and similar objective
functions, such as masked language modeling, with BERT. It indicates that encoded linguistic
knowledge on those language models may not be too different. Second, the problem of BERT
for solving simple factoid questions is also strongly related to the feature of datasets and the
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method used to evaluate this task. Therefore, only changing the language model may not be a
good solution for this problem.

Furthermore, our findings in this chapter allows us another question about other existing state-
the-of-arts SFQA systems, such as Mohammed et al. (2018) and Huang et al. (2019). We will
also explore the above problems with empirical analyses involving five SFQA systems and four
SFQA datasets.
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Chapter

5
Empirical evaluation of SFQA systems
for the robustness and transferability

considering linguistic knowledge

In the previous chapter, we investigated the inner working of BertQA, the BERT-based SFQA
system, by our proposed PLSPM framework. While BertQA reported near the upper bound
accuracy for SimpleQuestions, we find that BertQA depends on the surface and syntactic infor-
mation for solving simple factoid questions. It indicates the possibility of low robustness and
transferability on BertQA. According to our previous study, we examine the robustness and trans-
ferability of existing SoTA systems for SFQA involving five systems, which all reported near the
upper bound accuracy for SimpleQuestions, and four datasets. We can not employ our PLSPM
framework since five systems are based on different language models and hard to distinguish the
accuracy for encoded linguistic knowledge from the effect of each encoder network. However,
we found that the characteristic of each dataset affects the robustness of each submodule, such
as entity detection and relation prediction in the previous chapter. We thus conduct empirical
analysis for evaluating the robustness and transferability considering the characteristic of each
dataset and submodule. As a result, the success of one dataset, SimpleQuestions, does not
transfer to other datasets by all five SFQA systems. Furthermore, we discuss the evaluation
method and the source of SFQA datasets considering linguistic knowledge based on the result
of the previous chapter.
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5.1 Robustness and transferability for SFQA

Sometimes the success for one dataset of a downstream task does not indicate a more general
success of that task overall. According to the result of the previous chapter, the success of
BertQA, which is the implemented the BERT-based system proposed by Lukovnikov et al.
(2019) with minor changes, for SimpleQuestions is the same case. BertQA does not reach upper
bound accuracies of FBQ and WQ, filtered datasets of FreebaseQA (Jiang et al., 2019) and
WebQSP (Yih et al., 2016). Our PLSPM framework reveals that BertQA mainly depends on the
surface and syntactic knowledge for solving simple factoid questions. It indicates that BertQA is
a weak system in the robustness, the ability to solve problems generally, and transferability, the
ability to apply the success of one dataset to another dataset. Those abilities require semantic
understanding to overcome a gap between the distribution of each dataset.

The problem is that BertQA is an extended version of BuboQA (Mohammed et al., 2018), one of
the baseline systems for SFQA. Many other SFQA systems (Huang et al., 2019, Petrochuk and
Zettlemoyer, 2018, Ture and Jojic, 2017) share a similar structure and approach of submodules
with BuboQA and BertQA. While they reported near the upper bound accuracy for Simple-
Questions, the robustness and transferability of those systems have not been evaluated yet. Such
robustness evaluation is recently actively studied in other language understanding tasks (Jia and
Liang, 2017, McCoy et al., 2019, Naik et al., 2018, Ribeiro et al., 2020) while little effort has
been made on question answering over a knowledge base, though, in practice, it would be critical
because a practical system has to be robust on actual user queries, which may be outliers in
the training data. When Bordes et al. (2015) proposed SimpleQuestions, they expressed their
motivation to cover the larger variations for question types, syntactic and lexical distributions for
the robustness and transferability of systems. However, now existing SFQA systems may only
focus on solving SimpleQuestions.

In this chapter, we examine the robustness and transferability of five SFQA systems involving
four datasets. We assume that other existing SoTA systems for SimpleQuestions also have the
same limitation: a lack of robustness and transferability since they only depend on the surface
and syntactic information. Unfortunately, it is hard to conduct the PLSPM analysis for five
SFQA systems. For suggesting a causal diagram handling the accuracy of intrinsic evaluations
and downstream tasks like our previous study, we should calculate those accuracies using the
same language model. However, existing SoTA systems employed different language models,
respectively. In addition, they usually include additional encoder networks that make encoded
linguistic knowledge on the employed language model change by the effect of the encoder
network. Therefore, we do not conduct PLSPM analysis for examining existing SoTA systems
for SFQA.
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Instead, we rigorously evaluate existing SFQA systems using different datasets, such as shifting
training and test datasets and training on a union of the datasets. We assume that if one system
can solve various SFQA datasets with the same level of accuracy for SimpleQuestions, that
system has robustness for SFQA. In addition, if one system has transferability for SFQA, then
that system training with one dataset should solve a different test split. We examine existing
SoTA systems for SimpleQuestions based on the above assumptions.

Meanwhile, previous studies mentioned that questions in SimpleQuestions tend to contain the
label of the gold subject and relation directly (Jiang et al., 2019, Serban et al., 2016). In the
previous chapter, we also found that SQ has other characteristics to make BertQA depend on
surface and syntactic information, such as the longer length of the gold entity span and the more
frequent appearance of the label for gold relation than WQ. It indicates that each dataset has
different distributions for the gold entity and relation that is the objective of each submodule on
the existing SoTA system for SimpleQuestions. Therefore, we also analyze the characteristic of
each dataset and submodule in the SFQA system in this chapter.

As we mentioned above, existing SoTA systems share a similar structure and approach of
submodules with BertQA. If existing SoTA systems also have limitations in robustness and
transferability like BertQA, we need to examine what feature of each dataset and submodule
makes existing systems depend on the surface and syntactic information. Our assumption is that;
Suppose existing SoTA systems, including BertQA, have the same problem in the robustness and
transferability for solving SFQA datasets, and we also can find similar tendencies in the accuracy
of their submodules related to the characteristic of each dataset. In that case, we can conclude
that existing SoTA systems have identical limitations depending on the surface and syntactic
information like BertQA.

5.2 Experimental settings

Comparing to the experiment of the previous chapter, we prepare one additional SFQA dataset
and four other SFQA systems. First, we introduce one additional dataset, Free917 (Cai and
Yates, 2013). It is selected because this dataset is also based on Freebase, and a large portion
of each dataset consists of factoid questions. Since we are interested in the transferability of
existing SFQA systems, we also intend to handle another dataset independent of FBQ, SQ, and
WQ. We perform the filtering process on Free917 to make the domain and difficulty of Free917
the same with FBQ, SQ, and WQ. This preprocessing is the same as what we conducted in the
previous chapter. Because this procedure makes Free917 too small, we use the entire dataset as
the test set. Table 5.1 shows the statistics of each dataset, including F917, the filtered Free917.
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Dataset Original Answerable by FB2M
Training Valid Test Training Valid Test

Free917 512 129 276 0 0 347
WebQSP 2,478 620 1,639 1,292 323 861
SimpleQuestions 75,910 10,845 21,687 75,895 10,843 21,680
FreebaseQA 20,358 3,994 3,996 10,427 2,048 2,102

Table 5.1: Data statistics after preprocessing (number of examples). We use “Answerable by
FB2M” subset in this paper. Since Free917 is small, we use the entire dataset as the test set.

FBQ
Training

FBQ
Test

SQ
Training

WQ
Training

SQ
Test

WQ
Test

Figure 5.1: The experiment with the single dataset setting.

For SFQA systems, we employ BuboQA (Mohammed et al., 2018), HR-BiLSTM (Yu et al.,
2017), KBQA-Adpater (Wu et al., 2019), and KEQA (Huang et al., 2019) in addition to BertQA
(Lukovnikov et al., 2019). We select those systems considering the state-of-the-arts accuracy for
SimpleQuestions, the availability and reproducibility of the system, and a significant difference
in submodules, including entity linking and relation prediction. First, BuboQA is employed as
the baseline system of SFQA. HR-BiLSTM and KBQA-Adapter are selected for the difference of
relation prediction with BuboQA and BertQA. While HR-BiLSTM and KBQA-Adapter depend
on external modules for entity linking and evidence integration, they suggested a mapping-based
relation prediction different from other systems. Since BuboQA and BertQA treat relation
prediction as a classification problem, they can not handle unseen relations in the training split.
HR-BiLSTM and KBQA-Adapter have an advantage in predicting unseen relations, which is
related to robustness and transferability. KEQA is distinguished from other systems since this
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FBQ
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Figure 5.2: The experiment with the shifted dataset setting.

system involves both word embeddings and knowledge graph embedding for mapping entities
and relations. We investigate the robustness and transferability of employed SFQA systems
considering the difference mentioned above.

We employ the best architectures and hyperparameters reported in the paper or a related doc-
ument for all systems. We set the number of entity linking outputs as 50 and that of relation
prediction as 5, which are the default settings for BuboQA. Note that BuboQA, HR-BiLSTM,
and KBQA-Adapter share the same entity linking and evidence integration modules of BuboQA.
For evaluation, following the standard practice of SimpleQuestions, we evaluate the accuracy of
predicted (subject, relation) pairs.

In this chapter, we evaluate different SFQA systems primarily suggested to solve SimpleQuestions
across the normalized datasets. First, we experiment with the standard setting of SFQA training
and testing the same dataset involving SFQA systems as shown in Figure 5.1. In this experiment,
we will examine the robustness of SFQA systems that whether existing SFQA systems can reach
near the upper bound accuracy of FBQ and WQ like SQ. Second, we also provide an experiment
across two datasets, where we train a model on one dataset and test on another like Figure 5.2.
We are interested in this setting because, in a practical scenario, there might be a gap between
the distribution of training data, which depends on the way the data was created, and that of test
data, which would be actual user queries. For example, the data creation of SimpleQuestions
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Figure 5.3: The experiment with the combined dataset setting.

allows collecting a lot of data efficiently, while the data distribution of WebQuestions may
match the distribution in the wild. Hence, this setting is related to evaluate the transferability of
existing SFQA systems. Finally, we test the effect of combining datasets with the experiment like
Figure 5.3. This setting is inspired by Talmor and Berant (2019), which reported that combining
different datasets is helpful for the robustness of the system in reading comprehension. We
examine whether it is also applicable for SFQA.

5.3 Experimental results

Table 5.2 summarizes experimental results on the test data. The grey rows correspond to
the single dataset settings. Comparing these three rows, the accuracies on FBQ and WQ are
consistently lower than SQ for all SFQA systems, suggesting that FBQ and WQ have some data
characteristics that cause difficulties for the current models. We inspect in detail further. When
evaluated on a different dataset, which we call dataset transfer in the following, the accuracies
degrade even more. Note that F917, used as a test-only dataset, reaches relatively high accuracy
when trained on SQ. As we discussed in Chapter 2.3.3, SQ and F917 are somewhat similar. It
suggests that, as can be expected, the accuracies on this transfer setting are affected by some
notion of distance among datasets, and the current models are pretty sensitive to it.
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Training Test BuboQA HR KBQA KEQA BertQA
FBQ F917 17.29 36.31 35.73 36.02 23.63

FBQ 38.25 28.40 28.78 28.73 42.29
SQ 23.77 38.55 39.19 42.97 32.07
WQ 29.10 30.27 31.43 33.18 38.88

SQ F917 40.92 56.20 59.37 45.24 47.84
FBQ 20.08 17.84 18.13 14.03 24.41
SQ 74.81 72.30 72.01 75.35 74.07
WQ 41.79 35.27 36.32 40.40 44.59

WQ F917 12.68 29.97 29.39 32.85 14.70
FBQ 7.94 7.61 8.37 8.90 10.28
SQ 16.46 33.18 35.32 38.01 19.61
WQ 61.23 49.94 49.36 65.19 64.84

Table 5.2: Comparison of top-1 accuracies across datasets. The bold value denotes the highest
accuracy in each row. The grey row correspond to the single dataset setting. The abbreviation

HR is HR-BiLSTM, and KBQA is KBQA-Adapter.

Test BuboQA HR KBQA KEQA BertQA
F917 43.80(+1.98) 55.33(−0.87) 59.08(−0.29) 46.69(+1.45) 54.47(+6.63)
FBQ 36.01(−2.24) 28.64(+0.24) 26.55(−2.23) 27.07(−1.66) 42.15(−0.14)
SQ 74.18(−0.63) 71.87(−0.43) 71.56(−0.45) 74.89(−0.46) 74.48(+0.41)
WQ 60.65(−0.58) 45.05(−4.89) 46.33(−3.03) 61.35(−3.84) 61.46(−3.37)

Table 5.3: The final top-1 accuracies by a single model trained on a union of FBQ, SQ, WQ
training set. The number in brackets denotes the difference from the model trained on a single
target dataset (in Table 5.2). F917 is compared with the best model (best training data) for each

system.

We also experiment with another experimental setting to see the performance of a model trained
on the union of the target datasets. It is inspired by the recent success of MultiQA (Talmor and
Berant, 2019), which, on reading comprehension, shows that a single model trained on the union
of multiple datasets outperforms a model trained specifically on each single dataset. We combine
training data of FBQ, SQ, and WQ and train a model on it. We are particularly interested in
whether the accuracy of FBQ and WQ improves with the help of statistical cues from other
datasets, although we have seen that the transfer from SQ only is complicated. Table 5.3 is the
result along with the amount of increase/decrease from a model trained on the single dataset
(corresponding to the test data). We can see that SFQA systems can handle each dataset well on
average, but in most cases, the scores do not improve from the single dataset baselines.

The above results might be reasonable from our detailed analysis so far. In Chapter 5.4, we
will show that FBQ contains more unfaithful questions than other datasets. We suppose that the
quality of the datasetmainly affects our experimental results in the case of FBQ. InChapter 5.5, we
will inspect that the main challenge on remaining errors of WQ is in ambiguous and challenging
cases of entity linking and relation prediction.
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Label F917 FBQ SQ WQ
impossible 1 13 1 4
notsimple 0 15 5 1
badgold 0 12 4 5
multisubj 1 9 0 1
multirel 1 4 2 1
other 0 1 3 0
okay 97 46 85 88

Table 5.4: Labeling results on random 100 questions from the validation split for each dataset.

Label Example Details
impossible In the musical Annie, what is Or-

phan Annie’s dog called?
There is no identifier for Annie’s dog in
FB2M.

notsimple What is the highest peak on Dart-
moor?

The highest cannot be evaluated in a sin-
gle triple.

badgold Where was Princess Leia raised? The gold relation is place_of_birth,
but Leia was raised elsewhere since in-
fancy.

multisubj Who wrote the novels “Berlin
Game”, “Mexico Set” and “Lon-
don Match”?

Berlin Game, Mexico Set, and London
Match can all derive the correct answer.

multirel Where is South Salt Lake, Utah lo-
cated?

Both location.hud_county_place.county
and location.location.containedby can
be the correct relation.

other What operating system uses ssh file
transfer protocol?

Not operating systems, but sshftp pro-
grams use sshftp.

Table 5.5: Examples for the labels used in Table 5.4.

5.4 Analysis for SFQA datasets

According to Table 5.2, WQ and FBQ are more challenging than SQ. Understanding the cause of
this difficulty is essential because it directly relates to the remaining challenges in solving factoid
questions in general. In the previous chapter 4.5, we investigate the characteristic of SQ andWQ
to interpret estimated PLSPM models. Since other existing SoTA systems for SimpleQuestions
show a similar tendency for robustness and transferability like BertQA, we can assume that
the characteristic of each dataset may be one important reason for the cause of this difficulty.
However, other factors like the quality or size of each dataset can also be an important reason.
Therefore, we test several possibilities to reach an accurate answer.

First, we focus on the quality and size of the dataset. Inspecting datasets, we find that some
questions in FBQ are not a factoid question, such as “What is the highest volcano in Africa?”,
which requires an aggregate operation but the gold subject and relation are just Africa and
location.contains. We suspect that these questions remain in FBQ due to noisy filtering
from unrestricted questions, which only assesses the path from a subject to an object with
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Dataset BuboQA KEQA
SQ (valid) 75.79 76.69
Small-sized SQ (valid) 73.47±1.69 76.27±2.39
WQ (valid) 59.32 66.15

Table 5.6: Comparison of end-to-end accuracies (on the validation split) across SQ, small-sized
SQ, and WQ. The scores for small-sized SQ are averaged across 10 cases (see body).

little care for additional constraints. The overall quality might be exacerbated by a reliance on
non-experts (crowds) for the final assessment.

To quantify howmuch of the examples are problematic, we randomly sample 100 questions from
the validation split on each dataset and categorize them with the labels defined in Table 5.5.
Table 5.4 is the result. For this labeling, impossible, notsimple, and badgold labels indicate
non-faithful (question, gold label) pairs as in the above example. In contrast, multisubj and
multirel are rather the problems due to the evaluation method because they mean that there are
multiple correct labels while the current evaluation only allows a gold one. From Table 5.4, we
can see that 40% of questions in FBQ are non-faithful, much higher than the other datasets. From
this result, we argue that lower accuracies on FBQ are not due to the actual difficulty of factoid
questions but rather due to the undesirable complexity incurred by an inaccurate data creation
process. Considering this problem, we will pay little attention to this dataset in the following
analysis.

One significant difference between SQ and WQ is the training data size (Table 5.1), with SQ
being roughly 60 times larger. Is this data size the primary source of the performance gap seen
in Table 5.2? Or, is it due to the inherent complexity of WQ compared with SQ? To answer this
question, we compare SQ and WQ eliminating the data size effects by preparing a smaller SQ
dataset, which has an equal size as WQ.When sampling data from SQ, we only sample examples
with relations that appear in the corresponding split of WQ. Referring to Table 4.3, we also keep
the ratio of unseen relations in the validation split as roughly 8%, the same as WQ. We create
ten different subsets of SQ and report the average accuracies on them. We evaluate the systems
on the validation splits.

In Table 5.6, we summarize the scores of BuboQA and KEQA, which perform better on original
SQ and WQ in Table 5.2. We omit BertQA in this examination since BuboQA and BertQA
share the same submodules, including entity linking and evidence integration. Interestingly, the
accuracies on small-sized SQ are the same level as those of the original dataset. It indicates
that the main factor causing the performance gap between WQ and SQ may not be the data size
but the complexity or the inherent difficulty of the dataset, which we inspected in the previous
chapter.
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Dataset BuboQA-Final BuboQA-EL BuboQA-RP
FBQ 38.25 58.28 81.21
SQ 74.81 90.40 95.64
WQ 61.23 78.23 90.92
Dataset KEQA-Final KEQA-EL KEQA-RP
FBQ 28.73 47.62 55.42
SQ 75.35 90.74 94.38
WQ 65.19 82.75 84.97

Table 5.7: Comparison of module-level accuracies (R@50 for entity linking (EL) and R@5 for
relation prediction (RP)) for BuboQA and KEQA. “Final” denotes end-to-end top-1 accuracies.

5.5 Analysis for submodules of SFQA systems

As we explained in the chapter 2.3.3, existing SoTA systems consist of various submodules,
including entity linking, relation prediction, and evidence integration. While we only have
compared the final top-1 accuracy, which results from evidence integration, results of entity
linking and relation prediction are also important to understand the performance of each SFQA
system. We hypothesize that relation prediction is the main bottleneck on WQ since relations
tend to be nontrivially verbalized compared with SQ, since we found that SQ tends to contain the
label of gold relation directly thanWQ in the previous chapter. To test our hypothesis, we need to
examine the accuracy of entity linking and relation prediction. Table 5.7 shows in particular for
BuboQA that this is not the case. Here, we evaluate the component-wise performance of entity
linking (EL) and relation prediction (RP). We evaluate R@50 for EL and R@5 for RP, which are
the sizes of candidates in two components of BuboQA.1 We omit HR-BiLSTM, KBQA-Adapter,
and BertQA for this analysis since they share the same entity linking module with BuboQA.

In Table 5.7, we can see that for both systems, EL scores degrade about 10 points from SQ to
WQ, which is roughly the same level as decreases in final accuracies. Accuracy of entity linking
is critical for both systems because, at the final query generation step, relation candidates are
restricted to ones connected to the selected entities. It indicates that if the entity linking performs
poorly, that can be a bottleneck of the entire system. KEQA suffers from a more considerable
decrease of RP (94.38→84.97) than BuboQA (95.64→90.92), but we conjecture that this can
be mainly attributed to the dependence of RP on EL for KEQA (footnote 1).

Inspecting the errors of entity linking by BuboQA, we find a particularly challenging case,
specific to WQ, is the superficially ambiguous entities. For example, Mexico matches to more
than 1,000 different entities in Freebase, according to the inverted index by BuboQA. In the
top candidates, we notice that many entities are song and album names. The handling of these

1 For KEQA, we get the same numbers of candidates for EL and RP closest to the predicted embeddings in
the vector space. In this process, we restrict the candidates for RP as ones that are connected to one of the entity
candidates, mimicking the final process of the system.
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Training Test BuboQA-Final BuboQA-EL BuboQA-RP
FBQ F917 17.29(−00.00) 70.32(−00.00) 29.11(−00.00)

SQ 23.77(−51.04) 71.96(−18.44) 39.79(−55.85)
WQ 29.10(−32.13) 69.85(0−8.38) 59.95(−30.97)

SQ F917 40.92(−00.00) 85.30(−00.00) 55.04(−00.00)
FBQ 20.08(−18.17) 48.62(0−9.66) 49.00(−32.21)
WQ 41.79(−19.44) 75.90(0−2.33) 78.11(−12.81)

WQ F917 12.68(−00.00) 65.99(−00.00) 18.44(−00.00)
FBQ 07.94(−30.31) 35.25(−23.03) 24.79(−56.42)
SQ 16.46(−58.35) 66.71(−23.69) 25.00(−70.64)

Training Test KEQA-Final KEQA-EL KEQA-RP
FBQ F917 36.02(−00.00) 60.81(−00.00) 60.23(−00.00)

SQ 41.83(−33.52) 69.94(−20.80) 71.79(−22.59)
WQ 33.18(−32.01) 75.32(0−7.43) 62.86(−22.11)

SQ F917 45.24(−00.00) 69.45(−00.00) 69.45(−00.00)
FBQ 14.03(−14.70) 34.06(−13.56) 37.73(−17.69)
WQ 40.40(−24.79) 74.62(−08.13) 67.05(−17.92)

WQ F917 32.85(−00.00) 59.08(−00.00) 54.47(−00.00)
FBQ 08.90(−19.83) 36.20(−11.42) 26.07(−29.35)
SQ 38.01(−37.34) 68.49(−22.25) 65.00(−29.38)

Table 5.8: Comparison of module-level accuracies in the dataset transfer setting. Final: end-
to-end accuracy; EL: R@50; and RP: R@5. The number in brackets denotes the difference from
the non-transfer baseline (Table 5.7). The cells for FBQ are represente d in gray considering

the issues in the dataset.

ambiguous entities is challenging for BuboQA since it does not rely on statistical techniques
for disambiguation (only the Levinstein distance). In other words, entity linking of BuboQA is
lexical pattern-based, not statistical, indicating that additional statistical cues from SQ are not
very helpful for saving the problematic cases. It suggests that we need a more sophisticated
entity linker exploiting a context for disambiguation. KEQA’s approach is promising, but the
current system has an opposite problem.

So far, we have seen that the system’s performance gaps between two datasets, SQ and WQ,
largely come from the gaps in entity linking performance. Can the same explanation hold for
the significant gaps with the dataset transfer setting in Table 5.2? To answer this question,
Table 5.8 summarizes the submodule accuracies for the transfer setting, on which the numbers
in parentheses are degradations from the non-transfer setting. For example, R@50 of entity
linking on BuboQA drops 2.33 points on WQ when changing training data from WQ to SQ.
From the table, we can see that score drops are more severe in relation prediction. We conjecture
that entity linking is less affected by transfer because expressions of entities (e.g., the name of a
person) are relatively fixed compared with relations across datasets.
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Label Description Example Number
WrongString Entity label in Freebase and

written string are different
who created the chinese
communist party, commu-
nist party of china

11

WrongKB Freebase has too many or no
entities for one label

what continent ismexico lo-
cated on, mexico

6

WrongDetection Entity detection is evaluated as
correct, but actually it fails

what is the northeast of the
united states, united states

3

Total 20

Table 5.9: 20 error cases in entity linking for WQ.

5.6 Discussion considering linguistic knowledge

According to the analysis of previous chapters, we find that existing SFQA systems all reported a
lack of robustness and transferability for simple factoid questions. We reveal that FBQ contains
unfaithful simple factoid questions, which make FBQ unreasonably difficult. However, our
analysis investigating the effect of upper bound accuracy of each dataset, faithfulness, and size
can not suggest the reasonwhy existing SFQAsystems failwithWQ.By the additional analysis for
submodules of SFQA systems, we find two tendencies for entity linking and relation prediction.
For entity linking, SFQA systems tend to fail more with WQ than SQ in the single dataset
setting. Since the drop of the accuracy in entity linking is similar to the drop of the accuracy in
the whole SFQA system, we suppose that the bottleneck for lack of robustness is entity linking.
Meanwhile, we find that the drop of the accuracy in relation prediction is significantly high in
the shifted dataset setting. It indicates that predicting the relation of an unseen or paraphrased
dataset may be the main reason for the lack of transferability.

Since no SFQA system success to prove the robustness and transferability for solving simple
factoid questions, we need to recall our PLSPM analysis for BertQA in the previous chapter.
In Chapter 4.4, we showed that the accuracy of entity detection for WQ is not explained by
encoded linguistic knowledge compared with FBQ and SQ. We explained this phenomenon with
the following discussion in Chapter 4.5.1; while BertQA heavily depends on the surface and
syntactic information, the entity spans containing the surface and syntactic information in WQ
are shorter than those in FBQ and SQ. In Chapter 5.5, we already reported a similar issue on
entity linking for WQ, the case of Mexico. BuboQA fails to predict the correct entity for the
span “Mexico” since Freebase contains too many noisy entities for the label “Mexico”. We
investigated error cases of BertQA, sharing the same entity linking module with BuboQA, for
the validation split ofWQ to figure out how similar the problem in entity linking is to the situation
in entity detection.

Wemanually labeled 20 error questions, which are evaluated as correct in entity detection but not
correct in entity linking, as in Table 5.9. As a result, we find that mainly two problems occur for
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Label BuboQA HR KBQA KEQA BertQA
relnotfound 8 3 7 9 7
wrongent 14 13 12 35 5
wrongrel 23 23 21 31 21
ambient 2 1 1 - 5
ambirel 29 27 18 24 24
unknown 7 - - - 13
other - - - 1 -
Total 83 67 59 100 75

Table 5.10: Labeling of errors on examples (in the validation set of WQ), which are missed by
changing the training data from WQ to SQ. Bold font denotes the errors on relation prediction.

Label Example Datails
relnotfound Who was vice president

under Lincoln?
Gold relation us_president.vice_president
is an unseen relation (not appear in the SQ training
split).

wrongent What to do with kids in
phx az?

The systems finds a different entity than the correct
entity Phoenix, Arizona.

wrongrel What money is used in
England?

The systems finds a different relation than the cor-
rect location.country.currency_used.

ambient Where were the Chicka-
saw Indians located?

Predicted entity is Chickasaw Nationwhile gold
entity is Chickasaw. Both are OK on Freebase.

ambirel Who is Aidan Davis? Gold answer is people.person.profession,
but prediction is common.topic.notable_-
types.

unknown Where was the battle of
Antietam creek?

The system outputs nothing by failing to bridge
predicted entities and relations.

other What is the actual cur-
rent local time now in uk?

Freebase cannot answer the current time.

Table 5.11: Examples for the labels used in Table 5.10

linking the entity in given questions. First, Freebase links too many entities with a single entity
label. For example, when we find an entity with the label “mexico” in the preprocessed index by
BuboQA, we obtain 2,830 results. Since the entity linking of BuboQA (and also BertQA) does
not have any scoring process to sort ambiguous results, they sometimes can not find the correct
entity for a given question within top-= results. The second problem is that the string label for the
entity in Freebase and an utterance for the gold subject are not identical. For example, the given
question in WQ has this string, “communist party of china”, but the string label in Freebase is
“Chinese communist party” for the same entity. We find that the entity linking of BuboQA fails
with the disambiguation for polysemy and paraphrase, which requires semantic understanding,
according to Table 5.9. Therefore, we suppose that the problem for entity linking is also related
to a lack of semantic understanding in SFQA systems.

To confirm what kinds of questions become hard for relation prediction, we manually analyze
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errors on examples from SQ→WQ case in Table 5.8. Not that this analysis is on the validation
split. We select up to 100 examples for each system, which are originally solved, but failed when
trained onWQ.We categorize the errors according to Table 5.11. If multiple labels would apply,
we choose the highest one from the table. Since an entity linking error often accompanies a
relation prediction error, we prioritize errors related to entity linking (under the same category).
The top priority for relnotfound (zero-shot relation prediction) is under the assumption that they
are particularly hard for models.

Table 5.10 shows the result. Note that the total numbers are not 100 for some systems because
we only consider examples that original models (trained on WQ) answer correctly. We can see
that errors related to relation prediction are dominant across systems, which is consistent with
Table 5.8. We distinguish two types of relation errors: wrongrelmeans a totally wrong prediction
while ambirel is a spurious error, for which the predicted relation leads to the correct answer on
Freebase, but the current label-based metric penalizes it.

We find that most of this latter case occurs by ambiguities of people.person.profession
and common.topic.notable_types, which are often aliases. For a question “who is . . .?”,
the gold relation of SQ is often common.topic.notable_types, but that is often peo-
ple.person.profession in WQ. It can be seen as a kind of dataset bias, and one way to
resolve it is to change the evaluation metric to evaluate the answers, not labels. Under the current
metric, this can be seen as an inherent limitation of solving all questions under the dataset transfer
setting. While these are spurious, the other half of relation prediction errors are wrongrel. We
find that these are essentially due to different paraphrasing patterns of a relation across datasets,
as we discussed in Chapter 2.3.2, and this result suggests such variation for a relation is the main
challenge for the transfer.

Finally, we notice that KEQA contains more entity linking errors (wrongent), and in many cases,
these errors are distinguished in that they are entirely irrelevant to the target entity. It suggests
that the KEQA entity linker would be more affected by a dataset bias, possibly due to not relying
on a string match when linking. In other words, although entity linking in KEQA is statistical,
KEQA does not exploit useful features from SQ examples to handleWQ, at least regarding entity
linking. A better model or a learning method could utilize the data with different distribution
in a clever way, but our analysis suggests that current practices do not have such an ability.
An interesting future direction is an extension with additional features to consider the surface
similarities as in BuboQA, which would lead to more robust generalization.

We also examine the relation people.person.profession as the sample relation to investigate
the difference ofwriting pattern between datasets. If the term “profession” appears in the question
directly, we annotate the label directly specify relation. If a term like “job” or “work” similar to
“profession” appears in the question, we use the label indirectly specify relation, and if there is
no term similar to “profession” in the question, paraphrasing is used for annotation. Table 5.12
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Dataset Label Example Number
SQ directly specify relation name the profession of peter heller. 84

indirectly specify relation what job does jamie hewlett have? 14
paraphrasing what does dan osborn do for a living? 25

total 123
WQ directly specify relation - -

indirectly specify relation what job does bill rancic have? 3
paraphrasing who is henry david thoreau? 20

total 23

Table 5.12: Question patterns for relation people.person.profession in SQ and WQ. We note
that all questions in this table are sampled from the validation split of each dataset.

shows the result of our annotation on the validation split of SQ and WQ. In SQ, about 80% of
questions for people.person.profession contains the term indicating the relation directly or
indirectly, while only 13% of questions do inWQ. This result indicates that relation prediction of
WQ demands more complex linguistic knowledge than the surface and syntactic understanding,
unlike SQ.

As we discuss, WQ has different characteristics for entities and relations comparing to other
datasets, especially SQ. One main reason for this phenomenon is the difference in the method
of generating questions in the dataset. For WebQuestions, the source of WQ, the question was
generated from Google Suggest API, naturally written user queries (Berant et al., 2013). On
the other hand, the question in SimpleQuestions, the source of SQ, was written artificially by
crowd-workers with the suggested fact (Bordes et al., 2015). It indicates that the difference in
creating each dataset is the reason for the gap of distribution among datasets. Moreover, it also
suggests that a lack of semantic understanding in BertQA and possibly existing SFQA systems
should be an essential factor of the failure for relation prediction in the shifted dataset setting.

According to our analysis, the bottleneck both in entity linking and relation prediction of existing
SFQA systems is related to a lack of semantic understanding. We suppose that the evaluation
method of simple factoid question answering task, matching the predicted subject and relation
with gold data (Bordes et al., 2015), is one reason for this problem. Especially in Simple-
Questions, the subject and the relation can be extracted from the question without semantic
understanding since questions usually contain labels of the subject and the relation (Serban et al.,
2016). It means that the evaluation method makes existing SFQA models concentrate on the
surface and syntactic features.

Furthermore, the possibility of multiple correct facts for given questions can be another prob-
lem with this evaluation method. For example, when existing SFQA system predicted peo-
ple.person.profession for a given question and it can find correct answer from Freebase,
but traditional evaluation method may reject this prediction if the gold relation in dataset is
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Train Test Match Accuracy Reachability Accuracy
FBQ F917 23.63 27.38

FBQ 42.29 51.47
SQ 32.07 36.37
WQ 38.88 40.75

SQ F917 47.84 51.30
FBQ 24.41 32.57
SQ 74.07 78.05
WQ 44.59 44.70

WQ F917 14.70 15.85
FBQ 10.28 12.89
SQ 19.61 21.97
WQ 64.84 62.40

Average 36.43 39.64

Table 5.13: Result of BertQA for QAKB datasets. Match accuracy is calculated by checking
whether predicted subject and relation are same with gold data. Reachability accuracy is
calculated by checking whether predicted subject and relation can reach to the gold object.

common.topic.notable_type. After this, we call the traditional evaluation methodmatch ac-
curacy since the criteria of this evaluation is based on matching the correct subject and relation
from a given question.

To examine how much the evaluation method affects the accuracy, we conduct additional exper-
iments. We employ an older evaluation method (Berant and Liang, 2014, Berant et al., 2013)
considering an object, the answer to a given question in the QAKB task, to overcome the limi-
tation of the match accuracy. Originally, evidence integration combines predicted subjects and
predicted relations for a given input question and evaluates its result with the gold fact provided
by the dataset. Here, our employed evaluation method compares the predicted object derived by
a predicted subject and relation with the gold object in the dataset. Moreover, we extend this
method to entity linking and relation prediction. In particular, we aggregate all facts from FB2M
to automatically examine whether each submodule’s predicted result can reach the gold object
or not. We call this employed evaluation method reachability accuracy since the criteria of this
evaluation are based on the reachability to the correct answer in a knowledge base.

Table 5.13 shows the comparison between match and reachability accuracy for the experimental
results. We employBertQA in this experiment sincewe also conduct PLSPManalysis further. As
a result, BertQA still does not reach the upper bound accuracies of each dataset, even evaluating
the reachability accuracy. However, BertQA achieves higher accuracies on average with the
reachability accuracy. It means that many entities and relations, which can reach the correct
answer in a knowledge base, had been scored as wrong predictions with the previous evaluation
method. Therefore, it indicates that the previous evaluation method may make BertQA not
consider semantic information, such as understanding paraphrasing or synonyms.
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GoF using match accuracy GoF using reachability accuracy
SentEval-FBQ 0.6826 0.7095
SentEval-SQ 0.7448 0.7323
SentEval-WQ 0.5533 0.5891
GLUE-FBQ 0.8218 0.8673
GLUE-SQ 0.8783 0.8721
GLUE-WQ 0.6769 0.7127

Table 5.14: Comparison of Goodness-of-Fit (GoF) indexes between evaluation methods.

Model Variable Using match acc. Using reachability acc.
SentEval-FBQ ED 0.787 0.797

EL 0.345 0.758
RP 0.880 0.713
QA 0.988 0.979

GLUE-FBQ ED 0.890 0.887
EL 0.345 0.758
RP 0.868 0.816
QA 0.988 0.979

SentEval-SQ ED 0.820 0.820
EL 0.935 0.836
RP 0.851 0.841
QA 0.961 0.953

GLUE-SQ ED 0.884 0.885
EL 0.935 0.836
RP 0.748 0.805
QA 0.961 0.953

SentEval-WQ ED 0.376 0.406
EL 0.106 0.041
RP 0.738 0.875
QA 0.754 0.923

GLUE-WQ ED 0.578 0.581
EL 0.106 0.041
RP 0.660 0.778
QA 0.754 0.923

Table 5.15: '2 for each variable in our PLSPM models. The higher '2 value means higher
explainablilty for target variable.

We also estimate PLSPM models with reachability accuracies of BertQA. Note that we did not
change our causal diagrams suggested in Chapter 4.2 since we only employ the reachability
accuracy of BertQA as observed variables. New PLSPM models still reject structural equations
between probing tasks for semantic information and BertQA. However, new PLSPM models
reported a higher Goodness-of-Fit value for all datasets on average than PLSPM models with
match accuracies as in Table 5.14. In particular, Table 5.15 shows that accuracies of relation
prediction and evidence integration forWQ are explained better in the new PLSPMmodel. Since
WQ demands more semantic understanding than other datasets, as we discussed, we suppose
that the reachability accuracy is better to reflect the semantic understanding of the SFQA system.
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5.7 Summary

Through several experiments, we have shown that although the system performance on Simple-
Questions dataset is getting better and close to the upper bound, that does not indicate a more
general success of SFQA overall. The leading cause of this mismatch is that, as we have seen,
there is often an inverse relationship between the ease of data collection and naturalness of col-
lected questions. Including BertQA, the SFQA system employing a strong pretrained language
model, existing SFQA systems all fail to be robust on the questions outside of the distribution
of the training data. We examine this problem in the aspect of the dataset and submodule con-
sidering linguistic knowledge according to the result of our previous study. Also, we discuss the
source of each dataset and the evaluation method of simple factoid question answering, which are
essential to understand why existing SFQA systems tend to depend on the surface and syntactic
features.

We suppose there are many directions toward general simple question answering or question
answering over a knowledge base. For example, we can refer to the decision of the robustness
in other disciplines tackling question answering, such as information retrieval. With the pre-
processing way, improving the quality of the dataset and distributionally robust optimization
can generalize biased datasets (Delage and Ye, 2010, Oren et al., 2019). A recent study (Gu
et al., 2020) has suggested new datasets considering distributions and difficulties of questions.
Although those approaches are promising, we suggest reconsideration for the evaluation method
on simple factoid question answering is also demanded. For instance, changing an objective
function from subject and relation to object may improve semantic understanding of the QA
system for given questions. We hope that our findings can suggest a more robust system for
simple factoid question answering in future work.
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6
Conclusion

In this thesis, we mainly suggest the method and usefulness of the analysis for explaining the
causal relationship between encoded linguistic knowledge and the accuracy of downstream tasks
on language models. First, we presented a statistical framework for evaluating and understanding
the causal relationship between encoded linguistic knowledge and the accuracy of downstream
tasks on languagemodels by employing PLSPM, onemethod of SEM.Our experiments found that
various linguistic knowledge can causally explain the performance of downstream tasks, such as
morphology and semantics. We then investigated a variety of language models and downstream
tasks to ensure that our suggested framework can produce acceptable and valuable results for
improving existing systems for downstream tasks of NLP. Our study is broadly divided into two
parts; a suggestion of the PLSPM framework and an application of the PLSPM framework.

For the first part, we tested our PLSPM framework involving 600 language models, one in-
trinsic evaluation, and 20 downstream tasks. Following traditional assumptions for the causal
relationship between encoded linguistic knowledge and the performance for solving downstream
tasks, we drew causal diagrams involving intrinsic evaluations and downstream tasks. We then
estimated PLSPM models based on 600 samples and our causal diagrams. Our PLSPM models
reported valuable results with more informative indexes than previous studies, such as '2, struc-
tural coefficient, and Goodness-of-Fit values. For example, we found that linguistic knowledge
for morphology and semantics can affect the accuracy of downstream tasks, consistent with the
assumption of previous studies. Our PLSPM models also suggested applicable insights for im-
proving the quality of intrinsic evaluations, such as the structural design of intrinsic evaluations.
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However, we only considered downstream tasks that can be solved by only one dense end-to-
end layer without any external knowledge. Since practical downstream tasks of NLP tend to
require more complex networks or external resources, we extend our study to apply our PLSPM
framework to a more complicated downstream task, SFQA. We involve BERT, a representative
pretrained language model, three SFQA datasets, and two intrinsic evaluations in our PLSPM
framework. As a result, our PLSPM framework finds that the BertQA strongly depends on the
surface and syntactic features for solving simple factoid questions. It indicates that the success of
BertQA for SimpleQuestions, the benchmark dataset of SFQA, may owe to the characteristics of
SimpleQuestions. Based on our findings, we empirically examine whether other SFQA systems
can generally solve simple factoid questions. As a result of our experiments involving four
datasets and five existing systems, we find that existing systems, which reported state-of-the-art
accuracy for the benchmark dataset of this task, show a lack of robustness and transferability
of other datasets. We suggest other responsible factors for this problem, such as the source
and evlauation method of each dataset, by additional examinations considering the result of our
PLSPM analysis.

In the next part, we describe our contributions and future works of this thesis.

6.1 Contributions

Previous approaches for explaining the accuracy of language models tend to depend on the obser-
vation with few samples or simple correlation analysis using intrinsic evaluations. Consequently,
they lack statistical verifications for robustness. In other words, they have not considered external
factors for their conclusion, such as the case of different models, hyperparameters for training
models, and the compound effect of multiple linguistic knowledge. Those limitations are the
main reasons why we explore whether our proposed evaluation framework can overcome them by
employing the statistical method, PLSPM. In Chapter 3 and Chapter 4, we prove that our PLSPM
framework can explain the causal relationship between encoded linguistic knowledge and the
accuracy of downstream tasks on language models considering a lot of samples and external
factors, including non-metric variables. In Chapter 3, we show that linguistic knowledge about
morphology and semantics can explain the accuracy of various downstream tasks. In Chapter 4,
we reveal that the accuracy for SFQA datasets can be explained by the accuracy of intrinsic
evaluations for surface and syntactic knowledge. Note that we can not conclude that our PLSPM
framework produces a completely general conclusion yet. Since the causal diagram of each
PLSPM model is only validated by prepared samples by the researcher. However, our PLSPM
framework suggests a more general insight for understanding and explaining the accuracy of
language models involving forgotten variables in previous approaches.
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One reason for evaluating language models should be to find the problem of the evaluated
language model and a way to resolve that problem. We also examine whether our PLSPM
framework can produce informative and valuable information to improve target language models
by evaluating them. In Chapter 4 and Chapter 5, we show that PLSPM can provide valuable clues
for finding a reason for problems that a downstream task encounters. The empirical analysis,
such as error analyses conducted in Chapter 5, is sometimes hard to figure out the causal
reason why the problem occurs when an existing system solves this task. Since our proposed
framework explains the accuracy of a downstream task with encoded linguistic knowledge on
language models, it can suggest whether encoded linguistic knowledge is utilized for the target
downstream task on language models or not. With the PLSPM analysis, a researcher can start
from “why our system does not depend on one specific linguistic knowledge?” when improving
existing systems for the target downstream task. We present a concrete example of how we can
incorporate the result of PLSPM models and further suggestions for making existing systems
better in Chapter 5. Therefore, we believe that our proposed framework has some contributions
for both academics and applications.

6.2 Future works

We present that our proposed PLSPM framework works successfully with a variety of language
models and downstream tasks in this thesis. This study is the first step to suggest a statistical
framework for explaining the accuracy of language models based on linguistic knowledge to
the best of our knowledge. Therefore, we can extend our study to a variety of future works to
examine the inner working of language models, existing systems for downstream tasks, and open
questions for interpreting language models.

For example, many other language models and downstream tasks which we have not applied to
our proposed framework exist in the NLP field. The easiest way to extend this study is to apply
the PLSPM evaluation to other language models or downstream tasks. More advanced language
models than BERT, such as RoBERTa (Liu et al., 2019b) or GPT-3 (Brown et al., 2020), can be
a good target. Comparing a variety of proposed systems for solving the same downstream task
is also a promising topic for the interpretability of existing NLP systems. Also, we note that
linguistic knowledge handled in this study is limited in existing intrinsic evaluations. Existing
datasets for the intrinsic evaluation are also limited in language selection since most of them have
been proposed only for English. Fortunately, researchers have proposed new datasets for the
cross-linguistic evaluations such as jBATS (Karpinska et al., 2018) and LINSPECTOR (Eichler
et al., 2019) in recent. We are also interested in the cross-linguistic evaluation for the same
system and task involving those datasets.
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In this study, we only discuss one downstream task of NLP, simple factoid question answering.
However, we can apply our PLSPM evaluation to other tasks of NLP to explain any result of
language models on those tasks. In Chapter 3 and Chapter 4, we use the accuracy as the effect to
be predicted in our PLSPM models. If we select machine translation as a downstream task and
choose the BLEU score as the effect to be predicted in our PLSPM model, our PLSPM models
will explore the causal relationship between encoded linguistic knowledge and the BLEU score.
In this way, we can expand our PLSPM evaluation to various downstream tasks in NLP, if the
result or performance of a downstream task can be measured in a mathematical way.

Neural network based language models, an indispensable tool for recent NLP field, still have
unresolved questions for understanding them, such as how encoded linguistic knowledge changes
during pre-training and fine-tuning (Merchant et al., 2020, Mosbach et al., 2020, Singh et al.,
2020) and what does the language model train before and after the double decent phenomenon
(Belkin et al., 2019, Nakkiran et al., 2019). Our suggested framework can be one way to investi-
gate those questions by preparing enough samples of language models and intrinsic evaluations.
Including previous discussions, we believe that we have many rooms on NLP systems employing
our proposal for further analysis. We hope that our study will contribute to helping people to
understand the inner working of language models regardless of various factors, such as inner
structures, downstream tasks, and target languages.
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