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Materials informatics is a technique which aim to improving the efficiency of
development of new and innovative materials with a way of informatics. Traditionally,
the discovery of new inorganic compounds has been done by the human intuition and
experiment. However, thanks to the progress of ab initio computations in the density
functional theory (DFT) framework, computing power, and memory storage,
computational study of materials has significantly developed for the past decades. It’s
accuracy and computational efficiency of DFT calculations enabled computational
studies of a large number of compounds, leading to the rapid expansion of the
computational crystal structure databases (detailed in the section 2.2). The
accumulation of these online databases has greatly facilitated the application of
machine learning in this study area. In recent years, more efficient materials
development methods, which combine accurate but time consuming DFT calculations
(deductive) and fast machine learning methods (inductive), has been proposed (detailed
in the section 2.1 to 2.6). We have conducted two different studies which related to the
field of materials informatics, and they are reported in the section 3, and 4 respectively.

In the section 3, we report the study, titled “Recreation of the Periodic Table with an
Unsupervised Machine Learning Algorithm”. In 1869, the first draft of the periodic
table was published by Russian chemist Dmitri Mendeleev. In terms of data science,
his achievement can be viewed as a successful example of feature embedding based on
human cognition: chemical properties of all known elements at that time were
compressed onto the two-dimensional grid system for a tabular display. In this study,
we seek to answer the question of whether machine learning can reproduce or recreate
the periodic table by using observed physicochemical properties of the elements. To
achieve this goal, we developed a periodic table generator (PTG). The PTG is an
unsupervised machine learning algorithm based on the generative topographic
mapping (GTM), which can automate the translation of high-dimensional data into a
tabular form with varying layouts on-demand. The PTG autonomously produced
various arrangements of chemical symbols, which organized a two-dimensional array
such as Mendeleev’s periodic table or three-dimensional spiral table according to the
underlying periodicity in the given data. We further showed what the PTG learned from
the element data and how the element features, such as melting point and
electronegativity, are compressed to the lower-dimensional latent spaces.

In the section 4, we report the study, titled “Data-driven crystal structure prediction



using structure similarity”. Prediction of the stable structure of a given chemical
composition is a basic and prerequisite task for the discovery of new materials. The
major solution to this problem is based on an optimization problem of the free energy
which requires a significant computational cost. In this study, we propose a method
which makes crystal structure prediction by selecting crystal structures that are
predicted to be similar to the stable structure of a given chemical composition from the
existing crystal structures in the database. The prediction of crystal structure
similarity is performed by a machine learning model built using prior information
about crystal structure similarities in the database. Our method does not require the
computationally expensive density functional theory framework, except for the
validation part of the suggested structures. The effectiveness and characteristics of our
method were demonstrated on a benchmark set.

Both of the above two studies can be said to be applications of machine learning to
materials data, but they contrast in the following points. The study in the section 3
dealt with small data in unsupervised manner. The study in the section 4 dealt with
relatively large data, mainly in supervised manner. Furthermore, the latter is a
practical study in terms of materials science, while the former is not.

Additionally, in the section 2, we review the brief history and recent developments of
materials informatics on inorganic materials. Also, we describe the position of our
research, in the overall flow of the materials informatic researches. Historical and
recent developments of crystal structure databases are summarized in the section 2.2.
The topics about crystal structure prediction and visualization of materials data and
chemical elements are particularly detailed in the section 2.6, 2.7, and 2.8 respectively.
Due to strong relationship between PTG and GTM, GTM is particularly detailed in the
section 2.9 and 2.10. Finally, in the section 5, we review the above two studies together

and state our conclusions.
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