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Abstract

There are two main goals in the quest for causality using statistics. The first goal is
to infer the causal structure of the system of interest from data when the structure
itself is partially or globally unknown. We assume that the system can be represented
by a directed graph and formulate the problem as an estimation of the directed
graph. In particular, recently, a number of models and estimation algorithms have
been proposed that can identify the complete structure of the graph. The second
goal, on the other hand, is to estimate the magnitude of the causal relationship
between specific variables under the given causal structure. The framework for this
case is called statistical causal inference. In particular, the causal effect of a variable
treatment on the target variable has significant real-world implications in policy
making and drug development, for example. For both causal discovery and causal
inference, it is necessary to use statistical inference based on available data. There
is no difference from ordinary statistical inference on this point. This means that
various difficulties of the data, such as sparsity and outliers, affect the efficiency
and accuracy of the estimation. Furthermore, the combination of causal and data
difficulties sometimes evokes additional difficulties, so it is not sufficient to deal
with these difficulties separately. We are interested in this type of problems. In
this thesis, we discuss the sparsity in causal discovery and robustness to outliers in
causal inference. Our study reveals that statistical methods for causality that deal
with sparsity and outliers require nontrivial attentions, which is unique to causal
estimation.

The first work is to deal with sparsity in statistical causal discovery. While
there are several identifiable models for causal discovery, we focus on the linear
non-Gaussian acyclic model (LiNGAM), which can be formulated as an independent
component analysis (ICA) problem. ICA is well known in the field of signal processing.
The linearity of LiNGAM enables an analyst to draw practical implications easier
than other complicated nonlinear models. LiNGAM can also be seen as a linear
structural equation, and its coefficient matrix has a sparse structure with at least half
of its elements being zero because of acyclicity. Besides, it is natural to think that not
all variable pairs have direct causal relationships, especially under high dimensional
settings. This allows us to suppose the coefficient matrix of LiNGAM is much
sparser. For LiNGAM, various estimation methods have been developed. However,
the existing methods are not efficient for some reasons: (i) the sparse structure is not
always incorporated in causal order estimation, and (ii) the information of higher-
order moments of the error terms is not used in parameter estimation. To address
these issues, we propose a new estimation method for a linear DAG model with
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non-Gaussian noise. The proposed method is based on a single statistical criterion
that includes the log-likelihood of independent component analysis (ICA) and two
penalty terms. The two penalties are related to the sparsity and the prerequisite for
consistency, respectively. This criterion enables us to leverage the sparse structure
and the information of higher-order moments throughout the estimation. For stable
and efficient optimization, we propose some devices, such as a modified natural
gradient. Numerical experiments show that the proposed method outperforms the
existing methods.

The second work is the estimation of causal effects when the target variable is
contaminated with outliers. Estimators for causal quantities sometimes suffer from
outliers. We investigate the outlier-resistant estimation of the average treatment
effect (ATE) under challenging but realistic settings with contamination. We assume
that the ratio of outliers is not necessarily small and that it can depend on covariates,
namely, heterogeneous. We propose three types of estimators of the ATE, which
combines the well-known inverse probability weighting (IPW)/doubly robust (DR)
estimators with the density power weight. Under heterogeneous contamination, our
methods can reduce the bias caused by outliers. In particular, under homogeneous
contamination, our estimators are almost consistent with the true ATE. An influence-
function-based analysis indicates that the adverse effect of outliers is negligible if the
ratio of outliers is small even under heterogeneous contamination. We also derived
the asymptotic properties of our estimators. We evaluated the performance of our
estimators through Monte-Carlo simulations and real data analysis. The comparative
methods, which estimate the median of the potential outcome, do not have enough
outlier resistance. In the experiments, our methods outperformed the comparative
methods.
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1 Introduction

Quest for causality is a fundamental concern of the natural and social sciences. In
addition to academic fields, causal understanding is a key factor to the success
of businesses; marketers sometimes use randomized controlled trials for effective
advertisement, and manufacturers use statistical analysis to identify the causes of
product anomalies. However, it is not easy to infer causality, and naive inference
based on observable facts may lead to an erroneous conclusion about causality. In
this chapter, we introduce a framework for inferring causality through some examples
and discuss its relationship to statistical inference. Then, we introduce the main
concern of this thesis, the issue of causal models when dealing with various data
difficulties (e.g., high dimensionality, outliers, missing, etc.).

1.1 Big Picture and Motivation

1.1.1 Fallacy of Causation

Statistical methods usually involve either simply aggregating the data or learning a
model to fit the data. The model is evaluated based on its goodness of fit to the data
or its predictive performance under the uniformity of nature. While these approaches
are very useful, it can be seriously biased if one wants to know causality. Simpson’s
paradox [66, 10] is a well-known example that illustrates naive group comparison
can lead to an erroneous conclusion about causality in the presence of confounding.

Example 1: Simpson’s paradox Table 1.1 shows an artificial example of Simp-
son’s paradox. Looking at the upper table, it appears that the new drug has no
effect compared to the existing drug. However, looking at the lower table, it suggests
an opposite conclusion about the effect of the new drug. This reversal of conclusion
can be explained by the confounding of baseline disease severity. In other words, the
new drug tends to be used more often in the severe group, but at the same time, the
severe group tends to have a higher mortality rate than the mild group, regardless of
which drug is used; as a result, without stratification, it appears as if the new drug
does not improve the mortality rate. Usually, we are interested in whether the new
drug works or not, but not in the differences between the treatment groups caused
by confounding, so the conclusion based on the upper table is considered a fallacy.
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Treatment Death Survival % Death
New drug 16 34 32%
Existing drug 15 35 30%

Baseline Severity Treatment Death Survival % Death
Severe New drug 15 25 37.5%

Existing drug 10 5 66.7%
Mild New drug 1 9 10%

Existing drug 5 30 14.3%

Table 1.1: An artificial example of Simpson’s paradox.

In Example 1, it is mentioned that our concern is "whether the new drug works
or not". We would like to think about this question a little more. What makes us
judge whether the new drug works or not? To answer this question, it would require
a philosophical discussion of causality; however, for the purposes of this thesis, we
consider the case of "taking a new drug" and the case of "not taking a new drug,"
and compare the former with the latter to determine whether the new drug works or
not. If the new drug works, we say the new drug has a causal effect compared with
the existing drug. Unfortunately, it is impossible to answer this question for a single
patient. This is because the patient can either "take the new drug" or "not take the
new drug," and it is impossible to observe both outcomes simultaneously. This fact
has been called the fundamental problem of causal inference [61, 33]. Fortunately,
however, as we will see later, it is possible to infer causal effects on a population.
This is why statistics plays an important role in causal inference.

Then, is it possible to deal with causality within a purely statistical framework?
Actually, this is difficult. Let us consider causality and statistics through the following
example.

Example 2: Rainfall and umbrella sales When it rains, sales of umbrellas
increase because people who forget their umbrellas buy them. We now try to express
this causal relationship in a statistical model. Let X be a binary random variable
indicating whether it rains or not, and Y be the sales of umbrellas. Here, if there
is a causal effect from X to Y , we define PY |X 6= PY , where PY is the marginal
distribution of Y , and PY |X is the conditional distribution of Y given X (the same
applies in the opposite causal direction). Since our intuition is that there is a causal
effect from X to Y , PY |X 6= PY holds in this setting. Then, what about causality
in the opposite direction? PY |X 6= PY implies that X and Y are not independent,
so PX|Y 6= PX is also true. This means "increased sales of umbrellas bring about
rainfall", but this conclusion is apparently unacceptable.
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There are many other possible ways to define causal dependence in the framework
of statistics. However, one that seems to work intuitively turns out not to be a good
representation of causality. This encourages us to consider another framework to
represent causal relationships. In the next section, we see that a framework involving
a "what if...?" world successfully represents causal relationships.

1.1.2 Frameworks for Causal Inference

One way to express causality without contradiction is to consider a framework directly
incorporating the world of "what if...?." Let us look at the example above again.

Example 2: Rainfall and umbrella sales (continue) Let P (1)
Y denote the

marginal distribution of Y in the world where God has sent rain regardless of the
laws of nature, and P (0)

Y denote the marginal distribution of Y in the world where
God has not sent rain. If there is a causal relationship from X to Y , we define
P

(1)
Y 6= P

(0)
Y . Since rainfall has a causal effect on umbrella sales, one can conclude

P
(1)
Y 6= P

(0)
Y . Conversely, the marginal distribution of X in the world where God

has increased the sales of umbrellas is P (1)
X , and the marginal distribution of X in

the world where God has not increased the sales is P (0)
X . Similarly, we define the

existence of causal effect from Y to X by P (1)
X 6= P

(0)
X . Since the previous conclusion

P
(1)
Y 6= P

(0)
Y does not imply anything about the relationship between P (1)

X and P (0)
X ,

we can follow our intuition and conclude P (1)
X = P

(0)
X .

Unlike the statistical framework, this example indicates that the "what if...?"
framework enables us to express the causal relationship without any contradiction.
For further understanding on causality, we have to discuss more details of this causal
framework.

In Section 2, we introduce the structural causal model (SCM) [44, 56] and the
potential outcome model [71, 61, 41] as examples of such frameworks. SCM uses the
tools of "do-operation" and "counterfactual" to describe the "what if...?" world in
a relatively direct way. On the other hand, the potential outcome model is rarely
interpreted as a representation of the "what if...?" world; however, the "potential
outcome" in its name refers to the outcome that would have been obtained if a
certain treatment had been taken, which is nothing but a variable in the "what if...?"
world. In fact, it has been pointed out that both models represent essentially the
same concept [28, 29, 56].
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1.1.3 Statistical Estimation of Causal Quantities

In the previous section, we see that a framework involving the world of "what if...?"
enables us to describe a causal relationship without contradiction. In this section, we
review the relationship between this framework and statistical inference. In statistical
inference, especially in frequentist statistics, the data are assumed to be a sample
from a fixed population with the probability distribution. Statistical inference is a
framework for estimating the probability distribution of this population based on the
sample. Causal inference, on the other hand, is concerned with the "what if...?" world.
If we assume that this imaginary population (certainly the sampling population is
also "imaginary" in the sense that it is just a model, but we refer to something of
the "what if...?" world as "imaginary") entails a certain probability distribution,
how can we infer the properties of that distribution? One way, as scientists have
long done, is randomized experiments [22, 59]. Randomized experiments can be
viewed as a way of pseudo-sampling from the imaginary population of interest. If we
conduct a randomized experiment, we can assume that we have a sample from the
population of interest, and we can make inferences on the causal effects of treatment
using the usual statistical methods (estimation of expected value by sample mean,
t-test, analisys of variance, etc.).

However, randomized experiments are often impossible for various reasons: in-
cluding ethics, cost, effort, and the nature of the research object. In such cases,
inferences are based only on incomplete experiments, natural experiments, or non-
experimentally obtained data [59, 19]. One of the main challenges of statistical
causal inference is the identification of the causal quantity of interest. This is the
question of how to represent a quantity of interest defined in the imaginary population
using only the quantities of the sampling population, and what assumptions are
necessary. If a causal quantity is identifiable, then an estimator can be constructed
by approximating with the quantity which can be estimated by the observed data.
For example, the stratified estimator in Example 1 is a consistent estimator of the
mortality rate in each stratum because the identification assumption is satisfied by
the stratification by the baseline severity.

Even if a causal quantity is identifiable, it is often difficult to estimate. For
example, the average treatment effect (ATE) is the most fundamental causal quantity,
and it is often estimated using the conditional expectation of the outcome or a model
of the treatment assignment probability. If the model is misspecified, the estimator
loses consistency. In some cases, some of the assumptions necessary for identification
do not seem to hold for the sampling distribution.

Above, we discuss the inference on the "what if...?" world, but even if we are
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interested in the sampling distribution, we sometimes want to estimate a model with
causal implications. In other words, we assume there is a causal structure (SCM in
most cases) behind the sampling population and infer the causal structure. This kind
of problem is called statistical causal discovery. As we see in the previous section,
models with causal implications have higher expressive power than ordinary statistical
models. This high expressive power is related to the difficulty of identification and
estimation. For example, among SCMs, a nonparametric model and a linear Gaussian
model are not completely identifiable [70, 16, 56]. For complete identification, it is
necessary to assume nonlinearity with certain conditions or linear non-Gaussianity,
for example. We discuss this identification matter in causal discovery in Section
2.1.1. Such a model requires some devices, as it is necessary to construct the
estimation method with the identification condition in mind. For example, based on
the assumption of non-Gaussianity, we have to use a loss function that can leverage
the information on higher-order moments.

In practical data analysis, we have to deal with not only the difficulties of causality,
but also various difficulties of data (high dimensionality, missing data, outliers, etc.).
This is difficult because it is not enough to simply deal with causal difficulties and
data difficulties; we must also pay attention to the difficulties that arise from the
combination of the two. Frangakis and Rubin have introduced the framework of
"principal stratification" to estimate causal effects in the presence of dropouts [23].
This framework enables us to consider systematically what should be estimated and
how it should be estimated, but it requires additional models to deal with dropouts
because the principle strata of each subject is not known a priori. Another example
is estimating causal effects with high-dimensional covariates [9, 8, 3]. Regularized
regression [74, 24] is widely used in ordinary statistics when the dimensionality of the
covariates is large. However, the parameter estimates by regularized regression are
generally biased; then the estimates of causal effects using such regularized estimators
are also biased. The basic concern of this paper is similar to these two examples,
and we are interested in how to deal with the difficulties associated with estimating
causal relationships while dealing with the difficulties in the data. This thesis focuses
on the causal discovery for high-dimensional and sparse data and estimation of the
average treatment effect under outlier contamination.

1.2 Our Contributions

We have made some contributions to statistical estimation methods for causal
relationships.

The first work is the development of an algorithm to estimate causal graphs of the

10



linear non-Gaussian acyclic model (LiNGAM), which is one of the fully identifiable
causal models. This is a joint work with Prof. Fujisawa, the tutor of my Ph.D.
course. The estimation problem of LiNGAM can be formulated as the estimation
of parameter matrix in independent component analysis (ICA). We have focused
on the sparsity of causal graphs and have proposed an efficient estimation method
based on the log-likelihood with sparse penalty. Since the estimation of ICA has a
unique instability, we incorporated various devices for stabilization in addition to
the sparse penalty. This work appeared in Neurocomputing, which is an academic
journal on machine learning.

Kazuharu Harada and Hironori Fujisawa. Sparse Estimation of Linear
Non-Gaussian Acyclic Model for Causal Discovery. Neurocomputing, 459:
223-233, 2021.

The second work is the development of an estimator for the ATE under outlier
contamination. This is also a joint work with Prof. Fujisawa. The ATE is a
fundamental quantity of causal inference, and the inverse probability weighting (IPW)
estimator and the doubly robust (DR) estimator are widely used to estimate the ATE.
Since these estimators are vulnerable to outliers, we should use alternative methods
under contamination. For this purpose, some IPW/DR estimators for median are
available; however, the outlier resistance of the median is limited, especially when
the ratio of outliers is not ignorably small. Our estimators, the density-powered
IPW/DR estimator, and its variant, the εDP-DR estimator, effectively reduce the
bias due to outliers by incorporating a density power weighting. This work is now
under review, and the manuscript is available on arXiv.org.

Kazuharu Harada and Hironori Fujisawa. Outlier-Resistant Estima-
tors for Average Treatment Effect in Causal Inference. arXiv preprint
arXiv:2106.13946, 2021.

1.3 Outline

This thesis is organized as follows. In Section 2, we introduce some fundamental
notions of statistics for causality. Statistical causal discovery and statistical causal
inference are both statistical methods to deal with causal relationships, but their
purposes are different and the methodological differences are not small. In this
section, we review the basics of each of the two fields. In particular, we discuss
LiNGAM and the IPW/DR estimators, which are highly related to our contributions.
In Section 3, our first contribution, the sparse estimation algorithm for LiNGAM, is
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presented. In Section 4, our second contribution, the outlier-resistant estimator for
the ATE is presented. Section 5 is a conclusion.
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2 Preparation

2.1 Causal Discovery

2.1.1 Structural Causal Model and Causal Discovery

In statistical causal discovery, a system of variables is represented by a structural
causal model (SCM). The SCM is defined as follows.

Definition 2.1 (Structural causal model; SCM). Let X be the d-dimensional random
variable. A SCM consists of a set of assignments:

Xj := fj(PA(j), Ej), (2.1)

where PA(j) ⊆ {X1, ..., Xd}\{Xj} is called parents of Xj and Ej ∈ {E1, ..., Ed} are
independent noises. The corresponding graph G is constructed by setting the variable
as nodes and drawing directed edges from each parent to its child.

Unlike algebraic equations, an assignment implies the substitution of the right-
hand side to the left-hand side. Given an SCM, the joint distribution of the variables
in the system is uniquely determined. The proof is based on so-called ancestral
sampling (e.g., see Appendix C.2. of [56]).

In this thesis, only the case where the graph G does not have a cyclic structure
is considered. Besides, the independence of the error terms implies that there are
no unobserved confounders. Causal discovery in the presence of cyclic structure has
been discussed in [48, 53, 36, 39, 11], for example. Causal discovery in the presence
of unobserved confounding is also discussed in [14, 63, 73, 62], for example.

The joint distribution entailed with an SCM has a probabilistic structure that
corresponds to the graph structure. In other words, there is an (conditional) indepen-
dence between the variables in the system that corresponds to SCM, which can be
deduced from the graph structure. A simple example is given below. Suppose that
an SCM containing variables A, B, and C is defined by the following assignments:

A := fA(EA),

B := fB(A,EB),

C := fC(B,EC).

The corresponding graph, excluding the error terms, is A → B → C. From the
independence of the error terms, we can say the following conditional independence:

A ⊥⊥ C|B.
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Conversely, it is a natural idea to recover the original graph from the set of
conditional independence statements inferred from the data. Assuming that the data
were i.i.d. samples from the entailed joint distribution, the conditional independence
between the variables can be inferred from the data. In fact, this idea directly forms
the basis of a classical approach: constraint-based methods for causal discovery.
For example, the PC algorithm [70] estimates the graph structure based on the
conditional independence between variables. Assuming a linear Gaussian structure on
the assignments, conditional independence can be tested based on partial correlation
[49]. Alternatively, nonparametric tests based on the kernel method are available
[27, 86]. However, there is an important problem with the conditional independence-
based approach. It is the problem of identifiability that different SCMs can generate
the same joint distribution [70, 44, 56]. In the above example, A ⊥⊥ C|B also holds
for SCMs satisfying A ← B ← C or A ← B → C, instead of A → B → C. This
unidentifiable set of graphs is called the Markov equivalence class.

In addition to the constraint-based approach, there is another classical approach
to causal discovery, which is based on some scores computed from the data and the
model. For example, the GES algorithm [16] assumes a linear Gaussian model for the
SCM and searches for the best model based on the BIC. Since it is computationally
infeasible to cover all DAG structures when there are many variables in the system, the
GES algorithm uses the greedy method for the search. As well as the constraint-based
approach, the score-based method does not solve the problem of unidentifiability of
Markov equivalences as long as it assumes a linear Gaussian model. Let us give an
example. Suppose that the data is generated according to the following SCM:

A := EA,

B := βBAA+ EB,

where EA ∼ N (0, σ2
A), EB ∼ N (0, σ2

B). The entailed joint distribution of A and B is
MN (0,ΣA→B), where

ΣA→B =

(
σ2
A βBAσ

2
A

0 β2
BAσ

2
A + σ2

B

)
.

However, the following SCM with opposite causal direction is also entailed by the
same joint distribution:

A := βABB + E ′A,

B := E ′B,
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where EA ∼ N (0, σ2
Aσ

2
B/(β

2
BA+σ2

B)), EB ∼ N (0, β2
BAσ

2
A+σ2

B), and βAB = βBAσ
2
A/(β

2
BA+

σ2
B). This means that the causal direction is not identifiable even in the two-variable

case under the linear Gaussian assumption.
In recent studies, it has been shown that the causal structure can be fully

indentified by certain assumptions on its assignments. For example, the linear
non-Gaussian acyclic model (LiNGAM), which assumes a linear function for the
assignments and non-Gaussianity for all but one of the error terms, is fully identifiable.
We discuss the details of LiNGAM in the next subsection. For linear models, Gaussian
model with equal error variances is also being fully identifiable [55]. Other identifiable
models are based on some nonlinear functions. The nonlinear additive noise model
(ANM) [57],

Xj := fj(PA(j)) + Ej, (2.2)

is also identifiable. The postnonlinear model [85] is a more general class of identifiable
SCM models:

Xj := gj(fj(PA(j)) + Ej). (2.3)

Identifiable models are comprehensively discussed in Chapters 4 and 7 of [56], for
example. In this thesis, we focus on LiNGAM because of two reasons: (1) it is easy
to interpret by virtue of its linearity, and (2) the assumption of non-Gaussianity
is milder than the assumption of equal variance, which is the key assumption of
another identifiable linear model [55]. Because of this preferable aspects, LiNGAM
has several known applications [e.g. 50, 80, 83].

2.1.2 Linear Non-Gaussian Acyclic Model (LiNGAM)

LiNGAM is an acyclic SCM with independent non-Gaussian errors and linear as-
signments. Let X ∈ Rd be observed variables of the system, and then the following
equation holds for the entailed joint distribution of LiNGAM

X = BX + E. (2.4)

B ∈ Rd×d is the coefficient matrix in the assignments; if the elements of X are aligned
from upper to lower in the causal ordering, then B is a strictly lower triangular
matrix. In other words, suppose that there exists a permutation matrix Q (which is
an orthogonal matrix) and multiply Q by (2.4) from the left as
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QX = (QBQT )QX + QE. (2.5)

Then the matrix QBQT becomes strictly lower triangular. E ∈ Rd is a vector of
independent non-Gaussian errors. Estimation of B can be seen as a problem of
independent component analysis (ICA) by solving (2.4) with respect to E and letting
W = I−B:

E = (I−B)X = WX. (2.6)

This formula can be seen that the observed variable X has been generated by mixing
the independent signals E by the matrix (W)−1. The identifiability of LiNGAM relies
on the identifiability of ICA. ICA is identifiable except for ordering and scale of the
independent components. Thus, the solution of ICA WICA results from disarranging
the order and scale of the rows of I − B. The epochal point of LiNGAM is that
the row ordering and scale, which are not identified by ICA, can be identified by
utilizing the acyclicity of the SCM. If the true SCM is acyclic, then B can uniquely
be transformed into an exact lower triangular matrix. This implies that the diagonal
elements of W = I−B are all 1. There is a unique transformation T (·) involving
reordering and rescaling the rows of WICA that makes all diagonal components of
T (WICA) equal to 1 (see Appendix A of [64]). Therefore, the coefficient matrix B of
LiNGAM is completely identifiable by virtue of the combination of the identifiability
of ICA and the acyclicity of SCM.

Various estimation methods have been proposed for LiNGAM. In this section,
we introduce two major, but different types of algorithms: ICA-LiNGAM[64] and
DirectLiNGAM[65]. The first method, ICA-LiNGAM, is the one proposed in the
original paper of LiNGAM. ICA-LiNGAM estimates B using ICA as well as its
identifiability proof. The algorithm is shown below.

1. Obtain an estimate ŴICA for WICA from the data matrix X ∈ RN×d by a
standard ICA algorithm (e.g. FastICA[37]).

2. Apply the transformation T via the following two steps.

(a) Obtain a permutation P such that the diagonal elements of PŴICA are
non-zero by minimizing

∑
|(PŴICA)ii|−1. This can be done by a classical

linear assignment algorithm like Hungarian method (See [13]).

(b) Next, rescale the rows of PŴICA by its diagonal elements. Let Ŵpre be
the permuted and rescaled parameter matrix and let B̂pre = I− Ŵpre.
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3. Obtain causal ordering of {X1, ..., Xd} by searching for a permutation matrix
Q which makes QB̂preQ

T lower triangular. This step is formulated as the
minimization of the absolute sum of upper triangular elements of QB̂preQ

T .

4. Based on the obtained causal ordering, estimate the coefficient matrix by sparse
linear regression [74, 92]. Namely, let k(j) be the causal ordering of Xj, and
regress Xj on {Xl; k(j) > k(l), l ∈ {1, ..., d}} for all js.

The 3rd step of ICA-LiNGAM can be quite heavy in computation because the
number of possible permutations grows so rapidly as the dimension d increases. This
is intractable even in non-high dimensional cases such as d > 10. In that case, the
permutation matrix Q can be obtained by a fast but somewhat ad hoc way:

3’-1 Replace the value closest to 0 in B̂pre with 0.

3’-2 Test whether the matrixQ exists such thatQB̂preQ
T is strictly lower triangular.

3’-3 If the step 4’-2 fails, replace the next smallest (in absolute value) value with 0
and return to Step 4’-2.

Step 3’-2 can be done fast in a simple algorithm (See Algorithm B in [64]).
The another approach, DirectLiNGAM, is based on Darmois-Skitovich theorem

[67, 68, 69].

Theorem 2.1 (Darmois-Skitovich). Let Z and W as

Z =
d∑
j=1

αjSj

W =
d∑
j=1

βjSj,

where Sj (j = 1, ..., d) are the independent random variables and αj, βj (j = 1, ..., d)

are the coefficient constants. If Z andW are independent, all Sjs that satisfy αjβj 6= 0

are normally distributed.

This theorem is also used to show the identifiability of ICA [17]. In contraposition,
the theorem implies that Z andW are not independent if there exists a non-Gaussian
Sj with αjβj 6= 0. Using this theorem, it can be shown the necessary and sufficient
conditions for Xk to be exogenous, i.e., Xk := Ek in the SCM.
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Theorem 2.2 (Lemma 1 in [65]). Assume that the observed variable X follows the
LiNGAM (2.4). Let Rjk be the residual for which Xj is regressed on Xk:

Rjk = Xj −
Cov[Xj, Xk]

Var[Xk]
Xk (2.7)

Then, the variable Xk is independent of other variables if and only if Xk is independent
of its residuals Rjk for all j 6= k.

Based on this result, the following algorithm called DirectLiNGAM has been
proposed in [65].

1. Initialize the vector of active variables as XA = X, and let U = {1, ..., d} and
K = ∅ be an ordered list of the indices of Xj.

2. Repeat the following steps until d− 1 variables are appended to K:

(a) For all k, regress Xj on Xk for all j ∈ U\K(j 6= k) and compute the
residual vector R·k ∈ R|U\K| (note that the kth element Rkk is 0).

(b) Compute the following independence measure:

T (Xk;U\K) =
∑

j∈U\K,j 6=k

MI(Xk, Rjk), (2.8)

where the mutual informationMI is estimated by the kernel-based method
[4], for example.

(c) Find l that Xl minimizes T (Xl;U\K), and append l to K.

(d) Update XA with R·l.

3. Append the last variable to the end of K.

4. Estimate the coefficient matrix in the same manner as ICA-LiNGAM.

In summary, DirectLiNGAM finds the most upstream variable of the causal ordering
among the set of active variables XA by running through Step (a) to Step (d).
The most upstream variable is found by minimizing the sum of the independence
measure between the regressor and the regression residuals. Unlike ICA-LiNGAM,
DirectLiNGAM does not involve an iterative optimization step in its algorithm, so it
has the advantage of being completed in a fixed number of computations for a given
data set. Another advantage is that it is easy to incorporate prior knowledge.

These methods, ICA-LiNGAM and DirectLiNGAM, are very convenient to
estimate B of LiNGAM, however, they are based on two different statistical criteria;
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the step defining the causal ordering is based on non-Gaussianity (independence), and
the parameter estimation step is based on a squared loss with a sparse penalty. As
discussed in detail in Section 3, such features of these methods can lead to undesirable
information loss. In our work, we seek to improve this aspect and propose an efficient
estimation method.

2.2 Causal Inference

2.2.1 Potential Outcome Model

Whereas statistical causal discovery aims at estimating the causal structure of the
system itself, statistical causal inference assumes the causal structure is known and is
mainly concerned with the definition of appropriate causal effects and how to identify
and estimate such quantities. It is also common to discuss methods of statistical
causal inference within the framework of SCM as well as statistical causal discovery;
however, Rubin’s causal model [41] is also widely used when we are interested in
the effect of a particular treatment on the outcome. In this thesis, the estimation of
treatment effects is discussed based on Rubin’s causal model. Note that the notations
of the variables are different from those in the previous subsection.

Now we introduce Rubin’s causal model under the common setting that causes
Simpson’s paradox. Let Yi ∈ R be the observed outcome, let T ∈ {0, 1} be the
dichotomous treatment indicator, and let Xi ∈ X be the confounders. Rubin’s causal
model introduces the potential outcome Y (t) ∈ R, which denotes the hypothetical
outcome of what if an individual received the treatment t. Y (t) can be observed only
when the individual actually receives the treatment t. For example, suppose that the
dataset in Table 2.1 is available. Due to missingness, the individual-level treatment

ID Actual Treatment Outcome Y Y (1) Y (0)

1 New Drug Died Died (missing)
2 New Drug Survived Survived (missing)
3 Existing Drug Died (missing) Died
4 Existing Drug Died (missing) Died

Table 2.1: The potential outcome can only be observed for the actually received
treatment for each individual. Y (1) is the potential outcome with the new drug, and
Y (0) is that with the existing drug.

effect Y (1)
i − Y (0)

i cannot be computed in reality. This is the fundamental problem
of causal inference [61, 33]. Instead, distributional parameters like the average
treatment effect (ATE), which is defined as E[Y (1) − Y (0)], are used to express the
group-level causal effect. Although there are some other types of causal effects, which
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are sometimes more informative than the ATE, such as the quantile treatment effect
[1, 15, 21, 18] and the density treatment effect [47], the classical ATE is often the
center of interest.

If the treatment is randomly assigned, the ATE is equivalent to E[Y |T = 1]−
E[Y |T = 0], which can be estimated by i.i.d. observations. Random assignment is
common in experimental settings like randomized controlled trials, but it usually does
not hold in observational settings. Example 1 in Section 1.1.1 is a typical case for
which the random assignment does not hold, and it falls into Simpson’s paradox. To
identify the ATE from observational data, it is necessary to adjust the confounding.
In Rubin’s causal model, ATE is identified under the following three assumptions:

1. Exchangeability: Y (t) ⊥⊥ T |X for all t ∈ {0, 1}.

2. Consistency: Y = Y (t) if T = t.

3. Positivity: P (T = 1|X) > c for some c>0.

Exchangeability, also known as ignorability or unconfounded, means that the treat-
ment is randomly assigned conditional on confounders. Consistency ensures that
the observed outcome reflects the value of the potential outcome corresponding to
the actually received treatment. When the treatment is dichotomous, it can also be
written as Y = TY (1) + (1 − T )Y (0). Positivity represents any individuals have a
chance to be assigned to either treatment, no matter what their values of confounders
are. Under these assumptions, ATE can be transformed as follows:

E[Y (1) − Y (0)] = E[E[Y (1) − Y (0)|T,X]]

= E[E[Y (1)|T,X]− E[Y (0)|T,X]]

= E[E[Y (1)|T = 1, X]− E[Y (0)|T = 0, X]]

= E[E[Y |T = 1, X]− E[Y |T = 0, X]].

The third equality holds because of exchangeability, and the fourth equality holds
because of consistency. Stratification enables us to estimate this estimand in a
relatively straight manner. In the stratification approach, the sample is divided so
that the confounders are equally distributed across the treatment groups within
each stratum, and the sample mean by group is taken in each stratum to estimate
E[Y |T = 1, X]−E[Y |T = 0, X]. Then, depending on the sample size of each stratum,
the strata are combined to estimate ATE. Matching involves pairing samples of the
treatment group and the control group that have the same values of confounders or are
close to each other based on certain criteria. And then E[Y |T = 1, X]−E[Y |T = 0, X]

is estimated based on the difference in outcomes between the pairs. Stratification and
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matching are preferable in the sense that they do not depend on a particular statistical
model. However, they have the disadvantage that there is some arbitrariness in
how to form strata or pairs. Moreover, stratification and matching are practically
impossible when the confounding variables are high-dimensional.

Outcome regression is an estimation method that can deal with the problem of
high dimensionality. It models E[Y |T = 1, X] and E[Y |T = 0, X] by some statistical
models m1(X; β1) and m0(X; β0), respectively. Then, ATE is estimated by

1

N

N∑
i=1

{
m1(Xi; β̂1)−m0(Xi; β̂0)

}
, (2.9)

where β̂1 and β̂0 are obtained by a standard estimation method like least squares
or maximum likelihood estimation. In this way, ATE can be estimated by outcome
regression even with high-dimensional counfounders. However, it is necessary to
model the conditional expectation correctly for a consistent estimation of ATE. In
general, a deep scientific consideration on the variables is essential to model the
relationship between the outcome and confounding variables correctly. This modeling
is often very difficult. On the other hand, the propensity score, reviewed in the next
subsection, models the mechanism between treatment assignment and confounding
variables. The mechanism of treatment assignment may be more tractable than
modeling the relationship between the outcome and confounding variables. For
example, guidelines for clinical practice exist in a medical setting. An additional
advantage is that even when multiple outcomes are of interest, it is not necessary to
model the relationship between each outcome and the confounders one by one if the
correct propensity score is obtained.

2.2.2 Propensity Score-Based Estimators for ATE

As discussed above, stratification and matching are practically impossible when the
confounders are high dimensional. Outcome regression can deal with this problem,
but in turn, it faces the problem of model misspecification. Then, we introduce
the propensity score as another approach to estimating ATE. The propensity score
models the conditional probability of assignment P (T = 1|X). Typically, logistic
regression with maximum likelihood estimation is assumed. The propensity score
has a balancing property, which states that the distributions of the covariates among
the treatment groups are equal when conditioned on the propensity score.

While the propensity score can be used for stratification and matching, this
section mainly discusses the inverse probability weighting (IPW) method [58, 60]
and its extensions. ATE can also be identified in different ways than in the previous
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section:

E[Y (1)] =

∫∫
ydPY (1)|X(y|x)dPX(x)

=

∫∫
ydPY |T=1,X(y|T = 1, x)dPX(x)

=

∫∫
1 · y

P (T = 1|x)
· P (T = 1|x)

+
0 · y

P (T = 0|x)
· P (T = 0|x)dPY |T=1,X(y|T = 1, x)dPX(x)

=

∫∫∫
ty

P (T = 1|x)
dPY |T,X(y|t, x)dPT |X(t|x)dPX(x)

= E
[

TY

P (T = 1|X)

]
.

Since the expectation of Y (0) is also identified as

E[Y (0)] = E
[

(1− T )Y

1− P (T = 1|X)

]
,

ATE is identified by using the propensity score. Let π(X; α̂) be the propensity score
with estimated parameter α̂, and then the IPW estimator is

1

N

N∑
i=1

TiYi
π(Xi; α̂)

− 1

N

N∑
i=1

(1− Ti)Yi
1− π(Xi; α̂)

. (2.10)

In the following, we only discuss estimation of E[Y (1)] for simplicity. The IPW
estimator has some different forms [51]. In particular, the following form has a
smaller asymptotic variance than (2.10). Moreover, it can be regarded as a solution
to the following estimating equation:

µ̂IPW =

(
N∑
i=1

TiYi
π(Xi; α̂)

)(
N∑
i=1

Ti
π(Xi; α̂)

)−1

,

N∑
i=1

Ti
π(Xi; α̂)

(Yi − µ) = 0. (2.11)

The doubly robust (DR) estimator [5] is an extension of the IPW estimator that
is resistant to model misspecification. The typical DR estimator for E[Y (1)] is usually
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defined as follows:

µ̂DR =
1

N

N∑
i=1

{
TiYi

π(Xi; α̂)
− Ti − π(Xi; α̂)

π(Xi; α̂)
m1(Xi; β̂)

}
, (2.12)

where m1(X; β) is a model for E[Y |T = 1, X] and β̂ is an estimator of β. The
DR estimator combines the IPW estimator and the outcome regression. This
type of estimator is also called the augmented IPW (AIPW) estimator. The DR
estimator is consistent with µ(1) if either the propensity score model or the outcome
regression model is correctly specified. The name "doubly robust" comes from this
property. In addition, semiparametric theory ensures that the DR estimator has
the lowest asymptotic variance as an estimator for µ(1) if both models are correctly
specified[77, 5, 76]. The proof of the double robustness is given in Chapter 13 of
[32] or Chapter 6 of [76], for example. The DR estimator is also represented as the
solution of the following estimating equation:

N∑
i=1

{
Ti

π(X; α̂)
(Yi − µ)− Ti − π(X; α̂)

π(X; α̂)
(m1(Xi; β̂)− µ)

}
= 0.

Since the IPW and DR estimators can be regarded as solutions to the estimating
equations, they can be considered as one of the M-estimators, which is discussed in
Section 4. This allows us to apply the theory of M-estimation to the proof of key
asymptotic properties such as consistency and asymptotic normality.

The IPW and DR estimators are very useful, however, they are vulnerable
to outliers because they involve the sample average. As we see in Section 4, it
is insufficient to estimate m1(Xi; β̂) in an outlier-resistant way. Quantile-based
approach is relatively resistant to outliers, but the resistance is limited in case the
contamination ratio is not small. We propose novel IPW and DR type estimators
that are more resistant to outliers than IPW/DR quantile-based estimators.
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3 Sparse Estimation of LiNGAM

3.1 Background

In this work, the goal is to estimate the structure and parameter matrix of LiNGAM
with sparse connectivity. Notations are taken over from Section 2.1.

As introduced in Chapter 2, LiNGAM is one of the causal discovery models that is
completely identifiable and is characterized by its interpretability. We introduced two
popular methods for the estimation of LiNGAM: ICA-LiNGAM and DirectLiNGAM.
There are other methods similar to DirectLiGAM: Pairwise LiNGAM [39] and High-
dimensional LiNGAM [81], but these are two-step methods that first use a discrete
algorithm to infer the causal ordering, and then use penalized least squares to estimate
the presence or absence of directed edges and path coefficients. Here, we focus on
a sparse structure of causal relationships in high-dimensional data. The two-stage
methods based on different criteria are not efficient in this case for two reasons: (i)
the sparse structure is not always incorporated in causal order estimation, and (ii) the
information of higher-order moments is not used in parameter estimation although
the model is assumed to be non-Gaussian. To address these issues, we develop a
likelihood-based and one-criterion algorithm incorporating the sparse structure. A
sparse estimation method based on ICA for LiNGAM was already discussed [87, 88].
However, their methods do not satisfy the prerequisites for consistency, so that
their estimation seems unstable. This work addresses the issue of consistency by
developing a sparse estimation algorithm using whitened data with two penalty
terms: a generalized lasso [75] type penalty and another penalty which is related to
the consistency condition.

Another approach, the new characterization of "DAGness" has been introduced
by [91], which uses the continuous function h : Rd×d → R such that h(B) = 0 if and
only if the corresponding graph is acyclic. Previously, combinatorial optimization
techniques have been essential for finding the structure of a DAG, but by using
the function h, a DAG can be obtained by solving a fully continuous optimization.
Their novel structure learning method is formulated as the solution of the following
optimization problem:

min
B∈Rd×d

1

2N
‖X−XBT‖2

F + λ‖B‖1

subject to h(B) = 0,
(3.1)

where X ∈ RN×d is the data matrix which is supposed to be drawn from the
entailed distribution PC(X) of an unknown linear SCM C. This is called Non-
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combinatorial Optimization via Trace Exponential and Augmented lagRangian for
Structure learning (NOTEARS). In addition, a new algorithm called Gradient-based
Optimization of dag-regularized Likelihood for learning linEar dag Model (GOLEM)
has been proposed [54] recently. GOLEM uses h as a penalty term in combination
with L1 regularization. The main term of the loss function is the log-likelihood
of Gaussian distribution. There are two types of GOLEMs: GOLEM-EV (Equal
Variance) and GOLEM-NV (Not equal Variance). They investigated some significant
roles of h and the L1 penalty in structure learning.

As mentioned in Section 2.1, an identifiable linear SCM requires some additional
assumptions on noise, namely, Gaussian with equal variance [55] or non-Gaussianity
[64]. Since GOLEM and NOTEARS do not assume non-Gaussianity, they may not
be appropriate as comparative methods in this work. Nevertheless, we included these
methods in the numerical experiments because these methods are said to perform
better than LiNGAM in some linear non-Gaussian settings.

In this work, we propose a method for estimating LiNGAM based on the penalized
log-likelihood of ICA. The proposed method consists of a single statistical criterion,
which leverages the sparse structure and the information of higher-order moments.
By virtue of this single criterion, we can (i) incorporate the sparse structure in the
estimation of causal structure and (ii) use the information of higher-order moments
in parameter estimation. Besides, a generalized lasso type penalty is employed as
the sparse penalty instead of an ordinary L1 penalty, and an "orthogonal penalty" is
incorporated to suppress the correlation of the estimated independent components.
These devices aim to bring the estimator closer to the consistent one. Our method
requires an iterative optimization algorithm. We construct an efficient algorithm
based on gradient descent and Alternating Direction Method of Multipliers [ADMM;
12]. ADMM is a widely used algorithm for sparse estimation. A modified natural
gradient is introduced to search in the matrix space with some restrictions. We
also propose an objective procedure for selecting a tuning parameter via likelihood
cross-validation (CV). In order to verify the effectiveness and scalability of the
proposed method, we demonstrate exhaustive numerical experiments. The proposed
method is compared with some estimation methods of LiNGAM and other approaches
to structure learning including NOTEARS [91] and GOLEM [54]. The proposed
method outperforms the comparative methods in almost all cases and shows stable
performance even in high-dimensional cases. The proposed method is also applied to
real data. Finally, we give a conclusion.
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3.2 Proposed Method

In this section, we propose a new method, which we call sparsely mixing ICA-
LiNGAM (sICA-LiNGAM), to estimate the linear DAG model with non-Gaussian
noises. The parameter is estimated based on the log-likelihood of ICA with two
penalties related to sparsity and orthogonality.

3.2.1 ICA and Consistent Estimation

Here we start with a brief review of ICA and its consistent estimation. Let S =

(S1, . . . , Sd)
T be the vector of independent components (ICs) with zero means. Note

that S corresponds to the error term E of linear SCM (2.1). Suppose that we observe
X = AS. The purpose of ICA is to recover the ICs S by MX, where M is the
parameter matrix.

Let pj be the probability density function of Sj , and let M = (m1, . . . ,md)
T and

X = (x1, . . . ,xN)T . The maximum likelihood estimator (MLE) M̂ is given by

M̂ = arg max
M

`(M;X), (3.2)

`(M;X) =
1

N

N∑
i=1

d∑
j=1

log pj(m
T
j xi) + log | detM|. (3.3)

In ICA, we assume that pjs are unknown, so that it seems impossible to estimate
M consistently. However, even when pjs are unknown, the following theorem tells
that MLE has consistency except for the indeterminacy of the scale and the order of
the estimated ICs if we use appropriate probability density functions p̃js instead of
pjs.

Theorem 3.1 (Theorem 9.1 in Chapter 9 of [38]). Let Yj = mT
j X be the estimated

IC for all j ∈ {1, ..., d}. Suppose that Yjs are uncorrelated with unit variance. The
MLE M̂ has consistency except for the indeterminacy of the scale and the ordering
of ICs, if

E[Sj(g̃j(Sj))− g̃′j(Sj)] > 0 for j = 1, . . . , d, (3.4)

where

g̃j(s) =
∂

∂s
log p̃j(s). (3.5)

In the likelihood-based ICA algorithm, the density functions p̃js are adaptively
selected from two candidates such that (3.4) is satisfied for all ICs. For example, the
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next functions are suitable for this purpose:

log p+
j (s) =a1 − 2 log cosh (s) (3.6)

log p−j (s) =a2 − [s2/2− log cosh (s)], (3.7)

where a1 and a2 are related to the normalization constant, which vanishes in (3.4).
Density p+ is used for super-Gaussian components and p− for sub-Gaussian ones.
Detailed discussion is provided in Chapter 9 of [38].

Pre-whitening is often employed in ICA algorithms to convert the assumptions
on Yjs in Theorem 3.1 into a convenient parameter constraint. Consider the spectral
decomposition of (1/N)XTX = VD2VT , where V is the orthogonal matrix and D2

is the diagonal matrix whose diagonal entries are the eigenvalues of (1/N)XTX. Let

Z = (z1, . . . , zN)T = XVD−1, (3.8)

where the diagonal elements of D are positive. Then we have (1/N)ZTZ = Id, so
that the transformed variable Z is uncorrelated with unit variance. Let W = MVD.
Then the MLE of W is reformulated as

Ŵ = arg max
W

˜̀(W;Z), (3.9)

˜̀(W;Z) =
1

N

N∑
i=1

d∑
j=1

log pj(w
T
j zi) + log | detW|, (3.10)

where wj is the jth row of W. We also have M̂ = ŴD−1VT .
Let Yij = mT

j xi and Y = (Yij) ∈ RN×d. We have Y = XMT = ZWT . Here, we
suppose W is an orthogonal matrix. Considering the pre-whitening, the orthogonality
of W keeps Y whitened:

1

N
YTY = W

(
1

N
ZTZ

)
WT = WWT = I. (3.11)

This implies that if we assume W is an orthogonal matrix, the estimated ICs are
whitened even in a finite sample. Many ICA algorithms efficiently obtain Ŵ by
utilizing this orthogonality [38]. The previous works [87, 88] are based on the
likelihood-based ICA with sparse penalty as well; however, since these works do not
whiten the observed variables and pay no attention to the correlation of ICs, it should
not generally have consistency. Note that (3.11) should hold at the population level,
as seen in Theorem 3.1, and hence the orthogonality constraint is not necessary to
be satisfied strictly in a finite sample.
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In our approach, it is difficult to make W to be strictly orthogonal because of
sparsity, and therefore we relax the orthogonal constraint to a penalty term, which
is detailed in the next section. By making W closer to an orthogonal matrix, we
expect our estimator for W to get closer to a consistent one.

3.2.2 ICA with Sparse Penalty for Causal Discovery

Returning to the linear SCM estimation, we consider the sparse structure of M,
because about the half of the entries of M (= I − B) should be zero due to the
acyclicity. In addition, the causal structure may be simple, which leads to more
sparsity into M. Unfortunately, we cannot impose sparsity on B directly because
the MLE cannot identify the order of ICs, and B cannot be derived correctly in the
likelihood-maximization process. Therefore, we impose sparsity on M instead of
B, and, the order of the ICs is decided in a similar way to ICA-LiNGAM after the
estimation of B is obtained.

For sparse estimation, we add to the log-likelihood (3.10) a sparse penalty of the
adaptive lasso [92]:

Pγ(M) =
d∑

j,k=1

cγjk|mjk|, cjk > 0. (3.12)

A typical example of the weight is cjk = 1/|m0
jk|, where m0

jk is an initial estimator
for mjk. A candidate for m0

jk is the MLE or the estimate with unweighted L1
regularization. The tuning parameter γ can be selected by cross-validation, however,
we employ γ = 1 in this work for simplicity, which has been used in some relevant
papers [88, 40]. The penalty term of the adaptive lasso is known to reduce the bias
associated with L1 regularization and has oracle properties, especially in the case of
(generalized) linear regression. Recalling the data is pre-whitened in ICA, the sparse
penalty must be imposed on M = WD−1VT , which is the linear transform of the
parameter matrix W. This type of sparse estimation is called generalized lasso [75].

Here we review the principal component analysis (PCA) with sparsity in order
to understand the sparse estimation of an orthogonal parameter matrix. The PCs
are usually obtained under the orthogonality constraint as well as ICs. Jolliffe et
al. (2003) [42] has proposed a method for obtaining sparse PCs by maximizing the
explained variances with an L1 penalty under the orthogonality constraint. It has
been reported in Zou et al. (2006) [93] that it is difficult to obtain sufficiently sparse
PCs by the method of [42], and then they have proposed a smart idea to obtain
sparse PCs by relaxing the orthogonality. Unfortunately, such an idea cannot be
applied to our situation directly. The most important message is that the sparse
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penalty may not work well under the strict orthogonality constraint. To address this
issue, a novel method is proposed in this work, which contains an additional penalty
related to the orthogonality constraint.

To obtain a sparse structure on M, we relax the orthogonality constraint on W.
More precisely, we impose a unit-norm constraint on each row of W and relax the
off-diagonal orthogonality constraint by adding a penalty term ‖PTW − I‖2

F with
PTP = I to the loss function. The unit-norm constraint fixes the variance of the
estimated ICs to 1. The penalty ‖PTW − I‖2

F reduces the correlation of estimated
ICs. These make the estimate partially satisfy the condition of Theorem 3.1. Note
that the additional penalty term brings the parameter matrix closer to the orthogonal
matrix because the minimizer of ‖PTW − I‖2

F under PTP = I satisfies WTW = I.
Finally, we summarize the proposed method. The observed data is whitened first.

The loss function consists of the negative log-likelihood (3.10), the adaptive lasso
penalty (3.12) on the matrix WD−1VT , and the orthogonality penalty ‖PTW− I‖2

F

under PTP = I. Denote the loss function by

F (W) = −˜̀(W;Z) + λ
{
αPγ(WD−1VT ) + (1−α)

2
‖PTW − I‖2

F

}
.

Let N ⊂ Rd×d be the set of non-singular matrices whose row vectors are normalized.
The parameter estimation problem is defined by

Ŵ = arg min
W∈N

F (W) subject to PTP = I. (3.13)

p̃js are adaptively selected from the candidates: (3.6) and (3.7). The tuning parameter
λ controls the total extent of the penalty, and α balances the sparsity and the
orthogonality. These parameters can be selected via cross validation (CV). After
estimating M by M̂ = ŴD−1VT , we recover the full causal causal structure with a
non-statistical procedure. The CV and the recovering procedure are presented in
the next section. Note that each column of X is centered and normalized before
whitening to impose the sparse penalty evenly, as is usually employed in lasso.

3.3 Algorithm

In this section, we show the whole algorithm of the proposed method. First, we show
how to obtain the minimizer Ŵ with given tuning parameters λ and α. Next, we
illustrate how to select the tuning parameters. Finally, we explain how to recover
the total causal structure.
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3.3.1 How to Obtain Parameter Estimates

We derive an optimization algorithm based on the Alternating Direction Method of
Multipliers [ADMM; 12]). ADMM is applied to the optimization of the objective
function formulated as f1(x) + f2(z) under a linear constraint on (x, z). In particular,
ADMM is a powerful tool when one of the two functions is simple, hence ADMM is
one of the standard optimization algorithms for sparse estimation problems [12, 31]
including generalized lasso.

First, the optimization problem (3.13) is equivalently transformed to the ADMM
form:

min
W∈N ,M,P∈Rd×d

F1(W,P) + F2(M)

subject to WD−1VT = M, PTP = I,
(3.14)

where

F1(W,P) = −˜̀(W;Z) + λ
(1− α)

2
‖PTW − I‖2

F ,

F2(M) = λαPγ(M).

Then, we update (W,M) and P alternately. For given W (and M), the updated
matrix of P is obtained by minimizing ‖PTW−I‖2

F under PTP = I. Let UWDWVT
W

denote the singular value decomposition of W. We see that the updated matrix of
P is given by P = UWVT

W . For given P, we define the augmented Lagrangian as

Lρ(W,M,U) = F1(W,P) + F2(M) (3.15)

+ tr
[
UT (WD−1VT −M)

]
+
ρ

2
‖WD−1VT −M‖2

F ,

where U ∈ Rd×d is a Lagrange multiplier matrix and ρ is a fixed tuning parameter.
From the optimality condition of ADMM, the updates of W,M, and U are given by

Wt+1 = arg min
W∈N

Lρ(W,Mt,Ut)

Mt+1 = arg min
M∈Rd×d

Lρ(Wt+1,M,Ut)

Ut+1 = Ut + ρ(Wt+1D
−1VT −Mt+1)

. (3.16)

In the following, the first and second updates are discussed in detail.
The first update in (3.16) is based on the gradient descent in Algorithm 1. Since

the parameter space of W is restricted to the space of non-singular matrices, the
gradient descent can be improved by incorporating the structure of the parameter
space.
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Algorithm 1 Gradient Descent for W
1: Input:

Wt, Lρ(W,Mt,Ut), umax, and learning rate η > 0
2: Output: Wt+1

3: Calculate the natural gradient ∆W̃ and its modification ∆modW.
4: for u = 1 to umax do
5: W

(u+1)
t ←W

(u)
t − η∆modW

6: break if the convergence criteria for W is satisfied.
end for

7: Update W as Wt+1 ←W
(umax)
t

8: wj,t+1 ← wj,t+1/‖wj,t+1‖ for all j

We use the natural gradient [2], given by

∆W̃ =
∂Lρ(W,Mt,Ut)

∂W
WTW

= −

(
1

N

N∑
i=1

d∑
j=1

g̃(wT
j zi)w

T
j zi + I

)
W

+ λ
(1− α)

2
(W −P)WTW (3.17)

+
{
Ut + ρ(WD−1VT −Mt)

}
VD−1WTW.

The updated matrix using the natural gradient on the non-singular matrix space
is usually not in N . Thus it will be more efficient to make a gradient such that
the updated matrix is in N . Consider a small change W + ε∆W (ε > 0). When
it is in N , the diagonal entries of (W + ε∆W)(W + ε∆W)T must be one. Here
we ignore a very small term related to ε2, which yields diag(W∆WT ) = 0. Let
∆W = (δw1, . . . , δwd)

T with

δwj = δw̃j −
〈wj, δw̃j〉
‖wj‖2

wi for j = 1, 2, . . . , d. (3.18)

Then we can easily see diag(W∆WT ) = 0. Let ∆modW be the gradient satisfying
(3.18), and we use it in Algorithm 1 instead of the ordinary natural gradient ∆W̃.
Rigorously, the updated matrix is slightly out of N . Hence, at the 8th step in
Algorithm 1, it is pulled back to N .

Although the first update in (3.16) requires the minimization of Lρ(W,Mt,Ut)

at every step, it is computationally heavy. Instead, we set a fixed upper limit umax

on the number of iterations to make the algorithm fast. From our experience, even if
umax is not large, the algorithm converges well.
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The second update in (3.16) can be expressed in a closed form. The subgradient
equation of Lρ(Wt+1,M,U) with respect to M is

λα∂MPγ(M)−Ut − ρ(Wt+1D
−1VT −M) = O. (3.19)

From this equation, the update for M takes the form

Mt+1 = S
(
Wt+1D

−1VT +
1

ρ
Ut ;

λα

ρ
Cγ

)
, (3.20)

where Cγ = (cγjk), and S(·) is the soft-thresholding operator given by

{S(X;C)}jk =


Xjk − cjk (Xjk > cjk)

0 (−cjk ≤ Xjk ≤ cjk)

Xjk + cjk (Xjk < −cjk)
.

ADMM usually has one stopping criterion related to the linear constraint, but
the proposed algorithm additionally requires another one because we update W by
gradient descent. Detailed criteria are described in the numerical experiments.

3.3.2 Tuning Parameter Selection

The tuning parameter λ and α can be selected by K-fold CV. Since λ(1−α) imposes
orthogonality, and α balances sparsity and orthogonality, it is necessary to pay
attention to the search range. The parameter λ must be large to some extent, and
0 ≤ α < 1. In this strategy, the tuning parameter for the sparsity, λα, can be taken
from zero to a large value.

Many sparse estimation methods search for the tuning parameter in descending
order [31], but our algorithm does in ascending order. There are two reasons to this
point. One reason is that it is impossible to obtain a maximum of λα. For example,
in lasso [74], the maximum tuning parameter is obtained so that all parameter
estimates are shrunk to zero. In contrast, our methods expect M̂ to be transformed
to B̂, which means M̂ must have at least d non-zero elements. Another reason is
that we have often encountered that the algorithm falls into an inappropriate local
minimum with a large λα.

There is another remark on K-fold CV in the proposed method. We usually use
the average of the log-likelihood paths over the K folds, and we choose the α which
maximizes the averaged path. However, we observed that a log-likelihood path rarely
changed more steeply than other paths. In that case, the averaged path is influenced
by the irregular one. For a robust selection of α, we obtain K points of α that give
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the maximum value of each path and then take the median of them.

3.3.3 Post-Processing

We obtain the estimate Ŵ from the optimization problem (3.13). However, we
cannot estimate B directly via the relation B̂ = I − M̂ because of two problems:
(i) rows of M̂ have to be rearranged and rescaled so that all diagonal entries are
one, and (ii) the estimate B̂ may not be acyclic, even if the true B is acyclic. These
problems can be solved by the method proposed in [64]. Here, we only show the
outline of this method.

The problem (i) is solved as follows. First, in order to obtain the matrix
with non-zero diagonal entries, we search for a row permutation π minimizing∑d

j=1 1/|{π(M̂)}jj|. Next, we rescale the diagonal entries of π(M̂) to be one and
divide each row by the same scale.

The problem (ii) is solved as follows. To ensure the acyclicity, we repeatedly
apply a test-and-cutoff procedure:

1. Test whether B̂ is acyclic or not.

2. If B̂ is not acyclic, replace the non-zero smallest absolute value of B̂ to 0, and
return to step 1.

For the test of acyclicity, an efficient algorithm was proposed by [64].
There is an additional device in the proposed method. After B̂ is made acyclic,

the cutoff threshold is obtained. When this value is larger than pre-specified criteria
ω1(> 0), such as ω1 = 0.05, we can improve the estimate by increasing α and again
estimating M̂ until B̂ is made acyclic with a smaller cutoff than ω1. This truncation
seems ad hoc, but relevant methods like GOLEM set larger criteria like ω1 = 0.3. The
proposed method worked well with much smaller cutoffs in numerical experiments
as shown in Figure 3.4. Furthermore, we can reduce the false discovery of directed
edges by additional cutoff ω2 > 0 for which the entries of B̂ is truncated to 0 if their
absolute values are smaller than ω2.

Figure 3.1 shows the flowchart of sICA-LiNGAM. If we select the tuning parame-
ters via CV, we have to add the CV-step before calculating M. The increment step
of α can be skipped.

3.4 Experiments

In this section, we show the performance of the proposed method by numerical
experiments. On synthetic data, the proposed method (sICA-LiNGAM) is com-
pared with ICA-LiNGAM, DirectLiNGAM, the method of Zhang et al.(2009) [88]
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Figure 3.1: Flowchart of sICA-LiNGAM
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(Zhang+(2009)), NOTEARS, and two GOLEMs. We do not include Pairwise
LiNGAM and High-dimensional LiNGAM because the first two methods would
show similar performance to DirectLiNGAM in our setting, as seen in [39, 81]. The
scalability of the proposed method is examined in high dimensional data up to
d = 500 with a fixed sample size. The application to real data is also conducted.

3.4.1 Comparison of the Methods on Synthetic Data

Numerical experiments are conducted on synthetic data. We basically mimic the
simulation settings of [65, 91]. Observed variables are generated from a linear DAG
model with non-Gaussian noises. True graphs are generated from Erdös-Rényi [ER;
20] or Scale-Free [SF; 6] models of different sizes (d = 10, 20, 50, 100), whose expected
number of edges are d or 2d. The graph type and the number of edges are denoted
by ER1, ER2, SF1, and SF2. The weight parameters of the generated graph are
uniformly drawn from the interval [−1.5,−0.5]∪ [0.5, 1.5]. (The true non-zero weight
parameters are avoided to be around zero.) The distribution of each noise is randomly
selected from three non-Gaussian distributions (Laplace, uniform, and exponential).
The noise variances are uniformly drawn from the interval [1, 3]. We generate 10
datasets with a sample size of N = 1, 000. The noises are randomly drawn from the
selected distributions.

The models are estimated by sICA-LiNGAM, ICA-LiNGAM, DirectLiNGAM,
Zhang+(2009), NOTEARS, GOLEM-EV, and GOLEM-NV. We describe the settings
for these methods. For the proposed method, the tuning parameter λ and α are
selected by 5-fold CV. The search range for λ is [0.1, 0.25, 0.5, 0.75, 1.0], and that of
log10 α is set to
[0,−4,−3.5,−3,−2.5,−2,−1.5,−1,−0.5]. The initial estimate (m0

jk) is obtained by
the proposed method with γ = 0, α = 0 for d ≤ 50, and α = 0.01 for d ≥ 100.
The step size is set at η = 0.001. If the resulting estimate B̂ is not acyclic, we
compare two policies: (i) the initial tuning parameters (λ, α) are selected via CV, and
increment α until B̂ became acyclic (sICA-LiNGAM(CV+)), (ii) the selected (λ, α)

is used even if the cutoff threshold is larger than ω1 (sICA-LiNGAM(CV)). The two
cutoff parameters ω1 and ω2 are both set at 0.05. Two stopping criteria for parameter
updates are set to max |WtD

−1VT −Mt| < 10−4 and max |Wt+1 −Wt| < 10−6.
Other tuning parameters are fixed at umax = 10 and ρ = 1. We use FastICA [37]
results for the initial value except for d = 100. For d = 100, since we found FastICA
was difficult to be converged, we used the result of DirectLiNGAM for the initial
value for W. The proposed method is implemented in Python 3.6.8. We also
implemented Zhang+(2009). For other methods, the authors’ implementations are
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used 1. ICA-LiNGAM and DirectLiNGAM do not require tuning. For Zhang+(2009)
and NOTEARS, the tuning parameter defining sparsity is searched in the same range
as that of α by 5-fold CV. Tuning of GOLEM is more complicated. GOLEM-EV and
GOLEM-NV have three tuning parameters, λEV , λNV , and λacyc. We search for the
optimal tuning parameters from 25 patterns, which are shown in the supplementary
material. The parameter λacyc, which imposes acyclicity on the coefficient matrix,
is fixed at 5. This value is used in the original literature [54]. Note that we did
not conduct CV for NOTEARS and GOLEM on the data with d ≥ 50 due to
computation time. We use λNOTEARS = 0.1 for NOTEARS, (λEV , λacyc) = (10−1.5, 5)

for GOLEM-EV, and (λEV , λNV , λacyc) = (10−1.5, 10−1, 5) for GOLEM-NV. These
values were once selected by 5-fold CV in our pilot experiment. The estimates of
NOTEARS and GOLEM are truncated to reduce false positives if their absolute
values are less than 0.3.

The estimation methods are evaluated in terms of estimation error based on
the Frobenius norm between the estimated and true weight matrices (Distance),
Structural Hamming Distance (SHD), False Discovery Rate (FDR) and True Positive
Rate (TPR). The metrics are detailed in the supplementary material.

Figure 3.2 shows the main results on ER1 and SF1 graphs. The proposed method
achieved the best performance among all methods. This result was probably because
the proposed method efficiently used the information of the data as we intended. The
proposed method succeeded in improving ICA-LiNGAM by virtue of sparsity and, in
particular, largely improved in the high dimensional setting (d = 100). Zhang+(2009),
NOTEARS, and GOLEM were behind the others. ICA-LiNGAM and Zhang+(2009)
were omitted from the result of d = 100 due to seriously bad performance (full results
are available in the supplementary material). The low performance of NOTEARS
and GOLEM would be because these methods cannot leverage the non-Gaussianity
assumption.

Figure 3.3 shows the results on ER2 and SF2 graphs. In this setting, the proposed
method also achieved the best performance among all methods in almost all settings.

Figure 3.4 shows the actual cutoff threshold necessary to make B̂ acyclic at
CV-selected parameter. Although we used ω1 = 0.05, the estimate B̂ could be acyclic
with a much smaller cutoff threshold in most cases. Besides, the proposed method
requires a much smaller cutoff threshold than other methods. This indicates that
we can estimate the acyclic graph in a much less ad hoc manner. ICA-LiNGAM,
DirectLiNGAM, and NOTEARS are excluded because the authors’ implementations
produce acyclic estimates directly.

1ICA- and DirectLiNGAM: https://github.com/cdt15/lingam, NOTEARS:
https://github.com/xunzheng/notears, GOLEM: https://github.com/ignavier/golem
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Figure 3.2: Four evaluation measures (Distance, SHD, FDR, TPR) over two graph
types (ER1, SF1) and four graph sizes (10, 20, 50, 100). The x-axis is the graph size,
and the y-axis is the value of each measure. The thick bar and the thin bar are the
interquartile range and min-max range, respectively.
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Figure 3.3: Four evaluation measures (Distance, SHD, FDR, TPR) over two graph
types (ER2, SF2) and four graph sizes (10, 20, 50, 100). The x-axis is the graph size,
and the y-axis is the value of each measure. The thick bar and the thin bar are the
interquartile range and min-max range, respectively.
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The threshold can be affected by the scale of the true B. After investigating the
threshold and scale sensitivities, we found that the thresholds were small enough
even when each value of B was multiplied by 0.1. The results of the sensitivity study
are found in the supplementary material.

3.4.2 Scalability of the proposed method

The scalability of the proposed method is examined in simpler and higher dimensional
settings. The graphs are generated from the ER model with d = 100, 200, 500, and
noises are drawn only from the Laplace distribution. The expected number of directed
edges is 50 or 100. The sample size and other settings are the same as the previous
experiment. We evaluate the estimation error and computational time of the proposed
method and DirectLiNGAM because these methods performed well for d = 100 in
the previous experiment. In order to evaluate the computational time conveniently,
the tuning parameters of the proposed method were fixed at (λ, α) = (0.1, 0.1). The
experiments are conducted on a single 3.6 GHz Intel Core i7 CPU and a 32GB
memory.

The results of 10 simulations are shown in Figure 3.5. Our method performed well
even in high-dimensional settings. On the other hand, the estimates of DirectLiNGAM
were unstable when d = 500. Both methods finished in realistic computational time.
In high dimensions, it seems difficult to reduce false discovery by truncation with a
small threshold like ω2 = 0.05, but the proposed method did not overlook any causal
relationships even in the d = 500 case.

3.4.3 Real Data

As described in [64], a time series can be approximated by a linear DAG model,
especially if the time series is a stationary autoregressive model of order 1 (AR(1)).
For example, when a time series is sliced into time windows with three time points,
the AR(1) structure can be approximated by the linear DAG model of

X1 = ε1

X2 = b21X1 + ε2

X3 = b32X2 + ε3

. (3.21)

Therefore, if the noises are independent and non-Gaussian, LiNGAM can express
the AR(1) structure and then recover the correct order from the sliced time series.

We applied the four methods to the Beijing Multi-Site Air-Quality Data [89].
This data includes hourly concentration measures of major air pollutants, such as
nitrogen dioxide (NO2) and sulfur dioxide (SO2), recorded at national monitoring
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Figure 3.4: Box plots of cutoff thresholds necessary to make B̂ acyclic at CV-selected
α. Each unit contains 10 results. The lower and the upper edges of each box are
quartile 1 (Q1) and quartile 3 (Q3), and the orange lines are the medians. Circles
are outliers, which are out of the range (Q1− 1.5 · IQR, Q3 + 1.5 · IQR). Please see
the reference of Matplotlib 3.1.1 for details.

If the cutoff exceeded the criteria (red dotted line), we increased α.
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Figure 3.5: Estimation error and computation time based on 10 simulations with
ω2 = 0.05. The x-axis is the dimension of the data.

sites in Beijing. Each site provides every pollutant’s time series from March 1st,
2013 to February 28th, 2017. Each time series was sliced into 1,461 time windows
with 24 time points so that each window consists of hourly measures of one day. The
values were transformed by the function log(1 + x). When a time window contained
missing values, the window was removed. Every method was evaluated by a heatmap
visualizing B̂. Suppose the AR(1) structure is recovered by the linear DAG model,
only the (j+ 1, j)th cell is colored for j = 1, ..., 23, and the other cells are not colored.
Note that the proposed method used the CV-selected α because it was difficult to
obtain the acyclic estimates by increasing α.

Figure 3.6: Heatmaps of B̂s at Tiantan station. Red/Blue indicates a posi-
tive/negative value. If the AR(1) structure is recovered correctly, the (j + 1, j)th cell
is colored for j = 1, ..., 23 and the other cells are not colored.
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Figure 3.6 shows the results of the data at Tiantan station. The proposed
method succeeded in recovering the AR(1) structure very well, and non-AR(1) cells
were almost shrunk to zero. ICA-LiNGAM also recovered the structure, but some
non-AR(1) cells had non-zero values. By virtue of sparsity, the proposed method
shrunk the small non-zero estimates of non-AR(1) cells to zero and recovered the
AR(1) structure better than ICA-LiNGAM. DirectLiNGAM and NOTEARS failed to
recover about or more than half of the AR(1) structure. As seen in the supplementary
material, the proposed method also showed the best performance clearly at the other
monitoring sites.

3.5 Conclusion

In this work, we have proposed a new estimating algorithm for a linear DAG model
with non-Gaussian noise. The proposed method is based on the penalized log-
likelihood of ICA and estimates the causal structure and the parameter values based
on a single statistical criterion. Several devices for stable and efficient learning are
introduced, such as a penalty on the orthogonality of the parameter matrix and the
modified natural gradient. The proposed method achieved the best performance
among the existing methods in the numerical experiments. For future work, it is
significant to extend the method to non-DAG structures, such as data with cyclic
structures and/or latent confounders.
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3.6 Additional Sources for sICA-LiNGAM

3.6.1 Pattern for Tuning Parameters of GOLEM

Table 3.6.1 shows all triples of tuning parameters of GOLEM (log10 λEV , log10 λNV , λacyc)

in Section 5.1.

Table 3.1: The search pattern for tuning parameters of GOLEM
log10 λEV log10 λNV λacyc

−∞ −∞ 5
-4.0 -4.5 5
-4.0 -4.0 5
-4.0 -3.5 5
-3.5 -4.0 5
-3.5 -3.5 5
-3.5 -3.0 5
-3.0 -3.5 5
-3.0 -3.0 5
-3.0 -2.5 5
-2.5 -3.0 5
-2.5 -2.5 5
-2.5 -2.0 5
-2.0 -2.5 5
-2.0 -2.0 5
-2.0 -1.5 5
-1.5 -2.0 5
-1.5 -1.5 5
-1.5 -1.0 5
-1.0 -1.5 5
-1.0 -1.0 5
-1.0 -0.5 5
-0.5 -1.0 5
-0.5 -0.5 5
-0.5 0.0 5

3.6.2 Definitions of Evaluation Measures

We evaluated the estimates B̂ and the corresponding graph by four metrics: 1)
Distance, 2) Structural Hamming Distance (SHD), 3) False Discovery Rate (FDR), 4)
True Positive Rate (TPR). The Distance is a measure for the estimation error. The
other three measures are employed to evaluate the performance of causal discovery.

• Distance (Frobenius Norm of the Difference Between Two Matrices) : Distance
is defined as the Frobenius norm of the difference between two matrices. The
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Distance between the estimate and the truth is evaluated:

Distance = ‖B̂−Btrue‖F . (3.22)

• Structured Hamming Distance (SHD): SHD indicates the number of steps to
transform the estimated graph into the true graph. The steps include edge
addition, deletion, and reversals.

• False Discovery Rate (FDR): FDR is the proportion of false positives and
reversed edges over the estimated edges.

• True Positive Rate (TPR): TPR is the proportion of true positive edges over
the true edges.

3.6.3 Full Results of the Experiment 5.1

Figure 3.7 and 3.8 show the full results of experiment 1 in Section 5.1.

Figure 3.7: Four evaluation measures (Distance, SHD, FDR, TPR) over two graph
types (ER1, SF1) and four graph sizes (10, 20, 50, 100). The x-axis is the graph size,
and the y-axis is the value of each measure. The thick bar and the thin bar are the
interquartile range and min-max range, respectively.
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Figure 3.8: Four evaluation measures (Distance, SHD, FDR, TPR) over two graph
types (ER2, SF2) and four graph sizes (10, 20, 50, 100). The x-axis is the graph size,
and the y-axis is the value of each measure. The thick bar and the thin bar are the
interquartile range and min-max range, respectively.
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3.6.4 Sensitivity Study on Cutoff Threshold

We investigated the sensitivity of the cutoff threshold to obtain acyclic B. Let
κ ∈ {0.1, 0.2, 0.5, 0.75, 1.0} be the scale factor, and each value of B is multiplied by
κ. Then we generated 10 datasets for each κ. The graph types are ER1 and ER2,
and the dimension is d = 20. Figure 3.9 shows the cutoff threshold necessary to
obtain acyclic B. The threshold tends to large when the scale is small. It seems
difficult to estimate when the true scale of B is small.

Figure 3.9: Cutoff threshold and four evaluation measures over two graph types
(ER1, ER2). The x-axis is the scale factor κ, and the y-axis is the value of each
measure. Each box shows 10 results.
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3.6.5 AR(1) Recovery at the Other Sites

We estimated B̂ by four methods (sICA-LiNGAM (proposed), ICA-LiNGAM, Di-
rectLiNGAM, NOTEARS) at three additional sites. If the AR(1) structure is recov-
ered by the linear DAG model, only the (j + 1, j)th cell is colored for j = 1, ..., 23,
and the other cells are not colored.

• At Aotizhongxin station (Figure 3.10), the proposed method successfully re-
covered the time series, especially on SO2. ICA-LiNGAM partly recovered the
structure, but some non-AR(1) cells had non-zero values. DirectLiNGAM also
recovered the structure on NO2, but failed to recover about two third of the
AR(1) structure on SO2. NOTEARS failed to recover about or more than half
of the AR(1) structure.

• At Nongzhanguan station (Figure 3.11), the proposed method completely
recovered the AR(1) structure except for the points of (1,24) and (21,22)
on SO2. None of the other methods could recovered the AR(1) sequence
successfully.

Figure 3.10: Heatmaps of B̂s at Aotizhongxin station. Red/Blue indicates a posi-
tive/negative value.
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Figure 3.11: Heatmaps of B̂s at Nongzhanguan station. Red/Blue indicates a
positive/negative value.
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4 Outlier-resistant Estimation of ATE

4.1 Background

In this work, the goal is to estimate the ATE under contamination by a propensity
score-based approach. Notations are taken from Section 2.2.

As introduced in Section 2, the IPW and DR methods are popular for the
estimation of the ATE. Many estimators for causal quantities, including the IPW
and DR estimators, are based on the sample mean and are therefore influenced by
outliers. Outlier-resistant estimators have been studied for long; however, these
are mostly applicable to non-causal settings [35, 30, 52]. They are not directly
applicable to causal settings owing to confounding. The ATE can be estimated in
an outlier-resistant manner only by using the causal version of the sample median
[21, 90, 18, 72]. In other words, the existing ATE estimators have limited outlier
resistance.

In this work, we propose outlier-resistant extensions of the IPW and DR estimators
for the ATE whose outlier resistance is beyond the sample median. We discuss the
outlier resistance of these estimators from the viewpoint of the unbiasedness of
the estimating equation and influence function (IF). The theoretical assumptions
we make, such as heterogeneous contamination and non-small contamination ratio,
are generally challenging in outlier-resistant statistics. Nonetheless, our estimators
can effectively reduce the bias caused by outliers even under these assumptions. In
particular, our estimators are almost consistent with the true ATE under homogeneous
contamination. No existing estimators for causal inference show outlier resistance
beyond the sample median. In other words, ours are the first methods to overcome
this problem. In order to tackle this problem, we incorporate a positively powered
density function into the estimating equations of the IPW and DR estimators. Our
results show that this density power approach is viable for outlier-resistant estimation
of causal quantities. Furthermore, the theoretical advantages of our estimators are
verified through Monte-Carlo simulations and real data analysis.

The remainder of Section 4 is organized as follows. In Section 4.2, we introduce
the basic concept of outliers and expand it to a causal setting. In Section 4.3, we
propose new estimators and discuss the outlier resistance from the viewpoint of the
unbiasedness of the estimating equations. In Section 4.4, we evaluate the outlier
resistance in terms of the IF. In Section 4.5, we discuss asymptotic properties. In
Section 4.6, we present the numerical algorithms. Finally, in Sections 4.7 and 4.8,
we present the experimental results.

49



4.2 Outlier-resistant Estimation

4.2.1 Non-causal Setting

This subsection provides a brief review on outlier-resistant estimation in a one-variable
and non-causal setting. Let g̃ be the density function of a random variable Z ∈ R.
Assume that the density is contaminated as g̃(z) = (1 − ε)fθ∗(z) + εδ(z), where
fθ∗ is the density of interest indexed by the parameter θ∗, ε is the contamination
ratio, and δ is the density of outliers. Our goal is to estimate the parameter θ∗ from
i.i.d. observations {Z1, ..., Zn}. Let θ̂ψ be a root of

∑n
i=1 ψ(Zi, θ) = 0. This type of

estimator is called an M-estimator. We assume the unbiasedness of the estimating
equation:

Efθ [ψ(Z, θ)] = 0. (4.1)

The IPW, DR, and the proposed estimators are all M-estimators, and they satisfy the
unbiasedness of the estimating equation under no contamination. If the estimating
equation is unbiased and some regularity conditions hold, the M-estimator has
consistency and asymptotic normality [79]. However, under contamination, we
generally have Eg̃[ψ(Z, θ∗)] 6= 0. Let θ∗ψ denote a root of Eg̃[ψ(Z, θ)] = 0; then, the
latent bias is defined as θ∗ψ − θ∗. We hope that the latent bias is small even under
contamination. If δ is Dirac’s delta and ε is sufficiently small, the latent bias is
approximated by the IF. The IF-based discussion in Section 4.4 provides some insight
into the outlier resistance of the estimators when the contamination ratio is small.
The latent bias and M-estimators are discussed in detailed elsewhere [35, 30, 26, 25].

4.2.2 Causal Setting

Next, we consider a causal setting. In this work, we assume that only the outcome Y
may be contaminated. Let δY |TX be the conditional density of outliers given (T,X),
then the contaminated conditional density given (T,X) is defined as

g̃Y |TX(y|T,X) = (1− ε(T,X))gY |TX(y|T,X) + ε(T,X)δY |TX(y|T,X), (4.2)

where g denotes the density without contamination, and ε(T,X) is the ratio of
outliers. The tilde indicates that the distribution is contaminated. To simplify the
notation, we often drop the subscripts of density functions as long as there would be
no confusion. The ratio of the outliers ε and their density δ depend on the treatment
T and the confounder X. Since we estimate µ(t) for each treatment separately,
the dependence on T is tractable. In contrast, the dependence on X is critical
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in our analysis. The X-dependent contamination is referred to as heterogeneous
contamination. We write εt(x) = ε(t, x) and δt(y|x) = δY |TX(y|T = t, x). We also
discuss the special case in which ε and δ are not dependent on X, called homogeneous
contamination. Note that we do not assume εt(x) to be small enough to be negligible,
except in Section 4.4.

We are interested in the marginal mean of Y (1), and let fY (1)(y;µ(1)) be the true
marginal density of Y (1). It is obtained by integrating X out from gY |TX(y|T,X)

under T = 1:

fY (1)(y;µ(1)) =

∫
gY (1)|X(y|x)gX(x)dx =

∫
gY |TX(y|T = 1, x)gX(x)dx. (4.3)

The second equality holds from the causal consistency and the exchangeability
assumption. We often write fY (1)(y;µ(1)) as f1(y) for simplifying the notation.

Under contamination, the IPW estimating equation is severely biased because
the conditional expectation E−g+δ[·|X] is accompanied by the density of outliers:

Eg̃
[

T

π(X|α∗)
(Y − µ(1))

]
= Eg

[
ε1(X)E−g+δ

[
(Y − µ(1))|X

]]
6= 0. (4.4)

The DR estimating equation is similarly biased. To estimate µ(1) accurately, we have
to remove the influence of contamination.

4.3 Proposed Methods

4.3.1 Assumptions on Outliers

Below, we assume that the true marginal density f1(y) is symmetric about µ(1). This
is a common assumption in outlier-resistant estimation, and it is also a prerequisite
to use the sample median as an estimator for the population mean.

Let h(y;µ)γ (γ > 0) be a density power weight for Y (1), where h(y;µ) is a
symmetric density function with the location parameter µ. The density h(y;µ(1))

is not necessarily equal to the true marginal density f1(y). Any symmetric density
is suitable for h(y;µ) if it satisfies Assumption 1 below. Typically, we assume a
Gaussian density. The density power weight is used to enhance the outlier resistance
in noncausal settings [82, 7, 43, 25]. The tuning parameter γ controls the variability
of the weight; this leads to the trade-off between outlier resistance and asymptotic
efficiency. Before we propose novel estimators, we introduce an assumption to remove
the influence of outliers. Suppose that the outliers are sufficiently far from the
weighting distribution of Y (1). Then, we use the following assumption.
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Assumption 1. Let h(y;µ) be a weighting density symmetric about µ. Then, there
exists γ > 0 such that

ξ1(X) =

∫
δ1(y|X)h(y;µ(1))γ(y − µ(1))dy ≈ 0 a.e. (4.5)

This assumption implies

ν1(φ) := E[φ(X)ξ1(X)] =

∫
φ(x)ξ1(x)g(x)dx ≈ 0, (4.6)

for any bounded function φ(x). In particular, let φ(x) = 1; then, the outliers are
marginally negligible:

ν1(1) = E[ξ1(X)] =

∫
δ1(y)h(y;µ(1))γ(y − µ(1))dy ≈ 0. (4.7)

Throughout this work, we assume that γ is sufficiently large so that Assumption 1
holds.

Furthermore, Assumption 1 is reduced to a simpler form when δ1(y|X) is Dirac’s
delta at y0; this is one of the core assumptions in Section 4.4.

Assumption 1’. Let h(y;µ) be a weighting density that is symmetric about µ, and
assume that the density of outliers is Dirac’s delta at y0 that is sufficiently far from
µ(1). Then, there exists γ > 0 such that∫

δy0(y)h(y;µ(1))γ(y − µ(1))dy = h(y0;µ(1))γ(y0 − µ(1)) ≈ 0 (4.8)

For example, if h(y;µ(1)) is a Gaussian density with mean µ(1), the condition (4.8)
holds since y0 is sufficiently far from µ(1). All proofs for the theorems in this section
are provided in Section 4.9.

4.3.2 DP-IPW Estimator

First, we introduce an extension of the IPW estimator, called the density-powered
inverse probability weighting (DP-IPW) estimator. The DP-IPW estimator is defined
as a root of the following estimating equation:

n∑
i=1

Tih(Yi;µ)γ

π(Xi; α̂)
(Yi − µ) = 0. (4.9)

Under no contamination, the DP-IPW estimating equation is unbiased by the
following theorem.
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Theorem 4.1. Assume that h(y;µ(1)) and f1(y) are both symmetric about µ(1) and
that the true propensity score π(X;α∗) is given. Then, under no contamination, we
have

Eg
[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))

]
= 0. (4.10)

Although only an estimate π(X; α̂) is available in practice, the asymptotic
consistency of (DP-)IPW still holds if the model π(X;α) is correctly specified.

Now we consider the contaminated case. Suppose the conditional density of Y is
(4.2). Then, the bias of the estimating equation takes a different form from (4.4).

Theorem 4.2. Suppose Y is contaminated as (4.2). Under the same assumptions as
those in Theorem 4.1, the expectation of the DP-IPW estimating equation is expressed
as

Eg̃
[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))

]
= −

∫
ε1(x)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1(ε1).

(4.11)

In particular, if the contamination ratio is independent of X, the right-hand side of
(4.11) reduces to ν1(ε1).

Thus, the DP-IPW estimating equation is almost unbiased under homogeneous
contamination since we assume that ν1(ε1) is negligible. Under heterogeneous
contamination, it is biased because the non-negligible first term of (4.11) remains.
However, compared to (4.4), the dominant bias of DP-IPW does not contain δ1. This
implies that the bias of DP-IPW is not strongly affected by the absolute value of
outliers. Furthermore, if the contamination ratio is small, the first term can also be
small.

4.3.3 DP-DR Estimator

Next, we introduce the density-powered doubly robust (DP-DR) estimator. This is a
special case of the doubly robust M-estimator [77, 76, 34]. The DP-DR estimator is
defined as a root of the following estimating equation:

n∑
i=1

{
Tih(Yi;µ)γ

π(Xi; α̂)
(Yi − µ)− Ti − π(Xi; α̂)

π(Xi; α̂)

{
m1,µ(Xi; β̂)− µm0,µ(Xi; β̂)

}}
= 0,

(4.12)
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wherem0,µ(X; β̂) andm1,µ(X; β̂) are the estimators for Eg[h(Y (1);µ)γ|X] and Eg[h(Y (1);µ)γY (1)|X],
respectively. The estimators of m0,µ and m1,µ are obtained by direct calculation or
Monte Carlo approximation [34] based on the conditional density q(y|T = 1, X; β)

of the outcome regression. Section 4.6 presents explicit forms of m0,µ and m1,µ when
the conditional distribution is supposed to be Gaussian. The parameter β is usually
estimated in an outlier-resistant manner, for example, by using Huber regression
[35], MM estimator [84], density-power regression [7, 45], and γ-regression [25, 46].
Unlike the existing density power approaches, DP-DR does not multiply the whole
estimating equation by the weight hγ. Instead, we use hγ as a multiplicative factor
on the first term of (4.12), which is usual, but incorporate hγ inside the conditional
expectation on the second term of (4.12), which is unusual.

Theorem 4.3. Suppose h(y;µ(1)) and f1(y) are both symmetric about µ(1), and
either the true PS or the true OR model is given. Then, if there is no contamination,
the DP-DR estimating equation is unbiased.

Now, we evaluate the bias of the DP-DR estimating equation under contamination.

Theorem 4.4. Suppose that Y is contaminated as given by (4.2). Under the same
assumptions as in Theorem 4.3, and if the true PS model is given, the expectation of
the DP-DR estimating equation is expressed as

Eg̃
[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X; β)− µ(1)m0,µ(1)(X; β)

}]
= −

∫
ε1(x)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1(ε1). (4.13)

In particular, if the contamination ratio is independent of X, the right-hand side of
(4.13) reduces to ν1(ε1).

If the true OR model is given, the expectation of the DP-DR estimating equation
is expressed as

Eg̃
[
Th(Y ;µ(1))γ

π(X;α)
(Y − µ(1))− T − π(X;α)

π(X;α)

{
m1,µ(1)(X; β∗)− µ(1)m0,µ(1)(X; β∗)

}]
= Eg

[
−ε1(X)

P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
+ ν1(ε1P (T = 1|·)/π(·;α)).

(4.14)
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If the contamination ratio is independent of X, the right-hand side of (4.14) becomes

−ε1Eg
[
P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
+ ν1(ε1P (T = 1|·)/π(·;α)).

(4.15)

Suppose that π(·;α) is bounded away from 0 and 1; then, we find that P (T =

1|·)/π(·;α) is bounded. Therefore, from Assumption 1, ν1(ε1P (T = 1|·)/π(·;α)) is
negligible. As in the case of DP-IPW, the dominant term of the bias is independent
of δ, indicating that the influence of outliers is reduced. Unfortunately, DP-DR is
still biased if only the OR model is correct, even when the contamination ratio is
constant.

Considering this result, we propose a variant of DP-DR called the εDP-DR
estimator. This estimator is designed to cancel the dominant bias under homogeneous
contamination. The εDP-DR estimator is a root of the following estimating equation:

n∑
i=1

{
Tih(Yi;µ)γ

π(Xi; α̂)
(Yi − µ)− Ti − π(Xi; α̂)

π(Xi; α̂)
(1− ε̂1)

{
m1,µ(Xi; β̂)− µm0,µ(Xi; β̂)

}}
= 0,

(4.16)

where ε̂1 is a consistent estimator of the expected ratio of outliers: ε1 =
∫
ε1(x)g(x)dx.

The expected ratio of outliers can be estimated using the an outlier-resistant regression
proposed in [45], for example. Under no contamination, the εDP-DR estimating
equation is identical to the DP-DR estimating equation. The εDP-DR estimating
equation is also biased under heterogeneous contamination; however, the bias takes
a different form.

Corollary 4.1. If the true PS model is given, the expectation of the εDP-DR
estimating equation is equal to (4.13). If the true OR model is given, the expectation
of the εDP-DR estimating equation is expressed as

Eg
[
(ε1 − ε1(X))

P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
+ ν1(ε1P (T = 1|·)/π(·;α)).

(4.17)

The first term disappears if ε1(X) is constant.

Proof. Derivation is the same as that of Theorem 4.4. If ε1(X) is constant, the first
term disappears because ε1 = ε1

∫
g(x)dx = ε1.

Similar to (4.15), the second term of (4.17) is approximately zero if we assume
that π(·;α) is bounded away from 0 and 1.
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Remark One may believe that "ε(X)"DP-DR would work better than εDP-DR
under X-dependent contamination. In fact, the bias (4.17) will disappear if we
replace ε with ε(X). However, it is necessary to model ε(X) correctly for consistent
estimation of "ε(X)"DP-DR. To the best of our knowledge, no easy method is
available for this purpose.

4.3.4 Summary

We have proposed three types of outlier resistant semiparametric estimators: DP-
IPW, DP-DR, and εDP-DR. Table 4.1 shows the bias of the estimating equations
under the conditions discussed above. εDP-DR improves DP-DR in the OR-correct
case under homogeneous contamination. However, we discuss DP-DR further below
for two reasons: the contamination ratio is sometimes hard to estimate, and the
simulation results presented in Section 4.7 indicate that DP-DR remains better than
the existing methods even in the OR-correct case. Unfortunately, it is difficult to
remove the influence of outliers under heterogeneous contamination. However, the
bias of the estimating equations is hardly influenced by the absolute value of outliers.
Furthermore, as discussed in Section 4.4, outliers have negligible influence if the
contamination ratio is sufficiently small.

Contamination model DP-IPW DP-DR εDP-DR
No contam. PS-correct ≈ 0 ≈ 0 ≈ 0

OR-correct - ≈ 0 ≈ 0
homo. PS-correct ≈ 0 ≈ 0 ≈ 0

OR-correct - ≈ εE[φ(X)] ≈ 0
hetero. PS-correct ≈ E[ε(X)φ(X)] ≈ E[ε(X)φ(X)] ≈ E[ε(X)φ(X)]

OR-correct - ≈ E[ε(X)φ(X)] ≈ E[(ε− ε(X))φ(X)]

Table 4.1: Summary of bias of proposed estimating equations. The function φ(X)
differs cell-by-cell. PS-correct means that the PS model is correctly specified and
the OR model may not be; OR-correct means the opposite.

4.4 Influence Function-based Analysis

As discussed in the previous section, the three estimators are less suffered from outliers
compared with ordinary estimators from the viewpoint of the unbiasedness of the
estimating equation. In this section, we demonstrate that they are outlier-resistant
from the viewpoint of IF.

Here, we briefly review the IF for the univariate M-estimator [35]. Further, we
expand it to evaluate our estimators. Let G be the distribution of Z ∈ R, and let
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T (G) be a functional of G, which is the parameter of interest. If of T (G) is defined
as

IF (z0;G) := lim
ε→0

T ((1− ε)G+ ε∆z0)− T (G)

ε
=

∂

∂ε
{T ((1− ε)G+ ε∆z0)− T (G)}

∣∣∣∣
ε=0

,

(4.18)

where ∆z0 is a degenerate distribution at z0. We also see that the latent bias
T ((1 − ε)G + ε∆z0) − T (G) can be approximated by εIF (z0;G). Therefore, the
behavior of the IF can approximately imply that of the latent bias. In a population,
the M-estimator TM(G) satisfies

∫
ψ(z, TM(G))dG(z) = 0. Then, the IF for TM(G)

is obtained by differentiating
∫
ψ(z, TM ((1− ε)G+ ε∆z0)d{(1− ε)G+ ε∆z0}(z) = 0

with respect to ε. This yields

IF (z0;G) = −E

[
∂

∂η
ψ(Z, η)

∣∣∣∣
η=TM (G)

]−1

ψ(z0, TM(G)). (4.19)

The function ψ is said to have a redescending property if ψ(z0, TM(G)) approaches
zero as the outlier |z0| increases. Therefore, when ψ has a redescending property
and z0 is an outlier, the latent bias is sufficiently small. This is favorable for outlier
resistance.

Since ε1 is dependent on X in our setting, we cannot apply the IF directly to our
estimators. To overcome this issue, we consider the influence under fixed covariates
{Xi}ni=1; this approach is similar to the fixed carrier model discussed in [30]. Consider
the following estimating equation:

1

n

n∑
i=1

Eg̃ [ψ(Y, T,Xi;µ)|Xi] = 0. (4.20)

If the fixed sample {Xi}ni=1 consists of i.i.d. observations, then the left-hand side of
(4.20) converges to Eg̃[ψ(Y, T,X;µ)] as n→∞. Let µ̃(1)

n denote a root of (4.20), and
let µ̃(1) be a root of Eg̃[ψ(Y, T,X;µ)]. Then, µ̃(1)

n also converges to µ̃(1). Therefore,
µ̃

(1)
n shows roughly the same behavior as that of the target estimator µ̃(1). The

contaminated density g̃ is defined as (4.2), and δ1(y|Xi) is assumed to be Dirac’s
delta at y0. The IF of Tn(G̃) at Xi is obtained by differentiating (4.20) with respect
to ε1(Xi) at ε1(Xi) = 0.

Accordingly, the IF of the DP-IPW estimator at Xi is

Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1

h(y0;µ(1)
n )γ(y0 − µ(1)

n ). (4.21)
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If µ(1)
n is close to µ(1), then from Assumption 1’, h(y0;µ

(1)
n )γ(y0 − µ(1)

n ) tends to zero
as |y0| → ∞. Thus, the DP-IPW estimator has a redescending property.

The IF of the DP-DR estimator is

−Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1{
P (T = 1|Xi)

π(Xi;α)
h(y0;µ(1)

n )γ(y0 − µ(1)
n )

−P (T = 1|Xi)− π(Xi;α)

π(Xi;α)
{m

1,µ
(1)
n

(Xi; β)−m
0,µ

(1)
n

(Xi; β)µ(1)
n }
}
.

(4.22)

In the PS-correct case, the second term in the large curly brackets is equal to zero,
and the IF tends to zero as |y0| → ∞. However, in the OR-correct case, the second
term does not disappear. Considering the limit of |y0| → ∞, the IF converges to

−Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1{
−P (T = 1|Xi)− π(Xi;α)

π(Xi;α)
E[h(Y ;µ(1)

n )γ(Y − µ(1)
n )|Xi]

}
.

(4.23)

Thus, the DP-DR estimator has a redescending property only in the PS-correct case.
In the OR-correct case, the influence cannot be eliminated; however, the limit of the
IF tends to a constant as |y0| tends to infinity, implying that the influence of the
outlier is not serious.

The IF of the εDP-DR estimator is similar to that of the DP-DR estimator.
Assume that ε1 = 1

n

∑n
i=1 ε1(Xi), then the IF is

−Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1{
P (T = 1|Xi)

π(Xi;α)
h(y0 − µ(1)

n )γ(y0 − µ(1)
n )

−n− 1

n

P (T = 1|Xi)− π(Xi;α)

π(Xi;α)
{m

1,µ
(1)
n

(Xi; β)−m
0,µ

(1)
n

(Xi; β)µ(1)
n }
}

; (4.24)

this has a redescending property only in the PS-correct case. In the OR-correct case,
the influence of outliers is not large, like in the case of the DP-DR estimator.

In conclusion, even when the contamination ratio depends on the confounder
X, the proposed estimators are outlier-resistant when the contamination ratio is
sufficiently small. The derivations of all IFs are presented in Section 4.9.

Under homogeneous contamination, the ordinary IF is applicable. As discussed
above, we see that the proposed estimators have a redescending property under
homogeneous contamination. Furthermore, εDP-DR has a redescending property
even in the OR-correct case; this result is consistent with Corollary 4.1. The IF-based
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analysis under homogeneous contamination is presented in Section 4.9.

4.5 Asymptotic Properties

We discuss the asymptotic properties of the εDP-DR estimators. For the other
proposed estimators, we obtain similar results with small changes. The asymptotic
properties can be obtained in a manner similar to that described in [34]. Assume
that the PS and OR models are regular and are estimated consistently if the models
are correctly specified. Furthermore, the contamination ratio ε1 is known. Note that
when the contamination ratio is consistently estimated simultaneously with the OR
model by [45], we can replace β with (ε1, β

T )T in the following discussion.
Denote (4.16) by 1

n

∑n
i=1 ψi(µ; α̂, β̂), and let 1

n

∑n
i=1 s

PS
i (α) = 0 and 1

n

∑n
i=1 s

OR
i (β) =

0 be the estimating equations for the PS and OR models, respectively. Let λ =

(µ, αT , βT )T be the parameter vector, and define the full estimating equation as

n∑
i=1

Si(λ) =
n∑
i=1

 ψi(µ;α, β)

sPSi (α)

sORi (β)

 = 0. (4.25)

Let λ∗ = (µ∗, α∗T , β∗T )T be a root of (4.25) in population. Note that, in this section,
∗ does not mean that the model is correctly specified. With the results presented in
[79], the following theorem holds under some regularity conditions.

Theorem 4.5. Under the regularity conditions presented in Appendix 4.9.7, the
following asymptotic properties hold:

λ̂
p→ λ∗, (4.26)

√
n(λ̂− λ∗) d→ N

(
0,Vg̃(λ∗)

)
, (4.27)

Vg̃(λ∗) = Jg̃(λ∗)−1Kg̃(λ∗){Jg̃(λ∗)T}−1, (4.28)

Jg̃(λ∗) = Eg̃
[
∂Si(λ

∗)/∂λT
]
, (4.29)

Kg̃(λ∗) = Eg̃
[
Si(λ

∗)Si(λ
∗)T
]
. (4.30)

Under homogeneous contamination, by applying the results presented in Section
4.3.3, we find that the limit µ∗ is in the neighborhood of µ(1).

Theorem 4.6. Let λ∗∗ = (µ(1), α∗T , β∗T )T and assume that Jg̃11(λ) is non-zero within
the interval [λ∗, λ∗∗]. Under Assumption 1 and homogeneous contamination, if either
the PS or the OR model is correct, it then holds that

µ∗ = µ(1) +O(ν1(φ)), (4.31)
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where φ(·) = ε1 (constant) in the PS-correct case and φ(·) = ε1P (T = 1|·)/π(·;α) in
the OR-correct case.

The proof of Theorem 4.6 and further discussions on the asymptotic variance are
available in Section 4.9.

4.6 Algorithm

4.6.1 General Form

Because the proposed estimating equations cannot be solved explicitly, we use an
iterative algorithm. Various algorithms are available; however, we propose a standard
algorithm for M-estimators [35, 30]. The algorithm for the DP-IPW estimator is
given by the following updates:

µ̂[a+1] =

{
n∑
i=1

w
[a]
i Yi

}{
n∑
i=1

w
[a]
i

}−1

, (4.32)

w
[a+1]
i =

Tih(Yi; µ̂
[a+1])γ

π(Xi; α̂)
for all i. (4.33)

We recommend to obtain the initial values (µ[0], w
[0]
i ) in an outlier-resistant manner.

For example, µ[0] can be obtained by the IPW median [21, 90], and w[0]
i is obtained

using (4.33). If the weighting density is indexed by other parameters, it must be
estimated in advance or be updated simultaneously to µ and w. In the next section,
we present an algorithm in which we assume that h is Gaussian.

The (ε)DP-DR estimator is obtained in a similar manner. Let h(·;µ(1)) be fixed
and solve (4.16) with respect to µ:

µ =
1

n

n∑
i=1

{
Tih(Yi;µ

(1))γYi
π(Xi; α̂)

− Ti − π(Xi; α̂)

π(Xi; α̂)
(1− ε̂)m1,µ(1)(Xi; β̂)

}

×
{
Tih(Yi;µ

(1))γ

π(Xi; α̂)
− Ti − π(Xi; α̂)

π(Xi; α̂)
(1− ε̂)m0,µ(1)(Xi; β̂)

}−1

. (4.34)
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Then, the following algorithm is obtained:

µ̂[a+1] =

{
n∑
i=1

w
[a]
1,iYi − w2,im̂1,µ[a](Xi; β̂)

}{
n∑
i=1

w
[a]
1,i − w2,im̂0,µ[a](Xi; β̂)

}−1

,

(4.35)

w
[a+1]
1,i =

Tih(Yi; µ̂
[a+1])γ

π(Xi; α̂)
for all i, (4.36)

w2,i =
Ti − π(Xi; α̂)

π(Xi; α̂)
(1− ε̂1) for all i. (4.37)

Note that it is not necessary to update w2,i once it is computed. The initial values
should be obtained in an outlier-resistant manner, as in DP-IPW. Recall that m̂1,µ

and m̂0,µ are the estimates for the conditional expectation Eg[h(Y (1);µ)γY (1)|X]

and Eg[h(Y (1);µ)γ|X] given µ. These updates can be obtained from the estimated
conditional density q(y|X; β̂) through Monte-Carlo approximation [34] or direct
calculations.

4.6.2 Gaussian Weight

When the weighting density is assumed to be Gaussian, some value must be assigned
to the standard deviation σ. Under contamination, we suggest that σ is estimated
in an outlier-resistant manner, such as by using the normalized median absolute
deviation (MADN) [30]. MADN is an unbiased estimator for the standard deviation of
a Gaussian random variable. When the weighting density is Gaussian, the parameters
are updated as follows:

µ̂[a+1] =

{
n∑
i=1

w
[a]
i Yi

}{
n∑
i=1

w
[a]
i

}−1

. (4.38)

σ̂[a+1] = IPW-MADN({Yi}ni=1, µ̂
[a+1]). (4.39)

w
[a+1]
i =

Tih(Yi; θ(µ̂
[a+1], σ̂[a+1]))γ

π(Xi; α̂)
for all i. (4.40)

The IPW-MADN is defined as

IPW-MADN({Yi}ni=1, µ) = 1.483 · IPW-median ({|Yi − µ|}ni=1) , (4.41)

where 1.483 is a normalization constant.
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Similarly, the (ε)DP-DR estimator is updated as

µ̂[a+1] =

{
n∑
i=1

w
[a]
1,iYi − w2,im̂1,µ[a](Xi; β̂)

}{
n∑
i=1

w
[a]
1,i − w2,im̂0,µ[a](Xi; β̂)

}−1

,

(4.42)

σ̂[a+1] = DR-MADN({Yi}ni=1, µ̂
[a+1]), (4.43)

w
[a+1]
1,i =

Tih(Yi; µ̂
[a+1], σ̂[a+1])γ

π(Xi; α̂)
for all i, (4.44)

w2,i =
Ti − π(Xi; α̂)

π(Xi; α̂)
(1− ε̂1) for all i. (4.45)

The DR-MADN is obtained by using the DR-median [90, 18, 72]

DR-MADN({Yi}ni=1, µ) = 1.483 ·DR-median ({|Yi − µ|}ni=1) . (4.46)

Further, the updates of m̂1,µ and m̂0,µ are expressed explicitly when q(y|X; β̂) is
assumed to be the conditional Gaussian distribution given X. Let u(X) = Eq[Y |X]

and v2(X) = Varq[Y |X]. Then, we obtain

m0,µ[a](X) = (2π)−
γ
2

(σ[a]2)
1−γ
2√

σ[a]2 + γv2(X)
· exp

{
− γ(µ[a] − u(X))

2(σ[a]2 + γv2(X))

}
, (4.47)

m1,µ[a](X) = (2π)−
γ
2

(σ[a]2)
1−γ
2√

σ[a]2 + γv2(X)
· u(X)σ[a]2 + γµ[a]v2(X)

σ[a]2 + γv2(X)
· exp

{
− γ(µ[a] − u(X))

2(σ[a]2 + γv2(X))

}
.

(4.48)

Notably, the conditional variance can be easily estimated because many general
outlier-resistant methods can be applied for this purpose.

4.7 Monte-Carlo Simulations

4.7.1 Comparative Methods

We conduct Monte-Carlo simulations to evaluate the performance of the proposed
estimators. We compare our methods with naive IPW and DR estimators and
some existing outlier-resistant methods [21, 90, 18, 72]. These methods focus on the
median of the potential outcome; therefore, they show limited outlier resistance. To
the best of our knowledge, no method other than the proposed method has more
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outlier resistance than the median. Firpo’s IPW estimator [21] is defined as

µ̂Firpo = arg min
µ

n∑
i=1

Ti
π(Xi; α̂)

(Yi − µ)(0.5− I(Yi ≤ µ)), (4.49)

where the function I is an indicator. Zhang’s IPW median [90] is based on the
IPW-empirical distribution

F̂IPW(y) =

(
n∑
i=1

TiI(Yi ≤ y)

π(Xi; α̂)

)/(
n∑
i=1

Ti
π(Xi; α̂)

)
, (4.50)

and the median is estimated as y0 such that F̂IPW (y0) = 0.5. Firpo’s IPW and
Zhang’s IPW are almost equivalent except for a slight difference in their computation.
Furthermore, some methods have been proposed for the DR-median. Zhang’s and
Sued’s DR methods [90, 72] estimate the empirical distribution in a doubly robust
way. They incorporate an IPW-type estimator into the first term. The remaining
term of Zhang’s DR is based on the Gaussian cumulative distribution function of Y
given X. By contrast, Sued’s DR constructs the remaining term in a nonparametric
manner. Diaz’s DR median [18] is a largely different approach; it employs the targeted
maximum likelihood estimator (TMLE) [78]. Nonetheless, all of these comparative
methods focus on the median of the potential outcome; therefore, our method is the
first one whose outlier resistance is more than the sample median. We implement
our methods, Zhang’s IPW/DR, and Sued’s DR in R. For Firpo’s IPW and TMLE,
we use the causalquantile package 1.

4.7.2 Simulation Model

We generate random observations based on a simple causal setting. The confounders
(X1, X2) are independently generated from a Gaussian or uniform distribution with
mean zero and unit variance. The treatment T is assigned along with the conditional
probability P (T = 1|X1, X2) that is defined as a sigmoid function of 0.8X1 + 0.2X2.
The potential outcomes (Y (1), Y (0)) are generated according to a linear function
of (X1, X2) with Gaussian error: Y (1) = µ(1) + 1.2X1 + 0.3X2 + e and Y (0) =

µ(0) + 1.2X1 + 0.3X2 + e. The standard deviation (SD) of e is set to 0.72; therefore,
SD[Y (1)] = SD[Y (0)] = 1.5. The potential means µ(1) and µ(0) are set to 3 and 0,
respectively. When the confounders are not Gaussian, the target variable Y (t) is not
Gaussian. The observed outcome Y is defined as Y = TY (1) + (1− T )Y (1) under no
contamination. Outliers are generated from N (µ(t)+10σ(t), 1), with σ(t) = SD[Y (t)] =

1https://github.com/idiazst/causalquantile (Updated on 31 Aug 2017)
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1.5. For the homogeneous contamination settings, the contamination ratio is set to
be a constant εt ∈ {0, 0.05, 0.1, 0.2}. For the heterogeneous contamination settings,
the contamination ratio is set to be 1.5εt if X1 +X2 ≤ 0 and 0.5εt if X1 +X2 > 0.
The average contamination ratio is set at εt ∈ {0, 0.05, 0.1, 0.2}. The observations of
Y are randomly replaced with outliers according to the contamination ratio. The
sample size is fixed to n = 100 throughout the Monte Carlo simulations. Further,
we generate several datasets in which outcome followed a heavy-tailed distribution.
We draw the error term of Y (t) from the standard Cauchy distribution instead of
inserting outliers.

4.7.3 Results

First, we perform a comparative study. The potential mean µ(1) is estimated using
the proposed methods and the comparative methods. In this experiment, we use
all settings illustrated in the previous section. The propensity score is estimated
by logistic regression. The outcome regression is conducted in two ways: Gaussian
MLE with non-outliers or unnormalized Gaussian modeling (the tuning parameter
was set to 0.5) [45]. For the DR estimators, we investigate three patterns of model
misspecification: PS-correct/OR-correct (T/T), PS-correct/OR-incorrect (T/F), and
PS-incorrect/OR-correct (F/T). In the model-correct case, we include an intercept
and (X1, X2) as covariates. In the model-incorrect case, we include only an intercept
and X2. We perform 10,000 simulations for each setting and method. Tables 4.2 and
4.3 show the results of the comparative study when the covariates are Gaussian and
the OR for the DR-type estimators was the Gaussian MLE with non-outliers. The
estimation error is measured by the root mean square error (RMSE). The mean and
SD of all estimates and the mean computation time, and the results for the other
settings are provided in Section 4.9. In Table 4.2, the naive IPW estimator had a
significantly larger RMSE under contamination. Both the median-based methods
and DP-IPW dramatically reduced the RMSE. As the ratio of outliers increased, the
RMSE increased. The RMSE tended to be larger for heterogeneous contamination
than for homogeneous contamination. When the optimal γ was properly chosen,
the proposed method outperformed the comparative methods and had the smallest
RMSE for all settings. The results of the DR-type estimators were similar to those
of the IPW estimators, as shown in Table 4.3. The proposed method with a proper
γ outperformed the comparative methods and had the smallest RMSE in all settings.
In particular, when γ = 0.5, the proposed method was always superior to the
comparative methods. DP-DR and εDP-DR performed similarly, although εDP-DR
was slightly superior in many settings. Among the median-based methods, TMLE
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performed relatively well; however, it took much more time than the other methods,
including the proposed methods, and occasionally (<1%) failed to converge. Table
4.4 shows the mean and SD of 10,000 simulated estimates of naive DR, DP-DR, and
εDP-DR under homogeneous contamination. In that case, the average of the εDP-DR
estimates was closer to 3 than that of DP-DR in F/T cases, which corresponds to
Corollary 4.1.

Table 4.5 shows the RMSE of each method on the heavy-tailed data. As well as
the above experiments, the proposed method performed better than the comparative
methods. In this setting, we only used the unnormalized Gaussian modeling for OR
for the DR-type estimators. Only in the PS-correct/OR-incorrect case with Gaussian
X, the median (TMLE) performed slightly better than the proposed method.

Next, we show the result of a γ-sensitivity study. We estimate µ(1) by the proposed
method with different γs. X had a Gaussian distribution, and the contamination
ratio varied in {0, 0.05, 0.1, 0.2} under homogeneous contamination. For the DR
estimators, the outcome regression was obtained by the Gaussian MLE with non-
outliers. We perform 10,000 simulations for each setting and method. Table 4.6
shows the results of the γ-sensitivity study. As in the comparative study, when
the ratio of outliers increased, the bias increased. Furthermore, a larger γ resulted
in increased variance. When the contamination ratio was small (ε = 0.05), it was
sufficient to use a small γ such as γ = 0.1 or 0.2 to remove the adverse effect of
outliers. Even in highly contaminated cases, it seems unnecessary to use γ larger
than 1.0. As in many other outlier-resistant statistical methods, parameter tuning is
a challenging issue. Based on Figure 4.1, we suggest a possible policy on this issue.
Figure 4.1 shows the solution paths of the first 100 simulations. The adverse effect
of outliers decreased as γ increased, and each path became stable around the true
value after reaching a specific γ value. Thus, we suggest using the smallest γ value
among the γ values with stable estimates to avoid increasing the variance.

Homogeneous Heterogeneous
ε 0.00 0.05 0.10 0.20 0.05 0.10 0.20
Naive 0.222 0.957 1.683 3.153 0.993 1.752 3.253
median (Firpo) 0.257 0.294 0.367 0.649 0.306 0.409 0.769
median (Zhang-IPW) 0.257 0.294 0.367 0.649 0.306 0.409 0.769

DP-IPW (γ = 0.1) 0.218 0.276 0.531 2.263 0.293 0.609 2.377
DP-IPW (γ = 0.5) 0.227 0.249 0.272 0.639 0.245 0.287 0.726
DP-IPW (γ = 1.0) 0.261 0.271 0.275 0.413 0.262 0.281 0.498

Table 4.2: RMSE of the IPW-type estimators. X was drawn from Gaussian distribu-
tions.
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Homogeneous Heterogeneous
ε 0.00 0.05 0.10 0.20 0.05 0.10 0.20

(PS-correct/OR-correct)
Naive 0.184 0.957 1.684 3.154 0.997 1.758 3.265
median (Zhang-DR) 0.239 0.317 0.391 0.733 0.330 0.452 0.905
median (Sued) 0.238 0.316 0.388 0.693 0.329 0.450 0.869
median (TMLE) 0.237 0.280 0.359 0.603 0.295 0.402 0.701

DP-DR (γ = 0.1) 0.183 0.302 0.564 2.262 0.318 0.649 2.394
DP-DR (γ = 0.5) 0.202 0.285 0.326 0.697 0.274 0.349 0.834
DP-DR (γ = 1.0) 0.240 0.288 0.307 0.524 0.287 0.336 0.669

εDP-DR (γ = 0.1) 0.183 0.296 0.554 2.255 0.314 0.636 2.385
εDP-DR (γ = 0.5) 0.202 0.264 0.302 0.669 0.271 0.323 0.793
εDP-DR (γ = 1.0) 0.240 0.287 0.299 0.513 0.286 0.335 0.648

(correct/incorrect)
Naive 0.237 0.963 1.686 3.156 1.001 1.758 3.262
median (Zhang-DR) 0.275 0.342 0.408 0.741 0.350 0.465 0.912
median (Sued) 0.275 0.342 0.407 0.699 0.350 0.464 0.872
median (TMLE) 0.242 0.284 0.363 0.622 0.297 0.404 0.719

DP-DR (γ = 0.1) 0.237 0.314 0.561 2.267 0.330 0.644 2.393
DP-DR (γ = 0.5) 0.247 0.319 0.349 0.714 0.319 0.361 0.839
DP-DR (γ = 1.0) 0.280 0.334 0.347 0.581 0.329 0.372 0.709

εDP-DR (γ = 0.1) 0.237 0.311 0.557 2.264 0.328 0.640 2.388
εDP-DR (γ = 0.5) 0.247 0.317 0.344 0.694 0.313 0.356 0.817
εDP-DR (γ = 1.0) 0.280 0.333 0.338 0.551 0.327 0.369 0.708

(incorrect/correct)
Naive 0.181 0.879 1.591 3.026 0.826 1.490 2.813
median (Zhang-DR) 0.237 0.263 0.316 0.503 0.269 0.337 0.548
median (Sued) 0.236 0.272 0.346 0.599 0.277 0.364 0.627
median (TMLE) 0.234 0.260 0.309 0.478 0.265 0.328 0.522

DP-DR (γ = 0.1) 0.182 0.192 0.345 2.057 0.191 0.299 1.681
DP-DR (γ = 0.5) 0.199 0.206 0.218 0.366 0.203 0.209 0.283
DP-DR (γ = 1.0) 0.230 0.232 0.239 0.273 0.230 0.233 0.242

εDP-DR (γ = 0.1) 0.182 0.193 0.381 2.207 0.194 0.335 1.839
εDP-DR (γ = 0.5) 0.199 0.203 0.208 0.376 0.203 0.212 0.318
εDP-DR (γ = 1.0) 0.230 0.230 0.231 0.243 0.231 0.237 0.260

Table 4.3: RMSE of the DR-type estimators. X was drawn from Gaussian distribu-
tions.
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No contam. Homogeneous
ε 0.00 0.05 0.10 0.20
(PS-correct/OR-correct)
Naive 2.999 (0.18) 3.745 (0.60) 4.489 (0.79) 5.979 (1.04)
DP-DR (γ = 0.1) 2.998 (0.18) 3.029 (0.30) 3.140 (0.55) 4.465 (1.72)
DP-DR (γ = 0.5) 2.996 (0.20) 2.997 (0.29) 3.000 (0.33) 3.060 (0.69)
DP-DR (γ = 1.0) 2.992 (0.24) 2.991 (0.29) 2.992 (0.31) 3.009 (0.52)
εDP-DR (γ = 0.1) 2.998 (0.18) 3.028 (0.29) 3.138 (0.54) 4.464 (1.72)
εDP-DR (γ = 0.5) 2.996 (0.20) 2.997 (0.26) 2.999 (0.30) 3.058 (0.67)
εDP-DR (γ = 1.0) 2.992 (0.24) 2.991 (0.29) 2.991 (0.30) 3.007 (0.51)
(correct/incorrect)
Naive 3.004 (0.24) 3.750 (0.60) 4.494 (0.78) 5.984 (1.03)
DP-DR (γ = 0.1) 2.998 (0.24) 3.033 (0.31) 3.150 (0.54) 4.490 (1.71)
DP-DR (γ = 0.5) 2.986 (0.25) 2.989 (0.32) 2.992 (0.35) 3.059 (0.71)
DP-DR (γ = 1.0) 2.979 (0.28) 2.978 (0.33) 2.979 (0.35) 3.001 (0.58)
εDP-DR (γ = 0.1) 2.998 (0.24) 3.033 (0.31) 3.149 (0.54) 4.489 (1.71)
εDP-DR (γ = 0.5) 2.986 (0.25) 2.989 (0.32) 2.992 (0.34) 3.057 (0.69)
εDP-DR (γ = 1.0) 2.979 (0.28) 2.978 (0.33) 2.978 (0.34) 2.998 (0.55)
(correct/incorrect)
Naive 2.999 (0.18) 3.725 (0.50) 4.451 (0.65) 5.902 (0.86)
DP-DR (γ = 0.1) 2.999 (0.18) 2.997 (0.19) 3.051 (0.34) 4.326 (1.57)
DP-DR (γ = 0.5) 3.001 (0.20) 2.975 (0.20) 2.950 (0.21) 2.907 (0.35)
DP-DR (γ = 1.0) 3.005 (0.23) 2.978 (0.23) 2.953 (0.23) 2.895 (0.25)
εDP-DR (γ = 0.1) 2.999 (0.18) 3.020 (0.19) 3.108 (0.37) 4.541 (1.58)
εDP-DR (γ = 0.5) 3.001 (0.20) 2.998 (0.20) 2.998 (0.21) 3.020 (0.38)
εDP-DR (γ = 1.0) 3.005 (0.23) 3.001 (0.23) 3.001 (0.23) 3.003 (0.24)

Table 4.4: Mean and SD of 10,000 simulated estimates of µ(1). The covariates X were
generated from Gaussian distributions, and the outcome regression was obtained by
the Gaussian MLE using non-outliers. The complete table including the IPW-type
estimators and the comparative methods is in Section 4.9
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Distribution of X
Gaussian Uniform

IPW(T/-) Naive 274.024 246.118
median (Firpo) 0.414 0.438
median (Zhang-IPW) 0.414 0.438
DP-IPW (γ = 0.1) 0.443 0.425
DP-IPW (γ = 0.5) 0.367 0.363
DP-IPW (γ = 1.0) 0.380 0.383

DR(T/T) Naive 275.447 247.011
median (Zhang-DR) 0.415 0.431
median (Sued) 0.408 0.430
median (TMLE) 0.392 0.425
DP-DR (γ = 0.1) 0.501 0.420
DP-DR (γ = 0.5) 0.363 0.356
DP-DR (γ = 1.0) 0.372 0.374
εDP-DR (γ = 0.1) 0.487 0.420
εDP-DR (γ = 0.5) 0.361 0.355
εDP-DR (γ = 1.0) 0.370 0.374

DR(T/F) Naive 275.446 247.011
median (Zhang-DR) 0.456 0.443
median (Sued) 0.436 0.441
median (TMLE) 0.394 0.427
DP-DR (γ = 0.1) 0.514 0.431
DP-DR (γ = 0.5) 0.404 0.369
DP-DR (γ = 1.0) 0.418 0.389
εDP-DR (γ = 0.1) 0.503 0.430
εDP-DR (γ = 0.5) 0.399 0.368
εDP-DR (γ = 1.0) 0.412 0.388

DR(F/T) Naive 263.629 177.037
median (Zhang-DR) 0.390 0.429
median (Sued) 0.373 0.400
median (TMLE) 0.389 0.429
DP-DR (γ = 0.1) 0.390 0.401
DP-DR (γ = 0.5) 0.358 0.376
DP-DR (γ = 1.0) 0.364 0.393
εDP-DR (γ = 0.1) 0.377 0.385
εDP-DR (γ = 0.5) 0.328 0.338
εDP-DR (γ = 1.0) 0.334 0.351

Table 4.5: RMSE values of the comparative study using the heavy-tailed data.
The covariates X were generated from Gaussian or uniform distributions. The
OR model for the DR-type estimators were obtained by the unnormalized Gaussian
modeling. The characters "T" and "F" denote the correct and the incorrect modeling,
respectively.
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PS/OR ε γ = 0.0 0.1 0.2 0.5 1.0 1.5 2.0
DP-IPW T/- 0.00 3.004 (0.22) 2.998 (0.22) 2.994 (0.22) 2.986 (0.23) 2.980 (0.26) 2.974 (0.30) 2.970 (0.34)

0.05 3.749 (0.59) 3.030 (0.27) 2.999 (0.26) 2.987 (0.25) 2.978 (0.27) 2.970 (0.30) 2.963 (0.33)
0.10 4.493 (0.78) 3.142 (0.51) 3.015 (0.32) 2.989 (0.27) 2.977 (0.27) 2.969 (0.30) 2.963 (0.33)
0.20 5.983 (1.02) 4.492 (1.70) 3.536 (1.39) 3.052 (0.64) 2.990 (0.41) 2.978 (0.39) 2.971 (0.40)

DP-DR T/T 0.00 2.999 (0.18) 2.998 (0.18) 2.997 (0.19) 2.996 (0.20) 2.992 (0.24) 2.989 (0.28) 2.985 (0.31)
0.05 3.745 (0.60) 3.029 (0.30) 3.002 (0.27) 2.997 (0.29) 2.991 (0.29) 2.985 (0.31) 2.980 (0.34)
0.10 4.489 (0.79) 3.140 (0.55) 3.017 (0.36) 3.000 (0.33) 2.992 (0.31) 2.986 (0.32) 2.981 (0.33)
0.20 5.979 (1.04) 4.465 (1.72) 3.532 (1.41) 3.060 (0.69) 3.009 (0.52) 2.999 (0.51) 2.994 (0.51)

T/F 0.00 3.004 (0.24) 2.998 (0.24) 2.994 (0.24) 2.986 (0.25) 2.979 (0.28) 2.974 (0.32) 2.968 (0.36)
0.05 3.750 (0.60) 3.033 (0.31) 3.001 (0.29) 2.989 (0.32) 2.978 (0.33) 2.970 (0.36) 2.963 (0.39)
0.10 4.494 (0.78) 3.150 (0.54) 3.020 (0.37) 2.992 (0.35) 2.979 (0.35) 2.970 (0.37) 2.963 (0.39)
0.20 5.984 (1.03) 4.490 (1.71) 3.546 (1.41) 3.059 (0.71) 3.001 (0.58) 2.985 (0.55) 2.975 (0.54)

F/T 0.00 2.999 (0.18) 2.999 (0.18) 2.999 (0.18) 3.001 (0.20) 3.005 (0.23) 3.010 (0.26) 3.014 (0.29)
0.05 3.725 (0.50) 2.997 (0.19) 2.976 (0.19) 2.975 (0.20) 2.978 (0.23) 2.982 (0.26) 2.986 (0.29)
0.10 4.451 (0.65) 3.051 (0.34) 2.956 (0.21) 2.950 (0.21) 2.953 (0.23) 2.956 (0.26) 2.960 (0.28)
0.20 5.902 (0.86) 4.326 (1.57) 3.301 (1.15) 2.907 (0.35) 2.895 (0.25) 2.897 (0.26) 2.900 (0.28)

εDP-DR T/T 0.00 2.999 (0.18) 2.998 (0.18) 2.997 (0.19) 2.996 (0.20) 2.992 (0.24) 2.989 (0.28) 2.985 (0.31)
0.05 3.745 (0.60) 3.028 (0.29) 3.002 (0.27) 2.997 (0.26) 2.991 (0.29) 2.985 (0.31) 2.980 (0.34)
0.10 4.489 (0.78) 3.138 (0.54) 3.017 (0.35) 2.999 (0.30) 2.991 (0.30) 2.985 (0.32) 2.980 (0.33)
0.20 5.978 (1.03) 4.464 (1.72) 3.531 (1.40) 3.058 (0.67) 3.007 (0.51) 2.998 (0.50) 2.993 (0.51)

T/F 0.00 3.004 (0.24) 2.998 (0.24) 2.994 (0.24) 2.986 (0.25) 2.979 (0.28) 2.974 (0.32) 2.968 (0.36)
0.05 3.750 (0.60) 3.033 (0.31) 3.001 (0.29) 2.989 (0.32) 2.978 (0.33) 2.970 (0.36) 2.963 (0.39)
0.10 4.493 (0.78) 3.149 (0.54) 3.020 (0.36) 2.992 (0.34) 2.978 (0.34) 2.970 (0.37) 2.963 (0.39)
0.20 5.983 (1.02) 4.489 (1.71) 3.543 (1.40) 3.057 (0.69) 2.998 (0.55) 2.984 (0.54) 2.976 (0.54)

F/T 0.00 2.999 (0.18) 2.999 (0.18) 2.999 (0.18) 3.001 (0.20) 3.005 (0.23) 3.010 (0.26) 3.014 (0.29)
0.05 3.746 (0.50) 3.020 (0.19) 2.998 (0.19) 2.998 (0.20) 3.001 (0.23) 3.005 (0.26) 3.009 (0.29)
0.10 4.493 (0.66) 3.108 (0.37) 3.004 (0.20) 2.998 (0.21) 3.001 (0.23) 3.004 (0.26) 3.007 (0.28)
0.20 5.986 (0.87) 4.541 (1.58) 3.486 (1.24) 3.020 (0.38) 3.003 (0.24) 3.005 (0.25) 3.008 (0.27)

Table 4.6: Results of γ-sensitivity study. Each figure displays the mean (SD) of 10,000 simulations for each setting. In the second
column, "T" and "F" denote the correct and the incorrect modeling, respectively.
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Figure 4.1: Solution paths of the first 100 simulations. The x-axis represents the
tuning parameter γ and the y-axis, the estimates of µ(1).
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4.8 Real Data Analysis

In this section, we demonstrate an estimation of the ATE on a real dataset. We
used the data of the National Health and Nutrition Examination Survey Data I
Epidemiologic Follow-up Study (NHEFS). The NHEFS is a national longitudinal
study that was performed by U.S. public agencies. We used the processed dataset
available online 2 [32]. The NHEFS dataset contains 1,566 observations of smokers
when the study started in 1971–75. By the follow-up visit in 1982, 403 (25.7%)
participants had quit smoking. The goal was to evaluate the treatment effect of
smoking cessation (T = 1) on weight gain (Y ). Other than the treatment and the
outcome, several baseline variables were collected, including sex, age, race, education
level, intensity and duration of smoking, physical activity in daily life, recreational
exercise, and baseline weight. We used all of them to control for confounding
in a manner similar to [32]. We included linear and quadratic terms for all the
continuous covariates (age, intensity and duration of smoking, and baseline weight)
and dummy terms for the discrete covariates. The propensity score was estimated by
logistic regression, and outcome regression was conducted by unnormalized Gaussian
modeling [45] (tuning parameter was set to 0.2). The original dataset does not
contain obvious outliers; therefore, we randomly replaced 10% observations with
outliers extracted from N (100, 52). Then, we estimated µ(1), µ(0) and the ATE by
the same methods in the Monte Carlo simulations. We repeated this process 10,000
times and summarized the results in Table 4.7. For reference, we estimated each
quantity using the naive IPW/DR for the original data.

For the IPW-type estimators, the median-based methods tended to give larger
estimates of µ(1) and µ(0) than those in the case of IPW (no outliers). In particular,
µ(0) was estimated to be much larger. As a result, when using the median-based
methods, the ATE was estimated to be smaller than that in the case of IPW (no
outliers). By contrast, DP-IPW tended to overestimate µ(1) with γ = 0.05 and to
underestimate µ(1) with γ ≥ 0.10; further, it overestimated µ(0) compared to the case
of IPW (no outliers). This tendency was strengthened by increasing γ. However,
because the extent of overestimation of µ(0) was smaller than that in the case of
median-based methods, the estimate of the ATE by DP-IPW was closer to that
obtained using IPW (no outliers) than to that obtained using median-based methods,
even for γ = 0.5. The DR-type estimators showed similar results. The median-based
methods overestimated µ(1) and µ(0). DP-DR and εDP-DR underestimated µ(1) and
overestimated µ(0). The ATE was estimated better by DP-DR and εDP-DR than
by the median-based methods. DP-DR and εDP-DR had the same tendency of

2https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
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estimation bias and γ: a larger γ value increased the bias.
We briefly discuss the tendency of the estimation bias in real data analysis. The

distribution of the outcome of NHEFS data was slightly skewed for each treatment.
This skewed distribution violates the assumption that the potential outcomes are
distributed marginally symmetrically about their mean. In the case of skewed data,
the median is not equal to the mean; therefore, a median-based estimator will be
biased for the "average" treatment effect. Our estimators also require symmetry
for consistent estimation; however, the influence of asymmetry may be controlled
by setting a small γ value. In fact, under asymmetry and no contamination, we
can estimate the ATE consistently with γ = 0, whereas the median-based methods
cannot. This flexibility is an advantage of our method. However, this flexibility
does make it more difficult to choose the optimal γ under asymmetric settings; the
estimates will shift as γ is increased even after removing the effect of outliers, as
seen in Table 4.7.
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Target Quantities
µ(1) µ(0) ATE

IPW (no outliers) 5.221 (-) 1.780 (-) 3.441 (-)

IPW 14.718 (1.57) 11.607 (0.87) 3.111 (1.78)
median (Firpo) 5.439 (0.21) 2.753 (0.10) 2.686 (0.24)
median (Zhang-IPW) 5.439 (0.21) 2.753 (0.10) 2.686 (0.24)

DP-IPW (γ = 0.05) 5.597 (0.30) 1.851 (0.07) 3.746 (0.31)
DP-IPW (γ = 0.10) 5.157 (0.15) 1.819 (0.07) 3.338 (0.17)
DP-IPW (γ = 0.20) 5.089 (0.15) 1.875 (0.06) 3.215 (0.16)
DP-IPW (γ = 0.50) 4.949 (0.15) 2.007 (0.06) 2.941 (0.16)

DR (no outliers) 5.136 (-) 1.772 (-) 3.364 (-)

DR 14.574 (1.57) 11.589 (0.90) 2.985 (1.81)
median (Zhang-DR) 5.352 (0.20) 2.743 (0.10) 2.609 (0.22)
median (Sued) 5.353 (0.20) 2.744 (0.10) 2.609 (0.23)
median (TMLE) 5.363 (0.21) 2.739 (0.10) 2.624 (0.23)

DP-DR (γ = 0.05) 5.478 (0.27) 1.842 (0.07) 3.636 (0.28)
DP-DR (γ = 0.10) 5.057 (0.16) 1.810 (0.07) 3.248 (0.17)
DP-DR (γ = 0.20) 4.983 (0.16) 1.865 (0.06) 3.119 (0.17)
DP-DR (γ = 0.50) 4.834 (0.16) 1.997 (0.06) 2.837 (0.17)

εDP-DR (γ = 0.05) 5.574 (0.29) 1.851 (0.07) 3.723 (0.30)
εDP-DR (γ = 0.10) 5.148 (0.15) 1.819 (0.07) 3.330 (0.17)
εDP-DR (γ = 0.20) 5.080 (0.15) 1.874 (0.06) 3.206 (0.17)
εDP-DR (γ = 0.50) 4.937 (0.15) 2.007 (0.06) 2.930 (0.16)

Table 4.7: Results of the NHEFS data analysis. Mean and SD are computed on
2,000 bootstrap samples.
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4.9 Additional Sources for Outlier-resistant Estimator for ATE

4.9.1 Proof of Theorem 4.1

Proof.

Eg

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))

]
= Eg

[
Eg

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))

∣∣∣∣∣X
]]

= Eg
[
P (T = 1|X)

π(X;α∗)
Eg
[
h(Y ;µ(1))γ(Y − µ(1))

∣∣∣T = 1, X
]]

= Ef1
[
h(Y (1);µ(1))γ(Y (1) − µ(1))

]
The third equality holds because of the causal consistency and the exchangeability. Since
h(y;µ(1)) and f1(y) are symmetric about µ(1), this expectation is equal to zero:

Ef1
[
h(Y (1);µ(1))γ(Y (1) − µ(1))

]
=

∫
h(y;µ(1))γ(y − µ(1))f1(y)dy = 0.

4.9.2 Proof of Theorem 4.2

Proof.

Eg̃

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))

]
= Eg

[
Eg̃
[
h(Y (1);µ(1))γ(Y (1) − µ(1))

∣∣∣X]]
=

∫ {
(1− ε1(x))

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy + ε1(x)

∫
h(y;µ(1))γ(y − µ(1))δ1(y|x)dy

}
g(x)dx

=

∫
(1− ε1(x))

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1(ε1) (4.51)

= −
∫
ε1(x)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1(ε1). (4.52)

If ε1(x) = ε1, the first term disappears:

−ε1

∫∫
h(y;µ(1))γ(y − µ(1))g(y|x)g(x)dydx = −ε1

∫
h(y;µ(1))γ(y − µ(1))f1(y)dy = 0.
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4.9.3 Proof of Theorem 4.3

Proof. First, we assume that the true PS is given.

Eg

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β)− µ(1)m0,µ(1)(X;β)

}]

= Eg

[
Eg

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β)− µ(1)m0,µ(1)(X;β)

}∣∣∣∣∣X
]]

= Eg
[
−P (T = 1|X)− π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β)− µ(1)m0,µ(1)(X;β)

}]
= 0

Next, we assume that the true OR model is given.

Eg

[
Th(Y ;µ(1))γ

π(X;α)
(Y − µ(1))− T − π(X;α)

π(X;α)

{
m1,µ(1)(X;β∗)− µ(1)m0,µ(1)(X;β∗)

}]

= Eg
[
Eg
[

T

π(X;α)
h(Y ;µ(1))γ(Y − µ(1))

∣∣∣∣X]
− Eg

[
T

π(X;α)
− 1

∣∣∣∣X]Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
= Eg

[
P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

−
(
P (T = 1|X)

π(X;α)
− 1

)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
= Eg

[
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
= 0

Thus, the DP-DR estimating equation has double robustness under no contamination.
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4.9.4 Proof of Theorem 4.4

Proof. If the true PS model is given, the DP-DR estimating equation yields

Eg̃

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β)− µ(1)m2,µ(1)(X;β)

}]

= Eg

[
Eg̃

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β)− µ(1)m0,µ(1)(X;β)

}∣∣∣∣∣X
]]

= Eg

[
Eg̃

[
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))

∣∣∣∣∣X
]]

− Eg
[
P (T = 1|X)− π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β)− µ(1)m0,µ(1)(X;β)

}]
︸ ︷︷ ︸

=0

= −
∫
ε1(x)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1(ε1). (4.53)

If the contamination ratio is independent of X, it holds that

−ε1

∫∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx = 0,

which is the same result as that of the DP-IPW estimating equation.
If the true OR model is given, the DP-DR estimating equation yields

Eg̃

[
Th(Y ;µ(1))γ

π(X;α)
(Y − µ(1))− T − π(X;α)

π(X;α)

{
m1,µ(1)(X;β∗)− µ(1)m0,µ(1)(X;β∗)

}]

= Eg
[
P (T = 1|X)

π(X;α)

(
(1− ε1(X))Eg[h(Y ;µ(1))γ(Y − µ(1))|X] + ε1(X)Eδ[h(Y ;µ(1))γ(Y − µ(1))|X]

)
−
(
P (T = 1|X)

π(X;α)
− 1

)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
= Eg

[
−ε1(X)

P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
+ ν1(ε1(·)P (T = 1|·)/π(·;α)).

(4.54)

When the contamination ratio is independent of X, the first term becomes

−ε1Eg
[
P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
(4.55)

Thus, we have the result of Theorem 4.4.
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4.9.5 Derivation of Influence functions in Section 4.4

DP-IPW Let µ̃(1)
n denote the root of the DP-IPW estimating equation under contami-

nation.

0 =
∂

∂ε1(Xi)

{
1

n

n∑
i=1

Eg̃

[
Th(Y ;µ

(1)
n )γ

π(Xi;α∗)
(Y − µ̃(1)

n )

∣∣∣∣∣Xi

]}∣∣∣∣∣
ε1(Xi)=0

=
∂

∂ε1(Xi)

∫∫
t

π(Xi;α∗)
h(y;µ(1)

n )γ(y − µ̃(1)
n ){(1− ε1(Xi))g(y|Xi)

+ε1(Xi)δy0(y)}g(t|Xi)dydt|ε1(Xi)=0

=

∫∫
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

g(y|Xi)g(t|Xi)dydt · IFDP−IPW (y0)

+

∫∫
t

π(Xi;α∗)
h(y;µ(1)

n )γ(y − µ(1)
n )δy0(y)g(t|Xi)dydt

= Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]
· IFDP−IPW (y0) + h(y0;µ

(1)
n )γ(y0 − µ(1)

n )

If Eg
[
∂ψ
∂µ

∣∣∣
µ=µ

(1)
n

∣∣∣∣Xi

]
is invertible, we obtain the IF as

IFDP−IPW (y0) = − Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1

h(y0;µ
(1)
n )γ(y0 − µ(1)

n ). (4.56)

DP-DR

0 =
∂

∂ε1(Xi)

{
1

n

n∑
i=1

Eg̃

[
Th(Y ; µ̃

(1)
n )γ

π(Xi;α∗)
(Y − µ̃(1)

n )

∣∣∣∣∣Xi

]

−E
[
T − π(Xi;α

∗)

π(Xi;α∗)

∣∣∣∣Xi

]
{m

1,µ̃
(1)
n
(Xi)− µ̃(1)

n m
0,µ̃

(1)
n
(Xi)}

}∣∣∣∣
ε1(Xi)=0

=
∂

∂ε1(Xi)

{∫∫
t

π(Xi;α∗)
h(y; µ̃(1)

n )γ(y − µ̃(1)
n ){(1− ε1(Xi))g(y|Xi) + ε1(Xi)δy0(y)}g(t|Xi)

− t− π(Xi;α
∗)

π(Xi;α∗)
{m

1,µ̃
(1)
n
(Xi)− µ̃(1)

n m
0,µ̃

(1)
n
(Xi)}dydt

}∣∣∣∣
ε1(Xi)=0

= Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]
· IFDP−DR(y0) +

P (T = 1|Xi)

π(Xi;α∗)
h(y0;µ

(1)
n )γ(y0 − µ(1)

n )

− P (T = 1|Xi)− π(Xi;α
∗)

π(Xi;α∗)
{m

1,µ
(1)
n
(Xi)− µ(1)

n m
0,µ

(1)
n
(Xi)}
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Then, we obtain the IF as

IFDP−DR(y0) =− Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1{
P (T = 1|Xi)

π(Xi;α)
h(y0;µ

(1)
n )γ(y0 − µ(1)

n )

−P (T = 1|Xi)− π(Xi;α)

π(Xi;α)
{m

1,µ
(1)
n
(Xi;β)−m0,µ

(1)
n
(Xi;β)µ

(1)
n }
}
.

(4.57)

εDP-DR Suppose the expected contamination ratio is correctly specified as ε1 =∑
ε1(Xi)/n.

0 =
∂

∂ε1(Xi)

{
1

n

n∑
i=1

Eg̃

[
Th(Y ; µ̃

(1)
n )γ

π(Xi;α∗)
(Y − µ̃(1)

n )

∣∣∣∣∣Xi

]

−

(
1− 1

n

n∑
i=1

ε1(Xi)

)
E
[
T − π(Xi;α

∗)

π(Xi;α∗)

∣∣∣∣Xi

]
{m

1,µ̃
(1)
n
(Xi)− µ̃(1)

n m
0,µ̃

(1)
n
(Xi)}

}∣∣∣∣∣
ε1(Xi)=0

=
∂

∂ε1(Xi)

{∫∫
t

π(Xi;α∗)
h(y; µ̃(1)

n )γ(y − µ̃(1)
n ){(1− ε1(Xi))g(y|Xi) + ε1(Xi)δy0(y)}g(t|Xi)

−

(
1− 1

n

n∑
i=1

ε1(Xi)

)
t− π(Xi;α

∗)

π(Xi;α∗)
{m

1,µ̃
(1)
n
(Xi)− µ̃(1)

n m
0,µ

(1)
n
(Xi)}dydt

}∣∣∣∣∣
ε1(Xi)=0

= Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]
· IFεDP−DR(y0) +

P (T = 1|Xi)

π(Xi;α∗)
h(y0;µ

(1)
n )γ(y0 − µ(1)

n )

− n− 1

n

P (T = 1|Xi)− π(Xi;α
∗)

π(Xi;α∗)
{m

1,µ
(1)
n
(Xi)− µ(1)

n m
0,µ

(1)
n
(Xi)}

Thus, we obtain (4.24).

4.9.6 Influence Functions Under Homogeneous Contamination

Under homogeneous contamination, we can apply the ordinary IF analysis. By differentiating
the estimating equations with respect to ε1 at ε1 = 0, we obtain the following results.

DP-IPW

0 =
∂

∂ε1
Eg̃

[
Th(Y ; µ̃(1))γ

π(X;α∗)
(Y − µ̃(1))

]∣∣∣∣∣
ε1=0

0 =
∂

∂ε1

∫∫∫
th(y; µ̃(1))γ

π(x;α∗)
(y − µ̃(1)){(1− ε1)g(y|t, x) + ε1δy0(y|x)}g(t|x)g(x)dydtdx

∣∣∣∣∣
ε1=0

= Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]
· IFDP−IPW (y0) +

∫∫∫
th(y;µ(1))γ

π(x;α∗)
(y − µ(1))δy0(y|x)g(t|x)g(x)dydtdx
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IFDP−IPW (y0) = Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]−1

h(y0;µ
(1))γ(y0 − µ(1)) (4.58)

Thus, DP-IPW has a redescending property under homogeneous contamination.

DP-DR

0 =
∂

∂ε1
Eg̃

[
Th(Y ; µ̃(1))γ

π(X;α)
(Y − µ̃(1))− T − π(X;α)

π(X;α)

(
m1,µ̃(1)(X;β)− µ̃(1)m0,µ̃(1)(X;β)

)]∣∣∣∣∣
ε1=0

=
∂

∂ε1

∫∫∫ (
th(y; µ̃(1))γ

π(x;α)
(y − µ̃(1))− t− π(x;α)

π(x;α)

{
m1,µ̃(1)(x;β)− µ̃

(1)m0,µ̃(1)(x;β)
})

× {(1− ε1)g(y|t, x) + ε1δy0(y|x)}g(t|x)g(x)dydtdx|ε1=0

= Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]
· IFDP−DR(y0) +

∫∫∫ (
th(y;µ(1))γ

π(x;α)
(y − µ(1))

− t− π(x;α)
π(x;α)

{
m1,µ(1)(x;β)− µ

(1)m0,µ(1)(x;β)
})

δy0(y|x)g(t|x)g(x)dydtdx

IFDP−DR(y0) = Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]−1 ∫∫ (
th(y0;µ

(1))γ

π(x;α)
(y0 − µ(1))

− t− π(x;α)
π(x;α)

{
m1,µ(1)(x;β)− µ

(1)m0,µ(1)(x;β)
})

g(t|x)g(x)dtdx

(4.59)

If the true PS model is given, this IF yields

IFDP−DR(y0) = Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]−1

h(y0;µ
(1))γ(y0 − µ(1)) (4.60)

If the true OR model is given, this IF yields

IFDP−DR(y0) = Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]−1 ∫
P (T = 1|x)
π(x;α)

h(y0;µ
(1))γ(y0 − µ(1))

− P (T = 1|x)− π(x;α)
π(x;α)

E[h(Y ;µ(1))γ(Y (1) − µ(1))|x]g(x)dx

(4.61)

Thus, DP-DR has a redescending property under homogeneous contamination in the
PS-correct case.
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εDP-DR

0 =
∂

∂ε1
Eg̃

[
Th(Y ; µ̃(1))γ

π(X;α)
(Y − µ̃(1))

−T − π(X;α)

π(X;α)
(1− ε1)

(
m1,µ̃(1)(X;β)− µ̃(1)m0,µ̃(1)(X;β)

)]∣∣∣∣
ε1=0

= Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]
· IFεDP−DR(y0)

+

∫∫∫ (
th(y;µ(1))γ

π(x;α)
(y − µ(1))− t− π(x;α)

π(x;α)

{
m1,µ(1)(x;β)− µ

(1)m0,µ(1)(x;β)
}

+
t− π(x;α)
π(x;α)

{
m1,µ(1)(x;β)− µ̃

(1)m0,µ(1)(x;β)
})

δy0(y|x)g(t|x)g(x)dydtdx

IFεDP−DR(y0) = Eg

[
∂ψ

∂ε1

∣∣∣∣
µ=µ(1)

]−1 ∫
P (T = 1|x)
π(x;α)

h(y0;µ
(1))γ(y0 − µ(1))g(x)dx (4.62)

Thus, under homogeneous contamination, εDP-DR has a redescending property in
either the PS-correct case or the OR-correct case.

4.9.7 Regularity Conditions for Theorem 4.5

Detailed discussion is available in Chapter 5 of Van der Vaart (2000), for example.

(a) The function S(λ) is twice continuously differentiable with respect to λ.

(b) There exists a root λ∗ of Eg̃[S(λ)] = 0.

(c) Eg̃[‖S(λ∗)‖2] <∞.

(d) Eg̃[∂S(λ∗)/∂λT ] exists and is nonsingular.

(e) The second-order differentials of S(λ) with respect to µ are dominated by a fixed
integrable function h in a neighborhood of λ∗.
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4.9.8 Proof of Theorem 4.6

Under homogeneous contamination, we see that simpler properties hold. The matrix Jg̃(λ∗)

is partitioned as

Jg̃(λ∗) =


Eg̃
[
∂
∂µψi(µ

∗;α∗, β∗)
]

Eg̃
[

∂
∂αT

ψi(µ
∗;α∗, β∗)

]
Eg̃
[

∂
∂βT

ψi(µ
∗;α∗, β∗)

]
0 Eg

[
∂

∂αT
sPSi (α∗)

]
0

0 0 Eg̃
[

∂
∂βT

sORi (β∗)
]



=

 Jg̃11(λ
∗) Jg̃12(λ

∗) Jg̃13(λ
∗)

0 Jg22(λ
∗) 0

0 0 Jg̃33(λ
∗)

 .

If it is nonsingular, the inverse is obtained as

Jg̃(λ∗)−1 =

 Jg̃11(λ
∗)−1 −Jg̃11(λ

∗)−1Jg̃12(λ
∗)Jg22(λ

∗)−1 −Jg̃11(λ
∗)−1Jg̃13(λ

∗)Jg̃33(λ
∗)−1

0 Jg22(λ
∗)−1 0

0 0 Jg̃33(λ
∗)−1

 .

Note that Jg̃11(·) is a scalar value.
Then, Theorem 4.6 is proved as follows.

Proof. By Taylor’s theorem, the expectation of estimating equation (5.26) is expressed as

0 = E[Si(λ∗)] = E[Si(λ∗∗)] + Jg̃(λ†)(λ∗ − λ∗∗),

where λ† is an intermediate value between λ∗∗ and λ∗. Since E[sPSi (α∗)] = E[sORi (β∗)] = 0

and (λ∗ − λ∗∗) = (µ∗ − µ(1),0T ,0T )T , only the first element is meaningful:

0 = E[ψi(µ(1);α∗, β∗)] + Jg̃11(λ
†)(µ∗ − µ(1)).

Then, since Jg̃11(λ
†) is non-zero, the latent bias of µ∗ reduces to

µ∗ − µ(1) = −Jg̃11(λ
†)−1E[ψi(µ(1);α∗, β∗)]. (4.63)

From Corollary 4.1, if either the PS or the OR model is correct, we have

E[ψi(µ(1);α∗, β∗)] = ν1(φ).

Upon substituting it into (4.63), the statement holds.

4.9.9 Further Discussion on Asymptotic Variance

Considering the structure of the full estimating equation, the asymptotic variance can be
expressed in a more explicit form. The discussion about the asymptotic variance is provided

81



in the next subsection.
The matrix Kg̃(λ

∗) is also partitioned as

Kg̃(λ∗) =

 Kg̃
11(λ

∗) Kg̃
12(λ

∗) Kg̃
13(λ

∗)

Kg̃ T
12 (λ∗) Kg

22(λ
∗) Kg̃

23(λ
∗)

Kg̃ T
13 (λ∗) Kg̃ T

23 (λ∗) Kg̃
33(λ

∗)

 .

The asymptotic variance is also affected by outliers. However, under Assumption 1, the
asymptotic variance can be approximated by the asymptotic variance under no contamina-
tion and contamination ratio ε1.

Theorem 4.7. Besides to Assumption 1, assume that Jδ1m(λ
∗∗) ≈ 0 and Kδ

1m(λ
∗∗) ≈ 0

holds for m = 1, 2, 3. Then, under homogeneous contamination,

Vg̃(λ∗) ≈ Jǧ(λ∗∗)−1


1

(1−ε1)K
g
11(λ

∗∗) Kg
12(λ

∗∗) Kg
13(λ

∗∗)

Kg
12(λ

∗∗)T Kg
22(λ

∗∗) Kg̃
23(λ

∗∗)

Kg
13(λ

∗∗)T Kg̃
23(λ

∗∗)T Kg̃
33(λ

∗∗)

 {Jǧ(λ∗∗)T }−1,

where

Jǧ(λ∗∗) =

 Jg11(λ
∗∗) Jg12(λ

∗∗) Jg13(λ
∗∗)

0 Jg22(λ
∗∗) 0

0 0 Jg̃33(λ
∗∗)


.

If both the PS and the OR models are correct, the asymptotic variance of µ̂ has a
simpler expression. From a similar discussion to Section 4.3, the following lemma holds:

Lemma 4.1. If the PS model is correct, Jg13(λ
∗∗) = 0. If the OR model is correct,

Jg12(λ
∗∗) = 0.

Using Lemma 4.1, we can see the asymptotic variance of µ̂ is simply expressed.

Theorem 4.8. Under the same assumptions of Theorem 4.7, if the PS and the OR models
are both correct, then

Vg̃(µ
∗) ≈ 1

1− ε1
Jg11(λ

∗∗)−1Kg
11(λ

∗∗)
{
Jg11(λ

∗∗)T
}−1

.

Proof. By applying Lemma 4.1 to Theorem 4.7, the statement holds.

This implies that the εDP-DR appropriately ignores outliers.

Proof of Theorem 4.7 If either the PS or the OR model is correct, we can say
µ∗ ≈ µ(1). Note that the PS model is not related to the contamination distribution δ, and
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the contamination in the OR model cannot be removed in general. From the assumptions,

Jg̃(λ∗) ≈ Jg̃(λ∗∗)

=

 (1− ε1)J
g
11 (1− ε1)J

g
12 (1− ε1)J

g
13

0 Jg22 0

0 0 Jg̃33

+

 ε1J
δ
11 ε1J

δ
12 ε1J

δ
13

0 0 0

0 0 0



≈

 (1− ε1)J
g
11 (1− ε1)J

g
12 (1− ε1)J

g
13

0 Jg22 0

0 0 Jg̃33



=

 1− ε1 0 0

0 Iα 0

0 0 Iβ

Jǧ(λ∗∗)

Kg̃(λ∗) ≈ Kg̃(λ∗∗)

=

 (1− ε1)K
g
11 (1− ε1)K

g
12 (1− ε1)K

g
13

(1− ε1)K
g T
12 Kg

22 Kg̃
23

(1− ε1)K
g T
13 Kg̃ T

23 Kg̃
33

+

 ε1K
δ
11 ε1K

δ
12 ε1K

δT
13

ε1K
δ T
12 0 0

ε1K
δ T
13 0 0



≈

 (1− ε1)K
g
11 (1− ε1)K

g
12 (1− ε1)K

g
13

(1− ε1)K
g T
12 Kg

22 Kg̃
23

(1− ε1)K
g T
13 Kg̃ T

23 Kg̃
33


The input (λ∗∗) is dropped for notation simplicity. Thus, we have

Vg̃(λ∗) ≈ Jǧ(λ∗∗)−1


1

(1−ε1)K
g
11(λ

∗∗) Kg
12(λ

∗∗) Kg
13(λ

∗∗)

Kg
12(λ

∗∗)T Kg
22(λ

∗∗) Kg̃
23(λ

∗∗)

Kg
13(λ

∗∗)T Kg̃
23(λ

∗∗)T Kg̃
33(λ

∗∗)

 {Jǧ(λ∗∗)T }−1,

The proof is complete.

Proof of Lemma 4.1

Proof. In the PS correct case,

Jg13(λ
∗∗) = Eg

[
∂

∂βT

{
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)

{
m1,µ(1)(X;β∗)− µ(1)m0,µ(1)(X;β∗)

}}]
= Eg

[
P (T = 1|X)

π(X;α∗)
h(Y (1);µ(1))γ(Y (1) − µ(1))

−P (T = 1|X)− π(X;α∗)

π(X;α∗)

∂

∂βT

{
m1,µ(1)(X;β∗)− µ(1)m0,µ(1)(X;β∗)

}]
= Eg

[
h(Y (1);µ(1))γ(Y (1) − µ(1))

]
= 0.

83



In the OR correct case,

Jg12(λ
∗∗) = Eg

[
∂

∂αT

{
Th(Y ;µ(1))γ

π(X;α∗)
(Y − µ(1))− T − π(X;α∗)

π(X;α∗)
Eg
[
h(Y (1);µ(1))γ(Y (1) − µ(1))|X

]}]
= Eg

[
∂

∂αT

(
P (T = 1|X)

π(X;α∗)
− P (T = 1|X)− π(X;α∗)

π(X;α∗)

)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
= Eg

[
h(Y (1);µ(1))γ(Y (1) − µ(1))

]
= 0.

84



4.9.10 Remaining Results of Monte-Carlo Simulation

Remaining results of the Monte-Carlo Simulation are presented in the following pages.

• Tables 4.8 and 4.9: Gaussian covariates and Gaussian MLE with non-outliers for OR.
The RMSE is presented in Tables 4.2 and 4.3 in Section 4.7.

• Tables 4.10 to 4.12: Gaussian covariates and unnormalized Gaussian modeling for
OR.

• Tables 4.13 to 4.15: Uniform covariates and Gaussian MLE with non-outliers for OR.

• Tables 4.16 to 4.18: Uniform covariates and unnormalized Gaussian modeling for
OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 3.004 (0.22) 3.749 (0.59) 4.493 (0.78) 5.983 (1.02) 3.766 (0.63) 4.536 (0.84) 6.070 (1.08)
median (Firpo) 2.990 (0.26) 3.091 (0.28) 3.205 (0.30) 3.490 (0.43) 3.116 (0.28) 3.259 (0.32) 3.605 (0.47)
median (Zhang-IPW) 2.990 (0.26) 3.091 (0.28) 3.205 (0.30) 3.490 (0.43) 3.116 (0.28) 3.259 (0.32) 3.605 (0.47)
DP-IPW (γ = 0.1) 2.998 (0.22) 3.030 (0.27) 3.142 (0.51) 4.492 (1.70) 3.056 (0.29) 3.209 (0.57) 4.620 (1.74)
DP-IPW (γ = 0.5) 2.986 (0.23) 2.987 (0.25) 2.989 (0.27) 3.052 (0.64) 3.011 (0.24) 3.042 (0.28) 3.173 (0.70)
DP-IPW (γ = 1.0) 2.980 (0.26) 2.978 (0.27) 2.977 (0.27) 2.990 (0.41) 3.003 (0.26) 3.033 (0.28) 3.114 (0.48)

DR(T/T) Naive 2.999 (0.18) 3.745 (0.60) 4.489 (0.79) 5.979 (1.04) 3.762 (0.64) 4.533 (0.86) 6.069 (1.12)
median (Zhang-DR) 2.994 (0.24) 3.096 (0.30) 3.210 (0.33) 3.499 (0.54) 3.121 (0.31) 3.264 (0.37) 3.620 (0.66)
median (Sued) 2.994 (0.24) 3.096 (0.30) 3.209 (0.33) 3.496 (0.48) 3.121 (0.31) 3.264 (0.36) 3.616 (0.61)
median (TMLE) 2.994 (0.24) 3.095 (0.26) 3.208 (0.29) 3.479 (0.37) 3.120 (0.27) 3.260 (0.31) 3.587 (0.38)
DP-DR (γ = 0.1) 2.998 (0.18) 3.029 (0.30) 3.140 (0.55) 4.465 (1.72) 3.054 (0.31) 3.207 (0.62) 4.604 (1.78)
DP-DR (γ = 0.5) 2.996 (0.20) 2.997 (0.29) 3.000 (0.33) 3.060 (0.69) 3.022 (0.27) 3.053 (0.34) 3.195 (0.81)
DP-DR (γ = 1.0) 2.992 (0.24) 2.991 (0.29) 2.992 (0.31) 3.009 (0.52) 3.017 (0.29) 3.047 (0.33) 3.137 (0.66)
εDP-DR (γ = 0.1) 2.998 (0.18) 3.028 (0.29) 3.138 (0.54) 4.464 (1.72) 3.054 (0.31) 3.204 (0.60) 4.604 (1.77)
εDP-DR (γ = 0.5) 2.996 (0.20) 2.997 (0.26) 2.999 (0.30) 3.058 (0.67) 3.022 (0.27) 3.052 (0.32) 3.190 (0.77)
εDP-DR (γ = 1.0) 2.992 (0.24) 2.991 (0.29) 2.991 (0.30) 3.007 (0.51) 3.017 (0.29) 3.047 (0.33) 3.134 (0.63)

DR(T/F) Naive 3.004 (0.24) 3.750 (0.60) 4.494 (0.78) 5.984 (1.03) 3.767 (0.64) 4.537 (0.85) 6.073 (1.09)
median (Zhang-DR) 2.990 (0.27) 3.092 (0.33) 3.208 (0.35) 3.499 (0.55) 3.118 (0.33) 3.262 (0.38) 3.623 (0.67)
median (Sued) 2.989 (0.27) 3.091 (0.33) 3.206 (0.35) 3.493 (0.50) 3.117 (0.33) 3.261 (0.38) 3.616 (0.62)
median (TMLE) 2.999 (0.24) 3.100 (0.27) 3.214 (0.29) 3.496 (0.38) 3.125 (0.27) 3.267 (0.30) 3.607 (0.39)
DP-DR (γ = 0.1) 2.998 (0.24) 3.033 (0.31) 3.150 (0.54) 4.490 (1.71) 3.060 (0.32) 3.218 (0.61) 4.624 (1.76)
DP-DR (γ = 0.5) 2.986 (0.25) 2.989 (0.32) 2.992 (0.35) 3.059 (0.71) 3.014 (0.32) 3.044 (0.36) 3.196 (0.82)
DP-DR (γ = 1.0) 2.979 (0.28) 2.978 (0.33) 2.979 (0.35) 3.001 (0.58) 3.004 (0.33) 3.035 (0.37) 3.133 (0.70)
εDP-DR (γ = 0.1) 2.998 (0.24) 3.033 (0.31) 3.149 (0.54) 4.489 (1.71) 3.059 (0.32) 3.218 (0.60) 4.623 (1.75)
εDP-DR (γ = 0.5) 2.986 (0.25) 2.989 (0.32) 2.992 (0.34) 3.057 (0.69) 3.013 (0.31) 3.044 (0.35) 3.192 (0.79)
εDP-DR (γ = 1.0) 2.979 (0.28) 2.978 (0.33) 2.978 (0.34) 2.998 (0.55) 3.004 (0.33) 3.035 (0.37) 3.132 (0.70)

DR(F/T) Naive 2.999 (0.18) 3.725 (0.50) 4.451 (0.65) 5.902 (0.86) 3.667 (0.49) 4.341 (0.65) 5.685 (0.84)
median (Zhang-DR) 3.003 (0.24) 3.081 (0.25) 3.169 (0.27) 3.388 (0.32) 3.096 (0.25) 3.200 (0.27) 3.445 (0.32)
median (Sued) 2.999 (0.24) 3.101 (0.25) 3.213 (0.27) 3.494 (0.34) 3.111 (0.25) 3.237 (0.28) 3.532 (0.33)
median (TMLE) 3.003 (0.23) 3.079 (0.25) 3.164 (0.26) 3.368 (0.30) 3.093 (0.25) 3.194 (0.26) 3.424 (0.30)
DP-DR (γ = 0.1) 2.999 (0.18) 2.997 (0.19) 3.051 (0.34) 4.326 (1.57) 3.018 (0.19) 3.077 (0.29) 4.000 (1.35)
DP-DR (γ = 0.5) 3.001 (0.20) 2.975 (0.20) 2.950 (0.21) 2.907 (0.35) 3.000 (0.20) 3.000 (0.21) 3.008 (0.28)
DP-DR (γ = 1.0) 3.005 (0.23) 2.978 (0.23) 2.953 (0.23) 2.895 (0.25) 3.004 (0.23) 3.006 (0.23) 3.008 (0.24)
εDP-DR (γ = 0.1) 2.999 (0.18) 3.020 (0.19) 3.108 (0.37) 4.541 (1.58) 3.040 (0.19) 3.131 (0.31) 4.209 (1.39)
εDP-DR (γ = 0.5) 3.001 (0.20) 2.998 (0.20) 2.998 (0.21) 3.020 (0.38) 3.022 (0.20) 3.048 (0.21) 3.117 (0.30)
εDP-DR (γ = 1.0) 3.005 (0.23) 3.001 (0.23) 3.001 (0.23) 3.003 (0.24) 3.027 (0.23) 3.054 (0.23) 3.116 (0.23)

Table 4.8: Mean and SD of 10,000 simulated estimates of µ(1). The covariates X were generated from Gaussian distributions, and
the outcome regression was obtained by the Gaussian MLE using non-outliers. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.

86



No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.009 0.010 0.012 0.009 0.010 0.010 0.012
median (Firpo) 2.019 2.035 2.052 2.040 2.049 2.049 2.044
median (Zhang-IPW) 0.153 0.166 0.165 0.162 0.194 0.195 0.203
DP-IPW (γ = 0.1) 33.713 44.646 62.069 80.462 44.256 60.934 78.925
DP-IPW (γ = 0.5) 48.822 50.308 48.108 46.894 49.748 48.500 47.246
DP-IPW (γ = 1.0) 65.508 64.401 62.285 55.019 63.856 61.479 54.070

DR(T/T) Naive 0.014 0.015 0.014 0.013 0.014 0.020 0.014
median (Zhang-DR) 0.416 0.417 0.422 0.412 0.406 0.424 0.416
median (Sued) 1.720 1.893 1.689 1.825 1.806 1.710 1.723
median (TMLE) 1067.234 1050.107 1021.848 1010.238 1046.995 1015.752 1000.908
DP-DR (γ = 0.1) 20.316 55.933 131.469 209.206 57.353 141.999 202.042
DP-DR (γ = 0.5) 54.524 47.142 47.741 39.424 50.581 43.799 37.860
DP-DR (γ = 1.0) 83.912 81.759 74.653 58.289 78.730 73.391 60.144
εDP-DR (γ = 0.1) 19.997 59.061 132.762 212.343 57.435 137.271 205.093
εDP-DR (γ = 0.5) 54.806 50.210 44.774 39.729 50.144 46.977 37.970
εDP-DR (γ = 1.0) 84.375 79.237 73.203 56.916 78.328 76.474 60.338

DR(T/F) Naive 0.014 0.015 0.013 0.014 0.016 0.013 0.014
median (Zhang-DR) 0.337 0.370 0.358 0.354 0.375 0.371 0.364
median (Sued) 1.646 1.829 1.705 1.754 1.753 1.893 3.771
median (TMLE) 999.657 991.569 983.834 991.174 997.403 994.754 991.656
DP-DR (γ = 0.1) 18.851 63.892 137.795 198.849 57.978 138.945 195.932
DP-DR (γ = 0.5) 52.547 49.129 45.949 40.204 53.554 47.560 39.319
DP-DR (γ = 1.0) 80.465 81.757 72.929 60.123 79.196 73.844 56.672
εDP-DR (γ = 0.1) 18.603 59.010 133.449 203.896 60.482 138.275 190.823
εDP-DR (γ = 0.5) 52.892 53.978 49.416 39.773 53.920 49.583 37.347
εDP-DR (γ = 1.0) 80.870 81.030 73.614 59.259 78.651 72.015 59.778

DR(F/T) Naive 0.013 0.014 0.014 0.014 0.014 0.015 0.015
median (Zhang-DR) 0.399 0.417 0.415 2.122 0.428 0.419 0.440
median (Sued) 1.607 1.876 1.766 1.766 1.751 1.902 1.836
median (TMLE) 951.348 975.007 970.882 986.397 970.804 979.606 988.658
DP-DR (γ = 0.1) 20.537 58.989 143.063 218.114 54.900 123.918 248.367
DP-DR (γ = 0.5) 52.096 54.095 45.947 39.811 56.126 48.108 40.617
DP-DR (γ = 1.0) 85.026 84.556 74.602 59.838 84.897 80.306 65.958
εDP-DR (γ = 0.1) 20.352 60.387 147.921 201.602 54.002 131.749 226.009
εDP-DR (γ = 0.5) 52.473 50.362 47.613 41.028 51.504 45.609 41.540
εDP-DR (γ = 1.0) 85.557 83.889 75.631 64.173 84.836 77.640 64.876

Table 4.9: Mean computation time (ms) of 10,000 simulations. The covariates X were generated from Gaussian distributions, and
the outcome regression was obtained by the Gaussian MLE using non-outliers. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.222 0.957 1.683 3.153 0.993 1.752 3.253
median (Firpo) 0.257 0.294 0.367 0.649 0.306 0.409 0.769
median (Zhang-IPW) 0.257 0.294 0.367 0.649 0.306 0.409 0.769
DP-IPW (γ = 0.1) 0.218 0.276 0.531 2.263 0.293 0.609 2.377
DP-IPW (γ = 0.5) 0.227 0.249 0.272 0.639 0.245 0.287 0.726
DP-IPW (γ = 1.0) 0.261 0.271 0.275 0.413 0.262 0.281 0.498

DR(T/T) Naive 0.185 0.957 1.683 3.154 0.997 1.758 3.265
median (Zhang-DR) 0.242 0.317 0.391 0.733 0.330 0.452 0.905
median (Sued) 0.241 0.316 0.388 0.692 0.328 0.450 0.866
median (TMLE) 0.237 0.280 0.359 0.600 0.295 0.401 0.696
DP-DR (γ = 0.1) 0.183 0.301 0.563 2.262 0.317 0.649 2.395
DP-DR (γ = 0.5) 0.202 0.290 0.326 0.692 0.274 0.349 0.839
DP-DR (γ = 1.0) 0.239 0.287 0.307 0.530 0.287 0.335 0.669
εDP-DR (γ = 0.1) 0.183 0.294 0.550 2.256 0.312 0.637 2.388
εDP-DR (γ = 0.5) 0.202 0.263 0.301 0.659 0.269 0.321 0.800
εDP-DR (γ = 1.0) 0.239 0.287 0.298 0.515 0.286 0.334 0.648

DR(T/F) Naive 0.239 0.963 1.685 3.155 1.001 1.757 3.260
median (Zhang-DR) 0.277 0.344 0.409 0.743 0.351 0.466 0.911
median (Sued) 0.275 0.343 0.407 0.700 0.351 0.465 0.871
median (TMLE) 0.242 0.285 0.364 0.624 0.297 0.406 0.725
DP-DR (γ = 0.1) 0.240 0.315 0.563 2.267 0.331 0.645 2.391
DP-DR (γ = 0.5) 0.251 0.322 0.353 0.720 0.321 0.365 0.840
DP-DR (γ = 1.0) 0.284 0.337 0.349 0.588 0.332 0.380 0.709
εDP-DR (γ = 0.1) 0.240 0.312 0.558 2.263 0.329 0.640 2.387
εDP-DR (γ = 0.5) 0.250 0.318 0.345 0.696 0.315 0.358 0.812
εDP-DR (γ = 1.0) 0.282 0.335 0.344 0.555 0.326 0.372 0.698

DR(F/T) Naive 0.182 0.880 1.592 3.026 0.827 1.490 2.814
median (Zhang-DR) 0.237 0.262 0.313 0.499 0.267 0.333 0.543
median (Sued) 0.236 0.272 0.346 0.600 0.278 0.364 0.627
median (TMLE) 0.235 0.259 0.306 0.470 0.264 0.324 0.513
DP-DR (γ = 0.1) 0.183 0.193 0.346 2.063 0.192 0.302 1.687
DP-DR (γ = 0.5) 0.200 0.209 0.221 0.365 0.205 0.211 0.282
DP-DR (γ = 1.0) 0.230 0.234 0.242 0.278 0.231 0.234 0.244
εDP-DR (γ = 0.1) 0.183 0.195 0.396 2.227 0.196 0.345 1.843
εDP-DR (γ = 0.5) 0.199 0.204 0.208 0.401 0.204 0.211 0.323
εDP-DR (γ = 1.0) 0.230 0.230 0.231 0.246 0.231 0.235 0.255

Table 4.10: Results of the comparative study. Each figure is RMSE between each method and the true value. The covariates X
were generated from Gaussian distributions, and the outcome regression was obtained by the unnormalized Gaussian modeling.
The characters "T" and "F" denote the correct and the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 3.004 (0.22) 3.749 (0.59) 4.493 (0.78) 5.983 (1.02) 3.766 (0.63) 4.536 (0.84) 6.070 (1.08)
median (Firpo) 2.990 (0.26) 3.091 (0.28) 3.205 (0.30) 3.490 (0.43) 3.116 (0.28) 3.259 (0.32) 3.605 (0.47)
median (Zhang-IPW) 2.990 (0.26) 3.091 (0.28) 3.205 (0.30) 3.490 (0.43) 3.116 (0.28) 3.259 (0.32) 3.605 (0.47)
DP-IPW (γ = 0.1) 2.998 (0.22) 3.030 (0.27) 3.142 (0.51) 4.492 (1.70) 3.056 (0.29) 3.209 (0.57) 4.620 (1.74)
DP-IPW (γ = 0.5) 2.986 (0.23) 2.987 (0.25) 2.989 (0.27) 3.052 (0.64) 3.011 (0.24) 3.042 (0.28) 3.173 (0.70)
DP-IPW (γ = 1.0) 2.980 (0.26) 2.978 (0.27) 2.977 (0.27) 2.990 (0.41) 3.003 (0.26) 3.033 (0.28) 3.114 (0.48)

DR(T/T) Naive 2.999 (0.18) 3.745 (0.60) 4.489 (0.79) 5.979 (1.04) 3.762 (0.64) 4.533 (0.86) 6.069 (1.11)
median (Zhang-DR) 2.994 (0.24) 3.096 (0.30) 3.210 (0.33) 3.500 (0.54) 3.121 (0.31) 3.265 (0.37) 3.620 (0.66)
median (Sued) 2.994 (0.24) 3.096 (0.30) 3.209 (0.33) 3.495 (0.48) 3.121 (0.31) 3.265 (0.36) 3.616 (0.61)
median (TMLE) 2.995 (0.24) 3.094 (0.26) 3.208 (0.29) 3.476 (0.36) 3.120 (0.27) 3.260 (0.31) 3.583 (0.38)
DP-DR (γ = 0.1) 2.998 (0.18) 3.029 (0.30) 3.140 (0.55) 4.466 (1.72) 3.054 (0.31) 3.207 (0.62) 4.605 (1.78)
DP-DR (γ = 0.5) 2.996 (0.20) 2.998 (0.29) 3.000 (0.33) 3.060 (0.69) 3.022 (0.27) 3.053 (0.34) 3.197 (0.82)
DP-DR (γ = 1.0) 2.993 (0.24) 2.991 (0.29) 2.992 (0.31) 3.010 (0.53) 3.017 (0.29) 3.047 (0.33) 3.137 (0.66)
εDP-DR (γ = 0.1) 2.998 (0.18) 3.028 (0.29) 3.137 (0.53) 4.466 (1.72) 3.054 (0.31) 3.205 (0.60) 4.607 (1.77)
εDP-DR (γ = 0.5) 2.996 (0.20) 2.997 (0.26) 2.999 (0.30) 3.057 (0.66) 3.022 (0.27) 3.052 (0.32) 3.192 (0.78)
εDP-DR (γ = 1.0) 2.993 (0.24) 2.991 (0.29) 2.991 (0.30) 3.008 (0.52) 3.017 (0.29) 3.047 (0.33) 3.134 (0.63)

DR(T/F) Naive 3.002 (0.24) 3.748 (0.61) 4.492 (0.78) 5.982 (1.03) 3.766 (0.64) 4.536 (0.85) 6.071 (1.09)
median (Zhang-DR) 2.988 (0.28) 3.090 (0.33) 3.206 (0.35) 3.497 (0.55) 3.116 (0.33) 3.260 (0.39) 3.621 (0.67)
median (Sued) 2.988 (0.28) 3.090 (0.33) 3.205 (0.35) 3.491 (0.50) 3.116 (0.33) 3.259 (0.39) 3.615 (0.62)
median (TMLE) 3.000 (0.24) 3.101 (0.27) 3.216 (0.29) 3.499 (0.37) 3.126 (0.27) 3.268 (0.30) 3.610 (0.39)
DP-DR (γ = 0.1) 2.996 (0.24) 3.032 (0.31) 3.149 (0.54) 4.490 (1.71) 3.058 (0.33) 3.217 (0.61) 4.621 (1.76)
DP-DR (γ = 0.5) 2.984 (0.25) 2.987 (0.32) 2.990 (0.35) 3.058 (0.72) 3.012 (0.32) 3.042 (0.36) 3.194 (0.82)
DP-DR (γ = 1.0) 2.977 (0.28) 2.976 (0.34) 2.976 (0.35) 2.999 (0.59) 3.002 (0.33) 3.033 (0.38) 3.130 (0.70)
εDP-DR (γ = 0.1) 2.996 (0.24) 3.032 (0.31) 3.149 (0.54) 4.488 (1.71) 3.058 (0.32) 3.216 (0.60) 4.621 (1.75)
εDP-DR (γ = 0.5) 2.984 (0.25) 2.987 (0.32) 2.990 (0.34) 3.056 (0.69) 3.011 (0.31) 3.042 (0.36) 3.190 (0.79)
εDP-DR (γ = 1.0) 2.977 (0.28) 2.976 (0.33) 2.977 (0.34) 2.997 (0.55) 3.001 (0.33) 3.033 (0.37) 3.130 (0.69)

DR(F/T) Naive 2.999 (0.18) 3.726 (0.50) 4.451 (0.65) 5.902 (0.86) 3.667 (0.49) 4.341 (0.65) 5.685 (0.84)
median (Zhang-DR) 2.997 (0.24) 3.074 (0.25) 3.162 (0.27) 3.380 (0.32) 3.088 (0.25) 3.193 (0.27) 3.438 (0.32)
median (Sued) 2.999 (0.24) 3.101 (0.25) 3.214 (0.27) 3.495 (0.34) 3.112 (0.25) 3.238 (0.28) 3.532 (0.33)
median (TMLE) 2.997 (0.24) 3.072 (0.25) 3.157 (0.26) 3.358 (0.30) 3.086 (0.25) 3.186 (0.27) 3.414 (0.30)
DP-DR (γ = 0.1) 2.998 (0.18) 2.996 (0.19) 3.051 (0.34) 4.333 (1.57) 3.016 (0.19) 3.077 (0.29) 4.007 (1.35)
DP-DR (γ = 0.5) 2.995 (0.20) 2.970 (0.21) 2.944 (0.21) 2.901 (0.35) 2.994 (0.20) 2.995 (0.21) 3.003 (0.28)
DP-DR (γ = 1.0) 2.996 (0.23) 2.969 (0.23) 2.943 (0.24) 2.885 (0.25) 2.994 (0.23) 2.996 (0.23) 2.999 (0.24)
εDP-DR (γ = 0.1) 3.002 (0.18) 3.023 (0.19) 3.115 (0.38) 4.556 (1.59) 3.040 (0.19) 3.130 (0.32) 4.201 (1.40)
εDP-DR (γ = 0.5) 2.999 (0.20) 2.996 (0.20) 2.997 (0.21) 3.024 (0.40) 3.017 (0.20) 3.040 (0.21) 3.104 (0.31)
εDP-DR (γ = 1.0) 3.000 (0.23) 2.996 (0.23) 2.996 (0.23) 3.000 (0.25) 3.018 (0.23) 3.043 (0.23) 3.098 (0.24)

Table 4.11: Mean and SD of 10,000 simulated estimates of µ(1). The covariates X were generated from Gaussian distributions, and
the outcome regression was obtained by the unnormalized Gaussian modeling. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.008 0.011 0.009 0.010 0.009 0.008 0.006
median (Firpo) 2.028 2.038 2.009 1.992 1.591 1.604 1.610
median (Zhang-IPW) 0.164 0.184 0.159 0.167 0.172 0.166 0.168
DP-IPW (γ = 0.1) 33.735 44.282 60.503 79.176 39.488 54.135 70.099
DP-IPW (γ = 0.5) 48.650 49.775 47.834 46.162 43.983 43.577 41.231
DP-IPW (γ = 1.0) 65.725 64.715 61.072 53.993 56.336 54.092 48.227

DR(T/T) Naive 0.028 0.013 0.015 0.015 0.014 0.017 0.015
median (Zhang-DR) 0.412 0.442 0.429 0.435 0.359 0.371 0.370
median (Sued) 1.736 1.806 1.758 1.836 1.579 1.624 1.605
median (TMLE) 1055.657 1033.144 1008.369 993.124 943.045 934.975 921.709
DP-DR (γ = 0.1) 18.983 57.100 136.473 211.645 52.968 125.900 186.668
DP-DR (γ = 0.5) 56.355 48.725 48.968 39.064 43.681 43.085 36.285
DP-DR (γ = 1.0) 87.300 82.622 74.404 62.842 73.313 69.041 55.489
εDP-DR (γ = 0.1) 19.912 56.479 135.810 216.944 51.907 128.889 187.006
εDP-DR (γ = 0.5) 57.311 52.397 50.270 39.846 44.903 46.369 35.150
εDP-DR (γ = 1.0) 86.517 79.409 74.941 60.813 73.977 68.664 54.090

DR(T/F) Naive 0.016 0.016 0.029 0.017 0.013 0.012 0.014
median (Zhang-DR) 0.339 0.368 0.362 0.366 0.312 0.312 0.319
median (Sued) 1.689 1.873 3.724 3.779 1.445 1.501 1.683
median (TMLE) 981.209 994.937 968.273 974.131 887.897 895.797 915.279
DP-DR (γ = 0.1) 18.828 59.230 132.483 197.779 53.452 124.888 179.470
DP-DR (γ = 0.5) 55.630 51.825 46.049 36.762 48.728 44.227 36.664
DP-DR (γ = 1.0) 81.111 80.063 71.932 58.312 70.519 67.554 54.077
εDP-DR (γ = 0.1) 18.391 60.712 130.125 199.546 54.833 126.829 180.125
εDP-DR (γ = 0.5) 56.661 52.369 47.067 40.297 49.611 42.699 37.208
εDP-DR (γ = 1.0) 83.076 80.920 73.754 62.673 71.937 67.024 56.490

DR(F/T) Naive 0.013 0.016 0.014 0.015 0.014 0.016 0.014
median (Zhang-DR) 0.404 2.159 0.415 0.423 0.372 0.363 0.369
median (Sued) 1.652 1.849 1.657 1.781 1.505 1.487 1.564
median (TMLE) 940.593 961.615 929.511 967.157 861.292 867.211 893.940
DP-DR (γ = 0.1) 19.768 63.865 144.046 222.438 50.837 116.164 225.446
DP-DR (γ = 0.5) 51.923 49.406 49.673 42.449 45.033 45.493 36.107
DP-DR (γ = 1.0) 90.062 85.686 74.602 64.006 76.707 72.257 57.556
εDP-DR (γ = 0.1) 19.023 63.164 147.321 202.361 50.513 115.868 210.642
εDP-DR (γ = 0.5) 57.110 50.739 46.918 42.489 47.041 43.003 36.828
εDP-DR (γ = 1.0) 87.439 87.305 75.546 62.424 76.284 69.237 58.958

Table 4.12: Mean computation time (ms) of 10,000 simulations. The covariates X were generated from Gaussian distributions, and
the outcome regression was obtained by the unnormalized Gaussian modeling. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.197 0.952 1.711 3.174 1.000 1.762 3.269
median (Firpo) 0.278 0.319 0.407 0.705 0.334 0.447 0.785
median (Zhang-IPW) 0.278 0.319 0.407 0.705 0.334 0.447 0.785
DP-IPW (γ = 0.1) 0.199 0.230 0.567 2.329 0.253 0.609 2.429
DP-IPW (γ = 0.5) 0.223 0.230 0.239 0.703 0.230 0.247 0.690
DP-IPW (γ = 1.0) 0.273 0.273 0.273 0.432 0.272 0.279 0.394

DR(T/T) Naive 0.182 0.948 1.711 3.176 1.000 1.766 3.275
median (Zhang-DR) 0.265 0.308 0.404 0.732 0.327 0.446 0.800
median (Sued) 0.264 0.308 0.402 0.704 0.327 0.445 0.786
median (TMLE) 0.263 0.308 0.401 0.664 0.326 0.442 0.768
DP-DR (γ = 0.1) 0.184 0.219 0.582 2.332 0.254 0.624 2.438
DP-DR (γ = 0.5) 0.208 0.216 0.243 0.745 0.218 0.246 0.726
DP-DR (γ = 1.0) 0.257 0.258 0.260 0.498 0.259 0.272 0.480
εDP-DR (γ = 0.1) 0.184 0.218 0.579 2.330 0.251 0.618 2.435
εDP-DR (γ = 0.5) 0.208 0.216 0.241 0.730 0.218 0.245 0.710
εDP-DR (γ = 1.0) 0.257 0.258 0.260 0.481 0.260 0.266 0.437

DR(T/F) Naive 0.202 0.954 1.715 3.179 1.004 1.767 3.276
median (Zhang-DR) 0.285 0.324 0.413 0.738 0.340 0.453 0.806
median (Sued) 0.285 0.325 0.412 0.710 0.340 0.453 0.792
median (TMLE) 0.267 0.313 0.406 0.682 0.331 0.448 0.786
DP-DR (γ = 0.1) 0.204 0.235 0.579 2.332 0.261 0.625 2.436
DP-DR (γ = 0.5) 0.229 0.235 0.257 0.752 0.236 0.268 0.754
DP-DR (γ = 1.0) 0.279 0.279 0.280 0.514 0.279 0.287 0.487
εDP-DR (γ = 0.1) 0.204 0.234 0.577 2.329 0.262 0.623 2.433
εDP-DR (γ = 0.5) 0.229 0.235 0.256 0.742 0.235 0.266 0.743
εDP-DR (γ = 1.0) 0.279 0.279 0.279 0.500 0.278 0.286 0.476

DR(F/T) Naive 0.180 0.887 1.611 3.037 0.832 1.488 2.805
median (Zhang-DR) 0.259 0.288 0.349 0.544 0.295 0.365 0.591
median (Sued) 0.259 0.299 0.387 0.658 0.306 0.399 0.683
median (TMLE) 0.256 0.282 0.338 0.508 0.289 0.354 0.554
DP-DR (γ = 0.1) 0.183 0.195 0.381 2.121 0.196 0.315 1.734
DP-DR (γ = 0.5) 0.206 0.216 0.229 0.467 0.213 0.219 0.292
DP-DR (γ = 1.0) 0.247 0.251 0.259 0.301 0.249 0.251 0.258
εDP-DR (γ = 0.1) 0.183 0.198 0.426 2.273 0.202 0.358 1.888
εDP-DR (γ = 0.5) 0.206 0.212 0.217 0.491 0.212 0.220 0.318
εDP-DR (γ = 1.0) 0.247 0.247 0.247 0.264 0.248 0.253 0.278

Table 4.13: Results of the comparative study. Each figure is RMSE between each method and the true value. The covariates X
were generated from uniform distributions, and the outcome regression was obtained by the Gaussian MLE using non-outliers.
The characters "T" and "F" denote the correct and the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 3.003 (0.20) 3.759 (0.57) 4.521 (0.79) 6.004 (1.02) 3.783 (0.62) 4.556 (0.83) 6.090 (1.07)
median (Firpo) 2.985 (0.28) 3.099 (0.30) 3.233 (0.33) 3.541 (0.45) 3.130 (0.31) 3.292 (0.34) 3.666 (0.42)
median (Zhang-IPW) 2.985 (0.28) 3.099 (0.30) 3.233 (0.33) 3.541 (0.45) 3.130 (0.31) 3.292 (0.34) 3.666 (0.42)
DP-IPW (γ = 0.1) 3.000 (0.20) 3.038 (0.23) 3.186 (0.54) 4.590 (1.70) 3.066 (0.24) 3.241 (0.56) 4.713 (1.72)
DP-IPW (γ = 0.5) 2.991 (0.22) 2.990 (0.23) 2.994 (0.24) 3.075 (0.70) 3.017 (0.23) 3.048 (0.24) 3.185 (0.66)
DP-IPW (γ = 1.0) 2.979 (0.27) 2.978 (0.27) 2.982 (0.27) 2.998 (0.43) 3.009 (0.27) 3.043 (0.28) 3.123 (0.37)

DR(T/T) Naive 3.001 (0.18) 3.757 (0.57) 4.519 (0.79) 6.003 (1.03) 3.781 (0.62) 4.555 (0.84) 6.090 (1.08)
median (Zhang-DR) 2.990 (0.27) 3.104 (0.29) 3.237 (0.33) 3.547 (0.49) 3.135 (0.30) 3.295 (0.33) 3.669 (0.44)
median (Sued) 2.990 (0.26) 3.103 (0.29) 3.237 (0.32) 3.544 (0.45) 3.135 (0.30) 3.295 (0.33) 3.668 (0.41)
median (TMLE) 2.991 (0.26) 3.104 (0.29) 3.236 (0.32) 3.530 (0.40) 3.134 (0.30) 3.292 (0.33) 3.652 (0.41)
DP-DR (γ = 0.1) 2.999 (0.18) 3.035 (0.22) 3.185 (0.55) 4.582 (1.71) 3.064 (0.25) 3.238 (0.58) 4.704 (1.74)
DP-DR (γ = 0.5) 2.995 (0.21) 2.992 (0.22) 2.997 (0.24) 3.083 (0.74) 3.020 (0.22) 3.051 (0.24) 3.190 (0.70)
DP-DR (γ = 1.0) 2.988 (0.26) 2.985 (0.26) 2.988 (0.26) 3.008 (0.50) 3.016 (0.26) 3.049 (0.27) 3.136 (0.46)
εDP-DR (γ = 0.1) 2.999 (0.18) 3.035 (0.22) 3.184 (0.55) 4.582 (1.71) 3.064 (0.24) 3.237 (0.57) 4.706 (1.74)
εDP-DR (γ = 0.5) 2.995 (0.21) 2.992 (0.22) 2.996 (0.24) 3.081 (0.73) 3.020 (0.22) 3.051 (0.24) 3.188 (0.68)
εDP-DR (γ = 1.0) 2.988 (0.26) 2.985 (0.26) 2.988 (0.26) 3.005 (0.48) 3.015 (0.26) 3.049 (0.26) 3.132 (0.42)

DR(T/F) Naive 3.005 (0.20) 3.762 (0.57) 4.524 (0.79) 6.008 (1.03) 3.786 (0.62) 4.560 (0.83) 6.095 (1.07)
median (Zhang-DR) 2.987 (0.28) 3.103 (0.31) 3.237 (0.34) 3.550 (0.49) 3.134 (0.31) 3.296 (0.34) 3.673 (0.44)
median (Sued) 2.987 (0.28) 3.102 (0.31) 3.236 (0.34) 3.544 (0.46) 3.133 (0.31) 3.295 (0.34) 3.670 (0.42)
median (TMLE) 2.996 (0.27) 3.110 (0.29) 3.243 (0.33) 3.547 (0.41) 3.140 (0.30) 3.300 (0.33) 3.671 (0.41)
DP-DR (γ = 0.1) 3.003 (0.20) 3.042 (0.23) 3.192 (0.55) 4.590 (1.71) 3.070 (0.25) 3.249 (0.57) 4.714 (1.73)
DP-DR (γ = 0.5) 2.994 (0.23) 2.993 (0.23) 2.997 (0.26) 3.090 (0.75) 3.020 (0.23) 3.053 (0.26) 3.204 (0.73)
DP-DR (γ = 1.0) 2.982 (0.28) 2.981 (0.28) 2.985 (0.28) 3.008 (0.51) 3.011 (0.28) 3.046 (0.28) 3.136 (0.47)
εDP-DR (γ = 0.1) 3.003 (0.20) 3.042 (0.23) 3.191 (0.54) 4.587 (1.70) 3.070 (0.25) 3.248 (0.57) 4.713 (1.73)
εDP-DR (γ = 0.5) 2.994 (0.23) 2.992 (0.23) 2.997 (0.26) 3.087 (0.74) 3.020 (0.23) 3.052 (0.26) 3.201 (0.72)
εDP-DR (γ = 1.0) 2.982 (0.28) 2.980 (0.28) 2.984 (0.28) 3.006 (0.50) 3.011 (0.28) 3.046 (0.28) 3.134 (0.46)

DR(F/T) Naive 3.000 (0.18) 3.737 (0.49) 4.469 (0.66) 5.911 (0.87) 3.676 (0.49) 4.344 (0.64) 5.676 (0.84)
median (Zhang-DR) 3.005 (0.26) 3.088 (0.27) 3.187 (0.29) 3.417 (0.35) 3.104 (0.28) 3.217 (0.29) 3.482 (0.34)
median (Sued) 2.999 (0.26) 3.113 (0.28) 3.243 (0.30) 3.546 (0.37) 3.125 (0.28) 3.264 (0.30) 3.587 (0.35)
median (TMLE) 3.004 (0.26) 3.085 (0.27) 3.180 (0.29) 3.391 (0.32) 3.101 (0.27) 3.210 (0.29) 3.454 (0.32)
DP-DR (γ = 0.1) 3.000 (0.18) 3.007 (0.20) 3.088 (0.37) 4.422 (1.57) 3.027 (0.19) 3.104 (0.30) 4.082 (1.36)
DP-DR (γ = 0.5) 3.000 (0.21) 2.970 (0.21) 2.943 (0.22) 2.907 (0.46) 2.997 (0.21) 2.996 (0.22) 2.999 (0.29)
DP-DR (γ = 1.0) 3.003 (0.25) 2.970 (0.25) 2.939 (0.25) 2.868 (0.27) 2.999 (0.25) 2.998 (0.25) 2.994 (0.26)
εDP-DR (γ = 0.1) 3.000 (0.18) 3.032 (0.20) 3.150 (0.40) 4.641 (1.57) 3.052 (0.20) 3.162 (0.32) 4.286 (1.38)
εDP-DR (γ = 0.5) 3.000 (0.21) 2.997 (0.21) 2.999 (0.22) 3.036 (0.49) 3.024 (0.21) 3.052 (0.21) 3.121 (0.29)
εDP-DR (γ = 1.0) 3.003 (0.25) 2.999 (0.25) 3.001 (0.25) 3.000 (0.26) 3.029 (0.25) 3.060 (0.25) 3.125 (0.25)

Table 4.14: Mean and SD of 10,000 simulated estimates of µ(1). The covariates X were generated from uniform distributions, and
the outcome regression was obtained by the Gaussian MLE using non-outliers. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.006 0.008 0.008 0.010 0.009 0.008 0.011
median (Firpo) 1.624 1.554 1.598 1.596 1.640 1.599 1.595
median (Zhang-IPW) 0.144 0.155 0.146 0.149 0.163 0.166 0.166
DP-IPW (γ = 0.1) 28.899 40.705 57.891 72.877 41.438 58.884 72.039
DP-IPW (γ = 0.5) 41.124 43.104 41.639 40.541 43.319 42.599 40.527
DP-IPW (γ = 1.0) 58.435 57.102 56.009 48.982 57.823 54.624 48.146

DR(T/T) Naive 0.013 0.017 0.014 0.014 0.011 0.013 0.012
median (Zhang-DR) 0.354 0.380 0.429 0.452 0.391 0.387 0.388
median (Sued) 1.470 1.427 1.650 1.733 1.660 1.535 1.645
median (TMLE) 1019.177 987.574 1046.361 1019.792 1012.613 973.752 953.734
DP-DR (γ = 0.1) 14.030 65.830 156.014 221.084 65.235 150.543 206.717
DP-DR (γ = 0.5) 42.618 39.445 42.180 33.461 39.311 39.022 30.945
DP-DR (γ = 1.0) 80.107 73.122 75.633 54.222 74.230 66.690 52.706
εDP-DR (γ = 0.1) 13.830 61.746 159.505 222.713 64.413 146.996 203.859
εDP-DR (γ = 0.5) 42.832 43.615 42.286 36.057 43.612 37.242 31.352
εDP-DR (γ = 1.0) 80.584 75.842 71.612 55.196 77.477 64.020 52.287

DR(T/F) Naive 0.011 0.013 0.018 0.014 0.013 0.013 0.018
median (Zhang-DR) 0.298 2.320 0.365 0.371 0.316 0.320 0.334
median (Sued) 1.497 4.069 1.717 1.870 1.548 1.509 1.679
median (TMLE) 908.448 921.784 963.501 973.878 904.782 896.085 914.020
DP-DR (γ = 0.1) 12.200 61.403 166.398 223.529 62.714 154.528 201.548
DP-DR (γ = 0.5) 42.066 38.529 41.758 32.706 40.717 34.629 31.154
DP-DR (γ = 1.0) 76.853 73.440 75.127 59.673 74.651 63.882 52.368
εDP-DR (γ = 0.1) 12.005 64.193 164.242 216.765 61.661 152.694 206.549
εDP-DR (γ = 0.5) 42.311 40.010 39.141 34.312 40.385 37.031 31.584
εDP-DR (γ = 1.0) 77.362 74.394 73.187 54.911 75.535 67.096 51.224

DR(F/T) Naive 0.014 0.014 0.017 0.017 0.012 0.013 0.011
median (Zhang-DR) 0.368 0.431 0.412 0.431 0.390 0.379 2.279
median (Sued) 1.586 3.853 1.855 1.805 1.589 1.626 4.012
median (TMLE) 896.351 970.473 976.782 987.069 909.770 907.980 930.365
DP-DR (γ = 0.1) 13.761 74.393 177.183 239.704 60.244 143.986 246.342
DP-DR (γ = 0.5) 44.319 46.824 40.203 37.486 42.798 40.716 34.311
DP-DR (γ = 1.0) 85.614 85.866 75.166 60.665 80.635 71.475 59.946
εDP-DR (γ = 0.1) 13.569 72.655 175.524 216.075 58.960 144.481 227.731
εDP-DR (γ = 0.5) 44.594 50.019 45.107 37.493 41.513 42.198 33.163
εDP-DR (γ = 1.0) 85.994 84.480 77.364 62.210 80.407 74.459 57.817

Table 4.15: Mean computation time (ms) of 10,000 simulations. The covariates X were generated from uniform distributions, and
the outcome regression was obtained by the Gaussian MLE over non-outliers. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.197 0.952 1.711 3.174 1.000 1.762 3.269
median (Firpo) 0.278 0.319 0.407 0.705 0.334 0.447 0.785
median (Zhang-IPW) 0.278 0.319 0.407 0.705 0.334 0.447 0.785
DP-IPW (γ = 0.1) 0.199 0.230 0.567 2.329 0.253 0.609 2.429
DP-IPW (γ = 0.5) 0.223 0.230 0.239 0.703 0.230 0.247 0.690
DP-IPW (γ = 1.0) 0.273 0.273 0.273 0.432 0.272 0.279 0.394

DR(T/T) Naive 0.182 0.948 1.711 3.176 1.000 1.766 3.275
median (Zhang-DR) 0.265 0.309 0.404 0.732 0.328 0.446 0.799
median (Sued) 0.264 0.308 0.403 0.705 0.327 0.445 0.785
median (TMLE) 0.263 0.307 0.402 0.659 0.327 0.443 0.761
DP-DR (γ = 0.1) 0.184 0.219 0.583 2.333 0.254 0.623 2.439
DP-DR (γ = 0.5) 0.208 0.216 0.243 0.746 0.218 0.246 0.726
DP-DR (γ = 1.0) 0.257 0.258 0.260 0.504 0.259 0.272 0.480
εDP-DR (γ = 0.1) 0.184 0.218 0.578 2.329 0.251 0.618 2.434
εDP-DR (γ = 0.5) 0.208 0.216 0.241 0.726 0.218 0.245 0.708
εDP-DR (γ = 1.0) 0.257 0.258 0.260 0.482 0.260 0.266 0.434

DR(T/F) Naive 0.203 0.954 1.714 3.178 1.003 1.767 3.275
median (Zhang-DR) 0.285 0.325 0.413 0.725 0.341 0.453 0.806
median (Sued) 0.284 0.324 0.412 0.710 0.340 0.453 0.792
median (TMLE) 0.266 0.313 0.408 0.697 0.331 0.449 0.787
DP-DR (γ = 0.1) 0.205 0.236 0.580 2.330 0.262 0.625 2.437
DP-DR (γ = 0.5) 0.230 0.236 0.258 0.750 0.237 0.269 0.755
DP-DR (γ = 1.0) 0.280 0.280 0.281 0.501 0.279 0.288 0.489
εDP-DR (γ = 0.1) 0.205 0.235 0.577 2.328 0.261 0.622 2.434
εDP-DR (γ = 0.5) 0.230 0.236 0.256 0.738 0.236 0.267 0.743
εDP-DR (γ = 1.0) 0.280 0.279 0.280 0.488 0.279 0.287 0.475

DR(F/T) Naive 0.182 0.887 1.611 3.037 0.832 1.488 2.805
median (Zhang-DR) 0.260 0.285 0.344 0.535 0.292 0.359 0.582
median (Sued) 0.259 0.300 0.388 0.658 0.306 0.399 0.683
median (TMLE) 0.258 0.280 0.333 0.498 0.287 0.348 0.543
DP-DR (γ = 0.1) 0.185 0.197 0.385 2.128 0.197 0.319 1.741
DP-DR (γ = 0.5) 0.208 0.219 0.233 0.474 0.215 0.221 0.290
DP-DR (γ = 1.0) 0.249 0.254 0.265 0.304 0.251 0.253 0.261
εDP-DR (γ = 0.1) 0.185 0.202 0.449 2.294 0.204 0.368 1.897
εDP-DR (γ = 0.5) 0.207 0.212 0.217 0.516 0.213 0.220 0.320
εDP-DR (γ = 1.0) 0.248 0.247 0.247 0.267 0.248 0.251 0.272

Table 4.16: Results of the comparative study. Each figure is RMSE between each method and the true value. The covariates X
were generated from uniform distributions, and the outcome regression was obtained by the unnormalized Gaussian modeling. The
characters "T" and "F" denote the correct and the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 3.003 (0.20) 3.759 (0.57) 4.521 (0.79) 6.004 (1.02) 3.783 (0.62) 4.556 (0.83) 6.090 (1.07)
median (Firpo) 2.985 (0.28) 3.099 (0.30) 3.233 (0.33) 3.541 (0.45) 3.130 (0.31) 3.292 (0.34) 3.666 (0.42)
median (Zhang-IPW) 2.985 (0.28) 3.099 (0.30) 3.233 (0.33) 3.541 (0.45) 3.130 (0.31) 3.292 (0.34) 3.666 (0.42)
DP-IPW (γ = 0.1) 3.000 (0.20) 3.038 (0.23) 3.186 (0.54) 4.590 (1.70) 3.066 (0.24) 3.241 (0.56) 4.713 (1.72)
DP-IPW (γ = 0.5) 2.991 (0.22) 2.990 (0.23) 2.994 (0.24) 3.075 (0.70) 3.017 (0.23) 3.048 (0.24) 3.185 (0.66)
DP-IPW (γ = 1.0) 2.979 (0.27) 2.978 (0.27) 2.982 (0.27) 2.998 (0.43) 3.009 (0.27) 3.043 (0.28) 3.123 (0.37)

DR(T/T) Naive 3.001 (0.18) 3.757 (0.57) 4.519 (0.79) 6.003 (1.03) 3.781 (0.62) 4.555 (0.84) 6.090 (1.08)
median (Zhang-DR) 2.990 (0.27) 3.104 (0.29) 3.238 (0.33) 3.548 (0.49) 3.135 (0.30) 3.295 (0.33) 3.668 (0.44)
median (Sued) 2.990 (0.26) 3.104 (0.29) 3.237 (0.33) 3.544 (0.45) 3.135 (0.30) 3.295 (0.33) 3.667 (0.41)
median (TMLE) 2.991 (0.26) 3.104 (0.29) 3.236 (0.33) 3.527 (0.40) 3.134 (0.30) 3.292 (0.33) 3.647 (0.40)
DP-DR (γ = 0.1) 2.999 (0.18) 3.035 (0.22) 3.185 (0.55) 4.582 (1.71) 3.064 (0.25) 3.238 (0.58) 4.706 (1.74)
DP-DR (γ = 0.5) 2.995 (0.21) 2.992 (0.22) 2.996 (0.24) 3.083 (0.74) 3.020 (0.22) 3.051 (0.24) 3.190 (0.70)
DP-DR (γ = 1.0) 2.988 (0.26) 2.985 (0.26) 2.988 (0.26) 3.009 (0.50) 3.016 (0.26) 3.049 (0.27) 3.136 (0.46)
εDP-DR (γ = 0.1) 2.999 (0.18) 3.035 (0.22) 3.184 (0.55) 4.581 (1.71) 3.064 (0.24) 3.238 (0.57) 4.705 (1.74)
εDP-DR (γ = 0.5) 2.995 (0.21) 2.992 (0.22) 2.996 (0.24) 3.080 (0.72) 3.020 (0.22) 3.051 (0.24) 3.187 (0.68)
εDP-DR (γ = 1.0) 2.988 (0.26) 2.985 (0.26) 2.988 (0.26) 3.006 (0.48) 3.016 (0.26) 3.049 (0.26) 3.132 (0.41)

DR(T/F) Naive 3.005 (0.20) 3.761 (0.57) 4.523 (0.79) 6.007 (1.03) 3.785 (0.62) 4.559 (0.83) 6.094 (1.07)
median (Zhang-DR) 2.986 (0.29) 3.101 (0.31) 3.237 (0.34) 3.547 (0.48) 3.133 (0.31) 3.295 (0.34) 3.672 (0.44)
median (Sued) 2.987 (0.28) 3.101 (0.31) 3.236 (0.34) 3.544 (0.46) 3.133 (0.31) 3.295 (0.34) 3.670 (0.42)
median (TMLE) 2.997 (0.27) 3.111 (0.29) 3.245 (0.33) 3.550 (0.43) 3.141 (0.30) 3.302 (0.33) 3.672 (0.41)
DP-DR (γ = 0.1) 3.002 (0.21) 3.041 (0.23) 3.192 (0.55) 4.588 (1.71) 3.070 (0.25) 3.248 (0.57) 4.715 (1.73)
DP-DR (γ = 0.5) 2.993 (0.23) 2.992 (0.24) 2.997 (0.26) 3.088 (0.74) 3.019 (0.24) 3.052 (0.26) 3.202 (0.73)
DP-DR (γ = 1.0) 2.981 (0.28) 2.980 (0.28) 2.984 (0.28) 3.007 (0.50) 3.010 (0.28) 3.045 (0.28) 3.134 (0.47)
εDP-DR (γ = 0.1) 3.002 (0.20) 3.041 (0.23) 3.191 (0.54) 4.588 (1.70) 3.069 (0.25) 3.247 (0.57) 4.714 (1.73)
εDP-DR (γ = 0.5) 2.993 (0.23) 2.992 (0.24) 2.997 (0.26) 3.085 (0.73) 3.019 (0.24) 3.052 (0.26) 3.200 (0.72)
εDP-DR (γ = 1.0) 2.981 (0.28) 2.980 (0.28) 2.983 (0.28) 3.005 (0.49) 3.010 (0.28) 3.045 (0.28) 3.133 (0.46)

DR(F/T) Naive 3.000 (0.18) 3.737 (0.49) 4.469 (0.66) 5.911 (0.87) 3.676 (0.49) 4.344 (0.64) 5.676 (0.84)
median (Zhang-DR) 2.997 (0.26) 3.079 (0.27) 3.177 (0.29) 3.405 (0.35) 3.095 (0.28) 3.207 (0.29) 3.471 (0.34)
median (Sued) 3.000 (0.26) 3.113 (0.28) 3.244 (0.30) 3.547 (0.37) 3.125 (0.28) 3.265 (0.30) 3.587 (0.35)
median (TMLE) 2.996 (0.26) 3.076 (0.27) 3.170 (0.29) 3.378 (0.32) 3.092 (0.27) 3.200 (0.29) 3.440 (0.32)
DP-DR (γ = 0.1) 2.999 (0.19) 3.006 (0.20) 3.088 (0.38) 4.435 (1.57) 3.026 (0.20) 3.104 (0.30) 4.092 (1.36)
DP-DR (γ = 0.5) 2.993 (0.21) 2.964 (0.22) 2.936 (0.22) 2.901 (0.46) 2.990 (0.21) 2.990 (0.22) 2.993 (0.29)
DP-DR (γ = 1.0) 2.991 (0.25) 2.957 (0.25) 2.927 (0.25) 2.856 (0.27) 2.987 (0.25) 2.986 (0.25) 2.982 (0.26)
εDP-DR (γ = 0.1) 3.003 (0.18) 3.035 (0.20) 3.160 (0.42) 4.658 (1.58) 3.051 (0.20) 3.160 (0.33) 4.284 (1.40)
εDP-DR (γ = 0.5) 2.998 (0.21) 2.995 (0.21) 2.997 (0.22) 3.041 (0.51) 3.017 (0.21) 3.042 (0.22) 3.105 (0.30)
εDP-DR (γ = 1.0) 2.996 (0.25) 2.992 (0.25) 2.994 (0.25) 2.996 (0.27) 3.017 (0.25) 3.044 (0.25) 3.102 (0.25)

Table 4.17: Mean and SD of 10,000 simulated estimates of µ(1). The covariates X were generated from uniform distributions, and
the outcome regression was obtained by the unnormalized Gaussian modeling. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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No contam. Homogeneous Heterogeneous
ε = 0.05 ε = 0.10 ε = 0.20 ε = 0.05 ε = 0.10 ε = 0.20

IPW(T/-) Naive 0.012 0.009 0.011 0.008 0.009 0.008 0.008
median (Firpo) 2.061 2.018 2.001 2.014 1.593 1.588 1.591
median (Zhang-IPW) 0.159 0.158 0.155 0.174 0.160 0.162 0.162
DP-IPW (γ = 0.1) 32.502 46.715 64.496 80.991 41.595 58.327 72.898
DP-IPW (γ = 0.5) 45.786 48.372 46.799 45.370 43.191 41.859 40.298
DP-IPW (γ = 1.0) 67.400 64.207 61.061 54.756 57.049 54.186 47.922

DR(T/T) Naive 0.020 0.017 0.015 0.014 0.015 0.014 0.016
median (Zhang-DR) 0.426 0.435 0.413 0.432 0.371 0.372 0.372
median (Sued) 1.769 1.883 1.684 1.763 1.524 1.521 1.567
median (TMLE) 1120.595 1076.392 1039.786 1029.243 991.954 961.859 947.842
DP-DR (γ = 0.1) 15.718 71.203 165.047 228.545 66.563 152.820 207.025
DP-DR (γ = 0.5) 50.227 46.273 41.325 36.313 43.227 37.408 29.929
DP-DR (γ = 1.0) 92.921 85.411 73.518 56.090 74.702 65.099 53.264
εDP-DR (γ = 0.1) 15.929 72.355 166.803 229.476 66.591 151.084 203.590
εDP-DR (γ = 0.5) 50.950 46.989 43.582 33.812 45.355 37.982 32.001
εDP-DR (γ = 1.0) 93.544 82.191 72.519 58.983 74.507 67.979 54.172

DR(T/F) Naive 0.015 0.014 0.014 0.017 0.012 0.013 0.012
median (Zhang-DR) 0.344 0.369 0.379 0.348 0.310 0.316 0.313
median (Sued) 1.674 1.913 1.710 1.805 1.645 1.543 1.579
median (TMLE) 1004.081 999.738 972.337 971.670 918.025 905.992 907.104
DP-DR (γ = 0.1) 13.940 71.371 157.230 220.831 63.078 148.782 198.135
DP-DR (γ = 0.5) 46.461 45.985 38.650 34.250 40.784 36.915 30.849
DP-DR (γ = 1.0) 82.531 80.473 72.655 57.973 74.487 64.093 50.140
εDP-DR (γ = 0.1) 13.889 68.556 163.008 221.689 63.626 148.044 204.685
εDP-DR (γ = 0.5) 46.726 44.754 39.936 35.078 40.930 37.054 29.266
εDP-DR (γ = 1.0) 83.223 81.341 72.481 56.218 73.313 64.716 49.878

DR(F/T) Naive 0.013 0.014 0.014 0.018 0.012 0.017 0.012
median (Zhang-DR) 0.411 0.429 0.435 0.435 0.383 0.366 0.374
median (Sued) 1.719 1.848 1.776 1.807 1.503 1.684 1.580
median (TMLE) 974.546 977.795 969.097 988.810 892.363 913.748 924.284
DP-DR (γ = 0.1) 16.894 76.806 185.199 241.377 61.562 142.078 254.437
DP-DR (γ = 0.5) 56.429 50.977 44.908 40.217 46.906 41.295 34.944
DP-DR (γ = 1.0) 92.542 89.220 78.322 64.042 80.361 74.055 58.842
εDP-DR (γ = 0.1) 17.194 76.893 177.770 220.029 61.670 147.734 233.473
εDP-DR (γ = 0.5) 55.339 51.744 45.734 37.134 46.247 41.614 32.412
εDP-DR (γ = 1.0) 93.373 88.307 80.103 64.488 80.508 74.952 61.334

Table 4.18: Mean computation time (ms) of 10,000 simulations. The covariates X were generated from uniform distributions, and
the outcome regression was obtained by the unnormalized Gaussian modeling. The characters "T" and "F" denote the correct and
the incorrect modeling for PS/OR.
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5 Conclusion

In this thesis, we discuss statistical inference about causal relationships. As mentioned
in the introduction, causality is difficult to express in the usual statistical framework,
and therefore, in order to make inferences implying causality, we need to use a
framework with more expressive power. High expressiveness, in turn, is related to
the difficulty of estimation. For example, LiNGAM, discussed in Chapter 3, requires
constraints that are not usually required for asymptotic consistency. Besides, the
semiparametric estimator of the ATE discussed in Chapter 4 requires us to build
nuisance models using covariates to estimate the mean without bias, even though we
just want to know the mean. In addition, since causality is a matter of great practical
interest, it is essential to be able to deal with the various difficulties that appear
in real data. In this thesis, we discuss LiNGAM for high-dimensional and sparse
data, and IPW/DR estimators under outlier contamination. The results suggest
that in order to estimate causal models under data difficulties, one should not only
deal with causal difficulties and data difficulties separately, but also pay attention
to the difficulties arising from the combination of both. In Chapter 3, it has been
found that in order to combine the uncorrelatedness of the independent components,
which is the prerequisite for consistency, with the sparsity of the recovering matrix,
it is necessary to incorporate both the sparse penalty and whitening of the data
matrix. This has encouraged us to use the generalized lasso type penalty and the
orthogonal penalty. In Chapter 4, it has been found that the DR-M estimator should
be corrected with the proportion of outliers under contamination because the DR-M
estimator loses its double robustness when only the conditional model is correct.
The models and estimators discussed in this thesis are relatively basic in statistical
causal inference, and it goes without saying that there are various difficulties with
the real data other than those dealt with in this thesis. For more advanced causal
questions, more complex estimands may be required, and in such cases, we need to
pay more attentions about data difficulties.
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