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ABSTRACT

The International Linear Collider (ILC) is a proposed energy frontier electron-
positron collider to look for new physics. Its initial center of mass energy is 250
GeV, which is extendable to 1 TeV or higher. Both electron and positron beams
can be polarized. Thanks to electrons and positrons being elementary particles, the
initial state is well defined and there is significantly less QCD background at the ILC
than at the LHC. The resultant clean experimental environment makes it possible to
perform various precision measurements including those regarding the Higgs boson
properties. The ILC will thus be an ideal Higgs factory. The clean environment
also allows highly sensitive searches for new particles that are difficult to find in
the high QCD background environment at the LHC. To take full advantage of the
ILC, a high performance detector system which can reconstruct all final states in
terms of fundamental particles, i.e. leptons, quarks, gauge bosons, and the Higgs
boson is essential. By measuring each final-state particle energy with the most
appropriate sub-detectors (Particle Flow Analysis: PFA), we can achieve sufficient
jet energy resolution to distinguish the W , Z, and the Higgs boson decaying into jets
by reconstructing their invariant masses. The International Large Detector (ILD)
is a proposed detector system at the ILC optimized for PFA. In order to make the
PFA method work, not only the precision of the energy measurement but also the
reduction of the energy scale uncertainty is essential. Photon and jet energy scale
(JES) calibration is a key to achieve high performance PFA.

In this thesis we developed data-driven methods using the e+e− → γZ process
to calibrate the photon and jet energy in order to reduce the systematic error due
to photon and jet energy scale uncertainties. These methods make use of kinemat-
ical reconstruction based on measured production angles of the final state photon
and the Z-decay daughters, and in the case of JES calibration, also measured jet
masses, without reference to their measured energies. Comparisons of the kinemat-
ically reconstructed energies with their corresponding measured values allow very
precise controls of the photon energy scale and JES. These studies demonstrate the
effectiveness of these new methods using GEANT4-based full simulation, including
expected energy scale accuracies and their dependences on energy and direction, and
flavor in the case of JES calibration.

Being a Higgs factory, the primary target of ILC 250 is to precisely measure the
coupling constants between the Higgs boson and various other Standard Model (SM)
particles. The coupling constants can deviate from their SM values due to possible
Beyond the Standard Model (BSM) effects. The pattern and size of the deviations
depend on the BSM models. The precision measurements of the Higgs couplings
at the ILC will thus provide a new and powerful tool not only to look for BSM
effects but also to identify the type of new physics thereby showing the future direc-
tion of particle physics. In order to precisely determine various Higgs couplings as
model independently as possible, it has recently been recognized that SM effective
field theory (SMEFT) provides an appropriate theoretical analysis framework. In
the SMEFT framework, we can express deviations from SM independently of new
physics models as long as the new particles are heavy enough and their field de-
grees of freedom can be integrated out. The deviation from the SM is expressed
by a set of higher dimensional operators. It has been shown that there is a finite
but complete subset of dimension-6 operators that are related to Higgs physics at



electron-positron colliders whose coefficients can be determined simultaneously by a
global SMEFT fit using observables that would be measurable at ILC experiments.
In this SMEFT analysis, not only the processes having Higgs bosons in the final
state but also other processes with no Higgs boson will play a significant role. The
e+e− → γZ process is one of the most important such processes since this process
has the potential to significantly improve the currently available ALR measurement
by the SLC experiment which would otherwise limit the Higgs coupling precision.
It turns out that the precision of the ALR measurement done at the SLC, being at
around 1.5% i.e.ALR = 0.1514± 0.0019 (stat)± 0.0011 (syst), is not precise enough
for the global fit. It is hence motivated to improve this observable at the ILC. ALR

was previously measured at the Z-pole, but at the ILC, we can measure ALR at
250 GeV, using the so-called radiative return events with both electron and positron
polarization and 150 times larger statistics than at the SLC experiment. We there-
fore perform a full simulation study to evaluate by how much we can improve the
precision on ALR.

This thesis consists of three main topics. The first is photon energy calibration
which will be described in Part II. The second is jet energy scale calibration in Part
III and the third is ALR measurement in Part IV.
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Chapter 1

Introduction

1.1 Physics Motivation

The International Linear Collider (ILC) is a proposed energy-frontier e+e− collider to look
for new physics. At the first stage of the ILC, the initial center of mass energy is optimized
to measure the coupling constants between the Higgs boson and various other standard model
(SM) particles. The coupling constants can deviate from their SM values due to possible Beyond
the Standard Model (BSM) effects. The pattern and size of the deviations depend on the BSM
model. The precision measurements of the Higgs couplings at the ILC will thus provide a new
and powerful tool not only to look for BSM effects but also to identify the type of new physics
thereby showing the future direction of particle physics. The expected deviation is around 1-10%
in typical BSM models that introduce new heavy particles at the TeV scale, which are typically
beyond the discovery reach of the LHC or HL-LHC [1]. It is therefore necessary to measure the
Higgs coupling constants more precisely at a future e+e− collider such as the ILC.

In order to precisely determine various Higgs couplings as model independently as possible,
it has recently been recognized that SM effective field theory (SMEFT) provides an appropriate
theoretical analysis framework. The SMEFT provides a mathematical framework to express
deviations from the SM independently of new physics models as long as the new particles are
heavy enough and their field degrees of freedom can be integrated out. The deviation from the
SM is expressed by a set of higher dimensional operators. It has been shown that there is a finite
but complete subset of dimension-6 operators that are related to Higgs physics at e+e− colliders
whose coefficients can be determined simultaneously by a global SMEFT fit using observables
that would be measurable at ILC experiments [2] [3].

The useful observables for the SMEFT global fit include not only those from the reactions
that directly involve the Higgs boson, but also those from Electroweak Precision Observables

(EWPOs) for W and Z bosons. An important example is the operator i cHL
v2

(Φ†←→DµΦ)(L̄γµL),

where Φ is the SM Higgs doublet,
←→
Dµ is the covariant derivative acting on both Φ† and Φ

sandwiching it, L is the lepton doublet, v is the Higgs vacuum expectation value, and cHL is
a dimensionless SMEFT coefficient for this operator [3] [4]. In general, this operator induces
corrections to the e+e− → Zhh, e+e− → Zh, and e+e− → Z (Z-pole) processes. Therefore,
the EWPOs such as the left-right polarization asymmetry ALR of the Z-pole cross section and
the leptonic width Γl of the Z boson are very helpful for constraining such an operator. It
turns out that the precision of the ALR measurement done at the SLC, being at around 1.5%
i.e.ALR = 0.1514 ± 0.0019 (stat) ± 0.0011 (syst) [5], is not precise enough for the global fit. It
is hence motivated to improve this observable at the ILC. ALR was previously measured at

2



CHAPTER 1. INTRODUCTION 3

the Z-pole, but at the ILC, we can use the reaction e+e− → γZ at
√
s = 250GeV, the so-

called radiative return process. Taking advantage of polarized beams, ALR can be measured
as ALR = σL−σR

σL+σR
, where σL and σR are the cross sections of e+e− → γZ with, respectively,

left-handed and right-handed beam polarizations. At the SLC experiment, 600 thousand Z
decays were observed with e− polarization [5]. At ILC 250, 90 million radiative return events
are expected with both electron and positron polarization. We therefore would like to evaluate
by how much we can improve the precision on ALR. There is a fast detector simulation study
available for this reaction [6], which motivated us to perform this full simulation study.

1.2 Detector Benchmark

In order to achieve the highly precise measurements stated above, a high performance detec-
tor system which can reconstruct all final states in terms of fundamental particles, i.e. leptons,
quarks, gauge bosons, and the Higgs boson is essential. By measuring each final-state particle
energy with the most appropriate sub-detectors (Particle Flow Analysis: PFA), we can achieve
sufficient jet energy resolution to distinguish the W , Z, and the Higgs bosons decaying into jets
by reconstructing their invariant masses. The International Large Detector (ILD) [7] is a pro-
posed detector system at the ILC optimized for PFA [8]. The combined asymptotic momentum
resolution of the ILD tracking system is σ 1

pT

= 2 × 10−5GeV−1 [7]. The energy resolution of

the ECAL is σE
E = 17√

E[GeV]
⊕ 1% [7] and that of the HCAL is σE

E = 50√
E[GeV]

%[9]. PFA jet

energy resolution is between 3 to 4% [10]. In order to make the PFA method work, not only
the precision of the energy measurement but also the reduction of the energy scale uncertainty
is essential. Therefore, it is important to calibrate the energy scales of various sub-detectors.
The process e+e− → γZ allows data-driven methods to perform photon and jet energy scale
(JES) calibration. These methods make use of kinematical reconstruction based on measured
production angles of the final state photon and the Z-decay daughters, and in the case of jet
energy scale calibration, also measured jet masses, without reference to their measured energies.
Comparisons of the kinematically reconstructed energies with their corresponding measured val-
ues allow very precise controls of the photon energy scale and JES. These studies demonstrate
the effectiveness of these new methods by GEANT4-based full simulation, including expected
energy scale accuracies and their dependences on energy and direction, and flavor in the case of
JES calibration.

This thesis consists of 3 main topics. The first one is photon energy calibration which will
be described in Part II, the second one is jet energy scale calibration in Part III, and the third
one is ALR measurement in Part IV.



Chapter 2

Physics Overview

2.1 Standard Model Physics

Particle physics aims to identify the elementary particles of which matter is composed, and
to understand the interactions between them. The Standard Model (SM) of particle physics
describes the elementary particles in the framework of a Lorentz-invariant gauge theory. The
SM particles are identified based on various quantum numbers in the theory. First, the size of
spin classifies the SM particles into three categories: spin-0 Higgs boson, spin-12 fermions, and
spin-1 gauge bosons. Free particles with different spin values have different Lagrangian densities
(2.1), (2.2), and (2.3).

Lspin0 =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 (2.1)

Lspin 1
2
= Ψ̄iγµ∂µΨ (2.2)

Lspin1 = −
1

4
FµνF

µν (2.3)

Spin-12 fermions compose matter and spin-1 gauge bosons mediates the interactions between
elementary particles. Interactions treated in the SM are electromagnetic, weak and strong
interactions. The electromagnetic interaction is mediated by the photon, the weak interaction
by the W and Z bosons, and the strong interaction by gluons. The electroweak interaction,
which unifies the electromagnetic and weak interactions, is caused by weak isospin T and weak
hypercharge Y complying with SU(2)L × U(1)Y symmetry. The strong interaction is caused
by color charge complying with SU(3)C symmetry. SU(3)C symmetry holds strictly, while
SU(2)L ×U(1)Y symmetry is spontaneously broken. This SU(2)L ×U(1)Y symmetry breaking
is caused by a phase transition of the vacuum, namely condensation of the Higgs field [11]. This
Higgs field provides mass to the fermions and W and Z bosons, which would be prohibited if
all of the gauge symmetries are unbroken. The Dirac equation which results from (2.2) implies
two things for spin-12 fermions: the existence of anti-fermions which have same size of quantum
numbers, but opposite charges, and the existence of two chirality states i.e. chirality-right and
-left fermions.

Spin-12 fermions are classified based on their gauge charges. By the SU(3)C charge, they are
classified into quarks and leptons: quarks have SU(3)C charges while leptons do not. SU(2)L×
U(1)Y charges further distinguish these matter particles. Fermions classified based on SU(2)L×
U(1)Y charges (for one generation) are listed in Table 2.1, where T 3 and Q are third-component
of the weak isospin and electric charge, respectively. Here suffixes R and L indicate chirality-

4
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Table 2.1: SU(2)L × U(1)Y
charge for the chirality-left
fermions
Particle T 3 Y Q

νeL +1
2 −1

2 0
eL −1

2 −1
2 −1

uL +1
2 +1

6 +2
3

dL −1
2 +1

6 −1
3

Table 2.2: SU(2)L × U(1)Y
charge for the chirality-right
fermions
Particle T 3 Y Q

νeR 0 0 0
eR 0 −1 −1
uR 0 +2

3 +2
3

dR 0 −1
3 −1

3

right and -left particles, respectively. Note that the right-handed neutrino νeR has no SM
interactions and it is sometimes ignored in the SM. There are two more generations of quarks
and leptons which have the same SU(3)C × SU(2)L × U(1)Y charge combination as particles
listed in Table 2.1 but different masses. It has been shown at the LEP experiment that the
number of light neutrino generations is three [5].
In total, we have the matter particles:(

uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
, uR, dR, cR, sR, tR, bR,

(
νeL
e−L

)
,

(
νµL
µ−
L

)
,

(
ντL
τ−L

)
, e−R, µ

−
R, τ

−
R , (2.4)

and gauge bosons:
gi (i = 1, 2, · · · 8), W±, Z0, γ, (2.5)

and Higgs boson:
h. (2.6)

The Lagrangian of the SM after spontaneous symmetry breaking can be expressed as follows;

L = −1

4

∑
a

(F a
µν)

2 +

(
1

2
g(h+ v)

)2

W+
µ Wµ− +

1

2

(
1

2
gZ(h+ v)

)2

ZµZ
µ + L̄iγµDµLL+ R̄iγµDµRR

+
(
yuŪL (h+ v)UR + ydD̄L (h+ v)DR + h.c.

)
+

1

2
(∂µh)

2 − V (h+ v),

(2.7)

where F a
µν , Wµ, Zµ, L, R, U , D, h, and v denote the field strength tensor, W boson field, Z

boson field, left-handed fermion doublet, right-handed fermion singlet, up-type fermion, down-
type fermion, Higgs field, and vacuum expectation value (i.e. 246GeV) respectively. g, gZ , yu,
yd, and V (h) denote SU(2)L coupling constant, Z boson coupling constant, Yukawa coupling
matrix for up-type fermion, Yukawa coupling matrix for down-type fermion, and Higgs potential,
respectively. The γµ denotes gamma matrices and Ψ̄ = Ψ†γ0. The sum over a runs over the
generators of SU(3)C × SU(2)L × U(1)Y . The covariant derivatives Df are of the form

DµL = ∂µ − i
g√
2
W+

µ σ+ − i
g√
2
W−

µ σ− − ieQfAµ − i
g

cW
QZfLZµ − igsA

a
µt

a

DµR = ∂µ − ieQfAµ − i
g

cW
QZfRZµ − igsA

a
µt

a,
(2.8)
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where Aµ and Aa
µ denote the photon field and gluon field, respectively. Qf , QZfL and QZfR

denote electric charge of Ψf , Z charge of ΨfL, and Z charge of ΨfR, respectively. The e, gs,
cW and ta denote elementary charge (electron charge magnitude), SU(3)C coupling constant,
cosine of the weak mixing angle θW and SU(3)C generators. σ± are defined as σ± ≡ σ1±iσ2

2 .
The SM is consistent with almost all experimental results at colliders. However, it has 18

parameters which cannot be predicted by theory as shown in Table 2.4 [12] [13] and it does not
include gravitational interaction and dark matter. We need a more fundamental theory, which
is being explored both theoretically and experimentally.

Table 2.3: Parameters in the SM which cannot be predicted by theory [13].
Parameters # of parameters Remarks

Coupling constants (αs, α, θW ) 3 strong, electromagnetic, weak interactions
Quark masses (mu etc.) 6 3 generations × 2 components
Quark mixing angles and phase 4 CKM (Cabibbo-Kobayashi-Masukawa) matrix
Lepton masses (me etc.) 3 Assuming mν = 0
Higgs potential 2 Higgs mass and vacuum expectation value

Total 18

2.2 Z Boson Physics

As we will treat the eeZ coupling in the physics analysis of this thesis, the Z boson coupling
with fermions in the SM is described more closely in this section. If we define W a

µ and Bµ as
the gauge fields corresponding to SU(2)L and U(1)Y symmetries, respectively, the covariant
derivative for a fermion field can be expressed as follows.

Dµ = ∂µ − i(gT aW a
µ + g′Y

2
Bµ) (2.9)

where g and g′ denote the SU(2)L and U(1)Y coupling constants, respectively. The Z boson
and photon are linear combinations of W 3

µ and Bµ. So as to extract the Z boson and photon
couplings, we can introduce Z boson field Zµ and photon field Aµ as orthogonally transformed
W 3

µ and Bµ, (
Zµ

Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

µ

Bµ

)
. (2.10)

Extracting the W 3
µ and Bµ related terms in (2.9) and using (2.10),

gT 3W 3
µ + g′Y

2
Bµ = [g cos θWT 3 − g′ sin θW

Y

2
]Zµ + [g sin θWT 3 + g′ cos θW

Y

2
]Aµ. (2.11)

As we regard Aµ as the photon, the coupling should be eQ where Q is electric charge in unit of
e. Then,

g sin θWT 3 + g′ cos θW
Y

2
= eQ = e(T 3 +

Y

2
). (2.12)

Therefore,
g sin θW = g′ cos θW = e (2.13)

and
tan θW =

g′
g
, e =

gg′√
g2 + g′2

. (2.14)
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With respect to Zµ, the coupling is

g cos θWT 3 − g′ sin θW
Y

2
=

g

cos θW
(T 3 − sin2 θWQ) (2.15)

using (2.14) [14]. This means the eeZ coupling for left-handed electron gL and that for right-
handed electron gR are

gL =
g

cos θW
(−1

2
+ sin2 θW )

gR =
g

cos θW
(sin2 θW )

(2.16)

As a result, we can express the Lagrangian corresponding to the ff̄γ coupling LEM and
ff̄Z coupling LNC as follows.

LEM = eAµ

∑
f

Qf Ψ̄fγ
µΨf (2.17)

LNC =
g

cos θW
Zµ

∑
f

Ψ̄fγ
µ(T 3

f − sin2 θWQf )Ψf (2.18)

Thanks to the W 3
µ and Bµ mixing, the Z boson can couple to T 3 = 0 right-handed particles.

We can define QZ ≡ T 3 − sin2 θWQ, QZ for each polarization QZL and QZR, and Sf and Af as

!!

"

!"

−$!%

!!

&

!"

−" #
$%&'!

()" − &"*#'!+)

Figure 2.1: eeγ coupling and eeZ coupling.

follows:
Sf = Q2

ZL +Q2
ZR (2.19)

Af =
Q2

ZL −Q2
ZR

Q2
ZL +Q2

ZR

. (2.20)
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The total rate for Z decay to the species f is proportional to Sf . The quantity Af gives the
asymmetry between the decay rates for left- and right-handed fermions. sin2 θW is a parameter
which can be determined only experimentally as shown in Table 2.4. The value is

sin2 θW = 0.23121± 0.00004 (2.21)

in the definition (2.13) and (2.14) (MS scheme) [15]. Then the values of Sf and Af can be
evaluated as in Table 2.4. The branching ratios of the Z to various fermions can be calculated

Table 2.4: Values of Sf and Af

Particle QZL QZR Sf Af

ν +0.5 0.250 1.000
e −0.269 +0.231 0.126 0.151
u +0.346 −0.154 0.143 0.669
d −0.423 +0.077 0.185 0.936

from Sf in Table 2.4 by the fermion masses. They are

BR(νeν̄e) = 6.8%

BR(e+e−) = 3.5%

BR(uū) = 11.8%

BR(dd̄) = 15.2%

(2.22)

and similarly for the fermions of the second and third generations [16]. The differential cross-
sections for the e+e− → Z → ff̄ process (Z-exchange) specific to each initial- and final-state
fermion helicity are:

dσLl
d cos θ

∝ g2Leg
2
Lf (1 + cos θ)2

dσRr

d cos θ
∝ g2Reg

2
Rf (1 + cos θ)2

dσLr
d cos θ

∝ g2Leg
2
Rf (1− cos θ)2

dσRl

d cos θ
∝ g2Reg

2
Lf (1− cos θ)2

(2.23)

Here the upper-case subscript of the cross-section defines the helicity of the initial-state electron,
while the lower-case defines the helicity of the final-state fermion. Summing over final-state
helicities,

dσff̄
d cos θ

=
3

8
σtot
f f̄ [(1− PeAe)(1 + cos2 θ) + 2(Ae − Pe)Af cos θ], (2.24)

where Pe stands for the effective polarization of the electron,

Pe =
NR −NL

NR +NL
, (2.25)

where NR and NL stand for the number of right-handed polarized electrons and left-handed
polarized electrons, respectively [5].
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2.3 Standard Model Effective Field Theory (SMEFT)

If new physics exists, the SM must be modified. In order to investigate a more general theory,
we consider the SM as an effective low-energy theory which is valid up to a certain scale Λ, and
the effects from new physics as higher dimensional interactions added to the SM Lagrangian:

L = L(4)SM +
1

Λ

∑
k

C
(5)
k O

(5)
k +

1

Λ2

∑
k

C
(6)
k O

(6)
k +O( 1

Λ3
), (2.26)

where L(4)SM stands for the dimension-4 SM Lagrangian and O
(n)
k denotes a dimension-n operator

whose coefficient is C
(n)
k . The EFT valid below Λ should satisfy the following requirements [17]:

(i) Its gauge group should contain SU(3)C × SU(2)L × U(1)Y of the SM.
(ii) All the SM degrees of freedom should be incorporated either as fundamental or composite
fields.
(iii) At low energies, it should reduce to the SM.
Considering the constraints above, only one dimension-5 operator exists, which violates lepton
number L for one generation when hermitian conjugates of fermionic operators are not counted
separately. Assuming baryon number conservation, there exist 59 independent dimension-6
operators: 15 0-fermion fields i.e.bosonic operators, 19 2-fermion fields i.e. single-fermionic-
current operators, 25 4-fermion fields i.e.B-conserving four-fermion operators. There exist 4
independent dimension-6 operators which violate baryon number [17]. Many of these operators
have flavor (generation) indices. For three generations, the dimension-6 Lagrangian has 1350
CP-even and 1149 CP-odd couplings, for a total of 2499 hermitian operators [18].

While there is such a very large number of free parameters, at e+e− colliders, it is shown that
we can analyze the extension of the Standard Model (SM) by addition of 10 effective operators
that describe the most general new physics effects on the couplings of the Higgs boson to the W ,
Z, γ, and the light leptons and can constrain the coefficients of these operators simultaneously [3].
The 10 effective operators considered in the analysis are

∆L =
cH
2v2

∂µ
(
Φ†Φ

)
∂µ

(
Φ†Φ

)
+

cT
2v2

(
Φ†←→DµΦ

)(
Φ†←→DµΦ

)
− c6λ

v2

(
Φ†Φ

)3
+

g2cWW

m2
W

Φ†ΦW a
µνW

aµν +
4gg′cWB

m2
W

Φ†taΦW a
µνB

µν +
g′2cBB

m2
W

Φ†ΦBµνB
µν +

g3c3W
m2

W

ϵabcW
a
µνW

bν
ρ W cρµ

+ i
cHL

v2
(Φ†←→DµΦ)(L̄γµL) + 4i

c′HL

v2
(Φ†ta

←→
DµΦ)(L̄γµt

aL) + i
c̄HE

v2
(Φ†←→DµΦ)(ēγµe).

(2.27)

If new physics modifies the SM, the size of corrections to the SM Higgs boson couplings can be
expressed as

a
m2

h

M2
, (2.28)

where M is new particle mass, mh is the Higgs mass, and a is a coefficient of order 1. As the
exclusions of new particles through searches at the LHC suggest that M is at least close to 1
TeV which corresponds to the effects of new physics around 10%, we need to measure Higgs
couplings with a precision at least of order 1% for further exploration [9]. These operators can
be determined not only from the reactions that directly involve the Higgs boson, but also W
and Z bosons. For example, reactions including the eeZ coupling are important to constrain
the operators.
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2.4 eeZ Coupling

First, EFT parameters relevant to the eeZ coupling will be considered. Contributions to gL,
the left-handed electron coupling to the Z, include the effects of contact interactions and AZ
kinetic mixing shown in Fig. 2.2. The contributions to gR have a similar structure as shown in
Fig. 2.3.

𝒁

𝒆!𝑳 𝒆!𝑳

𝒁 𝒁 𝒁

𝒆!𝑳 𝒆!𝑳

𝒈𝑳
= + +

𝒄𝑯𝑳 + 𝒄′𝑯𝑳
𝑨

●

⨂

Figure 2.2: gL, left-handed electron coupling to the Z.

𝒁

𝒆!𝑹 𝒆!𝑹

𝒁 𝒁 𝒁

𝒆!𝑹 𝒆!𝑹

𝒈𝑹
= + +

𝒄𝑯𝑬
𝑨

●

⨂

Figure 2.3: gL, right-handed electron coupling to the Z.

When we look at the EFT Lagrangian (2.27), the following 3 terms are relevant to the contact
interactions:

i
cHL

v2
(Φ†←→DµΦ)(L̄γµL)

4i
c′HL

v2
(Φ†ta

←→
DµΦ)(L̄γµt

aL)

i
c̄HE

v2
(Φ†←→DµΦ)(ēγµe)

(2.29)

and the following 3 terms are relevant to AZ mixing:

g2cWW

m2
W

Φ†ΦW a
µνW

aµν

4gg′cWB

m2
W

Φ†taΦW a
µνB

µν

g′2cBB

m2
W

Φ†ΦBµνB
µν .

(2.30)
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In this formalism, gL and gR are expressed as follows [3] :

gL =
g

cW
[(−1

2
+ s2W )(1 +

1

2
δZZ)−

1

2
(cHL + c′HL)− sW cW δZAZ ]

gR =
g

cW
[(+s2W )(1 +

1

2
δZZ)−

1

2
cHE − sW cW δZAZ ]

δZZ = c2W (8cWW ) + 2s2W (8cWB) +
s4W
c2W

(8cBB)

δZAZ = sW cW ((8cWW )− (1− sW
c2W

)(8cWB)−
sW
c2W

(8cBB)

(2.31)

The contribution to the deviation of the eeZ coupling is different for each polarization. The
left-right asymmetry in the Z production cross section can be written as

ALR =
σL − σR
σL + σR

. (2.32)

Measuring ALR is equivalent to measurement of Ae.

Ae =
g2Le − g2Re

g2Le + g2Re

δAe =
4g2Leg

2
Re(δgLe − δgRe)

g4Le − g4Re

(2.33)

If we define gV and gA as

gV = gL + gR

gA = gL − gR,
(2.34)

then Ae can be expressed as

Ae =
2gV fgAf

g2V f + g2Af

= 2

gV f

gAf

1 + (
gV f

gAf
)2
. (2.35)

Thus Ae depends only on the ratio of the couplings. As we have already seen, measurement
of ALR allows us to determine the deviation of the eeZ coupling for each polarization and to
constrain EFT operators. The current best measurement of ALR is

ALR = 0.1514± 0.0019 (stat)± 0.0011 (syst) [5]. (2.36)

At the SLC experiment, 600 thousand Z decays were observed with a polarized e− beam [5].
The improvement of the Higgs coupling is from dark to light green in Fig. 2.4 [9] when there are
a factor of 10 improvement in the ALR through the measurement of e+e− → Z with polarized
beams at 250 GeV, 10% improvement in signal efficiency of the jet clustering algorithm, 20%
improvement in the performance of the flavor tagging algorithm, 20% improvement in statistics
by including more signal channels in σZh ·BR(h→WW ), and 30% improvement in the precision
of Higgs self-coupling and top-Yukawa coupling at 500 GeV, which is a consequence of the
improvements in jet clustering algorithm, flavor tagging algorithms and statistics by including
more signal channels. Especially, hZZ and hWW couplings only depend on the ALR precision.
At the ILC 250, 90 million radiative return events are expected with both electron and positron
polarization. We present in Part IV a full detector simulation of radiative return events and
evaluate the improvement of the precision on ALR.
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Figure 2.4: Improvement of the Higgs coupling before (dark green) and after (light green) the
10 times improvement of ALR precision and other analysis improvements [9].



Chapter 3

International Linear Collider (ILC)

3.1 ILC Overview

The International Linear Collider (ILC) is a future electron-positron collider which will be the
world’s highest energy lepton collider, and at which beam polarization is available. The ILC
collision energy

√
s is proposed to be 250, 350 and 500 GeV and extendable to even higher energy,

and 80% polarized electron beam and 30% polarized positron beam are available. Using ILC, we
can explore new physics and precisely measure observables in the unexplored high energy region.
A comparison with the properties of the Large Hadron Collider (LHC) is shown in Table 3.1. As

Figure 3.1: Bird’s-eye view of the International Linear Collider (ILC) c⃝ Rey.Hori.

LHC is a proton-proton collider which collides protons which are composed of colored particles,
there are many QCD background events while ILC uses e+ and e− which leads to a cleaner
signal. The difference of the shape of the accelerator is related to synchrotron radiation. When
a charged particle changes its direction, it loses energy proportional to γ4 where γ = E

mc2
[15].

13
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Table 3.1: Properties of LHC and ILC
LHC [19] ILC [9]

Colliding particles pp e+e−

Shape circular linear
Center of mass energy 14 TeV at Run-3 250, 350, 500 GeV

Luminosity 2.0× 1034cm2s−1 1.35× 1034cm−2s−1 at 250 GeV

As this effect depends on particle mass, electrons lose energy more easily. In order to achieve
high energy while avoiding energy loss, ILC uses linear shaped accelerators.

At the energy of 250 GeV, the cross section for the Higgs-strahlung process e+e− → Zh
is near the peak and precision Higgs couplings measurements are possible. At the energy of
350 GeV, scanning the threshold for top quark pair production will be performed, and at the
energy of 500 GeV, two important processes become directly accessible: e+e− → tt̄h process
which includes top Yukawa coupling and e+e− → Zhh process whose cross section is maximum
at around 500 GeV which includes the triple Higgs coupling [9] [20]. Higgs production processes
at the ILC are shown in Fig. 3.2. The luminosity is 1.35 × 1034 cm−2s−1 at 250 GeV. In every
physics study, systematic uncertainty depends on the settings of center-of-mass energies and
beam polarization. Proposed integrated luminosity for each energy and polarization are listed
in Table 3.2, where Pe− and Pe+ stand for the electron beam polarization and positron beam
polarization, respectively [9] [20] and the 22-year run plan for the staged ILC machine is shown
in Fig. 3.3 [21].

𝑾
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Figure 3.2: Higgs production processes at the ILC. Top right, top middle, top left, bottom right,
and bottom left processes correspond to the single Higgs production by Higgs-strahlung, double
Higgs production by Higgs-strahlung, tt̄h, WW fusion, and ZZ fusion, respectively.

3.2 Electron and positron source

At the ILC, each electron and positron beam has the same time structure with a 727µs train
pulse with a repetition rate of 5 Hz. Each train consists of 1312 bunches of 2.0× 1010 electrons
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Table 3.2: Proposed integrated luminosity for each energy and polarization at the ILC [9]

.

Integrated luminosity [fb−1]
for polarization (Pe− , Pe+)√

s[GeV] (−,+) (+,−) (−,−) (+,+) Total

250 900 900 100 100 2000
350 135 45 10 10 200
500 1600 1600 400 400 4000

or positrons. The 199 ms interval between bunch trains provides ample time for a full readout
of data from the previous train [9].

The electron beam is produced by a laser illuminating a strained GaAs/GaAsP superlattice
photocathode in a DC gun [22]. In the DC gun, the strained GaAs layer resolves the degeneracy
of heavy-hole and light-hole bands at the valence-band and we can enhance only the electron
with a particular angular momentum state [23], which provides at least 85% electron polarization,
sufficient for 80% beam polarization at the interaction point. Normal-conducting structures are
used for bunching and pre-acceleration to 76 MeV, after which the beam is accelerated to 5 GeV
in a superconducting linac. Before injection into the damping ring, superconducting solenoids
rotate the spin vector into the vertical direction [22] [9]. A schematic view of the electron source
is shown in Fig. 3.4.

For the positron beam, the primary electron beam after acceleration in the main linac is
transported through a 147m superconducting helical undulator which generates photons with
energies from ∼ 10MeV up to ∼ 30MeV depending on the electron beam energy. We can
get polarized photons from the undulator which are directed onto a rotating 0.4 radiation-
length Ti-alloy target ∼ 500 meters downstream, producing electron and positron pairs. The
obtained polarized positron beam is then matched using an optical-matching device (a pulsed
flux concentrator) and accelerated to 125 MeV. Then positrons are accelerated to 400 MeV in
two normal conducting preaccelerators with solenoidal focusing followed by a superconducting
accelerator very similar to the main linac before they are injected into the damping rings at 5
GeV [22] [9]. The layout of the positron source is shown in Fig. 3.5.

Frequent enough helicity reversal of each beam is required so as to control systematic effects.
For the electron beam, a fast helicity reversal is possible through a flip of the cathode laser
polarization. For the positron beam, the spin rotators in front of the damping rings are used
that rotate the polarization vector either to the +y or −y direction. With this scheme, fast
kickers can select a path through either of the two spin rotators and thus provide a fast spin
reversal capability [9].

3.3 Damping Ring, Main Linac, and beam-delivery system

Damping Rings (DR) accept the 5 GeV electrons and positrons and reduce the horizontal and
vertical emittance of the beams by almost six orders of magnitude within a time span of 100
ms. It is housed in a common tunnel at the center of the ILC complex with a circumference of
3.2 km. The beam from the Damping Ring is transported into the Ring to Main Linac (RTML)
system, which transport the low emittance beam at 5 GeV with minimal emittance increase, to
the upstream ends of the Main Linacs. RTML system also collimates the beam halo generated
in the Damping Rings. The beam polarization is vertical in the Damping Rings. Before entering
the linac, RTML system rotates the spin polarization vector from the vertical to any arbitrary
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Figure 3.3: the 22-year run plan for the staged ILC machine [21].

angle required at the IP [22].
Two ∼ 7.5 km long Main Linacs accelerate the beams from 5 GeV to a maximum energy

of 125 GeV [24]. The ILC Main Linacs utilize 1.3 GHz SCRF cavities operating at an average
gradient of 31.5 MV/m with a pulse length of 1.6 ms. Beam acceleration in each linac is provided
by approximately 8000 ∼ 1 m-long superconducting niobium cavities consisting of nine elliptical
cells operating at 2 K (Fig. 3.9), assembled into ∼ 900 cryomodules [24]. Then a 2×2.25 km-long
beam-delivery system with the final-focus (FF) system demagnifies the beam to the required
size (474 nm horizontal and 5.9 nm vertical) at the IP. Two beams go into collision with a
14 mrad crossing angle, at a single interaction point which can be shared by two detectors
(push-pull) [22] [9]. The resulting luminosity spectrum is shown in Fig. 3.7.

Two energy spectrometers, located 700 m upstream and 55 m downstream of the IP provide
measurements of the beam energy with an accuracy of 100 ppm. The luminosity is measured
to 10−3 accuracy in the LumiCal and BeamCal which will be describes in section 3.4.6. Beam
polarization is measured with 0.25% accuracy by means of Compton scattering: we can infer
the beam polarization by using the momentum spectrum of electrons which lose enough energy
by scattering laser photons. Two such polarimeters are located 1800 m upstream and 150 m
downstream of the IP, which allows to interpolate the precise polarization at the IP and control
the systematics, including effects from precession of the polarization vector by transverse fields
and depolarizing effects in the interaction, which lead to a sizable variation of the polarization
within the bunch during the collision [9].
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Figure 3.4: Schematic view of the electron source [22].

Figure 3.5: Layout of the positron source [22].

Figure 3.6: 1.3 GHz superconducting nine-cell niobium cavity [22].
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Figure 3.7: Luminosity spectrum for ILC 250 [20].
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3.4 International Large Detector (ILD)

The International Large Detector (ILD) [7] is a detector concept for the ILC designed for precise
measurements of each particle in the final state using the Particle Flow Algorithm [8]. The
ILD (Fig. 3.8) has been designed as a general purpose collider detector. A high precision vertex
detector is followed by an inner silicon tracker, a time projection chamber (TPC), an outer
silicon tracker, an electromagnetic calorimeter (ECAL), and a hadronic calorimeter (HCAL).
The complete tracking and calorimetry system is located inside a large solenoidal coil, which
generates 3.5 or 4 T magnetic field. Outside the coil, the iron return yoke is instrumented
as a muon detector and as a tail catcher calorimeter. The combined asymptotic momentum
resolution of the ILD tracking system is σ 1

pT

= 2×10−5GeV−1 [7]. The energy resolution of the

ECAL is σE
E = 17√

E[GeV]
⊕ 1% [7] and that of the HCAL is σE

E = 50√
E[GeV]

%[9].

Figure 3.8: View of the International Large Detector (ILD) [7].

3.4.1 ILD vertex system

Bottom quark, charm quark, and tau lepton identification is essential for the ILC experiment.
To do this, the Vertex detector (VTX), a multi-layer pixel detector, is implemented. The
reconstruction of decay vertices of short lived particles such as D or B mesons is done by
reconstructing the trajectory of their decay products. This is achieved through the very precise
measurement of the charged particles’ track parameters in the vicinity of the interaction point.
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The performance of a vertex detection system can be expressed by the resolution on the impact
parameter, which is the minimum distance from a track to the beam axis. VTX has three double-
layers [9] resulting in six measured positions for each charged particle traversing the detector.
The required resolution on the track impact parameter is σb < 5⊕ 10

p sin
3
2 θ

µm[7] and the material

thickness which should not exceed 0.15%X0 per layer to minimize multiple scattering. There
are three technological options for the pixel sensors: CMOS Pixel Sensors (CPS) [25], Fine Pixel
CCD (FPCCD) sensors [26], and Depleted Field Effect Transistor (DEPFET) sensors [27].

3.4.2 The ILD silicon tracking system

The silicon part of the ILD tracking system is made of three components: two barrel components,
the Silicon Inner Tracker (SIT) and the Silicon External Tracker (SET), and the forward tracker
(FTD). SIT bridges the gap between VTX detector and the TPC, and SET between the TPC and
the ECAL. These improves the overall momentum resolution. In the very forward region, FTD
provides precise tracking at small polar angle [7]: the FTD acceptance starts at | cos θ| ∼ 0.996,
with at least one hit for tracks with polar angles below | cos θ| ∼ 0.82 and nearly standalone
tracking for tracks below | cos θ| ∼ 0.96 [20].

3.4.3 TPC

The TPC performs 3-dimensional tracking and dE/dx-based particle identification for charged
particles. The tracking system maintains a very low material budget and the total material in
front of the calorimeters is less than 0.6 radiation length in almost all regions [20], which enables
good calorimeter and PFA performance. The TPC consists of 220 layers, and 1 or 2 million
1 × 6mm2 pads in total. Then, a point resolution better than 100µm for the complete drift
region and a double hit resolution better than 2 mm are possible [20]. Three options for the
the gas amplification systems are Micromegas [28], Gas Electron Multipliers (GEM) [29], and
GridPix. The properties of the gas determine the drift velocity and the diffusion constant [7].
Layout of the TPC system is shown in Fig. 3.9.

3.4.4 ECAL

In order to perform PFA, ECAL and HCAL need to be highly-segmented, which leads to about
108 channels in total. ECAL identifies photons and measures their energy. It consists of 30
sensitive layers with tungsten absorber and a total thickness of 24 radiation lengths. The size
of each readout pad is 5× 5mm2. There are two choices for the ECAL: with silicon (SiECAL)
or scintillator (ScECAL) readout as shown in Fig. 3.10 [7].

3.4.5 HCAL

The HCAL measures the energy of neutral hadrons. The HCAL is conceived as a sampling
calorimeter having 48 sensitive layers with steel absorber. There are two choices for the HCAL:
with 3×3 cm2 scintillator tiles and SiPMs analog readout (analogue HCAL; AHCAL) or gaseous
devices Glass Resistive Plate Chamber (GRPC) with 1 × 1 cm2 cell geometries (semi-digital
HCAL; SDHCAL) as active medium [7].



CHAPTER 3. INTERNATIONAL LINEAR COLLIDER (ILC) 21

Figure 3.9: Layout of the TPC system (not to scale) [7].

3.4.6 Forward calorimetry

In the very forward region, three systems, LumiCal, BeamCal and LHCAL, are proposed. Their
configuration is shown in Fig. 3.11. The luminosity is measured to 10−3 accuracy from low angle
Bhabha scattering in the LumiCal at polar angles from 30 to 90 mrad. BeamCal in the region
5 to 30 mrad performs a bunch-by-bunch estimate of the luminosity and, supplemented by a
pair monitor, assists beam tuning when included in a fast feedback system. LHCAL closes the
coverage down to very small angles also for hadrons [9] [7]. These very forward detectors are based
on similar technologies as the ECAL, taking into account the specific conditions of the forward
region such as the harder radiation environment or the need for an improved compactness to
identify electromagnetic showers in a high occupancy environment [20].
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Figure 3.10: Cross sections through SiECAL layers (left) and ScECAL layers (right) [7].

3.4.7 ILD outer detector

A large volume superconducting coil surrounds the calorimeters, creating an axial B-field of
nominally 3.5 to 4 tesla. An iron yoke returns the magnetic flux of the solenoid and, at the
same time, serves as a muon filter, muon detector and tail catcher calorimeter [9]. The muon
system/tail catcher instruments the iron return yoke in the barrel and in the forward region.
Two main options are investigated for the sensitive layers, scintillator strips equipped with
wave-length shifting fibers and read out with silicon photomultipliers (SiPM), or resistive plate
chambers (RPC) [7].

3.4.8 IDR-L and IDR-S

In order to study whether similar performance can be achieved with a smaller detector, a simu-
lation comparison of two ILD detectors was performed. One is the IDR-L model, which has the
same structure as the previously proposed model. The other is the IDR-S model, which has a
smaller TPC outer radius and a stronger magnetic field. The TPC outer radius is 177 cm and
magnetic field is 3.5 tesla in IDR-L while TPC outer radius is 143 cm and magnetic field is 4
tesla in IDR-S [20], and their cross section is shown in Fig. 3.12. In Fig. 3.12, the length in z is
the same, as is layout of inner detection.
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Figure 3.11: The very forward region of the ILD detector [7].

Figure 3.12: Cross section of the two ILD detector models: blue corresponds to IDR-L and red
corresponds to IDR-S [30].
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Detector Simulation

iLCSoft is the common software framework for Linear Collider detector studies [31] [32]. In this
software, LCIO provides a persistency framework that defines a data model for the studies [33].
It provides data classes for all phases of the event processing, starting from Monte Carlo truth
information, continuing to generation of raw data and digitization, and to event reconstruc-
tion and analysis [9]. Marlin provides a C++ software framework for ILC software. Marlin
uses the LCIO data model and can be used for all tasks that involve processing of LCIO files,
e.g. reconstruction and analysis [34] [35].
DD4hep (Detector Description for HEP) is the common detector geometry description for iLC-
Soft [36]. It describes the detector geometries, materials and readout properties [9]. Interactions
of generated particles with the detector material are simulated with a full detector simulator
based on GEANT4 [37] to describe in detail detector geometries, materials and readout prop-
erties. Beamstrahlung and ISR effects are implemented. It implements the 14 mrad crossing
angle, IP smearing and offset depending on initial particles.

Full sets of MC samples: “DBD”, “IDR”, and “mc-2020”, were produced using various
versions of iLCSoft. The DBD sample aims for physics study, while the IDR sample aims for
detector optimization. Mc-2020 sample is new full set of high statistics 250 GeV MC samples
for physics studies [38].
For detector optimization studies two ILD simulation models, ILD l5 v02 (large) and ILD s5 v02

Table 4.1: Properties of various full simulation samples [38]
DBD (2013) IDR (2019) mc-2020 (2020)

Aim Physics study Detector opt. Physics study
Ecm 250 (250 fb−1), 350, 500GeV, 1TeV 500GeV 250GeV(1 ab−1)
GEN sample Whizard 1.95 stdhep Re-use DBD sample Whiard 2.8.5 slcio
Detector SIM Mokka DDSim DDSim
iLCSoft v01-16 v02-01 v02-02
Detector model Hybrid CAL L5/S5 Hybrid CAL L5

(small) have been implemented using DD4hep. For simplicity, these two simulation models are
referred to as IDR-L and IDR-S [20]. In the mc-2020 sample, detector model is ILD l5 v02 only
(not S5) and it uses a hybrid calorimeter. Especially in the o1 model, calorimeters are Si-ECAL
and AHCAL.

In a first step, large generator samples of e+e− events are created with the Whizard event
generator [39]. Whizard uses tree-level matrix elements to generate events with the final state
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quarks and leptons based on a realistic beam energy spectrum, the so-called hard sub-process.
The parton-showering, fragmentation, and hadronization into the visible final stable or quasi-
stable state is performed with Pythia [9]. Pythia is also used for particle decay [7].
The two dominating effects of the strong beam-beam interactions are beamstrahlung, leading
to a collision energy distribution (luminosity spectrum) with a lower tail, and the creation of
incoherent e+e− pairs that are a potential source of the beam-induced background at the ILC.
Another source of background at the ILC is γγ → hadrons events, due to ISR or beamstrahlung
photons. These effects are implemented by Guinea-Pig and Pythia.
After having reconstructed all the individual particles in the event, the output of the detailed full
simulations with GEANT4 stores the deposited energy in the sensitive detector elements together
with the position and pointers to the MCParticle that created the energy deposition. These hits
are digitized in dedicated Marlin processors taking into account all relevant effects from the
detector and the readout electronics [20]. Simulated detector signals consisting of tracker hits
and energy deposits in segmented calorimeter cells are passed through a chain of realistic event
reconstruction programs that include track finding and fitting in trackers, cluster finding in
calorimeters and linking to a corresponding charged particle track using PandoraPFA [8]. Then
LCFIPlus executes the following algorithms: high-purity vertex finders for the reconstruction
of primary and secondary vertices; a jet finder optimized for reconstruction of heavy flavor jets;
and multivariate analysis for flavor identification based on the TMVA package [40]. The actual
jet clustering is then performed by using a clustering with a Durham-like algorithm [20]. The
Durham algorithm compares

yij =
min(E2

i , E
2
j )(1− cos θij)

E2
vis

(4.1)

for all particle pairs in the simulation and chooses the pair with smallest yij . Then combine
4-momenta of the pair to regard the pair as one particle. This merging is continued until the
value yij reaches to the defined threshold value ycut. The final clusters are defined as jets [41].
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Figure 4.1: The flow of the simulation [42].



Part II

Photon Energy Calibration
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This part will focus on the photon energy calibration. We will introduce our calibration
methods in detail in Section 5. Event simulation and selection will be explained in Sections 6 and
7. Results will be given in Section 8. This part focuses on detector performance benchmarking.
The performance of the photon energy calibration for two detector models, IDR-L having a
larger TPC outer radius and IDR-S having a smaller TPC outer radius [20], will be evaluated.



Chapter 5

Photon Energy Calibration Methods

The signal channel used here is e+e− → γZ,Z → µ+µ−. The energy of the final-state photon
is approximately 241.7GeV at

√
s = 500GeV if there is neither beamstrahlung nor additional

ISR.
The energy of photon can be reconstructed using four-momentum conservation from the mea-

Figure 5.1: Signal channel e+e− → γZ, Z → µ+µ−.

sured direction angles of µ+, µ−, and γ, or the measured energies of µ+, µ− in addition. The fol-
lowing five methods are considered to reconstruct the photon energy:“Method 1”,“Method 2”,
“Method 3”,“Method 4”, and“Method 4′”. The muon mass is neglected everywhere in the
following.

Method 1 uses measured {θµ− , θµ+ , θγ , ϕµ− , ϕµ+ , ϕγ} as inputs to determine {Eµ− , Eµ+ , Eγ}.
This method ignores beamstrahlung and additional ISR and beam crossing angles. Then four-
momentum conservation requires the following equations:

Eµ− + Eµ+ + Eγ = 500
Eµ− sin θµ− cosϕµ− + Eµ+ sin θµ+ cosϕµ+ + Eγ sin θγ cosϕγ = 0
Eµ− sin θµ− sinϕµ− + Eµ+ sin θµ+ sinϕµ+ + Eγ sin θγ sinϕγ = 0
Eµ− cos θµ− + Eµ+ cos θµ+ + Eγ cos θγ = 0.

(5.1)

Method 2 uses measured {θµ− , θµ+ , θγ , ϕµ− , ϕµ+ , ϕγ} as inputs to determine {Eµ− , Eµ+ , Eγ , EISR =
|PISR|}. This method considers beamstrahlung and additional ISR, however the beam crossing
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angle is not considered. Then four-momentum conservation requires the following equations:
Eµ− + Eµ+ + Eγ + |PISR| = 500
Eµ− sin θµ− cosϕµ− + Eµ+ sin θµ+ cosϕµ+ + Eγ sin θγ cosϕγ = 0
Eµ− sin θµ− sinϕµ− + Eµ+ sin θµ+ sinϕµ+ + Eγ sin θγ sinϕγ = 0
Eµ− cos θµ− + Eµ+ cos θµ+ + Eγ cos θγ + PISR = 0.

(5.2)

Method 3 uses {θµ− , θµ+ , θγ , ϕµ− , ϕµ+ , ϕγ} as inputs to determine {Eµ− , Eµ+ , Eγ , EISR}. This
method considers the beam crossing angle in addition to Method 2. Then four-momentum con-
servation requires the following equations:

Eµ− + Eµ+ + Eγ + |PISR| = 500
Eµ− sin θµ− cosϕµ− + Eµ+ sin θµ+ cosϕµ+ + Eγ sin θγ cosϕγ + |PISR| sinα = 500 sinα
Eµ− sin θµ− sinϕµ− + Eµ+ sin θµ+ sinϕµ+ + Eγ sin θγ sinϕγ = 0
Eµ− cos θµ− + Eµ+ cos θµ+ + Eγ cos θγ±|PISR|cosα = 0,

(5.3)
where 2α is defined as the crossing angle.
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Figure 5.3: Definition of α.

Method 4 uses measured {θµ− , θµ+ , θγ , ϕµ− , ϕµ+ , ϕγ , Eµ− , Eµ+} as inputs to determine {Eγ , EISR},
i.e. energies of muons are used as inputs in addition to Method 3. Then energy and longitudinal
momentum conservations require the following equations:{

Eµ− + Eµ+ + Eγ + |PISR| = 500
Eµ− cos θµ− + Eµ+ cos θµ+ + Eγ cos θγ±|PISR|cosα = 0.

(5.4)

In Method 4′, the following formulae are used while inputs and outputs are the same as
Method 4, i.e.measured {θµ− , θµ+ , θγ , ϕµ− , ϕµ+ , ϕγ , Eµ− , Eµ+} are used to determine {Eγ , EISR}.
Then energy and y component of momentum conservations require the following equations:{

Eµ− + Eµ+ + Eγ + |PISR| = 500
Eµ− sin θµ− sinϕµ− + Eµ+ sin θµ+ sinϕµ+ + Eγ sin θγ sinϕγ = 0.

(5.5)

In this method, the photon energy can be determined without considering PISR at all, though
there are singularities at sin θγ = 0 and at sinϕγ = 0, where the equations become unsolvable.
Performances of the five methods will be compared in Section ??.



Chapter 6

Simulation Setup

In this part, signal events, e+e− → γZ,Z → µ+µ−, are first generated using Whizard 1.95 [39].
The whole set of programs used in this analysis is packaged as iLCSoft version v02-00-02 [31].
The event simulation for this analysis has been done at the center-of-mass energy of 500GeV
for both IDR-L and IDR-S.
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Event Selection

Signatures of the signal events are a µ+µ− pair which has an invariant mass consistent with the
Z boson mass and one energetic isolated photon. In the analysis, we used the IsolatedLepton-
Tagging processor to identify muons and require a pair of oppositely charged muons [9]1. After
this selection, events from the three diagrams shown in Fig. 7.1 remain, as well as µ+µ− events
without final-state photons.

Figure 7.1: Three diagrams in process e+e− → γZ, Z → µ+µ−.

In order to select the radiative return events, the invariant mass of the two muons M(µ+µ−)
is required to satisfy |M(µ+µ−) −MZ | < 10GeV, where MZ is the nominal Z boson mass of
91.19GeV. Then, events with at least one isolated photon are selected. The photon is identified
using Photon ID by PandoraPFA2. The photon energy is required to be more than 50GeV. The
photon whose energy is closest to the expected value, i.e. 241.7GeV, is selected and all photons
inside the cone with opening angle cos−1(0.95) around the direction of the photon are merged.
Owing to the beamstrahlung and ISR effects, the photon energy spectrum has a long downward
tail from its peak at 241.7GeV, as shown in Fig. 7.2.

1The key algorithm, implemented based on multivariate analysis, is to distinguish the isolated leptons and the
leptons in jets, by looking at the energies within two cones around the leptons.

2PandoraPFA provides its own algorithms for identifying various particles including photons based on the
information of tracks and calorimeter clusters which are associated with each particle-flow object (PFO).
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Figure 7.2: MC truth photon energy distribution for the selected events.



Chapter 8

Results

8.1 Comparison of the five methods

The photon energy is kinematically reconstructed for each of the selected events using the five
methods explained in Section 5. The relative difference of the reconstructed photon energy from

its MC truth,
(Eγ−EMC

γ )

EMC
γ

, is shown in Fig. 8.1. As shown, Method 4′ has the best resolution and

small, symmetric tails. We hence decided to use Method 4′ to calibrate the photon energy in
what follows. Notice that in Method 4′, the photon energy can be determined without solving
for PISR. To demonstrate the validity of Method 4′, the reconstructed ISR energy |PISR| by
Method 4′ is compared to the MC truth. They are consistent as shown in Fig. 8.2. Hereafter
Method 4′ is referred to as the Angular Method (sometimes abbreviated as “Ang. Method”
hereafter).

8.2 Photon Energy Calibration

In general, because of various detector effects, the photon energy measured in the ECAL might
be biased and requires calibration. In this section, we will demonstrate how an energy calibration
can be performed using the Angular Method introduced above. The measured photon energy
given by PandoraPFA in our current MC samples has a slight systematic upward shift for high
energy photons as seen in Fig. 8.3, which shows the relative differences from the MC truth for
the measured (PFO) and kinematically reconstructed (Angular Method) photon energies. The
central value of the PFO photon energy distribution is ∼ 1.8% off the MC truth, while the bias
in the kinematically reconstructed photon energy by the Angular Method is < 0.05%. The bias
in the PFO photon energy depends on the polar angle as shown in Fig. 8.4. To correct this
angle-dependent systematic shift, we introduce the following angle-dependent calibration factor:

f(| cos θγ |) =
⟨Eγ,AngularMethod(| cos θγ |)⟩
⟨Eγ,PFO(| cos θγ |)⟩

(8.1)

for each of the 20 | cos θγ | bins, where the angled brackets represent mean values of the distribu-
tions of quantities in the brackets as obtained from Gaussian fits. Using this calibration factor,
we rescale the photon energy from PandoraPFA bin-by-bin as

Eγ,PFO,Corr.(| cos θγ |) = f(| cos θγ |)× Eγ,PFO(| cos θγ |). (8.2)

Figure 8.5 is the same figure as Fig. 8.3 but additionally with the calibrated PFO photon energy
distribution. We can see that the above calibration procedure removes the overall bias in the
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Figure 8.1: The relative difference of the reconstructed photon energy from its MC truth for the
five methods. Some of the points from Method 2 are underneath those from Method 3.

raw PFO photon energy. We can also see that the photon energy resolution by the Angular
Method is much better than that of the PFO. It is ensured that the expected photon energy
calibration uncertainty by the Angular Method will not be limited by the remaining bias and
finite resolution of photon energy obtained with the method itself. It will be limited instead
by the statistics of signal events and intrinsic ECAL resolution. Though here we calibrated the
photon energy only as a function of | cos θγ |, in principle we can also use the same calibration
procedure as a function of other variables like ϕγ or Eγ . To make sure that this correction
procedure also works at different photon energies, we looked at the relative difference from the
MC truth for the measured photon energy after the correction as a function of photon energy
(see Fig. 8.6). The mean value is calibrated to about 0.1% for photon energies above 120 GeV.

8.3 Energy Scale Uncertainty After Calibration

In the previous section, we demonstrated that the measured photon energy can be calibrated
using the Angular Method. In this section, we will investigate the calibration uncertainty ex-
pected at the ILC. In order to see how the detector design affects the photon energy calibration,
we will evaluate the calibration uncertainty for each of the two detector models, IDR-L and
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Figure 8.2: Reconstructed ISR energy and MC truth by Method 4′.

IDR-S.
First, sigma values, i.e. relative photon energy resolutions, from Gaussian fits to the distri-

butions of the relative difference from the MC truth are compared between measured (PFO) and
kinematically reconstructed (Angular Method) photon energies so as to demonstrate the validity
of the Angular Method. The dependence of the sigma values on | cos θγ |, ϕγ , and Eγ will be dis-
cussed. Figure 8.7 shows the | cos θγ | dependence. The photon energy resolution of the Angular
Method gets worse at large | cos θγ | reflecting the existence of the singularity at sin θγ = 0. In
each detector model, the kinematically reconstructed photon energy by the Angular Method has
a better resolution than the measured PFO energy for | cos θγ | < 0.95. This result demonstrates
the effectiveness of the photon energy calibration using the Angular Method for | cos θγ | < 0.95.
The resolutions of kinematically reconstructed photon energies for IDR-L and IDR-S are slightly
different. IDR-L is better for | cos θγ | < 0.9, but IDR-S is better for | cos θγ | > 0.9. As described
in Section 15., IDR-L and IDR-S have different TPC outer radii and hence ECAL outer radii as
well. Therefore, the different performance could be due to the different momentum resolution for
muons or different photon angle resolution, or both. To identify what dominantly determines the
performance, plots similar to Fig. 8.7 are made using cheated (MC truth) photon angles in the
Angular Method in Fig. 8.8 and cheated (MC truth) muon momenta in the Angular Method in
Fig. 8.9, respectively. Figure 8.8 shows no difference, indicating that the angle resolution effect is



CHAPTER 8. RESULTS 38

MC
γ)/EMC

γ-Eγ(E
0.2− 0.1− 0 0.1 0.2

E
ve

nt
s

0

10000

20000

30000

Angular Method

PFO

ILD

IDR-L

Figure 8.3: The comparison of relative differences from the MC truth for measured (PFO: light
blue) and kinematically reconstructed (Angular Method: blue) photon energies for IDR-L model.
To avoid singularities in the Angular Method at ϕγ = 0 and θγ = 0, measured photon angles
are restricted to | sinϕγ | ≥ 0.1 and | cos θγ | ≤ 0.95 in this plot.

negligible. When muon momenta are cheated, the photon energy resolution becomes very small,
less than 0.005%, suggesting that the kinematically reconstructed photon energy resolution is
dominated by the muon momentum resolution. As the muon momentum resolution for IDR-L
is better than that for IDR-S at low | cos θγ | values and worse at high | cos θγ | values, the kine-
matically reconstructed photon energy resolution shows a similar behavior. The point-to-point
fluctuation in the PFO energy resolution can be attributed to the ECAL structure: there is a
gap between the barrel part and the endcap part of ECAL and that the barrel part is segmented
into five (if folded at z = 0 as Fig. 8.7, then three) blocks in the z-direction.

The ϕγ dependence is shown in Fig. 8.10. The effect of the singularity at sinϕγ = 0, i.e.
ϕγ = 0 and ±π is seen as degradation in the resolution of the photon energy reconstructed by
the Angular Method. In each detector model, the photon energy reconstructed by the Angular
Method has a better resolution than the PFO photon energy, although it is degraded towards
sinϕγ = 0. This result demonstrates the effectiveness of the photon energy calibration by the
Angular Method for π

40 < |ϕγ | < 39π
40 i.e. | sinϕγ | > 0.078. The large fluctuations of the PFO

energy resolution seen in the figure are due to the ECAL structure having an eight-fold symmetry
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Figure 8.4: Mean value of a Gaussian fit to the relative difference from the MC truth as a
function of | cos θγ | for each of measured (PFO: light blue) and kinematically reconstructed
(Angular Method: blue) photon energies for the IDR-L model. Photon energy range is not
restricted and to avoid singularities in the Angular Method at ϕγ = 0, measured photon angles
are restricted to | sinϕγ | ≥ 0.1 in this plot.

as shown in Fig. 8.11.
Finally, we now examine the energy dependence of the photon energy resolution. Figure 8.12

shows the Eγ dependence. The photon energy kinematically reconstructed by the Angular
Method has a constant resolution of ∼ 0.4% for 120GeV ≲ Eγ ≲ 260GeV significantly smaller
than the PFO photon energy resolution for both IDR-L and IDR-S. Notice also here that the
PFO photon energy resolution is roughly consistent with the ECAL design resolution of σE

E =
17√

E[GeV]
⊕1% [7]. In summary, Figures 8.7, 8.10, and 8.12 demonstrated that the photon energy

kinematically reconstructed by the Angular Method has a better resolution than the PFO photon
energy, except in the singular regions near sinϕγ = 0 and | cos θγ | = 1, and therefore can be
used to calibrate the PFO photon energy.

Overall the photon energy scale uncertainty for this calibration can be estimated using the
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Figure 8.5: The same figure as Fig. 8.3 but additionally with the calibrated PFO photon energy
(green) distribution.

following equation:

Eγ Scale Uncertainty =
√
(PFO Energy Uncertainty)2 + (Ang. Method Uncertainty)2

Energy Uncertainty =
Sigma of

(Eγ−EMC
γ )

EMC
γ

distribution
√
Number of events

.

The photon energy scale uncertainty calculated this way is shown in Fig. 8.13. The figure shows
that the photon energy scale uncertainty is below 80MeV for Eγ ∼ 120GeV decreasing to
15MeV for Eγ ∼ 250GeV.
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Figure 8.6: Mean value of a Gaussian fit to the relative difference from the MC truth as a
function of photon energy for each of measured (PFO: light blue) and kinematically reconstructed
(Angular Method: blue) and calibrated (Calibrated PFO: green) photon energies for IDR-L
model. To avoid singularities in the Angular Method at ϕγ = 0 and θγ = 0, measured photon
angles are restricted to | sinϕγ | ≥ 0.1 and | cos θγ | ≤ 0.95 in this plot.
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Figure 8.7: Sigma value from a Gaussian fit to the distribution of the relative difference from
the MC truth as a function of | cos θγ | for each of measured (PFO IDR-L: light blue, PFO IDR-
S: magenta) and kinematically reconstructed photon energies (Angular Method IDR-L: blue,
Angular Method IDR-S: red). Only photons satisfying | sinϕγ | ≥ 0.1 are included in this plot.
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reconstructed photon energies cheating photon angles for IDR-L (γ-Angs. Cheated-L: Green)
and for IDR-S (γ-Angs. Cheated-S: Violet).
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Figure 8.10: Sigma value from a Gaussian fit to the distribution of the relative difference from the
MC truth as a function of ϕγ for each of measured (PFO IDR-L: light blue, PFO IDR-S: magenta)
and kinematically reconstructed photon energies (Ang.Method IDR-L: blue, Ang.Method IDR-
S: red). Only photons satisfying | cos θγ | ≤ 0.95 are included in this plot.
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Figure 8.11: Explanation of the large fluctuation of PFO in Fig. 8.10.
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Figure 8.12: Sigma value from a Gaussian fit to the distribution of the relative difference from
the MC truth as a function of Eγ for each of measured (PFO IDR-L: light blue, PFO IDR-S: ma-
genta) and kinematically reconstructed photon energies (Ang.Method IDR-L: blue, Ang.Method
IDR-S: red). Only photons satisfying | sinϕγ | ≥ 0.1 and | cos θγ | ≤ 0.95 are included in this plot.



CHAPTER 8. RESULTS 48

150 200 250
 [GeV]γE

0

20

40

60

80

100

 S
ca

le
 U

nc
er

ta
in

ty
 [M

eV
]

γ
E

ILD
IDR-L
IDR-S

Figure 8.13: Eγ scale uncertainty after the photon energy calibration using the Angular Method
as a function of Eγ for | sinϕγ | ≥ 0.1 and | cos θγ | ≤ 0.95.



Chapter 9

Summary of Part II

Methods to calibrate the photon energy using the e+e− → γZ process are studied. Among
the five kinematic reconstruction methods studied, the Angular Method is found to be the best
due to its good resolution and its symmetric response. The resolution of the photon energy
kinematically reconstructed by the Angular Method is better than that of the PFO photon
energy except in the singular regions near sinϕγ = 0 and | cos θγ | = 1 and the Angular Method
has almost no bias. We have hence shown that the PFO photon energy can be calibrated
effectively using the Angular Method. It is concluded that the photon energy scale uncertainty
after the calibration is below 80MeV for Eγ ∼ 120GeV decreasing to 15MeV for Eγ ∼ 250GeV.
There is no large difference in terms of the calibrated photon energy uncertainty between IDR-L
and IDR-S.
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Part III

Jet Energy Scale Calibration
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This part will focus on the jet energy scale (JES) calibration. We will introduce our cal-
ibration methods in detail in Section 10. Event simulation and selection will be explained in
Sections 11 and 12, respectively. Results will be given in Section 13.



Chapter 10

Jet Energy Calibration Methods

The signal channel used here is e+e− → γZ,Z → 2 Jets which is illustrated in Fig. 10.1. The
invariant mass of the 2 jet system should be around MZ in radiative return events.
Jet energies can be reconstructed by four-momentum conservation making use of measured jet

Figure 10.1: Signal channel e+e− → γZ, Z → qq̄.

masses and jet and photon direction angles, or measured photon energy or velocities of two jets
in addition. Basic four-momentum conservation equations can be written as (10.1).


√
|PJ1|2 +m2

J1 +
√
|PJ2|2 +m2

J2 + |Pγ |+ |PISR| = ECM

|PJ1| sin θJ1 cosϕJ1 + |PJ2| sin θJ2 cosϕJ2 + |Pγ | sin θγ cosϕγ + |PISR| sinα = ECM sinα
|PJ1| sin θJ1 sinϕJ1 + |PJ2| sin θJ2 sinϕJ2 + |Pγ | sin θγ sinϕγ = 0
|PJ1| cos θJ1 + |PJ2| cos θJ2 + |Pγ | cos θγ±|PISR|cosα = 0

(10.1)
Here P denotes the unknown jet momentum and m, θ and ϕ are the jet mass, polar angle and
azimuthal angle, respectively. Suffixes J1, J2, γ and ISR correspond to one jet, the other jet,
signal photon and additional unseen photon, respectively. ECM is the center of mass energy of
the e+e− beam collision and α is 7.0 mrad, half of the beam crossing angle as shown in Fig. 5.3.

Depending on the variables and conditions in the jet energy reconstructions, the following
five methods are considered: “Method 1”,“Method 2′”,“Method 2”,“Method 3” and
“Method 4”.
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Method 1 ignores beamstrahlung and additional ISR. In this case, energy conservation in
(10.1) does not have to be considered and therefore measured jet masses are not necessary for
the inputs. Then the method requires measured {θJ1, θJ2, θγ , ϕJ1, ϕJ2, ϕγ} as inputs to determine
{|PJ1|, |PJ2|, |Pγ |}. The required conservation equations are:


sin θJ1 cosϕJ1 sin θJ2 cosϕJ2 sin θγ cosϕγ

sin θJ1 sinϕJ1 sin θJ2 sinϕJ2 sin θγ sinϕγ

cos θJ1 cos θJ2 cos θγ

|PJ1|
|PJ2|
|Pγ |

 =

ECM sinα
0
0

 (10.2)

Method 2′ and Method 2 use the measured |Pγ | as an input in addition to the jet angles,
photon angles and jet masses. Method 2′ ignores beamstrahlung and additional ISR and four-
momentum conservation requires measured {θJ1, θJ2, θγ , ϕJ1, ϕJ2, ϕγ ,mJ1,mJ2, |Pγ |} as inputs
to determine {|PJ1|, |PJ2|}. The required conservation equations are:

{ (
sin θJ1 cosϕJ1 sin θJ2 cosϕJ2

sin θJ1 sinϕJ1 sin θJ2 sinϕJ2

)(
|PJ1|
|PJ2|

)
=

(
ECM sinα− sin θγ cosϕγ |Pγ |

− sin θγ sinϕγ |Pγ |

)
(10.3)

Method 2 considers beamstrahlung and additional ISR. Four-momentum conservation re-
quires measured {θJ1, θJ2, θγ , ϕJ1, ϕJ2, ϕγ ,mJ1,mJ2, |Pγ |} as inputs to determine {|PJ1|, |PJ2|, |PISR|}.
The four-momentum conservation (10.1) takes the form of:


√
|PJ1|2 +m2

J1 +
√
|PJ2|2 +m2

J2 + |Pγ |+ |PISR| = ECMsin θJ1 cosϕJ1 sin θJ2 cosϕJ2 sinα
sin θJ1 sinϕJ1 sin θJ2 sinϕJ2 0

cos θJ1 cos θJ2 ± cosα

 |PJ1|
|PJ2|
|PISR|

 =

ECM sinα− sin θγ cosϕγ |Pγ |
− sin θγ sinϕγ |Pγ |
− cos θγ |Pγ |


(10.4)

As there are 2 direction candidates for the ISR which correspond to the sign of |PISR| in
Pz conservation, 2 possible solutions can be obtained from the three-momentum conservation.
In order to choose the better answer, the left-hand side of the energy conservation of (10.4) is
calculated for each solution and compare which solution is closer to the right-hand side.

Method 3 solves the full set of four-momentum conservation equations (10.1). It uses mea-
sured {θJ1, θJ2, θγ , ϕJ1, ϕJ2, ϕγ ,mJ1,mJ2} as inputs to determine {|PJ1|, |PJ2|, |Pγ |, |PISR|}. Then
four-momentum conservation is:


√
|PJ1|2 +m2

J1 +
√
|PJ2|2 +m2

J2 + |Pγ |+ |PISR| = ECMsin θJ1 cosϕJ1 sin θJ2 cosϕJ2 sin θγ cosϕγ

sin θJ1 sinϕJ1 sin θJ2 sinϕJ2 sin θγ sinϕγ

cos θJ1 cos θJ2 cos θγ

|PJ1|
|PJ2|
|Pγ |

 =

(ECM − |PISR|) sinα
0

±|PISR| cosα


(10.5)

As the first equation of (10.5) includes two radical signs which make a quartic equation, 4
possible solutions appear for each sign of the ISR. As a result, 8 possibilities exists in (10.5). In
order to examine those solutions, following criteria were considered.

1. Solution |PISR| should take real and positive value less than half of the ECM .

2. Solutions {|PJ1|, |PJ2|, |Pγ |} should take (real and) positive values.
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3. Each radical expressed by variables other than those contained in the radical should be
positive, namely√

|PJ1|2 +m2
J1 = ECM −

(√
|PJ2|2 +m2

J2 + |Pγ |+ |PISR|
)

> 0√
|PJ2|2 +m2

J2 = ECM −
(√
|PJ1|2 +m1

J1 + |Pγ |+ |PISR|
)

> 0.

4. Solution |Pγ | should be the closest to the measured |Pγ | among all solution candidates
satisfying above criteria.

The jet mass mJi (i = 1, 2) can be expressed as |PJi|
γJiβJi

where βJi is ratio of the velocity vJi

to the speed of the light in a vacuum c; βJi =
vJi
c and γJi is the Lorentz factor; γJi =

1√
1−β2

Ji

.

When using γβ as input, the first equation of (10.5) in the Method 3 would be a linear equation.
In this case, only two-fold ambiguity exists corresponding to the direction of the ISR which can
be removed by comparing solution |Pγ | with measured |Pγ |. Then, Method 4 uses measured
{θJ1, θJ2, θγ , ϕJ1, ϕJ2, ϕγ ,mJ1,mJ2} as inputs to determine {|PJ1|, |PJ2|, |Pγ |, |PISR|}.


|PJ1|

√
1 + 1

(γβ)2J1
+ |PJ2|

√
1 + 1

(γβ)2J2
+ |Pγ |+ |PISR| = ECMsin θJ1 cosϕJ1 sin θJ2 cosϕJ2 sin θγ cosϕγ

sin θJ1 sinϕJ1 sin θJ2 sinϕJ2 sin θγ sinϕγ

cos θJ1 cos θJ2 cos θγ

|PJ1|
|PJ2|
|Pγ |

 =

(ECM − |PISR|) sinα
0

±|PISR| cosα


(10.6)

Performances of the five methods will be compared in Section 13.



Chapter 11

Simulation Setup

In this part, signal events, e+e− → γZ,Z → 2 Jets, are first generated using Whizard 2.85 [38]
and detector geometry is ILD-L. It uses a hybrid calorimeter simulation, of which we consider
the o1 model, whose calorimeters are Si-ECAL and AHCAL. It implements the 14 mrad beam
crossing angle, IP smearing and offset depending on the initial particles [38]. The whole set of
programs used in this analysis is packaged as iLCSoft version v02-02 [38]. The event simulation
for this analysis has been done at the center-of-mass energy of 250GeV. We assume an integrated
luminosity

∫
Ldt = 900 fb−1 for each of two beam polarizations: “eLpR” in which (Pe− , Pe+) =

(−0.8,+0.3) and “eRpL” in which (+0.8,−0.3). To simplify the analysis, overlay removal by
MCTruth link is implemented. Two MCTruth definitions were employed: “All-MC” which
contains all stable MC particles and “Detected-MC” which contains only particles linked to
detected PFOs.
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Chapter 12

Event Selection

Signatures of the signal events are 2 jets with a combined invariant mass consistent with the
Z boson mass and one energetic isolated photon. First, events with at least one isolated pho-
ton are selected. The photon is identified using Photon ID by PandoraPFA. The photon en-
ergy is required to be more than 50GeV. The photon whose energy is closest to the expected
value, i.e. 108.4GeV, is selected and all photons inside the cone with opening angle cos−1(0.998)
around the direction of the photon are merged. Owing to beamstrahlung and ISR effects, the
photon energy spectrum has a long downward tail from its peak at 108.4GeV, as shown in
Fig. 12.2.

After this selection, for eLpR samples, 82.2% of the generated events contain no signal photon
and 17.8% contain one signal photon. Then, All Particle Flow Objects (PFOs) other than the
selected photon are clustered into 2 jets using the Durham algorithm (done by LCFIPlus). The
jet with higher reconstructed energy is defined as“ jet 1”and the other as“ jet 2”.

Figure 12.1 shows the distribution of All-MC truth invariant mass of Z boson MZ and
Fig. 12.2 shows the distribution of MZ and All-MC truth photon energy Eγ for the eLpR sam-
ples. The red curve in Fig. 12.2 shows the kinematic boundary corresponding to no additional
photon when ignoring the electron and positron masses and the beam crossing angle. Figure 12.3
shows the flavor of the jets of All-MC. Figure 12.4, Fig. 12.5 and Fig. 12.6 show the distributions
of All-MC truth jet masses, energies and cosine of polar angle, respectively. Figure 12.7 shows
the correlation between cosines of All-MC truth jet polar angle of 2 jets. Figure 12.8 shows
correlation between cosine of All-MC truth jet polar angle and All-MC truth jet energy for each
jet.

After these selections, there are still some events in which the measured signal photon does
not match with the MCTruth signal photon i.e.wrong photon selection events. Comparing the
polar angles of measured signal photon with the MCTruth photon revealed that 9.8% of the
eLpR sample suffered from wrong photon selection corresponds to
|∆θγ | ≡ |θMC

γ − θPFO
γ | > 0.01 rad. Figure 12.9 shows the |∆θγ | of the signal photon and visible

energy defined as Evis ≡ EJ1 +EJ2 +Eγ distribution. According to the Fig. 12.9, two classes of
wrong photon selection can be seen: in one case Evis is around 250GeV but |∆θγ | > 0.01, and
in the other Evis is much below 250GeV and |∆θγ | > 0.01. In the former case the true signal
photon had a small energy and was not reconstructed and in the second case the true signal
photon was energetic but not found. In both cases, the selected signal photon originates from
the jets, for example by final state radiation (FSR). In order to suppress these wrong selected
photon events, the invariant mass of 2 jets M2j and the visible energy Evis were compared
between the correct and wrong photon selection cases as shown in Fig. 12.10. According to the
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Figure 12.1: All-MC MZ distribution for the selected events.

figure, the requirement M2j < 125GeV and Evis > 200GeV, named as “CutP1”, would be
effective. Then, the angles between each jet and photon θJ1γ and θJ2γ were studied. As shown
in Fig. 12.11, the wrong photon tends to be near the jet axis. Therefore, cuts cos θJ1γ < 0.95
and cos θJ2γ < 0.95, named as “CutP2”, were applied. Figure 12.12 shows the M2j distribution
after the CutP1 without M2j < 125GeV and cu tP2. It shows the selection correctness after
the CutP1 and CutP2 as 99.5%.
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Figure 12.2: All-MC truth MZ and Eγ distribution for the selected events. Red curve shows the
kinematic boundary corresponding to no additional photon.
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Figure 12.3: Flavor of the jets.
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Figure 12.4: All-MC truth jet mass distribution for each jet for the selected events.
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Figure 12.5: All-MC truth jet energy distribution for each jet for the selected events.
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Figure 12.6: Cosine of All-MC truth jet polar angle distribution for each jet for the selected
events.
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Figure 12.7: Correlation between cosines of All-MC truth jet polar angle of each jet.
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Figure 12.8: Correlation between cosine of All-MC truth jet polar angle and All-MC truth jet
energy for each jet. Notice that the color scale is different in each plot.
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Figure 12.10: Invariant mass of 2 jetsM2j and the visible energy Evis for correct photon selection
case and wrong photon selection case.
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Figure 12.11: Angles between each jet and the selected photon. The wrong photon tends to be
near the jet axis.
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Figure 12.12: M2j distribution of events with Evis > 200GeV and CutP2. It shows that the
sample purity after CutP1 and CutP2 is 99.5%.



Chapter 13

Results

13.1 Comparison of the Five Methods

The jet energies are kinematically reconstructed for the selected events using the five methods
explained in Section 10. The relative difference of the reconstructed jet energy from its All-MC

truth (AlMC),
(EJ−EAlMC

J )

EAlMC
J

, is shown in Fig. 13.1. This plot only uses eLpR samples.

Figure 13.1: The relative difference of the reconstructed jet energy from its All-MC truth (AlMC)
for the five methods and PFO.

As shown, Method 3 has the best resolution and its peak position is close to zero
(between -0.008 and 0.008). Comparison of the relative difference from its Detected-MC truth

(DeMC),
(EJ−EDeMC

J )

EDeMC
J

, for eLpR samples is shown in Fig. 13.2. Method 3 gives slightly positive

bias up to 0.8% and the peak height became worse, which means Method 3 is rather closer to the
all MC than the detected MC. It can recover non-detected particles e.g.undetected neutrinos
and missing particles going into the beam pipe. Considering these results, it is hence decided to
use Method 3 to calibrate the jet energies in what follows. Hereafter Method 3 is referred to as
the Angular Method (sometimes abbreviated as “Ang. Method” hereafter).
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Figure 13.2: The relative difference of the reconstructed jet energy from its Detected-MC truth
(DeMC) for the five methods and PFO.



CHAPTER 13. RESULTS 67

13.2 Energy, Polar Angle and Flavor Dependences

In general, the measured jet energy might be biased depending on jet energy, jet polar angle and
jet flavor because of various detector effects and therefore requires calibration. As a step of the
calibration using the Angular Method, the dependences of relative differences of reconstructed jet
energy shown in the previous section on the jet energy, jet polar angle and jet flavor are checked.
In order to evaluate the dependences qualitatively, the relative difference distributions are fitted
with a function which is sum of two Gaussian functions and one exponential function. The
Gaussian function with smaller/larger sigma is named as a “core Gaussian”/“base Gaussian”,
respectively. The calibration is based on the mean value of the core Gaussian.

First, a comparison of the reconstructed jet energy with All-MC truth is performed in order
to show the validity of the Angular Method. The energy, polar angle, and flavor dependence are
shown in Fig. 13.3, Fig. 13.4 and Fig. 13.5, respectively. Figure 13.3 shows that the mean value
of the core gaussian is of order 10−4 to 10−3 independent of the jet energy. The sigma value
is better for higher energy jets. Figure 13.4 shows that the energy of forward jets has a slight
positive bias, while those in the barrel region jet have a slight negative bias on the core gaussian.
Figure 13.5 shows that the mean value of the core gaussian is order of 10−4 independent of the
flavor.

20 40 60 80 100 120
Jet Energy [GeV]

0.05-

0

0.05

M
C

J
)/E

M
C

J
-E J

M
ea

n 
of

 (E

J
Coreµ

J
Baseµ

mc-2020
Ang. Method
All MC

20 40 60 80 100 120
Jet Energy [GeV]

0

0.05

0.1

0.15

M
C

J
)/E

M
C

J
-E J

Si
gm

a 
of

 (E

J
Cores

J
Bases

mc-2020
Ang. Method
All MC

Figure 13.3: Energy dependence of mean and sigma of the fitting Gaussians when using All-MC
truth (AlMC) as a reference.

Second, the comparison of the reconstructed jet energy with Detected-MC truth is demon-
strated in order to consider the detector calibration. The energy, polar angle, and flavor depen-
dence are shown in Fig. 13.6, Figure 13.7 and Fig. 13.8, respectively. Figure 13.6 and Fig. 13.7
show values are positive at all energies as Angular Method recovers missing particles. Figure 13.8
indicates a larger mean value on the core gaussian in the heavier flavor. This is because heavy
flavor jet emits more neutrinos and Angular Method recovers the missing energy.

As a reference, comparison of the PFO jet energy with Detected-MC truth is demonstrated.
Energy dependence, polar angle dependence and flavor dependence are shown in Fig. 13.9,
Fig. 13.10 and Fig. 13.11, respectively. In comparing PFO energy with Detected-MC, Fig. 13.9,
Fig. 13.10 and Fig. 13.11 show PFO has also positive bias due to miscalibration of the calorime-
ter.
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Figure 13.4: Polar angle dependence of mean and sigma of the fitting Gaussians when using
All-MC truth (AlMC) as a reference.
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Figure 13.5: Flavor dependence of mean and sigma of the fitting Gaussians when using All-MC
truth (AlMC) as a reference.



CHAPTER 13. RESULTS 69

20 40 60 80 100 120
Jet Energy [GeV]

0.1-

0.05-

0

0.05

0.1

M
C

J
)/E

M
C

J
-E J

M
ea

n 
of

 (E

J
Coreµ

J
Baseµ

mc-2020
Ang. Method
Detected MC

20 40 60 80 100 120
Jet Energy [GeV]

0

0.05

0.1

0.15

M
C

J
)/E

M
C

J
-E J

Si
gm

a 
of

 (E

J
Cores

J
Bases

mc-2020
Ang. Method
Detected MC

Figure 13.6: Energy dependence of mean and sigma of the fitting Gaussians when using Detected-
MC truth (DeMC) as a reference.
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Figure 13.7: Polar angle dependence of mean and sigma of the fitting Gaussians when using
Detected-MC truth (DeMC) as a reference.
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Figure 13.8: Flavor dependence of mean and sigma of the fitting Gaussians when using Detected-
MC truth (DeMC) as a reference.
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Figure 13.9: Energy dependence of mean and sigma of the fitting Gaussians for PFO when using
Detected-MC truth (DeMC) as a reference.
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Figure 13.10: Polar angle dependence of mean and sigma of the fitting Gaussians for PFO when
using Detected-MC truth (DeMC) as a reference.
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Figure 13.11: Flavor dependence of mean and sigma of the fitting Gaussians for PFO when
using Detected-MC truth (DeMC) as a reference.



CHAPTER 13. RESULTS 72

13.3 Jet Energy Calibration

In this section, we will demonstrate how the calibration can be done using the Angular Method
introduced above. To correct the systematic shift in PFO energy, we introduce an energy and

angle-dependent calibration factor. First, the distribution of
(EPFO

J −EAng.Method
J )

EAng.Method
J

for uds jets is

fitted and the mean value µ of the core Gaussian is extracted as a function of energy and | cos θ|.
Then the calibration factor can be derived as

EAng.Method

EPFO
= 1

µ+1 . By taking a look at the fitting

result of the relative difference between EAng.Method
J and EAlMC

J in the high | cos θ| region as
shown in Fig. 13.12, this fitting is valid up to very high | cos θ|. The binning in energy and
| cos θ|, shown in Table 13.1, is decided by considering the number of events in each bin.
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Figure 13.12: Fitting result of the relative difference between EAng.Method
J and EAlMC

J in the
high | cos θ| region. Fitting is valid in the very high | cos θ| region.

Table 13.1: Binning of the calibration factor
Energy Range [GeV] Upperbound of | cos θ|

20-30 0.2,0.4,0.6,0.8,0.9,0.95,1.0
30-40 0.2,0.4,0.6,0.8,0.9,0.94,0.97,1.0
40-50 0.2,0.4,0.6,0.8,0.9,0.94,0.97,1.0
50-60 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.98,1.0
60-70 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.98,1.0
70-80 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.98,1.0
80-90 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.98,1.0
90-100 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.98,1.0
100-110 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.97,0.98,0.985,0.99,0.995,1.0
110-120 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.97,0.98,0.985,0.99,0.995,1.0
120-130 0.2,0.4,0.6,0.8,0.9,0.92,0.94,0.96,0.97,0.98,0.985,0.99,0.995,1.0

The dependence of the calibration factor on energy and | cos θ| is shown in Fig. 13.13. This
result indicates the curved surface of the calibration factor is smooth enough to interpolate the
intermediate values.
Using the derived calibration factor, calibration for PFO is performed. The relative difference
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between calibrated EPFO
J and EAng.Method

J is estimated in the same way as the calibration factor
and in the same binning is derived and the result is shown in Fig. 13.14, showing that relative
difference became much closer to 1 when comparing with the Fig. 13.13.

Figure 13.13: Distribution of the calibration factor as a function of energy and | cos θ|. Left-side
figure shows all energy and | cos θ| region while right shows only high | cos θ| region.

Next, we will investigate the calibration uncertainty expected at the ILC. The overall jet
energy scale uncertainty for this calibration can be estimated using the following equation:

Calibration Uncertainty =
√
(∆µPFO)2 + (∆µAng.Method)2, (13.1)

here ∆µ denotes the error of the mean value of the fitting core Gaussian. The jet energy scale
uncertainty calculated this way is shown in Fig. 13.15.
Figure 13.15 shows that the jet energy scale uncertainty is ∼ 10−4 which corresponds to ∼
10MeV.
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Figure 13.14: Distribution of the relative difference between calibrated EPFO
J and EAng.Method

J

as a function of energy and | cos θ| for all energy and | cos θ| region. This plot shows that relative
difference became much closer to 1 when comparing with the Fig. 13.13.
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Figure 13.15: EJ scale uncertainty after the jet energy calibration using the Angular Method as
a function of Eγ . Left figure shows the relative values and right shows the absolute values.



Chapter 14

Summary of Part III

In order to reduce the systematic error of the JES measurement, we developed a data-driven
method to calibrate the jet energy. This method makes use of measured jet masses and jet and
photon directions to extract jet energies without reference to the directly measured energies in
the e+e− → γZ,Z → 2 Jets process. Various methods to calibrate the jet energy are studied in
full-simulation demonstration. Among the five kinematic reconstruction methods studied, the
Angular Method is found to be the best due to its good resolution and peak position. By com-
paring the Angular Method reconstructed and directly measured jet energies, the reconstructed
jet energy resolution is concluded to be better than the measured one. The jet energy kinemat-
ically reconstructed by the Angular Method can recover energies of undetected particles. Using
this method, calibration factors are estimated as a function of energy and polar angle. We can
achieve JES accuracy of ∼ 10−4, which corresponds to absolute energy uncertainty of about 5
to 20 MeV.
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Part IV

Measurement of ALR at the ILC
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Chapter 15

Simulation Setup

In this part, signal events e+e− → γZ are first generated using Whizard 2.85 [38] and simulated
in the ILD l5 v02. We consider the model with Si-ECAL and AHCAL calorimeter. It implements
the 14 mrad beam crossing angle, IP smearing and offset depending on the initial particles [38].
The whole set of programs used in this analysis is packaged as iLCSoft version v02-02 [38].
The event simulation for this analysis has been done at the center-of-mass energy of 250GeV.
The assumed integrated luminosity is

∫
Ldt = 900 fb−1 each for the two beam polarizations

(Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3). The sample is generated with

sin2 θW = 0.22225 (15.1)

which is equivalent to
ALR = 0.219298. (15.2)

In our analysis, all particles are forced to be clustered into 2 jets and the jet with higher
reconstructed energy is defined as “jet 1”and the other as “jet 2”.
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Chapter 16

Signal Definition and Background

We define the signal channel as e+e− → γZ and Z → qq̄ process. Radiative return photons are
so collinear with the e−/e+ beam that they go into the beam pipe in most events (Fig. 16.1).
Then only 2 jets remain in the final state and many processes, e.g. those shown in Fig. 16.2, can
be background. Our e+e− → qq̄ samples also contain events in which the Z is not on-shell. In
order to evaluate the error of ALR, we need to select signal events and distinguish signal events
from background.
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Figure 16.1: Photon angle and invariant mass of Z boson distributions in the e+e− → qq̄
samples. Each vertical axis is absolute value of cosine of polar angle of the signal photon. Left
plot corresponds to (Pe− , Pe+) = (−0.8,+0.3) case and right plot corresponds to (+0.8,−0.3)
case. Most photons are very forward. Red surrounded region corresponds to the “core signal”.

Events satisfying following “Preselection A” in our e+e− → qq̄ samples are signal events and
events satisfying both ‘Preselection A” and ‘Preselection B” are defined as “core signal”, which
may comprises the major part of the radiative return events.

Preselection A: 80GeV < Mqq̄(MC truth)< 120GeV
Preselection B: | cos θγ(MC truth)| > 0.999

The considered samples have a final state of two leptons “2f l”, two quarks “2f h”, four leptons
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Figure 16.2: Potential processes which can be background for the e+e− → γZ and Z → qq̄
process with abbreviated process names.

“4f l”, two quarks and two leptons “4f sl”, and four quarks “4f h”. In order to suppress back-
ground events, background exclusion cuts are defined as follows by considering distributions of
several observables useful for the cuts.

Cut 1 Nγ(E>50GeV) = 0
Cut 2 120GeV < Evis < 160GeV
Cut 3 | cos θ2j | > 0.95

Cut 4 N charged
J1 +N charged

J2 > 4
Cut 5 N total

J1 +N total
J2 > 10

Cut 6 50GeV < M2j < 160GeV
Cut 7 cos θ12 > −0.99 or EJ1−EJ2

EJ1+EJ2
> 0.5

Distributions of total visible energy Evis, total momentum direction of the 2-jet system | cos θ2j |,
the number of detected charged particles for each jet N charged

J1 and N charged
J2 , the sum of the num-

bers of detected charged and neutral particles N total
J1 and N total

J2 , and the invariant mass of the
2-jet system M2j of the signal and background processes for each polarization case are shown in
Fig. 16.3 to Fig. 16.7, respectively. According to Fig. 16.5 and Fig. 16.6, it is effective to suppress
the background events using the sum N charged

J1 +N charged
J2 and N total

J1 +N total
J2 .

After Cut 1 to 6, photon angle and invariant mass of Z boson distributions of our e+e− → qq̄
samples show two different components (Fig. 16.8): Mqq̄ ∼ 91.2 GeV radiative return-like events
and Mqq̄ ∼ 250 GeV events. Figure 16.9 shows the distributions of opening angle of two jets
cos θ12 and jet energy asymmetry EJ1−EJ2

EJ1+EJ2
for 80 GeV < Mqq̄ < 120 GeV signal, Mqq̄ > 240

GeV signal, and backgrounds after Cut 6. In order to exclude the Mqq̄ ∼ 250 GeV events in
signal, we use Cut 7 in addition as jets are not back-to-back and jet energies are asymmetric in
radiative return events.

Table 16.1 and Table 16.2 show the luminosity normalized expected number of remaining
events after each cut for (Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3) polarization, respectively
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Figure 16.3: Distribution of the visible energy Evis of signal and background processes after Cut
1 for each polarization case. Left plot corresponds to (Pe− , Pe+) = (−0.8,+0.3) case and right
plot corresponds to (+0.8,−0.3) case.

at the ILC 250. A stack plot for the signal and background events after Cuts 1 through 7 is
shown as a function of the reconstructed invariant mass of the 2-jet system M2j in Fig. 16.10.

Table 16.1: Reduction table for signal and each background processes for (Pe− , Pe+) =
(−0.8,+0.3) polarization, assuming

∫
Ldt = 900 fb−1.

×106 events Signal Signal (Core) 2f l 4f l 4f sl 4f h 2f h Bkg. Total

Expected 46.0 32.5 12.7 9.34 17.2 15.1 23.6 78.1
Cut 1 32.7 31.1 10.1 5.96 16.0 14.8 21.6 68.3
Cut 2 24.6 24.4 2.55 1.46 3.22 0.00422 1.09 8.32
Cut 3 24.5 24.4 1.93 0.366 0.526 0.00352 1.04 3.87
Cut 4 24.4 24.3 0.299 0.0574 0.523 0.00352 1.00 1.88
Cut 5 24.3 24.2 0.0651 0.0102 0.520 0.00352 0.977 1.58
Cut 6 24.2 24.2 0.0571 0.00807 0.470 0.00210 0.694 1.23
Cut 7 24.2 24.1 0.0534 0.00647 0.463 0.00204 0.682 1.21

According to Table 16.1 and Table 16.2, signal selection efficiencies are 0.52678 ± 0.00017
and 0.52715±0.00016 for (Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3) polarizations, respectively,
where we assumed the error on the efficiency is binomial:

∆η =

√
η(1− η)

Ngenerated
. (16.1)

Background-to-signal ratios are 0.0499 and 0.0461 for (Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3)
polarizations respectively after the seven cuts. For the core signal, selection efficiencies are
0.74166± 0.00015 and 0.74235± 0.00014 and background-to-signal ratios are 0.0500 and 0.0462
for (Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3) polarizations, respectively.
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Figure 16.4: Distribution of the total momentum direction of the 2-jet system | cos θ2j | of signal
and background processes after Cut 1 and 2 for each polarization case. Left two plots correspond
to (Pe− , Pe+) = (−0.8,+0.3) case and right two plots correspond to (+0.8,−0.3) case. Top plots
show entire | cos θ2j | region and bottom plots show high | cos θ2j | region.

Table 16.2: Reduction table for signal and each background processes for (Pe− , Pe+) =
(+0.8,−0.3) polarization, assuming

∫
Ldt = 900 fb−1.

×106 events Signal Signal (Core) 2f l 4f l 4f sl 4f h 2f h Bkg. Total

Expected 30.5 21.6 9.84 5.50 2.56 1.41 10.6 29.9
Cut 1 21.7 20.6 7.77 2.33 1.86 1.38 9.37 22.7
Cut 2 16.3 16.2 1.83 0.378 0.370 0.00137 1.04 3.62
Cut 3 16.3 16.2 1.37 0.259 0.106 0.00124 1.03 2.77
Cut 4 16.2 16.1 0.212 0.0357 0.104 0.00124 0.985 1.34
Cut 5 16.2 16.1 0.0454 0.00603 0.102 0.00124 0.958 1.11
Cut 6 16.1 16.0 0.0396 0.00468 0.0934 0.000986 0.616 0.754
Cut 7 16.1 16.0 0.0372 0.00320 0.0900 0.000967 0.609 0.740
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Figure 16.5: Distribution of the number of detected charged particles for each jet N charged
J1 and

N charged
J2 of signal and background processes after Cut 1 to 3 for each polarization case. Top

and bottom plots corresponds to signal and background processes. Left two plots correspond to
(Pe− , Pe+) = (−0.8,+0.3) case and right two plots correspond to (+0.8,−0.3) case.
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Figure 16.6: Distribution of the number of detected particles for each jet N total
J1 and N total

J2 of
signal and background processes after Cut 1 to 4 for each polarization case. Top and bottom
plots corresponds to signal and background processes. Left two plots correspond to (Pe− , Pe+) =
(−0.8,+0.3) case and right two plots correspond to (+0.8,−0.3) case.
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Figure 16.7: Distribution of the invariant mass of 2-jet system M2j of signal and background
process after Cut 1 to 5 for each polarization case. Left plot corresponds to (Pe− , Pe+) =
(−0.8,+0.3) case and right plot corresponds to (+0.8,−0.3) case.
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Figure 16.8: Photon angle and invariant mass of Z boson distributions for e+e− → qq̄ samples
after Cut 1 to 6. Each vertical axis is absolute value of cosine of polar angle of the signal
photon. Left plot corresponds to (Pe− , Pe+) = (−0.8,+0.3) case and right plot corresponds to
(+0.8,−0.3) case.
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Figure 16.9: Distributions of opening angle of two jets cos θ12 and jet energy asymmetry EJ1−EJ2
EJ1+EJ2

for 80 GeV < Mqq̄ < 120 GeV signal (top), Mqq̄ > 240 GeV signal (middle), and backgrounds
(bottom) after Cut 1 to 6. Left plots correspond to (Pe− , Pe+) = (−0.8,+0.3) case and right
plots correspond to (+0.8,−0.3) case.
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Figure 16.10: Stack plot of the invariant mass of 2-jet system M2j for the signal and background
events for (Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3) polarization. Left plots are (Pe− , Pe+) =
(−0.8,+0.3) and right plots are (+0.8,−0.3) polarization respectively after Cut 1 to 7. They
are show in linear scale in top plots and in log scale in bottom plots.



Chapter 17

Evaluation of the Error

We now consider the error on ALR (2.32). Assume the real experimental case of electron po-
larization P− is |P−| = 0.8 and positron polarization P+ is |P+| = 0.3. The observed left-right
asymmetry ALRobs is defined using the cross section of the Z production in eLpR polarization
σ− and eRpL polarization σ+,

ALRobs =
σ− − σ+
σ− + σ+

. (17.1)

Relations between σ−/σ+ and σL/σR, which correspond to cross sections with 100% polarized
beams, are

σ− =
1

4
(1 + |P−|)(1 + |P+|)σL +

1

4
(1− |P−|)(1− |P+|)σR

σ+ =
1

4
(1− |P−|)(1− |P+|)σL +

1

4
(1 + |P−|)(1 + |P+|)σR.

(17.2)

Then,

ALR = ALRobs
1 + |P−||P+|
|P−|+ |P+|

= ALRobs × f. (17.3)

The error on ALR is expressed as(
∆ALR

ALR

)2

=

(
∆ALRobs

ALRobs

)2

+

(
∆f

f

)2

. (17.4)

Then error propagation derives

(
∆f

f

)2

=

(
|P−|(1 + |P+|)(1− |P+|)

(|P−|+ |P+|)(1 + |P−||P+|)

)2(∆|P−|
|P−|

)2

+

(
|P+|(1 + |P−|)(1− |P−|)

(|P−|+ |P+|)(1 + |P−||P+|)

)2(∆|P+|
|P+|

)2

.

(17.5)

In order to evaluate the error on ALRobs, we define the number of Z production events in the
eLpR polarization as N− and the eRpL polarization as N+, respectively,

N− = η−L−σ−

N+ = η+L+σ+,
(17.6)
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where η and L are the selection efficiency and the integrated luminosity, respectively. We will
consider the product of η and L as

α = L−η−

β = L+η+,
(17.7)

then

ALRobs =

N−
α −

N+

β

N−
α + N+

β

. (17.8)

The error on ALRobs is expressed as

(
∆ALRobs

ALRobs

)2

=

 2
(
N−
α

)(
N+

β

)
(
N−
α −

N+

β

)(
N−
α + N+

β

)
2((

∆α

α

)2

+

(
∆β

β

)2

+

(
∆N−
N−

)2

+

(
∆N+

N+

)2
)

=

(
1

2ALRobs

(
1−A2

LRobs

))2
((

∆α

α

)2

+

(
∆β

β

)2

+

(
∆N−
N−

)2

+

(
∆N+

N+

)2
)
.

(17.9)

Using (17.4), (17.5) and (17.9), we can evaluate the error on ALR.
First, we assume that the errors of f , η, and L are negligible. From this calculation, statistical

error will be obtained. If we further assume that background is negligible i.e. (
√

N−S +N−B)
2 ∼

N−S and (
√
N+S +N+B)

2 ∼ N+S where N+S and N−S are numbers of Z production events in
the signal and N+B and N−B are numbers of the background events, then (17.9) gives

(∆ALRobs)
2 =

(
1

2

(
1−A2

LRobs

))2
((

∆N−
N−

)2

+

(
∆N+

N+

)2
)
. (17.10)

Now we define the overall number of Z production events as N i.e.N = N− +N+.
When we assume that η− = η+ and L− = L+ i.e.α = β,

N− =
N

2
(1 +ALRobs)

N+ =
N

2
(1−ALRobs).

(17.11)

Then, the error on ALRobs is

(∆ALRobs)
2 =

1

N
(1 +ALRobs)(1−ALRobs). (17.12)

In this case of a very small number of background events, we can estimate the statistical error
just from ALRobs and N . Using the results in Table 16.1 and Table 16.2 in (17.12) and translating
the ALRobs into ALR by (17.3),

ALR = 0.22810± 0.00017 (stat) (17.13)

for all signal. This statistical error is ∼ 12.3 times better than the overall error at the SLC. For
the core signal,

ALR = 0.22827± 0.00017 (stat) (17.14)
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In the case that we have a non-negligible number of background events, we should replace
the (17.10) as follows.

(∆ALRobs)
2 =

(
1

2

(
1−A2

LRobs

))2
(√N−S +N−B

N−S

)2

+

(√
N+S +N+B

N+S

)2
 . (17.15)

When we use this more accurate evaluation, the statistical error on ALR is estimated to be
1.8× 10−4 which is almost identical to the result in the previous definition, which confirms the
number of background is indeed negligible.
The derived ALR value (17.13) does not agree with the simulation setting 0.219 in (15.2). If we
change the range of Mqq̄ in the signal definition i.e.Preselection A, the ALR value is changed.
The Mqq̄ dependence of the ALR value is shown in Fig. 17.1. Fig. 17.1 indicates that events with

0 50 100 150 200 250
 [GeV]qqM

1−

0.5−

0

0.5

1

LR
A

Figure 17.1: Mqq̄ dependence of ALR. Red dashed line corresponds to the simulation setting
and blue lines are boundaries of signal and background in our analysis. Green curve shows the
theoretical prediction when sin2 θW = 0.2225. In our signal region, the ALR value varies almost
linearly and we can cancel the deviation by taking appropriate Mqq̄ range.

Mqq̄ away from the Z-pole dominantly cause the discrepancy. This discrepancy was caused by
another process contained in the sample i.e. the e+e− → γ → qq̄ diagram contamination. In our
signal region, the ALR value varies almost linearly and we can cancel the deviation by taking
appropriate Mqq̄ range.
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We have so far been assuming that the polarization |P−| and |P+|, selection efficiency η, and
integrated luminosity L have no errors. However, these have errors and the errors can cause
further systematic error on ALR.
When including the predicted polarization error of ∆|P−|

|P−| = ∆|P+|
|P+| = 0.001 into (17.5) [43], the

total absolute error on ALR is estimated to be 0.000216 for all signal.
Next, errors on α and β will be considered. Most of the error on α and β are correlated because
α and β are evaluated in the same setup. We now show that this correlated part has a negligible
effect. We define the error matrix of α and β as Er,

(∆ALRobs)
2 =

(
∂ALRobs

∂α
∂ALRobs

∂β

)
Er

(
∂ALRobs

∂α
∂ALRobs

∂β

)
(17.16)

Er ≡
(

< (∆α)2 > < (∆α)(∆β) >
< (∆α)(∆β) > < (∆β)2 >

)
(17.17)

and divide Er into uncorrelated and fully correlated error contributions,

Er =

(
uα 0
0 uβ

)
+

(
c c
c c

)
. (17.18)

As (
∂ALRobs

∂α
∂ALRobs

∂β

)
=

2
(
N−+

α

)(
N+−
β

)
(
N−+

α + N+−
β

)2
( − 1

α
1
β

)

=

(
1

2

(
1−A2

LRobs

))( − 1
α
1
β

)
,

(17.19)

(∆ALRobs correlated)
2 = c×

(
1

2

(
1−A2

LRobs

))2( 1

α
− 1

β

)2

(17.20)

∆ALRobs correlated ≃
1

2

(
1−A2

LRobs

)
×
∣∣∣∣β − α

α

∣∣∣∣× √cα . (17.21)

This (17.21) means if the integrated luminosity is adjusted to satisfy α = β in the experiment,
this correlated part would disappear. In the simulation sample used in this analysis,

∆ALRobs correlated =

√
c

α
× 3.4× 10−4, (17.22)

which is small enough to ignore. Therefore only uncorrelated parts of ∆α and ∆β will be
considered below. The possible sources of the uncorrelated error are the difference of selection
efficiency in each polarization combination and time dependence of the luminosity measurements.
If ∆α

α = ∆β
β = 0.00016 (i.e. 0.016%), the total systematic error on ALR from polarization,

selection efficiency, and luminosity is estimated to be 0.000174, comparable to the statistical
error 0.000178. In this case, total absolute error on ALR is 0.00025, 8.8 times better precision
than that from the SLC (0.00219).
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Summary of Part IV

As ALR is useful to constrain SMEFT parameters, it is motivated to improve this observable at
the ILC. In order to assess by how much we can improve the precision, a full simulation study
including e+e− → γZ process and various background processes was performed. Signal events
are defined as radiative return events with hadronic decay of the Z boson. In order to exclude
background processes, cut conditions were considered. With the seven cuts considered, signal
selection efficiencies are 0.52678± 0.00017 and 0.52715± 0.00016 for (Pe− , Pe+) = (−0.8,+0.3)
and (+0.8,−0.3) polarizations, respectively. Background-to-signal ratios are 0.0499 and 0.0461
for each polarization combinations respectively after the cuts. For the core signal, selection
efficiencies are 0.74166 ± 0.00015 and 0.74235 ± 0.00014 and background-to-signal ratios are
0.0500 and 0.0462 for (Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3) polarizations, respectively.

The statistical error on ALR is estimated to be 1.8×10−4 with these cuts. When considering
a polarization error of ∆|P−|

|P−| = ∆|P+|
|P+| = 0.001, the total absolute error on ALR is estimated

to be 0.000216. If the integrated luminosity is adjusted to satisfy the product of luminosity
and selection efficiency is same for each polarization combination, the correlated part of the
error on this product would disappear. Then we need to think about only uncorrelated parts.
If ∆α

α = ∆β
β = 0.00016 (i.e. 0.016%), the total systematic error on ALR from polarization,

selection efficiency, and luminosity is estimated to be 0.000174, comparable to the statistical
error 0.000178. In this case, total absolute error on ALR is 0.00025, 8.8 times better precision
than that from the SLC (0.00219).
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Conclusion
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Radiative return process e+e− → γZ provides a large set of Z-pole data at initial stage of
ILC at 250 GeV useful for both physics measurements and detector calibration. We performed
the first full simulation study of this process based on ILD, including realistic SM background
events.

•Photon energy scale calibration
ILC makes it possible to perform various precision measurement for the BSM and highly sensi-
tive new particle search. So as to achieve this, a high performance detector which reconstructs
all final states in terms of fundamental particles, i.e. leptons, quarks, gauge bosons, and the
Higgs bosons are essential. By measuring each final state particle energy in the most proper
way, we can identify the W , Z, and Higgs bosons which decay to jets. Not only accuracy of
detected energy but also energy scale accuracy is essential for this precise final state reconstruc-
tion. Therefore, photon and jet energy scale calibration is important.
In order to reduce the systematic error of the photon energy measurement, a photon energy
calibration method using the e+e− → γZ process was developed. Among the five kinematic
reconstruction methods studied, the Angular Method is found to be the best due to its good
resolution and its symmetric response. The resolution of the photon energy kinematically re-
constructed by the Angular Method is better than that of the PFO photon energy except in
the singular regions near sinϕγ = 0 and | cos θγ | = 1 and the Angular Method has almost no
bias. We have hence shown that the PFO photon energy can be calibrated effectively using the
Angular Method. It is concluded that the photon energy scale uncertainty after the calibration
is below 80MeV for Eγ ∼ 120GeV decreasing to 15MeV for Eγ ∼ 250GeV.

• Jet energy scale calibration
In order to reduce the systematic error of the JES measurement, we developed a new data-
driven jet energy calibration method (Angular Method) using kinematical reconstruction of the
e+e− → γZ process using measured jet masses and jet and photon angles. Among the five
kinematic reconstruction methods studied, the Angular Method is found to be the best in terms
of resolution and potential calibration bias. The jet energy kinematically reconstructed by the
Angular Method can recover energies of undetected particles. Using this method, calibration
factors are estimated as a function of energy and polar angle. We can achieve JES accuracy of
∼ 10−4, which corresponds to absolute energy uncertainty of about 5 to 20 MeV.

•Evaluation of the error of ALR at the ILC
As ALR is useful to constrain SMEFT parameters, it is motivated to improve this observ-
able at the ILC. In order to assess by how much we can improve the precision, a full simula-
tion study including e+e− → γZ process and various background processes was performed.
In order to exclude background processes, cut conditions were considered. For the radia-
tive return with hadronic decay case, background-to-signal ratios are 0.0499 and 0.0461 for
(Pe− , Pe+) = (−0.8,+0.3) and (+0.8,−0.3) polarization, respectively. The statistical error on
ALR is estimated to be 1.8× 10−4 with these cuts. Considering the systematic errors from po-
larization, selection efficiency and integrated luminosity, we think most of this systematic error
from efficiency and luminosity will be canceled out. The dominant systematic error would be
the polarization uncertainty. If the errors from the uncorrelated part of the error on product of
efficiency and luminosity is around 0.016%, the total systematic error is same size with the sta-
tistical error. In this case, the total absolute error on ALR is 0.00025, 8.8 times better precision
than the SLC.
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