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Abstract

Sequential data is becoming more and more ubiquitous in a wide range of fields and applica-

tion scenarios due to the advance of technologies in data collection and storage. The collected

data sequences are often of high dimension and large volume that impede performances of

the machine learning algorithms. Fortunately, the underlying process of the data could be

much simpler and we can compress them in terms of both dimensionality and volume. In this

dissertation, we focus on sequential representation learning and segmentation – two di↵erent

but related research fields in sequential analysis for obtaining compressed and concise repre-

sentation for sequential data. More precise, sequential representation learning compresses the

dimensionality of the data into a smaller space regarding order relations among data samples

in the sequence. Meanwhile, sequential segmentation compresses the volume of the data by

partitioning data samples into several non-overlapping and homogeneous segments.

In sequential representation learning, it is crucial to know correspondence between data

samples among di↵erent sequences. However, this information is often missing due to man-

made reasons and collection device errors. Therefore, learning representation in sequential

settings often requires jointly solving the alignment problem. A common challenge of the

alignment and segmentation problems is their related optimization over discrete variables with

combinatorial constraints. This inhibits development of e�cient sequential learning models and

scalable sequence segmentation methods. The aim of this dissertation is to propose models with

di↵erentiable objectives for sequential representation learning and segmentation of sequences

that can succeed in dealing with the aforementioned challenge. There are three main advantages

of the di↵erentiability. First, it allows us to update all the variables in an unified manner

during optimization. This is contrary to existing models where their parameters are updated

alternatively. As a result, sub-optimal solutions are likely to be avoided. Second, stochastic

gradient descent is now applicable to train or learn the model parameters. This helps to reduce

both the time and memory complexities, enabling the models to handle large-scale sequential

data. Finally, the di↵erentiable models are now more extendable to handle multiple data

sequences. The main contributions of the dissertation are:

Sequential representation learning. First, we introduce Generalized sequential corre-

lation analysis (GSCA) – a deep model for multi-view learning from sequential data. Despite

the fact that collected data sequences are often unaligned and the sample-wise correspondence

ii



information is missing, GSCA can implicitly discover sample correspondence while learning rep-

resentations. Thanks to the di↵erentiable objective, the optimal alignment and representation

in GSCA are obtained in a unified manner, avoiding sub-optimal solutions – a common issue

of the existing models. Second, we combine GSCA with reconstruction losses of autoencoders

to form the second model called Generalized sequentially correlated autoencoders (GSCAEs).

GSCAEs provides a better trade-o↵ between within-sequence and cross-sequence relations for

sequential representation learning. Third, we develop an extension of GSCA termed Generalized

multiple sequences analysis (GMSA) to handle multiple (more than two) data sequences.

Segmentation of sequences. First, we introduce Kernel clustering with sigmoid-based

regularization (KCSR) – a segmentation model based on kernel clustering. With a novel

sigmoid-based regularization, the objective of KCSR is smooth and can be e↵ectively solved

using gradient-based algorithms. Second, we develop a stochastic variant of KCSR termed

Stochastic kernel clustering with sigmoid-based regularization (SKCSR). Time and memory

complexities of SKCSR are much lower than those of the original KCSR and almost existing

kernel-based models that prohibit them from handling extremely long data sequences. Third,

we propose an extension of KCSR called Multiple kernel clustering with sigmoid-based regular-

ization (MKCSR) for simultaneous segmentation of multiple data sequences.

Through extensive experimentation on di↵erent widely public datasets, performances of

the proposed models were evaluated and compared with those of various baselines. The exper-

imental results validate the advantages of our models over all the competitors.
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Chapter 1

Introduction

1.1 Motivation and Objectives

In the last decades, with the advances in data collection technology, the amount of data cap-

tured by various types of sensors (e.g., camera, microphone, accelerometer, strain and weight

sensor) has been growing exponentially. Not only being diverse in perspectives or views, these

data also possess complex structure (i.e., sequential order) and di↵erent feature sets (i.e., dis-

similar dimensions). This leads to an increasing interest in machine learning and data mining

community for analyzing sequential data. The main problem associated with the analysis of

these data is that they have high dimensionality and consist of a huge number of data samples.

Fortunately, the underlying process of the data could be much simpler and It is possible to

construct a much compressed and concise representation for the data.

Such compressed and concise construction can be obtained via representation learning

and sequence segmentation. Representation learning [Bengio et al., 2013] aims at obtaining

new representations of the data samples that reside in a much smaller dimensional space. As

nowadays, data are often collected from various perspectives, each of which presents a view of

the same data, multi-view representation learning [Sun, 2013, Zhao et al., 2017, Li et al., 2018]

is introduced. It aims to exploit consistency and complementary information between these

views to learn more comprehensive representations for the data. Recently, the definition of
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2 Chapter 1. Introduction

multi-view learning has been extended to accommodate sequential data, i.e., each view of

the data is in the form of a sequence. To integrate information from di↵erent views, it is

crucial for multi-view sequential learning methods to know sample-wise correspondence in ad-

vance. More precisely, given a sample in a particular sequence it is important to know its

corresponding samples in the other sequences. However, in practice, this information is often

missing as the collected data sequences are often di↵erent in length and misaligned. Therefore,

multi-view sequential learning has to take correspondence problem into account. Segmen-

tation [Bellman, 1961, Aminikhanghahi and Cook, 2017, Truong et al., 2020] takes a di↵erent

approach to obtain compressed and concise representation from data sequences. It partitions

data sequences into non-overlapping segments, whose total homogeneity is maximized. By

doing so, the original data sequences can be summarized by a smaller number of the data

representatives [Terzi and Tsaparas, 2006].

A common challenge of both sequential correspondence (a.k.a. alignment) and segmen-

tation is their related optimization over discrete variables with combinatorial constraints. To

obtain the optimal solutions for alignment and segmentation problems dynamic programming

(DP) technique [Rabiner, 1993, Bellman, 1961] is often applied. However, this algorithm has

high memory requirement (O(n2)) and expensive computational complexity (O(n2), where n is

the number of data samples in the given sequence). Furthermore, when jointly solving the cor-

respondence problem along with representation learning, it is di�cult to obtain good solutions.

The reason is that the alignment solving and representation learning, especially for those using

deep neural networks (DNNs), own di↵erent optimization schemes. Although existing models

tries to mitigate this issues by iteratively updating the alignment and representation in an

alternative manner. This procedure is prone to sub-optimal solutions. Several approximations

for segmentation also encounter a similar problem. These methods identify boundaries between

segments successively to reduce the computational time. However, because of not considering

all the segments globally, there is no theoretical guarantee for the optimality of their solutions.

Objectives of this dissertation is to propose new models with di↵erentiable objectives

for multi-view sequential representation learning and segmentation of data sequence that can

succeed in dealing with the aforementioned challenges. Advantages of the di↵erentiability are as
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follows: First, it allows us to simultaneously obtain all the optimal variables (those that encode

the alignment and representations in multi-view sequential representation learning models or

segment boundaries in sequence segmentation) instead of updating them in an alternative

manner. As a result, sub-optimal solutions are likely to be avoided. Second, since the objective

is di↵erentiable we can employ stochastic gradient descent (SGD) to train or learn the model

parameters. SGD estimates the gradient from only a small number of randomly sampled data

points, which are often called as mini-batch. Therefore, it can reduces both computational

time and memory requirement for the models. Finally, the di↵erentiable models are easy to be

extended. As will be shown in the subsequent chapters, with slight modifications, we can derive

extensions of the di↵erentiable models that can handle multiple data sequences simultaneously.

1.2 Contributions

Contributions of this dissertation are summarized as follows

1. Novel di↵erentiable models for multi-view sequential representation learning

(a) First, we introduce Generalized sequential correlation analysis (GSCA) – a deep

model for representation learning from multi-view sequential data. The model can

implicitly discover sample correspondence while learning representations. Further-

more, thanks to the di↵erentiability of objective, the optimal alignment and repre-

sentation in GSCA are obtained in a unified manner, avoiding sub-optimal solutions.

(b) Second, we propose a variant of GSCA called Generalized sequentially correlated

autoencoders (GSCAE). This is a result of the combination between the di↵erentiable

objective function in GSCA and reconstruction losses of autoencoders. GSCAE

provides us a better trade-o↵ between within-view and cross-view information for

multi-view sequential representation learning.

(c) Third, we derive an extension of GSCA called Generalized multiple sequences analy-

sis (GMSA) for handling multiple (more than two) data sequences. All the proposed
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models are trained using stochastic gradient descent. Thus, they can handle sequen-

tial datasets that are not only large in volumes but also long in the average length.

2. Novel di↵erentiable models for segmenation of data sequences

(a) Fourth, we introduce Kernel clustering with sigmoid regularization (KCSR) – a seg-

mentation model based on kernel clustering. With a novel sigmoid-based regular-

ization, objective of KCSR is smooth and di↵erentiable almost every where w.r.t

unconstrained and continuous variables. Therefore, all the optimal parameters of

KCSR can be simultaneously and e↵ectively obtained using gradient-based algo-

rithms.

(b) Fifth, we further derive stochastic gradient-based algorithm to optimize the objective

function of KCSR. This variant is named Stochastic KCSR (SKCSR). SKCSR has

much lower time and memory complexities than the original KCSR does. Especially,

there is no need for SKCSR to store the whole kernel matrix, which is one of the most

serious drawback of existing kernel-based models that inhibits them from handling

exstremly long data sequences.

(c) Sixth, we slightly modify the sigmoid-based regularization to form an extension of

KCSR called Multiple KCSR (MKCSR). The new model that inherits many good

properties from KCSR and SKCSR can simultaneously perform segmentation on

multiple sequences e↵ectively.

3. Finally, we conduct extensive experiments on various widely public datasets to evaluate

performances of the proposed models. The experimental results validate advantages of

the proposed methods over the corresponding competent baselines.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides some background

knowledge on gradient-based optimization, optimal alignment and segmentation algorithms.
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This chapter also revises previous work on multi-view representation learning from sequen-

tial data without correspondence and approximation models for kernel-based segmentation of

data sequences. Chapter 3 introduces three novel deep models, including GSCA, GSCAE and

GMSA, for multi-view sequential learning and provide their performances evaluation through

extensive experiments. Chapter 4 proposes a novel regularization based on sigmoid functions

that serves as a basis to develop KCSR, SKCSR and MKCSR for segmentation of data se-

quences. An application of the proposed models on vehicle detection is described in chapter 5.

Chapter 6 discusses future works and concludes the thesis.



Chapter 2

Background and Related Work

This chapter consists of two main parts. The first part provides background on gradient-based

optimization, optimal alignment and segmentation algorithms. These knowledge is helpful for

understanding the rest of this dissertation. The second part revises the previous works on multi-

view representation learning from sequential data without correspondence and approximation

models for segmentation of data sequences.

2.1 Background

2.1.1 Gradient-based Optimization

The goal of learning a model [Tsypkin and Nikolic, 1971, Tsypkin, 1973] consists of finding the

minimum of an expected risk function J(w), which is decomposed as follows

J(w) := Ex Q(x,w) :=

Z
Q(x,w) dP(x). (2.1)

The minimization variable w is the model parameter, which must be adapted as a response to

observing random variable data x. The loss function Q(x,w) measures the performance of the

learning model with parameter w under a particular observation of x.

6
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In practice, the probability distribution of the data is often unknown and only a set of

data observations X = [x1, . . . ,xn] is given. [Vapnik, 1982] show that minimizing the empirical

risk, which is defined as

eJ(w) :=
1

n

nX

i=1

Q(xi,w), (2.2)

can provide a good estimate of the minimum of the expected risk J(w). If eJ(w) is smooth and

di↵erentiable almost everywhere w.r.t the parameter w, its minimum can be achieved using

gradient decent (GD) algorithm. At each iteration, the parameter w is updated using the

following formula

w(t+1) = w(t) � ⌘(t)
@ eJ(w(t))

@w
= w(t) � ⌘(t)

1

n

nX

i=1

@Q(xi,w(t))

@w
, (2.3)

where the learning rate ⌘(t) has a positive value, which can be fixed over all the iteration

t or properly selected using strategies, such as binary search and backtracking line search

[Armijo, 1966]. This algorithm is guaranteed to converge linearly toward a local minimum of

eJ(w) [Polyak, 1987].

In case n is large, computation of the gradient
@ eJ(w(t))

@w becomes both time and memory

demanding. Mini-batch stochastic gradient descent (SGD) algorithm [Bottou, 1998] can alle-

viate this di�culty by selecting a random subset I(t) ✓ {1, . . . , n} of size |I(t)| = b⌧ n at each

iteration t to update w using the following formula.

w(t+1) = w(t) � ⌘(t)
1

b

X

i2I(t)

@Q(xi,w(t))

@w
. (2.4)

Here, the full batch gradient are approximating by an unbiased estimate

Ex

2

41
b

X

i2I(t)

@Q(xi,w)

@w

3

5 =
@ eJ(w)

@w
. (2.5)

It is clear that SGD has much lower computational time and memory requirement for each

iteration than those of GD. Furthermore, SGD is robust to local optimal [Bottou, 1998] and

give more frequent updates to the model parameters. Therefore, in practice, it is witnessed
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that SGD converges much faster and find better solutions in comparison with the original GD

[LeCun et al., 1989, LeCun et al., 1998, Ho↵man et al., 2010].

2.1.2 Optimal Sequence Alignment

Dynamic Time Warping (DTW) [Rabiner, 1993] is a popular algorithm for optimally solving

the alignment problem. Given two sequences X = [x1, ...,xn] 2 Rd⇥n and Y = [y1, ...,ym] 2

Rd⇥m, DTW constructs a distance matrix D(X,Y ) 2 Rn⇥m such that the element at position

(i, j), denoted by di,j, is the squared distance, i.e., di,j = ||xi � yj||22. DTW defines a warping

path ⇡ as a sequence of the indexes of the distance matrix:

⇡ = h(i1, j1), . . . , (ip, jp)i, (2.6)

which satisfies three conditions: i) Boundary : (i1, j1) = (1, 1) and (ip, jp) = (n,m); ii) Conti-

nuity : (ir+1 � ir, jr+1 � jr) 2 {(0, 1), (1, 0), (1, 1)} where 1  r  p� 1; and iii) Monotonicity :

if 1  r  t  p then ir  it and jr  jt. The optimal warping path ⇡⇤ = h(i⇤1, j⇤1), . . . , (i⇤p, j⇤p)i,

which has the smallest sum of elements in the distance matrix along the path, will serve as the

alignment solution. More precise, the sample xi⇤r is matched with sample xi⇤r for 1  r  p.
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Figure 2.1: An example of DTW: (a) two example sequences, (b) the distance matrix, and (c)
the cumulative sum matrix. The red line depicts the optimal warping path, which encodes the
sample correspondences between the two sequences.

To achieve ⇡⇤, the algorithm constructs an cumulative sum matrix S(X,Y ), using the
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following recursive formulas:

s1,1 = d1,1 (2.7)

si,j = di,j +min(si�1,j, si,j�1, si�1,j�1), (2.8)

By backtracking from the last element sn,m to the start element s1,1, the optimal warping path

is obtained. We also have sn,m = di⇤1,j⇤1 + · · ·+ di⇤p,j⇤p and it is defined as DTW distance between

the two sequences DTW(X,Y ) := sn,m. A toy example of DTW is shown in Figure 2.1.

2.1.3 Optimal Sequence Segmentation

The goal of the segmentation task is to partition a data sequence into several non-overlapping

and homogeneous segments of variable durations. Let X = [x1, ...,xn] 2 Rd⇥n denotes the

given sequence of length n and dimension d. For the number of segments k that is specified in

advance, a valid solution of the k�segmentation problem can be represented by an sample-to-

segment indicator matrix G 2 {0, 1}k⇥n, whose each element is as follows

Gj,i =

8
>><

>>:

1 xi 2 segment j,

0 otherwise.

(2.9)

G must satisfy two constraints, including i) Boundary: G1,1 = 1 and Gk,n = 1 and ii) Mono-

tonicity: for any given Gj,i = 1 then for the next column Gj,i+1 = 1 or Gj+1,i+1 = 1. An

example of the indicator matrix is given in Figure 2.2.

To discover segments with complex and nonlinear structures, kernelization is often applied.

More specifically, the data sequence X is mapped onto some high dimensional space (a.k.a.

feature space) associated with a pre-specified kernel function (·, ·) : Rd⇥Rd ! R. The mapping

function �(·) is implicitly defined by �(xi) = (xi, ·), resulting the inner-product �(xi)�(xj) =

(xi,xj). A common objective for segmentation is to minimize the total summation of the intra-

segment variances [Truong et al., 2020]. Thus, the optimization problem is often formulated as
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Figure 2.2: An example of sequence segmentation: (top) an example sequence of length 23
and (bottom) the corresponding indicator matrix with number of segments k = 7.

follows

argmin
G2G

kX

j=1

nX

i=1

Gj,i ||�(xi)� µj||22, (2.10)

where G is the set of all valid sample-to-segment indicator matrices and µj is the mean of the

jth segment in the feature space. We can observe that the objective of this problem is similar

to that of the kernel k�means and it is di�cult to be minimized because G is the discrete

variables with combinatorial constraints.

2.2 Related Work

2.2.1 Multi-view Sequential Representation Learning

Multi-view sequential representation learning extends the definition of multi-view representa-

tion learning to accommodate sequential data, i.e. data of all the views comes in the form

of sequences. There are two main approaches to develop a multi-view sequential learning

model. The first approach expands single-view models for sequential data to multi-view settings.

Several representatives of this approach are Multi-view long short-term memory (MLSTM)

[Rajagopalan et al., 2016] andMemory fusion network (MFN) [Zadeh et al., 2018]. These mod-

els extend LSTM [Hochreiter and Schmidhuber, 1997] – a single-view sequential model to han-

dle multi-view data. A crucial drawback of these models is that they assume sequences of

di↵erent views are equal in length. However, this fragile assumption is likely to be violated in

practice. For example, when collecting data sequences, sample deletion and/or insertion often
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occurs due to temporal failures of devices and man-made reasons. In addition, asynchronization

of data collection devices, e.g. sensors have dissimilar sampling frequencies, also induces di↵er-

ent numbers of collected data samples for the views. Therefore, this approach is not robust for

real-world data.

The second approach combines existing multi-view models for static data with DTW to

adapt to sequential settings. For examples, [Zhou and Torre, 2009, Panagakis et al., 2013,

Panagakis et al., 2015, Panagakis et al., 2015, Zafeiriou et al., 2016, Jia et al., 2016] directly

combines Canonical correlation analysis (CCA) [Hotelling, 1936] with DTW. Recall that CCA

is a representative of unsupervised multi-view learning methods. It tries to find a latent sub-

space in which projections of the views are maximally correlated. When combining with DTW,

it is now able to find a subspace such that projections of the two sequences are aligned and the

learned representations of the two views are maximally correlated. Recently, [Trigeorgis et al., 2018]

has proposed to combine deep CCA [Andrew et al., 2013] – a variant of CCA with DTW. Based

on deep neural networks, more complex and nonlinear embeddings can be obtained. For more

details about advantages of deep methods over the shallow ones, we refer the readers to a recent

overview paper [Rasti et al., 2020]. However, this direct combination has several serious draw-

backs. Since DTW problem is discrete and its objective is not di↵erentiable, the alignment

and representations are not optimized in a unified manner. Specifically, the new alignment

is updated while fixing the representations and vice versa. Without a good initialization this

update scheme is prone to be sub-optimal solutions. In addition, when DNNs are used to map

the two views into the new subspace their expensive training procedures need to be performed

multiple times. This makes the approach ine�cient and unsuitable for extending to larger deep

models.

Another group of related models for multi-view learning without correspondence is based

on manifold alignment. They project data from two di↵erent but correlated manifolds to

a subspace, simultaneously preserving the local structures and ensuring their closeness. A

subgroup of this technique includes semi-supervised methods [Wang and Mahadevan, 2008,

Wang and Mahadevan, 2013, Hong et al., 2019, Abeo et al., 2019]. They utilize several sample-

wise correspondences known in advance between the manifolds while learning a new subspace.
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In contrast, the second subgroup, which we will focus on in this dissertation, contains unsuper-

vised manifold alignment methods that do not require predetermining correspondences. Since

there is no prior information on the sample-wise pairing, [Wang and Mahadevan, 2009] creates

connection between the two views by comparing their local geometry, which is characterized

by the k-Nearest Neighbor (k-NNs). [Li et al., 2020] has recently proposed a variant of this

method, where the local geometry information is measured in the fuzzy granule space instead

of the original space. [Tuia et al., 2014] builds a k-NNs graph for each view and extracts a

series of graph-based descriptors for each data sample. The cross-view similarity and dissimi-

larity matrices are then computed in the descriptors space. [Cui et al., 2014] takes a di↵erent

approach to the correspondence problem. Specifically, they encode the cross-view sample-wise

matching into a binary matrix, which is jointly optimized with the projection matrices of the

two views. [Fan et al., 2016] further extends the correspondence matrix with an extra row and

column. Their aim is to better handle outliers that has no corresponding sample from the

other set. Nevertheless, these method can not take advantage of sequential order in the data

to discover more accurate correspondence. In addition, they are also limited to shallow models

and sensitive to noise, which corrupts the adjacency and geometric information of the data.

[Gong and Medioni, 2011, Vu et al., 2012] proposed hybrid models that combine unsuper-

vised manifold alignment with DTW. Thus, they also inherit drawbacks from the two above

approaches. We note that, recently, [Le et al., 2018] has been approaching to the problem of

misalignment in multi-view sequential learning using memory-based neural networks. In stead

of recovering the sample correspondence between the views, this approach stores view-specific

information in a memory and makes it accessible to neural network of the other view. Although

having promising results in practice, we exclude this approach because it is a supervised model,

which is out of scope of this dissertation.

In this dissertation, we also consider a more challenging case where the input data comprise

more than two sequences. To handle this problem, existing methods such as [Zhou and De la Torre, 2015,

Wang et al., 2017] combine multiset CCA [Hasan, 2009] and an approximation of DTW where

the warping path is approximated by a linear combination of monotonic basic functions. Nev-

ertheless, these methods are less favorable to data with a complex latent structure because they
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can only learn a simple linear projection for each view. In addition, how to select a proper set of

monotonic basics for a particular dataset remains unclear. Another closely related work is deep

discriminant analysis with time warping [Trigeorgis et al., 2018]. This method simultaneously

projects and aligns the input data sequences to a given label sequence. In contrast, in our case,

supervised information is unavailable. Therefore, model proposed in this work solves a more

complex problem.

2.2.2 Segmentation of Data Sequences

Boundaries between the segments are sometimes called as change points to indicate that at

those positions some characteristics of the sequence significantly change. Our sequence seg-

mentation problem defined in (2.10) is equivalent to o✏ine change point detection (CPD)

[Truong et al., 2020]. It aims to detect change points when all the data samples are observed.

This is to distinguish from online CPD, where the changes are detected as soon as they occur

in real-time setting. In this subsection, we will review related works in the literature of o✏ine

kernel CPD and use this term as an alternative for kernel segmentation. In addition, we note

that our models are related to clustering. Therefore, we also review temporal clustering that

also employs clustering for segmentation of data sequences.

O✏ine kernel change point detection. According to [Truong et al., 2020], almost all

o✏ine kernel CPD methods attempt to optimize the objective function as defined in (2.10).

Based on the search scheme for the segment boundaries, existing methods can be divided

into local group, which uses sliding window and global group, which bases on dynamic pro-

gramming. The local methods [Harchaoui et al., 2009a, Gretton et al., 2012, Li et al., 2015b,

Li et al., 2019] slide a window with a large enough width over the data sequence. They then

detect, in the window, a single change point, at which the di↵erence between the preceding

and succeeding samples is maximal. Although having low computational cost, these methods is

sub-optimal as the whole sequence is not considered when detecting the changes. Our approach

is more similar to the global methods, which take all data samples into account for change de-

tection. [Harchaoui and Cappé, 2007, Arlot et al., 2019] employed dynamic programming (DP)
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algorithm to optimally obtain the segment boundaries. However, because DP have time com-

plexity of order O(n4) (including computational time of the cost matrix [Celisse et al., 2018]

in the feature space), it is impractical for handling long data sequences. To reduce the time

complexity, [Truong et al., 2019] proposed a greedy algorithm that sequentially detects change

points one at an iteration. [Celisse et al., 2018] further reduce the space requirement by intro-

ducing pruned DP, which combines low-rank approximation of the kernel matrix and binary

segmentation algorithm. Our approach is di↵erent from these two methods as it searches for

all the segment boundaries simultaneously. In addition, quality of its solutions is guaranteed

as convergence to optimum of the gradient descent algorithm employed in our model is the-

oretically proved [Nocedal and Wright, 2006]. Both pruned DP and the greedy algorithm are

heuristic approximations of the original DP. Since sequentially detect the changes, errors at the

early iterations are propagated and can not be corrected at the subsequent iterations.

Temporal clustering refers to the factorization of data sequences into a set of non-

overlapping segments, each of which belongs to one of k clusters. Maximum margin tempo-

ral clustering (MMTC) [Hoai and De la Torre, 2012] and Aligned clustering analysis (ACA)

[Zhou et al., 2012] divide data sequences into a set of non-overlapping short segments. These

subsequences are then partitioned into k classes using unsupervised support vector machine

[Hoai and De la Torre, 2012] or kernel k-means clustering [Zhou et al., 2012]. Recently, a branch

of methods based on subspace clustering has been proposed. These methods often include two

steps. First, given a data sequences X = [x1, . . . ,xn], they learn a new representation (coding

matrix) Z = [z1, . . . , zn] that characterizes the underlying subspaces structures and sequen-

tial (a.k.a. temporal) information of the original data. Second, the normalized cut algorithm

(Ncut) [Shi and Malik, 2000] is then utilized for segmentation of Z. To preserve the sequen-

tial information in the new representation, [Tierney et al., 2014, Wu et al., 2015] proposed a

linear regularization of the form ||ZR||1,2, where R 2 Rn⇥(n�1) is a lower triangular matrix

with �1 on the diagonal and 1 on the second diagonal. By minimizing this regularization

jointly with the subspace learning objective, the new representation zi and zi+1 of the two

consecutive samples xi and xi+1, respectively, are forced to be similar. [Hu et al., 2020] further

integrated a weight matrix into the linear regularization to avoid equally constraining on every
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Method OSC TSC ACA AKS GKS KCSR SKCSR

Time O(n2dt+ n2) O(nd2t+ n2) O(n2nmaxt) O(r2n+ r log(k)n) O(kn+ n2) O(n2kt+ n2) O(nbkt+ b2)
Space O(n2) O(n2) O(n2nmax) O((k + r)n) O(n2) O(n2) O(b2)

Table 2.1: Time and space complexities of di↵erent segmentation methods

pair of consecutive samples. Nevertheless, since the regularization is linear, it is ine↵ective

for handling complex data structure. To leverage this issue, [Li et al., 2015a, Liu et al., 2017a]

proposed manifold-based regularization that preserves the sequential information for the local

neighborhood data samples. This type of regularization is more preferable [Zheng et al., 2021]

as it often outperforms the linear one in most tests [Clopton et al., 2017]. Our approach also

employs regularization to model sequential characteristics of the data. However, the sequen-

tial information is both globally and locally preserved in the proposed methods, thanks to the

smoothness of the sigmoid functions. In addition, since the temporal regularization makes rep-

resentation of consecutive samples become similar, boundaries of the segments become di�cult

to be identified. Our methods, in contrast, approximate the boundaries by midpoints in the

summation of sigmoid functions with high steepness. Therefore, our models are expected to

obtain better segmentation accuracy.

Both temporal clustering and o✏ine kernel CPD approaches have to store an a�nity graph

matrix and/or a kernel matrix, which require memory of order O(n2). This is also a vital reason

that inhibits them from handling long data sequence. Stochastic variant of our method has

significantly lower space requirement. At each iteration, it approximates the gradient based on a

partial kernel matrix, which corresponds to data samples in the current minibatch. Therefore,

memory complexity of Stochastic KCSR is only O(b2), where b ⌧ n is the minibatch size.

Among the existing methods, only pruned DP in [Celisse et al., 2018] is capable of handling

large-scale data because it employs low-rank approximation of the kernel matrix, which only

requires space of order O(r2), where r ⌧ n is the rank of the approximation. Comparison

between performances of Stochastic KCSR and this algorithm on a large dataset will be given

in the next section.

Table 2.1 shows time and space complexities of several existing segmentation methods. In

this table, nmax denotes maximum length of divided subsequences in ACA. The dimension of
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the new representation Z in OSC [Wu et al., 2015] and TSC [Li et al., 2015a] is expressed by

d and t denotes the total iterations needed for the algorithms converge.



Chapter 3

Di↵erentiable Models for Multi-view

Sequential Learning

Multi-view learning is concerned with machine learning problems, where data are represented

by distinct feature sets or views. Recently, this definition has been extended to accommodate

sequential data, i.e., each view of the data is in the form of a sequence. Multi-view sequential

data poses major challenges for representation learning, including i) absence of sample corre-

spondence information between the views, ii) complex relationships among samples within each

view, and iii) high complexity for handling multiple sequences. In this chapter, we first introduce

a generalized deep learning model that can simultaneously discover sample correspondence and

capture the cross-view relationships among the data sequences. The model parameters can be

obtained in an unified manner using a gradient descent-based algorithm, thanks to the di↵er-

entiability of the objective. The complexity for computing the gradient is at most quadratic

with regard to sequence lengths in terms of both computational time and space. Based on this

model, we propose a second model by integrating the objective with reconstruction losses of

autoencoders. This allows the second model to provide a better trade-o↵ between view-specific

and cross-view relationships in the data. Finally, to handle multiple (more than two) data

sequences, we develop a third model along with a convergence-guaranteed optimization algo-

rithm. Extensive experiments on public datasets demonstrate the superior performances of our

17
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models over competing methods.

3.1 Introduction

In many real-world applications, data are often collected from various perspectives, each of

which presents a view of the same data and has its own representation space and relation

characteristics. Multi-view learning methods aim to exploit consistency and complementary

information between these views to learn new representations for the data. These methods have

better generalization ability. Recently, the definition of multi-view learning has been extended

to accommodate sequential data, i.e., each view of the data is in the form of a sequence. For in-

stance, human actions can be presented by several video sequences with di↵erent features, such

as binary, Euclidean distance transform, and Poisson equation solutions [Gorelick et al., 2007]

(see Figure)

Multi-view sequential learning has posed major challenges that are di�cult for conventional

methods to accommodate. First, most multi-view learning methods essentially rely on an as-

sumption that all views of the data are equal in size and sample-wise matching. Here, we take

canonical correlation analysis (CCA) [Hotelling, 1936] and its variants [Hardoon et al., 2004,

Andrew et al., 2013, Wang et al., 2015b] as representatives. These methods project data sam-

ples from two di↵erent views into a shared subspace and then minimize the squared di↵erence

between the projections subject to whitening constraints. Thus, the two-view training data

must have the following form: X = [x1, ...,xn] 2 Rdx⇥n and Y = [y1, ...,yn] 2 Rdy⇥n, where

(xi,yi) is a matching pair (1  i  n). However, these requirements are likely to be vi-

olated in sequential settings. Sample deletion and/or insertion often occurs when collecting

data sequences because of the temporal failures of devices and other man-made reasons. In

addition, the asynchronization of data collection devices, e.g., sensors have dissimilar sampling

frequencies, also induces misalignment among the collected sequences. A widely used align-

ment algorithm, dynamic time warping (DTW) [Rabiner, 1993], can be used to match samples

in correspondence as a preprocessing step before performing conventional multi-view learning
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methods. Unfortunately, DTW fails when the dimensions of the two sequences vary (dx 6= dy).

Second, in addition to the ambiguous cross-view relationships mentioned, multi-view sequen-

tial data also involve complex view-specific relationships that span the length of the sequences.

CCA-based methods capture these relationships through linear [Hotelling, 1936] and nonlinear

[Hardoon et al., 2004, Andrew et al., 2013, Wang et al., 2015b] projection functions. However,

they ignore the sequential order that naturally exists among samples within each view. Finally,

in practice, the input data often comprise more than two sequences. Handling multiple sequen-

tial views is a di�cult task that certainly involves high resource requirements. In addition,

the discriminative properties of the learned representation might be degenerated because of the

absence of label information and the presence of irrelevant information from multiple views.

In this chapter, we first propose generalized sequential correlation analysis (GSCA)—a

novel deep neural network (DNN)-based model—to tackle the aforementioned challenges. Our

model parameterizes the projection functions that map data sequences into the shared sub-

space by DNNs. Various types of DNNs can be selected regarding the relationships among

samples within each view. In this work, we use feed-forward neural networks and recurrent

neural networks (RNNs) for implementation. In the shared subspace, our model minimizes

the generalized smooth DTW distance between projections of the two views subject to soft

whitening constraints. This allows GSCA to discover the sample correspondences and capture

the relationships between the views simultaneously. Because the generalized smooth DTW

is a di↵erentiable approximation of the original DTW, parameters of our model can be opti-

mized in a unified manner using gradient descent-based algorithms. Computing the gradient

generally takes a quadratic time and requires a quadratic memory space considering the se-

quence lengths. We can further increase the computation speed and reduce the space require-

ment by selecting squared `2 norm for regularization, which induces sparsity in the gradient of

the generalized smooth DTW. Second, to provide a better balance between view-specific and

cross-view relationships, we combine our objective function with the reconstruction losses of

autoencoders [Ngiam et al., 2011]. This forms generalized sequentially correlated autoencoders

(GSCAEs), which are a new variant of the proposed model. Finally, we further develop the

third model called generalized multiple sequences analysis (GMSA) to handle multiple data se-
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quences. Slightly di↵ering from the two first proposed models, GMSA uses DNNs to map input

data sequences directly into the label space. Thereby, we expect that the learned representation

can have cluster interpretability and better discriminability. Because no supervised information

is given, we introduce a consensus label sequence that is then aligned with projections of all

the input sequences. An e�cient algorithm with a convergence guarantee is also provided to

optimize both the consensus and the DNNs’ parameters.

The remainder of this chapter is organized as follows: Section 3.2 briefly presents some

background for the models proposed in this chapter. The GSCA model and its autoencoder-

based variant are introduced in Sections 3.3 and 3.4, respectively. The third model for han-

dling multiple data sequences along with a convergence-guaranteed optimization algorithm is

described in Section 3.5. After reporting the experimental results in Section 3.6, we summarize

the chapter in Section 3.7.

3.2 Preliminary

3.2.1 Notations

Throughout this chapter, scalars, vectors, and matrices are denoted by lower-case, bold lower-

case, and bold uppercase letters, respectively. An element at position (i, j) of a matrix A

is denoted by ai,j or [A]i,j. We denote the Frobenius inner product between A and B as

hA,Bi :=
P

i,j ai,jbi,j. 0d is a vector of dimension d whose all elements are zeros. The expression

x 2 Rd
+ indicates that vector x has d elements, each of which is greater than or equal to zero.

The norm `p of a vector x, where p 2 {1, 2} in this chapter, is ||x||p = (|x1|p + . . . |xd|p)
1
p .

3.2.2 Generalized Smooth DTW

The optimal warping path can be discovered by minimizing DTW; however, original DTW is

not di↵erentiable because of the nonsmoothness of min operator in equation (2.8), which makes
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it di�cult to minimize using gradient-based methods. To alleviate this issue, [Nesterov, 2005,

Mensch and Blondel, 2018] studied a smooth min operator that serves as an essential basis to

develop the di↵erentiable approximations of DTW.

Let ⌘ = [⌘1, ..., ⌘k]> 2 Rk, the smooth min operator is defined as follows:

min⌦(⌘) := min
�2�k
h�,⌘i+ 1

�
⌦(�), (3.1)

where �k := {� 2 Rk
+ : ||�||1 = 1} is a (k � 1) unit simplex, h., .i denotes an inner product, ⌦

is a strictly convex function on �k, and � is a nonnegative regularization parameter. Because

(3.1) is strictly convex, its minimum is unique and equal to the gradient (based on Danskin’s

theorem [Danskin, 1966]):

rmin⌦(⌘) = argmin
�2�k

h�,⌘i+ 1

�
⌦(�). (3.2)

The equation shows that the smooth min operator also depends on the selection of the regular-

ization function ⌦(�). Shannon entropy (
Pk

i=1 �i ln �i) or squared `2 norm (12
Pk

i=1 �
2
i ) are often

chosen. While the former induces closed-form solutions for both smooth min and its gradient,

the latter forces the gradient to be sparse. More details are given in Appendix A.

As the definition of the smooth min operator is already given, we can arrive at the following

recursive formulation:

s01,1 = d1,1

s0i,j = di,j +min⌦(s
0
i�1,j, s

0
i,j�1, s

0
i�1,j�1), (3.3)

where the generalized smooth approximation of DTW is defined by DTW⌦(X,Y ) := s0n,m.

Note that we can have di↵erent versions of DTW⌦, e.g., DTW⌦=entropy or DTW⌦=squared`2 ,

depending on selection of the regularization ⌦(�). The generalized smooth DTW distance

is di↵erent from the original DTW because it is di↵erentiable. Furthermore, by minimizing

DTW⌦, the optimal warping path is discovered implicitly instead of specified directly, as in the
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Figure 3.1: An example of Generalized smooth DTW: (a) the cumulative sum matrix of the
original DTW (which is the same as in Figure 2.1 (c)), (b) the cumulative sum matrix of
DTW⌦=entropy, and (c) the cumulative sum matrix of DTW⌦=squared `2 . The red line depicts the
optimal warping path, which encodes the sample correspondences between the two sequences.

original DTW. An example of Generalized Smooth DTW is illustrated in Figure 3.1.

3.3 Generalized Sequential Correlation Analysis

In this section, we propose a method, namelyGeneralized sequential correlation analysis (GSCA),

for multi-view representation learning from sequential data. We first present the model and its

objective function. We then describe the optimization methods and the relationship between

the proposed method and Deep canonical correlation analysis DCCA [Andrew et al., 2013].

Given two data sequences X = [x1, ...,xn] 2 Rdx⇥n and Y = [y1, ...,ym] 2 Rdy⇥m from

di↵erent representation spaces (dx 6= dy), our method maps them into a shared subspace:

Z
x = [zx

1 , ..., z
x
n] = fx(X,✓x) 2 Rd⇥n and Z

y = [zy
1 , ..., z

y
m] = fy(Y ,✓y) 2 Rd⇥m, where fx(·, ·)

and fy(·, ·) are projection functions and ✓x and ✓y denotes their parameters. The projection

functions are parameterized by deep feed-forward neural networks or RNNs. If the former is

selected, each sample xi of the sequence X is passed through several fully connected feed-

forward layers to compute the output zx
i . These outputs are then assembled into columns of

the matrix Z
x following the increasing order of the index i. The second view is processed in

the same manner. Note that we use BN [Io↵e and Szegedy, 2015] as the final layer. Thus, the

output features have zero mean and unit variance. For the latter, we stack several LSTM units

to form two deep LSTM networks. Each network is also equipped with a BN layer to perform



3.3. Generalized Sequential Correlation Analysis 23

Figure 3.2: Diagrams of GSCA, where the projection functions are parameterized by (a) deep
feed-forward neural networks or (b) deep RNNs (unfolded deep LSTM networks are shown).
The symbol$ denotes the sample correspondences that are discovered implicitly by minimizing
the objective LGSCA. Note that each deep network includes a batch normalization (BN) layer
at the output, which is not shown in the diagrams.

the normalization. The representation sequences Zx and Z
y are then computed by feeding the

input sequence X and Y , respectively, to the networks. Note that the parameters ✓x and ✓y

are now equivalent to collections of all the weights matrices of the corresponding DNNs. Figure

3.2 shows the diagrams of the proposed method.

3.3.1 Objective

Because the input sequences are unaligned, the sample-wise correspondence information be-

tween their representations Z
x and Z

y is also absent. Our model aims at minimizing the

generalized smooth DTW distance between Z
x and Z

y. This allows the model to discover the

optimal warping path implicitly by encoding the sample correspondences as mentioned in Sec-

tion 3.2. In addition, the squared distances between the corresponding representation samples

from the two views are also reduced simultaneously, pulling them closer in the shared subspace.
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The objective function of our model is as follows:

LGSCA = DTW⌦(Z
x,Zy) + �1Lx(Z

x) + �2Ly(Z
y), (3.4)

where the two regularization terms are of the following form:

Lv(Z
v) =

dX

i=1

dX

j 6=i

|cvi,j|, (3.5)

where v 2 {x, y} and cvi,j is the element at the (i, j) position of the matrix C
v = Z

v
Z

v>. These

regularization functions are smooth approximations of the whitening constraints in CCA-based

methods. More specifically, the whitening constraints enforce the features of the representations

to be pairwise uncorrelated (Cv = I). They are used to prevent trivial solutions, e.g., all the

data samples are mapped into a single point in the shared subspace. In our method, because the

representation sequences are normalized by BN layers, we further use the l1�norm to encourage

sparsity in the o↵-diagonal elements of Cv. �1 > 0 and �2 > 0 are regularization parameters

that control the trade-o↵ between whitening and warping the two representation sequences.

3.3.2 Optimization

The parameters ✓x and ✓y can be trained using the gradient-based method. To compute the

gradient of LGSCA with regard to all the parameters ✓x and ✓y, we compute its gradients with

regard to the outputs Z
x and Z

y and then use backpropagation [LeCun et al., 1989] in the

case of feed-forward neural networks or backpropagation through time (BTT) [Werbos, 1990]

if the RNNs are used. We have

@LGSCA

@Zx
=
@DTW⌦(Zx,Zy)

@Zx
+ �1

@Lx(Zx)

@Zx
. (3.6)

The gradient of the generalized smooth DTW with regard to Z
x can be computed as

@DTW⌦(Zx,Zy)

@Zx
=


@s0n,m
@zx

1

, . . . ,
@s0n,m
@zx

n

�
, (3.7)
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Algorithm 1 : Stochastic algorithm for GSCA
Require: Batch size ratio ↵ 2 [0, 1], time constant ⇢ 2 [0, 1], momentum µ 2 [0, 1), and

learning rate ✏.
Ensure: Optimal DNNs parameters ✓⇤ = [✓⇤x,✓

⇤
y].

1: for t = 1, . . . ,T do
2: random sample subsequence Z

x
(t) of length n↵;

3: random sample subsequence Z
y
(t) of length m↵;

4: C
x
(t) = ⇢Cx

(t�1) + (1� ⇢) 1↵Z
x
(t)Z

x
(t)

>;

5: C
y
(t) = ⇢Cy

(t�1) + (1� ⇢) 1↵Z
y
(t)Z

y
(t)

>;

6: compute @LGSCA
@Zx

(t)
and @LGSCA

@Zy
(t)

;

7: compute gradient r✓ using backpropagation;
8: �✓(t) = µ�✓(t�1) � ✏r✓;
9: ✓(t) = ✓(t�1) +�✓(t);
10: end for

where

@s0n,m
@zx

i

=
mX

j=1

@s0n,m
@di,j

@di,j
@zx

i

(3.8)

= 2
mX

j=1

ei,j
�
z
x
i � z

y
j

�
for i = 1, ..., n. (3.9)

In equation (3.9), we used the notations defined in Section 3.2, where s0n,m := DTW⌦(Zx,Zy)

and di,j := ||zx
i �z

y
j ||22. The derivative ei,j =

@s0n,m

@di,j
can be computed e�ciently using a forward-

backward algorithm. The details of the algorithm and its complexity are given in Appendix

C.

The gradient of Lx with regard to Z
x can be computed as

@Lx(Zx)

@Zx
= H

x
Z

x, (3.10)

where H
x 2 Rd⇥d, whose elements are defined as

hx
i,j =

8
>>>>>><

>>>>>>:

1 if cxi,j > 0

0 if i = j or cxi,j = 0

�1 if cxi,j < 0.

(3.11)
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The gradient @LGSCA
@Zy can be computed in a similar manner. Our model can be trained using

a full-batch algorithm (L-BFGS) [Nocedal and Wright, 2006], as in [Andrew et al., 2013]. For

large datasets, however, this algorithm is both time and memory ine�cient. An alternative

is based on stochastic gradient descent (SGD) [Bottou, 1991, LeCun et al., 1998] where the

gradient is estimated based on a much smaller number of training samples (a minibatch). The

details are shown in Algorithm 1. Note that we use a stochastic estimate of the covariance

matrix for each view because at each iteration, t, the algorithm can access only a small number

of samples instead of the whole training set.

3.3.3 Relation to Deep CCA

Let us consider the case where the data sequences X and Y are equal in size (m = n), then the

DTW distance between Z
x and Z

y is equivalent to their squared di↵erence. By replacing the

two regulation terms in the objective (3.4) with their associated hard whitening constraints,

the optimization problem of GSCA model turns into

min
✓x,✓y

||Zx �Z
y||2F (3.12)

s.t. Z
x
Z

x> = Z
y
Z

y> = I,

which is exactly the optimization problem of DCCA. This indicates that GSCA also maximizes

the correlation between the projections of the views. However, our models is more generalized

than DCCA, since it can handle multi-view sequential data, which are possibly unequal in size

and misaligned.

3.4 Generalized Sequentially Correlated Autoencoders

In this section, we develop GSCAEs as a variant of the proposed method. The objective

of GSCAEs is formed by integrating reconstruction losses of autoencoders with the objective

of GSCA. Let gx(Z
x,�x) and gy(Z

y,�y) denote the functions that map the representation
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Figure 3.3: Diagrams of generalized sequentially correlated autoencoders (GSCAEs), where
the projections functions and reconstruction functions are parameterized by (a) deep feed-
forward neural networks or (b) deep RNNs. X̂ = [x̂1, ..., x̂N ] and Ŷ = [ŷ1, ..., ŷM ] denote the
reconstructed inputs.

sequences Z
x and Z

y back to the original spaces, where �x and �y are their corresponding

parameters. Then, the objective of GSCAEs is as follows

LGSCAE = LGSCA + �

✓
1

n
||X � gx(Z

x,�x)||22 +
1

m
||Y � gy(Z

y,�y)||22
◆
, (3.13)

where � > 0 is a trade-o↵ parameter. Similar to projection functions in GSCA, gx(·, ·) and

gy(·, ·) can also be parameterized by deep feed-forward neural networks or RNNs. Diagrams of

GSCAEs are illustrated in Figure 3.3.

By minimizing LGSCA, the correspondences of samples between the views are discovered

implicitly and their corresponding squared distances are also reduced. This amounts to maxi-

mizing mutual information, which presents the relation between the views. The view-specific

relation, on the other hand, is expressed via minimizing the reconstruction errors. This is

equivalent to maximizing a bound on the mutual information between the input and output of

each view. Thus, GSCAEs provide us a better trade-o↵ between information within each view

and cross-view information.
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The advantages of GSCAEs over GSCA come at some expenses. For a specific application

with a particular dataset, we need to carefully tune the trade-o↵ parameter � for GSCAEs to

achieve optimal performance. In addition, training GSCAEs certainly requires more computa-

tional resources than those for GSCA. Specifically, when training GSCAEs using a stochastic-

based algorithm, we need to compute the gradients with regard to ✓x and ✓y, which are as-

sociated with both LGSCA and autoencoder parts. Furthermore, we also need to compute the

gradients with regard to �x and �y, which are only dependent on the reconstruction losses.

We note that similar to GSCA, GSCAEs have di↵erent versions depending on the selection of

the regularization function ⌦(�) in DTW⌦. We denote them as GSCAE-e if ⌦(�) is Shannon

entropy and GSCAE-s when squared `2 norm is selected.

3.5 Generalized Multiple Sequences Analysis

In this section, we propose generalized multiple sequences analysis (GMSA), which is an ex-

tended variant of GSCA for learning representation using multiple data sequences. Slightly

di↵ering from the previously proposed method, GMSA directly projects all the data sequences

into the label subspace to learn more interpretable and discriminative representations. The

projection functions are parameterized by DNNs, as in GSCA. To accommodate sequential

mismatching, we introduce a consensus label sequence that is then aligned to all the output

sequences of the DNNs. An alternating optimization algorithm is finally derived to solve the

objective function with regard to parameters of the DNNs and the consensus label sequence.

3.5.1 Objective

Given v data sequences X(k) 2 Rd
x(k)

⇥n(k)

for k = 1, ..., v, we assume that each sample of these

sequences belongs to one of c disjoint classes. The cluster assignment is often denoted by a

matrix F
(k) = [f (k)

1 , ...,f (k)

n(k) ] 2 Rc⇥n(k)
, where f

(k)
i is the cluster indicator vector 1 of sample

x
(k)
i in the sequence X

(k). As in [Ye et al., 2007, Nie et al., 2011, De la Torre, 2012], for each

1
f
(k)
i 2 {0, 1}c⇥1

such that f (k)
j,i = 1 if x

(k)
i belongs to the jth class and zero otherwise.
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view, we define a scaled cluster indicator matrix

eF (k) = [ ef (k)
1 , ..., ef (k)

n(k) ] = (F (k)>
F

(k))�
1
2F

(k)>. (3.14)

It turns out that

eF (k) � 0 and eF (k) eF (k)> = I. (3.15)

In GMSA, each input data sequence is passed through a DNN to compute its output

sequence Z
(k) = fk(X(k),✓(k)) 2 Rc⇥n(k)

, where ✓(k) is a collection of all parameters of the kth

network. The dimension of the new subspace is exactly the number of the classes, indicating that

the input sequences are mapped into the same space with the labels. Because the representation

sequences in the new space are possibly unequal in length and sample-wise mismatched, we

introduce a consensus label sequence Z 2 Rc⇥n of a prespecified length n and minimize its

DTW distances with all sequences Z(k). The optimization problem of GMSA is as follows:

min
Z,✓(1),...,✓(v)

vX

k=1

DTW⌦(Z,Z(k)) +
vX

k=1

�kLk(Z
(k)), (3.16)

subject to Z � 0 and ZZ
> = I,

where �k is the weighted parameter for soft whitening regularization of the kth view, which is

similar to GSCA. The nonnegative and orthogonal constraints are derived from (3.15), enforcing

Z to satisfy the cluster indicator conditions. By introducing the consensus label sequence, we

can avoid minimizing the sum of all pairwise DTW distances between output sequences, which

is computationally demanding and prone to errors. We note that deep discriminant analysis

with time warping in [Trigeorgis et al., 2018] also utilizes the idea of mapping the input data

sequences into the label space. However, the authors assumed that the supervised information

was already available. In our model, the sequential labels are not given previously. Therefore,

GMSA is completely unsupervised and its optimization problem is more di�cult to be solved.
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3.5.2 Optimization

In this section, we propose an alternating algorithm to solve the optimization problem of GMSA.

More specifically, we update all the parameters of the DNNs iteratively when Z is fixed and

then optimize the consensus label sequence after recomputing all output sequences of the DNNs.

Let LGMSA denote the objective function in (3.16). When fixing the consensus label

sequence, we can compute gradients of LGMSA with regard to Z
(k) for k = 1, ..., v as follows:

@LGMSA(Z(k))

@Z(k)
=
@DTW⌦(Z,Z(k))

@Z(k)
+ �k

@Lk(Z(k))

@Z(k)
. (3.17)

Similar to optimization for GSCA, these gradients are then backpropagated to compute the

gradients of LGMSA with regard to the parameters ✓(k) for k = 1, ..., v.

When all parameters ✓(k) are fixed, the output sequences Z
(k) are recomputed and the

optimization problem in (3.16) reduces to

min
Z

vX

k=1

DTW⌦(Z,Z(k)) (3.18)

subject to Z � 0 and ZZ
> = I.

By adding an extra penalty term ⇠||ZZ
> � I||2F to the objective of problem (3.18), we can

remove the orthogonal constraint. Denote G =
Pv

k=1
@DTW⌦(Z,Z(k))

@Z(k) ; then, the update rule for

Z is as follows:

zi,j  zi,j
[4⇠Z]i,j

[G+ 4⇠ZZ>Z]i,j
. (3.19)

To guarantee the orthogonality of Z, we set ⇠ as a relatively large value, ⇠ = 106, in

our experiments. The derivation of equation (3.19) is given in Appendix D . Because we use

the Karush–Kuhn–Tucker (KKT) condition to update Z, the objective value of GMSA can be

ensured to decrease monotonically. However, note that the objective function is not jointly

convex with regard to all the variables and that the alternating optimization algorithm is not

guaranteed to converge to the global optimum. Therefore, a good initial guess can help the
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Algorithm 2 : Alternating optimization algorithm for GMSA

Require: Input data sequences X(k) for k = 1, ..., v.
Ensure: The optimal DNNs’ parameters ✓⇤ and consensus sequence Z

⇤.
1: for k = 1, ..., v do
2: Run k-means on X

(k) to generate cluster indicator matrix F
(k);

3: Initialize Z
(k) = (F (k)>

F
(k))�

1
2F

(k)>;
4: Initialize ✓(k) = argmin

⇥
||Z(k) � fk(X(k),⇥)||2F .

5: end for
6: repeat
7: Update the consensus Z using equation (3.19);
8: Update the DNNs’ parameters ✓ using a stochastic algorithm;
9: Recompute Z

(k) = fk(X(k),✓(k)) for k = 1, ..., v;
10: until convergence

algorithm to achieve a better optimal solution and converge faster. In this work, we separately

run a k-means algorithm on the input sequencesX(k) to generate their cluster indicator matrices

F
(k) for k = 1, ..., v. The initial value of Z(k)’s output of the DNNs are then computed using

equation (3.14). Afterward, Algorithm 2 summarizes the alternating optimization procedure of

GMSA.

3.6 Empirical Study

3.6.1 Compared methods

We compare GSCA and its variant GSCAEs with the following two-view baselines:

• Canonical time warping (CTW) [Zhou and Torre, 2009]—a direct combination of CCA

and DTW;

• Canonical soft time warping (CSTW) [Kawano et al., 2019]—a probabilistic extension of

CTW, where the alignment is considered a variable that follows Gibbs distribution. The

alignment and projection matrices are alternatively optimized using the Expectation–

Maximization (EM) algorithm.
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• Autoencoder regularized CTW (AECTW) [Nie et al., 2016]—a variant of CTW with

autoencoder-based regularizations;

• Deep CTW (DCTW) [Trigeorgis et al., 2018]—a direct combination of Deep CCA and

DTW;

• Locally unsupervised manifold alignment (LUMA) [Wang and Mahadevan, 2009]—an un-

supervised manifold alignment-based method that establishes a connection between any

two samples from the two views by comparing their local geometries;

• Fuzzy granule manifold alignment (FGMA) [Li et al., 2020]—a variant of LUMA, where

the local geometry information is collected in the fuzzy granule space instead of the

original space.

• Generalized unsupervised manifold alignment (GUMA) [Cui et al., 2014]—another unsu-

pervised manifold alignment-based method that encodes cross-view sample-wise corre-

spondence into a binary matrix that is jointly optimized with the projections;

• Manifold alignment time warping (MATW) [Vu et al., 2012]—a hybrid method where

sample alignment is performed by DTW and where projection matrices are optimized to

preserve the underlying structures of the two views;

and compare GMSA with the following multi-view method:

• Generalized canonical time warping (GCTW) [Zhou and De la Torre, 2015]—Multi-set

CCA is used to project data sequence into a shared subspace with an approximation of

the DTW algorithm to align the projected sequences.

We note that DTW⌦ in the objective of our methods has di↵erent versions depending on the

selection of the regularization functions ⌦(�). Therefore, we add su�xes -e and -s to our

methods, indicating that ⌦(�) is Shannon entropy and squared `2 norm, respectively.
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3.6.2 Evaluation measurements

All datasets in our experiments are divided into training, tuning, and test sets. We eval-

uate these methods by measuring class separation in the learned embedding spaces on the

test set. First, we perform clustering tasks on the projections of the first view and evaluate

how well the clusters agree with the ground-truth labels2. We follow the same procedure in

[Wang et al., 2015a], where spectral clustering [Ng et al., 2001] is used to handle possibly non-

convex cluster shapes. We set the number of clusters to the number of ground-truth classes

available in each dataset. Clustering accuracy (ACC) and normalized mutual information

(NMI) [Cai et al., 2005] are used as measurements for assessing the clustering performance.

More details of their definitions are given in Appendix F. Second, we test the accuracy of

a simple linear classifier on the learned embeddings. We train one-versus-one linear support

vector machines (SVMs) [Chang and Lin, 2011] on the projected training set of the first view

(label information is used). The trained model is then used to classify projections of the test

set, and the percentage of errors is reported as a measurement of classification performance.

3.6.3 Parameter tuning

We select the optimal parameters that return the best evaluation measurement results on the

tuning set for each method.

Two-view methods: Dimension d of the new subspace is selected from {5, 10, 20, 30, 50, 70}.

For manifold alignment-based methods, we select the parameter that balances between sample

matching and geometry preserving from {0.1, 0.2, 0.3, 0.4, 0.5}. The number of neighbors for

building the k-NN graph that encodes the local geometry is selected from {1, 3, 5, 10, 15, 30}.

We found that these methods return the best average results at k = 5. The trade-o↵ pa-

rameter between the autoencoder regularization term and the alignment objective in AECTW

and GSCAEs is selected using a grid search. For the soft whitening constraints in GSCA and

GSCAEs, we set �x = �y, and their values are also selected using grid search. Another im-

2
For GMSA, we use the projections of the views as their cluster indicators.
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portant parameter is �, which controls the regularization in the smooth min operator. We set

� = 1, as suggested in [Doan and Atsuhiro, 2019, Cuturi and Blondel, 2017]. For the DNNs

used in the compared methods, their topology and configurations are data-dependent and are

specified in the following subsections.

Multiview methods: For GCTW, similar to the two-view methods, we select a di-

mension of the new subspace from {5, 10, 20, 30, 50, 70}. To approximate the optimal warping

paths, we use five hyperbolic tangent and five polynomial functions as the monotonic ba-

sics. The other parameters are set according to the original paper. In contrast to GCTW,

our method GMSA projects the input sequences into the label space. Therefore, we choose

the dimension d of the new space for GMSA such that it is identical to the number of

classes available in the datasets. We use the same soft whitening regularization parameters

for all the views: �1 = �2 = ... = �v, and the value is chosen using grid search. Let

na, ns, and nl denote the average, shortest, and longest lengths, respectively, of the input

data sequences. Then, the length of the consensus sequence Z is selected from a rounded set

{ns,max(ns, 0.5na),max(ns, 0.75na), na,min(nl, 1.25na),

min(nl, 1.5na), nl}. The alternating optimization algorithm of GMSA is determined to be con-

verged if the relative reduction of the objective is smaller than a tolerance ✏ = 10�5. In

practice, we also terminate the algorithm if the number of iterations exceeds a prespecified

value iter max = 50.

3.6.4 Two-view Data I: Noisy MNIST Digits

In this experiment, we utilize the MNIST dataset [LeCun et al., 1998], which consists of 28⇥28

grayscale digit [0, 9] images divided into 60K/10K for training/testing. Following the procedure

in [Wang et al., 2015a], we generate two-view data as follows. For the first view, we rescale the

pixel to [0, 1] and randomly rotate the images at angles uniformly sampled from [�⇡
4 ,

⇡
4 ]. For

each image of the first view, we randomly select an image of the same identity from the original

dataset, add noise uniformly sampled from [0, 1], and truncate the pixel value to [0, 1]. This

image is further resized to 24 ⇥ 24 and used for the second view. 10K from 60K image pairs
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of the original training set are set aside for tuning.

Figure 3.4: A toy example of how to generate misaligned sequences. (a) Hidden states generated
by pHMM and (b) the corresponding two data sequences generated from the noisy MNIST digits
dataset.

From 50K image pairs {(xi,yi, li)|1  i  5 ⇥ 104,xi 2 R784,yi 2 R576, li 2 {0, ..., 9}} of

the new training set, we generate two misaligned sequences using a profile hidden Markov model

(pHMM) [Eddy, 1998]. Specifically, we generate two state sequences, consisting of MATCHING

state Mi that emits the ith matching sample and INSERT state Ii intended for emitting sample

replication. The transition probability is chosen such that from any state, the next state is

MATCHING with probability 0.6 and INSERT with probability 0.4. We terminate the state

sequences after reaching the (5⇥ 104)th MATCHING. The state Mi of the first sequence corre-

sponds to sample xi. For state Ii, we replicate xi by randomly selecting a sample xl=li from

its class (having the same identity). (Similarly for the second sequence). Figure 3.4 shows a

toy example of how to generate misaligned sequences using pHMM for a given small set of 10

training image pairs.

In this experiment, we used feed-forward neural networks for all DNN-based models, in-

cluding DCTW, GSCA, and GSCAEs. To parameterize the projection functions that map data

from original spaces to the new subspace, we use two fully connected networks whose numbers of

sigmoid units at hidden layers are 1200�1200�1200 (for the first view) and 1000�1000�1000

(for the second view). Note that each network includes a BN layer of d units on the top as

an output layer. The view reconstruction in GSCAEs is performed by the symmetric DNNs.

Figure 3.5 visualizes the first view in the original space and its projections in the subspaces
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(a) Inputs (b) CTW (c) CSTW

(d) AECTW (e) LUMA (f) FGMA

(g) GUMA (h) MATW (i) DCTW

(j) GSCA-e (k) GSCA-s (l) GSCAE-e

(m) GSCAE-s

Figure 3.5: t-SNE [Van der Maaten and Hinton, 2008] visualization of the projected test set of
noisy MNIST digits returned by di↵erent methods.
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Method ACC (%) NMI (%) Error (%)

Inputs 45.14 (5.27) 48.05 (6.77) 15.61 (2.86)
CTW 66.33 (4.47) 52.17 (4.81) 20.28 (3.21)
CSTW 75.16 (1.62) 73.91 (2.01) 7.92 (1.50)
AECTW 82.62 (2.22) 79.66 (2.12) 8.24 (1.72)
LUMA 62.37 (3.21) 61.25 (3.71) 26.23 (3.64)
FGMA 66.51 (2.19) 65.93 (2.87) 24.36 (2.92)
GUMA 60.38 (3.47) 54.25 (2.90) 28.03 (3.14)
MATW 69.18 (4.86) 67.44 (5.13) 21.39 (3.03)
DCTW 86.46 (1.13) 84.22 (2.09) 6.23 (1.46)
GSCA-e 95.14 (1.03) 93.14 (1.12) 2.80 (0.61)
GSCA-s 90.57 (0.95) 89.93 (1.17) 5.06 (0.92)
GSCAE-e 96.67 (0.81) 95.66 (0.68) 3.12 (1.02)
GSCAE-s 91.48 (1.15) 91.35 (0.87) 4.47 (1.33)

Table 3.1: Clustering (ACC, NMI) and classifying (Error) results on the noisy MNIST digits
dataset. The data sequences are generated randomly five times using the pHMM-based proce-
dure. Each method is performed on these data to learn the new embeddings and the average
results along with variances on projections of the test set are reported.

learned by di↵erent methods. The class separation results are shown in Table 3.1.

The results show that among manifold alignment-based models, FGMA had better scores

than LUMA and GUMA. FGMA evaluates the local geometry of the data after converting

them into a fuzzy granule space. Thus, FGMA can discover more complex local structure

information. MATW is a hybrid model. Di↵ering from LUMA, FGMA, and GUMA, MATW

discovers sample correspondences by DTW. Thus, it can take advantage of sequential order

in the data to find the cross-view correspondence. Nevertheless, these models returned poor

results on noisy MNIST digits datasets because the noise corrupted the geometric information.

In contrast, the deep learning-based models returned much higher class separation results, even

in noisy conditions. These methods mapped samples of the same class to similar locations

while suppressing noise and rotational variation in the data. We also observe that models with

a smooth approximation of DTW, including GSCA and GSCAEs, worked much better than

CTW, AECTW, and DCTW, which directly combine the original DTW with variants of CCA.

By minimizing the di↵erentiable version of DTW, alignment and projection can be optimized

in a unified manner. CSTW also implicitly optimizes DTW because it considers the warping

path as a probabilistic variable. However, its EM algorithm still updates the alignment and

projection matrices alternatively, which is also prone to sub-optimal solutions.
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Figure 3.6: Average times for computing stochastic gradients of GSCA-e and GSCA-s over a
batch size ratio ↵ = 0.1 (equivalent to a batch size of about 1.5K) on noisy MNIST digits
datasets with di↵erent dimensions d of the learned subspace.

The experimental results also show that by combining CTW or GSCA with autoencoders

(forming the variants AECTW or GSCAEs) and carefully tuning the trade-o↵ parameters their

performances can be improved. We note that each method proposed in this chapter has two

versions depending on the selection of the regularization ⌦(⌘). Figure 3.6 shows the average

times for computing the stochastic gradients of GSCA-e and GSCA-s over di↵erent dimensions

d. Because of the sparsity of the gradient induced by squared `2 norm, training GSCA-s

and GSCAE-s are generally faster than GSCA-e and GSCAE-e, respectively. However, this

advantage comes at an expense of slightly lower class separation scores.

3.6.5 Two-view Data II: Acoustic and Articulatory Recordings

We next evaluate the performances of the two-view methods on the Wisconsin X-ray microbeam

(XRMB) corpus [Westbury et al., 1994], which consists of 2537 utterances recorded from 47

American English speakers. Lengths of the utterances vary from 63 to 2941 frames. Each

frame is basically described by 39D acoustic features (13-dimensional mel-frequency cepstral

coe�cients [MFCCs] along with their first and second derivatives) and 16D articulatory fea-

tures (horizontal/vertical displacement of 8 pellets attached to the tongue, lips, and jaw). To

incorporate context information and generate two sequential views of di↵erent frame rates, we

slide windows of 7 and 9 frame sizes over each utterance with one frame step size. The frames
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Method ACC (%) NMI (%) Error (%)

Inputs 48.54 (3.51) 50.26 (3.65) 36.15 (4.51)
CTW 67.74 (3.11) 67.18 (3.32) 28.05 (3.88)
CSTW 68.82 (2.59) 67.49 (2.63) 27.64 (2.97)
AECTW 68.16 (2.32) 69.55 (2.69) 27.92 (3.63)
LUMA 56.23 (3.16) 56.83 (2.88) 30.33 (3.47)
FGMA 58.12 (2.92) 58.41 (2.95) 29.62 (3.03)
GUMA 55.73 (3.25) 54.61 (3.12) 30.97 (3.55)
MATW 64.51 (3.04) 63.38 (2.92) 29.35 (3.85)
DCTW 74.51 (3.07) 75.19 (2.90) 27.50 (3.28)
GSCA-e 82.45 (3.23) 82.83 (2.85) 26.48 (3.05)
GSCA-s 81.68 (2.84) 81.02 (3.19) 26.87 (2.94)
GSCAE-e 83.90 (2.93) 82.91 (3.15) 25.35 (3.13)
GSCAE-s 82.02 (3.02) 80.93 (2.89) 26.07 (2.86)

Table 3.2: Phone class separation on the projections of the acoustic view learned by di↵erent
methods. The testing set is randomly divided into six folds. Clustering and classification tasks
are performed on each fold and the average results along with their variances are reported.

within the windows are concatenated, resulting in 273D acoustic and 144D articulatory input

samples. Because each original frame belongs to one of 41 phone classes, we consider the labels

of the central frames as those of the newly generated inputs.

The utterances are presently characterized by two sequences whose lengths are di↵erent and

the sample correspondences are also missing. We randomly divide them into 1415/471/471 for

training/tuning/testing. We use RNNs for GSCA and GSCAEs to better capture the sequential

nature of the data in this experiment. Specifically, for each view, we stack three LSTM units

with the same numbers of memory cells (1500 for acoustic view and 1200 for articulatory view)

along with a fully connected BN layer of d units at the output to parameterize the projection

function. The view reconstruction in GSCAEs is performed by the symmetric deep LSTM

networks. Note that while training these models using Algorithm 1, at each iteration, we

randomly sample acoustic and articulatory input sequences that correspond to one of the 1415

training utterances to compute the stochastic gradient. Thereby, we can take better advantage

of the sequential nature in the data for training the RNNs. For DCTW, we concatenate two

views of the training utterances into two long sequences and feed them separately to two fully

connected networks. These networks consist of three hidden layers whose activation functions

are ReLU, and the numbers of the units are 1500 � 1500 � 1500 for the acoustic view and
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Figure 3.7: Average times for computing stochastic gradients of GSCA-e and GSCA-s on the
XRMB dataset. For a fair comparison, computation times for backpropagation (or BTT) are
excluded. The computation is taken on minibatches with the sizes are equal to average length
of the training utterances (about 1K samples).

1200� 1200� 1200 for the articulatory view.

Table 3.2 shows the phone class separation results on representations obtained by di↵erent

methods. Similar to the results on the noisy MNIST digits dataset, the DNN-based methods

outperformed CTW, CSTW, AECTW, and the manifold alignment-based methods. The DNNs

enable those methods to approximate projection functions nonlinearly, improving the quality

of the learned embeddings. In this experiment, the designed RNNs have shown positive e↵ects

on our methods. They allow the models to better capture the sequential relationships among

data samples. As a consequence, GSCA and GSCAEs achieved the highest scores among the

compared methods. We also see that the results of AECTW and GSCAEs surpass those of

CTW and GSCA, respectively. This again validates the benefits of coupling autoencoder-

based regularizations with the objective functions for providing a better trade-o↵ between

view-specific and cross-view information.

We then investigate average times for computing stochastic gradients of GSCA-e and

GSCA-s. Figure 3.7 shows that the computing gradients of GSCA-e and GSCA-s are very

fast. This e�ciency originates from the use of the new generalized smooth DTW. Note that,

by setting ⌦(⌘) in DTW⌦ to be squared `2 norm, the training time is further reduced as

stochastic gradient GSCA-s is sparser than that of GSCA-e. However, as shown in Table 3.2,

the class separation results were slightly decreased. Because DTW⌦=squared `2 is a nonexact
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approximation of DTW, GSCA-s and GSCAE-s included some certain bias in comparison with

the Shannon entropy-based versions.

3.6.6 Multiview Data I: Human Actions with Multiple Feature Sets

In this experiment, we evaluate the performances of multiview methods, including GMSA

and GCTW, on the Weizmann dataset [Gorelick et al., 2007], which consists of 90 videos of

nine subjects, each performing ten actions: wave-one-hand (wave 1), wave-two-hand (wave 2),

side, jump-in-place (pjump), jump-forward (jump), jack, skip, bend, walk, and run. Similar

to [Hoai and De la Torre, 2014], we concatenate videos of the same subject into a long video

sequence following the presented order of the actions. Each frame of these video sequences

subtracts the background and is rescaled to the size 80 ⇥ 40. These types of features can be

computed to characterize the frames, including type 1: binary, type 2: Euclidean distance trans-

form [Maurer et al., 2003], and type 3: solution of the Poisson equation [Gorelick et al., 2006].

We generate three-view sequential data for training by selecting video sequences of the first

three subjects, each of which is represented by one of the three feature types without repeti-

tion. As a result, each view of the data has di↵erent features, and each frame of the views

belongs to one of the ten classes (see Figure 3.8 for more details). To reduce the dimensions

of the feature space (3200), the top 123 principal components that preserve 99% of the total

energy are selected. Videos of the next three subjects are used for tuning, and the remaining

subjects’ videos are utilized for testing.

For GMSA, we use RNNs to parameterize the projection functions. We use a similar

network configuration for all the views because three views of the datasets have the same input

dimensions. Specifically, the data of each view are passed through a deep network with three

stacked LSTM units, each of which has 256 memory cells. The output layer of the network

is a BN layer with d = 10 units. Because the new subspace in GMSA corresponds to the

label space, we expect the learned representations can have cluster interpretability and better

discriminability. Let z(k)
i 2 Rd be the projection of the testing sample x(k)

i , we then assign x
(k)
i

to class j such that z(k)j,i is the largest element of z(k)
i . Table 3.3 shows the class separation
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Figure 3.8: Three-view sequential data generated from the Weizmann dataset. The views are
constructed by concatenating ten action videos of three subjects named Daria, Lyova, and Eli,
respectively. Note that each view has di↵erent features: Binary (view 1), Euclidean distance
transform (view 2), and solution of Poisson equation (view 3).

results on the representations learned by GCTW and GMSA.

Method ACC (%) NMI (%) Error (%)

view 1 53.75 (2.35) 62.48 (1.17) 14.21 (2.11)
Input view 2 57.92 (1.72) 63.73 (2.02) 12.37 (1.27)

view 3 49.15 (1.87) 55.22 (1.21) 13.53 (1.61)

GCTW
view 1 67.32 (2.06) 72.37 (1.27) 10.49 (1.14)
view 2 68.49 (1.94) 74.01 (1.83) 8.72 (0.98)
view 3 65.87 (1.55) 70.38 (2.13) 10.15 (1.36)
view 1 86.65 (1.82) 88.50 (1.80) 5.04 (1.85)

GMSA-e view 2 88.03 (1.90) 90.02 (1.89) 5.94 (1.85)
view 3 84.62 (1.51) 86.12 (1.19) 6.56 (1.66)

GMSA-s
view 1 84.62 (2.08) 87.11 (1.96) 5.75 (1.91)
view 2 87.59 (1.73) 88.54 (1.87) 7.04 (1.75)
view 3 83.42 (1.57) 85.15 (1.49) 6.12 (1.55)

Table 3.3: Performance measures of clustering (ACC, NMI) and classifying (Error) on the
projections of the Weizmann datasets, using GCTW and GMSA. Each method is run randomly
five times, and their average results along with the variances on the test set are reported.

The results show that the performances of clustering and classification on the new em-

beddings returned by GCTW and GMSA are much better than those on the original space.

These results indicate that integrating complementary information from di↵erent views helps

the two methods to improve the quality of the new representations. In addition, the results also

show that the improvement of GMSA is more considerable because it can learn more richer

nonlinear embeddings. In contrast, GCTW limits itself to a shallow model where only lin-
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ear projection matrices can be obtained. Another unfavorable property of GCTW is that the

accuracy of its alignment procedure heavily depends on the selection of the monotonic basic

functions. However, how to choose a suitable collection of basics for a particular dataset re-

mains unclear. Therefore, the inappropriate settings of monotonic bases might degenerate the

results of GCTW.
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Figure 3.9: Convergence curves (objective function value averaged over five runs against the
number of iterations) of GMSA-e and GMSA-s on the Weizmann dataset.

We then empirically explore the convergence of the optimization algorithm for GMSA.

Each outer iteration of the algorithm includes two steps: finding the optimal consensus label

sequence and updating the parameters for all DNN branches of the models. Figure 3.9 shows the

convergence cures (objective function value against the number of iterations) with and without

the proposed initialization (see Algorithm 2) on the Weizmann dataset. The results show that

the algorithm still converges even with a random start. However, the proposed initialization

improved the performance of the optimization procedure significantly. Not only does this help

the algorithm to converge faster, but a good initial guess also allows better solutions to be

obtained. These results again elucidate the e�ciency of the GMSA model.

3.6.7 Multiview Data II: MMI Facial Action Units

We next exploit the MMI facial expression dataset [Pantic et al., 2005], which contains more

than 2900 videos of 75 di↵erent subjects, each performing a particular combination of an action

unit (AU). In our work, we focus on videos of AU12, which corresponds to a smile. These videos
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Figure 3.10: Five-view sequential data generated from the MMI facial expression dataset. The
representative facial images of the classes are depicted. The bottom of each view shows the
duration of the corresponding ground-truth temporal labels along with the total number of
frames.

consist of di↵erent number of frames, and each belongs to one of three classes: neutral (when

facial muscle is inactive), apex (when facial muscle intensity is strongest), and onset (when facial

muscle starts to activate) or o↵set (when facial muscle begins to relax). We first preprocess each

frame by performing face cropping and face alignment using dlib-ml [King, 2009]. The results

are depicted in Figure 3.10. We then convert them to grayscale and reduce their dimension.

Specifically, we utilize whitening PCA to pick the top 400 components, preserving 99% of the

total energy. Finally, we generate sequential data with five views using videos S002–005, S003–

023, S006–026, S014—009, and S017–004. Tuning and testing are performed on videos of the

same subjects but in di↵erent trails (S002–006, S003–024, S006-025, S014–010, and S017–006).

In this experiment, RNNs are used to parameterize the projection functions for GMSA.
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Method ACC (%) NMI (%) Error (%)

Input 64.40 (View 1) 61.51 (View 4) 10.29 (View 1)
GCTW 77.32 (View 1) 76.03 (View 4) 8.55 (View 5)
GMSA-e 90.63 (View 4) 90.91 (View 4) 2.88 (View 5)
GMSA-s 86.34 (View 4) 87.17 (View 4) 3.79 (View 3)

Table 3.4: Class separation results on the representations learned by GCTW and GMSA on
the MMI facial expression dataset. Each method is run randomly five times, and their best
average scores along with the corresponding views are reported.
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Figure 3.11: Convergence curves (objective function value averaged over five runs against the
number of iterations) of GMSA-e and GMSA-s on the MMI facial expression dataset.

We stack two LSTM units, which each has 800 memory cells, and a BN layer with d = 3 units

as the output layer to form a deep network for each view. The projections of the views are used

to predict the cluster labels and perform the classification task. Table 3.4 shows the results of

GCTW and GMSA.

The results show the same pattern as on the Weizmann dataset: i.e., the representations

learned by GCTW and GMSA significantly improve the performances of clustering and classi-

fication tasks in comparison with those on the original input features. Because GMSA-s and

GMSA-e are nonlinear methods, their results are much better than those of GCTW. We also

note that the multiple alignments in GMSA are simpler than that in GCTW because of the

introduction of the consensus sequences. GCTW discovers the sample correspondences by in-

stead performing pairwise alignment between every two views, while there are up to five views

in this dataset. Therefore, more errors potentially occurred and propagated through update

iterations in GCTW.

Finally, we investigated the convergence of Algorithm 2 on the MMI facial expression



46 Chapter 3. Di↵erentiable Models for Multi-view Sequential Learning

0 10 20 30 40 50

Epoch

0

10

20

30

40

50

T
o
ta

l 
C

o
rr

e
la

ti
o
n

batch size = 64

batch size = 128

batch size = 256

batch size = 512

batch size = 1024

batch size = 2048

Figure 3.12: Learning curves (total correlation vs training epoch) of GSCA on MNIST dataset
with d = 50.

dataset. Its convergence curve, which shows the objective value against the number of iterations,

is depicted in Figure 3.11. The figure shows that the algorithm always converges, regardless of

the initial conditions. Because the updated equation for the consensus label sequence satisfies

the KKT conditions and the optimization for DNNs’ parameters is based on the gradient descent

method, the objective value is guaranteed to not increase after each iteration. In addition, as on

the Weizmann dataset, we also observe that the proposed initialization significantly improves

the performance of the algorithm. With a better initial value, the algorithm could converge

with a much lower objective value, hence obtaining a superior optimal solution.

3.6.8 Stochastic optimization

In this subsection, we investigate the sensitivity of SGD algorithm with respect to the batch size

on the learned models. Recall that, at each iterations, SGD randomly samples a subsequence

from data of each view to estimate the stochastic gradient. Length of such subsequence is

called batch size - an important parameter of the SGD algorithm. In general, this parameter is

data-dependent and often selected using grid search. We, therefore, select the batch size from

the set {64, 128, 256, 512, 1024, 2048} on the MNIST dataset. After learning new representation

for each view via GSCA model, we compute their total correlation in the shared space. The

results are depicted in Figure 3.12.

We can observe that, when the batch-size is small (64 and 128), the algorithm converges

quickly and the learned models induce low values of the total correlation. One possible reason

is that the randomly sampled subsequences are too short that can not characterize well the
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Dataset Model ACC (%) NMI (%) Error (%)

Weizmann

GMSA-e 88.03 90.02 5.04
GMSA-e (w/o Binary view) 85.41 (# 2.62) 87.03 (# 2.99) 7.17 (" 2.13)
GMSA-e (w/o Euclidean distance transform view) 83.26 (# 4.77) 85.82 (# 4.20) 6.49 (" 1.45)
GMSA-e (w/o Solution of the Poisson equation view) 86.93 (# 1.10) 88.14 (# 1.88) 6.08 (" 1.04)

MMI

GMSA-e 90.63 90.91 2.88
GMSA-e (w/o view 1) 87.42 (# 3.21) 87.67 (# 3.24) 3.91 (" 1.03)
GMSA-e (w/o view 2) 89.05 (# 1.58) 88.93 (# 1.98) 3.35 (" 0.47)
GMSA-e (w/o view 3) 89.17 (# 1.46) 88.62 (# 2.29) 3.28 (" 0.40)
GMSA-e (w/o view 4) 85.56 (# 5.07) 85.15 (# 4.87) 5.11 (" 2.23)
GMSA-e (w/o view 5) 88.01 (# 2.62) 87.84 (# 3.07) 4.03 (" 1.15)

Table 3.5: Ablation analysis of GMSA-e. The views are removed one by one, ablating one
corresponding branch of DNN from the model. The best class separation scores of the ablated
GMSA-e along with their di↵erences to the results of the original one (full views) are reported.

statistical information of the data sequences. With large enough batch sizes (256) the SGD al-

gorithm performs much better. However, as we further increase the batch size, the performance

is not improved. This result empirically suggests that for a particular dataset there exists a

certain level of batch size beyond that SGD algorithm performs stably. This level is crucial for

reducing the training time and space requirement. A simple way to specify this level is to use

grid search as already described in this subsection.

3.6.9 Ablation analysis of GMSA

In this section, we conducted ablation experiments to investigate the multiview e↵ect in the

GMSA-e model. For a v-views dataset3, the GMSA-e model consists of v branches of DNNs, and

each of which maps an input data sequence from one view into the shared label space. Following

the same procedure in [Sha et al., 2018] and [Deng et al., 2019], we remove the branches of

DNNs one by one and report the results in Table 3.5. The results show that some views are

more important than others. For example, the absence of the Euclidean distance transform

view in the Weizmann dataset or view 4 in the MMI dataset produces the most significant

reduction in the results of the model. However, all of the views contribute more or less to the

improvement of the model’s performance. GMSA-e with full views has better separation scores

than it does with view absence. This result again verifies the advantages of GMSA, which can

handle multiple sequential views instantly.

3v = 3 for the Weizmann human action dataset and v = 5 in case of the MMI facial expression dataset.
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3.7 Chapter Summary

Multiview sequential data pose many challenges to representation learning. In particular, the

data sequences of di↵erent views are often unequal in size and sample-wise mismatching. There-

fore, in this chapter, we introduced GSCA, a DNN-based method that can discover sample

correspondence implicitly while learning representations. By using a generalized smooth DTW

distance, which is a di↵erentiable approximation of the original DTW, our model can be trained

using a gradient descent-based algorithm, where the gradient can be computed e�ciently in

terms of both time and space. Our model can be easily extended to improve its learning per-

formance. For instance, we added two DNNs to the GSCA model for view reconstructions,

forming a new variant GSCAEs. The second model allows a trade-o↵ between view-specific

and cross-view relationships when learning the representations. Given more than two data

sequences, it is obvious that both GSCA and GSCAEs are inapplicable. Hence, we further

develop the third model called GMSA that can simultaneously handle multiple data sequences

and learn more interpretable representations. Through extensive experimentation on di↵erent

publicly available datasets, our methods were compared with various baselines. The results

show that the performances of our methods surpass those of the competitors of all the datasets.

The results in this chapter again validate the advantages of di↵erentiable models we claimed

in Chapter 1. First, di↵erentiable objectives allow parameters in our models to be obtained in

an unified manner. Therefore, training GSCA and GSCAEs can avoid sub-optimal solutions

and evaluation scores of both GSCA and GSCAEs surpass those of all exising models. Second,

training our models is more e�cient because the stochastic gradient descent algorithm can be

applied. Time and memory complexities for computing the stochastic gradient are only O(b2),

where b ⌧ n in size of the mini-batch that is much smaller than length of the data sequence.

In fact, without SGD it is even impossible to train GSCA and GSCAEs by a normal personal

computer as the memory requirements for computing the full-batch gradients are 18.6 and 360.6

gigabytes on MNIST and XRMB datasets, respectively. Third, di↵erentiable models are easy

to be extended. GSCAEs and GMSA are examples of extended models based on GSCA.



Chapter 4

Di↵erentiable Models for Segmentation

of Sequences

Kernel segmentation aims at partitioning a data sequence into several non-overlapping segments

that may have nonlinear and complex structures. In general, it is formulated as a discrete op-

timization problem with combinatorial constraints. A popular algorithm for optimally solving

this problem is dynamic programming (DP), which has quadratic computation and memory

requirements. Given that sequences in practice are too long, this algorithm is not a practical

approach. Although many heuristic algorithms have been proposed to approximate the opti-

mal segmentation, they have no guarantee on the quality of their solutions. In this chapter,

we take a di↵erentiable approach to alleviate the aforementioned issues. First, we introduce

a novel sigmoid-based regularization to smoothly approximate the combinatorial constraints.

Combining it with objective of the balanced kernel clustering, we formulate a di↵erentiable

model termed Kernel clustering with sigmoid-based regularization (KCSR), where the gradient-

based algorithm can be exploited to obtain the optimal segmentation. Second, we develop a

stochastic variant of the proposed model. By using the stochastic gradient descent algorithm,

which has much lower time and space complexities, for optimization, the second model can

perform segmentation on overlong data sequences. Finally, for simultaneously segmenting mul-

tiple data sequences, we slightly modify the sigmoid-based regularization to further introduce

49
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an extended variant of the proposed model. Through extensive experiments on various types

of data sequences performances of our models are evaluated and compared with those of the

existing methods. The experimental results validate advantages of the proposed models.

4.1 Introduction

Recently, there has been an increasing interest in research community for developing ma-

chine learning and data mining methods for sequential data. This is due to the exponen-

tial growing in number of collected data sequences in wide range of fields, including computer

vision [Hoai and De la Torre, 2012, Hoai and De la Torre, 2014, Zhou et al., 2012], speech pro-

cessing [Harchaoui et al., 2009b, Seichepine et al., 2014], finance [Lavielle and Teyssiere, 2007,

Si and Yin, 2013], bio-informatics [Vert and Bleakley, 2010, Maidstone et al., 2017], climatol-

ogy [Reeves et al., 2007, Verbesselt et al., 2010] and tra�c monitoring [Lévy-Leduc et al., 2009,

Lung-Yut-Fong et al., 2012]. The main problem associated with analysis of these sequences is

that they consists of a huge number of data points. Therefore, it is desirable to summarize the

whole sequences by a much smaller number of the data representatives, alleviating burden for

the subsequent tasks.

Such compressed and concise summarization can be obtained via sequence segmentation.

More specifically, this aims at partitioning the data sequences into several non-overlapping and

homogeneous segments of variable durations, in which some characteristics remain approxi-

mately constant. From Bayesian point of view [Fearnhead, 2006, Chen and Gupta, 2011], this

issue was addressed by developing parametric models, which serve as definitions of the intra-

segment homogeneity. Although having promising performances in practice, this approach lacks

versatility, require extensive data modelling knowledge and sophisticated numerical methods

for training. In this chapter, we focus on kernel-based segmentation. This nonparametric ap-

proach has no assumption on the underlying process that generates the data. Thus, it can

adapt easily to di↵erent types of data sequences. In addition, it enables segments with much

more nonlinear and complex structures to be discovered.



4.1. Introduction 51

For a fixed number of segments, [Harchaoui and Cappé, 2007] proposed an optimal algo-

rithm based on dynamic programming (DP) for segmentation of data sequence in the features

space, which is associated with pre-specified kernel and mapping functions. In general, DP

has quadratic time and memory complexities. It even induces running time of order O(n4)

1, where n is the length of the sequence, in practice. Therefore, it is intractable to perform

segmentation on long data sequence using DP-based algorithms. To alleviate this issue, many

attempts have been made to create approximations to the optimal algorithm. Although a

considerable amount of the computational costs are reduced, there are still critical drawbacks

remained in the approximation algorithms. Taking pruned DP [Celisse et al., 2018] and greedy

algorithm [Truong et al., 2019] as representatives. These methods sequentially partition the

data sequence, returning one segment boundary (a.k.a, change point) at each iteration. This

strategy o↵ers a reduction in the computational time. However, its expense is that errors might

occur at the earlier steps and they would influence on the subsequent iterations, inducing a

huge bias in the final results. Massive memory complexity is also a vital drawback of almost

kernel-based methods. They need store the kernel matrix, which requires order of O(n2) space.

Therefore, they are prohibited by themselves from handling extensively long data sequences.

In this chapter, we take a di↵erent approach to alleviate the aforementioned issues. More

precisely, we introduce a novel sigmoid-based regularization, which smoothly approximates

the combinatorial constraints of the kernel segmentation problem. It is then integrated with

balanced kernel clustering to perform segmentation on sequential data. Our method owns

several preferable characteristics. First, because objective of the proposed model is di↵erentiable

w.r.t unconstrained and continuous variables we can easily optimize it using gradient descent

GD algorithm. Di↵erent from the existing methods, which are just heuristic approximations of

the optimal segmentation algorithm, our model has a guarantee on quality of the solutions as

convergence of the GD algorithm was theoretically proved [Nocedal and Wright, 2006]. Second,

the proposed model o↵ers the applicability of a more e�cient optimization algorithm based on

stochastic gradient – the gradient that is estimated from a subsequence (mini-batch), which is

randomly sampled from the original data sequence at each iteration. Therefore, the stochastic

1
including time for computing the cost matrix in the feature space [Celisse et al., 2018]
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variant of our model has much lower time and space complexities, making segmentation of

extensively long data sequences possible. Finally, the proposed model is flexible. We can

easily modify the sigmoid-based regularization to further form a new extended variant that can

simultaneously segment multiple data sequences. Through extensive experiments on various

types of sequential data, our models are evaluated and compared with baseline methods. The

results validate advantages of the proposed models.

The remainder of this chapter is organized as follows: Section 4.2 briefly presents some

background for the models proposed in this chapter. The sigmoid-based regularization and the

corresponding segmentation model called Kernel clustering with sigmoid-based regularization

(KCSR) are introduced in Section 4.3. The stochastic variant of KCSR is described in Section

4.4. After describing how to modify the sigmoid-based regularization to form an extension

of KCSR that can simultaneously segment multiple data sequences in Section 4.5, we reports

experimental results in Section 4.6. Section 4.7 summarizes the chapter.

4.2 Preliminary

4.2.1 Notations

Throughout this chapter, we denote vectors and matrices by bold lower-case and bold uppercase

letters, respectively. For a particular matrix A, its ith column is denoted as ai and its element

at position (j, i) is expressed by aj,i or Aj,i. The transpose matrix of A is denoted by A
>. If A

is a square matrix of size n then its trace is expressed as Tr(A) =
Pn

i=1 Ai,i. If A 2 {0, 1}k⇥n

then for any given element Aj,i we have Aj,i = 0 or Aj,i = 1 (A is a binary matrix).

4.2.2 Balanced kernel k�means

As mentioned in 2.1.3, kernel segmentation is closely related to kernel k�means due to the

similarity between their objectives. In fact, this objective can be rewritten in matrix form. More
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specifically, we can compute the corresponding kernel matrix K 2 Rn⇥n, where each element

Ki,j = �(xi)�(xj) = (xi,xj) represents how likely the two samples are assigned to the same

class. Let G 2 {0, 1}k⇥n denotes the associated (unknown) sample-to-class indicator matrix of

X, where Gj,i = 1 if xi is assigned to the jth class and zero otherwise. Here, di↵erent from the

segmentation task, there is no constraint on the indicator matrixG. Then the objective function

of the kernel k�means [Dhillon et al., 2004, De la Torre, 2012, Zass and Shashua, 2005] can be

expressed as follows:

JKKM(G) = Tr (LK) , (4.1)

where L = In �G
> �

GG
>��1

G.

Kernel k-means is a strong approach for identifying clusters that are non-linearly separable

in the original space. However, similar to its linear counterpart, kernel k-means is sensitive to

outliers. More specifically, it often outputs unbalanced results that consists of too big and/or too

small clusters under presents of anomaly data samples [Zhong and Ghosh, 2003]. To alleviate

this issue, recently [Liu et al., 2017b] has proposed a simple regularization on the indicator

matrix of the form Tr(G11>
G

>), where 1 is a vector, whose all elements equal to one. By

minimizing this regularization jointly with the clustering objective, we can prevent a too small

or too great number of data samples from being partitioned into a cluster. We now can combine

(4.1) and the regularization to form a new objective of balanced kernel k-means

JBKKM(G) = Tr (LK) + �Tr(G11>
G

>), (4.2)

where � is a positive parameter that controls the balanced regularization.

4.3 Kernel Clustering with Sigmoid-based Regulariza-

tion (KCSR)

Our intuitive idea is to reuse the robust objective of balanced kernel k�means (4.2) for segmen-

tation of data sequence X = [x1, . . . ,xn] 2 Rd⇥n. However, the challenge is that the sample-to-
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(a) Clustering task
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(b) Segmentation task

Figure 4.1: Toy examples of (a) Clustering task and (b) Segmentation task, where the given
data and the corresponding indicator matrix are depicted.

segment indicator matrix must satisfy two constraints, including boundary and monotonicity,

while the indicator matrix for clustering does not. This di↵erence is illustrated Figure 4.1. To

close this gap and enable the clustering approach to segment data sequences, we introduce a

novel regularization that smoothly approximates the two above constraints. The new regular-

ization changes the variables from a discrete to continuous domains. Therefore, our problem

can be solved using gradient descent (GD) algorithm. Since, the convergence of GD was already

proved [Nocedal and Wright, 2006], quality of the proposed models’ solutions is guaranteed.

The proposed regularization is based on the sigmoid function. A basic sigmoid function is

defined as

fsigmoid(x) =
1

1 + e�↵(x��)
, (4.3)

where � specifies the midpoint and ↵ controls the steepness of the function curve at the mid-

point. Figure 4.2 depicts a sigmoid function, where the midpoint � is fixed at 11.5 and the

parameter ↵ varies from 0.1 to 10. We can observer that the higher ↵ is the steeper function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

1

 = 10.,  = 11.5

 = 5.0,  = 11.5

 = 1.0,  = 11.5

 = 0.5,  = 11.5

 = 0.1,  = 11.5

Figure 4.2: Sigmoid function with di↵erent values of the parameter ↵.
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curve at the midpoint becomes. In addition, the sigmoid function is monotonic and almost

piecewise constant. Therefore, it allows us to roughly partition a sequence into two segments,

where the parameter � approximates the segment boundary. If we denote ⌧i 2 [1, 2] (continu-

ously valued) as segment label of sample xi, then

⌧i ⇡ 1 + fsigmoid(i,↵, �). (4.4)

For instance, if ↵ = 10 and � = 11.5, then ⌧i ⇡ 1 for i < 11.5 and 2 otherwise. To generalize for

cases, where the number of segments k > 2, we propose to use a summation of k � 1 sigmoid

functions with di↵erent parameters �j for 1  j  k � 1.

⌧i ⇡ 1 +
k�1X

j=1

fsigmoid(i,↵, �j). (4.5)

Figure 4.3 illustrates an example of a summation of sigmoid functions defined in (4.5). Here,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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 = 20.5

Figure 4.3: An example of the summation of sigmoid functions with a shared parameter ↵ = 10
and k � 1 di↵erent midpoint parameters �1, . . . , �k�1, where k = 7.

the steepness parameter ↵ is shared among the sigmoid functions within the summation. k� 1

midpoint parameters � = [�1, . . . , �k�1] approximate the segment boundaries between the k

segments. Note that the midpoints must satisfy 1  �1 < . . . < �k�1  n to guarantee the

summation of sigmoid functions monotonically increasing. Thus, we regularize the � by further
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introducing k parameters �1, . . . , �k such that

�j =

 
1�

Pj
j0=1 e

�j0

Pk
j0=1 e

�j0

!
+ n⇥

Pj
j0=1 e

�j0

Pk
j0=1 e

�j0
. (4.6)

In equation (4.6), the ratio
Pj

j0=1 e
�j0

Pk
j0=1 e

�j0 is in the range [0, 1]. Therefore, �j always satisfies 1 

�j  n. In addition, the ratio becomes larger as j increases. This guarantees that �j0 < �j for

1  j0 < j  k � 1.

It is notable that the summation of sigmoid functions in Figure 4.3 smoothly approximates

the indicator matrix G of segmentation example in Figure 4.1(b). To make the observation

more clear, we introduce the following approximation to each element of G

Gj,i ⇡ max (0, 1� |⌧i � j|) . (4.7)

This equation map the segment label ⌧i from the range [1, k] to the range [0, 1] for approximating

the sample-to-segment indicator matrix.

We now can formulate an optimization problem that combines objective of the balanced

kernel clustering with sigmoid-based regularization for segmentation. Let K 2 Rn⇥n be the

kernel matrix of the data sequence X then our kernel-based segmentation optimization problem

is

argmin
�1,...,�k

Tr (LK) + �Tr(G11>
G

>) (4.8)

s.t. L = In �G
> �

GG
>��1

G,

Gj,i = max (0, 1� |⌧i � j|) 8j, i,

⌧i = 1 +
k�1X

j=1

fsigmoid(i,↵, �j) 8i,

�j =

 
1�

Pj
j0=1 e

�j0

Pk
j0=1 e

�j0

!
+ n⇥

Pj
j0=1 e

�j0

Pk
j0=1 e

�j0
8j.

Since � = [�1, . . . , �k] are unconstrained and continuous parameters, we can optimize objective

function in (4.8) using the gradient descent algorithm. Let J(�) denotes the objective function
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Algorithm 3 : Gradient descent algorithm for KCSR
Require: Kernel matrix K, number of segments k, steepness parameter ↵, tolerance ✏.
Ensure: Optimal parameters �⇤ = [�⇤1 , . . . , �

⇤
k ]

>.
1: repeat
2: compute gradient r� = @J

@� ;
3: compute stepsize ⌘ using Armijo-Goldstein line search [?, ?];
4: update �(t+1) = �(t) � ⌘r�(t);
5: until |J(�(t+1))� J(�(t))|  ✏

in (4.8), then the gradient w.r.t parameters � can be computed using chain rule.

r� =
@J(�)

@�
=
@J(�)

@G
⇥ @G

@⌧
⇥ @⌧

@�
⇥ @�

@�
, (4.9)

where ⌧ = [⌧1, . . . , ⌧n]. More details on derivation of the gradient w.r.t � is given in Appendix

E. We call the proposed model Kernel clustering with sigmoid-based regularization (KCSR) and

its optimization algorithm is given in Algorithm 3.

4.4 Stochastic KCSR

Kernel-based methods allow us to capture nonlinear structure in the data. However, this

advantage is achieved at the expense of much higher complexities in both terms of computational

time and storage requirement. More specifically, given a sequence of n data samples, existing

kernel-based methods compute the kernel matrix K, whose both time and memory complexities

are of order O(n2). When n is large, these methods become computationally di�cult. For

example, length the MNIST sequence in the experimental section is 70K. The corresponding

kernel matrix K requires up to 36.5 GB for storage, which is definitely out of memory for a

regular personal computer.

Our method is also based on the kernel matrix. Especially, at each iteration, our method

computes the gradient using the kernel matrix, which makes it very slow and even impossible

due to the large memory requirement for handling long data sequences. Fortunately, since

objective function of KCSR is di↵erentiable, we can reduce the complexities by using the

stochastic gradient descent (SGD) [Robbins and Monro, 1951, Bottou, 1998, Spall, 2005]. SGD
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Algorithm 4 : Stochastic gradient descent algorithm for KCSR
Require: Data sequence X, number of segments k, steepness parameter ↵, number of iter-

ations T , minibatch size b, initial learning rate ⌘0, momentum µ 2 [0, 1), weight decay
⇢ 2 (0, 1].

Ensure: Optimal parameters �⇤ = [�⇤1 , . . . , �
⇤
k ]

>.
1: for t = 1, . . . , T do
2: ⌘ = ⌘0 ⇥ ⇢t;
3: randomly sample a sub-sequence X(t) of length b;
4: compute the partial kernel matrix K(t);
5: compute the stochastic gradient r� = @J

@� based on K(t) and original indexes of samples
in X(t);

6: ��(t) = ⌘r� � µ��(t�1);
7: �(t) = �(t�1) +��(t);
8: end for

estimates the gradient from a randomly sampled subsequence2 (a mini-batch), which consists

of a much smaller number of samples, from the original sequence. Let b ⌧ n denotes length

of the randomly sampled subsequence X(t), where t expresses the iteration index. Then, the

stochastic gradient is estimated as follows

r� =
@J(�)

@G(t)
⇥
@G(t)

@⌧
⇥ @⌧

@�
⇥ @�

@�
. (4.10)

In equation (4.10), @J(�)
@G(t)

is only associated with a partial kernel matrix K(t) 2 Rb⇥b, which

corresponds to the samples in X(t). Therefore, it is much more e�cient than computing the

full-batch gradient as in equation (4.9). Details of the algorithm is given in Algorithm 4.

4.5 Multiple KCSR

In practice, at some particular circumstances, we need to perform segmentation on multiple data

sequences. If these sequences are not in relation, the problem is e↵ortless since segmentation

algorithms can be applied on each sequence independently. However, when the sequences are

related to each other, performing multiple segmentation without considering relation among

the sequences would induces inferior results. We take sequential segmentation and matching

2
By sub-sequence, we mean that order and indexes of samples in the original sequence are preserved in the

randomly sampled mini-batch.



4.5. Multiple KCSR 59

(SSM) problem as a study case. Given m � 2 data sequences, SSM aims at partitioning

each sequence into several homogeneous segments and then establishing the correspondences

between these segments from di↵erent sequences. A popular application of SSM is human action

analysis. Specifically, the human action videos are segmented into primitive actions and the

resulted sequences of the action segments are then aligned [Qiu et al., 2019, Chang et al., 2019,

Li and Todorovic, 2020].

To solve the SSM problem, in this work, we introduce an extension of the proposed model

termed Multiple kernel clustering with sigmoid-based regularization (MKSSR). MKSSR jointly

partitions each data sequences into k segments such that the cth segments of all the m sequences

are matched 3. Let Xp 2 Rd⇥np for 1  p  m denotes the pth data sequence and Gp 2 Rk⇥np

be its corresponding sample-to-segment indicator matrix. MKSSR firstly concatenates all the

sequences to form a single long sequence X = [x1, . . . ,xm] 2 Rd⇥n, where n =
Pm

i=1 np. Then

G = [G1, . . . ,Gm] 2 Rk⇥n is the corresponding indicator matrix of X. Similar to the original

KCSR, each element of G is defined as in (4.7). However, in MKCSR, the segment label ⌧i is

computed as following

⌧i = 1 +
m(k�1)X

j=1

fsigmoid(i,↵, �j)

+ (1� k)
m�1X

p=1

fsigmoid(i,↵,
pX

q=1

nq + 0.5).

(4.11)

The function (4.11), which we call as cut-o↵ summation of sigmoid functions, consists of two

components. The first component is the summation of sigmoid functions. It plays a similar role

as (4.5) in KCSR. The second component presents the cut-o↵ points (a.k.a junction points), at

which two among the m original data sequences are connected. It will reset the segment label

from k to 1 after passing the final sample of one sequence and reaching a new sample from the

next sequence. The cut-o↵ summation of sigmoid functions and its components are illustrated

in Figure 4.4.

The formulation (4.11) hasm(k�1) midpoint parameters, in which �(p�1)(k�1)+1, . . . , �p(k�1)

3
Data samples of the cth segments from di↵erent sequences belong to the cth class for 1  c  k.
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Figure 4.4: Illustration of the cut-o↵ summation of sigmoid functions. (a) A toy example of
a concatenation of two sequences (m = 2, n1 = 23, n2 = 30) and its corresponding indicator
matrix (k = 7). (b) The cut-o↵ summation of sigmoid functions, whose two components are
depicts in the two first subfigures, can smoothly approximate the indicator matrix in the toy
example.

approximate the segment boundaries within the range [1 +
Pp�1

q=1 nq,
Pp

q=1 nq] for 1  p  m.

Therefore, we introducemk parameters �1, . . . , �mk such that for (p�1)(k�1)+1  j  p(k�1)

�j =

 
1 +

p�1X

q=1

nq

! 
1�

Pj
j0=(p�1)k+1 e

�j0

Ppk
j0=(p�1)k+1 e

�j0

!
+

pX

q=1

nq

Pj
j0=(p�1)k+1 e

�j0

Ppk
j0=(p�1)k+1 e

�j0
. (4.12)

By replacing the last two constraints in (4.8) with (4.11) and (4.12) we can obtain the opti-

mization problem of MKCSR. The objective function is then minimized w.r.t mk parameters

�1, . . . , �mk using the stochastic gradient descent algorithm.
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4.6 Empirical Study

4.6.1 Compared methods

We compare KCSR and its stochastic variant SKCSR with the following baselines

• Aligned clustering analysis (ACA) [Zhou et al., 2012] – a temporal clustering method that

combines k�means with Dynamic time alignment kernel [Shimodaira et al., 2001].

• Ordered subspace clustering (OSC) [Wu et al., 2015] – a temporal clustering method that

combines subspace clustering with linearly temporal regularization.

• Temporal subspace clustering (TSC) [Li et al., 2015a] – a temporal clustering method

that combines subspace clustering with manifold-based temporal regularization.

• Approximate kernel segmentation (AKS) [Celisse et al., 2018] – a heuristic approxima-

tion of the optimal kernel segmentation, where the solution is obtained by pruned DP

algorithm that combines a low-rank approximation of the kernel matrix and the binary

segmentation algorithm.

• Greedy kernel segmentation (GKS) [Truong et al., 2019] – another heuristic approxima-

tion of the optimal kernel segmentation that detects the segment boundaries sequentially

using the greedy algorithm.

4.6.2 Datasets

To evaluate performances of the above methods, we use a synthetic dataset and three real-world

and widely public datasets.

Synthetic data. We first generate 2D data samples that form four circles of di↵erent

diameters. They are illustrated in Figure 4.6(a). The number of data samples of each circle is

randomly selected in range [500, 1500] and also constrained to be di↵erent. For instance, in our
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(a) Weizmann data

(b) Ordered MNIST data

Figure 4.5: (a) Concatenated action videos of subject 1 in Weizmann dataset and (b) the
rearranged digit images sequence in MNIST dataset. Each data sequence consists of 10 non-
overlapping segments and only one representative frame of each segment is depicted.

case, the numbers of data samples of the circles from low to high diameters are 832, 1018, 1174

and 843, respectively. We then rearrange the generated data samples in contiguous order, i.e.

data samples of one circle do not mix to the other circles. By doing so, each circle in the

original 2D space corresponds to a segment in the new sequential data. See Figure 4.6(b) for

illustration.

Weizmann data. The Weizmann dataset [Gorelick et al., 2007] consists of 90 videos

of nine subjects, each performing ten actions: bend, run, jump-in-place (pjump), walk, jack,

wave-one-hand (wave1), side, jump-forward (jump), wave-two-hand (wave2), and skip. Similar

to [Hoai and De la Torre, 2014], videos of the same subjects are concatenated into a long video

sequence following the presented order of the actions. We then subtract background from each

frame of these video sequences and rescale them to the size 70⇥35. For each 70�by�35 rescaled

frame, we compute the binary feature as shown in Figure 4.5(a). To reduce the dimensions

of the feature space (2450), the top 123 principal components that preserve 99% of the total

energy are kept for experiments.

Google spoken digits. Google’s Speech Commands (GSC) [Warden, 2018] is a large

audio dataset that consists of more than 30 categories of spoken terms. For each category that

relates to digits from “one” to “nine”, we randomly select a clean recording. These recordings

are then concatenated, forming a long audio sequence with 19 segments (9 segments of active

voice and 10 silent segments) (see Figure 4.8). We further add white noise, which is also

provided in the GSC dataset, to make the segmentation problem more challenging. Finally,

a sequence of acoustic features, which are 13�dimensional mel–frequency cepstral coe�cients
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(MFCCs) [Davis and Mermelstein, 1980] for every 10ms of a 25ms window, is computed from

the noisy audio sequence. The annotation is manually obtained based on the log filter-bank

energies of the clean audio.

Ordered MNIST data. the MNIST dataset [LeCun et al., 1998] consists of 28 ⇥ 28

grayscale digit [0, 9] images divided into 60K/10K for training/testing. Since all the compared

methods are unsupervised and require no training phase, we use all 70K images to perform

segmentation. Note that the original data is not exact suited to the sequential assumption.

Following the same setting of [Zheng et al., 2021], we rearrange order of the images such that

those of the same digit form a contiguous segment and the ten segments are concatenated into

a very long images sequence (see Figure 4.5(b)). Di↵erent from [Zheng et al., 2021], where

only 2K images were selected for experiment, our ordered MNIST data consists of the whole

70K images. To handle this large-scale data, temporal clustering and kernel CPD methods

requires up to 36.5 GB to store the kernel and/or a�nity graph matrices, which is impractical

for implementation on a single personal PC. Among the compared methods, only SKCSR and

AKS with low memory complexities can perform segmentation on this dataset.

4.6.3 Evaluation measures

Given a specific value k, while KCSR, SKCSR, AKS and GKS return exactly k non-overlapping

segments, temporal clustering-based methods partition samples of the data sequence into k

clusters that maybe dispersed in discontiguous segments. Therefore, we use accuracy and

normalized mutual information [Cai et al., 2005], which can be used to evaluate both clustering

and segmentation results, as evaluation metrics. The definitions of these measures are given in

Appendix F.

4.6.4 Parameter settings

We select the optimal parameters for each method to achieve the best performance. The

number of clusters k of all the compared methods is set to the number of segments available



64 Chapter 4. Di↵erentiable Models for Segmentation of Sequences

in the datasets. For ACA, its parameters nMa and nMi that specify the maximum and

minimum lengths of each divided subsequence, respectively, are data-dependent. Let n be the

sequence length, we select nMa from a rounded set {0.01n, 0.02n, 0.04n, 0.06n, 0.08n, 0.1n} and

set nMi = nMa
2 . For temporal subspace clustering methods, including OSC and TSC, the most

important parameter is that controls the sequential regularization for the new representation

Z. We select this parameter from the set {1, 5, 10, 15, 20, 25} and the other parameters are set

according to the original papers. For the proposed methods, we fix the parameter that controls

the steepness of the summation of sigmoid functions at the midpoints ↵ = 10. The tolerance ✏

for convergence verification in KCSR is fixed at 10�6. For all the datasets, we use the Radial

Basis Function (RBF) Kernel 4 with proper width � for AKS, GKS and the proposed methods.

The minibatch size b of SKCSR and the rank r of the approximation of the kernel matrix in

AKS are kept equal. Their values are selected from a set {64, 128, 256, 512, 1024, 2048}. Note

that, SKCSR terminates after processing T minibatches. We set T such that T ⇥ b � 50n

(passing through the data sequence at least 50 times).

4.6.5 Results discussion

Figure 4.6 visualizes the segmentation results on synthetic data and the evaluation scores are

given in the first column of Table 4.1. We can observe that each segment of the generated

data sequence has a circular structure. Therefore, the nonlinear regularization in sequential

representation learning of OSC is ine↵ective on the synthetic data. TSC performed significantly

better. The manifold-based regularization allows it to be able to capture the nonlinear structure

in the data. Our methods also perform segmentation based on regularization. However, di↵erent

from OSC and TSC, where the regularization is just local5, the summation of sigmoid functions

of KCSR and SKCSR globally regularizes the whole data sequences and the locality is ensured

by its smooth nature. Therefore, the proposed methods obtained the best performance on the

synthetic dataset.

4
RBF kernel: (xi,xj) = e

� ||xi�xj ||
2
2

2�2 .
5
The regularization only preserves the local relationship on representation of consecutive samples.
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(b) Data in 3D
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(d) TSC
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(e) ACA
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(f) AKS
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(g) GKS
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(h) KCSR
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(i) SKCSR

Figure 4.6: Synthetic experiment: (a) data generated in 2D space, (b) the data after con-
tiguously rearranging and visualization of segmentation results returned by all the compared
methods. Di↵erent colors represent di↵erent clusters.
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Method
Synthetic data Weizmann Google MNIST

ACC NMI ACC NMI ACC NMI ACC NMI

OSC 0.0965 (0.0736) 0.1070 (0.0649) 0.4856 (0.0269) 0.4157 (0.0387) 0.2057 (0.0275) 0.1839 (0.0256) – –
TSC 0.4077 (0.0795) 0.3608 (0.0758) 0.7028 (0.0430) 0.7207 (0.0501) 0.6434 (0.0313) 0.6513 (0.0330) – –
ACA 0.9305 (0.0224) 0.9214 (0.0375) 0.7687 (0.0146) 0.7628 (0.0196) 0.8241 (0.0182) 0.7939 (0.0196) – –

AKCPD 0.6577 (0.0671) 0.6067 (0.0751) 0.7182 (0.0188) 0.7006 (0.0205) 0.6726 (0.0257) 0.6954 (0.0266) 0.6983 (0.0282) 0.7196 (0.0209)
GKCPD 0.6999 (0.0255) 0.7036 (0.0325) 0.5628 (0.0218) 0.6032 (0.0262) 0.7458 (0.0294) 0.7557 (0.0305) – –
KCSR 0.9871 (0.0104) 0.9959 (0.0024) 0.8835 (0.0092) 0.9071 (0.0107) 0.7914 (0.0172) 0.8109 (0.0154) – –
SKCSR 0.9870 (0.0092) 0.9847 (0.0077) 0.8964 (0.0113) 0.9151 (0.095) 0.8826 (0.0165) 0.9009 (0.0186) 0.9681 (0.0155) 0.9819 (0.0119)

Table 4.1: Segmentation results on four datasets, including synthetic data, Weizmann action
sequences, noisy Google spoken digits and ordered MNIST data, returned by di↵erent methods.
The mean score of each methods over five random runs along with its variance are reported.
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Figure 4.7: Visualization of segmentation results returned by the proposed methods and
baselines on (a) Weizmann and (b) MNIST data. Di↵erent colors represent di↵erent clusters.

On the real-world data, including Weizmann action videos and Google spoken digits audio,

the proposed models also outperformed the baselines. The corresponding segmentation results

are visualized in Figure 4.7(a) and Figure 4.8, respectively, and the evaluation scores are shown

in the second and third columns of Table 4.1. We can observe that ACA also had good per-

formances on these datasets. Although ACA also performs segmentation based on clustering

as our methods do, it cannot guarantee to find exact k non-overlapping segments. Therefore,

its evaluation scores are slightly lower than those of the proposed models. In comparison with

heuristic approximations AKS and GKS, our models also had better performances. Similar to

AKS and GKS, our models also search for segment boundaries. They approximate the bound-

aries by midpoints � of the summation of sigmoid functions. However, di↵erent from these
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Figure 4.8: From the top to the bottom: clean audio of spoken digits [1,9], the audio contam-
inated by white noise, log filter-bank energies of the clean audio used for manual annotation
(blue lines depict ground truth segment boundaries) and Mel-frequency cepstrum of the noisy
audio (vertical lines show the midpoints �s of the mixture of sigmoid functions returned by
SKCSR).

heuristic approximations that search for the segment boundaries sequentially, the proposed

models simultaneously obtain all the � via gradient-based algorithm. As convergence of this

optimization algorithm is theoretically proved, optimality of the solutions is guaranteed.

On these two datasets, we also observe that evaluation scores of SKCSR are greater than

those of KCSR. Thus, we further investigate convergence curves of these models, which are de-

picted in Figure 4.9. It is clear that superior performances of SKCSR arise from the exploitation

of stochastic gradient descent (SGD) algorithm. SGD allows SKCSR to update its parameter

� more frequently due to fast estimation of the stochastic gradient. In addition, SGD takes

randomness of the data into account and enjoys theoretical guarantee on convergence in an

expectation sense [Bottou, 1998]. Therefore, SKCSR is more robust to noise in the data and
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Figure 4.9: Convergence curves of SKCSR (with stochastic gradients estimated from mini-
batches b = 256) and KCSR (with gradients estimated from full batch (the whole data se-
quence)) on (a) Weizmann and (b) Google spoken digits datasets.

able to achieve better solution than KCSR.

SKCSR also showed its superior e�ciency over the original KCSR and most the other

baselines on the ordered MNIST data. This data consists of 70K samples that makes imple-

mentation of these memory-demanding methods impossible on regular personal PCs. Among

the baselines, only AKS with memory complexity of order O(r2), where r ⌧ n is the rank

of approximation of the kernel matrix, can handle the ordered MNIST data. However, since

AKS employs binary segmentation to sequentially detect the segment boundaries, its solutions

are not optimally guaranteed. Visualization of the segmentation results on ordered MNIST

data in Figure 4.7(b) and the evaluation scores in the fourth column of Table 4.1 validate the

advantages of SKCSR.

4.6.6 Evaluation of Multi KCSR

In this subsection, we evaluate performance of MKCSR – an extension of KCSR for handling

multiple data sequences. We utilize concatenated Weizmann action videos in this experiment.

The first, second and third subjects are selected and their corresponding action videos are

concatenated to form a long sequence that consists of 30 segments, each of which belong to one

of the ten action categories. We compare MKCSR with temporal clustering methods, including

OSC, TSC and ACA. For all the compared methods, we set the number of clusters k = 10 and

select the other parameters following the same scheme as mentioned in subsection 4.6.4.
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Figure 4.10: Visualization of segmentation results of OSC, TSC, ACA and MKCSR on three
concatenated action video sequences from Weizmann dataset.

Method ACC NMI

OSC 0.1496 (0.0167) 0.1439 (0.0144)
TSC 0.1967 (0.0121) 0.2159 (0.0136)
ACA 0.5743 (0.0127) 0.5655 (0.0106)

MKCSR 0.8509 (0.0139) 0.8732 (0.0150)

Table 4.2: Segmentation results on concatenated action video sequences of three subjects from
Weizmann dataset returned by di↵erent methods. The mean score of each methods over five
random runs along with its variance are reported.

Figure 4.10 visualizes the segmentation results on multiple data sequences and Table 4.2

shows the corresponding evaluation scores. Simultaneous segmentation of multiple data se-

quences is a challenging task. As we can observe that, in comparison with segmentation results

of a single sequence (the second column of Table 4.1), evaluation scores of OSC, TSC and ACA

on the multiple data sequences are significantly reduced. MKCSR, however, compared to its

original method KCSR, could preserve a great amount segmentation accuracy. As we can see

that MKCSR obtained up to 0.8509 of ACC and 0.8732 of NMI.

4.6.7 Stochastic optimization

Similar to experiments for di↵erentiable models for multi-view sequential learning, in this sub-

section, we also investigate the sensitivity of SGD algorithm with respect to the batch size

when optimizing parameters for the SKCSR model. We perform the grid search on the noisy

Google spoken digits dataset. The batch size is selected from the set {16, 32, 64, 128, 256, 512}.

The optimization curves for di↵erent values of the batch size are illustrated in Figure 4.11.

We can observe that with small batch size (16 and 32) the SGD algorithm performs unsta-
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Figure 4.11: Optimization curves (objective vs optimization epoch) of SKCSR on Google spoken
digits dataset.

bly and seems to need more time to converge. We note that, in our experiments, Google spoken

digits dataset is heavily contaminated by noise. Therefore, small batch size might induce noisy

estimation of the stochastic gradient making the algorithm to perform poorly. As the batch

size increases, the algorithm converges faster and achieves better optimal solutions. The rea-

son would be long subsequence contains more clean information that helps the algorithm to

suppress noise when estimating the stochastic gradient.

4.7 Chapter Summary

Approximation of segmentation for fast computational time and low memory requirement is

very important as nowadays more and more large sequential datasets are available. Previous

works for approximating optimal segmentation algorithm are either ine↵ective or ine�cient

because they still involve in optimization over discrete variables. In this chapter, we proposed

KCSR to alleviate the aforementioned issues. Our model combines a novel regularization based

on sigmoid function with objective of balanced kernel k�means to approximate sequence seg-

mentation. Its objective is di↵erentiable almost every where. Therefore, we can use gradient-

based algorithm to achieve the optimal segmentation. Note that, our model update all the

parameters of interest in an unified manner. This is in contrast to existing approximation

methods that sequentially update the segment boundaries, which has no guarantee on quality

of the solutions. To further reduce the time and memory complexities, we introduce SKCSR – a

stochastic variant of KCSR. SKCSR employs stochastic gradient descent, where the gradient is

estimated from a randomly sampled subsequence, for updating parameters of the model. Thus,
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it can avoid storing large a�nity and/or kernel matrix, which is a critical issue that inhibits

existing methods from segmenting long data sequence. Finally, we modify the sigmoid-based

regularization to develop MKCSR – an extended variant of KCSR for simultaneous segmenta-

tion of multiple data sequences. Through extensive experiments on various types of sequential

data, performances of all the proposed models are evaluated and compared with those of ex-

isting methods. The experimental results validates the claimed advantages of the proposed

models.



Chapter 5

Application on Vehicle Detection

In this section, we describe our previous works on detecting vehicles from acceleration signals.

We then discuss limitations of the current method and propose a new framework that exploits

GSCAEs to detect vehicles from acceleration signals.

5.1 Current Vehicle Detection Method

Our previous works [Doan and Takasu, 2017, Doan and Takasu, 2019] studied a method for de-

tecting vehicles on acceleration signals collected from bridge monitoring systems. More specifi-

cally, accelerometers are bonded to bridges to sense their vibration. When a vehicle approaches

the position of an accelerometer, it induces vibration that is then measured by the sensor. The

amplitude of the vibration increases as the vehicle approaches the accelerometer and reaches

its highest magnitude when the vehicle is closest to the sensor. As the vehicle moves away

from that position, the vibration damps. In ideal conditions, the signal generated by the ac-

celerometer should oscillate as depicted in Figure 5.1 (a). However, sensors, especially those

based on micro-electro-mechanical systems (MEMs) technology, are sensitive to environmental

disturbances such as shocks and temperature changes. These sources of noise often produce

high spikes and drift, adding nonoscillatory components to the signal. As a result, the shape

of the signal is significantly distorted, impeding accurate vehicle detection. A real-world signal
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Figure 5.1: Ideal and real acceleration signals for a passing vehicle.

corresponding to a passing vehicle is shown in Figure 5.1 (b).

In [Doan and Takasu, 2017, Doan and Takasu, 2019], we constructed a method that con-

sists of three phases, including noise reduction, oscillation detection, alignment-based fine tun-

ing, to tackle the aforementioned di�culties. The diagram of the proposed method are illus-

trated in Figure 5.2.

NRiVe
RedXcWiRn

OVcillaWiRnV
DeWecWiRn

RefinemenW
RaZ

SignalV
 ReVXlWV

Figure 5.2: Diagram of the vehicle detection method from acceleration signal.

Noise reduction. As the raw signal has an oscillatory component, which corresponds to

passing vehicles, and a nonoscillatory component induced by environmental disturbances, the

noise reduction method should be able to separate these components. In this step, we apply mor-

phological component analysis (MCA) [Starck et al., 2005a, Elad et al., 2005, Starck et al., 2005b,

Fadili and Starck, 2005] to perform this separation. Note that, MCA can only be applicable if

each component has a sparse representation. Recently, [Selesnick, 2011b] introduced the tun-

able Q-factor wavelet transform (TQWT), which allows control of the oscillation of the wavelet

function by tuning the Q factor. [Selesnick, 2011a] showed that the high Q-factor wavelet
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Figure 5.3: (a) Real-world signal, (b) its oscillatory component, and (c) CWT coe�cients of
the oscillatory component. The green dash lines show the detected oscillations after performing
local search on the 2D wavelet coe�cient matrix.

transform can represent oscillations sparsely, while the nonoscillatory signal can be sparsely

represented by a low Q-factor wavelet transform. In addition, TQWT and its inverse TQWT�1

have low computation costs that are suitable for real-time applications. Therefore, we utilize

TQWT to perform noise reduction.

Oscillation detection. The second phase takes a clean signal that is expected to contain

only the oscillatory components as input. It then applies the wavelet transform with the Morlet

wavelet as the mother wavelet function on this signal, resulting in a 2D wavelet coe�cient

matrix. Each oscillation is characterized by only one highest peak or deepest valley. Therefore,

we take element-wise absolute values of the coe�cient matrix and perform the local search

procedure [Du et al., 2006] to detect the oscillations. An example is illustrated in Figure 5.3.

Refinement. In practice, there are often more than one accelerometers that are attached

to the bridge at di↵erent positions. Information from these accelerometers can be used together

to refine the results. More specifically, after performing the first two phases on each collected

acceleration signal independently, sequences of epoches t(k) = t(k)1 , t(k)2 , . . . , t(k)
M(k) , where k = 1, K

are indexes of the accelerometers and M (k) is number of detected oscillations, is generated. We

observed that each true epoch in one sequence should have a corresponding epoch in each of

the other sequences with an appropriate time lag. Therefore, this phase aligns the sequences
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to find tuples of K matching epochs, which identify detected vehicles.

5.2 Limitations of The Current Method

The method described above still has some limitations. First, in the noise reduction phase, this

method assumes that the oscillatory component merely corresponds to the vibration induced by

passing vehicles and removes only nonoscillatory component, which is supposed to be generated

by environmental disturbances. However, this assumption is not always correct in practice. For

examples, white noise and seismic influences also result in vibration that are included in the

signal measured by the accelerometers. Therefore, excluding nonoscillatory component can not

completely eliminate all the noise in the signal. Second, the current method performs noise

reduction on each individual signal collected from a single accelerometer. It ignores the comple-

mentary information of signals collected from the other sensors. Thus, the denoised signals tend

to have low robustness and generalization ability because noise presents at the accelerometers

are probably dissimilar from each other. Finally, the current method detects vehicles from the

oscillatory component based on local search procedure [Du et al., 2006]. However, this proce-

dure is originally proposed to detect peaks in the signal. Therefore, it might not have optimal

performance on detecting oscillations.

5.3 Application of GSCAEs on Vehicle Detection

In this section, we propose a novel framework for vehicles detection from acceleration signals.

By employing GSCAEs models as a core element, the new framework can alleviate the afore-

mentioned issues of the current approach. Diagram of the proposed framework is depicted in

Figure 5.4.
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Figure 5.4: Diagram of the proposed framework.
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Figure 5.5: The raw acceleration signals collected from two di↵erent sensors.

5.3.1 The proposed framework

Our framework receives raw signals (Acc 1 and Acc 2) collected from the two di↵erent ac-

celerometers as inputs. In general, these signals are contaminated by various types of noise.

An illustration of the signals are shown in Figure 5.5. The framework applies wavelet transform

on the input signals. Results of this transformation are two coe�cient matrices C(1) 2 Rs1⇥n1

and C
(2) 2 Rs2⇥n2 (coefs 1 and coefs 2), where n1 and n2 are the signal lengths and s1 and s2

are the number of wavelet scales (dimensions), respectively. Our framework can process two

signals of di↵erent lengths and perform the wavelet transform at di↵erent scales. However, for

simplicity, we henceforth assume that n = n1 = n2 and s = s1 = s2. Note that each element of

C
(1) and C

(2) is a complex number. Thus, we extract modulus of the two matrices and denote

them as |C(1)| and |C(2)|, respectively.

The two matrices |C(1)| and |C(2)| are then fed to the GSCAEs model. Their corre-
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Figure 5.6: An example of reconstruction errors computed from wavelet coe�cient matrix of
the first acceleration signal.

sponding outputs are denoted as | bC(1)| and | bC(2)|, respectively. The reconstruction errors

e
(v) = [e1, . . . , en] for v 2 {1, 2} (rec error 1 and rec error 2) are computed using the following

formulation

e(v)i =
sX

j=1

⇣
|bc(v)j,i |� |c(v)j,i |

⌘2
i = 1, . . . , n. (5.1)

The reconstruction errors can be used as indicators to discriminate noise from clean data sam-

ples. The idea [Xia et al., 2015, Zhou and Pa↵enroth, 2017, Kieu et al., 2018, Kieu et al., 2019]

is that the input data is reconstructed from a compressed hidden representation. Since this

representation is very compact, it is only possible to reconstruct normal features from the in-

put data. Therefore, the reconstruction errors for clean data are supposed to be much lower

than those corresponds to noisy samples. An illustration of reconstruction errors is depicted in

Figure 5.6.

We can observe that after smoothing the reconstruction error sequence form negative

peaks at positions, where strong vibrations occur in the original signal. From this observation,

our framework performs peaks detection on the reconstruction errors using the local search

procedure [Du et al., 2006] as already mentioned in the previous section. After peak detection,

we obtain two sequences of peaks denoted as peaks 1 and peaks 2, respectively, from two

signals. We have a further observation that one correct peak in one sequence should have

one corresponding peak in the other sequence with an appropriate time lag. Therefore, we

match the peaks between the two sequences in a refinement step. The matching procedure is

as follows:

• First, we specify the highest and lowest velocities to calculate the possible maximum and
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Figure 5.7: Illustration of peaks matching procedure in refinement of the proposed framework.

minimum time lags for a matching pair of peaks.

• Second, we then select the sequence with a smaller number of peaks as the “source”. The

other sequence will be the “reference”.

• Third, the peaks in the source will be processed on-by-one. The corresponding peak in

the reference sequence must satisfy the time lag condition. If there are more than one

valid peak, the peak that is close to the mean of the time lag will be chosen. Once a peak

in the reference sequence is selected, it will be excluded from the search for the next peak

in the source sequence.

Figure 5.7 illustrates the matching procedure. Detected peaks (blue circles) in the source

sequence are matched with their corresponding peaks (red circles) in the reference sequence.

The green areas on time axis of the reference sequence depict the valid time lags for a particular

peak in the source sequence. If there are more than one peaks of the reference lie in this areas,

the peak that is close to the mean time lag will be selected. After refinement, we consider each

matching pair of peaks as a detected vehicle. We expect that combination the detected results

from the two sensors will further improve accuracy of the vehicle detection framework.

5.3.2 Empirical study

Data. We evaluate performance of the proposed framework on real-world acceleration signals

collected from sensors attached on a prestressed concrete bridge in Japan. They are depicted in
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Figure 5.5. We can observe that these signals are 500 seconds long. As the sampling frequency

is 1000 Hz, the number of actual data samples in each signal is 500K. Note that the two

accelerometers are placed at di↵erent positions on the bridge. Therefore, the events (vibrations

induced by passing vehicles) on these signals are not synchronized1.

Evaluation measures. The ground truth, including the number of vehicles and sequences of

time points that true events occur in the signals, was obtained from a video recording. For

a particular signal collected from a single accelerometer, we denote the sequence of true time

points as T = [t1, . . . , tk], where k is the number of vehicles. For any method that performs

detection on this signal, we denote the sequence of detected time points2 as bT = [t̂1, . . . , t̂k̂],

where k and k̂ are not necessarily equal. True positives TP are true time points for which there

is a detected one at least less than ✏ samples, i.e.

TP (T , bT ) = {ti | 9j 2 {1, . . . , k̂} s.t. |ti � t̂j| < ✏}. (5.2)

In this work, we set the margin ✏ = 5. The precision PREC and recall REC are then given by

PREC(T , bT ) =
|TP (T , bT )|

k̂
, (5.3)

REC(T , bT ) =
|TP (T , bT )|

k
. (5.4)

The F1 score is the harmonic mean of the precision and recall

F1(T , bT ) = 2⇥ PREC(T , bT )⇥REC(T , bT )

PREC(T , bT ) +REC(T , bT )
. (5.5)

The above three measures are well defined. Their best values are 1 and their worst values are

0.

Comparison. We compute the precision, recall and F1 score for the following detection results:

• Oscillations 1 : sequence of oscillations detected by the current method on the first signal

1
Vibrations correspond to one vehicle occur at di↵erent time points on the two signals.

2
Peaks detected by the new framework or oscillations detected by the current method.
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without refinement.

• Oscillations 2 : sequence of oscillations detected by the current method on the second

signal without refinement.

• Oscillations ref : sequence of oscillations detected by the current method on the first

signal with refinement.

• Peaks⇤ 1 : sequence of peaks detected by the proposed framework on the first signal

without refinement.

• Peaks⇤ 2 : sequence of peaks detected by the proposed framework on the second signal

without refinement.

• Peaks⇤ ref : sequence of peaks detected by the proposed framework on the first signal

with refinement.

In addition, to further investigate the contribution of the model GSCAEs to the per-

formance of the proposed framework, we perform ablation study by substituting it with two

separate autoencoders, each of which process a particular signal. Therefore, we have additional

results of this substitution as listed below:

• Peaks 1 : sequence of peaks detected by the proposed framework, where GSCAEs is sub-

stituted with two separate autoencoders, on the first signal without refinement.

• Peaks 2 : sequence of peaks detected by the proposed framework, where GSCAEs is sub-

stituted with two separate autoencoders, on the second signal without refinement.

• Peaks ref : sequence of peaks detected by the proposed framework, where GSCAEs is

substituted with two separate autoencoders, on the first signal with refinement.

Results. All the evaluation scores are shown in Table 5.1. We can observe that the detection

results returned by the new framework have better qualities than those of the current method.

Note that the proposed framework and the current method are di↵erent in the first two phases.
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Detection results |TP |/|FP | PREC REC F1

Oscillations 1 42/16 0.72 0.89 0.79
Oscillations 2 41/21 0.66 0.87 0.75
Oscillations ref 42/13 0.76 0.89 0.82
Peaks 1 44/08 0.84 0.93 0.88
Peaks 2 45/17 0.72 0.95 0.81
Peaks ref 45/05 0.90 0.95 0.92
Peaks⇤ 1 47/00 1.00 1.00 1.00
Peaks⇤ 2 47/06 0.88 1.00 0.93
Peaks⇤ ref 47/00 1.00 1.00 1.00

Table 5.1: Evaluation scores on di↵erent detection results.

More specifically, the current method extracts oscillatory components from the raw signal in

the first phase and then performs oscillation detection in the second phase. In contrast, the

new framework feeds wavelet coe�cient matrices of the raw signals into the GSCAEs model

and then detects peaks from the reconstruction errors. Since autoencoders-based model can ac-

count for di↵erent types of noise [Xia et al., 2015, Zhou and Pa↵enroth, 2017, Kieu et al., 2018,

Kieu et al., 2019] and peaks detection is less complicated than detecting oscillations, the pro-

posed framework can achieve higher accuracy than the compared method.

We also see that substituting the GSCAEs model with two separate autoencoders consid-

erably degrades performance of the new framework. This result again validates the importance

of the GSCAEs model. Di↵erent from the two separate autoencoders that process the signals

independently, GSCAEs jointly reconstructs the signals in the wavelet space from a shared

hidden representation. This allows complementary information from one signal to contribute

to the reconstruction of the other signal. Therefore, GSCAEs can output more discriminative

reconstruction errors, facilitating the peaks detection in the subsequent phase.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we consider two problems arise in sequential analysis that involve in op-

timization over discrete variables with combinatorial constraints. The first problem is finding

correspondence among samples while learning representation from multi-view sequential data.

Because the objective of the sequential correspondence problem is not di↵erentiable, existing

models often perform alignment and representation learning in an alternative manner. This ap-

proach is prone to suboptimal solutions. In addition, these models are di�cult to be extended,

especially for those employing deep neural networks for learning the new representation. The

second problem is segmentation of data sequences. The optimal algorithm to solve this problem

is based on dynamic programming, which has quadratic time and memory complexities. Thus,

it is di�cult to optimally segment long data sequences. Although approximation algorithms

for sequentially segmenting the sequences have been proposed, the quality of their solutions is

not guaranteed.

To address the aforementioned issues, we propose novel models, whose objective functions

are di↵erentiable almost everywhere. The benefits of the di↵erentiability are: i) All the variables

are now updated in a unified manner during optimization. Thus, sub-optimal solutions are likely

to be avoided. ii) Stochastic gradient descent is now applicable to train or learn the models’

82



6.1. Conclusion 83

parameters. This mitigates the computational time and memory requirement burdens. iii) The

models are now more extendable to handle multiple data sequences. In summary, achievements

of this dissertation are:

Di↵erentiable models for sequential representation learning. First, we introduce

Generalized sequential correlation analysis (GSCA) – a deep model for learning representation

from multi-view sequential data. Our model can implicitly discover sample correspondences

between data sequences while learning the new representation. Thanks to the di↵erentiabil-

ity of the objective of GSCA, the optimal correspondence and representation are obtained in

an unified manner, avoiding sub-optimal solutions. Second, we next combine GSCA with re-

construction losses of autoencoders to form the second model termed Generalized sequentially

correlated autoencoders (GSCAEs). GSCAEs o↵ers a better trade-o↵ between within-sequence

and cross-sequence relations for sequential representation learning. Third, we finally develop an

extension of GSCA termed Generalized multiple sequences analysis GMSA for simultaneously

handling multiple data sequences.

Di↵erentiable models for segmentation of sequences. First, we introduce Kernel

clustering with sigmoid regularization (KCSR) – a segmentation model based on kernel clus-

tering. KCSR is a combination of a novel regularization based on sigmoid functions and kernel

k�means. The objective function of our model is di↵erentiable almost everywhere. Thus, it

can be e↵ectively minimized using gradient descent algorithm. Second, to further improve the

e�ciency, we propose a stochastic variant of KCSR termed Stochastic kernel clustering with

sigmoid regularization (SKCSR). This model employs stochastic gradient descent, where the

gradient is estimated from a randomly sampled subsequence, for optimization. Thus, it has

much lower time and space complexities than existing methods. SKCSR is especially free from

storing large a�nity and/or kernel matrices. Hence, it can handle large-scale sequential data.

Third, we extend KCSR by slightly modifying the sigmoid-based regularization, forming the

new model termed Multiple kernel clustering with sigmoid regularization (MKCSR). Inherit-

ing good properties from KCSR, MKCSR can e↵ectively and e�ciently segment multiple data

sequences simultaneously.
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Performances of all the proposed models in this thesis are evaluated on various widely

public datasets and compared with those of existing methods. Extensively experimental results

validate the claimed advantages of our models. Finally, we discuss limitations of the proposed

models and indicate several potential directions for extending the current research.

6.2 Future Work

In this section, we discuss open issues and directions to extend the current research.

Sequential representation learning. In chapter 3, we proposed three di↵erentiable

models for learning representation from multi-view sequential data. These models handle the

misalignment in the data sequences mainly based on generalized smooth DTW – a di↵erentiable

approximation of the original DTW. However, due to replacing the hard minimum in DTW

with a smooth one, generalized smooth DTW induces some entropic biases to the alignment

[Blondel et al., 2021]. To improve performance of the proposed models, it is crucial to modify

the generalized smooth DTW, mitigating negative influences of the biases on the representation

learning.

Another direction for extending the current model is to take into account local structures

of the data sequences to improve both alignment accuracy and representation goodness. More

specifically, current models are employing DTW to achieve the sample correspondence among

data sequences. However, DTW is a frame-to-frame matching algorithm. Thus, it ignores

the locality among the sequential data points. In case the data sequences have a particular

structure (e.g., they can be divided into several homogeneous segments), this information should

be exploited to improve e�ciency and e↵ectiveness of the alignment procedure. Furthermore,

local information can help to guide the representation learning procedure. This is often the case

when supervised information is absent and by preserving locality, the learned representation is

expected to be more robust.

Segmentation of sequences. In chapter 4, we introduced di↵erentiable models for

segmentation of a single or multiple data sequences. Although, owning many good properties
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inherited from the di↵erentiability of the objectives, there are still several remaining limitations

in the proposed models. First, KCSR and its stochastic variant assume that the number

segments k is given in advance. Therefore, the proposed models can only work under o✏ine-

settings. To further improve the adaptability, it is necessary to extend the current models such

that the number of segments can be estimated from the data. Second, MKCSR – an extension

of the original KCSR for segmentation of multiple sequences – can only operate in a single space.

More precise, the data sequences to be segmented are required to have the same dimension.

However, as nowadays, more and more sequential data are collected from multiple perspectives

and they often have di↵erent modalities (e.g., audio and video) the dimension requirement is

likely to be violated. Motivated from this limitation, the next step of the current research is to

develop a model that, on one hand, can preserve the goodness of MKCSR, while, on the other

hand, can handle multimodal sequential data.



Appendix A

Smooth Min Operator

The smooth min operator is defined as:

min⌦(⌘) := min
�2�k
h�,⌘i+ 1

�
⌦(�), (A.1)

where the regularization term ⌦(�) must be a strictly convex function [Nesterov, 2005]. Two

widely used functions are Shannon entropy and squared `2 norm.

Shannon entropy. If ⌦(�) =
Pk

i=1 �i ln �i, we obtain

min⌦(⌘) = min
�2�k

kX

i=1

�i⌘i +
1

�

kX

i=1

�i ln �i. (A.2)

Because the objective is strictly convex, we can take its Lagrangian:

L =
kX

i=1

�i⌘i +
1

�

kX

i=1

�i ln �i + �1

 
1�

kX

i=1

�i

!
+ �2

kX

i=1

�i. (A.3)

With KKT conditions @L
@�i

= 0 and slackness �2�i = 0, we have

�i = e��1��⌘i�1 8i = 1, ..., k. (A.4)
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Combining with the simplex constraint:
Pk

i=1 �i = 1, we obtain

e��1 =
e

Pk
i=1 e

��⌘i
. (A.5)

Plugging this back into equation (A.4), we arrive at the minimum of (A.2)

�i =
e��⌘i

Pk
j=1 e

��⌘j
. (A.6)

In summary, when using Shannon entropy as regularization, we have closed-form solutions

of the smooth min operator and its gradient

min⌦(⌘) = �
1

�
ln

kX

i=1

e��⌘i , (A.7)

rmin⌦(⌘) =
e��⌘

Pk
j=1 e

��⌘j
. (A.8)

Squared `2 norm. When ⌦(�) = 1
2

Pk
i=1 �

2
i , the smooth min becomes

min⌦(⌘) = min
�2�k

kX

i=1

�i⌘i +
1

2�

kX

i=1

�2i . (A.9)

It can be easily shown that the minimum �
⇤ (i.e. rmin⌦(⌘)) of (A.9) is the projection of ��⌘

onto the simplex �k

�
⇤ = argmin

�2�k

||��⌘ � �||22, (A.10)

which is likely to be sparse. The solution of (A.10) can be e�ciently obtained using the

algorithm proposed in [Brucker, 1984, Pardalos and Kovoor, 1990, Duchi et al., 2008] with a

complexity of O(k ln k).



Appendix B

Generalized Smooth DTW with

Entropy Regularization

Theorem B.1. Let ⇧ denotes the set of all warping paths

⇡ = h(i1, j1), . . . , (ip, jp)i, (B.1)

that satisfies three conditions: Boundary, Continuity, and Monotonicity as described in subsec-

tion 2.1.2, and {s(⇡) = di1,j1 + · · · + dip,jp |⇡ 2 ⇧} be a set of cumulative sums corresponding

to all the warping paths. If the regularization ⌦ is the Shannon entropy, then

DTW⌦(X,Y ) = DTW�(X,Y )

= � 1

�
ln
X

⇡2⇧

e��s(⇡) . (B.2)

Proof. Let ⇧i,j ⇢ ⇧ be the set of all warping paths from (1, 1) to (i, j), and denotes

ri,j = �
1

�
ln

X

⇡02⇧i,j

e��s(⇡0) . (B.3)

Note that when the regularization ⌦ is the Shannon entropy smooth min has a closed-form
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expression as shown in equation (A.7), thus we also have:

ri,j = min⌦

�
{s(⇡0)|⇡0 2 ⇧i,j}

�
. (B.4)

We can rewrite equation (B.3) as follow:

ri,j = �
1

�
ln

 
X

⇡12⇧i�1,j

e��
�
s(⇡1)+di,j

�
+

X

⇡22⇧i,j�1

e��
�
s(⇡2)+di,j

�
+

X

⇡32⇧i�1,j�1

e��
�
s(⇡3)+di,j

�!

= � 1

�
ln e��di,j

 
X

⇡12⇧i�1,j

e��s(⇡1) +
X

⇡22⇧i,j�1

e��s(⇡2) +
X

⇡32⇧i�1,j�1

e��s(⇡3)

!

= di,j +�
1

�
ln

 
X

⇡12⇧i�1,j

e��s(⇡1) +
X

⇡22⇧i,j�1

e��s(⇡2) +
X

⇡32⇧i�1,j�1

e��s(⇡3)

!
. (B.5)

Using the expression in equation (A.7) again, we obtain

X

⇡12⇧i�1,j

e��s(⇡1) = e
ln

P
⇡12⇧i�1,j

e��s(⇡1)

(B.6)

= e�� min⌦

�
{s(⇡1)|⇡12⇧i�1,j}

�
(B.7)

= e��ri�1,j . (B.8)

The similar expressions for the sums over ⇡2 2 ⇧i,j�1 and ⇡3 2 ⇧i�1,j�1 can be derived in the

same manner. Substituting (B.8) into (B.5), we have

ri,j = di,j + min⌦(ri�1,j, ri,j�1, ri�1,j�1). (B.9)

By recursively applying equation (B.9) for i = 1..., n and j = 1, ...,m, we can arrive at equation

(B.2), completing the proof.



Appendix C

Forward-backward Algorithm

Algorithm 5 : Forward-backward algorithm
Require: Distance matrix D 2 Rn⇥m

Ensure: Gradient matrix E = @DTW⌦(X,Y )
@D 2 Rn⇥m.

. Forward pass:
1: s00,0 = 0, s0i,0 = s00,j =1 8i, j.
2: for i = 1, . . . , n and j = 1, . . . ,m do
3: s0i,j = di,j +min⌦(s0i�1,j, s

0
i,j�1, s

0
i�1,j�1)

4: qi,j = rmin⌦(s0i�1,j, s
0
i,j�1, s

0
i�1,j�1) 2 R3

5: end for
. Backward pass:

6: qi,m+1 = qn+1,j = 03, ei,m+1 = en+1,j = 0 8i, j.
7: qn+1,m+1 = [0, 1, 0], en+1,m+1 = 1.
8: for i = 1, . . . , n and j = 1, . . . ,m do
9: ei,j = qi,j+1,1ei,j+1 + qi+1,j+1,2ei+1,j+1 + qi+1,j,3ei+1,j

10: end for

To compute ei,j in equation (3.9), we use the forward-backward algorithm, which is orig-

inally introduced in [Mensch and Blondel, 2018]. The details are shown in Algorithm 5. The

algorithm indeed computes the gradient matrix E, where ei,j is the element at position (i, j), of

the generalized smooth DTW with regard to the distance matrix D. It includes a forward step

and a backward step. Both of them perform constant-time operations in nm times. Therefore,

the computational complexity of the algorithm is O(nm). In addition, during the computation,

the algorithm stores several matrices whose largest size is 3nm. Thus, its space complexity is

also O(nm). Note that when the squared `2 norm is used as regularization in DTW⌦, qi,j be-

come sparse because of equation (A.10). This then induces the sparsity in E, further reducing
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the complexity of the algorithm in terms of both time and space.



Appendix D

Update Rule for Consensus Label

Sequence

In this section, we provide the derivation of the update rule for the consensus label sequence in

equation (3.19). By adding an extra term ⇠||ZZ
>�I||2F and introducing a Lagrange multiplier

matrix  2 Rc⇥n, we have the following Lagrange function

L(Z, ) =
vX

k=1

DTW⌦(Z,Z(k)) + ⇠||ZZ
> � I||2F + Tr( >

Z). (D.1)

Taking the derivative of L(Z, ) with regard to Z and setting it to zero, we obtain

@L(Z, )

@Z
=

vX

k=1

@DTW⌦(Z,Z(k))

@Z
+ 4⇠(ZZ

> � I)Z + = 0. (D.2)

Then

 = 4⇠Z � 4⇠ZZ
>
Z �G, (D.3)

whereG =
Pv

k=1
@DTW⌦(Z,Z(k))

@Z . According to the Karush—Kuhn–Tucker condition [Boyd et al., 2004],

i.e.  i,jzi,j = 0, we can arrive at the following equation:

[4⇠Z � 4⇠ZZ
>
Z �G]i,jzi,j = 0. (D.4)
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Then, we obtain the update rule for Z:

zi,j  zi,j
[4⇠Z]i,j

[G+ 4⇠ZZ>Z]i,j
. (D.5)



Appendix E

Derivation of The Gradient for KCSR

In this section, we provide derivation of the gradient w.r.t �. Recall that our objective function

is

JKCSR(�) = Tr
⇣⇣

In �G
> �

GG
>��1

G

⌘
K

⌘
+ �Tr(G11>

G
>). (E.1)

The gradient r� = @JKCSR
@� can be computed using chain rule. We first compute the gradient

of J w.r.t G as follows:

@JKCSR

@G
= 2

�
GG

>��1
GKG

> �
GG

>��1
G� 2

�
GG

>��1
GK + �G11>. (E.2)

Since each entry in the ith column of G is a function of continuously segment label ⌧i we need

to compute

@Gj.i

@⌧i
=
@max (0, 1� |⌧i � j|)

@⌧i
=

8
>>>>>><

>>>>>>:

�1 if j  ⌧i  j + 1

1 if j � 1  ⌧i < j

0 otherwise.

(E.3)

Then the the gradient of JKCSR w.r.t ⌧ = [⌧1, . . . , ⌧n]> is

@JKCSR

@⌧i
=

kX

j=1

@JKCSR

@Gj.i

@Gj.i

@⌧i
. (E.4)
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The segment label ⌧i is again computed via a mixture of k�1 sigmoid functions, each of whose

parameter is �j. Thus, we need to compute

@⌧i
@�j

=
@
⇣
1 +

Pk�1
j0=1

�
1 + e�↵(i��j0 )

��1
⌘

@�j

= �↵
�
1 + e�↵(i��j)

��1
h
1�

�
1 + e�↵(i��j)

��1
i
. (E.5)

Then the gradient of JKCSR w.r.t � = [�1, . . . , �k�1]> can be derived as follows

@JKCSR

@�j
=

nX

i=1

@JKCSR

@⌧i

@⌧i
@�j

. (E.6)

Finally, we arrive at the gradient of JKCSR w.r.t � = [�1, . . . , �k]>

@JKCSR

@�c
=

k�1X

j=1

@JKCSR

@�j

@�j
@�c

, (E.7)

where

@�j
@�c

=

8
>>><

>>>:

(n�1) e�cPk
j0=1 e

�j0

✓
1�

Pj
j0=1

e
�j0

Pk
j0=1 e

�j0

◆
if c  j

�
(n�1) e�c

Pj
j0=1

e
�j0

(
Pk

j0=1 e
�j0 )

2 if c > j

. (E.8)



Appendix F

Definitions of Accuracy and

Normalized Mutual Information

Let bL = [l̂1, . . . , l̂n] and bL = [l1, . . . , ln] be the obtained labels and ground-truth labels of a

given data sequence X = [x1, . . . ,xn]. l̂i = j (similar for li) for 1  j  k indicates that xi

belongs to cluster (segment) ĉj. The accuracy (ACC) is defined as follows:

ACC =

Pn
i=1 �(li,map(l̂i))

n
, (F.1)

where �(a, b) is the delta function that equals one if a = b and zero otherwise and map(l̂i) is

the permutation mapping function that maps label l̂i to the equivalent ground truth label. In

this work, we use Kuhn-Munkres algorithm [Plummer, 1986] to find the mapping.

Let bC = [ĉ1, . . . , ĉk] and C = [c1, . . . , ck] be the obtained clusters and the ground-truth

clusters. Their mutual information (MI) is

MI(C, bC) =
X

cj2C,ĉj02bC

p(cj, ĉj0) log2
p(cj, ĉj0)

p(cj)p(ĉj0)
, (F.2)

where p(cj) and p(ĉj0) are the probabilities that a data sample arbitrarily selected from the

sequence belongs to the clusters cj and ĉj0 , respectively, and p(cj, ĉj0) is the joint probability
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that the selected data sample belongs to both cj and ĉj0 . This metric is normalized to the range

[0, 1] as follows:

NMI(C, bC) = MI(C, bC)
max(H(C), H(bC))

, (F.3)

where H(C) and H(bC) are the entropies of C and C, respectively.
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