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Abstract

The theta term reflects topological nature of gauge theories, and its effects are
genuinely non-perturbative. Recent studies by ’t Hooft anomaly matching presented
some possible phase structures of 4D SU(2) gauge theory at θ = π, which can be
different from the known scenario at large N . It is an interesting challenge to
reveal the phase structure by first-principle calculation. However, the Monte Carlo
simulation of gauge theories with the theta term is known to be difficult due to the
sign problem. Thus, our goal is to develop methods to investigate such theories
avoiding the sign problem. First, we used the complex Langevin method (CLM)
to simulate the theory directly for θ 6= 0. We applied the CLM to 2D U(1) gauge
theory, which can be solved analytically. We found that a naive implementation of
the method fails due to the topological nature of the theory. We circumvented this
problem by introducing a puncture and confirmed that the CLM can reproduce the
exact results even at large θ. We also proved that the punctured model is equivalent
to the infinite volume limit of the original model for |θ| < π. Next, we applied
the CLM to 4D SU(2) gauge theory. We used the stout smearing to deal with the
contamination of the topological charge by short-range fluctuations. The effect of
smearing is included dynamically in the CLM. We found, however, that the CLM
becomes unstable due to topology changes. It seems to be difficult to study the
phase structure by this method. We also propose an alternative approach to 4D
SU(2) gauge theory based on analytic continuation of θ. We can obtain information
of the phase structure at θ = π indirectly by the hybrid Monte Carlo method
(HMC) with the imaginary theta term. We found that the result obtained in the
high temperature region indicates the instanton gas behavior. We also obtained the
result which is consistent with the spontaneous breaking of CP at low temperature.
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1 Introduction
We can explore the topological nature of quantum field theories via topological terms. Re-
cently, gauge theories with a theta term have been studied by ’t Hooft anomaly matching.
In particular, there is a constraint on the phase structure of 4D SU(N) pure gauge theory
by a ’t Hooft anomaly involving CP and center symmetries at θ = π [1]. The constraint
is consistent with the known scenario at large N , where the theory at θ = π is confined
with spontaneously broken CP at low temperature and then has a transition to deconfined
phase with restored CP at a finite temperature. However, it is highly nontrivial whether
this structure persists for small N , since there are various ways to satisfy the anomaly
matching condition. For example, the theory for small N at low temperature may be
deconfined or gapless as well as spontaneously broken CP. Therefore it is an interesting
challenge to investigate the phase structure by first-principle calculation at the smallest
N , namely N = 2.

Since the effects of the theta term on quantum field theories are genuinely non-
perturbative, the theory including the theta term should be analyzed by non-perturbative
calculations. However, ordinary Monte Carlo simulations based on the lattice gauge the-
ory is difficult due to the sign problem. The aim of this work is to develop a method to
simulate gauge theories with a theta term avoiding the sign problem. Then, we try to
reveal the phase structure of 4D SU(2) gauge theory and test the consistency with the
anomaly matching. In this work, we propose an approach using the complex Langevin
method (CLM) [2, 3], which turns out to be useful for 2D gauge theories on a punctured
torus. However, it is difficult to analyze 4D gauge theories by this method because the
topological property is affected by UV fluctuations. Thus, we propose an alternative
approach using analytic continuation of θ. We can access the phase structure for real
θ from the simulations at imaginary θ. We found that this method can give us a lot
of information in spite of the restriction by the phase boundary. We briefly explain our
works in the following paragraphs.

First, we focus on the CLM, which is one of the approaches allowing us to avoid
the sign problem. The advantage of this method is that the calculation cost depends
just linearly on the system size, so that we can easily apply it to theories in higher
dimensions. However, the CLM has the drawback that it possibly gives wrong results
depending on the system and the parameter region. Fortunately, a practical criterion for
correct convergence was proposed in the recent study [4]. Therefore, the CLM is now
thought to be a useful method as long as the criterion is satisfied.

As a first step, we applied the CLM to 2D U(1) gauge theory with a theta term [5].
This model is suitable for the testing ground since it can be solved analytically for a
finite lattice spacing and a finite volume on an arbitrary manifold [6, 7, 8]. We found
that a naive implementation of the CLM on the periodic lattice fails. We clarified that
the configurations which appear when the topology change occurs during the simulation
necessarily result in a large drift force. In fact, frequent appearance of the large drift
force violates the criterion for correct convergence. If one avoids this problem by sim-
ply approaching the continuum limit, then the topology change never occurs during the
simulation. It causes the other problem of the ergodicity.
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In order to circumvent this problem, we introduced a puncture on the lattice, namely
removing a plaquette from the action. It makes the manifold non-compact, so that the
2π periodicity of θ is lost. We obtained the exact results for this punctured model and
proved that it is equivalent to the infinite volume limit of the original model within the
range |θ| < π. Thus, we can still extract the information of the original model from the
punctured model. Rather surprisingly, we found that the CLM works and reproduces
the exact results for the punctured model even at large θ. The topology change can
occur freely thanks to the degrees of freedom around the puncture. As approaching the
continuum limit, the large drift force does not appear because the problematic plaquette
(puncture) is removed from the action.

Next, We analyzed 4D SU(2) gauge theory with a theta term by using the CLM [9].
This work is motivated by the prediction for the phase structure of the theory at θ = π
by ’t Hooft anomaly matching. The methods free from the sign problem, such as the
CLM, allow us to calculate observables at θ 6= 0 directly. We applied the CLM to the
theory with the topological charge defined by the clover leaf formula [10] and found that
it works in some cases. However, the topological property of the theory is unclear since
the topological charge on the lattice is contaminated by the short-range fluctuations.
It means that the topological charge does not approach an integer. The θ-dependent
observables do not show the 2π periodicity. In fact, the situation is different from the
case in 2D where the topological property is clear even on the finite lattice.

Then, we introduced the stout smearing [11] into the CLM in order to suppress the
contamination of the topological charge. It successfully eliminates the short-range fluc-
tuations, and the topological charge becomes close to an integer. However, we found
that there is a relation between the topology change and the large drift force. They are
correlated with each other just as we found in the study of 2D U(1) gauge theory. Thus,
we need to modify the boundary condition of the 4D lattice to avoid this problem.

We are also studying 4D SU(2) gauge theory with an imaginary theta term. By
considering analytic continuation, we can see the behavior of observables at real θ from
the calculations at imaginary θ. Thus, it is possible to investigate the phase structure of
the real θ region indirectly. Since the sign problem is absent in the theory with imaginary
θ, we use the hybrid Monte Carlo (HMC) method. We also apply the stout smearing to
the HMC in order to recover the topological property.

We found that the behavior of the topological charge density is consistent with the
instanton gas approximation at high temperature, namely in the deconfined phase. We
also obtained the result at low temperature, which is clearly different from those at high
temperature. This result implies the spontaneous breaking of CP at θ = π in the confined
phase. However, analytic continuation of the observables is valid only within the same
phase. Thus, in this argument, we have to assume that the system remains in the same
phase for 0 ≤ θ < π. In other words, the θ-dependence of the deconfining temperature
should not be significant. In order to clarify this point, we are trying to investigate the
deconfining temperature in the imaginary θ region. It is expected that the deconfining
temperature is an analytic even function of θ. We are also trying to take the continuum
limit because we found that the results are sensitive to the finite lattice spacing effect.

There are some related works which attempt to investigate the phase structure of 4D
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SU(2) gauge theory. For example, the so-called subvolume method is used to calculate the
free energy of the theory at θ 6= 0 [12, 13]. The result at high temperature is consistent
with the prediction by the instanton gas approximation. On the other hand, the result
at zero temperature suggests the spontaneous CP breaking at θ = π, which is known to
occur at large N . In the analytic study [14], a softly-broken supersymmetric model is used
to access 4D SU(N) pure gauge theory at θ = π. Assuming the CP broken phase at θ = π,
the constraint by ’t Hooft anomaly matching on the relation between the CP restoration
temperature TCP and the deconfining temperature Tdec(π) at θ = π is TCP ≥ Tdec(π).
Interestingly, the results of the work [14] imply that TCP = Tdec(π) for any N ≥ 3, but
TCP > Tdec(π) only for N = 2.

The rest of this paper is organized as follows. In Section 2, we briefly review 2D
U(1) gauge theory and 4D SU(2) gauge theory with a theta term, and then consider the
lattice regularization of them. In Section 3, we show the results of the complex Langevin
analysis of 2D U(1) gauge theory. This section is based on the published paper [5]. In
Section 4, we apply the CLM to 4D SU(2) gauge theory. The result was also reported in
LATTICE2021 conference [9]. In Section 5, we try to investigate the phase structure of
4D SU(2) gauge theory via the imaginary theta term. Since this work is still ongoing, the
refined results will be reported in the near future. Section 6 is devoted to a summary and
discussions. In appendix A, we review the derivation of the exact partition function of 2D
U(1) lattice gauge theory. In appendix B, we show the additional results of the CLM for
2D U(1) gauge theory using a different definition of the topological charge. In appendix
C, we show the detailed derivation of the formulae used to apply the stout smearing to
the CLM and the HMC. We discuss the effect of the stout smearing in Appendix D.

2 Lattice gauge theory with a theta term
In this section, we review how to define the gauge theories with a theta term on the
lattice. We consider 2D U(1) gauge theory and 4D SU(2) gauge theory in the following
sub-sections.

2.1 2D U(1) gauge theory on the lattice

First, we review 2D U(1) gauge theory with a theta term on a Euclidean space. The
action of the gauge field Aµ (µ = 1, 2) is given by

Sg =
1

4g2

∫
d2x (Fµν)

2 , (2.1)

where g is the gauge coupling constant and Fµν is the field strength defined as

Fµν = ∂µAν − ∂νAµ . (2.2)

We can add the so-called topological theta term

Sθ = −iθQ (2.3)
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in the action, where Q is the topological charge defined by

Q =
1

4π

∫
d2x εµνFµν , (2.4)

and θ is a real parameter. The topological charge takes integer values on the compact
space. The theta term is gauge invariant and renormalizable. It can be regarded as an
imaginary chemical potential of the topological charge.

Next, we put this theory on an L× L periodic lattice with the lattice spacing a. We
define the link variables Un,µ ∈ U(1), where n labels the lattice site as xµ = anµ. We also
define the plaquette

Pn := Un,1̂Un+1̂,2U
−1

n+2̂,1
U−1
n,2 , (2.5)

which is a gauge invariant object. Here we use the inverse U−1
n,µ instead of the Hermitian

conjugate U †n,µ since we have to complexify the dynamical variables respecting holomor-
phicity in the CLM. The lattice counterpart of the field strength (2.2) can be defined
as

Fn,12 :=
1

ia2
logPn , (2.6)

where we take the principal value for the complex log; namely log z = log |z|+ i arg z with
−π < arg z ≤ π. Since the plaquette can then be written in terms of Fn,µν as

Pn = eia
2Fn,12 , (2.7)

we define the lattice counterpart of the gauge action (2.1) as

Sg := −β
2

∑
n

(
Pn + P−1

n

)
= −β

∑
n

cos
(
a2Fn,12

)
, (2.8)

which reproduces a natural discretization

Sg '
1

4g2

∑
n

a2(Fn,µν)
2 , (2.9)

in the continuum limit up to an irrelevant constant with the identification

β =
1

(ga)2
. (2.10)

In the present 2D U(1) lattice gauge theory, the topological charge can be defined as

Qlog :=
1

4π

∑
n

a2εµνFn,µν = − i

2π

∑
n

logPn , (2.11)

which gives an integer value even at finite a. This can be proved easily by using
∏

n Pn = 1
since each link variable appears twice in this product with opposite directions. We call
this definition (2.11) the “log definition”. As an alternative definition, we also consider

Qsin := − i

4π

∑
n

(
Pn − P−1

n

)
=

1

2π

∑
n

sin
(
a2Fn,12

)
, (2.12)
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which approaches (2.4) in the continuum limit recalling (2.7). Note that the topological
charge on the lattice defined in this way can take non-integer values in general before
taking the continuum limit. We call this definition (2.12) the “sine definition”.

Thus, we define the action of 2D U(1) lattice gauge theory as

S = Sg + Sθ , (2.13)

where Sg is given by (2.8) and Sθ is given by (2.3) with Q defined either by (2.11) or by
(2.12). Since this theory is superrenormalizable, we can take the continuum limit a→ 0
with fixed g, which is set to unity throughout this paper without loss of generality. In
this unit, the physical volume of the 2D torus is given by

Vphys = (La)2 =
L2

β
. (2.14)

Note also that this theory has the 2π periodicity of the parameter θ ∈ R since the partition
function

Z =

∫
DAe−Sg+iθQ (2.15)

is invariant under the shift θ → θ + 2π.

2.2 4D SU(2) gauge theory on the lattice

In this sub-section, we review 4D SU(2) gauge theory with a theta term on a Euclidean
space. The action for the gauge field Aaµ (a = 1, 2, 3) (µ = 1, · · · , 4) is given by

Sg =
1

4g2

∫
d4xF a

µνF
a
µν , (2.16)

where F a
µν is the field strength

F a
µν = ∂µA

a
ν − ∂νAaµ − εabcAbµAcν . (2.17)

Here we define the basis of SU(2) generators as

τa :=
σa

2
, (2.18)

where σa (a = 1, 2, 3) are Pauli matrices. The generators satisfy the following relations.

Tr
[
τaτ b

]
=

1

2
δab (2.19)[

τa, τ b
]

= iεabcτ c (2.20)

τaijτ
a
kl =

1

2

(
δilδjk −

1

2
δijδkl

)
(2.21)
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For the 4D gauge theory, the topological charge Q is defined by

Q =
1

64π2

∫
d4xεµνρσF

a
µνF

a
ρσ , (2.22)

which takes integer values on the compact space. We define the theta term Sθ = −iθQ
with the real parameter θ, and the action is given by S = Sg + Sθ.

Next, we consider the lattice discretization of the theory. We introduce link variables
Un,µ ∈ SU(2) and define the plaquette

P µν
n := Un,µUn+µ̂,νU

−1
n+ν̂,µU

−1
n,ν , (2.23)

where the index n labels the lattice site and µ̂ represents the unit vector along the µ-
th direction. Note that we use U−1

n,µ instead of U †n,µ to respect holomorphicity, which is
necessary to justify the CLM. We define the plaquette action by

Sg = −β
4

∑
n

∑
µ6=ν

TrP µν
n (2.24)

with the lattice coupling constant β. For the topological charge on the lattice, we apply
the simplest discretization [10] given by the so called "clover leaf" formula.

Qcl = − 1

32π2

∑
n

1

24

±4∑
µ,ν,ρ,σ=±1

ε̃µνρσTr [P µν
n P ρσ

n ] (2.25)

Here the orientation of the plaquette is generalize to negative directions. Correspondingly,
the anti-symmetric tensor ε̃µνρσ also has negative indices, for example

1 = ε̃1234 = −ε̃2134 = −ε̃(−1)234 = · · · . (2.26)

The definition (2.25) in 4D can be regarded as an analogy of (2.12) in 2D.
Usually the topological charge Qcl does not take integer values on the finite lattice

due to the discretization effect. We can recover the topological property of the gauge
field by eliminating short-range fluctuations. Some smoothing techniques, such as the
gradient flow, stout smearing and so on, make the topological charge close to integers. In
the analysis of 4D SU(2) gauge theory, we apply the stout smearing to the CLM, which
is discussed in section 4.4.

3 Complex Langevin analysis of 2D U(1) gauge theory

Since the theta term is purely imaginary, the Monte Carlo simulation of the gauge theory
with the theta term is extremely difficult due to the sign problem. We try to overcome
this problem by using the complex Langevin method (CLM) [2, 3, 15, 16, 17, 4]. We
show the results of the complex Langevin simulation of 2D U(1) gauge theory with a
theta term, which suggest that a naive implementation of the method fails. The CLM
fails due to topological nature of the theory. We avoid the problem by introducing a
puncture on the lattice. Although the 2π periodicity of θ is lost, the CLM reproduces the
exact result. This section is based on the published paper [5].
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3.1 Application of the CLM to 2D U(1) gauge theory

First, we review how to apply the CLM to 2D U(1) gauge theory. The dynamical variables
are complexified in the CLM. In the present case of U(1) gauge theory, we extend the link
variables Un,µ ∈ U(1) to Un,µ ∈ C \ {0}, which corresponds to extending the gauge field
Aµ ∈ R to Aµ ∈ C in the continuum theory. Then we consider a fictitious time evolution
of the link variables Un,µ(t) governed by the complex Langevin equation

Un,µ(t+ ∆t) = Un,µ(t) exp
[
− i∆tDn,µS + i

√
∆t ηn,µ(t)

]
, (3.1)

where ηn,µ(t) is a real Gaussian noise normalized by 〈ηn,µ(t)ηk,ν(t)〉 = 2δnkδµνδt,t′ . The
drift term Dn,µS is first calculated by the differential operation with respect to the unitary
link variable (Lie group element)

Dn,µS =
d

dε
S
(
eiεUn,µ

)∣∣∣∣
ε→0

, (3.2)

and then it is defined for the complexified link variables by analytic continuation in order
to respect holomorphicity. The drift term Dn,µSg from the gauge action (2.8) can be
calculated straightforwardly.

Dn,1Sg = −iβ
2

(
Pn − P−1

n − Pn−2̂ + P−1

n−2̂

)
Dn,2Sg = i

β

2

(
Pn − P−1

n − Pn−1̂ + P−1

n−1̂

)
(3.3)

The drift term Dn,µSθ from the theta term depends on the definition of the topological
charge. If one uses the log definition (2.11), the drift term is identically zero except for
Pn = −1, where it becomes singular due to the branch cut of the complex log. This
behavior comes from the topological nature of the log definition. In fact, one of the
plaquettes has to be Pn = −1 when the topological charge (2.11) changes discontinuously.
It is not straightforward to define the drift term as a holomorphic function of Un,µ in this
case.

On the other hand, if one uses the sine definition (2.12), the drift term can be calcu-
lated straightforwardly.

Dn,1Sθ = −i θ
4π

(
Pn + P−1

n − Pn−2̂ − P−1

n−2̂

)
Dn,2Sθ = i

θ

4π

(
Pn + P−1

n − Pn−1̂ − P−1

n−1̂

)
(3.4)

It may be viewed as an approximation of the δ-function like behavior mentioned above.
Moreover, it can be readily extended to a holomorphic function of Un,µ. For this reason,
we use the sine definition in this setup.

The criterion [4] for the validity of the CLM states that the probability distribution
of the drift term should fall off exponentially or faster. There are two cases in which
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this criterion cannot be met. The first case occurs when the configuration comes close
to the poles of the drift terms (3.3), (3.4), which correspond to configurations with Pn =
0 for some n. If such configurations appears frequently during the Langevin process,
the criterion tends to be violated. This problem is called the singular-drift problem
[18, 19], which was found first in simple models [20, 21]. The second case occurs when the
dynamical variables make large excursions in the imaginary directions [15]. This problem
is called the excursion problem. In the present model, this corresponds to the situation
in which the link variables have absolute values |Un,µ| far from unity.

These problems can occur since the link variables Un,µ are not restricted to be unitary
in the CLM. In order to avoid them, it is important to perform the gauge cooling. The idea
of gauge cooling [22] is to reduce the non-unitarity of link variables as much as possible
by gauge transformations corresponding to the complexified Lie group after each step of
the Langevin process. This procedure can be added without affecting the argument for
justifying the CLM as demonstrated explicitly in [17, 4]. Recently, the mechanism of the
gauge cooling for stabilizing the complex Langevin simulation has been investigated [23].

The deviation of the link variables from U(1) can be measured by the unitarity norm

N :=
1

2L2

∑
n,µ

{
U∗n,µUn,µ + (U∗n,µUn,µ)−1 − 2

}
. (3.5)

The gauge cooling reduces this quantity by a complexified gauge transformation, namely
C \ {0} transformation in the present case, which is determined as follows.

First we consider an infinitesimal gauge transformation

δUn,µ = (εn − εn+µ̂)Un,µ , (3.6)

with small parameters εn ∈ R. The change of the unitarity norm due to the transformation
is given by

δN =
1

2L2

∑
n,µ

{
2(εn − εn+µ̂)U∗n,µUn,µ − 2(εn − εn+µ̂)(U∗n,µUn,µ)−1

}
=

1

2L2

∑
n

2εnGn , (3.7)

where we define the gradient Gn as

Gn :=
∑
µ

{
U∗n,µUn,µ − U∗n−µ̂,µUn−µ̂,µ − (U∗n,µUn,µ)−1 + (U∗n−µ̂,µUn−µ̂,µ)−1

}
. (3.8)

Therefore, we find that the unitarity norm is reduced efficiently by choosing εn ∝ −Gn.
Based on this result, we consider a finite gauge transformation

Un,µ 7→ gn Un,µ g
−1
n+µ̂ ; gn = e−αGn (3.9)

with a parameter α > 0. Applying this transformation, the unitarity norm turns out to
be

N (α) =
1

2L2

∑
n,µ

{
U∗n,µUn,µe

−2α(Gn−Gn+µ̂) + (U∗n,µUn,µ)−1e2α(Gn−Gn+µ̂) − 2
}
, (3.10)
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depending on α in (3.9). We search for an optimal α that minimizes (3.10) and then
satisfies

dN (α)

dα
= 0 . (3.11)

Note here that α should be a small number since the gauge cooling is performed after
each step of the Langevin process. We therefore expand (3.11) with respect to α up to
the first order and obtain the solution

α =
1

2

∑
nG

2
n∑

n,µ(Gn −Gn+µ̂)2
[
U∗n,µUn,µ + (U∗n,µUn,µ)−1

] . (3.12)

We use this value of α as an estimation of the optimal value that minimizes (3.10). We
repeat this transformation several times until the unitarity norm changes by a fraction
less than 10−5.

When we solve the discretized complex Langevin equation (3.1), the drift term can
be extremely large, in particular during the thermalization process. This causes a large
discretization error, which either makes the thermalization slow or destabilizes the simu-
lation. We can avoid this problem by using a smaller step size ∆t, but the computational
cost for a fixed Langevin time increases proportionally to (∆t)−1. The adaptive step size
[24] is a useful technique, which amounts to reducing the step size only when the drift
term becomes large.

In our simulation, we measure the magnitude of the drift term defined as

u = max
n,µ
|Dn,µS| (3.13)

at each step, and choose the Langevin step size ∆t in (3.1) as

∆t =

{
∆t0 for u < v0 ,
v0

u
∆t0 otherwise ,

(3.14)

where ∆t0 is the default step size, and v0 is the threshold for the magnitude of drift term.
In the present work, the default step size is set to ∆t0 = 10−5, and the threshold is set to
v0 = 2β, corresponding to a bound u ≤ 2β for θ = 0.

3.2 Result of the CLM on the periodic lattice

In this section, we show our results obtained by the CLM implemented on the periodic
lattice. We adopt the sine definition (2.12) of the topological charge since it gives the
holomorphic drift term (3.4). We have performed simulations at various θ for (β, L) =
(3, 10), (12, 20) corresponding to a fixed physical volume Vphys := L2/β = 102/3 with
different lattice spacings. First, we discuss the validity of the CLM at θ = π for example,
where the sign problem is most severe, but the situation is the same for any value of
θ 6= 0.

In Fig. 3.1(Left), we show the histogram of the magnitude u of the drift term defined
by (3.13). The distribution falls off rapidly for the fine lattice (β, L) = (12, 20), but it
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Figure 3.1: The results obtained by the CLM on the periodic lattice using the sine
definition Qsin of the topological charge. (Left) The histogram of the magnitude u of the
drift term defined by (3.13) is shown for (β, L) = (3, 10), (12, 20) with θ = π. (Right)
The histogram of ReQsin is plotted for (β, L) = (12, 20) with θ = π. The exact result
obtained for (β, L) = (12, 20) with θ = 0 is also shown by the solid line for comparison.

decays slowly with a power law for the coarse lattice (β, L) = (3, 10). Thus the criterion
for correct convergence is satisfied for (β, L) = (12, 20) but not for (β, L) = (3, 10) due
to the large drifts.

In Fig. 3.1(Right), we plot the histogram of ReQsin obtained by the CLM for the fine
lattice (β, L) = (12, 20) with θ = π, which has a sharp peak at ReQsin = 0. In the same
figure, we also plot the exact result for (β, L) = (12, 20) at θ = 0 for comparison, which
exhibits some sharp peaks near integer values. This result indicates that the transitions
between different topological sectors are highly suppressed in the simulation on the fine
lattice, which causes a problem with the ergodicity. This problem occurs also at θ = 0 for
large β, and it is called the “topology freezing problem”. In fact, the results obtained by
simulations suffering from this problem correspond to the expectation values restricted
to the single topological sector specified by the initial configuration.

For the coarse lattice (β, L) = (3, 10) with θ = π, on the other hand, the histogram of
ReQsin obtained by the CLM has broad peaks that overlap with each other, which looks
similar to the exact result with θ = 0. This implies that the topology freezing problem is
absent for (β, L) = (3, 10). See also Fig. 3.3.

Below we define some observables investigated in our simulation. First, we define the
average plaquette by

w =
1

V

∂

∂β
logZ . (3.15)

Hereafter, V = denotes the number of plaquettes in the action, which is V = L2 for the
periodic lattice. The topological charge density is defined by

1

V
〈Q〉 = −i 1

V

∂

∂θ
logZ , (3.16)

which is zero at θ = 0 and purely imaginary for θ 6= 0. Finally, the topological suscepti-
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bility is defined by

χ =
1

V

(
〈Q2〉 − 〈Q〉2

)
= − 1

V

∂2

∂θ2
logZ , (3.17)

which is real for any θ. Note that the topological susceptibility χ is related to the topo-
logical charge density (3.16) through

χ = −i 1

V

∂

∂θ
〈Q〉 . (3.18)

This relation is general and independent of the definition of Q. Thus, it should be satisfied
as long as the CLM works correctly.

In Fig. 3.2, we show the observables obtained by the CLM on the periodic lattice. We
also plot the exact results for comparison, which are derived in Appendix A.4. In the left
column, we present our results for the coarse lattice (β, L) = (3, 10), which suffer from
the wrong convergence. In the right column, we present our results for the fine lattice
(β, L) = (12, 20), which suffer from the topology freezing problem. In either case, our
results do not reproduce the exact results as anticipated. Note that our results at θ = 0
agree with the exact results for (β, L) = (3, 10) but not for (β, L) = (12, 20). This is
because the topology freezing problem occurs for large β even at θ = 0.

Thus we find that the CLM with the naive implementation fails for both the fine lattice
and the coarse lattice for different reasons. For the coarse lattice, the topology change
occurs but the criterion for correct convergence is not satisfied due to the large drifts.
For the fine lattice, the criterion for correct convergence is satisfied, but the ergodicity is
violated due to the topology freezing problem. We could not find a parameter region in
which neither of the problems occurs. In fact, we will see in the next section that these
problems are related to each other at least in the present model.

3.3 Appearance of large drifts and topology change

In this section, we provide detailed discussions on the relationship between the appearance
of large drifts and the topology change no the periodic lattice. First, we define the notion
of topological sector by ReQlog evaluated by (2.11) for each configuration. It can be used
in the CLM since ReQlog takes integer values even for complexified configurations.

During the simulation, a transition between different topological sectors occurs when
one of the plaquettes crosses the branch cut. In other words, ReQlog increases by one
if the phase of the plaquette jumps from −π to π, and vice versa. We found that large
drift terms can appear when this transition occurs. We can see the relation in Fig. 3.3,
where we plot the histories of ReQlog and the magnitude u of the drift term (3.13) in
the same Langevin time. There is clear correlation between the large drift term and
the topology change. We also confirmed that the large drift term appears for the link
variables composing the plaquette that crosses the branch cut.

In order to understand this observation further, we focus on the Langevin time evo-
lution of a particular link variable UK,1. The drift term for this link depends on the
plaquettes PK and PK−2̂ sharing the link. For simplicity, we set PK−2̂ = 1 and consider
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Figure 3.2: The results of various observables obtained by the CLM on the periodic
lattice with the sine definition Qsin. The average plaquette (Top), the imaginary part
of the topological charge density (Middle), the topological susceptibility (Bottom) are
plotted against θ/π for (β, L) = (3, 10) (Left) and (12, 20) (Right). The exact results are
also shown by the dashed lines for comparison.
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topological charge Qlog with the log definition, whereas the lower plot shows the history
of the magnitude u of the drift term in the log scale.

the drift term v as a function of PK

v = β sinφ− i θ
2π

(cosφ− 1) , (3.19)

where we have defined a complex phase of PK by φ := −i logPK . In Fig. 3.4(Left), we
plot the drift term as a flow diagram for β = θ = 1. Since the contribution of the drift
term v to the change of φ in the Langevin step is given by ∆φ = −v∆t, we actually plot
(−v) in the complex φ plane.

In what follows we assume that β > θ/2π. Then we find from Eq. (3.19) that there are
two fixed points corresponding to v = 0. One is φ = 0 and the other is φ = i log[(θ/2π +
β)/(θ/2π − β)], which is close to ±π. As we can see from Fig. 3.4(Left), the fixed point
φ = 0 is attractive, which confirms that PK tends to become unity when β is large. The
other fixed point φ ∼ ±π is repulsive, and the magnitude |v| grows exponentially as one
flows away in the imaginary direction. In Fig.3.4(Right), we plot the magnitude |v| as a
function of Imφ for Reφ = ±π. As we mentioned above, when the transition between
topological sectors occurs, one of the plaquettes crosses the branch cut Reφ = ±π. When
this happens, the configuration can easily flow in the imaginary direction, which causes
a large drift.

3.4 Introducing a puncture on the torus

Since the problem we found for the periodic lattice originates from the topological nature
of the theory, a simple remedy would be to change the topology of the base manifold
to a non-compact one. Here we consider introducing a puncture on the 2D torus. Once
we introduce a puncture, the drift term Dn,µSθ with the log definition of the topological
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Figure 3.4: (Left) A flow diagram representing −v defined by (3.19) is shown as a
function of φ for β = θ = 1. (Right) The absolute value |v(φ)| is plotted against Imφ for
Reφ = π.

charge has nonzero contributions for the link variables surrounding the puncture. Thus,
we can include the effect of the theta term correctly in the CLM up to the singular
behavior on the branch cut. We will discuss its validity in Section 3.6. For the rest of
this paper, we basically use the log definition to simplify our discussions. The topological
charge on the punctured torus is no longer restricted to integer values, and it can change
freely unlike the periodic case. Nevertheless, we found that the effect of the puncture
disappears in the infinite volume limit for |θ| < π as we demonstrate explicitly in this
section using the exact results.

There are various ways to introduce a puncture on the periodic lattice. Here we
consider removing a plaquette simply. More precisely, we define the punctured model
by removing one plaquette PK at the site n = K from the gauge action (2.8) and the
topological charge (2.11). There are many other way to put a puncture, and it is also
possible to use just the open boundary condition. But in any case, one can obtain exact
results for a finite lattice as explained in Appendix A. In fact, the model with the puncture
(the open boundary) is equivalent to the non-punctured (periodic) model in the infinite
volume limit for |θ| < π.

We show the equivalence of the punctured model and the non-punctured model in
the infinite volume limit. Here we use the log definition of the topological charge, but
a similar statement holds also for the sine definition. 1 The partition function for the
non-punctured model is given by

Znonpunc =
+∞∑

n=−∞

[I(n, θ, β)]V (3.20)

1In the case of the sine definition, the equivalence of the two models in the infinite volume limit holds
for |θ| < θc(β), where θc(β) ∼ π{1 + 1/(2β)} for large β.
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for the non-punctured lattice with the volume V = L2 as derived in Appendix A.2, where
the function I(n, θ, β) is defined by

I(n, θ, β) =
1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
. (3.21)

In the infinite volume limit V → ∞, the sum over n in (3.20) is dominated by the term
which gives the largest absolute value |I(n, θ, β)|. This term corresponds to the n that
minimizes | θ

2π
− n|. Thus the free energy in the infinite volume limit is obtained as

lim
V→∞

1

V
logZnonpunc = log I(0, θ̃, β) (3.22)

where θ̃ is defined by θ̃ := θ − 2πk with the integer k chosen so that −π < θ̃ ≤ π.
On the other hand, the partition function for the punctured model is given by

Zpunc = [I(0, θ, β)]V (3.23)

on the punctured lattice with the volume V = L2 − 1 as shown in Appendix A.3, which
implies that the free energy

1

V
logZpunc = log I(0, θ, β) (3.24)

is actually independent of V . Hence all the observables derived from it has no finite size
effects. Note also that this model no longer has the 2π periodicity of θ. By comparing
(3.22) and (3.24), one can see that the two models are equivalent in the infinite volume
limit as long as |θ| < π.

The observables defined in Section 3.2 can be calculated from the partition functions
(3.20) and (3.23) for the two models by numerical integration. The details of derivation
is explained in Appendix A.4. In Fig. 3.5, we plot the average plaquette (3.15), the
imaginary part of the topological charge density (3.16) and the topological susceptibility
(3.17) for two different volumes L = 10, 20 with the same β = 12. The results for the
punctured model is equivalent to the results for the infinite volume limit of the non-
punctured model within the range |θ| < π.

We can obtain the free energy (3.24) for the punctured model in the continuum limit
explicitly. The integrating over φ in Eq. (3.21) is evaluated for β � 1 as

I(n, θ, β) ' 1√
2πβ

eβ−
1
2β ( θ

2π
−n)

2

, (3.25)

then we get
1

V
logZpunc ' eβ − 1

2
log 2πβ − θ2

8π2β
. (3.26)

From this result, we obtain various observables for the continuum limit of the punctured
model as

w ' 1− 1

2β
+

θ2

8π2β2
, (3.27)
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Figure 3.5: The exact results for various observables obtained for the log definition
Qlog of the topological charge. The average plaquette (Top), the imaginary part of the
topological charge density (Middle), the topological susceptibility (Bottom) obtained for
the non-punctured (solid line) and punctured (dashed line) models are plotted against θ
for L = 10 (Left) and L = 20 (Right) with the same β = 12. Note that the results for the
punctured model are actually independent of L. For the non-punctured model, we also
plot the results in the infinite volume limit L→∞ with β = 12 by the dash-dotted lines
for comparison.
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〈Q〉
V
' iθ

4π2β
, (3.28)

χ ' 1− 1

2β
+

θ2

8π2β2
, (3.29)

which explains the θ dependence observed in Fig. 3.5.

3.5 Application of the CLM to the punctured model

In this section, we discuss the application of the CLM to the punctured model using the
log definition Qlog of the topological charge. Our results reproduce the exact results as
long as the system is close enough to the continuum limit. We also show that the topology
freezing problem is avoided without causing large drifts thanks to the puncture.

3.5.1 Drift terms for the punctured model

We have discussed the drift terms in the non-punctured model in Section 3.1. For the
punctured model, the drift terms for the four link variables surrounding the puncture,
namely UK,1, UK+2̂,1, UK,2 and UK+1̂,2, are modified.

Dn,1S =


−iβ

2
(Pn − P−1

n − Pn−2̂ + P−1

n−2̂
) for n 6= K, K + 2̂

−iβ
2
(−PK−2̂ + P−1

K−2̂
) + i θ

2π
for n = K

−iβ
2
(PK+2̂ − P−1

K+2̂
)− i θ

2π
for n = K + 2̂

(3.30)

Dn,2S =


−iβ

2
(−Pn + P−1

n + Pn−1̂ − P−1

n−1̂
) for n 6= K, K + 1̂

−iβ
2
(PK−1̂ − P−1

K−1̂
)− i θ

2π
for n = K

−iβ
2
(−PK+1̂ + P−1

K+1̂
) + i θ

2π
for n = K + 1̂

(3.31)

Here we have ignored the issue of the branch cut of the log definition discussed in Section
3.1. This is justified if all the plaquettes in the action never cross the branch cut. In
other words, the plaquettes should satisfy |Im logPn| < π for ∀n 6= K during the Langevin
simulation. We will see that this assumption is justified for sufficiently large β in Section
3.6.

Note that the drift term from the theta term appears only for the link variables
surrounding the puncture. and it is actually a constant independent of the configuration.
While these properties are peculiar to the log definition Qlog, similar ones hold also for the
sine definition Qsin for large β. We discuss the case with the sine definition in Appendix
B, where we obtain qualitatively the same results as those with the log definition.

3.5.2 Distribution of the topological charge

As we have seen in Section 3.4, the punctured model is equivalent to the infinite volume
limit of the non-punctured model for |θ| < π. However, the punctured model does not
have the 2π periodicity of θ, which exists in the original non-punctured model. In order
to understand this point further, we discuss the θ dependence of the partition function in
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Figure 3.6: The topological charge distribution for θ = 0 obtained by the Langevin
simulation for the punctured model using the log definition Qlog is plotted for (β, L) =
(3, 10) (Left) and (β, L) = (12, 20) (Right). The solid lines represent the exact results
obtained by evaluating ((3.33)) using the partition function (3.23).

this section. Let us first note that the partition function for arbitrary θ is related to the
topological charge distribution ρ(q) for θ = 0 through Fourier transformation.

Z(θ) =

∫
dUe−Sg [U ]+iθQ[U ]

=

∫
dUe−Sg [U ]

∫
dq eiθqδ(Q[U ]− q)

= Z(0)

∫
dq eiθqρ(q) (3.32)

Therefore, the absence of the 2π periodicity in θ in the punctured model is directly related
to its property that the topological charge can take non-integer values even if we use the
log definition Qlog. By making an inverse Fourier transform, we can obtain the topological
charge distribution ρ(q) for θ = 0 from the θ-dependent partition function.

ρ(q) =
1

Z(0)

∫ ∞
−∞

dθ

2π
Z(θ) e−iθq . (3.33)

We can calculate this quantity for the punctured model by the Langevin simulation
for θ = 0. While the sign problem is absent for θ = 0, the topology freezing can still
be a problem for large β. In Fig. 3.6, we show the results for (β, L) = (3, 10) and
(β, L) = (12, 20), which agree well with the exact results obtained by evaluating (3.33)
using the partition function (3.23). The agreement of these results confirms that the
topology freezing problem is absent in the punctured model at least for θ = 0.

3.6 Validity of the CLM for the punctured model

In this section, we discuss the validity of the CLM for the punctured model. Fig. 3.7(Left)
shows the histogram of the drift term for (β, L) = (3, 10), (12, 20) with θ = π, which are
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Figure 3.7: The results obtained by the CLM for the punctured model using the log
definition Qlog of the topological charge. (Left) The histogram of the magnitude u of the
drift term defined by (3.13) is shown for (β, L) = (3, 10) and (12, 20) with θ = π. (Right)
The histogram of ReQlog is shown for (β, L) = (12, 20) with θ = π. The exact result
obtained for (β, L) = (12, 20) with θ = 0 is shown by the solid line for comparison.

the same parameters used in Section 3.2 for the non-punctured model. We find that
the criterion for the correct convergence is satisfied for the fine lattice (β, L) = (12, 20)
but not for the coarse lattice (β, L) = (3, 10), similarly to the case of the non-punctured
model. On the other hand, the behavior of the topological charge is different from the
the non-punctured model. In Fig. 3.7(Right), we show the histogram of ReQlog obtained
by the CLM for (β, L) = (12, 20) with θ = π. It is widely distributed in contrast to the
plot in Fig. 3.1(Right) for the same (β, L) = (12, 20) for the non-punctured model. In
fact, it turns out to be close to the exact result obtained for the same (β, L) = (12, 20)
with θ = 0, which is plotted in the same figure2. Thus we find that the topology freezing
problem at large β is avoided in the punctured model and then the CLM remains valid.

Next, we discuss the reason why the punctured model can avoid the topology freezing
problem without causing large drifts. The difference from the non-punctured model is
that one of the plaquettes, PK , is removed from the action. Note that the topological
charge Qlog for the punctured model satisfies

Qlog|puncture −
i

2π
logPK = − i

2π

∑
n

logPn = Qlog|non-puncture . (3.34)

The right hand side is the topological charge defined for the corresponding non-punctured
model, whose real part takes integer values. The phase of PK in the left hand side has a
real part which lies within the interval [−1

2
, 1

2
). When the puncture PK crosses the brunch

cut, its phase changes discontinuously, which causes the topology change. While Qlog for
the non-punctured model jumps by ±1, Qlog for the punctured model changes smoothly
in this process.

2Note that precise agreement is not expected here since the histogram of ReQlog is not a holomorphic
quantity, for which the CLM does not allow a clear interpretation.
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As we discussed in Section 3.3 for the non-punctured model, one of the plaquettes
needs to cross the branch cut in order to change the topological charge. When β is large,
this process is highly suppressed for all the plaquettes included in the action. This is the
reason why the topology freezing problem occurs in the non-punctured model. On the
other hand, in the punctured model, the plaquette PK is removed from the action, and
therefore it can cross the branch cut freely even for large β.

This is demonstrated in Fig. 3.8, where we plot the probability distribution of the
phase of the puncture PK as well as that of the other plaquettes Pn6=K for (β, L) =
(3, 10), (12, 20). We find that the phase of the removed plaquette PK is almost uniformly
distributed for both (β, L). On the other hand, the distribution of the phase of the other
plaquettes depends on (β, L). It has a compact support for the fine lattice (β, L) = (12, 20)
but not for the coarse lattice (β, L) = (3, 10). For the fine lattice, there is no distribution
at the branch cut, which means that the plaquettes Pn6=K does not cross the branch cut
at all. For the coarse lattice, there is a small but finite distribution at the branch cut,
which means that the value of β is not large enough to suppress the branch cut crossing
of the plaquettes Pn6=K completely.

This is consistent with the fact that the histogram of the drift term in Fig. 3.7(Right)
fall off fast for (β, L) = (12, 20) but not for (β, L) = (3, 10) considering the discussion
in Section 3.3. In fact, we obtain a similar flow diagram to Fig. 3.4(Left) for the log
definition of the topological charge. Therefore, large drifts can appear when one of the
plaquettes Pn6=K crosses the branch cut, which indeed occurs for (β, L) = (3, 10) also for
the punctured model. For (β, L) = (12, 20), on the other hand, the topology change can
still occur because the removed plaquette PK crosses the branch cut freely. All the other
plaquettes included in the action are forced to stay close to unity because of large β. This
justifies our assumption that the issue of the brunch cut can be neglected in deriving the
drift terms (3.30) and (3.31). Since the plaquette PK does not contribute to the drift
terms, it never causes large drifts even if it crosses the branch cut frequently. This is
the reason why the punctured model can avoid the topology freezing problem without
causing large drifts.

3.7 Behavior of the unitarity norm

Next, we discuss how the unitarity norm (3.5) behaves in our complex Langevin simu-
lations. As we can see from (3.30) and (3.31), the link variables around the puncture
have a constant drift force in the imaginary direction due to the theta term. At each
Langevin step, these link variables are multiplied by e±θ∆t/2π, and then the removed pla-
quette is multiplied by e2θ∆t/π. Therefore, it is possible that the magnitude |Un,µ| of these
four link variables increases or decreases exponentially, so that the unitarity norm grows
exponentially with the Langevin time.

In Fig. 3.9, we plot the history of the unitarity norm (3.5) for various θ with (β, L) =
(5, 16), where the criterion for correct convergence of the CLM is satisfied. As long as it is
satisfied, similar results are obtained for other (β, L). Indeed we observe an exponential
growth at early time, but the unitarity norm saturates to a constant depending on θ at
sufficiently long Langevin time. This saturation is caused by the propagation of non-
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Figure 3.8: The distribution of the phase of the plaquettes is plotted for the punctured
model with the log definition (2.11) of the topological charge for (β, L) = (3, 10) (Left)
and (β, L) = (12, 20) (Right) with θ = π. We show the results for the plaquette (n = K)
removed from the action and those for all the other plaquettes (n 6= K) by different lines.

unitarity from the four links around the puncture propagates to all the other links. We
find that thermalization of various observables can be achieved after the saturation of the
unitarity norm.

In fact, we find that the unitarity norm of each link variable is not distributed uni-
formly on the lattice due to the existence of the puncture. In order to see the distribution,
we define the local unitarity norm by

N (n) =
1

4

∑
(k,µ)∈Pn

{
U∗k,µUk,µ + (U∗k,µUk,µ)−1 − 2

}
, (3.35)

which is an average of the unitarity norm for the four link variables composing each
plaquette Pn. The unitarity norm defined by (3.5) is an average of N (n) over all the
plaquettes including the removed one; namely N =

∑
nN (n)/L2. In Fig. 3.10(Left), we

plot N (n) against n = (n1, n2) for (β, L) = (12, 20) with θ = π. The puncture is located
at the center n = K = (10, 10). We observe a sharp peak at the puncture, which goes up
to N (K) ∼ 6× 103. The plaquettes adjacent to the puncture have a local unitarity norm
∼ 1.5 × 103. This implies that the unitarity norm is mostly dominated by the four link
variables surrounding the puncture.

What actually matters for the validity of the CLM is not so much the local unitarity
norm N (n) as the absolute value |Pn| of each plaquette, which we plot in Fig. 3.10(Right)
against n = (n1, n2) for the same parameters as in Fig. 3.10(Left). The absolute value
|PK | of the removed plaquette is close to (

√
N (K))4 ∼ 3.6 × 107, which implies that

|UK,1|, |UK+1̂,2|, |U−1

K+2̂,1
| and |U−1

K,2| are close to
√
N (K) ∼ 77. Except for the removed

plaquette, the absolute value of the plaquette deviates slightly from unity for large β. In
fact, this deviation of |Pn| for n 6= K from unity has a physical meaning since Im 〈Qlog〉 =
−∑n 6=K〈log |Pn|〉/2π as one can see from (3.34). From the exact result (3.28) obtained
for large β, we can estimate |Pn| ∼ e−θ/(2πβ) ∼ 0.96 for θ = π and β = 12, which agrees
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with the value observed in Fig. 3.10(Right). If we flip the sign of θ, which corresponds to
the parity transformation, we find that |Pn| 7→ |Pn|−1 for all n.

Note also that PK never appears in the drift term, so that its absolute value can
be large without causing large drifts. We have confirmed that the criterion for correct
convergence is satisfied for sufficiently large β, and the exact results for various observables
can be reproduced correctly as we will see in the next section. This remains to be the
case even for large θ and/or large Vphys, where the unitarity norm becomes large. Thus
the present model provides a counterexample to the common wisdom that the CLM fails
when the unitarity norm becomes large.

3.8 Result of the CLM for the punctured model

In this section, we present the observables for the punctured model obtained by the CLM
and compare them with the exact results. Note that, in the definitions (3.15), (3.16)
and (3.17) of the observables, V denotes the number of plaquettes in the action, which
is V = L2 − 1 for the punctured model. In contrast, we define the physical volume Vphys

by (2.14) not only for the non-punctured model but also for the punctured model, which
simplifies the relationship between β and L for fixed Vphys.

In Fig. 3.11, we show our results for the average plaquette w, the topological charge
density 〈Q〉/V and the topological susceptibility χ against θ for (β, L) = (3, 10), (12, 20).
These parameters correspond to the fixed physical volume Vphys = L2/β = 102/3. The
exact results obtained with the same parameters are also shown for comparison. We find
from our results, especially for the average plaquette, that the exact results are reproduced
for (β, L) = (12, 20), but there is slight deviation for (β, L) = (3, 10). This is consistent
with our observation in Section 3.6 that the condition for correct convergence is satisfied
for (β, L) = (12, 20) but not for (β, L) = (3, 10).

For the topological charge and the topological susceptibility, we find that our results
agree with the exact results also for (β, L) = (3, 10). We consider that the agreement
observed here for (β, L) = (3, 10) is accidental. On the other hand, the results for the
non-punctured model with the same (β, L) are far from the exact results as shown in
Fig. 3.2(Left). This difference can be understood by considering that the effect of the
theta term is included correctly by the drift terms for the link variables around the
puncture. The frequent branch cut crossing of the other plaquettes spoils the validity of
the CLM.

4 Complex Langevin analysis of 4D SU(2) gauge theory

We analyzed 4D SU(2) gauge theory with a theta term, which attracts our interest since
a nontrivial phase structure at θ = π is predicted by the ’t Hooft anomaly matching.
We can apply the CLM to the 4D gauge theory straightforwardly since its calculation
cost depends only linearly on the system size. First, we apply the CLM to the theory
with the topological charge naively defined by the clover leaf formula [10]. Then we
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found that it works in some parameter regions. However, the topological property of
the theory is unclear since the topological charge on the lattice is contaminated by the
short-range fluctuations. Namely, the topological charge does not approach an integer
simply by approaching the continuum limit. The situation is different from the case of
2D where the topological property is clear even on the finite lattice. We tried to deal with
this problem by using the stout smearing [11]. We found that it successfully eliminates
the short-range fluctuations, but it seems to be difficult to obtain reliable results on the
periodic lattice. In fact, there are problems of the singular drift and the topology freezing,
which we encountered in the study of 2D U(1) gauge theory. The contents of this section
was reported in LATTICE2021 conference [9].

4.1 Application of the CLM to 4D SU(2) gauge theory

We briefly review how to apply the CLM to 4D SU(2) gauge theory. Since real dynamical
variables are complexified in the CLM, we extend the link variables Un,µ ∈ SU(2) to
Un,µ ∈ SL(2,C), which corresponds to complexifing the gauge field Aaµ in the continuum
theory. Then we consider a fictitious time evolution of the link variables Un,µ described
by the complex Langevin equation

Un,µ(t+ ε) = exp
[
−iεDa

n,µSτ
a + i
√
εηn,µ(t)

]
Un,µ(t) , (4.1)

where τa = σa/2 are SU(2) generators. We discretize the fictitious time t by a small
step ε� 1. The factor Da

n,µ represents the differential operation with respect to the link
variables (Lie group elements), which is defined by

Da
n,µS =

d

dε
S
(
eiετ

a

Un,µ
)∣∣∣∣
ε→0

. (4.2)

The term including Da
n,µS is called the drift term. We also have a real Gaussian noise

ηn,µ(t) = ηan,µ(t)τa normalized by〈
ηan,µ(t)ηbm,ν(t

′)
〉

= 2δnmδµνδ
abδtt′ . (4.3)

We use the action S = Sg + Sθ of the theory on the lattice defined by (2.24) and Sθ =
−iθQcl with (2.25).

In order to justify the result of the CLM, we need to confirm that the probability
distribution of the drift term falls of exponentially or faster. We can easily check this
criterion by plotting the histogram of the magnitude of the largest drift

u :=
1√
2

max
n,µ

∥∥Da
n,µSτ

a
∥∥ , (4.4)

where the norm of the matrix A is defined by ‖A‖2 := Tr
[
A†A

]
.

As we did in the study of 2D U(1) gauge theory, we stabilize the complex Langevin
simulation by gauge cooling [22]. The condition of the correct convergence tends to be
violated if the link variables deviates far away from SU(2). The gauge cooling reduces
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the non-unitarity of link variables as much as possible. Thus, it helps the condition to be
satisfied. It was shown that this procedure does not affect any gauge invariant observable
[17, 4]. The procedure of gauge cooling for 4D SU(2) gauge theory is following. First, we
define the unitarity norm

N :=
1

8V

∑
n,µ

Tr
[
U †n,µUn,µ − 1

]
≥ 0 (4.5)

which measures the non-unitarity of the configuration. If all the link variables are unitary,
the norm is minimized N = 0. The gauge cooling is a SL(2,C) gauge transformation

Un,µ −→ gnUn,µg
−1
n+µ (4.6)

where gn ∈ SL(2,C) is determined so that the unitarity norm can be reduced. Next, we
consider an infinitesimal gauge transformation

gn = e∆a
nt
a ≈ 1 + ∆a

nt
a (4.7)

with small parameters ∆a
n � 1 on each lattice site. The change of unitarity norm by this

transformation is given by

∆N =
2

4NV

∑
n

∆a
nG

a
n , (4.8)

where Ga
n is defied by

Ga
n = Tr

[∑
µ

(
Un,µU

†
n,µ − U †n−µ,µUn−µ,µ

)
ta

]
. (4.9)

Since Ga
n indicate the direction of the gauge transformation in which N decreases, we use

it for the finite gauge transformation

gn = e−αG
a
nt
a

(4.10)

with a parameter α ≥ 0. We choose the value of α which minimize the unitarity norm
N (α) after the transformation. The optimal value of α can be estimated by solving

dN (α)

dα
= 0 (4.11)

by expanding the left hand side up to the first order of α. As a result, we obtain the
explicit form of the solution as

α ≈
∑

n ‖Gn‖2∑
n,µ ‖GnUn,µ − Un,µGn+µ‖2 . (4.12)

We use this value of α for the transformation (4.10). In the gauge cooling procedure, we
repeat this transformation until the change of N becomes less than 0.01%. We apply the
gauge cooling every Langevin step in order to suppress a rapid growth of non-unitarity.
We also use the adaptive step size, which is explained in the end of Section 3.1. In the
present case, we use the threshold

v0 =
3β

2

(
1 +
√

2
)
, (4.13)

which corresponds to the possible maximum value of u for θ = 0.
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expectation value of the Polyakov line is plotted against β for θ = 0. (Right) The
histograms of the maximum drift term (4.4) are shown for various β with θ = π in log
scale. The horizontal axis is log10 u.

4.2 Result of CLM with the naive definition of the topological
charge

First, we show the results of the CLM with the naive definition of the topological charge
Qcl defined in (2.25). In FIg. 4.1(Left), we plot the expectation value of Polyakov line
against β, which is obtained for θ = 0. It is zero for small β corresponding to the confined
phase, and it becomes finite as we increase β due to the deconfine transition. We also
show the histogram of the drift term in Fig. 4.1(Right) at θ = π for various β. From
these result, we found that the CLM works for β ≈ 1.0 in the confined phase and β & 2.6
in the deconfined phase. Although the reliable region of the CLM depends on θ and the
lattice size, we typically obtain similar results for different parameters.

In order to see the dependence on θ, we show the histograms of the drift term for
various θ in Fig. 4.2 with β = 1.0 (Left) and β = 2.7 (Right). For β = 1.0, the CLM
works up to θ ≈ π but not for large θ. It is natural behavior since the effect of the
theta term is significant for larger θ. On the other hand, for β = 2.7 the validity of the
CLM does not simply depend on θ. It can depends on the random number seed in the
simulation, which indicates that there is a problem of ergodicity in the large β region. It
will be clearer when we use the stout smearing as discussed Section 4.5.

We show the behavior of the topological charge density in Fig. 4.3 obtained by the
CLM. We plot the dimensionless quantity 〈Q〉/χ0V , where χ0 is the topological suscep-
tibility at θ = 0 defined by

χ0 :=
1

V
〈〈Q〉 −Q〉2

∣∣∣∣
θ=0

(4.14)

and V = L3
s × Lt is a lattice volume. The corresponding histograms of the drift term

are shown in Fig. 4.2. Thus some data points in this plot are not reliable. In fact, we
cannot see the 2π periodicity of θ in this result. It behaves like 〈Q〉/χ0V ≈ iθ, which is
consistent with the relation (3.18) at least for small θ.
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In spite of the validity of the CLM, it is difficult to reproduce the 2π periodicity of θ
since the topological charge on the lattice does not approach an integer by increasing β
naively. The situation is different from 2D U(1) gauge theory. In that case, there is the
log definition (2.11) of the topological charge, which gives an integer even on the finite
lattice. We can also obtain an integer value with the sine definition (2.12) by taking the
continuum limit. The problem in 4D SU(2) gauge theory is that the topological charge is
contaminated by severe short range fluctuations. We discuss a method to overcome this
problem in Section 4.4.

4.3 Analyticity of the complex theta

In this section, we discuss the analyticity of the complexified θ, which supports the con-
sistency of the discussion in Section 5. Although the CLM with the real θ is severely
limited, it works at least around β = 1.0.3 We found that the topological charge density
〈Q〉 /V behaves as

〈Q〉
V
≈ iχ0θ (4.15)

for θ ∈ R as we can see in Fig. 4.3. This result is consistent with the general formula
(3.18) in the theory with the theta term. We can try to see whether the relation (4.15) is
extended to the complex plane of θ ∈ C. Namely, we can confirm the analyticity of the
complexified θ at β = 1.0 by the CLM.

We parameterize the complex θ by

θ = πreiπα (4.16)

with r ≥ 0 and α ∈ R. The figure 4.4 shows the real/imaginary part of 〈Q〉 /iθ obtained
by the CLM for various r and α. It is expected to satisfy

〈Q〉
iθ
≈ χ0V ∈ R . (4.17)

The value of χ0V directly calculated at θ = 0 is also plotted. We confirmed that the
criterion for the correct convergence is satisfied for these parameters. The results are
consistent with the expected behavior (4.17) within the error bar. Therefore, the relation
(4.15) seems to be extended to the complex θ plane at least for β = 1.0.

4.4 Stout smearing in the CLM

The theory with a theta term has the 2π periodicity of θ , which plays an important role
in the appearance of the nontrivial phase structure at θ = π. However, it is difficult to
retain this property on the lattice because the topological charge (2.25) defined by the
naive discretization does not takes integer values. It approaches integers only for the
configurations sufficiently close to the continuum limit. In fact, it is difficult to suppress

3We cannot use the stout smearing for β = 1 since the unitarity norm quickly grows up during the
smearing.
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short range fluctuations enough simply by increasing β. Thus, we need a smearing method
which makes the configuration sufficiently smooth even for small β. In this work, we use
the stout smearing [11], which is applicable to the CLM. In fact, its application to the
CLM was discussed in the analysis of QCD at nonzero baryon density [25]. In this section,
we review how to apply the stout smearing to the complex Langevin simulation of the
gauge theory with the theta term.

The procedure of the stout smearing is given by the iteration of the smearing step,
starting from the original configuration Un,µ.

Un,µ = U (0)
n,µ → U (1)

n,µ → · · · → U (Nρ)
n,µ = Ũn,µ (4.18)

After Nρ iterations we obtain the smeared configuration Ũn,µ. In one (isotropic) smearing
step from k to k + 1, the link variable U (k)

n,µ ∈ SL(2,C) is mapped to U (k+1)
n,µ ∈ SL(2,C)

defined by following formulae.
U (k+1)
n,µ = eiYn,µU (k)

n,µ (4.19)

iYn,µ = −ρ
2

Tr [Jn,µτ
a] τa (4.20)

Jn,µ = Un,µΩn,µ − Ω̄n,µU
−1
n,µ (4.21)

Ωn,µ =
∑
σ(6=µ)

(
Un+µ̂,σU

−1
n+σ̂,µU

−1
n,σ + U−1

n+µ̂−σ̂,σU
−1
n−σ̂,µUn−σ̂,σ

)
(4.22)

Ω̄n,µ =
∑
σ(6=µ)

(
Un,σUn+σ̂,µU

−1
n+µ̂,σ + U−1

n−σ̂,σUn−σ̂,µUn+µ̂−σ̂,σ
)

(4.23)

The parameter ρ > 0 should be chosen appropriately, depending on the system.
We use the topological charge (2.25) calculated from the smeared configuration Ũn,µ

Q := Qcl(Ũ) (4.24)
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to define the theta term Sθ = −iθQ on the lattice. For the complex Langevin simula-
tion, we need to calculate the drift term Da

n,µSθ from the theta term. Although Sθ is a
complicated function of the original link variable Un,µ, it is possible to calculate the drift
force

Fn,µ = iτaDa
n,µSθ (4.25)

by reversing the smearing steps (4.18). We define the drift force for the link variables
U

(k)
n,µ as

F (k)
n,µ = iτaD(k)a

n,µ Sθ, (4.26)

where D(k)a
n,µ represents a differential operation with respect to U (k)

n,µ. As a first step to
calculate (4.25), the calculation of the drift force F̃n,µ = F

(Nρ)
n,µ for the smeared link

Ũn,µ = U
(Nρ)
n,µ is straightforward. Once we obtain the initial drift force F̃n,µ, the subsequent

ones are given by the map from F
(k)
n,µ to F (k−1)

n,µ iteratively.

F̃n,µ = F (Nρ)
n,µ → F (Nρ−1)

n,µ → · · · → F (0)
n,µ = Fn,µ (4.27)

The map of the drift force is given by the following formulae, where the final step from
F ′n,µ = F

(1)
n,µ to Fn,µ = F

(0)
n,µ is shown as an example.

Fn,µ = e−iYn,µF ′n,µe
iYn,µ + ρTr

[
(Un,µMn,µ + M̄n,µU

−1
n,µ)τa

]
τa (4.28)

Mn,µ = −Ωn,µΛn,µ

+
∑
ν(6=µ)

[
Un+µ̂,νU

−1
n+ν̂,µ(U−1

n,νΛn,ν + Λn+ν̂,µU
−1
n,ν)

+ U−1
n+µ̂−ν̂,νU

−1
n−ν̂,µ(Λn−ν̂,µ − Λn−ν̂,ν)Un−ν̂,ν

−Λn+µ̂,νUn+µ̂,νU
−1
n+ν̂,µU

−1
n,ν + U−1

n+µ̂−ν̂,νΛn+µ̂−ν̂,νU
−1
n−ν̂,µUn−ν̂,ν

]
(4.29)

M̄n,µ = −Λn,µΩ̄n,µ

+
∑
ν(6=µ)

[
(Λn,νUn,ν + Un,νΛn+ν̂,µ)Un+ν̂,µU

−1
n+µ̂,ν

+ U−1
n−ν̂,ν(Λn−ν̂,µ − Λn−ν̂,ν)Un−ν̂,µUn+µ̂−ν̂,ν

−Un,νUn+ν̂,µU
−1
n+µ̂,νΛn+µ̂,ν + U−1

n−ν̂,νUn−ν̂,µΛn+µ̂−ν̂,νUn+µ̂−ν̂,ν
]

(4.30)

Λm,ν = Tr
[
Λ̂m,ντ

b
]
τ b (4.31)

Λ̂m,ν = − 1

2κ2
m,ν

(
1− sin 2κm,ν

2κm,ν

)
Tr
[
F ′m,νiYm,ν

]
iYm,ν +

sinκm,ν
κm,ν

e−iYm,νF ′m,ν (4.32)

κn,µ =
√
− detYn,µ (4.33)

Note that Yn,µ, Ωn,µ and Ω̄n,µ are defined by (4.20), (4.22) and (4.23) respectively. They
are calculated from Un,µ in this case. The drift term calculated in this way respects the
holomorphicity. The calculation time and the memory size required for the simulation
are proportional to the number of steps Nρ.
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Figure 4.5: The history of the topological charge defined by (4.24) in the Langevin
simulation for θ = 0. The lattice size is 243 × 4, and the coupling constant is β = 2.5.
The horizontal axis is the fictitious time t of the Langevin simulation.

4.5 Result of the CLM with the stout smearing

In this section, we show the results of the complex Langevin simulation. So far, we have
found that the CLM using the naive definition (2.25) of the topological charge without
the smearing works in the high-temperature region (deconfined phase). As a first step,
we focus on the high-temperature region and try to see the effect of the stout smearing
on the topological charge.

Before introducing the theta term, we check the effect of the smearing by changing
the smearing parameters for θ = 0. The number of steps Nρ and the step size ρ should be
large enough to eliminate the short range fluctuations. However, it is difficult to increase
Nρ a lot since the calculation time and the memory size increase with Nρ. If ρ is too large,
the nontrivial topological excitation will be destroyed. For β > 2.4, which corresponds to
the high-temperature region in our setup, we find that Nρ = 20 is enough to recover the
topological property. In figure 4.5, we show the history of the topological charge defined
by (4.24) in the real Langevin simulation for θ = 0. There are three series of data with
ρ = 0, 0.06 and 0.1. We plot the topological charge without the smearing namely ρ = 0
for comparison. The topological charge with ρ = 0 is noisy, and it is difficult to see the
topological property. Once we introduce the smearing, we can see the transitions between
the topological sectors clearly.

Next, we show the results of the complex Langevin simulation for θ = π/4. In this
simulation, the lattice size is 243 × 4, and the smearing parameters are Nρ = 20 and
ρ = 0.06. In figure 4.6, we show the histogram of the magnitude u of the largest drift
term defined in (4.4). The distribution falls off rapidly for β = 2.55, but it does not
for β = 2.5. Thus, the criterion for correct convergence is satisfied only for β = 2.55.
Typically, the coupling constant β should be large enough to satisfy the criterion. We
found that the CLM works if β & 2.55 for θ = π/4 on the 243 × 4 lattice.
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Figure 4.6: The histogram of the maximum drift term (4.4) for θ = π/4 in log scale.
The horizontal axis is log10 u. The lattice size is 243 × 4, and the smearing parameters
are Nρ = 20 and ρ = 0.06.

In figure 4.7, we show the history of the topological charge for β = 2.55. Since the
gauge group is extended to SL(2,C) in the CLM, the topological charge has an imaginary
part in general. We plot both of the real part and the imaginary part. There are some
topological excitations in the history of ReQ. The imaginary part vanishes after the
smearing in most cases, but it increases rapidly when the real part changes.

The expectation value of the topological charge has a nonzero imaginary part if CP is
broken. Since the theta term breaks CP explicitly for θ/π /∈ Z, it is consistent that ImQ
becomes nonzero in our simulation. We find that the fluctuation of ReQ is necessary
to obtain the nonzero ImQ. Indeed, the imaginary part are close to zero while the
configuration stays in a single topological sector.

We also find that the rapid growth of ImQ makes the simulation unstable. The
imaginary part originates from the non-unitarity of the configuration, which can be a
source of the large drift. We need to set β large enough to avoid this problem. However,
the fluctuation of Q is highly suppressed for larger β, and the autocorrelation time of Q
becomes longer than the simulation time. It is the topology freezing problem, which we
encountered in the study of 2D U(1) gauge theory as well. Therefore, it is difficult to
avoid the large drift simply by increasing β further.

4.6 Origin of the large drift

In this section, we investigate the origin of the large drift further. As we discussed in
Section 3.6 for 2D U(1) gauge theory, the CLM fails if the plaquettes in the action cross
the branch cut frequently. We can possibly understand the failure of the CLM for the
4D SU(2) case in a similar way. Thus we investigated the probability distribution of the
phase of plaquette during the complex Langevin simulation.

First, we define the complex phase φ ∈ C of the plaquette P ∈ SL(2,C) by the phase
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of the eigenvalues e±iφ. This phase appears in the trace pf the plaquette.

Tr [P ] = Tr
[
eiφ + e−iφ

]
(4.34)

Note that we can set the real part of φ be Reφ ≥ 0 without loss of generality. The
eigenvalues of the SL(2,C) matrix P are given by solutions of the equation λ2−λTr [P ] +
1 = 0, namely,

λ =
1

2
Tr [P ]±

√(
1

2
Tr [P ]

)2

− 1 . (4.35)

Thus we extract the phase φ by the complex log of λ with Reφ ≥ 0.

φ = −i log λ (4.36)

In fact, this definition is a natural extension of the phase of U(1) plaquette which we
discussed in Section 3.6.

In Fig. 4.8, we show the probability distribution of the phase on the complex φ plane
for β = 2.4 and 2.5. We plot the phase of the plaquette after the smearing as well as
that of the original plaquette. For β = 2.4, where the CLM fails due to the large drift,
there is a finite distribution around Reφ = π. In addition, the distribution widely spread
to imaginary direction. On the other hand, for β = 2.55, where the criterion for the
correct convergence is satisfied, there is no distribution around Reφ = π especially for the
plaquette after the smearing. The distribution does not spread to the imaginary direction
a lot.

From these results, we can see an analogous behavior of the phase of plaquette to that
for 2D U(1) gauge theory, which is shown in Fig. 3.8. The large drift term appears when
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Figure 4.8: The distribution of the phase φ of the plaquette in log scale for θ = 0.25π
with β = 2.4 (Left) and 2.5 (Right). We use the 163 × 4 lattice and set the smearing
parameters (Nρ, ρ) = (20, 0.06). The phase of the plaquette after the smearing is plotted
as well as that of the original plaquette.

the phase approaches the branch cut Reφ = π. Although it is not clear like the case of 2D
U(1), the topology change seems to be related to the branch cut crossing of the plaquette
also for 4D SU(2). Therefore, the problems of the large drift and the topology freezing
are correlated on the periodic lattice. Note that we may not realize this problem without
the stout smearing because we cannot see this behavior clearly from the naive topological
charge.

For 2D U(1) gauge theory, we can avoid this problem by putting a puncture on the
lattice. It is possible that we can avoid the problem also for the case of 4D SU(2) by mod-
ifying the boundary condition of the lattice. However, nontrivial topological excitations
will flow away from the boundaries during the smearing process. So, the implementation
of the smearing on the open lattice is not straightforward. It is a significant difference
from the case of 2D U(1), where the smearing is not necessary thanks to its milder UV
fluctuations.

In addition, since the CP symmetry at θ = π is explicitly broken by the boundary
effect, it will be difficult to see the CP restored phase on the open lattice. Note that
there is no similar problem in 2D U(1) gauge theory, where the parity symmetry at θ = π
is never restored even in the high temperature region. Therefore, we think that it is
difficult to investigate the phase diagram of 4D SU(2) gauge theory by the CLM. Instead,
we discuss an alternative approach based on analytic continuation in Section 5.

5 4D SU(2) gauge theory with an imaginary theta
We study 4D SU(2) gauge theory with an imaginary theta θ ∈ iR, where the action
S = Sg − iθQ is real. In the current situation, it seems to be difficult to investigate the
phase structure directly by the CLM. Instead, we can extract some information of the
phase structure by the theory with the imaginary theta. Since the sign problem is absent
in this case, we can use the ordinary HMC method. We apply the stout smearing, which
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is discussed in Section 4.4, to the HMC in order to make the topological charge close to an
integer. We found that the behavior of the topological charge density for the imaginary
theta is consistent with that of the instanton gas in the high temperature region. This
section is based on the ongoing project. The refined results will be reported in the near
future.

5.1 Conjectured phase diagram

First, we present one of the possible phase diagrams on the (θ2, T )-plane in Fig. 5.1. We
extend the parameter θ from the real region θ2 > 0 to the pure imaginary region θ2 < 0.
In the real θ region, CP symmetry is spontaneously broken on the line at θ = π, which
terminates at the CP-restoration temperature TCP. It is predicted by ’t Hooft anomaly
matching that TCP is higher than or equal to the deconfining temperature Tdec(π) at
θ = π. There are similar CP broken lines at θ = (2n + 1)π for n ∈ Z because of the 2π
periodicity of θ.

For T < TCP, it is expected that, in the real θ region within the range |θ| < π, the
topological charge density behaves as

〈Q〉
V
' iχ0θ , (5.1)

where χ0 is the topological susceptibility at θ = 0. The topological charge density changes
discontinuously at θ = π because of the first order phase transition. In fact, this is a
natural expectation as an analogy to the behavior of 〈Q〉/V in 2D U(1) gauge theory.
By analytic continuation to the imaginary theta θ = iθ̃ with θ̃ ∈ R, the corresponding
behavior of the topological charge in the imaginary θ region is given by

〈Q〉
V
' −χ0θ̃ . (5.2)

There is also a line of the deconfine transition, which is extended to the imaginary
θ region by analytic continuation. The deconfining temperature Tdec(θ) depends on θ in
general. It should be an even function of θ since it is CP invariant. Thus the leading θ
dependence of Tdec(θ) is expected to be θ2, namely,

Tdec(θ)

Tdec(0)
' 1−R2 θ

2 , (5.3)

with a parameter R2. In Fig. 5.1, we show this line with the gradient R2 > 0. In fact,
some works on SU(3) gauge theory suggest R2 > 0 for SU(3) [26, 27]. We expect that it
is hold also for SU(2).4

In the imaginary θ region, we put a line indicating the end of instanton gas phase. For
the sufficiently high temperature, we expect that the dilute instanton gas approximation
(DIGA) is valid, in which we ignore the interaction of instanton. However, the topological
charge density 〈Q〉/V increases with −iθ, so that the interaction is no longer negligible

4On the other hand, in the large N limit, it is expected that the gradient behaves as R2 ∝ 1/N2.
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Figure 5.1: The possible phase diagram on the (θ2, T )-plane. The CP symmetry is
spontaneously broken on the orange line at θ = π, which terminates at T = TCP. The
θ-dependent deconfining temperature Tdec(θ) is described by the blue line. The dilute
instanton gas approximation will break down around the green line at sufficiently large
|θ̃| in the imaginary θ region.

at some point. It is natural to expect that DIGA breaks down there, entering a different
phase. Although we do not know what kind of phase exists there, we can obtain some
indications from other models. For example, the study of 2D O(3) sigma model suggested
a liquid-like phase [28].

As long as DIGA is justified, the topological charge density behaves as

〈Q〉
V
' iχ0 sin θ (5.4)

in the real θ region. By analytic continuation, we expect that the topological charge
density behaves as

〈Q〉
V
' −χ0 sinh θ̃ (5.5)

in the pure imaginary θ region. This behavior will be observed up to the line where DIGA
breaks down.

5.2 Theta dependence of the topological charge density

We study 4D SU(2) gauge theory with the imaginary theta term by the HMC method.
We use the gauge action (2.24) and the theta term Sθ = −iθQ for θ = iθ̃ ∈ iR with the
topological charge defined by (4.24). We apply the stout smearing to the HMC similarly
as we did to the CLM in Section (4.4).

We investigate the imaginary θ dependence of the topological charge density 〈Q〉/V .
We expect that it behaves linearly as (5.2) in the deconfined phase T < Tdec(π). On the
other hand, for the sufficiently high temperature T > TCP ≥ Tdec(π), it will behave as
(5.5). In Fig. 5.2, we plotted the dimensionless quantity−〈Q〉/(χ0V ) against θ̃/π = θ/(iπ)
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Figure 5.2: The imaginary θ dependence of the topological charge density for various
temperatures. The results of −〈Q〉/(χ0V ) obtained by HMC on the V = 163 × 4 lattice
are plotted against θ/(iπ). We set the smearing parameters to Nρ = 40 and ρ = 0.15.
We also plot the expected behaviors (5.2) and (5.5) by solid lines.

for T/Tdec(0) = 0.9, 1.0 and 1.2. The lattice volume is V = L3
s × Lt = 163 × 4 in this

calculation. Note that we determine the temperature by the equation obtained from [29]

T

ΛL

=
1

Lt

exp

(
51

121
log

11

6π2β
+

3π2β

11
− c3

18432π4

121β3

)
, (5.6)

where ΛL is a lattice cutoff scale and c3 = 5.529(63)×10−4. The deconfining temperature
is given by Tdec(0)/ΛL = 21.45(14). We set the smearing parameters to Nρ = 40 and
ρ = 0.15, which is discussed in Appendix D.

For T/Tdec(0) = 0.9, the data points are consistent with the expected behavior (5.2)
within the errors. We also confirmed that the Polyakov line remains almost zero for any
θ̃ within 0 ≤ θ̃ ≤ π, which can be seen in Fig. 5.3. It indicates that the system at
T/Tdec(0) = 0.9 is still in the confined phase at least in the imaginary θ region.

For T/Tdec(0) = 1.2, the data points deviate from the linear behavior (5.2) but it does
not agree with (5.5) either. We expect that it approaches (5.5) in the continuum limit,
which is discussed in Section 5.4. We also confirmed that the system is in the deconfined
phase at this temperature in the imaginary θ region. The imaginary θ dependence of the
Polyakov line is shown in Fig. 5.3.

We obtained the results at T/Tdec(0) = 1.0 as well. The data points of the topological
charge density in Fig. 5.2 are between the results of the other two temperatures. The
results of the Polyakov line in Fig. 5.3 fluctuates a lot because the system is very close
to the deconfine transition point. In this temperature, we inevitably cross the line of the
deconfine transition if we try analytic continuation, as we can see in Fig. 5.1. Thus, we
cannot access the real θ region from the imaginary θ region in this case.
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Figure 5.3: The imaginary θ dependence of the Polyakov line for various temperatures.
The results obtained by HMC on the V = 163 × 4 lattice are plotted against θ/(iπ). We
set the smearing parameters to Nρ = 40 and ρ = 0.15.

5.3 Large volume limit

In this section, we consider the finite volume effect. We performed the simulations by
changing spacial lattice size for the fixed β and the fixed temperature T/Tdec(0) = 1.2.
We use the V = L3

s × 4 lattice for Ls = 12, 14, 16 and 18. The results of the topological
charge density is shown in Fig. 5.4. The difference among the results of various spacial
volumes is as much as the size of error bars.

Next, we focus on the large θ̃ region, where the finite volume effect will be significant.
In Fig. 5.5 we plot the result of −〈Q〉/(χ0V ) against 1/L3

s for θ̃/π = 0.75 and 1.0. We
cannot see a significant Ls dependence so far. Therefore, the finite volume effect seems
to be small even for the V = 163 × 4 lattice at least for θ̃ ≤ π. It is also possible that we
can see some volume dependence when we increase statistics. It is still worth trying the
infinite volume extrapolation.

We expect that the finite spacing effect is more significant than the finite volume effect
as we will see in Section 5.4. In the continuum limit, indeed, the topological property
should be clearer, namely the topological charge on the lattice approaches an integer.

5.4 Continuum limit

In this section, we discuss the continuum limit. We performed simulations for two sets of
(β, V ) without changing the physical volume nor the temperature. We show the results
of the topological charge density for V = 163 × 4 and 203 × 5 in Fig. 5.6. We found that
the result for the fine lattice V = 203 × 5 almost agrees with the expected behavior (5.5)
within the errors, although the size of the error bar increases with θ̃ as we discuss in
Section 5.5. It is expect that the results approach (5.5) in the continuum limit.5 Thus,

5It is also possible that the result deviates from (5.5) at larger θ̃ due to the end of instanton gas phase.
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Figure 5.6: The imaginary θ dependence of the topological charge density for different
lattice spacings. The results of −〈Q〉/(χ0V ) obtained by HMC for T/Tdec(0) = 1.2 are
plotted against θ/(iπ). Two sets of data points correspond to the results for V = 163× 4
and 203×5. The physical volume and the temperature are fixed by adjusting β. We set the
smearing parameters to (Nρ, ρ) = (40, 0.15) for the coarse lattice and (Nρ, ρ) = (40, 0.09)
for the fine lattice.

these results suggest that the topological charge behaves as (5.4) at T/Tdec(0) = 1.2 in
the real θ region. Namely, the dilute instanton gas approximation should be valid, and
the CP symmetry is restored at θ = π at this temperature.

From the results above, we can constrain the phase structure of 4D SU(2) gauge theory
under an assumption. If we assume that the system remains in the deconfined phase at
T/Tdec(0) = 1.2 for 0 ≤ θ ≤ π, the CP symmetry at θ = π should be recovered at
the same or lower temperature, namely TCP ≤ 1.2Tdec(0). We can continue the similar
analysis to make this constraint stronger.

Note that, in these calculations, we used different sets of the smearing parameters
because the appropriate one to obtain integer values of Q depends on the lattice size.6
We used (Nρ, ρ) = (40, 0.15) for the coarse lattice and (Nρ, ρ) = (40, 0.09) for the fine
lattice. To eliminate an ambiguity in the determination of these parameters, it will be
useful to consider the ρ→ 0 extrapolation by using results with various values of ρ.

5.5 Problem in the large theta region

We fond that a problem of autocorrelation appears when we increase θ̃ in the simulations
with imaginary θ. Indeed, we have to decrease the step size of the leap frog in HMC to
keep a reasonable acceptance rate. This problem is different from the topology freezing
problem, which appears in the large β region. In fact, the autocorrelation is more severe
at lower temperature. We show the history of the topological charge for different values of

6The appropriate value of ρ depends on β itself as well, but the difference is not significant for the
present temperatures.
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θ at T/Tdec(0) = 0.9 in Fig. 5.7. We can see that the autocorrelation becomes significant
as we increase θ̃. It makes the error bars large in the results above. Furthermore, since
we have to decrease the step size of the leap frog, we need a longer computational time
for larger θ̃ with the same tHMC. We need to avoid this problem in order to investigate
larger θ̃ region.

6 Summary
Recently, gauge theories with a theta term attract a lot of interest in the context of ’t Hooft
anomaly matching. For instance, the phase structure of 4D SU(2) gauge theory at θ = π
is constrained by an anomaly matching condition, which can be totally different from that
of the large N theory. It is an interesting challenge to investigate the phase structure by
first-principle calculation. However, the sign problem prevents us from studying gauge
theories with the theta term by the Monte Carlo simulation. In this work, we developed
methods to investigate the phase structure of such a theory avoiding the sign problem.
We confirmed that the complex Langevin method (CLM) reproduces the exact results for
2D U(1) gauge theory with a puncture (or open boundaries). However, it turned out to be
difficult to extend this method to 4D SU(2) gauge theory due to severe UV fluctuations.
Then we proposed an alternative method using analytic continuation. We can investigate
the phase structure at θ = π indirectly by the HMC with imaginary θ. We summarize
the results in this section.

First, we have tried to apply the CLM to gauge theories with a theta term to overcome
the sign problem. We focused on 2D U(1) gauge theory, which is exactly solvable on a
finite lattice with various boundary conditions. We found that a naive implementation of
the method fails due to the topological nature of the theory. While the gauge configura-
tions are complexified in the CLM, one can still define the notion of topological sectors
by ReQlog ∈ Z. When a transition between different topological sectors occurs, one of
the plaquettes crosses the branch cut inevitably. It results in the frequent appearance of
large drift terms. This problem indeed happens at small β, where we found that the cri-
terion for correct convergence of the CLM is not satisfied. By increasing β, the large drift
terms do not appear, and the criterion for correct convergence is satisfied. However, the
topology change never occurs during the simulation, and then the ergodicity is violated.
This is known as the topology freezing problem. The results obtained in this case can be
regarded as the expectation values for an ensemble restricted to a particular topological
sector specified by the initial configuration.

In order to avoid this problem, we have considered the punctured model, which can be
obtained by removing a plaquette from the action. While the quantity ReQlog is no longer
restricted to integer values, we can still formally classify the complexified configurations
into topological sectors by adding back the contribution from the removed plaquette to
ReQlog. The removed plaquette is allowed to cross the branch cut easily even for large
β, which results in frequent transitions of topological sectors. Note that, as far as β
is sufficiently large, all the other plaquettes are close to unity, and hence large drift
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Figure 5.7: The history of the topological charge in HMC for θ̃/π = 0 (Top), 0.5 (Middle)
and 1.0 (Bottom) at T/Tdec(0) = 0.9 on the V = 163 × 4 lattice. We set the smearing
parameters to Nρ = 40 and ρ = 0.15.
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term never appears. Therefore, the criterion for correct convergence of the CLM can be
satisfied by simply approaching the continuum limit without causing the topology freezing
problem. Indeed the results obtained by the CLM for the punctured model agree with
the exact results even at large θ.

In fact, the punctured model is equivalent to the infinite volume limit of the original
model for |θ| < π. In this limit, the topological charge can take arbitrarily large values,
so the discretization of Q to integers is no more important. This equivalence can be
confirmed directly by the explicit form of the partition function. In fact, the exact results
also indicate the absence of finite volume effects in the punctured model unlike the original
model, which exhibits finite volume effects near the critical point θ ∼ π. It is conceivable
that the smoothing of the topological charge distribution somehow removes finite volume
effects. If this is correct, a similar conclusion should hold more generally.

Next, we applied the CLM to 4D SU(2) gauge theory. We found that the criterion
for correct convergence is satisfied in some parameter regions. However, the naively
defined topological charge does not take an integer value due to the contamination by
short range fluctuations. For this reason, we introduced the stout smearing to the CLM
to recover the topological property. The effect of the smearing can be included in the
Langevin dynamics itself as well as in observables. We confirmed that the real part of the
topological charge becomes close to an integer after the smearing. On the other hand, the
imaginary part vanishes mostly, but it grows rapidly when the real part changes. This
behavior is consistent with the topological nature of the theory, although it is difficult to
deal with in the numerical simulation.

We need to increase β to suppress the large drift. On the other hand, we cannot
increase it due to the topology freezing. It seems to be necessary to resolve either of the
topology freezing or the large drift in the CLM. However, the appearance of large drift
seems to be related to the topology change, as we found in the study of 2D U(1) gauge
theory. In that case, we need to modify the boundary condition or try some possible ways
to suppress the large drifts, such as improving the gauge cooling or the smearing method.

We also study 4D SU(2) gauge theory with an imaginary theta term. By considering
analytic continuation, we can see the behavior of the observables for real θ via simulations
with the imaginary θ. Then we can investigate the phase structure of the real θ region
indirectly from the imaginary θ region. However, analyticity of the observables should
be broken at the boundary of different phases. We can justify analytic continuation
only within the same phase. In spite of this restriction, it is still possible to give some
constraints on the phase structure, for example an upper limit of the CP restoration
temperature TCP at θ = π.

Since the sign problem is absent in the theory with the imaginary θ, we used the
hybrid Monte Carlo (HMC) method. We also applied the stout smearing to the HMC
as we did to the CLM in order to recover the topological property. We calculated the
topological charge density for various θ = iθ̃ ∈ iR. The result suggests that it behaves as
〈Q〉/V ' −χ0 sinh θ̃ at T = 1.2Tdec(0), where χ0 is the topological susceptibility at θ = 0
and Tdec(θ) is the θ-dependent deconfining temperature. The corresponding behavior in
the real θ region should be 〈Q〉/V ' iχ0 sin θ, which agrees with the prediction by the
dilute instanton gas approximation. Since the CP symmetry is restored at θ = π in this
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case, the CP restoration temperature TCP should be equal to or lower than 1.2Tdec(0).
Although we have to assume that Tdec(θ) ≤ Tdec(0) for 0 ≤ θ ≤ π, this is a feasible
assumption based on the studies of SU(3) gauge theory [27]. In fact, our result is consistent
with that obtained by the subvolume method [12, 13].

On the other hand, the topological charge density at T = 0.9Tdec(0) behaves just
linearly as 〈Q〉/V ' −χ0θ̃. The corresponding behavior in the real θ region should
be 〈Q〉/V ' iχ0θ up to θ = π, which implies the spontaneous breaking of CP. However,
since we do not know whether 0.9Tdec(0) is still below Tdec(π) or not, analytic continuation
within the same phase may not be possible. Therefore, it is important to clarify the θ-
dependent deconfining temperature Tdec(θ). If we assume that it is a simple quadratic
function of θ, we can estimate the coefficient of θ2 by investigating Tdec(θ) at imaginary
θ.

We also found that the observables are sensitive to the finite spacing effect of the
lattice. It is important to take the continuum limit to obtain quantitatively more reliable
results. As a future prospect, we can use an improved action instead of the simple
plaquette action (2.24). It is expected that the short range fluctuations are suppressed,
and then the required number of the smearing step will be smaller. Thus, we can approach
the continuum limit easily.
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A Derivation of the partition function of 2D lattice
gauge theories

For the 2D lattice gauge theories, we can obtain the partition function explicitly on any
manifold at finite lattice spacing and finite volume [8]. Then we can calculate various
observables from the partition function. In this section, we review the derivation using
the so-called K-functional [7].
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A.1 K-functional

We consider a lattice gauge theory with a theta term on a 2D lattice manifoldM. Here
we choose U(N) gauge group, which is a generalization of U(1) considered so far. Note
that the topology of the gauge field is trivial for SU(N) in 2D gauge theories.

As a building block for evaluation of the partition function, we define the K-functional
KA for the region A ⊂M by [7]

KA(Γ) =

∫  ∏
Ui∈A\C

dUi

 e−SA , (A.1)

where the integral goes over all the link variables inside A except those on the boundary
C = ∂A. We show the schematic picture of the link variables considered here in Fig. A.1.
The action SA of the theory used in (A.1) is given by

SA =
∑
Pi∈A

Tr

[
−β

2

(
Pi + P−1

i

)
− θ

2π
logPi

]
, (A.2)

where the sum goes over all the plaquettes Pi included in the region A. Here we use the
log definition (2.11) of the topological charge, but the results for the sine definition (2.12)
can be obtained in a similar way as we mention at the end of Section A.4.

Although the K-functional depends on the link variables on the boundary C, due to
the gauge invariance, the independent degree of freedom is

Γ =
∏
Ui∈C

Ui , (A.3)

which is a consecutive product of link variables along the loop C. Note that the final
result is independent of the starting point of the loop C since a different choice sim-
ply corresponds to applying a gauge transformation to Γ, which leaves the K-functional
invariant.

We can calculate the K-functional for any region A by gluing the K-functional for
each plaquette P one by one, which is given by

K(P ) = exp Tr

[
β

2

(
P + P−1

)
+

θ

2π
logP

]
. (A.4)

Note that the K-functional (A.4) is a function of the group element P ∈ U(N), which is
invariant under the gauge transformation

P → gPg−1 ; g ∈ U(N) . (A.5)

It is known that any function having this property can be expressed by the character
expansion

K(P ) =
∑
r

λrχr(P ) , (A.6)
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A
C

Figure A.1: An example of the region A, which has a boundary C = ∂A. The K-
functional for this region is defined by integrating out internal link variables represented
by the dashed lines. The result depends on Γ defined by (A.3) for the loop C represented
by the solid line with arrows.

which is analogous to the Fourier expansion of a periodic function. Here χr(P ) is the
character of the group, which is defined by the trace of the group element P for the
irreducible representation r, and it satisfies the orthogonality relation∫

dU χr1(U
−1)χr2(U) = δr1,r2 . (A.7)

Using this relation, the coefficient λr in the expansion (A.6) can be extracted as

λr =

∫
dU χr(U

−1)K(U) . (A.8)

As an example, let us obtain the K-functional K2×1 for a 2 × 1 rectangle by gluing
two neighboring plaquettes P1 = U1Ω and P2 = Ω−1U2 as shown in Fig. A.2. Here the
group elements U1 and U2 are the products of three link variables, and Ω represents the
link variable shared by P1 and P2. Integrating out the shared link variable Ω, we obtain

K2×1(U1U2) =

∫
dΩK(P1)K(P2)

=
∑
r1,r2

λr1λr2

∫
dΩχr1(U1Ω)χr2(Ω

−1U2)

=
∑
r

dr

(
λr
dr

)2

χr(U1U2) , (A.9)

where dr = χr(1) is the dimension of the representation r. We have used a formula∫
dΩχr1(U1Ω)χr2(Ω

−1U2) =
1

dr1
χr1(U1U2)δr1,r2 (A.10)
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P1 P2ΩU1 U2

Figure A.2: The K-functional K2×1 for a 2 × 1 rectangle is obtained by gluing the K-
functional for the two plaquettes P1 = U1Ω and P2 = Ω−1U2 by integrating out the shared
link variable Ω.

to combine two characters. Iterating this procedure, we obtain the K-functional for any
simply connected region A as

KA(Γ) =
∑
r

dr

(
λr
dr

)|A|
χr(Γ) , (A.11)

where |A| represents the number of plaquettes in A, and Γ is defined by (A.3).
In the case of U(1) gauge theory, the representation can be labeled simply by the

charge n ∈ Z, and the dimension of the representation is dn = 1 for any n. Since the
character for the plaquette P = eiφ is given by χn(P ) = einφ, the K-functional for a single
plaquette (A.6) reduces to the Fourier series

K(P ) =
∑
n∈Z

λne
inφ . (A.12)

The coefficient λn is a function of θ and β, which is given explicitly by an integral

λn = I(n, θ, β)

:=
1

2π

∫ π

−π
dφ e−inφK

(
P = eiφ

)
=

1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
(A.13)

using (A.4) with P = eiφ. Note that this function reduces to the modified Bessel function
of the first kind for θ = 0.

The character expansion for the U(N) group is much more complicated, so we show
the results only here. The detailed derivation can be found, for example, in the appendix
of [30]. The representation of the U(N) group is labeled by N integers

ρ = (ρ1, ρ2, · · · , ρN) ∈ ZN (A.14)

satisfying ρi ≥ ρi+1, and the dimension of the representation ρ is given by

dρ = χρ(1) =
N∏
i>j

(
1− ρi − ρj

i− j

)
. (A.15)
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The coefficient λρ for the representation ρ in the character expansion (A.6) is expressed
as a determinant

λρ = detM(ρ, θ, β) (A.16)

of the matrixM(ρ, θ, β), which is defined by

Mjk(ρ, θ, β) :=
1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

(
θ

2π
+ ρk + j − k

)
φ

]
. (A.17)

This matrix can be regarded as a generalization of (A.13).

A.2 Partition function for the non-punctured model

First, we evaluate the partition function of the 2D U(N) lattice gauge theory on a torus.
We first consider the K-functional KL1×L2 for a rectangle composed of V := L1 × L2

plaquettes, which can be expressed as (A.11). As shown in Fig. A.3, we identify the top
and bottom sides represented by U−1 and U , respectively, and also identify the left and
right sides represented by W−1 and W . By integrating out the group elements U and W ,
we obtain the partition function for the non-punctured model as

Znonpunc =

∫
dUdW KL1×L2(UWU−1W−1)

=
∑
r

dr

(
λr
dr

)V ∫
dUdWχr(UWU−1W−1)

=
∑
r

(
λr
dr

)V ∫
dUχr(U)χr(U

−1)

=
∑
r

(
λr
dr

)V
, (A.18)

where we have used the orthogonality relation (A.7) and a formula∫
dΩχr(UΩWΩ−1) =

1

dr
χr(U)χr(W ) . (A.19)

For the U(1) gauge theory, the partition function (A.18) reduces to

Znonpunc =
∑
n∈Z

[I(n, θ, β)]V . (A.20)

As we can see from (A.13), the integral I(n, θ, β) has a property

I(n, θ + 2πk, β) = I(n− k, θ, β) (A.21)

for ∀k ∈ Z, which indeed guarantees the 2π periodicity of θ in the partition function
(A.20).
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W

U

W−1

U−1

Figure A.3: The partition function of 2D U(N) gauge theory on a torus is obtained
from the K-functional for the rectangle by integrating out the group elements U and W
corresponding to the identified sides.

Then let us consider the continuum limit, which corresponds to taking the V → ∞
and β → ∞ limits simultaneously with the fixed physical volume Vphys := V/β. In this
limit, the integral (A.13) can be evaluated as

I(n, θ, β) ' 1√
2πβ

exp

[
β − 1

2β

(
θ

2π
− n

)2
]
. (A.22)

Substituting this expression into (A.20), we obtain the partition function of the continuum
theory

Znonpunc '
(

eβ√
2πβ

)V ∑
n∈Z

exp

[
− V

2β

(
θ

2π
− n

)2
]

∼
∑
n∈Z

exp

[
−1

2
Vphys

(
θ

2π
− n

)2
]
, (A.23)

omitting the divergent constant factor.

A.3 Partition function for the punctured model

Nest, we extend the calculation in the previous section to the punctured model. As a
building block, we calculate the K-functional for a rectangle with a hole shown in Fig. A.4.
It can be divided into two regions A1 and A2 by cutting along two segments Ω1 and Ω2.
The outer and inner boundaries of the rectangle are divided into two segments (U1, U2)
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Figure A.4: The K-functional for a rectangle with a hole is obtained by gluing the two
regions A1 and A2. Then, the K-functional for the punctured torus is obtained just as
we did in Fig. A.3. By integrating out the link variables surrounding the puncture, we
obtain the partition function of 2D U(N) gauge theory on a punctured torus.

and (ω1, ω2), respectively. Then, the K-functional for each region is given as follows.

KA1(U1Ω2ω1Ω1) =
∑
r1

dr1

(
λr1
dr1

)|A1|

χr1(U1Ω2ω1Ω1) (A.24)

KA2(Ω
−1
1 ω2Ω−1

2 U2) =
∑
r2

dr2

(
λr2
dr2

)|A2|

χr2(Ω
−1
1 ω2Ω−1

2 U2) (A.25)

By gluing the two regions A1 and A2 together at Ω1 and Ω2, we obtain the K-functional
for the rectangle with a hole as

KA1∪A2 =

∫
dΩ1dΩ2KA1(U1Ω2ω1Ω1)KA2(Ω

−1
1 ω2Ω−1

2 U2)

=
∑
r1,r2

dr1dr2

(
λr1
dr1

)|A1|(λr2
dr2

)|A2| ∫
dΩ1dΩ2χr1(U1Ω2ω1Ω1)χr2(Ω

−1
1 ω2Ω−1

2 U2)

=
∑
r

dr

(
λr
dr

)|A1|(λr
dr

)|A2| ∫
dΩ2χr(U1Ω2ω1ω2Ω−1

2 U2)

=
∑
r

(
λr
dr

)V
χr(U1U2)χr(ω1ω2) , (A.26)

where we have defined V := |A1 ∪ A2| = |A1|+ |A2|.
Let us introduce the group elements U and W for the outer boundary as we did in

Fig. A.3 so that U1U2 = UWU−1W−1, and define ω := ω1ω2 for the inner boundary.
By integrating out the group elements U and W , we obtain the K-functional for the
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punctured torus as

Kpunc(ω) =
∑
r

(
λr
dr

)V
χr(ω)

∫
dUdWχr(UWU−1W−1)

=
∑
r

(
λr
dr

)V
χr(ω)

∫
dU

1

dr
χr(U)χr(U

−1)

=
∑
r

1

dr

(
λr
dr

)V
χr(ω) . (A.27)

Finally, we have to integrate out the remaining degree of freedom ω around the puncture.
Then we obtain the partition function for the punctured model as

Zpunc =

∫
dωKpunc(ω) =

∑
r

1

dr

(
λr
dr

)V
δr,0 = (λ0)V , (A.28)

where r = 0 corresponds to the trivial representation with the dimension d0 = 1.
In the case of U(1), the partition function reduces to

Zpunc = [I(0, θ, β)]V , (A.29)

which does not have the 2π periodicity of θ as expected.
We next consider taking the continuum limit, namely V → ∞ and β → ∞ limits

simultaneously with the fixed physical volume Vphys := V/β. Similarly to the case of the
non-punctured model, which is discussed in Section A.2, we obtain

Zpunc '
(

eβ√
2πβ

)V
exp

[
− V

2β

(
θ

2π

)2
]

∼ exp

[
−1

2
Vphys

(
θ

2π

)2
]
, (A.30)

omitting the divergent constant factor. This coincides with the infinite volume limit
Vphys → ∞ of (A.23) within the range |θ| < π. Note, however, that the equivalence
between the punctured and non-punctured models does not hold for finite physical volume
Vphys.

A.4 Evaluation of the observables

We can evaluate the expectation values of various observables defined in Section 3.2 from
the partition function derived above, namely (A.20) for the non-punctured model and
(A.29) for the punctured model. Since the latter case is straightforward because of the
absence of an infinite sum, we only discuss the former case below.

The average plaquette w defined by (3.15) is given by

w =
1

Znonpunc

∑
n∈Z

A(n, θ, β) [I(n, θ, β)]V , (A.31)
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where we have defined

A(n, θ, β) :=
∂

∂β
log I(n, θ, β)

=
1

I(n, θ, β)

1

2π

∫ π

−π
dφ cosφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
=
I(n− 1, θ, β) + I(n+ 1, θ, β)

2I(n, θ, β)
. (A.32)

Similarly, the topological charge density defined by (3.16) can be obtained from

〈Q〉 = −i V

Znonpunc

∑
n∈Z

B(n, θ, β) [I(n, θ, β)]V , (A.33)

where we have defined

B(n, θ, β) :=
1

I(n, θ, β)

∂

∂θ
I(n, θ, β)

=
i

I(n, θ, β)

1

4π2

∫ π

−π
dφφ exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
. (A.34)

Finally, the topological susceptibility defined by (3.17) can be obtained from

〈Q2〉 = − V

Znonpunc

+∞∑
n=−∞

[
C(n, θ, β) + (V − 1)B(n, θ, β)2

]
[I(n, θ, β)]V , (A.35)

where we have defined

C(n, θ, β) :=
1

I(n, θ, β)

∂2

∂θ2
I(n, θ, β)

= − 1

I(n, θ, β)

1

8π3

∫ π

−π
dφφ2 exp

[
β cosφ+ i

(
θ

2π
− n

)
φ

]
. (A.36)

Note that I(n, θ, β) and the functions (A.32), (56) and (A.36) derived from it are all
real-valued, and we can calculate them by numerical integration with sufficient precision.
When we evaluate the infinite sum in the expressions (A.31), (A.33) and (A.35), we have
to truncate it at some n. Note here that |I(n, θ, β)| decays quickly as |θ/2π−n| increases.
We can therefore evaluate the infinite sum with sufficient precision by keeping only a few
terms when the volume Vphys is sufficiently large.

So far we have derived the exact results for the log definition (2.11) of the topological
charge. As is clear from the derivation, we can obtain the exact results for the sine
definition (2.12) by simply replacing I(n, θ, β) by

Ĩ(n, θ, β) :=
1

2π

∫ π

−π
dφ exp

[
β cosφ+ i

θ

2π
sinφ− inφ

]
. (A.37)
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B The punctured model with the sine definition Qsin

In Sections 3.4 and 3.5, we have discussed the punctured model with the log definition
(2.11) of the topological charge for simplicity. In fact, we also obtained the results by
using the sine definition (2.12) for the punctured model. Here we show the results, which
are qualitatively similar to those with the log definition.

The drift terms for the sine definition are given already for the non-punctured model
in Section 3.1. When we consider the punctured model, the only modification from the
original model appears in the drift terms for the four link variables surrounding the
puncture, namely UK,1, UK+2̂,1, UK,2 and UK+1̂,2. Thus, the drift terms are given as
follows.

Dn,1S =


−iβ

2
(Pn − P−1

n − Pn−2̂ + P−1

n−2̂
)− i θ

4π
(Pn + P−1

n − Pn−2̂ − P−1

n−2̂
)

for n 6= K, K + 2̂

−iβ
2
(−PK−2̂ + P−1

K−2̂
) + i θ

4π
(PK−2̂ + P−1

K−2̂
) for n = K

−iβ
2
(PK+2̂ − P−1

K+2̂
)− i θ

4π
(PK+2̂ + P−1

K+2̂
) for n = K + 2̂

(B.1)

Dn,2S =


−iβ

2
(−Pn + P−1

n + Pn−1̂ − P−1

n−1̂
)− i θ

4π
(−Pn − P−1

n + Pn−1̂ + P−1

n−1̂
)

for n 6= K, K + 1̂

−iβ
2
(PK−1̂ − P−1

K−1̂
)− i θ

4π
(PK−1̂ + P−1

K−1̂
) for n = K

−iβ
2
(−PK+1̂ + P−1

K+1̂
) + i θ

4π
(PK+1̂ + P−1

K+1̂
) for n = K + 1̂

(B.2)

At large β, all the plaquettes except the removed one PK approach unity. The drift
term from the theta term therefore vanishes for all the link variables except for those
surrounding the puncture, which have constant drifts ±i θ

2π
. Thus, in the continuum

limit, the drift terms for the sine definition agree with those for the log definition given
by (3.30) and (3.31). This relation makes it easier to understand why we can safely ignore
the singularity in the drift term for the log definition discussed in Section 3.1.

It is therefore expected that the results of the CLM for the sine definition are essentially
the same as those for the log definition for large β. In Fig. B.1, we show our results for
the punctured model with the sine definition for the same (β, L) as those in Fig. 3.7 with
the log definition. For the fine lattice (β, L) = (12, 20), we found that the histogram of
the magnitude u of the drift term falls off rapidly. In addition, the histogram of ReQsin

obtained by the CLM is widely distributed. Hence, the topology freezing problem is
circumvented without causing large drifts similarly to the situation with the log definition.

On the other hand, for the coarse lattice (β, L) = (3, 10), we find that the histogram
of the magnitude u of the drift term falls off fast. It means that the condition for the
validity of the CLM is satisfied unlike the case of the log definition. As a result, all
the observables are in complete agreement with the exact results for all values of θ even
for (β, L) = (3, 10). This can be seen from Fig. B.2, where we show the results for the
punctured model with the sine definition for the same values of (β, L) as the ones used in
Fig. 3.11. For coarser lattice (β, L) = (1.92, 8) with the same Vphys = L2/β, however, we
actually found that the histogram has a power-law tail. Therefore, the difference between
the two definitions is merely a small shift in the validity region of the CLM.
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Figure B.1: The results obtained by the CLM for the punctured model using the sine
definition of the topological charge. (Left) The histogram of the magnitude u of the drift
term is shown for (β, L) = (3, 10) and (12, 20) with θ = π. (Right) The histogram of
ReQsin for the punctured model is shown for (β, L) = (12, 20) with θ = π. The exact
result obtained for (β, L) = (12, 20) with θ = 0 is shown by the solid line for comparison.

We also show the exact results for the punctured model with the log and sine definitions
for comparison. They tend to agree with each other as β is increased with fixed Vphys,
which corresponds to the continuum limit.

C Derivation of the formulae for the stout smearing
The stout smearing was first proposed in [11] for the HMC simulation of QCD. It was also
applied to the complex Langevin simulation of QCD at finite baryon chemical potential
[25]. In this section, we review the derivation of the formulae for the stout smearing
focusing on the case of SU(2) gauge theory.

The procedure of the stout smearing is given by the iteration of the smearing step,
starting from the original configuration Un,µ.

Un,µ = U (0)
n,µ → U (1)

n,µ → · · · → U (Nρ)
n,µ = Ũn,µ (C.1)

After Nρ iterations we obtain the smeared configuration Ũn,µ. In one (isotropic) smearing
step from k to k + 1, the link variable U (k)

n,µ ∈ SL(2,C) is mapped to U (k+1)
n,µ ∈ SL(2,C)

defined by following formulae.

U (k+1)
n,µ := eiYn,µU (k)

n,µ, (C.2)

iYn,µ := −ρ
2

Tr
[
J (β)
n,µt

a
]
ta = −ρ

2

(
J (β)
n,µ −

1

N
Tr
[
J (β)
n,µ

]
1

)
(C.3)

J (β)
n,µ := Un,µΩn,µ − Ω̄n,µU

−1
n,µ (C.4)

Ωn,µ :=
∑
σ(6=µ)

(
Un+µ,σU

−1
n+σ,µU

−1
n,σ + U−1

n+µ−σ,σU
−1
n−σ,µUn−σ,σ

)
(C.5)
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Figure B.2: The results for various observables obtained by the CLM for the punctured
model with the sine definition Qsin. The average plaquette (Top), the imaginary part
of the topological charge density (Middle), the topological susceptibility (Bottom) are
plotted against θ/π for (β, L) = (3, 10) (Left) and (12, 20) (Right). The exact results for
the punctured model with the log and sine definitions are shown for the same (β, L) by
the dashed lines and the dash-dotted lines, respectively, for comparison.
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Ω̄n,µ :=
∑
σ( 6=µ)

(
Un,σUn+σ,µU

−1
n+µ,σ + U−1

n−σ,σUn−σ,µUn+µ−σ,σ
)

(C.6)

In the update (C.2), the matrix exponential of the traceless 2 × 2 matrix Yn,µ can be
calculated by

eiYn,µ = cosκn,µ1 + f(κn,µ)iYn,µ, (C.7)

where ±κn,µ are the eigenvalues of Yn,µ

κn,µ :=
√
− detYn,µ =

√
1

2
TrY 2

n,µ (C.8)

and f(x) is the analytic function of x ∈ C.

f(x) :=
sinx

x
= 1− 1

6
x2 +O(x4) (C.9)

Next, we consider the calculation of the drift term for the action S[Ũ(U)] which is
calculated from the smeared link variables. Although S[Ũ(U)] is a complicated function
of the original link variable Un,µ, it is possible to calculate the drift force

Fn,µ = iτaDa
n,µS (C.10)

by reversing the smearing steps. We define the drift force for the link variables U (k)
n,µ as

F (k)
n,µ = iτaD(k)a

n,µ Sθ, (C.11)

where D(k)a
n,µ represents a differential operation with respect to U (k)

n,µ. Once we obtain the
drift force F̃n,µ = F

(Nρ)
n,µ of the smeared links, the subsequent ones are given by the map

from F
(k)
n,µ to F (k−1)

n,µ iteratively.

F̃n,µ = F (Nρ)
n,µ → F (Nρ−1)

n,µ → · · · → F (0)
n,µ = Fn,µ (C.12)

In order to derive the formulae of the map F (k)
n,µ → F

(k−1)
n,µ , we focus on the first smearing

step Un,µ → U
(1)
n,µ =: U ′n,µ and calculate the drift term Da

n,µS[U ′(U)] of the original link
variable. First, we define the variation of U ′

∆a;b
n,µ;m,ν := −2iTr

[(
Da
n,µU

′
m,ν

)
U ′−1
m,νt

b
]

(C.13)

which satisfies

iαa∆a;b
n,µ;m,νt

b = 2αaTr
[(
Da
n,µU

′
m,ν

)
U ′−1
m,νt

b
]
tb = αa

(
Da
n,µU

′
m,ν

)
U ′−1
m,ν (C.14)

for any αa ∈ R (a = 1, 2, 3). This equation can be show by using the formula

Tr [Wta] ta =
1

2

(
W − 1

N
Tr [W ]1

)
(C.15)
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for the SU(N) generators, which is based on the identity

taijt
a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
. (C.16)

Note that the trace part vanishes in this case.

Tr
[(
Da
n,µU

′
m,ν

)
U ′−1
m,ν

]
= Tr

[
Da
n,µ

(
eiYm,νUm,ν

)
U−1
m,νe

−iYm,ν
]

= Tr
[
e−iYm,νDa

n,µe
iYm,ν + U−1

m,νD
a
n,µUm,ν

]
= Tr

[
e−iYm,ν

(
Da
n,µiYm,ν

)
eiYm,ν + iδn,mδµ,νU

−1
m,νt

aUm,ν
]

= Da
n,µTr [iYm,ν ] + iδn,mδµ,νTr [ta]

= 0 (C.17)

By using (C.13), the small change of Un,µ can be rephrased by that of U ′n,µ up to the first
order in αa.

U ′m,ν
(
eiα

ataUn,µ
)
≈ U ′m,ν + αa

[
∂

∂ε
U ′m,ν

(
eiεt

a

Un,µ
)]

ε=0

=
[
1 + αa

(
Da
n,µU

′
m,ν

)
U ′−1
m,ν

]
U ′m,ν

≈ eiα
a∆a;b

n,µ;m,νt
b

U ′m,ν (C.18)

Thus, we obtain the chain rule of Da
n,µ.

Da
n,µS [U ′(U)] =

∑
m,ν

d

dε
S
[
U ′m,ν

(
eiεt

a

Un,µ
)]∣∣∣∣

ε→0

=
∑
m,ν

d

dε
S
[
eiε∆

a;b
n,µ;m,νt

b

U ′m,ν

]∣∣∣∣
ε→0

=
∑
m,ν

∆a;b
n,µ;m,ν

d

dε′
S
[
eiε

′tbU ′m,ν

]∣∣∣∣
ε′→0

=
∑
m,ν

∆a;b
n,µ;m,νD

′b
m,νS [U ′] (C.19)

In the third line, ε is rescaled to ε′ = ε∆a;b
n,µ;m,ν . Then, the relation between the drift

F ′n,µ := itaD′an,µS [U ′ (U)] (C.20)
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of the smeared link and the drift Fn,µ of the original link is obtained.

Fn,µ := itaDa
n,µS [U ′ (U)]

= ita
∑
m,ν

∆a;b
n,µ;m,νD

′b
m,νS [U ′]

= ita
∑
m,ν

(−2i) Tr
[(
Da
n,µU

′
m,ν

)
U ′−1
m,νt

b
]
D′bm,νS [U ′]

= −2ita
∑
m,ν

Tr
[{(

Da
n,µe

iYm,ν
)
e−iYm,ν + eiYm,ν

(
Da
n,µUm,ν

)
U−1
m,νe

−iYm,ν
}
F ′m,ν

]
= −2ita

∑
m,ν

{
Tr
[
e−iYm,νF ′m,νD

a
n,µe

iYm,ν
]

+ iδnmδµνTr
[
eiYm,ν tae−iYm,νF ′m,ν

]}
= −2ita

∑
m,ν

Tr
[
e−iYm,νF ′m,νD

a
n,µe

iYm,ν
]

+ e−iYn,µF ′n,µe
iYn,µ (C.21)

In the last line, the trace part vanishes since F ′n,µ is traceless.

Tr
[
e−iYn,µF ′n,µe

iYn,µ
]

= TrF ′n,µ = 0 (C.22)

The derivative Da
n,µe

iYm,ν in the first term of (C.21) can be decomposed as follows.

Tr
[
e−iYm,νF ′m,νD

a
n,µe

iYm,ν
]

= Tr
[
e−iYm,νF ′m,νD

a
n,µ (cosκm,ν1 + f(κm,ν)iYm,ν)

]
= Tr

[
e−iYm,νF ′m,ν

{
(f ′(κm,ν)iYm,ν − sinκm,ν1)Da

n,µκm,ν + f(κm,ν)iD
a
n,µYm,ν

}]
(C.23)

The first term in this trace part can be further simplified by using the property Y 2
m,ν =

κ2
m,ν1 of the 2× 2 traceless matrix and TrF ′n,µ = 0.

Tr
[
e−iYm,νF ′m,ν (f ′(κm,ν)iYm,ν − sinκm,ν1)

]
= Tr

[
(cosκm,ν1− f(κm,ν)iYm,ν)F

′
m,ν (f ′(κm,ν)iYm,ν − sinκm,ν1)

]
=
(
κ2
m,νf(κm,ν)f

′(κm,ν)− cosκm,ν sinκm,ν
)

TrF ′m,ν

+ (f ′(κm,ν) cosκm,ν + f(κm,ν) sinκm,ν) Tr
[
F ′m,νiYm,ν

]
=

[(
cosκm,ν
κm,ν

− sinκm,ν
κ2
m,ν

)
cosκm,ν +

sin2 κm,ν
κm,ν

]
Tr
[
F ′m,νiYm,ν

]
=

1− f(2κm,ν)

κm,ν
Tr
[
F ′m,νiYm,ν

]
(C.24)

Since the derivative of κm,ν can be converted to the derivative of Ym,ν ,

Da
n,µκm,ν = Da

n,µ

√
1

2
TrY 2

m,ν = − 1

2κm,ν
Tr
[
iYm,νiD

a
n,µYm,ν

]
(C.25)
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all the derivatives in the trace part of (C.21) are reduced to Da
n,µYm,ν .

Tr
[
e−iYm,νF ′m,νD

a
n,µe

iYm,ν
]

= −1− f(2κm,ν)

2κ2
m,ν

Tr
[
F ′m,νiYm,ν

]
Tr
[
iYm,νiD

a
n,µYm,ν

]
+ f(κm,ν)Tr

[
e−iYm,νF ′m,νiD

a
n,µYm,ν

]
= Tr

[{
−1− f(2κm,ν)

2κ2
m,ν

Tr
[
F ′m,νiYm,ν

]
iYm,ν + f(κm,ν)e

−iYm,νF ′m,ν

}
iDa

n,µYm,ν

]
=: Tr

[
Λ̂m,νiD

a
n,µYm,ν

]
(C.26)

Thus we the formula (C.21) is now rewritten in the following form.

Fn,µ = −2ita
∑
m,ν

Tr
[
Λ̂m,νiD

a
n,µYm,ν

]
+ e−iYn,µF ′n,µe

iYn,µ (C.27)

Λ̂m,ν = −1− f(2κm,ν)

2κ2
m,ν

Tr
[
F ′m,νiYm,ν

]
iYm,ν + f(κm,ν)e

−iYm,νF ′m,ν (C.28)

For later convenience, we define the traceless matrix Λm,ν by subtracting the trace part
from Λ̂m,ν .

Λm,ν := Tr
[
Λ̂m,νt

b
]
tb =

1

2

(
Λ̂m,ν −

1

2
Tr
[
Λ̂m,ν

])
(C.29)

We can replace Λ̂m,ν by Λm,ν in the trace part of (C.27) since the trace part of Λ̂m,ν does
not contribute.

−2ita
∑
m,ν

Tr
[
Λ̂m,νiD

a
n,µYm,ν

]
= itaρ

∑
m,ν

Tr
[
Λ̂m,νTr

{
Da
n,µJ

(β)
m,νt

b
}
tb
]

= itaρ
∑
m,ν

Tr
{

Tr
[
Λ̂m,νt

b
]
tbDa

n,µJ
(β)
m,ν

}
= itaρ

∑
m,ν

Tr
[
Λm,νD

a
n,µJ

(β)
m,ν

]
(C.30)

Then the drift force

Fn,µ = e−iYn,µF ′n,µe
iYn,µ + itaρ

∑
m,ν

Tr
[
Λm,νD

a
n,µJ

(β)
m,ν

]
(C.31)

is completely determined by calculating the derivative of the J (β)
m,ν

Da
n,µJ

(β)
m,ν

= Da
n,µ

(
Um,νΩm,ν − Ω̄m,νU

−1
m,ν

)
= iδnmδµν

(
taUm,νΩm,ν + Ω̄m,νU

−1
m,νt

a
)

+ Um,ν
(
Da
n,µΩm,ν

)
−
(
Da
n,µΩ̄m,ν

)
U−1
m,ν (C.32)
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and also the derivatives of Ωm,ν and Ω̄m,ν .

Da
n,µΩm,ν

= i(1− δµν)
(
δn,m+νt

aUn,µU
−1
n+µ−ν,νU

−1
n−ν,µ − δn,mUn+ν,µU

−1
n+µ,νU

−1
n,µt

a

−δn,m+ν−µU
−1
n,µt

aU−1
n−ν,νUn−ν,µ + δn,m−µU

−1
n+ν,µU

−1
n,νt

aUn,µ
)

− iδµν
∑
σ( 6=µ)

(
δn,m+σUn+µ−σ,σU

−1
n,µt

aU−1
n−σ,σ + δn,m−σU

−1
n+µ,σU

−1
n,µt

aUn,σ
)

(C.33)

Da
n,µΩ̄m,ν

= i(1− δµν)
(
δn,mt

aUn,µUn+µ,νU
−1
n+ν,µ − δn,m+νUn−ν,µUn+µ−ν,νU

−1
n,µt

a

−δn,m−µU−1
n,µt

aUn,νUn+ν,µ + δn,m+ν−µU
−1
n−ν,µUn−ν,νt

aUn,µ
)

+ iδµν
∑
σ(6=µ)

(
δn,m+σUn−σ,σt

aUn,µU
−1
n+µ−σ,σ + δn,m−σU

−1
n,σt

aUn,µUn+µ,σ

)
(C.34)

By substituting these expressions, the trace part of (C.31) is evaluated as follows.∑
m,ν

Tr
[
Λm,νD

a
n,µJ

(β)
m,ν

]
= iTr

Λn,µ

(
taUn,µΩn,µ + Ω̄n,µU
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a
)

+
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)
(C.35)

We can combine the sum over ν and σ. By reordering the matrices and factoring out ta,
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the trace part is further simplified.∑
m,ν
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[
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a
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(β)
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(C.36)

Finally, we obtain the explicit formula of the map F ′n,µ → Fn,µ.

Fn,µ = e−iYn,µF ′n,µe
iYn,µ + itaρ

∑
m,ν

Tr
[
Λm,νD

a
n,µJ

(β)
m,ν

]
= e−iYn,µF ′n,µe
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a] ta

= e−iYn,µF ′n,µe
iYn,µ +

ρ

2

(
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1

2
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)
(C.37)
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(C.38)

D Topological charge after the smearing
We can define the topological charge which is close to an integer by using the stout smear-
ing as discussed in Section 4.4. We present how the distribution of the topological charge
depends on the smearing parameter ρ. For simplicity, we fix the number of smearing steps
Nρ = 40 in this discussion. Note that we can see similar behaviors for different values
of Nρ as long as it is large enough. If Nρ is too small, we cannot obtain an appropriate
distribution of the topological charge for any ρ.

In Fig. D.1 we show typical distributions of the topological charge defined by (4.24)
for various values of ρ at θ = 0. The number of smearing step is fixed to Nρ = 40. The
lattice volume is V = 163 × 4 and the temperature is T/Tdec(0) = 1.0. The distribution
looks like the Gaussian distribution for ρ = 0.05, which means that the effect of smearing
is not enough. For ρ = 0.10 we can see some peaks of the distribution, and they become
clearer for ρ = 0.15. Thus, the topological property of the gauge field is recovered for
ρ ' 0.15. The distribution suddenly collapses to the single peak for larger ρ as we can
see in the result for ρ = 0.20.

We also tried some other values of ρ and decided to use ρ = 0.15 for the actual
calculations on the 163×4 lattice. Since the appropriate value of ρ depends on the lattice
size, we use the different value ρ = 0.09 for the 203 × 5 lattice. In fact, there is an
ambiguity in the determination of the smearing parameters. One of the possible ways to
eliminate this ambiguity is the ρ → 0 extrapolation of observables in the scaling region
of ρ.
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Figure D.1: The distribution of the topological charge defined by (4.24) at T/Tdec(0) =
1.0 for θ = 0 on the 16 × 4 lattice. We set the smearing parameters to Nρ = 40 with
ρ = 0.05 (Top Left), 0.10 (Top Right), 0.15 (Bottom Left) and 0.20 (Bottom Right).

67



References
[1] Davide Gaiotto, Anton Kapustin, Zohar Komargodski, and Nathan Seiberg. Theta,

time reversal, and temperature. JHEP, 05:091, 2017.

[2] John R. Klauder. Coherent state Langevin equations for canonical quantum systems
with applications to the quantized Hall effect. Phys. Rev., A29:2036–2047, 1984.

[3] G. Parisi. On complex probabilities. Phys. Lett., 131B:393–395, 1983.

[4] Keitaro Nagata, Jun Nishimura, and Shinji Shimasaki. Argument for justification
of the complex Langevin method and the condition for correct convergence. Phys.
Rev., D94(11):114515, 2016.

[5] Mitsuaki Hirasawa, Akira Matsumoto, Jun Nishimura, and Atis Yosprakob. Complex
Langevin analysis of 2D U(1) gauge theory on a torus with a θ term. JHEP, 09:023,
2020.

[6] U.J. Wiese. Numerical simulation of lattice θ vacua: The 2-d u(1) gauge theory as a
test case. Nucl.Phys.B, 318:153–175, 1989.

[7] B. E. Rusakov. Loop averages and partition functions in U(N) gauge theory on
two-dimensional manifolds. Mod. Phys. Lett., A5:693–703, 1990.

[8] Claudio Bonati and Paolo Rossi. Topological susceptibility of two-dimensional U(N)
gauge theories. Phys. Rev., D99(5):054503, 2019.

[9] Akira Matsumoto, Kohta Hatakeyama, Mitsuaki Hirasawa, Masazumi Honda, Yuta
Ito, Jun Nishimura, and Atis Yosprakob. A new technique for solving the freezing
problem in the complex Langevin simulation of 4D SU(2) gauge theory with a theta
term. In 38th International Symposium on Lattice Field Theory, 12 2021.

[10] P. Di Vecchia, K. Fabricius, G.C. Rossi, and G. Veneziano. Preliminary Evidence for
U(1)-A Breaking in QCD from Lattice Calculations. pages 426–442, 5 1981.

[11] Colin Morningstar and Mike J. Peardon. Analytic smearing of SU(3) link variables
in lattice QCD. Phys. Rev. D, 69:054501, 2004.

[12] Ryuichiro Kitano, Norikazu Yamada, and Masahito Yamazaki. Is N = 2 Large?
JHEP, 02:073, 2021.

[13] Ryuichiro Kitano, Ryutaro Matsudo, Norikazu Yamada, and Masahito Yamazaki.
Peeking into the θ vacuum. Phys. Lett. B, 822:136657, 2021.

[14] Shi Chen, Kenji Fukushima, Hiromichi Nishimura, and Yuya Tanizaki. Deconfine-
ment and CP breaking at θ = π in Yang-Mills theories and a novel phase for SU(2).
Phys. Rev. D, 102(3):034020, 2020.

68



[15] Gert Aarts, Erhard Seiler, and Ion-Olimpiu Stamatescu. The Complex Langevin
method: When can it be trusted? Phys. Rev., D81:054508, 2010.

[16] Gert Aarts, Frank A. James, Erhard Seiler, and Ion-Olimpiu Stamatescu. Complex
langevin: Etiology and diagnostics of its main problem. Eur.Phys.J.C, 71:1756, 2011.

[17] Keitaro Nagata, Jun Nishimura, and Shinji Shimasaki. Justification of the complex
Langevin method with the gauge cooling procedure. PTEP, 2016(1):013B01, 2016.

[18] Jun Nishimura and Shinji Shimasaki. New insights into the problem with a singular
drift term in the complex Langevin method. Phys. Rev., D92(1):011501, 2015.

[19] Gert Aarts, Erhard Seiler, Denes Sexty, and Ion-Olimpiu Stamatescu. Complex
Langevin dynamics and zeroes of the fermion determinant. JHEP, 05:044, 2017.
[Erratum: JHEP 01, 128 (2018)].

[20] A. Mollgaard and K. Splittorff. Complex Langevin Dynamics for chiral Random
Matrix Theory. Phys. Rev. D, 88(11):116007, 2013.

[21] Jeff Greensite. Comparison of complex Langevin and mean field methods applied to
effective Polyakov line models. Phys. Rev. D, 90(11):114507, 2014.

[22] Erhard Seiler, Denes Sexty, and Ion-Olimpiu Stamatescu. Gauge cooling in complex
Langevin for QCD with heavy quarks. Phys. Lett., B723:213–216, 2013.

[23] Zhenning Cai, Yana Di, and Xiaoyu Dong. How does Gauge Cooling Stabilize Com-
plex Langevin? Commun. Comput. Phys., 27(5):1344–1377, 2020.

[24] Gert Aarts, Frank A. James, Erhard Seiler, and Ion-Olimpiu Stamatescu. Adaptive
stepsize and instabilities in complex Langevin dynamics. Phys. Lett., B687:154–159,
2010.

[25] Dénes Sexty. Calculating the equation of state of dense quark-gluon plasma using
the complex Langevin equation. Phys. Rev. D, 100(7):074503, 2019.

[26] Massimo D’Elia and Francesco Negro. θ dependence of the deconfinement tempera-
ture in Yang-Mills theories. Phys. Rev. Lett., 109:072001, 2012.

[27] Massimo D’Elia and Francesco Negro. Phase diagram of Yang-Mills theories in the
presence of a θ term. Phys. Rev. D, 88(3):034503, 2013.

[28] Gyan Bhanot and Francois David. The Phases of the O(3) σ Model for Imaginary
θ. Nucl. Phys. B, 251:127–140, 1985.

[29] J. Engels, F. Karsch, and K. Redlich. Scaling properties of the energy density in
SU(2) lattice gauge theory. Nucl. Phys. B, 435:295–310, 1995.

[30] Jean-Michel Drouffe and Jean-Bernard Zuber. Strong coupling and mean field meth-
ods in lattice gauge theories. Phys. Rept., 102:1, 1983.

69


	Introduction
	Lattice gauge theory with a theta term 
	2D U(1) gauge theory on the lattice 
	4D SU(2) gauge theory on the lattice

	Complex Langevin analysis of 2D U(1) gauge theory 
	Application of the CLM to 2D U(1) gauge theory 
	Result of the CLM on the periodic lattice 
	Appearance of large drifts and topology change 
	Introducing a puncture on the torus 
	Application of the CLM to the punctured model 
	Drift terms for the punctured model 
	Distribution of the topological charge 

	Validity of the CLM for the punctured model 
	Behavior of the unitarity norm
	Result of the CLM for the punctured model 

	Complex Langevin analysis of 4D SU(2) gauge theory 
	Application of the CLM to 4D SU(2) gauge theory
	Result of CLM with the naive definition of the topological charge
	Analyticity of the complex theta
	Stout smearing in the CLM 
	Result of the CLM with the stout smearing 
	Origin of the large drift

	4D SU(2) gauge theory with an imaginary theta 
	Conjectured phase diagram
	Theta dependence of the topological charge density
	Large volume limit
	Continuum limit 
	Problem in the large theta region 

	Summary 
	Derivation of the partition function of 2D lattice gauge theories 
	K-functional
	Partition function for the non-punctured model 
	Partition function for the punctured model 
	Evaluation of the observables 

	The punctured model with the sine definition Qsin 
	Derivation of the formulae for the stout smearing 
	Topological charge after the smearing 

