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Chapter 01:
General Introduction

Protein structure and function
Protein performs various functions in the cells and underlies most of the

biological phenomena. The function of proteins ranges from catalyzing the chemical
reactions to forming cytoskeletons, and their functional diversity is believed to be
based on the diversity of protein structures. For example, enzymes that catalyze
specific chemical reactions require complementary ligand pockets that selectively
accommodate the substrate molecules. As the size and shape of pockets are
defined by the structure of the enzyme, the structure of proteins has very crucial
roles in determining the specificity of the reaction [1]. Therefore, protein structures
have been believed to define their functions.

Protein structure and folding
When seen as a group of covalently bonded atoms, the structure of a protein

is just a polymer. Chemically, a protein is just a hetero polypeptide chain composed
of amide-bonded amino-acid residues. However, this is just one aspect of the protein
structure. One of the most astonishing aspects of naturally occurring proteins is that
the polypeptide chains spontaneously fold into specific three-dimensional structures
to perform their work. This phenomenon in which polypeptide chains fold into specific
conformations is called “protein folding”, which makes proteins distinct from random
heteropolymers [2,3].

Anfinsen's dogma
The specific conformation the protein folds into is called the native state. The

native states vary between protein species, which are specified by their amino-acid
sequences. The native state of protein is believed to be the state with lowest
conformational free-energy as long as the folding process obeys equilibrium
thermodynamics. This is called “Thermodynamic　principle of protein folding” or
Anfinsen's dogma [2,4].

Structure prediction
Owing to these physico-chemical backgrounds, there has been much effort to

predict the three-dimensional structure of proteins from the amino-acid sequence.
The formalism of the problem is very simple; for a given amino acid sequence,
predict the native state that the sequence is most likely to fold into. In short, an
amino-acid sequence is given to the solver, and the solver returns the plausible
three-dimensional structure that the amino-acid sequence is likely to fold into. This
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problem, structure prediction, is a very fundamental problem in protein science and
also has many outcomes if practically solved [5–7]. For example, accurate
computational structure prediction of drug-target proteins that are difficult to
crystallize may lead to accelerated design of drug molecules.

Protein design as inverse problem of structure prediction
Protein design, the main subject of this thesis, is formalized as the inverse

problem of the structure prediction problem [8]. Namely, a target backbone structure
is given to the solver, and the solver returns an amino-acid sequence that is likely to
fold into the target structure. This seems to be a very clear definition of protein
design problem.

However, this formalism on protein design is oversimplified and too formal.
The most important question that need to be asked here is “where does the target
backbone structure come from?” In other words, who determines what to design?
Structure prediction has no analogous question to this. In structure prediction, the
target amino-acid sequence comes from sequence databases that store vast
numbers of experimentally determined genomic DNA sequences. It is generally
easier to obtain the nucleotide sequences of the genes than to solve the
three-dimensional structure of the protein experimentally, and this makes protein
structure prediction a well-defined problem. In contrast, it remains ambiguous where
the target structures to design come from. This is the key viewpoint to understand
protein design as something more than the inverse problem of protein structure
prediction.

Redesign of naturally occurring protein structures
In the early history of protein design, the design was performed exactly

following the formalism explained above; they took naturally occurring protein
structure as inputs, removed the sidechain atoms, and then computationally
designed the amino acid sequences that fold into the target structure [9,10].
However, in the modern context of protein design, such protocols depending on the
naturally occurring backbone structure tend to be called “redesign” rather than just
design. This is because another paradigm of design, de novo design, has been
widely accepted in the field of protein design.

De novo design
De novo protein design is a more drastic concept for protein design. In de

novo protein design, backbone structures are built from scratch, and not stolen from
naturally occuring proteins [11]. Once the backbone structures are built by some
means, designers can perform the amino-acid sequence designs as if they were
taken from natural proteins. In this way, they successfully design completely new
proteins. This offers higher flexibility in selection of design targets and therefore
would greatly enhance the variety of designed structures. Such ability to design
completely new proteins may enable the design of customized proteins such as
artificial enzymes and artificial antibodies for example. However, there are limited
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numbers of methods to generate de novo backbone structures [12–15], which may
be bottlenecking the diversity of designed proteins. Further development of design
protocols is required to unleash the potential of de novo protein design

Outline of this thesis
In this thesis, the author focused on the strategies to build the backbone

structures and explore how new approaches can extend the repertoire of design
protein structures.

In section 2, the author aimed to comprehensively construct three-helix
bundle structures. The purpose of this section is to learn what it is like to
comprehensively design small tertiary structures. The author first performed a
statistical analysis of helix-loop-helix fragments, and identified αα-hairpin motifs
specifically related to left- or right-handedness of helix-helix packing. Using these
motifs as building blocks, the author thoroughly performed backbone-building
simulation of all of the possible small three-helix bundle structures. As is expected
without simulations, the length of the second α-helix plays a significant role in the
compaction of three-helix bundle structure. Performing these backbone-building
simulations, the author identified the combinations of the loop types and the
helix-lengths that result in tight compaction of three helix-bundles required to form a
hydrophobic core. The author also performed amino-acid sequence designs for
those thoroughly enumerated the compact three-helix bundle structures, and found
that they were highly designable. The author also made this comprehensive set of
three-helix bundle structures publically available, hoping that this structural library
allows other designers to skip the rebuilding of similar topologies and enable them to
focus on their specialized design tasks.

In section 3, the author took two simple four-helix bundle structures as
examples and critically investigated the reason why diverse all-alpha protein
structures have not been designed so far in the current framework of de novo protein
design. The author identified that “double-meaning” of GBB loop critically lowers the
purity of fragments and leads to low efficiency of backbone building in BlurpintBDR.
The author concluded that the blueprint method is not suitable for the design of
all-alpha proteins.

In section 4, the author developed new strategies for design of all-α proteins
to overcome the limitation of current methods pointed out in Section 2. The author
guessed that “difficult-to-describe” structures were also difficult to draft out. Therefore
the author intended to skip the step of making blueprints, and directly model
backbone structures which are ready for amino-acid sequence designs. First, the
author started from the classification of typical helix-loop-helix fragments identified as
fundamental building blocks for building backbone structures. The author generated
literally all the possible combinations of these building blocks and the connecting
α-helix lengths, and evaluated their compaction and clashes, and composed a
myriad of globular all-α backbone decoys. Statistical analysis of these decoys
clarified that the conformation generated by this strategy largely covers the
conformational space that has not been sampled by previous de novo designs. Then
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the author searched for the backbone topologies that attracted my attention as if the
author looked over a catalog of protein backbone structures, and then picked some
up for sequence design. For the five backbone topologies the author got interested
in, amino-acid sequence design was performed. The author performed experimental
validation of foldability of these designed proteins. For the most promising designs,
the three-dimensional structures were solved in collaboration with Dr. Naohiro
Kobayashi and Dr. Toshihiko Sugiki at Riken and Osaka university. The structure of a
design protein Elsa was solved in collaboration with Murata group at Chiba university
and they clarified the protein forms domain swapped dimer form in the crystal.

In section 5 and 6, the author seeked for the applications of the backbone
building technique developed in section 4. In section 5, the author created a massive
library of de-novo designed mini all-α proteins to examine the value of the structural
diversity made accessible by the backbone building method. The library encodes
294 distinct topologies by 7,350 amino acid sequences, whose structural diversity
would be useful to design functional proteins. In section 6, the author designed
idealized versions of globin topology to show that the typical building blocks can
provide sufficient structural complexity covering the most famous example of
“difficult-to-describe” topology. The author was able to design the amino-acid
sequences that are predicted to fold into the target globin-like topologies. Though
experimental validations for these library and globin-like designs are yet to be done,
these results highlight the applicability of the structural diversity and complexity
provided by the backbone building method developed in section 4.
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Chapter 02 :
Enumeration and comprehensive design of
three-helix bundle structures composed of
typical αα-hairpins

Abstract
The design of protein structures from scratch requires special attention to the

combination of the types and lengths of the secondary structures and the loops
required to build highly designable backbone structure models. However, it is difficult
to predict the combinations that result in globular and protein-like conformations
without simulations. In this study, the author used single-chain three-helix bundles as
simple models of protein tertiary structures and sought to thoroughly investigate the
conditions required to construct them, starting from the identification of the typical
αα-hairpin motifs. First, by statistical analysis of naturally occurring protein
structures, the author identified three αα-hairpins motifs that were specifically related
to the left- and right-handedness of helix-helix packing. Second, specifying these
αα-hairpins motifs as junctions, the author　performed sequence-independent
backbone-building simulations to comparatively build single-chain three-helix bundle
structures and identified the promising combinations of the length of the α-helix and
αα-hairpins types that results in tight packing between the first and third α-helices.
Third, using those single-chain three-helix bundle backbone structures as template
structures, the author designed amino acid sequences that were predicted to fold
into the target topologies, which supports that the compact single-chain three-helix
bundles structures that the author sampled show sufficient quality to allow
amino-acid sequence design. The enumeration of the dominant subsets of possible
backbone structures for small single-chain three-helical bundle topologies revealed
that the compact foldable structures are discontinuously and sparsely distributed in
the conformational space. Additionally, although the designs have not been
experimentally validated in the present research, the comprehensive set of
computational structural models generated also offers protein designers the
opportunity to skip building similar structures by themselves and enables them to
quickly focus on building specialized designs using the prebuilt structure models.
The backbone and best design models in this study are publicly accessible from
following URL:
https://doi.org/10.5281/zenodo.4321632

Background

https://doi.org/10.5281/zenodo.4321632
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Designing protein structures from scratch requires the careful selection of the
length and types of the secondary structures and the loop types; further, the global
structure and the local structural motifs need to be consistent. However, it is difficult
to predict the combinations of building blocks that result in globular and protein-like
conformations without simulations. Therefore, it would be beneficial for protein
designers to limit the building blocks to the typical ones and enumerate the dominant
subsets of their possible combinations in order to find promising combinations that
result in highly designable backbone structures. In addition, once such
conformational enumeration is performed, their results can be shared with other
designers, and would enhance further design studies by allowing them to skip
resampling the similar structures.

The αα-hairpin is a well-known structural motif, which consists of two adjacent
α-helices and a loop region in between [1]. The loop region allows two flanking
α-helices to pack into antiparallel arrangements, and the steep turn leads to tight
non-local contacts between the two adjacent α-helices. Although the loop regions in
general show non-repetitive structures and their conformations are more complicated
than secondary structures, a few of them show clear patterns and can be classified
into several subtypes, and are thus regarded as local motifs [2, 3]. Several
pioneering studies have identified certain typical conformations of loops that are
specifically related to αα-hairpins [1, 4, 5] and utilized them for design [6].

In this study, the author considered single-chain three-helix bundles as the
simplest tertiary structures and investigated the conditions required to consistently
construct them. The single-chain three-helix bundle is composed of three α-helices
and two connecting loop regions that fold into hairpin conformations, causing
neighboring α-helices to pack tightly into a compact antiparallel bundle configuration.
Consequently, the third α-helix can be packed parallel to the first helix. The
single-chain three-helix bundle structures are frequently observed in naturally
occurring proteins and also have been designed artificially as well [7, 8]. Of note, the
design of the single-chain three-helix bundle was one of the earliest efforts in the de
novo protein design [8]. The design of helical bundles or multiple-chain coiled-coils is
nowadays one of the largest fields in the protein design study, allowing diverse
α-helix arrangements [9]. It is now clear what residue-residue non-local interactions
can cause tight packing between α-helices [10] and result in various helix-bundle
arrangements [11], which originates from analysis and design of coiled-coil
structures [12–14]. Such knowledge for helical bundle designs have recently led to
design of antibody-like and interleukin-mimicking artificial proteins [15–17] and
programmable heterodimers [18]. However, many of previous works focus on the
interface design between α-helices and do not pay much attention to the detailed
conformations of loops that optimally connect individual α-helices. Therefore, when
compared to coiled-coils and peptide assemblies that are composed of several
independent chains, it still remains unclear and undocumented which combinations
of the α-helix lengths and loop types result in compact single-chain helical bundle
structures. Understanding the dominant subsets of possible conformational spaces
allowed for single-chain helical bundles will be fundamentally important and even
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informative to efficiently design pharmacologically valuable artificial proteins. To this
end, we aimed to understand which combinations of αα-hairpins and α-helix lengths
can result in compact single-chain three-helical bundle structures, considering the
αα-hairpins as the fundamental building blocks.

Results and discussion
Specific αα-hairpin loops determine the handedness of helix-helix packing

To identify typical hairpin motifs, the author performed a statistical analysis of
helix-loop-helix fragments and found that shorter loops are present in greater
frequency (Figure S2-1). To focus on hairpins rather than general helix-loop-helix
fragments, the author defined helix-orientation vectors [19] and calculated their
crossing angles (Figure S2-1). On applying the condition that the helix-helix crossing
angles θHH are less than 60° in the fragment dataset, the author found a decrease in
the population of single-residue loops, as the short helix-loop-helix prefers corners or
kinks rather than hairpins. The author focused on the more frequent short hairpin
fragments and extracted 2, 3, and 4 residue length loops for subsequent analysis.

To investigate the preferable loop conformations related to the specific
handedness of helix-helix packing in naturally occurring protein structures, the author
assigned a 5-state coarse-grained representation for the backbone torsion angle,
i.e., ABEGO representations (Figure S2-2) for each fragment and evaluated their
statistical information [2]. ABEGO is a five-state coarse-grained representation of
polypeptide backbone dihedral angles; Ramachandran map is divided into four
sections and labelled by single letters A, B, E and G, to enable the representation of
dihedral angle series by character strings. The A region roughly corresponds to the
conformation of α-helix, and the B region corresponds roughly to the β-strand
conformation. The G region corresponds to left-handed α-helix, and the E region
represents the rest of the Ramachandran map. The O state correspondds to the
cis-conformation of peptide bond, which are almost negligible in this paper. Then the
author sorted the backbone torsion types specified by the ABEGO representations
by their population and found that the hairpins showed limited conformations (Figure
2-1). For example, the GB and BB loops occupied more than 90% of the top five
frequent populations among two-residue loops.

To identify hairpins that show specific handedness in helix-helix packing, the
author defined helix-helix dihedral angles φHH and calculated the ratio of left- (L-) and
right- (R-) types among the helix-helix dihedral angle distribution (Figure 2). The
author selected the most populated loop types that showed R/L or L/R ratios higher
than 5.0 in each class of loop lengths as representative hairpin species. This
resulted in the selection of the GB, GBB, and BAAB loops; the author did not select
BAB loop because their inter-helix dihedral angles were broadly distributed, resulting
in both left- and right-handed helix-helix packing  (Figure S2-3).
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Figure 2-1: Identification of typical αα-hairpin motifs by the ABEGO
representation for the loop conformations. The distributions of the top-10 typical
hairpin conformations for two, three, and four-residue length loops that were
identified by ABEGO. Several specific series of backbone torsion angles are strongly
preferred in the hairpin loop region.

Figure 2-2: The handedness of helix-helix packing forced by typical αα-hairpin
motifs. (A) Definition of φHH (B) Definition of packing handedness (C) The
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distribution of φHH for GB, GBB, and BAAB hairpins. The horizontal axis represents
the values of the helix-helix dihedral angle φHH, and the vertical axis corresponds to
the number of loop fragments in the dihedral bins. The barplots are binned every
18°, and the orange dotted line indicates the median value of the distribution. (D)
Representative structures for the GB, GBB, and BAAB hairpins. The structures show
the GB and BAAB hairpins are related to left-handed packing, and GBB is related to
right-handed packing. The α-helices are shown as cartoons and are colored in the
blue-white-red gradient from the N to the C-terminus.

The author extracted the structures whose φHH was nearest to the median of
the angle distribution as the class representatives. The representative structure and
the distribution of φHH clarified that GB loops are closely related to the L-type
handedness of helix-helix packing motifs (Figure 2-2). Similarly, the GBB loop was
related to the R-type and the BAAB loop to L-type packing. The handedness of helix
packing for the GB, GBB, and BAAB loops was broadly consistent with a previous
report [20] and the overall tendency did not change when the author performed the
same analysis for different dataset (Figure S2-4). The author also checked the
clustering quality by sequence alignments for each hairpin structure, and observed
typical periodic patterns of hydrophobic residues in the flanking helix regions (Figure
S2-5). The author concluded that classification using the ABEGO patterns worked
well to extract hairpin motifs related to the specific handedness of helix-helix
packing.

Previous studies on αα-hairpins reported both L and R types of helix-helix
packing can result from GB or GBB hairpins [1, 4]. However, the author observed
that these loops indeed strongly bias the handedness of helix-helix packing. This
does not imply that a single ABEGO-level representation can always specify the
single handedness of helix-helix packing; for example, BAABB loop can result in
both the L and R type packing (Figure S2-3). However, certain hairpin conformations
such as GB, GBB, and BAAB can strongly determine the handedness of the packing
of two flanking α-helices, and are an example of a pair of local and nonlocal
structural motifs that are consistently incorporated into a single tertiary structure. As
the spatial arrangements and orientation of two α-helices connected by a loop region
are stereochemically determined by the backbone dihedral angles in the loop region,
preference to specific handedness of helix-helix packing can be attributed to the rigid
conformation of the loop region. Hydrogen bond analysis using DSSP[21] revealed
that intra-loop backbone-backbone hydrogen-bond network energetically stabilizes
such typical loop conformations, making the loop conformation rigid enough to relate
the local conformation of loops to the specific geometry helix-loop-helix fragments
(Figure S6–S8).

Sequence-independent backbone-building simulations clarify the condition for
building compact single-chain three-helix bundles

The length of the second α-helix is expected to play a crucial role in the
construction of compactly packed single-chain three-helical bundle structures since
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extension of α-helix leads to large repositioning of the following segments. As one
turn of the α-helix requires 3.6 residues, compact bundle structures may appear for
every increase of 3 or 4 residues. However, it remains unclear which exact
combination of loops and helix-length results in a compact single-chain three-helix
bundle structure. Therefore, the author performed comparative
sequence-independent fragment-assembly simulations to identify which combination
of loops and helix lengths result in tight packing between the first and third α-helices.

The set of backbone dihedral angles of the fragments are roughly specified in
the ABEGO representation (referred to as “blueprint” [22]) and are used in
fragment-picking before the fragment-assembly simulations. Hereafter this type of
fragment assembly simulation guided by the blueprints is referred to as
backbone-building simulations. Using the GB, GBB, and BAAB loops identified in the
previous section, the author constructed blueprint files for various types of
single-chain three-helix structures and systematically scanned the length of the
second α-helix. Next, 2500 trajectories of backbone-building simulations were
performed for each of these blueprints [23, 24]. The author prepared ideal
single-chain three-helical bundle decoys using CC-builder for the reference
structures [25], and calculated the template modeling score (TM-score) of the final
structure from each trajectory that was referenced by the decoys to quantify the
success ratio of the backbone-building simulations [26]. Importantly, the author used
two reference decoys for each blueprint-based folding simulation because
single-chain three-helical bundles can take two types of helix configurations; i.e., a
clockwise (CW) or counter-clockwise (CCW) arrangement of three α-helices (Figure
S2-9).

The results of the backbone-building simulations are summarized in Figure
2-3. The simulations showed three important features that are summarized here by
taking the results for the helix-GB-helix-GB-helix simulations as examples. First, the
length of the second alpha-helix plays a crucial role in the construction of compactly
packed single-chain three-helical bundle structures; the success ratio of the
backbone-building simulations was obviously related to the periodicity of the α-helix
structure. For example, CW bundles can be efficiently generated with the second
α-helix with lengths of 10, 14, and 17 residues for helix-GB-helix-GB-helix blueprints.
Similarly, the second α-helix with lengths of 9, 12, 16 residues resulted in CCW
bundles. Here, the peaks were separated in every three or four residues, which was
consistent with the canonical α-helix structure that requires 3.6 residues per turn.
Second, certain combinations of loops and helix-lengths do not yield well-packed
helix bundles. For example, the blueprint with a 15 residue helix in the middle cannot
fold into a compact helical bundle. This is because the number of turns in the second
α-helix is unable to pack the first and third helices closely, causing them to be apart
from each other (Figure S2-10). Such a blueprint has a local conformation that is
inconsistent with the global structure of compact single-chain three-helical bundles.
Third, the position of the peaks oscillates between CW and CCW bundles as the
length of the second helix increases. The switch between a CW bundle to the
neighboring CCW bundle is very sharp and sometimes requires an
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increase/decrease of a single residue. For example, the blueprint with a 16-residue
helix in the middle preferentially results in the CCW bundle structure, and an
increase of one residue results in a preference for the CW bundle. Overall, the
results of the backbone-building simulations agree with the qualitative expectations
that were guided by the periodicity of the α-helix structure, and provide further
detailed information on the exact combination of loop types and helix-lengths that
result in compact bundle conformations. These results were not affected when
different threshold and reference structures were used for analysis (Figures S2-11
and S2-12).

Figure 2-3: The length of the second helix is highly responsible for the
compaction of single-chain three-helix bundles. (Top) The blueprints of
single-chain three-helix bundles. The white bars indicate the α-helices, and the black
bars indicate the loop regions, where integer H denotes the variable length of the
second α-helix. The alphabets beneath the loop represent the ABEGO of the loop
region specified in the blueprint. (Bottom) Bar graphs to summarize the foldability of
each blueprint with the variable length of the second α-helix, H, scanned from 5 to 20
residues.The bars represent the population of folded structures that showed a
TM-score higher than 0.55 as referenced by ideal CW (left) or CCW (right)
three-helical topologies. The vertical axis represents the length of the second α-helix
H. The structures shown beside the bars are the representative snapshots from the
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backbone-building simulations with highest TM-scores.

Taken together, these results indicate that the appropriate combination of local
loop motifs and the length of the secondary structures are relatively rare among the
possible combinations, especially under approximation that the loops and α-helices
are semi-rigid under ABEGO constraints on backbone dihedral angles. In the
author’s simple simulations for single-chain three-helix bundle structures,
approximately half of the blueprints were able to generate compact bundle
conformations. As the foldable combinations of building blocks are rare and sparsely
distributed even for simple single-chain three-helical bundles, valid combinations for
more complicated topologies are expected to become rarer and more difficult to find.
The author expects that the possibility of obtaining foldable combinations will
decrease exponentially as the number of secondary structures increases, and it will
be difficult to hypothesize as to which combinations may result in a compact,
globular, and protein-like structure without exhaustive sampling in the conformational
space.

Other types of blueprints, such as for helix-GBB-helix-GBB-helix, and
helix-BAAB-helix-BAAB-helix showed results similar to the GB-blueprint.
Interestingly, the “phase” of the peak oscillation was inverted between the GBB and
BAAB-blueprints, whereas the positions of the peaks were similar to each other,
reflecting the local handedness of the hairpin structures. The former results in a
CCW bundle when the second helix has 13 residues, and the latter yields a CW
bundle in the same conditions. These observations that the local handedness of
hairpins can control the global chirality of the topology may be informative for
efficiently diversifying the shapes of design proteins. Additionally, the blueprints
showing a mixture of hairpins with different handedness failed to pack the first and
third α-helices because their crossing angles do not cancel out (Figure S2-10 and
S2-13–2-17).

Amino acid sequence design suggests that the enumerated globular
single-chain three-helix bundle structures may be designable.

As the backbone model generated in the previous section lacked any
information on amino acid sequences, the author performed sequence designs using
Rosetta [24] to check if the compact single-chain three-helix bundle structures are
designable as concrete amino acid sequences. The author selected 27 backbone
structures that are listed in Figure 3 and performed amino acid sequence designs for
these backbone structures. The author designed ~7000–9000 sequences for each
backbone structure and observed that the interfaces between the first and third
α-helices recovered the sequence motifs for helix-helix packing (Figure S2-18). The
results show that the relative arrangements of the first and third α-helices sampled in
the sequence-independent backbone-building simulations are realistic enough to
mold the typical amino acid sequences observed in helix-helix packing motifs. The
optimal combinations of local properties such as the hairpin types and α-helix lengths
lead to the successful recovery of non-local features. From these ensembles of
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design models, the author selected the most foldable sequences for each topology
using sequence-dependent fragment assembly simulations [27] (Figure 2-4 and
Figure S2-19–S2-21). In most of the simulation settings, the lowest-score models
agreed well with the design models and recovered local hairpin structures well
(Figure S2-22–S2-27 and Table S2-1). The author also performed negative-control
designs in which the loop regions of the up-down helix bundles have atypical
conformations, such as EE, BEB, and BEEE. The best-effort designs for these
backbone models were indistinguishable in terms of par-residue Rosetta scores from
the designs with typical hairpin motifs (Table S2-2). However, they were not able to
efficiently fold into the target topology in the sequence dependent
fragment-assembly simulations (Figure S2-28). This result suggests that the
compact up-down bundle structures with typical hairpins have higher designability
than the ones composed of atypical hairpins. For these best design models, the
author performed blast search using blastp against a non-redundant sequence
database [28, 29] and confirmed that three were no similar sequences found in the
database.

Figure 2-4: The representative structures and the results of
sequence-dependent folding simulations of the designed single-chain
three-helix bundles: GB-CCW9, GBB-CW11, and BAAB-CCW8. (A) The side-view
and top-view of the designed structures with the α-helix shown as a cartoon and the
hydrophobic side-chains represented as sticks. (B) The results of the folding and
relax simulations. The vertical axis represents the Rosetta score, and the horizontal
axis represents the root-mean-square deviation from the target structures. The black
dots correspond to the final snapshots of the fragment-assembly folding simulations
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starting from extended conformations, and the red dots correspond to the final
snapshots of the relax simulations starting from the native conformations. These
designs are predicted to fold into the target topologies because the trajectories of the
folding simulations can reach the near-native ensembles. (C) The lowest score
models in folding simulations (orange) superimposed onto the design models (white).
The predicted models and design models agree well, which suggests the designed
amino acid sequences fold well into the target conformations.

To confirm the stability of designed proteins independently from the Rosetta
score function and fragment assembly simulations, the author utilized molecular
dynamics simulations of designed proteins models and assessed their quality [30,
31]. The author performed molecular dynamics simulations for the 27 best design
models using GPU-accelerated GROMACS 2020.6 [32, 33] alongside Amber 15FB
force field [34]. For each design, the author performed 10 trajectories of 100 ns
molecular dynamics simulations with explicit TIP3P water models. After energy
minimization and equilibration, the author performed 100 ns of the production run
under the pressure of 1 bar and temperature of 300 K. The simulation showed the
most of the design models can stay within 5 Å in the root-mean-square deviations
(RMSD) of Cα coordinate from the designed structures for 100 ns (Figure
S2-29–S2-34). The only exceptions were 7th trajectory of GB-CW7 and 3rd and 8th
trajectories of GBB-CCW6 (Figure S2-29 and S2-31), which resulted in partial
unfolding of the structures. These structures may be unstable probably because they
have too small hydrophobic cores to maintain the designed topologies. Overall, the
molecular dynamics simulations showed that the designed proteins were stable
enough to keep the native conformation in the solution state. These results provided
independent validation for the designability of the backbone structures we sampled
by fragment assembly with the Rosetta score function.

As the author designed up-down types of helical bundles, whose
substructures can be regarded as antiparallel and parallel coiled coils, the author
confirmed whether the best-designed sequences can be recognized as coiled-coils
by DeepCoil [35–37]. Interestingly, the predicted probability to observe coiled-coil
arrangements within the designed structure increased as the length of the design
proteins increased (Figure S2-35–S2-40). Approximately, when the length of the
second α-helix is longer than 15 amino-acid residues, the probability to recognize the
sequence as coiled-coil becomes higher than the significance threshold. This
suggests that these up-down helical bundles can be regarded as coiled coils when
the chain lengths are large enough. Therefore, although the author designed
amino-acid sequences without considering the structures are related to coiled coils,
sequence design techniques for coiled coils can be repurposed to the sequence
design of large helical bundles and may result in more optimized helix-helix packing,
which may lower the computational cost of design and improve the yield of
successful design sequences. On the other hand, smaller helical bundles failed to be
predicted as coiled coils. This does not immediately imply that such small helical
bundles are not designable; such small helical bundles were designed in a previous
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study [38]. Therefore, the sequence design of such small helical bundles should be
performed without considering the structure as coiled-coils. This analysis suggested
that optimal design methods may be able to be selected depending on the size of
target helical bundles. It is also interesting whether parametrically designed
multiple-chain coiled coils can be redesigned into single-chain helical bundles by
designing the loops connecting the α-helices; the question is whether the designer
can find appropriate loop conformations to connect the α-helices [39] without
frustrations between local and nonlocal interactions [40, 41].

Finally, to detect knobs-into-holes structure in the author’s designs, the author
performed structure analysis using SOCKET [42]. According to SOCKET,
knob-into-holes structures were observed roughly in two-third of the author’s designs
(Figure S2-41-S2-44). In addition, SOCKET detected coiled-coil structure in 4 of the
author’s designs, although the author did not intend to design coiled-coil-like
substructures in the author’s design scheme. This also suggests that the design of
helical bundles shares many similar aspects with the design of coiled coils, and the
rich and matured protocols for coiled-coil design can be imported into the design of
single-chain helical bundles.

Conclusion
In this study, the author used single-chain three-helix bundles as simple

models of protein tertiary structures and investigated the conditions required to
construct them, and aimed to understand the mechanisms by which these local and
nonlocal motifs are consistently incorporated into a single three-dimensional
structure. First, the author showed that the GB- and BAAB-hairpins are related to
left-handed helix-helix packing, whereas the GBB-hairpins are related to
right-handed packing. Second, by enumerating the combinations of the hairpin types
and the helix length, the author identified the combinations of helix-length and loop
types that resulted in successful compaction of single-chain three-helix bundle
structures. As the author has enumerated most of the backbone structures that are
potentially obtainable for these simple topologies under the condition that the
hairpins are limited to GB, GBB, or BAAB, and the lengths of the second α-helix are
less than 20 residues, no other single-chain up-down three-helical bundle structures
are plausible in this subspace of the structural space. Combined with the observation
that the populations of loops are strongly biased towards a limited number of typical
conformations, such enumeration can cover most of the possible conformational
space.

The author also showed that the backbone structures composed of such short
hairpin motifs may be highly designable by amino acid sequence design and
sequence-dependent folding simulations, although experimental validation for these
designed proteins should be done elsewhere. In addition, Molecular dynamics
simulations supported that the designed proteins are stable in solution, which
suggests that designed proteins do not have internal frustrations between local and
nonlocal interactions. Using programs to detect coiled-coil sequences and structures,
the author also found that the designed sequences and structures can be recognized
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as coiled-coil when the sequences are long enough. This implies sequence design
methods based on sequence periodicity of coiled coils, which is usually utilized in
design of multi-chained coiled coils or peptide assemblies, can be repurposed for the
design of single-chain up-down helical bundles to realize optimized helix-helix
packing.

Though the author’s analyses are limited to the simplest class of tertiary
structure, single-chain up-down three-helical bundles, the author has shown that the
enumerative exploration into the conformational space can clarify the appropriate
combinations of building blocks. The author also showed such exploration can yield
transferable structural resources for protein design that can be shared with other
protein designers. As such enumeration does not need to be done twice, data
sharing among designers would promote advances in the protein design fields. To
this end, the 27 types of backbone structure that the author enumerated and the best
sequences that the author designed are now publicly available at
https://doi.org/10.5281/zenodo.4321632

Method
Initial dataset preparation

A collaborator of the author composed a subset of the ECOD database
(version 238) whose sequence redundancy was reduced by 40% sequence identity
[43]. Next, secondary structures were assigned using DSSP [21], and a total of
39,938 helix-loop-helix substructures were extracted having loop lengths that were
less than or equal to 10. The author discarded the structures whose α-helices have
less than or equal to 9 residues.

The author prepared another dataset of PDB structures whose sequence
redundancy was reduced by 25% sequence identity with resolution lower than 3.0 A
using Pisces server[44], and obtained 29,149 helix-loop-helix structures. These
structure were used to check the effect of resolution cut-off for the geometric analysis
of helix-loop-helix fragments (Figure S2-4)

ABEGO-level dataset preparation
The backbone dihedral angles were translated into 5 state coarse-grained

ABEGO representations (Figure S2-2). ABEGO is a coarse-grained representation of
polypeptide backbone dihedral angles, where the Ramachandran map is divided into
four sections and labeled by single letters A, B, E and G. The O state corresponds
to the cis-conformation of the peptide bond, which is almost negligible in this paper.
The A region roughly corresponds to the conformation of α-helix, and the B region
corresponds roughly to the β-strand conformation. The G region corresponds to
left-handed α-helix, and the E region represents the rest of the Ramachandran map.

As it is ambiguous whether the dihedral angle of A in ABEGO representation
is a loop region or α-helix termini, the author removed the loop fragments that
start/end with A of ABEGO. The author only included fragments that started/ended
with B, E, and G. After this data pruning, the author obtained 19,844 helix-loop-helix
fragments. The author checked that the removal of fragments that started/ended with

https://doi.org/10.5281/zenodo.4321632
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A did not largely change the distribution of the frequent loop types (Figure S2-45). All
of the date processing was performed with in-house R and python programs.

Definition of the geometrical features of helix-loop-helix fragments
For the final and first single turn on the N/C-terminal α-helices of the

helix-loop-helix fragments, the vectors vN and vC representing the orientation of these
α-helices were defined as per Krissinel et al. [19]. Additionally, the author defined the
loop orientation vector vL as starting from the final/first Cα coordinates of the
N-/C-terminal α-helices. Next, the author defined 2-geometric features using vN,vC,
and vL : (1) the helix-helix crossing angle θHH, (2) the helix-helix dihedral angle φHH.
θHH is the crossing angle between two N/C-terminal α-helices (Figure S1) defined by
the arc-cosine of the inner-product of vN, and vC. φHH is the inter-helix dihedral angle
between two α-helices defined by vN, vL, and vC (Figure 2-2). As the author focused
on αα-hairpins, the author only collected fragments that satisfied the condition that
θHH was less than 60° before performing the rest of the analysis.

Sequence-independent fragment-assembly simulations: Backbone-building
simulations

Sequence-independent fragment assembly simulations, which the author
referred to as backbone-building simulations, were performed using Rosetta
BluePrintBDR [24] similarly as in Lin et al. [23]. The blueprint files were generated
manually and were used in fragment picking to specify the backbone torsion in the
ABEGO representation. For each site of proteins, 200 fragments were picked from
the default structure library. For each blueprint, simulations were repeated for 2500
trajectories, and the final snapshots from the trajectories were used for structural
analysis. A parameter set, fldcen.wts, was used as weight parameters for
BluePrintBDR simulations.

In the analysis, two ideal decoy structures of single-chain three-helical
bundles were used as references to calculate the TM-scores using TM-align [26].
The author prepared two types of reference decoys, i.e., clockwise (CW) and
counter-clockwise (CCW) bundles originating from the ideal decoy structures that
were generated by CC-builder [25]. The parameters for CC-builder were as follows;
oligomeric state 3; radius 6.75, 8.1, 9.0, 9.9, and 11.25 for x0.75, x0.90, x1.00, x1.10,
and x1.25 radius variant of helix bundles; pitch 300; interface Angle 20. Based on
these decoys built by CC-builder, the author manually modified their helix-orientation
to up-down-up and packing chirality by re-sorting and mirroring the Cα coordinate
and superimposing ideal α-helices onto the mirrored helix arrangements (Figure
S2-9). In the data analysis, the snapshots showing TM-scores higher than 0.55 were
counted as folded into three-helical bundle structures [45]. To check the robustness
against the change in reference structures, the author systematically modified the
diameter of reference helix-bundles by the magnitude of 0.75, 0.9, 1.10, and 1.25.
The author also changed the threshold of TM-score (0.50, 0.55, and 0.60) to check
the robustness of the results. These parameters were found not to largely change
the results (Figure S11 and S12).
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Construction of negative-control helix-bundle structures
Based on the anti-parallel part of decoy structures described above, the loop

regions were modeled using Modeller [46] and six types of helix-helix hairpins that
have atypical EE, BEB, and BEEE conformations were selected. Then the respective
hairpin structures were repeated to form three-helix bundles composed of atypical
hairpins. The severe steric clashes between alpha-helices were removed using
Foldit-standalone [47].

Amino acid sequence design and sequence-dependent folding simulations
Amino acid sequence design was performed using the Rosetta flxbb protocol

[24] starting from the backbone structure that showed the best TM-score in the
previous sequence-independent folding simulations. Score Talaris2014 was used in
all designs and folding simulations including negative-control designs. In the loop
region, amino acid profiles were constructed using similar loop structure fragments
(RMSD < 2 Å) and used as constraints for residue types, similarly to Marcos et al
[48]. In addition, the specification on the residue types was refined based on the
buriedness of the backbone atoms using in-house programs. The text files, i.e. the
so-called “resfiles'' specifying the final residues set were attached as supplementary
files. The author performed 10,000 design trials for each backbone model and
obtained ~7,000–9,000 design sequences that passed the secondary structure filter.
The author selected the best 5–10 sequences using the fragment-quality score. The
author defined the fragment quality score as the average of the logarithm of the
number of fragments with RMSD lower than 1.5 Å from the design model, similarly to
Marcos et al [48].

The author performed sequence-dependent fragment-assembly folding
simulations [27] to identify the best design sequences. Sequence dependent
fragment assembly simulations, which the author denoted “folding” simulations, were
performed using AbinitoRelax binary in Rosetta suite with 200 3-mer and 9-mer
fragments collected by psi-blast search in the default structure library. Near-native
sampling simulations, which the author denoted “relax“ simulations, were performed
by relax binary in Rosetta suite to sample near-native conformation starting from the
designed structure models. 20,000 trajectories of fragment-assembly folding
simulations were performed for each design protein, and their ability to fold into the
target structures was evaluated by the shapes of the energy landscapes.

MD simulations
All of the simulations were performed using GROMACS 2020.6 [32, 33] with

Amber force field ff15FB [34]. First, the author performed the in-vacuo energy
minimization by the steepest descent for 500,000 steps, and the energy-minimized
protein structures were solvated by TIP3P water models. The initial box size was set
to 6 nm x 6 nm x 6 nm, which was large enough for all types of designs. The Na+
and Cl- ions were introduced to the system at the concentration of 0.1 mol/L.
Depending on the total charge of the designed proteins, additional Na+ or Cl- ions
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were added to the system so that the system has zero net charges. The whole
system was energy-minimized again for 500,000 steps.

With the step size of 2.0 fs, the whole system was equilibrated by 100 ps of
NVT and NPT simulations under harmonic constraint for heavy atoms. Then 100 ns
of production runs were performed without any external constraints to the system
under 1bar of pressure and 300 K of temperature. The production runs of the MD
simulations were performed with LINCS constraint algorithm for the bonds between
hydrogen atoms and heavy atoms. The temperature of the system was controlled to
300 K by the V-rescale algorithm (modified Berendsen thermostat) with the time
constant of 0.1 ps. The pressure was controlled to 1.0 bar by Parrinello-Rahman
algorithm with the time constant of 2 ps. The electrostatic part of the force field was
calculated using the particle mesh Ewald scheme with the order of 4.

Availability of data and materials
The backbone models and best design models in this study are publicly accessible
from following URL: https://doi.org/10.5281/zenodo.4321632
Best-effort negative control designs are available from the following URL :　
https://zenodo.org/record/5512549
The in-house python and R script for ABEGO analysis is disclosed in GitHub:
For ABEGO-based analysis: https://github.com/yakomaxa/ssdoublet
Other scripts to reproduce the research are also disclosed in GitHub:
For backbone building: https://github.com/yakomaxa/bbdesign_template
For MD simulations: https://github.com/yakomaxa/MD_gromacs_template
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Supplementary Material for “Enumeration and comprehensive in-silico
modeling of three-helix bundle structures composed of typical αα-hairpins”

Figure S2-1. The Distributions of loop lengths. (Top) The distributions of loop lengths
in the general helix-loop-helix fragment (white) and αα-hairpins conditioned by θHH <
60° (cyan). Loop length is the number of residues between two flanking α-helices.
(Bottom) The definition of the helix-helix crossing angle θHH. Shorter loops were
generally preferred but the population of single-residue loops diminished when θHH

was less than or equal to 60°. Single-residue loops were too short to form hairpin
structures.



26

Figure S2-2. The definition of ABEGO, a coarse-grained backbone torsion
representation. ABEGO is a five-state coarse-grained representation of polypeptide
backbone dihedral angles; Ramachandran map is divided into four sections and
labelled by single letters A, B, E and G, to enable the representation of dihedral
angle series by character strings. The A region roughly corresponds to the
conformation of α-helix, and the B region corresponds roughly to the β-strand
conformation. The G region corresponds to left-handed α-helix, and the E region
represents the rest of the Ramachandran map. The O state correspondds to the
cis-conformation of peptide bond, which are almost negligible in this paper.
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Figure S2-3. The distribution of φHH for BB, BAB, and BAABB loops. BB, BAB, and
BAABB loops exhibited undetermined distributions of φHH, showing broad spectra
around φHH = 0. The orange dotted line indicates the median of the distributions.
These show that these BB, BAB, and BAABB hairpins cannot specify the
handedness of the helix-helix packing, which the author omitted in the later analysis.
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Figure S2-4: The distribution of φHH for GB, GBB, and BAAB loops using
high-resolution structure dataset.
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Figure S2-5. Packing between two α-helices connected by typical hairpins. (Left) The
representative structure of typical hairpins. The α-helices are represented as
cartoons, and loop regions are shown as sticks. (Middle) Hydrophobic residues
enable tight packing between two α-helices in the representative structures. The
hydrophobic residues are shown as orange sticks, and the backbones are shown as
Cα-traces. (Left) The structure-based sequence alignments are shown as the
sequence logo for the hairpin and the flanking ten residues of α-helices. The
gray-shaded boxes indicate hairpin loop regions. There are hallmarks of hydrophobic
helix-helix packing motifs in the α-helix regions, where small and hydrophobic
residues periodically appear in the sequences for tight Van-der-Waals contacts.
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Figure S2-6: Hydrogen bond patterns in GB-loop. The percentage indicates the ratio
of hydrogen bond formation in the dataset. The energy values represent the average
bonding energy for each hydrogen bond estimated by DSSP. The GB-loop typically
has 3 or 4 intra-loop hydrogen bonds that stabilize the loop conformation.
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Figure S2-7: Hydrogen bond patterns in GBB-loop. The percentage indicates the
ratio of hydrogen bond formation in the dataset. The energy values represent the
average bonding energy for each hydrogen bond estimated by DSSP. The GBB-loop
typically has 3 intra-loop hydrogen bonds that stabilize the loop conformation.
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Figure S2-8: Hydrogen bond patterns in BAAB-loop. The percentage indicates the
ratio of hydrogen bond formation in the dataset. The mean energy values represent
the average bonding energy for each hydrogen bond estimated by DSSP. The
GBB-loop typically has 4 intra-loop hydrogen bonds that stabilize the loop
conformation.
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Figure S2-9. Two possible chiral forms of three-helix bundles and decoy structure
used in the evaluation of sequence-independent folding simulations. (A)
Three-helical bundles can have two types of chirality in their overall structures:
Clockwise (CW) and Counterclockwise (CCW). Please note that this is independent
of the local hairpin motifs. Circles indicate the α-helix viewed from the top, and bars
indicate the connecting loops. (B) There are four possible three-helical bundle
structures when local handedness of αα-hairpins are also considered. The author
used the right-handed decoys for GBB-bundle folding simulations, and the
left-handed decoys for the GB and BAAB-bundle simulations.
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Figure S2-10. Two examples of poorly packed three-helical bundle structure. (Left)
When two GB-hairpins are connected by a15 residue helix in the middle, the first and
third helices are placed apart and result in an extended confirmation lacking contacts
between the first and third helix. This type of extended structure lacks the
would-be-hydrophobic-core region and therefore is not considered designable.
(Right) An example of the structure with left- and right-handed mixed hairpins. The
first and third α-helix can not pack when the hairpins with different handedness are
mixed, and do not yield compact and globular three-helical bundle structures. See
also Figure S15-S18, where such mixed-loop simulations are shown to be unable to
generate either CW or CCW compact bundle structures.
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Figure S2-11: Effect of reference structures for TM-score calculations in the analysis
on backbone-building simulations. The value at the upper left of each panel
represents the magnification factor for the diameter of reference helix-bundles.This
figure corresponds to figure 2 in main text, and shows that the results are not
severely affected by the change in reference structures for TM-score calculation.
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Figure S2-12: Effect of cut-off for TM-score in the analysis on backbone-building
simulations. Two different thresholds 0.50 and 0.60 are used instead of the original
threshold 0.55. This figure corresponds to figure 2 in the main text, and shows that
the results are not severely affected by the change in TM-score threshold..
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Figure S2-13. The blueprints and result of backbone-building simulation with
blueprints containing two different loop types. (left) the GB-BAAB blueprint (Right)
the BAAB-GB blueprints. As the GB and BAAB hairpins are both left-handed type
hairpins, the helix-helix crossing angle cancels out so that the mixture of the GB and
BAAB-loops can yield compact three-helix bundles in similar manners as GB-GB or
BAAB-BAAB blueprints.
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Figure S2-14. Backbone-building simulations with blueprints containing two different
loop types. (A) The GB-GBB blueprint (B) Results of GB-GBB blueprint simulation
referenced by CW decoy (left) GB-GBB blueprint simulation referenced by CCW
decoy(right). Almost no patterns can be observed compared to the consistent
blueprint such as GB-GB blueprints because combination of GB and GBB cannot
cancel out the helix-helix packing angles.
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Figure S2-15. Backbone-building simulations with blueprints containing two different
loop types. (A) The GBB-GB blueprint (B) Results of GBB-GB blueprint simulations
referenced by CW decoy (left) GBB-GB blueprint simulations referenced by CCW
decoy (right). Almost no patterns can be observed compared to the consistent
blueprint such as GB-BAAB blueprint because combination of GB and GBB cannot
cancel out the helix-helix packing angles



40

Figure S2-16. Backbone-building simulations with blueprints containing two different
loop types. (A) The GBB-BAAB blueprint (B) Results of GBB-BAAB blueprint
simulations referenced by CW decoy (left) GB-GBB blueprint simulation referenced
by CCW decoy (right). Almost no patterns can be observed compared to the
consistent blueprint such as GB-GB blueprints because combination of BAAB and
GBB cannot cancel out the helix-helix packing angles.
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Figure S2-17. Backbone-building simulations with blueprints containing two different
loop types. (A) The BAAB-GBB blueprint (B) Results of BAAB-GBB blueprint
simulation referenced by CW decoy (left) BAAB-GBB blueprint simulation referenced
by CCW decoy (right). Almost no patterns can be observed compared to the
consistent blueprint such as GB-GB blueprints because combination of BAAB and
GBB cannot cancel out the helix-helix packing angles.
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Figure S2-18. The side-chain packing in the interface between first and third
α-helices in the structures of designed three-helix bundles, GB-CCW20, GBB-CW15,
and BAAB-CCW15. (A) The structures of representative three-helix bundles
designed. The chains are colored in blue-white-red gradient from N-term to C-term,
where the first/third α-helix is colored approximately in blue/red. The side-chain
atoms are represented as yellow sticks, and Cα atoms are represented as spheres.
(B) The sequence profiles of all of the designed sequences aligned. The alphabets
indicate which residue in the structures corresponds to the site in the profiles.
Hydrophobic residues appear in every three or four residues and form tight packing
between first and third α-helices.
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Figure S2-19. Structures and folding-funnels of GB-bundles. (Left) The side-view of
the designed structures with α-helix shown as cartoon and hydrophobic side-chains
represented as sticks. (Center) The top-view of the designed structures. (Right) The
result of folding simulations. The vertical axis represents the Rosetta score, and the
horizontal axis represents the RMSD from the target structures. The black dots
correspond to the final snapshots of the fragment-assembly folding simulations
starting from extended conformations, and red dots correspond to the final
snapshots of relax-simulation starting from native conformations.
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Figure S2-20. Structures and folding-funnels of GBB-bundles. (Left) The side-view of
the designed structures with α-helix shown as cartoon and hydrophobic side-chains
represented as sticks. (Center) The top-view of the designed structures. (Right) The
result of folding simulations. The vertical axis represents the Rosetta score, and the
horizontal axis represents the RMSD from the target structures. The black dots
correspond to the final snapshots of the fragment-assembly folding simulations
starting from extended conformations, and red dots correspond to the final
snapshots of relax-simulation starting from native conformations.
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Figure S2-21. Structures and folding-funnels of BAAB-bundles. (Left) The side-view
of the designed structures with α-helix shown as cartoon and hydrophobic
side-chains represented as sticks. (Center) The top-view of the designed structures.
(Right) The result of folding simulations. The vertical axis represents the Rosetta
score, and the horizontal axis represents the RMSD from the target structures. The
black dots correspond to the final snapshots of the fragment-assembly folding
simulations starting from extended conformations, and red dots correspond to the
final snapshots of relax-simulation starting from native conformations.
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Figure S2-22. Comparison of the design structure composed of the GB-hairpins (A)
and the 10 lowest score predictions by sequence-dependent folding simulations (B).
Loops are shown as sticks in order to show the detailed conformations. The
predictions precisely recovered the local conformations in most of the lowest score
models. Overall topologies of predicted models agree with design models.
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Figure S2-23. Comparison of the design structure composed of the GB-hairpins (A)
and the 10 lowest score predictions by sequence-dependent folding simulations (B).
Loops are shown as sticks in order to show the detailed conformations. The
predictions precisely recovered the local conformations in most of the lowest score
models. Overall topologies of predicted models agree with design models.
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Figure S2-24. Comparison of the design structure composed of the GBB-hairpins (A)
and the 10 lowest score predictions by sequence-dependent folding simulations (B).
Loops are shown as sticks in order to show the detailed conformations. The
predictions precisely recovered the local conformations in most of the lowest score
models. Overall topologies of predicted models agree with design models.
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Figure S2-25. Comparison of the design structure composed of the GBB-hairpins (A)
and the 10 lowest score predictions by sequence-dependent folding simulations (B).
Loops are shown as sticks in order to show the detailed conformations. The
predictions precisely recovered the local conformations in most of the lowest score
models. Overall topologies of predicted models agree with design models.
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Figure S2-26. Comparison of the design structure composed of the BAAB-hairpins
(A) and the 10 lowest score predictions by sequence-dependent folding simulations
(B). Loops are shown as sticks in order to show the detailed conformations. The
predictions precisely recovered the local conformations in most of the lowest score
models. Overall topologies of predicted models agree with design models.
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Figure S2-27. Comparison of the design structure composed of the BAAB-hairpins
(A) and the 10 lowest score predictions by sequence-dependent folding simulations
(B). Loops are shown as sticks in order to show the detailed conformations. The
predictions precisely recovered the local conformations in most of the lowest score
models. Overall topologies of predicted models agree with design models.
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Figure S2-28: Structures and folding-funnels of best-effort-design three-helix bundles
composed of atypical hairpin structures. (Left) The side-view of the designed
structures with α-helix shown as cartoon and hydrophobic side-chains represented
as sticks. (Center) The top-view of the designed structures. (Right) The result of
folding simulations. The vertical axis represents the Rosetta score, and the
horizontal axis represents the RMSD from the target structures. The black dots
correspond to the final snapshots of the fragment-assembly folding simulations
starting from extended conformations, and red dots correspond to the final
snapshots of relax-simulation starting from native conformations. These
folding-funnels are flat-bottomed showing that the folding simulations were unable to
reach the near-native structures.
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Figure S2-29: Time series of RMSD in 10 trajectories of 100 ns molecular dynamics
simulations. (Left) Structure of designed proteins (Right) Time series of Cα RMSD
referenced by the designed protein structure. Horizontal axis represents times in ns,
and veritcal axis represents RMSD inÅ.
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Figure S2-30: Time series of RMSD in 10 trajectories of 100 ns molecular dynamics
simulations. (Left) Structure of designed proteins (Right) Time series of Cα RMSD
referenced by the designed protein structure. Horizontal axis represents times in ns,
and veritcal axis represents RMSD inÅ.
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Figure S2-31 Time series of RMSD in 10 trajectories of 100 ns molecular dynamics
simulations. (Left) Structure of designed proteins (Right) Time series of Cα RMSD
referenced by the designed protein structure. Horizontal axis represents times in ns,
and veritcal axis represents RMSD inÅ.
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Figure S2-32: Time series of RMSD in 10 trajectories of 100 ns molecular dynamics
simulations. (Left) Structure of designed proteins (Right) Time series of Cα RMSD
referenced by the designed protein structure. Horizontal axis represents times in ns,
and veritcal axis represents RMSD inÅ.
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Figure S2-33: Time series of RMSD in 10 trajectories of 100 ns molecular dynamics
simulations. (Left) Structure of designed proteins (Right) Time series of Cα RMSD
referenced by the designed protein structure. Horizontal axis represents times in ns,
and veritcal axis represents RMSD inÅ.
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Figure S2-34: Time series of RMSD in 10 trajectories of 100 ns molecular dynamics
simulations. (Left) Structure of designed proteins (Right) Time series of Cα RMSD
referenced by the designed protein structure. Horizontal axis represents times in ns,
and veritcal axis represents RMSD inÅ.
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Figure S2-35: Probabilities that the designed sequence have coiled-coil arrangement
of α-helix predicted by DeepCoil. (Left) Designed protein structures (Right) Predicted
probability that the design sequences have coiled-coil arrangement of α-helix
predicted by DeepCoil. Horizontal axis represents residue number, and the vertical
axis represents the probability that the sequence is recognized as coiled-coil by
DeepCoil.
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Figure S2-36: Probabilities that the designed sequence have coiled-coil arrangement
of α-helix predicted by DeepCoil. (Left) Designed protein structures (Right) Predicted
probability that the design sequences have coiled-coil arrangement of α-helix
predicted by DeepCoil. Horizontal axis represents residue number, and the vertical
axis represents the probability that the sequence is recognized as coiled-coil by
DeepCoil.
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Figure S2-37: Probabilities that the designed sequence have coiled-coil arrangement
of α-helix predicted by DeepCoil. (Left) Designed protein structures (Right) Predicted
probability that the design sequences have coiled-coil arrangement of α-helix
predicted by DeepCoil. Horizontal axis represents residue number, and the vertical
axis represents the probability that the sequence is recognized as coiled-coil by
DeepCoil.
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Figure S2-38: Probabilities that the designed sequence have coiled-coil arrangement
of α-helix predicted by DeepCoil. (Left) Designed protein structures (Right) Predicted
probability that the design sequences have coiled-coil arrangement of α-helix
predicted by DeepCoil. Horizontal axis represents residue number, and the vertical
axis represents the probability that the sequence is recognized as coiled-coil by
DeepCoil.
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Figure S2-39: Probabilities that the designed sequence have coiled-coil arrangement
of α-helix predicted by DeepCoil. (Left) Designed protein structures (Right) Predicted
probability that the design sequences have coiled-coil arrangement of α-helix
predicted by DeepCoil. Horizontal axis represents residue number, and the vertical
axis represents the probability that the sequence is recognized as coiled-coil by
DeepCoil.
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Figure S2-40: Probabilities that the designed sequence have coiled-coil arrangement
of α-helix predicted by DeepCoil. (Left) Designed protein structures (Right) Predicted
probability that the design sequences have coiled-coil arrangement of α-helix
predicted by DeepCoil. Horizontal axis represents residue number, and the vertical
axis represents the probability that the sequence is recognized as coiled-coil by
DeepCoil.
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Figure S2-41: Knobs-into-holes in the author’s design structures detected by
SOCKET. (Left) Design structures (Right) Structure explaining knobs-into-holes
sub-structures. The knob residues are colored in blue, and the hole residues are
colored in orange. The residue name of knob residue is indicated below the
structures.
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Figure S2-42: Knobs-into-holes in the author’s design structures detected by
SOCKET. (Left) Design structures (Right) Structure explaining knobs-into-holes
sub-structures. The knob residues are colored in blue, and the hole residues are
colored in orange. The residue name of knob residue is indicated below the
structures.
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Figure S2-43: Knobs-into-holes in the author’s design structures detected by
SOCKET. (Left) Design structures (Right) Structure explaining knobs-into-holes
sub-structures. The knob residues are colored in blue, and the hole residues are
colored in orange. The residue name of knob residue is indicated below the
structures.
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Figure S2-44: Knobs-into-holes in the author’s design structures detected by
SOCKET. (Left) Design structures (Right) Structure explaining knobs-into-holes
sub-structures. The knob residues are colored in blue, and the hole residues are
colored in orange. The residue name of knob residue is indicated below the
structures.
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Figure S2-45. The population statistics of the hairpins in the ABEGO representation
including loops starting/ending with A.
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Structure Loop 1 Loop 2
GB-CW7 GB (GB) GB (GB)
GB-CW10 GB (GB) GB (GB)
GB-CW13 GB (GB) GBA (GB)
GB-CW14 GB (GB) GB (GB)
GB-CW17 GB (GB) GB (GB)
GB-CCW9 GB (GB) GB (GB)
GB-CCW12 GB (GB) GB (GB)
GB-CCW13 GB (GB) AGB (GB)
GB-CCW16 GB (GB) GB (GB)
GB-CCW20 GB (GB) GB (GB)
GBB-CW7 GBB (GBB) GBB (GBB)
GBB-CW11 GBB (GBB) GBB (GBB)
GBB-CW15 GBB (GBB) GBB (GBB)
GBB-CCW6 GBB (GBB) GBB (GBB)
GBB-CCW9 GBB (GBB) GBB (GBB)
GBB-CCW10 GBB (GBB) GBB (GBB)
GBB-CCW13 GBB (GBB) GBB (GBB)
GBB-CCW17 AGBB (GBB) GBB (GBB)
BAAB-CW6 B (BAAB) BAAB (BAAB)
BAAB-CW9 BAAB (BAAB) BAAB (BAAB)
BAAB-CW10 BAAB (BAAB) BAAB (BAAB)
BAAB-CW13 BAAB (BAAB) BAAB (BAAB)
BAAB-CW16 BAAB (BAAB) BAAB (BAAB)
BAAB-CCW8 BAAB (BAAB) BAAB (BAAB)
BAAB-CCW11 BAAB (BAAB) BAAB (BAAB)
BAAB-CCW12 BAAB (BAAB) BAAB (BAAB)
BAAB-CCW15 BAAB (BAAB) BAAB (BAAB)

Table S2-1: Comparison of backbone torsion angles between the lowest energy
prediction structure from the sequence-dependent fragment assembly simulations for
each design protein. The torsion angles observed in the lower energy structures are
represented in the ABEGO representations, and their target torsion angles are
represented in ABEGO in the parentheses. DSSP was used for assignment of
secondary structure boundaries. Most of the lowest energy structures recovered the
same local conformations as design models. See also Figure S22—S26 for
comparison of their overall topologies.



71

Structure Mean score per residue (a.u.)

GB-CCW09 -2.38

GB-CCW12 -2.37

GB-CCW13 -2.41

GB-CCW16 -2.66

GB-CCW20 -2.61

GB-CW07 -2.28

GB-CW10 -2.04

GB-CW13 -2.36

GB-CW14 -2.66

GB-CW17 -2.65

GBB-CCW06 -2.25

GBB-CCW09 -2.27

GBB-CCW10 -2.33

GBB-CCW13 -2.49

GBB-CCW17 -2.57

GBB-CW07 -2.39

GBB-CW11 -2.42

GBB-CW15 -2.52

BAAB-CCW08 -2.38

BAAB-CCW11 -2.53

BAAB-CCW12 -2.38

BAAB-CCW15 -2.51

BAAB-CW06 -2.17

BAAB-CW09 -2.29

BAAB-CW10 -2.31

BAAB-CW13 -2.46

BAAB-CW16 -2.57

EE-CW -2.00

EE-CCW -2.11

BEB-CW -2.08

BEB-CCW -2.09

BEEE-CW -2.15

BEEE-CCW -2.02
Table S2-2: Mean Rosetta score par residue for best-effort design models. The
structures were relaxed using Relax protocol of Rosetta and 1000 near-native
structures were generated and their scores were calculated. Score Talaris2014 was
used in the simulations and scoring. Scores were averaged over the 1000 structures
and the number of residues of respective structures.
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Chapter 03 :
Limitations of the ABEGO representation:
ambiguity between αα-corner and
αα-hairpin

Abstract
ABEGO is a coarse-grained representation for polypeptide backbone dihedral

angles. The Ramachandran map is divided into four segments denoted as A, B, E,
and G to represent the local conformation of polypeptide chains in the character
strings. Although the ABEGO representation is widely used in backbone building
simulation for de novo protein design, it cannot capture minor differences in
backbone dihedral angles, which potentially leads to ambiguity between two
structurally distinct fragments. Here, the author shows a nontrivial example of two
local motifs that could not be distinguished by their ABEGO representations. The
author found that two well-known local motifs αα-hairpins and αα-corners are both
represented as α-GBB-α and thus indistinguishable in the ABEGO representation,
although they show distinct arrangements of the flanking α-helices. The author also
found that α-GBB-α motifs caused a loss of efficiency in the ABEGO-based
fragment-assembly simulations for de novo protein backbone design. Nevertheless,
the author was able to design amino-acid sequences that were predicted to fold into
the target topologies that contained these α-GBB-α motifs, which suggests such
topologies that are difficult to build by ABEGO-based simulations are designable
once the backbone structures are modeled by some means. The finding that certain
local motifs bottleneck the ABEGO-based fragment-assembly simulations for
construction of backbone structures suggests that finer representations of backbone
torsion angles are required for efficiently generating diverse topologies containing
such indistinguishable local motifs.
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Introduction
Proteins are polymers, and using idealized bond lengths and bond angles, the

conformation of a polypeptide chain can be represented as a series of backbone
dihedral angle triplets (φ, ψ, and ω) [1]. Provided that all peptide bonds have trans
conformations with ω of approximately 180°, the two-dimensional plot of φ and ψ
called the Ramachandran map can have sufficient information to specify the
residue-wise conformations of a polypeptide chain. To construct coarse-grained
representations of backbone conformations, the Ramachandran map can be divided
into subsections to cluster similar backbone conformations into the same class. A
widespread approach is to define a four-state representation dividing the map into
four segments and assigning the single letters A, B, E, and G to the regions (Figure
3-1) [2]. This enables the rough backbone structures to be expressed by character
strings and is beneficial in structure-informatics analyses. Broadly, the A region
corresponds to α-helices and the B region to β-strands. For regions with positive φ,
the G region corresponds to the left-handed α-helix and the E region represents the
remaining map. With an additional state O corresponding to the cis-conformation of
the peptide bond, this five-state discrete representation can cover the conformational
space of polypeptide chains in a coarse-grained manner. This five-state
coarse-grained representation of the polypeptide chain conformation is termed the
ABEGO representation, which is the main focus of the current study.

Figure 3-1: Definition of ABEGO. Horizontal axis represents φ and vertical axis
represents ψ angle of polypeptide backbone structure. Ramachandran plot is divided
into four sections named A, B, E, and G. The values of phi and psi angles for the
borderline are indicated on the left or right of the border lines. The state O is not
defined in this diagram because it represents cis-peptide.
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An important application of the ABEGO representation is the de novo design
of protein backbone structures [3–15]. In this protocol, designers specify the target
topology using ABEGO sequences, select structure fragments that satisfy the
desired ABEGO sequences, and perform fragment-assembly simulations to build the
atomistic backbone structures with the desired topology. Hereafter, these
fragment-assembly simulations guided by ABEGO specification are referred to as
ABEGO-based backbone-building simulations. This approach is widely accepted in
de novo protein design and has been used to construct a variety of topologies
ranging from small α-helical bundles to TIM barrels [3–15]. Therefore, this
ABEGO-based approach can be taken as a de facto standard approach to generate
backbone structures for de novo protein design.

However, ABEGO representation is a coarse-grained representation of
backbone dihedral angles that sometimes fail to distinguish two different
conformations, which may cause troubles in ABEGO-based backbone building
simulations. In this study, the author shows a non-trivial example of two famous local
motifs that are indistinguishable by their ABEGO representation and points out that
the ambiguity between these two motifs can lead to loss of efficiency in the
ABEGO-based backbone building simulations. Clarifying the limitations of the
ABEGO representation will motivate further development of more sophisticated
representation for backbone conformation and backbone-building methods.

Materials and methods
Analysis of helix–loop–helix fragments

A collaborator of the author composed a set of 29,397 non-redundant domain
structures, which were a subset of the Evolutionary Classification Of protein
Domains database (version develop238) culled by 40% sequence identity [16]. Next,
secondary structures were assigned using the DSSP [17], and helix-loop-helix
fragments were extracted. The fragments whose helix have residues less than and
equal to nine residues were discarded. The ABEGO representations of backbone
torsion were assigned using in-house Python scripts according to the definition
shown in Figure 3-1. Next the fragments possessing the GBB loop were extracted. In
total, 318 αα-corner and 317 αα-hairpin fragments were obtained, which were
illustrated in Figures 3-2, 3-3 and Supplementary Figures S3-1, S3-4, and S3-5. I
calculated the all-to-all Cα root mean square deviation (RMSD) within these GBB
fragments and performed k-medoid clustering with k = 2. The cluster representatives
were extracted and used for reference structure in Supplementary Figure S3-8. Next,
the author identified the helix–helix crossing angle (Supplementary Figure S3-1)
using the helix orientation vector defined by Krissinel et al. [18] and confirmed that
the clustering can clearly separate αα-corners and αα-hairpins (Figure 3-2).
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Figure 3-2: Comparison of αα-corner and αα-hairpins. They have similar backbone
torsions but provide distinct contact patterns between two flanking α-helices. (Left)
The overall structures of αα-corner and αα-hairpins. The loop regions are shown as
sticks and colored in CPK-scheme. The α-helices are shown in the cartoon
representation. (Center) αα-corner and αα-hairpins offer different environments for
nearby residues. Each fragment is colored in blue-white-red gradient from N- to
C-terminal. The orange sphere represents Cβ atoms on N-terminal α-helical
segments. The Cβ a corresponds to a’, b to b’, and c to c’. See that position a is
more buried than position a’, and similarly b is more exposed than b’. (Right)
Sequence logo for αα-corner and αα-hairpins. The region shaded in orange
corresponds to the residues whose Cβ atoms are colored in orange in the center
panel. The alphabets beneath the logos indicate residue positions for the region on
the N-terminal of loops, and the ABEGO backbone torsion angle representation for
the loop regions. As conformations largely differ between αα-corners and
αα-hairpins, the variance in the amino-acids compositions are most recognizable in
the orange-shaded regions, which correspond to the flanking sequence rather than
loop region. 
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Figure 3-3: Identification of the residues responsible for the diversification between
αα-corners and αα-hairpins. (A) Structure of αα-corner and αα-hairpin and
assignment of site names. The loop regions are shown in sticks. (B) The
Ramachandran plots for site A(αN), G, B1, B2, and A(αC). The orange/purple dots
correspond to data from αα-corners/αα-hairpins. B1 site shows most divergent
dihedral angles between αα-corners and αα-hairpins.
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ABEGO analysis of helix-loop-helix fragments
From the non-redundant domain structure set which was a subset of ECOD

database [16] whose sequence similarity was reduced by 40% sequence identity,
39,938 helix-loop-helix fragments were extracted. For the fragments with α-helices
longer than 10 residues, ABEGO sequences were assigned for the loop regions. The
ABEGO types of these fragments were counted and used to make Figure 4A.

Figure 3-4: Statistical analysis of helix-loop-helix fragments revealed GB, GBB, and
BAAB loops are most frequent αα-hairpins. (A) Histogram of ABEGO types for length
2, 3, and 4 loops. (B) Structures of GB, GBB, and BAAB αα-hairpins. (C) Although
BAB-loop is the most frequent loop types in the statistics of length 3 loops, BAB loop
is a v-shaped loop rather than αα-hairpins. For this reason BAB-loop was not used in
this study.
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Construction of target structures
The author composed the GBB, GB, and BAAB up-down bundles as well as

the GBB orthogonal bundle by manually grafting the helix–loop–helix fragments
using PyMOL (The PyMOL Molecular Graphics System, version 2.0 Schrödinger,
LLC.) and removed severe steric clashes using Foldit [19]. The constructed
backbone structures were used as templates for the ABEGO specifications, and the
reference structures for the ABEGO-based backbone-building simulations. These
structures were also used as template backbones for amino acid sequence design
by Rosetta.

Backbone-building simulations
Sequence-independent fragment assembly simulations, termed

ABEGO-based backbone-building simulations, were performed using Rosetta
BluePrintBDR [20], as described by Lin et al. [6]. Blueprint files were generated
based on the target backbone structure that was manually built in advance, and the
files were used for fragment selection to specify the backbone torsion in the ABEGO
representation. For each ABEGO specification, simulations were repeated for 10,000
trajectories, and the final snapshots from the trajectories were used for structural
analysis. During the analysis, the Cα RMSDs of each structure referenced by the
target backbone structures were calculated.

Amino acid sequence design and sequence-dependent folding simulations
The author performed amino acid sequence designs using the Rosetta flxbb

protocol [20] starting from the backbone structure that was built manually. To
enhance the efficiency of sequence design, amino acid profiles were constructed for
the loop region using similar loop structure fragments (Cα RMSD < 2 Å) and were
used as constraints for the residues used, as described by Marcos et al. [4]. The
specifications of the residues were refined based on the buriedness of the backbone
atoms using in-house programs. The author performed 10,000 design trials for each
backbone model, selected the best sequences based on the fragment-quality score,
and performed sequence-dependent fragment-assembly folding simulations [21] to
identify the best design sequences. The author defined the fragment-quality score as
the average of the logarithm of the number of fragments that had a Cα RMSD value
lower than 1.5 Å in the design model. A total of 20,000 trajectories for folding
simulations were obtained for each design protein to check the foldability.

Results and Discussion
αα-corners and αα-hairpins are indistinguishable in ABEGO representation

First, the author investigated a nontrivial example in which ABEGO
representation could not distinguish two structurally different local motifs. Using
structural informatics analysis, the author identified two distinct types of
helix–loop–helix fragments that were indistinguishable based on their ABEGO
sequences. Conformations of both motifs were represented as α-GBB-α in their
ABEGO representation, but they result in distinct overall structures and sequence
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preferences (Figures 3-2 and Supplementary Figure S3-1). The first α-GBB-α motif is
traditionally classified as an αα-corner that results in an almost orthogonal crossing
angle between two flanking α-helices [22], and the second is called an αα-hairpin,
which results in a steep hairpin turn for tightly packing adjacent α-helices into an
antiparallel configuration [23]. By making Ramachandran-plots for each site in the
loop region, the author found that the first B site (B1) showed most divergent torsion
angles between αα-corners and αα-hairpins (Figure 3-3). The author also confirmed
that αα-hairpin can be transformed into αα-corner by systematically changing the
value of dihedral angle φ at the site B1 from -70° to -150° (Supplementary Figure
S3-2). From these observations, the author divided the region B into two sub-regions
S and P by the line of φ= -90° so that the αα-hairpins and αα-corners were separated
from each other (Supplementary Figures S3-3, S3-4, and S3-5). This extension of
ABEGO representation can deal with B region in finer resolution, and would be
helpful to specify the conformation more precisely. However, as the original ABEGO
representation does not take the heterogeneity of the B region into account,
αα-hairpins and αα-corners are taken as identical in their ABEGO representation and
are therefore indistinguishable in the coarse-grained representation.

α-GBB-α units cause loss of efficiency in ABEGO-based backbone building
simulations

Next, the author sought to identify whether the ambiguity between the
αα-hairpin and αα-corner in the original ABEGO representation causes loss of
efficiency in ABEGO-based backbone-building simulations. The author first
performed statistical analysis of loop regions and found that GB and BAAB loops are
most frequent short αα-hairpin fragments in addition to GBB loop (Figure 3-4). The
author manually generated six types of four-helix up-down bundle structures using
these hairpin motifs: GBB, GB, and BAAB bundles with right-handed or left-handed
topologies (Figure 3-5). Based on these decoy structures, the backbone dihedral
angles were roughly specified by the ABEGO representations (Supplementary
Figure S3-6) to select the fragments satisfying the specification, and ABEGO-based
backbone-building simulations were performed [6,20]. Although the simulations for
the GB bundles successfully recovered the original four-helix up-down bundle
topologies, the ABEGO-based backbone-building simulations for the GBB bundles
failed to efficiently generate the target topology (Figure 3-5). The results of BAAB
bundles were marginal; the behavior was better than GBB but worse than GB
bundles. More specifically, GB bundles showed best result where almost all of the
populations resides within 5 Å from the native structure in the Cα-RMSD; BAAB

bundle showed almost one forth of the population stayed within 5 Å from the native
in the Cα-RMSD; GBB performed worst, in which most of the population showed
Cα-RMSD larger than 10 Å. These results were independent of the handedness of
target bundle topologies; both right-handed and left-handed four-helix bundles
showed similar results depending on the loop types. In the simulations for the GBB
bundle, most trajectories were trapped in misfolded structures that contained GBB
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corner fragments (Supplementary Figure S3-7), which is undesirable for building the
up-down bundles.

Figure 3-5: The foldability of four-helix up-down bundles. The structure four-helix
up-down bundles are shown on the left of each column. The ABEGO of hairpins and
handedness of bundles are indicated above each structure. The distributions of Cα
RMSDs from 105 trajectories of backbone building simulations are shown on the left
of each column. The GBB bundle has a large peak around 10 Å, which indicates the
ABEGO-specification cannot force the polypeptide chain to fold into the target
structure. GB and BAAB bundle show reasonably large populations on the left (Cα
RMSD < 5 Å), which indicates that their ABEGO-specification is capable of letting the
chain fold into the target topology.

So, why were GBB-containing structures more difficult to build in
ABEGO-based backbone building simulations than GB-containing or
BAAB-containing structures? To investigate this, the author looked into the contents
of fragments that were picked up for the ABEGO-based backbone simulations from
the structure database named filtered.vall.dat.2006-05-05. The number of fragments
was 200 for each loop type. This clarified that the fragment libraries contained
non-hairpin fragments in addition to the hairpins in all of three types of loop
fragments (Figure 3-6). The GB fragments possessed most purified hairpin
conformations, and the BAAB fragments showed long-tailed distribution of the
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conformation but it also had a sharp peak representing the hairpin structures. The
GBB fragment library possessed the largest population of non-hairpin fragments. To
estimate the population ratio of corner against hairpins in the GBB fragment library,
the author gathered the fragments showing RMSDs lower than 1.5 Å from the
representative αα-corner or αα-hairpin fragments. The ratio of corners against
hairpins was about 4:1 in the fragment set (Supplementary Figure S3-8). This
tendency is well consistent with the result of fragment assembly simulations; GB
performs best, BAAB performs so-so, and GBB performs worst. As the populations
ratio of corners against hairpin was almost 1:1 in the fragment library from manually
curated domain database (Supplementary Figure S3-1), this bias of fragment
populations toward the corner would be Rosetta-specific artifact and should be
improved to allow more unbiased sampling of conformational space. However, even
if the fragment set show unbiased populations of corners and hairpins,
ABEGO-based fragment picking for α-GBB-α motifs results in the mixture of
αα-corners and αα-hairpins and will still suffer from the unwanted fragment insertion
at the loop region and lead to low sampling efficiency for GBB-containing structures.
To summarize, the GBB-containing structures are difficult to build for two reasons:
(1) low purity of fragments caused by double-meaning α-GBB-α motifs (2) the
unbalance between αα-corner and αα-hairpins populations. More precise assembly
of GBB-containing structures requires updates for the fragment picking algorithm and
structure database from which fragments are picked up. This may require paying
more attention on how to divide B region of ABEGO classification into subsections.
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Figure 3-6: Distributions of helix-helix crossing angles in Rosetta-derived fragment
library. GBB library shows a large peak at 90°, which corresponds to αα-corners. GB
and BAAB libraries have the largest peak around 30°, which corresponds to the
αα-hairpins. GBB fragment library is largely biased to the αα-corners so that
αα-hairpins are difficult to appear in the fragment assembly simulations.

Amino-acid sequences for backbone structures composed of α-GBB-α units
can be designed and predicted in-silico to fold into the target topologies

Considering the structures containing α-GBB-α fragments are difficult to
compose in ABEGO-based backbone-building simulations, the author sought to
identify whether they can be designed when their amino acid sequences are
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completely specified. Are they difficult to build again? The author performed amino
acid sequence design of two distinct structures composed of α-GBB-α motifs alone
using Rosetta [20]. The first structure was the four-helix up-down bundle that was
described in the previous section, and the second structure was a small four-helix
orthogonal bundle composed of two αα-hairpins and an αα-corner (Figures 3-7A and
3-7B). Similar to the ABEGO-based backbone-building simulations for the GBB
up-down bundle, those for the GBB orthogonal bundle were also trapped in a
misfolded state and showed low efficiency for achieving the target conformation
(Supplementary Figure S3-9), which is consistent with the observation in GBB
up-down bundles. However, by carefully designing amino acid sequences onto these
structures using Rosetta, amino acid sequences that are predicted to fold into the
respective target topologies can be obtained (Figures 3-7C and 3-7D). In contrast to
the misfolding observed in the ABEGO-based backbone-building simulations,
sequence-dependent fragment-assembly simulations successfully predicted both
target topologies as having the lowest energy structures [21]. The results showed
that plausible amino acid sequences can be designed once the backbone structures
are built by some means even if they contain two types of α-GBB-α motifs
indistinguishable in the ABEGO representation. This result indicated that the
conformational space that can be covered by the amino acid sequence design is
broader than the conformational space in which ABEGO-based backbone-building
simulations can firmly sample. Further, a novel backbone-building methodology may
be required to improve the ability to generate more diverse and complicated
backbone structures.
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Figure 3-7: Design and sequence-dependent folding simulations of the four-helix
orthogonal bundle and up-down bundles. (A) (B) Blueprints and structures of the
GBB orthogonal bundles (left) and up-down bundles (right). The gray bars represent
the α-helix and black bars represent loop regions. As all the loops are represented
as GBB in the ABEGO representation, their intended structure types are indicated
above the loop regions. (C) Energy-RMSD scatterplot from sequence-dependent
folding simulations for orthogonal (left) and up-down bundle (right). Both of the
designs have funneled energy landscapes, and are predicted to fold into the target
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topology. (D) The superposition of the lowest energy structure (orange) onto the
target structures. The lowest-energy structure from folding simulation of the
orthogonal bundles showed Cα RMSD = 1.1 Å from the native. The lowest-energy
structure for the up-down bundle showed Cα RMSD = 0.5 Å from the native. 

Conclusion
In this study, the author showed that ABEGO is a coarse representation that

can fail to distinguish different conformations, causing inefficiency in ABEGO-based
backbone building for de novo protein design. The αα-corner and αα-hairpins are
indistinguishable in the ABEGO representation because both are represented as
α-GBB-α fragments. This ambiguity between these two distinct structures leads to
difficulty in constructing simple four-helix bundle topologies composed of these
α-GBB-α motifs.

Although the author used the two indistinguishable α-GBB-α fragments as a
nontrivial example in this study, such confusion may occur for other motifs if the
backbone torsion angles are represented in coarse-grained manners. Especially, the
B region of ABEGO representation contains very heterogeneous conformations so
that the region should be carefully divided into subsections in order to represent the
subtle conformational changes. To this end, I dividied B region into the S and P
subsections and proposed an extended version of ABEGO that can separate
αα-hairpin and αα-corners. However, this extension is not always enough and there
may be other pairs of fragments that still fail to be separated.

Interestingly, sequence design for GBB-containing backbone structures does
not appear to be difficult compared to the backbone building; the author showed that
two types of four-helix bundles composed of GBB fragments can be designed to be
predicted to fold into the target topologies. This suggests that there are many
topologies designable as amino-acid sequences which have not been tried because
their backbone modeling remains difficult. In other words, difficulty in backbone
modeling may be bottlenecking the design of novel artificial proteins. Therefore,
novel methodologies for backbone building that can sample diverse structures
unreachable by conventional structural modeling techniques may enable the design
of a wide variety of protein structures. This will allow protein designers to further
explore the protein structure universe and expand their design repertoires.

References
[1] Ramachandran, G.N., Ramakrishnan, C. & Sasisekharan, V., Stereochemistry

of polypeptide chain configurations, J. Mol. Biol. 7 95–99 (1963). DOI:
10.1016/S0022-2836(63)80023-6

[2] Wintjens, R.T., Rooman, M.J. & Wodak, S.J., Automatic classification and
analysis of αα-turn motifs in proteins, J. Mol. Biol. 255 235–253 (1996). DOI:
10.1006/jmbi.1996.0020

[3] Huang, P.S., Feldmeier, K., Parmeggiani, F., Velasco, D.F., Hocker, B. & Baker,
D., De novo design of a four-fold symmetric TIM-barrel protein with
atomic-level accuracy, Nat. Chem. Biol. 12 29–34 (2016). DOI:



86

10.1038/nchembio.1966
[4] Marcos, E., Basanta, B., Chidyausiku, T.M., Tang, Y., Oberdorfer, G., Liu, G., et

al., Principles for designing proteins with cavities formed by curved β sheets,
Science. 355 201–206 (2017). DOI: 10.1126/science.aah7389

[5] Dou, J., Vorobieva, A.A., Sheffler, W., Doyle, L.A., Park, H., Bick, M.J., et al.,
De novo design of a fluorescence-activating β-barrel, Nature. 561 485–491
(2018). DOI: 10.1038/s41586-018-0509-0

[6] Lin, Y.R., Koga, N., Tatsumi-Koga, R., Liu, G., Clouser, A.F., Montelione, G.T.,
et al., Control over overall shape and size in de novo designed proteins, Proc.
Natl. Acad. Sci. U. S. A. 112 E5478–E5485 (2015). DOI:
10.1073/pnas.1509508112

[7] Basanta, B., Bick, M.J., Bera, A.K., Norn, C., Chow, C.M., Carter, L.P., et al.,
An enumerative algorithm for de novo design of proteins with diverse pocket
structures, Proc. Natl. Acad. Sci. U. S. A. 117 22135–22145 (2020). DOI:
10.1073/pnas.2005412117

[8] Koepnick, B., Flatten, J., Husain, T., Ford, A., Silva, D.A., Bick, M.J., et al., De
novo protein design by citizen scientists, Nature. 570 390–394 (2019). DOI:
10.1038/s41586-019-1274-4

[9] Wei, K.Y., Moschidi, D., Bick, M.J., Nerli, S., McShan, A.C., Carter, L.P., et al.,
Computational design of closely related proteins that adopt two well-defined
but structurally divergent folds, Proc. Natl. Acad. Sci. U. S. A. 117 7208–7215
(2020). DOI: 10.1073/pnas.1914808117

[10] Rocklin, G.J., Chidyausiku, T.M., Goreshnik, I., Ford, A., Houliston, S., Lemak,
A., et al., Global analysis of protein folding using massively parallel design,
synthesis, and testing, Science. 357 168–175 (2017). DOI:
10.1126/science.aan0693

[11] Chevalier, A., Silva, D.A., Rocklin, G.J., Hicks, D.R., Vergara, R., Murapa, P.,
et al., Massively parallel de novo protein design for targeted therapeutics,
Nature. 550 74–79 (2017). DOI: 10.1038/nature23912

[12] Vorobieva, A.A., White, P., Liang, B., Horne, J.E., Bera, A.K., Chow, C.M., et
al., De novo design of transmembrane b barrels, Science. 371 (2021). DOI:
10.1126/science.abc8182

[13] Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T.B., Montelione, G.T., et
al., Principles for designing ideal protein structures, Nature. 491 222–227
(2012). DOI: 10.1038/nature11600

[14] Marcos, E., Chidyausiku, T.M., McShan, A.C., Evangelidis, T., Nerli, S., Carter,
L., et al., De novo design of a non-local β-sheet protein with high stability and
accuracy, Nat. Struct. Mol. Biol. 25 1028–1034 (2018). DOI:
10.1038/s41594-018-0141-6

[15] Romero Romero, M.L., Yang, F., Lin, Y.R., Toth-Petroczy, A., Berezovsky, I.N.,
Goncearenco, A., et al., Simple yet functional phosphate-loop proteins, Proc.
Natl. Acad. Sci. U. S. A. 115 E11943–E11950 (2018). DOI:
10.1073/pnas.1812400115

[16] Cheng, H., Schaeffer, R.D., Liao, Y., Kinch, L.N., Pei, J., Shi, S., et al., ECOD:



87

An Evolutionary Classification of Protein Domains, PLoS Comput. Biol. 10
(2014). DOI: 10.1371/journal.pcbi.1003926

[17] Kabsch, W. & Sander, C., Dictionary of protein secondary structure: Pattern
recognition of hydrogen‐bonded and geometrical features, Biopolymers. 22
2577–2637 (1983). DOI: 10.1002/bip.360221211

[18] Krissinel, E. & Henrick, K., Secondary-structure matching (SSM), a new tool
for fast protein structure alignment in three dimensions, Acta Crystallogr. Sect.
D Biol. Crystallogr. 60 2256–2268 (2004). DOI: 10.1107/S0907444904026460

[19] Kleffner, R., Flatten, J., Leaver-Fay, A., Baker, D., Siegel, J.B., Khatib, F., et
al., Foldit Standalone: a video game-derived protein structure manipulation
interface using Rosetta, Bioinformatics. 33 2765–2767 (2017). DOI:
10.1093/bioinformatics/btx283

[20] Fleishman, S.J., Leaver-Fay, A., Corn, J.E., Strauch, E.M., Khare, S.D., Koga,
N., et al., Rosettascripts: A scripting language interface to the Rosetta
Macromolecular modeling suite, PLoS One. 6 1–10 (2011). DOI:
10.1371/journal.pone.0020161

[21] Bradley, P., Misura, K.M.S. & Baker, D., Biochemistry: Toward high-resolution
de novo structure prediction for small proteins, Science. 309 1868–1871
(2005). DOI: 10.1126/science.1113801

[22] Efimov, A. V., A novel super-secondary structure of proteins and the relation
between the structure and the amino acid sequence, FEBS Lett. 166 33–38
(1984). DOI: 10.1016/0014-5793(84)80039-3

[23] Efimov, A. V., Structure of α-α-hairpins with short connections, Protein Eng.
Des. Sel. 4 245–250 (1991). DOI: 10.1093/protein/4.3.245



88

Figure S3-1: Comparison of αα-corners and αα-hairpins based on the helix-helix
crossing angles. αα-corner and αα-hairpins are easily distinguished by helix-helix
crossing angles. (A) Definition of helix-helix crossing angle. (B) αα-corner (Orange)
and αα-hairpins (Purple) are superimposed to show their distinct conformations. Both
of the structures are cluster representatives (medoids) by k-medoids clustering with
k=2 taking the all-to-all Cα RMSDs as the metric. (C) The distribution of helix-helix
crossing angles after k-medoids clustering with k=2. The αα-corner and αα-hairpins
have distinct distribution of helix-helix crossing angles.
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Figure S3-2: Morphing between αα-haripin and αα-corner by systematically scanning
the φ angle at B1 site from -70.0 degree to -150.0 degree. This clarifies the B1 site is
the key residue to diversification between αα-haripin and αα-corner.
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Figure S3-3: New definition of 6-state ABEGO with B region divided into S and P
subsection. With these new states, GBB αα-corners and GBB αα-hairpins can be
distinguished by their first B site of GBB. Broadly, αα-corners correspond to GSP,
and αα-hairpins correspond to GPP.
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Figure S3-4: Separation of αα-corners (left) and αα-hairpins (right) by the condition
that the dihedral angle φ of the first B site (φB1) in GBB is smaller/larger than -70° –
-110°. Based on these plots, the border between S and P was determined to -90° so
that the definition can separate hairpin and corners most sharply.
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Figure S3-5: New border line dividing region B into two subclasses shown alongside
the dihedral angle data of the first B site of GBB. Orange dots represent the data of
corners and purple dots represent the data of hairpins. This figure is to show how the
new border divides the populations into two classes.
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Figure S3-6: Blueprints for GBB-L, GBB-R, GB-L, GB-R, BAAB-L, and BAAB-R
four-helix up-down bundles. The gray bars represent the α-helix and black bars
represent loop regions. The ABEGO of the loop is indicated beneath the loop region.
The numbers indicate the residue number of α-helix. 
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Figure S3-7: An example of misfolded structure observed in backbone building
simulations for GBB up-down bundle. The loop regions take αα-corner conformations
instead of αα-hairpins. This confusion between corner and hairpins makes it difficult
to construct a simple up-down bundle structure by ABEGO-based backbone building
simulations.
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Figure S3-8: Estimating the ratio of αα-corners against αα-hairpins in the
Rosetta-derived GBB fragment library. (A) The populations were classified into three
classes, corners (orange), hairpins (purple), and others (black) by the RMSDs from
reference structures. The inset numbers represent the number of class members.
The reference structures for RMSD calculations were the same as the structure
shown in figure 2. (B) The distribution helix-helix crossing angle in corner and hairpin
class. The corner-type fragments dominate in the fragment library compared to the
hairpins.
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S3-9: Distribution of RMSDs from the sequence-independent ABEGO-guided
backbone building simulations of four-helix orthogonal bundle. Similar to the
four-helix up-down bundle composed of GBB-hairpins, the distribution of
GBB-orthogonal bundles also showed a large peak around 10 Å. This indicates the
GBB orthogonal bundle is difficult to build by ABEGO-guided backbone building
simulations.
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Chapter 07: Conclusion
Recently, de novo designs of proteins have made large progress [1].

However, the structure of designed proteins remains quite undiversified, compared to
naturally occurring protein. Especially, the structure of designed all-α proteins until
today remains simple and alike compared to naturally occuring diverse proteins,
which is problematic because the structures of proteins define their functions. This
lack of diversity possibly would bottleneck the diversification of functions of de novo
designed proteins. Therefore there's a strong need to expand the repertoire of
desigable protein structures.

When compared to designed proteins, naturally occurring proteins are
complicated: John Kendrew described the first structure of myoglobin as “difficult to
describe in the simple terms”, and most naturally occurring proteins similarly have
complicated appearances. On the other hand, artificial proteins the humans have
designed or created so far look simpler than naturally occuring proteins. As for all-α
proteins previously designed, most of them can be classified into up-down helical
bundles. The author’s motivation in this thesis was to fill the gap between them; the
author aimed to diversify the structure of design proteins and make them more
complicated so as to be described as  “difficult-to-describe”.

In this thesis, the author reported 5 different studies concerning the design of
α-helix structures to address this problem: diversification of de novo designed protein
structures.The all-α class structures were selected as design targets because the
class seemed to have rich potential to yield diverse topologies. The author
investigated why the previous all-α designs remain simple, proposed novel strategies
to diversify them, and seeked for applications of the new method.

In the second section of the thesis, the authors investigated how the simplest
class of all-α protein structures can be built from scratch. FIrst, the author started
from the statistical analysis of helix-loop-helix motifs and identified three typical
αα-hairpins that are specifically related to the left- or right-handedness of helix-helix
packing. Using these typical αα-hairpins, the author constructed various types of
three-helix bundle structures. By enumerating the possible combinations of those
building blocks, the author found that the lengths of the second alpha-helices play a
significant role in the compaction of the three-helix bundle structures. The
enumeration of possible combinations resulted in a comprehensive set of compact
three-helix bundles. This research indicated that it is not always predictable
beforehand which combinations of the length and types of secondary structure and
loops are appropriate to yield compact and globular protein-like conformations, and
protein designers need to exhaustively explore the conformational space to discover
which combinations give desired complicated topologies.
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In the third section of this research, the author investigated how a four-helix
orthogonal bundle can be built from scratch. Four-helix orthogonal bundle is the
simplest example of “non-up-down” types of all-α structures, and therefore was the
best target to start with to investigate how to compose such complicated or
“difficult-to-describe” topologies. The author found incorporation of that GBB type of
loop can cause severe efficiency loss in the backbone-building simulations. This was
because the GBB can refer to both αα-hairpins and αα-corners, and therefore
introduce structural disturbance in the backbone building simulations. This seems to
have been lowering the efficiency of the all-α protein design by fragment assembly
simulation and bottlenecking the diversity of designed proteins. Nevertheless, the
author also found that such GBB loops can be firmly designed with amino-acid
sequence design. This suggested that “difficult-to-describe” structures are
“difficult-to-build”, but are not always “difficult-to-design”. These results motivated the
author to step into the design of much more complicated topologies.

In the fourth section of this research, the author aimed to design all-α
structures with more complicated topologies. As the author had revealed that some
helix-loop-helix building blocks cause the severe efficiency loss in
fragment-assembly simulations for backbone structure building, the author
developed a different approach to efficiently sample complicated all-α topologies.
First, the author performed statistical analysis of naturally occuring helix-loop-helix
loop motifs, and found there’s dominant and typical loop conformations. The author
classified them into 18 clusters, and composed a minimal set of building blocks for
all-α protein structures. Then the author performed a literally combinatorial
generation of these typical fragments, and obtained a vast number of all-α backbone
structures. After discarding extended or severely clashing structural models, the
author constructed a library of globular all-α protein structure models. Of course the
native combinatorial computation resulted in a large number of extended or clashing
structure models. Nevertheless, the author obtained more than 300,000 globular
protein-like conformations from the naive combinations. To demonstrate the
designability of these generated structural models, the author selected 5 topologies
from the library and performed amino-acid sequence design. The designed protein
showed high-solubility, α-rich spectra in CD experiments, and monomeric
mono-disperse distributions of molecular weights in SEC-MALS experiments. The
13C-15N 2D HSQC NMR suggested that these proteins have well-folded native
states. Therefore, the author asked the NMR-expert and crystallography-expert
collaborators to solve the three-dimensional structure of these design proteins, and
they revealed that their structures agreed so well with the design models, which tells
that the such “difficult-to-describe” structures are indeed designable.

In the fifth section of this research, the author constructed a de-novo designed
protein library that encodes 294 topologies by 7,350 amino-acid sequences. Though
the experimental validation of this library remains to be done in future, the whole
library is designed to be encoded by state-of-art DNA oligo pool as the library is
composed of the 70-residue structures. The structural diversity of the library would
be advantageous to design functional proteins or specific binders, and such
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“many-fold” libraries would be standard approaches for library design coupled with
high-throughput screenings.

In the sixth section of this research, the author composed two types of
globin-like topologies. The author designed 8 amino-acid sequences for each of
these globin-like folds. The designed sequences are predicted to fold into the target
structures by fragment assembly simulations. Though the experimental validation for
these design proteins are yet to be done, it is surprising that one of the most
complicated topologies, globin fold, can be built up from the simple set of local
motifs. This suggests that the complicated topology can be reduced into their
simplified version of structures using appropriate sets of typical local motifs.

To summarize, the author concluded that the lower diversity of previously
designed all-α protein structures can be attributed to two factors. First factor is a
technical problem; ABEGO-based fragment assembly simulations, which have
routinely been utilized in the de novo backbone design, have low efficiency when two
similar fragments are mixed up in the fragment library as the author has revealed in
the second chapter of this thesis. The second factor is related to human bias; the
complicated structures are difficult for humans to draft out so that protein designers
tend to design easier structures. To overcome these problems, the author developed
the novel strategy to model the backbone all-α structures that can yield massive
structural diversity of design templates. The experimental efforts have confirmed that
the author’s approach can indeed be able to generate designable structures, and the
designed protein structure showed complicatedness comparable to the naturally
occuring globin structures. Supported by the experimental results, the approach can
encourage the protein designers to break down the possible prejudice that the
design proteins have to be simpler than naturally occuring proteins and certainly
extend the repertoire of de novo designed proteins.

Finally the author summarizes three lessons from this series of studies, which
may help designers to efficiently and confidently perform de novo designs:

(1) Use typical structural motifs rather than atypical ones. Quality of
backbone structures largely determines the fate of the design. Low-quality backbone
structures cannot produce high-quality amino-acid sequences that preferentially fold
into the target structures, and lead to failure of designs, or at least cannot be
predicted to fold into the target structure in silico. The starting point, the stage to
construct the template backbone structures, largely determines the overall fate of the
design process, which is difficult to compensate for in the later stages.

(2) Do not stick to routinely used backbone-building methods. For some
classes of protein structures, ABEGO-based fragment assembly simulations fail to
generate desired structures. There should be more efforts to develop diverse
backbone-building methods to free the designers from the technical limitations of
currently available methods. It is possible that if the rule (1) is satisfied, any means to
build backbone structures can offer the starting point for the de novo protein designs.

(3) Topology may not matter as long as it’s globular. Tertiary structures of
the proteins the author designed and validated in the chapter #4 were originally
generated by random combinations of typical local motifs. Therefore, there were less
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intentions to “design” the topology than previous design researches did, and the
author can conclude that the overall topology of the target does not affect the
successfulness of the design as long as the topologies look globular. In other words,
what designers should pay attention to is the typicality of the local motifs, which is
what the rule (1) says. As long as the local quality of the fragments are guaranteed　
and local/non-local backbone hydrogen bonds are satisfied, the overall topologies
can be any.
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Appendix
Template modeling score (TM-score)

TM-score is one of the structure-similarity measures to compare two protein
conformations, which plays central roles in the series of studies described in this
thesis. TM-score is defined by the following two equations:

In the equation (1), the LN denotes the length of native protein structure, LT denotes
the length of aligned segments, di denotes the distance between the i-th pair of
aligned residues, and max means “take the maximum of the function” after the
optimal structural superposition between two structures. The equation (2) defines the
d0, whose value appears about 0.17 independently from the number of residues.
TM-score takes the values between 0 and 1, where higher value means higher
structural similarity between two structures [1]. Practically, TM-score is computed by
the program named TM-align, which utilizes TM-score rotation matrix and dynamic
programming to approximately search the optimal superposition to maximize
TM-score [2]. When a pair of structures shows TM-score higher than 0.5, the pair of
structures belong to the same fold [3].
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