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In this thesis, we consider the problem of applying residual analysis to improve
machine learning algorithms, including model improvement for state-space models
with nonlinear response (Chapter 3), approximate approach for solving chance
constrained optimization (Chapter 4), and computing the probabilistic bounds on state
trajectories for uncertain nonlinear systems (Chapter 5).

In Chapter 2, we summarizes the original concept of using residual analysis to check
the goodness of fit and improve model. The example of residual analysis in regression
problems is used to help understanding the concept. Besides, some recent applications
of residual analysis have been reviewed, including applications in point processes, time
series models, and hidden Markov models. At the end of Chapter 2, we give an intuitive
introduction for the idea of applying residual analysis in model improvement of state
space models and approximation of chance constrained optimizations, which are the
main contributions of this thesis.

In Chapter 3, we address the problem of model improvement for state space models
based on residual analysis. The residual of a state-space model is defined. For an SSM
with unknown nonlinear response, we propose a novel algorithm for model learning
and hidden state inference. A neural network model is used to approximate the
unknown nonlinear part in the observation equation, and an Expectation-Maximization
(EM) algorithm is proposed to infer the hidden state and learn the parameters in both
the linear part and the neural network model, from the given sequences of input data
and observation data. In the E-Step, the posterior mean and covariance for the system
hidden state given the sequences of the system input and observations is inferred via
a Kalman filter-based forward recursion and Rauch-Tung-Streibel smoother backward
recursion. In the M-Step, the model parameters are optimized according to the inferred
hidden state, input data, and observation data. The M-Step consists of two components:
a reconstruction procedure, in which uses the residuals of the linear model to fit the
neural network model, and a parametrization procedure, which identifies the
parameters in the linear part of the state space model. We apply this newly proposed
method to a numerical example and in a case study of battery capacity estimation. The
results show that the proposed method can achieve better performance on the model
learning and hidden state inference than previously developed tools.

In Chapter 4, we present the residual analysis-based algorithm design for

approximate chance constrained program. After reformulating the probabilistic



constraints as the quantile function, a sample-based neural network model is used to
approximate the quantile function which can dramatically improve the efficiency of the
algorithm. The statistical guarantees of the neural approximation are discussed by
showing the convergence of the approximate residual and feasibility analysis. Interval
Predictor Model (IPM) of wind power is investigated to validate the proposed method.

In Chapter 5, we present the chance constrained optimization-based algorithms to
compute predictive probabilistic bounds on state trajectories for uncertain nonlinear
systems. A probabilistic constrained problem 1is formulated for calculating the
probabilistic ellipsoidal bounds of the future trajectory of system states. Scenario
approach and sample average approach are used to approximate the probabilistic
constrained problem by formulating a deterministic problem with samples of the
uncertain parameters in the system. For a given probabilistic level and upper bound of
the violation probability, the least number of samples required for calculating the
bound can be determined for both scenario approach and sample average approach. The
optimality of the solutions obtained by scenario approach and sample average approach
is discussed theoretically. The results of numerical example show that more samples
will improve the feasibility by sacrificing optimality slightly for sample average

approach. However the scenario approach needs more sacrifice on optimality.
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