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Detecting and Resolving Counterintuitive Consequences in Law
as Legal Debugging

by Wachara Fungwacharakorn

Since legal judgements are complex but yet essential in our society, it is very challenging
for artificial intelligence (AI) researchers to mechanize statutes and legal judgements.
AI and Law Researchers have long been interested in representing legal knowledge with
computational legal representations in order to enable mechanization. Such legal rep-
resentations are, for example, normal logic programs or Prolog programs, or the legal
knowledge representation called PROLEG adopted from normal logic programs in order
to suit the ultimate fact theory in Japanese Civil Code litigation. In countries with a
civil law system, such as Japan or Thailand, where statutes are the primary source of
reference in court, most legal representations rely on the literal interpretation of statutes.
However, in some real-life cases, the literal interpretation of statute does not meet social
expectations and produces counterintuitive consequences, leading to absurdity, harming
public interests, or endorsing strange behaviors in society. Judges, particularly in high
courts, may handle these consequences by taking the exceptional situations in the case
that are not addressed by the statute into account and revising the interpretation of the
statute by adding new conditions or exceptions to address the exceptional situation.

Recently, there have been many approaches for revising logic programs that represent
the interpretation of the statutes in order to resolve legal conflicts. Unfortunately, revi-
sions in order to meet social expectations cannot be done automatically, as opposed to
revisions in order to resolve legal conflicts, which can be done automatically in secondary
legislation given that we have codified primary and secondary legislation. Furthermore,
as early works in AI and Law have suggested, formalizing legal changes for meeting social
expectations requires debugging-like mechanism in legal reasoning systems. However,
there are no theoretical foundations of debugging in law to our knowledge. Therefore, in
this dissertation, we propose Legal Debugging, extending from Algorithmic Debugging in
software engineering, for judges in civil law systems to detect and resolve counterintuitive
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consequences in law. In Legal Debugging, we formalize counterintuitive consequences as
the symmetric difference between the literal interpretation of the statute delivered by
the computational legal reasoning system, and the interpretation intended by the user
i.e. a judge or a legal scholar.

Legal Debugging consists of two main algorithms, namely Culprit Detection Algorithm
and Culprit Resolution Algorithm. Culprit Detection Algorithm assists the user to dis-
cover more counterintuitive consequences by checking with the user whether related con-
sequences are counterintuitive until the user finds no more counterintuitive consequences
related. The last found counterintuitive consequence, called a culprit, is determined as a
root cause of such counterintuitive consequences. Culprit Resolution Algorithm assists
the user to revise the rule-base representing statutes by let the user choose necessary
conditions that indicate the exceptional situations in the case. Since statutes are repre-
sented by rule-bases but changes in law are initiated by cases, we adopt a prototypical
case with judgement specified by a set of rules. Then, the result of the culprit resolution
algorithm is a revised rule-base such that new prototypical cases with judgement repre-
senting exceptional situations of the present case are included. Furthermore, we present
in this dissertation one application of Inverse Resolution, which is the well-known in-
ductive programming technique, for generalizing culprit resolution in order to cooperate
with a user and background theory for more practical revision of the rule-base.

In this dissertation, we also present our formalization of semantics-based minimal re-
vision for legal reasoning, which focuses on minimal revisions on legal interpretations
varying among cases, and dominant-based minimal revision, a sub-type of semantics-
based minimal revision that does not require to calculate a set of all conclusions for
each case and unaffected by the fact-domain extension. We use such minimal revisions
to warn the user about the possibility of unintentional changes of semantics during the
generalization of culprit resolution. We determine additional prototypical cases with
judgment beyond ones occur in the minimal revision as non-trivial effects. Hence, legal
reasoning systems can check with the user to confirm the intention of such non-trivial
effects.

Legal debugging is applicable to any statutory laws in general because most of statutory
laws are designated to produce one unique interpretation for each case in litigation,
hence they can be represented by a non-recursive and stratified logic program with
corresponding prototypical cases with judgement, which is the applicable range of Legal
Debugging. Given that the statute contains a large number of rule conditions, we expect
that Legal Debugging would help in discovering which condition causes counterintuitive
consequences and how to revise logic programs representing the interpretation of the
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statutes to resolve the counterintuitive consequences so that it can formalize revisions
in order to meet social expectations.
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Chapter

1
Introduction

In this chapter, we present

• Background of our research

• Motivation of our research

• Contribution of our research

• Outline of the rest of the dissertation
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Chapter 1. Introduction

1.1 Background

As artificial intelligence (AI) are applied in different parts of society, law is no exception.
Actually, AI and Law is the classic field where the law motivates AI research, and the
other way around, the law takes the benefits from AI [1]. The synergy trends of Symbolic
AI and AI-and-Law can be shown in Table 1.1, in which each decade roughly indicates
the beginning of the trends (for details, see Chapter 2).

Table 1.1: Summary of trends of Symbolic AI and AI-and-Law

Symbolic AI AI and Law

The 1980s
Non-monotonic Reasoning
Case-based Reasoning

Rule-based Legal Reasoning Systems
Case-based Legal Reasoning Systems

The 1990s Argumentation
Hybrid Legal Reasoning Systems
Judicial Legal Change

The 2000s Semantics Web
Theory Construction
Promoting Value

The 2010s Explainable AI
Precedential Constraints
Case Model

The mid 1980s is when early rule-based legal reasoning systems e.g. [2, 3] emerged
as the applications of logic programming. The systems can consider whether a legal
consequence (e.g. a particular individual is or is not a British citizen [2]) is valid with
respect to statutes and the factual information of the circumstance. The systems also
produce reasoning based on the deductive proof obtained by the theorem prover. At
that time, symbolic AI researchers were interested in non-monotonic reasoning, which
deals with incomplete information by allowing the conclusions to be defeated later [4–7].
Since the law often deals with the cases in which the evidence is insufficient, early rule-
based legal reasoning systems were also developed to support non-monotonic reasoning.
Besides that, in the late 1980s, HYPO [8], a classical case-based legal reasoning system,
was presented. HYPO produces plausible arguments for the plaintiff’s side and the
defendant’s side from merely precedent cases, and predicts which side would win the case.
It becomes one major contribution to establish a new field in symbolic AI called case-
based reasoning which studies inductive reasoning without requiring any rules, unlike
deductive reasoning where rules or axioms are required.

In the early 1990s, AI and Law researchers develop a series of hybrid legal reasoning sys-
tems between rule-based and case-based e.g. CABARET [9], GREBE [10], and HELIC-II
[11]. Hybrid reasoning systems support the reasoning in law when one another approach

2
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is insufficient to decide the case. These systems begin introducing argumentation as a
tool to interchange information between rules and cases. In the mid 1990s, theoreti-
cal foundations of argumentation have been established in symbolic AI, such as Dung’s
abstract argumentation framework [12] and Walton’s argumentation scheme [13]. Such
theoretical foundations of augmentations become rapidly interested in AI and Law com-
munity e.g. [14, 15]. Meanwhile, AI and Law researchers become recognized for judicial
changes in legal concepts, especially in case-based legal reasoning systems, since the
strength of the precedent cases may change when the time passes [16, 17]. The judicial
legal change occurs once a special judgement (usually called a principle judgement, a
guideline judgement, or a case law) adds or modifies the legal concepts that the later
cases follow.

The 2000s entered the era of semantic web as the rapid growth of representing and
visualizing information can be seen especially in web technologies. Therefore, the case-
based legal reasoning systems need not only to produce plausible arguments for each
side but to provide a set of rules or explanations, called a theory, that can explain the
reasons behind the precedent cases. Therefore, a new field in AI and Law called Theory
Construction becomes established e.g. [18–20]. Meanwhile, the role of legal context in
judicial legal change has been investigated in the early 2000s [21] and three roles of legal
context have been classified, including teleological relations, temporal relations, and
procedural postures. This leads to the field of Promoting Values to formalize judicial
legal change [22].

The 2010s is when neural networks and deep learning become rapidly mechanized. How-
ever, lots of artificial intelligence applications, including AI and law, require not only
accurate predictions but also the explainable reasons behind such predictions. Therefore,
the current trend of artificial intelligence called Explainable AI has emerged. According
to Miller [23], explainable AI contains four major features: (1) contrastive (2) selective
(3) non-probabilistic (4) social. As we can see, legal reasoning systems have been al-
ready included these features for a long time [24]. Meanwhile, in the 2010s, AI and Law
researchers produces a series of works related to precedential constraints [25, 26] (for an
intensive survey, see [27]) and case models [28–30]. Such formalizations cope with the
coherence of the law to maintain consistencies when judicial legal change occurs.

1.2 Motivation and Research Question

Generally, laws can be divided into two systems. The first system is common law,
where precedent cases are the main reference in legal judgements. The second system
is civil law, where statutes are the main reference in legal judgements. In the common

3
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law system, it is obvious that the judge can change the law via the judgements that
later become the precedent. Even in the civil law system, change is also one enduring
characteristic [31] since the social expectation is evolved and exceptional cases occur
unexpectedly in real-life. Although judges in the civil law system make their best efforts
to use the literal interpretation of the statute due to separation of powers, they sometimes
reinterpret the statute when the literal interpretation of the statute has consequences
that do not meet the social expectation such that if the consequences were not properly
handled, they will cause absurdity, strange behaviors, or risks to public interest. In this
dissertation, we refer to such consequences as counterintuitive consequences.

Table 1.2: Comparison between Legal Debugging and other ILPs

ILP Systems Main Technique Negations Applications in Law

MIS [32] Refinement Operator n/a n/a
CIGOL [33] Inverse Resolution n/a Legal Ontology Refinement [34]

ASPAL [35]
Answer Set
Programming

Supported
Automatic Revision in
Secondary Legislation [36]

Legal Debugging
Prototypical Cases
with Judgement

Supported
Detecting and Resolving
Counterintuitive Consequences

AI and Law researchers often deal with similar problems using Inductive Logic Program-
ming (ILP) for revising statutes (represented by logic programs) as shown in Table 1.2.
For example, Kurematsu and colleagues have applied a concept of Inverse Resolution
from an ILP system called CIGOL [33] for refining legal ontology [34]. Li and colleagues
have applied an ILP system called ASPAL [35] for automatic revision in secondary legis-
lation when it has some conflicts with primary legislation. Unfortunately, legal changes
for meeting social expectation need to handle exceptions in law (represented by nega-
tions as failure in logic programs) unlike the legal ontology refinement, and such legal
changes cannot be done automatically since we cannot codify social expectation, unlike
the revision in secondary legislation. In addition, formalizing legal changes for meeting
social expectation rather require debugging-like mechanism in legal reasoning systems
as early works in AI and Law [2, 31, 37] have suggested. However, there are no ap-
plications of ILP systems for debugging in law to our knowledge although algorithmic
software debugging [38] is one earliest application of an ILP system called MIS. There-
fore, in this dissertation, we propose Legal Debugging as the first formalization of legal
changes for meeting social expectation as the detection and resolution of counterintu-
itive consequences in law. As the term bug in the computer field refers to a part of the
program producing unexpected results, we define broadly by analogy that a bug in law
(which we coined it as a new term culprit, to distinguish from a bug in a program) is a

4
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part of the statute producing counterintuitive consequences. We aim Legal Debugging
for detecting and resolving such counterintuitive consequences in law by answering three
research questions in the following, and hence it brings us one step closer to formalizing
legal change for meeting social expectation.

• RQ1: How to detect a culprit ? Since we cannot directly codify social expec-
tation, it raises the question of how to detect a culprit.

• RQ2: How to resolve a culprit ? Since judges in the civil law system consider
legislators’ intention when making change, it raises the question of how to resolve
a culprit to reflect such intention.

• RQ3: How to evaluate the resolution ? Since the culprit resolution should not
be too generalized otherwise counterintuitive consequences occur unintentionally,
it raises the question of how to evaluate the resolution to prevent such unintentional
effects.

1.3 Contribution

Figure 1.1: The Work Flow of Legal Debugging

To address and solve the research questions above, we propose two algorithms involving
with a user, namely Culprit Detection Algorithm and Culprit Resolution Algorithm,
and one method to evaluate the resolution, as illustrated Figure 1.1. We also present
extensions of those algorithms for a first-order rule-base and a PROLEG rule-base. We
briefly describe our contributions in the following, where segments of our work that have
been published or are going to be published are all cited.

1. Culprit Detection Algorithm [39, 40]. Given a rule-base representing the
statute and a fact-base representing a case. Culprit Detection Algorithm detects a

5
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culprit from a counterintuitive consequence, initially provided by a user. The algo-
rithm iteratively asks the user whether related consequences are counterintuitive
until it can no longer find related counterintuitive consequences. Then, the last
found counterintuitive consequence is determined as a culprit. This algorithm aims
to solve RQ1 under the assumption that a rule-base is non-recursive and stratified.
We also present the extensions of the algorithm for a first-order rule-base [40] and
for a PROLEG rule-base [39].

2. Culprit Resolution Algorithm [40]. Given a rule-base representing the statute,
a fact-base representing a case, and a culprit detected from the first algorithm. To
solve RQ2 under the assumption that a rule-base is built from critical sets, we
present a new structure called prototypical cases with judgement. The algorithm
primarily revises the rule-base. Then, the algorithm asks a user to select facts
from the fact-base that are relevant to the head of the new rule. After that, the
algorithm reproduces prototypical cases with judgement from the primary revised
rule-base and the primary new rules. Finally, the algorithm secondarily revises
rule-base to preserve the judgement of prototypical cases as well as to resolve the
culprit. We also present the extensions of the algorithm for a first-order rule-
base [40], for a PROLEG rule-base [41, 42], and generalization of resolutions by
background theory [43].

3. A method to evaluate the resolution [44]. To solve RQ3, we present for-
malization of semantics-based minimal revision for legal reasoning. Based on the
formalization, we propose one method to evaluate the revised rule-base by repre-
senting effects as the additional prototypical cases with judgement produced from
the resolution [45]. We determine the effect not involving the present exceptional
case as non-trivial effects and we can check the intention of non-trivial effects with
the user.

1.4 Outline

The remainder of the dissertation is organized as follows

Chapter 2: Foundation and Related Work

Chapter 2 provides the extended content of research background and related work. This
chapter presents foundations of logic programming, inductive logic programming (ILP),
rule-based legal reasoning systems, case-based legal reasoning systems, judicial legal
change, and related work to each research question.

6
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Chapter 3: Culprit Detection Algorithm

Chapter 3 corresponds to the research question: RQ1: How to detect a culprit. This
chapter presents the formalization of counterintuitive consequences in law and culprits
then presents Culprit Detection Algorithm with the proofs of correctness and complete-
ness under the assumption that a rule-base is non-recursive and stratified. Moreover,
this chapter also provides the discussion of culprit detection in first-order representation
and PROLEG.

Chapter 4: Culprit Resolution Algorithm

Chapter 4 corresponds to the research question: RQ2: How to resolve a culprit. This
chapter presents the formalization of a counterintuitive consequence resolution task for
references in remaining chapters then presents our culprit resolution algorithm with
the proofs of correctness and completeness under the assumption that a rule-base is
built from critical sets. Moreover, this chapter also provides the discussion of culprit
resolution in first-order representation and PROLEG.

Chapter 5: Evaluating Generalization

Chapter 5 corresponds to the research question: RQ3: How to evaluate the resolution.
This chapter presents the formalization of semantics-based minimal revision for legal
reasoning. Based on the formalization, we present one method to evaluate the revised
rule-base by detecting possibly unintentional effect. This chapter also presents general-
ization of culprit resolution using background theory and evaluation of the generalization
using the presented method.

Chapter 6: Conclusion and Future Work

Chapter 6 provides the conclusion of this dissertation and the potential future directions
of the research on Legal Debugging.
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2
Foundations and Related Work

In this chapter, we present

• Foundations of logic programming referred to in this dissertation

• Foundations of inductive logic programming (ILP) and some ILP techniques re-
ferred to in this dissertation

• Foundations of rule-based legal reasoning systems and works about rule-based legal
reasoning systems referred to in this dissertation

• Foundations of legal case-based reasoning systems and works about case-based
legal reasoning systems referred to in this dissertation

• Foundations of judicial legal change, its formalization, and the example of judicial
legal change

• Related work of this research
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Chapter 2. Foundations and Related Work

2.1 Logic Programming

In this dissertation, we mainly consider applications of logic programming for represent-
ing law. Therefore, in this section, we present some foundations of logic programming
referred to in this dissertation as follows.

2.1.1 Normal Logic Programming and Resolution

The concept of using mathematical logic to represent and execute computer programs
has been developed as a feature of lambda calculus [46] in the 1930s. This concept has
been developed into one of the earliest logic programming languages called LISP in the
1950s. In the 1960s, applications of logic programming for automated theorem proving
have received great attention. New concepts related to automated theorem proving
in logic programming have been coined in this period such as resolution [47, 48] and
subsumption [49]. Eventually, Prolog, one of popular logic programming languages until
the present, was developed in the early 1970s, based on the concept of resolution. In
this dissertation, we call a program written in Prolog as a normal logic program (to
distinguish with a legal representation called PROLEG, which will be described later).
The normal logic program is formally defined as follows.

Definition 2.1 (Normal Logic Program). A normal logic program is a finite set of rules
of the form h← b1, . . . , bm, not bm+1, . . . , not bn. where h, b1, . . . , bn are first-order logic
atoms and not represents a negation as failure, namely not b shall be determined true
when the attempt to prove b finitely fails.

Let R be a rule of the form, we have h as a head of a rule denoted by head(R),
{b1, . . . , bm} as a positive body of a rule denoted by pos(R), {bm+1, . . . , bn} as a negative
body of a rule denoted by neg(R), and {b1, . . . , bm, not bm+1, . . . , not bn} as a body of a
rule denoted by body(R). Sometimes, we express the rule in the form h← B. where B is
the body of rule. We express h. (called a fact) if the body of the rule is empty. A rule is
called a Horn clause if the negative body of the rule is empty. For ease of explanation,
we assume that all variables in the rule must occur in the positive body of the rule.

Throughout this dissertation, a program means a normal logic program unless stated
otherwise. For first-order atoms, we begin variables with uppercase letters and constants
with lowercase letters. We present here definitions of substitution, unification, and
subsumption as follows.

Definition 2.2 (Substitution). Let A be an atom and θ = {v1/t1, . . . , vn/tn} be a
mapping from variables to terms called a substitution with {v1, . . . , vn} called the domain
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of θ. Aθ is formed by replacing every variable vi in A by a term ti (1 ≤ i ≤ n) [48]. We
also extend the substitution to a set of atoms B by Bθ = {Aθ|A ∈ B} and a rule R by
Rθ = head(R)θ ← body(R)θ.

Definition 2.3 (Unification). Let A1 and A2 be atoms. A unifier for A1 and A2 is a
substitution θ such that A1θ = A2θ. A unifier for A1 and A2 is a most general unifier
(mgu) if it is a most general substitution which unifies A1 and A2 [48].

Definition 2.4 (Subsumption). Let C and D be a set of atoms. We say C subsumes
D (C � D) if there is a substitution θ such that Cθ ⊆ D [49].

Although first-order programs representing statutes sometimes have function symbols,
but such function symbols are seldom nested i.e. if there is a function symbol named g(.)
there would not be g(g(.)), g(g(g(.))), . . .. Therefore, for ease of exposition, we assume
the programs in this dissertation have finite constants, finite predicates, and no function
symbols so the Herbrand universe (the set of all ground terms that can be built) is
merely the set of constants, which is also finite. We use the word ground in the sense of
variable-free. The Herbrand base HB of a program T is the set of all ground atoms whose
argument terms are the Herbrand universe. Since the program is presumed to have finite
predicates, the Herbrand base is also finite. The ground program of T , denoted by gr(T )
is the set of ground rules obtained from T by replacing all variables in each rule with
every element of its Herbrand universe.

Now, let introduce resolution. Resolution is a rule of inference used for theorem proving
in Prolog. Resolution views a rule as a clause, which is formally defined as follows.

Definition 2.5 (Clause). A clause is an expression of the forms l1 ∨ · · · ∨ ln where
l1, . . . , ln are literals (either a positive literal, that is, an atom, or a negative literal, that
is, a negation of an atom). We can view a rule h← b1, . . . , bm, not bm+1, . . . , not bn. as
a clause h∨¬b1 ∨ · · · ∨ ¬bm ∨ bm+1 ∨ · · · ∨ bn. Hence, we can view a program as a finite
set of clauses in the same manner as well.

Definition 2.6 (Resolution). Given two clauses C1 and C2 with no common variables.
Let L1 and L2 be literals within C1 and C2 respectively such that there is the mgu θ

of ¬L1 and L2. We denote the resolvent of C1 and C2 by C = C1 · C2 where C =
(C1 \ {L1})θ ∪ (C2 \ {L2})θ [48].

11
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2.1.2 Stratification, Stable Model Semantics, and Unfolding/Folding

In the 1980s, researchers in logic programming have become increasingly interested in
formalizations of non-monotonic reasoning. Many formalizations of non-monotonic rea-
soning developed in the period, such as Default Logic [4], Circumscription [5], Non-
monotonic Logic [6], and Minimal Belief Revision [7]. Since non-monotonic reasoning
allows multiple sets of conclusions, formalizations and uniqueness of semantics have been
widely studied. In this section, we present the study of stratified logic program [50, 51]
the uniqueness of stable model semantics for stratified logic program [52], and the un-
folding/folding transformations of logic programs that preserve stable model semantics
[53, 54].

Since a program representing statutes is generally a non-recursive and stratified program,
we also hold this presumption in this dissertation. The definition of non-recursive and
stratified program, adopted from [50, 51], is defined as follows.

Definition 2.7 (A non-recursive and stratified program). A program T is non-recursive
and stratified if there is a partition T = T0 ∪ T1 ∪ . . . ∪ Tn (Ti and Tj disjoint for all
i 6= j) such that, if a predicate p occurs in a body of rule in Ti then a rule with p in the
head is only contained within T0 ∪ T1 ∪ . . . Tj where j < i.

An answer set is a set of ground atoms (including ones with rule predicates and fact
predicates) which can be concluded from the logic program T . In this dissertation, we
apply the definition of stable model semantics for finding an answer set [52], defined as
follows.

Definition 2.8 (Stable Model Semantics). Let T be a normal logic program and M

be a set of ground atoms. Let trim(T ) be a trimming function defined as follows:
{head(R)← pos(R)|R ∈ T} and TM = trim({R|R ∈ gr(T ) and neg(R) ∩M = ∅}). M
is a stable model of T if and only if M is the minimum set (in the sense of set inclusion)
such that M satisfies every rule R′ ∈ TM , that is pos(R′) ⊆M implies head(R′) ∈M .

It is proved that a stratified program has a unique stable model semantics [52]. We
denote a ground atom p is in the stable model of T by T ` p. We have that the stable
model is related to the concept of supporting rule shown as follows.

Definition 2.9 (Supporting Rule). Let R be a rule, p be a ground atom, and M be a
set of ground atoms. We say R supports p with respect to M if there is a substitution
θ such that head(R)θ = p, pos(R)θ ⊆M , and neg(R)θ ∩M = ∅.

Theorem 2.10. Let p be a ground atom, T be a program, M be the answer set of T .
p ∈M if and only if there is a rule R ∈ T that supports p with respect to M .
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Proof. Case 1: Suppose there is a rule R ∈ T supports p with respect to M but p /∈M
then there is a substitution such that head(R)θ = p, pos(R)θ ⊆M , and neg(R)θ∩M = ∅.
Therefore, Rθ ∈ TM but M does not satisfy Rθ because pos(R)θ ⊆M but head(R)θ /∈
M . So, it leads to contradictions.

Case 2: Suppose there is no rule R ∈ T that supports p with respect to M but p ∈M ,
then, M \ {p} must satisfy every rule in TM . It leads to contradiction since M should
be the minimum set but it is not.

In this dissertation, we apply unfolding/folding [53, 54], which are transformations of
logic programs that preserve the stable model semantics. Below are the definition of
unfolding and folding.

Definition 2.11 (Unfolding). Given a program T1. T1, . . . , Tm is an unfolding sequence
such that Tk+1 is a result after applying unfolding to Tk = {E1, . . . , Er, C,Er+1, . . . , Es}
(1 ≤ k < m) where C be a rule H ← F,A,G. where A is a positive literal and F and G
are (possibly empty) sequences of literals. Suppose that:

1. {D1, . . . , Dn} with n > 0 is the set of all rules in Tj (0 ≤ j ≤ k) such that A is
unifiable with head(D1), . . . , head(Dn) with m.g.u. θ1, . . . , θn respectively, and

2. Ci is the rule (head(C) ← (F, bd(D), G.)θi where bd(D) is a sequence of literals
occurring in the body of D

If we unfold C with respect to A using D1, . . . , Dn in Tj , we derive the rules C1, . . . , Cn

and we get the new program Tk+1 = {E1, . . . , Er, C1, . . . , Cn, Er+1, . . . , Es} [54]. We say
an unfolding sequence T1, . . . , Tm is a complete unfolding sequence if all positive body
atoms in the rule in Tm cannot be further unfolded.

Definition 2.12 (Folding). Given a program T1. T1, . . . , Tm is an folding sequence such
that Tk+1 is a result after applying folding to Tk = {E1, . . . , Er, C1, . . . , Cn, Er+1, . . . , Es}
(1 ≤ k < m). Let {D1, . . . , Dn} ⊆ Tj(0 ≤ j ≤ k). Suppose that there exists a positive
literal A such that, for i = 1, . . . , n:

1. head(Di) is unifiable with A via m.g.u. θi,

2. Ci is the rule (H ← F∪bd(Di), G)θi where F and G are (possibly empty) sequences
of literals, and

3. for any rule D ∈ Pj \ {D1, . . . , Dn}, head(Di) is not unifiable with A.

If we fold C1, . . . , Cn usingD1, . . . , Dn in Tj , we get the new program Tk+1 = {E1, . . . , Er,

C,Er+1, . . . , Es} where C = H ← F,A,G. [54].
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2.2 Inductive Logic Programming

Inductive logic programming (ILP) is a sub-field of artificial intelligence that studies
building a logic program (usually called a theory or a hypothesis) based on training
examples. It is one foundation of modern machine learning techniques such as decision
trees. Since the beginning of the development of ILP in the 1970s [55], many ILP
techniques have been emerged. In this section, we present some some ILP techniques
related to our research as follows.

2.2.1 Algorithmic Debugging and Model Inference System (MIS)

Algorithmic Debugging [38] is the theoretical foundation of software debugging, devel-
oped by Ehud Shapiro in the 1980s. In his work, he aims to answer two questions.

1. How do we identify a bug in a program ? (Bug detection)

2. How do we fix a bug, once one is identified ? (Bug correction)

To answer the first question, Shapiro presented Program Diagnosis Algorithm. The al-
gorithm aims for identifying three kinds of bugs. The first kind is an incorrect procedure,
which makes a program give a wrong answer. The second kind is an incomplete proce-
dure, which makes a program finitely fail to produce a correct answer. The third kind
is a diverging procedure, which makes a program consume resources beyond boundaries
(e.g. the depth of stack). Generally speaking, Program Diagnosis Algorithm interacts
with the user to systematically trace the differences between the computational results
and the user expectation until a bug is detected.

To answer the second question, Shapiro extended Bug-correction Algorithm from his
Model Inference System (MIS) [32], which is one of the earliest ILP since we can apply
MIS for building a whole new logic program from the empty program with merely train-
ing examples. MIS is assumed to construct a logic program with only Horn Clauses by
developing refinement operators and de-refinement operators. Below shows the defini-
tion of the refinement operator in our setting and one example of refinement operator
in MIS [38]. The de-refinement operator, whose definition is not shown here, is briefly
an inverse of the refinement operator.

Definition 2.13. Let L be a set of definite clauses with p1, p2, ..., pn, p, q ∈ L, ρ be a
mapping from L to finite subsets of L, and <ρ be the binary relation over L for which
p <ρ q if and only if there is a finite sequence of clauses p1, p2, ..., pn such that p1 = p,
pn = q, pi+1 ∈ ρ(pi) for 0 ≤ i ≤ n. ρ is said to be a refinement operator over L if and
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only if the relation <ρ is a well-founded ordering over L and for every interpretation
M and atom A, if q supports A with respect to M and p <ρ q then p supports A with
respect to M .

Definition 2.14. Let p be a clause. q ∈ ρ(p) if and only if one of the following holds

• p = � (empty clause) and q = a(X1, X2, . . . , Xn), for some n-predicate symbol a,
and X1, X2, . . . , Xn are n distinct variables

• q is obtained by unifying two variables in p

• q is obtained by instantiating a variable X in p to a term t(X1, X2, . . . , Xn) where
t is an n-function symbol and X1, X2, . . . , Xn are new variables

• q is obtained by adding to p’s body a goal B and every variable in B occurs in
head(p)

Generally speaking, MIS specializes the input program if it is too generalized (succeeding
on a goal known to be false) and generalizes the input program if it is too specialized
(failing on a goal known to be true). The framework of MIS can be roughly shown
as Algorithm 1. Then, Shapiro extended MIS to Bug-correction Algorithm by using
the detected bug as the hint. With the assumption that the programmer tries to code
the program with the best effort, Bug-correction Algorithm specializes (via refinement
operators in MIS) and generalizes (via derefinement opertors in MIS) the program to
refine the buggy part into the correct one.

Algorithm 1 Model Inference System (MIS)

Input A set of example E, an oracle for an intended interpretation IM and an ordered set of
clauses

Let T to be an empty program and the set of marked rules be empty
while There is an unknown example do

Learn one unknown example
while T is not totally correct with respect to the known example do

if T succeeds on a goal known to be false then
Find R that supports an incorrect goal with respect to IM in T

Remove R from T

Mark R
else if T fails on a goal known to be true then

Find an incomplete goal A
Search for an unmarked rule R that supports A with respect to IM
via refinement and de-refinement operators
Add R to T

return T
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2.2.2 Closed World Specification (CWS)

Closed World Specification (CWS) [56] is one ILP technqiue for non-monotonic reasoning
under Closed World Assumption (the presumption that a statement that is not currently
known to be true, is false). Instead of, like MIS, removing the rule found supporting an
incorrect goal then searching for a new rule, CWS supports non-monotonic reasoning
by introducing the representation of the exceptional situation. In brief, CWS represents
the exceptional situation by using the instantiation of one atom in the negative body of
the found rule if it exists. Otherwise, CWS introduces a new inventing atom into the
negative body of the found rule then uses the instantiation of the atom to represent the
exceptional situation. The algorithm for CWS can be illustrated as in Algorithm 2.

Algorithm 2 Closed World Specification (CWS)

Input A non-recursive and stratified normal logic program T and an incorrect ground
atom p which T ` p.

Let M be the stable model of T
for all rules R ∈ T that supports p with respect to M by a substitution θ do

if body(R) contains not b then
Let T ′ = T ∪ {bθ}

else
Let {v1, . . . , vn} be the domain of θ
Let q be a predicate symbol not found in T

Let b be q(v1, . . . , vn)
Let T ′ = T \ {R} ∪ {head(R) : −(body(R) ∪ {not b})} ∪ {bθ}

return T ′

Example 2.1. (Adopted from [56]) Let T = {flies(X)← bird(X).bird(eagle).bird(emu).}
and A = flies(imu) is incorrect. Then, we have M = {bird(eagle), bird(emu), f lies(eagle),
f lies(emu)} as an answer set of T and we have R = flies(X) ← bird(X). and X =
{X/emu} such that M supports flies(emu) with respect to Rθ. Let flightless be a new
predicate. Since {X} is the domain of θ, T ′ = {flies(X) : −bird(X), not flightless(X).
bird(eagle).bird(emu).flightless(emu).}. Hence, it implies that there are some flightless
birds and emu is one of them.

2.2.3 Inverse Resolution (IR)

Inverse Resolution (IR) [33] is an inductive logic programming technique that generalizes
the input program by introducing a general rule based on the existing rules. It involves
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inverting the resolution operator, aiming to build parent clauses given the resolvent(s)
and possibly one parent clause. IR develops two main operators. The first operator,
called V-operator, builds a clause C2 from clauses C1 and C such that C1 ·C2 = C. The
second operator, called W-operator, builds clauses C1, C2, C3 from clauses C4 and C5

such that C1 · C2 = C4 and C2 · C3 = C5. Since V-operator is non-deterministic, the
original work of Inverse Resolution reduces the indeterminacy by assuming C1 is a unit
clause (a clause with a single literal). In this dissertation, we obtain the clause C2 by
adopting the definition of folding (see Definition 2.12) since to fold a rule C using C1

into the folded rule C2 is one way of obtain the parent clause in V-operator since C then
becomes the resolvent of C1 and C2 (C = C1 · C2). The example can be illustrated as
follows.

Example 2.2. (Adopted from [57])
Given T =

flies(X)← sparrow(X), not flightless(X).
bird(Y )← sparrow(Y ).
sparrow(tweety).

Let fold flies(X)← sparrow(X), not flightless(X). using bird(Y )← sparrow(Y ).
We get that there exists an atom bird(X) that satisfies the conditions in Definition 2.12.
Hence, the folded program is T ′ = {flies(X)← bird(X), not flightless(X). bird(Y )←
sparrow(Y ). sparrow(tweety).}. It implies the generalization of the statement ”spar-
rows can fly” into the statement ”some birds can fly”.

2.3 Rule-based Legal Reasoning Systems

Legal reasoning system are ones of the earliest applications of logic programming. In
1986, the work of representing British Nationality Act as a Prolog program has been
presented [2] following by the work of representing Income Tax Act of Canada as a
Prolog program in 1987 [3]. By the mid 1900s, AI and Law community has shifted
their focuses to the applications of argumentation in law (e.g. [14, 15]). Hence, in
the 2000s, many integrations of argumentation models and rule-based reasoning models
have been developed such as Argumentation Scheme for Legal Rules [58] and Defeasible
Logic [59]. Besides that, foundations in normal logic program has been investigated in
the argumentation perspective, such as formalizing a switch of burden of proof by logic
programming [60] and translating the Japanese Presupposed Ultimate Fact Theory into
logic programming [61]. In this section, we present some studies on rule-based legal
reasoning related to our research as follows.
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2.3.1 The British Nationality Act as a Logic Program

The British Nationality Act as a Logic Program [2] is the first work formalizing statutes
into a normal logic program, and the literal interpretation of the statute in the case
can be obtained by the semantics of the program i.e. the answer set. Their work is
one pointing out non-monotonic reasoning behavior in legal reasoning. They illustrated
this behavior by the example of abandoned infant in the British Nationality Act 1981
Section 1, stating

(1) A person born in the United Kingdom after commencement shall be a
British citizen if at the time of birth his father or mother is

(a) a British citizen; or

(b) settled in the United Kingdom.

(2) A newborn infant who, after commencement, is found abandoned in
the United Kingdom shall, unless the contrary is shown, be deemed for the
purposes of subsection (1)

(a) to have been born in the United Kingdom after commencement; or

(b) to have been born to a parent who at the time of the birth was a British
citizen or settled in the United Kingdom.

The phrase unless the contrary is shown in subsection (2) is one expression that legisla-
tors use for dealing with incomplete information. In this case, the incomplete information
is possibly the time of birth or the nationality of the abandoned infant’s parent. In their
work, they deal with non-monotonic reasoning by using negation as failure (not[]) com-
bined with ordinary negation (not). Then, subsection (2) can be represented as follows.

x acquires British citizenship on date y by section 1.2 if
x was found as a newborn infant abandoned in the U.K.
and x was found on date y and
and y is after or on commencement
and not[x was not born in the U.K. after or on commencement]
and not[x was not born to a parent who qualifies

under section 1.1. at time of birth]
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2.3.2 Translating the Japanese Presupposed Ultimate Fact Theory
into logic programming

Translating the Japanese Presupposed Ultimate Fact Theory into logic programming [61]
is the work aiming to formalize the Japanese Presupposed Ultimate Fact Theory [62],
which is the legal theory for interpreting the Japanese Civil Code. Their theory has been
developed by judges in the Japanese Legal Training Institute for handling incomplete
information that sometimes occur due to a lack of enough evidence. Hence, they use a
normal logic program (with negation as failure) to represent Japanese Civil Code. They
show that the normal logic program representing statutes can be built from critical sets,
which are defined as follows.

Definition 2.15 (Critical Set). A critical set is a set of ultimate facts (an element in
the Japanese Presupposed Ultimate Fact Theory) defined as follows [61].

• ∅ is a critical set that does not lead to the conclusion.

• Let S be a critical set that does not lead to a conclusion and T be a superset of
S (that is S ⊂ T ) that leads to a conclusion. T is a critical set if the deletion of
any element of T \ S (the difference set of S and T ) from T does not lead to a
conclusion. We call T \ S an attack set with respect to S.

• Let S be a critical set that leads to a conclusion and T be a superset of S (that is
S ⊂ T ) that does not lead to a conclusion. T is a critical set if the deletion of any
element of T \ S (the difference set of S and T ) from T leads to a conclusion. We
call T \ S a defense set with respect to S.

They have illustrated the formalization by the example of the Japanese Civil Code
Article 612 and we will adopt this example throughout this dissertation. The Japanese
Civil Code Article 612 states as follows.

Phrase 1: A Lessee may not assign the lessee’s rights or sublease a leased
thing without obtaining the approval of the lessor.

Phrase 2: If the lessee allows any third party to make use of or take profits
from a leased thing in violation of the provisions of the preceding paragraph,
the lessor may cancel the contract.

A normal logic program representing the Japanese Civil Code Article 612 can be illus-
trated as follows1. Hereafter, this rule-base is denoted by JRB0.

1This representation is adopted for ease of exposition. We sometimes use :- instead of ← as in
PROLOG convention.
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cancellation_due_to_sublease :- effective_lease_contract,
effective_sublease_contract, using_leased_thing,
manifestation_cancellation, not approval_of_sublease.

effective_lease_contract :-
agreement_of_lease_contract, handover_to_lessee.

effective_sublease_contract :-
agreement_of_sublease_contract, handover_to_sublessee.

approval_of_sublease :- approval_before_the_day.

This representation illustrates that to prove the contract was ended due to sublease
(represented as cancellation_due_to_sublease), we must prove four requisites

1. the lease contract was effective (represented as effective_lease_contract)

2. the sublease contract was effective (represented as effective_sublease_contract)

3. the third party was using the leased thing (represented as using_leased_thing)

4. the plaintiff manifested the intention of cancellation of the contract (represented
as manifestation_cancellation)

And there is one exception, approval_of_sublease, which is explicitly stated in the
Civil Code. To prove the exception, we must prove that the approval before the cancel-
lation (represented as approval_before_the_day).

To prove that the lease contract was effective (effective_lease_contract), we must
prove two requisites.

1. the lease contract was established (represented as agreement_of_lease_contract)

2. the leased thing was handed over to the lessee (represented as handover_to_lessee)

To prove that sublease contract was effective (effective_sublease_contract), we
must prove two requisites.

1. the sublease contract was established (represented as agreement_of_sublease_
contract)

2. the leased thing was handed over to the sublessee (represented as handover_to_
sublessee)

With respect to the conclusion cancellation_due_to_sublease, the rule-base is built
from three critical sets as below.
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1. the empty set ∅ is a critical set that does not lead to the conclusion according to
the definition

2. T1 = {agreement_of_lease_contract, handover_to_lessee,
agreement_of_sublease_contract, handover_to_sublessee,
using_leased_thing, manifestation_cancellation} is a critical set that leads
to cancellation_due_to_sublease and if we delete any element of T1, the re-
sulting set does not lead to the conclusion. Therefore, T1 is also an attack set with
respect to ∅.

3. T2 = T1 ∪ {approval_before_the_day} is a critical set that does not lead to
cancellation_due_to_sublease since any deletion of an element in T2 \ T1 =
{approval_before_the_day} leads to cancellation_due_to_sublease There-
fore, T2 \ T1 is a defense set with respect to T1.

2.3.3 Prolog-based Legal Reasoning Support System (PROLEG)

Prolog-based Legal Reasoning Support System (PROLEG) [63] is a legal reasoning
reasoning system based on the Japanese Presupposed Ultimate Fact Theory. This system
is extended from the work mentioned in the previous subsection. It invented a new legal
representation (Horn clauses and separated exceptions) to express reasoning schemes
familiar to lawyers since it turns out lawyers are not familiar with negations as failure.
It currently has approximately 2500 rules and exceptions which covers the most part
of contract laws in the Japanese Civil Code. A set of rules and exceptions has been
compiled by graduates from the top law school in Japan and checked correctness by
representing and solving all yes/no questions to use the Japanese Presupposed Ultimate
Fact Theory in civil code bar examinations.

PROLEG consists of a rule-base and a fact-base and we will follow this division in this
dissertation. We determine a predicate occurring in a head of a rule as a rule predicate
and a predicate not occurring in a head of a rule as a fact predicate. An atom with a rule
predicate is called a rule atom and an atom with a fact predicate is called a fact atom.
By this division, we denote a set of all ground fact atoms by F called a fact-domain. We
call a program RB a rule-base if fact predicates in RB only occur in the body of a rule.
We denote a set of all ground fact atoms that is substitutable to some fact atoms in RB
by f(RB). Hence, a PROLEG rule-base and a PROLEG fact-base can be defined as
follows.

Definition 2.16 (PROLEG rule-base). Let F be a fact-domain, Sr be a set of finite
Horn clauses, Se be a set of finite exceptions in the form exception(h, e). where h and
e are rule atoms with the meaning of a rebuttal of h by e. We call RB = Sr ∪ Se a
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PROLEG program and we call RB a PROLEG rule-base if fact predicates in RB only
occur in the body of a rule. We denote rules(RB) = Sr and exceptions(RB) = Se. We
call a set of facts (rules with empty bodies) constructed from a subset of F a fact-base.
A fact-base then represents a case.

For example, the Japanese Civil Code Article 612 can be represented as a PROLEG
rule-base2 as follows [63].

cancellation_due_to_sublease <= effective_lease_contract,
effective_sublease_contract, using_leased_thing,
manifestation_cancellation.

exception(cancellation_due_to_sublease, approval_of_sublease).
effective_lease_contract <=

agreement_of_lease_contract, handover_to_lessee.
effective_sublease_contract <=

agreement_of_sublease_contract, handover_to_sublessee.
approval_of_sublease <= approval_before_the_day.

Analogous to the definitions in normal logic programs, we also assume that the PROLEG
program in this dissertation is non-recursive and stratified. Given a PROLEG program
T , the ground PROLEG program of T , denoted by gr(T ) is the set of ground rules
and ground exceptions obtained from T by replacing all variables in each rule and each
exception with every element of its Herbrand universe. An extension is the semantics
of a PROLEG program calculated in the same manner of the stable model of a normal
logic program as follows.

Definition 2.17 (Extension). Let T be a PROLEG program and M be a set of ground
atoms. The set of applicable rules of T with respect to M is a set TM = {R ∈
rules(gr(T ))| no exception(head(R), e) ∈ exceptions(gr(RB)) such that e ∈ M}. M is
an extension of T if and only if M is the minimum set (in the sense of set inclusion)
such that M satisfies every rule R′ ∈ TM , that is pos(R′) ⊆M implies head(R′) ∈M .

For example, let a fact-base FB0 be

{agreement_of_lease. handover_to_leasee. agreement_of_sublease.
handover_to_subleasee. using_leased_thing. manifestation_cancellation.
approval_before_the_day.}

2We use <= in a PROLEG rule-base instead of :- RB0 to distinguish from a rule in a
normal logic program
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Then, the extension of FB0∪RB0 is as follows, which represents the literal interpretation
of the Japanese Civil Code Article 612.

{agreement_of_lease, handover_to_leasee, agreement_of_sublease,
handover_to_subleasee, using_leased_thing,manifestation_cancellation,
approval_before_the_day, effective_lease_contract,
effective_sublease_contract, approval_of_sublease}

Since exception(h, e) would apply to all rules whose heads are unifiable with h, we would
like to discuss here that PROLEG is similar to Defeasible Logic [59] in the sense of
using rebutting exceptions. However, the main difference between both representations
is that Defeasible Logic allows negations in the head of the rule while PROLEG does not.
Actually, the later work [64] shows that the expressive power of PROLEG is the same
as normal logic programs since we can translate PROLEG programs into normal logic
programs and vice versa. For example, Table 2.1 shows translating from a PROLEG
program to a normal logic program.

Table 2.1: Translating from a PROLEG program to a normal logic program

p⇐ b11, . . . , b1n1 .
p⇐ b21, . . . , b2n2 .

...
p⇐ bk1, . . . , bknk

.
exception(p, e1).

...
exception(p, em).

p← b11, . . . , b1n1 , not e1, . . . , not em.
p← b21, . . . , b2n2 , not e1, . . . , not em.

...
p← bk1, . . . , bknk

, not e1, . . . , not em.

Table 2.2 shows translating from a normal logic program to a PROLEG program.

Table 2.2: Translating from a normal logic program to a PROLEG program

p← b11, . . . , b1n1 , not e11, . . . , not e1m1 .
p← b21, . . . , b2n2 , not e21, . . . , not e2m2 .

...
p← bk1, . . . , bknk

, not ek1, . . . , not ekmk
.

p⇐ c1.
c1 ⇐ b11, . . . , b1n1 .
p⇐ c2.
c2 ⇐ b21, . . . , b2n2 .
...
p⇐ ck.
ck ⇐ bk1, . . . , bknk

.

exception(c1, e11).
...
exception(c1, e1m1).
exception(c2, e21).
...
exception(c2, e2m2).
...
exception(ck, ek1).
...
exception(ck, ekmk

).
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2.4 Case-based Legal Reasoning Systems

In the 1980s, case-based reasoning systems emerged as alternative reasoning systems that
rely on the decision of past cases, and one earliest application of case-based reasoning
systems is law. One notable case-based legal reasoning system is HYPO [8], which is
later extended into many case-based legal reasoning systems such as CATO [65], Horty
Bench-Capon Theory [25], and Rigoni Theory [26] (for a list of extensions of HYPO, see
[66]). Case-based legal reasoning systems are developed rapidly especially in common law
systems, where the precedent cases are the main reference in the judgement. Generally,
case-based legal reasoning systems represent a case as a set of features. Such features
are called dimensions in HYPO or factors in CATO. In the 1990s, hybrid legal reasoning
systems between case-based and rule-based have been explored such as CABARET [9],
GREBE [10], and HELIC-II [11]. In the 2000s, Theory Construction, a sub-field of
artificial intelligence that studies building a logic program for explaining reasons behind
precedent cases, has been established. Researchers have applied many machine learning
techniques, for example, heuristic search [18], association rule [20], and argument-based
machine learning [19]. Below presents a case-based reasoning system called an abstract
argumentation for case-based reasoning (AA-CBR) and the work of theory construction
from a case-base in AA-CBR, which we refer to in this dissertation.

2.4.1 Abstract Argumentation for Case-based Reasoning (AA-CBR)

Abstract Argumentation for Case-based Reasoning (AA-CBR) [67] represents the princi-
ple of how we make a judgment from precedent cases with a default judgement. We call
a subset of a fact-domain a case in AA-CBR. A case is noted with ‘+’ or ‘−’ to imitate
which side won in the case. A case-base in AA-CBR is defined as follows.

Definition 2.18 (Case-base in AA-CBR). Let F be a fact-domain. A case is a subset of
F . A case with judgement on F is a pair cj = (C, J) where C is a case and J ∈ {‘+’, ‘−’}.
We denote the complement of J by J̄ , namely J̄ = ‘+’ if J = ‘−’; and J̄ = ‘−’ if J = ‘+’.
A case-base, denoted with CB, is a set of cases with judgements, namely a subset of
P (F) × {‘+’, ‘−’}, where P (F) is the powerset of F . A case base is assumed to be
consistent, namely there is no pair (X, ‘+’), (X, ‘−’) ∈ CB.

Let illustrate a case-base with an example adapted from [68].

Example 2.3. Suppose a case-base regards to claim compensation from a delivery com-
pany. A fact domain contains considering fact predicates as follows.

1. The items were delivered on time (represented as delivered_on_time)
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2. The items were damaged (represented as items_were_damaged)

3. The damaged items are repairable (represented as damage_is_repairable)

4. The buyer had fixed an additional period for repairing (represented as
buyer_fixed_repair_time)

5. The items were repaired in the above additional period (represented as
items_repaired_in_time)

Let ‘+’ represent that the buyer won and ‘−’ represent that the delivery company won.
The case-base CB1 consists of three past cases with judgement as follows.

1. cj1 = ({delivered_on_time}, ‘−’) represents a case where items were delivered
on time and the delivery company won this case

2. cj2 = ({delivered_on_time, items_were_damaged}, ‘+’) represents a case where
items were delivered on time, but the items were damaged, and the buyer won this
case

3. cj3 = ({delivered_on_time, items_were_damaged, damage_is_repairable,
buyer_fixed_repair_time, items_repaired_in_time}, ‘−’)
represents a case where items were delivered on time but the items were damaged.
However, the damaged items are repairable. The buyer fixed an additional period
for repairing and the items were repaired in the period. The delivery company
won this case.

AA-CBR requires two steps to provide reasoning. The first step is addressing a default
judgement, a judgement that should be assigned to an empty case. For example, it is
obvious that the buyer cannot claim compensation without any special circumstance
so the default judgement shall be ‘−’ hence the case-base must include cj0 = (∅, ‘−’).
The second step is building an abstract argumentation framework [12]. An abstract
argumentation framework is a pair (AR, attacks), where AR is a set of arguments and
attacks is a subset of AR × AR. AA-CBR refers to a case-base as a set of arguments
CB and says cj ∈ CB attacks cj′ ∈ CB if and only if cj is a trumping case to cj′ with
respect to CB defined as follows.

Definition 2.19 (Trumping case). Let CB be a case-base and (C, J) ∈ CB. A case
with judgement (N, J̄) is a trumping case (not always unique) to (C, J) with respect to
CB when C ( N , and no other (N ′, J̄) ∈ CB such that C ( N ′ ( N .

Definition 2.20 (Abstract argumentation in AA-CBR). Let CB be a case-base with a
default case with judgement (∅, J0). AF = (CB, attacks) is an argumentation framework
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Figure 2.1: Corresponding Argumentation Framework in AA-CBR

corresponding to CB and attacks is a set of (X, J̄) (Y, J) for all pairs (X, J̄), (Y, J) ∈
CB such that (X, J̄) is a trumping case to (Y, J) with respect to CB.

Definition 2.21 (Predicted judgement in AA-CBR). To predict a judgement for a case
N , let CBN = {(C, J) ∈ CB|C ⊆ N}. A predicted judgement of N is J0 if (∅, J0)
is in the grounded extension of the corresponding argumentation framework of CBN .
Otherwise, a predicted judgement of N is J̄0 [67].

The grounded extension G is a subset of CBN constructed by G = ⋃
i≥0Gi, where G0 is

the set of un-attacked cases with judgement in CBN (that is, for all (Y, Jy) ∈ G0, there is
no (X, J̄y) (Y, Jy) ∈ attacks), and for all i ≥ 0, Gi+1 is the set of cases with judgement
in CBN that Gi defends (that is (Y, Jy) ∈ Gi+1 if for all (X, J̄y)  (Y, Jy) ∈ attacks,
there is (Z, Jy) ∈ Gi such that (Z, Jy)  (X, J̄y) ∈ attacks) [12]. We say CB entails
(N, J) (denoted by CB � (N, J)) when a predicted judgement of N is J with respect to
CB.

Figure 2.1 shows the argumentation framework corresponding to the case-base in Exam-
ple 2.3. Suppose we would like to predict a judgment for a new caseN = {delivered_on_
time, items_were_damaged, damage_is_repairable, buyer_fixed_repair_time, item
s_repaired_in_time}, representing a case where items were delivered on time but
the items were damaged, the damaged items are repairable, the buyer fixed an addi-
tional period for repairing, but the items were not repaired in the period. We get that
CBN = {cj0, cj1, cj2} and the grounded extension of the argumentation framework of
the corresponding argumentation framework of CBN is {cj2}. Since cj0 = (∅, ‘−’) is ex-
cluded from the grounded extension, a predicted judgement of a new case is ‘+’, which
means the buyer should win this case and be able to claim the compensation.
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We can see that not all but only those cases with judgement related to the default case
with judgement (∅, J0) are involved in the prediction of judgement. For example, cj1 in
Figure 2.1 can be omitted. This corresponds to the minimization of case-base represen-
tation using critical cases (adopted from relevant attack in [68]) defined as follows.

Definition 2.22 (Critical case-base). Let CB be a case-base. A case with judgement
(C, J) ∈ CB is critical if and only if (C, J) is a default case with judgement (C = ∅)
or (C, J)  (B, J̄) ∈ attacks where (B, J̄) is critical. A critical case-base means a
case-base in which all cases with judgement are critical.

2.4.2 Theory Construction from a Case-base in AA-CBR

As constructing a theory, a rule-base that has the same expressive power to predict
a judgement, becomes interested in case-based reasoning field, Athakravi et al. [68]
present the translation of a case-base in AA-CBR into a theory by using answer set
programming. The theory is called a judgement theory, defined in our setting as follows.

Definition 2.23 (Judgement theory). Let F be a fact-domain, RB be a rule-base, CB
be a case-base and p0 is a ground rule atom called an ultimate goal. RB is a theory
of CB with respect to p0 when given a case C ⊆ F and a fact-base FB such that
f(FB) = C, CB � (C, ‘+’) if and only if FB ∪RB ` p0.

We denote the preliminary theory construction from [68] by a function theory-cons.
For ease of exposition, we assume that the given case-base is critical and the default
judgement is ‘−’, reflecting the principle that no one can claim anything if there is no
special situation. It is proved in their work that theory-cons is one way, but not the
only way, of constructing theory of the given case-base.

Definition 2.24 (Theory-cons). Given a critical case-base CB with a default judge-
ment ‘−’, an ultimate goal p0, and (CB, attacks) as a corresponding argumentation
framework. theory-cons(CB, p0) is defined in our setting by

theory-cons(CB, p0) = {p0 : −X ∪ abX |(X, ‘+’) (∅, ‘−’) ∈ attacks}∪

{pX,Y : −X \ Y ∪ abX |(X, J) (Y, J̄) ∈ attacks}

where X \ Y is the set difference of X and Y ,

abX = {not pZ,X |(Z, J) (X, J̄) ∈ attacks},

and pX,Y be a rectified proposition of cases X and Y and distinct to p0.

Let CB be a critical case-base {cj0, cj2, cj3} with respect to Example 2.3, compensation
be an ultimate goal and exception is a rectified proposition with respect to cj3 attacks
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cj2 in Figure 2.1. We can construct a theory by calling theory-cons(CB, compensation)
as follows.

compensation:- delivered_on_time, items_were_damaged, not exception.
exception:- damaged_is_repairable, buyer_fixed_repair_time,

items_repaired_in_time.

The constructed rule-base has the same expressive power to predict a judgement as
the given case-base. For example, Let N be the new case mentioned in the previous
section, the theory explains that the buyer could claim compensation since the buyer
could prove that the items were delivered on time, the items were damaged, and the
delivery company could not claim the exception since the company fails to prove that
the items were repaired in time. This explanation also corresponds with the predicted
judgement from AA-CBR that the buyer should be able to claim the compensation in
this case.

2.5 Formalizing Judicial Legal Change

Change is one enduring characteristic of the law. Levi [69] has discussed that legal
reasoning involves with moving classification system, where legal concepts are the classi-
fiers. Levi states that “the kind of reasoning involved in the legal process is one in which
the classification changes as the classification is made [69]”. Ashley [70] has explained
more about legal reasoning as moving classification system that when judges decide the
case, judges may clarify the meaning of legal concepts but the clarification often has
some level of obscure. To distinguish a case, judges may introduce an exception to the
rule by introducing a new legal concept, the rule is revised and the process is contin-
ued. This process of legal rule revision is similar to a qualification problem in artificial
intelligence [71], in which necessary conditions are hard to be qualified in the first place
and such necessary conditions are often discovered when an exceptional case goes to
high court and the literal interpretation of the law in that case leads to counterintuitive
consequences.

AI and Law researchers have been long interested in legal change [72] especially in
case-based legal reasoning systems since such legal change can be detected through a
temporal order of precedent cases. For example, Rissland and Friedman [16] investigate
changes of legal concepts through time by analyzing a temporal order of cases. Berman
and Hafner [17] consider precedent cases that may strengthen or weaken as time has
passed. The role of legal context in legal change has been explored in [21] and classified
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into three aspects, which are teleological relations, temporal relations, and procedural
postures. As AI and Law researchers become interested in Theory Construction, a sub-
field that studies building explainable theories behind precedent cases, recent studies
focus on revisions of such theories. For example, Henderson and Bench-Capon [73] have
encouraged contrastive revision of a theory by not only supporting accepted consequences
but also attacking the objected ones. Rotolo and Roversi [74] have classified theory
revision criteria and minimal change is one of such criteria. This criterion comes from
the standard revision theory, which intuitively states that we should adjust theories as
little as possible. To minimally revise rule-based theories, they present two strategies:

1. keep the set of rules as close as possible to the original one (this strategy is inde-
pendent of the facts of the case)

2. minimize the changes of the set of conclusions obtained from the theory (the strat-
egy is dependent of the facts of the case since different facts give different set of
conclusions)

Explaining legal change can also be seen in recent extensions of HYPO [27, 66]. For
example, Horty Bench-Capon theory [25], one extension of HYPO, states that a new
legal judgement could be made as long as it preserves the precedential constraint. This
guides a judge to introduce new factors in a new case to preserve the precedential
constraint if the new case is exceptional. Horty Bench-Capon theory has been extended
into Rigoni theory [26] for supporting hybrid legal reasoning systems between rule-based
and case-based. Moreover, recently presented Verheij’s case models [28–30] have become
new explanations of hybrid legal reasoning systems by using the preference of cases.

In this section, we present one example of legal change in Japanese Civil Code Article
612, which are presented in [63, 75]. The example of legal change in the Japanese Civil
Code Article 612 is based on the Japanese Supreme Court case with the phrase as
follows.

[The Japanese Civil Code Article 612] Phrase 2 is not applicable in excep-
tional situations where the sublease does not harm the confidence between a
lessee and a lessor, and therefore the lessor cannot cancel the contract unless
the lessor proves the lessee’s destruction of confidence [76].

In this court decision, the judge introduced a factual concept of non-destruction of confi-
dence (represented as non_destruction_of_confidence) as an exception of Phrase 2 to
prevent the counterintuitive consequence from the literal interpretation of the Japanese
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Civil Code Article 612. Hence, the case that goes to the Supreme Court can be repre-
sented as the following set of fact-base JFB1 =

{agreement_of_lease_contract. handover_to_lessee.
agreement_of_sublease_contract. handover_to_sublessee.
using_leased_thing. manifestation_cancellation.
non_destruction_of_confidence.}

2.6 Related Work

In this section, we organize the related works according to three research questions
as described in Chapter 1 and compare our whole system with related inductive logic
programming systems (ILPs) as follows.

2.6.1 RQ1: How to detect a culprit ?

Representing and detecting errors in law have been formalized in several aspects. We
list here three examples of them as follows.

1. Conflicts: Generally speaking, conflicts in law is a situation where two rules
disagree on the same consequence i.e. the first rule permits some action but the
second rule does not allow to do so. The conflict can be detected and resolved
easily if one rule involved in the conflicts is higher than the other. In that case, we
can have an automatic revision of the lower rule to detect and resolve conflicts e.g.
[36]. It becomes harder when two rules causing conflicts are in the same level or
incomparable i.e. such rules are in the same statute or each rule applies in different
areas. Although there are some semi-formal frameworks [77, 78] introduced to
represent and detect this conflict, this problem requires a legal expert to be involved
in conflict resolutions.

2. Legal Gap: A legal gap is, roughly speaking, a situation where some legal action
is blocked since the regulation is poorly drafted. Actually, legal gaps may be
considered as a kind of conflict. Legal gap can be divided roughly into two types
[78]. The first type is called a genuine legal gap, for example, there exist two rules
stating “event E must be done before event A” and “event E must be done
after event A”. This can be determined as a conflict since we could say one rule
obligates event E to be done before event A but the second rule does not allow to
do so. The second type is called an axiological legal gap, for example, there exist
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two rules stating “event E must be done before event A” and “event E must
be done after event B”. Such rules cause no conflicts unless A is done before or
at the same time of B. Although there is a semi-formal framework called AFLEG
[78] tackling these legal gaps, it still loads on a user heavily to resolve them.

3. Loophole: A loophole is a board word, meaning a situation where some action
is unanticipated (i.e. not following the purpose of law) but, according to the
literal interpretation of the law, it is valid [79]. For example, in Adler v. George
(1964), one has obstructed a military guard in the execution of his duty inside
a military establishment. This exploits the prohibition of obstructing a military
guard in the vicinity of a military establishment, in which vicinity literally means
outside or in the proximity. Judges may resolve this loophole by broadening or
modifying the legal concept. In Adler v. George (1964), judges have stated that
such an interpretation would lead to an absurd result, and reinterpret the word
vicinity in this rule to cover inside a military establishment. Such interpretative
argumentation in law can be represented by Interpretative Argumentation Scheme
[80], where we can vary interpretations of law with respect to the settings or the
legal context of law.

As we can see, resolving such errors usually involves a legal expert. Hence, debugging
is one of earliest requirement in legal formalisms. The earliest work [2] of formalizing
statutes into normal logic program has suggested that debugging the rules is one inter-
esting application of formalizing statutes. Later works [31, 37] also suggest in the same
manner that debugging is one scheme required for legal reasoning systems to cope with
legal changes. However, to our knowledge, our work is the first work that theoretically
formalizes debugging in law. There are few closely related research fields such as the
field of legal ontology refinement [34] but it represents legal knowledge in Horn clauses,
unlike our work that considers the setting in a normal logic program.

Debugging is also applied for navigating users in other fields besides software [81]. In
Intelligent Tutoring Systems (ITS), Algorithmic Debugging is applied for detecting stu-
dent misconceptions as bugs [82]. However, the program in this work is presumed to be
correct, in contrast to general program debugging that assumes the users as the oracle
query with correct interpretations. In Hardware Design and Verification, Algorithmic
Debugging for detecting faulty components. It is applicable by viewing digital circuits
as auxiliary functions [83] and logic programs [84].
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2.6.2 RQ2: How to resolve a culprit ?

As we have mentioned, early techniques in ILP (e.g. MIS) focus on monotonic reasoning
especially a logic program with only Horn clauses. One reason is that there are many
open issues in ILP for non-monotonic reasoning [85]. For example, one issue is that
what can be treated as known and unknown in a logic program with negation as failure.
De Raedt and Bruynooghe [86] have once discussed that a logic program with negation
as failure acts as if everything is known so it is hard to identify things that should
be determined as unknown. This issue is one main difference between legal change in
common law systems and civil law systems. In common law systems, judges decide based
on precedent cases (or most of precedent cases that are not obsolete and consistent)
so precedent cases make the constraint that the present case must follow, otherwise
judges must introduce new facts to distinguish the present case from the precedents (see
[25, 27]). In ILP terms, precedent cases become examples that the induced program must
follow. In civil law systems, in contrast, judgements are independent from the precedent
cases. However, arbitrary revision of law is obviously not preferable. Therefore, in this
research, we solve the problem by prototypical cases with judgement built from the rule-
base and we propose that such prototypical cases with judgement should be determined
as known examples, as if precedent cases in common law systems. In the other words,
the revision should preserve the judgements of such prototypical cases. This proposal is
aligned with the proposal that statutes are constructed from critical sets [61] and hence
the revision should preserve them.

2.6.3 RQ3: How to evaluate the resolution ?

In monotonic reasoning, generalization operations hold the implication order, that is if a
monotonic theory T derives p then a generalization of T also derives p. This implication
order does not hold in non-monotonic reasoning since an exception, e.g. the negative
body of the rule, is allowed in non-monotonic reasoning. So, the order of generalization
operations in non-monotonic reasoning is still an open issue [85]. Actually, the order of
generalization operations in non-monotonic reasoning usually depends on semantics and
this affects the design of debuggers. For example, a debugger for an answer set program-
ming must treat multiple situations concurrently because the program allows multiple
answer sets [87]. A debugger for Datalog has to deal with a non-stratified program dif-
ferently because the semantics of some non-stratified programs in Datalog is the empty
set, unlike such programs in Prolog that get stuck in a loop [88]. Besides semantics, some
studies on debuggers have focused on specific types of bugs and unexpected results such
as inconsistency [89–91] and absence of answer sets [92, 93]. However, our research is

32



Related Work

based on the assumption that legal rules are usually stratified and non-recursive. Hence,
these specific types of bugs can be omitted because such a stratified program has been
proved to have a unique answer set [52]. However, in our study, we consider a problem
in legal reasoning that the semantics of a rule-base is dependent of the facts of the case.
Although this problem has been addressed in the works of hybrid legal reasoning systems
such as Rigoni Theory [26] and Verheij case models [28–30], effects of legal change on
revision of rules have not been fully investigated.

2.6.4 Comparison with Related ILPs

Given a logic program B representing background knowledge (called background theory),
a set of positive examples E+, and a set of negative examples E−. ILP can be generally
formalized as a task to find a hypothesized logic program H such that B ∧H � E+;B ∧
H 6� E−. From this generalization, we can compare ILP techniques on the following
dimensions [94].

Table 2.3: Comparison of Legal Debugging with related ILPs

ILPs Background Theory Bias and Additional Inputs Search Method
MIS [32] Definite - Top-down

PROGOL [95] Normal Modes M Top-down
Bottom-up

ASPAL [96] Normal Modes M
Penalty γ ASP

Our System Normal
Modes M
Examples E+

pcj , E
−
pcj

(M ,E+
pcj ,E−pcj are all implicit)

Top-down
Bottom-up

• Background Theory: There are various type of background theory supported
by ILP systems. In Table 2.3, we show that MIS is one example that supports
definite background theories where complex data structures such as lists are mainly
focused negations as failure are not mainly focused. Later ILP systems such as
PROGOL, ASPAL, and our system tend to support background theories in normal
logic program form, where negations as failure are allowed.

• Bias and Additional Inputs: To restrict the hypothesis space, some language
bias can be introduced as additional inputs. One common language bias is a mode
declaration introduced in PROGOL. In mode declaration, we restrict which literals
that can occur in the head of a rule and which literals that can occur in the body
of a rule. Later ILP systems tend to use mode declaration such as ASPAL as
well as our system but we use it implicitly through the division of rule predicates
and fact predicates. ASPAL also introduced a function called penalty as another

33



Chapter 2. Foundations and Related Work

additional input, using for ordering the hypothesis while our system propose new
concepts of reproducing implicit examples from the rule-base using prototypical
cases with judgement (E+

pcj,E
−
pcj).

• Search Methods: Basically, there are two methods used for searching the hy-
pothesis space, which is the set of all possible hypotheses that can be built in the
language. The two methods are the top-down method and the bottom-up method.
Both methods are based on the generality relation orders between two clauses i.e.
the refinement operator in MIS. The top-down method starts searching from a
general hypothesis and specializes it. CWS is also another example of the top-
down method since we start from one general hypothesis and we introduce new
conditions to specialize the hypothesis. In contrast, the bottom-up method starts
searching from a specific hypothesis and generalizes it. IR is one example of the
bottom-up method since we start from one specific hypothesis and we generalize
the hypothesis using V-operators or W-operators. PROGOL and our system also
introduced IR for bottom-up search where our system developed top-down search
by extending CWS.

2.7 Summary

• Logic Programming has been established in the twentieth century. A normal logic
program is defined as a finite set of rules. Early applications of logic programming
are, for example, automated theorem proving and representing statutes.

• A normal logic program representing statutes tends to be a non-recursive and
stratified program since such a program has a unique stable model. This also
reflects a constraint that judges need one unique judgement from legal rules.

• We divide predicates into two types, namely rule predicates and fact predicates.
A rule-base is defined as a program in which fact predicates only occurring in the
body of a rule. A fact-base is a set of ground facts, in which only fact predicates
occur.

• The literal interpretation of the statute in the case can be obtained by the stable
model semantics of the whole program (the union of the rule-base and the fact-
base). A consequence (represented by a ground atom with a rule predicate) is in
the stable model if and only if there is the supporting rule in the program.

• We have presented three Inductive Logic Programming techniques as follows

– Model Inference System (MIS) revises the program by specializing the input
program if it is too generalized and generalizing the input program if it is too
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specialized. MIS is also applied for inductive program synthesis, in which a
logic program is built from the empty program with merely training examples

– Closed World Specification (CWS) specializes the input program by intro-
ducing an exception when the input program succeeds on a goal known to be
false.

– Inverse Resolution (IR) involves inverting the resolution operator to general-
ize the input program by introducing a general rule from the existing rules.

• We have presented Abstract Argumentation for Case-based Reasoning (AA-CBR),
a case-base reasoning framework based on the principle of how we make a judg-
ment from precedent cases with a default judgement. Then, we have presented
one theory construction, which constructs a normal logic program for explaining
reasons behind precedent cases, from a case-base in AA-CBR.

• Legal rule revision in the judicial process goes as follows. When judges apply
interpretation of statutes in a particular case and it leads to counterintuitive con-
sequences, judges may introduce an exception to the rule by introducing a new
legal concept, the rule is revised and the process is continued.

• This research, as the first theoretical formalization of debugging in law, tries to
tackle two issues in Inductive Logic Programming for non-monotonic reasoning,
especially for legal reasoning, as follows.

– Given a normal logic program representing statutes, which cases we should
fix their decision, especially in rule-based legal reasoning systems with no
precedent cases are available. To solve this issues, we propose to build pro-
totypical cases with judgement from the rule-base and we determine them as
known examples as if they are precedent cases.

– How to deal with generalization operations in non-monotonic reasoning, which
usually depend on semantics. In this research, we consider especially on legal
reasoning. We focus on the effects of legal change on revision of rule under
the consideration of semantics which depends on the facts of the cases.
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Chapter

3
Culprit Detection Algorithm

In this chapter, we present

• Formalization of counterintuitive consequences in law and culprits

• Culprit Detection Algorithm

• Extensions of Culprit Detection in First-order Rule-base and PROLEG Rule-base
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3.1 Overview

Figure 3.1: Culprit Detection Workflow
(Dash-lines represent the data or the process that a user involves)

Figure 3.1 shows the work flow of Culprit Detection. Given a rule-base RB representing
the statute and a fact-base FB representing a case, a legal reasoning system derives con-
sequences of the literal interpretation of the statute in the case. A user is assumed to be
a legal expert who can answer correctly about whether the derivation is counterintuitive
according to the commonly held opinion of reasonable people (Communis opinio [97]).
In formal words, we say a user is an oracle query [98] of an unknown set of intended
interpretation and the counterintuitive consequence is the symmetric difference of the
literal interpretation and the intended interpretation. Culprit Detection Algorithm it-
erates to ask the user whether related consequences are counterintuitive until it can no
longer find any counterintuitive consequences related. We call the last counterintuitive
consequence found a culprit. Intuitively, we determine a culprit as a root cause of coun-
terintuitive consequences or a legal bug, which is a legal consequence that has no logical
alignment with the intended interpretation.

3.2 Counterintuitive Consequences and Culprits

When the literal interpretation is counterintuitive, it means that the user has another
interpretation in mind, even if it is unknown in the first place. Given the fact domain
F , we assume an intended interpretation denoted by an unknown set of ground atoms
IM such that a set of all fact atoms in IM is equal to a set of all fact atoms in FB

(F ∩IM = f(FB) where f(T ) is a set of all ground fact atoms that can be substitutable
to some fact atoms in a program T , see Chapter 2 for details). IM represents the
intended interpretation of the statute in the considered case. We describe a user as a
membership query [98] that can answer correctly about whether a ground atom A is a
member of IM . We define a counterintuitive consequence as a member of the symmetric
difference (denoted by ⊕) between the literal and the intended interpretation.
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Definition 3.1 (Counterintuitive consequence). Given a fact-base FB representing a
case, a rule-base RB representing statutes, and a set of ground atoms IM such that
F ∩ IM = f(FB) representing the intended interpretation. Let T = FB ∪ RB and M

be the answer set of T . A ground atom p is a counterintuitive consequence with respect
to IM and RB if p ∈M ⊕ IM , that is p ∈M \ IM or p ∈ IM \M .

To let a user specify which condition is problematic, we extend Legal Debugging from
Algorithmic Debugging [38] for legal reasoning. Firstly, we define a culprit as follows.

Definition 3.2 (Culprit). A ground rule atom p is a culprit with respect to an intended
interpretation IM and a rule-base RB if

• p /∈ IM but there is a rule R ∈ gr(RB) that supports p with respect to IM (called
an incorrect culprit) or

• p ∈ IM but there is no rule R ∈ gr(RB) that supports p with respect to IM

(called an incomplete culprit)

By the definition of culprit (Definition 3.2), we get the following proposition.

Proposition 3.3. Let IM be an intended interpretation and RB be a rule-base. There
is no counterintuitive consequence with respect to IM and RB if and only if there is no
culprit with respect to IM and RB.

Proof. If there is no counterintuitive consequence with respect to IM and RB, then
IM is the answer set of RB. Hence, p ∈ IM if and only if there is a rule R ∈ T that
supports p with respect to IM according to Theorem 2.10. Hence, there is no culprit
with respect to IM and RB (This applies vice versa).

We show two examples of counterintuitive consequences and culprits as follows.

Example 3.1. Suppose a fact-domain F = {a, b, c}, a fact-base FB1 = {a. c.}, a rule-
base RB1 = {p← q. q ← a. q ← b.}, and IM1 = {a, c, r}. Let T1 = FB1 ∪RB1 and the
answer set of T1 is M = {a, c, p, q}. Hence p, q, r are counterintuitive consequences and

• p is not a culprit since p /∈ IM1 and there is no rule supporting p with respect to
IM1.

• q is an incorrect culprit since q /∈ IM1 but q ← a supports q with respect to IM1.

• r is an incomplete culprit since r ∈ IM1 but there is no rule supporting r with
respect to IM1.
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Example 3.2. Suppose a fact-domain F = {a, b, c}, a fact-base FB2 = {a. c.}, a
rule-base RB2 = {p ← q. q ← a, not r. q ← b. r ← c.}, and IM2 = {a, c, q}. Let
T2 = FB2∪RB2 and the answer set of T2 is M = {a, c, r}. Hence q, r are counterintuitive
consequences and

• p is an incorrect culprit since p /∈ IM2 but p← q supports p with respect to IM2.

• q is not a culprit since q ∈ IM2 and q ← a, not r supports q with respect to IM2.

• r is an incorrect culprit since r /∈ IM2 but r ← c supports r with respect to IM2.

From both examples, we get that counterintuitive consequences and culprits have some
relations. Although a counterintuitive consequence may not be a culprit (e.g. p in
Example 3.1 and q in Example 3.2) and a culprit may not be a counterintuitive conse-
quence (e.g. p in Example 3.2), a non-culprit counterintuitive consequence always links
to another counterintuitive consequence (e.g. p links to q in Example 3.1 and q links to
r in Example 3.2). Thus, we formalize this into the following theorem.

Theorem 3.4 (Counterintuitive Consequence Propagation). Let IM be an intended
interpretation and RB be a rule-base. If p is a non-culprit counterintuitive consequence
with respect to IM and RB then there is a rule R ∈ gr(RB) such that p ∈ head(R) and
a counterintuitive consequence occurs in body(R).

Proof. Let FB be some fact-base, T = FB ∪ RB, and M be the answer set of T . We
divide the proof into two cases:

Case 1: If p ∈ IM and p is not a culprit. Then, there is a ground rule R ∈ gr(RB) such
that pos(R) ⊆ IM , neg(R) ∩ IM = ∅, and head(R) = p. Since p is a counterintuitive
consequence, p /∈M so R does not support p with respect to M . Thus, pos(R) 6⊆M or
neg(R)∩M 6= ∅. Hence, there is either q ∈ pos(R) such that q ∈ IM \M or q ∈ neg(R)
such that q ∈M \ IM .

Case 2: If p /∈ IM and p is a counterintuitive consequence. Then, p ∈ M . Therefore,
there is a ground rule R ∈ gr(RB) such that pos(R) ⊆ M , neg(R) ∩ M = ∅, and
head(R) = p. Since p is not a culprit, R does not support p with respect to IM .
Thus, pos(R) 6⊆ IM or neg(R) ∩ IM 6= ∅. Hence, there is either q ∈ pos(R) such that
q ∈M \ IM or q ∈ neg(R) such that q ∈ IM \M .
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3.3 Culprit Detection Algorithm

We design Culprit Detection Algorithm as in Algorithm 3. The algorithm begins with
one counterintuitive consequence and attempts to find another counterintuitive conse-
quence according to Theorem 3.4. The algorithm is recursively called until it can no
longer find related counterintuitive consequences. The algorithm always succeeds with
a culprit as long as the rule-base is finite, non-recursive, and stratified. This algorithm
aims to detect only one culprit at a time. If there are two culprits or more, the user has
to repeat the algorithm for a new culprit after resolving the old one.

Algorithm 3 Culprit Detection Algorithm

Given a fact-base FB, a rule-base RB, a counterintuitive consequence atom p, a user
as a membership query of the intended interpretation IM

procedure culprit-detection(p)
Let M be the answer set of FB ∪RB
Find R ∈ gr(RB) that supports p with respect to IM
if p ∈ IM and there is no such R then return p;
else if p ∈ IM then

Find q ∈ pos(R) such that q /∈M
if there is such q then return culprit-detection(q)
Find q ∈ neg(R) such that q ∈M
if there is such q then return culprit-detection(q)

if p /∈ IM and there is such R then return p;
else if p /∈ IM then

Find R′ ∈ gr(RB) that supports p with respect to M
Find q ∈ pos(R′) such that q /∈ IM
if there is such q then return culprit-detection(q)
Find q ∈ neg(R) such that q ∈ IM
if there is such q then return culprit-detection(q)

Theorem 3.5 (Correctness of Culprit Detection Algorithm). Given a fact-base FB, a
finite non-recursive and stratified rule-base RB, a counterintuitive consequence p0, and
an intended interpretation IM such that F ∩ IM = f(FB). Algorithm 3 always returns
a culprit with respect to IM and FB ∪RB.

Proof. From a counterintuitive consequence p0, we can find another related counter-
intuitive consequence p1 6= p0 according to Theorem 3.4. Then, we may find related
counterintuitive consequences iteratively as a sequence of p0, p1, p2, . . . , pn, pi 6= pj for
every i 6= j because the rule-base is non-recursive and stratified. The sequence is finite
because the ground rule-base is finite. Since no other counterintuitive consequences oc-
curs in the body of the rule whose head is pn (because it is at the end of the sequence),
from the contraposition of Theorem 3.4, pn is a culprit.
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Theorem 3.6 (Completeness of Culprit Detection Algorithm). Given a fact-base FB, a
finite non-recursive and stratified rule-base RB, a counterintuitive consequence p0, and
an intended interpretation IM such that F ∩ IM = f(FB). If there is a culprit pc with
respect to IM and FB ∪RB, we can detect pc in finite steps by using Algorithm 3 and
incremental resolving the detected culprits (assuming a user is an equivalence query [98]
that correctly answers ‘yes’ when the answer set of FB∪RB is equal to IM , or provides
one counterintuitive consequence when it is not).

Proof. Let M be the answer set of FB∪RB and p1, . . . , pn be an incremental sequence of
culprits that have been resolved. With an equivalence query, the algorithm always gets a
counterintuitive consequence when M 6= IM . Since p1, . . . , pn have been incrementally
resolved, Algorithm 3 returns a new culprit pn+1. Since the ground rule-base is finite,
the sequence reaches to pc in finite steps.

Example 3.3. Let us illustrate Culprit Detection Algorithm using the rule-base repre-
senting the Japanese Civil Code Article 612 as follows.

1 cancellation_due_to_sublease :- effective_lease_contract,
2 effective_sublease_contract, using_leased_thing,
3 manifestation_cancellation, not approval_of_sublease.
4 effective_lease_contract :-
5 agreement_of_lease_contract,
6 handover_to_lessee.
7 effective_sublease_contract :-
8 agreement_of_sublease_contract,
9 handover_to_sublessee.

10 approval_of_sublease :- approval_before_the_day.

Figure 3.2 shows the flowchart of Culprit Detection Algorithm in the example case. Since
the user (representing the judges) has considered that cancellation_due_to_sublease
is not intended and hence it is a counterintuitive consequence. The algorithm considers
whether there is another counterintuitive consequence related to cancellation_due_to_
sublease by tracing the supporting rule of cancellation_due_to_sublease (lines 1-
3). The algorithm then asks the user whether effective_lease_contract is coun-
terintuitive. If it is counterintuitive, it becomes an incorrect culprit because there
is a rule supporting it but it is not intended (situation 1). If it is not, the algo-
rithm then asks the user about effective_sublease_contract in the same manner.
If effective_sublease_contract is counterintuitive, it becomes an incorrect culprit
because there is a rule supporting it but it is not intended (situation 2). If it is not,
then the algorithm asks the user whether approval_of_sublease is counterintuitive.
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Figure 3.2: Flowchart of Culprit Detection Algorithm

If it is counterintuitive, it became an incomplete culprit because there is no rule sup-
porting it but it is intended (situation 3). If it is not counterintuitive, there would
be no counterintuitive consequences related to cancellation_due_to_sublease, hence
cancellation_due_to_sublease becomes an incorrect culprit itself (situation 4). In-
tention of consequences in each situation can be summarized in Table 3.1 and below
the table shows an example dialogue of Culprit Detection Algorithm with respect to
situation 4.

Table 3.1: Summary of intended interpretation and culprit in each situation

Situation Intention of consequences Detected Culprit

1
cancellation_due_to_sublease /∈ IM
effective_lease_contract /∈ IM

effective_lease_contract
(incorrect culprit)

2
cancellation_due_to_sublease /∈ IM
effective_lease_contract ∈ IM
effective_sublease_contract /∈ IM

effective_sublease_contract
(incorrect culprit)

3

cancellation_due_to_sublease /∈ IM
effective_lease_contract ∈ IM
effective_sublease_contract ∈ IM
approval_of_sublease ∈ IM

approval_of_sublease
(incomplete culprit)

4

cancellation_due_to_sublease /∈ IM
effective_lease_contract ∈ IM
effective_sublease_contract ∈ IM
approval_of_sublease /∈ IM

cancellation_due_to_sublease
(incorrect culprit)
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1 Considering cancellation_due_to_sublease:- effective_lease_contract,
2 effective_sublease_contract, using_leased_thing,
3 manifestation_cancellation, not approval_of_sublease.
4 effective_lease_contract is valid with respect to the literal interpretation
5 Counterintuitive (yes/no) ? |: no.
6 effective_sublease_contract is valid with respect to the literal interpretation
7 Counterintuitive (yes/no) ? |: no.
8 using_leased_thing occurs in the case
9 manifestation_cancellation occurs in the case

10 approval_of_sublease is invalid with respect to the literal interpretation
11 Counterintuitive (yes/no) ? |: no.
12

13 Detect an incorrect culprit: cancellation_due_to_sublease.

3.4 Extensions of Culprit Detection Algorithm

3.4.1 First-Order Rule-base

Although Algorithm 3 is applicable with first-order rule-base, there is a question to
consider for designing user interactions. That is how should the user input an intended
interpretation in first-order rule-base. In this dissertation, we let a user list all intended
instances for non-ground counterintuitive consequences.

Example 3.4. Let us illustrate culprit detection in a first-order rule-base by representing
Japanese Civil Code Article 612 as the following first-order rule-base. We begin variables
with uppercase letters and constants with lowercase letters.

1 cancellation_due_to_sublease(Lessor,Lessee) :-
2 effective_lease_contract(Lessor,Lessee,Property),
3 effective_sublease_contract(Lessee,Thirdparty,Property),
4 using_leased_thing(Thirdparty,Property),
5 manifestation_cancellation(Lessor,Lessee),
6 not approval_of_sublease(Lessor,Lessee).
7 effective_lease_contract(Lessor,Lessee,Property):-
8 agreement_of_lease_contract(Lessor,Lessee,Property),
9 handover_to_lessee(Lessor,Lessee,Property).

10 effective_sublease_contract(Subleaser,Sublessee,Property):-
11 agreement_of_sublease_contract(Subleaser,Sublessee,Property),
12 handover_to_sublessee(Subleaser,Sublessee,Property).
13 approval_of_sublease(Lessor,Lessee) :-
14 approval_before_the_day(Lessor,Lessee).
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The exceptional case can be represented by this following first-order fact-base.

{agreement_of_lease_contract(plaintiff,defendant,room).
handover_to_lessee(plaintiff,defendant,room).
agreement_of_sublease_contract(defendant,son,room).
handover_to_sublessee(defendant,son,room).
using_leased_thing(son,room).
manifestation_cancellation(plaintiff,defendant).
father(defendant,son).
minor(son).}

Given cancellation_due_to_sublease(plaintiff,defendant) as an initial counter-
intuitive consequence. The example dialogue of culprit detection for first-order rule-
bases is shown below. In this example, we show a culprit detection in situation 2 (see
Figure 3.2) where effective_sublease_contract(defendant,son,room) becomes an
incorrect culprit.

1 Considering cancellation_due_to_sublease(Lessor,Lessee) :-
2 effective_lease_contract(Lessor,Lessee,Property),
3 effective_sublease_contract(Lessee,Thirdparty,Property),
4 using_leased_thing(Thirdparty,Property),
5 manifestation_cancellation(Lessor,Lessee),
6 not approval_of_sublease(Lessor,Lessee).
7

8 effective_lease_contract(plaintiff,defendant, room) is valid
9 with respect to the literal interpretation

10 Counterintuitive (yes/no) ? |: no.
11 effective_sublease_contract(defendant,son,room) is valid
12 with respect to the literal interpretation,
13 Counterintuitive (yes/no) ? |: yes.
14 Is there a valid instance for
15 effective_sublease_contract(defendant,ThirdParty,room)
16 Which ThirdParty ? (answer no. if there is no valid instance) |: no.
17

18 Detect an incorrect culprit:
19 effective_sublease_contract(defendant,son,room).

To trace a culprit, the algorithm goes to the first rule, whose head is unifiable with
cancellation_due_to_sublease(plaintiff,defendant). It gets a substitution θ =
{Lessor/plaintiff, Lessee/defendant}. The algorithm asks the user to check whether
effective_contract(plaintiff,defendant,room) is counterintuitive. Suppose the
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user says it is not counterintuitive, it will be marked into the intended interpretation
and we add a mapping Property/room into θ. Then, the algorithm would ask the
user to check whether effective_sublease_contract(defendant,Thirdparty,room)
is counterintuitive. Suppose the user says it is counterintuitive, In this time, the algo-
rithm will ask for an instance of Thirdparty. Since the user identifies that there is no
valid instance for Thirdparty. Hence, there is no valid instance for effective_sublease
_contract(defendant,Thirdparty,room) and effective_contract(defendant,son,
room) is an incorrect culprit since it is not intended but there is a rule (in lines 12-14)
supporting it.

3.4.2 PROLEG Rule-base

Since the expressive power of PROLEG is the same as normal logic programs, we require
to extend the definition of supporting rules to cover separated exceptions in PROLEG
in the following. Then, we design Culprit Detection Algorithm for PROLEG rule-base
to check separated exceptions in PROLEG as in Algorithm 4.

Definition 3.7 (Supporting rule in PROLEG). Let M be a set of ground atoms, p be
a ground atom, R be a ground rule, and T be a PROLEG program. We say R supports
p with respect to M if there is a substitution θ such that head(R)θ = p, pos(R)θ ⊆M ,
and there is no exception(p, e) ∈ gr(T ) such that e ∈M .

Algorithm 4 Culprit Detection Algorithm for PROLEG rule-base

Given a fact-base FB, a PROLEG rule-base RB, a counterintuitive consequence atom
p, a user as a membership query of the intended interpretation IM

procedure culprit-detection(p)
Let M be the extension of FB ∪RB
Find R ∈ gr(RB) that supports p with respect to IM
if p ∈ IM and there is no such R then return p;
else if p ∈ IM then

Find q ∈ pos(R) such that q /∈M
if there is such q then return culprit-detection(q)
Find q such that exception(p, q) ∈ gr(RB) and q ∈M
if there is such q then return culprit-detection(q)

if p /∈ IM and there is such R then return p;
else if p /∈ IM then

Find R′ ∈ gr(RB) that supports p with respect to M
Find q ∈ pos(R′) such that q /∈ IM
if there is such q then return culprit-detection(q)
Find q such that exception(p, q) ∈ gr(RB) and q ∈ IM
if there is such q then return culprit-detection(q)
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3.5 Summary

• A counterintuitive consequence is defined as a consequence in the symmetric dif-
ference between the literal interpretation and the intended interpretation, that is a
consequence in the intended interpretation but not in the literal interpretation or
a consequence in the literal interpretation but not in the intended interpretation.

• A culprit is defined as a consequence that is not intended but there is a rule
supporting it with respect to the intended interpretation (we call this an incorrect
culprit) or a consequence that is intended but there is no rule supporting it with
respect to the intended interpretation (we call this an incomplete culprit).

• We present Culprit Detection Algorithm (Algorithm 3), which detects a culprit
from a counterintuitive consequence by iteratively asking with the user whether
related consequences are counterintuitive until the user cannot find further coun-
terintuitive consequences related. Then, we get that the last found counterintuitive
consequence is a culprit.

• To extend Culprit Detection Algorithm for first-order rule-base, we require to
consider how to check the intended interpretation in first-order rule-base with the
user. In this dissertation, we preliminary let a user list all intended instances for
non-ground counterintuitive consequences.

• To extend Culprit Detection Algorithm for a PROLEG rule-base, we require to
extend the definition of supporting rules for handling separated exceptions. Then,
we present an extended Culprit Detection Algorithm for a PROLEG rule-base
(Algorithm 4).
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4
Culprit Resolution Algorithm

In this chapter, we present

• Formalization of Counterintuitive Consequence Resolution Task (CCR Task)

• Culprit Resolution Algorithm

• Prototypical Case with Judgement

• Extensions of Culprit Resolution in First-order Rule-base and PROLEG Rule-base

• Generalizing Culprit Resolution using background theory
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4.1 Overview

Figure 4.1: Culprit Resolution Work Flow
(Dash-lines represent the data or the process that a user involves)

Figure 4.1 shows the work flow of Culprit Resolution. Given a rule-base RB representing
the statute, a fact-base FB representing a case, and a detected culprit, we aimed to
develop Culprit Resolution Algorithm to resolve a culprit. However, since judges in
civil law system consider legislator’s intention when making change, we need to consider
legislator’s intention from the original rule-base in a form of cases so we present a
new structure called prototypical cases with judgement, reproducible from the rule-base.
Then, Culprit Resolution Algorithm works on the following steps.

1. The algorithm primarily revises the rule-based based on Closed World Specifica-
tion, and asks a user to select facts from the fact-base that are relevant to the head
of the new rule

2. The algorithm reproduces prototypical cases with judgement from the primary
revised rule-base and the primary new rules, and secondarily revises rule-base to
preserve the judgement of prototypical cases as well as to resolve the culprit.

4.2 Counterintuitive Consequence Resolution (CCR) Task

When judges apply interpretation of statutes in a particular case and it leads to coun-
terintuitive consequences, the judges may revise interpretation of statutes. We call such
a case an exceptional case. In such scenarios, judges would introduce a new factual con-
cept in the exceptional case. Then, judges use the introduced factual concept to revise
the statute so that the counterintuitive consequence is resolved. To formalize judicial
legal change, we firstly define agreement and disagreement as follows.

Definition 4.1 (Agreement and Disagreement). Let FB1, FB2 be fact-bases, RB1, RB2

be rule-bases, and p be a ground atom. We say FB1 ∪RB1 agrees with FB2 ∪RB2 on

50



Culprit Resolution Algorithm

p if the following condition is satisfied. Otherwise, we say FB1 ∪ RB1 disagrees with
FB2 ∪RB2 on p.

• FB1 ∪RB1 ` p and FB2 ∪RB2 ` p or

• FB1 ∪RB1 6` p and FB2 ∪RB2 6` p

Formalization of the task goes as follows. Firstly, we have a ground atom p representing a
counterintuitive consequence and FBe representing an exceptional case, which contains
at least one fact atom not occurring in an original rule-base RB (f(FBe) 6⊆ f(RB)
where f(T ) is a set of all ground fact atoms that can be substitutable to some fact
atoms in a program T , see Chapter 2 for details). Then, we revise an original rule-base
RB to a new rule-base RB′. RB′ is a correct revision of RB′ with respect to FBe and
p if it can resolve the counterintuitive consequence p. The task is formally described as
follows.

Definition 4.2 (Counterintuitive Consequence Resolution (CCR) Task). A counter-
intuitive consequence resolution (CCR) task is a tuple 〈RB,FBe, p〉 where RB is a
rule-base representing statutes, FBe is a fact-base representing an exceptional case
(f(FBe) 6⊆ f(RB)), and p is a considered counterintuitive consequence. A rule-base
RB′ is a resolution for the task 〈RB,FBe, p〉 if FBe ∪RB′ disagrees with FBe ∪RB on
p (hence, it implies that the considered counterintuitive consequence is resolved).

Example 4.1. Let a fact-domain F = {a, b, c, d}, and a rule-base RB1 = {p← q. q ←
a. q ← b.}. Suppose p is a counterintuitive consequence from applying RB1 in an excep-
tion case represented by FB1 = {a. b. c. d.}. Then, RB2 = {p ← q. q ← a, not s. q ←
b, not t. s ← b, c. t ← d.} and RB3 = {p ← q, not r. q ← a. q ← b. r ← c.} are both
resolutions to the CCR task 〈RB1, FB1, p〉 since FB1 ∪RB1 disagrees with FB1 ∪RB2

and FB1 ∪RB3 on p which means p is resolved in both revisions.

4.3 Culprit Resolution Algorithm

In this section, we describe Culprit Resolution Algorithm, which can be divided into
primary revision and secondary revision described as follows.

4.3.1 Primary Revision

We can see that a resolution is not always unique, as illustrated in Example 4.1. One
reason is that there are possibly many rules to put exceptions (not r in Example 4.1).
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Now, we introduce the first part of the primary revision to specify which rule should an
exception be put in. For an incorrect culprit, we put new exceptions in all supporting
rules of the culprit in the same manner of Closed World Specification [56] then the new
exceptions become the heads of the new rules. For an incomplete culprit, we just skip
the step of introducing new exceptions since the incomplete culprit itself becomes the
head for the new rule. Following this instruction as illustrated in Algorithm 5, we can
reduce a CCR task to a task finding which facts are relevant to each new head.

Algorithm 5 Closed World Specification in Primary Revision

Given A CCR task 〈RB,FBe, p〉 For ease of explanation, we assume that all variables
in the rule must occur in the positive body of the rule.

Let R̃B = RB and H = ∅
for all culprits pc detected from p using Algorithm 3 do

if pc is an incorrect culprit then . Applying Closed World Specification
for all rules R that support pc with respect to the answer set of FBe ∪RB do

for all substitutions θ that make R supports pc as such do
Let V1, . . . , Vn be all variables in R
Let q be a new rule predicate
Let pe be q(V1, . . . , Vn)
Add peθ to H
Add not pe to the body of R in R̃B

else . when pc is an incomplete culprit
Add pc to H

After we have a primary revised rule-base (R̃B) and a set of new heads (H), the second
part of the primary revision asks the user which facts are relevant to each new head. We
restrict that each new rule must contain an extra fact, a new fact that never depends
on the considered rule predicate. Hence, we define the culprit resolution to CCR task
as follows.

Definition 4.3 (Culprit Resolution to CCR task). Given a CCR task 〈RB,FBe, p〉,
R̃B,H obtained by Algorithm 5 where R̃B is a primary revised rule-base and H =
{h1, . . . , hn} is a set of new heads. If we have a set of Horn clauses RBH = {h1 ←
B1., . . . , hn ← Bn.} such that there is a substitution θ such that Biθ ⊆ f(FBe) (known
as Plotkin’s subsumption [49]) for all 1 ≤ i ≤ n, We call a rule-base RB′ = R̃B ∪RBH
a culprit resolution to the CCR task 〈RB,FBe, p〉. A culprit resolution is restricted if
each Bi has a fact predicate that never depends on p.

Example 4.2. Continuing from Example 4.1, Suppose q is an incorrect culprit and we
put not s and not t in supporting rules of q, then R̃B1 = {p ← q. q ← a, not s. q ←
b, not t.} and H = {s, t}. We get that RB2 = {p ← q. q ← a, not s. q ← b, not t. s ←
b, c. t← d.} in Example 4.1 is a restricted culprit resolution to the CCR task 〈RB1, FB1, p〉
since it includes new Horn clauses s ← b, c. and t ← d. that satisfy the conditions in
Definition 4.3 (as illustrated in Figure 4.2).
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Figure 4.2: Example of Primary Revision

4.3.2 Prototypical Case with Judgement (PCJs)

In the previous step, we reduce a CCR task to a task of finding which facts are relevant
to each new head. In this step, we consider that finding which facts are relevant to each
new head is equivalent to finding which sub-cases make the present case exceptional.

Firstly, we assume that a rule-base representing statutes is built from a collection of
critical sets [61]. In this dissertation, we represent a collection of critical sets by a crit-
ical case-base in AA-CBR [67] (see Chapter 2 for details). Given a fact-domain F , let
CB1, . . . , CBn be some effective enumeration of a class of critical case-bases. Given a
rule-base construction theory-cons from a case-base to a rule-base described in Chap-
ter 2 and an ultimate goal p0. We have an enumeration RB1 = theory-cons(CB1, p0),
. . . , RBm = theory-cons(CBm, p0). Let an original rule-base RBi be a member of
the enumeration (1 ≤ i ≤ m) such that RBi = theory-cons(CBi, p0), we would
like to design Culprit Resolution Algorithm so that given a fact-base FBe representing
an exceptional case with CBi � (f(FBe), Je) and representative sub-cases with judge-
ment (RC1, J̄e), . . . , (RCn, J̄e) (RCk ⊆ f(FBe) and RCk 6⊆ f(RB) for every 1 ≤ k ≤
n) given by the user, the output of Culprit Resolution Algorithm would be RBj =
theory-cons(CBj , p0) (1 ≤ j ≤ m) where CBj = CBi ∪ {(RC1, J̄e), . . . , (RCn, J̄e)}.

Firstly, we adopt prototypical cases with judgement (PCJs) as cases that associate sub
rule-bases. Intuitively, PCJs reflect cases in the legislators’ intention when they drafted
the statutes. PCJs are designated as an inverse of theory-cons so that we can extract
PCJs from a rule-base RB by using PCJ-DAG defined as follows.

Definition 4.4 (Prototypical case with judgement directed acyclic graph (PCJ-DAG)).
Let RB be a non-recursive and stratified rule-base. A prototypical case with judgement
directed acyclic graph (PCJ-DAG) G of RB is a directed acyclic graph which,
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• nodes are tuples 〈p, U,C, J〉 where

– p is a special ground rule atom > or any other ground rule atom in RB

– U is a special rule with > in its head if p = >. Otherwise, U ∈ RBm where
RB1, . . . , RBm is a complete unfolding sequence and head(U) = p (if pos(U)
contains free variables, substitute them with Skolem constants so that U is
grounded)

– C is a set of ground fact atoms

– J is either ‘+’ or ‘−’

• for every node 〈p, U,C, J〉 in G, the children of the node are all nodes in the form
〈q, Uq, Cq, Jq〉 such that q ∈ neg(U), Cq = C ∪ pos(Uq), and Jq = J̄

Definition 4.5 (Prototypical Case with Judgement). Given a non-recursive and strati-
fied rule-base RB and a ground rule-atom p0, the set of prototypical cases with judgement
(PCJs) from RB with respect to p0 is the set of all pairs (C, J) in all nodes 〈p, U,C, J〉
of a PCJ-DAG in which the root node is 〈>,> ← not p0., ∅, ‘−’〉.

Example 4.3. Continuing from the previous example, let RB2 = {p← q. q ← a, not s.

q ← b, not t. s← b, c. t← d.} and p is a considered ground rule atom. The set of proto-
typical cases with judgement from RB2 with respect to p, built from a PCJ-DAG illus-
trated in Figure 4.3, is the set {(∅, ‘−’), ({a}, ‘+’), ({b}, ‘+’), ({a, b, c}, ‘−’), ({b, d}, ‘−’)}.

Figure 4.3: Example of PCJ-DAG

4.3.3 Secondary Revision

Since primary new rules sometimes fail to reflect some attacks in prototypical cases
with judgement, Secondary revisions fixes the primary revision to reflect attacks in the
prototypical cases with judgement correctly as in Algorithm 6. Proofs of correctness
and completeness are shown immediately after the algorithm.
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Algorithm 6 Secondary Revision in Culprit Resolution Algorithm

Given A CCR task 〈RB,FBe, p〉 where RB is a propositional rule-base1, a primary
revised rule-base R̃B and a set of primary new rules RBH

Let RB′ = R̃B ∪RBH

Let G be a PCJ-DAG of R̃B in which the root node is 〈>,> ← not p0., ∅, ‘−’〉
Let PCJ be the set of PCJs from R̃B with respect to p
Let PCJ ′ be the set of PCJs from RB′ with respect to p
Let Je = ‘+’ if FBe ∪RB ` p otherwise Je = ‘−’
for all (RC, J̄e) ∈ PCJ ′ \ PCJ do

for all (RC, J̄e) (C, Je) in the argumentation framework corresponding to PCJ ′ do
Let 〈pn, U, C, Je〉 be a node in G that (C, Je) is extracted from
for all rules R that support pn with respect to the answer set of RC ∪RB do

. If R supports pn then it misses the corresponding exceptions to the attack
Let h be a new rule proposition (a rule predicate with zero arguments)
Add not h to the body of R
Add a new rule h← RC \ C. to RB′

Theorem 4.6 (Correctness of Culprit Resolution Algorithm). Given a CCR task
〈RB,FBe, p〉 and representative sub-cases with judgement RepCJ = (RC1, J̄e),
. . . , (RCn, J̄e) where RCk ⊆ f(FBe) and RCk 6⊆ f(RB) for all 1 ≤ k ≤ n and Je is
‘+’ if FBe ∪RB ` p and ‘−’ otherwise. Algorithm 6 always returns a restricted culprit
resolution for the task 〈RB,FBe, p〉.

Proof. Since RepCJ = (RC1, J̄e), . . . , (RCn, J̄e) where RCk ⊆ f(FBe) for all 1 ≤ k ≤ n
and for every new Horn clause h ← B., there is (RC, J̄e) ∈ RepCJ such that B ⊆ RC

hence B ⊆ f(FBe). Therefore, Algorithm 6 always returns a culprit resolution to the
task 〈RB,FBe, p〉 by the Closed World Specification Algorithm.

Theorem 4.7 (Completeness of Culprit Resolution Algorithm). Given a CCR task
〈RB,FBe, p〉 such that there is a critical case-base CB such that theory-cons
(CB, p) = RB, and CB � (f(FBe), Je). If there is a culprit resolution RB′ of the
task 〈RB,FBe, p〉 such that there is a critical case-base CB′ = CB ∪ RepCJ which
theory-cons(CB′, p) where RepCJ = {(RC1, J̄e), . . . , (RCn, J̄e)} and RCk ⊆ f(FBe)
and RCk 6⊆ f(RB) for every 1 ≤ k ≤ n, we can get RB′ in finite steps by using
Algorithm 6.

Proof. Let a set of heads of new rules H = {h1, . . . , hm}. Since a user require to select
sub fact-base RFm,1 . . . RFm,n ⊆ FBe relevant to hi for each 1 ≤ i ≤ m and FBe is
finite, we can have a finite enumeration of RF1,1 . . . RFm,n and a finite enumeration of a
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class of representative sub-cases with judgement. For every representative sub-cases with
judgement, new rules are introduced corresponding to the definition of theory-cons.
Hence, we can get RB′ in finite steps.

Example 4.4. Continuing from the previous example, let RB2 = {p← q. q ← a, not s.

q ← b, not t. s← b, c. t← d.}. We get that there is ({a, b, c}, ‘−’) ({b}, ‘+’) that has
no rule in RB2 corresponding to. Therefore, we add not t2 and t2 ← a, c. as illustrated
in Figure 4.4. The result from the secondary revision is RB4 = {p← q. q ← a, not s.

q ← b, not t, not t2. s← b, c. t← d. t2 ← a, c.}

Figure 4.4: Example of Secondary Revision

Let us illustrate Culprit Resolution Algorithm using the example case related to the
Japanese Civil Code Article 612 (continuing from Example 3.3)

Example 4.5. The example dialogue of culprit resolution is shown as follows.

13 Detect an incorrect culprit: cancellation_due_to_sublease.
14

15 Introduce a new exception to a support rule of a culprit
16 cancellation_due_to_sublease:- effective_lease_contract,
17 effective_sublease_contract, using_leased_thing,
18 manifestation_cancellation, not approval_of_sublease,
19 not new_exception.
20

21 A prototypical case with judgement associated with new_exception:
22 ({agreement_of_lease_contract,handover_to_lessee,
23 agreement_of_sublease_contract,handover_to_sublessee,
24 using_leased_thing,manifestation_cancellation},'+')
25
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26 Listing possibly relevant facts...
27 1: non_destruction_of_confidence
28 2: sublessee_is_a_minor
29 ...
30

31 Please specify facts relevant to new_exception
32 by a list of indices (e.g. [1,3,5]).
33 If you would like to input new facts, please input newfact([fact1,fact2,...]).
34 |: [1].
35

36 New representative case(s) with judgement:
37 ({agreement_of_lease_contract,handover_to_lessee,
38 agreement_of_sublease_contract,handover_to_sublessee,
39 using_leased_thing,manifestation_cancellation,
40 non_destruction_of_confidence},'-')
41

42 Introduce a new rule: new_exception:- non_destruction_of_confidence.

In the primary revision, since the detected culprit (cancellation_due_to_sublease)
is an incorrect culprit, we introduce a new exception (represented as new_exception)
for a supporting rule of the culprit with respect to the answer set and new_exception
becomes a head of a new rule. Then, the algorithm asks the user which facts are relevant
to the new head. Since the user specify non_destruction_of_confidence as the fact
relevant to new_exception, primary revision produces a new representative case with
a judgement ‘−’ as shown in lines 36-39, which refers to an intention that cancellation
due to sublease shall not be valid in cases covering all facts in the representative case.
Since there is no fixation needed in the primary revision, the algorithm just introduces
a new rule new_exception:- non_destruction_of_confidence. as specified.

4.4 Extensions of Culprit Resolution Algorithm

4.4.1 First-order Rule-base

It turns out that Algorithm 6 is not fully applicable with first-order rule-base since there
are questions about levels of abstraction (or de-refinement in [38]) and the definitions
of case-bases in first-order rule-base. Therefore, we extend AA-CBR to support a first-
order case-base by introducing an abstraction to deal with a first-order case-base as
follows.

Definition 4.8 (Abstraction). Let B be an atom, a set of atoms, a tuple of atoms, or a
rule. An abstraction of B, denoted by abs(B), is obtained by constructing an injective
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mapping {c1/v1, . . . , cn/vn} for all constants in B and replacing every constant ci in
B by a new distinct variable vi (1 ≤ i ≤ n). For instance, abs(p(a) ← q(a), r(b).) =
p(X)← q(X), r(Y ).

Definition 4.9 (Extended Subsumption). Let C and D be a set of atoms. As we say
C subsumes D (C � D) if there is a substitution θ such that Cθ ⊆ D, we denote such
Cθ by [C]D. We say C is substitutable to D (C w D) if there is a substitution θ such
that Cθ = D (Please note that sometimes C w D but D 6w C) . C non-substitutably
subsumes D (C ≺ D) if C � D but C 6w D.

Let CB be a finite set of first-order cases with judgement called a first-order case-base.
We assume that a first-order case-base is consistent, that is no pair (X, Jx), (Y, Jy) ∈ CB
such that abs(X) w Y but Jx 6= Jy. We say a case with judgement (N, J̄) is a trumping
case with judgement to (C, J) w.r.t. CB when abs(C) ≺ N , and no other (N ′, J̄) ∈ CB
such that abs(C) ≺ N ′ and abs(N ′) ≺ N .

We also extend how AA-CBR predicts a judgement for a case N (called an analogous
prediction) by constructing an analogous case-base of CB w.r.t. N , denoted by CBN =
{([abs(C)]N , J)|(C, J) ∈ CB and abs(C) � N}. An analogously predicted judgement of
N is J0 if (∅, J0) is in the ground extension of an argumentation framework corresponding
to CBN . Otherwise, an analogously predicted judgement of N is J̄0.

A theory construction for a first-order case-base is revised as follows.

Definition 4.10 (Theory-cons in first-order). Given a ground rule atom g0, a first-
order critical case-base CB with a default judgement ‘−’, and (CB, attacks) as its
corresponding argumentation framework, theory-cons-fo(CB, g0) is defined by

• Given two atoms A1, A2 and three sets of atoms X,Y, Z, let

– post(X,Y ) = X \ [abs(Y )]X .

– headt(X,Y ) be a ground atom with a new reified rule predicate pX,Y and
arguments from all arguments occurring in post(X,Y ).

– vart(A1, Y, Z) = A2 means A2 is a variant of A1 in the same manner of
Y is a variant in Z, in other words, there is a substitution θ such that
abs(〈A1, Y 〉)θ = (〈A2, [abs(Y )]Z〉) (〈·〉 in this sentence means a tuple).

– negt(X,Y ) = {not vart(headt(Z,X), post(X,Y ), Z)|(X, J) (Y, J̄) ∈ attack
and (Z, J̄) (X, J) ∈ attack}.

• Then, theory-cons-fo(CB, g0) =
{abs(g0 : −post(X, ∅) ∪ negt(X, ∅))|(X, ‘+’) (∅, ‘−’) ∈ attacks} ∪
{abs(head(X,Y ) : −post(X,Y )∪negt(X,Y ))|(X, J) (Y, J̄) ∈ attacks∧Y 6= ∅}.
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Theorem 4.11. Let CB be a first-order case-base and g0 be a ground rule atom.
T = theory-cons-fo(CB, g0) is an analogous theory of CB w.r.t. g0, namely an
analogously predicted judgement of a case N is ‘+’ if and only if FB ∪ T ` g for some
abs(g0) w g and f(FB) = N .

Proof. Let CBN be an analogous case-base of CB with respect to N and TN = {R ∈
T |pos(R) ⊆ N}. We get that there is a ground rule atom g such that abs(g0) w g and
TN = theory-cons(CBN , g). Hence, theory-cons-fo(CB, g0) is an analogous theory
of CB w.r.t. g0.

Therefore, we extend Culprit Resolution Algorithm for resolving culprits in a first-order
rule-base as Algorithm 7.

Algorithm 7 Culprit Resolution Algorithm for First-order Rule-bases

Given A CCR task 〈RB,FBe, p〉 where RB is a (first-order) rule-base, a primary
revised rule-base R̃B and a set of primary new rules RBH (Note that RBH are all
grounded)

Let RB′H = {abs(R)|R ∈ RBH}
Let RB′ = R̃B ∪RB′H
Let G be a PCJ-DAG of R̃B in which the root node is 〈>,> ← not p0., ∅, ‘−’〉
Let PCJ be the set of PCJs from R̃B with respect to p
Let PCJ ′ be the set of PCJs from RB′ with respect to p
Let Je = ‘+’ if FBe ∪RB ` p otherwise Je = ‘−’
for all (RC, J̄e) ∈ PCJ ′ \ PCJ do

for all (RC, J̄e) (C, Je) in the argumentation framework corresponding to PCJ ′ do
Let 〈pn, U, C, Je〉 be a node in G that (C, Je) is extracted from
for all rules R that support pn with respect to the answer set of RC ∪RB do

. If R supports pn then it misses the corresponding exceptions to the attack
for all substitutions θ that make R supports pn as such do

Let V1, . . . , Vn be all variables in R
Let q be a new rule predicate
Let pe be q(V1, . . . , Vn)
Add peθ to H
Add not pe to the body of R in RB′

Add a new rule abs(peθ ← post(RC,C)). to RB′

Example 4.6. Continuing from Example 3.4, the example dialogue of culprit resolution
is shown as follows.

12 Detect an incorrect culprit: effective_sublease_contract(defendant,son,room).
13

14 Introduce a new exception to a support rule of a culprit
15 effective_sublease_contract(Subleaser,Sublessee,Property):-
16 agreement_of_sublease_contract(Subleaser,Sublessee,Property),
17 handover_to_sublessee(Subleaser,Sublessee,Property),
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18 not new_exception(Subleaser,Sublessee,Property).
19

20 A prototypical case with judgement associated with new_exception
21 (analogous to the fact-base):
22 ({agreement_of_lease_contract(plaintiff,defendant,room),
23 handover_to_lessee(plaintiff,defendant,room),
24 agreement_of_sublease_contract(defendant,son,room),
25 handover_to_sublessee(defendant,son,room),
26 using_leased_thing(son,room),
27 manifestation_cancellation(plaintiff,defendant)},'+')
28

29 Listing possibly relevant facts...
30 1: parent(defendant,son)
31 2: minor(son)
32 ...
33

34 Please specify facts relevant to new_exception(plaintiff,defendant,son,room)
35 by a list of indices (e.g. [1,3,5]).
36 If you would like to input new facts, please input newfact([fact1,fact2,...]).
37 |: newfact([non_destruction_of_confidence(plaintiff,defendant)]).
38

39 A representative sub-case with judgement:
40 ({agreement_of_lease_contract(plaintiff,defendant,room),
41 handover_to_lessee(plaintiff,defendant,room),
42 agreement_of_sublease_contract(defendant,son,room),
43 handover_to_sublessee(defendant,son,room),
44 using_leased_thing(son,room),
45 manifestation_cancellation(plaintiff,defendant),
46 non_destruction_of_confidence(plaintiff,defendant)},'-')
47

48 Introduce a new rule:
49 new_exception(Subleaser,Sublessee,Property):-
50 non_destruction_of_confidence(Subleaser,Sublessee).

Since the detected culprit is an incorrect culprit, we introduce a new exception with a new
predicate all variables in the supporting rule as argument (new_exception(Subleaser,
Sublessee,Property)). Then, we also simulate prototypical cases with judgement that
associates with the new exception. The prototypical case is simulated analogously to the
fact-base. After that, we show facts that are not covered in the prototypical case and let
the user select facts or input new facts that are relevant to the exception. In this example
dialogue, we assume the user give a new fact non_destruction_of_confidence(plain-
tiff,defendant). The algorithm implies a new ground rule new_exception(defend-
ant,son,room):- non_destruction_of_confidence(plaintiff,defendant).
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According to Closed World Specification, the head of the new rule is instantiated from
new_exception(Subleaser,Sublessee,Property)θ where θ is the m.g.u. used for in-
stantiating the supporting rule hence θ = {Subleaser/plaintiff, Sublessee/son,
Property/room} is applied here (see Section 3.4.1 for the details). Therefore, the algo-
rithm introduces new_exception(Subleaser,Sublessee,Property):- non_destruc-
tion_of_confidence(Subleaser,Sublessee)., which is an abstraction of the new rule
previously mentioned (the algorithm may use different variables for the abstract of the
rule but we use such variables for the sake of readability).

4.4.2 PROLEG Rule-base

Since PROLEG separates exceptions from rules, a PROLEG exception would rebut all
rules whose heads are unifiable with the rebuttal consequence. Therefore, when we
apply Closed World Specification, we may translate the introduction of an undercutting
exception e in the rule of the form h← b1, . . . , bm, not e. into the following Horn clauses
and the PROLEG exception {h← c. c← b1, . . . , bm. exception(c, e).} where c is a new
atom with a new rule predicate and with the same arguments as h [64]. However, if
there is only one Horn clause whose head is unifiable with the rebuttal atom, then we
can introduce exception(h, e) without necessity to translate the rule.

4.5 Generalizing Culprit Resolution

To make the resolution not too specific to the present case, we generalize the resolutions
in the relevant fact retrieval. Actually, we generalize the resolution implicitly when
the user selects which facts relevant to each new head since the new rule needs not
to be applied specifically in the case larger or equal to the present case. We call this
implicit generalization. However, the body of the new rules after implicit generalization
would contain only fact atoms. In this section, we present the explicit generalization
with background theory. Background theory is a separated rule-base representing some
general background knowledge as well as legal knowledge. Explicit generalization would
introduce rule atoms into the body of the new rules.

We consider the explicit generalization by Inverse Resolution [33] . However, there are
some concerns about Inverse Resolution in normal logic programs [85]. The first concern
is that the result of Inverse Resolution is not generally consistent with the original
program under the stable model semantics. We can only guarantee when a program is
locally stratified and the dependencies in the program are preserved. Since a rule-base
representing statutes is locally stratified, we have no problem with the first concern. For
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the second concern, one practical way is to preserve at least one predicate that never
depends on the considered rule predicate, to guarantee that we preserve dependencies
in the rule-base. This corresponds to the practice in the law to identify extra facts that
distinguishes the present exceptional case with precedent cases.

Inverse Resolution consists of two main operators, namely V-operator and W-operator.
In this section, we will discuss the application of each operator respectively for resolving
culprits.

4.5.1 Generalizing Culprit Resolution Using V-Operator

Given a resolvent clause (usually a primary new rule) and one parent clause (usually a
rule in background theory), V-operator builds any other parent clause that can produce
the resolvent clause via resolution with the given parent clause. In this dissertation, we
induce the parent clause in V-operator by using folding.

Example 4.7. Continuing from the previous example (Example 4.6), suppose a user
select parent(plaintiff,defendant) as a fact relevant to the new exception and we
have a rule in the background theory stating “A parent is a kind of relatives” represented
as relatives(X,Y) :- parent(X,Y).. The example dialogue regarding this general-
ization is shown as follows (Lines 1-28 are same as those in the example dialogue of
Example 4.6).

29 Listing possibly relevant facts...
30 1: parent(defendant,son)
31 2: minor(son)
32 ...
33

34 Please specify facts relevant to new_exception(plaintiff,defendant,son,room)
35 by a list of indices (e.g. [1,3,5]).
36 If you would like to input new facts, please input newfact([fact1,fact2,...]).
37 |: [1].
38

39 Found general rule(s):
40 1: new_exception(Subleaser,Sublessee,Property):-
41 parent(Subleaser,Sublessee).
42 2: new_exception(Subleaser,Sublessee,Property):-
43 relatives(Subleaser,Sublessee).
44

45 Which one would you like to introduce ? |: 2.
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From the result of the culprit resolution algorithm, we get the rule R = new_exception(
Subleaser,Sublessee,Property):-parent(Subleaser,Sublessee). We can gener-
alize this rule by folding it with a ruleR1 = relatives(X,Y) :- parent(X,Y). from the
background theory although there is a rule relatives(X,Y) :- mother(X,Y). whose
head is unifiable. From the folding, we get a new rule R2 from R and R1 as illustrated
in Figure 4.5. The induced rule R2 implies that a new exception should be derived if
the subleaser is the relatives of the sublessee.

Figure 4.5: Generalizing culprit resolution with V-operator

4.5.2 Generalizing Culprit Resolution Using W-Operator

Given two resolvent clauses (usually one old rule and one new rule), W-operator builds
three parent clauses that can produce the resolvent clauses via resolution. W-operator is
useful for grouping similar concepts into a new concept. To induce three parent clauses
in W-operator, we first construct a new atom then use such atoms for two-times folding
since W-operator can be determined as two V-operators combined back-to-back.

Example 4.8. Continuing from the previous example, suppose we have a new excep-
tional case that the new exception should be derived if the lessee is a colleague of the
sublessee. The new exceptional case can be represented as follows.

agreement_of_lease_contract(plaintiff,defendant,room).
handover_to_lessee(plaintiff,defendant,room).
agreement_of_sublease_contract(defendant,colleague,room).
handover_to_sublessee(defendant,colleague,room).
using_leased_thing(colleague,room).
manifestation_cancellation(plaintiff,defendant).
colleague(defendant,colleague).

With W-operator, the concept of relatives in the previous example and the concept of
colleague in this example may be grouped into one new concept. Let’s say the new
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concept is acquaintance. Then, the rule of the new exception is generalized to cover
cases such that the subleaser is an acquaintance of the sublessee. The example dialogue
regarding this generalization is shown as follows.

1 Considering cancellation_due_to_sublease(plaintiff,defendant):-
2 effective_contract(plaintiff,defendant,Property),
3 effective_contract(defendant,Thirdparty,Property),
4 using_leased_thing(Thirdparty,Property),
5 manifestation_cancellation(plaintiff,defendant)),
6 not approval_of_sublease(plaintiff,defendant),
7 not new_exception(plaintiff,defendant,Thirdparty,Property).
8

9 effective_contract(plaintiff,defendant,room) is valid
10 with respect to the literal interpretation,
11 Counterintuitive (yes/no) ? |: no.
12 effective_sublease_contract(defendant,colleague,room) is valid
13 with respect to the literal interpretation,
14 Counterintuitive (yes/no) ? |: yes.
15 Is there a valid instance for
16 effective_sublease_contract(defendant,ThirdParty,room)
17 Which ThirdParty ? (answer no. if there is no valid instance) |: no.
18

19 Considering
20 effective_sublease_contract(defendant,colleague,room):-
21 agreement_of_sublease_contract(defendant,colleague,room),
22 handover_to_sublessee(defendant,colleague,room),
23 not new_exception(defendant,colleague,room).
24

25 new_exception(defendant,colleague,room) is not valid
26 with respect to the literal interpretation,
27 Counterintuitive (yes/no) ? |: yes.
28

29 Detect an incomplete culprit: new_exception(defendant,colleague,room).
30

31 Listing possibly relevant facts...
32 1: colleague(defendant,colleague)
33 ...
34

35 Please specify facts relevant to new_exception(defendant,colleague,room)
36 by a list of indices (e.g. [1,3,5]).
37 If you would like to input new facts,
38 please input newfact([fact1,fact2,...]).
39 |: [1].
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40

41 Introduce a new rule:
42 new_exception(Subleaser,Sublessee,Property):-
43 colleague(Subleaser,Sublessee).
44

45 Found similar rule(s):
46 new_exception(Subleaser,Sublessee,Property):-
47 relatives(Subleaser,Sublessee).
48

49 Would you like to group these rules ? (yes/no) |: yes.
50 Please specify the new concept name |: acquaintance.
51

52 Remove rule(s)
53 new_exception(Subleaser,Sublessee,Property):-
54 relatives(Subleaser,Sublessee).
55 Add rule(s)
56 new_exception(Subleaser,Sublessee,Property):-
57 acquaintance(Subleaser,Sublessee).
58 acquaintance(Subleaser,Sublessee):-relatives(Subleaser,Sublessee).
59 acquaintance(Subleaser,Sublessee):-colleague(Subleaser,Sublessee).

In this example, the culprit detection algorithm goes into the rule with effective_sub-
lease_contract in its head since now it has new_exception(defendant,colleague,
room) in its body so the algorithm checks whether the invalidity of new exception is coun-
terintuitive. As the user in this example intends the new exception should be derived,
new_exception(defendant,colleague,room) becomes an incomplete culprit in this ex-
ample. By asking relevant facts and consulting the culprit resolution algorithm, we get
the rule new_exception(Subleaser,Sublessee,Property):-colleague(Subleaser,
Sublessee). we can generalize by folding it with the new aim atom with the predicate
acquaintance, and two rules that say two people are acquaintances if they are relatives
or they are colleagues as illustrated in Figure 4.6. The new rules from W-operator gen-
eralize the concepts that the new exception should be derived when the subleaser is the
acquaintance of the sublessee although there are two kinds of acquaintance known in
the system so far.
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Figure 4.6: Generalizing culprit resolution with W-operator

4.6 Summary

• When judges apply interpretation of statutes in a particular case and it leads to
counterintuitive consequences, judges would introduce an exception to the rule by
introducing a new legal concept. Because of that, we formalize an exceptional case
as a case which contains at least one fact with an extra fact predicate not occurring
in the current rule-base

• We present Culprit Resolution Algorithm divide into two parts

– the primary revision extends Closed World Specification (Algorithm 5) then
asks the user which facts are relevant to each new head.

– the second revision builds prototypical cases with judgement (PCJs) from the
primary revised rule-base and the primary new rules, then fix the revision
so that it reflects all attacks in the prototypical cases with judgement cor-
rectly (Algorithm 6) hence judgements of prototypical cases, which reflect
legislator’s intention, are all preserved.

• We consider the formalization of first-order case-base and analogous theory and
extend Culprit Resolution Algorithm for resolving a culprit in a first-order rule-
base (Algorithm 7).

• To extend Culprit Resolution Algorithm for a PROLEG rule-base, we translate the
introduction of undercutting exceptions into rebutting exceptions when resolving
a culprit

• We consider the application of Inverse Resolution for generalizing the resolu-
tion with background theory by V-operator and grouping similar concepts by
W-operator

66



Chapter

5
Evaluating Resolution

In this chapter, we present

• Formalization of Semantics-based Minimal Revision

• Evaluation using Semantics-based Minimal Revision
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5.1 Overview

Figure 5.1: Evaluation Workflow

Figure 5.1 shows the workflow of the method to evaluate the resolution. Given the
revised rule-base RB′ from the culprit resolution, the original rule-base RB before the
resolution, and the fact-base FB representing the present case, we aimed to prevent
the resolution to cause counterintuitive consequences unintentionally. Therefore, we
firstly examine minimal revision since it is one common constraint used when making
revision in AI and Law (e.g. [36, 75]). Generally, researchers often used syntax-based
minimal revision (e.g. [36, 99]), which tries to revise a rule-base as less as possible.
However, we argue that minimal revision should be considered based on semantics,
which depends on facts of the case, since legal reasoning is a hybrid between reasoning
by rules and reasoning by cases [10, 100]. Although such semantics-based revision has
been considered in hybrid legal reasoning systems between rule-based and case-based
[26, 30], but semantics-based revision has not been investigated in pure rule-based legal
reasoning systems. Therefore, we report our investigation of semantics-based minimal
revision in the beginning of this chapter.

From our investigation, we achieve that effects of the semantics changes can be captured
by the symmetric difference of two sets of prototypical cases with judgement (defined in
Chapter 4), one from the revised rule-base and another from the original rule-base. We
classify such effects into trivial effects and non-trivial effects by comparing them with
the fact-base representing the present case. A trivial effect is an effect with a case that
directly involves the present case but a non-trivial effect is an effect with a case that
does not directly involve the present case. By this classification, we can check non-trivial
effects with the user to confirm the user intention on such effects.
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5.2 Semantics-based Minimal Revision

Minimal revision is one common theme in studies of revision in law since it reflects a
principle that judges usually limit themselves from legislative issues. Since legal rea-
soning is a hybrid between reasoning by rules and reasoning by cases, a revision should
consider semantics which depend on the facts of the case. Therefore, we define the
semantics of a rule-base as follows.

Definition 5.1 (Semantics of a rule-base). Let F be a fact-domain and RB be a rule-
base, The semantics of RB is a set of pairs defined as follows: {〈FB,A〉|FB is a fact-base
constructed from a subset of F and A is the answer set of FB ∪ RB}. We denote this
set as sem(RB).

Example 5.1. Let a fact-domain, F be {a, b, c}, and a rule-base RB1 = {p ← q. q ←
a. q ← b.}. Then sem(RB1) =

{〈∅, ∅〉, 〈{a}, {a, p, q}〉, 〈{b}, {b, p, q}〉, 〈{c}, {c}〉, 〈{a, b}, {a, b, p, q}〉,
〈{a, c}, {a, c, p, q}〉, 〈{b, c}, {b, c, p, q}〉, 〈{a, b, c}, {a, b, c, p, q}〉}

Then, we define a difference of semantics as follows.

Definition 5.2 (Difference of Semantics of a Rule-base). Let F be a fact-domain and
RB1, RB2 be two rule-bases. A difference of semantics between RB1 and RB2 denoted
by DIFF (RB1, RB2) is a set defined as follows: {〈FB,D〉|FB is a fact-base constructed
from a subset of F and D is a symmetric difference between the answer sets of FB∪RB1

and FB ∪RB2}.

Example 5.2. Continuing from the previous example, let RB2 = {p← q. q ← a, not r. q ←
b. r ← c.}. We get that, sem(RB2) =

{〈∅, ∅〉, 〈{a}, {a, p, q}〉, 〈{b}, {b, p, q}〉, 〈{c}, {c, r}〉, 〈{a, b}, {a, b, p, q}〉,
〈{a, c}, {a, c, r}〉, 〈{b, c}, {b, c, p, q, r}〉, 〈{a, b, c}, {a, b, c, p, q, r}〉}

and DIFF (RB1, RB2) =

{〈∅, ∅〉, 〈{a}, ∅〉, 〈{b}, ∅〉, 〈{c}, {r}〉, 〈{a, b}, ∅〉,
〈{a, c}, {p, q, r}〉, 〈{b, c}, {r}〉, 〈{a, b, c}, {r}〉}

Let RB3 = {p← q, not r. q ← a. q ← b. r ← c.}. We get that, sem(RB3) =

{〈∅, ∅〉, 〈{a}, {a, p, q}〉, 〈{b}, {b, p, q}〉, 〈{c}, {c, r}〉, 〈{a, b}, {a, b, p, q}〉,
〈{a, c}, {a, c, q, r}〉, 〈{b, c}, {b, c, q, r}〉, 〈{a, b, c}, {a, b, c, q, r}〉}
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and DIFF (RB1, RB3) =

{〈∅, ∅〉, 〈{a}, ∅〉, 〈{b}, ∅〉, 〈{c}, {r}〉, 〈{a, b}, ∅〉,
〈{a, c}, {p, r}〉, 〈{b, c}, {p, r}〉, 〈{a, b, c}, {p, r}〉}

A difference of semantics reflects changes on a consequence (both adding and removing)
of two rule-bases. Now, we can define a minimal revision of this framework as follows.

Definition 5.3 (Semantics-based Minimal Revision). Let RB1, RB2, RB3 be three
rule-bases. We say that RB2 has a smaller change than RB3 from RB1 denoted as
DIFF (RB1, RB2) ≤ DIFF (RB1, RB3) if 〈FB,A2〉 ∈ DIFF (RB1, RB2) and 〈FB,A3〉
∈ DIFF (RB1, RB3), then A2 ⊆ A3. We defineDIFF (RB1, RB2) < DIFF (RB1, RB3)
if DIFF (RB1, RB2) ≤ DIFF (RB1, RB3) but DIFF (RB1, RB3) 6≤ DIFF (RB1, RB2).
We call RB2 a semantics-based minimal revision of RB1 if RB2 is a revision of RB1 and
there is no revision RB′ of RB1 such that DIFF (RB1, RB

′) < DIFF (RB1, RB2).

However, we consider Definition 5.3 is too strong, since it is hard for comparing between
two revisions from different schemes. From the previous example, DIFF (RB1, RB2)
and DIFF (RB1, RB3) are incomparable since

〈{a, c}, {p, q, r}〉 ∈ DIFF (RB1, RB2) and 〈{a, c}, {p, r}〉 ∈ DIFF (RB1, RB3)
hence DIFF (RB1, RB2) 6≤ DIFF (RB1, RB3)

and

〈{a, b, c}, {p, r}〉 ∈ DIFF (RB1, RB3) and 〈{a, b, c}, {r}〉 ∈ DIFF (RB1, RB2)
hence DIFF (RB1, RB3) 6≤ DIFF (RB1, RB2).

Therefore, we relax Definition 5.3 by considering partial semantics-based minimal revi-
sion as follows.

Definition 5.4 (Partial Semantics-based Minimal Revision). Let RB1, RB2, RB3 be
three rule-bases and S be a set of propositions. We say that RB2 has a smaller change
than RB3 from RB1 with respect to S denoted asDIFF (RB1, RB2) ≤S DIFF (RB1, RB3)
if 〈FB,A2〉 ∈ DIFF (RB1, RB2) and 〈FB,A3〉 ∈ DIFF (RB1, RB3), then A2 ∩ S ⊆
A3 ∩ S. We define DIFF (RB1, RB2) <S DIFF (RB1, RB3) if DIFF (RB1, RB2) ≤S
DIFF (RB1, RB3) but DIFF (RB1, RB3) 6≤S DIFF (RB1, RB2). We call RB2 a partial
semantics-based minimal revision of RB1 with respect to S if RB2 is a revision of RB1

and there is no revision RB′ of RB1 such that DIFF (RB1, RB
′) <S DIFF (RB1, RB2).

Example 5.3. From the previous example, if S = {p} or S = {p, r}, we get that
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DIFF (RB1, RB2) ≤S DIFF (RB1, RB3) but
DIFF (RB1, RB3) 6≤S DIFF (RB1, RB2)
hence DIFF (RB1, RB2) <S DIFF (RB1, RB3).

However, if S = {q}, we get that

DIFF (RB1, RB3) ≤S DIFF (RB1, RB2) but
DIFF (RB1, RB2) 6≤S DIFF (RB1, RB3)
hence DIFF (RB1, RB3) <S DIFF (RB1, RB2).

We define a partial difference of semantics as follows.

Definition 5.5 (Partial Difference of Semantics). Let F be a fact-domain, RB1, RB2

be two rule-bases, and S be a set of propositions. A partial difference of semantics
between RB1 and RB2 with respect to S denoted by DIFFS(RB1, RB2) is a set defined
as follows: {〈FB,D ∩ S〉|〈FB,D〉 ∈ DIFF (RB1, RB2)}.

By this way, given any three rule-bases RB1, RB2, RB3,

DIFF (RB1, RB2) ≤S DIFF (RB1, RB3) ≡
DIFFS(RB1, RB2) ≤ DIFFS(RB1, RB3).

Example 5.4. Continuing from the previous example, DIFF{p}(RB1, RB2) =

{〈∅, ∅〉, 〈{a}, ∅〉, 〈{b}, ∅〉, 〈{c}, ∅〉,
〈{a, b}, ∅〉, 〈{a, c}, {p}〉, 〈{b, c}, ∅〉, 〈{a, b, c}, ∅〉}

5.3 Evaluating Resolution

5.3.1 Semantics-based Minimal Culprit Resolution

In this section, we consider evaluation of the culprit resolution in terms of semantics-
based minimal revision, or as we call semantics-based minimal culprit resolution in
shorts. Since we show in Chapter 4 that finding a culprit resolution to a CCR task
is equivalent to adding representative sub-cases, which explain why the present case is
exceptional, into prototypical cases with judgement. To alternatively analyze seman-
tics of a rule-base by an equivalent case-base, we define the semantics of a case-base as
follows.
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Definition 5.6 (Semantics of a case-base). Let F be a fact-domain and CB be a case-
base. The semantics of CB is a set of pairs defined as follows: {(C, J)|C ⊆ F and
CB � (C, J)}. We denote this set as cbsem(CB).

Example 5.5. Let a fact-domain F = {a, b, c}, and a case-base CB1 = {(∅, ‘−’), ({a}, ‘+’),
({b}, ‘+’)}. Then cbsem(CB1) = {(∅, ‘−’), ({a}, ‘+’), ({b}, ‘+’), ({c}, ‘−’), ({a, b}, ‘+’),
({a, c}, ‘+’), ({b, c}, ‘+’), ({a, b, c}, ‘+’)}.

Then, we define the difference of semantics of a case-base as follows.

Definition 5.7 (Difference of Semantics of a Case-base). Let F be a fact-domain,
CB1, CB2 be two case-bases. The difference of semantics between CB1 and CB2 denoted
by CBDIFF (CB1, CB2) is a set defined as follows: {C|(C, J) ∈ cbsem(CB1) and
(C, J̄) ∈ cbsem(CB2)}.

Example 5.6. Continuing from the previous example, let CB2 = {(∅, ‘−’), ({a}, ‘+’),
({b}, ‘+’), ({a, c}, ‘−’)}. Then, cbsem(CB2) = {(∅, ‘−’), ({a}, ‘+’), ({b}, ‘+’), ({c}, ‘−’),
({a, b}, ‘+’), ({a, c}, ‘−’), ({b, c}, ‘+’), ({a, b, c}, ‘+’)} and CBDIFF (CB1, CB2) = {{a, c}}.

The difference of semantics of a case-base is closely related to the partial difference of
semantics of rule-base as the following proposition.

Proposition 5.8. Let F be a fact domain, CB1, CB2 be two critical case-base, and p be
an ultimate goal. 〈FB, {p}〉 ∈ DIFF{p}(theory-cons(CB1, p),theory-cons(CB2, p))
if and only if f(FB) ∈ CBDIFF (CB1, CB2) (where theory-cons is a theory construc-
tion function defined in Chapter 2).

Example 5.7. Continuing from the previous example, theory-cons(CB1, p) = {p ←
a. p← b.} and theory-cons(CB2, p) = {p← a, not r. p← b. r ← c.}. Then, a partial
difference of semantics between both rule-bases with respect to p has only 〈{a, c}, {p}〉
that contains {p} (see Example 5.4).

Moreover, we can see from the previous example that the new cases with judgement
added to the case-base will occur in the difference of semantics of a case-base, as de-
scribed in the following proposition.

Proposition 5.9. Let F be a fact domain, CB be a critical case-bases, and RepCJ

be a set of cases with judgement. If (C, J̄) ∈ RepCJ and CB � (C, J) and every
(X, Jx) ∈ CB, C 6⊆ X, then C ∈ CBDIFF (CB,CB ∪RepCJ).

Then, we define a semantics-based minimal culprit resolution as follows.
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Definition 5.10 (Semantics-based Minimal Culprit Resolution). Given a CCR task
〈RB1, FBe, p〉 such that there is a critical case-base CB whichRB1 = theory-cons(CB, p)
and CB � (f(FBe), Je). We call a culprit resolution RB2 of the task 〈RB1, FBe, p〉 a
semantics-based minimal culprit resolution if there is no culprit resolution RB′ of the
task 〈RB,FBe, p〉 such that DIFF (RB1, RB

′) <{p} DIFF (RB1, RB2).

The simplest way to get a semantics-based minimal culprit resolution is to use all atoms
in the exceptional case as a representative case. This can be formalized into the following
lemma.

Lemma 5.11. Given a CCR task 〈RB,FBe, p〉 such that there is a critical case-base
CB which RB = theory-cons(CB, p) and CB � (f(FBe), Je), we get that RB2 =
theory-cons(CB ∪ {(f(FBe), J̄e)}, p) is a semantics-based minimal culprit resolution
of 〈RB,FBe, p〉.

Proof. Let RepCJ be a set of cases with judgement such that RepCJ 6= {(f(FBe), J̄e)}
and RB′ = theory-cons(CB ∪RepCJ, p) is a culprit resolution of 〈RB,FBe, p〉, then
CBDIFF (CB,CB ∪ RepCJ) 6⊂ CBDIFF (CB,CB ∪ {(f(FBe), J̄e)}) hence there is
no culprit resolution RB′ such that DIFF (RB1, RB

′) <{p} DIFF (RB1, RB2).

5.3.2 Dominant Rule-base

In this section, we would show that the minimal culprit resolution also minimally affects
the dominant rule-bases of each possible fact-base. Roughly speaking, the dominant
rule-base is a trimmed version of the specific rule-base, which is preliminary defined in
[101] as the subset of the rule-base that is specific to the given fact-base for deriving the
given consequence. Both rule-bases are formally defined in the following.

Definition 5.12 (Specific Rule-base and Dominant Rule-base). Let RB be a rule-base,
FB be a fact-base, and p be a proposition. We say a rule-base SR ⊆ RB is specific
to FB with respect to RB and p if SR is a minimal set of rules (in the sense of set
inclusion) such that

• FB ∪ SR agrees with FB ∪RB on p, and

• no rule-base SR′ such that SR ( SR′ ( RB and FB∪SR′ disagrees with FB∪SR
on p.

We call DR = trim(SR) a dominant rule-base of FB with respect to RB and p (trim
is defined in Definition 2.8).
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Table 5.1: Differences of dominant rule-bases between RB1 and RB2

Possible fact-base FB Dominant rule-base(s) of FB
(before revision)

Dominant rule-base(s) of FB
(after revision)

∅ ∅ ∅

{a.} {p← q. q ← a.} {p← q. q ← a.}

{b.} {p← q. q ← b.} {p← q. q ← b.}

{c.} ∅ ∅

{a. b.} {p← q. q ← a.} and
{p← q. q ← b.}

{p← q. q ← a.} and
{p← q. q ← b.}

{a. c.} {p← q. q ← a.} {r← c.}

{b. c.} {p← q. q ← b.} {p← q. q ← b.}

{a. b. c.} {p← q. q ← a.} and
{p← q. q ← b.} {p← q. q← b.}

Example 5.8. From the examples in previous sections, let a fact-domain F = {a, b, c}
RB1 = {p ← q. q ← a. q ← b.} and the fact-base representing the exceptional case is
FB1 = {a. c.}. If a culprit is q and we get a primary revision {p← q. q ← a, not r. q ←
b.}. If we add all fact atoms in FB1 to a body of a new rule, we get a revision RB2 =
{p ← q. q ← a, not r. q ← b. r ← c.}. We get that the revision affects the dominant
rule-bases of {a. c.} and {a. b. c.}, as illustrated in Table 5.1.

Example 5.9. (Continuing from the previous example) In contrast, if a culprit is p
and we get a primary revision {p ← q, not r. q ← a. q ← b.}. If we resolve a culprit
using RB3 = {p ← q, not r. q ← a. q ← b. r ← c.}. We get that the revision affects
the dominant rule-bases of {a. c.}, {b. c.}, and {a. b. c.}, as illustrated in Table 5.2.
This corresponds to the difference of semantics of a case-base between the prototypical
cases with judgement of RB1 and RB3, which is a set of {{a. c}, {b. c.}, {a. b. c.}}.
Hence, RB3 is not a minimal culprit resolution from RB1 since there exists {b. c.} that
is not superset or equal to the present case (FB1). The minimal culprit resolution when
a culprit is p is actually RB′ = {p← q, not r. q ← a. q ← b. r ← a, c.}.

5.3.3 Evaluation Method

From the investigation above, we achieve that effects of the semantics changes can be
captured by the additional prototypical cases with judgement (PCJs), produced after
the resolution. We classify such effects into trivial effects and non-trivial effects as the
following definition.

Definition 5.13 (Effects). Given a rule-bases RB representing the statute, a fact-base
FB representing the case, a considered ground rule atom p, and a revised rule-base RB′
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Table 5.2: Differences of dominant rule-bases between RB1 and RB3

Possible fact-base FB Dominant rule-base(s) of
FB (before revision)

Dominant rule-base(s) of
FB (after revision)

∅ ∅ ∅

{a.} {p← q. q ← a.} {p← q. q ← a.}

{b.} {p← q. q ← b.} {p← q. q ← b.}

{c.} ∅ ∅

{a. b.} {p← q. q ← a.} and
{p← q. q ← b.}

{p← q. q ← a.} and
{p← q. q ← b.}

{a. c.} {p← q. q ← a.} {r← c.}

{b. c.} {p← q. q ← b.} {r← c.}

{a. b. c.} {p← q. q ← a.} and
{p← q. q ← b.} {r← c.}

after the culprit resolution. An effect of a revision from RB to RB′ with respect to p is
a prototypical case with judgement (PCJ) in the symmetric difference between the set
of PCJs from RB′ with respect to p and the set of PCJs from RB with respect to p. We
call an effect (C, J) a trivial effect with respect to FB if C ⊆ f(FB) or f(FB) ⊆ C,
otherwise we call a non-trivial effect with respect to FB.

Intuitively, trivial effects mean additional PCJs that directly involve the present case
which non-trivial effects do not. By this classification, we may determine non-trivial
effects as ones that possibly make unintentional semantics changes and we can ask the
user to confirm the user intention on such effects.

Example 5.10. Let RB1 = {p ← q. q ← a. q ← b.} and RB3 = {p ← q, not r. q ←
a. q ← b. r ← c.} and FB = {a. c.}. From Example 5.9, we can view RB3 as a resolution
to an incorrect culprit p as Figure 5.2. We get that there are two effects of a revision from
RB1 to RB3 with respect to p, which are pcj1 = ({a, c}, ‘−’) and pcj2 = ({b, c}, ‘−’).
Consequently, pcj1 is a trivial effect with respect to FB since f(FB) = {a, c}. On the
other hand, pcj2 is a non-trivial effect with respect to FB since f(FB) 6⊆ {b, c} and
{b, c} 6⊆ f(FB).

Example 5.11. Let RB1 = {p ← q. q ← a. q ← b.} and RB4 = {p ← q, not r. q ←
a. q ← b. r ← a, c.} and FB = {a. c.}. From Example 5.9, we get that RB4 is actually
the semantics-based minimal resolution to an incorrect culprit p as illustrated in Figure
5.3. There are two effects of a revision from RB1 to RB4 with respect to p, which are
pcj1 = ({a, c}, ‘−’) and pcj2 = ({a, b, c}, ‘−’). Consequently, both of them are trivial
effects with respect to FB since f(FB) = {a, c} and f(FB) ⊆ {a, b, c}.
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Figure 5.2: General Culprit Resolution before Evaluation

Figure 5.3: Semantics-based Minimal Culprit Resolution before Evaluation

5.3.4 Evaluating Implicit Generalization

In Chapter 4, we have discussed that actually we generalize the resolution implicitly
when the user selects which facts relevant to each new head since the new rule needs not
to be applied specifically in the case larger or equal to the present case. This selection of
relevant facts is quite similar to the syntax-based minimal revision if we have a criterion
to select as few relevant facts as possible. For example, let consider the syntax-based
minimal revision based on Theory Distance Metric [99], which is one common minimal
revision used for describing minimal revision in legislation (e.g. [36, 96]). The definition
is formally described in our context as follows.

Definition 5.14 (Syntax-based Minimal Revision). Let RB and RB′ be rule-bases. A
revision transformation r is such that r(RB) = RB′, and RB′ is obtained from RB by
program edit operations as follows: deleting a rule, creating a rule with an empty body,
adding a condition to a rule in RB or deleting a condition from a rule in RB. RB′ is a
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revision of RB with distance c(RB,RB′) = n if and only if RB′ = rn(RB) and there is
no m < n such that RB′ = rn(RB) [99].

We get that, actually, it is very easy to obtain the syntax-based minimal culprit resolu-
tion to a CCR task since, without finding relevant facts, the primary revised rule-base
is also a minimal revision since it requires no additional program edit operation. How-
ever, if we require a restricted culprit resolution, we can just introduce one extra fact to
each new head. This requires only one program edit operation per each new rule so the
revision is definitely the syntax-based minimal revision.

Generally, we get that the syntax-based minimal revision is not a semantics-based mini-
mal revision especially when an original rule-base contains multiple rules with unifiable
heads. For example, a rule-base representing Japanese Civil Code Article 612 but adding
a fictitious rule with condition_2 can be described in the following.

1 cancellation_due_to_sublease :-
2 effective_lease_contract,
3 effective_sublease_contract, using_leased_thing,
4 manifestation_cancellation, not approval_of_sublease.
5 effective_lease_contract :-
6 agreement_of_lease_contract,
7 handover_to_lessee.
8 effective_sublease_contract :-
9 agreement_of_sublease_contract,

10 handover_to_sublessee.
11 effective_sublease_contract :- condition_2.
12 approval_of_sublease :- approval_before_the_day.

The present case is represented as follows.



agreement_of_lease_contract,
handover_to_leasee,
agreement_of_sublease_contract,
handover_to_subleasee,
using_leased_thing,
manifestation_cancellation,
non_destruction_of_confidence


Suppose cancellation_due_to_sublease is an incorrect culprit. A semantics-based
minimal revision for resolving the culprit is as follows.
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1 cancellation_due_to_sublease :-
2 effective_lease_contract,
3 effective_sublease_contract, using_leased_thing,
4 manifestation_cancellation, not approval_of_sublease,
5 not new_exception.
6 effective_lease_contract :-
7 agreement_of_lease_contract,
8 handover_to_lessee.
9 effective_sublease_contract :-

10 agreement_of_sublease_contract,
11 handover_to_sublessee.
12 effective_sublease_contract :- condition_2.
13 approval_of_sublease :- approval_before_the_day.
14 new_exception :-

15 agreement_of_sublease_contract,

16 handover_to_sublessee,

17 non_destruction_of_confidence.

On the other hand, the syntax-based minimal revision for resolving the culprit is as
follows.

1 cancellation_due_to_sublease :-
2 effective_lease_contract,
3 effective_sublease_contract, using_leased_thing,
4 manifestation_cancellation, not approval_of_sublease,
5 not new_exception.
6 effective_lease_contract :-
7 agreement_of_lease_contract,
8 handover_to_lessee.
9 effective_sublease_contract :-

10 agreement_of_sublease_contract,
11 handover_to_sublessee.
12 effective_sublease_contract :- condition_2.
13 approval_of_sublease :- approval_before_the_day.
14 new_exception :-

15 non_destruction_of_confidence.

Compared with the semantics-based minimal revision, the syntax-based minimal revision
produces a non-trivial effect in the following.
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



agreement_of_lease_contract,
handover_to_leasee,
condition_2,
using_leased_thing,
manifestation_cancellation,
non_destruction_of_confidence


, ‘−’



We consider that such a non-trivial effect occurs due to possibly unintentional change of
semantics caused by the syntax-based minimal revision. Hence, we check with the user
whether such changes are actually intended. If they are not intended, we may suggest
the semantics-based minimal revision as shown above.

5.3.5 Evaluating Explicit Generalization

In Chapter 4, we have presented the explicit generalization with background theory by
Inverse Resolution, which consists of V-operator and W-operator. In this dissertation, we
induce the parent clause in V-operator by using folding. In the original folding [54], the
clause cannot be folded if there are any other clauses whose head is unifiable with the aim
goal but are not used in the original folding (see Chapter 2). However, in our induction,
we use folding with relaxation of this condition. Hence, to prevent unintentional effects,
we can consider the difference of prototypical cases with judgement, as discussed in
previous sections, to check with the user whether the generalization is intended.

Example 5.12. Continuing from Example 4.7, suppose we have two rules in the back-
ground theory.

• “A parent is a kind of relatives” represented as relatives(X,Y) :- parent(X,Y).

• “A cousin is a kind of relatives” represented as relatives(X,Y) :- cousin(X,Y).

After such a generalization as in Example 4.7, we may detect that the generalization
produces non-trivial effect as the continuous dialogue shown below.

39 Found general rule(s):
40 1: new_exception(Sublesser,Sublessee,Property):-
41 parent(Sublesser,Sublessee).
42 2: new_exception(Sublesser,Sublessee,Property):-
43 relatives(Sublesser,Sublessee).
44

45 Which one would you like to introduce ? |: 2.
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46

47 Non-trivial Effect(s) detected:
48 ({agreement_of_lease_contract(plaintiff,defendant,room),
49 handover_to_lessee(plaintiff,defendant,room),
50 agreement_of_sublease_contract(defendant,son,room),
51 handover_to_sublessee(defendant,son,room),
52 using_leased_thing(son,room),
53 manifestation_cancellation(plaintiff,defendant),
54 cousin(plaintiff,son)},'-')
55

56 Would you like to confirm the introduction of the rule (yes/no)?
57 new_exception(Sublesser,Sublessee,Property):-
58 relatives(Sublesser,Sublessee).
59 |: no.
60

61 Found general rule(s):
62 1: new_exception(Sublesser,Sublessee,Property):-
63 parent(Sublesser,Sublessee).
64

65 Which one would you like to introduce instead ? |: 1.

Intuitively, the non-trivial effect raises the question of whether the new exception should
be executed when the subleaser is the cousin of the sublessee. The user may determine
the generalization is too generalized and refuse the generalization, or create a new sub-
level concept (e.g. family) using W-operator for refining the generalization if some
non-trivial effects are intended but some are not.

5.4 Summary

• We consider the semantics of a rule-base as a set of all possible pairs of a fact-base
and its corresponding answer set.

• We consider the semantics-based minimal revision as a revision that we cannot
find any other revision with smaller change. In the same manner, we consider the
semantics-based minimal culprit resolution if there is no culprit resolution with
smaller change.

• We consider the semantics of a case-base as a set of all possible cases with judge-
ment that the case-base entails. We show that the difference of semantics of a
case-base corresponds to the partial difference of semantics of a rule-base.
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• We show that the minimal culprit resolution also minimally affects the dominant
rule-base of each possible fact-base.

• We show that the syntax-based minimal revision is not always a semantics-based
minimal revision especially when a rule-base contains multiple rules with unifiable
heads.

• We consider new prototypical cases that are not subsets, supersets, or equal to
the representative case as probably unintentional changes of semantics. Hence,
by this consideration, we can detect possibly unintentional changes of semantics
during the generalization of culprit resolution by checking with the user whether
the generalization is intended.
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6
Conclusion and Future Work

In this chapter, we present

• Conclusion of this dissertation

• Potential future work of our research
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6.1 Conclusion

In this dissertation, we explore Legal Debugging in rule-based legal reasoning systems for
formalizing judicial legal change when literal interpretation of statutes has consequences
that do not meet the social expectation, as we call counterintuitive consequences. By
analogy, we define a culprit, which is newly coined in this research, to describe the root
cause of counterintuitive consequences. Legal Debugging detects and resolves counter-
intuitive consequences in law by answering these three research questions.

• RQ1: How to detect a culprit ?

• RQ2: How to resolve a culprit ?

• RQ3: How to evaluate the resolution ?

To answer these questions, we present two algorithms, namely Culprit Detection Algo-
rithm and Culprit Resolution Algorithm, and one method to evaluate generalization of
exceptions in the revised rule-based. Those are designed as follows.

• Culprit Detection Algorithm, which extends from Algorithmic Debugging [38],
aims to assist the user to discover more counterintuitive consequences by checking
with the user whether related consequences are counterintuitive until no related
counterintuitive consequences can be found. Then, we get that the last found
counterintuitive consequence is a culprit (Theorem 3.4). It is proved that if there
is a counterintuitive consequence, there is definitely a culprit and if there is a
culprit, there is definitely one counterintuitive consequence that can trace to such a
culprit. We show that the algorithm can be extended for first-order representation
and PROLEG, as in PROLEG, the algorithm can detect a culprit if we generalize
the definition of the supporting rule.

• Culprit Resolution Algorithm, which extends from Closed World Specifica-
tion [56], aims to assist the user to revise the rule-base representing statutes by
let the user select which facts relevant to each new head. In this algorithm, we
describe a class of rule-bases that built from critical sets [63, 68] and we show
that the algorithm can definitely resolve culprits (and hence resolve counterin-
tuitive consequences) and the algorithm can give the designated rule-base in an
effective enumeration of the class in finite time. We also provide our formaliza-
tion of first-order case-base and analogous theory to show that the algorithm can
be extended for culprit resolution in first-order representation and we apply the
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translation of undercutting exceptions into rebutting exceptions for culprit reso-
lution in PROLEG. In addition, we present the application of Inverse Resolution
[33] for generalizing culprit resolution. In this way, we can produce more general
rules for resolving a culprit by cooperating with background theory. With such
cooperation, the resolution can obtain more general normative facts to resolve a
culprit more practically.

• A method to evaluate resolutions, which we develop based on the semantics-
based minimal revision for legal reasoning, which we newly formalized in this
research. By this formalization, we achieve a semantics-based minimal culprit
resolution. We show that the minimal culprit resolution also minimally affects the
dominant rule-base of each possible fact-base, and the semantics-based minimal
revision is different from the syntax-based minimal revision in general. From these
findings, we evaluate the resolution by detecting possibly unintentional changes of
semantics due to the generalization of culprit resolution.

Since most of statutory laws are designated to produce one unique interpretation for each
case in litigation, they can be represented by a non-recursive and stratified logic program
with corresponding prototypical cases with judgement and hence our legal debugging is
applicable to any statutory laws in general.

6.2 Future Work

In this section, we report potential future directions of the research on Legal Debugging
as follows.

1. Potential future investigations in Legal Debugging: Since this dissertation
has investigated Legal Debugging with some presumptions, we report potential
future investigations in Legal Debugging as follows.

• Extending Legal Debugging to support rule-bases that allow con-
flict judgements: In this dissertation, we assume that a rule-base represent-
ing statutes is non-recursive, stratified, and theoretically constructed from
prototypical cases with judgement (e.g. [61, 68]) so that the result program
has a unique answer set. This reflects that judges in civil law systems tend to
have one unique judgement from the same statutes in the similar case. This
is in contrast with representations in common law systems that tend to allow
conflict judgements even if the cases are similar. To deal with conflict judge-
ments, multiple answer sets programming is sometimes introduced in legal
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representation for common law systems such as Defeasible Logic [59]. Hence,
assuming programs has a unique answer set is one limitation of our work
and studies of debugging answer set programming [87, 93, 102] are interest-
ing for expanding Legal Debugging to support rule-bases that allow conflict
judgements.

• Extending evaluation for any other types of revisions: since we have
investigated evaluation using semantics-based minimal revision only for the
culprit resolution, it is interesting to investigate semantics-based minimal
revision for evaluating any other types of revisions in general.

2. Potential applications of Legal Debugging: Besides detecting and resolving
counterintuitive consequences in law as suggested in this dissertation, we suggest
potential applications of Legal Debugging as follows.

• Legislation: As one application of inductive programming is to synthesize
a new program from an empty program, Legal Debugging might prove to be
useful for drafting new statutes from scratch.

• Conflict Resolution: Instead of considering the interpretation intended by
legal experts, we might simulate counterintuitive consequences as the differ-
ence of the literal interpretation in one legal system and another interpretation
in other legal systems (probably the superior legal systems such as federal law
and state law in the United States, or the comparison of international law
between two countries).

• Contract Debugging: Instead of applying Legal Debugging with rule-bases
representing statutes, we may apply it with representations of contracts in the
same manner of detecting conflicts in legislation. Hence, we may apply Legal
Debugging for detecting and resolving parts of contracts that may introduce
unexpected results.
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A
English Court Example Cases

In Appendix A, we show some example cases involving with statutory interpretation from
English Courts. English courts have developed three rules of statutory interpretation to
deal with counterintuitive consequences, which are the plain meaning rule, the golden
rule, and the mischief rule. Generally speaking, the plain meaning rule suggests judges
to keep literal interpretation although it causes counterintuitive consequences. The
golden rule suggests judges to generalize or specify meaning of the statute to prevent
counterintuitive consequences. The mischief rule suggest judges to focus on the purpose
of the statute that tries to resolve some mischief in the society. In this Appendix, we
apply Legal Debugging for formalizing legal changes in the example cases, where the
judges applied the golden rule and the mischief rule, to illustrate the applicable range
of legal debugging as follows.

A.1 R v. Allen (1872)

This example case [103] is a well-known case in which the judge applied the golden rule
by generalizing the meaning of the wording in the statute. In this case, the defendant
was charged under the Offences Against the Person Act 1861 Section 57, which states

Section 57 Whosoever being married shall marry any other person during
the lifetime of the former husband or wife is guilty of an offence [104].
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The Offences Against the Person Act 1861 Section 57 can be represented as the following
rule-base.

1 guilty_of_an_offence(Person):-
2 married(Person,Spouse),
3 different_person(Spouse,Paramour),
4 second_married(Person,Spouse,Paramour).
5 married(Person,Spouse):-
6 legitimate_married(Person,Spouse,Certificate1).
7 second_married(Person,Spouse,Paramour):-
8 legitimate_married(Person,Paramour,Certificate2),
9 during_the_lifetime_of(Certificate2,Spouse)

However, the defendant in this case has not legitimate married but go through the
ceremony of marriage with any other person. When the case went to the court, the
judge stated that the word marry in this section could not mean “legitimate marry”
since “legitimate marry” is regulated to have only one at a time. Hence, the judge
reinterpreted ‘marry’ in this section as “go through the ceremony of marriage.” We
assume that the case can be represented by the following fact-base.

{legitimate_married(defendant,person_a).
different_person(person_a,person_b),
go_through_the_ceremony_of_marriage(defendant,person_b,the_ceremony).
during_the_lifetime_of(the_ceremony,person_a).}

With this rule-base and fact-base, guilty_of_an_offence(defendant) is not valid.
This is consistent with the literal interpretation of the law, in which we consider the
meaning of marry with another person as “legitimate marry” . The example dialogue
of the culprit detection and the culprit resolution algorithm in this case is shown below.

1 Considering guilty_of_an_offence(defendant):-
2 married(defendant,Spouse),
3 different_person(Spouse,Paramour),
4 second_married(defendant,Paramour,Spouse).
5

6 married(defendant,person_a) is valid w.r.t. the literal interpretation,
7 Counterintuitive (yes/no) ? |: no.
8 different_person(person_a,person_b) occurs in the case
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9 second_married(defendant,person_a,person_b) is not valid
10 w.r.t. the literal interpretation,
11 Counterintuitive (yes/no) ? |: yes.
12

13 Detect an incomplete culprit:
14 second_married(defendant,person_a,person_b)
15

16 A prototypical case with judgement associated with
17 second_married(defendant,person_a,person_b):
18 ({legitimate_married(defendant,person_a),
19 different_person(person_a,person_b)},'-')
20

21 Listing possibly relevant facts...
22 1: go_through_the_ceremony_of_marriage(defendant,person_b,the_ceremony).
23 2: during_the_lifetime_of(the_ceremony,person_a).
24

25 Please specify facts relevant to
26 second_married(defendant,person_a,person_b)
27 by a list of indices (e.g. [1,3,5]).
28 If you would like to input new facts,
29 please input newfact([fact1,fact2,...]).
30 |: [1,2].
31

32 A representative sub-case with judgement:
33 ({legitimate_married(defendant,person_a).
34 different_person(person_a,person_b),
35 go_through_the_ceremony_of_marriage(defendant,person_b,the_ceremony).
36 during_the_lifetime_of(the_ceremony,person_a).},'+')
37

38 Introduce a new rule:
39 second_married(Person,Spouse,Paramour):-
40 go_through_the_ceremony_of_marriage(Person,Paramour,Ceremony),
41 during_the_lifetime_of(Ceremony,Spouse).

Since the user (representing the judge) has considered that guilty_of_an_offence(
defendant) is intended in this case and hence it is a counterintuitive consequence. Cul-
prit Detection Algorithm would consider whether there is another counterintuitive con-
sequence related to guilty_of_an_offence(defendant) by going to the first rule (lines
1-4), whose head is unifiable with the atom by a substitution θ = {Person/defendant}.
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The algorithm asks the user whether married(defendant,person_a) is counterintu-
itive. Since it is not counterintuitive, the algorithm adds a mapping Spouse/person_a
into θ. When the algorithm traces to different_person(person_a,Paramour), it gets
different_person(person_a,person_b) from the fact-base hence it adds a mapping
Paramour/person_b in θ. Then, the algorithm asks whether second_married(defend
ant,person_a,person_b) is counterintuitive. Since the user determines the conse-
quence as counterintuitive, the consequence becomes an incomplete culprit since it is
intended but the intended interpretation does not support it. Since the culprit is an
incomplete culprit, the algorithm asks the user to select facts or input new facts that
are relevant to the culprit. To reflect that the judge generalized the meaning of ‘marry
any other person’ in the statute to cover “go through the ceremony of marriage” in
this case, the user select all the left facts as relevant. Thus, the algorithm introduces
the new rule (lines 39-41 in the dialogue) to cover the change introduced by the judge.

A.2 Adler v. George (1964)

This example case is adopted from the English Court Case. It is one of the well-known
cases in which the judge applied the golden rule by modifying the meaning of the wording
in the statute. In this case, the defendant was charged under the Official Secrets Act
1920 Section 3, which states

Section 3 No person in the vicinity of any prohibited place shall obstruct,
knowingly mislead or otherwise interfere with or impede, the chief officer or
a superintendent or other officer of police, or any member of His Majesty’s
forces engaged on guard, sentry, patrol, or other similar duty in relation to
the prohibited place, and, if any person acts in contravention of, or fails to
comply with, this provision, he shall be guilty of a misdemeanour.

The Official Secrets Act 1920 Section 3 can be represented as the following rule-base.

1 guilty_of_a_misdemeanour(Person):-
2 prohibited(Place), officer(Officer,Place),
3 interfere(Person,Officer), in_the_vicinity_of(Person,Place).
4

5 officer(Officer,Place) :- chief_officer(Officer,Place).
6 officer(Officer,Place) :- superintendent(Officer,Place).
7 officer(Officer,Place) :- police(Officer,Place).
8 officer(Officer,Place) :- royal_guard(Officer,Place).
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9 officer(Officer,Place) :- sentry(Officer,Place).
10 officer(Officer,Place) :- patrol(Officer,Place).
11 officer(Officer,Place) :- other_officer(Officer,Place).
12

13 interfere(Person,Officer) :- obstruct(Person,Officer).
14 interfere(Person,Officer) :- knowingly_mislead(Person,Officer).
15 interfere(Person,Officer) :- impede(Person,Officer).
16 interfere(Person,Officer) :- otherwise_interfere(Person,Officer).

However, the defendant in this case obstructed a military guard in the execution of his
duty inside a military establishment. From the literal interpretation of the law, the
defendant shall be guilty only if the obstruction takes place ‘in the vicinity of’ a military
establishment, which literally means “outside or in the proximity”. When the case
went to the court, the judge stated that such an interpretation would lead to an absurd
result, and reinterpreted ‘in the vicinity of’ to cover a person already on the premises.
We assume that the case can be represented by the following fact-base.

{prohibited(military_est). royal_guard(guard,military_est).
obstruct(defendant,guard). inside(defendant,military_est).}

With this rule-base and fact-base, guilty_of_a_misdemeanour(defendant) is not valid
since we cannot prove in_the_vicinity_of(defendant, military_est). Given the
atom as an initial counterintuitive consequence, the example dialogue of the culprit
detection and the culprit resolution algorithm in this case is shown below.

1 Considering guilty_of_a_misdemeanour(defendant):-
2 prohibited(Place), officer(Officer,Place),
3 interfere(defendant,Officer), in_the_vicinity_of(defendant,Place).
4

5 prohibited(military_est) occurs in the case
6 officer(guard,military_est) is valid
7 w.r.t. the literal interpretation,
8 interfere(defendant,guard) is valid
9 w.r.t. the literal interpretation,

10 in_the_vicinity_of(defendant,military_est) does not occur in the case
11 Detect an incomplete culprit:
12 guilty_of_a_misdemeanour(defendant)
13
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14 A prototypical case with judgement associated with
15 guilty_of_a_misdemeanour(defendant): ({},'-')
16

17 Listing possibly relevant facts...
18 1: prohibited(military_est).
19 2: obstruct(defendant,guard).
20 3: royal_guard(guard).
21 4: inside(defendant,military_est).
22

23 Please specify facts relevant to guilty_of_a_misdemeanour(defendant)
24 by a list of indices (e.g. [1,3,5]).
25 If you would like to input new facts,
26 please input newfact([fact1,fact2,...]).
27 |: [1,2,3,4].
28

29 A representative sub-case with judgement:
30 ({prohibited(military_est), royal_guard(guard,military_est),
31 obstruct(defendant,guard), inside(defendant,military_est)},'+')
32

33 Introduce a new rule:
34 guilty_of_a_misdemeanour(defendant):-
35 prohibited(Place), royal_guard(Officer,Place),
36 obstruct(Person,Officer), inside(Person,Place).
37 Found general rule(s):
38 1: guilty_of_a_misdemeanour(Person):-
39 prohibited(Place), royal_guard(Officer,Place),
40 obstruct(Person,Officer), inside(Person,Place).
41 2: guilty_of_a_misdemeanour(Person):-
42 prohibited(Place), officer(Officer,Place),
43 obstruct(Person,Officer), inside(Person,Place).
44 3: guilty_of_a_misdemeanour(Person):-
45 prohibited(Place), royal_guard(Officer,Place),
46 interfere(Person,Officer), inside(Person,Place).
47 4: guilty_of_a_misdemeanour(Person):-
48 prohibited(Place), officer(Officer,Place),
49 interfere(Person,Officer), inside(Person,Place).
50

51 Which one would you like to introduce ? |: 4.
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Since the user (representing the judge) has considered that guilty_of_a_misdemeanour
(defendant) is intended in this case and hence it is a counterintuitive consequence. Cul-
prit Detection Algorithm would consider whether there is another counterintuitive con-
sequence related to guilty_of_a_misdemeanour(defendant) by going to the first rule
(lines 1-3), whose head is unifiable with the atom by a substitution θ = {Person/defend
ant}. Since there is only the fact prohibited(military_est) that is in the fact-base
and unifiable with the condition prohibited(Place), the algorithm add the mapping
Place/military_est. The algorithm asks the user whether officer(guard,military_
est) is counterintuitive. Since it is not counterintuitive, the algorithm adds a mapping
Officer/guard into θ. Then, the algorithm asks whether interfere(defendant,guard)
is counterintuitive. Since it is not counterintuitive, there are no counterintuitive con-
sequences related to guilty_of_a_misdemeanour(defendant). Hence, it becomes an
incomplete culprit itself since it is intended but the intended interpretation does not
support it. Since the culprit is an incomplete culprit, the algorithm asks the user to
select facts or input new facts that are relevant to the culprit. To reflect that the judge
modified the meaning of ‘in the vicinity of’ in the statute to cover “inside” in this
case, the user select all the left facts as relevant. Thus, the algorithm introduces the
new rule (lines 31-33 in the dialogue) to cover the change introduced by the judge. We
can obtain general rules (lines 35-53 in the dialogue) by V-operator.
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