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Abstract

Plan and goal recognition are challenging problems that were introduced by the AI community

a few decades ago. Plan recognition is the task of inferring the plan, and by extension, the goal,

which accounts for the observed behavior of an agent. On the other hand, goal recognition only

focuses on inferring the goal of an agent when observing its behavior, and it can be seen as

a sub-problem of plan recognition. There is a wide variety of applications to these tasks, for

intelligent and robot assistants, automatic driving, suspect behaviors monitoring, multi-agent

cooperation, or competition like for games, for instance, to obtain adaptive AIs. Although plan

and goal recognition problems have existed for a while in AI, their complexity has hindered their

application to real-world scenarios. But recently, with the improvement in terms of computation

power and machine learning approaches, these restrictions start to fade.

In this thesis, we study a method for plan recognition in Real-Time Strategy games (RTS)

and another method to infer an agent’s potential goals to be able to do plan recognition on

this agent. The purpose of the first method is to infer the plan and goal of the opponent

player in real-time in an RTS game, especially during the first minutes of the game, as they

are usually critical and often determine the outcome of a game. This method is based on

plan recognition as planning, a new paradigm proposed by Miquel Ramirez and Hector Geffner

in 2009 and changed the way to tackle the plan recognition problem. Furthermore, we used

heuristic planning and pruning to make our method effective for real-time recognition. The

second method aims at inferring the potential goals of an agent after observing its behavior.

The purpose is not to find precisely the goal that the agent is trying to achieve but rather to

generate a set of candidates as the potential goals that the agent might achieve. We will see

later that this set of candidates is needed for many current plan recognition approaches. Our

approach is particular, as other approaches often take this set of candidates for granted, an

assumption that we found not realistic in many cases.

In the first chapter, we will provide background about the plan and goal recognition prob-

lems. We will explain why we use games as a testbed and why especially RTS games and

StarCraft, and then describes the organization of the thesis. Chapter 2 introduces background

knowledge that is needed for the rest of the thesis. Then chapter 3 presents the online plan

recognition that we developed for the RTS game StarCraft, the different experiments that have
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been done to evaluate our method, and the possible improvements and extensions of the method.

The second contribution of the thesis is presented in chapter 4 where we introduce the problem

of inferring an agent’s goals. It is not only related to games but much more general. We detail

our problem and its formalization, present the experiments that we conduct to evaluate this

goal recognition method, and then the possible extensions of the method. Chapter 5 concludes

the thesis with perspectives of this work, discussion on how to combine both contributions and

conclusion.
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Chapter 1

Introduction

Being able to infer the strategy that your opponent will use against you in a Real-Time Strategy

game (RTS) is one of the critical skills that human players should master to improve their level

in the game. Professional players use scouting for this purpose, and the better they do it,

the higher their winning chances are. The problem is, where it is almost an automatism for a

human player to do strategy inference using its past knowledge about the game, it is a complex

problem for an AI player to do the same, especially with partial observations of the game state.

We developed a method to infer in real-time the goal that the opponent player is trying to

achieve in an RTS game and the most likely plan for the opponent to reach it. Here, what

we call the player’s plan is the set of buildings it will create and in what order. The goals are

usually a certain amount of specific resources (resources including building and units, not only

natural resources) that the player will try to reach as fast as possible, for example, a small

group of military units in order to perform a quick attack on the opponent’s base. This method

considers uncertainty, which is represented by the ”fog of war” in RTS games, and hides the

actions performed by your opponent. Our work is based on the game StarCraft: Brood War1

which is a canonical RTS game released in 1998, but our method could be adapted to other

RTS games without too much difficulty. For a more general purpose, we also developed a goal

recognition method; this method has the particularity to build a set of possible goals for the

agent, where the other approaches start with a given set of possible goals and will select the

most likely one. We do not predict which goal is the most likely one with our method, but we

build the set of possible goals of the agent. Knowing that most of the current plan recognition

approaches need a set of possible goals to work , we could combine such a plan recognition

1StarCraft and its expansion StarCraft: Brood War are trademarks of Blizzard EntertainmentTM
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CHAPTER 1. INTRODUCTION 10

method, like the one we develop for RTS games, in order to have a complete framework for

plan and goal recognition.

This chapter will introduce the plan and goal recognition problems and detail related work

about them in section 1.1. In section 1.2 we discuss the application of plan and goal recognition

in the field of game AI, what has been done, and why it is an interesting testbed. Finally, section

1.3 will detail the contributions and the organization of the thesis.

1.1 Plan and Goal Recognition in AI

Home automation, robotics, intelligent personal assistants will soon be interacting with humans

daily. Nevertheless, for this, we need artificial intelligence able to understand and interpret

human intentions. It is not trivial. Even currently, the knowledge about an agent’s intentions

is important, in the case of cooperation or competition in multi-agent systems, for an intelligent

assistant that tries to guide or help a human user, or just even for marketing, when trying to

target some specific customers. The ISS-CAD problem [1] illustrates this problem; a free-flying

robot observes an astronaut performing a task on the International Space Station and tries to

help him. In hazardous areas where humans require a robot’s assistance, plan recognition can

also be used to allow the robot to act as a scout for the human by guessing in which direction

the human will move [2]. This problem is called ”plan recognition” (or intention recognition

sometimes). It is a challenging problem with many applications, and that has been studied for

some time in AI research.

The plan recognition problem was first introduced by Schmidt et al. [3] in 1978. They

designed their BELIEVER system, a psychological theory of how humans observers under-

stand the actions of others, to understand how descriptions of observed actions are utilized to

attribute intentions, beliefs, and goals to the actor. Their research is really oriented on the

psychology of the problem but allowed other approaches to emerge later, as they provide a

formal description of the process that they implemented in their BELIEVER system. Kautz

and Allen [4] introduced a new theory of plan recognition that handled concurrent actions,

shared steps between actions, and disjunctive information. The theory allows one to draw con-

clusions based on the class of possible plans being performed. It employs circumscription to

transform a first-order theory of actions into an action taxonomy which can be used to logically

deduced the complex actions an agent is performing. The idea is that every observed action is

part of one or more top-level plans. Using this restriction plan recognition becomes a task of
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nonmonotonic deduction where you need to find the top-level plan that includes most of the

observed actions. While being recognized for its clarity, this work has several flaws. It does not

provide information about how more likely a plan can be than another that includes similar

actions. The distinction between top-level plans and the rest makes it impossible for some

actions to be top-level plans just by themselves. Set minimization as a principle for abduction

is wrong. Charniak and Goldman noted these flaws and presented a formal model of the plan

recognition process based upon probability theory that deals with them [5]. Their model con-

sists of a knowledge-base of facts about the world expressed in a first-order language and rules

for using that knowledge-base to construct a Bayesian network. The network is then used to

find the plans with the highest probability according to the agent’s observed actions. A few

years later they extended their model in a journal article [6], one of their main contributions is

the fact that they are able to decide to what degree the evidence supports any particular plan

hypothesis thanks to their Bayesian network. They also introduced a probabilistic model for

plan recognition at a time when people believed such a model would be far too complex and

time-consuming in terms of computation to treat the plan recognition problem. Continuing

in this direction, Goldman et al. [7] introduced a new abductive, probabilistic theory of plan

recognition. This theory is centered around a model of plan execution when the previous meth-

ods have been based on plans as formal objects or on rules describing the recognition process.

Their model accounts for phenomena omitted from most previous plan recognition theories:

like the cumulative effect of a sequence of observations of partially-ordered, interleaved plans

and the effect of context on plan adoption. Their model even allows exogenous effect like ac-

tions being executed by another agent than the one we are focusing on. It uses a plan library

compiling the possible plans that the agent might be following and specify probabilities for

a restricted set of hypotheses about the agent’s behavior to provide a framework for abduc-

tive plan recognition. Following these works, many approaches based on probabilistic models

emerged. Some are based on probabilistic grammars, like Pynadath and Wellman [8], arguing

that Bayesian networks will not support the huge amount of observations that one could get

in a real-world plan recognition problem, and that probabilistic grammar can handle it. Ap-

proaches based on Hidden Markov Model (HMM) started to be used as it is quite handy to

model evolving environments under uncertainty and it was already used for speech recognition

for several years. The works of Bui and all. are probably the most famous for this [9, 10]. They

use HMM to be able to perform online-plan recognition as they demonstrate that such an ap-
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proach scale reasonably well for some real-world plan recognition problem. Geib and Goldman

[11] use also a probabilistic algorithm based on plan tree grammars that could address several

issues in the field like, the execution of multiple plans, partially ordered plans, and failing to

observe actions. To handle uncertainty and structured representations Singla and Mooney [12]

mix probabilistic and logical approaches, as they argue that previous approaches mostly use

logical methods that do not handle uncertainty or purely probabilistic methods that do not

handle structured representations. Geib and Kantharaju designed an incremental supervised

learning algorithm [13] to extract the Combinatory Categorial Grammars (CCGs) that were

used by Geib and Goldman [11] for plan recognition. The algorithm learns CCGs that capture

the structure of plans from a set of successful plan execution traces, which could alleviate the

time-consuming task of manually encoding the CCGS. However, this is just a start, and more

experiments need to be performed to increase the algorithm’s performance and deal with com-

plex knowledge domains. Though, many of these approaches rely on plan libraries in order to

infer the agent’s plan. Ramirez and Geffner [14] shown that one can ignore the plan libraries by

using planning, with enough knowledge about the environment and the agent, plans matching

the observations can be built using a planner. Following this assumption, Ramirez and Geffner

use POMDPs [15] to perform goal recognition as they still need to solve this part of the plan

recognition problem. Inverse planning is another way to deal with this problem without using a

plan library, as shown by Baker et al. [16, 17, 18] when trying to understand the human way of

thinking when performing plan recognition but it suffers from the same limitation as POMDP

since it does not scale, most of the real-world situations have a too large state space for these

methods.

After the 2000s, the concept of goal recognition started to become widespread, and several

works focused their attention on it instead of tackling the whole problem of plan recognition

in which goal recognition is included. It does make sense for some topics in which the real

concern is the goal that the agent is trying to achieve and not the way it will achieve it.

Hong [19] proposed a method based on graph analysis, it first builds a goal graph to represent

the observed actions, the state of the world, and the achieved goals. Then, analyze the goal

graph at each time step to recognize the goals that are consistent with the observed actions so

far. This method does not need a plan library and works in polynomial time and polynomial

space but, often, cannot decide exactly which goal was followed if there was only one goal that

interested the agent, instead, it will return several possible goals. It does not take into account



CHAPTER 1. INTRODUCTION 13

uncertainty too. In fact, after the work of Ramirez and Geffner [14, 15] most of the works have

been focused on goal recognition instead of plan recognition. Though, as stated before, their

method does not scale on large domains due to the calls of the planner that can be too costly

if there are many possible goals. E-Mart́ın et al. [20] address this problem using cost estimates

and a plan graph to infer probability estimates for the possible goals of the agent. They prune

the plan graph according to the observations to reduce the computation time of their method.

Their approach yields faster results than Ramirez and Geffner when still providing high-quality

solutions. Later, other approaches based on Ramirez and Geffner paradigm but using heuristics

to decrease the computation time due to planning have been introduced. As the one of Vered

and Kaminka [21] that is applied to continuous spaces where most of the previous approaches

focus on discrete ones. Or Pereira et al. [22] that use landmark-based heuristics, they define

landmarks as facts or actions that must occur in the plan when trying to achieve a specific goal.

Pereira et al. extended their idea in a journal article [23]. In their approach, goals are ranked

according to the percentage of landmarks that the agent has achieved, with each goal having its

specific landmarks, the goals with the highest percentage of achieved landmarks being the most

likely ones. They performed extended evaluations of their approach against the state-of-the-art

methods and obtained similar or often better results. Höller et al. presented their approach for

Plan and Goal Recognition as Hierarchical-Task Network(HTN) planning [24]. HTN planning

creates plans by decomposing tasks into smaller and smaller tasks, with the smallest task being

primitive actions. Their approach uses unmodified, off-the-shelf HTN planners, which greatly

help for generalization. The approach scales well with large sets of possible goals (thousands)

and results in high recognition rates. However, it is based on the same strong assumption as [14],

which are that the agent is rational, and so follows optimal plans and that the agent’s actions

are fully observable, so there is no noise. Another problem, similar to [14], is that the possible

goals returned by the goal recognition algorithm are not ranked, so we do not know which one

is the most likely. Recently, Amado et al. [25] used deep autoencoders to overcome the need for

expert knowledge to design the goal recognition problem by learning from a flow of images this

domain theory and performing automated planning and goal recognition. That is an important

step forward for automated goal recognition. However, their method does not provide as good

results as non-automated ones, and it needs to observe all possible transitions of the domain

in order to infer its encoding, which can be impossible to obtain. Mirsky et al. introduced

two new problems, the ”goal recognition design for plan libraries”(GRD-PL) problem and the
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”plan recognition design”(PRD) problem [26]. Both of these problems are pretty related to

the ”goal recognition design” (GRD) problem previously introduced by Keren et al. [27]. The

GRD problem aims at designing domain theory that improved the goal recognition process in

this domain. Especially, it aims to reduce the ambiguity between different possible goals for

the agent by removing some actions of the domain theory without altering the agent’s ability

to reach the different goals, thus improving the accuracy of goal recognition in this domain

theory. The GRD-PL and PRD problems introduced by Mirsky et al. are similar, but this time

focus on designing a plan library that improves the recognition process by making the different

plans within the library as different from each other as possible according to a specific metric

defined in their paper. However, they make two strong assumptions that reduce the domain of

application of their work which are that actions are deterministic (an observation is mapped

to exactly one action in the plan library), and the agent and the system are fully observable.

[28] and [29] are two good surveys of the different approaches that have been developed for

plan recognition and goal recognition, recently, Van-Horenbeke and Peer [30] did a survey that

emphasized the problem of plan, and goal recognition as a whole. Aha detailed the different

applications and prospects of goal reasoning [31], which could give good hints about how the

knowledge of one’s goal could be used.

1.2 Game AI: a Challenging Domain of Application

1.2.1 Plan and Goal Recognition in Games

Games have often been seen as milestones for the progress of AI, that was the case when

Deep Blue [32] defeated the world chess champion, Kasparov, in a six-game match in 1997.

That was incredible at the time, the chess game having an estimated state-space complexity

of 1047. In 2015 AlphaGo [33] won against Go world’s best players, the game of Go being

played on a board of 19x19 tiles, the state-space complexity is estimated to be around 10170,

a staggering number. Recently, a new step has been taken with AlphaStar [34], an AI able to

reach the top 1% of the best players in the world of StarCraft 2, a real-time strategy game that

was seen as far more challenging for AIs than the game of Go. For several reasons including

that the state-space complexity is far bigger than Go, there is a lot of uncertainty about the

opponent’s moves, and decisions have to be made in real-time. Games have also proven to be

very good test beds for plan recognition, after the first works about probabilistic models for

plan recognition, Albrecht et al. [35] developed a model based on dynamic Bayesian networks
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applied to a multi-player Dungeon adventure game with thousands of possible actions and

locations. Their approach allows the use of incomplete, sparse, and noisy data. They use

a rather simple representation of the game where a player is following one quest at a time

and performing actions at different locations, so they try to infer what is the current quest

followed by the player and what will be its next action and location. Quests are achieved

by performing specific actions in specific locations. Ontañón et al. [36] developed an online

Case-Based Planning architecture that uses expert traces to learn how to plan strategies in RTS

games and implemented a bot in the RTS Wargus to test their architecture against the basic AI

of the game. Later, Ontañón acknowledged that, although promising, this approach struggles

to generalize due to the large variety of situations that can arise in RTS games. Ontañón

explored the possibilities of scaling up Monte Carlo Tree Search algorithms to RTS games to

compute optimal policy to play the game [37]. He uses µRTS as a testbed and a fully observable

version of the game. It is unsure whether this method could scale on much more complex RTS

games such as StarCraft. Ontañón and Buro also introduced a new approach called Adversarial

Hierarchical-Task Network Planning based on Hierarchical-Task Network (HTN) planning and

the minimax game tree search algorithm [38]. Their method allows adversarial planning for

RTS games. It has been evaluated µRTS where it shows that the branching factor of the

method scale better comparing to other state-of-the-art search algorithms for RTS games while

still providing very efficient plans. However, as stated before, µRTS is a very simple game

compared to real RTS games, and this without adding uncertainty to the balance. Kabanza et

al. [39, 40] discuss about the algorithmic challenges of performing plan recognition in games.

Schadd et al. [41] describe opponent modeling through hierarchically structured models of the

opponent behaviour using Spring RTS (Total Annihilation clone) for experiments. Weber and

Mateas [42] evaluated several machine learning algorithms on replays that were labeled with

strategies, and found that the best way to do strategy prediction would be to use a mix of

different algorithms, as some are more efficient for early-game predictions but are supplanted

by others for mid-game predictions. They also provide their dataset for further comparisons.

Synnaeve and Bessière [43, 44] use Bayesian models to predict the build order of the opponent

player in StarCraft, their method works in real-time and handle uncertainty. Both of these

approaches need to be trained on replays and have their efficiency decreasing in a linear way,

at best, according to noisy data. Synnaeve and Bessière sum up the different approaches based

on Bayesian models that they developed for RTS games in a journal paper [45]. Their other
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contributions (aside from the plan recognition method) are a method for units micro-managing

during a fight with the opponent. Another method to predict tactical moves like where, when,

and how the opponent can attack, and vice versa for the player. And finally, a model to

perform armies clustering and predict the output of a fight (which side will win). Later, with

the explosion of Deep Learning, approaches based on it have appeared, Min et al.[46] use LSTM

to predict in which order the player will accomplish the different goals in an Open World Serious

Game, later, they incorporate player gaze traces in the data and saw an improvement of the

predictive power of the model[47], but their model does not take into account uncertainty as

it is intended to accompany the player through the game. Synnaeve et al. [48] present new

encoder-decoder and use it to predict the evolution of the position of the different units and

buildings in StarCraft, thus helping to predict tactical moves from the opponent. Geib et al.

introduced a model for cooperative behavior based on the interaction of plan recognition and

automated planning [49]. One agent called supporter observes another agent, the initiator and

will try to infer its plan. The supporter will ask the initiator if its plan is this one, and if so, the

supporter will starts negotiation and ask for tasks that could be achieved in order to help the

initiator. Plan recognition is used to guess the goal of the initiator and planning to find tasks

to help the initiator. They used a single representation for plans and actions during the whole

process. This representation is the one based on CCGs introduced by Geib and Goldman[11].

Since their model is based on a cooperative agent that has a complete vision of the initiator

actions, they do not deal with uncertainty and make wrong inference about the initiator plan

is not so penalizing as the supporter will ask confirmation about the plan that was inferred. If

the initiator says it is not the correct plan, then the supporter will keep asking with the other

possible plans that it has inferred. Kantharaju et al. [50] developed a greedy version of the

algorithm introduced in [13] as the original algorithm is exhaustive and cannot scale for plans

including more than three actions. They tried to learn CCGs for plan recognition in µRTS.

Although they successfully learned CCGs, there are still some scalability problems when the

plans are too complex, and the learned CCGs are not yet optimal to perform plan recognition,

as they acknowledge it at the end of the paper. Then they tried to combine this work with

Monte-Carlo Tree Search (MCTS) [51] in order to make it scale better to RTS games. MCTS

is used to perform plan recognition thanks to the CCGs learned by the algorithm from [50].

However, in their work, Kantharaju et al. consider that the actions of the player are fully

observable and that the timing of each action is also known. That is not the case when dealing
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with a game such as StarCraft, when trying to infer the plan of the opponent player, only

part of the actions are observed, and most of the time, we do not know when the observed

actions have been performed. Kantharaju et al. also worked on player modeling, they tried to

trace player knowledge in a parallel programming educational game [52] in order to generate

procedural levels that are adapted to the player’s current level of knowledge. They combine

machine learning to domain knowledge rule to detect if specific skills have been applied to solve

specific problems and conclude that the player has learned the skills. When this work is not

directly related to plan recognition in games, player modeling is.

Ontañón et al. made a very interesting survey [53] about AI for RTS games. They detail

the different AI challenges posed by RTS games, work that has been done in the field to tried

to address them, and challenges that have yet to be solved.

1.2.2 Real-Time Strategy Games

RTS game is a well-known type of game where the players have an aerial view of a map and

usually need to gather natural resources, build structures and units, and defeat their opponents

by beating their army and destroying their base. StarCraft is one of the most famous RTS

games, it was released in 1998. Millions of players played the game and it was one of the very

first games to have international competitions with big prize pools. Many replays (recording

of a game between different players) are available online and for free, to help to improve your

skill by learning from the others. Thanks to this and the complexity of the game, researcher

that were interested in the field developed different tools to interact with the game, performed

data-mining and provide interesting dataset. Most of the competitive matches in StarCraft are

1 versus 1 player. Each player selecting a race to control before the game, there are three races

in StarCraft, Protoss, Terran, and Zergs. Each with their very own play style. Protoss units are

very powerful but expensive, where Zerg units are weak but cheap and usually try to overwhelm

their opponent with sheer numbers, Terran units are situated in between. Nevertheless, there

are common points for all the races which are that natural resources are gathered by workers,

and used to build buildings, train units and research technological advances. That is why the

players need to manage natural resources carefully. In most RTS games (StarCraft included),

each unit and building has a sight range that provides the player with a view of the map. Parts

of the map not in the sight range of the player’s units are under a fog of war and the player

ignores what is and happens there. This means that players have to deal with uncertainty as

they do not know what their opponent is doing without sending units to scout it, and even
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then, it is difficult to gather important information as the opponent will usually try to kill the

scout and hide its units or buildings. Figure 1.1 shows the screen of a Terran player a the

beginning of a game, we can see one building and another in construction, some units gathering

the minerals. On the top left corner, we can see the screen that becomes darker, that is where

the fog of war starts, and the player cannot see anything in the area beyond except if it moves

a unit there. In the bottom left corner, there is the minimap which is a small miniature of the

game map, where buildings and units are represented as small colorful dots, in this case, the

vast majority of the minimap is black because the player did not explore it yet. The white

rectangle on the minimap represents the area that the player is currently seeing on its screen.

In StarCraft, there are two kinds of natural resources, and each of them is required to build

Figure 1.1: Example of the screen of a player

specific buildings or units. Likewise, there are different types of military units, each of them has

its own strengths and weaknesses (some can fly, are fast or slow, etc...), and can be trained in

different buildings. Players, therefore, have many strategies at their disposal, they often follow
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a certain pattern in the way they will manage natural resources and buildings. This pattern is

called ”Build Order” and gives a good hint about the strategy that a player will follow, like if

it will performs a very early attack to harass its opponent or if it will play defensively and just

developed a strong economy to attack later. Figure 1.2 shows some basic units and building

for the Protoss player. The Nexus is one of the most important buildings, it allows to produce

Probes, Probes are the workers of Protoss and are used to gather natural resources and build

buildings. The Gateway is the building that allows the Protoss to produce basic military units

such as the Zealot. At the beginning of each game, the players start with a building that allows

the production of workers (Nexus for Protoss) and five workers (Probes for Protoss). Then

they are free to expand their base as they want with the final goal of beating their opponent,

who usually starts at the opposite side of the map.

Figure 1.2: Basics units and buildings for Protoss

All these parameters make it very hard to develop AI players that can compete with humans,

especially when long-term planning and tactical decisions are that important in the game. It

is something that humans will learn with experience by playing the game, but it is far more

complex for AIs. To offset this difficulty games developers will often provide the AIs with unfair

bonuses like having extra resources and a complete view of the map, ignoring the fog of war

and thus uncertainty. This unfairness will often conduct the players to exploit the weakness of

AIs (the behaviors for which it does not know how to answer) at the expense of fun, which is,

one of the main points of games. A good plan recognition module for the AIs would probably

make them more interesting if they could use this knowledge to their advantage and not just

using unfair bonuses. Despite the fact that different methods exist for plan recognition in RTS

games, as we saw in the previous section, not all of them are taking into account uncertainty

and operating in real-time, and for the ones that do, there is still room for improvement in
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terms of accuracy. In addition, with the emergence of deep learning, more and more methods

tend not to be concerned with this problem anymore and seek to develop a global optimal

policy that will look for each case what could be the best action from the AI at each time step.

Which can provide really good results like for [34] but cannot be extended to other games, just

even other RTS games, without changing a lot of parameters and training the model again for

a huge cost. Also, there is the problem of updates, which can happen often for recent games,

and in this case, without a proper transfer learning system, the model should be learned again.

In contrast, our method could easily be used for other RTS games by adapting the planner that

we use and the pruning.

1.3 Organization of the Thesis

There are two main contributions presented in this thesis. The first one is an online plan

recognition method for RTS games. As we saw in the previous chapter, RTS games are complex

environments, and most of the current plan recognition methods do not scale with the state

space of such games. Moreover, for the few approaches that could scale, like the approach

of Höller et al. [24], they often do not deal with partial observations and assume that the

observed actions are ordered. However, it is not the case for most RTS games, we only get

partial observations, and these observed actions are not always ordered. The plan recognition

method introduced in this thesis handles all these problems and compared to previous work like

[42, 43, 44] that use machine learning to perform strategy prediction in StarCraft, our method

does not use machine learning and thus does not need a set of training data, instead, it requires

expert knowledge. Therefore, it makes it easier to use for games without much data from the

players as the developers have expert knowledge about their game. Our method uses heuristic

planning to compute in real-time different plans that the player might follow in order to achieve

different goals. Then, using the partial observation that we get during the game, we will refine

the different plans according to these observations, prune some plans that we consider as very

unlikely and select the plan and goal that is the most likely to be followed by the player.

The second contribution is a goal recognition method that, compared to most of the existing

goal recognition methods that predict the most likely goal of the observed agent from a set of

possible goals, builds this set of possible goals by observing the agent trying to achieve them.

Often, previous works assume that this set of possible goals for the agent is given for the goal

recognition problem or even plan recognition. However, it is usually not the case, especially in



CHAPTER 1. INTRODUCTION 21

complex or unknown environments. For example, when we are not sure about all the actions

that the agent can execute or if the number of possible goals is just too important. That is why

we developed a method that can infer the set of possible goals of the agent. Our method allies

concept learning with a representation of the environment based on propositional logic that

allows us to generate a hypothesis in the form of a DNF representing the agent’s possible goals.

This contribution is not only related to games but much more general. We observed an agent

performing some task until it eventually achieves its goal. By repeating this kind of observation,

we will get a dataset that we divided into a set of positive examples, which corresponds to the

states where the agent achieved a goal, and a set of negative examples, which corresponds to

the states where it did not. Using the set of positive examples, we will create the concept that

represents the agent’s goal and refine this concept with the set of negative examples.

This thesis is organized as followed. Chapter 2 introduces background knowledge that is

needed for the rest of the thesis, section 2.1 described the main plan recognition approach from

which our method is inspired, and section 2.2 the definitions associated with this approach,

section 2.3 details what concept learning is. Chapter 3 presents the online plan recognition

that we developed for the RTS game StarCraft in section3.1 and 3.2. Section 3.3 presents

the experimental protocol that was used to evaluate our method, the results, and analysis of

this evaluation, and section 3.4 details the possible improvements of this method and some

discussion. The second contribution of the thesis is presented in chapter 4 where we introduce

the problem of inferring an agent’s goals in section 4.1, its formalization, and the algorithm we

developed to solve it. Section 4.2 presents the experiments that we conduct to evaluate this

goal recognition method and then section 4.3 the possible extensions of the method. Chapter

5 concludes this thesis with section 5.1 summarizing the contributions of this thesis, section

5.2 discussing about how to combine our two method in a single framework, and section 5.3

detailing further perspectives.





Chapter 2

Background

In this chapter, we introduce the basic to understand the method presented in this thesis. The

method for plan recognition in StarCraft is inspired by the work of Ramirez and Geffner [14]

so we will detail their method in section 2.1, then, in section 2.2 we introduce some definitions

from their papers that we use.

2.1 Plan Recognition as Planning

In their paper [14], Ramirez and Geffner assume that the agent they observe is perfectly rational

and always follows optimal plans. The observations are sequences of actions, and even if some

actions could be missing because of noise, they assume that the order is the same as it was

when performed by the agent. Following these assumptions, the problem of plan recognition

is then converted into solving a planning problem and a goal recognition problem. They have

a set of possible goals, design an optimal plan to reach each goal from the initial position of

the agent, and then according to the observations, they remove the plans and goals that do

not include them. For instance, if we look at Figure 2.1, here we have a navigation problem.

The agent starts at position ”A” and has three possible goals, to reach ”C”, ”I” or ”K”. By

using planning, three plans will be generated, one to reach each possible goal by the shortest

way, from ”A”. Later, we observe the transition of the agent from ”A” to ”B”, all the plans

are kept as they all include this transition. Then, the transition from ”F” to ”G” is observed,

which leaves out the goal to reach ”C” and its associate plan since the optimal plan to reach

”C” from ”A” is just to go straight. Only the goals ”I” and ”K” are kept, and the respective

plans to reach them.

As stated in section 1.1, despite being fairly simple and convenient, this method has some

22
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Figure 2.1: Plan recognition for navigation

flaws. First, the assumption that the agent is rational and always follows optimal plan is quite

strong and does not work in our case since the agent is a human player and can make mistakes,

especially in such a game where there are a lot of things to plan in real-time. We assume that the

human player does not always follow an optimal plan to reach its goal and can make mistakes.

The fact that observed actions are assume ordered also does not apply to our case. We observe

consequences that we link a posteriori to actions, but without being able to determine their

order. Hopefully, many actions have some preconditions that can help to have an estimation

of the order in which they have been performed. The last, important flaw, that we actually

observe in the example is that their method does not provide any information about which goal

is more likely than the other ones. It just filters the ones not compatible with the observations.

Their work on POMDPs [15] deals with most of these flaws but does not scale for an RTS

game such as StarCraft. This is why the approach described in this thesis follows the ”plan

recognition as planning” paradigm but differs from the original one. Instead, our approach is

similar to more recent ones based on heuristics search to reduce the computation time. It is

an online method that collects observations about actions performed by the opponent player
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(a building or a unit that has been built) and refines the plans previously computed in order

to match the observations. It uses a sub-optimal planner that computes a sub-optimal plan

for each goal and uses pruning along the process to remove the plans and goals that are not

considered anymore. Pruning is done by using heuristic search, we use this also to choose which

goal is the most likely to be followed by the opponent player, when the cost of a plan exceeds

a certain threshold this plan and goal are removed from the set of candidates.

2.2 Definitions

Here are the definitions from [14] that we use too. The third definition is modified, as in our

case, the observations are not always ordered.

2.2.1 Planning Problem

A planning problem is a tuple P = {F, I,A,G} where F is the set of fluents, I ⊂ F and G ⊂ F

are the initial and goal situations, and A is a set of actions ”a” with preconditions, add, and

delete lists Pre(a), Add(a), and Del(a) respectively, all of which are subsets of F.

Here, we assume that for each action a ∈ A there is a non negative cost c(a) and the cost of

a sequential plan π = a1, ..., an is c(π) =
∑
c(ai). A plan π is optimal if its cost is minimum.

The player is assumed to be rational, so to try to follow optimal plans, which means that our

planner should generate optimal plans or at least plans that tend to be optimal in order to

infer the player’s plan. As we explained before, even if the player is trying its best, it is fairly

possible that it makes mistakes as the game is not easy, so this is why the plans do not have to

be optimal, but rather approximate optimal ones.

2.2.2 Plan Recognition Problem

The plan recognition problem is then defined as a triplet T = {P,G, O} where P = {F, I,A} is a

planning domain, G is the set of possible goals G, G ⊂ F , and O = o1, ..., om is an observation

sequence with each oi being an action in A (in our case observations are also consequences of

actions but it is trivial to make the conversion to the action made).

2.2.3 Satisfiability of an Action Sequence

We say that a an action sequence π = a1, ..., an satisfies an observation sequence O = o1, ..., om

if there is a function f mapping the observation indices j = 1, ...,m into action indices i =
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1, ..., n, such that af(j) = oj and Pre(af(j)) ∈ π with ∀ak ∈ Pre(af(j)) k < f(j).

The solution to the plan recognition problem is then given by the goals that admit the

shortest plans compatible with the observations.

2.3 Concept Learning

Concept learning, also known as category learning, is defined by Bruneret al. [54] as ”the search

for and listing of attributes that can be used to distinguish exemplars from non-exemplars of

various categories”. Merrill and Tennison [55], based on component display theory, argued that

concept formation focuses on attributes and examples, where Rosch and Lloyd [56] suggested

that the natural concepts in everyday life are learned through examples rather than abstract

rules. As expected from something as hard as a ”concept” to define, many other researchers

tried to give their own definition of the thing, and we will not go further into the details as it

will be beyond the scope of this thesis.

Generally speaking, in a concept learning task, the learner is trained to classify objects by

learning from a set of example objects and their class labels. The learner simplifies what has

been observed by condensing it in the form of an example. This simplified version of what has

been learned is then applied to future examples. Because the task is somehow similar to a two-

class classification problem, a classification algorithm could be used to estimate how accurate

a concept learning algorithm is. We could train both algorithms with the same data and then,

using a set of testing data, see how the concept learn by the concept learning algorithm is

consistent with it and how the classifier will classify this testing set.





Chapter 3

Online Plan Recognition for RTS
Games

In this chapter of the thesis, we detail the plan recognition method that we developed for Star-

Craft. Using the definitions introduced earlier, in section 3.1 we explain the specific planning

problem that we have to solve and how we solve it. Section 3.2 describes the plan recognition

process under this planning domain. Section 3.3 presents the experimental protocol that we

used to evaluate our method, the results, and analysis of this evaluation. At last, section 3.4

details the possible improvements of this method and some discussion.

3.1 Heuristic Planning in RTS Games

In our case, the fluents composing F are all the resources that a player can get. Here we see

resources in a general way, which means that a resource can be the natural resources of the

game (minerals and gas that workers can gather) or more advanced resources like military units

or buildings. Naturally, advanced resources are harder to get and will need several actions from

the player to get them. The goal of a player will be to gather a certain amount of resources

in the shortest possible time. When we want to reach a goal state in G with the planner, we

can partially give this goal state since there are many possible plans and goal states, but some

resources are more important than others in this case. For example, if the goal of the player

is to have eight zealots (military units) in order to attack its opponent as quickly as possible,

one way to do it could be building workers that will gather minerals, then building a gateway

with one of these workers and then producing eight zealots. However, it is pretty slow to use

only one gateway, so another plan could be to build two gateway and then produce the eight

26
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zealots. It leads to two different goal states because the amount of gateway is not the same

in each plan, but the main goal, which is to produce eight zealots, is not changed. So we just

need to specify the relevant resources that the player wants to get, and the planner will build

the goal state by itself. For instance, Figure 3.1 shows the case of the goal corresponding to a

Protoss strategy called ”Fast DT rush”. This strategy aims to send as fast as possible three

or four Dark Templars (DT) units to kill a maximum of the workers of the opponent before it

can react and thus striking a killing blow to its economy. DT that we can observe on Figure

3.2 are invisible units for the opponent and need to do some special actions in order to reveal

them. So it is crucial for the opponent to anticipate this strategy from the Protoss player. Back

to Figure 3.1, on the left is a possible goal state for this strategy, on the right are the only

resources we need to specify for the planner in order to reach this goal state. The resources

colored in yellow are preconditions of the ones in red so we do not need to mention them to

the planner, it will generate them in order to fulfill the condition leading to this goal state.

Gateway is also a precondition to produce dark templars, but in this case, we specify it to the

planner because we want precisely two gateways, and not only one.

Figure 3.1: Possible goal state for a ”Fast DT rush” strategy

Specific planners have been developed for RTS games. The one developed by Chan et al.

[57] is interesting for us as it runs in a low polynomial time and offers the same performance
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Figure 3.2: The dark templar, a Protoss military unit
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as an experimented human player. They use sequential planning based on means-end analysis

to generate a plan that will reach the goal with a minimum number of actions and natural

resources, and next, they use scheduling to adapt this plan to concurrent actions that can be

performed in the game. We adapted this one for our planning problem, but other planners could

be used to see the planner’s impact on our method. Algorithm 1 is the sequential planner based

on mean end analysis from Chan et al. [57] and using the definitions previously introduced:

S is the current set of resources owned by the player and G is a set of values gi that we want

to reach for specific resources i, Ri being the current amount of each resource. The algorithm

operates by selecting a sub-goal (in this case, the sub-goal is to reach the desired amount for

one of the resources in the goal), decreasing the difference between the initial state and the

goal state, and then executing the necessary actions to achieve the sub-goal. Then from the

new state which satisfies the sub-goal, the process is recursively applied until we reach the goal

state. The output: Plan is a sequence of actions where each action will start after the previous

one in the sequence is completed.

Algorithm 1: MEA

input : S, G
output: Plan

1 if ∀i, Ri ≥ gi then
2 return [ ];
3 end
4 Ri ← some resource where Ri < gi in S;
5 Ai ← action to produce Ri;
6 ri ← amount of Ri in S;
7 α← units of Ri produce by Ai;
8 k ← roundUp((gi − ri)/α);
9 Act← sequential plan with Ai repeated k times;

10 Gp ← [ ];
11 for preci in Pre(Ai) do
12 if preci not satisfy in S then
13 Gp ← add(preci);
14 end

15 end
16 Precon←MEA(S,Gp);
17 Plan← concatenate(Precon,Act);
18 update S with Del(a) and Add(a)∀a ∈ Plan;
19 return concatenate(Plan,MEA(S,G))

The algorithm 2 is the scheduler also described by Chan et al. [57], where Plan is a

sequential plan where the actions are sorted by their starting times in increasing order. For
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each action Ai ∈ Plan, we check the earliest possible time to start this action in Plan while still

fulfilling the preconditions Pre(Ai). Assuming that Ai starts at time t, and the state R−(t) is

the resource state at time t before the effects of all actions that end at time t are added to the

resource state, and R+(t) is the resource state after the effects are added. Obviously, Pre(Ai)

are fulfilled by R+(t). If they are also fulfilled by R−(t), this means the fulfillment of Pre(Ai)

is not due to any actions that end at time t, and we can now move action Ai to start earlier

than t, to the previous decision epoch (time where an action starts or ends).

Algorithm 2: Scheduler

input : Plan(sequential)
output: Plan(parallel)

1 for Ai in Plan do
2 t← starting time of Ai;
3 R−(t)← resources state before the effect of actions finishing at t;
4 while Pre(Ai) satisfied by R−(t) do
5 move Ai at t in Plan;
6 t← previous decision epoch;

7 end

8 end
9 return Plan

Algorithm 3 is the complete planning algorithm. It is a modified version of the one in [57]

that adds more intermediate goals, as in the original version, they just add the best intermediate

goal. It first computes a sequential plan to reach the goal G with MEA and then adds concur-

rent actions to this plan with Scheduler, and the scheduler will also return a set of bottleneck

resources that were used a lot in the plan (like some specific building or units), these resources

become a bottleneck when they are the preconditions of a specific threshold number of actions.

Using this set of resources, we will generate intermediate goals to increase the amount of these

resources, and we will check if we can decrease the makespan of the basic plan to reach G by

first reaching some of these intermediate goals. We keep incorporating intermediate goals until

we cannot improve the makespan of the plan anymore.

3.2 Plan Recognition Method

In this plan recognition problem, we observe the opponent player. First, we will generate the

possible plans that the opponent player could use, using Algorithm 3, for each goal, we generate

one plan to reach it. We will then get incremental observations about the opponent player’s
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Algorithm 3: Online planner

input : S, G
output: Plan

1 Plan← Schedule(MEA(S,G));
2 int G← (G1, ..., Gn) (a list of intermediate goals to create additional resource);
3 bestGoalsList←[ ]
4 while There is improvement do
5 for Gi in int G do
6 P0 ←MEA(S,Gi + bestGoalsList);
7 S′ ← state after executing P0 from S;
8 P1 ←MEA(S′, G);
9 Plani ← Schedule(concatenate(P0, P1));

10 if makespan of Plani < makespan of Plan then
11 Plan← Plani;
12 best goal← Gi;

13 end

14 end
15 bestGoalsList← add(best goal);
16 int G← remove(best goal);

17 end
18 return Plan

actions since the method is designed to work online. For each new observation, we check if it

satisfies the current set of plans. For each plan, we will check if the observation was part of the

plan. As we say before, observations are consequences of actions; for instance, if we observe

”Marine” at 2 minutes of the game, we deduct that the action ”Build Marine” has been done

and that the action ”Build Barrack” that fulfill the precondition of ”Build Marine” has been

done too, and both of them before 2 minutes, but we do not know when exactly. For simplicity,

we consider that another similar observation, ”Marine”, is the consequence of a different action

”Build Marine”, even if this observation happens later. It makes sense since the human player

will remember where it has observed something and can eventually tell if the unit it observes is

a new one or one that has been observed before. So, we check if the action was part of the plan.

If it is the case, then the plan is not changed. Otherwise, we incorporate this action in the plan

by computing a new plan going through this action. Next, we use a heuristic search to choose

which goal is the most likely to be followed by the opponent player and eliminate the irrelevant

ones to avoid high computational complexity. In previous work, the cost difference between the

plan to reach a goal when including the observations and the optimal plan to reach the same

goal has often been used as a way to estimate the likelihood of a goal [15, 20, 21]. Based on this
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previous work, we also use a heuristic that follows the same principle. The heuristic that we

use is then based on a cost that we will compute for each plan; this cost is a three-dimensional

vector where these dimensions are respectively the cost of the plan in terms of minerals, gas,

and time. For a plan π = a1, ..., an where action ai has a starting time tsi and an ending

time tei , we have c(π) = (cm(π), cg(π), ct(π)) with cm(π) =
∑
cm(ai), cg(π) =

∑
cg(ai), and

ct(π) = max(tei ). Then we use a three dimensions space with the dimensions being respectively

the costs in minerals, gas, and time, and for each possible goal gi that the opponent player is

trying to achieve, we will project into this three dimensions space the coordinate of the cost of

the plan πi (plan to reach gi)) that we compute previously and the cost of the plan πopt
i the

optimal plan to reach gi. Here we give more importance to the time, as we believe that a player

will always prioritize a faster plan regardless of the cost in terms of minerals or gas, as is it

often the case in RTS games, so a plan will be considered as optimal if it achieves its goal in the

shortest amount of time. In our case, the optimal plan is the first one that has been computed

to reach the goal gi without modifying it to include the observations. We then draw a sphere

of center c(πopt
i ), and radius ri = δ · d(c(πopt

i ), origin) with origin being the coordinate of the

origin point in the three dimensions space, d(a, b) the three dimensions distance between the

point a and b, and δ ∈ [0, 1[. We only keep the goal gi and the plan πi in our set of candidates

if d(c(πopt
i ), c(πi)) < ri. In other words for each plan πi we compute this sphere of radius ri

and check if the c(πi) coordinate point is included in the sphere or not to decide if we should

remove πi and its associate goal gi from our set of candidates. The process keeps going for

each new observation, gradually restricting the set of candidates. The plan and the goal that

have the minimum distance d(c(πopt
i ), c(πi)) are considered to be those currently being followed

by the opponent player. The parameter δ is a constant fixed at the beginning of the whole

process, it represents the sensitivity of the pruning, low value of δ means more pruning but

potentially less accurate result. We chose to set ri = δ · d(c(πopt
i ), origin) in order to handle

the fact that for a costly goal, the margin of error to reach it is assumed higher than for a

less costly goal, which means that the longer a plan is, the more different it could be from the

actual plan of the opponent player (assuming these two plans reach the same goal). In Figure

3.3 we can see an example of how this heuristic works for a goal gi with a cost of opti for the

optimal plan to reach gi. The plan to reach this goal is pruned if the projection of its cost in

the three-dimensional space is not included in the sphere of radius ri.

One drawback of this pruning method, though, is that the cost of a plan in terms of minerals
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Figure 3.3: Visualization of the three-dimensional cost heuristic

Figure 3.4: Illustration of the plan recognition process
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and gas does not evolve linearly with time. We can multiply the cost in terms of time by a

specific factor, so it keeps up with the two other costs. However, this factor has to be adjusted

for each prediction horizon as the cost in minerals of a plan often increases exponentially with

time. That can lead to cases where our planner could build a plan for a specific goal that

takes twice as much time as the optimal plan to reach this goal. However, because the cost

in terms of minerals is much higher than the cost in terms of time of the plan, it will not be

pruned as the radius ri depends on the three different costs, and one of these costs can be

insignificant compared to the others. We used a second heuristic to offset this and compare

the performance of both heuristics in the next section. The second heuristic is also based on

the cost of the plan in terms of time, mineral, and gas, but this time for each cost, we will

check that the value is within a certain ratio δ of the cost of the optimal plan. For instance,

taking the same plans as before, πi and πopt
i the optimal plan to reach gi, and δ = 0.2. The

difference |c(πi)− c(πopt
i )| <= δ · c(πopt

i ), and this for the three different cost. In other words,

with δ = 0.2, it means that the cost of the plan πi should not differ from more than 20% of the

cost of the plan πopt
i in terms of time, minerals and gas. Then for all the remaining plans after

pruning, we will choose the most likely to be followed by the agent using the mean squared

error: min(|ct(πi)−ct(πopt
i )|2 + |cm(πi)−cm(πopt

i )|2 + |cg(πi)−cg(πopt
i )|2), the plan minimizing

this error will be the chosen one. The mean square error allows us to penalize more the plans

that will differ from the optimal ones by having just one of the costs far from the optimal one.

Instead, we will prefer plans with a slight difference for each cost as supplementary action often

increases the plan’s cost in more than just one way. Noted that for this heuristic, we could take

a vector δ that will specify how far we could be from the optimal for each cost (30% for the

cost in minerals and gas and only 15% for the cost in time, for instance) but for now we just

use single value δ. For clarity we will call the first heuristic ”three-dimensional heuristic” and

the second one ”mean-square heuristic”.

Figure 3.4 is a Schema that represent our full plan recognition process, we start from a set of

possible goals {g1, ..., gn}, our planner will generate a plan Pi and an optimal plan opti for each

goal gi. For each new observation we check if the different plans Pi satisfy this observation, in

Figure 3.4 the plan Pn does not satisfy the observation Oi and has to be modified, it will be the

concatenation of the plan P 1
n that will reach an intermediate state including Oi from the initial

state I and another plan P 2
n that will reach gn from this intermediate state. This modification

of Pn will increase the distance d(optn, Pn) in this example, and that will cause Pn and gn to
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be removed from the possible plans and goals during the pruning.

3.3 Evaluation

3.3.1 Methodology

Labeling Data:

We use a set of replays from iCCup users 1 available on the personal website of Gabriel Synnaeve.

These replays are store in the format of log files where we can see each action that has been

executed by the players, with the ID of the player performing the action, the location of the

action, and at what time it has been performed. And this from the beginning to the end of

the game, knowing that one replay corresponds to one game between two players. There are

three civilizations that can be played in StarCraft: Protoss, Zergs, and Terrans, each with its

own gameplay. Here we focus on inferring the opening strategy that the Protoss player will

use, opening because we stop using the replay after that, the in-game time is superior to six

minutes. Since only the replays, including a Protoss player, interest us, we used a data set of

445 replays of Protoss and Protoss (PvP) matches, 2408 Protoss and Terran (PvT) matches,

and 2027 Protoss and Zergs (PvZ) matches, so a total of 4880 replays. We used clustering to

group together the replays where the Protoss player used a specific strategy. Then for each

cluster, the replays are labeled with the name of the strategy corresponding to the cluster.

The labeling is performed on each matchup (a matchup is a match between two civilizations)

distinctively as one strategy will not be executed in the same way depending on the matchup.

The first labeling method that we used was the same as [44], expectation-maximization (EM)

using the R package Mclust [58] and using the same features and label as them. Replays are

labeled with the statistical appearance of key features with a semi-supervised method. The

selection of the features along with the opening labels is the supervised part of the labeling

method. The knowledge of the features and openings comes from expert play and the StarCraft

liquipedia2, a wiki of the game based on knowledge from thousands of players. The features

are the times at which a specific action should be performed by the player if the player intends

to follow a specific strategy. For example, the feature corresponding to the strategy that we

saw earlier, ”Fast DT rush” is the early apparition of Dark Templar units in the game. One

replay can get several labels first, but then the most likely one is chosen among these labels.

1http://emotion.inrialpes.fr/people/synnaeve/iccup users.7z
2https://liquipedia.net/starcraft/Category:Protoss Build Orders
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We invite the reader to check the paper of Synnaeve and Bessière to see the method more

in detail. Table 3.1 details the different labels and features corresponding. We also used

Table 3.1: Labels and features for the expectation-maximisation clustering method

Labels Features
speedzeal LegEnhancements, GroundWeapons+1
fast dt DarkTemplar
nony Dragoon, SecondGateway, SingularityCharge
reaver drop Reaver, Shuttle
corsair Corsair
templar PsionicStorm, HighTemplar
two gates SecondGateway, Gateway, Zealot

Figure 3.5: Graph for the rule set labeling method

rule set labeling like [42], but with different rules and labels. In this case, for each replay, we

start at the root of the graph shown in Figure 3.5 and the first action appearing in the replay

corresponding to one of the children nodes will make us going into this node. We repeat this

process until reaching a leaf, and each leaf corresponds to a label. We did this to see if we

can obtain more balanced data as with EM labeling, some labels are clearly predominant. It

turned out that even with the rule set labeling, some labels are still predominant, although less

than using EM. It is probably due to the fact that some strategies are more popular among
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players than others. For both of the labeling methods, there were some replays that did not

get any labels. We removed them from the dataset. Each replay is labeled with only one label,

and each label corresponds to one and only one goal that we designed manually according to

the label and expert knowledge from the website liquipedia 3. The goals are the ones use as

input for our algorithm. Finally, after filtering the data in order to get a balanced dataset for

experiments, we only keep 800 replays for PvT replays, 800 for PvZ replays, and 400 for PvP

replays. The different labels and their distribution in the dataset use for experiments can be

seen in figure 3.6 for EM labeling and Figure 3.7 for the rule set labeling. After seing the poor

distribution of the labels when using EM method for clustering, we decided to only use rule set

labeling. We focus on opening strategies because they are the most relevant, after a certain

time in the game strategy inference is less useful as the players have enough natural resources

to do whatever they want, but in the first three to eight minutes using its natural resources in

the smartest way is really important.

Metrics:

We use five different metrics to evaluate the performance of our method:

- The precision, which can be seen as the ability of the classifier not to label as positive a sample

that is negative.

precision =
Tp

Tp+ Fp
(3.1)

- The predictive accuracy, it is the fraction of successfully predicted goals, and it is calculated

as follows:

predictive accuracy =
Tp+ Tn

Tp+ Tn+ Fn+ Fp
(3.2)

- The recall, which is the fraction of positive examples that are successfully classified as such

by the algorithms, we calculated as follows:

recall =
Tp

Tp+ Fn
(3.3)

- The F-1 score, which can be interpreted as a weighted harmonic mean of the precision and

recall, here is the formulas to compute the F-1 score:

F − 1 score =
2

recall−1 + precision−1
= 2 · recall · precision

recall + precision
(3.4)

3https://liquipedia.net/starcraft/Category:Protoss Build Orders
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(a) PvP (b) PvT

(c) PvZ

Figure 3.6: Labels distribution for the three matchup using EM
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(a) PvP (b) PvT

(c) PvZ

Figure 3.7: Labels distribution for the three matchup using rule set
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- The number of missing buildings in the plan returned by our method compared to the actual

plan of the Protoss player (we only count buildings and not units as units could have been

made to adapt to a specific event in the game, where buildings are more relevant for the build

order of the player).

Where Tp, Tn, Fp, and Fn are respectively, True Positive, True Negative, False Positive, and

False Negative. The precision, recall, and F-1 score are computed for each label, and then a

weighted average is computed according to the proportion of each label in the testing dataset.

We simulate the fog of war (uncertainty) by varying the number of actions observed, ranging

from 80% of observed action until 20%. We could have directly use the actions that were only

observed by the player playing against the Protoss player since they are recorded in the replay

but it is harder to control the noise in this way. The observations that we get from the replay

are all the buildings and units that the Protoss player built except worker units, as they are less

relevant in our case. We get the observation as follows: first, we take the list of all the actions

that the opponent player has done before six minutes in the game or until it gets its height first

military units. We remove part of these actions according to the noise (if we use 30% noise,

then we remove 30% of them). We simulate scouting, usually two or three times for one replay.

The scouting is spread over the replay’s duration, so for a replay that we stopped at six minutes,

we will first get observation at two minutes, then at four minutes, and finally at six minutes.

All the remaining actions (after applying the noise) that have been done before the first phase

of scouting will be labeled with a timing corresponding to this phase of scouting, the ones that

have been done between the first and second phase of scouting will get a label corresponding

to the second phase of scouting, and the other ones will correspond to the timing of the last

phase of scouting. Figure 3.8 illustrates this process, on the top is the list of actions that have

been done by the player, in this case, we assume that we could only scout 50% of these actions

(corresponding to 50% of noise) so half of the actions are removed randomly. Then, seeing that

the sequence of actions lasts for 180 seconds (timing of the last action), scouting is performed at

each third of the interval so, 60, 120, and 180 seconds. It means that for each action done before

60 seconds we observe its consequence during the first scouting phase so at 60 seconds and so

on for the other actions. The list at the bottom of the figure is the actual list of observations

that will be used for the plan recognition method. This process models the fact that because of

the fog of war we do not know precisely when the actions have been done since the consequence

is often observed later, except in some lucky case when the opponent player happens to start
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Figure 3.8: Simulation of scouting

an action in the line of sight of one of our units, then, we can see it directly. Note that, Build

Gateway is a precondition of Build Zealot and knowing that Build Zealot takes 20 seconds, we

could infer that the timing of the action Build Gateway was before 40 seconds instead of 60

seconds, we use such a process to extract complementary information from the observations.

From the list of observations that we get, we infer all the actions that should have been done to

fulfill the precondition of the observed actions with a timing corresponding to their respective

duration and the order in which they should be executed. For instance, in figure 3.8 we have

Build Stargate at 180 seconds in the final list of observations; this action takes 44 seconds to

be performed and has Build Core as a precondition, so we will infer Build Core at 136 seconds.

The timing of some observed actions can be refined too, as we said with Build Gateway that

could take place at 40 seconds in the example instead of 60. By collecting the observations like

this, we actually end up with a situation very close to what could happen in a real game of

StarCraft as a player need to scout the opponent base to see what the opponent is doing and

cannot be sure about when a building or a unit that it has scout has been built. The player can

only perform inference in the same way as we do and use its past knowledge about the game to

estimate the timing of the action. Where Weber and Mateas [42], and Synnaeve and Bessière

[44], that conducted similar experiments on the same dataset did not use such a process and
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instead just randomly remove some observation to simulate noise but kept the exact timing for

the remaining ones. That could bias the result, as it is not quite what happens in a real game,

and their methods are based on learning specific timing for each action from the replays, which

indeed works better when keeping the exact timing of the observed action. We will see this in

more detail later.

Finding the Good Parameters δ:

We first conducted some experiments to determine which value for δ we should use for both

heuristics. To this end, we use a set of 200 PvT replays and 20% to 80% of noise. Here we just

measured the predictive accuracy and execution time of our plan recognition algorithm. Then,

we compute a ratio accuracy
exetime , intuitively, the higher the value of the ratio is, the better, as it

means the accuracy increases or the execution time decrease. This ratio makes sense since the

predictive accuracy does not vary too much for the different values of δ, so we cannot get a

case with 100% of predictive accuracy and 5 seconds of execution times that will give the same

ratio as 50% of predictive accuracy and 2.5 seconds of execution time, but 100% of accuracy is

indeed more interesting. The results have been normalized by taking the lowest value among

the ratio as lower bound 0 and the highest one as upper bound 1. Of course, the normalization

is different for both heuristics. Figure 3.9 shows the result for the three-dimensional heuristic.

We can see that a δ = 0.3 seems to provide the best results. In fact, for δ = 0.2, the pruning

is too strong, and thus the accuracy decreases too much, δ = 0.3 provides almost the same

accuracy as with higher values of δ but with a faster execution time. For δ > 0.5 the results

become similar most of the time. In the case of the mean-square heuristic, δ = 0.2 provide the

best ratio, as shown in figure 3.10. The predictive accuracy is a bit better with δ = 0.3, but

the increase in terms of execution time is more significant than this gain. Past δ = 0.3 mainly

the execution time increase and not the accuracy as it seems that the relevant plans are often

kept, and only the useless ones are pruned.

Based on these results, we decided to take δ = 0.3 for the three-dimensional heuristic and

δ = 0.25 for the mean-square heuristic for the following experiments. When using the three-

dimensional heuristic, we also use a coefficient 3 to multiply the cost in times ct(π)i and a

coefficient of 2 to multiply the cost in gas cg(π)i of each plan πi in order to compensate for the

very high cost in minerals of the plan.
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Figure 3.9: Comparison of the different values of delta for the three-dimensional heuristic

Figure 3.10: Comparison of the different values of delta for the mean-square heuristic
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Algorithms for Comparison:

In their papers, Weber and Mateas [42] shown that k-NN algorithms provide the best predictive

accuracy with noisy data, so we used this algorithm for comparison. We also use the Random

forest algorithm to get another baseline. For both of these algorithms, we use the Python

implementation from the library scikit-learn [59]. For k-NN, we use k = 2 neighbors to be

robust against noise and still keep a good accuracy, and then the default setting proposed by

scikit-learn. For Random forest, we used 28 trees, and fixed the size of the random subsets of

features to consider when splitting a node to 11, plus, we did not put any limitation on the

depth of the trees. These parameters for the two algorithms come from empirical experiments;

we found out that these parameters provide the best results with the right balance between

performance with high and low noise. These algorithms use a similar input as in [42], a feature

vector with the timing of the first apparition of each unit and building during the replay and

the second apparition of some specific buildings (like Gateway). We use 75% of the dataset for

each matchup as training data and the 25% remaining as testing data to perform validation.

However, as we said before, the feature vectors that are used to perform validation are built

from noisy observations (from the scouting simulation) and thus do not contains the exact

timing of the actions that have been observed but rather the timing that deduced with our

inference process. Where in their paper Weber and Mateas do have the exact timing for the

actions that they observed. For our method, we provide results with both heuristics introduced

before in order to see if one performs better than the other.

3.3.2 Results

Because we randomly remove some observations from the replay in order to simulate noise, the

predictions can be very good or very bad on the same replay file, depending on the observations

that have been removed. Thus, to offset this stochasticity, we do five runs on each replay for the

PvT and PvZ dataset and ten runs for the PvP dataset. Each data point on graphs resulting

from the experiment corresponds to the average of one thousand predictions.

The first important thing to notice is that the predictive accuracy (that we simply call

accuracy) has the same value as the recall for all matchups. So here, the recall that we compute

is actually the weighted recall, which is a weighted average of the recall for each label, and it

happens that it is the same value that the accuracy in our case. This is something that can

happen in a multi-classification problem. Figure 3.11 shows the precision, recall, accuracy, and
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F-1 score for the PvT matchup with the rule-set labeling. It is actually the matchup where our

algorithm performs the closest to k-NN for almost all the metrics except the precision where

K-NN is a little better. We can see that Random forest does perform worse than the other

algorithms on this specific matchup. For this matchup, the different metrics lower when the

noise increases, and this in the same way for all the algorithms. It is obviously a hard prediction

problem as none of the algorithms reach 50% of predictive accuracy even when there are not

that many missing observations. The PvT dataset is also the most balanced one in terms of

strategies. This puts all algorithms on an equal footing as the prior distribution of the different

strategies does not have a relevant impact on the prediction in such a case. Both the three-

dimensional heuristic and the mean-square heuristic give similar results, with a slight edge for

the three-dimensional heuristic.

Figure 3.12 shows the precision, recall, accuracy, and F-1 score for the PvZ matchup with

the rule-set labeling. For this matchup, we can see that Random forest performs better than

the other algorithms. When we reach more than 70% of noise, though, our algorithm does

perform in a similar fashion as Random forest. This dataset is less balanced than the previous

one, and we could see in figure 3.7 that four strategies really dominate the dataset in terms of

distribution (Two gates, Fast dt, Speed Zeal, and Corsair). It happens that, for this specific

matchup, the plans that players will follow to achieve their strategy are often similar in terms

of action for the strategies Two gates, Fast dt, and Corsair. What will change is the execution

order of these actions, and this is something our algorithm struggle with when Random forest

and k-NN have less problem since they are trained based on the timing of the actions. So for

this matchup, Random forest and k-NN do outperform our method.

As for the PvP matchup, displayed in Figure 3.13, we observe that when the data are not

well balanced, our algorithm does not perform as well as Random forest and k-NN in terms

of accuracy, though this changes when we reach 50% of noise, in fact, the accuracy of our

algorithm increases with the noise. This is not shown on the graph, but when we take the

two best predictions of our algorithm instead of only the first one, the accuracy starts around

70% with low noise and then slowly decreases to 60% when we reach the maximum amount of

noise. It means that we observe this strange result of accuracy increasing with noise because

our algorithm hesitates between two goals that probably have a very similar plan to reach each

of them, and our algorithm will often pick up the wrong goal. Then, when the noise increases,

our algorithm will fail less often at choosing the right goal between these two candidates. The
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confusion most likely appears between the goals Two gates and Speed Zeal since they are very

similar in terms of resources to achieve for the player in this matchup. The precision, though,

follows a more usual pattern and decreases with noise for our algorithm, and our algorithm

actually achieves 50% more precision on average than k-NN or Random forest. When looking

at the F1-score, our algorithm does perform better than k-NN and Random forest as soon as

we reach more than 30% of noise, which is expected a the F1-score is a kind of average of the

recall and precision.

An important fact is that the PvT matches are the ones with the most ”pure” strategies.

By pure, we mean that the player playing this game almost only performed actions related to

the strategy that they were following, where for the other matches, like PvZ or PvP, the players

often had to perform actions to react to the behavior of the opponent and these kinds of actions

are not part of their strategy most of the time. It could disturb our algorithm by leading it to

confuse the strategy the player is following with another strategy that includes these ”parasite”

actions. It is a reason why the accuracy of our algorithm increases with the noise for the PvZ

and PvP matchup. As the noise increases, the number of parasite actions decreases, and our

algorithm makes fewer mispredictions. Another factor that could explain these strange curves

is pruning. In fact, when the noise is low, and there are a high amount of parasite actions,

our algorithm often prunes some plans and goals too early as these plans and goals might be

more consistent with the observations later on. Sometimes, the actual plan and goal are prune

because of parasite actions, and indeed, the prediction will be wrong. However, it happens

less often as the noise increases, thus decreasing the number of parasite actions. Even though

the percentage of these parasite actions will stay the same among the observations since we

randomly remove actions from the list of observations. Since we get fewer observations, the

absolute number of these parasite actions will decrease in the plan inferred by our algorithm,

and we are less likely to prune the actual plan and goal before the final prediction. It does

not happen for the PvT matches, in fact, in these matches, it is often the Protoss player that

takes the first initiative, so the Protoss player is often left free to follow its strategy without

interruption, where for PvP and PvZ the other player might take the initiative more often and

thus forcing the Protoss player to react and perform actions not related to its initial strategy.

In addition, k-NN and Random forest have an edge when the labels are unbalanced. These two

methods naturally handle priors about label distribution since they learn it from the training

data. It gives an advantage to these two methods in the PvZ and PvP matchup. Our method
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does not take this into account as we believe that prior are suggest to change according to many

factors, especially in games where there are some trends in some specific strategies sometimes.

By including such a prior, the result in the PvZ and Pvp matchup would surely be better

than currently for our method. Moreover, it could also fix this strange phenomenon of having

an increasing accuracy with noise for the PvP matchup. More details on the results can be

seen in tables 3.2, 3.3 and 3.4, since the accuracy and the recall are shown to be equal in our

experiments, we only put the accuracy in the tables.

Table 3.2: Average precision, accuracy, and F-1 score for the PvT matchup using rule-set
labeling

Precision Recall F-1 score
Noise 3D MS k-NN Random

forest
3D MS k-NN Random

forest
3D MS k-NN Random

forest

20.0 42.3 40.9 58.3 54.4 49.3 43.9 54.3 38.1 43.0 39.1 51.2 39.6
25.0 40.2 41.2 55.9 54.1 50.4 44.4 51.1 36.8 43.2 39.4 48.2 38.8
30.0 42.0 42.7 55.8 54.1 50.3 43.4 50.1 32.8 44.0 40.1 46.9 35.1
35.0 37.5 38.1 56.7 56.0 49.0 45.0 49.8 28.8 42.0 40.7 46.8 30.7
40.0 43.5 41.1 54.8 51.5 48.2 43.1 48.4 28.0 41.7 39.0 45.1 29.2
45.0 41.1 38.6 50.9 50.0 48.5 43.4 43.8 26.4 42.2 39.6 39.9 27.3
50.0 41.7 39.8 49.2 45.1 46.6 43.2 42.7 23.9 40.6 39.4 38.0 23.2
55.0 36.5 36.1 46.6 50.8 44.9 40.4 39.3 22.6 39.4 37.2 34.3 22.4
60.0 35.5 35.0 51.1 57.4 43.5 39.8 40.6 23.5 37.8 36.4 35.6 23.2
65.0 35.7 35.3 45.7 55.1 43.0 40.8 36.5 23.4 37.5 36.9 31.1 21.6
70.0 37.2 37.8 50.4 46.9 41.3 41.9 35.7 22.4 36.3 37.9 30.7 18.2
75.0 36.7 37.4 43.4 36.1 37.2 38.0 32.8 23.3 32.8 34.0 26.7 17.8
80.0 35.0 34.6 39.7 42.8 35.2 34.9 31.2 22.2 30.2 30.5 24.0 16.0
85.0 35.3 34.7 42.5 51.3 31.7 31.6 27.9 21.4 26.1 26.6 20.1 13.3
90.0 37.0 35.5 32.0 32.9 26.0 25.1 23.5 19.2 18.3 18.6 13.5 10.7

Most of the results show that our method performs better than Random forest or k-NN

when the noise reaches 50% or more, otherwise Random forest and k-NN perform a bit better.

The fact that the replays are balanced also seems to benefit our method that struggles when

the replays are not balanced because our method does not use any prior about the opening

strategies distribution. Our method is more sensitive to the others to the appearance of actions

that are not directly related to the current strategy of the player. However, on the other hand,

it is also less sensitive to the timing of actions than usual classifiers like Random forest and

k-NN, this is why the performance of our method is better than the others when the noise is

important. Also, an essential factor to consider is that our method does not need that much

training data. We could directly learn the possible goals from expert knowledge, for these
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(a) Precision (b) Recall

(c) F-1 score (d) F-1 score

Figure 3.11: Average precision, recall, accuracy, and F-1 score for the PvT replays, at 5 to 6
minutes in-game time, using rule set labeling.
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(a) Precision (b) Recall

(c) F-1 score (d) F-1 score

Figure 3.12: Average precision, recall, accuracy, and F-1 score for the PvZ replays, at 5 to 6
minutes in-game time, using rule set labeling.
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(a) Precision (b) Recall

(c) F-1 score (d) F-1 score

Figure 3.13: Average precision, recall, accuracy, and F-1 score for the PvP replays, at 5 to 6
minutes in-game time, using rule set labeling.
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(a) PvT (b) PvZ

(c) PvP

Figure 3.14: Number of missing buildings in the most likely plan that we inferred compared to
the actual plan that the Protoss player followed, at 5 to 6 mins in-game time, using rule set
labeling.
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Table 3.3: Average precision, accuracy, and F-1 score for the PvZ matchup using rule-set
labeling

Precision Recall F-1 score
Noise 3D MS k-NN Random

forest
3D MS k-NN Random

forest
3D MS k-NN Random

forest

20.0 47.8 51.7 65.8 78.9 36.9 23.7 59.9 76.6 38.0 25.8 59.1 74.9
25.0 48.1 47.8 62.6 76.0 36.9 24.3 57.1 72.8 38.5 26.1 56.3 71.2
30.0 46.2 49.0 60.9 75.1 37.1 24.7 56.7 72.1 37.7 25.8 55.3 70.0
35.0 46.2 50.1 62.1 69.8 36.3 27.3 55.4 66.8 36.5 27.7 54.0 64.3
40.0 43.3 47.7 58.5 65.3 34.8 26.5 51.3 62.4 34.3 27.0 49.9 60.2
45.0 40.8 46.0 60.3 63.0 34.8 27.9 49.8 60.1 33.0 26.7 48.1 58.8
50.0 36.8 41.2 57.2 58.3 33.0 27.8 45.8 55.5 30.6 25.8 43.9 53.5
55.0 38.4 50.6 55.4 54.1 33.3 29.7 43.2 51.3 30.3 27.7 40.4 50.3
60.0 34.7 40.8 53.2 49.4 32.6 30.8 39.3 45.2 28.0 26.4 35.9 44.7
65.0 34.8 45.5 55.2 48.3 32.3 31.1 39.0 43.3 27.4 26.6 35.0 42.5
70.0 28.5 30.2 46.5 42.1 31.4 31.1 33.8 35.5 24.9 24.2 27.2 35.2
75.0 28.9 36.8 53.3 39.1 30.1 31.1 31.4 32.5 22.1 23.3 24.1 31.3
80.0 29.7 41.0 48.7 35.9 29.2 30.8 29.9 30.9 20.1 22.1 21.0 28.2
85.0 25.9 28.3 48.7 33.8 28.9 30.2 26.2 29.9 18.7 20.3 14.3 26.1
90.0 17.8 22.0 42.2 32.3 27.3 28.6 25.5 26.7 15.7 17.3 12.2 21.6

experiments, we did both. We design each possible goal by computing the average buildings

and units that the player has after 5 to 6 minutes for each label, and we refine it with expert

knowledge. However, we can do without the training data, we just need to know the main units

and building that the player is aiming for and estimate how many. The performance of our

method could decrease a bit but will still be far better than Random forest or k-NN without

training data. There is no significant difference between the three-dimensional heuristic and

the mean-square heuristic, though the three-dimensional one does perform better most of the

time. This slight difference is due to the fact that for some of the goals (especially Two gates),

the cost of the plan in terms of gas is very low. Suppose there is an observation of an action

that increases this cost. In that case, even if it is just one action, it might multiply the cost by

two, so the mean-square heuristic will prune this possible goal where it will not be prune by the

three-dimensional heuristic. However, we needed training data to get the good parameters for

the three-dimensional heuristic as the plan’s cost in terms of minerals and gas is not increasing

linearly with time, as stated before. So we needed the training data to find the good factors to

multiply each cost and make them equivalent. Nevertheless, that is not the case if we use the

mean-square heuristic, we developed this heuristic to offset this problem.

For the plan inference, we can see the result in Figures 3.14 for the case of PvT there are
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Table 3.4: Average precision, accuracy, and F-1 score for the PvP matchup using rule-set
labeling

Precision Recall F-1 score
Noise 3D MS k-NN Random

forest
3D MS k-NN Random

forest
3D MS k-NN Random

forest

20.0 61.3 59.6 44.2 34.4 30.9 24.9 50.2 48.5 36.2 29.0 45.9 36.8
25.0 64.4 62.9 41.4 33.2 34.1 28.2 48.0 47.4 40.5 33.5 43.3 36.2
30.0 61.8 62.6 41.0 35.4 33.0 28.4 48.1 46.6 39.3 34.1 43.2 36.3
35.0 62.6 62.6 39.6 31.0 36.4 30.0 46.6 43.8 42.9 35.6 41.7 35.2
40.0 63.3 62.4 39.6 36.9 40.9 34.5 46.1 43.5 46.6 40.4 41.2 35.9
45.0 60.2 62.4 35.0 32.5 42.9 36.2 42.4 42.5 48.1 42.6 37.4 34.2
50.0 62.3 64.4 36.4 35.4 45.4 40.1 42.4 43.2 51.0 46.2 37.8 35.6
55.0 58.9 59.7 34.0 29.8 43.9 39.5 42.0 40.9 49.0 44.5 35.8 34.3
60.0 58.1 58.3 33.4 37.0 45.9 42.4 42.2 42.6 50.3 46.4 36.4 35.6
65.0 57.3 57.7 32.1 36.9 49.7 45.5 40.9 43.5 52.6 48.6 35.2 35.7
70.0 54.2 53.6 33.2 45.9 49.5 45.8 38.6 42.4 51.2 47.1 33.3 35.5
75.0 51.6 52.2 28.1 36.9 49.5 47.7 35.5 41.5 49.7 47.7 30.5 34.6
80.0 50.9 50.6 30.6 36.8 51.9 50.5 35.9 40.4 47.8 45.8 32.1 33.1
85.0 52.8 55.7 30.0 41.4 52.6 52.1 35.4 33.5 47.1 45.0 30.8 29.1
90.0 47.6 56.8 31.2 21.9 51.1 51.7 37.2 21.6 39.9 40.0 31.6 21.1

Table 3.5: Average new plans computation time(Average time), whole plan recognition method
average computation time (Average total time), minimum observed computation when comput-
ing new plans (Min time), maximum observed computation time when computing new plans
(Max time), in seconds for all of them.

Average
time

Average
total
time

Min
time

Max
time

1.882 7.260 1.411 6.116

on average less than 3.6 missing buildings in the plan generate by our method compared to

the actual one of the Protoss player until that we reach 60% of noise. Then we miss up to 4.2

buildings when reaching 90% of noise. Knowing that the length of the plan followed by the

player is around 11.25 buildings on average, it means that we infer between 68% in the best

case to 63% of the plan in the worst case. In the case of PvZ, we miss 5.2 buildings with low

noise and up to 6.9 when the noise reaches 90%. For this matchup, the Protoss player follows

plans composed of 13.8 buildings on average, so we infer from 63 to 50% of the plan depending

on the noise with the three-dimensional heuristic. The mean-square heuristic provided slightly

worse results for this matchup, especially when the noise is under 70%. For PvP, the plans that

the player follows are shorter and composed of 10.5 buildings on average. In this case, we miss
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between 2.9 and 3.8 buildings, which means that we infer between 73 and 64% of the player’s

plan. In most cases, the buildings that we are missing are not key features of the player’s

strategy but rather some building built to react to an action of the opponent or buildings that

have been build multiple times when our planner estimated that it was too much. Of course,

this is just an average among all the goal predictions; it means that when our method correctly

infer the goal of the observed player, the plan that we infer is also much closer to the actual one

than what we can see on the graph. On the other hand, when the goal prediction is incorrect,

the inferred plan is farther from the actual one than the average shown on the graph.

Table 3.5 shows the computation time of our method when we compute the first plans at

the beginning, or when we update the current plans in order to satisfy the observation, this

operation takes on average 1.882 seconds, the whole method from the generation of the first

plans to the last observation checking takes on average 7.260 seconds (sum of the computation

time of all the pruning/planning operation during a run). The longest observed computation

time for one pruning/planning operation was of 6.116 seconds when the shortest was of 1.411

seconds. The computations were done with a Ryzen 7 2700X CPU with 8 cores running at

3.7GHz. Our performances could be optimized a lot, also we were using Python but C++ will

definitely decrease the computation time, this computation time is still acceptable for real-time

use. Optimizing the implementation and using a faster programming language could easily take

less than a second for our method to return the result when we ask for the predicted plan. For

usage in bot competition, when the computation time is limited to intervals of 100ms, it can be

hard to divide the computation like this, but not impossible. However, for use in games for the

purpose of playing against humans, then there is not such a limitation and one second is pretty

similar to what a human could achieve when performing strategy inference after collecting

enough clues. Furthermore, RTS games do not require immediate reactions like other games.

Most of the actions take some time to perform, so our method has a very viable execution time

as the actions to take after performing the inference (building the good buildings and units)

take much more time.

3.4 Possible Improvements and Discussion

3.4.1 Multi-Horizons Planning

With the planner we are currently using, it might be complicated to try to predict the player’s

plan at ten minutes horizon right from the start of the game. The computation time could
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be a bit too high for online use. So instead, what we plan to do, is to make predictions at

multiple horizons, little by little. For a prediction at ten minutes horizon, for example, we can

predict first the plan of the player for the five first minutes, then, when we reach five in-game

minutes, we can make a prediction for the five next minutes, that will correspond to an indirect

ten minutes prediction from the beginning of the game. In fact, it makes sense to follow such

a process, as players often follow a similar process when they plan their strategy during the

game. They often plan a first ”opening strategy” (the one we used for the experiments) that

they aim to achieve at four to six in-game minutes, and then, if the game does not end here

because one of the two players was victorious, they will plan another strategy that usually

depends on the one they used as an opening. Each opening could lead to some more advanced

strategy at a later stage in the game, with some advanced strategy being easier to achieve with

a specific opening strategy before. We could select the two or three most likely plans to be

followed by the player that our method predicts at five minutes horizon. Use the goal states

of each of these plans as new initial states for our planner, and for the new possible goals, use

the advanced strategy that players usually try to achieve as a follow-up of the corresponding

opening strategy. This would indirectly include prior probabilities in our model as the plan that

we infer at ten minutes horizon will also depend on the ones that we inferred at five minutes

horizon.

Figure 3.15: One possible strategy tree for the Protoss player in PvT matchup
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Figure 3.15 illustrates this. It is a strategy tree of some possible openings for the Protoss

player when playing against a Terran player. We can see three different openings that the player

will usually achieve between four to five minutes, ”Fast Expand”, ”One Gate-Core”, and ”Two

Gates”. Moreover, as explained before, each of them leads to different advanced strategies that

the player usually achieves between eight to ten minutes. So if we take an example related

to Figure 3.15, we will first perform plan recognition at five minutes horizon, say that our

method returns ”Fast Expand” as the most likely goal and ”One Gate-Core” as the second

most likely one. Next, we discard ”Two Gates”, and now, to perform plan recognition at ten

minutes horizon, we take two initial states, one that corresponds to the state after performing

all the actions in the plan that was inferred for the goal ”Fast Expand”, and the other one in

a similar fashion but for the goal ”One Gate-Core”. The new possible goals will be ”Arbiters”,

”Expand”, ”Reaver”, and ”DT-Expand”. Indeed, ”Arbiters”, for example, could still be a

possible goal for the player when using the ”Two Gates” opening in theory, but it is such a

not optimal choice that it is really unlikely that the player would do that (except to mislead

its opponent but then it is a very hard problem to infer this), so we represent the strategy tree

with the most likely transitions for the player.

3.4.2 New Planner and Heuristic

The efficiency of the method strongly relies on the planner that we use. Here the planner could

be improved or even change for another one, especially the scheduling part could be improved

to get better plans as in many cases the plan is not optimal. The approach of Churchill and

Buro [60] could be a good candidate, but we have to keep a reasonable computing time and to

keep in mind that the planner should match with the player skills in order to make reasonable

inferences. We could also try another heuristic for the pruning, and the goal selection, especially

the landmarks heuristic developed by Pereira et al. [22] looks rather promising if we can

correctly extract the landmarks of each possible goals. That should be possible when having

enough expert knowledge about the game, like StarCraft’s case.

3.4.3 Discussion

We introduced a method for plan recognition in RTS games that has proven to be very robust

to noise while still providing satisfying results. The method’s execution time is good enough

to allow real-time use, and the fact that this method does not rely on training with replay

files makes it easy to adapt to any RTS games following similar rules as StarCraft. It is pretty
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robust to noise, and although the precision , accuracy, and recall are not perfect, it does predict

often enough the opening of the opponent player. We need to do more experiments, especially

to compare it to the approach of Synnaeve and Bessiere [44] that has a very good predictive

accuracy. However, they did not use the same scouting approach to get the observation, so

the results may be different using our experiment parameters as Bayesian models are pretty

sensitive to the timing of observations. Knowing that the efficiency of our method strongly

relies on the planner that we use, and we could definitely obtain better accuracy with a better

planner but generate good plans in a short time for RTS games stay a challenging problem. The

more precise the possible goals are, the better the method will work as the different plans will be

more refine and different from each other, but if we want really precise goals, then we may need

some analysis on the replay, and we lose one good point compared to the existing approaches

which is that we do not need to do data mining. To conclude this study, our approach allows

strategy inference in RTS games, is robust to noise, and offers fair performances. We hope that

it could be used to improve AIs in this kind of game and make them more interesting to play

against.





Chapter 4

Goal Recognition

The second part of the thesis starts here. In this part, we will study a method that has been

developed to perform goal recognition. The application field is wider here and not only related

to games. Current approaches in goal recognition have not yet tried to apply concept learning to

a propositional logic formalism. We developed a method for inferring an agent’s possible goal by

observing this agent in series of successful attempts to reach its goal and using concept learning

on these observations. We propose an algorithm, LFST (Learning From Successful Traces),

to produce concise hypotheses about the agent’s goal. We show that, if such a goal exists,

our algorithm always provides a possible goal for the agent, and we evaluate the performance

of our algorithm in different settings. We compare it to another concept learning algorithm

that uses a formalism close to ours, and we obtain better results at producing the hypotheses

with our algorithm. We introduce a way to use assumptions about the agent’s behavior and

the dynamics of the environment, thus improving the agent’s goal deduction by optimizing the

potential goals’ search space.

As we saw in chapter 1, section 1.1, much previous work has attempted solving the plan

recognition problem using a set of pre-determined goals for the agent and guessing which one is

the most likely. It is the case in the work of Lang for example [61]. Often, they assume that this

pre-determined set of goals is given, but it is usually not the case. Even approaches that remove

the use of plan libraries like Ramirez and Geffner [62, 15], or deep learning like Min et al. [46]

still assume that they know the set of possible goals of the agent and need it to work. This

assumption, made in previous work and which we do not take for granted, motivated our work.

What if we do not have information about the agent and its preferences? If the agent evolves

in a complex environment, it could potentially have many goals. We wanted to see to what

58
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extent it was possible to generate this set of potential goals for the agent. Furthermore, this,

using simple but effective tools, which are propositional logic and concept learning. Besides,

there are only a few approaches using propositional logic for goal recognition. This lack of

literature has reinforced our interest in this formalism. Hong [63] uses propositional logic, but

he combines this to a graph representation, and like for previous approaches, he already knows

the agent’s goals.

Section 4.1 will explain how we formalize the concept learning task of inferring an agent’s

goals from observations of successful scenarios in section 4.1.1 and detail our algorithm LFST in

section 4.1.2. In section 4.2 we present an experimental study of the proposed algorithm where

we compare it to two other algorithms, [64] and [65] (an improved version of [66]) and show

that we often get better results with our algorithm. We will explain how to use assumptions

about the environment and the agent decision process to improve the results of LFST in section

4.3, section 4.3.1. We will detail two ways to extract this information from the data and a way

to consider the agents’ preferences regarding their goals in section 4.3.2.

4.1 Inferring an Agent’s Goals Using Concept Learning

4.1.1 Problem Formalization

We want to infer an agent’s possible goals by observing a series of successful attempts by the

agent to achieve them. We, therefore, assume a training process in different scenarios during

which we observe the agent performing actions until it achieves one of its goals. We will model

these observed scenarios as a set of traces describing the succession of states of the environment

as well as the actions of the agent. We consider environments without exogenous events and

with discrete-time: an action performed by the agent always leads to a state change. The state

of the environment is modeled as a series of attributes with discrete values: N variables vari

for i ∈ {1, . . . , N} taking values in domains Dj = {vali1, . . . , valiNi
}. An atomic representation

is construct by converting all the couples vari = valij into atoms var
valij
i , we denote by L

this set of atoms. We define a state S as a set of atoms var
valij
i from L with each vari only

appearing once, and we define a trace as a sequence of couples (Si, ai) with Si ⊂ L being a

state and ai an action (taken from A, a finite set of actions). Traces can be of different lengths

as they rely on the number of actions performed by the agent to reach its goal. We will not

go into the details of the environment’s dynamics, but they can be abstracted away using a

function next from 2L ×A to 22L
which will, given a state S and an action a provides the set
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of potentially reachable states from S by performing a. If the environment is deterministic,

next(S, a) will correspond to a single state. Since they come from observations, the traces

are assumed to follow this dynamic, meaning that if the index i is not the last one of the

trace, we have: Si+1 ∈ next(Si, ai). We define successful traces using a special action success

that has no effects (∀S, next(S, success) = {S}), performed by the agent whenever it reaches

its goal. Thus, a successful trace is a trace T = (S0, a0), . . . , (Sk, ak) with ak =success and

ai 6=success for i < k. A successful trace is therefore a trace ending in the first state where

the agent achieves its goal. Given a trace T = (S0, a0), . . . , (Sk, ak), we denote the last state

Sk of this trace by endS(T ) and the set of intermediate states {S0, . . . , Sk−1} by intS(T ). Our

problem takes as input a set of successful traces: Σ = {T0, . . . , Tl} and we seek to infer from it a

hypothesis about the agent’s goals expressed as a propositional formula over L, this hypothesis

must be satisfied by specific states (when interpreting states as a conjunction of atoms) if and

only if a goal is achieved in these states. It is assumed here that the goal does not depend on the

way it is reached, only the final state matters. The agent only needs to reach a state satisfying

its goal. In order to cover several goals, we want the hypothesis written as a DNF (Disjunctive

Normal Form). More exactly, we want a hypothesis of the form H = C0 ∨ C1 ∨ ... ∨ Cm with

each Ci = x0∧ ...∧xn being a conjunction of atoms from L. Then, given H = C0∨C1∨ ...∨Cm

, a state S = {y0, . . . , yN} satisfies H if and only if
∧

yi∈S yi |= H, that is, if and only if

there exists i ∈ {0, . . . ,m} such that Ci ⊆ S (an assignment A is a model of a formula F if

F is true under this assignment, A |= F ). Even without knowledge about the dynamics of

the system or the agent’s behavior, these observations provide a series of states where it is

known whether or not the agent’s goals are being reached. In fact, we can build the set of

successful states Spositive by including in it all the end-states of successful traces from Σ, such

that, Spositive = {endS(T )|T ∈ Σ}. In the same way, we can build the set of unsuccessful states

Snegative taking the union of all the intermediate states, such that, Snegative =
⋃

T∈Σ intS(T ).

The problem of inferring an agent’s goals is then equivalent to a concept learning problem with

the states belonging to Spositive as positive examples and the states belonging to Snegative as

negative ones. We said that a hypothesis H is consistent with our data if all the elements of

Spositive satisfy it and none of the elements of Snegative satisfy it. We are looking for such a

hypothesis as the output of our problem. We designed an algorithm, LFST, to address this

problem and produce the hypothesis sought. LFST can be found in section 4.1.2.

Our assumptions are strong, and we are aware of this, though we do not think they are
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absurd. Of course, usually, an agent will not stop acting after reaching its goal, but a significant

change in its behavior could be observed. This significant change could hint about when the

goal was reached, and then we could find the successful state. For instance, in the field of game

AI, especially for Real-Time Strategy game such as StarCraft the player will usually follow a

specific pattern called ”Build Order”, it is a specific series of actions that will lead the player

to a specific state in the game (a number of units and buildings at disposal) which allow the

player to use different strategies. There are many strategies in this game and as many Build

Orders. Players will tend to wait to finish their Build Order before launching an offensive. If we

want to learn the different Build Orders used by a player by analyzing different games that this

player played, we have to find the moment when the offensives started to determine when the

Build Order was completed and then use our method to learn it. We did not use this method

to generate the possible goals of the player in the first part of the thesis, the reason why is that

we use expert knowledge as we knew it was available. Of course, it will always be more precise

than using our method to generate possible goals for the player. However, this is related to the

fact that there is a huge database of expert knowledge about StarCraft, and it is not the case

for many other RTS games where our method then would be helpful. Now, we will introduce

some definitions adapted from [64] to make the rest of the thesis easier to understand.

Definitions

• A prototype is a conjunction of atoms from L (for example pi = x0 ∧ x1 ∧ x2), the states

of the world S being also conjunctions of atoms from L they are prototypes, there are

prototypes of different sizes.

• We say that a prototype p1 is more general than a prototype p2 if and only if the set of

atoms describing p1 is a subset of the set of atoms describing p2. A prototype p1 is more

specific than a prototype p2 if and only if the set of atoms describing p2 is a subset of the

set of atoms describing p1.

• A prototype p1 covers a prototype p2 if and only if p1 is more general than p2, written

cover(p1, p2). On the other hand, a prototype p1 rejects a prototype p2 if and only if p2

is not more general than p2.



CHAPTER 4. GOAL RECOGNITION 62

4.1.2 Learning From Successful Traces

As shown in the previous section, we can model the problem of inferring an agent’s goal from

the observation of a set of successful scenarios as a concept learning problem by converting the

set of successful traces Σ that we observed into the sets of states Spositive and Snegative. In fact,

the goal of the agent will be the concept that will be learned. To solve this problem, we will

produce a hypothesis H in the form of a DNF and such that H is consistent with our data (i.e.,

satisfied by all the states in Spositive and none of the states in Snegative), as described in section

4.1.1. In other words, for any state Si ∈ Spositive,∃pj ∈ H a prototype such as cover(pj , Si)

and for every state Sk ∈ Snegative,@pj ∈ H such as cover(pj , Sk). Given this, using an existing

symbolic concept learning algorithm such as MGI, Ripper, or ID3 [64, 67, 66] would be possible.

With an output close to the form we are looking for, MGI might be a good candidate. However,

being a bottom-up algorithm, the least general generalization of some positive examples will

provide the different conjunctive statements of the disjunctive hypothesis. Knowing that we

will probably have many more negative examples than positive examples in our specific case, we

adapted this algorithm using different biases that will favor the generation of general terms. We

named this concept learning process LFST (Learning From Successful Traces) and described it

in Algorithm 4.

Algorithm 4: Learning From Successful Traces

1 Input: Snegative, Spositive

2 Parameter: listOfPotentialGoals = list(), i = integer, hypothesis = list()
3 Output: hypothesis

1: for state in Spositive do
2: if ∃p ∈ hypothesis such as cover(p, state) then
3: skip to next state
4: else
5: listOfPotentialGoals = [list of all the prototypes covering state]
6: pcurrent = the most general prototype p ∈ listOfPotentialGoals[i] such as p covers

as many states from Spositive as possible)
7: while ∃S ∈ Snegative such as cover(pcurrent, S) do
8: listOfPotentialGoals[i].remove(pcurrent)
9: pcurrent = the most general prototype p ∈ listOfPotentialGoals[i] such as p covers

as many states from Spositive as possible)
10: end while
11: hypothesis.append(pcurrent)
12: end if
13: end for
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Two sets are given as input of the algorithm, the set of positive examples Spositive and the

set of negative examples Snegative, they are used for concept learning. We first use one of the

positive examples to generate a potential goal that corresponds to a prototype covering this

positive example. We start from the most general prototypes by selecting those that cover as

many positive examples as possible. We then check if the potential goal is valid or not by

using the set of negative examples and checking that none of this set’s elements are covered

by the prototype representing the potential goal. If it is the case, then the potential goal is

valid. We keep repeating this process until, for every positive example, there is at least one

potential goal that covers it. In the end, our algorithm will return a DNF corresponding to the

one that we described in section 4.1.1. Our algorithm will always finish, and in the worst-case

generate a new potential goal for each of the positive examples and go through the whole set

of negative examples for each potential goal. Therefore, the complexity of LFST in terms of

time is O(|Spositive| ∗ |Snegative|) according to the number of positives and negatives examples,

which is a bit less than being quadratic in terms of the size of the whole trace, which means

that using more data too learn the hypothesis does not increase the computing time of LFST

too much. However, complexity is 2N according to the number of variables that describe the

environment because of the potential goals generation phase. Then the final complexity is in

O(|Spositive| ∗ |Snegative| ∗ 2N ).

Works based on PAC-learning [68] of DNF should also be mentioned, especially Jackson

and his Harmonic Sieve algorithm [69, 70], they rely on learning with membership queries and

Fourier analysis. They use an oracle to get information about the DNF value they want to learn

for specific assignments of atoms and compute a Boolean function close to the DNF thanks to

this information. Our case’s main problem is that we do not have an oracle that could be

questioned on the value of the DNF sought for a specific assignment of atoms. We do have

positive examples, but they are much more specific than the prototypes constituting the DNF.

Without an oracle, these algorithms could not be used to learn the agent’s set of goals, and we

did not use them as possible candidates to compare to LFST.

4.2 Experiments

To show that the choice to use our algorithm was well-founded, we conducted experiments.

Since our approach is quite different from the current ones in goal recognition, it is not fair to

compare results of LFST with those of another goal recognition algorithm for the same data
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set. What we are doing here could be seen as identification and classification, so it is more

natural to compare LFST with algorithms that could also generate a hypothesis about the

possible goals of the agent, or that could classify if states are goal states or not according to

what has been learned before. That is why we compare our method to other concept learning

algorithms and not to traditional plan recognition algorithms since, as mentioned before, we

are not tackling the same problem. Where traditional plan recognition approaches based on

probabilistic models or deep learning like [15, 46] need a set of possible goals and will then,

according to the observations that they get from the agent, compute which goal and plan have

the highest probability to be followed by the agent, we do not compute such a thing. Instead,

we will try to generate this set of possible goals used by the other approaches. We do not put

probabilities on the goals; we generate the possible ones according to the data that we observed.

In fact, our method could be seen as a pre-process for traditional plan recognition approaches.

We are trying to generate the set of goals that the agent is aiming at, and this by using concept

learning. Therefore, the question of the legitimacy of our LFST algorithm compared to already

existing algorithms arises. These experiments are here to determine whether we made the right

choice or not. We compare LFST to MGI since, as we said before, the output of MGI is quite

close to the one of LFST, and our formalism can be applied to it. We do also use C4.5 [65]

as a comparison to see how well LFST performs compared to a well-known decision tree. The

comparison with C4.5 shows if the hypothesis generated by LFST is still consistent with the

rest of the data that have not been used for learning. The hypothesis can act as a classifier as

it should theoretically cover the remaining positive examples and reject the negative ones.

4.2.1 Experimental Protocol

For MGI, we use precisely the same process as LFST as the two algorithms are pretty similar.

We use as input the sets of negative and positive examples MGI will use the positive examples to

learn the concept to be learned from them and refine this concept using the negative examples.

In the end, MGI will return a hypothesis of the very same style as LFST. C4.5 being a decision

tree used for classification, does not produce any formula. Instead, it returns a ”positive” or

”negative” answer when we ask if the input corresponds to the learned concept or not. As for

the two previous algorithms, the set of positive examples is used to learn the concept (goals of

the agent) and the set of negative examples to learn what is not the concept, basically, all the

positive examples belongs to the class ”positive” and the negative ones to the class ”negative”.

The decision tree is built thanks to this, and then using holdout method, the remaining part
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of the positive and negative examples that were not used to build the tree is given as input

to C4.5 to see how it classifies them (”positive” or ”negative”). Figure 4.1 is an example of

how we train C4.5 for one of our environment (421World described below), each state of the

environment correspond to one input with each variable being a feature for C4.5, and the last

feature indicates if the state of the world is negative or positive since we want to learn to

classify them. The input is almost the same as for LFST and MGI. Cross-validation is used for

the three algorithms; in the case of LFST and MGI, we will check if the hypothesis generated

thanks to the learning data is still consistent with the remaining data. We use one agent and

three different environments; two are deterministic, and the last one is non-deterministic. For

each environment, the agent’s goals and its decision model are different. The first environment

is a grid of size 16 ∗ 16 that we have named ”GridWorld”, the second environment is a game in

which the agent has to move some blocks, we named it ”CubeWorld”, and the last environment

is a dice game named ”421World”.

GridWorld is then, a grid of size 16 ∗ 16 with some randomly placed walls between its

cells. In this environment, the goal of the agent is reaching a dead-end, a dead-end being a

cell surrounded by exactly three walls. We assume that for each generated grid there exists a

dead-end and that this dead-end is reachable by the agent from its different starting positions

in the grid. In GridWorld the agent can perform five different actions, it can move one cell top,

down, left, right, or stay at its current position. Walls are impassable obstacles for the agent, a

wall between two cells will prevent the agent to move from a cell to the other, the agent cannot

get out of the grid either, even if there are no walls along the edge of the grid.

GridWorld is a deterministic environment since the agent’s actions cannot fail, meaning that

for each move that is not prohibited in its current position, the agent will necessarily arrive

at the corresponding position. The successful traces are generated by implementing the agent

as follows. First, the agent uses the A∗ algorithm to compute a path that reaches a dead-end

from its starting position. Then the agent begins its journey. Each state and action is recorded

in the trace, knowing that only one action is performed by the agent at each time step. Using

the formalization described earlier to design the trace of the agent’s journey, we will use the

following variables to build our atomic set L: a variable pos related to the agent’s position

in the environment, the variables upW , rightW , downW , and leftW respectively related to

the presence of walls at the top, right, down, and left of the agent. For the experiments

in GridWorld, we generated eight different grids. Given that, depending on the inlet position,
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there are four possible configurations for dead-ends, we assume that each of these configurations

appears at least once among all the grids. We generated multiple traces for each instance of a

grid, depending on the agent’s starting position.

Figure 4.1: Illustration of C4.5 learning setup with our model

The second environment, CubeWorld, is a game with six blocks numbered from 1 to 6 and

three columns. The agent has to place block 1 between block 2 and 3 with block 2, which has

to be at the column’s base, and block 3 above block 1. The agent wins the game as soon as

this configuration is reached on one of the columns. Knowing that a block cannot be moved if

another block is above this one. The agent can stack as many blocks as wanted on a column.

We implemented a naive algorithm to allow the agent to solve this problem and thus obtain

many solutions. Figure 4.3 is an illustration of CubeWorld. Each block movement caused by

the agent corresponds to a time step. To design the agent’s trace in this environment, we use a

set of variables describing the result of each action performed by the agent. For each of the six

blocks, we have a variable corresponding to the column on which the block is situated blockPos,

and another variable indicates the height on which it is located blockH, which corresponds to

coordinates on a plan.

The third and last environment, 421World, is a game of chance with four dices (six-sided

dices), and the goal of the agent is to get a combination with at least one ”4”, one ”2”, and

one ”1”. The agent can choose to keep the value of some dices; for example, if it gets a ”4”,

it can keep it and roll only the three remaining dices. The game ends when the agent obtains

the winning combination ”421”, the dices can be rolled without limitation. This environment
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Figure 4.2: GridWorld example

Figure 4.3: CubeWorld winning example
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Figure 4.4: 421World winning example

is non-deterministic since the agent cannot know the result of the roll of the dices. Figure

4.4 is an example of a winning combination. Each dices rolling corresponds to a time step.

Designing the trace of the agent for this environment is done in the same way as before; a set

of variables describes the result of each action of the agent. For each of the dice, there is a

variable diceV alue, which corresponds to the number that the agent obtains after rolling it.

For our experiments, we have an initial set of data with negative and positive examples

collected from the generated traces. They are used as input for LFST, MGI, and C4.5. Then

from this set of data, the holdout method is used for the validation; we use 70% as a training

set and the 30% remaining as a test set to measure the performances of the algorithms. We

also vary the size of the initial set of data to simulate some noise (missing states in the traces).

In the beginning, 100% percent of the data is used, then we will decrease by two percent the

percentage of data used at each simulation, gradually moving from 0% of missing data to 90%.

For each data range, we run two hundred times the three algorithms, taking randomly the

amount of data needed in our dataset and computing the average of the results. However, the

same percentage of data is used for positive and negative examples. For instance, if we use 80%

of the data, we will randomly pick 80% of the positive examples and 80% of the negative ones.

For GridWorld environment, we have done the experiments with a set of 128 positive examples

and a set of 1791 negative ones, which have been extracted from a set of 128 successful traces.

For CubeWorld environment, we have done the experiments with a set of 100 positive examples

and a set of 559 negative ones, which have been extracted from a set of 100 successful traces. In

421World, we have done the experiments with a set of 200 positive examples and 882 negative

examples; this results from 200 successful traces.
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4.2.2 Measures

Different types of measures are used to evaluate our results. The first measure is a syntactic

distance between the actual agent’s goals and the hypotheses returned by the algorithms. It

shows the similarities between the hypotheses and the target goals. However, this measure is

only used to compare LFST and MGI as C4.5 does not produce a hypothesis.

The syntactic distance is defined as follows: the symmetrical distance is computed from

each goal in the hypothesis to each of the agent’s actual goals. Then, for each of the goals of

the hypothesis, the minimum of this symmetrical distance is taken and will define the distance

between this goal and the agent’s goal set. Afterward, the distance between the agent’s set

of goals and the hypothesis is computed by summing the distance of each of the goals of the

hypothesis to the agent’s goal set that has been computed previously. For example if our

hypothesis is H = (a ∧ c ∧ d) ∨ (b ∧ d) and the real set of goals is G = (a ∧ d) ∨ (b ∧ c ∧ d), we

have:

d(H,G) = d((a ∧ c ∧ d), G) + d((b ∧ d), G) (4.1)

d(H,G) = min(Card({c}), Card({a, b})) +min(Card({a, b}), Card({c})) (4.2)

d(H,G) = min(1, 2) +min(2, 1) = 1 + 1 = 2 (4.3)

Where Card(X) is the function cardinal which is equal to the number of elements in X.

The second measure is the predictive accuracy of the three algorithms, it is the fraction of

successfully classified examples, and it is calculated as follows:

predictive accuracy =
Tp+ Tn

Tp+ Tn+ Fn+ Fp
(4.4)

Where Tp, Tn, Fp, and Fn are respectively, True Positive, True Negative, False Positive, and

False Negative.

The last one is the recall, which is the fraction of positive examples that are successfully

classified as such by the algorithms. This measure is the same as in section 3.3, and is calculated

with equations 3.3.1.

4.2.3 Results

As shown by the experiment, the average syntactic distance between the agent’s actual goals

and the results provided by LFST is pretty good because this average is a little less than 9

in the worst-case for GridWorld, as we can see in Figure 4.5. Knowing that for GridWorld,
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Figure 4.5: Comparison of the average distance from the actual goals in GridWorld

the agent has four goals composed of three atoms each, which means that on average, in the

worst-case, LFST still finds almost one-third of the atoms composing each real goal. Moreover,

even when using as few as twenty percent of the initial data set, the results are still correct.

Indeed, the average syntactic distance being around 5. It means that almost two-thirds of the

atoms composing each real goal of the agent are still deducted even in this case. MGI is more

constant and thus stays to an average distance of 4 from the actual set of goals, being less

precise than LFST until sixty percent of missing data where LFST gets worse. This difference

can be explained by the fact that MGI will generate more specific prototypes than LFST.

Thus, even if the actual goal is a conjunction of three atoms, MGI will generate a prototype

of four or five atoms that cover the goal, and since they do not cover any negative examples,

it will stop there. LFST will generate more general prototypes that the negative examples will

invalidate, so the prototypes will start to be more and more specific and eventually as specific

as the actual goals. Nevertheless, when there is not enough data, the prototypes which are too

general will not be invalidated anymore due to the lack of negative examples, so the average

syntactic distance from the actual goals will increase. However, as we can see in Figure 4.6, the
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Figure 4.6: Comparison of the average accuracy in GridWorld

accuracy of LFST is always better than the one of MGI and remains on average around 99.7%.

As expected, the accuracy of both algorithms is decreasing with the quantity of data used.

The difference between the two algorithms is that LFST will rarely fail to classify a positive

example. Thus it will produce very few False Negatives when MGI fails more often to classify

a positive example. C4.5 has excellent accuracy in this environment, being even slightly better

than LFST and reaching 100% of accuracy, though it is only a small gain compare to LFST.

However, the most significant difference in efficiency for the algorithms is the recall; Figure 4.7

shows that the value for the recall of LFST and C4.5 is much better than the one of MGI,

which is just around the average (50%). The reason for this result is the same as before since

the recall is highly dependent on the number of False Negatives.

As for CubeWorld, in this environment, the agent has three goals of six atoms, so the

syntactic distance cannot exceed 18, and we can see in Figure 4.8 that LFST obtains a bit less

than 10 in the worst-case, so we infer more than one-third of the goals in this case. The value

of the distance for MGI is, on average, around 9, which is almost the worst value for LFST,

so here also LFST is more accurate. The accuracy and the recall, Figure 4.9 and 4.10 are also
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Figure 4.7: Comparison of the average recall in GridWorld

better here with LFST than with MGI, and here LFST also has better accuracy than C4.5,

but it is a difference on the same scale as in the previous environment, relatively slight. The

difference is more pronounced for the recall value, where LFST is also better than C4.5.

In 421World, since the agent’s goal is to obtain a dice combination of 421, the dice’s order and

the fourth one’s value do not matter, which implies that there are many winning combinations,

24 to be exact. So the agent has 24 goals that correspond to all the winning combinations.

This environment is then the one that could potentially give the worst results. Though, as we

can see in Figure 4.11 the syntactic distance from the actual goals is relatively low for both

algorithms. The accuracy and recall Figure 4.12 and 4.13 are less good than for the other

environment, especially the recall for MGI is very low in this environment. We can observe a

difference this time between LFST and C4.5, LFST being on average 10% more accurate than

C4.5.

In these three environments, the performances of LFST are better than that of MGI. We also

observe that LFST and C4.5 seem to have the same performances here, with a slight advantage

for LFST, being better in two among three environments. Our guess was that C4.5 performs
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Figure 4.8: Comparison of the average distance from the actual goals in CubeWorld

better in environments without a big difference between the number of positive and negative

examples, though the results between CubeWorld and 421World do not necessarily validate

this hypothesis. Nevertheless, that might be related to 421World itself that seems to be rather

challenging for all the algorithms. However, if we have to compare the algorithms’ running time

when the number of variables to describe the environment increases. In that case, we can see a

difference between LFST and MGI, as shown by Figures 4.14 and 4.15, for GridWorld, there are

five variables to describe the environment, and the two algorithms seems to be on the same order

of computation time as the curves on 4.14 are almost indistinguishable from each other. For

CubeWorld, though, where we have twelve variables to describe the environment, MGI is faster

than LFST; this can be seen in Figure 4.15, MGI is on average seven times faster than LFST.

The difference between the execution time of both algorithms is due to the fact that MGI uses a

heuristic search to find the prototypes that will constitute the result when LFST does not. We

chose CubeWorld and GridWorld to show these comparisons because one of the environments

has the highest number of examples used as learning data, and the other the highest number

of variables. We can see that for LFST, increasing the number of variables to describe the
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Figure 4.9: Comparison of the average accuracy in CubeWorld

environment has a much more substantial impact on the computation time than increasing

the number of examples, as it was expected according to the O(|Spositive| ∗ |Snegative| ∗ 2N )

complexity of the algorithm. Still, the algorithm is pretty fast for these environments, and

we could always play with the representation of the environment to avoid having a too high

number of variables describing it. The experiments being done on an old CPU i7 two cores at

3.3GHz and using Python as the programming language. We cannot see C4.5 in Figures 4.14

and 4.15, this is because C4.5 take much time compared to the two other algorithms to learn

the concept (build the decision tree) 1.9 to 0.6 seconds on average for GridWorld and 1.5 to 0.5

seconds for CubeWorld, which makes it difficult to see the difference between MGI and LFST.

One might argue that the learning time is not essential to learn concepts since it is just learned

one time, though we believe that if it has to be part of some real-time system, it is better to

have a fast algorithm. We do think we made the right choice using our algorithm LFST for this

problem since it performs as well if not better than traditional concept learning algorithms,

and compared to C4.5, LFST does produce the learning concept, thing that C4.5 is unable to

do. The tables 4.1, 4.2, and 4.3 are here to help the reader to visualize the accuracy and recall
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Figure 4.10: Comparison of the average recall in CubeWorld

of the different algorithms on the three environments (only half of the data points have been

included in order to reduce their size).

4.3 Extensions and Discussion

4.3.1 Inferring the Agent’s Model and Environment Rules From Data

In previous sections, the input Σ, the set of successful traces, is simply reduced to two different

sets of states Snegative and Spositive. By doing so, we are not taking advantage of the information

included in Σ about the order in which the states are explored and the actions that the agent

performs at each step. By ignoring these aspects, we have the advantage of being able to infer

possible goals without more assumptions about the agent than the ones induced by successful

traces how successful traces are defined, that is, as soon as its goal is reached, the agent stops

(with a success action) and this goal depends only on the current state of the environment.

However, if the dynamics of the environment are known, it seems relevant to derive some

information from what the agent has chosen to do, compared to what the agent could have

done. It is only possible if we are given some insight into how the agent chooses its actions and
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Figure 4.11: Comparison of the average distance from the actual goals in 421World

takes decisions.

For instance, if we consider a rational omniscient agent’s case, we know that the observed

agent has complete knowledge about its environment and its rules and uses a planner to compute

the shortest plans to reach its goal. In such a case, by knowing the environment dynamics, we

can use it to generate more negative examples, for each successful trace T ∈ Σ of size K, all

the negative examples that are reachable from the state i in K − i steps can be generated and

added to the set Snegative. We can compute this using Ki times the function next with every

possible action to get all the reachable states. Using the same process with weaker assumptions,

we consider now the case of a deterministic environment for which it is assumed that the agent

is smart enough to reach its goal with only one move when its goal is reachable in one move (it

cannot fail since the environment is deterministic). This amounts to considering that the agent

can plan at least one step ahead, i.e., to understand its actions’ direct consequences and choose

its actions accordingly. In such a case, when also knowing the environment and its dynamics,

many negative examples can be generated. Indeed, if the action model ruling the effect of the

agent’s actions is known, we can deduce from each state of the world the states that can be
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Figure 4.12: Comparison of the average accuracy in 421World

reached by the agent at the next time step. Next, if we know that at the time-step t the agent

did not reach its goal, it means that all the states that were reachable by the agent at the time

step t−1 are not final ones. Furthermore, all these intermediate states can thus be regarded as

negative examples, allowing us to refine the results of LFST by using more learning examples.

In such a case, we modify LFST by this pre-processing that is applied to each T ∈ Σ in order

to compute additional negative examples. This process improves learning by expanding the

initial input. It allows us to learn precise goals when using fewer original examples.

Figure 4.16 shows us the advantage of having these kinds of assumptions about the agent

and environment. For this graph, the same experimental protocol as GridWorld is used but this

time with a grid of size 4∗4, which means that we have 192 positive examples and 776 negative

ones that are used as input to LFST when no assumptions about the agent and environment

are made. Then, we make two assumptions about the agent: the agent action model is known,

and the agent can plan at least one step ahead so if its goal is reachable at step t− 1, at step

t it will reach it. These are not strong assumptions, and they allow us to generate more data

from the 192 itineraries that have been followed by the agent throughout the simulation. In
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Figure 4.13: Comparison of the average recall in 421World

total, we get 2074 negative examples thanks to this data generation, which is almost three

times more than what we have without making assumptions about the agent. We can see in

Figure 4.16 that, as we expected, it allows LFST to generate more precise hypotheses about

the agent’s goals since the result is much closer to the actual goals than when we do not make

assumptions. As we can see in Figure 4.16, it allows us to be closer to the actual goals than

when we use no assumptions. With enough knowledge about the agent’s action model, we are

able to use the method of [14]. This method matches our method quite well since it needs a

set of goals to find which ones are the more likely to be sought by the agent by using planning.

So we can first generate this set of goals by using LFST and then refine our set of possible

goals with [14]. That allows us to correct some goals that could have been wrongly inferred by

LFST. However, the combination of these two methods is not trivial. Indeed, the definition of

a ”goal” is not exactly the same between LFST and [14] since they define a goal as a final state

where we define it as a conjunction of atoms which is included in this final state. It means that

to check the validity of a goal generated by LFST, we need to go through all the traces where

this specific conjunction appears in the description of a state of the world assume that in these
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Figure 4.14: Comparison of the average runtime in GridWorld (in seconds)

traces, this state is a final state and then apply [14].

4.3.2 Discussion

We have two interesting methods that we wish to exploit to deduce the agent’s action model

and the environment rules. The first one is to use LFIT [71] which is a framework for learning

normal logic programs from transitions of interpretations, which means that, since we use a

logical representation of the world, we will be able to infer the possible action model of the

agent and the rules of the environment. In fact, to use LFIT, we just need a trace of the

evolution of the states of the world in chronological order, which are the same data that we

use to infer the agent’s goals. It means that we do not need an important modification of the

data collection process to incorporate LFIT into our method, which is a good point. After

processing these data with LFIT, we will obtain a set of rules that correspond to the possible

transition from a state of the world to another. We will then have for each state of the world

(observed previously in the collected data) the different actions that the agent did when it

was in this state and the states of the world that it reached after these actions. So we can

infer a potential action model of the agent and the dynamic of the environment based on the
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Figure 4.15: Comparison of the average runtime in CubeWorld (in seconds)

observed transitions. Unfortunately, LFIT is not very robust against the lack of data, and the

noise, especially the data need to cover as many transitions as possible between all the different

possible states of the world. It is not very convenient because usually, the agent we observe is

not acting randomly, and so, many possible transitions will never be observed. We also plan to

use SMILE [72] another method that we can use to learn the action model of the agent. This

method uses the same kind of data as LFIT, so here also the modification of the data collection

process to use SMILE, and our method is not too cumbersome. Even if SMILE is usually used

for a multi-agent system because it is, in fact, the different agents who will learn information

about the other agents of the system, we can just create an agent ”Observer” who will learn the

action model of the observed agent. SMILE is more robust to the lack of data than LFIT but

not as effective in some cases. So we will choose which method to use based on the quantity of

data obtained during the observation phase. We already tried SMILE and LFIT with our data

to extract the agent’s action model and the rules of the environment. We obtained promising

results, and so, we want to continue in this way. Nevertheless, we do not have combined our

method and these two algorithms yet.
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Figure 4.16: Comparison of the average syntactic distance from the actual goals in function of
the percentage of missing data with and without assumptions on the agent.

To improve our method and provide some more interesting hypotheses about the agents’

goals, we thought about incorporating a preferences function about these ones’ goals. It means

that our hypothesis will provide us with a set of possible goals for an agent and ordered these

goals according to the agent’s preferences. We want to start first with a simple preference

model; by simple, we mean that if the agent prefers to reach the goal A rather than the goal B,

its preferences will not consider the difficulty to reach these two goals. The process of inferring

agents’ preferences will take place after the goals inference in our method. Because, of course,

we need to know the agents’ goals to be able to order them. So once we have the agent’s goals,

we also need to know the agent’s action model, then, for each intermediate state of the trace

of the agent, we can see if there are other reachable goals that the one reached in the final

state of the trace and if so, compare the number of time that a goal was preferred to another

one. If between two goals, one has always been preferred, and if it happened several times,

we can assume a strict preference between them A > B. Otherwise, the preference will be

more moderate A � B. Given an order of priority >p about an agent’s goals, we can translate

the fact A >p B in a logic formula by assuming that if the agent finally reaches the goal B,



CHAPTER 4. GOAL RECOGNITION 82

it is because the goal A was not reachable. Then we can translate this in the logic formula

A ∨ ¬A ∧ B (where A and B are atoms conjunctions) by using our language L described in

section 4.1.1. Likewise, if we have the preference A >p B >p C on the agent’s goals we can

write this A∨¬A∧B ∨¬A∧¬B ∧C. With such a translation, we could write all the possible

strict orders of preference on the agent’s goals, and since the writing still represents a DNF,

we can modify a bit our algorithm and return a disjunction of such DNF as a result and thus

obtain the possible goals of the agent and its preferences for these goals. If the agent is assumed

rational, then such a simple linear model should work as transitivity (if A >p B and B >p C

then A >p C), antisymmetry ( if A >p B and B >p A then A = B) and connexity (∀A,B we

have A >p B or B >p A) should be supported by the agent’s preference model. Also, it could

be hard to observe connexity, so we could have several partial orders instead. However, suppose

the agent’s preferences are not rational (like a human, for example). In that case, this linear

model will not work anymore, especially in human case the transitivity of preference is not

always true, as shown by the ”Condorcet paradox” or ”voting paradox”, which is that, when

voting, majorities prefer, for example, candidate A over B, B over C, and yet C over A. If no

cycles about the preference have been observed in the data, we can still assume that we have

several partial orders; each of them could be represented as a DNF as described before. We still

get a disjunction of DNF where goals will be ordered in their respective partial order (DNF),

and the different partial orders could not be compared. Note that, if the goals A and B are not

in relation but we have A >p C and B >p C, we could write it A ∨B ∨ ¬A ∧ ¬B ∧C. We can

start to work on this extension before completing the one in the previous section. Even if we

need the agent’s action model, we can still assume that we know it and start the experiments

like this.

With our formalization, we do not take into account the cost of the actions for the agent

and thus the fact that some goals could be achieved more often than others. If all the goals

are achieved at least once, then our method should be able to infer them or build a hypothesis

covering the state of the world corresponding to these goals. However, if one particular goal is

never reached by the agent (because of its cost, for instance) during the observation process, it

will be impossible to infer it with our current method as it is pretty challenging to learn from

what has not been observed, especially if there is an important number of possible states of

the world. We could potentially deal with this problem using a higher-level representation of

the goals that we inferred once our first hypothesis was generated by LFST. A representation
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that could allow us to create a global concept for similar goals, and then we can look for states

of the world covered by this concept and are not find in the set of negative examples used for

learning. For instance, taking the case of GridWorld experiments, we saw that there are four

possible dead-ends. Let say that one of them was never reached by the agent, but LFST infer

the three other kinds of dead-ends as possible goals. When looking at the hypothesis returned

by LFST, we could create the concept ”dead-end”, which is that the agent is surrounded by

three walls. We then check that there are no negative examples that reject this concept and

keep it if it is not rejected. The concept ”dead-end” will then cover even the fourth kind of

dead-end that the agent did not reach when we were observing it. It could help us dealing with

unobserved goals, but it needs human assistance or a way to generate concepts from a low-level

representation of the environment.

Finally, the experiments’ results have shown that the main weakness of LFST is the execu-

tion time. We plan to improve the search for new potential goals since our method is currently

quite exhaustive. A heuristic research method, as used for MGI, could significantly improve

the execution time. However, the difficulty is then to find a good heuristic function. The clues

that we have about the agent’s goals at the beginning are mainly in the positive examples set

Spositive, then it will not be irrelevant to focus our attention on it. We thought about using our

syntactic distance to cluster these positives examples and group together those with a minimum

distance from each other. Then, for each cluster, compute the cardinal of the intersection of

all the positive examples within this cluster. We can expect that each cluster corresponds to a

possible goal. Thus, computing the cardinal of the intersection within the cluster could provide

an idea of the size in terms of atoms of the possible goal corresponding to this cluster. Then we

can look for prototypes around this size to cover the positive examples in this cluster instead

of starting from the smallest possible prototypes as we currently do.



Table 4.1: Average accuracy and recall for the three algorithms in GridWorld

Accuracy Recall
Percentage of
missing data

LFST C4.5 MGI LFST C4.5 MGI

0 99.85 99.99 98.51 100.0 100.0 44.1
2 99.85 99.99 98.44 100.0 100.0 42.17
4 99.83 99.99 98.39 100.0 100.0 41.04
6 99.84 99.98 98.39 100.0 100.0 41.91
8 99.82 99.99 98.36 100.0 100.0 41.3
10 99.84 99.99 98.38 100.0 100.0 42.98
12 99.84 99.99 98.38 100.0 100.0 43.52
14 99.81 99.99 98.32 100.0 100.0 42.04
16 99.83 99.98 98.29 100.0 100.0 41.82
18 99.8 99.97 98.26 100.0 100.0 41.69
20 99.81 99.98 98.19 100.0 100.0 40.43
22 99.81 99.99 98.22 100.0 100.0 42.41
24 99.78 99.96 98.24 100.0 100.0 43.68
26 99.8 99.98 98.13 100.0 100.0 40.89
28 99.78 99.97 98.13 100.0 100.0 42.22
30 99.86 99.96 98.11 100.0 100.0 42.46
32 99.79 99.98 98.11 100.0 100.0 43.0
34 99.79 99.97 98.06 100.0 100.0 42.76
36 99.78 99.98 98.0 100.0 100.0 42.18
38 99.76 99.94 98.01 100.0 100.0 43.01
40 99.75 99.98 97.88 100.0 100.0 40.63
42 99.75 99.95 97.92 100.0 100.0 42.8
44 99.74 99.96 97.88 99.93 100.0 42.41
46 99.75 99.98 97.81 100.0 100.0 41.51
48 99.7 99.96 97.78 99.94 100.0 41.57
50 99.75 99.95 97.81 99.8 100.0 42.91
52 99.69 99.96 97.64 100.0 100.0 40.41
54 99.72 99.94 97.69 99.79 99.8 43.13
56 99.73 99.93 97.58 99.94 100.0 40.87
58 99.68 99.94 97.6 99.87 100.0 43.04
60 99.6 99.92 97.5 99.79 100.0 41.88
62 99.62 99.91 97.48 99.64 99.8 42.45
64 99.54 99.93 97.45 99.42 99.79 42.73
66 99.57 99.93 97.32 98.63 99.82 41.12
68 99.53 99.87 97.25 98.51 99.67 41.88
70 99.49 99.92 97.09 98.49 99.63 40.84
72 99.47 99.88 97.17 97.38 99.56 42.16
74 99.38 99.83 97.21 96.18 99.59 42.52
76 99.36 99.8 96.95 95.95 99.25 42.68
78 99.09 99.73 97.03 93.69 98.92 44.64
80 98.91 99.63 97.0 92.23 98.26 44.2
82 98.89 99.38 97.1 91.27 96.73 46.41
84 98.48 99.31 96.69 85.36 96.36 48.11
86 98.16 98.97 96.51 81.93 95.57 48.7
88 97.73 98.87 96.36 77.58 93.37 47.67
90 97.49 98.21 96.97 74.0 89.67 56.75
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Table 4.2: Average accuracy and recall for the three algorithms in CubeWorld

Accuracy Recall
Percentage of
missing data

LFST C4.5 MGI LFST C4.5 MGI

0 100.0 98.5 89.7 100.0 98.51 21.99
2 100.0 98.42 89.5 100.0 98.4 21.47
4 100.0 98.35 89.69 100.0 98.19 21.94
6 100.0 98.38 89.46 100.0 98.28 23.11
8 100.0 98.38 89.49 100.0 98.48 21.51
10 100.0 98.44 89.12 100.0 97.95 22.32
12 100.0 98.09 89.3 100.0 97.62 21.79
14 100.0 98.13 89.49 100.0 97.71 22.87
16 99.98 98.07 89.1 100.0 97.13 22.98
18 100.0 98.07 89.23 100.0 96.88 23.52
20 99.98 97.9 89.21 99.86 96.53 23.83
22 100.0 97.86 89.56 100.0 96.63 25.36
24 100.0 97.9 89.34 100.0 96.16 22.82
26 99.99 97.91 89.01 100.0 96.58 24.14
28 99.98 97.69 89.07 100.0 96.1 23.18
30 99.98 97.65 88.91 99.92 95.75 23.67
32 99.96 97.76 89.03 99.89 96.44 26.25
34 99.99 97.61 88.98 99.96 95.2 24.63
36 99.98 97.72 89.17 100.0 95.37 27.09
38 99.95 97.54 88.89 99.87 94.91 24.78
40 99.95 97.62 89.18 99.8 95.78 25.19
42 99.93 97.51 88.87 99.59 94.78 25.85
44 99.95 97.43 89.22 100.0 94.39 28.0
46 99.89 97.23 89.22 99.61 93.94 27.81
48 99.85 97.38 89.04 99.49 94.47 26.4
50 99.82 97.08 89.17 99.4 94.24 27.85
52 99.85 97.21 88.83 99.22 93.26 27.1
54 99.74 96.97 89.05 98.96 93.32 27.91
56 99.72 97.04 89.22 99.03 93.71 29.26
58 99.68 96.95 89.14 98.38 93.38 30.26
60 99.46 96.49 89.17 97.19 92.56 30.87
62 99.43 96.49 88.74 97.03 91.98 29.39
64 99.27 96.53 89.27 96.55 91.89 31.99
66 99.1 96.66 89.56 95.56 92.3 32.19
68 99.03 96.43 88.68 94.9 91.25 34.17
70 98.85 96.1 89.44 94.11 90.86 37.47
72 98.6 96.21 88.5 92.55 91.44 31.85
74 98.2 96.03 89.26 90.34 89.71 35.29
76 98.22 96.09 89.85 88.59 91.31 37.58
78 97.29 95.67 88.61 85.83 89.43 35.9
80 96.89 95.57 89.75 81.5 88.41 43.17
82 96.23 94.68 88.85 76.84 84.45 41.28
84 95.72 94.27 89.75 73.29 85.21 46.87
86 95.78 94.51 90.81 71.58 86.08 49.17
88 93.78 93.63 89.89 62.33 84.17 50.08
90 94.45 93.5 91.25 64.75 83.25 59.0
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Table 4.3: Average accuracy and recall for the three algorithms in 421World

Accuracy Recall
Percentage of
missing data

LFST C4.5 MGI LFST C4.5 MGI

0 99.51 90.9 81.58 97.67 83.43 11.31
2 99.56 90.56 81.7 97.93 82.85 11.55
4 99.45 90.12 81.62 97.32 81.94 11.17
6 99.54 89.99 81.67 97.76 81.98 11.44
8 99.4 89.51 81.6 97.09 80.24 11.65
10 99.43 89.22 81.32 97.3 79.85 11.55
12 99.38 88.92 81.3 97.03 78.9 10.99
14 99.43 88.84 81.35 97.27 79.08 10.41
16 99.26 88.59 81.44 96.48 78.86 11.57
18 99.27 87.64 81.18 96.5 77.95 11.16
20 99.2 87.58 81.23 96.27 76.26 11.43
22 99.17 87.13 81.42 95.99 75.34 11.6
24 99.13 87.46 81.45 95.9 76.04 12.33
26 99.0 86.22 81.09 95.33 74.7 11.82
28 98.96 86.28 81.14 95.15 73.88 11.82
30 98.91 85.56 80.92 95.03 72.87 11.59
32 98.84 85.98 80.84 94.61 72.47 11.22
34 98.68 85.43 80.95 94.17 71.78 12.32
36 98.58 85.04 80.81 93.69 70.34 11.18
38 98.69 84.68 81.06 94.04 70.3 11.5
40 98.55 84.33 80.95 93.34 69.59 10.68
42 98.47 83.93 80.79 92.97 68.34 11.4
44 98.22 83.18 80.72 92.23 66.81 11.63
46 98.08 83.06 80.59 92.1 66.74 12.68
48 97.83 82.63 81.02 91.17 64.95 13.44
50 97.73 82.45 80.68 90.54 65.02 12.17
52 97.56 82.2 80.56 90.07 64.69 13.12
54 97.4 81.37 80.52 89.27 64.4 13.23
56 96.94 80.91 80.54 88.42 61.97 14.41
58 96.86 80.58 81.04 87.78 61.9 16.38
60 96.37 80.36 80.58 86.78 61.17 17.31
62 96.23 79.68 80.62 86.45 59.82 15.23
64 95.51 79.83 80.87 83.96 59.46 17.49
66 95.01 79.64 80.65 83.22 57.73 16.79
68 94.17 78.78 81.0 81.43 56.64 20.6
70 93.24 79.0 80.89 78.76 56.4 20.96
72 92.61 78.55 80.45 78.18 55.8 21.52
74 91.79 78.41 80.63 75.16 53.52 21.66
76 89.76 77.13 80.57 72.28 53.67 23.51
78 89.48 77.42 80.99 72.1 52.22 24.9
80 87.0 76.91 81.0 67.19 51.78 28.46
82 85.08 76.25 80.72 64.23 51.99 29.8
84 83.59 76.8 80.81 61.8 50.59 30.85
86 81.57 74.94 80.16 58.71 49.4 31.86
88 80.85 76.52 81.97 56.13 51.24 36.53
90 78.71 75.52 81.85 54.72 51.89 41.4





Chapter 5

Conclusion

This last chapter concludes the thesis. The section 5.1 summarize the different contributions of

the thesis. Section 5.2 discusses merging the two approaches that have been presented in this

thesis into one single framework. Finally, section 5.2 show future perspectives of this work.

5.1 Contribution of the Thesis

Plan and goal Recognition has a wide variety of applications. But, unfortunately, there are still

several serious problems that slow down the use of goal recognition in large-scale real-world

situations (computation time, action space, etc...). However, in this thesis, we presented a

method to solve plan recognition in RTS games. As we showed in the introduction, RTS games

are very complex games, and solving plan recognition in such games and in real-time brings

us closer to real-world applications. Even when restricting the application field to games, it

is actually a very important economic sector with a rise in the demand for adaptive AIs in

order to make games more entertaining for humans. We saw that our method handles missing

and delayed observations. Compared to most of the current plan recognition approaches, we

also deal with not ordered actions and interleaved plans. Our method predicts the goal of

the observed player and also infers its plan to reach it. The performance is similar to machine

learning methods that have been used for the same purpose (goal recognition) in previous work.

However, our method has the advantage that it could work without training data but only

by using expert knowledge. We proposed extending this method by including multi-horizons

prediction, which means predicting the player’s plan at five minutes horizon, and when we reach

this horizon, predict the new plan at ten minutes horizon based on the previous prediction and

continue for the next horizons. This will lower the computation time compared to trying to

87
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predict at ten minutes horizon from the start. It also makes much sense since the human players

usually do the same. They plan an opening strategy for the five first minutes of the game, and

if it was not enough to win the game, then they transition to a middle-term strategy. We also

discussed using another planner, like the one of Churchill and Buro [60] as the one we used

has been developed for simpler games and struggles with the state space of more complex RTS

games like StarCraft, and using different pruning heuristic, like a heuristic based on landmarks

similarly to Pereira et al. [22]. However, many plans share similar actions but achieve different

goals in our case, so it might be harder to find landmarks that are unique to each goal; a

solution could be to use the timing of the actions.

We then presented our goal recognition method and showed how different it is from previous

approaches in the field of goal recognition. Because few approaches are focused on learning the

agent’s set of goals, they often consider it given in the problem. Besides, our formalization of

the problem also allows us to use concept learning. We use our algorithm, LFST, to control

some generalization bias, and we have shown that it was a legitimate choice in chapter 4.2 since

our algorithm performs better than MGI and even C4.5. We could also make a version with a

heuristic search of the prototype to improve the execution of LFST since it is the only point

where MGI is better than LFST. We also showed that we could drastically improve the goals

deduction process’s efficiency by making assumptions about the agent and its environment.

This is why we plan to use LFIT or SMILE to infer the agents’ models and the environment’s

rules to exploit such assumptions. This and the integration of the agents’ goals preferences

in our model will allow us to infer more refined hypotheses about the agent’s goals. Also, as

we said in section 4.3.1 if we have good knowledge about the agent and its environment, we

can combine our method to this one [14], and we might obtain rather promising results. One

drawback is that, in reality, it is hard to know when an agent reaches its goal. It is actually

the main weakness of our method, and we need to overcome this weakness. For this, dynamic

learning throughout the agent’s actions could be efficient and would be more realistic. It could

also be effective in the case of an agent that changes its goal along the way or in a case where

the agent repeats the same cycle of actions, cases that we cannot solve yet with our method.

5.2 Combining Plan and Goal Recognition

In the work presented in this thesis, we did not use LFST to generate the possible goals that

were used in chapter 3 for our plan recognition method. Instead, we used expert knowledge as
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we had them at hand, and it is more accurate than trying to infer the possible goals with LFST.

However, we could combine the two methods to have one single framework. LFST would be

used first to generate the set of possible goals for the player, and then this set will be used to

perform plan recognition in RTS games. A good point that makes this implementation very

easy is that we use propositional logic to represent the state of the environment with both of

our methods, so we do not need any translation to combine them as they used the very same

formalism. We said that we have a lot of expert knowledge for the case of StarCraft, so we do

not need to try to infer the player’s goals. However, if we want to have the player’s goals at a

specific time horizon of the game, says twelve minutes, expert knowledge can be missing. So

we can take all the replays files and stop them at twelve in-game minutes. Then we can use our

algorithm LFST to build a hypothesis about the player’s goals at twelve minutes by fixing the

state of the environment that the player reached at that time as a goal state (positive example

in LFST formalism), and the previous states as intermediate ones (negative examples). Indeed

it will require some preprocessing as some replays might include misleading information, like if

the player was attacked by the opponent and had fewer buildings and units at twelve minutes

than before. We could also want to infer the player’s goals right before it starts an offensive

move to be able to anticipate it. In this case, the player’s goals would be different armies

composition. We can analyze the replay files and stop them when we observe the first offensive

move of the player, and then we set as goal state the state of the world as it was just before

this move. Figure 5.1 illustrates the complete process of using first LFST on the replay files to

infer the player’s possible goals; the replays are converted into positive and negative examples

as it is the input that LFST needs. Then, using the set of possible goals that have been output

by LFST, we can use them as input for our plan recognition method, and we will infer the most

likely plan and goal for the player.

Combining our two methods is even more relevant if we apply it to other games as we may

not have much expert knowledge. In such a case, it might be hard to find possible goals for the

agent in order to perform plan recognition. However, by using our goal recognition algorithm

LFST, we could design a set of possible goals for the agent and use it for plan recognition.

Furthermore, most of the RTS games follow the same rules as StarCraft, so our method could

be directly applied to them; we should just adjust the planner that we use. Finally, as we

explained before, most of the current methods in goal recognition predict the most likely goal

among a given set of candidates. Thus, by combining our goal and plan recognition method, we
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Figure 5.1: Illustration of the full goal recognition and plan recognition process

could get a very complete method as we will be able to generate this set of candidates and then

perform plan recognition to infer the most likely plan and goal of the observed agent. To the

best of our knowledge, there are no existing approaches that do this complete plan recognition

process as they often use a given set of candidates.

5.3 Further Perspectives

The fact that we succeed at performing goal recognition in real-time in an environment as

complex as an RTS game, even though the results are not perfect, is an important step forward

to solve the plan and goal recognition problem, as it brings us closer to solve in real-time real-

world problems. Future perspectives for this thesis are first to implement the multi-horizons

plan recognition system introduce in section 3.4.1. It can be done relatively easily as there

is nothing to change in the plan recognition method. The only thing we need is to perform

statistical analyses about the differents strategy transitions usually performed by the players

and then modify the inputs and outputs of our plan recognition algorithm. The next step would

be to try another pruning heuristic. As we said before, the heuristic from Pereira et al. [22],

based on landmarks uniqueness, looks very promising. However, compared to the environments

that Pereira et al. used for experiments, in RTS games, it is harder to find landmarks that more
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or less unique for each goal, especially as all the actions that players perform are not always

related to their goal. What could work well and that we plan to try is to use a combination

of our current heuristic and the landmarks heuristic as the latter is very fast to run. Using a

kind of consensus between them, if both heuristics agree to prune or keep a goal, then we do

it. Otherwise, if both heuristics disagree, we will follow the one that puts more weight in the

balance (the one for which the threshold for pruning or keeping has been exceeded the most).

The landmarks heuristic could help when our current heuristic hesitates between two goals

with rather similar plans if the landmarks of these two goals are different. On the other hand,

our heuristic could help if the player performed the landmark of some goal without actually

trying to achieve this goal. And then merging our goal recognition and plan recognition method

together as described previously.

Plan and goal recognition are very interesting and challenging problems to solve; however,

one question arises: to what end shall we solve these problems. Knowing the plan and goal

of an agent is indeed a good thing, but if this knowledge is not used, then one could argue

that the efforts invested into earning it are not really worth it. Our idea behind performing

plan recognition in RTS games was to be able to develop adaptive AI that could entertain the

human player more than hardcoded AI as players are currently used to. Indeed developing a

complete bot to play RTS games is very intensive work and would take much time, but we can

instead build the differents module that will compose such a bot. We wanted the AI to be

adaptive in the way that knowing the strategy of the human player, the AI could adapt its own

strategy in order to counter the player more efficiently. So what we could work on next would

be a way to decide which strategy to use, knowing the player’s strategy. Some works already

treated similar problems, like Antuori and Richoux [73] that use constrained optimization to

manage their unit production in order to counter the opponent. An idea could be to maximize

the following function:

max f(x) : x1u1 + ...+ xnun (5.1)

Under the constraints:

x1c
m
1 + ...+ xnc

m
n 6 Rm

x1c
g
1 + ...+ xnc

g
n 6 Rg

x1c
t
1 + ...+ xnc

t
n 6 T

(5.2)

Where xi are buildings or units, ui the utility of the building or unit xi according to the strategy

currently used by the opponent player, this utility would be learned from replays, cmi , cgi and,
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cti respectively the cost in terms of minerals, gas and time of xi. And finally, Rm, Rg, T the

amount of minerals, gas, and time that are at disposal. The last constraint about the time is

not totally exact as some action might be performed in parallel. In fact, it should be the longest

sequence of actions that should not exceed T . Solving this constraint optimization problem is

equivalent to finding the best buildings and units to generate during the game to counter the

current strategy of the opponent player. However, we expect the task of learning the utility

function from the replays to be relatively complex, so we also thought about another way to

adapt the strategy to the opponent which is, by using a decision tree. Instead of learning from

the replay a utility function for each building and unit, we will learn the utility function for

each strategy against the other strategies.It can be easily done by looking at how successful

each strategy is (looking for the win rate ratio of each strategy against the others and even

using expert knowledge), and then we can build a decision tree similar to figure 5.2. We can

see that the first node corresponds to the strategy to adopt, each strategy having a cost; this

cost is the transition cost from the current strategy to the new one that we wish to adopt.

Each strategy has its own probability of failure or success against the opponent’s strategy and

has its own gain in case of success and losses in case of failure. We say that some strategies,

hard or soft, counter other strategies, which implies that in some cases, the gain or losses could

be relatively low (soft counter), but the opposite can happen too (hard counter). We need to

choose the strategy that solves the following equation.

argmaxi (pis · gains(Si)− pis · losses(Si))− cost(Si) (5.3)

These were the two ways we are currently considering to solve the problem of adapting the

agent’s strategy to the opponent’s strategy once it has been inferred through plan recognition.

Thus we could make use of the information that we got about the opponent and take an edge

in the game. Constraint optimization and decision trees have the advantage of being used for

many problems and not only in the case of RTS games if we want to extend our method to

other fields.
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Figure 5.2: Example of decision tree to choose the strategy to adopt
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