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Abstract
Spectral sum of hadronic correlation functions from lattice Quantum

Chromodynamics

by ISHIKAWA, Tsutomu

Quantum Chromodynamics (QCD) describes the strong interaction among quarks

and gluons. Quarks are the elementary particles that constitute hadrons. There-

fore, QCD plays an important role even in various electroweak precision tests where

hadrons appear.

An important property of QCD is the asymptotic freedom. The coupling of

QCD is scale-dependent and becomes smaller at higher energy scales. This property

is unique to QCD. Other interactions of the Standard Model do not have it. The

scale dependence restricts the region where perturbative calculation can be safely

applied. At low energies, quarks become strongly coupled to gluons, and the per-

turbative calculation breaks down. Therefore, it is difficult to investigate hadron

physics directly from QCD without using the effective theory.

Lattice QCD has become a standard tool to study quarks and gluons. It provides

a fully non-perturbative calculation that does not rely on perturbative expansions.

Since Wilson proposed the lattice gauge theory to demonstrate quark confinement

in 1974, lattice QCD has achieved a lot of success. Measuring two- and three-point

correlation functions, one can determine physical quantities such as decay constants

and form factors from hadronic matrix elements. These parameters are important

inputs for phenomenological studies of the Standard Model.

Apart from lattice QCD, another approach to the nonperturbative physics of

QCD has been evolved, based on the analyticity of the correlation functions and

quark-hadron duality. This approach enables us to link quarks in the Euclidean

domain to hadrons in the physical energy domain. The spectral sum of hadronic

correlation functions, such as the vacuum polarization function Π(q2), of the form,∫
ds e−s/M2

Im Π(s), (1)

has often been introduced since the seminal work of Shifman, Vainshtein, and Za-

kharov in the late 1970’s. The spectral sum (1) is equivalent to the Borel transform

of the function Π(q2). The integral over invariant mass squared s smears out contri-

butions of individual resonances so that one can use perturbative treatment of QCD

with quarks and gluons as fundamental degrees of freedom, as far as the Borel mass

M, a parameter to control the typical energy scale, is sufficiently large. The inte-

gral is a quantity effectively defined in the space-like momentum region, and there

would be no issue of the violation of the quark-hadron duality.
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The integral suppresses the contributions from the energy region above M, and

thus is more sensitive to low-lying hadronic states. If one can find a window where

M2 is large enough to use perturbative expansion of QCD with non-perturbative

corrections included by operator product expansion (OPE) and at the same time suf-

ficiently small to be sensitive to lowest-lying hadronic states, the spectral sum may

be used to obtain constraints on the parameters of low-lying hadrons, such as their

masses and decay constants. This method, called the QCD sum rule, has been widely

applied to estimate masses, decay constants, and other properties of hadronic states

in various channels. However, an important question of how well the perturbative

QCD with some non-perturbative corrections included through OPE can represent

the spectral sum is yet to be addressed, especially when the correlation function is

not always fully available from the experimental data, e.g. due to a limitation of

accessible kinematical region.

In this thesis, we propose a method to use lattice QCD to compute the Borel trans-

form of the vacuum polarization function appearing in the QCD sum rule. We con-

struct the spectral sum corresponding to the Borel transform from two-point func-

tions computed on the Euclidean lattice. As a proof of principle, we compute the ss̄
correlators at three lattice spacings and take the continuum limit. We confirm that

the method yields results that are consistent with the operator product expansion

in the large Borel mass region. The method provides a ground on which the OPE

analyses can be directly compared with non-perturbative lattice computations.

We find a good agreement between the lattice data and OPE in the region of

M > 1.0 GeV. The OPE is truncated at the order of 1/M6. Since the OPE involves

unknown condensates, this comparison can be used to determine these parameters,

provided that the lattice data are sufficiently precise. As the first example, we at-

tempt to extract the gluon condensate, which appears in OPE at the order 1/M4.

The size of the error is comparable to those of previous phenomenological estimates.

With more precise lattice data in various channels, one would be able to determine

the condensates of higher dimensions as well, which have not been determined well

solely from phenomenological inputs.

Our work provides a technique to relate two major tools to study nonperturba-

tive aspects of QCD, i.e. the QCD sum rule and the lattice QCD. There would be a

number of applications, for which new insights into the QCD phenomenology are

expected.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) describes the strong interaction between quarks

and gluons. Quarks are the elementary particles that constitute hadrons. There-

fore, QCD plays an important role even in various electroweak precision tests where

hadrons appear.

An important property of QCD is the asymptotic freedom. The coupling of

QCD is scale-dependent and becomes smaller at higher energy scales. This prop-

erty is unique to QCD. Other interactions of the standard model do not have it. The

scale dependence restricts the region where perturbative calculation can be safely

applied. At low energies, quarks become strongly coupled to gluons, and the per-

turbative calculation breaks down. Therefore, it is difficult to investigate hadron

physics directly from QCD without using the effective theory.

Lattice QCD has become a standard tool to study quarks and gluons. It provides

a fully nonperturbative calculation that does not rely on the perturbative expansion.

Since Wilson proposed the lattice gauge theory to demonstrate quark confinement

in 1974 [1], lattice QCD has achieved a lot of success. Following the Monte Carlo

calculations of the pure SU(2) gauge theory by Creutz in 1979 [2], various compu-

tational methods and algorithms have been introduced. Recent lattice studies have

become more realistic and reliable. Those yield better understandings of the non-

perturbative nature of QCD.

To study low-energy hadrons, lattice fermions are necessary. Nevertheless, the

fermion action on the lattice cannot be defined by naively replacing derivatives by

differences. This naive fermion has undesired poles, which is called the doublers.

Wilson introduced a term in the action to remove the doublers, which breaks the

chiral symmetry. With this fermion, Wilson fermion, hadron masses were computed

using lattice QCD in 1981 [3, 4].

Including dynamical quarks in the lattice calculation is computationally de-

manding since those require a determinant of the Dirac operator. The early studies

used the quenched approximation, which ignores these sea quark effects. Several

methods have been proposed to overcome this problem, e.g. Hybrid Monte Carlo

[5] or R-algorithm [6]. The state-of-the-art lattice simulation realize the simulation

involving the dynamical light quarks.
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A success of lattice QCD is the prediction of the hadron mass spectra. Compari-

son with experimental values requires the continuum limit, sufficiently large lattice

volume s, and an extrapolation to the physical quark masses. The lattice results

using Wilson fermions in quenched QCD have been reported in the literature e.g. [7,

8], where these requirements are satisfied. In [8], the deviation of the mass spectra

from experiments is at most 11%. This would imply the limitation of the quenched

approximation. Finally, the reproduction of the mass spectra was accomplished by

the BMW Collaboration [9], using the Wilson fermions for dynamical u, d, and

s quarks. These spectra were predicted with errors of several percents except for

the ∆ baryon. Those agreed with the masses in the experiments well. This success

indicates a key role of the lattice QCD towards the search for new physics.

Chiral symmetry is an essential property of QCD and preserving the symmetry

on the lattice would be desirable. In 1981, Ginsparg and Wilson proposed a relation

which defines the lattice version of chiral symmetry; it is called Ginsparg-Wilson

relation [10]. Several formulations of the fermion action satisfying this relation were

discovered in the 1990s, such as domain-wall fermions [11, 12] and overlap fermions

[13–15]. Recently, these Ginsparg-Wilson fermions are extensively used in actual

simulations where chiral symmetry plays a significant role.

For the precise verification of the Standard Model and the search for new physics,

it is essential to improve the accuracy of lattice QCD. The development of lattice

QCD has been accompanied by the evolution of computational science. The re-

alistic simulations of QCD can be implemented on massively parallel computers.

The appearance of high-performance computers , such as Fugaku, will promote the

development.

Apart from lattice QCD, another approach to explore nonperturbative dynamics

has been developed, which is based on the analyticity of the correlation functions

and quark-hadron duality. This approach enables us to link quarks in the Euclidean

domain to hadrons in the physical energy domain. In particular, the spectral sum of

hadronic correlation functions, such as the vacuum polarization function Π(q2), of

the form, ∫
ds e−s/M2

Im Π(s) (1.1)

has often been introduced since the seminal work of Shifman, Vainshtein, and Za-

kharov [16, 17]. The integral over invariant mass squared s smears out contributions

of individual resonances so that one can use perturbative treatment of QCD with

quarks and gluons as fundamental degrees of freedom, as far as the Borel mass M, a

parameter to control the typical energy scale, is sufficiently large. The integral (1.1)

is a quantity effectively defined in the spacelike momentum region, and there would

be no issue of the violation of the quark-hadron duality [18].

The integral (1.1) suppresses the contributions from the energy region above M
and thus, is more sensitive to low-lying hadronic states. If one can find a window
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where M2 is large enough to use perturbative expansion of QCD with nonpertur-

bative corrections included by operator product expansion (OPE) and at the same

time sufficiently small to be sensitive to lowest-lying hadronic states, the spectral

sum (1.1) may be used to obtain constraints on the parameters of low-lying hadrons,

such as their masses and decay constants. This method, called the QCD sum rule,

has been widely applied to estimate masses, decay constants, and other properties of

hadronic states in various channels [16, 17]. However, an important question of how

well the perturbative QCD with some nonperturbative corrections included through

OPE can represent the spectral sum is yet to be addressed, especially when the cor-

relation function is not always fully available from the experimental data, e.g. due

to a limitation of accessible kinematical region.

In principle, the test of perturbative expansion and OPE can be performed using

nonperturbatively calculated correlation functions using lattice QCD. Comparison

of the lattice correlators at short distances with perturbative QCD may be found,

e.g., in [19–22] for light-hadron current-current correlators and in [23, 24] for char-

monium correlators. The energy scale where the comparison is made has to be suf-

ficiently low to avoid discretization effects in the lattice calculations, while the OPE

analysis is more reliable at high energy scales. It has been pointed out that the con-

vergence of OPE is a crucial problem in the energy region for which lattice QCD can

provide reliable calculations by now [22, 25].

In this work, we perform another test of perturbative QCD and OPE against

nonperturbative lattice computation using the spectral sum of the form (1.1). It has

an advantage that the OPE converges more rapidly compared to that applied for the

correlator itself either in the coordinate space or in the momentum space. And, this

is exactly the quantity that has been used in many QCD sum rule analyses, hence it

serves as a test of those sum rule calculations as well.

On the lattice, computation of the spectral sum (1.1) is highly nontrivial because

it requires the spectral function ρ(q2) ∝ Im Π(q2) for all values of timelike q2 above

the threshold where a cut begins. Extraction of the spectral function from the lat-

tice correlators is a notoriously difficult problem that requires solving an ill-posed

inverse problem. Namely, one has to extract ρ(q2) by solving

C(t) ≡∑
x
〈0|J(t, x)J(0, 0)|0〉 =

∫ ∞

0
dω ω2ρ(ω2)e−ωt (1.2)

with a lattice correlator C(t) of a current operator J calculated at a discrete set of time

separations. There have been several methods developed to perform this inverse-

Laplace transform, including the maximum entropy method (MEM) [26–28], Bayesian

approach [29], Backus-Gilbert approach [30–33], the sparse modeling method [34],

but none of them succeeded to achieve sufficiently precise extraction of ρ(ω2) that

can be used for the purpose of this work.

In this work, instead, we apply the method developed in [35]. It is based on
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a representation of the weight function e−ω2/M2
in (1.1) as a polynomial of e−aω,

which is then related to the transfer matrix e−aĤ defined on the lattice. (Here, a
stands for the lattice spacing.) The method relates the spectral sum directly to the

lattice correlators without explicitly solving the spectral function ρ(ω2), so that the

inverse-Laplace transformation can be avoided. The method has so far been applied

to the B meson inclusive semileptonic decays [36] as well as the inelastic lepton-

nucleon scatterings [37]. As we demonstrate in the next sections, the method allows

us to construct the spectral sum with small and controlled systematic errors.

This thesis is organized as follows. First, we review the basics of lattice QCD in

Chap. 2. In Chap. 3 we introduce the spectral sum for the Borel transform in the

continuum theory. We also introduce our method to compute the spectral sum from

lattice QCD in Chap. 4. We discuss lattice calculations and their errors in Chap.

5. We also show comparison with OPE and the ground state contribution in this

chapter. Chap. 6 is devoted to our conclusion and outlook.
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Chapter 2

Basics of lattice QCD

2.1 QCD in the continuum theory

Before we discuss lattice QCD, we review the continuum theory of QCD which

is a part of the Standard Model in this section.

QCD is an SU(3) Yang-Mills theory with fermions in the fundamental representa-

tion. The fermions and gauge boson are called quarks and gluons, respectively. We

denote the quark fields by q(x) and the gluon fields by Aµ(x) ≡ Aa
µ(x)λa/2, where

λa is the Gell-Mann matrices. The Lagrangian density of QCD is constructed as

L = −1
2

tr
[
GµνGµν

]
+ ∑

q=u,d,s,···
q̄(i /D−mq)q, (2.1)

The gauge field strength tensor is defined by

Gµν = Ga
µν

λa

2
, (2.2)

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν, (2.3)

where g is the coupling constant and f abc is the structure constant of SU(3). The

covariant derivative is written as

Dµ = ∂µ − igAa
µ

λa

2
. (2.4)

Due to the last term of (2.3), there exist gluon self-interactions, unlike Quantum

Electrodynamics (QED). This leads to the asymptotic freedom of QCD.

Six quarks have been discovered by experiments. Some properties of the quarks,

such as masses, electric charges, and quantum numbers are shown in Table 2.1. The

third component of the isospin Iz is associated with an SU(2) symmetry for u and d
quarks. The other quarks also carry flavor quantum numbers and S, C, B, T stand

for strangeness, charm, bottomness, and topness, respectively. The electric charges

in the table are expressed in units of e > 0. We show the masses of the light quarks,

u, d, and s, in the MS scheme at the scale µ = 2 GeV. On the other hand, mc and mb
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mass [GeV] charge Iz S C B T

u 2.16+0.49
−0.26 × 10−3 +2/3 +1/2

d 4.67+0.48
−0.17 × 10−3 −1/3 −1/2

s 93+11
−5 × 10−3 −1/3 −1

c 1.27± 0.02 +2/3 +1

b 4.18+0.03
−0.02 −1/3 −1

t 172.76± 0.30 +2/3 +1

TABLE 2.1: Quarks in the Standard Model.

is shown at the scale µ = mc and µ = mb, respectively. These mass are taken from

the Particle Data Group (PDG) [38].

2.1.1 Strong coupling constant

An essential parameter in QCD is the strong coupling constant αs. In fact, we

expand a variety of physical quantities by the coupling constant αs in perturbative

QCD. This enable s us to predict the quantities theoretically. For the computations,

the expression of the αs at a scale µ is necessary. In the following, we use as ≡ αs/π

rather than αs itself for brevity.

The renormalization group (RG) equation of the strong coupling constant is ex-

pressed as

µ2 das

dµ2 = β(as), (2.5)

where β(as) is the β function of the coupling constant. At one-loop level where

β(as) = −β0a2
s , we can exactly solve the equation as

as(µ
2) =

1
β0 log µ2 − C

. (2.6)

One can define the integration constant C at µ2 = Λ2
QCD, where the coupling constant

diverge i.e.

C = β0 log Λ2
QCD. (2.7)

Then the running coupling at one-loop level is expressed as

as(µ
2) =

1

β0 log
(

µ2/Λ2
QCD

) . (2.8)
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Currently, the β function at five-loop level is available [39–43], namely,

β(as) = −
4

∑
i=0

βia2+i
s , (2.9)

with the coefficients in the MS scheme,

4β0 = 11− 2
3

n f , 42β1 = 102− 38
3

n f , (2.10)

43β2 =
2857

2
− 5033

18
n f +

325
54

n2
f , (2.11)

44β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508
27

ζ3

)
n f

+

(
50065
162

+
6472
81

ζ3

)
n2

f +
1093
729

n3
f , (2.12)

45β4 =
8157455

16
+

621885
2

ζ3 −
88209

2
ζ4 − 288090ζ5

+ n f

(
−336460813

1944
− 4811164

81
ζ3 +

33935
6

ζ4 +
1358995

27
ζ5

)
+ n2

f

(
25960913

1944
+

698531
81

ζ3 −
10526

9
ζ4 −

381760
81

ζ5

)
+ n3

f

(
−630559

5832
− 48722

243
ζ3 +

1618
27

ζ4 +
460
9

ζ5

)
+ n4

f

(
1205
2916

− 152
81

ζ3

)
, (2.13)

where n f is the number of the active flavors and ζn denote the values of the Rie-

mann zeta function. The first two coefficients β0 and β1 are renormalization scheme

independent.

The sign of the β function leads to a remarkable property of QCD. At leading or-

der, β(as) is negative for n f ≤ 16 [44, 45]. This indicates the asymptotic freedom of

QCD; that is, the coupling constant αs decreases as the scale µ increases. This behav-

ior is confirmed beyond the leading order. The two- and three-loop corrections are

also negative for n f ≤ 8 [46, 47] and n f ≤ 5 [48, 49], respectively. Furthermore, the

four-loop correction is always negative [50, 51]. The five-loop correction is negative

except for extremely large n f . Based on the asymptotic freedom, physical quantities

may be calculable in perturbative QCD at sufficiently short distances.

Solving the equation (2.9) iteratively, we can obtain an expression of as up to

O(1/L4) , where L ≡ log
(

µ2/Λ2
QCD

)
. We derive the solution in Appendix A. We

show the numerical expression of the coupling constant in MS scheme for n f = 3 as

a(4)s (µ2) =
4

∑
n=1

n

∑
m=0

anmL−n logm L, (2.14)

where the coefficients anm are listed in Table 2.2. We plot the scale dependence of

as(µ2) in Fig. 2.1, where we set the QCD scale parameter ΛQCD = 0.332 GeV and use
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n an0 an1 an2 an3 an4

1 0.44444444
2 −0.35116598
3 0.11505699 −0.27746448 0.27746448
4 0.29988763 −0.49195886 0.54807798 −0.21923119
5 0.26396881 −1.3365013 1.2104657 −0.75061873 0.17321971

TABLE 2.2: The coefficients of the coupling constant as for n f = 3.

1.0 1.5 2.0 2.5 3.0
[GeV]

0.1

0.2

0.3

a s

1 loop
2 loop
3 loop
4 loop
5 loop

FIGURE 2.1: Running coupling constant as for given ΛQCD. The dot-
ted, dashed dash-dotted, and dash-dot-dotted lines correspond to as
with β(as) truncated at 1–4 loop level. The solid line corresponds to
the coupling constant computed by the β function at five-loop level,

which we will use in this work.

RunDec [52, 53] for the numerical calculation. The plot shows that the perturbative

series converges well.

2.1.2 Quark mass

The quark mass appears at the next-to-leading order of OPE. For u and d quarks,

the quark mass is negligibly small comparing to the scale where OPE is applicable.

One would expect that the strange quark mass is also negligible. On the contrary,

we will see that the mass correction significantly affects the Borel transform which

is the main object of this thesis. In this subsection, we discuss the scale dependence

of the quark mass. We will use the expression of the mass at a given scale in the

following chapters.
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The running of the quark mass is described by

µ2 dm
dµ2 = m(µ2)γm(as), (2.15)

where γm is the anomalous dimension. The anomalous dimension at five-loop level

in the MS scheme is expressed as follows [54–61]:

γm(as) = −
4

∑
i=0

γm,iai+1
s , (2.16)

where

γm,0 = 1, (2.17)

γm,1 =
101
24
− 5

36
n f , (2.18)

γm,2 =
1249

64
+ n f

(
−277

216
− 5

6
ζ3

)
− 35

1296
n2

f , (2.19)

γm,3 =
4603055

41472
+

530
27

ζ3 −
275
8

ζ5

+ n f

(
−91723

6912
− 2137

144
ζ3 +

55
16

ζ4 +
575
72

ζ5

)
+ n2

f

(
2621

31104
+

25
72

ζ3 −
5
24

ζ4

)
+ n3

f

(
− 83

15552
+

1
108

ζ3

)
, (2.20)

and

45γm,4 =
99512327

162
+

46402466
243

ζ3 + 96800ζ2
3 −

698126
9

ζ4

− 231757160
243

ζ5 + 242000ζ6 + 412720ζ7

+ n f

(
−150736283

1458
− 12538016

81
ζ3 −

75680
9

ζ2
3 +

2038742
27

ζ4

+
49876180

243
ζ5 −

638000
9

ζ6 −
1820000

27
ζ7

)
+ n2

f

(
1320742

729
+

2010824
243

ζ3 +
46400

27
ζ2

3

− 166300
27

ζ4 −
264040

81
ζ5 +

92000
27

ζ6

)
+ n3

f

(
91865
1458

+
12848

81
ζ3 +

448
9

ζ4 −
5120
27

ζ5

)
+ n4

f

(
−260

243
− 320

243
ζ3 +

64
27

ζ4

)
. (2.21)
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1.0 1.5 2.0 2.5 3.0
[GeV]

0.08

0.12

0.16

m
s

[G
eV

]
1 loop
2 loop
3 loop
4 loop
5 loop

FIGURE 2.2: Running of the strange quark mass ms. The dotted,
dashed dash-dotted, and dash-dot-dotted lines correspond to ms(µ)
with c(x) of (2.23) truncated at 1–4 loop level. The solid line cor-
responds to ms(µ) computed by the β function and the anomalous
dimension γm(as) at five-loop level, which we will use in this work.

The solution of (2.15) has the following form:

m(µ2)

m(µ2
0)

=
c(as(µ2))

c(as(µ2
0))

, (2.22)

where the numerical expression of the function c(x) at n f = 3 is

c(x) = x
4
9 (1 + 0.28490700x + 0.13895521x2

+ 0.062944781x3 + 0.096610252x4). (2.23)

The derivation of this expression is given in Appendix B. The reference point µ is

often taken at µ0 = 2 GeV for the light (u, d, and s) quarks. In contrast, for heavy

quarks, µ0 = mc and µ0 = mb is often used. The numerical calculation of the

running mass m(µ2) can be performed by RunDec [52, 53] as well as the coupling

constant αs(µ2). We show running of the strange quark mass at the scale µ in Fig.

2.2. To plot this figure, we truncate (2.23) at the l-th order of x while the strong

coupling constant as(µ2) is computed at 5-loop level. We use ΛQCD = 0.332 GeV

and ms(2 GeV) = 0.092 GeV as inputs. The figure indicates that the truncation error

is quite small.
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2.2 The Euclidean action

The measurement in Lattice QCD is implemented by the Euclidean path inte-

gral. Introducing the Euclidean time, we identify the phase factor eiS in the path

integral as the Boltzmann weight. This allows us to use techniques of the statistical

mechanics for lattice QCD in the Euclidean spacetime.

First, we discuss the gauge action in the Euclidean spacetime. We rescale the

gauge field in (2.1) hereafter for brevity,

gAµ(x)→ Aµ(x). (2.24)

After the Wick rotation,

x0 → −ix4, A0 → iA4, (2.25)

the components of the field strength tenser are redefined by

Ga
µν ≡ ∂µ Aa

ν − ∂ν Aa
µ − f abc Ab

µ Ac
ν, (2.26)

and the Euclidean action is given by

SG =
1

4g2

∫
d4xGa

µνGa
µν, (2.27)

where µ and ν run from 1 to 4.

We turn to the Euclidean action for quark fields. The γ matriices in the Euclidean

space fulfill the following anti-commutation relations,

{
γµ, γν

}
= 2δµν. (2.28)

The fermion action is given as

SF = ∑
q=u,d,s,···

∫
d4xq̄( /D + mq)q, (2.29)

where the covariant derivative is redefined by

Dµ = ∂µ − iAa
µ

λa

2
. (2.30)

The use of the Euclidean action gives clear connection between the path integral

in quantum field theory and statistical mechanics. In the Euclidean space, the phase

in the path integral is replaced by the Boltzmann weight,

exp(iSQCD)→ exp(−SQCD), (2.31)
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where SQCD = SG + SF is the QCD action in the Euclidean space. The vacuum

expectation value of a physical quantity O is given by

〈O〉 = 1
Z

∫
Dψ̄DψDA e−SQCDO, (2.32)

where Z is the partition function defined as

Z ≡
∫
Dψ̄DψDA e−SQCD . (2.33)

This path integral brings about analogy with the statistical mechanics. Hence, we

can use several numerical techniques, such as Monte Carlo methods. In the sub-

sequent sections, we review computations of lattice QCD using the Euclidean path

integral.

2.3 Gluons in lattice QCD

We discuss the lattice action of gluons. First, we introduce link variables,

Uµ(x) ≡ eiaAµ(x), (2.34)

where a is the lattice spacing and g is the coupling constant. Let us consider a closed

loop of these link valuables, the so-called plaquette,

Uµν(x) ≡ Uµ(x)Uν(x + µ̂)Uµ(x + ν̂)†Uν(x)†, (2.35)

where µ̂ is an unit vector in the µ-direction. We illustrate the link variable and the

plaquette schematically in Fig. 2.3. This plaquette leads to the field strength Gµν(x)
towards the continuum limit a→ 0,

Uµν(x)→ exp
(
ia2Gµν(x) +O(a3)

)
. (2.36)

Thus, we can construct the gauge action in terms of the plaquettes through

SG =
β

3 ∑
x

∑
µ<ν

Re tr
[
1−Uµν(x)

]
, (2.37)

where the inverse coupling β = 6/g2 is conventionally used instead of the coupling

constant itself. The action (2.37) is called the Wilson action. In fact, this action repro-

duce the correct continuum limit up to the discretization effect,

SG '
1

4g2

∫
d4xGa

µνGa
µν. (2.38)
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Uµ(x)

x x + µ̂

Uµ(x)

Uν(x + µ̂)

Uµ(x + ν̂)†

Uν(x)† Uµν(x)

x x + µ̂

x + µ̂ + ν̂x + ν̂

FIGURE 2.3: The link valuable and the plaquette.

The discretization error can be reduced by adding other loops, such as rectangles

and parallelograms, to (2.37) [62]. In the small a expansion, the discretization effect

is restricted due to the symmetry on the lattice and the dimension-five operators

do not appear. Consequently, the dimension-six operators give rise to the leading

O(a2) corrections. In the present work, we use the tree-level Symanzik improved

gauge action. This action contains the rectangular terms and the leading corrections

become O(αsa2).

2.4 Fermions in lattice QCD

We discuss lattice fermions in this section. We limit ourselves to the single-flavor

case for notational convenience. The extension to multi flavor is straightforward.

Let us consider the discretization of the Dirac operator in the QCD action. On

the lattice, we may replace the partial derivative by a finite-difference,

∂µψ(x)→ ψ(x + µ̂)− ψ(x− µ̂)

2a
. (2.39)

We realize that the term ψ̄(x)γµψ(x + µ̂) appearing in the fermion action breaks the

gauge invariance. To make the lattice action gauge-invariant, we introduce the link

variables Uµ(x) and construct the so-called naive fermion action as

SF = a4 ∑
x

[
1
2a

ψ̄(x)γµ

(
Uµ(x)ψ(x + µ̂)−Uµ(x− µ̂)†ψ(x− µ̂)

)
+ mψ̄(x)ψ(x)

]
. (2.40)

This action is consistent with (2.29) at the leading order of the small-a expansion.

One might imagine that there would be no issue of the continuum limit. On the

contrary, the naive fermion gives rise to the incorrect limit.
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We demonstrate a well-known problem of the naive fermion action. As the

simplest example, we consider the free fermion. The Fourier transform of the Dirac

operator is given by

D̃(p) = m1+
i
a ∑

µ

γµ sin
(

pµa
)
, (2.41)

and its inverse, i.e. the quark propagator, has the following form:

D̃(p)−1 =
m1− ia−1 ∑µ γµ sin

(
pµa
)

m2 + a−2 ∑µ sin2(pµa)
. (2.42)

In the massless limit, the denominator vanishes at pµ = 0 or π/a. This causes un-

physical poles except for the pole at pµ = (0, 0, 0, 0). These 15 poles are called

doublers. We have to remove the doublers to predict physical quantities from lattice

QCD.

One can introduce the Wilson term in the Dirac operator to make the doublers

irrelevant in the continuum limit,

D̃(p) = m1+
i
a ∑

µ

γµ sin
(

pµa
)
+ 1

1
a ∑

µ

(
1− cos

(
pµa
))

. (2.43)

The extra term is the higher-order correction for small a,

1
a ∑

µ

(
1− cos

(
pµa
))

=
a
2 ∑

µ

p2
µ +O(a3), (2.44)

which corresponds to the discretization of the quadratic derivative ∂µ∂µ. The Wilson

term vanishes at pµ = (0, 0, 0, 0). In contrast, it leads to the additional mass for the

doubler,

m +
2`
a

, (2.45)

where ` is the number of the momentum components pµ = π/a. In the continuum

limit a → 0, the masses of the doublers become substantially large. Consequently,

the doublers decouple from the continuum theory.

We return to the Dirac operator with the gauge interaction in the position space.

One can derive the Wilson term as

− 1
2a ∑

µ

(
Uµ(x)δx+µ̂,y − 2δx,y + Uµ(x− µ̂)†δx−µ̂,y

)
. (2.46)

The fermion action of the Wilson fermion is given by

SF = a4 ∑
x,y

ψ̄(x)DW(x|y)ψ(y), (2.47)
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with the Wilson-Dirac operator,

DW(x|y) =
(

m +
4
a

)
δx,y −

1
2a ∑

µ

(1− γµ)Uµ(x)δx+µ̂,y

− 1
2a ∑

µ

(1+ γµ)Uµ(x− µ̂)†δx−µ̂,y. (2.48)

The Wilson fermion action is explicitly breaks chiral symmetry even in the mass-

less limit m → 0. In the continuum limit, chiral symmetry of the fermion action can

be expressed as

Dγ5 + γ5D = 0. (2.49)

In fact, the operator D = γµ

(
∂µ + iAµ

)
fulfills this equation. In contrast, the Wilson

term (2.46) does not anti-commute with γ5 since the term is proportional to 1.

The breaking of chiral symmetry is inseparable from the fermion doubling prob-

lem. According to the Nielsen–Ninomiya theorem [63, 64], one cannot preserve chi-

ral symmetry in the lattice theory where the doublers do not appear. This would

give rise to the limitation of lattice QCD, especially for the physics strongly related

to chiral symmetry.

One expects that the relation (2.49) is modified byO(a) on the lattice. Based on a

renormalization group transformation, Ginsparg and Wilson proposed the relation

in [10], which is given by

Dγ5 + γ5D = aDγ5D. (2.50)

The Dirac operator in the relation does not anti-commute with γ5; therefore, it does

not satisfy the assumption of the Nielsen–Ninomiya theorem. The extra term in

r.h.s. vanishes in the continuum limit and the symmetry is recovered. The Ginsparg–

Wilson relation (2.50) defines the lattice version of chiral symmetry.

There are several formulations of the fermion action that satisfy the Ginsparg–

Wilson relation. In this work, we use the domain-wall fermion [11, 12] that obeys

the relation in a certain limit. The action of the fermion is quite similar to the Wilson

fermion action. Therefore, one can apply the same numerical techniques to the

domain-Wall fermion as well as the Wilson fermion. More discussion of the Domain-

Wall fermion is in Sec. 2.6.

2.5 Measurements of meson correlators

In this section, we discuss the computation of meson correlators. For later con-

venience, we separate the path integral into the fermionic part and the gluonic part.
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The fermionic part is defined by

〈O〉F ≡
1

ZF

∫
Dψ̄Dψ e−SFO. (2.51)

The denominator ZF is the fermion determinant,

ZF =
∫
Dψ̄Dψ e−SF = det D, (2.52)

where D is a Dirac operator on the lattice. The fermion path integral can be per-

formed by the Wick contraction as discussed in Sec. 2.5.3 later. The total path inte-

gral is written as

〈O〉 ≡ 1
Z

∫
DU e−SG det D 〈O〉F , (2.53)

with the partition function

Z =
∫
DU e−SG det D. (2.54)

This path integral can be computed numerically.

The determinant in (2.53) corresponds to the effect of sea quarks, that is, quark-

antiquark pair creation and annihilation in the vacuum. Including the determinant

in the simulation is, however, numerically hard since the Dirac matrix D has (12×
lattice size)2 elements and the dimension 12× lattice size is typically & 106. Hence,

the quenched approximation was often used in early studies of lattice QCD, where

dynamical sea quark loops are neglected by a replacement det D → 1. Currently,

massively parallel computers provide accurate simulations with dynamical quarks

using various numerical techniques.

The fermion determinant can be considered as a part of the Boltzmann weight.

Using

log det D = tr log D, (2.55)

we define an effective action

Seff = SG − tr log D. (2.56)

Hence, the path integral can be rewritten as

〈O〉 = 1
Z

∫
DU e−Seff 〈O〉F . (2.57)

In Monte Carlo simulations, the path integral is approximated by an average of

the values on gauge configurations distributed with the probability ∝ e−Seff . We let

〈O〉(i)F be the fermionic part of the path integral on the i-th gauge configuration. The
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total path integral can be obtained through

〈O〉 ' 1
Nconf

Nconf

∑
i
〈O〉(i)F , (2.58)

where Nconf is the number of the configurations. In this work, we use the gauge con-

figurations with n f = 2 + 1 dynamical quarks, which are generated by the hybrid

Monte Carlo algorithm [5].

2.5.1 Point-to-all propagator

For lattice fermions, completely solving the inverse of the Dirac operator is a

quite difficult problem due to the limitations of computer memory and numerical

costs. In practice, we do not compute the full inverse matrix of D. Instead, we

consider the propagator G and the source S as vectors with a fixed source position

of propagator (t0, x0, c0, s0) , where c0 is the color index and s0 is the Dirac index.

Using a local source vector,

S(α0,c0)(t, x)α
c
= δt,t0 δx,x0 δα,α0 δc,c0 , (2.59)

we write the solution of the Dirac equation as

G(α0,c0)
local (t, x)α

c
= ∑

t′,x′
∑
β,d

D−1(t, x|t′, x′)αβ
cd

S(α0,c0)(t′, x′)β
d

= D−1(t, x|t0, x0)αα0cc0
. (2.60)

The solution G(α0,c0)
local (t, x)α

c
is a quark propagator from the fixed source point (t0, x0, c0, s0)

to the all sink point (t, x, c, s), namely point-to-all propagator.

In the following, we limit ourselves to a computation of connecting diagrams

with degenerate quark masses. As we will see, it turns out that only 12 solutions,

for all c0 and s0, are necessary.

2.5.2 γ5-hermiticity

Most of lattice fermions are γ5-hermitian, i.e. the Dirac operator satisfy the rela-

tion

γ5Dγ5 = D†. (2.61)

In addition, the inverse of the operator D−1 is also γ5-hermitian. This property can

be used to compute meson correlators.

Let us consider the case of the Wilson fermions. We demonstrate that the the

γ5-hermiticity holds. The Dirac operator with the quark mass m in lattice unit is
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given by

DW(x|y)αβ =(m + 4)1αβδx,y

− 1
2

4

∑
µ=1

(1− γµ)αβUµ(x)δx+µ̂,y

− 1
2

4

∑
µ=1

(1+ γµ)αβUµ(x− µ̂)†δx−µ̂,y, (2.62)

where µ̂ is an unit vector along the µ-direction. We omit the color indices for sim-

plicity since the link variables Uµ commute with γ5. Then,

(γ5DWγ5)αβ =(m + 4)1αβδx,y

− 1
2

4

∑
µ=1

(1+ γ†
µ)αβUµ(y− µ̂)δx,y−µ̂

− 1
2

4

∑
µ=1

(1− γ†
µ)αβUµ(y)†δx,y+µ̂

=DW(x|y)†
αβ. (2.63)

Here, we use γ†
µ = γµ and δx±µ̂,y = δx,y∓µ̂. We have derived the relation (2.61). This

property is inherited by the domain-wall fermions since they consist of the Wilson

fermions.

2.5.3 Correlation functions in coordinate space

The meson spectroscopy and amplitudes can be calculated from the correlation

functions of operators with the corresponding quantum numbers. To extract QCD

or low-energy parameters, we can use various quantities from the correlation func-

tions, e.g., time separated correlator C(t), hadron vacuum polarization Π(q2), and

temporal moment Mn. In particular, the two-point correlators in coordinate space

have a clearer physical interpretation.

In this section, we only focus on the long-distance behavior of correlators. How-

ever we remark that the short-distance correlator also plays a role; renormalization

[19] and determination of the strong coupling constant αs [22, 24]. We will return to

renormalization through the short-distance correlator in Sec. 2.7.

Let us consider the operator JP = iūγ5d, which corresponds to π−. The two-

point function in the coordinate space (X-space) is related to the quark propagators
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by using the Wick theorem:

〈0|JP(t, x)J†
P(0, 0)|0〉F = 〈iūγ5d(t, x) id̄γ5u(0, 0)〉

= tr
[
〈u(0, 0)ū(t, x)〉F γ5 〈d(t, x)d̄(0, 0)〉F γ5

]
= tr

[
D−1

u (0, 0|t, x)γ5D−1
d (t, x|0, 0)γ5

]
, (2.64)

where tr denotes the trace of color and Dirac matrices. We ignore the isospin brak-

ing: mu = md = m and D−1
u (t, x|0, 0) = D−1

d (t, x|0, 0) = D−1(t, x|0, 0). Using the

γ5-hermiticity (2.61), the two-point correlator is written in terms of the propagator

vector with the local sources (2.60):

〈0|JP(t, x)J†
P(0, 0)|0〉F = tr

[
D−1(0, 0|t, x)†D−1(t, x|0, 0)

]
=∑

α,β
∑
c,d

∣∣∣∣D−1(t, x|0, 0)βα
dc

∣∣∣∣2
=∑

α,β
∑
c,d

∣∣∣∣G(α,c)
local(t, x)β

d

∣∣∣∣2. (2.65)

The equation (2.65) implies that measurements of 〈0|JP(t, x)J†
P(0, 0)|0〉 require the

propagator from (0, 0) to (t, x) with 12 local sources.

We extend (2.65) to other color singlet operators JΓ = ūΓd. Here, we assume

Γ = 1, γ5, γµ, γµγ5, σµν. We can easily check that the hermitian conjugate of these

operators are equal to the operators swapped u and d up to the signature: J†
Γ =

d†Γ†γ4u = ±d̄Γu. The signature depends on Γ which we choose. Letting J̄Γ ≡ d̄Γu,

we obtain the expression of the two-point correlation function as

〈0|JΓ(t, x) J̄Γ(0, 0)|0〉F =− tr
[

D−1(0, 0|t, x)†γ5ΓD−1(t, x|0, 0)Γγ5

]
=−∑

α,β
ρ,σ

∑
c,d

D−1(t, x|0, 0)∗ρσ
dc
(γ5Γ)ρβD−1(t, x|0, 0)βα

dc
(Γγ5)ασ

=−∑
α,β
ρ,σ

∑
c,d

G(σ,c)
local (t, x)∗ρ

d
(γ5Γ)ρβG(α,c)

local(t, x)β
d
(Γγ5)ασ. (2.66)

The two operators of the correlation function may have the different matrix Γ. We

show the correlation function for JΓ1 = ūΓ1d and J̄Γ2 = d̄Γ2u

〈0|JΓ1(t, x) J̄Γ2(0, 0)|0〉F =− tr
[

D−1(0, 0|t, x)†γ5Γ1D−1(t, x|0, 0)Γ2γ5

]
=−∑

α,β
ρ,σ

∑
c,d

G(σ,c)(t, x)∗ρ
d
(γ5Γ1)ρβG(α,c)(t, x)β

d
(Γ2γ5)ασ. (2.67)

However, not all combinations are worth to measure, since the possible intermediate

states are restricted by the quantum numbers of operators. A nonzero and important

combination of operators is, for example, JΓ1 = ūγ5d and JΓ2 = d̄γ4γ5d, which will
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be appear in the discussion of the PCAC relation in Sec. 2.8.

2.5.4 Correlation functions with zero momentum

Let us consider the sum of the two-point correlator over all spatial point, that is,

the projection to zero momentum. Accordingly we can measure the spectra of the

mesons in the rest frame from the sum. For large time separation t, the correlation

function (with zero momentum) is dominated by the lowest-lying state. We can

express the correlator as an exponential function:

C(t) ≡∑
x
〈0|J(t, x)J†(0, 0)|0〉 (2.68)

' | 〈0|J|h〉 |
2

2mh
e−mht, (2.69)

where h is the ground-state hadron and mh is its mass.

We may estimate the mass by taking the logarithm since the correlator decrease

exponentially. We define

meff ≡ log
C(t)

C(t + 1)
, (2.70)

which is called the effective mass. Under periodic boundary conditions, the corre-

lator is modified as

C(t) ' | 〈0|J|h〉 |
2

2mh

(
e−mht + e−mh(T−t)

)
, (2.71)

where T is the temporal extent of the lattice. Since a ratio of correlators is approxi-

mately proportional to a cosh function ,

C(t + 1) + C(t− 1)
C(t)

' e−mh + e+mh , (2.72)

we can redefine the effective mass as

meff ≡ cosh−1
(

C(t + 1) + C(t− 1)
2C(t)

)
(2.73)

to take the periodicity into account. In practice, the effective mass is used as a crite-

rion of the fit range. To determine the mass or the hadronic matrix element, we fit the

function (2.69) or (2.71) in the range where the the effective mass shows a plateau.

The effective mass quantitatively indicates whether the grand state sufficiently sat-

urates the correlator, or not.

The excited states are also of interest in the study of (lattice) QCD. However, the

measurements of these state are more difficult than that of the ground state. Letting

an energy of a state E, the state exponentially decay as e−(E−mh)t and is buried in
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the ground state. Moreover, the contribution of the excited state would be called

“contamination” if one were interested in the low-energy reaction. By contrast, this

contribution is important in this work, since we investigate the intermediate regime

where the short-distance effect competes with the long-distance one. Our analysis

of the spectral sum may shed light on the role of the higher energy spectra.

2.5.5 Noise source

We introduce a noise source for estimating the sum over the spatial position

of the source points x0. As we discussed in Sec. 2.5.1, the local source fixes the

source position to a single point. If the calculation of the correlation function were

performed only once for each gauge configuration, a lot of information would be

wasted. In addition, the number of the configuration has to be limited. Solving the

Dirac equation with a translated source position, we increase not only the statistics,

but also the numerical cost. Nevertheless, the noise source enables us to estimate the

propagator from all spatial point x0 with the same cost.

We discuss the correlation function C(t) with the noise source and the relation

between the noisy and local sources. Let us consider a noise vector η assigned a

random number at each spatial point, which satisfy〈〈
η(x)η(y)†

〉〉
= δx,y. (2.74)

Here, 〈〈·〉〉 denotes an expectation value for the random numbers. The equation

implies that the random numbers are independent. The type of the random numbers

are optional. In this work, we use the Z2 random number, that is, η(x) = ±1. 1 We

define a Z2 noise source distributed at a time slice t0 as

S(α0,c0)
Z2

(t, x)α
c
= δt,t0 δα,α0 , δc,c0 η(x). (2.75)

The solution of the Dirac equation with the source S(α0,c0)
Z2

is expressed as

G(α0,c0)
Z2

(t, x)α
c
= ∑

x0

D−1(t, x|t0, x0)αα0cc0
η(x0). (2.76)

1We can extend the Z2 noise to a complex one as η(x) = (±1 ± i)/
√

2, which obviously satisfy
(2.74). It is often called a Z2 ⊗ Z2 source.
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Replacing G(α,c)
local(t, x) with G(α0,c0)

Z2
(t, x) in (2.66), we obtain a zero momentum pro-

jected correlator C(t):

−
〈〈

∑
α,β
ρ,σ

∑
c,d

G(σ,c)
Z2

(t, x)∗ρ
d
(γ5Γ)ρβG(α,c)

Z2
(t, x)β

d
(Γγ5)ασ

〉〉

=− ∑
x,x0y0

〈〈
tr
[
η(y0)

†D−1(t0, y0|t, x)†γ5ΓD−1(t, x|t0, x0)η(x0)Γγ5

]〉〉
'−∑

x,x0

tr
[

D−1(t0, x0|t, x)†γ5ΓD−1(t, x|t0, x0))Γγ5

]
= ∑

x,x0

〈0|JΓ(t, x) J̄Γ(t0, x0)|0〉F . (2.77)

In the third step, we have used (2.74). From the result (2.77), we have demonstrated

that the noise source indeed estimates the sum of the local correlator over the source

position x0.

Considering the coordinates x and x0 simply as indices of the propagator matrix,

the noise vector stochastically estimate the trace. We may estimate the color or spin

trace by distributing the noise vector over the corresponding internal degrees of

freedom. For example, the linked source distributed over the color space [65, 66],

S(α0)
linked(t, x)α

c
= δt,t0 δα,α0 η(x)c, (2.78)〈〈

η(x)cη(y)†
d

〉〉
= δx,yδc,d, (2.79)

and the source distributed over the color and spinor space [67],

S̃Z2(t, x)α
c
= δt,t0 η̃(x)α

c
, (2.80)〈〈

η̃(x)α
c
η̃(y)†

β
d

〉〉
= δx,yδc,dδα,β, (2.81)

are used in the literature. These sources save the computational costs, however, the

results are more affected by the stochastic noise. Moreover, if γ5Γ is not diagonal,

we can not simply measure the correlators by the source S̃Z2 . In this case, we need

the following solution vectors for each Γ:

G̃Γ
Z2
(t, x) = ∑

x0

D−1(t, x|t0, x0)(Γγ5)
†η̃(x0), (2.82)

besides the solution for the source S̃Z2 ,

G̃Z2(t, x) = ∑
x0

D−1(t, x|t0, x0)η̃(x0). (2.83)

Similarly, the source distributed over the color space can not simply measure the

two-point correlation function of the color octets. We have to choose the appropriate
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source for the correlator to measure. More detailed discussion can be found in [68].

2.6 Möbius Domain-Wall fermions

In this work, we use the Möbius Domain-Wall (MDW) fermions [69]. MDW

fermions are defined on a 5D lattice, which consists of 4D spacetime and one extra

dimension. This lattice fermions have a good chiral property. The chiral symme-

try is broken by the finite extent of the extra dimension, Ls. In our ensembles, the

symmetry breaking effect is negligibly small. Therefore some chiral relations in the

continuum limit hold even at finite lattice spacing. For instance, the short-distance

correlators for the vector (scalar) and axial vector (pseudo scalar) are consistent up

to finite mass and nonperturbative corrections. It helps us to compare lattice results

with the counterparts in the continuum limit.

The domain-wall fermion action for 5D fermion fields ψ(x, s) is defined by

SDW = ∑
x,y

Ls−1

∑
s,r=0

ψ̄(x, s)DGDW(x, s|y, r)ψ(y, r), (2.84)

where x, y are the coordinates in the 4D spacetime and s, r are the indices of the

extra dimension. The operator DGDW is a generalized domain-wall Dirac operator,

including the Shamir-type [70] and Boriçi-type [71, 72]. This operator DGDW can be

written as a band matrix for s and r, except for the mass term:

DGDW =



D̃ −P− mP+
−P+ D̃ −P−

−P+ D̃ −P−
. . . . . . . . .

−P+ D̃ −P−
mP− −P+ D̃


. (2.85)

Here, m is the bare mass of the fermions and P± = (1± γ5)/2 are chirality projection

operators. The operator D̃ is defined by the 4D Wilson-Dirac operator DW(−M)

with a negative mass M 2:

D̃ = D−1
− D+ (2.86)

D− = 1− cDW(−M) (2.87)

D+ = 1 + bDW(−M). (2.88)

2 M corresponds to the domain-wall height.
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Setting (b, c) = (3/2, 1/2), we define the MDW fermions DMDW.3 By the definition

(2.85), we have to solve the inverse of D− for all diagonal components. Thus we

multiply the definition (2.85) by D− and redefine the operator,

D̂MDW ≡ D−DMDW (2.89)

=



D+ −D−P− mD−P+
−D−P+ D+ −D−P−

−D−P+ D+ −D−P−
. . . . . . . . .

−D−P+ D+ −D−P−
mD−P− −D−P+ D+


. (2.90)

In practice, we solve equations for D̂MDW rather than DMDW to obtain the 4D quark

propagator.

Letting S and G be the source and the propagator for the Dirac operator DMDW,

those are related as

D̂MDW(x, s|y, r)G(y, r|x0, s0) = S(x, s|x0, s0), (2.91)

where x, y, x0 are the coordinate in the 4D spacetime and s, r, s0 are the indices of the

extra dimension. The color and spinor indices are omitted. We can compute hadron

correlators from the solution

G(x, s|x0, s0) = D̂−1
MDW(x, s|y, r)S(y, r|x0, s0) (2.92)

following Wick contraction as discussed in Section 2.5.

To obtain physical quantities composed by 4D quark s, we have to properly

project 5D fermion fields ψ(x, s) onto 4D spacetime. We construct the 4D quark

fields as

q(x) = P−ψ(x, 0) + P+ψ(x, Ls − 1), (2.93)

q̄(x) = ψ̄(x, 0)P+ + ψ̄(x, Ls − 1)P− (2.94)

3The sets of the coefficients (b, c) = (1, 0) and (b, c) = (1, 1) correspond to the Shamir- and Borici-
type domain wall fermions, respectively.
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since the left-handed and right-handed mode live near s = 0 and s = Ls − 1, respec-

tively . Thus the 4D quark propagator D−1
4D can be related to D̂−1

MDW:

D−1
4D (x|y) ≡ 〈q(x)q̄(y)〉F

= P−D−1
MDW(x, 0; y, 0)P+ + P−D−1

MDW(x, 0; y, Ls − 1)P−

+ P+D−1
MDW(x, Ls − 1; y, 0)P+ + P+D−1

MDW(x, Ls − 1; y, Ls − 1)P−

= (δs,0P− + δs,Ls−1P+)D−1
MDW(x, s|y, r)(δr,0P+ + δr,Ls−1P−)

= (δs,0P− + δs,Ls−1P+)D̂−1
MDW(x, s; y, r)D−(δr,0P+ + δr,Ls−1P−). (2.95)

We can obtain the 4D propagator by multiplying the source S and the solution

G(x, s|x0, s0) in the equation (2.92) by D−(δr,0P++ δr,Ls−1P−) and (δs,0P−+ δs,Ls−1P+),
respectively. Using the solution (2.92) with the relation (2.95), we can measure

hadron correlation functions as discussed in the previous sections.

2.7 Renormalization of lattice operators

Lattice QCD has been used to study hadronic decays and transition processes

nonperturbatively. Measuring two- and three-point correlation functions, one ex-

tracts parameters such as decay constants and form factors from hadronic matrix

elements. These parameters are important inputs for the phenomenological study

of the Standard Model.

Renormalization is necessary in the calculation of hadronic matrix elements. These

matrix elements from lattice QCD do not correspond to the values in the renormal-

ization scheme of the continuum theory (usually MS). Even if an operator involved

in these matrix elements has no anomalous dimensions, such as locally constructed

vector currents q̄γµq, the renormalization has to be done since the current does not

conserve due to lattice artifacts. These physical quantities computed on the lattice

can be used in the continuum theory after the renormalization.

We can perform renormalization through matching. The basic strategy is as fol-

lows. We measure some physical quantity containing the operator in lattice QCD.

We calculate the same quantity in the MS scheme perturbatively. Then we deter-

mine the renormalization constant by requiring them to be equal. Notice that it is

also possible to match via an intermediate scheme such as the RI/MOM scheme [73].

However, we focus on the direct renormalization method in this work. The quan-

tity used for the matching should be easy to control the discretization error in lattice

QCD. At the same time, the typical energy scale of the quantity has to be sufficiently

large to use the perturbative expansion and operator product expansion (OPE). If

we find the quantity which satisfies these requirements, the renormalization con-

stant will be less affected by the systematic error.
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We review the X-space method, which gives the renormalization constant [19]

we will use in Chap. 5. The X-space method use a correlation function with a finite

separation |x|:

Πlat(x2, a2) = 〈0|JΓ(x) J̄Γ(0)|0〉 (2.96)

We can directly measure the correlator (see Sec. 2.5.3). Using a renormalization

constant ZMS/lat
Γ for JΓ, we may relate the correlator up to the nonperturbative and

discretization effect ,

ΠMS(µ2; x2) =
(

ZMS/lat
Γ (µ2, a2)

)2
Πlat(a2; x). (2.97)

Here, ΠMS is the corresponding perturbative series in the MS scheme. We consider

this equation as the renormalization condition. Solving it for ZMS/lat
Γ , we can express

the solution in the following form:

Z̃MS/lat
Γ (µ2, a2; x) ≡

√
ΠMS(µ2; x2)

Πlat(a2; x)
(2.98)

= ZMS/lat
Γ (µ2, a2) + C−2(a/x)2 + C4x4 + C6x6. (2.99)

The discretization error is incorporated into this function as C−2. The coefficient

C4 and C6 correspond to the nonperturbative correction of the mass-dimension four

and six operators, respectively. Accordingly, we can determine the renormalization

constant ZMS/lat
Γ (µ2, a2) by a fit of Z̃MS/lat

Γ (µ2, a2; x).
The renormalization constants for the MDW fermion has the chiral symmetry. In

other words, the renormalization constant of the vector courent q̄γµq is equivalent

to that of the axial current q̄γµγ5q:

ZMS/lat
V (a2) = ZMS/lat

A (a2). (2.100)

Here, we omit the dependence on the scale µ since the (axial) vector has zero anoma-

lous dimension. Similarly, For the (pseudo) scalar density

ZMS/lat
S (µ2, a2) = ZMS/lat

P (µ2, a2) (2.101)

holds. Taking advantage of these chiral property, [19] determines the renormaliza-

tion constant by combining Z̃MS/lat
Γ (µ2, a2; x) to cancel some of the nonperturbative

effects that appear in the fit. Respecting the symmetry not only makes the renormal-

ization procedure simpler, but also helps us to determine the constant ZΓ.
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2.8 PCAC relation of the Domain-wall fermion

In this section we summarize the partially conserved axial vector current (PCAC)

relations associated with chiral symmetry. We discuss how it holds on the lattice and

see how it affects the correlation function. We refer to [74, 75] in this section.

First, we review the PCAC relation in the continuum theory. We define isovector

axial currents and pseudoscalar density operators

Aa
µ ≡

1
2

ψ̄γµγ5τaψ, (2.102)

Pa ≡ 1
2

ψ̄γ5τaψ, (2.103)

where, ψ = (u, d)T and τa is the Pauli matrix. We consider an infinitesimal chiral

rotation

δψ(x) =
1
2

ωa(x)γ5τaψ(x), (2.104)

δψ̄(x) =
1
2

ωa(x)ψ̄(x)γ5τa. (2.105)

According to the Ward-Takahashi identity, we can relate the change of the action S
and an operator O under this transformation as

〈0|δSO|0〉 = 〈0|δO|0〉 . (2.106)

The expression of the change of the action is

δS =
∫

d4x ωa
(
−∂µ Aa

µ + 2mPa
)

, (2.107)

where we ignore the isospin breaking, namely m = mu = md. Specifying ωb(x) =

ωδabδ(x− y) and O = Pa(y), one can derive

δO = 2ωδ(x− y)ψ̄ψ(y). (2.108)

Therefore, we obtain an identity

〈0|∂µ Aa
µ(x)Pa(y)|0〉 − 2m 〈0|Pa(x)Pa(y)|0〉 = 2δ(x− y) 〈0|ψ̄ψ(y)|0〉 . (2.109)

Focusing on the low energy, we derive the PCAC relation from (2.109). We consider

correlators with a time separation t by summing over the spatial coordinate x. For

simplicity, we assume y = (0, 0). The first term in the l.h.s. of (2.109) yields a non-

zero value only if µ = 4 since the operator ∂µ Aa
µ(x) is projected to zero momentum.

For large t, the contribution of π mesons is dominant. By the definition of the pion
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decay constant, the matrix element of the axial current is written as

∂t 〈0|Aa
4(x)|πa(p = 0)〉 = m2

π fπe−mπ t. (2.110)

Therefore, we can express an asymptotic form of the correlator

∑
x
〈0|∂t Aa

4(t, x)Pa(0, 0)|0〉

'mπ fπ

2
e−mπ t 〈πa(0)|Pa|0〉 . (2.111)

At the same time, the correlator of the pseudoscalar can be expressed as

∑
x
〈0|Pa(t, x)Pa(0, 0)|0〉

' e−mπ t

2mπ
〈0|Pa |πa(0)〉〈πa(0)| Pa|0〉 . (2.112)

Now the r.h.s. of (2.109) can be ignored since we consider t � 0. From the terms

proportional to e−mπ t, we obtain

m2
π fπ = 2m 〈0|Pa|πa(0)〉 . (2.113)

This equation relate the quark mass , which explicitly breaks the chiral symmetry,

and the pion mass. The equation implies that the axial current is conserved in the

chiral limit m→ 0. Therefore, (2.113) is called the PCAC relation.

On the lattice, we may expect a relation similar to (2.113) with some modifica-

tions. As we see 2.7, the local current Aa
µ(x) needs renormalization. In addition, the

correction for the chiral symmetry is necessary due to the lattice regularization. The

MDW fermions used in this work is defined in a finite Ls, which slightly breaks the

chiral symmetry. Thus, the quark mass is modified from the bare mass mbare as

m = mbare + mres, (2.114)

where mres is a residual quark mass parametrizing the symmetry breaking. We ex-

press the PCAC relation in our setup as

m2
π fπ = ZA 〈0|∂µ Aa

µ|πa(0)〉 = 2(mbare + mres) 〈0|Pa|πa(0)〉 . (2.115)

In this work, we use JLQCD ensembles with the MDW fermion where the resid-

ual mass mres . 1 MeV [76]. The residual mass is estimated by the braking of the

Ginsparg-Wilson relation. This indicates the good chiral property of our lattices. As

we mentioned in Sec. 2.7, for the renormalization constants ZV = ZA and ZS = ZP

hold from the chiral symmetry up to O(m2
res) [77]. In the ss̄ channel we focus on

other chapters, the residual mass is negligible compared to the strange quark mass
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ms ∼ 100 MeV. Thus, by using MDW fermions, the computations can be performed

in the same way as in the continuum theory.
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Chapter 3

Two-point correlation function and
QCD sum rule

3.1 Dispersion relation and spectral functions

In this section, we discuss a dispersion relation bridging the gap between (per-

turbative) QCD and the nature of hadrons. The basis of that is the analyticity of

correlators. We will see that a spectral function appears in the derivation of the rela-

tion. The dispersion relation is one of the key concepts in QCD sum rules.

We define the hadronic vacuum polarization (HVP) function as a Fourier trans-

form of the current-current correlator,

(qµqν − q2gµν)Π(q2) = i
∫

d4x eiqx〈Jµ(x)Jν(0)〉, (3.1)

where Jµ = q̄γµq is the quark vector current. The Lorentz tensor qµqν − q2gµν in the

l.h.s. results from the current conservation. The HVP function is analytic except for

the real axis q2 > 0 where poles and a branch cut1 may exist. Using the Cauchy’s

integral theorem, the function may be rewritten by an integral,

Π(q2) =
1

2πi

∮
ds

Π(s)
s− q2 . (3.2)

The integration contour encircling the pole at s = q2 is shown Fig. 3.1. The integrals

around the positive real axis take the following form,

∫ ∞+iε

0+iε
ds

Π(s)
s− q2 +

∫ 0−iε

∞−iε
ds

Π(s)
s− q2 =

∫
ds

Π(s + iε)−Π(s− iε)
s− q2 , (3.3)

where ε → 0+. The discontinuity reduces to the imaginary part by the Schwarz

reflection principle,

Π(s + iε)−Π(s− iε) = 2i Im Π(s + iε). (3.4)

1The branch point corresponds to the threshold energy of hadrons.
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Re s

Im s

q2 = −Q2

FIGURE 3.1: The integration contour in the complex s-plane.

If the function behaves as Π(s) ∼ 0 at |s| ∼ ∞, it would be written in terms of a

spectral function ρ(s):

Π(q2) =
∫ ∞

0
ds

ρ(s)
s− q2 , (3.5)

ρ(s) =
1
π

Im Π(s + iε). (3.6)

The equation (3.5) is called the dispersion relation. The integral in the dispersion

relation, however, diverges since the spectral function does not vanish in the limit

s → ∞. This is attributed to the ultraviolet (UV) divergence of the correlator (3.1).

We can avoid this problem by subtracting once, for instance, Π(0) at a point q2 = 0

since the divergence is logarithmic. Finally, we obtain a once-subtracted dispersion

relation,

Π(q2)−Π(0) = q2
∫ ∞

0
ds

ρ(s)
s(s− q2)

. (3.7)

The dispersion relation links two kinematic regions, namely, q2 < 0 and q2 > 0.

In the deep Euclidean region Q2 ≡ −q2 � 0, the perturbative expansion and OPE

are applicable. In contrast, the spectral function ρ(s) is understood as the density

of hadronic states of a given energy. The relation (3.7) enables us to investigate the

hadronic processes from QCD.

We demonstrate the role of the spectral function in a physical process. Let us

consider electromagnetic currents with the electric charge of the quark, which ap-

pears in the process of the electron-positron annihilation into hadrons. Summing

these currents over flavors,

JEM
µ =

2
3

ūγµu− 1
3

d̄γµd− 1
3

s̄γµs + · · · , (3.8)
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we define the HVP function ΠEM(q2) and ρEM(s) as (3.1) and (3.6), respectively. Ac-

cording to the optical theorem, the function ΠEM(q2) in the time-like region q2 > 0

is intimately related with the total cross section σ(e+e− → hadrons; s),

σ(e+e− → hadrons; s) =
16π2α2

s
Im ΠEM(s + iε). (3.9)

Here, α is the fine structure constant and higher QED corrections are neglected. On

the other hand, the total cross section σ(e+e− → µ−µ+; s) to the leading order in the

massless limit m2
µ � s is expressed as

σ(e+e− → µ−µ+; s) =
4πα2

3s
. (3.10)

Thus, the spectral function is proportional to the ratio of these experimental observ-

ables,2

ρEM(s) =
1

12π2
σ(e+e− → hadrons; s)

σ(e+e− → µ−µ+; s)
. (3.11)

The spectral function appears in the physical process and is measurable experimen-

tally. 3

3.2 Quark-hadron duality

The other key concept in QCD sum rules is the quark-hadron duality. This du-

ality gives the asymptotic behavior of the dispersion relation (3.7) in some limits of

kinematic variables. It allows us to model the hadronization effects by QCD.

First, we consider the deep Euclidean domain Q2 � Λ2
QCD. In this case, we

can evaluate the HVP function Π(−Q2) by the OPE. In the limit of Q2 → ∞, all

power corrections vanish since the dimension-D corrections are ∼ ΛD
QCD. Defining

the HVP in perturbative QCD as Πpert(q2), we obtain the asymptotic form of the

spectral sum (integral) in (3.7),

Q2

π

∫ ∞

0
ds

Im Π(s + iε)
s(s + Q2)

' Q2

π

∫ ∞

0
ds

Im Πpert(s + iε)
s(s + Q2)

, (3.12)

where Q2 → ∞. Despite the l.h.s. is the spectral sum of the hadronic correlator, the

r.h.s. is purely perturbative and calculable in terms of the quarks and gluons. This

is an example of the quark-hadron duality.

Another example is in the timelike region q2 = s > 0, where the spectral function

is given a physical energy. Because of the asymptotic freedom of QCD, the integrand

2This ratio is called the R-ratio.
3The spectral function of the weak isospin triplet current can be obtained by hadronic τ decays.
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of the dispersion relation is likely to become perturbative, i.e.,

ρ(s) ' 1
π

Im Πpert(s + iε), (3.13)

where s → ∞. As we have seen in the previous section, the spectral function (3.6)

appears in the ratio of the cross section up to a constant. In fact, the duality (3.13)

mostly holds in the e+e− annihilation when
√

s & 3 GeV except for resonance peaks.

The duality assumption will be violated if the OPE does not describe nonper-

turbative effects well. In fact, the spectral function in the low energy regime (
√

s .

2 GeV) oscillates and disagree with perturbative QCD. This cannot be explained by

the truncation uncertainties of the perturbative series and the power corrections.

The duality violation has been explored in, e.g., the Regge theory at large Nc. The

duality violating term may be oscillating as trigonometric functions which do not

appear in the OPE, such as, ρDV(s) ∼ e−αs sin(βs) where α and β are constants. In

the deep Euclidean region, this term becomes an exponentially decaying function

and the violation of the quark-hadron duality would be negligible. The validity of

this duality assumption has to be assessed, which is an important and open issue.

This is, however, beyond the scope of this work. We refer the reader to [18] for more

detailed discussion with some examples.

3.3 Two-point correlation functions in the massless limit

We consider the two-point correlation functions in the massless limit. The ex-

pression for the vector current will be used in the discussion of the QCD sum rule.

The correlator is defined as

ΠΓ(q2) ≡ i
∫

d4xeiqx 〈0|jΓ(x)jΓ(0)|0〉 , (3.14)

where jΓ(x) is a quark bilinear operator such as q̄γµq, q̄q, and q̄σµνq. These operators

correspond to Γ = V, S, and T, respectively. In the case of the vector current, we can

write (3.14) as

(qµqν − q2gµν)Π(q2) ≡ i
∫

d4xeiqx 〈0|jµ(x)jν(0)|0〉 . (3.15)

The function Π(q2) is the so-called hadronic vacuum polarization (HVP) function.

The scalar correlator in the momentum space, ΠS(q2), is proportional to Q2. In con-

trast, the correlator of the tensor current has the following tensor structure,

ΠT(q2) = ΠT
1 T(1)

µνρσ + ΠT
2 T(2)

µνρσ, (3.16)

T(1)
µνρσ = q2(gµρgνσ − gµσgνρ

)
, (3.17)

T(2)
µνρσ = qµqρgνσ − qµqσgνρ − qνqρgµσ + qνqσgµρ. (3.18)
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The correlator in (3.14) has the UV divergence expected by a dimensional anal-

ysis and the subtractive renormalization is necessary. In addition, the operator jΓ(x)
may also need the renormalization. Accordingly, the correlator is renormalization-

scale dependent. Since we only consider the Euclidean region Q2 ≡ −q2 > 0, we

redefine the correlator in (3.14) as ΠΓ(µ2; Q2).

The RG evolution of the Euclidean correlator is described by an inhomogeneous

equation,

µ2 d
dµ2 ΠΓ(µ2; Q2) = 2γΓ(as)ΠΓ(µ2; Q2) + γΓΓ(as)TΓ, (3.19)

where TΓ is a tensor that depends on the Euclidean momentum Qµ, e.g. TS = Q2

and TV = (−Q2δµν + QµQν). For the tensor current, the RG equation can be de-

composed into two parts corresponding to the Lorentz structures T(1)
µνρσ and T(2)

µνρσ,

respectively. The function γΓ(as) is the anomalous dimension of the multiplicative

renormalization factor for jΓ(x), while γΓΓ(as) is that of a subtractive counterterm.

For the vector current which we use in this work, the anomalous dimension van-

ishes: γV(as) = 0. Nevertheless, we leave it in the following expressions to cover

other operators. The solution to describe the evolution between two different scales

µ0 and µ1 is

ΠΓ(µ2; Q2) = exp
(∫ as(µ)

as(µ0)
da

2γΓ(a)
β(a)

)(
ΠΓ(µ2

0; Q2) + ∆Γ(µ1, µ0)TΓ

)
, (3.20)

∆Γ(µ1, µ0) =
∫ as(µ)

as(µ0)
da

γΓΓ(a)
β(a)

exp
(
−
∫ a

as(µ0)
da′

2γΓ(a′)
β(a′)

)
. (3.21)

An expression of the solution which explicitly depends on log
(
µ2/Q2) is more use-

ful to compute the Borel transformation4. Hence, we decompose the derivative as

µ2 d
dµ2 = µ2 ∂

∂µ2 + β(as)
∂

∂as
, (3.22)

and solve the following equation

µ2 ∂

∂µ2 ΠΓ(µ2; Q2) =

(
2γΓ(as)− β(as)

∂

∂as

)
ΠΓ(µ2; Q2) + γΓΓTΓ. (3.23)

The partial derivative ∂
∂µ2 acts only on the terms that explicitly depend on µ2. The

solution of this equation can be constructed recursively through

ΠΓ(`)(µ2; Q2) =
∫

dL
(

2γΓ(as)− β(as)
∂

∂as

)
ΠΓ(`−1)(µ2; Q2) + γΓΓTΓL, (3.24)

where ΠΓ(`)(µ2; Q2) stands for the solution up to O(a`s) and L = log
(
µ2/Q2).

4The expression is also used for correlator in the coordinate space, which is derived by the Fourier
transformation.
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n Πn,0
0 Πn,1

0 Πn,2
0 Πn,3

0 Πn,4
0

0 0.042217160 0.025330296
1 −0.0056966386 0.025330296
2 0.021586071 0.041537156 0.028496583
3 0.14154678 0.16137968 0.14411919 0.042744874
4 unknown 1.2431020 0.83821512 0.40025907 0.072131975

TABLE 3.1: Perturbative coefficients of the HVP in the massless limit
Π0(µ

2; Q2) [79, 80].

Let us now discuss the vector correlator. The perturbative series of HVP at

µ2 = Q2 is known toO(α3
s ) [78, 79]. The anomalous dimension of the vector current

is γV(as) = 0. This is due to the current conservation. The anomalous dimension

γVV(as) has been calculated at O(α4
s ) [78, 79]. We derive the explicit form of the

solution in Appendix C. Table 3.1 shows the numerical coefficients of the massless

HVP function in the MS scheme,

Π0(µ
2; Q2) =

4

∑
n=0

n

∑
m=0

Πn,m
0 an

s (µ
2)Lm, (3.25)

where L = log
(
µ2/Q2) and n f = 3. Note that we can obtain the L-dependent terms

up to O(a4
s ) although Π4,0

0 is currently unknown. The L-independent terms are,

however, irrelevant for the Borel transform.

3.4 Dimension-two corrections of the correlator

In this section, we discuss the dimension-two correction of the vector current

correlator, which is at the next-to-leading order of OPE. Since the correlator is gauge

invariant, dimension-two condensates do not exist. Therefore, the correction is pro-

portional to the quark mass squared m2. We expand the HVP function by 1/Q2 as

Π(µ2; Q2) = Π0(µ
2; Q2) +

m2

Q2 Π2(µ
2; Q2) +O(1/Q4). (3.26)

The function Π0(µ2; Q2) has been discussed in the previous section. The perturba-

tive coefficients Π2(µ; Q2) at µ2 = Q2 has been calculated up to O(α3
s ) [81, 82].

The L-dependence of the coefficient Π2(µ; Q2) is governed by the following

equation:

µ2 ∂

∂µ2 Π2(µ
2; Q2) = −

(
2γm(as) + β(as)

∂

∂as

)
Π2(µ

2; Q2) (3.27)
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n Πn,0
2 Πn,1

2 Πn,2
2 Πn,3

2

0 −0.15198178
1 −0.40528473 −0.30396355
2 −3.6690614 −2.8749886 −0.64592255
3 −38.067010 −32.318737 −11.104168 −1.3994988

TABLE 3.2: Perturbative coefficients of the dimension-two correction
Π2(µ

2; Q2) [79].

This equation is derived by taking the derivative of HVP in (3.26),

µ2 d
dµ2 Π(µ2; Q2) = 0, (3.28)

µ2 d
dµ2 = µ2 ∂

∂µ2 + β(as)
∂

∂as
+ 2γmm2 ∂

∂m2 , (3.29)

and extracting the terms proportional to m2. The solution can be constructed in

the same way as the previous section but γΓ = −γm and γΓΓ = 0. We show the

numerical expression of the perturbative coefficients in the MS scheme,

Πn
2(µ

2; Q2) =
3

∑
n=0

n

∑
m=0

Πn,m
2 an

s (µ
2)Lm, (3.30)

in Table 3.2, where we set n f = 3. The derivation of these coefficients is discussed in

Appendix D. Comparing to the perturbative series of Π0(µ2; Q2), we find that the

dimension-two correction is less convergent. We will discuss the size of the trunca-

tion error after Borel transformation in the following section.

3.5 Borel transform of the vacuum polarization function

We briefly review the use of the spectral sum of QCD current correlators. More

detailed reviews and discussions are found in the literature, e.g. [83, 84].

As a first step, we consider the dispersion relation (3.5) which links QCD to the

hadronic physics. As discussed in Sec. 3.1, the integral in the dispersion relation is

divergent. One can remove the divergence by differentiation,

∂

∂Q2 Π(−Q2) =
∫ ∞

0

ds
(s + Q2)2 ρ(s). (3.31)

In general, the n-th derivative of Π(−Q2) with respect to Q2 satisfies a modified

form of the dispersion relation. This may lead to a series of sum rules.

For quarkonium systems, moments of the spectra have been studied for decades

[85]. We define the moments as

Mn ≡
∫ ∞

0

ds
sn+1 ρ(s). (3.32)
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From dimensional analysis, the moments do not contain the UV divergence for n ≥
1. Using the dispersion relation, we can write those in terms of the derivatives of

HVP at Q2 = 0,

Mn =
1
n!

(
− ∂

∂Q2

)n

Π(−Q2)

∣∣∣∣
Q2=0

. (3.33)

That appears in the heavy quark mass expansion of HVP,

Π(−Q2) = ∑
n=1

CV
n

(
Q2

4m2
q

)n

, (3.34)

where the subtraction term is ignored. Typical length scale is given by an inverse

of the quark mass m−1
q , which is short enough to describe perturbatively for charm

and bottom quarks. Thus, we can write the coefficient CV
n as a function of αs(µ) and

Lm ≡ log
(
mq(µ)/µ

)
.5 This perturbative series of the moments are known to O(α3

s )

in the MS scheme for n = 1–3 [87–90]. Using (3.32), the moment is evaluated by the

e+e− cross section from experiments,

Re+e−→qq̄+X(s) ≡
σe+e−→qq̄+X(s)
σe+e−→µ+µ−(s)

∝ ρ(exp)(s), (3.35)

Mexp
n =

∫ ∞

0

ds
sn+1 ρexp(s). (3.36)

One can determine the quark mass mq by solving

mq(µ) =
1
2

(
CV

n (αs(µ), Lm)

Mexp
n

) 1
2n

, (3.37)

where αs is used as an input parameter. This method is called the moment sum rule.

The studies of moment sum rules can be found in, e.g., [91–93].

Let us return to the light quark system. We define a spectral sum as

D(n)(Q2) ≡
∫ ∞

0
ds W(n)(Q2; s)ρ(s), (3.38)

W(n)(Q2; s) ≡ Q2n+2

n!

(
− ∂

∂Q2

)n 1
s + Q2

=
Q2n+2

(s + Q2)n+1 , (3.39)

which is equivalent to the derivative of Π(−Q2). The weight function is normalized

at s = 0: W(n)(Q2; 0) = 1. As a first step, we consider the spectral sum at n = 1.

To compute D(1)(Q2) perturbatively, the scale Q2 has to be large enough. Figure 3.2

5The perturbative series might be improved by OPE to include a part of nonperturbative effects. The
leading power correction of the moment is the gluon condensate 〈0| αs

π G2|0〉 and its Wilson coefficient
is known to O(αs) [86].
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FIGURE 3.2: The weight function W(n)(Q2; s) at n = 1.

shows the weight function at certain values of Q2. We naturally expect that this spec-

tral sum at large Q2 is not sensitive to the low-lying spectra. Therefore, that is not

suitable to estimate the hadronic parameters. To enhance low-energy contributions,

one may increase n as shown in Fig. 3.3. This leads to, however, a less convergent

OPE since power corrections take the following form under the transformation (for

large n),

Q2n+2

n!

(
− ∂

∂Q2

)n( 1
Q2

)m

=
(n + 1)(n + 2) · · · (n + m− 1)

1 · 2 · · · (m− 1)

(
1

Q2

)m−1

∼
(

1
Q2/n

)m−1

. (3.40)

We have to take account of the tradeoff between the sensitivity to the low-lying

spectra and the convergence of OPE. If we take the both limits Q2 → ∞ and n→ ∞,

where Q2/n is fixed at M2 (see Fig. 3.4), a spectral sum can reach, more or less, a bal-

ance of these requirements. In this limit, the weight function becomes the following

form:

W(n)(Q2; s) =
(

1 +
s

Q2

)−n−1

→ e−s/M2
. (3.41)

This weight has been introduced by Shifman-Vainshtein-Zakharov (SVZ). In the re-

mainder of this chapter, we discuss this form of the spectral sum in detail.

In the QCD sum rule analyses, one introduces the Borel transform of HVP to

enhance the contributions from low-lying hadronic states. The Borel transformation
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FIGURE 3.3: The weight function W(n)(Q2; s) at Q2 = 4 GeV2.

is defined as

BM = lim
n,Q2→∞

Q2/n=M2

(Q2)n

(n− 1)!

(
− ∂

∂Q2

)n

, (3.42)

where M is the Borel mass that specifies a typical energy scale. The Borel transform

of HVP may then be written as

Π̃(M2) ≡ BM
[
Π(−Q2)

]
=

1
M2

∫ ∞

0
ds ρ(s)e−s/M2

. (3.43)

The exponential factor e−s/M2
suppresses the contributions from high-energy states

above M.

One can use OPE to evaluate Π̃(M2) including nonperturbative power correc-

tions. We start from an expression of Π(−Q2) as an expansion in 1/Q2

ΠOPE(−Q2) =
1

4π2

(
1 +

αs(µ2)

π

)
log
(

µ2

Q2

)
− 3

2π2
m2

Q2

+
1
12
〈0| αs

π G2|0〉
Q4 +

2m〈0|q̄q|0〉
Q4 − 224παs(µ2)

81
κ0〈0|q̄q|0〉2

Q6 + · · · ,

(3.44)

where αs(µ2) is the strong coupling constant defined at a renormalization scale µ, m
is the quark mass, and 〈0| αs

π G2|0〉 and 〈0|q̄q|0〉 are the gluon and chiral condensates,
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FIGURE 3.4: The weight function W(n)(Q2; s) at Q2/n = 4 GeV2.

respectively. Here, the four-quark condensate is represented by a vacuum satura-

tion approximation (VSA) with an overall factor κ0, which represents the violation

of VSA when κ0 6= 1. By the Borel transformation, the logarithmic function and

negative powers of Q2 are transformed as

BM
[
log
(
Q2)] = −1, (3.45)

BM

[
1

Q2n

]
=

1
(n− 1)!

1
M2n , (3.46)

where n is a positive integer. Therefore, the Borel transform of HVP can be expressed

as follows:

Π̃OPE(M2) =
1

4π2

(
1 +

αs(µ2)

π

)
− 3

2π2
m2

M2

+
1

12
〈0| αs

π G2|0〉
M4 +

2m〈0|q̄q|0〉
M4 − 112παs(µ2)

81
κ0〈0|q̄q|0〉2

M6 + · · · .

(3.47)

The perturbative coefficients of the leading order term, O(1/M0), in the massless

limit are known up to O(α4
s ) [80], where the disconnected diagrams are neglected.

(See also Sec. 3.3.) The other corrections taken into account in this work are summa-

rized in Sec. 5.2. Because of the factor 1/(n− 1)! in (3.46), the Borel transform is less

affected by higher dimensional condensates, and the OPE is made more convergent

than that for HVP itself (3.44).
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FIGURE 3.5: Perturbative expansion of Π̃(M2) at the leading order of
OPE. The renormalization scale is set at µ2 = M2e−γE .

Perturbative expansion of Π̃OPE(M2) in the massless limit shows a good con-

vergence. We set the renormalization scale µ2 to M2e−γE since the Borel transfor-

mation of the logarithmic function BM[logn(µ2/Q2)] appears as a polynomial of

log
(
µ2/M2e−γE

)
. (See Appendix E.) We show Π̃pert

0 (M2), which is the leading order

of the 1/M2 expansion, as a function of 1/M2 in Fig. 3.5. We set Λ
(n f =3)

MS
= 332 MeV

for the coupling constant αs(µ2). The running of αs(µ2) is incorporated at five-loop

level using RunDec [52, 53]. Figure 3.5 indicates that the truncation error of the per-

turbative expansion Π̃pert
0 (M2) is not substantial for M > 1 GeV. Indeed, the O(α4

s )

correction is at the level of 0.3% or smaller.

For the next-to-leading order terms of OPE, i.e., the terms of m2/Q2, the pertur-

bative coefficients are known to α3
s [82] as discussed Sec. 3.4,

Πpert
m2 (Q2) = − 3

2π2
m2(Q2)

Q2

(
1 + 2.66667

αs(Q2)

π

+ 24.1415
α2

s (Q2)

π2 + 250.471
α3

s (Q2)

π3 + · · ·
)

, (3.48)

where the renormalization scale µ is set at µ2 = Q2 and n f = 3. The numerical

expressions for different n f ’s are found, e.g., in [79]. We define the Borel transform

of the correction Π̃pert
m2 (M2) ≡ BM[Πpert

m2 (Q2)]. Applying the formula in (E.2) and
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setting µ2 = M2e−γE , we found the expression,

Π̃pert
m2 (M2) = − 3

2π2
m2(µ2)

M2

(
1 + 2.66667

αs(µ2)

π

+ 17.1505
α2

s (µ
2)

π2 + 152.426
α3

s (µ
2)

π3 + · · ·
)

. (3.49)

We plot Π̃pert
m2 (M2) in Fig. 3.6 (top). Unlike Π̃pert

0 (M2), we observe significant depen-

dence on the order of the perturbative expansion. To improve the convergence, we

set the renormalization scale at µ2 = 4M2e−γE as shown in Fig. 3.6 (middle). The de-

pendence on the scale µ is demonstrated in Fig. 3.6 (bottom), where the perturbative

expansion truncated atO(α3
s ) is shown for µ2 = 2M2e−γE , 4M2e−γE , 8M2e−γE . Since

Π̃pert
m2 (M2) should be independent of the renormalization scale up to truncation er-

rors, we treat the variation due to the unphysical scale setting as the truncation error

in the later sections.

In phenomenological studies, an ansatz for the spectral function of the form,

ρph(s) = f 2
Vδ(s−m2

V) + θ(s− sth)ρcont(s), (3.50)

is often used. Here, mV and fV are a mass and a decay constant of the ground-state

hadron, respectively. Excited states of hadrons are modeled by the continuum (or

scattering) states calculated in perturbative QCD, and the spectral function of the

continuum states ρcont(s) is introduced above the threshold sth. This replacement

amounts to assume the quark-hadron duality. The Borel transformation reduces the

dependence on this assumption. The integral in (3.43) with ρph(s) corresponds to

the OPE expression in (3.47). Namely,

Π̃OPE(M2) =
1

M2

∫ ∞

0
ds ρph(s)e−s/M2

(3.51)

is used in the QCD sum rule analysis. Solving this equation for mV and fV , one can

predict the mass and decay constant of this particular channel from the fundamental

parameters of QCD, such as αs(µ2), m as well as the condensates.

The QCD sum rule for the φ meson, which we mainly study in this work, is

discussed in the literature, e.g., [17, 94].
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scale is µ2 = M2e−γE . Middle: Same as the top figure but at
µ2 = 4M2e−γE . Bottom: The renormalization scale dependence of

Π̃pert
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Chapter 4

Borel transform as a smeared
spectrum

4.1 Two-point correlator as a spectral sum

We derive the spectral representation of the correlator. The relation between the

correlator and the spectral function is a clue to compute the Borel transform. We

follow the derivation in [95]. In this section, we assume the Euclidean spacetime

and ignore discretization errors.

We define a current-current correlation function as

C(t) =
∫

d3x〈Jz(t, x)Jz(0, 0)〉. (4.1)

Recall that it corresponds to the meson correlator with zero spatial momentum. An-

other important quantity in the derivation is the HVP function,

(QµQν −Q2δµν)Π(Q2) =
∫

d4x〈Jµ(t, x)Jν(0, 0)〉eiQ·x, (4.2)

where Qµ is an Euclidean momentum. We express HVP with an integral,

Π(Q2)−Π(0) =−Q2
∫ ∞

0

ρ(s)
s(s + Q2)

, (4.3)

which is the once-subtracted dispersion relation in the Euclidean spacetime. The

numerator ρ(s) = Im Π(s + iε) is a spectral function. Plugging Qµ = (ω, 0) into

(4.2) for Jµ = Jν = Jz, we may relate the correlator and HVP,

−ω2Π(ω2) =
∫ ∞

−∞
dt C(t)eiωt. (4.4)

Since the subtraction term appears only at t = 0, we can replace Π(ω2) with the

dispersion relation. Solving (4.4) for C(t) by the inverse of the Fourier transform, we
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FIGURE 4.1: The integration contour in the complex ω-plane.

express the correlator as an integral (suppose t > 0) [95],

C(t) =
∫ ∞

−∞

dω

2π
ω4
∫ ∞

0
ds

ρ(s)
s(s + ω2)

eiωt

=
∫ ∞

0
ds

ρ(s)
s

∫ ∞

−∞

dω

2π

ω4

s + ω2 eiωt

=
∫ ∞

0
ds

ρ(s)
s

∫ ∞

−∞

dω

2π

ω4

2i
√

s

(
1

ω− i
√

s
− 1

ω + i
√

s

)
eiωt

=
1
2

∫ ∞

0
ds
√

sρ(s)e−
√

st

=
∫ ∞

0
dω ω2ρ(ω2)e−ωt. (4.5)

In the forth step, we take the residual values ω = +i
√

s considering the integration

contour in Fig. 4.1. Changing the valuable ω =
√

s in the final step, we finally obtain

the spectral integral of the correlator.

The expression (4.5) gives the basis of weighted spectra in lattice QCD. We con-

sider a spectral sum SW(x) characterized by a parameter x. Using a weight function

W(x; s), we express it as

SW(x) =
∫ ∞

0
ds W(x; s)ρ(s). (4.6)

Suppose that we can compute the spectral sum from the correlator with a kernel

K(x; t). 1

SW(x) =
∫ ∞

0
dt K(x; t)C(t). (4.7)

1To remove the contact term in C(t), the kernel has to be smoothly K(x; t)→ 0 in the limit t→ 0 ,
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Using (4.5), we may relate the kernel K(x; t) and W(x; s),

∫
ds ρ(s)W(x; s) =

1
2

∫ ∞

0
dt
∫ ∞

0
ds
√

sρ(s)e−
√

stK(x; t), (4.8)

W(x; s) =
√

s
2

∫ ∞

0
dtK(x; t)e−

√
st. (4.9)

The relation can be considered as a form of the Laplace transform. Therefore, we

express the kernel K(x; t) by the inverse Laplace transform,

K(x; t) = L−1
[

2
ω

W(x; ω2)

]
, (4.10)

where ω =
√

s. This equation gives the connection between the spectral sum and

the correlator with the weight. In the following of this section, we demonstrate (4.10)

with some examples.

We consider the subtracted HVP in (4.3) as a first example. We write the weight

for the spectrum as

W(hvp)(Q2; ω2) = − Q2

ω2(ω2 + Q2)
. (4.11)

Using (4.10), the kernel function of the correlator can be expressed by

K(hvp)(Q2; t) = L−1
[

2
ω

W(hvp)(Q2; ω2)

]
=

2
Q2

(
1− Q2t2

2
− cos(Qt)

)
. (4.12)

Thus, we obtain the subtracted HVP through

Π(Q2)−Π(0) =
2

Q2

∫ ∞

0
dt
(

1− Q2t2

2
− cos(Qt)

)
C(t). (4.13)

The first and second terms in the integral corresponds to the subtraction of the con-

tact term. In fact, expanding the kernel near t→ 0,

Π(Q2)−Π(0) =− Q2

12

∫ ∞

0
dt t4C(t) +

Q4

36

∫ ∞

0
dt t6C(t) + · · · , (4.14)

we can easily confirm that this quantity is UV finite. The same expression can be

found in [95], up to sign.

Next, we consider the Adler function, which is defined by a derivative of HVP,

D(Q2) = −Q2 ∂

∂Q2 Π(Q2)

= Q2
∫ ∞

0

ρ(s)
(s + Q2)2 . (4.15)
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Then, the weight function is given by

W(Adler)(Q2; ω2) =
Q2

(ω2 + Q2)2 . (4.16)

By the inversion of the Laplace transform, the kernel has the following form,

K(Adler)(Q2; t) =L−1
[

2
ω

W(Adler)(Q2; ω2)

]
=

1
Q2 (2− 2 cos(Qt)−Qt sin(Qt)). (4.17)

We can then compute the Adler function D(Q2) through

D(Q2) =
1

Q2

∫ ∞

0
dt (2− 2 cos(Qt)−Qt sin(Qt))C(t) (4.18)

This expression is consistent with [96].

Next, we consider the moments of the spectra in lattice QCD. The q2-derivative

on the lattice that appears in (3.33) is equivalent to a temporal moment of the corre-

lation function, ∫ ∞

0
dt t2n+2C(t) ∝ Mn, (4.19)

where n is a positive integer. This can be derived by 2

K(mom)(n; t) = L−1
[

2
ω

1
ω2n+2

]
=

2t2n+2

(2n + 2)!
. (4.20)

The charmonium moments from lattice QCD can be compared with the phenomeno-

logical estimates. The lattice results agree well with the value extracted from the

experiments in the literature [24, 97].

The determination of the charm quark mass and strong coupling constant [23,

24] is an important application of the moment in lattice QCD. In this application, the

vector current is replaced by the pseudoscalar operator JP = c̄γ5c since the correlator

of this operator is more precisely calculable from lattice QCD. In addition, we do not

need the renormalization if we multiply the operator by the bare quark mass mbare
c .

2The factor 2 in the numerator does not appears in [24, 97]. Notice that the authors of these refer-
ences define the same as (4.19) but t runs from −∞ to +∞. Thus, the factor 2 is due to the definition of
the moment.
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The charmonium moment is defined by

G(t) =(mbare
c )2

∫
d3x 〈0|J5(t, x)J5(0, 0)|0〉 , (4.21)

Gn =
∫

dt tnG(t). (4.22)

The corresponding perturbative series has been calculated up to the same order of

the vector correlator, namely O(α3
s ) [90, 98],

Q2ΠP(Q2) =
∫ ∞

−∞
d4x〈J5(t, x)J5(0, 0)〉eiQ·x, (4.23)

ΠP(Q2) = ∑
n=1

CP
n

(
Q2

4m2
q

)n

+ (subtraction). (4.24)

The relation between Gn and CP
n is straightforward. Using several lower moments at

the same time, we can determine αs(µ) and mc(µ). The discretization effect would

be, however, substantial, which is due to the heavy quark mass. To reduce it, one

divides the moment Gn by the same quantity in the free theory G(0)
n . The mistuning

effect of the bare quark mass mc can be made small by the ratio mηc /mc, where

mηc is the mass of the charmonium ηc. Using these technique, the moments of the

correlators provide the precise determination of mc(µ) and αs(µ).3

The spectral sums in this section have simple relations to the correlator (4.1). This

is, however, not always the case for other spectral sum. In fact, the lattice compu-

tation of the Borel transform, which is the main interest in this thesis, is nontriv-

ial since its definition (3.43) is rather complicated and can not be expressed by the

derivative. Our treatment of this problem will be discussed in the following section.

4.2 Borel transform from lattice correlators

We compute the Borel transform Π̃(M2) using lattice QCD. The weighted inte-

gral of the spectral function of the form (3.43) can be interpreted as a smeared spec-

tral function. To compute the smeared spectrum in lattice QCD, we use the method

proposed in [35], which is based on the expansion of the smearing kernel in terms

of the transfer matrix on the lattice. The method relates the smeared spectrum to the

correlators computed on the lattice via the spectral representation. Applications to

the inclusive B̄s decay [36] and the inelastic lN scattering [37] have been discussed.

We briefly review the key ideas of this method in the following. In this section, all

parameters are in the unit of the lattice spacing a, unless otherwise stated.

We consider a current-current correlator with zero spatial momentum,

C(t) ≡∑
x
〈0|Jz(t, x)Jz(0, 0)|0〉, (4.25)

3The method has been extended to the bottomonium system [99].
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where Jz stands for the z component of the vector current. Computation of such

correlators as a function of the time separation t is straightforward in lattice QCD.

The relation between the correlator and the spectral function is given by [95]

C(t) =
∫ ∞

0
dω ω2ρ(ω2)e−ωt. (4.26)

We recall that ρ(ω2) is defined in (3.6). Here, we make a change of variable ω =
√

s.

Estimation of the spectral function ρ(ω2) from (4.26) is an ill-posed inverse problem

because the functions e−ωt with different ω’s are hard to distinguish numerically

when ω’s are close to each other. To avoid this problem, the method of [35] relates

the correlator to the smeared spectral function such as (3.43), instead of the spectral

function ρ(ω2) itself.

We define the spectral density for a state |ψ〉,

ρ̄(ω) =
〈ψ|δ(Ĥ −ω)|ψ〉

〈ψ|ψ〉 , (4.27)

where Ĥ is the Hamiltonian. The spectral density ρ̄(ω) evaluates the number of

states having an energy ω. Setting |ψ〉 = e−Ĥt0 ∑x Jz(0, x)|0〉, the Laplace transform

of the spectral density may be written in terms of the correlators,

C̄(t) ≡
∫ ∞

0
dω ρ̄(ω)e−ωt =

〈ψ|e−Ĥt|ψ〉
〈ψ|ψ〉

=
∑x,y〈0|Jz(0, x)e−Ĥ(t+2t0) Jz(0, y)|0〉

∑x,y〈0|Jz(0, x)e−2Ĥt0 Jz(0, y)|0〉

=
∑x,y〈0|Jz(t + 2t0, x)Jz(0, y)|0〉

∑x,y〈0|Jz(2t0, x)Jz(0, y)|0〉 =
C(t + 2t0)

C(2t0)
. (4.28)

Here, we introduce a small-time separation t0 > 0 to avoid the contact term that

potentially diverges at t0 = 0. In this paper, we set t0 = 1 not to lose high energy

state contributions too much. The correlator C̄(t) is normalized as C̄(0) = 1.

Let us now consider a smeared spectral function,

ρs =
∫ ∞

0
dω ρ̄(ω)S(ω), (4.29)

with a smearing kernel S(ω), which will be specified later. One may approximate

the smearing kernel in terms of the shifted Chebyshev polynomials T∗j of e−ω,

S(ω) =
c∗0
2
+

Nt

∑
j=1

c∗j T∗j (e
−ω), (4.30)

c∗j =
2
π

∫ π

0
dθ S

(
− log

(
1 + cos θ

2

))
cos(jθ), (4.31)
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where Nt stands for the truncation order of the approximation. The explicit form of

the polynomial is T∗1 (x) = 2x− 1, T∗2 (x) = 8x2− 8x + 1, · · · and higher-order terms

are constructed recursively as T∗j+1(x) = 2(2x − 1)T∗j (x) − T∗j−1(x). Note that the

Chebyshev approximation is an orthogonal expansion and we do not impose any

condition such as the one that e−ω being small for its convergence. We substitute

this expression to (4.29). Then the smeared spectral function is written in terms of

the transfer matrix e−Ĥ as

ρs =
c∗0
2
+

Nt

∑
j=1

c∗j 〈T∗j (e−Ĥ)〉, (4.32)

where

〈T∗j (e−Ĥ)〉 ≡
〈ψ|T∗j (e−Ĥ)|ψ〉
〈ψ|ψ〉 . (4.33)

Here we replaced ω by Ĥ when sandwiched by the states 〈ψ| and |ψ〉, and performed

the integral over ω in (4.29). We can write the expectation value 〈T∗j (e−Ĥ)〉 using the

correlators as

〈T∗1 (e−Ĥ)〉 = 2C̄(1)− 1, 〈T∗2 (e−Ĥ)〉 = 8C̄(2)− 8C̄(1) + 1, · · · , (4.34)

where we use 〈ψ|e−Ĥt|ψ〉 ∝ ∑x〈Jz(t + 2t0, x)Jz(0, 0)〉 in (4.28) derived from (4.25)

and (4.27).

In practice, the lattice correlators contain statistical errors. Since (4.34) involves

cancellations of C̄(t) with different t’s, the resulting expectation values 〈T∗j (e−Ĥ)〉
may induce large statistical errors. In particular, since we have to take an additional

constraint |〈T∗j (e−Ĥ)〉| ≤ 1 into account [35], the statistical error causes a significant

problem. We therefore determine 〈T∗j 〉 (j = 1, · · · , Nt) through a fit of correlators.

Since T∗Nt
(x) includes terms up to xNt , the data of C̄(t) at t = 0–Nt are used in the fit.

Now we turn to the discussion of the Borel transform. The relation between ρ̄(ω)

and ρ(ω2) is found as [see (4.26) and (4.28)]

ρ̄(ω) =
1

C(2t0)
ω2ρ(ω2)e−2ωt0 . (4.35)

We therefore set S(ω) to be S(M, ω) as a function of the Borel mass M as

S(M, ω) ≡ 2C(2t0)e2ωt0

M2ω
e−ω2/M2

, (4.36)

to obtain the Borel transform as a smeared spectral function,

∫ ∞

0
dω S(M, ω)ρ̄(ω) =

1
M2

∫ ∞

0
ds ρ(s)e−s/M2

= Π̃(M2), (4.37)
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where we change the variable as s = ω2. The smearing kernel (4.36) has an apparent

problem of divergence at ω = 0, which induces divergences of the coefficients c∗j
(4.31). We therefore introduce a cutoff to regularize the integral (4.31). Since the

spectrum ρ(s) vanishes below the energy of the lowest-lying state, any modification

of the kernel below the lowest energy does not affect the final result. We therefore

modify the smearing kernel,

Scut(M, ω) ≡ 2C(2t0)e2ωt0

M2ω
e−ω2/M2

tanh(ω/ω0), (4.38)

where ω0 is set smaller than the mass of the ground state. The form of Scut(M, ω)

is shown in Fig. 4.2. With ω0 not much smaller than the lowest hadronic state, the

modified smearing underestimates the smeared spectrum. In this work, we consider

the ss̄ states, for which the lowest energy state is the φ meson, whose mass is ∼
1 GeV. We will discuss how the error due to the modified smearing can be corrected.

To summarize, we obtain the approximation between the smeared spectral func-

tion and 〈T∗j 〉:

Π̃cut(M2) =
∫ ∞

0
dω Scut(M, ω)ρ̄(ω)

' c∗0(M)

2
+

Nt

∑
j=1

c∗j (M)〈T∗j 〉, (4.39)

where c∗j (M) is evaluated as (4.31) with S(ω) = Scut(M, ω).
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FIGURE 4.2: Smearing kernels Scut(M, ω) with different values of the
cutoff parameter ω0. We set M = 1 GeV and t0 = (2.453 GeV)−1. The
solid line shows the original kernel S(M, ω), which is equivalent to
the limit ω0 → 0 for Scut(M, ω). Here, the all parameters are dimen-

sionful.
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Chapter 5

Spectral sum of current correlators
from lattice QCD

5.1 Lattice calculation

We compute two-point correlators of the vector current Jµ = s̄γµs using lattice

QCD. In this work, we neglect the disconnected diagrams. We use ensembles with

N f = 2+ 1 dynamical Möbius domain-wall fermions [69], where the gauge action is

tree-level Symanzik improved. Parameters of the ensembles are listed in Table 5.1.

Three lattice cutoffs a−1 are in the range 2.45–4.50 GeV. The lattice size L3 × T is

taken such that the physical volume extent is L ' 2.5 fm and T = 2L. The lattice size

in the extra dimension L5 to define the domain-wall fermion is chosen to ensure that

the residual quark mass is less than 1 MeV [76]. In the fermion action, the gauge

links are stout-smeared 3 times. The number of gauge configurations is Nconf. To

reduce statistical errors, we use Z2 noise sources distributed on a source time slice.

We measure correlators on each configuration 8 or 12 times with different time slices

taken for the Z2 noise source. The number of measurements Nmeas is Nconf times

the number of the source time slices. The effective number of the statistics would

be slightly smaller than Nmeas, because the measurements on the same configuration

with different source time slices are statistically correlated. In our computation, u
and d quark masses are degenerate, which appear only as sea quarks. The strange

quark mass ms is set near the physical value. Small mistuning of the strange quark

mass will be corrected as discussed in Sec. 5.1.3. The ensembles have been used for

the computation of Dirac eigenvalues [100], charmonium moments [24], short dis-

tance current-current correlators [20], topological susceptibility [101], and η′ meson

mass [102]. Other details of the ensembles are available in [103, 104].

Figure 5.1 shows the normalized correlator (4.28) on the coarse lattice. The circles

with small error bars represent the correlator on the configurations of β = 4.17. The

dotted line in this figure denotes the contribution of the ground state, namely φ

meson; it is given by C̄(t) = 1
2 f 2

φmφe−mφ(t+2)/C(2). The constants, fφ and mφ, are

obtained by an exponential fit. We show C̄(t) in the range t = 1–18 which is used in

the following discussion. For finer lattices, see also Figs. H.1 and H.2.



56 Chapter 5. Spectral sum of current correlators from lattice QCD

β a−1 [GeV] L3 × T(×L5) Nconf Nmeas amud ams
4.17 2.453(4) 323 × 64(×12) 100 800 0.0070 0.0400
4.35 3.610(9) 483 × 96(×8) 50 600 0.0042 0.0250
4.47 4.496(9) 643 × 128(×8) 50 400 0.0030 0.0150

TABLE 5.1: Ensembles in our simulations.

2 4 6 8 10 12 14 16 18
t

10 4

10 3

10 2

10 1

C
(t)

FIGURE 5.1: Normalized correlation functions C̄(t) on the coarse lat-
tice (a−1 = 2.453 GeV). The dotted line shows the asymptotic form of

the correlator.

We compute the Borel transform of the HVP using the technique outlined in the

previous section. The estimate for the Chebyshev matrix elements 〈T∗j 〉 in (4.39) is

obtained by a fit of lattice correlators. The fit is implemented using lsqfit [105],

which is based on Bayesian statistics [106]. Following [35], we write the correlator at

each temporal separation by the Chebyshev matrix elements as

C̄(t) = 21−2t

[
1
2

(
2t
t

)
+

t

∑
j=1

(
2t

t− j

)
〈T∗j 〉

]
, (5.1)

using the reverse formula of the shifted Chebyshev polynomials

xn = 21−2n

[
1
2

(
2n
n

)
+

n

∑
j=1

(
2n

n− j

)
T∗j (x)

]
. (5.2)

The Chebyshev matrix elements 〈T∗j 〉 are determined such that they best repro-

duce C̄(t) under the given statistical error while satisfying the necessary condi-

tion |〈T∗j 〉| ≤ 1. Combining them with the coefficients c∗j (M), we obtain Π̃cut(M2)
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through (4.39).

In order to match the lattice results with the counterpart in the MS scheme, the

renormalization factor has to be multiplied. We use the renormalization constants

of the vector current ZV = 0.955(9), 0.964(6), 0.970(5) for β = 4.17, 4.35, 4.47, respec-

tively [19]. They are determined by matching short-distance current correlators with

their perturbative counterpart in the coordinate space. Our results can be compared

with Π̃OPE(M2) in the MS scheme after the renormalization.

In the following subsections, we discuss potential systematic effects due to the

truncation of the Chebyshev expansion, the effect of the low-energy cut introduced

in the smearing function, and the continuum extrapolation.

5.1.1 Convergence of Chebyshev expansion

We first examine the convergence of the Chebyshev expansion. In Figs. 5.2–

5.4 we plot the smearing function Scut(M, ω) at ω = 1.0 and 2.0 GeV and their

Chebyshev expansions as a function of 1/M2. They are understood as the Borel

transform for the case that the spectrum is given by ρ(ω) ∼ δ(ω − 1.0 GeV) or

δ(ω − 2.0 GeV). The cutoff parameter ω0 is set to ω0 = 0.6 GeV. Figures 5.2–5.4

represent those at three lattices, respectively. They differ due to the factor e2ωt0 , since

t0 is fixed to 1 in the lattice unit. The solid line shows the exact form Scut(M, ω),

while dotted, dash-dotted, and dashed lines are the expansions truncated at Nt =

12, 15, and 18, respectively. One can see that the expansion reproduces the exact

function to quite a good precision already at Nt = 12. At the fine and finest lattice

spacing where a−1 = 3.610 GeV and 4.496 GeV (Fig. 5.3 and Fig. 5.4), we find a

small deviation around 1/M2 ' 2 GeV−2 for Nt = 12. Such a low energy regime is

dominated by the ground state and we are able to correct the error explicitly using

the mass and amplitude of the ground state. In the intermediate regime 1/M2 .

1 GeV−2, the maximum deviation is found to be 0.4% for Nt > 15. In the low energy

regime, Π̃(M2) becomes more sensitive to the long-distance correlator. We expect

that higher-order polynomials are needed when the lattice spacing is small.

The truncation error can also be estimated through the coefficients c∗j (M) in (4.31)

because 〈T∗j 〉 is bounded as |〈T∗j 〉| ≤ 1. In Fig. 5.5 we show the absolute values

of the coefficients at various M2s at each lattice spacing. The plots demonstrate

that the coefficients decrease exponentially for large j. When the scale M is large,

the coefficient c∗j (M) drops more rapidly for high orders (larger j’s). It implies that

∑j c∗j (M)〈T∗j 〉 is dominated by the lower-order terms, which corresponds to shorter-

distance correlators. At 1/M2 ∼ 2 GeV−2 which corresponds to the lowest scale

treated in this work, the coefficient c∗j (M2) is sufficiently small (∼ O(10−4)) already

at j = 18 . We therefore set Nt = 18 in the following.
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In order to have another insight into the possible error due to the Chebyshev

approximation, let us consider a simple model that has a single pole,

ρpole(s) = f̃ 2δ(s− m̃2) (5.3)

with mass m̃ and decay constant f̃ . The corresponding Euclidean correlator is

Cpole(t) =
∫ ∞

0
dω e−ωtω2ρpole(ω2) =

f̃ 2m̃
2

e−m̃t, (5.4)

and the normalized correlator (4.28) is given by

C̄pole(t) =
Cpole(t + 2t0)

Cpole(2t0)
= e−m̃t. (5.5)

In this test, we ignore statistical errors and replace the expectation values 〈T∗j 〉 by the

shifted Chebyshev polynomials T∗j (e
−am̃) without introducing the fit. Combining

the polynomials and the coefficients c∗j (M) determined by (4.31) with the smearing

kernel Scut(M, ω), we obtain the Borel transform Π̃pole(M2). We can also analytically

calculate the Borel transform of the single-pole spectrum with the modification of the

low-energy spectrum (4.38),

Π̃pole(M2) =
1

M2

∫ ∞

0
ds e−s/M2

ρpole(s) tanh
(√

s/ω0
)

=
f̃ 2

M2 e−m̃2/M2
tanh(m̃/ω0). (5.6)

The results are compared in Fig. 5.6 at three lattice spacings. The thick solid lines

denote the analytic results (5.6) with ω0 = 0.6 GeV, while the thin solid lines de-

note those in the limit ω0 → 0, that is, tanh(m̃/ω0) → 1. The dotted, dash-dotted,

and dashed line are Π̃pole(M2) computed by our method for three lattice spacings,

respectively. The expansion is nearly perfect and the expansions at three lattice spac-

ings are consistent with each other. The difference between the original function and

that with the cutoff remains when the pole mass is small, m̃ = 1 GeV. We correct

them as discussed in the following.
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FIGURE 5.2: Expansion of the smearing kernel at ω = 1.0 GeV
(top) and ω = 2.0 GeV (bottom) for the coarse lattice where a−1 =

2.453 GeV with a cutoff ω0 = 0.6 GeV.
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FIGURE 5.3: Same as Fig. 5.2 but at a−1 = 3.610 GeV.
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FIGURE 5.4: Same as Fig. 5.2 but at a−1 = 4.496 GeV.
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FIGURE 5.5: The coefficients c∗j (M) at three lattice spacing. We set

1/M2 = 0.45 GeV−2 (top) and 1/M2 = 1.85 GeV−2 (bottom).
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FIGURE 5.6: Π̃pole(M2) for three lattice spacings with Nt = 18, ω0 =
0.6 GeV. We set f̃ = 1 GeV, and m̃ = 1 GeV (top) and m̃ = 2 GeV

(bottom).
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5.1.2 Correction for the low-energy cut of smearing function

The low-energy cut tanh(ω/ω0) introduced to avoid the artificial divergence of

the Chebyshev coefficients modifies the shape of the smearing kernel below ω . ω0.

If we set ω0 sufficiently small, only the contribution from the ground state, i.e., the φ

meson in our example, is significantly affected. We therefore correct for the error by

using the information available for the ground state.

The contribution of the ground state ρφ(s) for the spectral function is

ρφ(s) = f 2
φδ(s−m2

φ), (5.7)

where fφ and mφ are the decay constant and the mass of the φ meson, respectively.

The φ meson’s contribution to the Borel transform is then

Π̃cut
φ (M2) ≡

f 2
φ

M2 e−m2
φ/M2

tanh
(
mφ/ω0

)
. (5.8)

Taking the limit ω0 → 0, it recovers the physical result,

Π̃φ(M2) ≡
f 2
φ

M2 e−m2
φ/M2

. (5.9)

The difference between the Borel transform with and without the modification is

then

δΠ̃cut
φ ≡ Π̃φ(M2)− Π̃cut

φ (M2) =
f 2
φ

M2 e−m2
φ/M2

(1− tanh
(
mφ/ω0

)
), (5.10)

which we add back to the result of Π̃cut(M2) as

Π̃lat(M2) ≡ Π̃cut(M2) + δΠ̃cut
φ (M2). (5.11)

The deficit δΠ̃cut
φ (M2) can be computed using the values of fφ and mφ obtained for

each lattice ensemble.

We show a typical threshold ω0 dependence of Π̃lat(M2) at certain values of M2

in Fig. 5.7 and Fig. H.3. Squares and circles denote the Π̃cut(M2) and Π̃lat(M2),

respectively. As ω0 increases, Π̃cut(M2) decreases, as we expected. After the cor-

rection, Π̃lat(M2) is insensitive to ω0. On the finest lattice, the small value of ω0

enhances the statistical errors. To avoid large errors, we set ω0 = 0.6 GeV for all lat-

tice spacings in the following results. The error due to the low-energy modification

is negligible after correcting for the ground state contribution.

5.1.3 Continuum limit

We take 50 points of 1/M2 in the range 1/M2 = 0.05–2.05 GeV−2 and compute

Π̃lat(M2) for each lattice spacing. The results are shown in Fig. 5.8. We find that
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FIGURE 5.7: The cutoff dependence of Π̃cut(M2) and Π̃lat(M2) on the
coarse lattice, where Nt = 18.

the results obtained at two coarser lattice spacing agree well except in the region

1/M2 . 0.2 GeV−2, where discretization effects are visible. The data at finest lattice

spacing show a slight deviation from those at two coarser lattices, but we note that

the strange quark mass is slightly mistuned on this ensemble and we have to correct

that effect (see below.)

We take the continuum limit of Π̃lat(M2) using the data at three lattice spacings.

Since both the statistical and systematic errors correlate highly among different val-

ues of 1/M2, we introduce an ansatz

Π̃lat(M2) + δΠ̃m = Π̃(M2)(1 + b0M2a2)(1 + b1a2), (5.12)

with coefficients b0 and b1 to parametrize the discretization effect independent of

1/M2. We introduce a correction δΠ̃m to incorporate the mistuning of the valence

quark mass ms. The size of the mistunig is discussed in Appendix G. At tree level,

the correction δΠ̃m is expressed as

δΠ̃m = +
3

2π2

m2
siml(µ

2)−m2
phys(µ

2)

M2 −
2(msiml(µ

2)−mphys(µ
2))〈0|q̄q|0〉

M4 , (5.13)

where mphys(µ
2) and msiml(µ

2) are the strange quark masses at the scale µ. We take

Z−1
S (µ; a)mbare for msiml and ms(µ2 = (2 GeV)2) = 0.0920(11) GeV for mphys as an

initial value of the running. The renormalization constants for the scalar density

operator ZS(2 GeV; a) are 1.0372(146), 0.9342(87), 0.8926(67) for β = 4.17, 4.35, 4.47,
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FIGURE 5.8: Π̃lat(M2) at all lattice spacings.

respectively [19]. The mass mbare is from ams listed in Table 5.1. The corrections

δΠ̃m(M2) calculated at the leading order of perturbation theory are less than 4% of

Π̃lat(M2) on the two coarse lattices, while that on the finest lattice decrease Π̃lat(M2)

by at most 10% in the range 1/M2 = 0.25–1.01 GeV−2 (see also Fig. H.4). We show

the Borel transform with this correction in Fig. H.5. Higher order perturbative cor-

rections are insignificant compared to the statistical precision of the lattice data. In

each case, the correction may introduce systematic uncertainty at large 1/M2, since

the correction relies on OPE. Therefore, we consider Πlat(M2) at 1/M2 = 1.01 GeV−2

and lower.

The M2 dependence of the discretization error is incorporated in the fit by the

factor (1+ b0M2a2). The other factor (1+ b1a2) represents the discretization error in-

dependent of M2. We take the continuum limit for Π̃lat(M2) + δΠ̃m(M2) by a global

fit in the range 0.25 GeV−2 ≤ 1/M2 ≤ 1.01 GeV−2. The correlation of Π̃lat(M2) +

δΠ̃m(M2) among different M2 is taken into account. The continuum extrapolation

at some values of 1/M2 is shown in Fig. 5.9 and Fig. H.6. The circle, square, and

triangle symbols show Π̃lat(M2) + δΠ̃m(M2) at a−1 = 2.453, 3.610, 4.496 GeV, re-

spectively, while the star symbol represents the continuum limit. The discretization

errors are not substantial. Although the Π̃lat(M2) on the finest lattice has a relatively

large error, the error of Π̃(M2) in the continuum limit is under good control.
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FIGURE 5.9: Continuum extrapolation of Π̃lat(M2) + δΠ̃m at 1/M2 =

0.25 GeV−2.



68 Chapter 5. Spectral sum of current correlators from lattice QCD

0.2 0.4 0.6 0.8 1.0
1/M 2[GeV 2]

0.020

0.025

0.030

(M
2 )

perturbation
OPE
lattice

FIGURE 5.10: Comparison of Π̃(M2) in the continuum limit with the
perturbative expansion and OPE.

5.2 Result

5.2.1 Comparison with OPE

We compare the Borel transform Π̃(M2) at large M2 with perturbative expan-

sion as well as with OPE in Fig. 5.10. The dash-dotted line denotes the perturbative

expansion Π̃pert(M2) up to O(α4
s ). It includes the mass-dependent perturbative cor-

rection up to O(α3
s m2

s /M2). The solid line shows the OPE result Π̃OPE(M2). The

bands represent the size of errors due to the input parameters and the truncation of

perturbative expansion.

Here, input parameters are the QCD scale parameter Λ
n f =3

MS
= 0.332(17) GeV

[107], the strange quark mass in the MS scheme m
n f =2+1
s (µ = 2 GeV) = 0.0920(11) GeV

(FLAG average) [99, 108–112] the chiral condensate1 〈0|q̄q|0〉 = −[0.272(5) GeV]3

(FLAG average) [101, 108, 115–119], and the gluon condensate 〈0| αs
π G2|0〉 = 0.0120(36) GeV4

[16, 17] (adding ±30% error).

In the calculation of the perturbative expansion and OPE, we set the renormaliza-

tion scale µ2 = 4M2e−γE . The running of αs, ms, and 〈0|q̄q|0〉 are taken into account

1We use the chiral condensate evaluated in the massless quark limit, rather than the “strange quark
condensate,” which has also be evaluated using lattice QCD [113] as 〈s̄s〉(2 GeV) = −(296(11) MeV)3.
The reason is that the difference from the massless limit involves a quadratic divergence and a renor-
malon ambiguity of order of msΛ2

QCD, which is the same order of the correction itself, is induced when
the divergence is subtracted. In [113], the subtraction scheme is not explicitly shown, and in [114] it is
performed by fitting the lattice data at various lattice cutoffs. Thus, the precise definition of the strange
quark condensate might not correspond to what we employed.
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using RunDec [52, 53] at five-loop level.

In OPE we include corrections up to mass-dimension six operators:

Π̃(M2) = c0 +
c2

M2 +
c4

M4 +
c6

M6 , (5.14)

where c0 and c2 stand for the perturbative expansion in the massless limit and the

leading mass correction, respectively. The coefficient c4 includes the gluon and

quark condensates. The coefficients c0 and c2 are already discussed in Sec. 3.5. The

coefficients c4 and c6 can be computed by applying Eq. (E.2) to the Wilson coeffi-

cients (see also [120]). Letting LM ≡ log
(
µ2eγE /M2), we can express the coefficients

as

c4 =
1
12

(
1 +

7
6

αs

π

)
〈0|αs

π
G2|0〉+ 2ms

(
1 +

1
3

αs

π

)
〈0|q̄q|0〉

+
3m4

s
4π2 (1− 2LM)− m4

s
6π2

αs

π

(
35− 3π2 − 24ζ(3)− 3LM + 18L2

M
)
, (5.15)

c6 = −112
81

παsκ0〈0|q̄q|0〉2 + 1
18

m2
s 〈0|

αs

π
G2|0〉 − 4

3
m3

s 〈0|q̄q|0〉, (5.16)

where the gluon condensate 〈0| αs
π G2|0〉 is defined in the MS scheme. The coefficient

κ0 in (5.16) parametrizes corrections to the VSA for the four-quark condensate. When

the condensate is assumed to be fully factorized in the vacuum, κ0 is equal to 1.

There are studies that suggest the violation of VSA as large as κ0 ∼ 6 [121]. We

set κ0 = 1 for the solid curve and incorporate the variation of κ0 from 0 to 6 to

estimate the error in Fig. 5.10. The higher dimensional condensates are neglected

in this paper. We also include the renormalization scale dependence to estimate the

truncation error as discussed in Sec. 3.5, where Π̃pert
0 and Π̃pert

m2 correspond to c0 and

c2. We introduce the renormalization scales µ0 and µ2 for c0 and c2, respectively, vary

them in the range 2M2e−γE ≤ µ2
0, µ2

2 ≤ 8M2e−γE separately, and take the maximal

(minimum) value of c0 + c2/M2 as the upper (lower) limit of the band.

Figure 5.11 shows the convergence of OPE. The dotted line corresponds to the

massless perturbation theory. The dash-dotted, dashed, solid lines include the terms

up toO(1/M2),O(1/M4), andO(1/M6) corrections, respectively. The error band is

estimated as in Fig. 5.10. The Borel transform Π̃OPE(M2) converges well in the range

1/M2 ≤ 1 GeV−2 as one can see from the tiny effect of O(1/M6), albeit the large

uncertainty due to the unknown condensates. The lattice data agree well with OPE

including the terms of 1/M4 and 1/M6 within the uncertainty, as found in Fig. 5.10.

5.2.2 Extraction of the gluon condensate

As an application of the lattice calculation of Π̃(M2), we try to determine the

coefficient c4 from the lattice data. Since the perturbative expansion and OPE con-

verges reasonably well for Π̃(M2) (, although some uncertainty remains if κ0 ∼ 5–6),
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FIGURE 5.11: The convergence of OPE for Π̃(M2).

the determination is less affected by the truncation error than that for the HVP

function Π(q2), and the systematic error of c4 may be reduced. We consider cor-

rections up to mass dimension six, since the higher mass-dimension operators are

suppressed by the factorial as (3.46). By fixing c0 and c2 in (5.14) by the perturba-

tive calculation, we determine c4 and c6 through a fit to the lattice data. The fitting

range is 1/M2 = 0.25–0.69 GeV−2. The M2 dependence of c4 and c6 from corrections

of order αs(4M2e−γE) is negligible in this range. Hence we treat c4 and c6 as con-

stant parameters. We rescale c4 = c̃4Λ4 and c6 = c̃6Λ6 with Λ = 300 MeV, and set

the priors of c̃4 and c̃6 to 0.0± 1.0. To evaluate the systematic uncertainties, we use

three sets of the renormalization scales (µ2
0, µ2

2) = (4M2e−γE , 4M2e−γE), (µ2
0, µ2

2) =

(2M2e−γE , 8M2e−γE), and (µ2
0, µ2

2) = (8M2e−γE , 2M2e−γE), and take the maximum

variants of the results as their systematic errors. We obtain c̃4 = −0.34(7)(+26
−19). The

first parenthesis gives the statistical error. The superscript (subscript) in the second

parenthesis represents the upper (lower) systematic error. c̃6 is not well constrained.

We subtract the contributions of the chiral condensate and the finite mass cor-

rection from c4, which are relatively well determined, and obtain 〈0| αs
π G2|0〉MS =

0.011(7)(+22
−16)GeV4 in the MS scheme at the scale µ = 2 GeV, which corresponds to

〈0| αs
π G2|0〉RGI = 0.013(8)(+27

−20) GeV4 in the renormalization group invariant (RGI)

scheme. They are related by (see also [122])

〈0|αs

π
G2|0〉RGI =

(
1 +

16
9

αs

π
+ · · ·

)
〈0|αs

π
G2|0〉MS. (5.17)
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The first error includes the statistical errors of lattice calculations and inputs Λ
n f =3

MS
,

ms, and 〈0|q̄q|0〉. The second one corresponds to the systematic uncertainty associ-

ated with the perturbative expansion. It is known that the gluon condensate suffers

from the renormalon ambiguity. (See, for instance, [123].) More precise determina-

tion of the gluon condensate will require more statistics and an improvement of the

perturbative calculation.

The value of 〈0| αs
π G2|0〉 was estimated by SVZ from the charmonium moments

as 〈0| αs
π G2|0〉 ' 0.012 GeV4 [16, 17]. In Fig. 5.10, we used this value for the OPE

estimate. From τ decay, the estimates are consistent with zero: 〈0| αs
π G2|0〉 = 0.006±

0.012 GeV4 in the MS scheme [124]. Our method provides another estimate with a

comparable error.

5.2.3 Saturation by the ground state

In the low M2 region, the ground state contribution dominates the Borel trans-

form Π̃(M2), and the OPE would break down. Here, we investigate how much the

ground-state contribution Π̃φ(M2) saturates the Borel transform.

The contribution from the ground state φ meson to the Borel transform Π̃φ(M2)

is shown in Fig. 5.12 together with the lattice data. In this plot, the φ meson con-

tribution (5.9) is drawn with the experimental inputs f exp
φ = 0.2285(36) GeV and

mexp
φ = 1.019461(16) GeV [38] (dash-dotted line). The solid line denotes the OPE re-

sult, which is the same as in Fig. 5.10. The error band for the OPE in Fig. 5.12 may

be underestimated beyond 1/M2 & 1 GeV−2, since the perturbative expansion and

OPE poorly converge. The star symbols represent the lattice results in the contin-

uum limit. Since the perturbative expression for the correction δΠ̃m (5.12) would

break down at low M2, we show the data at finite lattice spacings, which do not

have a significant error due to the mismatch of ms. The Πlat(M2) on the coarse and

fine lattices (circles and squares, respectively) indicates that the discretization effect

is not significant.

In the low M2 region, the lattice results approach the φ contribution as it should

be. On the other hand, even at intermediate M, say 1/M2 = 0.75 GeV−2, where

the OPE converges well, the φ meson contribution is as large as 70% of Π̃(M2). It

suggests that the quark-hadron duality works reasonably well even when the con-

tribution from a single state dominates.
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FIGURE 5.12: Comparison of Π̃(M2) in the continuum limit with the
experimental values of the φ meson contribution.
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Conclusion and outlook

The Borel transform has often been used in the QCD sum rule analyses in order

to improve the convergence of OPE and to enhance the contribution of the ground

state, which is of our main interest. A crucial question is then whether the theoret-

ical uncertainty in the perturbative expansion and OPE is well under control. The

uncertainty due to the modeling of the excited state and continuum contributions is

another important issue in the QCD sum rule. In this work, we provide a method to

compute the Borel transform utilizing the lattice QCD data for current correlators.

Since the computation is fully nonperturbative in the entire range of the Borel mass

M, one can use the result to verify the theoretical methods so far used in the QCD

sum rule.

We find a good agreement between the lattice data and OPE in the region of M >

1.0 GeV. The OPE is truncated at the order 1/M6. Since the OPE involves unknown

condensates, this comparison can be used to determine these parameters, provided

that the lattice data are sufficiently precise. As the first example, we attempt to

extract the gluon condensate, which appears in OPE at the order 1/M4. The size

of the error is comparable to those of previous phenomenological estimates. With

more precise lattice data in various channels, one would be able to determine the

condensates of higher dimensions, which have not been determined well solely from

phenomenological inputs.

Using baryonic current correlators, one may also study another side of the QCD

phenomenology. Since there are no experimental inputs, the lattice data may play

a unique role in the QCD sum rule analysis. For instance, the Ioffe formula for the

nucleon mass mN ' [−2(2π)2〈0|q̄q|0〉]1/3 [125] indicates a relation between the nu-

cleon mass and chiral symmetry breaking, and it is interesting to study the baryonic

correlator on the lattice to see if this relation comes out.

The application of this method to the light quark system may be useful for op-

erator renormalization as well as for the test of perturbative QCD and OPE. For the

light quark, the uncertainty of the finite mass corrections would not be substantial

in contrast to the ss̄ system. We determine the renormalization constant of the vector

current and discuss extensions to other current operators in Appendix F.
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Another interesting application of the lattice calculation of the Borel transform

is the determination of αs. A similar analysis has been performed directly on the

current correlators [22], but it turned out that OPE does not converge sufficiently

quickly to allow precise determination of αs from the perturbative expansion at the

leading order of OPE. With the Borel transform, one expects that OPE converges

more rapidly, and it may provide another way to extract αs, especially because the

perturbative expansion is known to O(α4
s ), i.e. among the best quantities for which

high order perturbative expansion is available.

Our work provides a technique to relate two major tools to study nonpertur-

bative aspects of QCD, i.e. the QCD sum rule and the lattice QCD. As outlined

above, there are a number of applications, for which new insights into the QCD

phenomenology are expected.
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Running coupling constant

We will derive the five-loop expression of the strong coupling constant. By def-

inition of the beta function, we obtain the relation between the scale µ and the

coupling constant as,∫
d(log µ2) =

∫ das

β(as)

'
∫ das

β0

[
− 1

a2
s
+

b1

as
+
(
−b2

1 + b2
)
+
(
b3

1 − 2b1b2 + b3
)
as

+
(

b4
1 − 3b2

1b2 + b2
2 + 2b1b3 − b4

)
a2

s

]
=

1
β0

[
1
as

+ b1 log as +
(
−b2

1 + b2
)
as +

1
2
(
b3

1 − 2b1b2 + b3
)
a2

s

+
1
3

(
b4

1 − 3b2
1b2 + b2

2 + 2b1b3 − b4

)
a3

s

]
+ C. (A.1)

We conventionally fix the integration constant,

C =
b1

β0
log(β0) + log Λ2

QCD, (A.2)

which simplify the following expression of as(µ2). Defining L ≡ log
(

µ2/Λ2
QCD

)
,

we obtain the equation which as(µ) fulfills,

as =
1

β0L

[
1 + b1as log(β0as) +

(
−b2

1 + b2
)
a2

s +
1
2
(
b3

1 − 2b1b2 + b3
)
a3

s

+
1
3

(
b4

1 − 3b2
1b2 + b2

2 + 2b1b3 − b4

)
a4

s

]
. (A.3)

We let a(`)s be the solution up to the l-loop order, namelyO(1/L`). At one-loop level,

a(1)s = 1/(β0L). We can construct the one-order higher solution by the expression of
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a(`)s :

a(`+1)
s (µ2) ' 1

β0L

[
1 + b1as log(β0as) +

(
−b2

1 + b2
)
a2

s +
1
2
(
b3

1 − 2b1b2 + b3
)
a3

s

+
1
3

(
b4

1 − 3b2
1b2 + b2

2 + 2b1b3 − b4

)
a4

s

]∣∣∣∣
as=a(`)s

. (A.4)

Currently, the coefficients of the beta function is known to b4 and a precise expres-

sion of the coupling constant is

a(5)s (µ2) =
1

β0L

[
1− b1

β0L
log L +

1
β2

0L2

{
b2

1(log2 L− log L− 1) + b2

}
+

1
2β3

0L3

{
b3

1(−2 log3 L + 5 log2 L + 4 log L− 1)− 6b1b2 log L + b3

}
+

1
6β4

0L4

{
b4

1(6 log4 L− 26 log3 L− 9 log2 L + 24 log L + 7)

+ 18b2
1b2(2 log2 L− log L− 1)

− b1b3(12 log L + 1) + 10b2
2 + 2b4

}]
, (A.5)

where logn L denotes the power of log L, not log log · · · log L. We neglect the term

proportional to 1/L6. Here, the term proportional to 1/L2 without log L does not

appear in this expression, which results from (A.2).
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Running quark mass

As a first step, we consider RG equations at the leading order,

µ2 dm
dµ2 = −m(µ2)γm,0as, (B.1)

µ2 das

dµ2 = −β0a2
s . (B.2)

Integrating (B.1) from µ0 to µ, we obtain a relation between m(µ2) and m(µ2
0),

log
(

m(µ2)

m(µ2
0)

)
= −

∫ µ2

µ2
0

d(log
(
µ′2
)
)γm,0as(µ

′2)

=
∫ as(µ2)

as(µ2
0)

das

as

γm,0

β0

=
γm,0

β0
log
(

as(µ2)

as(µ2
0)

)
. (B.3)

Here, we change the variable through

d(log
(
µ2)) = − das

β0a2
s

. (B.4)

Then, we express the solution at one-loop level as

m(µ2) =

(
as(µ2)

as(µ2
0)

) γm,0
β0

m(µ2
0). (B.5)

Let us extend the above calculus to the higher loop level. To simplify the expres-

sion, we define ci ≡ γm,i/β0. From the definition of the anomalous dimension γm

and the β function, we can write the general form of the solution as

m(µ2)

m(µ2
0)

= exp

(∫ µ2

µ2
0

d(log
(
µ′2
)
)γm(as(µ

′2))

)

= exp

(∫ as(µ2)

as(µ2
0)

das
γm(as)

β(as)

)
. (B.6)



78 Appendix B. Running quark mass

We can perform the integral in r.h.s. up to integration constant as

∫
das

c0as + c1a2
s + c2a3

s + c3a4
s + c4a5

s
a2

s + b1a3
s + b2a4

s + b3a5
s + b4a6

s

'
∫

das

[
c0

as
− b1c0 + c1 +

{
(b2

1 − b2)c0 − b1c1 + c2
}

as

+
{
(−b3

1 + 2b1b2 − b3)c0 + (b2
1 − b2)c1 − b1c2 + c3

}
a2

s

+
{
(b4

1 − 3b2
1b2 + b2

2 + 2b1b3 − b4)c0 + (−b3
1 + 2b1b2 − b3)c1

+ (b2
1 − b2)c2 − b1c3 + c4

}
a3

s

]
=c0 log as + (−b1c0 + c1)as +

1
2
{
(b2

1 − b2)c0 − b1c1 + c2
}

a2
s

+
1
3
{
(−b3

1 + 2b1b2 − b3)c0 + (b2
1 − b2)c1 − b1c2 + c3

}
a3

s

+
1
4
{
(b4

1 − 3b2
1b2 + b2

2 + 2b1b3 − b4)c0 + (−b3
1 + 2b1b2 − b3)c1

+ (b2
1 − b2)c2 − b1c3 + c4

}
a4

s

≡c0 log as + d1as + d2a2
s + d3a3

s + d4a4
s . (B.7)

Here we define the coefficients di for notational convenience. Substituting this ex-

pression for (B.6), we finally obtain the solution

m(µ2)

m(µ2
0)

=
c(as(µ2))

c(as(µ2
0))

, (B.8)

with the function,

c(x) =xc0

[
1 + d1x +

1
2
(d2

1 + 2d2)x2 +
1
6
(d3

1 + 6d1d2 + 6d3)x3

+
1

24
(d4

1 + 12d2
1d2 + 12d2

2 + 24d1d3 + 24d4)x4
]

, (B.9)

where we neglect terms of O(a5
s ).
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RG equation of Π0(µ
2; Q2)

The RG evolution of the HVP function in the massless limit is described by

µ2 d
dµ2 Π0(µ

2; Q2) = γVV(as). (C.1)

Using

µ2 d
dµ2 = µ2 ∂

∂µ2 + β(as)
∂

∂as
, (C.2)

we can recursively construct the solution up to O(a`s) through

Π(`)
0 (µ2; Q2) =

∫
dL
(
−β(as)

∂

∂as

)
Π(`−1)

0 (µ2; Q2) + γVV L, (C.3)

with L = log
(
µ2/Q2). Note that we have to treat as as a constant in this integral.

The integration constant in this equation is fixed to reproduce Π0(Q2) at µ2 = Q2,

which corresponds to the non-logarithmic terms in Π0(µ2; Q2). The perturbative

series of HVP at µ2 = Q2 is known up to O(a3
s ) [78, 79],

Π(Q2) =
3

∑
n=0

cV
n an

s (Q
2), (C.4)

(4π)2cV
0 =

20
3

, (4π)2cV
1 =

55
3
− 16ζ3, (C.5)

(4π)2cV
2 =

41927
216

− 1658
9

ζ3 +
100
3

ζ5 + n f

(
−3701

324
+

76
9

ζ3

)
, (C.6)

(4π)2cV
3 =

31431599
10368

− 624799
216

ζ3 + 330ζ2
3 +

55
12

ζ4 +
1745
24

ζ5 −
665
9

ζ7

+ n f

(
−1863319

5184
+

174421
648

ζ3 −
20
3

ζ2
3 −

55
36

ζ4 +
1090
27

ζ5

)
+ n2

f

(
196513
23328

− 809
162

ζ3 −
20
9

ζ5

)
. (C.7)
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On the other hand, the perturbative series of the anomalous dimension γVV(as) has

been calculated up to O(a4
s ) [78, 79],

γVV =
4

∑
i=0

γVV
i ai

s, (C.8)

with the coefficients,

(4π)2γVV
0 = (4π)2γVV

1 = 4, (C.9)

(4π)2γVV
2 =

125
12
− 11

18
n f , (C.10)

(4π)2γVV
3 =

10487
432

+
110
9

ζ3 + n f

(
−707

216
− 110

27
ζ3

)
− 77

972
n2

f , (C.11)

(4π)2γVV
4 =

2665349
41472

+
182335

864
ζ3 −

605
16

ζ4 −
31375
288

ζ5

+ n f

(
−11785

648
− 58625

864
ζ3 +

715
48

ζ4 +
13325

432
ζ5

)
+ n2

f

(
− 4729

31104
+

3163
1296

ζ3 −
55
72

ζ4

)
+ n3

f

(
107

15552
+

1
108

ζ3

)
. (C.12)

Using (C.3), we finally obtain the solution of (C.1) [79, 80],

Π0(µ
2; Q2) =

4

∑
l=0

Πl
0al

s, (C.13)

Π0
0 =cV

0 + γVV
0 L, (C.14)

Π1
0 =cV

1 + γVV
1 L, (C.15)

Π2
0 =cV

2 + (cV
1 β0 + γVV

2 )L +
1
2

β0γVV
1 L2, (C.16)

Π3
0 =cV

3 + (2cV
2 β0 + cV

1 β1 + γVV
3 )L

+

[
cV

1 β2
0 +

1
2

β1γVV
1 + β0γVV

2

]
L2 +

1
3

β2
0γVV

1 L3, (C.17)

Π4
0 =cV

4 + (3cV
3 β0 + 2cV

2 β1 + cV
1 β2 + γVV

4 )L

+

[
3cV

2 β2
0 +

5
2

cV
1 β0β1 +

1
2

β2γVV
1 + β1γVV

2 +
3
2

β0γVV
3

]
L2

+

[
cV

1 β3
0 +

5
6

β0β1γVV
1 + β2

0γVV
2

]
L3 +

1
4

β3
0γVV

1 L4. (C.18)
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RG equation of Π2(µ; Q2)

We derive the expression of the dimension-two correction Π2(µ2; Q2). The scale

dependence of Π2(µ2; Q2) is described by

µ2 d
dµ2 Π2(µ

2; Q2) = −2γm(as)Π2(µ
2; Q2) (D.1)

This equation can be solved recursively as discussed in Appendix C, although γm

appears in the r.h.s instead of γVV in (C.1). We construct a solution up to O(a`s)
through

Π(`)
2 (µ2; Q2) = −

∫
dL
(

2γm(as) + β(as)
∂

∂as

)
Π(`−1)

2 (µ2; Q2). (D.2)

The perturbative corrections of Π2(Q2) at µ2 = Q2 is known to O(a3
s ) [81, 82],

Π2(Q2) = ∑
n=0

dV
n an

s (Q
2), (D.3)

(4π)2dV
0 =− 24, (4π)2dV

1 = −64, (D.4)

(4π)2dV
2 =− 18923

18
− 784

9
ζ3 +

4180
9

ζ5 +
95
3

n f , (D.5)

(4π)2dV
3 =− 10499303

648
+

66820
27

ζ3 −
7225

9
ζ2

3 +
281390

27
ζ5 −

1027019
216

ζ7

+ n f

(
62893

54
− 4150

81
ζ3 +

424
9

ζ2
3 + 20ζ4 −

28880
81

ζ5

)
+ n2

f

(
−5161

486
− 8

9
ζ3

)
. (D.6)

Using (D.2) with β(as) and γm(as) discussed in Sec. 2.1, we obtain the solution,

Π2(µ
2; Q2) = ∑

l=0
Πl

2al
s(µ

2), (D.7)



82 Appendix D. RG equation of Π2(µ; Q2)

with the coefficients [79, 126],

Π0
2 =dV

0 , (D.8)

Π1
2 =dV

1 + 2dV
0 γm,0L, (D.9)

Π2
2 =dV

2 + dV
0 γm,0(β0 + 2γm,0)L2

+

[
dV

1 (β0 + 2γm,0) + 2dV
0 γm,1

]
L, (D.10)

Π3
2 =dV

3 +
2
3

dV
0 γm,0

(
β2

0 + 3β0γm,0 + 2γ2
m,0
)

L3

+

[
dV

0 β1γm,0 + 2dV
0 (β0 + 2γm,0)γm,1

+ dV
1 (β2

0 + 3β0γm,0 + 2γ2
m,0)

]
L2

+

[
2dV

2 (β0 + γm,0) + dV
1 (β1 + 2γm,1) + 2dV

0 γm,2)

]
L. (D.11)
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Appendix E

Some formulas of Borel
transformations

We show some formulas of the Borel transformation. Perturbative corrections

at higher loops have the power of logarithm, logn(µ2/Q2). We can obtain its Borel

transformation by taking derivatives of the formula:

BM

[(
µ2

Q2

)α
]
=

1
Γ(α)

(
µ2

M2

)α

(E.1)

BM

[(
µ2

Q2

)α

logn
(

µ2

Q2

)]
=

∂n

∂αn

[
1

Γ(α)

(
µ2

M2

)α
]

, (E.2)

BM

[
logn

(
µ2

Q2

)]
= lim

α→0

∂n

∂αn

[
1

Γ(α)

(
µ2

M2

)α
]

. (E.3)

The perturbative coefficients of HVP is known at O(α4
s ) [80]. Those have quartic

logarithmic terms at most. We show corresponding formulas for n = 1 to 4:

BM

[
log
(

µ2

Q2

)]
= 1, (E.4)

BM

[
log2

(
µ2

Q2

)]
= 2 log

(
µ2

M2e−γE

)
, (E.5)

BM

[
log3

(
µ2

Q2

)]
= 3 log2

(
µ2

M2e−γE

)
− π2

2
, (E.6)

BM

[
log4

(
µ2

Q2

)]
= 4

(
log2

(
µ2

M2e−γE

)
− π2

2

)
log
(

µ2

M2e−γE

)
+ 8ζ(3). (E.7)

If we set µ2 ∝ M2e−γE , the expressions get simplified. Hence we choose it as the

renormalization scale. Other useful formulas can be found in [127].
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Appendix F

Renormalization by the spectral
sum

We consider current-current correlators in momentum space as a quantity for the

renormalization. These correlators are defined as

ΠΓ(q2) = i
∫

d4x eiqx〈JΓ(x)JΓ(0)〉, (F.1)

where JΓ is a bilinear operator such as q̄γµq, q̄γ5q, and q̄σµνq. In the case of the vector

current, we can write this correlator as ΠV(q2) = (qµqν − q2gµν)Π(q2). The function

Π(q2) is the so-called hadronic vacuum polarization (HVP) function. In the deep

Euclidean region Q2 = −q2 � 0, the perturbative expansion and OPE are applica-

ble. The perturbative series in the massless limit has been calculated up to O(α3
s )

for the vector current [80]. Lattice calculation for the quantity is straightforward.

The convergences of the OPE is, however, problematic, as discussed in the literature

[22]. Namely, there is a severe window problem Λ2
QCD � Q2 � 1/a2. Therefore, the

correlator in momentum space ΠΓ(q2) itself would not be suitable for the renormal-

ization.

In the present work, we propose a new method to renormalize lattice operators

using the Borel transformation, which is often utilized in the QCD sum rule. The

method is based on the technique to compute the weighted spectrum in the numeri-

cal lattice computation [35]. We compute the renormalization constant and compare

it with the result from another nonperturbative method.

We calculate the correlator of the current Jµ = ūγµd at three lattice spacing. We

use ensembles with N f = 2 + 1 dynamical Möbius domain-wall fermions, which

are generated by the JLQCD collaboration. Table 5.1 shows the parameters of the

ensembles, where light and strange sea quark masses are denoted by mud and ms,

respectively. We also use these degenerate masses mud as valence quark masses. The

correlators are measured Nmeas times at each lattice spacing. Some details of the

configurations can be found in [24].

As a test of our renormalization procedure, we compute the renormalization con-

stant of the vector current. We impose the matching (renormalization) condition on
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the Borel transform of HVP, Π̃lat(a2; M2), computed at lattice spacing a:

Π̃MS(µ2; M2) =
(

ZMS/lat
V (a2)

)2
Π̃lat(a2; M2), (F.2)

where ZV(a2) is the renormalization constant for the vector current operator. The

l.h.s. of (F.2), Π̃MS(µ2; M2), denotes the counterpart in the perturbative QCD at the

renormalization point µ. The perturbative expansion is known to O(α4
s ) in the mass-

less limit. For the vector current, there is no anomalous dimension, and the renor-

malization constant is independent of the renormalization scale up to the truncation

error. Since we obtain the renormalization condition (F.2) at several M2, we obtain

the optimal solution ZMS/lat
V (a2) as discussed in the next section.

We show our preliminary results. We set Nt = 18 for the Chebyshev expansion

of the Borel transform. The perturbative expansion Π̃MS(µ2; M2) is computed in the

massless limit, where we set µ = 2 GeV. Solving (F.2) for ZMS/lat
V , we can express the

solution in the following form:

Z̃V(a2; M2) ≡

√
Π̃MS(µ2; M2)

Π̃lat(a2; M2)
(F.3)

= ZMS/lat
V (a2) + C−2(Ma)2 + C4/M4. (F.4)

The discretization effect is incorporated into this function as C−2(Ma)2. The term

C4/M4 corresponds to the nonperturbative corrections due to the dimension-four

operators. Figure F.1 shows the M2 dependence of Z̃V(a2; M2) at each lattice spac-

ing. In the short-distance region, namely at small 1/M2, the ratio Z̃V(a2; M2) is sup-

pressed due to the discretization effect. We determine the renormalization constant

by a fit using the ansatz (F.4) in the range 1/M2 = 0.25–0.69 GeV−2. Then we ob-

tain ZMS/lat
V (a2) = 0.9804(43), 0.9806(27), 0.9789(23) at a−1 = 2.453, 3.610, 4.496 GeV,

respectively, where the parentheses denote the statistical errors only.

We compare our result with another method in Fig. F.2. We take the renormaliza-

tion constant from the X-space correlator as a reference [19]. The horizontal axis in

this figure is the squared lattice spacing. The circle and cross symbols denote our re-

sult and the X-space method, respectively. Note that the errors of our result does not

include systematic errors, such as truncation errors and valence quark mass depen-

dence. These renormalization constants may contain different discretization errors,

and the maximal deviation is ∼ 2.6% on the coarse lattice. The deviation becomes

insignificant towards the continuum limit.

We are trying to extend our method to other operators, such as the (pseudo-

)scalar density and tensor operators. Since those have finite anomalous dimensions,

we have to give the correct scale dependence, unlike the vector current. We compute

the corresponding ratio such as (F.3) but for tensor operators on the coarse lattice. We
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FIGURE F.1: Z̃V(a2; M2) at all lattice spacing.

check that a ratio of Z̃T(µ
2, a2; M2 is consistent with the running at one-loop level,

Z̃T(µ
2, a2; M2)

Z̃T(4 GeV2, a2; M2)
'
(

αs(µ2)

αs(4 GeV2)

)− γT
0

β0
, (F.5)

where γT
0 = −1/3. The computation is still ongoing.

The modification of the weight kernel is necessary for the pseudo-scalar density

ūγ5d, because the Borel transform is largely affected by π meson since the exponen-

tial kernel does not suppress π meson spectrum∼ δ(s−m2
π). Accordingly, the Borel

transform in this channel is not well described by perturbative QCD even at M =

2 GeV. This would be improved by a replacement of the kernel e−s/M2 → se−s/M2
.

The counterpart of this modified spectral sum in perturbative QCD may be derived

by some mathematical manipulations, such as the derivative of the Borel transform:

∂

∂(1/M2)
BM

[
logn

(
µ2

Q2

)]
. (F.6)

In this appendix, we propose a renormalization method based on the Borel trans-

form following SVZ. The renormalization constant can be computed through the

two-point correlation functions, which is fairly standard to compute in lattice calcu-

lation. The perturbative expansion of this quantity is available. The scale parameter

M2 is continuous and easily adjustable using the Chebyshev expansion. The er-

rors are due to the truncation of perturbative expansion, the finite mass correction,

and the choice of the fit range as well as the Chebyshev expansion. The result for
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FIGURE F.2: Comparison of ZMS/lat
V (a2) at three lattice spacing.

the vector current is consistent with another renormalization method in the limit of

vanishing lattice spacing. The computation of the renormalization constant for the

scalar and tensor current is underway.
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Appendix G

Mistuning of the strange quark
mass

In this appendix, we discuss the mistuning effect of the strange quark mass. As

discussed later, masses of some mesons is written in terms of the quark mass. We

has to set the bare quark mass to reproduce these mass relation of mesons. The

mistuning effect may be evaluated as the deviation of the relation. For more

detailed review of the chiral perturbation theory, see also [128].

Let us consider QCD with three light flavors. The mass term in the Lagrangian

is given by

ψ̄Mψ = ψ̄L MψR + ψ̄R M†ψL, (G.1)

where M is the diagonal mass matrix,

M =


mu

md

ms

. (G.2)

ψ = (u, d, s) is a quark field. The QCD Lagrangian in the massless limit has the

SU(3)L,R ×U(1)L,R symmetry for each flavor. In the classical theory, the Lagrangian

is invariant under the U(1)A transformation ψi → eαγ5 ψi ; however the U(1)A sym-

metry is broken by the anomaly. Moreover, SU(3)L × SU(3)R is spontaneously bro-

ken to the vector SU(3)V symmetry. The spontaneous symmetry broken generate 8

massless NG bosons, i.e., π, K and η. In actual, Gχ is a approximate symmetry since

the mass term explicitly breaks the chiral symmetry Gχ. Therefore, the mesons, π,

K and η, are called pseudo NG bosons which have the finite mass led by the quark

mass M.

As discussed in Sec. 2.8, the pion’s mass is related to the quark mass: m2
π ∝

mu + md. Let us include s quark in the discussion. Similar arguments are applicable

to K and η mesons. One can write these meson’s masses at the leading order of the
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quark masses,

M2
π = B(mu + md), (G.3)

M2
K± = B(mu + ms), (G.4)

M2
K0 = B(md + ms), (G.5)

M2
η =

1
3

B(mu + md + 4ms), (G.6)

where B is a constant and the corrections from the electromagnetic interactions are

neglected. These expressions obey the Gell-Mann-Okubo mass formula,

3M2
η + M2

π = 4m2
K, (G.7)

where m2
K = 1

2 (m
2
K± + m2

K0).

We turn to the discuss the mistuning of the strange quark mass. Assuming the

degeneracy of u and d quark masses, we have a equation of the strange quark mass:

2M2
K −M2

π = 2Bms. (G.8)

We have to set the bare strange quark mass to satisfy this relation since we know the

value of 2M2
K −M2

π ' 0.47 GeV2 from experiments. In our ensembles, 2M2
K −M2

π '
0.50, 0.51, 0.39 GeV2 at a−1 = 2.453, 3.610, 4.496 GeV, respectively. At the finest

lattice spacing, the deviation is ∼ 20%; therefore, we correct the mistuning of the

valence quark mass in the continuum extrapolation.
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Supplementary figures
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FIGURE H.1: Same as Fig. 5.1 but at a−1 = 3.610 GeV.
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FIGURE H.2: Same as Fig. 5.1 but at a−1 = 4.496 GeV.
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divided by the Π̃lat at three lattice spacings.
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FIGURE H.5: Same as Fig. 5.8 but after including the correction δΠ̃.
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