
Residual Analysis for Machine Learning

Author:
Xun Shen

Supervisor:
Assoc. Prof. Jiancang Zhuang

Doctor of Philosophy

Department of Statistical Science
School of Multidisciplinary Sciences

The Graduate University for Advanced Studies, SOKENDAI

March 2022

Declaration of Authorship

I, Xun Shen, declare that this thesis titled, ’Residual Analysis for Machine Learning’
and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree
at this University.

■ Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

■ Where I have consulted the published work of others, this is always clearly at-
tributed.

■ Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

A dissertation submitted to Department of Statistical Science,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies, SOKENDAI,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Advisory Committee

1. Assoc. Prof. Jiancang Zhuang Institute of Statistical Mathematics,
SOKENDAI

2. Assoc. Prof. Keisuke Yano Institute of Statistical Mathematics,
SOKENDAI

3. Asso. Prof. Shinya Nakano Institute of Statistical Mathematics,
SOKENDAI

4. Assoc. Prof. Shunichi Nomura Waseda University

”Do not boast about tomorrow, for you do not know what a day may bring.”

— The Bible–Proverbs 27:1

Acknowledgements

Foremost, I would like to express my sincere appreciation to my advisor Asso. Prof. Jian-
cang Zhuang for accepting me as a Ph.D student, your warm encouragement, thoughtful
guidance, critical comments, and correction of our articles and the thesis. You gave me
a lot of insights on how to use residual analysis to improve state-space models and even
how to approximate the chance constrained optimization. Even though I had studied
some knowledge on state-space models and chance constrained optimization, I was not
aware of how statistics could help us to get deep into the problems and broaden our
views. With your guidance, I finished my transformation from an engineer to a statis-
tician. I could not have imagined having a better advisor and mentor for my Ph.D
study.

Besides my advisor, I would like to thank the rest of my thesis committee: Asso. Prof.
Shinya Nakano, Assoc. Prof. Keisuke Yano, and Asso. Prof. Shunichi Nomura, for their
encouragement, insightful comments, and hard questions.

My sincere thanks also goes to Prof. Satoshi Ito for giving the course of convex opti-
mization and a lot of insightful advice on robust optimization and chance constrained
optimization.

I thank Dr. Tinghui Ouyang for the stimulating discussions on the gap of machine
learning, statistics and optimization. Also I thank Dr. Nan Yang for providing us
experimental data set to validate our work.

I appreciate my parents for their material and spiritual support in all aspects of my life.

Last but not the least, I would like to thank my lovely wife, Dear Xin Qi. Without your
supports and encouragements, I could not have finished this work.

iii

The Graduate University for Advanced Studies, SOKENDAI

Abstract
School of Multidisciplinary Sciences
Department of Statistical Science

Doctor of Philosophy

Residual Analysis for Machine Learning

by Xun Shen

In this thesis, we consider the problem of applying residual analysis to improve machine
learning algorithms, including model improvement for state-space models with nonlinear
response (Chapter 3), approximate approach for solving chance constrained optimization
(Chapter 4), and computing the probabilistic bounds on state trajectories for uncertain
nonlinear systems (Chapter 5).

In Chapter 2, we summarizes the original concept of using residual analysis to check
the goodness of fit and improve model. The example of residual analysis in regression
problems is used to help understanding the concept. Besides, some recent applications
of residual analysis have been reviewed, including applications in point processes, time
series models, and hidden Markov models. At the end of Chapter 2, we give an intuitive
introduction for the idea of applying residual analysis in model improvement of state
space models and approximation of chance constrained optimizations, which are the
main contributions of this thesis.

In Chapter 3, we address the problem of model improvement for state space models based
on residual analysis. The residual of a state-space model is defined. For an SSM with
unknown nonlinear response, we propose a novel algorithm for model learning and hidden
state inference. A neural network model is used to approximate the unknown nonlinear
part in the observation equation, and an Expectation-Maximization (EM) algorithm is
proposed to infer the hidden state and learn the parameters in both the linear part and
the neural network model, from the given sequences of input data and observation data.
In the E-Step, the posterior mean and covariance for the system hidden state given the
sequences of the system input and observations is inferred via a Kalman filter-based
forward recursion and Rauch-Tung-Streibel smoother backward recursion. In the M-
Step, the model parameters are optimized according to the inferred hidden state, input
data, and observation data. The M-Step consists of two components: a reconstruction
procedure, in which uses the residuals of the linear model to fit the neural network
model, and a parametrization procedure, which identifies the parameters in the linear
part of the state space model. We apply this newly proposed method to a numerical
example and in a case study of battery capacity estimation. The results show that the
proposed method can achieve better performance on the model learning and hidden
state inference than previously developed tools.

In Chapter 4, we present the residual analysis-based algorithm design for approximate
chance constrained program. After reformulating the probabilistic constraints as the
quantile function, a sample-based neural network model is used to approximate the
quantile function which can dramatically improve the efficiency of the algorithm. The

statistical guarantees of the neural approximation are discussed by showing the con-
vergence of the approximate residual and feasibility analysis. Interval Predictor Model
(IPM) of wind power is investigated to validate the proposed method.

In Chapter 5,we present the chance constrained optimization-based algorithms to com-
pute predictive probabilistic bounds on state trajectories for uncertain nonlinear sys-
tems. A probabilistic constrained problem is formulated for calculating the probabilistic
ellipsoidal bounds of the future trajectory of system states. Scenario approach and sam-
ple average approach are used to approximate the probabilistic constrained problem by
formulating a deterministic problem with samples of the uncertain parameters in the
system. For a given probabilistic level and upper bound of the violation probability,
the least number of samples required for calculating the bound can be determined for
both scenario approach and sample average approach. The optimality of the solutions
obtained by scenario approach and sample average approach is discussed theoretically.
The results of numerical example show that more samples will improve the feasibility
by sacrificing optimality slightly for sample average approach. However the scenario
approach needs more sacrifice on optimality.

Contents

Declaration of Authorship ii

Acknowledgements iii

Abstract v

Contents ix

1 Introduction and Motivation 1

2 Residual Analysis 5
2.1 Concept . 5
2.2 Recent Applications of Residual Analysis 9

2.2.1 Application in point processes . 9
2.2.2 Application in time series models 11
2.2.3 Application in hidden Markov models 12

2.3 Extending Residual Analysis to State-Space Models and Chance Con-
strained Optimizations . 14
2.3.1 Contribution to model improvement of state space models 14
2.3.2 Contribution to approximating chance constrained optimizations . 15

3 Model Improvement for State-Space Models 17
3.1 Background and Related Works . 17
3.2 Main Contributions . 19
3.3 Preliminaries . 20

3.3.1 General state-space models . 20
3.3.2 Residuals of state-space models . 21
3.3.3 Hidden state inference for general dynamical systems 22
3.3.4 Hidden state inference for linear dynamical systems 23
3.3.5 Fitting state-space models . 25

3.4 Problem Formulation . 28
3.5 Proposed Model Improvement Algorithms 30
3.6 Numerical Examples . 36

3.6.1 Model for numerical examples . 36

ix

Contents x

3.6.2 About number of activation functions 36
3.6.3 Comparison with linear model . 41

3.7 Application Case Study . 41

4 Residual Convergence in Approximating Chance Constrained Opti-
mization 51
4.1 Background and Motivation . 51
4.2 Problem Description . 54
4.3 Related Works . 55

4.3.1 Scenario approach . 57
4.3.2 Sample average approach . 59

4.4 Proposed Method . 60
4.4.1 Problem reformulation . 60
4.4.2 Convergence and feasibility analysis 64
4.4.3 Proposed algorithms for solving chance constrained optimization . 67

4.5 Numerical Example . 70
4.5.1 Simulation model . 70
4.5.2 Simulation results . 70

4.6 Application to Interval Predictor Model of Wind Power 73
4.6.1 Results and Discussions . 76

5 Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems 79
5.1 Introduction . 80

5.1.1 Motivations . 80
5.1.2 Background and related works . 80
5.1.3 Key contributions of this chapter 81

5.2 Problem Description . 81
5.3 Scenario Approach-based Method . 82

5.3.1 Mathematical Preliminaries . 82
5.3.2 Main result . 84
5.3.3 Proof for the main result . 85
5.3.4 Proposed algorithm . 87

5.4 Sample Average Approach-based Method 87
5.4.1 Notations and problem reformulation 87
5.4.2 Main result . 88
5.4.3 Proposed algorithm . 89

5.5 Numerical Example . 90
5.5.1 System model for the numerical example 90
5.5.2 Results and discussions . 91

5.6 Conclusion . 94

6 Discussion and Future Work 97
6.1 Model Improvement for State-Space Models 97
6.2 Random Set Theory for Chance Constrained Optimization 99

Contents xi

A Extreme Learning Machine 101

Bibliography 105

I dedicate this thesis to my family for nursing me with affections
and love and their dedicated partnership for success in my life.

xiii

Chapter

1
Introduction and Motivation

Residual analysis is often implemented for checking the fit of the statistical model, in
order to evaluate how well the model captures the features of the data, and to provide
insight into model improvements. At least in 1960s, residual analysis had been widely
used in linear regression to check the fitness of the linear models [Freund et al., 1961].
Residual analysis for the linear regression focuses on observing the error distribution
because most regression estimators are only consistent if the assumed error distribution
is correct [Goldberger and Arthur , 1961]. Thus, in regression analysis, residual analysis
has been often implemented by residual plots, which is plots of residuals versus either
the corresponding fitted values or explanatory variables [Tsai et al., 1998]. Due to the
origin of the residual analysis, for most researchers, even statisticians, residual analysis is
restricted only to residual plots and regression problems. The fact is that the philosophy
of residual analysis has been unconsciously applied in many fields, especially in machine
learning algorithm design. Thus, it is necessary to summarize the philosophy of residual
analysis formally and give potential insight into not only model improvement but also
the machine learning algorithm design.

Fortunately, residual analysis has been developed for point processes and hidden Markov
models in recent 30 years [Baddeley et al., 2005, Bray and Schoenberg, 2013, Bray et al.,
2014, Buckby et al., 2020, Clements et al., 2012, Ogata, 1988, Schoenberg, 2003, Zhuang,
2006, 2015]. The residual analysis in points processes and hidden Markov models in-
cludes the definitions of residual, plots of residual and residual decimation-based algo-
rithms for model improvement. Especially, residual decimation-based algorithms are

1

Chapter 1. Introduction and Motivation

the main contribution of the above research. Inspired by the above research on residual
analysis for point processes and hidden Markov models, the central topic of this thesis is
on the development of residual analysis to improve machine learning systems including
model improvement of state-space models, approximation of chance constrained opti-
mization, approximation of non-Gaussian residuals. For model improvement of state-
space models, we consider how to extract the residuals of the linear state-space mod-
els and use the residuals to learn the unknown nonlinear part of the potential real
state-space model. For approximation of chance constrained optimization, the existed
approach adopts sample-based approximation approaches. In sample-based approxi-
mation approaches, samples of random variables are extracted from the sample space
to construct a function as an approximation of the original chance constraint which is
essentially a function from decision variable to the probability of violation. There is dif-
ference between approximation function and the original chance constraint. This thesis
investigates the convergence of the residual as sample number increases and how to im-
prove the approximation by introducing neural networks as the approximation function.
For approximation of non-Gaussian residuals, we applied mixture density networks to
construct the model for the non-Gaussian residuals. In this way, we can improve the
predictions by adding the generated predictive residuals.

Chapter 2 of this thesis gives a formal introduction for residual analysis. The devel-
opment of residual analysis from linear regression to point process and hidden Markov
models. The essentials of residual analysis and how to use residual analysis to improve
the models and even machine learning algorithms have been formally described.

Chapter 3 of this thesis discusses the strategies in learning the unknown nonlinear parts
in the state-space models. Definition of several residual of the state-space models have
been reviewed. The state-of-the-art of model improvement methods for state-space mod-
els is also briefly reviewed. Besides, we proposed a mixed algorithm to improve the state-
space models which combines Expectation-Maximization algorithm and gradient-descent
algorithm. Non-parametric models has been used to model the unknown nonlinear parts
in the state-space models. The residuals are used to update the nonlinear part in ob-
servation function. The rest of the parameters are updated by using gradient-descent
algorithm. Numerical simulation has been implemented to validate the proposed algo-
rithm. Besides, the proposed algorithm has been applied to an application case study
of battery capacity estimation.

Chapter 4 of this thesis focuses on the residual convergence in approximating chance
constrained optimization. First, sample-based approximation for chance constrained
optimization has been reviewed. The residuals of approximation the chance constraints
relates to the sample number and the function used for approximation. Chapter 4

2

introduces how the residual vanishes as sample number goes to infinite. Numerical
examples and application case studies have been presented to validate the proposed
algorithm.

Chapter 5 of this thesis addresses the problem of computing predictive probabilistic
bounds of state trajectories for uncertain nonlinear systems. The state trajectory of the
uncertain nonlinear system can be described by a nonlinear state-space model. With
the fitted nonlinear state-space model and the information of the noise distribution (do
not have to be Gaussian), we formulate the computation of the probabilistic bounds
as a chance constrained optimization problem. The chance constrained optimization
problem can be solved by using scenario approach and sample average approach. We
implemented numerical simulations to validate our proposed method. This contribution
can be applied to the anomaly detection for time series data based on state-space models.

Chapter 6 summarizes the whole paper and discusses the potential future work.

The material presented in Chapter 3 is based on the still unpublished paper by Shen
and Zhuang [2021]. For Chapter 4, the content is based on the published papers by Shen
et al. [2019, 2021]. For Chapter 5, the content is developed from the published paper by
Shen et al. [2020].

3

Chapter

2
Residual Analysis

In this chapter, we start from introducing the concept of residual analysis. Then, recent
applications of residual analysis have been introduced, including application in point
processes, time series models and hidden Markov models. A brief summary of the
main contributions of this thesis, residual analysis for state-space models and chance
constrained optimization, is given in the last section of this chapter.

2.1 Concept

Before giving the introduction of the general residual analysis, we would like to start
from the residual analysis for the regression model with one dimensional output, in which
the residual is defined straightly.

Denote yi ∈ R is the i−th observation and xi ∈ Rn is the i−the input for i = 1, ..., N .
We have assumptions on the relationship between xi and yi:

Assumption 2.1.1. There exists a function f : Rn → R from input to the deterministic
part of observation. The uncertain part of the observation is identically independently
distributed and obeys zero-mean Gaussian distribution. Thus, yi can be written by

yi = f(xi) + εi, (2.1)

where εi ∈ R denotes the uncertain part of the observation yi.

5

Chapter 2. Residual Analysis

Residual analysis is implemented to check whether the residual of the proposed model
satisfies the assumption of the model.

If we have a model f̂ : Rn → R and it gives the predicted observation

ŷi = f̂(xi), (2.2)

then the residual of model f̂ : Rn → R is

êi = yi − ŷi. (2.3)

Then, we can check the statistical property of residual êi to evaluate the goodness of fit.
If êi is identically independent distributed and obeys zero-mean Gaussian distribution,
we can conclude that f̂(·) is a good regression model.

One possible way to implement the residual analysis is plotting the residual, which is
often called residual plot. A residual plot is a graph that shows the residuals on the
vertical axis and the independent variable on the horizontal axis. If the points in a
residual plot are randomly dispersed around the horizontal axis, a regression model is
appropriate for the data. Otherwise, we need to find a better model to fit the data.
Residual plot works efficiently for the case with one dimensional observation.

Let us give an example of implementing the residual analysis for model checking of re-
gression models. The toy data of inputs and observations are generated by the following
model:

yi = xi + 0.3 ∗ sin(2πxi) + εi (2.4)

where εi ∼ N(0, 0.12). We can use a linear model

ŷlinear,i = βxi (2.5)

to fit the data. Besides, neural network model can also be applied, which is written as

ŷneu,i =
m∑

k=1
gk(xi, ai, bi) (2.6)

where gk(xi, ai, bi) is the active function. Here, we use Gaussian kernel function as active
function. The residual plots of two models are given in Fig. 2.1. Obviously, the uncertain
part of the observation shows a fairly random pattern. However, the residuals of the
linear model is a sin-shaped which shows that the nonlinear part of the determinant
component in the observation has not been well addressed. On the other hand, the
residual of the neural network model shows a similar random pattern with the uncertain
part of the observation. Besides, Fig. 2.2 shows the scatter plots of the residuals. The

6

Concept

Figure 2.1: Residual plots of the toy example

Figure 2.2: Scatter plots of the residuals

residual of the neural network model shows a nearly non-correlated pattern which is
similar to the uncertain part of the observation. Thus, the neural network model fits
the data much better than the linear model and it is close to the real model.

One advantage of the residual analysis using residual plot is that we can directly notice
what kind of component should be added to the model. For the linear model in the toy
example, we can introduce a sin function to improve the model since the residual of the
linear model looks like a sin function. It can achieve even better results that the neural
network although the model is much more simple and easier to be trained.

7

Chapter 2. Residual Analysis

An alternative way is to check the autocorrelation of the residual and whether the
residual distribution is Gaussian or not. For the autocorrelation, we can calculate the
autocorrelation function r(k) of the residual ε̂i for different time lags k as

r(k) =
∑n−k

i=1 (ε̂i − E[ε̂])(ε̂i+k − E[ε̂])∑n
i=1(ε̂i − E[ε̂])2 . (2.7)

For checking the distribution, the following equation can be used

E =

√√√√No∑
i=1

(oi − ôi)2, (2.8)

where oi = F (εi) denotes the relative frequency or cumulative probability of Gaussian
distribution at εi while ôi denotes the one of the data.

From the example of residual analysis for the regression model, the preconditions of
applying the residual analysis is:

1. a clear definition of residuals;

2. assumption about the statistical property of residuals of a perfect model.

If the preconditions are checked, the rest is to extract the residual and check whether
the residual satisfies the assumption. Thus, the implementation of residual analysis for
model checking and model improvement can be summarized as

1. Define the residual;

2. Find out the assumption of the residual for a perfect model;

3. Check whether the residual of a model satisfies the assumption or not;

4. Improve the model by making the residual of the model satisfy the assumption.

For the regression problems, the definition of residual is very clear. Although the as-
sumption about the statistical property of residuals varies, we can check the residuals to
see whether it satisfies the assumption. However, for the other problems, such as mod-
eling of point processes, hidden Markov models, residual is not clear as in the regression
problems. Recent applications of residual analysis have addressed model improvement of
point process, hidden Markov models, which will be briefly reviewed in the next section.

8

Recent Applications of Residual Analysis

2.2 Recent Applications of Residual Analysis

2.2.1 Application in point processes

Point processes are often used to model the intensity of events in the context of tem-
poral or spatiotemporal data, such as seismicity. Most point process models can be
specified using the form of moment intensity, conditional intensity or Papangelow in-
tensity. For the sake of explaining the residual analysis for point processes clearly, the
case of temporal point process is taken as an example here. A temporal point process
is a random measure defined on the time line T = [0,∞) with Borel σ-algebra T . Let
B denote the ring of bounded Borel sets. A point measure µ on T is a measure that
µ(A) ∈ N = {n ∈ Z|0 ≤ n <∞} for every A ∈ B. A fundamental point measure is the
Dirac measure δx which is defined by

δt(A) = 1(t ∈ A) =

 0, if t /∈ A

1, if t ∈ A.
(2.9)

Then, the point measure µ can be obtained by

µ =
K∑

i=1
aiδti , (2.10)

where ti denotes a distinct point in T , K ∈ [0,∞) denotes the total number of the
events, and ai is positive integer for ti. If ai = 1 for every i, the point measure is a
simple point measure.

Let (Ω,F , P) be a probability space. A point process on T is a measurable mapping
N of (Ω,F) into Mp,Mp where Mp is the set of all the point measures on T and Mp

is the σ−algebra. For a random measure M and A ∈ T , the random variable M(A) is
termed as the number of points falling into A, and for a function h(t) in CK , the integral
N(h) =

∫
T f(t)N(dt).

The intensity measure m, also called mean measure or first moment measure, of a point
process N is defined by the expectations

m(A) = E[N(A)], for A ∈ B. (2.11)

Hence, m(A) is the expected number of points in the set A. More generally, for any
positive integer k, let Nk be the point process given by

Nk(dt1, ..., dtk) = N(dt1) · · ·N(dtk). (2.12)

9

Chapter 2. Residual Analysis

The moment measure of order k of the point process N is the measure mk
N = E[Nk] or

mk if only process N is considered.

Considering a one-dimensional (temporal) point process N , the moment intensity v(t)
can be defined by,

v(t)dt = E[N([t, t + dt])], (2.13)

where N([t, t + dt)) denotes the number of events occurring in [t, t + dt). Besides, the
conditional intensity of the temporal point process is informed by the history of the
process and defined as,

λ(t)dt = E[N([t, t + dt))|Ht], (2.14)

where Ht represents historical knowledge of temporal point process N up to time t

but not including t. The study of Zhuang [2006] proposed residual analysis for point
process models, using the conditional intensity to include the knowledge of the process
expressed by the history data. Consider a temporal point process N with conditional
intensity λ(t), the following property holds: for any regular set B which is a countable
union of intervals and a non-negative predictable function h(t),

E[
∑

ti∈N∩B

h(ti)] = E[
∫

B
h(t)λ(t)dt] (2.15)

since ∑
ti∈N∩[0,t]

h(ti)−
∫

[0,t]
h(t)λ(t)dt (2.16)

is a zero-mean martingale. Here, simply speaking, the predictable function h(t) can be
regarded as a weight and is a stochastic function determined only by previous data of
the point process before time t. Thus, for any estimates λ̂(t) of λ(t), the predictive
residual is defined by

R(B, ĥ, λ̂) =
∑

ti∈N∩B

ĥ(ti)−
∫

B
ĥ(t)λ̂(t)dt, (2.17)

where ĥ(t) is used instead of h(t) since h(t) is not available and only the estimation ĥ(t)
is known. If we get the perfect estimation ĥ(t), λ̂(t) by choosing the model and tuning
the parameters in the model, R(B, ĥ, λ̂) should be a zeros-mean martingale. Thus, we
regard R(B, ĥ, λ̂) as the residual of the model and expect to obtain a zero-mean residual.

Finally, the Papangelou intensity is calculated as,

λp(t)dt = E[N([t− dt/2, t + dt/2])|L[t−dt/2,t+dt/2]], (2.18)

where L[t−dt/2,t+dt/2] represents information of N everywhere except the time interval

10

Recent Applications of Residual Analysis

[t − dt/2, t + dt/2]. Baddeley et al. [2005] and Zhuang [2015] used the Papangelou
intensity to construct the residual analysis method for point process. Similar to the case
of using the conditional intensity, the residual with respect to the Papangelou intensity
can be defined by using the Georgii-Zessin-Nguyen formula. The residual related to the
Papangelou intensity is also called the exvisive residual, which is written as

R(B, ĥ, λp) =
∑

ti∈N∩B

ĥ(ti)−
∫

B
ĥ(t)λp(t)dt, (2.19)

where ĥ(t) is an exvisible function instead of a non-negative predictable function h(t)
in the case of using conditional intensity. The exvisible function h(t) is a function with
respect to the occurence pattern of N throughout time, except at time t. Namely, not
only the data before t is used, the data after t is also used. If R(B, ĥ, λp) ≈ 0, we can
assume that the fitted model is a good approximation of the real potential model.

2.2.2 Application in time series models

Wang et al. [2018] developed residuals for zero-inflated autoregressive time series by
adjusting the concepts of residual analysis for point processes from Zhuang [2006].

For a time series Xt, the residual of the time series model is given by

R(n) =
n∑

t=1

(
ĥ(t)Xt − ĥ(t)E[Xt|Ht]

)
(2.20)

where Ht represents the history X1, ..., Xt−1. Notice that E[Xt|Ht] is obtained from the
chosen time series model. ĥ(t) can be chosen according to the requirement. If the raw
residual is important, ĥ(t) can be set as 1 for every t. In this case, we have discrete time
t and

E[
n∑

t=1
ĥ(t)Xt] = E[

n∑
t=1

ĥ(t)E[Xt|Ht]]. (2.21)

Consider the process

D(n) =
n∑

t=1

(
ĥ(t)Xt −

n∑
t=1

ĥ(t)E[Xt|Ht]
)

(2.22)

is a zero-mean martingale because,

E[D(n)−D(n− 1)|Hn] = E[h(n)Xn − h(n)E[Xn|Hn]|Hn] = 0. (2.23)

Similar to the residual analysis for the point processes, if R(n) ≈ D(n) → 0, it is
reasonable to assume that the model has a good fit to the data. Here, n should be

11

Chapter 2. Residual Analysis

sufficiently large to check the goodness of fit. The asymptotic normality of D(n) is
asserted by the central limit theorem for martingales. When n is sufficiently large, R(n)
and D(n) should have the same distribution with zero-mean.

2.2.3 Application in hidden Markov models

An hidden Markov model is used to model time series data when the observations are
dependent on an underlying unobserved Markov chain. Let xt denote the observation
at time t = 1, ..., T . xt might be realized from the finite m members of a family of
distributions, f(xt|St = i) with i = 1, ..., m. St = i means that the hidden state of the
Markov chain at time t is i. Notice that the conditional probability of hidden state and
observation satisfies the following conditions,

P (St = st|S1 = s1, ..., St−1 = st−1) = P (St = st|St−1 = st−1) (2.24)

and
f(xt|x1, ..., xt − 1, S1 = s1, ..., St = st) = f(xt|St = st). (2.25)

The parameters to be estimated for an HMM include the parameters associated with
the hidden state distribution, a vector δ ∈ Rm with δi ∈ [0, 1],∑i δi = 1 for the initial
probabilities and a matrix Γ ∈ Rm×m for the transition probabilities. The element γij

in Γ is within 0, 1 and ∑j γij = 1. Estimation of δ and Γ can be achieved by directly
maximising the likelihood or by using the Expectation-Maximization (EM) algorithm.

To check the goodness of fit for the hidden Markov models, Buckby et al. [2020] extended
the predictive and exvisive residuals to hidden Markov models.

The predictive residuals of hidden Markov models correspond to the conditional intensity
of a point process model, namely, the expectation of the occurrence of an event in unit
time given the history. In hidden Markov models, the expectation of Xt given the
previous observations is,

E[Xt|Ht] = E[Xt|X1, ..., Xt−1] =
m∑

i=1

αt−1ΓiE[Xt|St = i]
αt−11′ (2.26)

where αt−1 is the forward probability with the jth element,

αt−1(j) = P (X1, ..., Xt−1, St−1 = j). (2.27)

Details for calculating forward and backward probabilities within the EM algorithm is
introduced in Zucchini and MacDonald [2009]. Using the expectation calculated by

12

Recent Applications of Residual Analysis

(2.26), the raw predictive residual with h(t) = 1 becomes,

Rp
n =

n∑
t=1

(Xt − E[Xt|Ht]) (2.28)

where the parameters are those estimated from the data. The standardized residuals for
n = 2, ..., T are calculated as

R̄p
n = Rp

n√∑n
t=1(Rp

t −Rp
t−1)2

(2.29)

where
√∑n

t=1(Rp
t −Rp

t−1)2 is the standard deviation of Rp
n, as defined in Wang et al.

[2018] and Rp
0 = 0. Notice that R̄p

n for n = 1, ..., T are not iid and we just expect to
see R̄p

n fall within the 95% confidence interval of a standard normal distribution if the
fitted model is close to the true model as R̄p

n obeys N(0, 1) for each large enough n.
Furthermore, standardized raw residuals R̄p

k,L for fixed intervals of observations can also
be calculated, where k = 0, 1, ..., K and L is the interval size. The raw residuals for fixed
interval is written as

Rp
k,L =

Lk+L∑
t=Lk+1

(Xt − E[Xt|Ht]) (2.30)

and then the standardized raw residuals is defined as

R̄p
k,L =

Rp
k,L√∑Lk+L

t=Lk+1(Rp
t −Rp

t−1)2
. (2.31)

Notice that R̄p
k,L can be considered iid for k = 1, ..., K and goodness of fit can be assessed

by comparing the distribution of R̄p
k,L to the standard normal distribution.

For the raw exvisive residuals, it is determined in a similar way to the predictive residuals.
The difference is that the expectation of Xt given all of the other observations should be
considered while only observations prior to time t is needed in the predictive residuals.
The expectation is written as

E[Xt|Et] = E[Xt|X1, ..., Xt−1, Xt+1, ..., XT] =
m∑

i=1

αt−1Γiβt(i)E[Xt|St = i]∑m
j=1 αt−1Γjβt(j) (2.32)

where βt(i) = P (Xt+1, .., XT |St = i) is the backward probability. The raw exvisive
residual can then be written as

Re
n =

n∑
t=1

(Xt − E[Xt|Et]) (2.33)

where the parameters are those estimated from the data. The process of standardising
the raw exvisive residuals is to divide the standard deviation of Re

n and obtain the

13

Chapter 2. Residual Analysis

following expression

R̄e
n = Re

n√∑n
t=1(Re

t −Re
t−1)2 + 2∑i ̸=j((Re

i −Re
i−1)(Re

j −Re
j−1))

. (2.34)

Again, we expect R̄e
n to fall in 95% confidence interval of a standard normal distribution

even though R̄e
n is not iid. Similar to the case of predictive residuals, we can first create

idd exvisive interval residuals, Re
k,L as

Rp
k,L =

Lk+L∑
t=Lk+1

(Xt − E[Xt|Et]) (2.35)

and then obtain the standardized exvisive interval residuals as

R̄e
k,L =

Re
k,L√∑n

t=1(Re
t −Re

t−1)2 + 2∑i ̸=j((Re
i −Re

i−1)(Re
j −Re

j−1))
. (2.36)

Then, goodness of fit is assessed by comparing the distribution of R̂e
k,L to the standard

normal distribution.

2.3 Extending Residual Analysis to State-Space Models
and Chance Constrained Optimizations

2.3.1 Contribution to model improvement of state space models

The general expression of state space models is written as

xt+1 = f(xt, ut) + vt, (2.37)

yt = g(xt, ut) + wt, (2.38)

where t ∈ Z is the time index, xt ∈ Rk represents a k-dimension state vector, ut ∈ Rc is
a c-dimension system input vector, yt ∈ Rd is the system output, vt ∈ Rk and wt ∈ Rd

denote the l-dimension system noise with probability density function as q(v) and the
m-dimension observation noise with probability density function as r(w), respectively,
and f : Rk × Rc × Rk → Rk and g : Rk × Rc × Rd → Rd represent general formulations
of state equation and observation equation, respectively. The initial state vector x0 is
distributed according to the probability density p0(x0).

14

Extending Residual Analysis to State-Space Models and Chance Constrained
Optimizations

The residual analysis for state space model is similar to the regression problems. The
residual is the difference between y and model prediction. However, the model improve-
ment is different since the hidden state inference should be considered in the state space
models. Besides, the error of model does not only influence the parameter estimation
but also the inference of the hidden state inference, which are integrated in the residual,
which makes the residual analysis for the state space models challenging. The contri-
butions for the model improvement of state space models in this thesis are summarized
as

1. We give the definition of residual in state space models by adjusting the concepts
of residual analysis for hidden Markov models in Buckby et al. [2020];

2. We propose an EM algorithm-based method to improve the state space model with
nonlinear response by using the information in the residual. The idea was inspired
by the algorithms for point process in Zhuang [2006, 2015];

3. We modify the model improvement method for the state space model with non-
linear response to the general state space model.

2.3.2 Contribution to approximating chance constrained optimizations

Chance constrained optimization can be generally expressed as:

min
u∈U

J(u)

s.t. Pr{h(u, δ) ≤ 0} ≥ 1− α, δ ∈ ∆, α ∈ (0, 1)
(2.39)

where u ∈ U ⊂ Rnu is the decision variable, the decision variable domain U is supposed
to be bounded, δ ∈ ∆ ⊂ Rnδ is an uncertain parameter vector, the set ∆ is the sample
space of δ on which a probability measure Pr is defined, α is a given probability level for
violation of chance constraints. Moreover, J(u) : U → R and ∀δ ∈ ∆, h(u, δ) : U ×∆ →
R are continuous and differentiable in u.

Notice that the feasible region of u defined by Pr{h(u, δ) ≤ 0} ≥ 1−α cannot be explicitly
obtained in most cases. Without the knowledge of the feasible region, it is impossible
to solve problem (2.39). The only possible way is to find an approximate function of
constraint Pr{h(u, δ) ≤ 0} ≥ 1− α and use it instead of the chance constraint.

One fact is that Pr{h(u, δ) ≤ 0} is a function from Rnu to the interval [0,1]. Let us denote
F (u) for Pr{h(u, δ) ≤ 0}. In an alternative way, we can also use quantile function instead

15

Chapter 2. Residual Analysis

of probability. The quantile function can be written as

Q1−α(X) = inf{x ∈ R|Pr{X ≤ x} ≥ 1− α}. (2.40)

The value of quantile function also depends on u. Let use denote G(u) for it. The
problem is that the information of neither F (u) nor G(u) is available. In this thesis, we
extract samples of u and δ to obtain the approximations of F (u) and G(u). Then, use the
approximations as the constraint to establish an approximate of the chance constrained
optimization. By solving the approximate problem, we could get the approximate solu-
tion of the original chance constrained optimization. Notice that there is residual of the
approximations of F (u) and G(u). We prove that the residual converges to zero if the
sample numbers of u and δ increase to infinite. Also, the feasible region and optimal
solution of the approximate problem also converge to the original ones.

16

Chapter

3
Model Improvement for

State-Space Models

3.1 Background and Related Works

State-Space Models are general representations of systems observed over time and are
widely used for dynamical system modeling [Shen et al., 2020] and time series data anal-
ysis [Durbin and Koopman, 2000, Katzfuss et al., 2020, Kitagawa, 1987, 1996, Kreuzer
and Czado, 2020]. However, one has to solve several problems of computing the condi-
tional distributions of state variables given all or part of the data and estimators of the
unknown parameters to apply SSMs to data [Sorenson, 1982]. The above processes can
also be regarded as model learning and hidden state inference.

The model learning and hidden state inference for the linear SSMs involved with white
Gaussian noises are relatively simple. With maximizing the innovation form of the
likelihood function of SSMs’ parameter vector, the model learning and hidden state
inference can be implemented simultaneously. In every iteration, the hidden state infer-
ence and output innovation can be computed by the Kalman filter. Then, the parameter
vector will be updated by a gradient descent method [Tanizaki, 2009]. The Cholesky
decomposition is implemented and then Newton-Raphson approach is used to maximize
the likelihood to obtain the model parameters and hidden state estimation. Besides,
the maximum likelihood method with penalized likelihood is proposed in Zhu and Wu
[2007] to estimate the time-varying parameter in linear SSMs. Watson and Engle [1983]

17

Chapter 3. Model Improvement for State-Space Models

and Watanabe [1985] achieved the above processes by using Expectation-Maximization
(EM) method which improved the convergence speed.

However, for SSMs with the unknown nonlinear response (nonlinear observation func-
tion), the model learning and hidden state inference become more difficult. Kalman filter
cannot obtain accurate hidden state inference for SSMs with the unknown nonlinear re-
sponse. The error in the hidden state inference will propagate to the model learning.
One typical application of SSMs with nonlinear response is the battery capacity estima-
tion. The SSM for battery capacity estimation has linear state equation and nonlinear
observation function [Pattipati et al., 2014, Zheng et al., 2016]. The battery capacity
is defined as State-of-Charge (SoC). In this case, the linear SSM-based model learning
and hidden state inference are with poor accuracy. Thus, in Plett [2006], sigma-point
Kalman filtering is applied to estimate SoC of battery in the hybrid electric vehicle. A
look up table from SoC to the Open-Circuit-Voltage (OCV) is used to modeling the
nonlinear response in the observation function. However, the model for approximating
the nonlinear response has to be fitted with the measurements of hidden state. Namely,
the model learning, especially the approximation of the nonlinear response, cannot be
done with only input and output data. In Luzi et al. [2019, 2020], neural network mod-
els has been applied to model the nonlinear response. Although the accuracy of the
hidden state estimation has been improved by particle filter and accurate models, the
calculation burden for hidden state estimation is increased. Model learning and hidden
state inference for SSMs with nonlinear response should be investigated.

A lot of research has been done towards solving hidden state inference problem in the
SSMs with nonlinearity. Mixture Kalman filter has been presented in Cheng and Liu
[2000] which uses Gaussian mixture models to model the non-zero noise and includes
some nonlinearity in the noise. Niemi and West [2010] improved the mixture Kalman
filter by using Metropolis-Hastings method-based regenerating process to eliminate po-
tential degeneracy of mixture components. Koyama et al. [2010] uses an asymptotic se-
ries expansion to approximate the state’s conditional mean and variance together with
a Gaussian conditional distribution. Nonlinearity can be included in the asymptotic
series expansion. Yang et al. [2013] proposed a feedback particle filter in which the non-
linear filter is approximated by solving an optimal control problem to get the optimal
state feedback adaptive Kalamn gain. A robust filter has been proposed in Calvet et al.
[2015] to mitigate the degeneracy problems caused by uncertainty of parameters. It can
also bound the hidden state estimation error caused by the unknown nonlinear response
when the unknown nonlinear response is small. Moreover, an offline, iterated particle
filter is proposed in Guarniero et al. [2017] to implement statistical inference including
model learning and hidden state inference in general state space models. A sequence of
positive functions are used as auxiliaries to approximate the distribution functions. The

18

Main Contributions

above works have made many contributions to the development of hidden state infer-
ence. However, the model structure are fixed and the problem of model improvement is
not touched.

The work involved model improvement is less. In Ghahramani and Roweis [1999], a
general learning algorithm combining EM algorithm and Extended Kalman Filter (EKF)
is proposed for model learning and hidden state estimation of nonlinear SSMs. The
unknown nonlinear parts are approximated by Radial Basis Function (RBF). However,
the implementation of EKF brings the error on the hidden state inference. The error
will propagate to the parameters identification including both the parameters in linear
and nonlinear parts. In Deisenroth et al. [2012], Gaussian Process (GP) models were
applied to model both state equation and observation equation. Then, an iterative
algorithm is proposed to learn the GP models and estimate the hidden state. In the
validation, different nonlinear filters including EKF, unscented Kalman filter (UKF),
Cubature Kalman filter (CKF), were compared.

3.2 Main Contributions

This thesis proposes a simplified algorithm compared to Ghahramani and Roweis [1999]
and Deisenroth et al. [2012] from the point view of residual analysis, inspired by the
works in Wang et al. [2018], Zhuang [2006, 2015], Zhuang et al. [2002], and Buckby et al.
[2020]. Zhuang [2006, 2015] and Zhuang et al. [2002] present the residual analysis for
model improvement of point process model. Non-parametric models has been applied to
approximate the residual. Moreover, the proposed model improvement algorithm is with
the similar framework as the EM algorithm. The stochastic declustering step is similar
to the hidden state inference, and the following reconstruction and parametrization steps
are for learning the non-parametric models and parametric models. The methodology
has been extended to the time series model and hidden Markov model as described re-
spectively in Wang et al. [2018] and Buckby et al. [2020]. Our new method for learning
SSMs with nonlinear response is rooted in these previous works. The SSM with nonlinear
response has been separated into two parts, linear part and nonlinear part. The linear
part includes the linear state equation and linear part of the observation equation while
the nonlinear part is the remained nonlinear part of the observation equation. Then,
the similar framework can be applied. Using linear Kalman filter to estimate the hid-
den state which is expectation step, applying neural network models or non-parametric
models to approximate the nonlinear part which is reconstruction step, and updating
the parameters in the linear part which is the parametrization step. Namely, our new
method can decimate the nonlinear response from the SSM and linear Kalman filter can

19

Chapter 3. Model Improvement for State-Space Models

𝑥0 𝑥1 𝑥2 𝑥𝑇

𝑢0 𝑢1 𝑢2 𝑢𝑇

𝑦0 𝑦1 𝑦2 𝑦𝑇

Figure 3.1: Probabilistic graphical model for stochastic dynamical systems with hid-
den states xt, inputs ut, and observations yt.

be used to do the hidden state inference, which releases the computation burden and
but also reserves the estimation accuracy.

3.3 Preliminaries

3.3.1 General state-space models

An SSM is often used to model time series data of a stochastic dynamical system with
hidden states, inputs, and observations. A probabilistic graphical model for this stochas-
tic dynamical system is shown in Fig. 3.1. The observation yt depends on the input ut

and the hidden state xt. Notice that the data of yt and ut is available while xt cannot
be measured. The general expression of SSMs is written as

xt+1 = f(xt, ut) + vt, (3.1)

yt = g(xt, ut) + wt, (3.2)

where t ∈ Z is the time index, xt ∈ Rk represents a k-dimension state vector, ut ∈ Rc is
a c-dimension system input vector, yt ∈ Rd is the system output, vt ∈ Rk and wt ∈ Rk

denote the system noise with probability density function as q(v) and the observation
noise with probability density function as r(w), respectively, and f : Rk × Rc × Rk →
Rk and g : Rk × Rc × Rk → Rd represent general formulations of state equation and
observation equation, respectively. The initial state vector x0 is distributed according
to the probability density p0(x0).

20

Preliminaries

3.3.2 Residuals of state-space models

Here the residuals developed by Zhuang [2015] are adapted for use with state space mod-
els. The state state model is discrete with integer time index t. Besides, the distribution
of the state vector should be considered at time t.

The predictive residuals of state space model is written as

Rp(n, D, θ) =
n∑

t=0
(D(yt+1)−D(E{yt+1|Yt, Ut})) (3.3)

for general cases or

Rp(n, h, θ) =
n∑

t=0
(h(t + 1)yt+1 − h(t + 1)E{yt+1|Yt, Ut}) (3.4)

for the weighted cases where h(t) is a predictable function. If h(t) = 1, the raw predictive
residual is expressed as

Rp(n, θ) =
n∑

t=0
(yt+1 − E{yt+1|Yt, Ut}). (3.5)

The above different kinds of predictive residuals have common part E{yt+1|Yt, Ut} which
denotes the conditional expectation of yt+1 by giving the previous data Yt, Ut. The
conditional expectation corresponds to the conditional intensity of a point process model.
It is written as

E{yt+1|Yt, Ut} =
∫ +∞

−∞

∫ +∞

−∞
yt+1pyt+1(yt+1|xt+1)pxt+1(xt+1|Yt, Ut)dxt+1dyt+1, (3.6)

where pxt+1(xt+1|Yt, Ut) denotes the predictive density for xt+1 with history data Yt, Ut.

Similar to the predictive residuals, the smooth residuals of state space model is written
as

Rs(n, D, θ) =
n∑

t=0
(D(yt+1)−D(E{yt+1|YT , UT })) (3.7)

for general cases. Note that we use the whole available data YT , UT instead of the
history data Yt, Ut. For the weighted cases, we use the following smooth residuals

Rs(n, h, θ) =
n∑

t=0
(h(t + 1)yt+1 − h(t + 1)E{yt+1|YT , UT }) (3.8)

where h(t) is a predictable function. If h(t) = 1, the raw smooth residual is expressed
as

Rs(n, θ) =
n∑

t=0
(yt+1 − E{yt+1|YT , UT }). (3.9)

21

Chapter 3. Model Improvement for State-Space Models

As in the predictive residuals, the above different kinds of smooth residuals have common
part E{yt+1|YT , UT } which denotes the conditional expectation of yt+1 by giving the
whole data YT , UT . It is written as

E{yt+1|YT , UT } =
∫ +∞

−∞

∫ +∞

−∞
yt+1pyt+1(yt+1|xt+1)pxt+1(xt+1|YT , UT)dxt+1dyt+1,

(3.10)
where pxt+1(xt+1|YT , UT) denotes the probability density for xt+1 with YT , UT which
can be obtained by smoother algorithms [Kitagawa, 1996].

The above residuals of state-space models are constructed by the observations. Residuals
based on the hidden state inference can also be constructed when we assume that both
vt and wt obey white Gaussian and are independently identically distributed. Note that

xt+1 − f(xt, ut) = vt, (3.11)

thus,
E{xt+1 − f(xt, ut)} = E{vt} = 0. (3.12)

Thus, the predictive state residuals of state space model can be defined by

Rp
x(n, θ) =

n∑
t=0

(E{xt+1|Yt, Ut} − E{f(xt, ut)|Yt−1, Ut−1}). (3.13)

Besides, the smooth state residuals of state space model can be defined by

Rs
x(n, θ) =

n∑
t=0

(E{xt+1|YT , UT } − E{f(xt, ut)|YT , UT }). (3.14)

Due to equation (3.12), we know that both Rp
x(n, θ) and Rs

x(n, θ) should have zero-mean
if the model is good fit for the data.

3.3.3 Hidden state inference for general dynamical systems

Introducing the Monte Carlo Filter into calculation of ŷt+1, we can obtain the recursive
algorithm for inferring the hidden state of SSMs with Yt, Ut. We use many of the
realizations of each density function to approximate that distribution. More specifically,
using Np particles to express predictive distribution of xt with Yt−1, Ut−1 as follows:

{x(1)
p,t , ..., x

(i)
p,t, ..., x

(Np)
p,t } ∼ pxt(xt|Yt−1, Ut−1) (3.15)

where x
(i)
p,t is the i−th particle or realization of xt according to pxt(xt|Yt−1, Ut−1). In

effect, we approximate the distributions by the empirical distributions determined by

22

Preliminaries

the set of particles. We can also use Np particles to express filtered estimation of xt

with Yt, Ut as follows:

{x(1)
f,t , ..., x

(i)
f,t, ..., x

(Np)
f,t } ∼ pxt(xt|Yt, Ut) (3.16)

where x
(i)
f,t is the i−th particle or realization of xt according to pxt(xt|Yt, Ut).

{x(1)
p,t , ..., x

(i)
p,t, ..., x

(Np)
p,t } are essentially independent realizations of the pxt(xt|Yt−1, Ut−1).

Since
pxt(xt|Yt−1, Ut−1) = pxt(xt|xt−1)pxt−1(xt−1|Yt−1, Ut−1), (3.17)

we can calculate x
(i)
p,t by

x
(i)
p,t = f(x(i)

f,t−1, ut−1) + v
(i)
t−1 (3.18)

where {v(1)
t−1, ..., v

(i)
t−1, ..., v

(Np)
t−1 } ∼ q(v) are the particles of system noise. Particle x

(i)
f,t are

essentially obtained by the resampling of {x(1)
p,t , ..., x

(i)
p,t, ..., x

(Np)
p,t }. Given the observation

yt, ut, and the particle x
(i)
p,t, compute α

(i)
t , the likelihood of the particle x

(i)
p,t based on the

observation yt, ut. That is

α
(i)
t = pyt(yt|x(i)

p,t) = r(yt − g(x(i)
p,t, ut)) (3.19)

for i = 1, ..., Np. Note that r(·) is the density of the observation noise w. Then, for
i = 1, ..., Np, x

(i)
f,t is defined by

x
(i)
f,t =


x

(1)
p,t with probability α

(1)
t /(α(1)

t + ... + α
(Np)
t)

... ...

x
(Npar)
p,t with probability α

(Np)
t /(α(1)

t + ... + α
(Np)
t).

(3.20)

The obtained {x(1)
f,t , ..., x

(i)
f,t, ..., x

(Np)
f,t } can be regarded as the realizations of the filter,

pxt(xt|Yt, Ut) which is verified in Kitagawa [1996].

3.3.4 Hidden state inference for linear dynamical systems

If the dynamical system is linear and the noises are Gaussian, the optimal hidden state
inference can be exactly obtained as a feedback of the predictive residuals. Linear
dynamical systems with additive white Gaussian noises can be written as

xt+1 = Fxt + Hut + vt, (3.21)

yt = C + Gxt + Jut + wt. (3.22)

23

Chapter 3. Model Improvement for State-Space Models

Here, the prior probability distribution over initial states is assumed to be Gaussian
with P0|0 ∈ Rk×k as the covariance. The covariances of vt and wt are denoted by
Q ∈ Rk×k and R ∈ Rk×k, repectively. Since the prior probability distribution over
initial states is taken to be Gaussian and the Gaussian distribution is closed under the
linear operations applied by state evolution and observation mapping, then the joint
probabilities of all states and observations at future times are also Gaussian. Therefor,
all probability distributions over the hidden state variables can be fully described by
their means and covariance matrices. Hidden state inference is to compute the posterior
mean and covariance for every xt given some sequence of system inputs and observations.
The algorithm consists of two parts. The first one is a forward recursion, known as
the Kalman filter, in which u0, ..., ut and y0, ..., yt are used to calculate the mean and
covariance of xt. The second one is a backward recursion which is known as Rauch-
Tung-Streibel smoother or the Kalman smoother. ut, ..., uT −1 and yt+1, ..., yT are used
to calculate the mean and covariance of xt. The algorithm of hidden state inference is
summarized as following:

1. Set the mean value of x0 as x̂0|0, the covariance of x0 as P0|0, the covariances of
vt, wt as Q, R, respectively.

2. The Kalman filter [Kalman, 1960], repeat the following steps for t = 1,, T :

a) Calculate the predict mean of state

E{xt|Yt−1, Ut−1} = x̂t|t−1 = Fx̂t−1|t−1 + Hut−1; (3.23)

b) Calculate the predict covariance of state

Pt|t−1 = FPt−1|t−1F T + Q; (3.24)

c) Calculate the predict innovation

Iyt = yt − E{yt|Yt−1, Ut−1} (3.25)

where E{yt|Yt−1, Ut−1} = C + Gx̂t|t−1 + Jut−1;

d) Calculate the feedback gain

Kt = Pt|t−1GT (GPt|t−1GT + R)−1; (3.26)

e) Calculate the filter mean of state

E{xt|Yt, Ut} = x̂t|t = x̂t|t−1 + KtIyt (3.27)

24

Preliminaries

and obtain the filter covariance of state

Pt|t = Pt|t−1 −KtGPt|t−1. (3.28)

3. Rauch-Tung-Streibel smoother (Kalman smoother):

a) Initialization: x̃T = x̂T |T , P̃T = PT |T .

b) Repeat the following steps for t = T − 1, ..., 1:

∗ Calculate the gain
K̃t = Pt|tF

T P −1
t+1|t. (3.29)

∗ Update the mean

x̃t = x̂t|t + K̃t(x̃t+1 − Fx̂t|t −Hx̂t|t). (3.30)

∗ Update the covariance

P̃t = Pt|t + K̃t(P̃t+1 − Pt|t)K̃T
t . (3.31)

3.3.5 Fitting state-space models

The state space model described by (3.1) and (3.2) often contains some unknown pa-
rameters such as the variances of the noises and the initial state, and the coefficients
of the functions f and g. Such unknown parameters are included in a vector denoted
by θ. Given the observations YT = {y0, y1, ..., yT } and inputs UT = {u0, u1, ..., uT }, the
likelihood of the parameter θ of the model is written as

L(θ) = py(y0, ..., yT , u0, ..., uT |θ) = py0(y0)
T∏

t=0
pyt+1(yt+1|Yt, Ut, θ), (3.32)

and the log-likelihood is consequently written as

l(θ) = log py0(y0) +
T∑

t=0
log pyt+1(yt+1|Yt, Ut, θ). (3.33)

Here py0(y) is calculated from p0(x0) as

py0(y0) =
∫ +∞

−∞
py0(y0|x0, θ)dx0, (3.34)

and pyt+1(yt+1|Yt, Ut, θ) is calculated as

pyt+1(yt+1|Yt, Ut, θ) =
∫ +∞

−∞
pyt+1(yt+1|xt+1)pxt+1(xt+1|Yt, Ut, θ)dxt+1. (3.35)

25

Chapter 3. Model Improvement for State-Space Models

If the system is linear and the noises are Gaussian, the log-likelihood can be written as

l(θ) = −{T log 2π

2 + 1
2

T∑
t=1

log(GPt|t−1GT + R) +
T∑

t=1

I2
yt

2GPt|t−1GT + 2R
}. (3.36)

The maximum likelihood estimation θ̂∗ can be obtained by maximizing the log-likelihood.
The maximum likelihood estimation may not be able to be obtained directly with the
continuous probability density functions. Kitagawa [1996] discussed how to obtain the
numerical approximation of the log-likelihood. The densities are approximated by many
of the realizations from the corresponding distributions. Then, the approximation of the
log-likelihood can be obtained. The maximum likelihood estimation can be calculated
by maximizing the approximation of the log-likelihood.

Gradient descent method is one way to iteratively approach θ̂∗ from an initial θ̂0. For the
general case, since we use the discrete probability distribution to approximate the origi-
nal continuous probability distribution in the particle filter, (3.35) can be approximately
calculated by

pyt+1(yt+1 = g(x(i)
p,t, ut)|Yt, Ut, θ) = αi

t

α1
t + ... + α

Np
t

. (3.37)

Then, for a given θ̂k, we can approximately calculate its log-likelihood l(θ̂k) by using
(3.37) and (3.33). The estimation of parameter vector can be updated by

θ̂k+1 = θ̂k + γ∇θsd,k. (3.38)

Here, γ is a coefficient within (0,1). ∇θsd,k denotes the steepest descent direction which
is calculated as

∇θsd,k = arg min
∥v∥=1

∇l(θ̂k)T v (3.39)

where∇l(θ̂k) denotes the gradient of log-likelihood at θ̂k. We can add a small disturbance
on each direction of θ̂k to get the approximate partial gradient on that direction and
finally obtain ∇l(θ̂k). γ can be obtained by exact line search or backtracking which
refers to Chapter 9 of Boyd and Vandenberghe [2004]. Note that the gradient descent
method will be very computation consuming in the high dimensional case:

1. The inference of state variables needs more samples and the update of the proba-
bility weight needs more computation time consequently;

2. The vector θ becomes huge and the process of obtaining the gradient needs the
implement of particle filter again.

26

Preliminaries

If the system is linear and the noises are white Gaussian, the computational burden is
decreased compared to the general case in high-dimension case since the sampling is not
required. Instead, only the matrix operation is needed.

An alternative way to optimize parameter vector θ is the Expectation-Maximization
(EM) algorithm. The EM algorithm is an iterative parameter re-estimation procedure
in which parameter θ is iteratively improved to maximaize the likelihood of the observed
data p(YT |UT , θ) in the presence of hidden variables XT . For the case of stochastic
dynamical systems described by SSMs, YT is the sequence of observations and UT is the
sequence of observed inputs, and XT is the sequence of hidden variables as previously
defined. The parameters of the model is defined by θ. Maximizing the likelihood as a
function of θ is equivalent for maximizing the log-likelihood:

l(θ) = log p(YT |UT , θ) = log
∫

XT

p(XT , YT |UT , θ)dXT . (3.40)

For any given distribution Q(XT) over the hidden variables, we can obtain a lower bound
on l:

log
∫

XT

p(XT , YT |UT , θ)dXT = log
∫

XT

q(XT)p(XT , YT |UT , θ)
q(XT) dXT

≥
∫

XT

q(XT) log p(XT , YT |UT , θ)
q(XT) dXT

=
∫

XT

q(XT){log p(XT , YT |UT , θ)− log q(XT)}dXT

= F(q, θ).
(3.41)

Notice that the inequality (Jensen’s inequality) in Eq. (3.41) can be proved by using the
concavity of the log function. The EM algorithm alternates between maximizing F(q, θ)
with respect to the distribution q and the parameters θ, respectively, holding the other
fixed [Lange, 2013]. Namely, starting from a initial parameters θ0, we alternately apply:

E-Step: qk+1 ← arg max
q
F(q, θk), (3.42)

M-Step: θk+1 ← arg max
θ
F(qk+1, θ). (3.43)

In dynamical systems with hidden states, the E-Step corresponds exactly to solving the
hidden state inference problem or the smoothing problem: inferring the hidden state
trajectory given both the observations/inputs and the parameter values. Notice that
the parameter values are given by the M-Step of the last iteration [Ghahramani and
Roweis, 1999]. In the E-Step, a system identification problem is solved to update the
parameter values by using the hidden state estimated from the E-Step.

27

Chapter 3. Model Improvement for State-Space Models

3.4 Problem Formulation

State space models with nonlinear response which can be written as

xt+1 = Fxt + Hut + vt, (3.44)

yt = C + Gxt + Jut + s(xt) + wt. (3.45)

Here, f is linear function and g has linear part and also nonlinear part s(xt). Notice that
any of the information about s(xt) is not available. vt ∈ Rk and wt ∈ Rd denote the k-
dimension Gaussian white noise and d-dimension Gaussian white noise with covariance
matrices Q and R, respectively. Moreover, the initial state x0 also obeys Gaussian
distribution. The unknown parameters in F, H, C, G, J, Q, R are gathered in a parameter
vector denoted as θm.

In this case, we want to achieve model learning and hidden state inference based on the
given system input set UT = {u0, u1, .., uT } and observation set YT = {y0, y1, ..., yT }.
Model learning is to obtain the parameter vector θm and the nonlinear part s(xt). Notice
that s(xt) is from a function space with a basis that consists of finite number of functions.
Hidden state inference is to estimate xt for every t = 0, ..., T . The problem is formally
summarized in Problem 5.2.1.

Problem 3.4.1. Given the system input set UT = {u0, u1, .., uT } and observation set
UT = {y0, y1, ..., yT }, to obtain optimal inference

{θ̂∗
m, ŝ∗(xt)} = arg max

θ̂m,ŝ(xt)
log py0(y0) +

T∑
t=0

log pyt+1(yt+1|Yt, Ut, θ̂m, ŝ(xt)). (3.46)

Here the objective function is the log-likelihood of {θ̂m, ŝ(xt)} which can be denoted by
l(θ̂m, ŝ(xt)). The likelihood is written by

L(θ̂m, ŝ(xt)) = py(y0, ..., yT |θ̂m, ŝ(xt)) = py0(y0)
T∏

t=0
pyt+1(yt+1|Yt, Ut, θ̂m, ŝ(xt)), (3.47)

where py0(y) is calculated from p0(x0) as

py0(y0) =
∫ +∞

−∞
py0(y0|x0)dx0, (3.48)

28

Problem Formulation

and pyt+1(yt+1|Yt, Ut, θ̂m, ŝ(xt)) is calculated as

pyt+1(yt+1|Yt, Ut, θ̂m, ŝ(xt)) =
∫ +∞

−∞
pyt+1(yt+1|xt+1)pxt+1(xt+1|Yt, Ut, θ̂m, ŝ(xt))dxt+1.

(3.49)

The hidden state inference is included in Problem 5.2.1 with an implicit way. To achieve
the maximal likelihood of observations, the probability distributions of the hidden states
are necessary which should be inferred by the sequences of observed inputs and obser-
vations.

Remark 3.4.1. Problem 5.2.1 essentially aims at improving the linear state-space model
by finding an approximation function of nonlinear residual in observation equation.

Assume s(xt) is continuous and then we could use neural network model to approximate
s(xt). Since s(xt) is from Rk → Rd, we can split s(xt) as

s(xt) = [s1(xt), ..., sd(xt)]T . (3.50)

The non-parametric model used to approximate s(xt) is defined as ŝn(xt). We can also
split

ŝn(xt) = [ŝn,1(xt), ..., ŝn,d(xt)]T . (3.51)

Each ŝn,j(xt), j ∈ 1, ..., d can be written as

ŝn,j(xt) =
Nn∑
i=1

βijh(xt, aij , bij) (3.52)

where Nn denotes the number of hidden nodes of the non-parameter model, h(·) denotes
the activation function, and βij denotes the weight connecting the i−th hidden node
and the output, aij = [aij,1, ..., aij,k] represents the weight vector towards xt, and bij is
the scalar threshold of the i−th hidden node. Note that the candidate for activation
function h(·) can be sigmoid function

h(xt, aij , bij) = 1
1 + exp(−aijxt − bij) , (3.53)

or Fourier function
h(xt, aij , bij) = sin(aijxt + bij), (3.54)

or Gaussian function

h(xt, aij , bij) = exp(−bij∥xt − aij∥2), (3.55)

29

Chapter 3. Model Improvement for State-Space Models

or multiquadrics function

h(xt, aij , bij) = (∥xt − aij∥2 + b2
ij)1/2, (3.56)

or other functions such as Hardlimit function. In our thesis, we choose sigmoid function
as our activation function because its derivative is easily to be obtained.

βj = [β1j , .., βNnj]T denotes the weight vector connecting the hidden nodes and the
output. According to the universal approximation theorem [Cybenko, 1989, Selmic and
Lewis, 2002], ∀ϵs > 0,∃Np ∈ N+, βj , bj ∈ RNn , aj ∈ RNn×k, and ∃h(·), such that

∥ŝn,j − sj(xt)∥ ≤ ϵs,∀xt ∈ Rk. (3.57)

If we use neural network to approximate the nonlinear response, the problem to choose
ŝ(xt) is reduced to estimate βj , aj , bj , ∀j ∈ 1, ..., d. All the unknown parameters in
βj , aj , bj can be included in a parameter vector θs,j ∈ RNθs,j where Nθs,j

= Nn + Nn +
Nn × k. Define the parameter vector for ŝn(xt) by

θs = [θT
s,1, ..., θT

s,d]T . (3.58)

The estimation of θs is denoted by θ̂s. Thus, the Problem 5.2.1 can be reformed by
choosing θ̂s instead of ŝ(xt).

Problem 3.4.2. Given the system input set UT = {u0, u1, .., uT } and observation set
YT = {y0, y1, ..., yT }, to obtain θ̂∗

m and θ̂∗
s by solving

max
θ̂m,θ̂s

log py0(y0) +
T∑

t=1
log pyt+1(yt+1|Yt, Ut, θ̂m, θ̂s). (3.59)

3.5 Proposed Model Improvement Algorithms

The framework of the proposed algorithm is shown in Fig. 3.2 and is also summarized
as follows:

• Kalman filter (Expectation). Estimate the state trajectory via Kalman filter
based on the sequences of linear response and inputs.

• Reconstruction (Maximization R). Identify the nonlinear response by fitting
the parameters in the neural network model based on the residuals of the linear
model. We use MR as the abbreviation for Maximization R.

30

Proposed Model Improvement Algorithms

E-Step:

• Update the linear response: 𝑦l,𝑡
(ℓ)

= 𝑦𝑡 − 𝛼𝑠
ℓ

Ƹ𝑠n
ℓ

ො𝑥𝑡|𝑡
ℓ

• Infer state trajectory using Kalman filter: ො𝑥𝑡|𝑡
(ℓ)

• Update the residuals of the linear model:

Ƹ𝑒n,𝑡
(ℓ)

= 𝑦𝑡 − መ𝐶(ℓ) − መ𝐽(ℓ)𝑢𝑡 − ෠𝐺(ℓ) ො𝑥𝑡|𝑡
ℓ

MR-Step:

• Identify the nonlinear part:

MP-Step:

• Refit the linear part: (෠𝜃𝑚
ℓ+1

, 𝛼𝑠
ℓ+1

)

= arg max−{
𝑁log 2𝜋

2
+

1

2
σ𝑡=1
𝑇 (log 𝑆𝑡)

2+(෤𝑦l,𝑡
(ℓ)

)2

log 𝑆𝑡
}

NonlinearLinear Ƹ𝑒n,𝑡
(ℓ)𝑦l,𝑡

(ℓ)

෠𝜃𝑠
(ℓ+1)

= arg min෍

𝑡=0

𝑇

Ƹ𝑒n,𝑡
(ℓ)

− 𝛼𝑠
ℓ

Ƹ𝑠n
ℓ

ො𝑥𝑡|𝑡
ℓ
, ෠𝜃𝑠

2

መ𝜃𝑠
(ℓ+1)

, መ𝜃𝑚
ℓ+1

, 𝛼𝑠
ℓ+1

Figure 3.2: The framework of the proposed algorithm.

• Parametrization (Maximization P). Identify the parameters in the linear part
of the SSM based on the sequences of linear response, inputs, estimated states.
We use MP as the abbreviation for Maximization P.

The proposed algorithm is summarized as:

1. (Initialization.) Initialize iteration number ℓ = 0, parameter decision θ̂
(ℓ)
m , θ̂

(ℓ)
s =

0, and relaxation factor α(ℓ) = 1;

2. (E-Step.) Calcualte ŝ
(ℓ)
n (x̂(ℓ)

t|t) based on θ̂
(ℓ)
s and obtain linear part of output y

(ℓ)
l,t

as
y

(ℓ)
l,t = yt − α(ℓ)ŝ(ℓ)

n (x̂t|t)− Ĉ(ℓ) − Ĵ (ℓ)ut. (3.60)

(For ℓ = 0, use ŝ
(ℓ)
n (x̂(ℓ)

t|t) = 0.)

3. (E-Step.) Implement Kalman filter based on θ̂
(ℓ)
m , UT = {u0, u1, .., uT }, Y

(ℓ)
l,T =

{y(ℓ)
l,0 , y

(ℓ)
l,1 , ..., y

(ℓ)
l,T } and obtain the update of state estimation x̂

(ℓ)
t|t , nonlinear residual

ê
(ℓ)
nl,t = yt − Ĉ(ℓ) − Ĵ (ℓ)ut − Ĝ(ℓ)x̂

(ℓ)
t|t for all t;

4. (MR-Step) Update the parameter decision θ̂s by

θ̂(ℓ+1)
s = min

θ̂s

∑
t

∥ê(ℓ)
nl,t − α(ℓ)ŝn(x̂(ℓ)

t|t , θ̂s)∥2. (3.61)

31

Chapter 3. Model Improvement for State-Space Models

5. (MP-Step.) Update θ̂m, α by

{θ̂(ℓ+1)
m , α(ℓ+1)} = max

θ̂m,α
log py0(y0) +

T∑
t=1

log pyt(yt|θ̂m, α, θ̂(ℓ+1)
s , Yt−1, Ut−1). (3.62)

6. (Termination.) Set ℓ = ℓ + 1. If ∥θ̂(ℓ)
m − θ̂

(ℓ−1)
m ∥+ ∥θ̂(ℓ)

s − θ̂
(ℓ−1)
s ∥ < ϵ where ϵ is a

sufficiently small positive number, stop and output θ̂∗
m = θ̂

(ℓ)
m , θ̂∗

s = θ̂
(ℓ)
s , α∗ = α(ℓ).

Otherwise, go back to step 2.

The gradient descent method for updating θ̂ℓ
s in (3.61) is summarized as follows:

1. Initialization. Randomly assign θ̂∗
s,0 and set ℓg = 0;

2. Gradient calculation.

▽θ̂∗
s,ℓg =

T∑
t=0

∂ŝ
(ℓ)
n (x̂(ℓ)

t|t , θ̂s)
∂θ̂s

(ŝ(ℓ)
n (x̂(ℓ)

t|t , θ̂s)−
ê

(ℓ)
n,t

α
(ℓ)
s

)|θ̂s=θ̂∗
s,ℓg

; (3.63)

3. Updata. θ̂∗
s,ℓg+1 = θ̂∗

s,ℓg
− γℓg▽θ̂∗

s,ℓg
where γℓg ∈ (0, 1);

4. Check Terminal Condition. If ∥θ̂∗
s,ℓg+1 − θ̂∗

s,ℓg
∥ < ϵθs where ϵθs is a sufficiently

small positive number, terminate and output θ̂∗
s,ℓg+1 as θ̂

(ℓ+1)
s . Otherwise, set

ℓg = ℓg + 1 and go back to step 2.

We can solve Eq. (3.61) with less computation burden by applying Extreme Learning
Machine (ELM) algorithm [Huang et al., 2006]. The details about ELM algorithm is
summarized in Appendix A. The ELM algorithm for updating θ̂ℓ

s is summarized as
follows:

1. Randomly assign aij , bij for all i = 1, ..., Nn and j = 1, ..., d;

2. Calculate the hidden layer output matrix Hs,j ,∀j = 1, ..., d as

Φs,j =



h(x̂0|0, a1j , b1j) ... h(x̂0|0, aij , bij) ... h(x̂0|0, aNnj , bNnj)
...

h(x̂t|t, a1j , b1j) ... h(x̂t|t, aij , bij) ... h(x̂t|t, aNnj , bNnj)
...

h(x̂T |T , a1j , b1j) ... h(x̂T |T , aij , bij) ... h(x̂T |T , aNnj , bNnj)


(3.64)

where the activation function h(·) is chosen as sigmoid function;

32

Proposed Model Improvement Algorithms

3. Calculate βj by
βj = (ΦT

s,jΦs,j)−1ΦT
s,jÊT (3.65)

where ÊT = [ênl,0, ..., ênl,T]T .

Besides, the algorithm to obtain θ̂∗
m which includes F, H, G, J, C and α for MP-Step is

summarized as follows:

1. For i = 1, ..., k, obtain a data matrix

Φf,i =



x̃0,1 ... x̃0,k u0,1 ... u0,c

....

x̃t,1 ... x̃t,k ut,1 ... ut,c

...

x̃T −1,1 ... x̃T −1,k uT −1,1 ... uT −1,c


(3.66)

and output vector

Of,i =



x̃1,i

...

x̃t,i

...

x̃T,i


. (3.67)

Then, calculate θ̂f,i by
θ̂f,i = (ΦT

f,iΦf,i)−1ΦT
f,iOf,i. (3.68)

and obtain F̂ and Ĥ by

F̂ =



θ̂T
f,1(1 : k)

...

θ̂T
f,i(1 : k)

...

θ̂T
f,k(1 : k)


, (3.69)

Ĥ =



θ̂T
f,1(k + 1 : k + c)

...

θ̂T
f,i(k + 1 : k + c)

...

θ̂T
f,k(k + 1 : k + c)


. (3.70)

33

Chapter 3. Model Improvement for State-Space Models

2. For i = 1, ..., d, obtain a data matrix

Φg,i =



x̃0,1 ... x̃0,k u0,1 ... u0,c 1 ŝn,i(x̂0|T)
.... 1 ...

x̃t,1 ... x̃t,k ut,1 ... ut,c 1 ŝn,i(x̂t|T)
... 1 ...

x̃T,1 ... x̃T,k uT,1 ... uT,c 1 ŝn,i(x̂T |T)


(3.71)

and output vector

Og,i =



y0,i

...

yt,i

...

yT,i


. (3.72)

Then, calculate θ̂g,i by
θ̂g,i = (ΦT

g,iΦg,i)−1ΦT
g,iOg,i. (3.73)

and obtain parameters by

Ĝ =



θ̂T
g,1(1 : k)

...

θ̂T
g,i(1 : k)

...

θ̂T
g,d(1 : k)


. (3.74)

Ĵ =



θ̂T
g,1(k + 1 : k + c)

...

θ̂T
g,i(k + 1 : k + c)

...

θ̂T
g,d(k + 1 : k + c)


. (3.75)

Ĉ =



θ̂T
g,1(k + c + 1)

...

θ̂T
g,i(k + c + 1)

...

θ̂T
g,d(k + c + 1)


. (3.76)

α̂ =



θ̂T
g,1(k + c + 2)

...

θ̂T
g,i(k + c + 2)

...

θ̂T
g,d(k + c + 2)


. (3.77)

34

Proposed Model Improvement Algorithms

3. Calculate Q̂ as

Q̂ = 1
T − 1

T −1∑
t=0

(ex,t − ēx)(ex,t − ēx)T (3.78)

where ex,t = x̃t+1 − F̂ x̃t − Ĥut and ēx = 1
T

∑T −1
t=0 ex,t.

5. Calculate R̂ as

R̂ = 1
T − 1

T −1∑
t=0

(ey,t − ēy)(ey,t − ēy)T (3.79)

where ey,t = yt − Ĉ − Ĝx̃t − Ĵut − ŝn(x̃t) and ēy = 1
T

∑T −1
t=0 ey,t.

Remark 3.5.1. Our proposed algorithm integrates the residual analysis to improve the
linear state-space model. Even though the information of s(xt) is unknown, we can
implement universal approximation to approximate s(xt) by using the residuals of the
linear state-space model.

With the trained θ̂∗
m, θ̂∗

s , and α∗, we modify the Kalman filter into Decimating Kalman
filter for state space models with nonlinear response, which repeats the following steps
for t = 1, ..., T :

a) Calculate the predict mean of state

E{xt|Yt−1, Ut−1} = x̂t|t−1 = F̂ x̂t−1|t−1 + Ĥut−1; (3.80)

b) Calculate the predict covariance of state

Pt|t−1 = F̂Pt−1|t−1F̂ T + Q̂; (3.81)

c) Calculate the predict innovation

Iyt = yt − E{yt|Yt−1, Ut−1} (3.82)

where E{yt|Yt−1, Ut−1} = Ĉ + Ĝx̂t|t−1 + Ĵut−1 + α∗ŝ(x̂t|t−1, θ̂∗
s);

d) Calculate the feedback gain

Kt = Pt|t−1ĜT (ĜPt|t−1ĜT + R̂)−1; (3.83)

e) Calculate the filter mean of state

E{xt|Yt, Ut} = x̂t|t = x̂t|t−1 + KtIyt (3.84)

35

Chapter 3. Model Improvement for State-Space Models

Figure 3.3: Results of cost: a) cost evolution by gradient descent method; b) cost
evolution by ELM algorithm.

and obtain the filter covariance of state

Pt|t = Pt|t−1 −KtĜPt|t−1. (3.85)

The only difference is that the nonlinear residual is included in the predict innovation.
The rest is the same.

3.6 Numerical Examples

3.6.1 Model for numerical examples

In the numerical example, we consider the following stochastic dynamical system

x(t + 1) = 0.9x(t) + u(t) + QNumN (0, 1), (3.86)

y(t) = x(t) + 5 sin(x(t))
x(t) + RNumN (0, 1), (3.87)

u(t) = 3 cos(0.2t). (3.88)

In the simulation, QNum is fixed as 0.1. RNum takes different values: 0.1, 0.2, 0.3, 0.5,
1. We generated two groups of data for different RNum. Each group has 500 time series
data. One group is used for training and another is used for testing the trained model.

3.6.2 About number of activation functions

First, numerical simulations have been conducted to check how the number of activation
functions influences the fit performance. Besides, the comparison of using gradient

36

Numerical Examples

Figure 3.4: Final cost comparison between gradient descent method and ELM algo-
rithm.

Figure 3.5: Results of nonlinear response fitting: a) gradient descent method; b) ELM
algorithm.

descent method to learn the nonlinear part and using ELM algorithm to learn the
nonlinear part are given in this validation. In this validation, we only use the training
data and the testing data with RNum = 0.1. The activation function adopts sigmoid
function.

Fig. 3.3 shows the cost evolution by gradient descent method and ELM algorithm. The
cost is denoted by the minus of l(θ) in (3.36) where Iyt is the replaced by Iyl,t

which is the
innovation for the linear part. Final costs for different numbers of activation functions
are summarized in Fig. 3.4. When the number of activation functions is less than 40,
gradient descent method shows a much better fitting performance. When the number
of activation functions surpluses 50, ELM algorithm shows the same performance as the
gradient descent method. The gradient descent method optimizes aij and bij while ELM
algorithm randomly assigns aij and bij . When the number of activation function is larger
enough, the probability of getting good aij and bij by random assignment increases. We
do not need every aij and bij is good in ELM algorithm. If we have more random
assignments, the number of good aij and bij assignments will also increase. The fitting

37

Chapter 3. Model Improvement for State-Space Models

Figure 3.6: Predictive residual by gradient descent method.

plots of the nonlinear response are summarized in Fig. 3.5 which corresponds to the
results of cost performance. Besides, Fig. 3.6 and 3.7 show the predictive residuals of
gradient descent method and ELM algorithm. The performance of both methods are
similar.

Fig. 3.8 shows the training times of gradient descent method and ELM algorithm for
200 iterations in the cases of different activation function numbers. The training time
is much less when using ELM algorithm.

According to the above analysis, the following conclusions are obtained:

• For this numerical example, 100 activation functions are enough;

• ELM algorithm can achieve nearly the same performance as gradient descent
method with much less computation time.

38

Numerical Examples

Figure 3.7: Predictive residual by ELM algorithm.

Figure 3.8: Training time comparison between gradient descent method and ELM
algorithm.

39

Chapter 3. Model Improvement for State-Space Models

Figure 3.9: Results of cost: a) cost evolution with linear model; b) cost evolution
with proposed model.

Figure 3.10: Final cost comparison.

40

Application Case Study

3.6.3 Comparison with linear model

Fig. 3.9 and 3.10 show the results of cost in the training process which is ∑t(yt − ŷt)2.
The proposed model shows better performance than linear model. Moreover, if RNum

increases, the cost converges to a larger value. For the proposed method, the cost
converges to nearly 500 when RNum = 1. If we take the mean value of the cost which is
the Mean Square Error, it fits to the variance of yt: RNum. The rest cases also satisfy
this.

Besides, Fig. 3.11 shows the results of parameter identification. The parameters con-
verge to the real values if the proposed model is applied. However, if we uses linear
model, the converged parameter estimations deviate from the real values.

Fig. 3.12 shows the results of state estimation in the testing. The proposed decimating
Kalman filter gives more accurate state estimation than the linear Kalman filter. The
MSE of the state estimation is not affected by RNum. Fig. 3.13 shows the results of
predictive residual. The predictive residual was decreased by the decimating Kalman
filter. Moreover, compared to the predictive residual by the linear Kalman filter, the
predictive residual by the proposed decimating Kalamn filter is more close to the white
Gaussian noise.

A more intuitive data virtualization of residual observation and approximation are given
in Fig. 3.14. Fig. 3.14 a) shows the relation between state and predictive residual
by using Kalman filter based on linear model. As RNum increases, the variance of the
predictive residual gets larger while the means converges at the same place where the real
nonlinear response locates. Fig. 3.14 b) shows the relation between state and residual
observations yt − x̂t|t−1 in the decimating Kalman filter, namely, the remained value
after decimating the estimated nonlinear response. Fig. 3.14 c) gives the comparisons
between the estimated nonlinear responses and real nonlinear responses. The proposed
method perfectly decimated the nonlinear response and then ensures the accuracy of
linear Kalman filter on the linear part.

3.7 Application Case Study

The State of Charge (SoC) is defined as the ratio of the remaining capacity to the
maximum available capacity which can be expressed as follows:

SoCτ = SoCτ0 + ηc

Cn

∫ τ

τ0
iτ ′dτ ′ (3.89)

41

Chapter 3. Model Improvement for State-Space Models

Figure 3.11: Results of parameter identification: a) F; b) H; c) G.

42

Application Case Study

Figure 3.12: Results of state estimation error: a) linear model; b) proposed model;
c) mean error comparison d) MSE comparison.

where SoCτ , SoCτ0 are the value of SoC at time τ, τ0, respectively. iτ ′ represents the
charging current at time τ ′, ηc is the coulombic efficiency, Cn is the total available
capacity of the battery.

Based on the dynamic characteristics and working principles of the battery, the equiv-
alent circuit model is developed by using resistors, capacitors, and voltage sources to
form a circuit network. Fig. 3.15 shows the schematic diagram of an equivalent circuit
model with RC networks. As can be seen from the figure, the UOCV is used to denote
the battery voltage source. Ro represents the internal ohmic resistance. Ee and Ce

denote the dynamic characteristics include polarization, diffusion, hysteresis and so on.

43

Chapter 3. Model Improvement for State-Space Models

Figure 3.13: Results of predictive residual: a) linear model; b) proposed model; c)
mean predictive residual comparison d) predictive residual’s MSE comparison.

44

Application Case Study

Figure 3.14: Residual observation and approximation: a) residual observation: linear
model; b) LKF residual observation: proposed model; c) residual approximation by

proposed method.

The electrical behavior of the RC model can be expressed as follows:

U̇e,τ = − Ue,τ

ReCe
+ iτ

Ce
(3.90)

U(τ) = UOCV (τ) + i(τ)Ro + Ue(τ) (3.91)

where iτ is the charging current, Uτ is the terminal voltage and Ue,τ represents the
voltage of the RC circuit.

The battery OCV is related to SoC and can be written as

UOCV,τ = UOCV,0 + K0SoCτ + s(SoCτ) (3.92)

where UOCV,0 + K0SoCτ is the linear part of the open-circuit voltage of a battery cell,
and s(SoCτ) is the nonlinear part of the open-circuit voltage of battery cell. Notice that
the strucutre and information of s(SoCτ) is not available.

45

Chapter 3. Model Improvement for State-Space Models

+
-

+

-

+-

Figure 3.15: Schematic diagram of the RC equivalent circuit model.

To perform the model based SoC estimation, a discrete state space to describe the
battery model is required. The discretization form of battery state-space equation for
SoC estimation can be written as: Ue,t+1

SoCt+1

 =

e− ∆τ
ReCe 0
0 1

 Ue,t

SoCt

+

1− e− ∆τ
ReCe

ηc∆τ
Cn

 it +

v1,t

v2,t

 , (3.93)

Ut = UOCV,0 + K0SoCt + s(SoCt) + itRo + Ue,t + wt. (3.94)

Here, vt = [v1,t, v2,t]T and wt are the process and the measurement noises which are
Gaussian white noise with covariance Q and R, respectively.

We used the equivalent circuit model discussed in Paschero et al. [2016] as a data gen-
erator and built the two synthetic data sets. This model is shown in Fig. 3.15 and
it implements the quasi-stationary, the instantaneous, and the dynamic timescales by
means of a nonlinear capacitor, a resistor, and a RC group. The nonlinear capacitor is
calibrated by a look-up table from SoC to OCV with the experiment data of a lithium
polymer cell. The capacity is 15 Ah and the nominal voltage is 3.6 V. The internal ohmic
resistance is 0.01035 Ω. The parameters of the RC group is Re = 0.03726, Ce = 12000.

The data generated with the circuit of Fig. 3.15 can be considered as a representative
of a real electrochemical cell [Paschero et al., 2016]. The charging current i has been
generated by simulating the use of an energy storage system in a pure electric vehicle,
synthesizing current and voltage sequences as close as possible to those measurable in
a real cell during its activity. The software CarSim has been used for generating data
related to energy systems of electric vehicles. Both the training set and the test set
have been generated by simulating a typical daily journey which are shown in Fig. 3.16
a) and Fig. 3.17, respectively. The data have been collected considering a sampling
time ∆τ = 1 s. In order to generate the sequences of SoC, Ue, UOCV , U, the obtained
current profiles have been applied to the related equivalent circuit. The circuit model

46

Application Case Study

Figure 3.16: Generated training set: a) charging current; b) state of charge; c) voltage
of the RC circuit; d) Voltage of the internal ohmic resistance; e) open circuit voltage;

f) terminal voltage.

Figure 3.17: Generated testing set: a) charging current; b) state of charge; c) voltage
of the RC circuit; d) Voltage of the internal ohmic resistance; e) open circuit voltage;

f) terminal voltage.

has been initialized for considering a full charged cell in a stationary condition, namely,
the state variables SoC and Ue have been initialized to one and zeros, respectively.
Furthermore, the inaccuracy of the voltage and current sensors has been emulated by
adding a zeros mean Gaussian noise to the charging current and the terminal voltage.
The Gaussian noise added to the terminal voltage has a standard deviation equal to
1e− 4 V, while the one of the input current has a standard deviation equal to 3e− 3 A
which match the standard accuracy of real voltage and current sensors. The traces of
i, SoC, Ue, iRo, UOCV , U of the training set and testing set are shown in Fig. 3.16
and Fig. 3.17, respectively.

We compared our proposed method with the Sigma-point Kalman Filter (SKF) applied
in [Plett, 2006] and Neural Netwokr circuit model-based Sigma-point Kalman Filter
(NN-SKF) proposed in [Luzi et al., 2019, 2020]. SKF is a classical method used in the
SoC estimation. NN-SKF can be regarded as the state-of-the-art in the SoC estimation.

The estimation and prediction results of Ue, SoC, UOCV , U are plotted in Fig. 3.18.
The MSE performances are summarized in Tab. 1. SKF represents the Sigma-point

47

Chapter 3. Model Improvement for State-Space Models

Table 3.1: Summary of estimation and prediction performances (MSE)

Method/Subject Ue SoC UOCV U

SKF 2.3892e-04 8.4945e-04 2.3687e-04 7.4554e-07
NN-SKF 1.1354e-04 1.7975e-04 1.1250e-04 7.4175e-07

DKF 2.5399e-08 3.3358e-07 1.8979e-08 1.5031e-08

Kalamn filter. The function from SoC to OCV adopts the experiment data-based look-
up table. Linear interpolation is used to look up values in the table. NN-SKF represents
the SKF with neural network model to approximate the function from SoC to OCV .
In both SKF and NN-SKF, the nonlinear response is supposed to be known. DKF is
the proposed decimating Kalman filter. We trained the parameters of linear part and
nonlinear part based on the presented training algorithm in Section 3.5 with training
set and then used the decimating Kalman filter introduced in Section 3.5 to the testing
set. The neural networks used in both NN-SKF and DKF are single layer with 100
activation functions. The results shows that NN-SKF has better performance than SKF
since neural network model has better fitting performance than the linear interpolation
of the look-up table. The proposed DKF outperforms than SKF and NN-SKF because
the optimal feedback gain can be obtained after decimating the nonlinear response in
DKF while SKF can only approximate the optimal estimation by extracting samples.

For our proposed method, we also checked the fitting performance of open circuit voltage
which is shown in Fig. 3.19. The linear part of UOCV have been separated.

48

Application Case Study

Figure 3.18: Generated testing set: a) voltage of the RC circuit; b) state of charge;
c) open circuit voltage; d) terminal voltage.

49

Chapter 3. Model Improvement for State-Space Models

Figure 3.19: Fitting performance of open circuit voltage.

50

Chapter

4
Residual Convergence in

Approximating Chance
Constrained Optimization

4.1 Background and Motivation

Uncertain optimization are optimization problems involved uncertainties in constraints
or objectives [Ben-Tal and Nemirovski, 1999]. Denote u ∈ Rnu for the vector of decision
variable. Denote δ ∈ ∆ ⊆ Rnδ for the vector of uncertain variable. The cost function
to be optimized is written as J(u). ”optimizing” means ”minimizing”. The constraints
of the vector of decision variable is influenced by δ. Thus, we can generally denote
Uδ ⊂ Rnδ as the feasible region of u for a given δ. Uncertain optimization can be written
as

min
u∈Uδ

J(u). (4.1)

However, the optimization problem is not well defined because (4.2) does not describe
how the uncertain variable δ should be accounted for when we consider about the con-
straint Uδ. Since δ can be any one from the sample space ∆, a natural way to pose the
problem is along a worst-case approach:

min
u∈
⋂

δ∈∆ Uδ

J(u). (4.2)

51

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

This is essentially robust optimization problem. Ben-Tal and Nemirovski [2002] and
the book Ben-Tal et al. [2009] have had a significant role in promoting the worst-case
approach in optimization.

Chance Constrained Optimization (CCO) or Probabilistic Constrained Optimization
(PCO) are mathematical programs involved random variables in constraints which is
required to be satisfied in a given probability level [Charnes and Cooper , 1959, 1970].
In this study, the appellations of chance constrained optimization and probabilistic con-
strained optimization are both adopted and they are exactly expressing the same mean-
ing. Chance constrained optimization can be regarded as a relaxation of the robust
optimization. The motivation of considering chance constrained optimization is that
robust optimization considers the worst case in which the feasible set might be a null
set. Instead, chance constrained optimization is posed the following constraints:

Uf =
⋃

∆s∈F

⋂
δ∈∆s

Uδ. (4.3)

Here, F is a subset of the σ-algebra of ∆, D:

F = {∆s ∈ D|Pr{∆s} ≥ 1− α}. (4.4)

Here, α ∈ [0, 1) denotes a given probability level. Thus, for chance constrained optimiza-
tion, we do not have to satisfy the constraints posed by all possible δ. The constraint
only have to be satisfied by a desired probability. We can regard α as the level of
robustness. If α is 0, the level of robustness is complete.

Chance constrained optimization has been widely applied in various industrial fields,
especially for robust modeling, robust control, robust decision-making. For example,
Schildbach et al. [2014] has proposed a stochastic model predictive control with bounds
on closed-loop constraint violations based on the idea of solving a chance constrained
optimization problem to obtain the constrained optimal input series for a stochastic
system. Guo and Zavlanos [2018] addresses a motion plan problem with uncertainty.
A hard constraint that rejects all the uncertainty would result a null set for the input.
Thus, the chance constraint is introduced to relax the hard constraints to soft con-
straints. The motion plan problem becomes a chance constrained optimization problem
(or probabilistic constrained problem). In Gautam et al. [2020], chance constrained opti-
mization is applied to model the probabilistic energy storage in order to quantify market
constrained reliability. In Shen and Shen [2018], Shen et al. [2017], the combustion con-
trol problem is reformulated as a chance constrained optimization problem, in which
the engine combustion efficiency is optimized with constraint on probability on abnor-
mal combustion. Another interesting application of chance constrained optimization in

52

Problem Description

automotive industry is introduced in Moser et al. [2018]. The adaptive cruise control
problem is formulated as a chance constrained optimization problem The hard spacing
constraint is relaxed to a flexible spacing constraint. The distance is just required to
be within an interval with a probability level. Then, the energy efficiency of the vehicle
can be dramatically improved.

Recently, chance constrained optimization has also been introduced to solve problems in
machine learning field, both theory and applications. Shen et al. [2020] proposes a novel
method to calculate the probabilistic bound of the predictive state trajectory of an un-
certain system by reformulating the bound calculation problem into a chance constrained
optimization problem. In Campi [2010], a novel classification method which can guar-
antees the probability of classification error is proposed. The bound for classification
is essentially obtained by solving a chance constrained problem. Chance constrained
optimization can also be used to improve the robustness of machine learning system
towards the adversarial perturbations. For example, Madry et al. [2018] proposes a ro-
bust optimization-based method to train a neural network. Although it is called robust
optimization, it has been finally relaxed to a probabilistic constrained optimization to
escape from the null solution issue. Besides, Goodwin et al. [2020] decreases the com-
putation burden of solving a robust optimization problem for obtaining a robust neural
network. In reinforcement learning, recent research has been focused on how to achieve
reinforcement learning with safe constraints [Achiam et al., 2017]. Chance constrained
optimization can definitely contribute to improve reinforcement learning to safe rein-
forcement learning. More interesting applications of chance constrained optimization
has been summarized in Campi and Garatti [2019].

The above introduction about the wide application of chance constrained in various
fields emphasises the importance of chance constrained optimization. However, chance
constrained optimization is NP-hard due to the chance constraints and cannot be solved
directly. The challenge of solving chance constrained program directly motivates the
development of approximation approach to solve it. Unfortunately, the bias obtained by
the approximation causes the problem that we do not have confidence in the solution.
Besides, sample-based approximation always brings non-smoothness in the approximate
problems which makes the optimization problem solver hard to find the solution. The
above two points really constraints the application of chance constrained optimization.
Thus, it is really important to discuss how to give better approximation of the chance
constrained optimization problem.

53

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

ℎ 𝑢, 𝛿𝑡 = 0

𝑢1

𝑢2

𝑢1

𝑢2

Consider all 𝛿𝑡 ∈ Δ𝑠

𝒰Δ𝑠 = ሩ

𝛿𝑡∈Δ𝑠

{𝑢 ∈ 𝒰|ℎ 𝑢, 𝛿𝑡 ≤ 0}

Consider all Δ𝑠 ∈ ℱ

ℱ = {Δ𝑠| Pr 𝛿𝑡 ∈ Δ𝑠 ⊆ Δ ≥ 1 − 𝛼}

𝑢1

𝑢2

・・・

𝒰𝑓 = ራ

Δ𝑠∈ℱ

ሩ

𝛿𝑡∈Δ𝑠

{𝑢 ∈ 𝒰|ℎ 𝑢, 𝛿𝑡 ≤ 0}

Figure 4.1: Formulation of probabilistic feasible domain.

4.2 Problem Description

In this section, we give a problem description of chance constrained optimization which
is with more details and is more formally written than the compact one in the previous
section.

Chance constrained optimization can be generally written as:

min
u∈U

J(u)

s.t. Pr{h(u, δ) ≤ 0} ≥ 1− α, δ ∈ ∆,
(4.5)

where u ∈ U ⊂ Rnu is the decision variable, the decision variable domain U is supposed
to be bounded, δ ∈ ∆ ⊂ Rnδ is an uncertain parameter vector, the set ∆ is the sample
space of δ on which a σ-algebra D and a probability measure Pr are defined, α ∈ [0, 1)
is a given probability level for violation of chance constraints. Moreover, J(u) : U → R
and ∀δ ∈ ∆, h(u, δ) : U × ∆ → Rl are continuous and differentiable in u. Chance
constraints appearing in Eq. (4.5) emerge in various applications and can be regarded
as a compromise of hard constraints which require to be satisfied for all values δ ∈ ∆.
The feasible solution set under hard constraints could be too conservative and sometimes
it could be a null set.

The feasible decision domain can be denoted as Uf . However, it is difficult to obtain
the exact expression of Uf . Fig. 4.1 gives illustration on the formulation of probabilistic
feasible domain in a 2-dimension space. Denoting ∆s ⊂ ∆ and the probability measure

54

Related Works

of ∆s satisfies
Pr{∆s} ≥ 1− α. (4.6)

The feasible domain for δt ∈ ∆s is defined as

Uδt = {u ∈ U|h(u, δt) ≤ 0}. (4.7)

Then, the feasible domain for ∆s is intersection of Uδt for all δt ∈ ∆s, which is written
as

U∆s =
⋂

δt∈∆s

Uδt . (4.8)

Considering a family of ∆s denoted as

F = {∆s ⊂ ∆|Pr{∆s} ≥ 1− α}, (4.9)

the feasible decision domain for Eq. (4.5) can be defined as:

Uf =
⋃

∆s∈F
U∆s =

⋃
∆s∈F

⋂
δt∈∆s

Uδt . (4.10)

Obviously, even if Uδt is known, it is impossible to obtain explicit expression or domain
of Uf due to infinite times’ operation of intersection and union. Thus, program (4.5) is
NP hard due to the chance constraint. To address program (4.5), the following issues
should be considered:

• How to approximate chance constraints, namely approximate the probabilistic
feasible domain of decision variable;

• How to approximate the optimizer in the probabilistic feasible domain.

4.3 Related Works

The challenge of solving chance constrained program directly motivates the development
of approximation approach to solve it. In recent 20 years, the main stream has converged
to scenario approach [Calafiore and Campi, 2006] in which deterministic constraints im-
posed for finite sets of independently extracted samples of uncertain parameters are
used to replace the chance constraints. Scenario approach preserves that the solution
of the newly formulated deterministic program satisfies chance constraints with a deter-
mined bound of probability [Calafiore and Campi, 2006]. Afterwards, scenario approach
with tight confidence bounds has been developed, in which a set of sampled constraints
with tight confidence on violation probability is determined for approximating chance

55

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

constraints. For instance, a certain proportion of parameter samples to define a set of
sampled constraints and discard the rest can be used to approximate chance constraints
with tight violation probabilities for fixed sample number [Campi and Garatti, 2011].
However, scenario approach still has fatal drawbacks. It cannot ensure that the obtained
solution is the optimal one in the probabilistic feasible domain. when the sample number
becomes larger, the obtained solution becomes more conservative and finally converges
to the totally robust solution which is feasible for all uncertainty realizations. Moreover,
the solution depends highly on the chosen samples of uncertain parameters, which might
be guided to the wrong directions due to the bad choices of samples.

Sample average approach has been proposed in Luedtke and Ahmed [2008], Pagnoncelli
et al. [2009] as a development of scenario approach. A sample average program is used
as approximation of the chance constrained program in which the chance constraints
are replaced by a measure to indicate the violation probability. The feasible region
and optimal solution of sample average program are proved to converge to the ones of
the original problem if Lipschitz continuity of cost function and constraint function is
preserved. However, there is two drawback of using sample average program:

1. First, the sample average program is a mixed integer program which is very difficult
to solve;

2. Second, approximating the probability directly will obtain flatness in the constraint
function which makes gradient based method hard to move to the local minimum.

Thus, [Pena-Ordieres et al., 2020] proposes a smooth sample average program to address
the above problem.

Different from the sample-based method, Geletu et al. [2017] proposes an inner-outer
approximate approach to approximate the chance constraint by using explicit function.
However, to establish such approximate function precisely is really challenging.

Bayesian optimization framework has been applied to optimization under unknown con-
straints recently [Gramacy and Lee, 2010, Picheny et al., 2016], which is essentially a
data-driven approach for approximating the optimizer of the program. Statistical ap-
proach based on Gaussian processes and Bayesian learning to both approximate the
unknown function and estimate the probability of meeting the constraints is developed
to approximate the optimizer in unknown feasible domain. While, this can only be ap-
plied to expected constraints. Also, Gaussian process model is still not precise enough
for approximating the feasible domain described by chance constraints.

56

Related Works

4.3.1 Scenario approach

The following content about scenario approach summarizes the research about scenario
approach presented in Calafiore and Campi [2006],Campi and Garatti [2008],Campi et al.
[2018].

Here, we still adopt the notations in Section 4.2. δ is a random variable in the sample
space ∆. The sample space ∆ is endowed with a σ-algebra D and a probability measure
Pr. Moreover, let (∆m,Dm, Prm) be the m-fold Cartesian product of ∆ equipped with
the product σ-algebra Dm and the product probability Prm = Pr × ... × Pr(m times).
Namelyk a point in (∆m,Dm, Prm) is a sample (δ(1), ..., δ(m)) of m elements drawn
independently from ∆ according to the identical probability Pr. Note that each δ(i) is
regarded as an observation, and it is called a ”scenario”. since the approach is based on
extracting δ(i), it is named as ”scenario approach”. The decision space is defined by U .
As defined in (4.7), for each δ(i), we have a constraint set Uδ(i) . With (δ(1), ..., δ(m)), we
can construct the following constrained optimization problem:

min
u∈U

J(u)

s.t. u ∈
m⋂

i=1
Uδ(i) .

(4.11)

Assuming that a unique solution u∗
m exists, possibly after applying a tie-break rule[Calafiore

and Campi, 2005]. We define a map from (δ(1), ..., δ(m)) to u∗
m as:

Am : ∆m → U . (4.12)

Namely, for a given (δ(1), ..., δ(m)) ∈ ∆m, if the problem (4.11) is feasible and has a
unique solution u∗

m, we have Am(δ(1), ..., δ(m)) = u∗
m.

The following assumption is in force through out the scenario approach:

Assumption 4.3.1. To every δ ∈ ∆ there is associated a constraint set Uδ ⊆ U , which
identifies the decisions that are admissible for a given δ. For all m = 1, 2, ... and for any
sample δ(1), ..., δ(m), it holds that Am(δ(1), ..., δ(m)) ∈ ⋂m

i=1 Uδ(i) .

We henceforth call N the actual, fixed, number of scenarios that we observe in a given
application. The remained question is whether u∗

N = AN (δ(1), ..., δ(N)) satisfies the
chance constraint or not. This is important to certify how ”robust” u∗

N is against the
uncertainty of δ.

Definition 4.3.1. The violation probability of a given decision u ∈ U is defined as

V (u) := Pr{δ ∈ ∆ : u /∈ Uδ}. (4.13)

57

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

For chance constrained optimization, the feasible decision should satisfy that V (u) < α.

Note that the element (δ(1), ..., δ(N)) is random variable in ∆N since each scenario δ(i)

is randomly sampled from ∆ according to Pr. u∗
N = AN (δ(1), ..., δ(N)) is determined by

(δ(1), ..., δ(N)). Thus, the violation probability of the scenario decision V (u∗
N) is random

variable defined over ∆N .

The distribution of V (u∗
N) has been the object of intense study for the case when u∗

N

is obtained as the solution of a convex optimization [Calafiore and Campi, 2005, 2006,
Campi and Garatti, 2008]. The deepest result is established in Campi and Garatti [2008],
where it is shown that the distribution of V (u∗

N) is dominated by a Beta distribution,
namely,

PrN{V (u∗
N) > α} ≤ β, (4.14)

where

β =
nu−1∑
i=0

(
N

i

)
αi(1− α)N−i. (4.15)

This result is tight in that (4.14) holds with euqality for a whole class of convex op-
timization problems which are called fully supported problems in Campi and Garatti
[2008].

In Grammatico et al. [2016], the bounds described by (4.14) and (4.15) have been ex-
tended to the case with a nonconvex cost function and convex constraints. The feasibility
domain is restricted to a region that is obtained as the convex hull of few points to enable
the application of the results of Campi and Garatti [2008]]. Campi et al. [2018] gave the
generalization result for a nonconvex program in which both J(u) and Uδ need not to
be convex.

Definition 4.3.2. Given a sample (δ(1), ..., δ(N)) ∈ ∆N , a support subsample S for
(δ(1), ..., δ(N)) is k−tuple of elements extracted from (δ(1), ..., δ(N)), i.e., S = (δ(i1), ..., δ(ik))
with i1 < ... < ik, which gives the same solution as the original sample, that is,

Ak(δ(i1), ..., δ(ik)) = AN (δ(1), ..., δ(N)). (4.16)

A support subsample S = (δ(i1), ..., δ(ik)) is said to be irreducible if no element can be
further removed from S leaving the solution unchanged. According to the results in
Calafiore and Campi [2005, 2006], Campi and Garatti [2008], if Uδ is convex for any
δ ∈ ∆, the maximal number of support subsample is nu for any N > nu. Thus, we have
the results in (4.14) and (4.15).

We denote a function BN : (δ(1), ..., δ(N))→ {i1, ..., ik}, i1 < ... < ik such that (δ(i1), ..., δ(ik))
is a support subsample. Let s∗

N = |BN (δ(1), ..., δ(N))|.

58

Related Works

For nonconvex cases, the result is stated by the following Theorem:

Theorem 4.3.1. Suppose that Assumption 4.3.1 holds true, and set a value β ∈ (0, 1) as
confidence parameter. Let ε : {0, ..., N} → [0, 1] be a function such that

ε(N) = 1 (4.17)

N−1∑
i=1

(
N

i

)
(1− ε(i))N−i = β. (4.18)

Then, for any AN ,BN , and probability Pr, it holds that

PrN{V (u∗
N) > ε(s∗

N)} ≤ β. (4.19)

Due to the above summary of scenario approach, it is clear that scenario approach does
not focus on how to approximate the original problem by approximating the feasible
region. It only cares about the robustness of the approximate solution. With small
sample size, there is a chance to get a good feasible solution while the risk of getting a
solution which is not feasible is very high. On the other hand, if we use large sample
size, the risk of getting a infeasible solution is small. However, the solution will be too
conservative to the chance constrained optimization. We will state this point in the
introduction for sample average approach.

4.3.2 Sample average approach

The following content about sample average approach summarized the results presented
in Luedtke and Ahmed [2008], Pena-Ordieres et al. [2020].

Sample average approach also extracts samples from the sample space ∆ and builds an
approximate problem of the original chance constrained optimization problem. We adopt
the same notations used in the introduction for scenario approach. Let (δ(1), ..., δ(N))
be an independent Monte Carlo sample set of the random vector δ. Then, for fixed
ϵ ∈ [0, 1) and γ > 0, the sample average approximation problem is defined to be

min
u∈U

J(u)

s.t. u ∈ UN
ϵ,γ

(4.20)

where UN
ϵ,γ is defined as

UN
ϵ,γ = {u ∈ U| 1

N

N∑
i=1

I(h(u, δ(i) + γ) ≤ 0) ≤ 1− ϵ}. (4.21)

59

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

where I(z) is the indicator function which takes values one when z is true and zero
otherwise.

There is an assumption for the constraint function h(·):

Assumption 4.3.2. There exists L > 0 such that

|h(u, δ)− h(u′, δ)| ≤ L∥u− u′∥∞, ∀u, u′ ∈ U and ∀δ ∈ ∆. (4.22)

Theorem 4.3.2. Suppose U is bounded with diameter D. Namely, we have D > 0 such
that D = sup{∥u − u′∥∞ : u, u′ ∈ U} be the diameter of U . Besides, assume that
Assumption 4.3.2 holds. Let ϵ ∈ [0, α), η ∈ (0, α− ϵ) and γ > 0. Then,

Pr{UN
ϵ,γ ⊆ Uf} ≤ 1− ⌈1

η
⌉⌈2LD

γ
⌉nu exp{−2N(α− ϵ− η)2}. (4.23)

For scenario approach, the bound for the required samples is less since it only cares
about the feasibility of the optimal solution. However, when the number of sample
increases, according the Theorem 4.3.2, the whole feasible set of scenario approach will
be a subset of the feasible domain of chance constrained optimization. Since scenario
approach choses ϵ = 0 essentially, the feasible domain of scenario problem will be much
more conservative than the original chance constrained optimization. It is feasible but
not absolutely optimal.

4.4 Proposed Method

4.4.1 Problem reformulation

There are several difficulties to address problem described by (4.5):

• The structural properties of the feasible domain defined by h(u, δ) ≤ 0 may not
succeed to the domain defined by the constraints Pr{h(u, δ) ≤ 0} ≥ 1 − α. For
instance, even if h are all linear in u, the chance constraint may not define a convex
domain;

• Instead of knowing the distribution of δ, only the samples of δ are available;

• The tractable analytical function of chance constraint does not exist even with the
knowledge of the distribution of δ.

This study is to find out a tractable analytical function H(u) to define a feasible domain
Ũf = {u ∈ U|H(u) ≤ 0}. The feasible domain Ũf equals to the feasible domain Uf =

60

Proposed Method

{u ∈ U|Pr{h(u, δ) ≤ 0} ≥ 1 − α} with probability as 1. Then, the problem with
deterministic constraints

min
u∈U

J(u)

s.t. H(u) ≤ 0
(4.24)

is the equivalent problem of (4.5). By solving (4.24), the optimal solution of (4.5) can
be approximated.

Figure 4.2: Comparison of 1−α−Pr{h(u, δ) ≤ 0} and Q1−α(h(u, δ)) where h(u, δ) =
1.5u2 − 3 + δ and δ ∼ N(0, 1)(α = 0.1).

The cumulative probability function of a random variable X is denote as

F (x) = Pr{X ≤ x}. (4.25)

While, the 1 − α level quantile of a random variable X is defined as [Steinbrecher and
Shaw, 2008]

Q1−α(X) = inf{x ∈ R|Pr{X ≤ x} ≥ 1− α}. (4.26)

For the case nh = 1, h : Rnx × Rnδ → R is a real valued function and h(u, δ) is a scalar
random variable. Thus, the cumulative probability function of h(u, δ) can be defined as

F (γ, u) = Pr{h(u, δ) ≤ γ}, γ ∈ R. (4.27)

The quantile Q1−α(h(u, δ)) ≤ 0 is equivalent to F (0, u) ≥ 1 − α. For the case nh > 1,
Q1−α(h(u, δ)) ≤ 0 cannot be well defined since h(u, δ) is not a scalar random variable
any more. Instead of using h(u, δ), h̄(u, δ) = maxj=1,...,nh

hj(u, δ) is used. Then, the
cumulative probability function F (γ, u) notes the same style as Eq. (4.27) only replacing
h(·, ·) by h̄(·, ·). Consequently, the quantile is written as Q1−α(h̄(u, δ) ≤ 0. Without
losing the generality, Q1−α(h̄(u, δ) ≤ 0 can be used for nh = 1 as well. Then, the

61

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

following reformulation of problem (4.5) is written as

min
u∈U

J(u)

s.t. Q1−α(h̄(u, δ)) ≤ 0, δ ∈ ∆,
(4.28)

where α ∈ (0, 1) is a given probability level.

The advantage of using the quantile is that the quantile function is much less flat com-
pared to the probability function Pr{h(u, δ) ≤ 0}. The comparison example of the
quantile function and probability function is shown in Fig. 4.2. By the quantile function-
based reformulation, the feasible region is measured in the image of h̄(u, δ) instead of
the bounded image [0, 1] of the probability function.

The sample set ∆N = {δ1, ..., δN} is obtained by extracting samples independently from
∆ according to the identical distribution pδ(δ). For a given u, the empirical CDF of
HN = {h(u, δ1), ..., h(u, δN)} is written as

F̃ N (t, u) = 1
N

N∑
i=1

I(h̄(u, δi) ≤ t) (4.29)

where I(h(u, δi) ≤ t) denotes the indicator function written as

I(h̄(u, δi) ≤ t) =

 0, if h̄(u, δi) > t

1, if h̄(u, δi) ≤ t.
(4.30)

The (1−α)-empirical quantile at u can be obtained from a value t such that F̃ N (t, u) ≈
1− α, which is defined as

Q̃1−α(h̄(u, δ)) = inf{y| 1
N

N∑
i=1

I(h̄(u, δi) ≤ y) ≥ 1− α}, (4.31)

equivalently written as
Q̃1−α(h̄(u, δ))) = h̄⌈M⌉(u) (4.32)

where M = ⌈(1 − α)N⌉ and h̄⌈M⌉(u) denotes the M−th smallest observation of the
values HN for a given u.

We can use the (1−α)−empirical quantile as an approximation of the chance constraints
and form the following approximate problem

min
u∈U

J(u)

s.t. Q̃1−α(h̄(u, δ)) ≤ 0, δ ∈ ∆.
(4.33)

62

Proposed Method

Using the (1− α)-empirical quantile as an approximation of the chance constraints has
two drawbacks:

• Q̃1−α(h̄(u, δ))) is usually not differentiable. M changes for different u. Thus, even
if the constraint h(u, δ) is smooth for a fixed value of δ, Q̃1−α(h̄(u, δ))) does not
have to be smooth;

• For small N , the uncertainty of Q̃1−α(h̄(u, δ))) is large and the inward kinks of the
feasible boundary will be very non-smooth. Large N can bring some smoothness
back, however, this also increases the computation burden.

Thus, it is necessary to look for the smooth approximation of (1−α)-empirical quantile.

Given the sample set ∆N , the (1 − α)-empirical quantile Q̃1−α(h̄(u, δ))) is essentially
a function of u. Q1−α(h̄(u, δ))) is also a function of u. By using Q̃1−α(h̄(u, δ))) as
an approximation of Q1−α(h̄(u, δ))), a smooth function can be used to approximate
the (1 − α) quantile Q1−α(h̄(u, δ))). In this study, single layer neural network model
is used to approximate the (1 − α) quantile Q1−α(h̄(u, δ))). Using N independently
extracted samples of δ, the neural approximation of Q1−α(h̄(u, δ))) with S hidden nodes
and activation function g(·) is defined as

ĤS(u) =
S∑

i=1
βig(u, ai, bi), (4.34)

where βi denotes the weight vector connecting the i-th hidden node and the output
nodes, ai = [ai,1, ..., ai,k] represents the weight vector towards u, and bi is the scalar
threshold of the i-th hidden node. Here, the activation function adopts the sigmoid
function expressed as

g(u, ai, bi) = 1
1 + e−aT

i u+bi
. (4.35)

The purpose is to achieve
ĤS(u) ≈ Q1−α(h̄(u, δ))). (4.36)

Then, ĤS(·) maps the decision variable u ∈ Rk into the image of Q1−α(h̄(u, δ))) which
is R. In order to find solutions for (4.5) and (4.28), it is equivalent to solve the following
problem

min
u∈U

J(u)

s.t. ĤS(u) ≤ 0.
(4.37)

The above formulation is a sample-based neural approximation of the original proba-
bilistic constrained problem which is obtained by a two-layer approximation: sample

63

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

approximation and neural approximation. The convergence and feasibility of the two-
layer approximation is analyzed in the next subsection.

4.4.2 Convergence and feasibility analysis

We make the following assumptions.

Assumption 4.4.1. h̄(u, δ) is a Carathéodory function. For every fixed u ∈ U , h̄(u, δ)
is a continuous random variable which is measurable and has a continuous distribu-
tion. For every fixed δ ∈ ∆, h̄(u, δ) is a continuous function of u. Besides, for ev-
ery u ∈ U , Fh̄(h̄(u, δ)), the cumulative distribution function of h̄(u, δ), is continuously
differentiable and it has strictly positive derivative of h̄(u, δ) (strictly monotonically
increasing), fh̄(h̄(u, δ)), over the domain of h̄(u, δ): (−∞, +∞).

Remark 4.4.1. The cumulative distribution function Fh̄(h̄(u, δ)) is continuously and
strictly monotonically increasing over (−∞, +∞). Thus, the quantile function Q(h̄(u, δ)) :
[0, 1]→ Dh̄(u,δ) is the inverse of Fh̄ and thus continuous on [0, 1]. Moreover, for a fixed
δ ∈ ∆, h̄(·, δ) is continuous on U . Thus, the values of the cumulative distribution func-
tion Fh̄(h̄(u, δ)) and the quantile function Q(h̄(u, δ)) vary continuously on U due to
the fact that continuous functions’ function composition leads to continuous function.
Thus, Assumption 4.4.1 implies that the 1−α level quantile Q1−α(h̄(u, δ)) is continuous
function of u on U .

Assumption 4.4.2. The problem expressed by (4.5) has a globally optimal solution u∗,
such that for any ϵu there is u ∈ U such that ∥u − u∗∥ ≤ ϵu and F (0, u) > 1 − α (or
equivalently Q1−α(h̄(u, δ)) < 0).

Remark 4.4.2. Assumption 4.4.2 implies that there exists a sequence {uk}∞k=1 ⊆ U
that converges to an optimal solution u∗ such that F (0, uk) > 1 − α (or equivalently
Q1−α(h̄(uk, δ)) < 0) for all k ∈ N.

By applying Corollary 21.5 of [van der Vaart, 1998], we have the following lemma about
the convergence of Q̃1−α(h̄(u, δ)):

Lemma 4.4.1. Suppose Assumption 4.4.1 holds. For any fixed α ∈ (0, 1) and any fixed
u ∈ U , if N samples of δ, δi, i = 1, ..., N , are independently extracted, then

Q̃1−α −Q1−α = − 1
N

N∑
i=1

I(h̄i ≤ Q1−α)− (1− α)
f(Q1−α) + o(1). (4.38)

Here, Q̃1−α, Q1−α, and h̄i are shorts for Q̃1−α(h̄(u, δ)), Q1−α(h̄(u, δ)) and h̄(u, δi), re-
spectively.

64

Proposed Method

Consequently, the sequence {Q̃1−α −Q1−α} is asymptotically normal with mean 0 and
variance α(1−α)

N ·f2(Q1−α) . As N increases to ∞, the variance also vanishes to zeros.

For the convergence of ĤS(u) to Q1−α(h̄(u, δ)), we have the following theorem:

Theorem 4.4.1. Suppose Assumption 4.4.1 holds, as N → ∞, ∀ϵH > 0 there exists
S, a, b, δ such that

sup
u∈Uc

∥ĤS(u)−Q1−α(h̄(u, δ))∥ < ϵH , w.p.1. (4.39)

Here, Uc ⊆ U represents any compact set inside the feasible area.

Proof. (Theorem 4.4.1) Due to Assumption 4.4.1 and Remark 4.4.1, Q1−α(h̄(u, δ)) is
continuous function of u. Then, according to the universal approximation theorem
[Cybenko, 1989, Hassoun, 1995], ∀ϵH > 0, ∀Q1−α(h̄(u, δ)), ∃S ∈ N+, βi, bi ∈ RS , ai ∈
RS×k in Eq. (4.34) and (4.35) such that

∥ĤS(u)−Q1−α(h̄(u, δ))∥ < ϵH , (4.40)

for all u ∈ U . However, Q1−α(h̄(u, δ)) is not used directly for fitting the quantile
function. The used one is the approximate value Q̃1−α(h̄(u, δ)) which has bias compared
to Q1−α(h̄(u, δ)).

The bias is defined by Eq. (4.38). Denote dQ1−α = Q̃1−α − Q1−α. According to
Lemma 4.4.1, dQ1−α is normal with mean 0 and variance α(1−α)

N ·f2(Q1−α) . As N → ∞,
α(1−α)

N ·f2(Q1−α) → 0. Namely, ∥dQ1−α∥ → 0 with probability 1.

Since we can only obtain Q̃1−α(h̄(u, δ)), instead of Eq. (4.40) which needs Q1−α(h̄(u, δ)),
the following inequality

∥ĤS(u)− Q̃1−α(h̄(u, δ))∥ < ϵH , (4.41)

can be obtained ∀ϵH > 0,∀Q1−α(h̄(u, δ)), ∃S ∈ N+, β, b ∈ RS , a ∈ RS×k. Since ∥ĤS(u)−
Q1−α(h̄(u, δ))∥ = ∥ĤS(u)− Q̃1−α(h̄(u, δ)) + Q̃1−α(h̄(u, δ))−Q1−α(h̄(u, δ))∥ ≤ ∥ĤS(u)−
Q̃1−α(h̄(u, δ))∥+ ∥dQ1−α∥, we have

∥ĤS(u)−Q1−α(h̄(u, δ))∥ < ϵH + ∥dQ1−α∥. (4.42)

Namely, for any ϵH > 0, we have parameters to satisfy Eq. (4.42). Notice that ∥dQ1−α∥
becomes 0 with probability 1 as N → ∞. Besides, for any N there exist S, a, b, δ to
satisfy Eq. (4.42) for any ϵH > 0. Thus, Eq. (4.39) is proved. □

65

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

Let A and AS
N denote the sets of optimal solutions for problems (4.5) and (4.37) respec-

tively. Notice that problem (4.28) share the same set of optimal solutions as problem
(4.5). Besides, denote J∗ and JS

N the optimal values of cost functions in problems
(4.5) and (4.37) respectively. The convergences of JS

N and AS
N as N and S increase are

summarized in the following:

Theorem 4.4.2. Suppose that U is compact, the function J(·) is continuous, and As-
sumptions 4.4.1 and 4.4.2 hold. Then, JS

N → J∗ and D(AS
N , A)→ 0 w.p.1.

Proof. (Theorem 4.4.2) Due to Assumption 4.4.2, the set A is nonempty and there
exists u ∈ U such that Q1−α(h̄(u, δ)) < 0. According to Theorem 4.4.1, ĤS(u) converges
to Q1−α(h̄(u, δ)) < 0, and thus we can find S0, a0, b0, β0, N0 such that ĤS(u) − ϵH −
∥dQ1−α∥ ≤ 0. (ϵH can be any small value to 0 and ∥dQ1−α∥ decreases to 0 with
probability 1 as N → ∞.) Because ĤS(u) is continuous in u and U is compact, the
feasible set of the approximation problem (4.37) is compact as well. Besides, AS

N is not
empty w.p.1 for all N ≤ N0 and all S, a, b, β, N for smaller error bound (with higher
probability) ϵH + ∥dQ1−α∥ of Eq. (4.42). Here, we denote ĤS,0(u) for ĤS(u) with
parameters {S0, a0, b0, β0, N0} and input u. Analogously, ĤS,k(uk) is for ĤS(u) with
parameters {Sk, ak, bk, βk, Nk} and input uk. With parameters {Sk, ak, bk, βk, Nk}, the
corresponding notations for the optimal solution set and optimal cost value are generally
defined as AS,k

N,k and JS,k
N,k.

Let {Nk}∞k=1 ≥ N0 and {Sk, ak, bk, βk, Nk} be two sequences such that the corresponding
ϵs,k as in Eq. (4.42) decreases to 0. Let ûk ∈ AS,k

N,k which means that ûk ∈ U , ĤS,k(ûk) ≤
0 and JS,k

N,k = J(ûk). Let û ∈ U be any cluster point of {ûk}∞k=1. Define {ûl}∞l=1 be a
subsequence converging to û. Since ĤS,l(u) defined by {Sl, al, bl, βl, Nl} is continuous
and converges uniformly to Q1−α(h̄(u, δ)) on U w.p.1, we have that Q1−α(h̄(û, δ)) =
liml→∞ ĤS,l(ûl) w.p.1. Therefore, Q1−α(h̄(û, δ)) ≤ 0 and û is feasible for the true prob-
lem, and J(û) ≥ J∗. Moreover, J(ûl)→ J(û) w.p.1, which means that liml→∞ JS,l

N,l ≥ J∗.
The above is true for any cluster point of {ûk}∞k=1 in the compact set U , we have

lim
k→∞

inf JS,k
N,k ≥ J∗, w.p.1. (4.43)

Now, by Assumption 4.4.2 and Remark 4.4.2, there exists an optimal solution u∗ and a
sequence {ûl}∞l=1 converging to u∗ with Q1−α(h̄(ûl, δ)) < 0. Note that ĤS,l(ûl) converges
to Q1−α(h̄(ûl, δ)) w.p.1, and thus there exist K(l) such that ĤS,k(ûl) ≤ 0 for every
k ≥ K(l) and every l, w.p.1. Assume that K(l) < K(l + 1) for every l without loss of
generality and define the sequence {ūk}∞k=K(1) by setting ūk = ul for all k and l with
K(l) ≤ k < K(l + 1). We then have ĤS,k(ūk) ≤ 0, which implies JS,k

N,k ≤ J(ūk) for all

66

Proposed Method

k ≥ K(1). Since f is continuous and ūk also converges to u∗, we have

lim
k→∞

sup JS,k
N,k ≤ J(u∗) = J∗, w.p.1. (4.44)

Thus, JS,k
N,k → J(u∗) w.p.1 when k →∞. Namely, JS

N → J∗.

For the proof of D(AS
N , A)→ 0 w.p.1, it can refer to Theorem 5.3 of Shapiro et al. [2014].

□

For the finite sample feasibility analysis of the approximation problem solutions, we will
make use of Hoeffiding’s inequality [Hoeffding, 1963, Shapiro et al., 2014]:

Theorem 4.4.3. Denote Z1,, ZN for independent random variables with bounded sam-
ple spaces, namely Pr{Zi ∈ [zi,min, zi,max]} = 1, ∀i ∈ {1, ..., N}. Then, if s > 0,

Pr{
N∑

i=1
(Zi − E{Zi}) ≥ sN} ≤ e

− 2N2s2∑N

i=1(zi,max−zi,min)2
. (4.45)

Based on Hoeffding’s inequality, probabilistic feasibility guarantee of the sample approx-
imation method is proved in Luedtke and Ahmed [2008], Pena-Ordieres et al. [2020] and
summarized here as:

Theorem 4.4.4. Let u ∈ U be such that u /∈ Uf . Then,

Pr{F̃ N (−γ, u) ≥ 1− β} ≤ e−2Nτ2
u (4.46)

where γ > 0, β ∈ [0, α], and τu > 0 is written as

τu = F (0, u)− F (−γ, u) + (α− β). (4.47)

Theorem 4.4.4 shows an important property of approximating the cumulative proba-
bility function by samples. Set γ ≈ 0 and β ≈ α, if the sample number goes to ∞,
Pr{F̃ N (−γ, u) ≥ 1 − β} goes to 0. Namely, the sample-based neural approximation
problem has the solution which satisfies the original chance constraint in a higher prob-
ability with more sample numbers.

4.4.3 Proposed algorithms for solving chance constrained optimization

Two algorithms are used to solve chance constrained optimization. First, sample-based
algorithm is summarized to train the deterministic constraints which has a neural net-
work form. Then, a normal algorithm for nonconvex program can be applied to solve the

67

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

deterministic program obtained by the neural approximation approach. The algorithm
for nonconvex program can be either the Sequential Quadratic Program (SQP) method
for regular nonlinear programs or simulated annealing algorithm. More details for SQP
method and simulated annealing algorithm can be found in Nocedal and Wright [2006]
and Brooks and Morgan [1995], Dekkers and Aarts [1991], Ingber [1993], Kirkpatrick
et al. [1983], Szu and Hartley [1987], respectively.

Due to the discussion in the previous subsections, the algorithm for training ĤS(u) is
summarized as followings:

1. Generate the sample set of uncertain parameter vector ∆N = {δ1, ..., δN} by ex-
tracting samples independently from sample space ∆ according to the identical
distribution pδ(δ);

2. Generate the sample set of decision variable UK = {u1, ..., uK} by extracting
samples independently from feasible domain U according to uniform distribution;

3. For all uk ∈ UK , calculate the (1 − α)-empirical quantile at uk, Q̃1−α(h̄(uk, δ)),
using Eq. (4.31) and obtain the output sequence

Y K = {Q̃1−α(h̄(u1, δ)), ..., Q̃1−α(h̄(uK , δ))}; (4.48)

4. Train β, a, b, c in Eq. (4.34) based on UK and Y K by Extreme Learning Machine
(ELM) algorithm which is introduced in Huang et al. [2006] and summarized in
Appendix A.

After using neural approximation approach, we obtain the original problem with deter-
ministic constraints. The deterministic constraints has the neural-network formulation.

SQP-based Algorithm. Assume that U is constrained by g(u) ≤ 0 where g : Rn → Rc.
We denote the Lagrangian for the approximate problem as:

L(u, λg, λH) = J(u) + λgg(u) + λHĤS(u). (4.49)

The flow of the algorithm is summarized as

1. Initialize a decision variable u0, λ0
g, λ0

H and set k = 0;

2. Calculate J(uk), ▽J(uk), ▽g(uk), ▽ĤS(uk) and ▽2
uuL(uk, λk

g , λk
H);

68

Proposed Method

3. Solve the following problem and obtain a search direction dk:

min
d

J(uk) +▽J(uk)T d + 1
2dT ▽2

uu L(uk, λk
g , λk

H)d

s.t. ĤS(uk) +▽ĤS(uk)T d ≤ 0,

g(uk) +▽g(uk)T d ≤ 0;

(4.50)

4. Check whether ∥dk∥ ≤ ϵd where ϵd is a sufficiently small positive number. If
∥dk∥ ≤ ϵd, stop the algorithm and output u∗ = uk. Otherwise, update uk+1 =
uk + dk, k = k + 1 and go back to step 2.

Simulated Annealing-based Algorithm. The original edition of simulated annealing
algorithm is not presented here which can be found in [Brooks and Morgan, 1995, Szu
and Hartley, 1987]. After minor revision on the original algorithm, it can be used to
solve the deterministic constrained problem. The algorithm is summarized as

1. Initialize a temperature T0, a decision value u∗ ∈ U and calculate the cost value as

E∗ = J(u∗) + C(ĤS(u∗)), (4.51)

where

C(u∗) =

 0, if ĤS(u∗) ≤ 0
C̄, if ĤS(u∗) > 0.

(4.52)

Here, C̄ should be chosen as a very larger value;

2. For iteration m = 1, 2, ..., M , do the following step iteratively

a) Randomly select another point um ∈ Vr(u∗) = {um ∈ U|∥um − u∗∥ ≤ r}.
Vr(u∗) a neighbourhood of the previous point and r is the radius. Calculate
the corresponding cost value Em similarly as Eq. (4.52);

b) Calculate
▽ Em = Em − E∗, (4.53)

c) Move to the new point by setting um = u∗ if a random variable µ distributed
uniformly over (0,1), satisfies

µ ≤ e
− ▽Em

Tm−1 (4.54)

or equivalently
▽ Em ≤ −Tm−1 log µ; (4.55)

69

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

d) Update the temperature as

Tm =

 Tm−1, if (4.54) holds
ρ · Tm−1, if (4.54) doesn’t hold.

(4.56)

Here, ρ ∈ (Tmin/T0, 1).

e) Terminate the algorithm if Tm < Tmin where Tmin is the lower boundary for
the temperature or m = M .

4.5 Numerical Example

This section presents numerical simulation for verifying the proposed method. The
following points are addressed in the verification:

• The comparison of using cumulative probability and quantile function instead of
the chance constraint;

• The comparison of using different algorithms to solve the approximate problem.

4.5.1 Simulation model

The targeted problem in the numerical simulation is a non-convex program with chance
constraints. The decision domain is U = [−6, 6]2. The cost function is

J(u) =
∑2

i=1(ui + 0.5)4 − 30u2
i − 20ui

100 . (4.57)

The constrained function is

h(u, δ) = (
2∑

i=1
0.125 ∗ (ui − 2δ)4 − 3.5 ∗ (ui − 2δ)2)− (8− 0.1δ)2, (4.58)

where δ is random variable which obeys normal distribution N (0, 1). Moreover, the
violation probability level is α = 0.05.

The image of the objective function and bound defined by violation probability is plotted
in Fig. 4.3.

4.5.2 Simulation results

We compared the following methods in the simulation validation:

70

Numerical Example

Figure 4.3: Objective function and bound of the simulation model: a) Bound and
contour.

• S.A.(c): the algorithm for solving the nonlinear program adopts simulated annealing-
based algorithm. The approximate constraint for chance constraint uses cumula-
tive probability function;

• S.A.(q): the algorithm for solving the nonlinear program adopts simulated annealing-
based algorithm. The approximate constraint for chance constraint uses quantile
function;

• SQP(c): the algorithm for solving the nonlinear program adopts SQP algorithm.
The approximate constraint for chance constraint uses cumulative probability func-
tion;

71

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

• SQP(q): the algorithm for solving the nonlinear program adopts SQP algorithm.
The approximate constraint for chance constraint uses quantile function.

In the simulation, for each method, we consider different sample numbers of δ: 500,
1000, 2000, 3000, 4000, 5000. For each method under a given sample number of δ, the
calculation of optimal solution is repeated for 200 times. The samples were randomly
chosen in each time.

Figure 4.4: Simulation results of SQP method.

Fig. 4.4 shows the comparison between SQP(c) and SQP(p). Fig. 4.4 a) gives the plots
of the optimal solutions given by SQP(c) and SQP(p) when 5000 samples of δ were
chosen. The solutions are similarly distributed around the bound. The mean objective
values shown in Fig. 4.4 b) and the violation probability shown in Fig. 4.4 c) also
validates that using the cumulative probability function and quantile function does not
influence the final results in this example. However, using the cumulative probability
function increases the calculation time which is shown in Fig. 4.4 d).

Fig. 4.5 shows the comparison between S.A.(c) and S.A.(p). Fig. 4.5 a) gives the plots of
the optimal solutions given by S.A.(c) and S.A.(p) when 5000 samples of δ were chosen.
The solutions are similarly distributed around the bound. The mean objective values
shown in Fig. 4.5 b) and the violation probability shown in Fig. 4.5 c) also validates
that using the cumulative probability function and quantile function does not influence
the final results in this example. Different from the case of using SQP algorithm, using

72

Application to Interval Predictor Model of Wind Power

Figure 4.5: Simulation results of simulated annealing method.

the cumulative probability function does not increase the calculation time when using
simulated annealling which is shown in Fig. 4.5 d).

Compared to SQP method, using simulated annealing method costs more time to cal-
culate the optimal solution. While, the objective value is improved and the solution
locates near the optimal position with high probability.

4.6 Application to Interval Predictor Model of Wind Power

Predictor model of wind power is used to predict the wind power based on wind speed
measurement [Ouyang et al., 2017]. Fig. 4.6 illustrates the power curve constructed from
the industrial data. The data comes from a large wind farm located in Jiugongshan,
Hubei, China. The data set was collected at turbines at a sampling interval of 10 min.
In total 56, 618 data points were collected from March 17, 2009, to April 17, 2009. The
unit of the active wind power is kW, and the value of power is normalized for air density
of 1.18 kg/m3.

Piecewise models are often used to improve the prediction accuracy [Khalfallah and
Koliub, 2007, Lydia et al., 2013]. The wind speed range is discretized into intervals,
and the corresponding wind speed and power data make the partitions. Supposing the
cut-out speed is vco, the speed range [0, vco] is divided into Nw equal length intervals.

73

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

Figure 4.6: Power curve of an industrial wind turbine.

The data points in each interval are defined as

Di = {(v, p(v)) ∈ R2|v ∈ [vi, vi+1)}, i = 1, ..., Nw (4.59)

where Di represents the points set of the i−th partion, v represents wind speed and p(v)
is the corresponding wind power, and vi = i−1

Nw
vco is the demarcation speed between the

i−th and (i− 1)-th partition. In this study, vco is chosen as 20, and Nw is 10, as shown
in Fig. 4.6. Besides, We do not establish models for all partitions in this study. As an
example to demonstrate the proposed method. The data in partition 4 and 5 is used as
an unity, which are marked red circles in Fig. 4.6. Notice that some under-power points
or stopping points are wiped out by the data pre-process method introduced in Section
3 of Ouyang et al. [2017]. For convenience, denote the used dataset as D.

Consider a system with the mechanism or model from the input to output written as

y = f(φ, δy) (4.60)

where y ∈ R denotes the system output and φ ∈ Rnφ is a regression vector containing
input variables u ∈ Rnu or decision variables on which the system output y depends.
δy denotes the uncertain parameter vector and δy ∈ ∆y ⊆ Rnδy . Besides, assume that
probability measure is well defined on the the sigma algebra of ∆y, B∆y . Due to the
existence of δy, for a fixed φ, y is supposed to be located in a sample space with well
defined sigma algebra and probability measure. Let Y(φ) be the sample space and
py(y|φ) be the probability density function conditioned on φ. Standard predictor models

74

Application to Interval Predictor Model of Wind Power

can only give a specific value of y for a φ. However, the probabilistic interval of y

conditioned on φ is important for various applications.

Differently from standard predictor models, interval predictor models return a prediction
interval instead of a single prediction value [Campi et al., 2009]. As defined in Campi
et al. [2009], an interval predictor model is a set-valued map

I : φ→ I(φ) ⊆ Y ⊂ R (4.61)

where φ ∈ Rnφ is a regression vector containing input variables u ∈ Rnu or decision
variables on which the system output y depends. Given an observed φ, I(φ) is an
informative interval or the prediction interval, containing y with a given guaranteed
probability 1 − α, α ∈ [0, 1). Output intervals are obtained by considering the span
of parametric families of functions. Here, we consider the family of linear regression
functions defined by

M = {y = θT φ + e, θ ∈ Θ ⊆ Rnθ , ∥e∥ ≤ ε ∈ R}. (4.62)

Then, a parametric (Interval Predictor Model) IPM is obtained by associating to each
φ the set of all possible outputs given by θT φ + e as θ varies over Θ and e varies over
E = {e ∈ R|∥e∥ ≤ ε}, is defined as

I(φ) = {y : y = θT φ + e,∀θ ∈ Θ, ∀e ∈ E}. (4.63)

A possible choice for the set Θ is a ball with center c and radius r:

Θ = Bc,r = {θ ∈ Rnθ : ∥θ − c∥ ≤ r}. (4.64)

Then, the interval output of the IPM can be explicitly computed as

I(φ) = [cT φ− (r∥φ∥+ ε), cT φ + (r∥φ∥+ ε)]. (4.65)

For the wind power prediction problem, the input is wind speed and output is wind
power as u = v and y = p. Besides, φ is chosen as φ = [v v2]T in the wind power
prediction problem for example. More advanced model of φ can be chosen for more
accurate performance. For the simplicity of explanation, we use a relatively simple
model for example. Identifying the IPM is essentially identifying (c, r, ε). Without
loss of the generality, we use I(c,r,ε)(v) for I(φ) in the later part for IPM identification
problem of wind power prediction.

75

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

Due to the above discussions, the IPM identification problem of wind power prediction
is to find IPM I(c,r,ε)(v) (or find (c, r, ε))such that

min
(c,r,ε)

wr + ε (4.66)

subject to
r, ε ≥ 0,

Pr{p ∈ Ic,r,ε(v)} ≥ 1− α, α ∈ [0, 1).
(4.67)

Notice that w is a weight and often chosen as w = E{∥φ∥} [Campi et al., 2009]. In this
study, w is chosen as 20.

Figure 4.7: Estimation results of quantile function by using neural networks.

4.6.1 Results and Discussions

Fig. 4.7 shows one example of the estimation results of quantile function by using
neural networks. 5000 different combinations of (c, r, ε) are considered. The data set
was divided into a train set and a test set. The blue circles shows the quantile function
value given by the trained fitting model. The red dotted line shows the result of the
empirical quantile function value calculated by using the data of the test set. The mean
value of error is -0.0421 and the mean of the abstract value of mean is 12.5882.

We compare the proposed method with scenario approach which is proposed in ?. The
required α is set as 0.05. Fig. 4.8 and Fig. 4.9 shows the results of interval predictions
by scenario approach and the proposed method, respectively. The number of used data
samples is 150, 750 or 7500. As the number of samples increases, the scenario approach

76

Application to Interval Predictor Model of Wind Power

Figure 4.8: Results of interval predictions by scenario approach using different choices
of sample number.

Figure 4.9: Results of interval predictions by neural approximation approach using
different choices of sample number. The limitation of violation probability is α = 0.05.

gives more conservative results while the proposed method performs with better robust
on sample numbers.

A more comprehensive validation was conducted through the posterior Monte Carlo
analysis. In the validation, the number of data sample was increased from 150 to 7500.
For each number of data samples, 500 times sampling and calculation of c, r, ε processes
were done. For instance, if we set the number of data samples as 150. Then, 500
times of extracting 150 samples of (v, p) from the training set were done. For each
extracted 150 samples, the corresponding c, r, ε was calculated by scenario approach or

77

Chapter 4. Residual Convergence in Approximating Chance Constrained Optimization

Table 4.1: The probability that constraint failure probability α > 0.05: Pr{α > 0.05}

N 150 375 750 1500 3750 7500
SA 0.224 0.004 0 0 0 0

Proposed 0.156 0.07 0.006 0 0 0

Table 4.2: The mean value of cost function

N 150 375 750 1500 3750 7500
SA 61.56 70.47 74.72 77.58 79.95 80.93

Proposed 50.25 50.45 50.69 50.97 51.33 51.72

proposed method. The statistical analysis results are summarized in Tab. 1 and Tab.
2. Apparently, the proposed method can achieve a better trade-off between probability
constraint and cost value.

78

Chapter

5
Predictive Probabilistic Bounds

on State Trajectories for
Uncertain Nonlinear Systems

The precise bounds for the evolution of state variables in uncertain systems are useful
for the applications related to uncertain dynamical systems such as anomaly detec-
tion, safety assessment and robust control design. However, the computation of the
tight system state bounds for uncertain nonlinear system is a challenging task due to
the NP-hard issue. This chapter proposes a sample average method to approximately
compute the probabilistic ellipsoidal bounds for uncertain nonlinear systems, which is
an improvement of the scenario approach-based method. The probabilistic ellipsoidal
bound computation of discrete-time nonlinear systems is formulated as a probabilistic
constrained problem. Then, the approximate solution of the probabilistic constrained
problem is obtained by solving a sample average-based approximate optimization prob-
lems with N samples of uncertain variables from the sample space. The proposed method
is compared with the scenario approach-based method in a numerical simulation. The
results show that the proposed method can obtained a tighter bound than the scenario
approach-based method. The conservatism issue of the scenario approach-based method
has been dramatically improved.

79

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

5.1 Introduction

5.1.1 Motivations

Probabilistic bounds on the evolution of the states of uncertain dynamical systems play
a crucial role in many application problems such as anomaly detection, safety assessment
and robust control design[Blanke et al., 2006, Nagy and Braatz, 2003]. For example, Liu
et al. [2020] used the probabilistic region of the trajectory to detect the fault in the
industrial wireless sensor networks. In Yu and Chen [2019], Markov boundary outliers
is formulated for anomaly detection, which is essentially the outer bounds of the hidden
state. Esfahani and Lygeros [2016] showed that the probabilistic outer bound of state
trajectory can improve the accuracy of fault detection in uncertain nonlinear dynamical
systems. Rostampour et al. [2017] discussed that the optimal fault detection requires the
information of probabilistic bound of system trajectory. In the robust fault estimation
proposed in Wan et al. [2016, 2020], probabilistic bounds of the state trajectories are
used. Another general examples is the stochastic model predictive control [Farina et al.,
2016, Mesbah, 2016, Moser et al., 2018]. The performances of model predictive control
on both objective and constraints’ satisfaction will be improved if precise probabilistic
evolution of the state trajectories.

However, the computation of probabilistic bounds on the state is challenging due to the
NP hard issue. Efficient algorithm to solve the problem approximately is required.

5.1.2 Background and related works

In recent years, computation of the probabilistic bounds of state evolution in uncertain
dynamic systems has attracted a lot of attentions. For instance, Alamo et al. [2008],
Witsenhausen [1968] proposed set-based approaches to roughly approximate the bounds.
Prajna [2006] used barrier certificate approach to address the computation. Kishida and
Braatz [2015] applied linear matrix inequalities method to design the algorithm of com-
puting the probabilistic bounds in linear systems. For polynomial systems, Kishida et al.
[2014] proposed algorithms based on skewed structured singular value approach. These
methods achieve good performance in linear systems or polynomial systems. However,
the above methods cannot be extended to general nonlinear systems.

Esfahani and Lygeros [2016] applied randomized optimization to address the outer bound
estimation in the nonlinear system. Shen et al. [2020] proposed scenario approach-based
algorithm to compute probabilistic bound of state trajectories for general uncertain
nonlinear systems. However, these two methods still cannot give the exact probabilistic

80

Problem Description

bound since the robust optimization is used and the computed bounds converge to the
completely robust bound not the given probability level.

5.1.3 Key contributions of this chapter

This chapter proposes a new approach for computing probabilistic ellipsoidal bounds
for uncertain nonlinear discrete-time systems, which gives the exact probabilistic bound
instead of the completely robust bound. The main contributions are summarized as

• A probabilistic constrained optimization problem is formulated to calculate the
ellipsoidal bounds for future system states in general nonlinear discrete-time sys-
tems;

• The formulated problem is NP-hard. To solve the NP-hard problem, the sample
average approach (proposed in Luedtke and Ahmed [2008]) is applied to obtain
a deterministic optimization problem through sample extraction of the uncertain
parameters, disturbances, and initial states. We extend the results in Luedtke
and Ahmed [2008] to the problem of obtaining probabilistic ellipsoidal bounds for
future system states;

• An algorithm is proposed to computing probabilistic ellipsoidal bounds for non-
linear discrete-time systems;

• The feasibility and optimality of the proposed method are validated in a numerical
example with a comparison with scenario approach-based method proposed in Shen
et al. [2020].

5.2 Problem Description

Consider a discrete-time system expressed as

xk = f(xk−1, ωk−1),

ωk−1 ∈ ∆ω ⊂ Rnω ,

x0 ∈ ∆x0 ⊂ Rnx

(5.1)

where x0 and ωk−1 denote uncertain initial state vector and uncertain parameters vector
separately, the unbounded sample space of x0 is denoted as ∆x0 with probability measure
Prx0 on it, ∆ω denotes the unbounded sample space for ωk−1 for any k ∈ {1, 2, 3, ...}

81

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

on which there is a probability measure Prω, the system state vector at time step k ∈
{1, 2, 3, ...} is denoted as xk, and f : Rnx × Rnω → Rnx is convex, continuous and
differentiable on Rnx × Rnω .

Obviously, due to the uncertain initial state x0 and uncertain parameter vectors ω0, ..., ωk−1,
the state vector at k-step xk is uncertain state as well. The all possible instances for xk

form the sample space of xk denoted as ∆xk
⊂ Rnx .

Problem 5.2.1. Given a system of the form described in (5.1), find the tightest possible
outer bounds on the trajectory xk for any k ∈ {1, 2, 3, ...} to make sure that the proba-
bility that xk locates in the bounds is larger than a given probability level. The problem
can be formulated as

min
Uk∈Uk

det M−1
k

s.t. xk = f(xk−1, ωk−1),

x0 ∈ ∆x0 ⊂ Rnx ,

ωk−1 ∈ ∆ω ⊂ Rnω ,

Pr{(xk − Ck)T Mk(xk − Ck) ≤ 1} ≥ 1− α

(5.2)

where Mk is a positive definite matrix with nx columns and nx raws, Ck is a nx-dimension
vector, and Uk = {Ck, Mk} is the input variable for the problem.

Problem 5.2.1 is an NP-hard problem due to the existence of chance constraints. This
work addresses Problem 5.2.1 with the scenario approach. Besides, the measure of
violation of the constraint for a given Uk is defined by

V (Uk) .= Pr{(xk − Ck)T Mk(xk − Ck) > 1}. (5.3)

The chance constraint can be expressed as V (Uk) ≤ α. The feasible domain of problem
5.2.1 is written as

Uf,k = {Uk ∈ Uk : V (Uk) ≤ α}. (5.4)

5.3 Scenario Approach-based Method

5.3.1 Mathematical Preliminaries

Consider an uncertain convex optimization problem with chance constraint as

82

Scenario Approach-based Method

min
u∈U

J(u)

s.t. Pr{h(u, δ) ≤ 0} ≥ 1− α, δ ∈ ∆, α ∈ (0, 1)
(5.5)

where u ∈ U ⊂ Rnu is the control variable or the decision variable, the decision variable
set U is convex and closed, δ ∈ ∆ ⊂ Rnδ is an uncertain parameter, the set ∆ is the
sample space of δ and Pr is a probability measure on ∆, α is a given probability level,
moreover, for any fixed value δ ∈ ∆, both J(u) : U → R and h(u, δ) : U ×∆ → R
are continuous and convex in u. The constraint of program (5.5) is a chance constraint.

Definition 5.3.1. The measure of violation of the constraint in (5.5) for a given u is
defined by

V (u) .= Pr{δ ∈ ∆ : h(u, δ) > 0}. (5.6)

Then, the chance constraint can also be expressed as

V (u) ≤ α. (5.7)

Obviously, due to the chance constraint, the program (5.5) is NP hard Campi and
Garatti [2008].

If independent samples δ(i), i = 1, ..., N is identically extracted from ∆ according to
probability measure Pr, a deterministic convex optimization problem, or called Robust
Convex Program with N constraints(RCP(N)), can be formed as

min
u∈U

J(u)

s.t. h(u, δ(i)) ≤ 0, i = 1, ..., N
(5.8)

which is a standard convex finite optimization problem and a solution can be found at low
computational cost by available solvers when N is not too large ?. The optimal solution
ûN of the program (5.8) is called as the scenario solution for program (5.5) generally.
Moreover, since the extractions δ(i), i = 1, ..., N is randomly dawed, the optimal solution
ûN is random variable. On the other hand, the degree of robustness and optimality of
ûN should be investigated, precisely, the measure that ûN satisfies the chance constraint
described by (5.7). The following theorem shows that V (ûN) tends rapidly to zero as N

increases and the optimality of ûN is also assured in a probabilistic level.

Theorem 5.3.1. Let α ∈ (0, 1), β ∈ (0, 1) be two given probability levels. If

N ≥ 2
α

ln 1
β

+ 2nu + 2nu

α
ln 2

α
, (5.9)

83

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

then, it holds that

Pr{(δ(1), ..., δ(N)) ∈ ∆N : V (ûN) ≤ α} ≥ 1− β. (5.10)

Besides, let JPCP(α) denote the optimal objective value of the probabilistic constrained
problem PCP(α) in (5.5) when it is feasible (i.e., JPCP(α) = infu∈U J(u) subject to
V (u) ≤ α) and let JRCP(N) = J(ûN) be the optimal objective value of the deterministic
convex optimization problem RCP(N) in (5.8) when it is feasible(notice that JRCP(N) is
a random variable due to the randomness of ûN , while JPCP(α) is a deterministic value),
with N any number satisfying (5.9). Then,

1) with probability at least 1− β, if RCP(N) is feasible it holds that

JRCP(N) ≥ JPCP(α); (5.11)

2) assume PCP(α1) is feasible, where α1 = 1− (1− β)1/N . With probability at least
1− β, it holds that

JRCP(N) ≤ JPCP(α1). (5.12)

The proof of Theorem 5.3.1 can be referred to the proofs of Theorem 1 and Theorem 2
in Calafiore and Campi [2006]. For the feasibility of scenario approach, Theorem 5.3.1
indicates that the scenario approach cannot be robust against all situations while the
level of robustness can be retained. Note that β is an important factor and choosing
β = 0 makes N = ∞. However, for practical purposes, β has very limited importance
due to its appearance under the sign of logarithm: although β is selected as 10−10 which
is near zero in practical purpose, N does not grow significantly. On the other hand,
Theorem 5.3.1 also gives the optimality of the obtained approximate solution for original
problem by scenario approach. In a probabilistic level, the optimal objective value by
using the approximate solution is bounded by (5.11) and (5.12) since the approximate
solution and the optimal objective value are random variable due to the samples are
randomly chosen.

5.3.2 Main result

In this section, the approach to solve the Problem 5.2.1 at each time instant is proposed
based on the scenario approach. The main result of this study is summarized in the
following theorem.

Theorem 5.3.2. Denote x
(i)
0 , ω(i), i = 1, ..., N for the samples of x0, ω extracted from ∆x0

and ∆ω independently and identically. Calculate the samples of x
(i)
k , k = 1, 2, 3, ..., i ∈

84

Scenario Approach-based Method

{1, ..., N} recursively through

∀i ∈ 1, ..., N

x
(i)
1 = f(x(i)

0 , ω(i)),

......

x
(i)
k = f(x(i)

k−1, ω(i)),

......

(5.13)

Then, if

N ≥ 2
α

ln 1
β

+ 2(n2
x + nx) + 2(n2

x + nx)
α

ln 2
α

, (5.14)

∀k = 1, 2, 3, ..., the optimal solution Ûk(N) = {M̂k(N), Ĉk(N)} of the deterministic
problem

min
Uk

det M−1
k

s.t. ∀i ∈ {1, ..., N},

(x(i)
k − Ck)T Mk(x(i)

k − Ck) ≤ 1.

(5.15)

satisfies
Pr{V (Ûk(N)) ≤ α} ≥ 1− β, (5.16)

Pr{det M̂−1
k (N) ≥ mk

min} ≥ 1− β, (5.17)

Pr{det M̂−1
k (N) ≤ mk

max} ≥ 1− β. (5.18)

Here, denote the solution of (5.2) as Uk(α) = {Mk(α), Ck(α)} for α and Uk(α1) =
{Mk(α1), Ck(α1)} for α1 = 1−(1−β)1/N mk

min = det M−1
k (α) and mk

max = det M−1
k (α1).

The approach starts calculating x1 from an uncertain initial state x0 and is repeatedly
performed to calculate the probabilistic ellipsoidal bound of the system states’ future
evolution. The obtained solution is with ”β”-sense robustness and optimality for the
original Problem 5.2.1.

5.3.3 Proof for the main result

First, the property of x
(i)
k calculated by (5.26) should be addressed.

Lemma 5.3.1. x
(i)
k calculated by (5.26) can be regarded as samples randomly extracted

from ∆xk
.

85

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

Figure 5.1: Intuitive illustration of Lemma 5.3.1.

Proof. (Lemma 5.3.1). When k = 1, for any i ∈ 1, .., N , x
(i)
1 are calculated from

x
(i)
1 = f(x(i)

0 , ω(i)). (5.19)

Note that x
(i)
0 ∈ ∆x0 , ω(i) ∈ ∆ω, ∀i ∈ {1, ..., N} holds and f : Rnx × Rnω → Rnx

is a function from ∆x0 × ∆ω to the space of x1 denoted as ∆x1 . Thus, x
(i)
1 ∈ ∆x1

holds. Moreover, x
(i)
0 ∈ ∆x0 , ω(i) ∈ ∆ω are randomly selected and x

(i)
1 is consequently

determined, which implies that x
(i)
1 is randomly selected from ∆x1 . Therefore, Lemma

5.3.1 stands for k = 1. Assume that, Lemma 5.3.1 stands for k = s > 1. Then, as
k = s + 1, x

(i)
s can be calculated as

x(i)
s = f(x(i)

s−1, ω(i)), ω(i) ∈ ∆ω. (5.20)

Since x
(i)
s−1 ∈ ∆xs−1 , ω(i) ∈ ∆ω, ∀i ∈ {1, ..., N}, x

(i)
s ∈ ∆xs holds consequently due to

f is a function to the space of xs denoted as ∆xs from ∆xs × ∆ω. Moreover, x
(i)
s−1 ∈

∆xs−1 , ω
(i)
s−1 ∈ ∆ω are randomly selected and x

(i)
s is consequently calculated, which

implies that x
(i)
s is randomly selected from ∆xs . The assumption also holds for s. Then,

∀k = 1, 2, 3, ..., Lemma 5.3.1 holds and the proof ends.

An intuitive illustration of Lemma 5.3.1 is given by Fig. 5.1.

With Lemma 5.3.1, the proof of Theorem 5.3.2 is summarized as following:

Proof. (Theorem 5.3.2). The input variables for the case of k are Uk which consists of
Ck and Mk. The dimension for Ck is equal to the state vector’s dimension nx. Since
Mk is a nx × nx matrix, the number of parameters to be decided is also n2

x. Thus, the
dimension of the input variables is n2

x + nx. Besides, xi
k, i ∈ {1, ..., N} are randomly

extracted.

86

Sample Average Approach-based Method

Due to the above discussions, conclusion of Theorem 5.3.2 is proved according to Theo-
rem 5.3.1.

5.3.4 Proposed algorithm

Due to the above discussions, the proposed algorithm is summarized as

1. Generate x
(i)
0 , ω(i), i = 1, ..., N from ∆x0 . Generate ω(i), i = 1, ..., N from ∆ω. Set

k = 0;

2. Set k = k + 1, Calculate x
(i)
k though x

(i)
k = f(x(i)

k−1, ω(i));

3. Solve problem (5.15) and obtain Ck, Mk;

4. Check whether k = K. If k = K, end and output C1, M1, ..., CK , MK . Otherwise,
go back to step 2.

5.4 Sample Average Approach-based Method

5.4.1 Notations and problem reformulation

For given γ > 0, the cumulative probability function of H(xk, Ck, Mk, γ) := (xk −
Ck)T Mk(xk − Ck)− 1 + γ is denoted as

F (γ, Uk) = Pr{H(xk, Ck, Mk, γ) ≤ 0}. (5.21)

The sample set ∆N
xk

= {x(1)
k , ..., x

(N)
k } is obtained by extracting samples independently

from the sample space of xk: ∆xk
= {xk ∈ Rnx |xk = f(xk−1, ωk−1),∀xk−1 ∈ ∆xk−1 ,∀ωk−1 ∈

∆ω}. Note that ∆xk
is generated recursively from k = 0. For a given Uk, the empirical

cumulative probability function of

HN
k = {H(x(1)

k , Ck, Mk), ..., H(x(N)
k , Ck, Mk)} (5.22)

is written as

F̃ (γ, Uk) = 1
N

N∑
i=1

I(H(x(i)
k , Ck, Mk, γ) ≤ 0) (5.23)

where I(·) denotes the indicator function. I(·) = 1 if · is true, otherwise, I(·) = 0.

87

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

The empirical cumulative probability function can be used as the approximation of
chance constraint and form the following approximate problem

min
Uk∈Uk

det M−1
k

s.t. x
(i)
k = f(x(i)

k−1, ωk−1), ∀i ∈ {1, ..., N}

x
(i)
0 ∈ ∆x0 ⊂ Rnx , ∀i ∈ {1, ..., N}

ωk−1 ∈ ∆ω ⊂ Rnω ,

F̃ (γ, Uk) ≥ 1− ϵ, ϵ ∈ [0, α], α ∈ [0, 1).

(5.24)

The problem defined by (5.24) is the sample average approximation problem of problem
5.2.1. We can solve (5.24) to obtain the approximate solution of problem 5.2.1.

Define the feasible domain of (5.24) as

UN
ϵ,γ,k = {Uk ∈ Uk : F̃ (γ, Uk) ≥ 1− ϵ}. (5.25)

5.4.2 Main result

The approach to solve the Problem 5.2.1 at each time instant is proposed based on the
sample average method. The main result of this study is summarized in the following
theorem.

Theorem 5.4.1. Suppose Uk is bounded with diameter D for every k. Namely, we have
D > 0 such that D = sup{∥Uk−U+

k ∥∞ : Uk, U∗
k ∈ Uk}. Lete ϵ ∈ [0, α), η ∈ (0, α− ϵ) and

γ > 0. Denote x
(i)
0 , ω(i), i = 1, ..., N for the samples of x0, ω extracted from ∆x0 and ∆ω

independently and identically. Calculate the samples of x
(i)
k , k = 1, 2, 3, ..., i ∈ {1, ..., N}

recursively through

∀i ∈ 1, ..., N

x
(i)
1 = f(x(i)

0 , ω(i)),

......

x
(i)
k = f(x(i)

k−1, ω(i)),

......

(5.26)

Then, we have

Pr{UN
ϵ,γ,k ⊆ Uf,k} ≤ 1− ⌈1

η
⌉⌈2LD

γ
⌉|Uk| exp{−2N(α− ϵ− η)2}. (5.27)

∀k = 1, 2, 3,

88

Sample Average Approach-based Method

With Lemma 5.3.1, the proof of Theorem 5.4.1 is summarized as following:

Proof. (Theorem 5.4.1). The objective function of (5.2) is continuous.

Besides, (xk − Ck)T Mk(xk − Ck) is continuous function of Uk for any xk ∈ ∆xk
. Uk is

compact. Thus, (xk−Ck)T Mk(xk−Ck) is Lipschitz continuous on Uk for any xk ∈ ∆xk
,

which means that Assumption 4.3.2 is satisfied.

The input variables for the case of k are Uk which consists of Ck and Mk. Besides,
xi

k, i ∈ {1, ..., N} can be regarded as random variables from ∆xk
. Due to the assumption

that x0 and ω have continuous distribution in Problem 5.2.1, xk also has continuous
distribution since it is recursively calculated from x0 and ωk−1 via continuous function
f . (xk − Ck)T Mk(xk − Ck) is also continuous function of xk for any fixed Uk. The
distribution of (xk − Ck)T Mk(xk − Ck) is continuous for any fixed Uk since xk has
continuous distribution.

Note that the probabilistic constraint of Problem 5.2.1 is equivalent to

F (0, Uk) ≥ 1− α. (5.28)

The value of F (0, Uk) varies continuously on Uk due to the fact that continuous functions’
function composition leads to continuous function. Assumption ?? holds.

Therefore, Problem 5.2.1 essentially has a continuous function as constraint. Since Uk

is compact, Uf,k is also compact. Thus, Assumption ?? holds.

Due to the above discussions, conclusion of Theorem 5.4.1 is proved according to Theo-
rem 4.3.2, which closes the proof.

5.4.3 Proposed algorithm

The sample average approximate problem is essentially an integer program written as

min
Uk∈Uk,y∈ZN

det M−1
k

s.t. x
(i)
k = f(x(i)

k−1, ωk−1), ∀i ∈ {1, ..., N}

x
(i)
0 ∈ ∆x0 ⊂ Rnx , ∀i ∈ {1, ..., N}

ωk−1 ∈ ∆ω ⊂ Rnω ,

1
N

N∑
i=1

y(i)H(x(i)
k , Ck, Mk, γ) ≥ 1− ϵ, ϵ ∈ [0, α], α ∈ [0, 1),

y(i) ∈ {0, 1}, ∀i ∈ {1, ..., N}.

(5.29)

89

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

Due to the above discussions, the proposed algorithm is summarized as

1. Generate x
(i)
0 , ω(i), i = 1, ..., N from ∆x0 . Generate ω(i), i = 1, ..., N from ∆ω. Set

k = 0;

2. Set k = k + 1, Calculate x
(i)
k though x

(i)
k = f(x(i)

k−1, ω(i));

3. Solve problem (5.29) and obtain Ck, Mk;

4. Check whether k = K. If k = K, end and output C1, M1, ..., CK , MK . Otherwise,
go back to step 2.

5.5 Numerical Example

In this section, an example of the implementation of the probabilistic ellipsoidal bounds
calculation approach is presented.

5.5.1 System model for the numerical example

Consider the nonlinear model of air charging and engine speed dynamics in an engine
powertrain system presented in Shen et al. [2020]. A discrete-time approximation of the
continuous dynamic model is obtained by Euler discretization with a sample step of 0.02
s. Moreover, the uncertain parameters ω1, ω2 are denoted the parametric uncertainty.
The resulting model is

 x1,k

x2,k

 =

 x1,k−1

x2,k−1

+ 0.02

 f1

f2

 (5.30)

where f1 and f2 are

f1 = 5(
√

10− x1,k−1 − ω1,k−1x2,k−1x1,k−1) (5.31)

and
f2 = sin(ω2,k−1t). (5.32)

Here, t = 0.02(k − 1) is the current time. Moreover, the initial state satisfies Gaussian
distribution with mean as  x̄1,0

x̄2,0

 =

 2
5

 (5.33)

90

Numerical Example

Figure 5.2: Time evolution of bounds computed by scenario approach and sample
average approach using different sample numbers: (a) N = 1000 by scenario approach;
b) N = 2000 by scenario approach; c) time step N = 1000 by sample average approach;

d) time step N = 2000 by sample average approach.

and covariance matrix as

Σx,0 =

 0.16901 0.0001
0.0001 0.0001

. (5.34)

For the uncertain model parameters, the probability distribution is also Gaussian dis-
tribution and the mean vector and covariance matrix are written as ω̄1

ω̄2

 =

 0.5
π

 (5.35)

and

Σω,0 =

 0.36 0
0 0.36π2

. (5.36)

5.5.2 Results and discussions

We compared the sample average approach and scenario approach in the numerical
example. For the sample average approach, we set γ = 0.01 and ϵ = 0.05 aiming to
achieve an approximation of α = 0.1. The numerical solution results on time evolution
of the bound by both scenario approach-based method and sample average approach-
based method with different N for step k = 1 to k = 21 are shown in Figure 5.2. The

91

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

Figure 5.3: Bounds computed by scenario approach and sample average approach at
different time steps: (a) time step k = 6 by scenario approach; b) time step k = 21 by
scenario approach; c) time step k = 6 by sample average approach; d) time step k = 21
by sample average approach. The bounds are different types of blue lines and green

line. The red ”*” are the randomly generated points at the certain time steps.

bounds get wider as N is larger which implies that large N allows a smaller violation of
the tests.

Moreover, the posterior Monte-Carlo analysis was implemented for the validation. This
posterior test generated 201 trajectories of a system described by Equation (5.30) in
one case. First, 501 different cases were simulated. The initial condition and uncertain
parameter samples are chosen according to the distribution depends on Equation (5.33)-
(5.36). In Figure 5.3, the generated points in the test of one case are put together with
the computed bounds by the proposed algorithm. Obviously, for the both methods, with
larger N , the bounds are larger and have a larger probability to have the test points inside
the bounds. Moreover, the error gets larger when the prediction interval is further. Note
that some points still locate out of the bounds even though 2000 samples are used in the
sample average method since the bounds produced by sample average approach-based
method is expected to ensure that the points locate inside the bound with a probability
of α = 0.1. However, for scenario approach, the bounds are larger than sample average
approach and included all the points into the bound. Namely, scenario approach is going
to achieve a completely robust bound rather than a probabilistic bound.

The validation results of the violation probability and the optimality are summarized
in Fig. 5.4 which shows comprehensive statistical analysis results of 6000 cases of the
posterior Monte-Carlor analysis. The probability that α > 0.1 denoted as Pr{α > 0.1}

92

Numerical Example

Figure 5.4: Comparison of scenario approach and sample average approach about the
failure probability and cost function performance: a) Probability of constraints failure
for cases with different sample numbers; b) Cost function performance for cases with

different sample numbers.

93

Chapter 5. Predictive Probabilistic Bounds on State Trajectories for Uncertain
Nonlinear Systems

is also calculated for every N . As N gets larger, the probability of constraints failure
decreases statistically for both scenario approach and sample average approach. For
scenario approach, when N ≥ 150, Pr{α > 0.1} is already smaller than 0.05 which
means that it is potential to use smaller scenarios to ensure the required probabilistic
level α = 0.1. For sample average approach, the failure probability converges to a level
slightly larger than 0.

To check the optimality, the mean value of det M−1
k is also calculated for each method.

The results show that the optimality goes worse with more samples for both methods.
However, the sample average approach has a much better performance than the scenario
approach.

5.6 Conclusion

The chance constrained optimization-based algorithms are proposed for computing the
probabilistic ellipsoidal bounds of the state trajectories for nonlinear systems with un-
certain initial state and parameters. The feasibility and optimality of the two proposed
methods (scenario approach and sample average approach) are proved theoretically. A
numerical example has also been implemented to validate the two method. Key contri-
butions and findings are summarized as followings:

• A probabilistic constrained problem is formulated for calculating the probabilistic
ellipsoidal bounds of the future trajectory of system states;

• Scenario approach and sample average approach are used to approximate the prob-
abilistic constrained problem by formulating a deterministic problem with samples
of the uncertain parameters in the system. For a given probabilistic level and up-
per bound of the violation probability, the least number of samples required for
calculating the bound can be determined for both scenario approach and sample
average approach;

• The optimality of the solutions obtained by scenario approach and sample average
approach is discussed theoretically;

• The results of numerical example show that more samples will improve the feasi-
bility by sacrificing optimality slightly for sample average approach. However the
scenario approach needs more sacrifice on optimality.

The proposed method still has limitations. One of the most important limitations is
that an extremely large sample size is required when the allowable probability level is a

94

Conclusion

very small number. Then, the computation burden will be not acceptable for real-time
applications. Future works will be focused on

• In order to satisfy the extremely small allowable probability level in real-world
problems of safety assessment, sample discarding approach will be investigated to
accomplish the small allowable probability level with fewer samples;

• Further application case studies using real industrial data will be addressed.

95

Chapter

6
Discussion and Future Work

6.1 Model Improvement for State-Space Models

This thesis has proposed residual analysis-based model improvement for state-space
models with nonlinear response. The future work will be focused on extending the
method to nonlinear state-space models.

As a simple example, we consider the following stochastic nonlinear dynamical system

x(t + 1) = 0.9x(t) + u(t)− 5 sin(x(t))
x(t) + QNumN (0, 1), (6.1)

y(t) = x(t) + 5 sin(x(t))
x(t) + RNumN (0, 1), (6.2)

u(t) = 3 cos(0.2t). (6.3)

In this example, QNum is fixed as 0.1. RNum takes value of 0.1.

There are nonlinear parts in state equation and observation equation. We use linear
model to fit the data generated by the above nonlinear system and obtain the predictive
state residual and the predictive observation residual which are plotted in Fig. 6.1 and
6.2, respectively. In this case, the predictive state residual has the similar shape of the
real nonlinear part in the state equation. However, the predictive observation residual
goes far away from the nonlinear part in the observation equation. For a fixed value
of x, the predictive observation residual has bifurcations which cannot be fitted by a

97

Chapter 6. Discussion and Future Work

Figure 6.1: Predictive state residual of linear model for the nonlinear state-space
model: a) evolution; b) state v.s. residual.

function. Thus, our decimation residual-based algorithm should be modified to address
this issue.

Another aspect of the future work is to introduce deep learning model and generative
model to fit the residual. In some applications, we will meet extremely complex nonlinear
part in the state space model. The single-layer neural network cannot provide sufficient
fitting accuracy for the complex nonlinear part. We have to use deep learning model to
improve the model fit. Beside, if the map from state variable and input variable to the
residual cannot describe by a function, we have to use generative model in which the
map from state variable and input variable to the distribution of residual is established.
Then, we could build a generative state-space model with better fitting performance.

98

Random Set Theory for Chance Constrained Optimization

Figure 6.2: Predictive observation residual of linear model for the nonlinear state-
space model: a) evolution; b) state v.s. residual.

6.2 Random Set Theory for Chance Constrained Opti-
mization

In this paper, we proposed a sample-based neural approximation method to approximate
the chance constrained optimization. The residual in this approximation is the distance
between two sets, the optimal solution set of sample-based neural approximate problem
and the optimal solution set of the original chance constrained optimization problem.
We have proved that the residual vanishes with probability 1 if we choose infinite samples
of random variables and use infinite activation functions. However, the following issues
have not been touched:

• We need the assumption that both objective function and constrained function are

99

Chapter 6. Discussion and Future Work

Lipschitz continuous. Besides, the distribution of constrained function for every
input must be continuous. Can we extend our conclusion to more general case?

• We make sure that the convergence attains with probability 1 if the numbers of
sample and activation functions become infinite. However, we still have to figure
out how the residual will be for fixed numbers of random variables and activation
functions.

To address the above issues, we can dig some things from random set theory. Notice
that the optimal solution set of the approximate problem and the feasible domain of
the approximate problem are essentially random set since they are determined by the
randomly extracted samples from the sample space of the random variables. Thus, in
the future, we would like to investigate whether we could find some theoretic results of
random set theory to help us to solve the above issues.

100

Appendix

A
Extreme Learning Machine

Extreme Learning Machine (ELM) is essentially an algorithm to train the parameters in
Single Layer Feedforward Neural-networks (SLFNs). SLFNs is with a number of hidden
nodes and with almost any nonlinear activation function, as an approximation of stan-
dard multilayer feedforward neural networks. For N arbitrary distinct samples (xi, yi),
where xi = [xi,1, ..., xi,m]T ∈ Rn denotes the plant input and yi = [yi,1, ..., yi,m]T ∈ Rm

the plant output, standard SLFNs with N̄ hidden nodes and activation function g(x)
models the input-to-output relationship as

t̂i =
N̄∑

j=1
βjgj(xi) =

N̄∑
j=1

βjg(ωT
j xi + bj), (A.1)

where i = 1, ..., N is the sample index, ωj = [ωj,1, ..., ωj,n]T represent the weight vector
connecting the j-th hidden node and the input nodes, βj = [βj,1, ..., βj,m]T denotes the
weight vector connecting the j-th hidden node and the output nodes, and bj is the
threshold of the j-th hidden node. ωT

j xi denotes the inner product of ωj and xi. The
output nodes are linear in this SLFNs.

The standard SLFNs with N̄ hidden nodes with activation function g(x) is able to
approximate these N samples with zero error means that

N∑
i=1
∥ei∥ =

N∑
i=1

∥∥∥ti − t̂i

∥∥∥ = 0, (A.2)

101

Appendix A. Extreme Learning Machine

i.e., according to the result in [Huang, 2003], there exists N̄ ≤ N, βj , ωj and bj such that

ti =
N̄∑

j=1
βjg(ωT

j xi + bj), (A.3)

where j = 1, ..., N is sample index. More generally, by defining

H =


g(ωT

1 x1 + b1) ... g(ωT
N̄

x1 + bN̄)
... ...

...
g(ωT

N̄
xN + b1) ... g(ωT

N̄
xN + bN̄)

 , (A.4)

β =


βT

1
...

βT
N̄

 , (A.5)

and

T =


tT
1
...

tT
N̄

 , (A.6)

the above N equations can be written compactly as

T = Hβ. (A.7)

As introduced in [Huang et al., 2006], H is called the hidden layer output matrix of
the neural network; the i-th column of H is the i-th hidden node output with respect
to inputs x1, x2, ..., xN . The gradient-based algorithm can be used to train the value
of β, ω1, ..., ωN̄ , b1, ..., bN̄ . Compare to the gradient-based algorithm, ELM algorithm,
proposed in [Huang et al., 2006], is more simple and efficient.

Regarding X = [x1, x2, ..., xN] as input, and T as output, the ELM-based SLFNs model
training algorithm can be summarized as:

Batch ELM for training the SLFNs models

Input: X, T, N̄

Output: β, ωj , bj , j = 1, 2, ..., N̄

1: Randomly assign ωj and bj , j = 1, ..., N̄ ;

2: Calculate the hidden layer output matrix H;

3: Calculate the β as β = HM T .

102

HM is the Moore-Penrose generalized inverse of matrix H [Rao and Mitra, 1972], which
can be derived by

HM = (HT H)−1HT . (A.8)

Then, the estimation of β can be calculated as

β = (HT H)−1HT T. (A.9)

The basis of algorithm (Batch ELM for training the SLFNs models) is the results pre-
sented in [Tamura and Tateishi, 1997], if the activation function g is infinitely differen-
tiable the hidden layer output matrix H is invertibel and ∥Hβ − T∥ = 0. The sequential
implementation of Eq. A.9 can be derived and referred as the recursive least squares
(RLS) algorithm. The proof of the RLS algorithm can be found in [Chong and Zak,
2001]. The sequential ELM algorithm is derived based on RLS algorithm and summa-
rized as:

Algorithm 1 Sequential ELM for training the SLFNs models
1: Step 1: Give β0 according to algorithm 1
2: Step 2: Calculate the hidden layer output matrix hk+1 based on further coming
observation (xk+1, tk+1) according to Eq.A.4, k = 0, 1, 2, ..., i, ...
3: Step 3: Calculate the βk+1 as

βk+1 = βk + Mk+1hk+1(tT
k+1 − hT

k+1βk) (A.10)

where Mk+1 is calculated as

Mk+1 = Mk −
Mkhk+1hT

k+1Mk

1 + hT
k+1Mkhk+1

. (A.11)

4: Step 4: Set k = k + 1

103

Bibliography

Achiam, J., D. Held, A. Tamar, and P. Abbeel (2017), Constrained policy optimization.,
Proceedings of the 34th International Conference on Machine Learning, PMLR, 70,
22–31.

Alamo, T., J. M. Bravo, M. J. Redondo, and E. F. Camacho (2008), A set-membership
state estimation algorithm based on dc programming., Automatic, 44, 216–224.

Baddeley, A., R. Turner, J. Moller, and M. Hazelton (2005), Residual analysis for spatial
point processes, Journal of the Royal Statistical Society, Series B, 67, 617–666.

Ben-Tal, A., and A. Nemirovski (1999), Robust solutions of uncertain linear programs.,
Operations Research Letters, 25 (1), 1–13.

Ben-Tal, A., and A. Nemirovski (2002), Robust optimization methodology and applica-
tions., Mathematical Programming, 92, 453–480–13.

Ben-Tal, A., L. E. Ghaoui, and A. Nemirovski (2009), Robust Optimization, Princeton
University Press, Princeton, NJ.

Blanke, M., M. Kinnaert, J. Lunze, and M. Staroswiecki (2006), Diagnosis and Fault-
Tolerant Control, 2nd ed., New York, NY, USA: Springer.

Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge University
Press.

Bray, A. K., and F. P. Schoenberg (2013), Assessment of point process models for
earthquake forecasting, Statistical Science, 28 (4), 510–520.

Bray, A. K., K. Wong, C. D. Barr, and F. P. Schoenberg (2014), Voronoi residual
analysis of spatial point process models with applications to california earthquake
processe, The Annals of Applied Statistics, 8 (4), 2247–2267.

Brooks, S. P., and B. J. T. Morgan (1995), Optimization using simulated annealing.,
Journal of the Royal Statistical Society. Series D (The Statistician), 44 (2), 241–257.

105

BIBLIOGRAPHY

Buckby, J., T. Wang, J. Zhuang, and K. Obara (2020), Model checking for hidden
markov models, Journal of Computational and Graphical Statistics, 29 (4), 859–874.

Calafiore, G., and M. C. Campi (2005), Uncertain convex programs: randomized solu-
tions and confidence levels., Math. Program., 102 (1), 25–46.

Calafiore, G., and M. C. Campi (2006), The scenario approach torobust control design.,
IEEE Trans. Automatic Control, 51 (5), 743–753.

Calvet, L., V. Czellar, and E. Ronchetti (2015), Robust filtering., Journal of the Amer-
ican Statistical Association, 110 (520), 1591–1606.

Campi, M. C. (2010), Classification with guaranteed probability of error., Machine
Learning, 80 (1), 63–84.

Campi, M. C., and S. Garatti (2008), The exact feasibility of randomized solutions of
uncertain convex programs., SIAM Journal on Optimization, 19 (3), 1222–1230.

Campi, M. C., and S. Garatti (2011), A sampling-and-discarding approach to chance-
constrained optimization: feasibility and optimality., Journal of Optimization Theory
and Applications, 148 (2), 257–280.

Campi, M. C., and S. Garatti (2019), Introduction to the scenario approach, MOS-SIAM
Series on Optimization, Philadelphia.

Campi, M. C., G. Calafiore, and S. Garatti (2009), Interval predictor models: identifi-
cation and reliability., Automatica, 45 (2), 382–392.

Campi, M. C., S. Garatti, and F. A. Ramponi (2018), A general scenario theory for non-
convex optimization and decision making., IEEE Transactions on Automatic Control,
63 (12), 4067–4078.

Charnes, A., and W. W. Cooper (1959), Chance constrained programming., Management
Science, 6 (1), 73–79.

Charnes, A., and W. W. Cooper (1970), On probabilistic constrained programming., in
Proceedings of the Princeton Symposium on Mathematical Programming, Princeton
University Press, Princeton, NJ, pp. 113–138.

Cheng, R., and J. Liu (2000), Mixture kalman filters., Journal of the Royal Statistical
Society Series B, 62 (3), 493–508.

Chong, E., and S. Zak (2001), An introduction to optimization, New York: John Wiley.

Clements, R. A., F. P. Schoenberg, and A. Veen (2012), Evaluation of space-time point
process models using super-thinning, Environmetrics, 23, 606–616.

106

BIBLIOGRAPHY

Cybenko, G. (1989), Approximation by superpositions of a sigmoidal function, Mathe-
matics of Control, Signals and Systems, 2, 303–314.

Deisenroth, M., R. Turner, M. Huber, U. Hanebeck, and C. Rasmussen (2012), Robust
filtering and smoothing with gaussian process., IEEE Transactions on Automatic Con-
trol, 57 (7), 1865–1871.

Dekkers, A., and E. Aarts (1991), Global optimization and simulated annealing., Math-
ematical Programming, 50, 367–393.

Durbin, J., and S. J. Koopman (2000), Time series analysis of non-gaussian observations
based on stae space models from both classical and bayesian perspectives, Journal of
the Royal Statistical Society Series B, 62 (1), 3–56.

Esfahani, P., and J. Lygeros (2016), A tractable fault detection and isolation approach for
nonlinear systems with probabilistic performance., IEEE Transactions on Automatic
Control, 61 (3), 633–647.

Farina, M., L. Giulioni, and R. Scattolini (2016), Stochastic linear model predictive
control with chance constraints – a review., Journal of Process Control, 44, 53–67.

Freund, R. J., R. W. Vail, and C. W. Clunies-Ross (1961), Residual analysis, Journal of
the American Statistical Association, 56 (293), 98–104.

Gautam, P., R. Karki, and P. Piya (2020), Probabilistic modeling of energy storage to
quantify market constrained reliability value to active distribution systems., IEEE
Transactions on Sustainable Energy, 11 (2), 1043–1053.

Geletu, A., A. Hoffmann, M. Kloppel, and P. Li (2017), An inner-outer approximation
approach to chance constrained optimization., SIAM Journal on Optimization, 27 (3),
1834–1857.

Ghahramani, Z., and S. Roweis (1999), Learning nonlinear dynamical systems using an
em algorithm, Advances in Neural Information Processing Systems, 11.

Goldberger, and S. Arthur (1961), Stepwise least squares: residual analysis and specifi-
cation of error, Journal of the American Statistical Association, 56 (296), 998–1000.

Goodwin, J., O. Brown, and V. Helus (2020), Fast training of deep neural networks ro-
bust to adversarial perturbations., 2020 IEEE High Performance Extreme Computing
Conference (HPEC), p. DOI: 10.1109/HPEC43674.2020.9286256.

Gramacy, R. B., and H. K. H. Lee (2010), Optimization under unknown constraints.,
arXiv:1004.4027 [stat.ME].

107

BIBLIOGRAPHY

Grammatico, S., X. Zhang, K. Margellos, P. J. Goulart, and J. Lygeros (2016), A scenario
approach for non-convex control design., IEEE Transactions on Automatic Control,
61 (2), 334–345.

Guarniero, P., A. Johansen, and A. Lee (2017), The iterated auxiliary particle filter.,
Journal of the American Statistical Association, 112 (520), 1636–1647.

Guo, M., and M. M. Zavlanos (2018), Probabilistic motion planning under temporal
tasks and soft constraints., IEEE Transactions on Automatic Control, 63 (12), 4051–
4066.

Hassoun, M. (1995), Fundamentals of Artificial Neural Networks, The MIT Press.

Hoeffding, W. (1963), Probability inequalities for sums of bounded random variables.,
Journal of the American Statistical Association, 58 (301), 13–30.

Huang, G. (2003), Learning capability and storage capacity of two-hidden-layer feedfor-
ward networks., IEEE Trans. Neural Networks, 14 (2), 274–281.

Huang, G., Q. Zhu, and C. Siew (2006), Extreme learning machine theory and applica-
tions., Neurocomputing, 70, 489–501.

Ingber, L. (1993), Simulated annealing: practice versus theory., Math. Comput. Model-
ing, 18 (11), 29–57.

Kalman, R. E. (1960), A new approach to linear filtering and prediction problems,
Transactions of the ASME, Journal of Basic Engineering, Series D, 82, 35–45.

Katzfuss, M., J. Stroud, and C. K. Wikle (2020), Ensemble kalman methods for high-
dimensional hierachical dynamic space-time models, Journal of the American Statis-
tical Association, 115 (530), 866–885.

Khalfallah, M. G., and A. M. Koliub (2007), Suggestions for improving wind turbines
power curves., Desalination, 209 (1), 221–229.

Kirkpatrick, S., J. C. D. Gelett, and M. Vecchi (1983), Optimization by simulated
annealing., Science, 220 (4598), 671–680.

Kishida, M., and R. B. Braatz (2015), Ellipsoidal bounds on state trajectories for
discrete-time systems with linear fractional uncertainties., Optim. Eng., 16, 695–711.

Kishida, M., P. rumschinski, R. Findeisen, and R. B. Braatz (2014), Efficient polynomial-
time outer bounds on state trajectories for uncertain polynomial systems using skewed
structured singular values., IEEE Transactions on Automatic Control, 59 (11), 3063–
3068.

108

BIBLIOGRAPHY

Kitagawa, G. (1987), Non-gaussian state-space modeling of nonstationary time series,
Journal of the American Statistical Association, 82, 1032–1063.

Kitagawa, G. (1996), Monte carlo filter and smoother for non-gaussian nonlinear state
space models, Journal of Computational and Graphical Statistics, 5, 1–25.

Koyama, S., L. Perez-Bolde, C. Shalizi, and R. Kass (2010), Approximate methods for
state-space models., Journal of the American Statistical Association, 105 (489), 170–
180.

Kreuzer, A., and C. Czado (2020), Efficient bayesian inference for nonlinear state space
models with univariate autoregressive state equation, Journal of Computational and
Graphical Statistics, 29 (3), 523–534.

Lange, K. (2013), Optimization, Springer-Verlag New York.

Liu, L., G. Han, Y. He, and J. Jiang (2020), Fault-tolerant event region detection on tra-
jectory pattern extraction for industrial wireless sensor networks, IEEE Transactions
on Industrial Informatics, 16 (3), 2072–2080.

Luedtke, J., and S. Ahmed (2008), A sample approximation approach for optimization
with probabilistic constraints., SIAM Journal on Optimization, 19 (2), 674–699.

Luzi, M., M. Paschero, A. Rizzi, E. Maiorino, F. Massimo, and F. Mscioli (2019), A
novel neural networks ensemble approach for modeling electrochemical cells, IEEE
Transactions on Neural Networks and Learning Systems, 30 (2), 343–354.

Luzi, M., F. Massimo, F. Mscioli, M. Paschero, and A. Rizzi (2020), A white-box equiv-
alent neural network circuit model for soc estimation of electrochemical cells, IEEE
Transactions on Neural Networks and Learning Systems, 31 (2), 371–382.

Lydia, M., S. S. Kumar, and G. E. P. Kumar (2013), Advanced algorithms for wind
turbine power curve modeling., IEEE Trans. Sustain. Energy, 4 (3), 827–835.

Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2018), Classification
with guaranteed probability of error., 6th International Conference on Learning Rep-
resentations, ICLR 2018 - Conference Track Proceedings.

Mesbah, A. (2016), Stochastic model predictive control: An overview and perspectives
for future research., IEEE Transactions on Control Systems Magazine, 36 (6), 30–44.

Moser, D., R. Schmied, H. Waschl, and L. del Re (2018), Flexible spacing adaptive
cruise control using stochastic model predictive control., IEEE Trans. Control Systems
Technology, 26 (1), 274–281.

109

BIBLIOGRAPHY

Nagy, Z. K., and R. D. Braatz (2003), Warst-case and distributional robustness anlysis
of finite-time control trajectories for nonlinear distributed parameter systems., IEEE
Transactions on Control Syst. T., 11, 494–504.

Niemi, J., and M. West (2010), Adaptive mixture modeling metropolis methods for
bayesian analysis of nonlinear state-space models., Journal of Computational and
Graphic Statistics, 19 (2), 260–280.

Nocedal, J., and S. J. Wright (2006), Numerical Optimization, Springer, New York.

Ogata, Y. (1988), Statistical models for earthquake occurrences and residual analysis
for point processes, Journal of the American Statistical Association, 83, 9–27.

Ouyang, T., A. Kusiak, and Y. He (2017), Modeling wind-turbine power curve: a data
partitioning and mining approach., Renewable Energy, 102 (Part A), 1–8.

Pagnoncelli, B. K., S. Ahamed, and A. Shapiro (2009), Sample average approximation
method for chance constrained programming: theory and applications., Journal of
Optimization Theory and Applications, 142, 399–416.

Paschero, M., G. L. Storti, A. Rizzi, and F. M. F. M. amd G. Rizzoni (2016), A novel
mechanical analogy-based battery model for soc estimation using a multicell ekf, IEEE
Transactions on Sustainable Energy, 7 (4), 1695–1702.

Pattipati, B., B. Balasingam, G. Avvari, K. Pattipati, and Y. Bar-Shalom (2014), Open
circuit voltage characterization of lithium-ion batteries, Journal of Power Sources,
264, 317–333.

Pena-Ordieres, A., J. Luedtke, and A. Wachter (2020), Solving chance-constrained prob-
lems via a smooth sample-based nonlinear approximation., SIAM Journal on Opti-
mization, 30 (3), 2221–2250.

Picheny, V., R. B. Gramacy, S. M. Wild, and S. L. Digabel (2016), Bayesian op-
timization under mixed constraints with a slack-variable augmented lagrangian.,
arXiv:1605.09466 [stat.CO].

Plett, G. (2006), Sigma-point kalman filtering for battery management systems of lipb-
based hev battery packs: part 1: introduction and state estimation., Journal of Power
Sources, 161, 1356–1384.

Prajna, S. (2006), Barrier certificates for nonlinear model validation., Automatica, 42,
117–126.

Rao, C., and S. Mitra (1972), Generalized inverse of matrices and its application, Wiley,
New York.

110

BIBLIOGRAPHY

Rostampour, V., R. Ferrari, and T. Keviczky (2017), A set based probabilistic approach
to threshold design for optimal fault detection., in Proceedings of American Control
Conference, Seattle WA.

Schildbach, G., L. Fagiano, C. Frei, and M. Morari (2014), The scenario approach for
stochastic model predictive control with bounds on closed-loop constraint violations.,
Automatica, 50 (12), 3009–3018.

Schoenberg, F. P. (2003), Multidimensional residual analysis of point process models for
earthquake occurrences, Journal of the American Statistical Association, 98, 789–795.

Selmic, R., and F. L. Lewis (2002), Neural network approximation of piecewise contin-
uous functions: application to friction compensation, IEEE Transactions on Neural
Networks, 13 (2), 745–751.

Shapiro, A., D. Dentcheva, and A. Ruszczynski (2014), Lectures on Stochastic Program-
ming: Modeling and Theory 2nd ed., SIAM.

Shen, X., and T. Shen (2018), Chance-constrained optimization for torque tracking con-
trol with improving fuel economy in spark-ignition engines., SICE Journal of Control,
Measurement, and System Integration, 11 (4), 365–371.

Shen, X., and J. Zhuang (2021), Decimating nonlinear response in state-space models,
Manuscript.

Shen, X., Y. Zhang, T. Shen, and C. Khajorntraidet (2017), Spark advance self-
optimization with knock probability threshold for lean-burn operation mode of si
engine., Energy, 122 (1), 1–10.

Shen, X., J. Zhuang, and X. Zhang (2019), Approximate uncertain program, IEEE
Access, 7, 182,357–182,365.

Shen, X., T. Ouyang, Y. Zhang, and X. Zhang (2020), Computing probabilistic bounds
on state trajectories for uncertain systems, IEEE Transactions on Emerging Topics
in Computational Intelligence, Early Access, DOI: 10.1109/TETCI.2020.3019,040.

Shen, X., T. Ouyang, N. Yang, and J. Zhuang (2021), Sample-based neural approxima-
tion approach for probabilistic constrained programs, IEEE Transactions on Neural
Networks and Learning Systems, Early Access, DOI:10.1109/TNNLS.2021.3102,323.

Sorenson, H. W. (1982), Parameter and state estimation: introduction and interrelation,
IFAC Proceedings Volumes, 15 (4), 85–99.

Steinbrecher, G., and W. T. Shaw (2008), Quantile mechanics., European Journal of
Applied Mathematics, 19 (2), 87–112.

111

BIBLIOGRAPHY

Szu, H., and R. Hartley (1987), Fast simulated annealing., Physics Letters A., 122,
157–162.

Tamura, S., and M. Tateishi (1997), Capabilities of a four-layered feedforward neural
network: four layers versus three., IEEE Trans. Neural Networks, 8 (2), 251–255.

Tanizaki, H. (2009), Nonlinear Filters: Estimation and Applications, Springer-Verlag
Berlin.

Tsai, C. L., Z. Cai, and X. Wu (1998), The examination of residual plots, Statistica
Sinica, 8, 445–465.

van der Vaart, A. W. (1998), Asymptotic Statistics (Cambridge Series in Statistical and
Probabilistic Mathematics), Cambridge University Press.

Wan, Y., T. Keviczky, M. Verhaegen, and F. Gustafsson (2016), Data-driven robust
receding horizon fault estimation., Automatic, 71, 210–221.

Wan, Y., V. Puig, C. Ocampo-Martinez, Y. Wang, E. Harinath, and R. D. Braatz (2020),
Fault detection for uncertain lpv systems using probabilistic set-membership parity
relation., Journal of Process Control, 87, 27–36.

Wang, Y., T. Wang, and J. Zhuang (2018), Modeling continuous time series with many
zeros and an application to earthquakes, Environmetrics, 29 (4).

Watanabe, N. (1985), Notes on the kalman filter with estimated parameters, Journal of
Time Series, 6 (4), 269–278.

Watson, M. W., and R. F. Engle (1983), Alternative algorithms for the estimation of
dynamic factor, mimic and varying coefficient regression models, Journal of Econo-
metrics, 23, 385–400.

Witsenhausen, M. H. (1968), Sets of posible states of linear systems given perturbed
observations., IEEE Transactions on Automatic Control, 13 (5), 556–558.

Yang, T., P. Mehta, and S. Meyn (2013), Feedback particle filter., IEEE Transactions
on Automatic Control, 58 (10), 2465–2480.

Yu, K., and H. Chen (2019), Markov boundary-based outlier mining., IEEE Transactions
on Neural Networks and Learning Systems, 30 (4), 1259–1264.

Zheng, F., Y. Xing, J. Jiang, B. Sun, J. Kim, and M. Pecht (2016), Influence of different
open circuit voltage tests on state of charge online estimation for lithium-ion batteries,
Applied Energy, 183, 513–525.

112

BIBLIOGRAPHY

Zhu, H., and H. Wu (2007), Estimation of smooth time-varying parameters in state
space models, Journal of Computational and Graphical Statistics, 16 (4), 813–832.

Zhuang, J. (2006), Second-order residual analysis of spatiotemporal point processes and
applications in model evaluation, Journal of the Royal Statistical Society, Series B,
68 (4), 635–653.

Zhuang, J. (2015), Weighted likelihood estimators for point processes, Spatial Statistics,
14, 166–178.

Zhuang, J., Y. Ogata, and D. Vere-Jones (2002), Stochastic declustering of space-time
earthquake occurrence., Journal of the American Statistical Association, 97 (458), 369–
380.

Zucchini, W., and I. MacDonald (2009), Hidden Markov Models for Time Series: An
Introduction Using R., CRC Press.

113

	Declaration of Authorship
	Acknowledgements
	Abstract
	Contents
	1 Introduction and Motivation
	2 Residual Analysis
	2.1 Concept
	2.2 Recent Applications of Residual Analysis
	2.2.1 Application in point processes
	2.2.2 Application in time series models
	2.2.3 Application in hidden Markov models

	2.3 Extending Residual Analysis to State-Space Models and Chance Constrained Optimizations
	2.3.1 Contribution to model improvement of state space models
	2.3.2 Contribution to approximating chance constrained optimizations

	3 Model Improvement for State-Space Models
	3.1 Background and Related Works
	3.2 Main Contributions
	3.3 Preliminaries
	3.3.1 General state-space models
	3.3.2 Residuals of state-space models
	3.3.3 Hidden state inference for general dynamical systems
	3.3.4 Hidden state inference for linear dynamical systems
	3.3.5 Fitting state-space models

	3.4 Problem Formulation
	3.5 Proposed Model Improvement Algorithms
	3.6 Numerical Examples
	3.6.1 Model for numerical examples
	3.6.2 About number of activation functions
	3.6.3 Comparison with linear model

	3.7 Application Case Study

	4 Residual Convergence in Approximating Chance Constrained Optimization
	4.1 Background and Motivation
	4.2 Problem Description
	4.3 Related Works
	4.3.1 Scenario approach
	4.3.2 Sample average approach

	4.4 Proposed Method
	4.4.1 Problem reformulation
	4.4.2 Convergence and feasibility analysis
	4.4.3 Proposed algorithms for solving chance constrained optimization

	4.5 Numerical Example
	4.5.1 Simulation model
	4.5.2 Simulation results

	4.6 Application to Interval Predictor Model of Wind Power
	4.6.1 Results and Discussions

	5 Predictive Probabilistic Bounds on State Trajectories for Uncertain Nonlinear Systems
	5.1 Introduction
	5.1.1 Motivations
	5.1.2 Background and related works
	5.1.3 Key contributions of this chapter

	5.2 Problem Description
	5.3 Scenario Approach-based Method
	5.3.1 Mathematical Preliminaries
	5.3.2 Main result
	5.3.3 Proof for the main result
	5.3.4 Proposed algorithm

	5.4 Sample Average Approach-based Method
	5.4.1 Notations and problem reformulation
	5.4.2 Main result
	5.4.3 Proposed algorithm

	5.5 Numerical Example
	5.5.1 System model for the numerical example
	5.5.2 Results and discussions

	5.6 Conclusion

	6 Discussion and Future Work
	6.1 Model Improvement for State-Space Models
	6.2 Random Set Theory for Chance Constrained Optimization

	A Extreme Learning Machine
	Bibliography

