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Abstract

Quasi-satellite orbits (QSOs) or Distant Retrograde Orbits (DROs) are stable retrograde
orbits in the restricted three-body problem that have gained attention as a viable
candidate for future deep-space missions towards remote planetary satellites. JAXA’s
robotic sample return mission Martian Moons eXploration (MMX), will utilize QSOs to
perform scientific observations of the Martian moon Phobos before landing on its
surface and attempting sample retrieval. In comparison to other planetary systems,
the dynamical environment around Phobos is distinctive, as a simple two-body
approximation with Mars as the main body is not a good approximation in the vicinity
of Phobos. Because Phobos’ size causes two-body motion to be perturbed during
proximity operations, MMX’s proximity operations are immensely challenging and
require novel and sophisticated techniques for maintaining and transferring between

different quasi-satellite orbits.

This thesis uses dynamical systems theory to investigate new transfer design
techniques for the proximity operations around the Martian moon Phobos. The
developed transfer techniques use bifurcated QSO families to transfer spacecraft
between relative QSOs in the Mars-Phobos Hill Problem with ellipsoidal gravity
secondary framework. This thesis firstly introduces a systematic approach to compute
the bifurcated families of retrograde orbits from in-plane and out-of-plane stability
perturbations, namely Multi revolution Periodic QSOs (MP-QSOs) and Spatial QSOs
(3D-QSO0s). Secondly, geometric characteristics of in-plane bifurcated families of
MP-QSOs are leveraged to introduce a novel and robust planar transfer design method.
Transfer design strategy via MP-QSOs is explored through transfer maps that illustrate
transfer design space between different altitude QSOs. It is found that transfers via

MP-QSOs provide insights on minimum AV transfers and the parameters determining
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the transfer cost between relative QSOs. This transfer methodology provides a basis for
robust and stable retrograde transfer trajectories around Phobos. Even if the spacecraft
skips the AV maneuver at the designated point, the spacecraft remains in the MP-QSO,
and crossings occurring later can be used to perform the orbit injection into the target
orbit. This method involves two impulse transfers, one to escape the initial QSO and
another to insert into the desired lower altitude orbit. The proposed transfer method is
explicitly applied to MMX baseline QSOs. Furthermore, these transfer maps deliver
accurate initial guesses for optimal transfer trajectories in the vicinity of Phobos.
Based on the primer vector analysis of the impulse transfer trajectories, it is found that
departing and arriving at the same periphobian sides with an additional mid-course
impulse results in the optimal impulse solution.

Later this thesis explores the application of invariant manifolds of unstable
retrograde orbits to design out-of-plane transfer trajectories around Phobos to aid
high-latitude coverage and scientific observation capabilities to a mission. Computed
families of three-dimensional QSOs using out-of-plane bifurcations near planar
orbits show that most of these orbits are weak to highly unstable. The invariant
manifolds of an unstable 3D-QSO are computed by perturbing the states along the
direction of 3D-QSO’s local eigenvectors. The intersection of capture and escape
trajectories propagated from different locations along candidate 3D-QSOs with an
oblate cylinder passing through the two relative planar QSOs are evaluated to extract
transfer trajectories connecting a planar and the spatial QSO. This out-of-plane transfer
technique provides a baseline to estimate the costs and time-of-flight associated with
ballistic dynamics between high-altitude and low-altitude QSOs. The feasibility of
using unstable 3D-QSO family members as staging orbits between high-altitude
and low-altitude QSOs of MMX mission is later assessed. The final candidates of
intermediate 3D-QSOs are ranked based on MMX scientific requirements, transfer
analyses, and station-keeping costs by nullifying the growth of orbit injection errors
along the unstable eigenvectors of candidate 3D-QSOs.

This work’s findings could serve as initial guesses for real-ephemeris implementa-
tions to be adopted for the actual MMX mission design. The transfer methodologies
and analysis presented in this paper can be extended for future missions that seek
lower AV transfer opportunities between stable retrograde orbits around Phobos or

any small irregular planetary satellites in the solar system.
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Introduction

1.1 Exploration of Martian Moons

Deep space missions towards remote planetary satellites such as the Martian moons
Phobos and Deimos can provide scientists with invaluable clues on the birth and
evolution of our solar system[1, 2]. The origin of the Martian moons is now one
of the Solar System’s mysteries, as there are inconsistent signs pointing to several
interpretations[3, 4]. Exploring the Martian moons would shed light on the formation
of these satellites, thereby answering whether Phobos and Deimos are captured
type-D asteroids[5, 6] or fragments that interfused after a planetesimal collision with
Mars[7, 8]. In terms of mission concepts, Phobos has also been considered as a natural
space station that can be utilized by future crewed Martian missions to monitor and
control robotic assets on the surface of Mars[9]. Scientific speculations regarding the
origin and evolution of the Martian moons have made Phobos and Deimos attractive
bodies for space exploration[10]. The curiosity to explore the Martian moons served

as a catalyst for several spacecraft missions that would supposedly land on Phobos.
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Unfortunately, all of these attempts failed while either en route or in the vicinity

of the Martian moon, leaving the mystery of their origin unsolved. Initially, two

Exploration of the Martian Moons

Phobos program (USSR) i /
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Figure 1.1: Missions to Martian Moons.

space missions from the Soviet Phobos programs (Phobos 1 and Phobos 2) were
launched in 1988 to explore the Martian moon. Both missions, however, failed to
achieve their objectives'. Due to a glitch in the attitude control system, Phobos 1
was lost along its interplanetary route, while Phobos 2 failed before deploying two
rovers over the moon’s surface. Despite this partial failure, Phobos 2 captured several
pictures of the Martian moon before its fatal collapse[11]. Following the failure of the
Phobos programs, the Russian spacecraft Phobos-Grunt was launched to return a
sample from Phobos’ surface[12, 13]. Despite the mission’s failure due to a propulsion
system problem along its interplanetary trajectory, the impact of Phobos-Grunt has
inspired future missions (Fig. 1.1) to the Martian moons such as MMX (Martian Moons
eXploration)[14]and other mission proposals like NASA’s PADME (Phobos and Deimos
and Mars Environment)[15], MERLIN (Mars-Moons Exploration, Reconnaissance, and
Landed Investigation)[16], PANDORA (Phobos AND Deimos ORigin Assessment)[17]
and the European Space Agency’s DePhine (Deimos and Phobos Interior Explorer)[18],

Thttps://nssdc.gsfc.nasa.gov/planetary/phobos.html
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PHOOTPRINT? (Phobos Sample Return Mission)[19].

The Martian Moons eXploration (MMX) mission is a robotic sample return spacecraft
proposed by the Japan Aerospace eXploration Agency (JAXA)[20]. The goal of MMX is
to characterize Phobos’ dynamical and geophysical environments and return samples
from its surface back to Earth by 2029, thereby providing insights into the origin of
Martian moons and the evolution of Mars and other small bodies in the Solar system.
The current mission plan of MMX involves an interplanetary phase followed by a Mars
orbit insertion phase, a Phobos proximity phase, and surface operations to perform
descent and landing operations[21, 22, 23]. The mission profile of the MMX mission
is illustrated in Fig. 1.2, revealing how upon arrival, the spacecraft will be inserted
into a series of retrograde relative orbits around the Martian moon and carry out its
scientific observations for more than three years. The dynamical environment around
Phobos is unique compared to other planetary systems[24]. MMX envisions utilizing
quasi-satellite orbits (QSO) to characterize the dynamical environment of Phobos for

adequate landing site selection and relatively safe spacecraft operations[20].

Mission Profile

s/c trajectory
Earth orbit

Mars orbit

Return

- - = - ——

Figure 1.2: Martian Moons eXploration Mission Profile.

Zhttps://sci.esa.int/s/ AGdX]JLw
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1.2 Quasi-satellite Orbits

Quasi-satellite Orbits (QSOs) are a type of co-orbital 1:1 resonant motion where a
spacecraft orbits the primary body (m;) perturbed by the secondary body (m;) such
that it follows an almost elliptic retrograde trajectory centered to the secondary body
in a synodic frame as illustrated in Fig. 1.3. In some literature, QSOs have been referred
to as Distant Retrograde Orbits (DROs) in the Circular Restricted Three-Body Problem
(CRTBP)[25, 26, 27, 28, 29], and also the family ‘f” of periodic orbits by Hénon in his
numerical analyses of the circular Hill problem[30, 31, 32]. They are stable three-body

orbits that demand lower orbit maintenance costs over long mission periods[33, 34].

z, Cross-track

a) Mars-Phobos-QSO Illustration b)Relative QSOs around Phobos

(Mars-centered frame) (Phobos-centered frame)

Figure 1.3: Quasi-satellite orbits.

In the case of the Mars-Phobos system, Phobos has a sphere of influence embedded
within its surface due to its smaller mass, density, and proximity to Mars. A simple
two-body approximation with Mars is not appropriate to describe the dynamics in
the vicinity of Phobos. Indeed, the size of the Martian moon is enough to perturb
two-body motion during the proximity phase and make spacecraft operations quite
challenging. Therefore to ensure the safe operation of the spacecraft in the proximity
of Phobos for a more extended mission period, it is required to consider the three-body
problem. Also, due to the proximity of the Mars-Phobos Lagrangian points L; and L to

the surface of Phobos, collinear point orbits such as Halo, Lyapunov, and Lissajous
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orbits are unsafe and practically undesirable for prolonged proximity operations
around Phobos[35]. In this case, Quasi-Satellite Orbits (QSOs) are unquestionably the
best option to exploit the proximity of the Martian Moon. Alternate orbits to explore
Phobos, including liberation point orbits, are systematically studied by Zamaro and
Biggs[36].

_—
//}/
/ . - |
" - Phobos' Surface ~| Phobos
[ |Phobos' SOI [ |Hill Sphere
10
5.
Eo Eo
N N
-5
e -10
10 <
. < 10 -
0 ~. < 5 -
\\ ///,</ 0 10
km S
ylkml o T x [km]

Figure 1.4: Dynamics around Phobos.

Following Hénon, a number of studies have investigated the properties of QSOs
and leveraged their stable nature for several mission proposals. Previously, transfers to
QSO from Low Earth Orbits using the manifolds of collinear equilibrium point orbits of
the Sun-Earth CRTBP have been studied by Scott and Spencer[37, 38], and in the
framework of Earth-Moon CRTBP by Capdevila et al.[39], Mingotti et al.[40], Demeyer
and Gurfil[41], and Oshima and Yanao[42]. Low-energy transfers from Lyapunov
orbits around cis-lunar Lagrangian points to QSO were studied by Ming and Shijie[43].
Parrish et al.[44] adopted low-thrust propulsion for transfers between a QSO and an L,
halo orbit of the Earth-moon system. Lam and Whiffen[45] studied the stability of QSO,
proposing different transfers between different altitude QSOs using either impulsive or
low-thrust propulsion. They applied this strategy to both the Jupiter-Europa and
Jupiter-Ganymede systems, thereby showing examples of low-thrust trajectories from
retrograde relative orbits around the two Jovian moons[46]. Despite the number of

studies that can be found in the literature, the problem of finding and implementing
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appropriate transfer techniques between relative planar QSOs, planar to 3D-QSOs, and
from Planet-centric orbits to QSOs are still open to debate.

To this end, Russell introduced primer vector theory and low-thrust trajectories to
maneuver satellites between QSOs in the Jupiter-Europa and Earth-Moon systems[47].
Ichinomiya et al.[48] applied Lam and Whiffen’s[45] approach to design transfers
between planar QSOs in the Mars-Phobos CRTBP. Transfers between planar and
spatial QSOs were only studied by Canalias et al.[49], whereby single impulsive
maneuvers were implemented in order to insert from mid-altitude QSOs into their
spatial and out-of-plane counterpart. The goal of this thesis is to address on the transfer
design problem between the relative retrograde orbits. In particular, introducing
transfer methodologies based on in-plane and out-of-plane bifurcations of relative
retrograde orbits in the framework of Circular Hill Problem (HP) with an ellipsoidal

secondary[50, 51].

1.3 Bifurcation theory approach

In-plane and out-of plane bifurcations of periodic orbits were first studied by Robin and
Markellos[52]. Later, Lara et al.[53] used similar bifurcation methods to explore distant
stability regions around Europa. Vaquero and Howell[54] designed 3D resonant orbits
bifurcating from planar resonant periodic families in the Sun-Earth CRTBP. Oshima
and Yanao[42] applied the same bifurcation theory to calculate spatial QSOs (3D-QSOs)
and study their application in the bi-circular four-body problem of Sun-Earth-Moon
system. As a different application, they also considered ballistic landings on Phobos.
More recently, Chen et al.[55] studied the effective stability of bifurcated 3D-QSOs for
Phobos exploration. Differently from previous research, we leverage the resonant
type bifurcation approach to develop bifurcated families of QSOs and utilize them to
design transfer trajectories connecting relative QSOs in the proximity of Phobos.
This thesis introduces two transfer methodologies: 1) In-plane transfer method using
Multi-Revolution Periodic QSOs (MP-QSOs) or Swing-QSOs. 2) Out-of-plane transfer
method using the invariant manifolds of Spatial QSOs (3D-QSOs). These proposed
transfer strategies provide us with a better understanding of retrograde transfer
trajectories, i.e., minimum AV execution points, and time of flight around Phobos.

Furthermore, it delivers proper initial guesses for real-ephemeris implementations that



1.4 Thesis outline 7

could be adopted for the actual mission design.

1.4 Thesis outline

Chapter 2 begins with a brief overview of dynamical systems theory techniques used to
compute periodic orbit families, including gravity and dynamical models, continuation
methods, and terminologies used throughout the thesis. We also review the concepts of
stability, bifurcations, and manifold theory to develop some of the quantitative and
qualitative numerical procedures included in this research.

Chapter 3 of this thesis deals with the numerical procedures adopted to systemati-
cally compute families of bifurcated distant retrograde orbits (DROs) or QSOs. Firstly,
the continuation methods introduced in the previous chapter are used to evaluate
in-plane and out-of-plane bifurcations along the planar families of QSOs. Further
stability analysis and the applicability of these bifurcated orbits for Phobos exploration
are discussed later.

Chapters 4 and 5 introduce novel relative proximity transfer techniques utilizing
these computed families of bifurcated retrograde orbits. Firstly, we utilize horizontal
bifurcated Multi-revolution Periodic QSOs (MP-QSOs) to design planar transfer
trajectories between relative QSOs. Secondly, we leverage invariant manifolds of
vertical bifurcated Spatial QSOs (3D-QSOs) to connect relative QSOs. These transfer
techniques are applied to the MMX mission candidate orbits by using the Mars-Phobos
system as an example.

Finally, Chapter 6 summarizes the contributions and outcomes of the thesis, and

discusses possible future directions.

1.5 Contributions and Publications

The key contributions of this research are itemized and summarized in this section.
« Systematic numerical computation of bifurcated families of retrograde orbits:

> Computation of lower altitude QSOs using differential corrector techniques.

> Bifurcation and stability analysis to produce in-plane and out-of-plane

QSOs.
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+ In-plane transfer method:
> In-plane bifurcated QSO families (MP-QSOs) are explored for transfer
design between QSOs around Phobos.

> 2D Transfer maps are introduced to visualize the design domain between
QSOs.

> AV of the transfer is defined by geometrical parameters that minimize

transfer costs.

> Transfer maps provide a basis for optimizing retrograde transfer trajectories
of MMX mission.

> Transfer trajectories are optimized using impulsive primer vector theory.
+ Out-of-plane transfer method:

> Transfer methodology using the invariant manifolds of unstable 3D-QSOs

is proposed.
> Feasibility of spatial retrograde orbits for the Phobos exploration is studied.

> Transfer design via 3D-QSOs between MMX candidate QSOs enables

high-latitude observations of Phobos’ surface.

Published works from this thesis include:

Journals

1. N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Transfers and orbital maintenance of
spatial retrograde orbits for Phobos exploration,” Acta Astronautica, 189, 452-464,
2021. DOI: 10.1016/j.actaastro.2021.09.008

2. N. Pushparaj, N. Baresi, K. Ichinomiya, and Y. Kawakatsu, "Transfers around Pho-
bos via bifurcated retrograde orbits: Applications to Martian Moons eXploration
mission," Acta Astronautica, 181, 70-80, 2021. DOI: 10.1016/j.actaastro.2021.01.016

Conferences

1. N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Optimal Transfer Trajectory Analysis
of Relative QSOs around Phobos," 33rd International Symposium on Space
Technology and Science (ISTS), February-March 2022, Oita, Japan.
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2.

10.

N. Pushparaj, and Y. Kawakatsu, "Bifurcated Quasi-Satellite Orbits for Martian
Moons eXploration (MMX)," 33rd International Symposium on Space Technology
and Science (ISTS), February-March 2022, Oita, Japan.

N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Martian Moons eXploration transfer
analysis between planar and spatial QSOs around Phobos," 72nd International
Astronautical Congress, 25-29 October 2021, Dubai, UAE.

N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Phobos proximity orbital transfer anal-
ysis with applications to MMX mission," 31st Workshop on JAXA Astrodynamics
and Flight Mechanics, July 2021, ISAS/JAXA, Sagamihara, Japan.

. N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Transfers around Phobos using invari-

ant manifolds of unstable Quasi-Satellite Orbits," 71st International Astronautical

Congress, 12-14 October 2020, CyberSpace Edition.

N. Pushparaj and Y. Kawakatsu, "Exploration of Phobos Using Bifurcated Distant
Retrograde Orbits: Application to MMX," ISAS Planetary Exploration Workshop,
9 September 2020, ISAS/JAXA, Sagamihara, Japan.

. N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Transfers via bifurcated Quasi-

satellite Orbits around Phobos: Applications to MMX," 30th Workshop on JAXA
Astrodynamics and Flight Mechanics, July 2020, ISAS/JAXA, Sagamihara, Japan.

N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Design of Transfer Trajectories
Between Planar and Spatial Quasi-Satellite Orbits,” AIAA SciTech Forum 2020,
6-10 January 2020, Orlando, USA.

. N. Pushparaj, N. Baresi, and Y. Kawakatsu, "Transfers around Phobos using

Multi-Periodic Quasi-Satellite Orbits," 29th Workshop on JAXA Astrodynamics
and Flight Mechanics, July 2019, ISAS/JAXA, Sagamihara, Japan.

N. Pushparaj, N. Baresi, K. Ichinomiya, and Y. Kawakatsu, "Multi-Revolutional
Periodic Orbit Transfers in the Ellipsoidal Gravity Field of Phobos," 32nd
International Symposium on Space Technology and Science (ISTS), June 2019,
Fukui, Japan.
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Background

2.1 Introduction

This chapter outlines the dynamical and gravity models, continuation methods, and
terminologies used in each chapter and throughout the thesis. Specifically, the gravity
field of a small body is modeled with the constant density ellipsoid. The dynamics
around a small body are modeled with the Hill problem (HP), including the secondary’s
ellipsoidal gravity. Furthermore, it is helpful to review the concepts of stability,
bifurcations, and manifold theory to develop some of the quantitative and qualitative
procedures included in this research to understand better the methodologies used to
design transfer trajectories in this thesis. The procedures presented here are focused
on Martian moon Phobos, but they can be applied to any small irregular planetary

satellites in the solar system by changing the physical parameters.
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2.2 Dynamical Models

2.2.1 Hill problem

The motion of a particle in the vicinity of a planetary satellite can be defined using the
equations of the classical circular restricted three-body problem (CRTBP)[56]. The
general three-body problem considers the trajectories of three arbitrary massive bodies
(Primary, Secondary, and particle) traveling under mutual gravitation. The motion of a
particle (a Spacecraft) in the vicinity of a secondary body (e.g., planetary satellite)
can also be described with the Hill Problem (HP) due to the smaller mass ratio of

primary-secondary systems and the smaller spacecraft-secondary distance[57].
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Figure 2.1: Hill Problem.

The Hill Problem’s equations of motion are defined in a rotating reference frame
centered at the secondary’s barycenter as shown in Fig. 2.1, where, x-axis parallel to
the line connecting the primary and secondary bodies, the z-axis parallel to the orbital
angular momentum vector, and the y-axis in the direction of orbital velocity of the

secondary. The equations of motion of Hill Problem in dimensional form[57]:

-2y = —(ps/r¥) x +30?x,
ij+20x = —(us/r)y, (2.1)
i = —(us/r’)z—olz
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where, r = \/m is the distance from the centre of coordinate frame, y; is the
gravitational parameter of the secondary body, w; is the mean motion of the secondary
body. Normalizing Eq. (2.1) to generalize the results, the length and time units are
scaled such that both w; and (y5/w?)(M/?) are equal to 1. Normalized equations of

motion of the third body (spacecraft) reduces to classical Hill’s equations:

-2y = —(x/r¥)+3x,
j+2x = —(y/r®), (2.2)
i = —(z/r®) - z,

2.2.2 Ellipsoidal gravity model

The general problem of a mass particle subject to the gravitational attraction of a host
planet and a uniformly rotating tri-axial ellipsoid with constant density is hereby
considered. The tri-axial ellipsoidal model of Phobos can be formulated by specifying
the physical parameters of the Martian moon as follows. Three major axes are defined,
including the larger semi-major axis along the x-axis of the Mars-Phobos synodic
frame, the intermediate semi-major axis along the y-axis, and the smallest semi major
axis along the z-axis of the rotating coordinate frame. The irregular gravity field of
Phobos can be approximated using an ellipsoidal model with three major axes: «a, f3,

and y as shown in Fig. 2.2.

Figure 2.2: Tri-axial ellipsoid y < f < «
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Assuming constant density op, the gravitational parameter of Phobos is computed
as in [58, 59]:
4
Up = ?Gapaﬁy, (2.3)
where G, is gravitational constant 6.674 x 10~® cm®g™'s™? and % afy is the volume of

the ellipsoid. The gravitational potential of a constant density tri-axial ellipsoidal

Phobos modelled at a point x, y, z is

Utny2) =g [ $rzn g (24

where ) ) )
$(xyzl+A) = a? +xl+A * B2 +yl+A i & +Zl+A - (2:5)
AL+A) =@ +1+A) (B +1+AN) (P2 +1+A). (2.6)

Notice that pp is gravitational parameter of Phobos, whereas A is either zero or the real
positive root of ¢(x,y,z,I + A) = 0 depending on whether the gravitational attraction
is computed internally or outside the body, and [ is the integration variable. Physical

properties of Phobos are provided in Table 2.1[60].

Table 2.1: Phobos physical properties

Properties Values

a, Largest semi-major axis 13.03 km

f, Intermediate semi-major axis 11.4 km

¥, Smallest semi-major axis 9.14 km

op, Density 1.860 g/cm®

up, Gravitational Parameter 0.000706 km3 /s>
Mp, Mass 1.058 X 10'® kg
ap, Phobos semi-major axis 9377 km

Pp, Rotational period 7.66 hrs

2.2.3 Hill Problem with ellipsoidal gravity

In addition to the simplified Mars-Phobos HP point mass model, this thesis considers
the HP ellipsoidal gravity model. Noting that the gravitational parameter of Phobos
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(Table 2.1) is significantly smaller than the gravitational parameter of Mars, if we
assume that the relative distance between the spacecraft and Phobos is significantly
smaller than the distance between Mars and its moon, the differential equations
governing the motion of mass particles around Phobos can be well approximated with

the equations of the circular Hill problem [57] from Eq. (2.2):

X—=2y = gx+3x,
9y (2.7)
.Z: = gZ - Za

U+ 2x

where yi;/r3 term from Eq. (2.1) is simply replaced with three components of gravita-

tional accelerations gy, g, and g, due to an attracting ellipsoidal mass [57]:

3 /°° 1 dl 50
Fe =M X |\ 2+ I+ A) NI+ A o4
3 © 1 dl
_ 3 2.
9y Z’UPy/O ﬁ2+l+A)A(l+A)’ (2.8b)
-3 z/m ! dl (2.8¢)
9z = ToHP o \P2+I+AJA(+A) '

where X = [x,y,z, %, 1, z’]T represents the state of third body in normalized units,
ie,1LU = eap = 23.86 km, 1 TU = 1/np = 4387.63 s, where € = (up/up) />, ap is
the semi-major axis of Phobos, and np is the mean motion of the Martian moon,
respectively. Notice that Eq. (2.4) and (2.8) depends on elliptic integrals that can be
calculated through standard numerical procedures as in Ref. [61].

Finally, observe that the equations of motion (2.7) admits an energy-like integral of

motion known as the Jacobi integral:

C=W({) - % (%% + 9% + 2%), (2.9)

1
where W(r) = 2 (3x% — 2%) + U(r) is the effective potential of the system. Since

1
T = 2 (2 + 72 +2%) = W - C > 0, the Jacobi integral divides the vicinity of Phobos in
areas of forbidden and admissible motion. That is, for each value of C, W —C = 0 defines

a zero-velocity curve that cannot be crossed by any spacecraft with the same Jacobi
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integral value. Figure 2.3 shows the zero-velocity curves for the circular HPe, as well as
the L; and L, Lagrangian points found along the Mars-Phobos line (at x;, = —17.34 km
and x;, = 17.34 km, respectively, C, = Cr, = 66.04 m?/s* = 2.23 LU?/TU?). As it can
be seen, the Lagrangian points are just a few kilometers above the surface of Phobos

and are known to be unstable [24].
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Figure 2.3: Zero-velocity curves calculated in the circular Hill problem around Phobos.

Symmetries in Hill Problem

The circular Hill problem exhibits two types of symmetries, with respect to the xy-plane
and x-axis, respectively [56]. The symmetric properties of the circular Hill problem are

depicted in Fig. 2.4.

(a) If a trajectory flows away from the plane y = 0, a mirror image of that trajectory
continues to flow backward in time on the other side of the plane (i.e., if an
initial trajectory flows away from the plane y = 0, the mirror trajectory flows
towards it).The two symmetric trajectories in Fig. 2.4(a) are two parts of the same

trajectory.
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(b) A mirror symmetry exists across the z = 0 plane in addition to the time-reversal

symmetry across the y = 0 plane as illustrated in Fig. 2.4(b).

/ y = 0 plane

\ (x(0), y(®), z(¢)) z = 0 plane

/ (x(0), y(®), —F

(x(=0), ~y(~t), 2(~1)) (x(®), y(), z(D)

a) Symmetry across the y = 0 plane. b) Symmetry across the z = 0 plane.

Figure 2.4: Symmetries in the circular Hill problem.

These two symmetries can be coupled to form another symmetry with both
symmetric properties. It is also worth noting that Eq. (2.7) is invariant under the

following transformations:
> [xy,2,% 0,2 t] = [x,—y,z,—X, 7, -2, —t], when y = —y,t = —¢
> [xy,2,% 0,2 t] = [x,—y,—z,—X,7,2,—t], when y = —y,z = —z,t = —1.

Periodic orbits can be found using the time-reversal symmetry across the y = 0 plane.
Assume that a trajectory crosses the y = 0 plane twice in a perpendicular direction.
The trajectory will mirror before the last crossing, returning to the state at the first
crossing, eventually resulting in a closed trajectories (plane-symmetric periodic orbit).
The following section discusses numerical procedures for computing periodic orbits

and their associated families.

2.3 Periodic Orbits

In dynamical systems theory, periodic orbits are defined as trajectories that repeat
over a certain period of time. Let x¢ = [x0, Yo, 20, X0, Yo Zo]T and T be the initial state

vector and time of flight of a spacecraft. The fundamental problem of computing a
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periodic orbit is finding a set of variables X = [x,, T]T € R7*'that satisfies periodicity
and phase conditions[62, 63]. Fig. 2.6 illustrates the periodic and phase constraints to
compute a periodic orbit. Periodicity condition ensures that the propagated orbit is
periodic, such that the initial state vector propagated over a time T coincides with the

final state at a specific time. Periodicity condition can be conventionally expressed as
@(x0,0,T) — x9 = 0 € R™, (2.10)

where ¢(xo, 0, T) is a terminal state vector propagated from x( between initial and
final timest =0and ¢t =T.

| 9(%,07)—x,=0 |

¢(x,,0,T)

Figure 2.5: Schematic of periodicity and phase constraints.

It’s worth noting that number of variables is one more than the constraints defined

by the Eq. (2.10). As a result, we add a constraint that fixes the phase of xy, allowing x,

to be found only once on the periodic orbit. Phase constraint of a periodic orbit is
defined by

p(x9) =0 € R, (2.11)

Combining Eq. (2.10) and Eq. (2.11), equation to find periodic solution is derived as

@(x0,0,T) — x¢

O =0eR™, (2.12)
0

F(X) =

Suitable predictor-corrector schemes can be used to trace continuous periodic family

solutions that account for changes in xy and T along the curve representing the
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periodic orbit family in the (xp, T) plane. The predictor-corrector method proposed by
Seydel[64] is considered in this work and outlined in the following subsections to

provide a unique solution for Eq. (2.12).

2.3.1 Predictor: Pseudo-arclength continuation

In this thesis, we use the pseudo-arclength continuation method predictor step as
described in Ref.[65] to develop families of periodic orbits.

Let X be a solution of F (X) =0, X' be the unit tangential vector to the curve at X,
and Js defines prediction step size as shown in Fig. 2.6. Then, a first guess for the next

correction step Xy, can be obtained along X' as:
Xfg =X+ 05X, (2.13)

Pseudo-arclength continuation scheme constraints to the solution guess X, can be
defined by
(X, - X)X -85 =0, (2.14)

Schematic of pseudo-arclength continuation process is depicted in Fig. 2.6, whereby the
predictor creates a first guess at the next correction step Xy, along X' with a specific
step size ds. The guess X, is then iteratively corrected with a constraint Eq. (2.14) on

the orthogonal hyperplane to X  indicated as a green line in Fig. 2.6.

Solution
Curve j’( Plane

Figure 2.6: Schematic of pseudo-arclength continuation.
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The variable §s is a small parameter (e.g., s = 10™%), whose magnitude can be
adjusted throughout the continuation process to control the number of family members

being computed.

2.3.2 Corrector: Shooting method

The equation to be solved to correct the periodic orbits is derived by incorporating
the pseudo-arclength continuation[65] constraint Eq. (2.14) with periodic and phase
conditions Eq. (2.13).

@(x0,0,T) — xo
F(X) = p(x0) =0. (2.15)
(Xy - X)X - 8s

Even though (xy, T) from the predictor step is only a projected values, it is indeed
unlikely that each of Eq. (2.15)’s constraints are satisfied. The predicted solution is,
however, close to the true solution; Newton’s method can be used to numerically iterate
the predicted solution until the Eq. (2.15) converges to zero or close to a tolerance
margin. Now, defining AX as the correction vector of X, the objective function at the

next guess can be given by first order Taylor’s expansion:

9F(Xy)
F(X4+AX) =F(Xy) + X AX +H.O.T. (2.16)
g
where ;—)g is the Jacobian and expressed as:
p .
e 9(x0,0,7)
OF(Xg) _ | opli)
= 0 (2.17)
9Xq %T o' T
Xxo XT
where :—;’; corresponds to the state transition matrix (STM) from xy to ¢(x¢,0,T).

STM after one orbital period is also known as Monodromy matrix, M, which helps
analyze the stability of the computed periodic orbits in the next section. X;Z and X’}T
are components of X updating x¢ and T, respectively.

On eliminating the higher order terms from Eq. (2.18), periodic solution F(X) is
converged by iteratively updating the AX vector.
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IF(Xy) |\
7)) F(xy) (2.18)

AX:—(

Upon convergence, the algorithm solves the boundary value problem, which allows the
predictor-corrector scheme to be reinitialized and continue along the branch of the

periodic orbit family.

2.3.3 Periodic orbits in the vicinity of Phobos

A central manifold characterized by families of periodic orbits and quasi-periodic
orbits exists around each of the collinear liberation points L; and L; in the Hill Problem
framework. Periodic families around liberation points L; and L; are planar Lyapunov,
vertical Lyapunov, northern and southern halo orbit families. Fig. 2.7 to Fig. 2.9
illustrate the families of liberation point orbits computed using pseudo-arclength

continuation and shooting methods described in the previous subsections.
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Figure 2.7: Dynamics around Mars-Phobos Lagrangian points: Planar Lyapunov Orbit
families around L; and L,.
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Other periodic orbits around Phobos are family f and g type orbits known as
retrograde and prograde families of orbits existing around the smaller primary in the
CRTBP framework. The family ‘g’ exhibits a complex behavior that evolved from
stable circular prograde oscillations around the smaller primary. In the Mars-Phobos
system, prograde families lie within and closer to the surface of Phobos. These families
of orbits are used to study point-to-point jumping arcs on the Phobos’ surface that
exhibit lower take-off and landing velocities[66]. Examples of prograde orbit family
continuation using the pseudo-arclength continuation method are shown in Fig. 2.10
(b), along with the retrograde families in Fig. 2.10 (a). These retrograde orbit families
or family ‘f” orbits are most widely known as distant retrograde orbits (DROs) or
Quasi-satellite Orbits (QSOs) in the literature. Chapter 3 elaborates on the computation
of these families of orbits and review key dynamical properties of retrograde relative

orbits and their application to space mission design.
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Figure 2.10: Dynamics around Phobos: a) Retrograde Orbits; b) Prograde Orbits.
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2.4 Stability of Periodic Orbits

The monodromy matrix, M, defined as the state transition matrix propagated for
exactly one period of the orbit, is commonly used to determine orbital stability. Let dxq
be a small perturbation about the initial state of the computed periodic orbit. State

transition matrix maps this initial deviation forward in time after 'n’ orbital periods.
5x,, = (I)(Tn, to)(SJC() = (D(Tn, Tn_l)...(D(T, t0)5x0 = M,,Sxo (2.19)

Following the nature of Hamiltonian dynamical systems, for each eigenvalue A € R of
M, 1/ is also an eigenvalue, and occur in reciprocal pairs[57, 67]. Also, if A € C, then A
and 1/ are eigenvalues of M. Periodic orbits are stable only when all of the eigenvalues
(A, Vi=1,2,..,n) of M have a magnitude less than unity, i.e., |4;| < 1,Vi=1,2,.,n.

Im(A)

IN[>1

-
A

Figure 2.11: Stability bound for the eigenvalues of the monodromy matrix.

Fig. 2.11 illustrates the stability bounds for eigenvalues of the monodromy matrix
in the complex plane to the unit circle. Non-trivial and complex eigenvalues placed on
the unit circle (|]A| = 1) indicate the existence of oscillatory modes. Pair of reciprocal
eigenvalues that are placed off the unit circle, on the other hand, indicates the presence
of unstable (|A| > 1) and stable (]| < 1) modes governing the motion in the vicinity of
the periodic orbit. When a pair of non-trivial eigenvalues reach any critical value,

bifurcation occurs, which will be discussed in the following subsection.
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Let @ (x9) = x¢ be the periodic solution of Equations of motion, then
@1 (x0 + 6x9) = @r(x9) + MSxg + H.O.T = x¢ + xy. (2.20)

On neglecting H.O.T yields (M — I,,)dx¢ = 0, where I, is an identity matrix, resulting
with an eigenvalue A = 1. If this is true, a second eigenvalue must be equal to unity as
well. Furthermore, the characteristic polynomial of a 6-by-6 monodromy matrix can be

further simplified as

det(M = AIy) = (A= 1)*(A = 1) (A = 1/41) (A = A2) (A = 1/Ay),

=(A=1)2A2+ b A+ 1)(A2 + bod + 1), (221

where Ay, 1/44, A, 1/, are other non-trivial eigenvalues of M, and b; = —(A; + 1/44)
and b, = —(A; + 1/12) must be real with max(|Re(b;)|, |[Re(bz)|) < 2 for a periodic
orbit to be stable.

Values by and b, are referred to as stability indices and will be evaluated throughout
this thesis to assess the stability of the periodic orbits[68, 69]. Following Bray and
Goudas[70], by and b, are calculated as

a++Ja?—4f+38

b1, by = , (2.22)
2
_ _ a?—trace(M?)
where a = 2 — trace(M) and f = ———— +1,
—bj + b]z -4
YAjAj = ————Vj=1,2, (2.23)

2

Eq. (2.23) provides an efficient relation for computing the eigenvalues of the monodromy
matrix of any periodic orbit of a six-dimensional autonomous Hamiltonian system.
Naturally, once the eigenvalues of M are known, the resulting eigenvectors can
be used to compute the invariant manifolds associated with the periodic orbit. The
invariant manifolds of a periodic orbit are computed by perturbing the states along the
direction of periodic orbit’s local eigenvectors.
Stable and Unstable invariant manifolds originating from various regions along the

unstable periodic orbits are usually characterized using numerical computation on
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multiple nodes of the periodic orbit.
Let Y*(X() and Y#(X) be the normalized stable and unstable eigenvectors associated
with the real pair of eigenvalues of the monodromy matrix M evaluated in an arbitrary

point Xj.

Figure 2.12: Direction of perturbed eigenvectors from a periodic orbit.

Fig. 2.12 shows the direction of the perturbed normalized stable and unstable
eigenvectors from a periodic orbit(PO). Here, we defined arbitrary points along PO
equally spaced in time and approximated the computation of stable and unstable
manifolds locally. The computation of stable and unstable manifolds associated with
an unstable PO can be accomplished using suitable numerical integration procedures

[71]. Initial guesses for stable and unstable manifolds are given by
X* (Xo) =Xy = eY? (Xo) (224)

X (Xo) =Xp =+ eY* (XQ) (225)

Where, ¢ is small displacement from X. In this work we have displaced the initial state
by £ = 1 x 107%. This perturbation should be set numerically as low as possible while
designing maneuver-free transfers.

Propagating Eq.(2.24) backwards in time, we generate stable manifold trajectories.
Similarly, propagating Eq.(2.25) forward in time, we generate unstable manifold
trajectories. These are further explored for spatial transfer design discussed in the
Chapter 5.
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2.5 Bifurcation of Periodic Orbits

In dynamical systems, a bifurcation may lead to a change in stability along a periodic
orbit family, resulting in new families of periodic orbits or termination of existing
families of periodic orbits. Based on the stability of the periodic orbit, local bifurcations
are detected and characterised by monitoring the non-trivial eigenvalues of the
monodromy matrix corresponding to each of the periodic orbits in a family[72]. Any
changes in the eigenvalues can result in varying degrees of linear instability along the
solution curve.

Fig. 2.13 depicts the non-trivial eigenvalues on either side of the bifurcation in a
complex plane for various types of bifurcation. Following are types of bifurcations
found in dynamical systems theory: Tangent Bifurcations, Period-doubling Bifurcations,
and Period-multiplying Bifurcations. Each type of bifurcation is associated with a

specific change in characteristics of the dynamics in the vicinity of the periodic orbits

in a family.
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exe exe a7y
\ Re(\) J Re()) @ Re(\)
M, Ay =+1 A, Az =1 Ay, Ay = cos(2rd/n) + sin(2rd/n)i
a) Tangent Bifurcation b) Period-doubling Bifurcation ¢) Period-multiplying Bifurcation

Figure 2.13: Non-trivial eigenvalues in the complex plane, illustrating the stability of
periodic orbits on either side of bifurcation points. (Unit circle is represented by green,
the eigenvalues are represented by red and blue, and the critical value or bifurcation is
represented by black x’.)

2.5.1 Tangent Bifurcations

A tangent bifurcation occurs when the orbital stability of a family of periodic orbits

changes as a parameter variation, such as the Jacobi constant. The nontrivial eigenvalues
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(A1 = A3 = 1) of the monodromy matrix reaches the critical values (i.e., b; = 2) during
this type of local bifurcation. Tangent bifurcations are classified into three types[64]:
Cyclic fold, Pitchfork, and Transcritical. When the stability of orbits along a single-
family is varied without creating or intersecting any other families of orbits, cyclic fold
bifurcation occurs. Pitchfork bifurcation occurs when a change in the instability of a
periodic orbit family causes the orbits to split into two new families with comparable
stability. Finally, transcritical bifurcation is defined as the point of intersection between
stable and unstable families of periodic orbits that share stability properties. An
example of tangent bifurcations is presented in Fig. 2.14 (subplot 1), where the
bifurcations lead to the L, halo orbit family from the L, planar Lyapunov orbit family
in the vicinity of Phobos.

1) L, Northern Halo Family

4
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3r UNSTABLE REGION 5
2 N &
'Q“I Tangent Bifurcation N
x 1 L -10-L
] 20
"g 0 s 20
= ol ykm 2010 s ]
>
E 2) L, Period-double Family
2 |
g eriod-doubling 30
wn ) Bifurcation 20
2 . 10
3t UNSTABLE REGION o
20
-4 ‘ ' | Eh A
15 20 25 30 35 0 o

Positive x-crossing [km] 7 fen

Figure 2.14: Stability indices of L; planar Lyapunov periodic orbit family and bifurcated
families of periodic orbits.

2.5.2 Period-doubling Bifurcations

Period-doubling bifurcation takes place when the nontrivial eigenvalues (A; = A, = —1)
of the monodromy matrix reach corresponding critical stability indices (i.e., b; = —2).

The change in qualitative stability characteristics of the periodic orbit family also
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indicate the intersection of the n-periodic family with the 2n-periodic family. Fig.
2.14 (subplot 2) illustrates the family of period-double bifurcations of the L; planar

Lyapunov periodic orbit family.
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Figure 2.15: Stability indices of planar Quasi-satellite Orbit family around Phobos and
period-multiplying bifurcated families at d/n=1/4 and 1/5.

2.5.3 Period-multiplying Bifurcations

Besides the critical cases of stability indices (i.e., b; = +2) that lead to tangent
(A1 = A2 = 1) and period-doubling (1; = A; = —1) bifurcations, several other families
of periodic orbits bifurcate with multiple periods from the initial family of periodic
orbits[73, 74]. In particular, for the ranges of stability indices -2 < b; < 2, period-
multiplying or resonant bifurcation occurs when two non-trivial eigenvalues of M
correspond to the n'" roots of unity, i.e., A; = A, = V1 = cos(2zd/n) + sin(2xd/n)i,
such that when the stability of the periodic orbit family reaches critical stability indices
values defined by a resonant ratio (d/n) in Eq.(2.26)[52, 53, 72].

d
bres = 2cos2m—, doneN (2.26)
n
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where d and n are integer numbers. Note that the integer ‘d’ indicates a near-
commensurability of period between the orbit at the point of bifurcation and the
rotation of the coordinate system, whereas ‘n’ denotes the periodic multiplicity.

Thus corresponding stability index of the n-fold periodic orbit after a period 7 = nT
is |bj| = 2, and these critical orbits are “d : n bifurcated orbits” and the family of
periodic orbits that emerge from d:n bifurcated point is “d : n bifurcated families.”
Such period-multiplying bifurcated families are used in this research to systematically
design and develop transfer procedures that establish transfer design space between
relative quasi-satellite orbits. As an example illustrated in Fig. 2.15, bifurcations at
points 1 and 2 result in period-quadruple (1/4) and period-quintuple (1/5) bifurcated
periodic quasi-satellite orbits bifurcating from the planar QSO family. The following
chapter explains how to systematically compute the families of bifurcated QSOs that

are used in the transfer design methods described in Chapters 4 and 5.
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Bifurcated Quasi-satellite Orbits

3.1 Introduction

The dynamic environment around Phobos is complex. The low mass-distance relation-
ship between Mars and Phobos makes it impossible to consider classical Keplerian or
two-body motion about Phobos for mission design. Consequently, mission designers
have looked at different orbit candidates that would allow close inspections of the
Martian moon from higher and safer distances[75, 76]. Due to the proximity of the
Lagrangian points to the surface of Phobos, mission design using liberation point
orbits is impractical. On the other hand, Quasi-satellite Orbits (QSOs) or Distant
retrograde orbits (DROs) are the class of periodic orbits that lie outside the SOI of the
smaller primary (i.e., Phobos). The peculiar case of smaller planetary satellites such
as Phobos is very suitable for exploiting these orbits for closer observation of the
Phobos surface. QSOs are generally considered one of the three kinds of co-orbital
configurations in CRTBP with 1:1 resonance. Other co-orbital configurations include

Tadpole and Horseshoe Orbits[34, 77].
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3.2 Quasi-satellite Orbits around Phobos

In this research, Phobos is assumed to move around Mars in a circular orbit with
semi-major axis ap = 9377 km. If we momentarily neglect its gravitational attraction, a
spacecraft on an eccentric orbit with the same semi-major axis would remain in the
vicinity of the Martian moon and describe purely periodic orbits with respect to the co-
rotating frame of the planetary satellite. More specifically, a spacecraft would describe
2:1 ellipses centered on Phobos and with period equal to its orbital period around Mars
(7.66 hrs) as prescribed by the analytical solution of the Hill-Clohessy-Wiltshire (HCW)
equations [78]. HCW equations are not applicable in the vicinity of the Phobos surface.

If we now consider the gravitational attraction of Phobos, the closer spacecraft to
the surface of the Martian moon, the higher the gravitational influence of the planetary
satellite on the relative trajectory of the spacecraft. Because of this perturbation, lower
altitude QSOs are usually computed via differential correctors techniques that search
for purely periodic orbits while migrating inwards from high-altitude 2:1 ellipses that
are less affected by the gravity of the planetary satellite. In this research, we have
utilized pseudo-arclength continuation [65] and shooting methods for calculating
families of QSO as shown in the left subplot of Fig 3.1. Other alternative analytical
approaches to compute QSOs include works of Kogan [79], Lidov [80, 81], and Lara [82].

The current mission design of MMX envisages the utilization of different altitude
planar QSOs in order to characterize the gravitational field before landing on Phobos[20,
83]. Key features of these baseline trajectories are tabulated in Table 3.1, whereas
the right subplot of Fig. 3.1 depicts the candidate relative orbits as seen from the

Mars-Phobos synodic frame.

Table 3.1: MMX Candidate QSO.

Name x X y (km) xXy(m/s) T(hrs) C(-)
QSO-H [High] 100 X 198.47 45.74 X 22.95 7.59 —8.78
QSO-M [Mid] 50 X 94 .41 23.41 X 12.04 7.13 —-2.20

QSO-La [Low(a)] 30X 48.83  1531x8.68 576 —0.78
QSO-Lb [Low(b)] 22x30.81  12.79x8.25 440 —0.37
QSO-Lc [Low(c)] 20X 26.69  12.31x831  3.97 —0.27




3.3 Multi-Revolution Periodic Quasi-satellite Orbits 33

~
T

200 Phobos

150

=)

100

50

y [km]
©

Time Period [hours]
- n
T

-50

-100

-150

®
|
|
|
|
[
|
|
|
|
[
|
|
|
|
[
|
|
|
|
|
[
|
[

I I I 1 I I I L -200
0 20 40 60 80 100 120 140 160 180 200 -100 0

100
Positive z-crossing [km]  [km]
(a) (b)

Figure 3.1: a) Time Period vs positive x-axis crossing of the QSO family branch. b)
MMX baseline quasi-satellite orbits.

3.3 Multi-Revolution Periodic Quasi-satellite Orbits

Multi-Revolution Periodic QSO (MP-QSO) are retrograde relative trajectories that repeat
after several revolutions around Phobos. As MP-QSO bifurcate from single-revolution
QSO, this type of periodic orbits can be found in the vicinity of the Martian moon when

either of the stability indices b; crosses the resonant value as indicated in the Eq. (2.26)

d
bres = 2cos2m—, d,n € N,
n

where d and n are integer numbers defined in [53]. Note that the integer ‘d’ indicates a
near-commensurability of period between the orbit at the point of bifurcation and
the rotation of the coordinate system [52], whereas ‘n’ denotes the multiplicity of
a periodic orbit, i.e., the number of revolutions around Phobos. The value of bg,;
corresponding to the ratios of d : n are shown in the Fig. 3.2. These periodic orbits are
referred as d : n MP-QSO and examples of them are shown in Fig. 3.3.

Let x; and T" be the initial state and orbital period of the bifurcation point.
Bifurcation points are detected using a bisection method on the curves of Fig. 3.2. Once
a positive x-axis crossing has been obtained, its corresponding QSO orbit is calculated

leading to an accurate estimate of xj and T*. In addition, the monodromy matrix of



34 Chapter 3. Bifurcated Quasi-satellite Orbits

<
8'\ E \ byi16) = 2 cos 2r(1/6)
2 0.5 E‘ by15 = 2 cos 2n(1/5) 7
"a /P -.....
—f 0 ‘CQ by1,4) = 2 cos 2r(1/4)
o
b -0.5 A 1
el
3 \ /
< 1 Ay 2 by13) = 2 cos 2r(1/3)
ﬁ 4
-LSE e | e CRTBP (b,) 7
...... CRTBP (b,)
-2 — HP Ellipsoidal Gravity Model (b;)
— HP Ellipsoidal Gravity Model (b,)
-2.5
0 10 20 30 40 50 60 70 80 90 100

Positive x-crossing [km)|
Figure 3.2: Stability Indices of QSO and bifurcation points.

60 - —
200 200 -

40 150 -
100
20
50 -

0

y fk]
B

y lkm)

y [km]
=

y [km]

-50 -
-20

=100 -

-40 -150 -

=200 =200 -

-60

-20

20 -50 0 50 -100 0 100 -100 0 100
2 [km)] x [km)] z [km)]

(@) 1:3 MP-QSO  (b) 1:4 MP-QSO  (c) 1:5 MP-QSO  (d) 1:6 MP-QSO

0
2 [km)]

Figure 3.3: Bifurcated d:n MP-QSOs from b;.

the newly found QSO is multiplied for n times and diagonalized to approximate the

. AT
direction of the researched d : n MP-QSO family tangent. We consider Z, = [3?6, T ]
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T
be the family tangent of the MP-QSO family, where [% T ] are unit tangential state

T
vector and propagation time to the solution curve at Z; = [x(*), T*] as shown in Fig. 3.4.

This bifurcation analysis reveals that there are two families of MP-QSOs emanating

Solution
curve

Figure 3.4: Pseudo-arclength continuation on bifurcation points.

from each bifurcation point (pitchfork bifurcation). These two branches will be referred
to as “symmetric" and “asymmetric" MP-QSO depending on whether the radial velocity
(Xo) of the predicted initial point, namely xo = x; + ¢ JNCE), is equal or not to zero. To
enforce the “symmetric" condition, we add an additional constraint on the initial radial
velocity of the MP-QSO and run a pseudo-arclength continuation procedure that
generates MP-QSO family branches from the initial conditions from Eq. (3.1) and
family tangent Z;.

{ Xg = Xp+eX), (3.1)

T = nT*+¢T,

The variable ¢ is a small parameter, this work used ¢ = 107*, whose magnitude can
be adjusted throughout the continuation process to control the number of family
members being computed. Also notice that the resulting symmetric MP-QSOs can be
classified as Type-I and Type-II d : n MP-QSO based on the direction of the initial
perturbation of the initial state as shown in Fig. 3.5.

Figure 3.6 depicts the in-plane bifurcated branches of quasi-satellite orbits. For
clarity, we have highlighted family branches with a multiplicity factor ‘n’ of 15 in this
figure (i.e., number of revolutions around Phobos). The black curve identifies the
planar QSO family, while the bifurcated MP-QSO branches evolving from the primary

solution curve are highlighted by the blue curves.
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The enlarged view of branches evolving between 20 and 40 kilometers is shown in
the subplot of Fig. 3.6. These bifurcated family branches closer to Phobos’ surface and
their proximity to the surface makes scientific observations impractical. The branches
beyond 40 kilometers, on the other hand, can be used to observe Phobos. Fig. 3.8 shows
examples of MP-QSOs bifurcated from the branches of Fig. 3.6. Fig. 3.7 illustrates the
summary of systematic computation of bifurcated QSO families. For a robust and safe
transfer, leveraging the geometry of MP-QSOs, we propose a transfer technique in
Chapter 4 to transfer spacecraft between relative QSOs in the proximity of Phobos.
The out-of-plane bifurcations from the stability curves b, are known as 3D-QSOs or
spatial QSOs, numerical procedures for generation of spatial QSOs, and applicability

for Phobos high latitude region observations are discussed in the following section.

e Compute planar QSO family

e Input: (xg,¥,, T ). Phobos parameters, Equations of motion

e Extract the stability indices for each computed QSO member
¢ Analyze period-multiplying bifurcations at resonant values
(d/n)

¢ Evaluate bifurcation points using bisection method

e Continue along X, = 0 direction using pseudo-arclength
continuation scheme and shooting method

e Repeat for other bifurcated branches of stability indices curve

by

Figure 3.7: Systematic computation of bifurcated QSO families.
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3.4 Spatial Quasi-satellite Orbits

Spatial Quasi-satellite Orbtis or 3D-QSOs are out-of-plane bifurcated families of the
planar QSO family. These 3D-QSOs are computed from the out-of-plane bifurcations of
the planar QSO family branch b,. Stability indices curves illustrated in the Fig. 3.2
indicates the period-multiplying bifurcation points at in-plane and out-of-plane stability
indices curves(i.e., b; and b,). The families of periodic orbits evolving from the b,
are linearly unstable and have high-latitude coverage advantages for any scientific
missions to distant smaller planetary satellites. Computing quasi-periodic invariant
tori around a planar stable periodic QSO[84, 42], semi-analytical methods[85, 86]
and grid search methods[87, 88] are often used to study QSOs in higher-dimensional
systems, such as spatial or non-autonomous models.

In this section, we hereby calculate families of 3D-QSOs via bifurcations of resonant
values (d : n) [52]. These bifurcating orbits can be identified using the eigenvalues of
the monodromy matrix corresponding to each orbit in the family. Remember that the
presence of a bifurcating orbit is indicated by a change in stability, as indicated by the

eigenvalues of the monodromy matrix.
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After identifying the bifurcating orbit, an algorithm similar to the one used to
compute MP-QSOs from the planar QSO family branch can target these out-of-plane
3D-QSO families. Hereafter, vertical bifurcations will be referred to as d : n 3D-QSOs.
The bifurcated branches from planar QSOs are shown in Fig. 3.9, whereby the family of
plane-symmetric periodic orbits is computed with z # 0 and z = 0. The blue dots
indicate stable periodic orbits, whereas the red dots indicate unstable periodic orbits.
Examples of d : n 3D-QSOs of different d : n from the Fig. 3.9 are shown in Fig. 3.10.
Note that not every resonance ratio is labeled for the sake of brevity. Furthermore,
the intersection of solutions mapped on the figure does not imply the same orbit as
they have different initial values of 1,. We observe that most of the 3D-QSO families
with A, >40 km are weakly to highly unstable as there is a switch in the stability of
the computed families bifurcated 3D-QSOs. However, these out-of-plane bifurcated
retrograde orbit families are ideal for high latitude observations. In the MMX mission,
scientific observations for high latitude coverage, and global mapping of Phobos
surface terrain, MMX envisions utilizing 3D-QSOs at low-mid altitude regions of

current baseline altitudes of operation[20].

60

i
| 1:267\1:27

Az

33 15 5) 55
Ax [km] 1:21 1:22 }:23

0 5 10 15 20
Ax [km

a) Low-altitude b) Mid-altitude

Figure 3.11: A, vs A, of Low-Mid altitude 3D-QSO families.

Table 3.2: Potential candidate 3D-QSO

MMX Baseline Altitudes 3D-QSO Families
30 km (Low) 2:11, 3:17, 3:19, 1:9, 2:13, 1:6, 3:20
50 km (Mid) 1:17, 1:18, 1:19, 1:20, 1:21, 1:22, 1,23
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To support scientific operations[21, 22, 89] and to observe the high-latitude regions
of Phobos’ surface, we highlight some of the suitable candidate 3D-QSOs within the
MMX baseline target altitudes as listed in Table. 3.2. Amplitude variations of these
candidate 3D-QSO families at low-mid altitude are shown in Fig. 3.11.

Ground tracks of 3D-QSOs

Examples of low-mid altitude 3D-QSO’s ground tracks around x-amplitude (A,) 30
and 50 km for different z-amplitudes (A,) are illustrated in the Fig. 3.12 and Fig. 3.13,
respectively. 3D-QSO of 1:6 family illustrated in the Fig. 3.12 presents orbits at
A, € [15,35]. It can be observed that, all the members of 1:6 3D-QSo families in the
low-altitude region are highly unstable. From the high-latitude region coverage point
of view, A, = 15 km covers latitudes between 32.16°N and —32.43°S. On the other hand,
A; = 35 km covers latitudes between 60.83°N and —61.14°S. Due to the proximity
to the surface of Phobos, these low-altitude 3D-QSOs require more sophisticated
orbital maintenance techniques. Chen et al.[55] analysed stability of these low-altitude
3D-QSO0s and revealed practical stability regions. In particular, some of these orbits can

be maintained with Av cost of 1 m/s for 9 days.

Even though preliminary analysis on maintaining low-altitude 3D-QSOs suggests
the practical possibility, considering the complex dynamical environment and orbital
determinations errors, mid-altitude 3D-QSOs are envisaged for the MMX mission for
safer out-of-plane operations. Fig. 3.13 illustrates the ground track of 1:23 3D-QSO
family members of different z- amplitude. It can be noted that an orbit of A, = 60 km
(stable) covers latitudes between 56.78°N and —57.14°S. In order to cover higher
latitude regions, we need unstable 3D-QSOs of A, > 60 km. In particular, A, = 80 km
(unstable) covers latitude between 64.20°N and —64.59°S, whereas A, = 100 km
(unstable) covers latitudes between 70.83° N and —71.21°S, and A, = 120 km (unstable)
covers latitude between 75.30°N and —75.68°S, respectively. Note that all of the
mid-altitude 3D-QSOs become weakly to highly unstable around A, = 60 km. These
results seem to be consistent with Chen et al.[55] findings on the effective stability of
3D-QSOs in the CRTBP framework. Taking advantage of this, we propose a novel
transfer methodology that exploits mid-altitude 3D-QSO as an intermediate orbit
connecting high-altitude and low-altitude planar QSOs discussed in Chapter 5.
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4.1 Introduction

Transfer maps using MP-QSOs provide a basis for robust and safe retrograde transfer
trajectories around Phobos. That is, even if the spacecraft skips the AV maneuver at the
designated point, the spacecraft remain in the MP-QSO and later crossings can be used
to perform the orbit injection maneuver into the target orbit. This method involves
two impulse transfers, one to escape the initial QSO and another one to insert into the
desired lower altitude orbit. The necessary condition for utilizing MP-QSO for transfer
applications is that the candidate d : n MP-QSO must intersect both the departure and
arrival orbits at least once, and without any intermediate maneuvers. Differently from
Ichinomiya et al.[48], who have used fixed positive y-axis departure and free arrival
transfer, we hereby allow the departure and arrival point to vary across all possible
longitudes 6 = arctan(—y/x) around Phobos as illustrated in Fig. 4.1(a). Subsequently,
the whole transfer design space via MP-QSO is explored and used to develop overall

transfer maps between pair of QSO orbits accounting multiple departure and arrival
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points. By inspection of computed transfer maps, combinations of departing and
arrival longitudes that yield lower AV costs for the transfers are revealed.
= Quter QSO

r3n/2 — Inner QSO — Outer QSO
-, MP-QSO s, = Inner QSO

(@) (b)

Figure 4.1: [llustration of the proposed transfer methodology for 1:4 MP-QSO crossings
of suitable departing and arrival QSO orbits.

4.2 Transfer Methodology

To illustrate this transfer approach, let v, 4 and v, ; be the velocity vectors of a candidate
MP-QSO at arbitrary departure and arrival points as illustrated in Fig. 4.1(b). The

AVpep and AVy,, for the transfer can be represented as

_ 2 2
AVpep = \/Uz’d + 0] — 20102,4COSPDep, , (4.1a)

A VArr

ng,a + U% - 20102,QCOS¢AV}‘3 5 (41b)

where, v; and v3 are the velocities of a spacecraft in the departing and arrival QSOs

when maneuvers are executed. ¢p., and @4, represent the differences in the flight-path
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angles before and after the departing and arrival maneuvers.
Let us now denote C;, Cs, and C, the Jacobi integrals of the departing QSOs, the
arrival QSOs, and the transfer MP-QSO, respectively. Following Eq. (2.9), we have,

o} = 2(W(r) - C), (4.22)
U;d = 2(W(r1) - C), (4.2b)
05, = 2(W(rs) -G, (4.2¢)
0 = 2(W(rs) - Cs), (4.2d)

implying

AVpep = \/Z(W(m) — C1) +2(W(r1) — Cz) — 20102,4c0s¢pep, (4.3a)
AVir = 2(W(rs) — Cs) + 2(W(r3) — Co) — 20102,C05Par. (4.3b)

Note that (‘W(r;) — C;) and (‘W (rs3) — C;) must be greater than zero otherwise the
spacecraft cannot reach the corresponding quasi-satellite orbit.

As a result, the AV, of the transfer may be written as

AViotat = A[4W (r1) = 2(Cy + Gz) = 20102,4¢05ep
+ \/4‘W(r3) —2(C3 + Cy) — 2010,4c08PArr.  (4.4)

Equation (4.4) illustrates how the minimum of AV,,;, may be affected by various

parameters such as
« the effective potentials ‘W (r;) and W (r3) of the departing and arrival QSOs
« the possible values of C, (Jacobi of the transfer orbit. i.e., MP-QSO)

« the differences in the departing and arrival flight-path angles (¢p.,, and ¢4,

respectively)

In the remainder of this chapter, we apply this transfer methodology to the actual

mission design problem, particularly to JAXA’s Martian Moons eXploration mission.
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4.3 Phobos Proximity QSO transfers: Application to

Martian Moons eXploration mission

In this section, we identify the MP-QSO families that satisfy the necessary condition to
implement the proposed transfer methodology. We will also develop transfer maps
between baseline QSO orbits while recording MP-QSO family members that intersect
both of the departing and arrival orbits. The results of numerical analysis presented in
the next section show that minimum AV,,;, values of transfer occur for the maximum
value of C, whilst 1) the departing and arrival points are almost equal to the maximum
values of W(r;) and W (r3) (i.e., near the positive and negative y—axis), and 2) p.,

and ¢4, are as close as possible to zero or tangential.

4.3.1 Identification of MP-QSOs connecting planar QSOs

Given the infinite number of d : n bifurcations that exist across the nominal QSO
family, we constrain d : n bifurcations up to a multiplicity of 10 to limit the number of
revolution of candidate MP-QSOs around Phobos. The d : n ratios of MP-QSOs as
a function of their respective Jacobi integral are illustrated in Fig. 4.2, whereas the
period-multiplying bifurcated branches of MP-QSOs from the nominal QSO family

solution space are shown in Fig. 4.3.
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1 2 3 4 5 6 7 8 9 10

n

Figure 4.2: d : n ratios as a function of their Jacobi integral value at the time of
bifurcation
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Figure 4.3: Bifurcated family branches from planar QSO family.

During the baseline operations of MMX, the altitude of the spacecraft will be varied
to perform various scientific operations and gradually characterize the gravity field of
Phobos. In particular, MMX will be transferred from high to low-altitude QSOs (i.e.,
Ay = 100 km to 20 km) using the following sequences: QSO-H — QSO-M; QSO-M
— QSO-La; QSO-La — QSO-Lb; QSO-Lb — QSO-Lc (refer Table 3.1 for the QSO
specifications). In this section, we use candidate d : n MP-QSO family members to
develop transfer maps and design transfer trajectories between MMX baseline QSOs
(see [?] and references therein). We concentrate on those MP-QSO family members
that intersect both of the departing and arrival orbits. Fig. 4.5 shows the positive y-axis
crossings of the candidate d : n MP-QSO family branches, revealing which of the
considered MP-QSO families can be considered for further analysis. We notice that a
variety of d : n MP-QSOs intersect the MMX baseline orbits, including 3:8, 1:3, 3:10, 2:7,
1:4, 2:9, 1:5, 1:6, 1:7, 1:8, 1:9, and 1:10 MP-QSOs . Some of these bifurcated trajectories
also cross multiple baseline orbits, enabling their utilization for different transfer

opportunities and phases. For example, Fig.4.4(a) is the +y amplitude variation map
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of 1:4 MP-QSO families (i.e., positive y crossings of each computed members of the
MP-QSO) computed from the bifurcation point (bges at d:n =1:4). We observe that
1:4 MP-QSOs intersect both QSO-Lb and QSO-Lc with a C, value between —7.697
and —2.585. The same bifurcated family is also intersecting both QSO-H and QSO-M
with C, € [-7.697, —3.759] indicating utilization of same orbit to inject spacecrafts at
different altitude QSOs (see Fig.4.4(b)). +y amplitude variation maps of some of the
other MP-QSO families are depicted in Fig. 4.5. 3:8 MP-QSOs are the families closest to
the surface of Phobos and found to connect only QSO-Lb and QSO-Lc (Fig.4.5(a))
between C, € [—0.421, —0.092]. Likewise, 1:3 MP-QSO families intersect QSO-La,
QSO-Lb and QSO-Lc as shown in Fig.4.5(b), 3:10 MP-QSO families intersect QSO-M
with other lower altitude QSOs (Fig.4.5(c)), and 2:7 MP-QSO can connect all of the
baseline QSOs similar to that of 1:4 MP-QSO family (Fig.4.5(d)). Looking at Fig. 4.5, we
find that the +y amplitude variations of MP-QSO families increases as the values of C,
corresponding to the MP-QSO family decreases.
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5 p » 5 2100 550 0 50 100
Jacobi integral, Cy x [km)]
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Figure 4.4: a)+y amplitude variation map of 1:4 MP-QSO family; b) Baseline MMX
orbits along with orbital velocity.
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The ranges of C; [Cy; to Cy r] of other families of MP-QSOs intersecting MMX
orbits at different transfer stages are tabulated in Tables 4.1 to 4.4. Once the ranges of
the Jacobi integrals C, are established, we can compute and create transfer maps to
connect higher altitude QSOs with lower altitude QSOs. The minimum AV,,;,; enlisted
in Tables 4.1 to 4.4 are extracted from the computed transfer maps for each candidate
MP-QSO families.

4.3.2 Transfers between QSO-H to QSO-M

The transfer analysis between the highest altitude QSOs is carried out in the following
manner. Firstly, we initialize the departing and arrival QSOs as QSO-H (C; = -8.78) and
QSO-M (C5 = -2.20), respectively. Secondly, we utilize candidate d : n MP-QSOs to
compute the whole set of MP-QSO trajectories that intersect with the departing and
arrival orbits. Finally, we calculate AV, and TOF values of the retrograde transfer
trajectories and generate transfer maps as in Fig. 4.6 and Fig. 4.7. Transfer maps
computed via MP-QSOs reveal the suitable longitudes at the departing (x-axis) and
arrival (y-axis) QSOs around Phobos with AV, of the transfers. Note that the transfer
map patterns produced by the combination of departing and arrival QSOs are unique
with respect to the MP-QSO used for the transfer. The minimum AV}, of each transfer
candidate d : n MP-QSO families is extracted from the transfer maps and listed in
Table ?? along with the corresponding TOF, ¢pep, Parr, effective potentials W (r;) and
W (r3) values. Note that C, denotes the Jacobi integral value of the min AV, transfer
d : n MP-QSO. It is observed that AV, is minimized by MP-QSOs with the maximum
value of the Jacobi integral as long as 1) ‘W (r;) and ‘W (r3) are almost equal to their
maximum values at QSO-H and QSO-M, 2) ¢p., and ¢4, are both almost tangential.
We find that the MP-QSO families 1:10 and 1:7 have the minimum AV,;,; transfer
costs of 11.63 m/s and 11.72 m/s among the selected candidate MP-QSO families with
a TOF of 4.17 hrs and 4.37 hrs, respectively. The total flight-path angle differences
(Ppep + Parr) were found to be equal to 14.17 deg and 15.37 deg. The minimum AV,
trajectories from the transfer maps Fig. 4.7(a) and (b) are shown in Fig. 4.12(a) and (b),
respectively. Direct two-impulse transfers between QSOs of x-amplitudes 100 km and
50 km require a AV ~ 15 m/s [76] in the framework of Mars-Phobos CRTBP. On the
other hand, present transfers via MP-QSOs require a AV;y4; = 11-16 m/s.
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Table 4.1: Transfer between QSO-H and QSO-M via candidate MP-QSOs.

MP-QSO Range of Jacobi, C, Cy W) Ws) ¢pyp  Par MinAVigy TOF  $pep + Parr
d:n [Ci to Cof] (deg) (deg) (m/s) (hrs) (deg)
27 [-3.571 to -5.042] -5.041 18.488 6.308 2.03 31.35 16.68 14.23 33.38
1:4 [-3.759 to -7.697] -5.270  26.631 6.349 0.27 32.16 16.32 4.34 32.43
2:9 [-3.691 to -5.394] -5.275 26.741 6.355 0.17 32.13 16.30 4.38 32.30
1:5 [-3.162 to —9.705] -5.423 26.683 6.652 0.21 29.96 15.60 4.37 30.18
1:6 [-3.679 to -13.402] -4.194  3.298 5.803 8.65 12.01 12.22 12.38 20.66
1:7 [-4.012 to -16.548] -4.012  0.682 4.385 5.59 9.78 11.72 4.37 15.37
1:8 [-4.230 to -19.153] -7.070  26.522 4.748 0.15 21.44 11.75 21.11 21.59
1:9 [-4.702 to -22.317]  -5.493 1.940 3.177 435 15.07 11.76 3.46 19.43
1:10 [-5.295 to -25.064] -5.495  4.874 0.552 7.27  6.90 11.63 4.17 14.17

Table 4.2: Transfer between QSO-M and QSO-La via candidate MP-QSOs.

MP-QSO Range of Jacobi, C; C;  W(r1)) W(rs) ¢pyp Par MinAViyy TOF  @pep + Parr
d:n [Coi to Co] (deg) (deg) (m/s) (hrs) (deg)
3:10 [-1.363 to -2.297] -1.528 7.011 2.782 0.17 12.70 4.53 23.87 12.87

2:7 [-1.368 to -5.042] -1.547 7.083 2.785 0.02 12.99 4.59 14.13 13.01
1:4 [-1.468 to -7.697] -1.468 0.892 0.497 4.03 1.01 3.99 3.81 5.04
2:9 [-1.812 to -5.394] -1.901 5.564 0.556 2.34 3.26 4.15 11.69 5.60
1:5 [-2.415 to —9.705] -2.415 5.879 0.595 11.69 4.96 8.87 9.03 16.65
1:6 [-3.099 to -13.402]  -3.099 7.014 0.486 9.19 3.42 9.86 8.60 12.62
1:7 [-4.012 to -16.548] -4.012 4.388 0.516 9.78 5.91 12.04 8.15 15.69
1:8 [-5.112 to -19.153]  -5.112 5.915 0.518 18.13 7.34 17.82 8.23 25.48
1:9 [-6.137 to -22.317]  -6.137 3.653 0.480 17.44 2.65 19.51 8.06 20.10
1:10 [-7.488 to -25.064] -7.488 5.459 0.506 2498 7.00 25.32 8.13 31.99

Table 4.3: Transfer between QSO-La and QSO-Lb via candidate MP-QSOs.

MP-QSO Range of Jacobi, C;  C;  W(r1) W(rs) ¢pep Parr MinAVigyq TOF  ¢pep + darr
d:n [Coi to Cof] (deg) (deg) (m/s) (hrs) (deg)
1:3 [-0.181 to -0.544] -0.544 1731 2330 589 0.08 1.74 453 5.98
3:10 [-1.479 to -2.297]  -1.479 2739  0.740 1176 0.39 6.67 18.96 12.15
2:7 [-1.592 to -5.042]  -1.592 2.842  0.740 13.85 0.66 9.62 9.19 14.51
1:4 [-2.210 to -7.697]  -2.210 3.047  0.745 2256 0.78 11.90 0.67 23.35
2:9 [-2.504 to -5.394]  -2.504 2.601  0.754 2236 1.96 12.54 17.26 24.32
1:5 [-3.799 to -9.705]  -3.799  2.876  0.741 28.93 1.44 18.13 7.96 30.38
1:6 [-4.384 to -13.402] -4.384 2731  0.750 32.67 3.29 20.64 17.84 35.96
17 [-5.631 to -16.548] -5.631 2.612  0.747 36.43 3.55 24.80 25.65 39.99
1:8 [-6.933 to -19.153]  -6.933 2566  0.750 38.56 4.09 28.51 25.81 42.66
1:9 [-8.315t0 -22.317]  -8.315 2494  0.744 4095 3.25 32.27 33.56 44.21
1:10 [-9.884 to -25.064] -9.884 2436  0.743  43.03 3.29 36.06 34.28 46.33
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Table 4.4: Transfer between QSO-Lb and QSO-Lc via candidate MP-QSOs.

MP-QSO Range ofJacobi, CZ CZ* (W(rl) (W(VS) ¢Dep ¢Arr Min AVtotal TOF ¢Dep + ¢Arr

d:n [Cai to Gyl (deg) (deg) (m/s) (hrs) (deg)
3:8 [-0.092 to -0.421] -0.394 0.850 1.059 3.11 2.02 0.97 6.29 5.13
1:3 [-0.181 to -0.544] -0.482 1.705 2.234 8.63 0.11 2.20 1.47 8.74
3:10 [-1.767 to -2.297] -1.767 1.421 0.848 16.96 0.68 9.13 9.71 17.64
2:7 [-1.863 to -5.042] -1.863 1.574 0.848 19.33  0.88 9.89 9.75 20.21
1:4 [-2.585 to -7.697] -2.585 1.521 0.848 21.66 0.53 12.96 0.29 22.19
2:9 [-2.802 to -5.394] -2.802 1.512 0.857 22.22  1.68 13.83 10.09 23.90
1:5 [-4.456 to -9.705] -4.456 1.461 0.849 25.05 1.46 19.70 7.72 26.51
1:6 [-4.998 to -13.402] -4.998 1.363 0.848 26.98 2.05 21.67 26.17 29.03
1:7 [-6.389 to -16.548] -6.389 1.308 0.848 28.75 1.24 25.89 26.31 29.99
1:8 [-7.772 to -19.153] -7.772 1.306 0.854 29.77 4.39 29.65 33.99 34.17
1:9 [-9.289 to -22.317] -9.289 1.271 0.849 30.69 1.77 33.46 33.79 32.46

1:10 [-10.930 to -25.064] -10.930  1.270 0.855 31.40 4.00 37.26 34.12 35.40

4.3.3 Transfers between QSO-M to QSO-La

In this subsection, transfer maps between QSO-M (C; = -2.20) and QSO-La (Cs =
-0.78) are calculated using intersecting d : n MP-QSO families. Figs. 4.4(a) and 4.5
suggest that 3:10, 2:7, and 1:4 MP-QSOs families may contain more efficient transfer
orbits from QSO-M to QSO-La. In addition to these candidate transfer orbits, other
MP-QSO families are summarized in Table 4.2 following the same rationale of the
previous subsection. Unlike QSO-H — QSO-M, only four MP-QSO families have
the range of Jacobi integrals C, overlapping with [C;, Cs]: 3:10, 2:7, 1:4 and 2:9. We
find that transfer orbits outside of this Jacobi integral regime would require a higher
propellant expenditure. Transfer maps via 1:4 and 2:9 MP-QSOs are illustrated in
Fig. ?? as the most favorable candidates. It is confirmed that the minimum AV},
values of 3.99 m/s and 4.14 m/s are offered by the 1:4 MP-QSO and 2:9 MP-QSO
families, respectively. Their TOF was found to be 3.81 hr and 11.69 hr, with a total
flight-path-angle of 5.04 deg and 5.60 deg. It can also be noted that, despite having
a similar total flight-path-angles at the departure and arrival points, the minimum
transfer cost obtained with the 3:10 and 1:6 MP-QSO families are significantly different.
This suggest that, if possible, transfer between candidate QSOs should occur at the
highest possible value of C;. The minimum AV, retrograde transfer trajectories
associated with this second transfer stage are shown in Fig. 4.12(c) and (d). We also find
that, direct two-impulse transfers between QSO-M — QSO-La costs a AVsq = 6 m/s
[76], which is moderately larger than current transfer method using MP-QSOs.
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4.3.4 Transfers between QSO-La to QSO-Lb

Potential transfer orbits between QSO-La (C; = -0.78) and QSO-Lb (C; = -0.37) are
found using amplitude variation maps similar to the ones of Fig. 4.5. Differently
from QSO-H — QSO-M and QSO-M — QSO-La, we find that 1:3 MP-QSOs may also
be considered for transfer analyses. The range of Jacobi integrals of transfer orbits
intersecting the departing and arrival orbits are tabulated in Table 4.3, whereas transfer
maps showing retrograde transfer trajectories connecting QSO-La and QSO-Lb via
1:3 and 3:10 MP-QSOs are shown in Fig. 4.10. As it can be seen from both Table 4.3
and Fig. 4.10, 1:3 MP-QSOs yield the minimum values of AV;,4;. It is found that 1:3
MP-QSO is the only family with transfer opportunities € [C;, C3] with C; ranging
from -0.181 to -0.544. Table 4.3 also shows that there has been a gradual increase in
both minimum AV,,,, and total flight-path-angles associated with the other families
of MP-QSOs. Examples of retrograde transfer orbits with minimum AV, values are
illustrated in the Fig. 4.12(e) and (f). We note that, transfers using 1:3 MP-QSO between
QSO-La — QSO-Lb costs lower than that of the direct two-impulse transfer cost of
AViotar = 3 m/s [76].

4.3.5 Transfer between QSO-Lb to QSO-Lc

The final stage in the Phobos proximity phase of MMX is to place the spacecraft on a
very-low altitude (x-amplitude < 20 km) QSO before surface operations. The Jacobi
integrals of low-altitude QSOs (x-amplitude < 30 km) are larger when compared to the
other MMX baseline QSOs and this affects the optimal selection of the MP-QSO transfer.
In particular, we find that a new family, 3:8, may be considered for minimum-propellant
QSO transfers. Similar to previous transfer stages, we design and develop transfer
maps via MP-QSOs to connect QSO-Lb (C; = -0.37) and QSO-Lc (Cs = -0.27). Table 4.4
provides the results starting with a preliminary evaluation of the available C, ranges.
We find that 3:8 and 1:3 MP-QSOs are the most promising candidates for low-AV
transfers. The transfer maps associated with QSO-Lb — QSO-Lc via 1:3 and 3:8 families
are illustrated in Fig. 4.11. Transfers using 3:8 candidates seems more favorable as
they produce almost tangential transfers connecting QSO-Lb and QSO-Lc. Results of
transfer trajectories via MP-QSO families suggest that the minimum AV}, along with
the total flight-path-angle of transfers steadily increases from 3:8 to 1:10 MP-QSO.
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The minimum retrograde transfer AV, cases between QSO-Lb and QSO-Lc
are illustrated in the Fig. 4.12(g) to (h). We find that 3:8 MP-QSO has the minimum
AViorar of 0.97 m/s in 6.29 hr (Fig. 4.12(h)) and 1:3 MP-QSO with a minimum AV,
of 2.20 m/s in 1.47 hr (Fig. 4.12(g)) with total flight-path-angle of 5.13 deg and 8.74
deg, respectively. We also note that total flight-path-angles of families 3:8 and 1:3 are
much lower than that of other MP-QSO families and 3:8 provide almost similar AV},
cost approximately 1 m/s of the direct two-impulse transfer between QSOs of similar

altitudes [76].
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4.3.6 Summary of the in-plane transfers

The numerical analysis of the previous subsections are hereby summarized to present
the Pareto front of different QSO transfers in the AV}, vs TOF parameter space. As
seen in the QSO-M — QSO-La case, the Jacobi integral of the orbit transfer does play
a role in minimizing AV, values while reducing the flight-path-angles to almost
tangential trajectories. Numerical analyses are also suggests that the minimum AV,
cost across candidate 3:8 MP-QSO to 1:10 MP-QSO families does increase as we
gradually reduce the altitude of MMX around Phobos. This is evident from the plots of
Fig. 4.13 to 4.16, showing the overall AV, vs. TOF transfer solution space between
the MMX baseline QSOs. In these plots, only the two most appropriate MP-QSO
candidates producing low-AV transfers have been retained for the sake of illustration.
The interested reader may refer to the values of Tables 4.1 to 4.4 for a more in-depth
comparison. We note that C; values presented in Tables 4.1 to 4.4 does not always
fall within the limits C; and Cs of departing and arrival QSOs due to the nature of
MP-QSOs. For instance, in case of QSO-H — QSO-M, the values of C; of all the
candidate MP-QSOs fall in between C; and C;. Whereas, in case of QSO-Lb — QSO-Lec,
the C, values of none of the candidate MP-QSOs fall in between C; and Cs. This clearly
indicate that the value of C, alone does not determine the minimum AV, of the

transfer, but also the minimum total flight-path-angles of the transfer trajectories.
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Figure 4.15: TOF vs AV,ysq for QSO-La to QSO-Lb transfer (1:3 and 3:10 MP-QSOs)
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Figure 4.16: TOF vs AV} for QSO-Lb to QSO-Lc transfer (3:8 and 1:3 MP-QSOs)

Table 4.5 provides a comparison of transfer costs computed through the presented
transfer method via MP-QSOs (Hill Problem Ellipsoidal gravity framework) and a
direct two-impulse transfers (CRTBP framework) between MMX baseline QSOs. It
can be noted that transfer costs via MP-QSOs are cheaper than the direct 2-impulse
transfers between the MMX candidate QSOs.

Table 4.5: Min AV, transfer cost comparison

Transfer stage Direct 2-impulse transfer Transfers via MP-QSOs
(Ikeda et al.(2017)) (Current work)
QSO-H — QSO-M 15 m/s 11.63 m/s
QSO-M — QSO-La 6 m/s 3.99 m/s
QSO-La — QSO-Lb 3m/s 1.74 m/s
QSO-Lb — QSO-Lc 1m/s 0.97 m/s

4.4 Optimal Transfer Trajectories

In this section, to improve upon the identified transfer trajectories via MP-QSOs
between MMX baseline orbits, this thesis use impulsive primer vector theory[90, 91, 92]
to optimize these trajectories further. Primer vector theory uses the primer vector, a

costate velocity vector, to evaluate if a trajectory satisfies the necessary analytical



66 Chapter 4. In-plane Transfer Design

conditions for optimality. If the necessary conditions are not satisfied, the theory
indicates how the candidate trajectory should be modified to reduce its transfer cost

which are discussed in the following subsections.

4.4.1 Impulsive Primer Vector Theory

Primer vector theory (PVT) is an indirect method of optimizing transfer trajectories
with necessary conditions and sufficient conditions (if available)[93] derived from the
indirect optimization of the fuel-minimum problem[91]. When impulsive transfer
trajectories are used, the primer vector determines the timing and location of thrust

impulses in order to minimize propellant cost.

PVT for impulsive transfer trajectories indicates whether adding an initial or final
coast, a midcourse impulse, or changing the timing, magnitude, and direction of an

already existing midcourse impulse can reduce the cost[94, 95].

For impulsive transfer, cost function representing minimum total AV can be defined

as

]:Zﬁw (4.5)

Initial deviations to the reference trajectory (x) can be linearly mapped to specific
time using the state transition matrix (STM) ®(t, t5)[96, 97] as

si= | or (4.6)
60 ov

0O L
G O3

where Os is 3 X 3 zero matrix, I3 is 3 X 3 identity matrix, and G is 3 X 3 gravity gradient

matrix. The elements of G are given by
gij = 82<1>/8xi8xj (4.7)
Eq.(4.6) can be written in second-order form as

5% = Gor (4.8)
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STM of this system can be partitioned in to four 3 X 3 matrices as follows:

D(t, tp)

(4.9)

Qa(t t) Dp(t, o)
Oc(t, ) Pp(t,to)

In order to minimize the cost function, we form Hamiltonian of the system, H using,
H=J+AF+ Ao (4.10)

where # and ¢ are velocity and acceleration of the spacecraft, and A and A! are
3 X 1 vector Lagrange multipliers that includes the equations of motion as non-linear
constraints for the optimization problem[98].

The adjoint system to Eq.(4.6) is

Al |05 =G| |A
.| = (4.11)
Ay - Os|[A,
Rewriting Eq.(4.11) in second-order form as
Ay = GA, (4.12)
is identical to Eq.(4.8), therefore STM for (A,, A,) will be identical to Eq.(4.9)
Ay (t Ay (t
b0 _ (L, o) | (o) (4.13)
Ao (1) Ao (o)

Lawden[90] termed A, as the “primer vector " (i.e.,A, = p) and derived following

necessary conditions for an optimal impulsive transfer trajectory.

 Primer vector and its derivative are continuous along the transfer trajectory.

+ Primer vector magnitude satisfies p(¢) < 1 with the AV impulses taking place at

instants at which p(t) = 1.
+ Atimpulse times, the primer vector is a unit vector in the optimal thrust direction.

. As a consequence of above conditions, dp/dt = p = p’ p = 0 at an intermediate

impulse.
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In linear systems, these necessary conditions are also the sufficient conditions for an

optimal trajectory.

Transfer Orbit

Initial Orbit

Final Orbit

Figure 4.17: lllustration of a two-impulse transfer trajectory.

Let AVpep and AV, be the change in velocity at initial and terminal QSOs as
illustrated in Fig. 4.17.

To satisty the necessary conditions for an optimal trajectory, we can impose

following boundary conditions on the primer vector

AVDeP
ty) = = 4.14
po) = py = 3 (414
AVArr
tr) = = 4.15
Pty =Py = G (4.15)

From Eq.(4.13), the primer vector can then be evaluated along the transfer orbit using a

6 X 6 state transition matrix solution,

p(to)

p(to)

p(t)

pn| = T

(4.16)
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From Eq.(4.16) and Eq.(4.9) primer vector and its derivative at time [t, t¢] evaluated as
Py = Qalty, to) py + Pa(ty, 1o) Py (4.17)

Pr =Pty to) py + Pp(tf, to) Py (4.18)

From Eq.(4.17), we have initial primer vector derivative as

Po = @5 (t. 1) [Py — @alty. to) po] (4.19)

knowing primer vector and its derivative at the initial time, one can evaluate the

primer vector along the transfer trajectory between [t, t¢] using

p(t) = p(t, 1) D5 (15, o) py + [Pa(t,to) — p(t, 1) Dy (tr, 1) Palty, to)]p, (4.20)

Lion and Handelsman[94] proposed specific criterion that satisfy the necessary
conditions for optimality when two-impulse transfer trajectories fail to satisfy the
necessary conditions. Criterion for adding terminal coasts/earlier impulses and

midcourse impulses are listed as follows[94, 99, 100]:

1. If po > 0, an initial coast will lower the transfer cost. Similarly, if p; < 0, a final

coast will lower the cost.

2. If po < 0, implying an earlier impulse time would lower the cost (i.e., starting the
transfer earlier). Likewise, p > 0 implies an increase in transfer time lower the

costs.

3. If p is greater than unity along the transfer trajectory, adding a midcourse

impulse at a time when p > 1 reduces the transfer cost.

These are the criterion or optimality conditions for the QSO transfer analysis which

follows.

4.4.2 Primer vector analysis for MMX baseline QSO transfer

This subsection analyzes the initial transfer trajectories computed from our transfer

methods by applying impulse primer vector theory. Initially, we map the primer vector
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magnitude and its derivative of the initial minimum AV cases from Table 4.6. The
evaluation shows that primer vector magnitude history along the transfer trajectories
for some cases of transfers is greater than unit magnitude.i.e., p > 1, and primer vector
derivatives history suggest that the p at the impulse locations are either p > 0 or
p < 0. These initial impulse transfer solution evaluations indicate that they do not
satisfy the necessary conditions for an optimal impulse transfer trajectory. Therefore,
we introduce terminal coasting times and mid-course impulses to achieve optimal
transfers[94, 101].
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Figure 4.18: (a) QSO-H—QSO-M using initial guess from 1:7 MP-QSO transfer map. (b)
QSO-H—QSO-M using initial guess from 1:10 MP-QSO transfer map.
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Table 4.6: Transfer cases initial guess

Transfer Case Transfer Map AV m/s TOF (hours)
1 1:7 MP-QSO 11.72 4.37
SO-H SO-M
QSO0-H=Q 2 1:10 MP-QSO  11.63 4.25
3 1:4 MP-QSO 3.99 3.81
SO-M SO-L
QSO-M=Q50La , HgMp.gsO 415 5.21
5 3:10 MP-QSO 6.67 18.95
QS0-La=QSO-Lb s vpgso 174 2.84
7 1:3 MP-QSO 2.2 1.47
SO-Lb SO-L
Q —Q0Le o seMpQsO 0,97 6.3
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Figure 4.19: (a) QSO-M—QSO-La using initial guess from 1:4 MP-QSO transfer map.
(b) QSO-M—QSO-La using initial guess from 2:9 MP-QSO transfer map.
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To begin the optimization process, firstly, we use the initial conditions from the
MP-QSO transfer maps as the first guess of the optimization problem. We allow
the departure and arrival points on the relative QSOs to vary across all possible
longitudes 6 = arctan(—y/x) around Phobos and iterate until the cost function
(AV = AVpep + AV4,,) is minimized using a sequential quadratic programming (SQP)
algorithm using fmincon/SNOPT[102].
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(b) Case 6
Figure 4.20: (a) QSO-La—QSO-Lb using initial guess from 3:10 MP-QSO transfer map.
(b) QSO-La—QSO-Lb using initial guess from 1:3 MP-QSO transfer map.

The resulting optimal two-impulse transfer trajectories are plotted in red throughout

the transfer cases. On evaluating the primer vector history of these optimal two-impulse
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trajectories, we find that most transfer trajectories satisfy the optimality condition
on the primer vector derivative. However, the primer vector magnitude is greater
than unity, suggesting room for improvement[103]. Therefore, we further introduce a
midcourse maneuver AVjy;q parallel to p,, and time (t,,) when primer vector magnitude
is at its maximum (pp,qy). We reoptimize the transfer results utilizing this achieved
position and time for midcourse impulse as an initial guess. We find significant changes
in the transfer costs and resulting trajectories satisfy the necessary conditions for

optimal impulse transfer trajectories.
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Figure 4.21: (a) QSO-Lb—QSO-Lc using initial guess from 1:3 MP-QSO transfer map.
(b) QSO-Lb—QSO-Lc using initial guess from 3:8 MP-QSO transfer map.
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Fig. 4.18 to 4.21 illustrates our primer vector analysis results obtained for MMX
candidate transfer cases listed in Table 4.6. In the case of QSO-H to M transfer cases
shown in Fig. 4.18, using the initial guess from 1:7 and 1:10 MP-QSO transfer maps,
the AV costs of 11.72 m/s and 11.63 m/s are reduced to 5.68 m/s with a midcourse
maneuver. We choose the initial guess computed from the 1:4 and 2:9 MP-QSO transfer
maps that suggested minimum AV transfers for QSO-M to La transfer. As shown in
Fig. 4.19, the optimal total AV cost of transfers is lowered by AV from 4 m/s to 2.18 m/s
in cases 3 and 4. Interestingly from Fig. 4.20 and 4.21, it can be noted that transfer
cases 6 and 7 using the initial guesses (black) from 1:3 MP-QSO transfer maps suggest
that primer vector magnitude is less than unity throughout the transfer. However,
while examining the primer vector derivatives at impulse times, they fail to satisfy the
optimality condition. In both cases 6 and 7, py < 0 indicates an earlier impulse time
lowering the transfer cost, and p, > 0 suggests an increase in transfer time that could
lower the transfer cost. Numerical simulation shows that the increase in overall time of
transfer and an earlier impulse reduced the transfer cost of the two-impulse transfers.
We note that primer vector magnitude of the two-impulse transfers are not optimal
and addition of midcourse impulse reduced the transfer cost. Nevertheless, cases 5 and
8 with initial guesses from 3:10 and 3:8 MP-QSO transfer maps for multi-revolution
transfers between QSO-La—QSO-Lb and QSO-Lb—QSO-Lc also suggest that adding a
midcourse impulse lowers the total AV cost of the respective transfers. The key finding
of this analysis is that for all of these transfer cases, the departure and arrival points
for optimal three-impulse transfer trajectories are on the same periapsis (periphobian)

side. However, this is not the case with two-impulse transfers.

Table 4.7: Transfer Summary

Transfer Optimal 2-impulse Optimal 3-impulse
Case AV m/s TOF (hours) AV m/s TOF (hours)
1 9.74 5.04 5.68 7.42
2 9.54 5.12 5.68 7.42
3 3.61 4.54 2.18 6.58
4 3.35 4.9 2.18 6.58
5 1.17 4.16 0.87 5.16
6 1.28 3.72 0.87 5.16
7 0.31 3.21 0.24 1.68
8 0.49 4.17 0.24 1.68
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A summary of impulsive transfer cases in the Table 4.7 shows that introducing a
midcourse impulse has improved the optimized total AV of all the MMX transfer
cases. In the case of QSO-H—M transfers, there is a 51% improvement of 6 m/s from
the initial guess. Similarly, optimal transfer results of QSO-M—La cases suggest
a 47% improvement of the total AV costs. On the other hand, we see a significant
improvement in total AV costs of about 50-86% during QSO-La—Lb transfer and
75-87% improvement in QSO-Lb—Lc transfers.

In conclusion, transfer trajectories via bifurcated families of MP-QSO provide
robust and safe transfer between relative QSOs. In contrast, optimal 3-impulse transfer
trajectories depart and arrive at the same periphobian side, yield a lower transfer
cost for the retrograde transfer orbits. Regarding the operational safety of the actual
missions, a 50-80% reduction in the transfer AV could be a trade-off for a robust and
safer transfer delivered by the proposed MP-QSO transfer method. Moreover, future
missions seeking lower-AV transfer opportunities between stable retrograde orbits
around Phobos or any small irregular planetary satellites in the solar system could use

the transfer methodologies and evaluation presented in this thesis.
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5.1 Introduction

In this section, we propose and demonstrate a transfer methodology using the invariant
manifolds of the mid-altitude 3D-QSOs(unstable) shown in Fig. 5.1. The main idea is to
connect higher-altitude and lower-altitude QSOs that are envisaged for the proximity
operations of MMX. Note that several combination of (d : n) exist in the mid-altitude
range. For conciseness, we focus on 3D-QSOs with multiplicity n < 30 and bifurcations
between A, € [45,55] km. This follows from MMX planned operations that envisage
flight into a A, = 50 km mid-altitude 3D-QSO[20, 104]. The invariant manifolds of
a 3D-QSO are computed by perturbing the states along the direction of 3D-QSO’s
local eigenvectors. Stable and unstable invariant manifolds originating from various
regions along the unstable 3D QSOs are characterized using numerical computation on
multiple nodes of the periodic 3D QSO. Let Y*(Xj) and Y*(X,) be the normalized
stable and unstable eigenvectors associated with the real pair of eigenvalues of the

monodromy matrix, M, evaluated in an arbitrary point X.
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Figure 5.1: A, vs A, variations of mid-altitude 3D-QSO families.
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Figure 5.2: Direction of perturbed eigenvectors from a 3D-QSO and transfer method
illustration.

Fig. 5.2 (Left) shows the direction of the perturbed normalized stable and unstable
eigenvectors from a 3D-QSO. Here, we defined arbitrary points along 3D-QSO
equally spaced in time and approximated the computation of stable and unstable

manifolds locally. The computation of stable and unstable manifolds associated with an
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unstable 3D-QSO can be accomplished using suitable numerical integration procedures
[71, 105, 106].

Initial guesses for stable and unstable manifolds are given by
X* (Xo) =Xy + eY’ (Xo) (51)

xX* (Xo) =Xo+ eY* (Xo) (52)

Where, ¢ is small displacement from X,. In this work we have displaced the initial
state by ¢ = 1 x 107, This perturbation should be set numerically as low as possible
while designing maneuver-free transfers. Propagating Eq.(5.1) backwards in time, we
generate stable manifold trajectories. Similarly, propagating Eq.(5.2) forward in time,
we generate unstable manifold trajectories. Small maneuvers are required in realistic
mission design implementations to transition from manifold trajectories to 3D-QSO.

In this research, we use the stable eigenvectors in —¢Y® direction and unstable
eigenvectors in —eY" direction to connect capture and escape trajectories from a
high-altitude QSO to low-altitude QSO as illustrated in Fig. 5.2 (Right).

5.2 Transfer Methodology

The computed stable invariant manifolds obtained from the unstable 3D-QSOs will
assist in capturing the spacecraft from the planar QSO to the 3D-QSO. Similarly,
unstable manifolds from the unstable 3D-QSO will help the spacecraft escape from the
3D-QSO and maneuver towards lower altitude orbits. To demonstrate the transfer
methodology, we consider high- and low-altitude QSOs from the MMX baseline
orbits, hereby referred to as QSO-H and QSO-L, respectively. Firstly, a 3D-QSO-M
(mid-altitude 3D-QSO) of desired A, is identified. Secondly, we select number of
equidistant nodes along the required unstable 3D-QSO-M and compute the local
eigenvectors at each nodes to generate capture and escape trajectories. Finally, once
stable and unstable manifolds are computed, we connect stable manifolds with QSO-H
and unstable manifolds with QSO-L. This transfer procedure requires two transfer
stages as illustrated in Figs. 5.3 and 5.4 (Capture to 3D-QSO) and Figs. 5.5 and 5.6
(Escape from 3D-QSO).
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Transfer 1: QSO-H to 3D-QSO-M

Simulate capture
trajectories to Higher
altitude planar QSO

Selection of equidistant nodes along
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Peturb local eigenvector
(Y*) at each node with
£=1x10"*and

propagate outer stable
manifolds

Stop propagation when manifolds cross an
oblate cylinder with A, and A, of the
QSO-H

Refine z=0 manifold crossings
with a tolerance of 1 X 10 %on
QSO-H by varying the no. of

nodes and A, of the 3D-QSO-M

Extract manifold states
crossings within z— 1 x 1074
(non dimensionless unit)

Compute AV® = Vi —V, and TOF of the

capture trajectories

V¢ velocity at end of transfer manifold crossing QSO-H
V; velocity of QSO-H at the point of intersection

Figure 5.3: Transfer stage 1: Procedure.

Spatial QSO
Planar QSO

-+ Capture trajectories

® X5(X f) Final state of manifolds crossing oblate
cylinder (QSO-H)

Figure 5.4: Transfer stage 1 illustration showing manifolds extraction from oblate
cylinders passing through QSO-H.
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Transfer 2: 3D-QSO-M to QSO-L
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the escape trajectories

Vi* velocity at end of transfer manifold crossing QS0O-L
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Figure 5.5: Transfer stage 2: Procedure.
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= Escape trajectories
® X“(X f) Final state of manifolds crossing oblate
cylinder (QSO-L)

Figure 5.6: Transfer stage 2 illustration showing manifolds extraction from oblate
cylinders passing through QSO-L.
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The computed stable and unstable manifolds are discontinued during propagation
while crossing an oblate cylinder passing through the QSO-H and QSO-L. Capture
trajectories are halted when they pass through QSO-H oblate cylinder and these final
states are further refined to extract trajectories that intersect QSO-H at |z| < 107°. The
refined trajectories allow us to calculate the AV*® and TOF® from the departing planar
QSO-H. Varying the number of nodes and changing the energy of the 3D-QSO provides
better z = 0 crossing trajectories and lower AV?®. Similarly, escape trajectories from the
same 3D-QSO-M are halted when they pass through the QSO-L oblate cylinder and the
manifolds intersecting the QSO-L are recorded and extracted further to obtain AV* and
TOF* at arriving planar QSO-L.

5.3 Application to MMX Mission

Due to the significance of observing high-latitude regions of Phobos surface terrain
and scientific operations, the MMX mission considers flying into a 3D-QSO around
Phobos. Chapter 3 offered several 3D-QSO candidates in the lower and mid-altitude
regions of the MMX baseline operational altitudes.

In this section, an application to the MMX mission will be presented followed by a
station-keeping analysis for the feasible intermediate 3D-QSOs operations. The high
and low altitude QSOs are QSO-H and QSO-La of MMX mission baseline orbits and are
then applied to the proposed transfer method.

5.3.1 Transfer 1: QSO-H to 3D-QSO via Capture trajectories

Feasible transfers between QSO-H and 3D-QSO-M are investigated through several
cases of mid-altitude 3D-QSO families of different A, € [70,120] km with the proposed
transfer methodology. Features of 3D-QSO-M used in this study are tabulated in
the Appendix A (Tables A1 to A11). Fig. 5.7 shows the xz-projection of the final
states of stable manifolds passing through oblate QSO-H cylinder from different A, of
1:23 3D-QSO0s. As it can be seen, all of these capture trajectories intersect QSO-H
at z = 0 with AV® and TOF® as tabulated in Table 5.1. It is found that transfers to
3D-QSOs from the QSO-H exists for almost all the families of mid-altitude 3D-QSOs
with AV® € [20,35] m/s and TOF® € [1.93,36.85] days.
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projection).
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Table 5.1: Capture trajectories from QSO-H to 3D-QSO-M.

A, =70km A, = 80km A, = 90km A, =100km A, =110km A, = 120km

3D-QSO AV®S TOF* AV® TOF* AV® TOF AVS TOF AV® TOF* AV® TOF?

type (m/s) (days) (m/s) (days) (m/s) (days) (m/s) (days) (m/s) (days) (m/s) (days)
1:17 20.93 4.39 25.31 441 26.83 4.16 31.79 4.87 28.99 3.18 34.81 4.65
1:18 22.56 4.67 23.81 3.82 25.58 5.21 27.52 3.49 27.63 3.32 33.22 3.35
1:19 2134 6.29 2530 4.23 24.61 5.42 30.67 419 3227 3776 3399 4.38
1:20 23.28 859 27.20 6.19 2398 4.08 26.07 380 31.09 4.71 29.52 1.93
1:21 21.84 8.15 25.41 5.34 24.62 6.05 26.64 4.03 28.77 3.84 33.76 5.43
1:22 21.01 9.98 27.50 8.39 23.18 4.64 27.30 6.14 29.33 4.13 29.27 3.06
1:23 24.62 14.78 26.15 13.16 26.68 5.04 26.59 6.66 27.82 6.53 30.85 6.36
1:24 18.56 13.08 2234 10.75 28.46 7.47 2529 690 2812 6.85 30.35 5.95
1:25 - - 2539 11.74 2292 10.23 28.18 7.37 28.56 5.45 30.69 4.62
1:26 23.18 35.87 25.58 19.55 26.55 1143 27.35 5.87 29.13 6.53 28.84 5.08
1:27 21.19 36.86 20.76 18.16 22.61 12.89 29.19 8.88 27.68 7.51 31.88 7.82

Table 5.2: Escape trajectories from 3D-QSO-M to QSO-L.

A, =70km A, = 80km A, =90km A, =100km A, =110km A, =120km

3D-QSO AV* TOF* AV* TOF* AV* TOF* AV* TOF* AV* TOF* AV* TOF*
type  (m/s) (days) (m/s) (days) (m/s) (days) (m/s) (days) (m/s) (days) (m/s) (days)
1:17 16.11 5.08 19.41 3.46  20.63 3.04 2288 1.56 26.2 1.53 28.4 1.47

1:18 - - 1836 3.64 20.68 336 2299 1.68 - - - -

1:19 - - 18.48 3.80 20.67 245 2292 327 2519 1.66 27.67 1.74
1:20 - - - - - - 2293 2,69 2587 186 2748 1.75
1:21 - - 18.62 447 20.72 4.08 2294 2.07 2522 379 2755 212
1:22 - - - - - - - - 2549 2.77 28.03 2.24
1:23 - - - - - - 2299 242 2550 4.04 2757 3.96
1:24 - - - - - - - - 25.44 3.15 27.56 4.09
1:25 - - - - - - - - 2548 4.64 2756 442
1:26 - - - - - - - - 2550 8.09 2759  4.67
1:27 - - - - - - - - - - 27.59  2.98

5.3.2 Transfer 2: 3D-QSO to QSO-L via Escape trajectories

Similarly to the design of capture trajectories, we apply our transfer technique to
detect potential manifold crossings for different families of mid-altitude 3D-QSOs
intersecting oblate cylinder passing through QSO-L. The initial states of selected
nodes along the mid-altitude 3D-QSOs are perturbed by a small value of ¢ in —eY*
eigenvector direction allowing the spacecraft to escape 3D-QSO through the unstable
manifolds connecting QSO-L. These manifolds passing the oblate QSO-L cylinder are
further refined by increasing the number of nodes to extract finer z = 0 trajectories and
calculate the required AV* and TOF* to arrive at QSO-L.
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Fig. 5.8 shows the xz-projection of the final states of the unstable manifolds of 1:23
3D-QSO0 family passing through the oblate QSO-L at different z-amplitudes. Unlike the
previous transfer stage, 1:23 3D-QSO at Az € [70,90] km does not have any manifolds
intersecting QSO-L at z = 0. As a result of our numerical analysis, AV¥ and TOF*
required to arrive QSO-L from various mid-altitude 3D-QSOs are tabulated in Table 5.2
with AV* € [16,28] m/s and TOF* € [1.47,8.09] days.

5.4 Estimating Station-keeping costs of 3D-QSO-M

Combining the results of Tables 5.1 and 5.2 could inform MMX mission designers on
3D-QSOs that would enable optimal transfers (in terms of either AV or TOF) between
QSO-H and QSO-L. However, such an analysis would not take into consideration the
orbit maintenance costs required to operate the spacecraft at higher latitudes and
collect precious images for the global coverage of Phobos. Some of the existing orbital
maintenance Generally, maintaining the desired spacecraft trajectory is achieved by
either exploiting the chaotic dynamics of the three-body problem or through optimal
control methods[107]. To better inform the selection of baseline 3D-QSOs, an orbital
maintenance approach that suppresses and eliminates the growth of the relative error
along the unstable eigenvector of a 3D-QSO has been implemented. Nakamiya and
Kawakatsu [108] used this approach to estimate orbital maintenance of Halo orbits in
the Sun-Earth system to eliminate unstable components under thrusting constraints.

Following the Hamiltonian nature of the system Eq.(2.7), the eigenvalues of the
monodromy matrix, M, must occur in reciprocal pairs. In the case of 3D-QSOs, the
unstable eigenvalues (1;) cause neighboring trajectories to diverge from the desired
periodic path. As a result, impulsive maneuvers should be implemented to nullify the
exponential growth of the relative error.

Let 6Xerr be a vector of initial deviations from the reference trajectory at time ¢t = 0
. . . T
5Xerr = [5xerr> 5yerr» 5Z€rr5 5xerr; 5yerr; 526}’}"] (5‘3)
and AV, be an impulsive maneuver that needs to be implemented at the same time.

AV, = [A%, Ay, Az]T (5.4)
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After one orbital period, the initial deviation vector,

0+ OxXerr
0+ ayerr
0+dz

0Xi=0 = 6Xerr + AVep = o > (5.5)
Ax + O%opr

AY + 8Yerr

AZ + 8Zepy

is mapped forward in time by the monodromy matrix M:

§Xiet = M6Xizo. (5.6)

IfU = [a’,?z’,?g’,a’,a’,?g] is a coordinate transformation such that M would be

transformed into its Jordan canonical form, i.e.,

A0 0 000

0 1/A 0 0 0 0
P A I ) L' (5.7)
0 0 —-p o 0 O

0 0 0 011

0 0 0 00 1

where A is real and greater than 1, Eq.(5.6) can be rewritten as
5Zt:T =A CSZt:(), (58)

T
where 6Z = (a, b, ¢, d, e, f ) = U~ 5X. Accordingly, one can choose a suppres-

sive maneuver AV, such that
ai=r = Aq" (6Xepr + AVep) = 0, (5.9)

thus preventing the initial deviation 6X,,, to grow large along the unstable manifold of

T
the periodic orbit. Here, q = (qu’ qZ) is a six-dimensional vector whose components

correspond to the first row of UL
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Its definition allow us to simplify Eq.(5.9) in
Aerr + Ve qg éy =0 (5.10)

where
Aerr = qT 5Xerra (5'11)

Ucm is the magnitude of the impulsive maneuver, and éy is a three-dimensional unit

vector aligned with the direction of the burn, i.e., AV, = 0., éy.

It is easy to minimize v, subject to the constraint Eq.(5.10) and obtain an analytical

expression for the magnitude of the suppressive burn as in Eq.(5.12):

a
Vem = ——. (5.12)
9ol
As expected, the magnitude of the suppressive maneuver varies linearly with the

projection of the initial deviation vector §X,,, along q.

In the following, we estimate the orbit maintenance costs of a 3D-QSO by consider-
ing the preliminary orbit injection errors of MMX as provided by the MMX flight
dynamics team. It is assumed that these initial errors are distributed according to
zero-mean Gaussian distributions with standard deviations as reported in Table 5.3.
Given the Gaussian distribution of §X,,,, we can obtain an analytical expression for
the standard deviation of a,,, according to Eq.(5.11). Specifically, if E[-] is the expected

value operator, and

62 0 0 0 0 0
0 aj 0 0 0 0
0 0 o2 0 0 0
T
Perr = E[5)(err 5Xerr] = 0 0 OZ O_?C 0 0 (5'13)
0 0 0 0 og 0
0 0 0 0 0 o2

N

is the covariance matrix in Cartesian coordinates, then

oz, =q Perq. (5.14)



5.4 Estimating Station-keeping costs of 3D-QSO-M 89

Table 5.3: MMX Injection Errors

Standard Deviation Value Unit

Oy 100 m
oy 100 m
o 100 m
Oy 3 cm/s
o 3 cm/s
oy 3 cm/s
Similarly,
2
o
2 Aerr
o, = (5.15)
o lqoll?

Table 5.4 reports the 30 values of v, extrapolated over a period of 30 days, i.e., the
duration of the envisioned MMX operations in a mid-altitude 3D-QSO [20], assuming
that a maneuver will have to be implemented every day due to execution errors and
mismodelled dynamics. We highlight that the 30 values of v.,, would depend on
the location of the spacecraft along the candidate 3D-QSO and typically vary by a
few cm/s. Such a difference is considered negligible for the purposes of this crude
station-keeping approximation and not included in the final values of Table 5.4. Under
the assumptions of our numerical simulation, it appears that the orbital maintenance
cost for the 1:27 3D-QSO with A, = 120 km is the cheapest among the candidate orbit,
with an estimated maximum o.,, cost of 0.584 m/s for 30 days. In contrast, the most
expensive orbit turned out to be the 1:17 3D-QSO (A, = 70 km) with a total v, cost of
0.937 m/s per month. All of the 3D-QSOs have orbital maintenance costs below 1 m/s
per month, resulting in a plethora of valid candidate orbits for the global coverage of
Phobos. This analysis suggests that the orbit maintenance costs of 3D-QSOs may play
a minor role in driving the selection of an optimal staging orbit for transfers between
high-altitude and low-altitude orbits around Phobos. This is further investigated in the
following Section, where capture and escape trajectory costs are combined to identify

the most suitable candidate orbits for out-of-plane operations.
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Table 5.4: Orbital maintenance cost of 3D-QSO-M for 30 days

A, =70km A,=80km A,=90km A,=100km A,=110km A, = 120km
3D-QSO type v (m/s) Vem (m/s) Uem (/) Uem (m/s) Uem (mM/s) Uem (mM/s)

1:17 0.9376 0.9320 0.9283 0.9249 0.9219 0.9190
1:18 0.8860 0.8827 0.8798 0.8773 0.8750 0.8729
1:19 0.8395 0.8371 0.8349 0.8329 0.8311 0.8295
1:20 0.7972 0.7954 0.7936 0.7921 0.7906 0.7869
1:21 0.7586 0.7572 0.7558 0.7546 0.7534 0.7522
1:22 0.7235 0.7224 0.7212 0.7202 0.7191 0.7182
1:23 0.6913 0.6904 0.6895 0.6886 0.6877 0.6869
1:24 0.6617 0.6611 0.6600 0.6595 0.6588 0.6581
1:25 - 0.6341 0.6334 0.6327 0.6322 0.6314
1:26 0.6094 0.6090 0.6086 0.6086 0.6079 0.6068
1:27 0.5862 0.5859 0.5856 0.5850 0.5845 0.5840

® QSO-High-altitude @ QSO-Low-altitude

127 *—o
”E 1:26 & —o oo
E 1:25 Qf;‘i‘ e o o o
T 124 0%@; —eo o—o
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Figure 5.9: Overall transfer solution space connecting QSO-H and QSO-L.
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5.5 Results and discussions

In this section, we present the overall transfer analysis by combining the capture
and escape trajectories obtained from the numerical simulations of Section 4. From
Tables 5.1 and 5.2, we find several possible combinations of transfers via different
families of 3D-QSOs at various energies. The overall solution space involving both the
capture and escape phases connecting QSO-H and QSO-L is presented in Fig. 5.9.
Interestingly, we find that the 1:17 3D-QSO family connects both QSO-H and QSO-L
at all the considered values of A, € [70,120] km. Conversely, 1:27 3D-QSOs only
permit transfer between high-altitude and low-altitude regions when A, = 120 km. The
minimum overall AV!(AV*® + AV%) and TOF'(TOF® + TOF") transfer solution cases

are shown in Fig. 5.10 and 5.11, respectively.

Table 5.5: Transfer cost for high-latitude coverage with 3D-QSOs

Transfer stage Transfers via MP-QSOs  Transfers via 3D-QSOs  Difference
min AVyo1q min AVyoq min AVyorq
QSO-H — QSO-La 21 m/s 37.97 m/s 16.97 m/s

By comparison with our previous investigation where only planar transfers had
been considered [50], we conclude that 17 m/s of additional AV would be required for
the MMX spacecraft to be inserted into a mid-altitude 3D-QSO and enable the detailed
observations of the high-latitude regions of Phobos (Table 5.5). These intermediate
3D-QSO0s are weakly to highly unstable and require additional station-keeping costs as
highlighted in Section 5.

Table 5.6: Overall transfer and station-keeping cost of mid-altitude 3D-QSOs.

A, =70km A, = 80km A, =90km A, = 100km A, = 110km A, = 120km
3D-QSO type AV! +uey (m/s) AV +oey (m/s) AV +ove, (m/s) AV +o., (m/s) AV +o., (m/s) AV +0., (m/s)

1:17 37.9737 45.6521 48.3913 55.5928 56.1084 64.1348
1:18 - 43.0563 47.1362 51.3869 - -

1:19 - 44.6213 46.1121 54.4268 58.2922 62.4881
1:20 - - - 49.7909 57.7606 57.7867
1:21 - 44.7911 46.0979 50.3316 54.7476 62.0658
1:22 - - - - 55.5314 58.0145
1:23 - - - 50.2637 54.0058 59.1082
1:24 - - - - 54.2276 58.5609
1:25 - - - - 54.6675 58.8815
1:26 - - - - 55.2409 57.0393
1:27 - 60.0596
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The results of our orbital maintenance analysis, combined with the results of
Tables 5.1 and 5.2 are presented in Table 5.6 and shown only for those candidate orbits
where transfer from/to QSO-H/QSO-L is permitted. It appears that the 1:17 3D-QSO
with A, = 70 km would have the cheapest overall transfer and station-keeping cost of
37.973 m/s. This is in sharp contrast with the 64.134 m/s AV cost observed for the
same family at A, = 120 km. It can also be noted how the total AV cost of the transfer
tends to increase for higher values of A, thus suggesting a mission trade-off of a few

m/s of propellant per degree of maximum latitude achievable on Phobos.
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Conclusions and Future work

This thesis investigates the utilization of bifurcated families of retrograde orbits to
develop and design novel transfer trajectories connecting planar and spatial quasi-
satellite orbits in the vicinity of Phobos. This work explicitly leverages the in-plane
and out-of-plane period-multiplying bifurcations of the stable planar QSO family to
connect relative retrograde orbits around Phobos in the Mars-Phobos Hill Problem
with ellipsoidal gravity secondary framework.

This thesis began by reviewing some of the tools available in Dynamical Systems
Theory for computing periodic orbits, analyzing stability, and bifurcations in prepara-
tion for numerical investigations. These preliminaries are helpful to introduce some
of the fundamental terminologies that recurred throughout the thesis and lay the
foundation for the numerical procedures of Chapter 3 and the development of transfer
design methods presented in Chapters 4 and 5.

Chapter 3 of this work dealt with numerical procedures and systematic computation
of period-multiplying bifurcated families of QSOs. More specifically, this thesis

exploited the vertical and horizontal bifurcations caused due to the change in stability
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indices at some resonant ratios from the planar QSO family solution. In-plane and
out-of-plane bifurcated families are categorized as MP-QSOs and 3D-QSOs. By studying
these bifurcated retrograde families of orbits, it was observed that varying amplitude
of MP-QSOs is ideal for connecting several planar QSOs. Whereas 3D-QSOs aids in
high-latitude coverage of the Phobos’ surface.

Geometrical features of in-plane bifurcated MP-QSOs are further exploited to
develop a novel transfer technique for a robust and safer transfer of the spacecraft
in the vicinity of Phobos in Chapter 4. Specifically, MP-QSOs that bifurcate from
the planar solutions and intersect both initial and final planar QSOs are identified.
Later, the registered AV and time-of-flight values at multiple departing and arrival
intersection points are evaluated using transfer maps between departing and arriving
longitudes. This transfer analysis was applied to baseline QSOs in the proximity phase
operations of the MMX mission. In particular, transfer maps between MMX candidate
QSOs are disclosed to elucidate the transfer problem and identified minimum AV and
TOF opportunities. By comparison with previous direct transfer results, it is found that
the total transfer cost between the MMX baseline QSOs may be minimized by using
MP-QSO families that intersect the departing and arrival orbits almost tangentially and
with the highest possible value of the Jacobi integral. Such a conclusion contributes in
several ways to our understanding of the dynamical environment around Phobos, and
provide a basis for the selection of transfer AV execution points. In addition, this
work’s findings served as a more accurate initial guess for further optimization of
the transfer problem. The primer vector analysis of the impulse transfer trajectories
revealed that the optimal impulse solution exists only while departure and arrival AV
execution points are at the same periphobian sides with an additional mid-course
impulse.

In Chapter 5, an out-of-plane transfer strategy to insert the spacecraft into a 3D-QSO
utilizing the stable and unstable manifolds emanating from unstable solutions of
bifurcated out-of-plane orbits was proposed. The feasibility of connecting high-altitude
and low-altitude QSOs via cheap transfer opportunities were later explored. To design
an out-of-plane transfer, firstly, the desired arrival and departing QSOs are identified.
This work used the MMX baseline QSOs and demonstrated the transfer strategy. Once
the baseline high-low altitude QSOs are fixed, intersection of capture and escape

trajectories propagated from different locations along candidate 3D-QSOs with oblate
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cylinders passing through the planar orbits are then evaluated. Later the trajectories
crossing the planar orbits are extracted by optimizing the number of nodes and AV
and TOF for the transfer cases are calculated. This out-of-plane transfer technique
provided us with a baseline to estimate the costs and time-of-flights associated with
ballistic dynamics between high-altitude and low-altitude QSOs. To further narrow the
design space of mid-altitude out-of-plane trajectories, a simple orbit maintenance
strategy was implemented to nullify the growth of orbit injection errors along the
unstable eigenvectors of candidate 3D-QSOs. The final candidates are ranked based
on MMX scientific requirements, transfer analyses, and station-keeping costs. It is
found that intermediate 3D-QSOs can be maintained with as little as 1 m/s per month.
As a result of this investigation, it was found that transfers from high-altitude to
low-altitude regions around Phobos would be possible via intermediate 1:17 3D-QSOs
that demands a minimum AV cost of 37.973 m/s and a minimum time of flight of less

than 5 days.

6.1 Recommendations for Future Research

This work’s findings could serve as initial guesses for real-ephemeris implementations
to be adopted for the actual MMX mission design. The transfer methodologies and
analysis presented in this work can be extended for any future missions that seek
lower AV transfer opportunities between stable retrograde orbits around Phobos or
any small irregular planetary satellites in the solar system.

The identified transfer trajectories can be improved further using appropriate
optimization techniques that would allow us to simulate and account for more-realistic
dynamics and engineering constraints. In particular, introducing two bifurcated
families of QSOs as transfer orbit for a three-impulse robust transfer can potentially
minimize the total transfer cost and aid in safer transfer. Future research should
focus on developing guidance and control laws that effectively mitigate the effects of

navigation, perturbation and missed thrust errors during the transfers.
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Appendix A

Specifications of mid-altitude 3D-QSOs are tabulated in Tables A1 to A11.

Table A1: 1:17 3D-QSO

A, AxxAy (km) C b, T (days)
70 km  45.15x85.39  -5.371 906.34 5.038
80 km  44.65x84.67 -6.576 3307.6 5.048
90 km  44.05x83.73 -7.967  9350.67 5.056
100 km 43.39x82.63 -9.515 21710.05 5.063
110 km 42.65x81.35 -11.289 44735.28 5.069
120 km 41.86x79.96 -13.249 82287.09 5.074

Table A2: 1:18 3D-QSO

A, AyxAy (km) C b, T (days)
70 km  45.94x87.42 -5.422 751.38 5.355
80 km  45.43x86.70  -6.609  3045.57 5.365
90 km  44.82x85.76  -7.994  9292.02 5.374
100 km  44.13x84.63 -9.57  23108.35 5.381
110 km 43.39x83.35 -11.337 49377.18 5.387
120 km 42.61x81.97 -13.291 93596.54 5.392
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Table A3: 1:19 3D-QSO

A, AxxAy (km) C b, T (days)
70 km  47.16x89.64 -5.484 572.19 5.673
80 km  46.69x88.94 -6.678 2670.5 5.683
90 km  46.12x88.63 -8.051 8705.01 5.692
100 km 45.42x86.93 -9.623  22798.28 5.699
110 km 44.73x85.67 -11.384 50552.69 5.705
120 km  43.96x84.3 -13.333 98768.61 5.71

Table A4: 1:20 3D-QSO

A, AxxAy (km) C by T (days)
70 km  48.17x91.52  -5.557 399.82 5.991
80 km 47.72x90.82 -6.733  2128.47 6.001
90 km 47.16x89.90 -8.112  7613.75 6.01
100 km 46.52x88.80 -9.672 20944.81 6.017
110 km 45.81x87.54 -11.43 48334.03 6.023
120 km  45.64x86.17 -13.376 97443.73 6.028

Table A5: 1:21 3D-QSO

A, AyxAy (km) C b, T (days)
70km  49.02x93.55 -5.624 24467  6.309
80km 48.56x92.88 -6.801 1578.75  6.319
90km 48.61x91.98 -8.167 616152  6.328
100 km 47.37x90.90 -9.726 18016.79 6.335
110 km 46.67x89.67 -11.479  43328.2 6.341
120 km 45.91x88.31 -13.42 90112.77 6.347
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Table A6: 1:22 3D-QSO

A, AxxAy (km) C b, T (days)
70 km  49.74x95.31 -5.694 126.4 6.627
80 km  49.27x94.62 -6.862 1049.28 6.637
90 km 48.71x93.74 -8.221 4589.68 6.646
100 km 48.07x92.66  -9.777  14394.05 6.653
110 km 47.36x91.42 -11.529 36260.72 6.66
120 km  46.59x90.07 -13.465 77878.35 6.665

Table A7: 1:23 3D-QSO

A, AxxAy (km) C by T (days)
70 km  50.73x97.17  -5.793 53.48 6.945
80 km 50.32x96.53 -6.916 604.29 6.955
90 km  49.78x95.66 -8.276  3106.37 6.964
100 km 49.15x94.59 -9.849 10713.43 6.971
110 km 48.46x93.38 -11.594 28266.11 6.978
120 km 47.71x92.04 -13.53  62874.75 6.983

Table A8: 1:24 3D-QSO

A, AyxAy (km) C b, T (days)
70km  51.57x98.78 -5.941  15.32 7.264
80km 51.20x98.19 -6.976 28571  7.273
90 km  50.68x97.32  -8.333 1848.08 7.285
100 km 50.07x96.26  -9.811 6986.68 7.29
110 km 49.39x95.05 -11.62 19647.98 7.296
120 km 48.65x93.71 -13.554 45622.47 7.301
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Table A9: 1:25 3D-QSO

A, AxxAy (km) C b, T (days)
70 km - - - -
80km 51.95x99.96 -7.043 91.68 7.591
90 km  51.44x99.12 -8.387 894.38 7.6
100 km 50.84x98.09  -9.931 3958.5 7.608
110 km 50.16x96.89  -11.67 12091.8 7.613
120 km  49.42x95.57 -13.595 29419.15 7.62

Table A10: 1:26 3D-QSO

A, AxxAy (km) C b, T (days)
70 km  53.02x102.15 -5.982 8.16 7.9
80 km 52.59x101.50 -7.13 7.16 7.91
90 km 52.08x100.68 -8.444 290.73 7.918
100 km 51.48x99.64  -9.985 1738.24 7.926
110 km 50.80x98.46 -11.717 6017.82 7.932
120 km  50.06x97.13 -13.638 15673.02 7.938

Table A11: 1:27 3D-QSO
A, AxxAy (km) C by T (days)

70 km  53.88x103.80 -6.054 29.33 8.218

80 km 53.49x103.18 -7.191 8.41 8.228

90 km 52.99x102.35 -8.515 22.64 8.237

100 km 52.41x101.36 -10.036 416.74 8.244

110 km 51.75x100.18 -11.764 1944.19 8.251

120 km 51.03x98.88 -13.683 5760.89 8.256
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