
Improving Security in Facial Biometrics:
Views from both Attacker Side and

Defender Side

by

NGUYEN Hong Huy

Dissertation

submitted to the Department of Informatics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI
March 2022





Advisor

Prof. Isao Echizen
National Institute of Informatics, University of Tokyo, and SOKENDAI

Sub-advisor

Prof. Junichi Yamagishi
National Institute of Informatics and SOKENDAI

Advisory Committee

1. Prof. Shin'ichi Satoh National Institute of Informatics,
University of Tokyo

2. Assis. Prof. Satoshi Ikehata National Institute of Informatics
SOKENDAI

3. Assoc. Prof. Yinquiang Zheng University of Tokyo

4. Assoc. Prof. Koichi Ito Tohoku University



Acknowledgements

First, I am deeply grateful to my advisor, Professor Isao Echizen, and my sub-advisor,
Professor Junichi Yamagishi, for their continuous support and guidance during all stages
of my work. Their encouragement greatly helped me to overcome many difficulties along
the way.

Second, I would like to thank Prof. Vincent Nozick of the Université Paris-Est Marne-
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Abstract

Biometric authentication is becoming widely used, especially in handheld devices. The
face is commonly used as a biometric identifier because of its contactless property.
Thanks to recent technological advances in both hardware and software, facial biometric
identification is well on the way to replacing traditional password authentication, which
is inconvenient. Unfortunately, these advanced technologies can also be used to attack
biometric authentication systems. For example, deep neural networks can be used to
generate realistic images, videos, and speech. Synthetic and manipulated images and
videos created in this way are called “deepfakes.” They can be used to deceive face
authentication systems (by attacking the integrated face recognition system) besides
being used to create fake news and to impersonate or harass individuals. As a result,
dealing with deepfakes is a vital task in facial biometrics. The countless battles between
attackers and defenders have resulted in continuous improvements that make both sides
stronger. This philosophy is the principal motivation for the work reported in this the-
sis. By standing on both the attacker and defender sides, we can simultaneously identify
crucial problems in facial biometrics and provide solutions to make it more secure.

From the attacker side, we discuss the robustness of face recognition systems under a
wolf attack using generated images that could match multiple enrolled user templates.
Since being introduced in 2007 for fingerprints, wolf attacks have been widely used
against fingerprint- and finger-vein-based authentication systems. Motivated by the use
of an evolutionary algorithm along with a generative adversarial network to generate wolf
partial fingerprints (“master prints”), we have enhanced the algorithm so that it can gen-
erate high-resolution high-quality master faces. Our experimental results demonstrated
that, even with limited resources and using only pretrained models available on the In-
ternet, attackers are able to initiate master face attacks. Our generated master faces
can be used to attack various types of face recognition systems in white-box, gray-box,
and even black-box scenarios. Another contribution is that we identify the limitations
of face recognition systems by analyzing the distributions of the face embedding spaces
of the systems, then suggest some improvements.

From the defender side, we first present a detector that works with various types of
computer-generated and manipulated images and videos, commonly known as “deep-
fakes.” The proposed detector uses a capsule network, which is an upgraded version
of the traditional convolutional neural network (CNN). The performance of traditional
CNNs can be improved by increasing their depth and/or their width, adding more in-
ternal connections, or fusing several features or predicted probabilities from multiple
CNNs. Consequently, they become bigger, consume more memory and computation
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power, and require more training data. Thanks to the use of a dynamic routing al-
gorithm, our capsule-network-based detector – namely Capsule-Forensics – has fewer
parameters than traditional CNNs with similar performance. To further the understand-
ing of the Capsule-Forensics detector, we visualize the activation of its components as a
means to improve its explainability.

Next, we discuss locating manipulated regions (i.e., performing segmentation), which
is important when dealing with fake images and videos. We designed a CNN that
uses the multi-task learning approach to simultaneously detect manipulated images and
videos and locate the manipulated regions. The information gained by performing one
task is shared with the other task, thereby enhancing the performance of all tasks.
A semi-supervised learning approach is used to improve the network’s generalizability.
The network includes an encoder and a Y-shaped decoder. Activation of the encoded
features is used for binary classification. The output of one branch of the decoder is
used for segmenting the manipulated regions while that of the other branch is used for
reconstructing the input, which helps improve overall performance. With this design,
fine-tuning the network using only a small amount of data enables it to deal with unseen
attacks effectively.
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Chapter

1
Introduction

“Si vis pacem, para bellum” — a Latin adage translated as, “If you want peace, prepare

for war.” Besides real wars, this philosophy is applicable in many other areas, including

security and privacy, and recently, in machine learning. It is also the basis of this thesis,

in which we focus on facial biometrics from both the human and machine perspective.

From the machine perspective, a face recognition system is a means for a machine

to “understand” human identities via faces. From the human perspective, machines are

used to generate or manipulate facial images and videos that are as natural as possible to

serve the needs of humans. Deepfake videos (“deepfakes”) are an example of computer-

manipulated videos that are maliciously used by attackers. Face recognition systems

and deepfakes are the two main topics discussed in this thesis.

This Introduction chapter is organized as follows. We first provide background infor-

mation related to the two main topics. Then, we describe our motivation for doing the

work described here. We next summarize our main contributions. Finally, we outline

this thesis.
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Chapter 1. Introduction

1.1 Background

Passwords should be strong, which can make them difficult to remember, and should

be changed regularly to ensure security. Personal identification numbers and unlock

patterns are more convenient than passwords, but the user is still required to remember

them, and people nearby may be able to steal a peek at them. An even more convenient

method is biometric authentication, which uses a biometric trait unique to the user,

eliminating the need to remember anything. This advantage has led to the widespread

usage of biometric authentication on many portable devices including laptops and smart-

phones.

The two most commonly used biometric traits for authentication are a fingerprint and

the face [1]. Since smartphones using this type of authentication may have a digital

wallet (or e-wallet) for making e-payments, they are a prime target for attackers. An

attacker may attempt to unlock such a device by performing a presentation attack [2].

For example, the attacker might attempt a presentation attack in which a printed facial

image of the victim (known as a presentation attack instrument, or PAI ) is displayed in

front of the smartphone’s camera to unlock the smartphone. Another scenario is that

the attacker hijacks the smartphone’s camera and injects a fake video of the victim to

fool the Electronic Know Your Customer (commonly known as eKYC) system’s user

verification process [3]. This enables the attacker to avoid the PAI artifacts that can be

used to identify an attack.

Besides its use for authentication, the face has been the primary way for people to recog-

nize each other since the beginning of humankind. Advances in computer graphics and

artificial intelligence (AI) now enable machines to generate realistic media and seamlessly

manipulate them, including facial images and videos. Recent studies demonstrated that

synthetic and manipulated media are hard to spot with the human eye [4–6]. Examples

of high-quality computer-generated and deepfake images are shown in Fig. 1.1. In ad-

dition to beneficial applications (such as content creation and virtual avatar rendering),

computer graphics and AI have been misused by attackers to generate fake images and

videos for malicious purposes. Deepfake images and videos [7], typical examples of such

threats, have attracted particular attention from society.

2



Background

Figure 1.1: Example computer-generated facial images and face-swapping ones. Im-
ages in top row, left to right, were fully computer-generated and obtained from the
Digital Emily Project [15], fully computer-generated and obtained from Dexter Stu-
dios [16], and generated using StyleGAN [9]). Images in bottom row, left to right, were

manipulated using deepfake [7], Face2Face [17], and Neural Textures [18] methods.

“Deepfakes” was initially defined as “synthetic media in which a person in an existing

image or video is replaced with someone else’s likeness”1. This definition has since

expanded to include “synthetic media applications.” Attackers can now use applications

based on advanced techniques to synthesize unreal faces [8, 9], swap faces [7], manipulate

facial attributes [10, 11], and perform facial reenactment [7] and lip-syncing [12].

Besides attacking machines via face recognition systems, as mentioned above, deepfakes

can be used to impersonate and harass individuals and to create fake news. State-of-the-

art deepfake methods require only a few samples of the target person (e.g. one or more

portrait photos or a short video) for reference [13, 14]. Due to the popularity of social

networks, it is usually easy to obtain a person’s facial image or video online, increasing

the ability of the attackers. Consequently, deepfakes are a serious threat that must be

immediately addressed.

Along with these rapid advances in deepfake methods, several countermeasures have been

developed to detect deepfakes. Like local binary pattern methods [19] and histogram of

oriented gradient [20] descriptors used in presentation attack detection, the handcrafted

steganalysis-based method developed by Fridrich and Kodovsky [21] effectively detects

deepfakes. However, finding effective features is challenging and time-consuming. The

defender side thus trails in the race.
1https://mitsloan.mit.edu/ideas-made-to-matter/deepfakes-explained

3
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Chapter 1. Introduction

Thanks to convolutional neural networks (CNNs) and their automatic feature extrac-

tion ability, the defender’s tasks have become selecting a suitable input domain, an

effective CNN architecture, and an appropriate training strategy. The input domain

could be an image (or video frame) in the RGB space (raw or preprocessed) [22–24]

or frequency domain [25], a video sequence [26–28], or a video with voice [29]. The

architecture could be a single network architecture [22, 23], a two-stream network ar-

chitecture [24, 25, 30], or a network ensemble [31]. The training strategy could be

straightforward optimization [22], transfer learning [23, 32], multi-task learning [33], or

knowledge distillation [34].

1.2 Motivation

Research on security measures, as on real-world battlefield measures, involves never-

ending competition between the attackers and the defenders. Both sides are continu-

ously improving their abilities to become stronger. This philosophy has recently been

applied to the training of generative adversarial networks (GANs) [35], enabling them to

generate realistic media, including deepfake images and videos. On the other side, adver-

sarial training helps to improve the robustness of the trained models against adversarial

attacks [36–38]. Motivated by this philosophy, we frame this thesis as a competition

between the attacker side and the defender side. Since we focus on both people and

machines, we use the term “facial biometrics” to represent both the appearance and

biometric characteristics of human faces. We address several major problems in facial

biometrics that are either unsolved or only partially solved.

From the attacker side, we use face recognition systems as the main target. Such systems

are used by machines to “understand” a person’s identity from their face. Besides

such external threats as presentation and deepfake attacks, face recognition systems

have internal problems. One of them is their ability to distinguish between different

identities. The well-known face morphing attack [39], for example, can fool both people

and machines. Similarly, fingerprint and vein recognition systems have trouble handling

wolf attacks [40] as well the recently developed master print attack [41] in which systems

are made to mistakenly accept maliciously crafted input. The question we ask is whether

face recognition systems have similar problems and what are their causes. Please note

that we do not have a malicious purpose in asking this question. Our purpose is to
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identify the problems of face recognition systems so that the community will be aware

of them and we together can find solutions.

From the defender side, we use deepfakes as the main target. Although several CNN-

based detectors have been developed and have achieved remarkable results, there are still

problems. One problem is their strong need for computational and data resources. The

performance of a CNN is normally improved by increasing its depth [42], its width [43],

and/or the number of inner connections [44]. Another approach is to increase the number

of CNNs, e.g., by adding one or more streams [24, 25, 30] or by using an ensemble of

CNNs [31]. Consequently, the detectors have become larger and thus consume more

memory and computation power. In addition, bigger models require more training

data, which is not always available, especially when new deepfake methods appear.

Another problem is the difficulty of “explaining” deepfake detection results. Besides

giving the probability of whether the input is real or fake, it is necessary to segment

the manipulated regions or highlight the regions containing deepfake artifacts. These

additional “explanations” provide clues to the user for use in confirmation or further

verification, especially in critical applications in journalism and law enforcement. A third

problem is the limited generalizability of deepfake detection and segmentation methods.

Since most of them are CNN-based and learn from training data, they may suffer from a

mismatch between the training and test data distributions, resulting in poor performance

on unseen deepfake methods. The rapid advances in deepfake generation methods have

made generalizability important to ensure the robustness of countermeasure methods.

1.3 Contributions

From the attacker side, we are the first in the literature to demonstrate the existence of

master faces, which can match the faces of different individuals by the face recognition

systems. A master face attack is stronger than a face morphing attack since it does

not require knowledge about the victim. By improving the latent variable evolution

algorithm used in a master print attack and using a powerful facial generation model

(StyleGAN [9]), we can generate high-quality master faces that can attack several face

recognition systems in white-box, gray-box, and even black-box scenarios. By analyzing

the distributions of the face embedding (identity) spaces, we identify the limitations of

several current face recognition systems and suggest several improvements.
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From the defender side, we make two contributions. The first contribution is adapting

the capsule network – an upgraded version of a CNN that is naturally designed for

computer vision – to enable it to work with deepfake detection, including master face

detection. Besides the dynamic routing algorithm, the addition of a feature extractor to

address the data shortage problem (common in this task) and statistical pooling layers

(which work well with deepfake artifacts), the proposed Capsule-Forensics network has

high detection performance without sacrificing computational resources and memory.

Through visualization, we improve the explainability of the network, which is lacking in

most previous work on deepfake detection.

The second contribution is implementing a multi-task learning CNN (the Y-shaped au-

toencoder) that can simultaneously perform deepfake detection and segmentation. The

inclusion of the self-supervised task (reconstruction of the input image) and the sharing

of common knowledge between the three tasks enables our proposed Y-shaped autoen-

coder to adapt well to new deepfake methods by using a limited amount of fine-tuning

data. It outputs both predicted probability and segmentation maps, which improves

the explainability of the result. Furthermore, if either the detection or segmentation

task fails, the other task can compensate for its failure or warn the user of the need for

further consideration of the result.

In the appendices, we describe three additional contributions. The first one is asserting

the possibility of enhancing computer-generated (CG) facial images to fool spoofing

detectors, which are usually integrated into face authentication systems. Unlike the

traditional viewpoint of computer graphics, which focuses on the rendering phase, we

enhance the rendered images by using a proposed enhancer CNN namely H-Net. It

can perform black-box attacks that degrade the accuracies of three spoofing detectors.

The second contribution is a modular discriminator for discriminating CG images and

photographic images. It uses a probabilistic patch aggregation strategy to deal with

high-resolution images and outperformed a state-of-the-art method, achieving accuracy

up to 100%. The final contribution are two methods for correcting adversarial images

and their labels. Adversarial attacks are increasingly targeting deepfake detection and

segmentation methods, hence detecting such attacks and correcting them is important.

Our proposed method demonstrated promising performance – correcting nearly 90% of

adversarial images while minimally affecting bona fide images.
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1.4 Thesis’ Outline

The rest of this thesis is organized as follows:

• Chapter 2 provides a literature review of the topics related to this thesis.

• Chapter 3 discusses the master face attack on face recognition systems.

• Chapter 4 introduces Capsule-Forensics, a novel deepfake detection network.

• Chapter 5 presents an approach that combines deepfake detection and segmenta-

tion.

• Chapter 6 summarizes this thesis and discusses future work.
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Chapter

2
Literature Review

In this chapter, we describe background topics related to the thesis. First, we give

an overview of face recognition systems and of commonly used methods for attacking

them. Then, we introduce deep generative models, which can generate non-existent facial

images for use in attacking face recognition systems and manipulate images and videos.

Following that, we give a brief history of image and video manipulation. Since the

deepfake phenomenon, a rising star in image and video manipulation, is the main target

of this thesis, we then introduce related work on deepfake generation and detection,

some widely used deepfake datasets, and the challenges in deepfake detection.

2.1 Face recognition systems

Face recognition (FR) is a process of matching a human face from a captured image or

video frame against the enrolled faces stored in a database. An FR system is visualized in

Fig. 2.1. An FR system can operates in either of two ways: verification and identification.

In verification, the system tries to prove whether the probe (query face) has the true

identity. In identification, the system tries to find the true identity of the probe from a

set of enrolled identities. “Recognition” is commonly used to indicate either verification

or identification.
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Alice
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Alice

Verification:
Is this Alice?
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Identification:
This is Alice.

Enrollment

Verification / Identification

Scores

Model DB

Figure 2.1: Overview of face recognition with enrollment phase and verification/iden-
tification phase.

Like other biometric systems, there are two phases in a FR system:

• Enrollment: Storage of a facial image of a user in the model database. The stored

biometric data is usually called a model or template.

• Recognition: Comparison of the probe with the enrolled model(s) and return the

similarity score(s). The similarity score(s) is (are) then used to judge whether the

probe and the model are from the same person.

There are usually four modules in an FR system:

• Preprocessor: Pre-processes the input image to extract the face with the properties

most suitable for recognition. The input face is typically detected, cropped, and

aligned in this phase.

• Feature extractor: Extracts the features suitable for recognition. Most state-of-

the-art FR systems use a CNN for feature extraction.

• Matcher: Compares the probe’s feature set to the target’s feature set (for verifica-

tion) or all feature sets (for identification) in the model database and returns the

similarity score(s).

• Decision maker: In verification, given the similarity score, decides whether the

probe and the target model are from the same identity on the basis of a predefined
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threshold. In identification, which model is the best representation of the probe’s

identity is decided on the basis of the similarity scores.

Recent developments in CNNs and the release of large databases (e.g., the CASIA-

WebFace database [45] and the MS-Celeb database [46]) have substantially improved

the performance of FR systems and enabled them to work effectively in heterogeneous

domains [47]. Most state-of-the-art FR systems [47–49] make use of a network archi-

tecture that achieved high performance in the ImageNet Challenge [50], such as the

VGG network architecture [51] and the inception network architecture [52]. Parkhi et

al. trained the VGG-16 network on a custom-built large-scale database [53] to create

the VGG-Face network. Wu et al. proposed a lightweight CNN that has ten times fewer

parameters than the VGG-Face network [54]. The inception architecture was used by

de Freitas Pereira et al. to build heterogeneous FR networks [47] and by Schroff et al.

to build the FaceNet network [48]. Sandberg re-implemented FaceNet as an open-source

system [55]. Taigman et al. introduced the DeepFace architecture in which explicit 3D

face modeling is used to improve facial alignment and a CNN is used to extract face

representation [56]. Unlike previous methods, which use discriminative classifiers, the

generative classifier proposed by Tran et al. (DR-GAN) learns a disentangled represen-

tation [57].

More recent approaches focus on optimizing the embedding distribution. Deng et al.

proposed using the additive angular margin loss (ArcFace) instead of the commonly

used cosine distance loss to improve the discriminative power of the FR model and

to stabilize the training process [49]. Duan et al. argued that the distribution of the

features plays an important role and therefore proposed using a uniform loss to learn

equidistributed representations for their UniformFace FR system [58].

2.2 Attacks on Face Recognition Systems

According to Ratha et al. [59], there are nine possible attacks against biometric systems,

as shown in Fig. 2.2. The presentation attack (attack 1 in the figure) is one of the most

common attacks. Another common attack is 2, which is carried out at the logical level

(hereinafter “logical attack”), to modify or inject digital biometric traits into the system.
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Figure 2.2: Possible attacks against biometric systems [59]. The preprocessor is
integrated into the feature extractor in this figure.

A wolf attack [40] or a master biometric attack [41] can be carried out as a presentation

attack or a logical attack.

2.2.1 Presentation attack and detection

FR systems are vulnerable to presentation attacks, which present an artifact or human

characteristic to the biometric (facial) capture subsystem to interfere with the intended

operation of the biometric (FR) system1. A photo attack is a presentation attack in

which the attacker displays a photograph of the victim to the sensor of the FR system.

This photograph can be printed on paper or displayed on a device screen (e.g., that of

a smartphone, tablet, or laptop) [60]. A replay attack is a presentation attack in which

a victim’s video is played instead of a photograph being displayed [60].

A presentation attack detector can be integrated into an FR system to mitigate presen-

tation attacks [60]. Handcrafted image-based approaches often use descriptors [61–64]

such as a color local binary pattern [19], a histogram of oriented gradients [20], and a

scale-invariant feature transform [65]. Advances in deep learning have enabled CNNs

to automatically extract features [66, 67]. Liveness detection is another commonly used

approach, for example, detecting eye blinking [68].
1ISO/IEC CD 30107-1 definition. Accessed at https://www.iso.org/obp/ui/#iso:std:iso-iec:

30107:-1:ed-1:v1:en:term:3.5
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The generalization of presentation attacks is a big concern because it can degrade the

performance of detectors in real-world conditions. Domain adaptation improves cross-

database detection performance [69, 70]. Fatemifar et al. proposed combining multiple

one-class classifiers for anomaly detection [71]. Mohammadi et al. leveraged the vari-

ability present in multiple FR datasets to model common nuisance factors that cause

domain shift [72].

2.2.2 Wolf attack and master biometric attack

A “wolf sample” is an input sample that can be falsely accepted as a match with mul-

tiple user templates (“enrolled subjects”) in a biometric recognition system [40]. Wolf

samples could be either biometric or non-biometric. A wolf sample is used in a wolf

attack against a biometric recognition system. Wolf attacks were initially used to target

fingerprint recognition systems [59]. Their success is theoretically measured using the

wolf attack probability (WAP)–the maximum probability of a successful attack with one

wolf sample [40]. To mitigate wolf attacks, Inuma et al. [73] presented a principle for

the construction of secure matching algorithms for any biometric authentication systems

that calculates the entropy of the probability distribution of each input value.

A master biometric attack is a wolf attack in which the sample looks like an actual bio-

metric trait. Two example traits are partial fingerprint images [41] and facial images [74].

They are generated by GANs using the latent variable evolution (LVE) algorithm to

maximize the false matching rate (as a result, WAPs are also maximized). A master

print attack [41] targets partial fingerprint recognition systems using small sensors with

limited resolution while a master face attack targets FR systems, which require higher

resolution images [74].

2.2.3 Latent variable evolution

Evolution algorithms are commonly used in artificial intelligence applications to approx-

imate complex, multimodal, and non-differentiable functions since they do not require

any assumption about the underlying fitness landscape. The covariance matrix adap-

tation evolution strategy (CMA-ES) is a powerful strategy designed for non-linear and
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non-convex functions [75]. Bontrager et al. used CMA-ES with a pre-trained genera-

tive adversarial network to perform interactive evolutionary computation to improve the

quality of generated samples [76]. This strategy was used in subsequent work for the

LVE algorithm to maximize the WAP of generated partial fingerprint images [41]. We

modified the LVE algorithm scoring method [74] so that it could work smoothly with

high-resolution facial images generated by StyleGAN.

Given n random initial vectors Z = {z1, z2, ..., zn}, a generation model G, a scoring

function F , and m enrolled temples T = {t1, t2, ..., tm}. The LVE algorithm runs in

a loop in which at first, n samples are generated by G using Z. Each sample is then

matched with m templates in T to obtain a mean score s. An evolution algorithm (e.g.,

CMA-ES) takes the set of the mean scores s to evolve n new latent vectors Z ′ for the

next loop.

2.3 Deep Generative Models

Image generation is a major topic in deep learning research, and the face is a common

target. There are two major approaches to image generation: using variational autoen-

coders (VAEs) [77] and using GANs [35]. In the beginning, they could only generate

small images with low quality. VAEs tended to generate blurry images while GANs were

difficult to train. Subsequent improvements in GANS (Wasserstein GAN (WGAN) [78]

and WGAN gradient penalty (WGAN-GP) [79]) resolved the training problem. GANs

then began to be used to generate master prints [41].

Recently improved versions of both VAEs [80, 81] and GANs [8, 9, 82, 83] can gener-

ate high-resolution images. By gradually adding more layers during training in order

to output larger images, Karras et al. were able to generate 1024 × 1024 pixel images

with their progressive GAN [8]. In subsequent work, they combined the ideas of pro-

gressive training and style transfer to create a better disentanglement network called

StyleGAN [9]. Unlike traditional GANs, which directly use a latent vector for gen-

erating images, StyleGAN uses a mapping network to transfer this latent vector into

intermediate style vectors used for synthesizing images. Controlling these intermediate

style vectors changes the facial attributes. With the abilities of strong disentanglement
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and high-quality facial image generation, StyleGAN and its subsequent version [83] are

the best methods for generating master faces [74].

2.4 A Brief History of Image and Video Manipulation

Ever since the invention of photography, people have been interested in manipulating

photographs, mainly to correct problems in the photos or to enhance them. Technology

has advanced far beyond these basic manipulations and can now be used to change the

identities of the subjects or alter their emotions. The advent of deep learning has en-

abled high-quality manipulated images and videos to be easily created. Moreover, the

popularity of social media has enabled massive amounts of data, including personal in-

formation, news reports, images, and videos, to be created and shared. The consequence

is that people with malicious intent can easily make use of these advanced technologies

and data to create fake images and videos.

The requirements for manipulating or synthesizing videos were dramatically simplified

when it became possible to create forged videos from only a short video [17, 84] or

even from a single ID photo [13] of the target subject. Suwajanakorn et al.’s mapping

method [12] has enhanced the ability of manipulators to learn the mapping between

speech and lip motion. State-of-the-art natural speech synthesizers can be used with

Suwajanakorn’s method to create a fake video of any person speaking anything. Deep-

fakes [7] exemplify this threat – an attacker with a personal computer and an appropriate

tool can create videos of a person impersonating any other person. Deepfake videos have

been posted on YouTube with the challenge being to spot them. In this thesis, we use the

term “deepfake” to refer to this family of manipulation techniques, not to a particular

one.

2.5 Deepfake Generation

The term “deepfake” originated when deep learning began to be used for face swap-

ping [7]. The original deep fake method used two autoencoders that swapped the latent

features of two input images so that the corresponding identities were exchanged. This

method is illustrated in Fig. 2.3. Face swapping and manipulation have since become
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Figure 2.3: Overview of original deepfake method, which uses two autoencoders to
swap faces.

quite common, and any deep-learning-based tool serving this purpose is now referred

to as a deepfake tool by the media and academics. Manipulated speech is referred to

as “deepfake audio.” In this thesis, we use the term deepfake to indicate any kind of

media computer-generated or manipulated using advanced methods like deep learning.

Deepfakes can be classified into five categories: entire face synthesis (e.g., GAN images),

attribute manipulation (e.g., changing hair or skin color, altering facial expression), face

swapping, facial reenactment, and speaking manipulation. We consider images, videos,

and audio with benign manipulations not to be deepfakes; such manipulations include

changing the contrast, brightness, or sharpness, slightly adding or removing benign noise,

and applying affine transforms. Detection of deepfake images, videos, and audio is called

“deepfake detection.”

Recent achievements have demonstrated that deepfakes can reach a photo-realistic level.

Thies et al. demonstrated that expression transfer for facial reenactment can be per-

formed in real time [17]. Kim et al. demonstrated the transfer of a head pose along

with facial movements from an actor to another person [84]. Similarly, Tripathy et al.

devised a lightweight face reenactment method using a GAN [85]. Nirkin et al. pre-

sented a face-swapping method that does not require training on new faces [86], unlike

early deepfake methods [7]. Thies et al. combined the traditional graphics pipeline with

learnable components to deal with imperfect 3D contents [18]. Besides facial reenact-

ment and face swapping, facial attributes such as skin and hair color, bangs, mustache,

glasses, and emotions can be modified by GANs [10, 11, 87].
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Work on deepfakes has gone beyond only the visual part. Suwajanakorn et al. presented

a method for learning the mapping between speech and lip movements in which speech

can also be synthesized, enabling creation of a full-function spoof video [12]. Fried et

al. demonstrated that speech can be easily modified in any video in accordance with

the intention of the manipulator while maintaining a seamless audio-visual flow [88].

Averbuch-Elor et al. addressed a different task – converting still portraits into motion

pictures expressing various emotions [13]. This work greatly simplified the requirements

for attackers: simply acquire a picture of the victim (usually a profile picture on a social

network or an ID photo). Zakharov et al. followed up by improving the quality of

videos generated using only a few input images [14]. Vougioukas et al. raised the bar

by introducing a method for animating a facial image from an audio track containing

speech [89].

2.6 Deepfake Detection

The handcrafted steganalysis-based method developed by Fridrich and Kodovsky [21]

was used in early efforts to detect deepfake images. Noise residuals extracted using

handcrafted linear and nonlinear high-pass filters are fed into an ensemble classifier. This

approach was later implemented in a CNN by Cozzolino et al. [90]. Transfer learning

is a common choice when a CNN pretrained on the ImageNet dataset [50] is used [23,

32]. Our previous work [32] used part of a pretrained VGG-19 network [51] as the

feature extractor for our modular network while Rössler et al. finetuned the XceptionNet

network [91] on a deepfake dataset. Afchar et al. utilized inception modules [92] to build

a lightweight network [22] while Wang et al. utilized a dilated residual network [93].

Bayar and Stamm presented a new convolutional layer that helps a CNN adaptively

learn manipulation detection features [94]. Zhou et al. proposed using a two-stream

network in which one stream takes RGB input and the other takes steganalysis features

and uses a triplet loss [30]. Dang et al.’s two-stream network [24] uses the RGB domain

while Qian et al.’s two-stream network [25] uses the frequency domain. Kim et al. used

knowledge distillation to improve the generalizability of detectors [34].

Videos provide more information than images for detection, especially when they contain

sound. Li et al. used eye blinking as a feature to detect deepfakes [26] while Agarwal

et al. used facial expressions and movements [27]. Sabir et al. used a recurrent neural
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network to additionally learn the temporal information [28]. Korshunov and Marcel used

several approaches for lip-syncing and dubbing detection to detect fake videos [29].

In addition to binary classification, another major branch in digital media forensics

is locating manipulated regions in images. Besides “pure” segmentation-based ap-

proaches [33, 95, 96], binary classification approaches using a sliding window to locate

manipulated regions are also applicable [23, 32]. From a different viewpoint, Li et al.

introduced a method called “face X-ray” to detect the blending boundary between real

and fake regions [97]. They noted that blending methods have not been advancing as

rapidly as manipulation methods; therefore, focusing on blending methods makes the

detector more robust against unseen manipulations.

2.7 Deepfake Datasets

Several standardized datasets have been constructed to support deepfake detection, as

shown in Table 2.1. The DeepfakeTIMIT [98] and the FaceForensics datasets [99] were

early datasets for deepfake detection. Besides the deepfake method [7], the FaceForen-

sics dataset included the Face2Face [17] and FaceSwap [23] methods. Subsequently, the

Neural Textures [18] and FaceShifter [100] methods were added to the FaceForensics

Table 2.1: Commonly used deepfake datasets

Dataset Year No. of
real videos

No. of
fake videos

No. of
faces/image

Manipulation
methods

DeepfakeTIMIT [98] 2018 320 320 1 Deepfake [7]
UADFV [26] 2018 49 49 1 Deepfake [7]

FaceForensics++
(FF++) [23, 99] 2019 1,000 5,000 1

+ Deepfake [7]
+ Face2Face [17]
+ FaceSwap [23]
+ NeuralTextures [18]
+ FaceShifter [100]

Google DFD [101] 2019 363 3,068 1 Deepfake [7]
Facebook DFDC [31] 2020 23,654 104,500 ∼ 1 Various
Celeb-DF [102] 2020 590 5,639 1 Deepfake [7]

DeeperForensics [103] 2020 1,000
(from FF++)

10,000
(augmented) 1 DeepFake-VAE [103]

WildDeepfake [104] 2020 0 707 1 No information
Face Forensics
in the Wild
(FFIW) [105]

2021 10,000 10,000 3.15
+ DeepFaceLab [106]
+ FaceSwap [23]
+ FaceSwap-GAN [107]

OpenForensics [5] 2021 45,473
(images)

70,325
(images) 2.90

+ Adversarial latent
autoencoder [108]

+ InterFaceGAN [109]
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dataset, forming the FaceForensics++ one [23]. Google contributed to the FaceForen-

sics++ dataset with the Google Deepfake Detection (DFD) dataset [101]. The Facebook

Deepfake Detection Challenge dataset (DFDC) [31] was the first large-scale dataset in

this area. The WildDeepfake dataset [104] is a challenging dataset containing vari-

ous deepfake videos created using unknown methods on the Internet. Unlike previous

datasets, which mainly had one face per video frame, the Face Forensics in the Wild

dataset [105] and the OpenForensics dataset [5] contain videos and images with around

three faces per frame or image. Additional datasets include the Albany Deep Fake Video

(UADFV) [26], Celeb-DF [102], and DeeperForensics [103] datasets.

2.8 Challenges in Deepfake Detection

There are several challenges in deepfake detection. Since deepfakes have altered faces,

most deepfake detection methods need to first detect and crop the face. The success

of this step depends on the performance of the face detection method. Most state-of-

the-art deepfake datasets have annotated face regions, so researchers may assume that

cropped faces are available without considering the face detector’s performance. Another

challenge is the generalizability of the detector when an advanced deepfake technique is

introduced. Moreover, a large amount of appropriate training data may not be available

when a new attack appears, so detectors using large networks may be difficult to train.

Another challenge is gaining user trust by convincing them to accept the detection

results. This requires visualizing the learned features and/or focused regions of the

detectors.

The performance of general CNNs can usually be improved by increasing their depth,

their width, and/or the number of inner connections. Multiple CNNs are commonly

used for deepfake detection, especially in competitions [31, 110]. Fusion is often used in

the multiple-CNN approach, including feature aggregation (feature fusion) and output

fusion (ensembling). Consequently, these networks get bigger with more parameters,

consuming more memory and computation power. Since a larger number of parameters

usually requires more training data, dealing with new attacks is difficult.
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3
Generating Master Faces to

Attack Face Recognition Systems

Chapter 3 introduces the method used to generate facial images for use in attacking

face recognition systems. It is GAN-based, as mentioned in the previous chapter, and

utilizes an evolutionary algorithm to generate master faces, i.e., faces that can match

the faces of different individuals.

3.1 Introduction

Biometric authentication systems may be vulnerable to presentation attacks [2] in which

a printed facial image of the victim (known as a presentation attack instrument, or PAI )

is displayed in front of the smartphone’s camera. The probability of a presentation attack

succeeding is higher if the PAI matches multiple enrolled templates. In the facial domain,

the creation of PAIs by blending together two or more faces is called face morphing [39].

The morphed face should match all source faces when used against a face recognition

(FR) system and possibly even fool a human observer. This ability has made morphing

a commonly used attack against automated border control systems in which the attacker

“borrows” the identity of the victim to enter or exit a location [39]. The face morphing
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Figure 3.1: Stages in master biometrics research. First stage was partial master
fingerprints as proposed by Bontrager et al. [76]. Next stage was our preliminary work
on master faces [74]. Our following stage builds upon previous work and introduces

extensions in algorithm, analysis, visualization, and test scenarios.

approach is limited by the requirement that target faces be available. Another approach

is to generate a “master biometric” sample [41, 74]–a kind of “wolf sample” that matches

multiple enrolled templates in a biometric recognition system [40]. This approach was

first developed by Bontrager et al. [41] for the fingerprint domain.

The stages in master biometrics research are shown in Fig. 3.1. Our contributions can

be summarized as follows:

• We are the first to generate master faces that can match multiple faces with dif-

ferent identities. This ability means that FR systems are vulnerable to a master

face attack. Unlike the face morphing approach, the attacker’s advantage in this

“master face” approach is that it does not require any information about the vic-

tim.

• We analyze the effect of using multiple databases (DBs) and/or multiple FR sys-

tems for the latent variable evolution (LVE) algorithm used to generate master

faces. Some DB/FR system combinations boosted overall attack performance

while others did not due to intra-component conflicts. Knowledge of the suc-

cessful combinations is critical to understanding under which conditions strong

master faces can be generated and to appropriately assessing the potential risks.
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Figure 3.2: Original master face generated using two face recognition systems (top
left) and its PAI forms printed on plain paper (top right), photo paper (bottom left),

and displayed on a 13-inch Apple MacBook Pro screen (bottom right).

• We introduce visualization in the face embedding (identity) space to obtain more

insights into master faces. The gained insights are valuable to improve the robust-

ness of the FR systems.

• To demonstrate the actual threat posed by the existence of master faces, we evalu-

ated master face attacks by performing presentation attacks using printed images

and the corresponding digital images displayed on a computer screen. Three of

the PAIs we used are shown in Fig. 3.2.

The rest of the chapter is organized as follows. First, we discuss the existence of master

faces and introduce an improved LVE algorithm using multiple databases and/or FR

systems in section 3.2. Our experiments are covered in two sections: we first discuss

generating master faces and their analysis in section 3.3, and then discuss using master

faces to perform presentation attacks in section 3.4. Next, in section 3.5, we discuss

ways to reduce the risk of master face attacks. Finally, we summarize the key points

and make some closing remarks in section 3.6.

3.2 Deep Master Faces

3.2.1 Existence of master faces

Before describing the proposed master face generation algorithm, we briefly explain

why master faces exist. For a typical FR system (or biometric recognition systems

in general), there are four phases (Fig. 3.3): pre-processing the input, extracting its

features, matching them with those of the enrolled subject(s) in the model database,

and making a decision. The feature extractor plays the role of a mapping function. It

maps the facial image domain to the identity domain. The objective when training the
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Master face (wolf)

Pre-
Processor

Feature
Extractor

Matcher

Model
Database

Decision
Maker

Match
No Match
Match

Enrollmnet

Verification /
Identification

1

2

3

1
2
3

Match with master face 3

Figure 3.3: Operation of typical FR system. There are two phases: enrollment (blue
path) and verification/identification (red path). The master face (face 3) was falsely

matched with the two faces of two enrolled subjects. Best viewed in color.

Figure 3.4: UMAP visualization of identity space containing embeddings of a master
face and of “match” and “no-match” faces of 18 enrolled subjects. For each cluster
(match or no match), symbols with the same color correspond to the same subject.

Best viewed in color.

feature extractor is to optimize the mapping function so that the mappings of the same-

identity faces are close together in the identity space and vice versa. Since this is an

optimization problem, the solution is simply an approximation. Furthermore, there is

no guarantee that the mapping function will work well on new data due to the possible

lack of generalizability.
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1st master face
Dev: 29.9%
Eval: 34.7%

2nd master face
Dev: 28.9%
Eval: 33.3%

1st closet real face
Dev: 16.9%
Eval: 19.5%

2nd closet real face
Dev: 12.4%
Eval: 15.9%

3rd closet real face
Dev: 9.0%
Eval: 10.4%

Figure 3.5: The first and second master faces generated using the LVE algorithm
and the three real faces closest to the first master face and their corresponding false
matching rate. The two master faces were generated using the training set of the LFW
- Fold 1 database and the Inception-ResNet-v2 based FR system trained on the CASIA-
WebFace database. The false matching rates were calculated on the development and

evaluation sets of the Labeled Faces in the Wild (LFW) - Fold 1 database.

Master faces may exist because the identity (embedding) space used by FR systems

is not uniformly distributed, resulting in dense areas in this space. If we generate an

identity corresponding to a point in a dense area, it may falsely match several nearby

faces in the identity space. The LVE algorithm aims to find such a position in a dense

area in the identity space after several evolutions. To intuitively and empirically show

this, we visualize the identity space and one of the master faces generated in this work

using uniform manifold approximation and projection (UMAP) [111] in Fig. 3.4. The

master face generated by our algorithm (described in the next section) is at such a

position (red dot) surrounded by many embeddings. All faces from these surrounding

embeddings are falsely matched with the master face by the FR system. The no-match

embeddings are scattered far from the master face and lie in less dense areas. We explain

how to generate such master faces in the next section.

To verify our hypothesis of dense areas in the identity space, we searched for the real faces

that were closest to a generated master face and checked whether they had wolf charac-

teristics like this master face. These real faces were chosen from the facial database used

to generate the master face. We used the cosine distance between two embeddings for

selection. The result, which is shown in Fig. 3.5, confirms our hypothesis. However, the

real wolf faces had lower false matching rates (FMRs) than the master faces. Therefore,

using synthesized master faces rather than real faces to carry out wolf attacks should

increase the success rate.
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Style-
GAN Database 1

Face
recognition

system 1

Mean 
scoresCMA-ES

Latent vectors

Face
recognition

system 2
Database 2

Figure 3.6: Overview of extended latent variable evolution algorithm. Latent vectors
are fed into StyleGAN [9] to generate facial images. One or more surrogate FR sys-
tem(s) then calculates mean score for each image on the basis of the subjects in one or
more database(s). For example, for the combination 3 setting described in Table 3.3,
database 1 is LFW - Fold 1, database 2 is MOBIO, FR system 1 is Inception-
ResNet-v2 network (trained on MS-Celeb database), and FR system 2 is DR-GAN
network. The CMA-ES [75] algorithm uses these scores to generate new latent vectors.

3.2.2 Latent variable evolution with multiple databases and/or face
recognition systems

We use more than one database and/or FR system to generate master faces, which

requires support from the LVE algorithm. The extended LVE algorithm is illustrated

in Fig. 3.6 and is formalized in Algorithm 1. First, m latent vectors {z1, ..., zm} are

initialized randomly. They are then fed into a pretrained StyleGAN network to generate

m faces. Two face matching functions, FaceMatching(1)(·, ·) and FaceMatching(2)(·, ·)

(corresponding to two FR systems), calculate the similarity between the generated faces

and all subject faces in databases E(1)
j and E

(2)
j , respectively. Two m-dimension mean

score vectors, s(1) and s(2), are obtained from the results of FaceMatching(1)(·, ·) and

FaceMatching(2)(·, ·). The mean s of these two vectors is used to select the best local

master face Fb among the m generated faces. Finally, s is fed into the CMA-ES algorithm

to generate new latent vectors {z1, ..., zm}. This process is repeated n times. The final

(global) best master face is chosen from among the n best master faces F obtained in

the n iterations.

To generate another master face, all faces matching the previously generated master

face(s) in the training database(s) need to be removed, as shown in Algorithm 2. This

prevents the new master face from overlapping the previous master face(s). An example

of a second master face is shown in Fig. 3.5 along with the first master face, the real
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wolf face, and their corresponding FMRs The FMR of the second master face is lower

than that of the first one, and this usually holds for any subsequent master faces.

Algorithm 1 Latent variable evolution.
m← 22 . Population
procedure RunLVE(m,n)
F = {} . Master face set
S = {} . and corresponding score set
Z = {z1 ← rand(), ..., zm ← rand()} . Initialize
for n iterations do . Run LVE algorithm n times

F ← StyleGAN(Z) . Generate m faces F
s(1) ← 0, s(2) ← 0 . Initialize scores s(1), s(2) ∈ Rm
for face Fi in faces F do

for face E(1)
j in data E(1) do

s
(1)
i ← s

(1)
i + FaceMatching(1)(Fi, E(1)

j )

s
(1)
i ←

s
(1)
i

|E(1)| . Mean scores of 1st system

for face E(2)
j in data E(2) do

s
(2)
i ← s

(2)
i + FaceMatching(2)(Fi, E(2)

j )

s
(2)
i ←

s
(2)
i

|E(2)| . Mean scores of 2nd system

si = s
(1)
i +s(2)

i
2 . Mean scores of both systems

Fb, sb ← GetBestFace(F, s)
F ← F ∪ {Fb} . Append best master face
S ← S ∪ {sb} . and its corresponding score
Z ← CMA ES(s)

return F ,S
Fb, sb ← GetBestFace(F ,S) . Final (best) master face

Algorithm 2 Database refining.
M = {M1, ...,Mn} . Previous master faces
procedure Refine Database(M, E)

E′ = {} . Initialize refined database
for face Ei in data E do

keep ← true
for face Mj in M do

if isMatch(Ei, Mj) is true then
keep ← false

if keep is true then
E′ ← E′ ∪ {Ei}

return E′
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3.3 Generating Master Faces

To evaluate the risks and threats of a master face attack, we designed several settings

for the LVE algorithm and several attack scenarios that cover white-box, gray-box, and

black-box attacks. For white-box attacks, both the architecture of the target FR system

and its training database are known while for gray-box attacks, only one of them is

known. For black-box attacks, there is no information about the target FR system.

Attackers may use more than one FR system for the LVE algorithm to increase the

probability of their attack being a white-box or gray-box attack. They can also use

more than one database for the LVE algorithm to better approximate the distribution

of the model database of the target FR system.

This section is organized as follows: We first briefly describe the FR systems and the

databases we used in our experiments. Then, we describe our generation of master faces

using several combinations of single and multiple FR systems with single and multiple

facial databases when running the LVE algorithm. Next, we analyze the generation

processes and the generated master faces as well as explain their properties. Finally,

we evaluate the false matching performance of the generated master faces for several

scenarios, including black-box, gray-box, and white-box attacks.

3.3.1 Experiment materials

3.3.1.1 Face recognition systems

We used five mainstream publicly available high-performance FR systems in our exper-

iments:

• Inception-ResNet-v2 based FR systems: one trained on the CASIA-WebFace database [45]

and one trained on the MS-Celeb database [46] by de Freitas Pereira et al. [47].

• Open-source version of FaceNet [48] implemented and trained on the MS-Celeb

database [46] by Sandberg [55].

• DR-GAN [57] trained on a combination of the Multi-PIE database [112] and the

CASIA-WebFace database [45].
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Table 3.1: Details of all databases used in our experiments.

Database Year No. of images Resolution
Flickr-Faces-HQ [9] 2019 70,000 1024 × 1024
CASIA-WebFace [45] 2014 494,414 256 × 256
MS-Celeb [46] 2016 10,490,534 Up to 300 × 300
Multi-PIE [112] 2009 755,370 3072 × 2048
LFW [114] 2007 13,233 Various
MOBIO [116] 2012 30,326 Various
IJB-A [117] 2015 5,712 Various

• ArcFace [49] trained on the MS-Celeb database [46].

We used the two Inception-ResNet-v2 based FR systems and DR-GAN for generating

master faces and all of the FR systems for evaluating master face attacks1. All FR

systems were pretrained and obtained from the Bob toolbox [113].

3.3.1.2 Databases

Seven databases were used for four different purposes:

• Training StyleGAN: Flickr-Faces-HQ (FFHQ) database [9].

• Training FR systems: CASIA-WebFace [45], MS-Celeb [46], and Multi-PIE [112].

• Running LVE algorithm: Training set of LFW - Fold 1 database [114] aligned by

funneling [115] and both male and female components of training set of MOBIO

database [116].

• Evaluating master faces: Corresponding development (dev) and evaluation (eval)

sets of LFW database [114] and MOBIO database [116] plus dev set of IARPA

Janus Benchmark A (IJB-A) database [117]2. The dev sets were used for threshold

selection for the FR systems (which was based on the calculated equal error rates).

Details of all databases are shown in Table 3.1. There are no overlapping subjects

between the databases used for training StyleGAN, training the FR systems, and running

the LVE algorithm. This point is important to demonstrate that the LVE algorithm can

work well with mutually exclusive databases used by its components.
1Benchmarks for some of the systems can be found at https://www.idiap.ch/software/bob/docs/

bob/bob.bio.face ongoing/v1.0.4/leaderboard.html
2There is no eval set for the IJB-A database.
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FFHQ

0 - 10 11 - 20 21 - 30
31 - 40 41 - 50 51 - 60
61 - 70 71 - 80 Over 80

CASIA-WebFace

0 - 10 11 - 20 21 - 30
31 - 40 41 - 50 51 - 60
61 - 70 71 - 80 Over 80

MS-Celeb

0 - 10 11 - 20 21 - 30
31 - 40 41 - 50 51 - 60
61 - 70 71 - 80 Over 80

LFW - Fold 1

0 - 10 11 - 20 21 - 30
31 - 40 41 - 50 51 - 60
61 - 70 71 - 80 Over 80

MOBIO

0 - 10 11 - 20 21 - 30
31 - 40 41 - 50 51 - 60
61 - 70 71 - 80 Over 80

MS-Celeb 0 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
Over 80

Figure 3.7: Estimated age distribution of five databases used for training StyleGAN,
FR systems, and generation of master faces. Best viewed in color.

FFHQ

Male Female

CASIA-WebFace

Male Female

MS-Celeb

Male FemaleLFW - Fold 1

Male Female

MOBIO

Male Female

MS-Celeb

Male
Female

Figure 3.8: Estimated gender distribution of five databases used for training Style-
GAN, FR systems, and generation of master faces. Best viewed in color.

We used the InsightFace library3 to estimate the age and gender distributions of the

databases used for training StyleGAN and the FR systems and for generating master

faces. For the MOBIO database, we used its annotated gender information. We ignored

the Multi-PIE database since it contributes only as an additional part of the database

for training the DR-GAN FR system. The estimated distributions are shown in Fig. 3.7

and Fig. 3.8 respectively. The ages are dominantly 21 to 40, especially in the CASIA-

WebFace, MS-Celeb, and MOBIO databases. The LFW - Fold 1 database is more

balanced with a larger proportion of 41 to 60 ages. There are tiny numbers of child

faces in all databases except for the MOBIO one, which has none. For gender, there are

more male than female faces in all databases. The LFW - Fold 1 and MOBIO databases
3https://github.com/deepinsight/insightface

30

https://github.com/deepinsight/insightface


Generating Master Faces

are the most unbalanced, with less than 25% female faces. This may cause bias in the

FR systems as well as affect the properties of the generated master faces, as explained

in the following section.

3.3.2 Latent variable evolution configurations

Since there are many FR systems and databases, evaluating all possible combinations

is impossible with the available computation and time resources. We thus selected a

subset with the aim of covering a range as broad as possible. We defined eight settings

(Table 3.2) for the LVE algorithm using three FR systems (two versions of Inception-

ResNet-v2, one trained on the CASIA-WebFace database and one trained on the MS-

Celeb one, and DR-GAN) and two databases (LFW - Fold 1 and MOBIO). There are

five settings in which one FR system and one database are used (single 1 to single 5 ) and

three settings in which more than one FR system and/or database is used (combination

1, combination 2, and combination 3 ).

Each combination setting combined two single settings and was selected on the basis

of its reasonable coverage of cases. The main differences among the three combination

settings are highlighted in Table 3.3. In the combination 1 setting, only one database

was used with the LVE algorithm, and the databases used for training the FR systems

were similar. In the combination 2 setting, two databases were used with the LVE

algorithm, and two FR systems with the same architecture but trained on different

databases were used. In the combination 3 setting, two databases and two FR systems

without anything in common were used with the LVE algorithm. We ran 1000 iterations

of the LVE algorithm for each of the eight settings.

The generated master faces corresponding to the eight settings are shown in Fig. 3.9. All

of them are male faces. One-fourth are child faces, generated using only the Inception-

ResNet-v2 based FR system trained on the MS-Celeb database. Half are elder faces

generated using only the Inception-ResNet-v2 based FR system trained on the CASIA-

WebFace database or only the DR-GAN FR system trained on the combination of the

CASIA-WebFace and Multi-PIE databases, or a combination of these two FR systems.

The rest (one-fourth) are middle-aged faces, generated using the combinations of the

two FR systems in the previous two cases (one in each case).
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Table 3.3: Comparison between three combination settings for LVE algorithm. For
FR systems, we compared their architectures and their training databases.

Setting Database 1 vs.
Database 2

FR System 1 vs.
FR System 2

Architectures Training DBs
Combination 1 Same Different Similar
Combination 2 Different Same Different
Combination 3 Different Different Different

Single 1 Single 2 Single 3 Single 4

Single 5 Combination 1 Combination 2 Combination 3

Figure 3.9: Master faces generated using eight settings specified in Table 3.2.

3.3.3 Running latent variable evolution

To understand what happened while running the latent variable evolution algorithm, we

performed the T-SNE visualization [118] of the embeddings of the intermediate master

faces generated using the single 1 setting. The result is shown in Figure 3.10. Initially,

the CMA-ES algorithm was unsure about the optimal direction. After finding some

clues, it began generating master faces that jumped around the best master face (the

red dot) and came closer and closer to it.

We tried to match the obtained master face generated using the single 1 setting with all

enrolled faces in the dev and eval sets of the LFW - Fold 1 database. A score histogram

for the master face is plotted in Figure 3.11 along with those for the genuine faces

and the zero-effort imposter faces from the original test design of the database. The

master face scores moved away from the zero-effort imposter scores in the direction of

the genuine face scores with about 30–35% overlap. This means that the master face

matched 30–35% of the enrolled faces, which is significant.
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Begin

EndBest

Figure 3.10: T-SNE visualization of master faces obtained every 20 iterations (1000 in
total) on LFW - Fold 1 database [114]. Green dot represents master face at beginning;
it is connected by dashed lines with intermediate master faces (black dots) that end at
blue dot. Red dot represents best master face, created at 989 th iteration; therefore, it

does not overlap any black dot.

Figure 3.11: Histogram of scores for genuine faces, zero-effort imposter faces, and
master face generated using LFW - Fold 1 database [114] calculated using Inception-

ResNet-v2 based FR system [52].
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Figure 3.12: Master face (top left) generated using combination 1 setting and all
matched faces from eval set of the LFW - Fold 1 database [114] sorted from closest to

farthest match. Inception-ResNet-v2 based FR system [47] was used in this case.

3.3.4 Master face analysis

The master face generated using the combination 1 setting and the faces it matched

using the Inception-ResNet-v2 based FR system [47] on the eval set of the LFW - Fold 1

database [114] are shown in Fig. 3.12. The master face matched those of persons of both

genders, of multiple races (White, Black, and Asian), and of multiple ages (from children

to elders). In many cases, the facial angles and lighting conditions differed from those of

the master face. The subjects are both wearing and not wearing glasses (eyeglasses or

sunglasses). A typical master face can match about 10 to 50 identities. Since the LFW

database is unbalanced (as shown in Figs. 3.7 and 3.8), a large portion of the matched

faces are male. Furthermore, since the master face falls in the elder cluster (discussed

below), most of the matched faces are those of elders.

To better understand these results, we ran the uniform manifold approximation and

projection (UMAP) dimension reduction algorithm on the embedding spaces of three
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FR systems and then applied a kernel density estimation method to the reduced spaces

to form the density maps. We did that from both age and gender perspectives. We

used two Inception-ResNet-v2 based FR systems (CASIA-WebFace version and MS-

Celeb version) and the ArcFace FR system to perform the embedding space density

estimation. Among them, the two Inception-ResNet-v2 FR systems were used on both

the attacker side and the defender side while the ArcFace FR system was used only on

the defender side. The estimated densities are shown in Fig. 3.13. We also included the

positions of the intermediate master faces’ and the optimized master faces’ embeddings

in the plots.

From the age perspective, young faces (less than 30 years old) are separated from the

elder faces (more than 60 years old), while the remaining faces (30 to 60 years old)

are scattered throughout both the young and elder faces. From the gender perspective,

the male and female faces are somewhat separated. To maximize the false matches,

the LVE algorithm placed the master face in a dense area near the border of a cluster,

which increased the probability of matching diverse faces. Since there are more male

than female faces in all databases, the probability of placement in a dense area in the

male cluster was higher than that of placement in the female one. However, since they

were only somewhat separated, the master faces could match both male and female faces

(with more male face matches, as shown in Fig. 3.12).

For age, the selected dense area could be in a young cluster, a middle-aged cluster, or

a elder cluster. Since the training data for the FR systems was unbalanced in terms of

age with only a few samples for young and elder faces, these systems may not accurately

recognize young and elder faces. The CASIA version of the Inception-ResNet-v2 based

FR system may perform poorly on elder male faces, resulting in the generation of elder

male master faces. Interestingly, the master face generated using the combination 1

setting also lies at the centroid of the ArcFace FR system, which is used only on the

defender side. For this case, dense areas also exist even if we use the angular margin

loss in training.

On the other hand, the MS-Celeb version of the Inception-ResNet-v2 based FR system

performed poorly on young male faces, resulting in the generation of boy master faces.

For combination 2 (not fully shown in Fig. 3.13 due to limited space), we observed that

the 30- to 60-year-old faces were scattered in the embedding spaces of both of these FR
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Master face: Single 1
FR: Inception-ResNet-v2 (CASIA-WebFace)
DB: LFW – Fold 1

Master face: Single 4
FR: Inception-ResNet-v2 (MS-Celeb)
DB: LFW – Fold 1

Master face: Single 3
FR: Inception-ResNet-v2 (MS-Celeb)
DB: MOBIO

Master face: Combination 1
FR: ArcFace (MS-Celeb)
DB: LFW – Fold 1

Figure 3.13: Estimated densities of ages (rows 1, 2, and 4) and genders (row 3) of
embedded faces extracted by Inception-ResNet-v2 based FR systems trained on CASIA-
WebFace database (row 1) and MS-Celeb database (rows 2 and 3) and by ArcFace
FR system (row 4). Plots on left show estimated densities per class while those on
right show estimated densities of all embeddings. Two Inception-ResNet-v2 based FR
systems were used on both attacker and defender sides while ArcFace system was used
only on defender side. We also included the embeddings of five intermediate master faces
generated during running of LVE algorithm (blue dots) and of optimized master face
(red dot). These embeddings were extracted from the entire training set of the LFW -
Fold 1 database (rows 1, 2, and 4) and of the MOBIO database (row 3). Corresponding
LVE settings (see Table 3.2 for more detail) used to generate master faces are shown
in figures on left, along with information about target FR system (denoted as FR) and

database (denoted as DB). Best viewed in color.
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Chapter 3. Generating Master Faces to Attack Face Recognition Systems

Figure 3.14: Two female master faces generated using only female part of MOBIO
database and Inception-ResNet-v2 based FR system (MS-Celeb version) and DR-GAN

FR system, respectively.

systems; it seems that an “average” middle-aged face is the optimal solution according

to the proposed LVE algorithm. To further verify the effects of the clusters on the

properties of the master faces, we generated two master faces using only the female part

of the MOBIO database and the Inception-ResNet-v2 FR system (MS-Celeb version)

and the DR-GAN FR system. Both master faces are female, as shown in Fig 3.14.

3.3.5 False matching rate analysis

Next, we evaluated the performances of attacks using master faces. The greater the

number of enrolled subjects that match the generated master face, the higher the FMR.

Hence, we compared the FMRs between two tests:

• Normal test: One side of the test pairs included either a genuine or zero-effort

imposter face defined by the test protocols of the database used.

• Master face test: The master face was paired with the faces of all the enrolled

subjects.

First, we show how the FMRs measured on the master face set changed during the

LVE optimization. As shown in in Fig. 3.15, the FMRs became higher in six of the eight

settings. For the two remaining settings (combination 2 and 3 ), the FMR of one of their

component FR systems also became higher while that of the other one remained almost

zero. In these two cases, two different databases were used with the LVE algorithm,

and the algorithm tried to maximize the similarities between the master face and all

faces in database 1 as calculated by component FR system 1 as well as to maximize

the similarities between the master face and all faces in database 2 as calculated by

component FR system 2. This task is difficult, even if the two FR systems share the
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Combination 2 setting Combination 3 setting

Five single settings Combination 1 setting

Figure 3.15: FMRs of each FR system when running the LVE algorithm using five
single settings and three combination settings. There are two Inception-ResNet-v2 (IR-
v2) FR systems, one trained on CASIA-WebFace database and one trained on MS-Celeb
database. We included intermediate master faces generated using three single settings

1, 2, and 3, and three combination settings. Best viewed in color.

same architecture, as they do in the combination 2 setting. Since the LFW and MOBIO

databases have different distributions, finding a master face that matches the face of

many subjects in both of them is challenging. The LVE algorithm focused on only one

database (the LFW database) and ignored the other (the MOBIO database, which has

higher variability in terms of pose and illumination conditions than the LFW database).

Moreover, the Inception-ResNet-v2 based FR system trained on the MS-Celeb database

was harder to fool when it was run with the LVE algorithm compared with its CASIA-

WebFace version. In contrast, although two FR systems were used in the combination 1

setting, they shared the same database, so the algorithm was able to fool both of them.
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Two rules for designing settings for the LVE algorithm can be inferred from these results:

• Using more than one database for running the LVE algorithm is difficult as the

algorithm may prioritize the database that is less challenging.

• Using more than two FR systems is OK. They can have the same or different

architectures, trained on similar or different databases.

Table 3.4 shows the FMRs for the normal tests and the corresponding master face tests

using master faces generated using five single settings and three combination settings.

Each cell has four numbers, the FMRs for the normal test (upper part) and the master

face test (lower part), from the development set (left) and the evaluation set of the target

database (right). Gray cells indicate that the surrogate database(s) used by attackers

when running the LVE algorithm and the target database(s) were different while gray

cells indicate that they were the same. Numbers in bold indicate successful master face

attacks. There are several observations regarding the FMRs of the attacks using the

master faces generated using the single and combination settings shown in Table 3.4 in

connection with the FMR curves shown in Fig. 3.15:

• All FR systems are vulnerable to master face attacks. Some systems are easier to

fool than others.

• With the combination 1 setting, the master face had the attack abilities of the

master faces generated using the corresponding single settings (single 1 and single

2 ). In this case, there was no conflict.

Table 3.5: Summary of successful attack ratios using five single settings and three
combination settings. Numerators are number of successful attacks; denominators are
total number of attack cases. Note that for combination 3, some attacks fall into two
settings: “Same Arch. - Different DB” and “Different Arch. - Same DB.” Numbers for

overlapped cases are shown red inside parentheses.

Target FR
(Architecture - Training DB)

Single Settings Combination Settings
Known

target DB
Unknown
target DB

Known
target DB

Unknown
target DB

Same Arch. - Same DB 7/10 6/15 10/20 3/10
Same Arch. - Different DB 0/6 1/9 3/6 (3/4) 0/4 (0/1)
Different Arch. - Same DB 4/14 3/21 3/24 (3/4) 0/6 (0/1)
Different Arch. - Different DB 2/20 1/30 2/4 0/6

Overall success ratio
0.26 0.15 0.30 0.12

0.19 0.24
0.21
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Chapter 3. Generating Master Faces to Attack Face Recognition Systems

• With the combination 2 and combination 3 settings, in which conflict occurred,

their master faces were lacking some attack abilities of the master faces generated

using the corresponding single settings. This is clearly seen for the combination 2

setting, for which six attacks that were successful in the single settings failed.

• With the combination 3 setting, for which the two component databases and FR

systems differed, five attacks that had been successful were no long successful, and

there were six newly successful ones. Moreover, the FMRs of the successful attacks

were not as high as the those of the single setting. Although conflict still occurred

in this case, it was less severe than in the combination 2 setting.

The above observations provide valuable clues for effectively designing the LVE algo-

rithm. Using only one database is a safe way to avoid conflicts when running the LVE

algorithm. Although there negative side effects due to conflicts, using both different

databases and different FR systems may result in unpredictable successful attacks when

the single setting fails.

Table 3.5 summarizes the number of successful attacks using both single and combination

settings. An attack is successful if the master face’s FMR is higher than the normal test

set’s FMR. Recall that there were five single settings and three combination settings.

Moreover, the combination settings used more than one database and/or one FR system,

and there were only three databases and five FR systems used for evaluation. As a result,

the total number of black/gray-box attacks (attacks on different architecture, different

database) with these settings was less than that of attacks with the single settings.

The overall success ratio of master face attacks was 21%. White-box attacks had the

highest success ratios, followed sequentially by gray-box and black-box attacks. The

success rate for the combination settings (24%, overlapped cases removed) is higher

than that for the single settings (19%). This means that, although the generation

process is more difficult for the combination settings, when the attacks are successful,

the master faces have stronger attack ability. Regarding black-box attacks (both target

database and FR system are unknown), since we had only a limited number of scenarios

(6 in total for combination settings compared with 30 for single settings), it is hard

to conclude whether master faces generated using combination settings can successfully

perform black-box attacks. The main point of using a combination setting is to increase
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Presentation Attacks

the chance of an attack being a gray-box or white-box (if lucky) attack by using multiple

databases and FR systems for guessing and approximating the target system.

In reality, attackers can mix several databases to create a single large database with

increased generalizability. There are not many public FR system architectures; there-

fore, attackers can prepare in advance several master faces for each one using a mixed

database.

3.4 Presentation Attacks

Finally, we evaluated the risk and threats of presentation attacks using master faces

on FR systems. For master face candidates, we chose one generated using the single

2 setting and another generated using the combination 1 setting. For digital attack

candidates, we chose two attack scenarios in the IJB-A database [117] in which the two

master faces were falsely accepted by the Inception-ResNet-v2 based FR system [47]

(CASIA-WebFace version) and the DR-GAN FR system [57]. We compared the FMRs

of these two digital attacks with those of the corresponding presentation attacks.

3.4.1 Experiment design

To simulate simple presentation attacks like the one shown in Fig. 3.16, we needed to

prepare PAIs and cameras. For the PAIs of each of the two selected master faces, we

used three kinds of materials:

• Color photos printed on plain A4 paper.

• Color photos printed on 127 mm × 178 mm photo paper.

Camera

PAI

FR system Match
No Match

Model
Database

Figure 3.16: Overview of presentation attack on FR system.
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• Color photos displayed on the screen of an Apple 13-inch MacBook Pro 2017.

For the cameras, we used two types:

• the rear camera in an iPhone XR.

• a Canon EOS 60D DSLR camera with a Canon EF 40mm F2.8 STM lens.

For simplicity, we used these cameras to take photos of the PAIs under normal room

conditions. We adjusted the position of the cameras such that they were relatively

perpendicular to the surface of the PAIs so they could capture the displayed PAIs as

much as possible without loosing any contents. This condition is close to that of real-

world presentation attacks. Three example PAIs are shown in Fig. 3.2.

3.4.2 Results

The FMRs of the attacks using PAI master faces are shown in Table 3.6 along with

those of attacks using digital master faces and those of the normal dev set of the IJB-A

database. The attacks were successful in 19 of the 24 cases, demonstrating that PAI

master faces can be effective in real-world attacks. In eight cases, the FMRs were higher

Table 3.6: FMRs of master face PAI attacks on dev set of IJB-A database [117]
using two settings: Single 2 and combination 1. First line in each row shows result for
Inception-ResNet-v2 based FR system [47] trained on CASIA-WebFace database, and
second line shows result for DR-GAN FR system [57]. Numbers in bold font indicate
successful attacks although there was degradation in the FMR in some cases. Numbers
in red indicate the increment of the FMRs in the presentation attack compared with

those in digital attacks.

Camera Plain Paper Photo Paper MacBook
Screen

Digital
Master

Face

Normal
Dev Set

Setting: Single 2

iPhone XR 17.9 (+2.7) 15.2 ( 0.0) 13.4 (−1.8) 15.2 10.1
18.8 (+2.7) 11.6 (−4.5) 19.6 (+3.5) 16.1 10.8

Canon 60D 17.9 (+2.7) 18.8 (+3.6) 19.6 (+4.4) 15.2 10.1
20.5 (+4.4) 11.6 (−4.5) 15.2 (−0.9) 16.1 10.8
Setting: Combination 1

iPhone XR 18.8 (−1.7) 19.6 (−0.9) 15.2 (−5.3) 20.5 10.1
13.4 (−4.5) 11.6 (−6.3) 8.9 (−9.0) 17.9 10.8

Canon 60D 17.9 (−2.6) 19.6 (−0.9) 20.5 ( 0.0) 20.5 10.1
13.4 (−4.5) 8.0 (−9.9) 18.8 (+0.9) 17.9 10.8
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than those of attacks using digital master faces. This is attributed to the distribution

of PAI master faces being closer to the distribution of faces in the facial databases

(which contain faces also captured with a camera) thanks to the camera processing. The

lower rate in the other cases is attributed to artifacts from the PAI materials playing a

bigger role than the effect of the camera processing. All of the PAI attacks using plain

paper were successful while seven of the eight PAI attacks using a computer screen were

successful. The attacks using photo paper, which easily reflects light, had the worst

performance. Those using photos taken with the iPhone camera were more successful

than those using ones taken with the Canon camera. This is attributed to the Canon

camera being able to capture more detailed PAI artifacts.

3.5 Defense Against Master Face Attacks

What is the main problem of existing FR systems that causes the existence of master

faces? We hypothesized that it comes from the distributions of the embedding spaces

where the extracted features are not well distributed. This results in the formation of

clusters, not only multi-identity clusters but also age and gender ones. There are two

possible origins of this problem: (1) the training data and (2) the objective function

design. Regarding the training data, as shown in Figs. 3.7 and 3.8, the training data

was unbalanced in terms of age and gender. This could affect the distribution of the

embeddings for which the FR systems discriminate faces in the majority group better

than in the minority one. For example, the 30-60 year-old face embeddings were scattered

more uniformly than the others, as shown in Fig 3.13.Simply enlarging the database

has a certain effect on the robustness of the FR systems (the MS-Celeb version of the

Inception-ResNet-v2 based FR system had fewer successful master face attacks than the

CASIA-WebFace version); however, they are still vulnerable. It is thus important to

balance the training data.

Regarding the objective function design, the objective functions are mainly designed so

that same-identity embeddings stay close together while different-identity ones stay far

apart. The introduction of the angular margin loss [49] improves this ability while the

uniform loss [58] forces the embeddings to be uniformly distributed. Although these

improvements reduce the risk of master face attacks, they mainly focus on identity.

Since gender, age, and race are also important [119], the attack is successful in some
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cases. This suggests that the design of the objective functions used for training the FR

systems needs further improvement.

Beside harnessing FR systems, using master face detectors could mitigate master face

attacks. Since master faces are generated using a GAN, GAN image detectors [120–122]

or deepfake detectors [123] could be used to detect them. Although looking realistic

from the human perspective, computer-generated images have different properties than

natural ones captured by cameras. Some GAN artifacts may exist in the generated

images; therefore, most GAN image detectors focus on detecting their presence. We

could also integrate a presentation attack detector [123] with an FR system to prevent

master face attacks as well as other traditional presentation attacks using images or

videos of the victims. However, generalization of these detectors is still a huge challenge.

The StyleGAN used in the LVE algorithm could be replaced with a more advanced facial

generator to fool fake image detectors. Although some degree of generalizability has been

achieved, performance is still not good enough for real-world applications. Therefore,

further research on generalizability is needed.

3.6 Conclusion

We demonstrated, especially in our presentation attack experiment, that master face

attacks pose a severe security threat if the FR systems are not properly protected. Our

intensive evaluation of the performance of the LVE algorithm using several settings,

including both single and combination settings, has brought to light several properties

of master faces as well as of the LVE algorithm. Some of the combination settings caused

intra-component conflicts while others produced interesting positive results. Being aware

of the existence of master faces and their properties is critical to improving the robustness

of FR systems. Combining the use of an FR system with a well-designed objective

function trained on a large balanced database with a fake image detector could mitigate

master face attacks. Since digital attack detectors (GAN image detectors and deepfake

detectors) and presentation attack detectors still have difficulty with generalization and

since master face attacks continue to improve, these attacks cannot be taken lightly.

Future work will focus on designing a better method to generate master faces and one

to detect master face attacks.
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4
Deepfake Detection

This chapter and the following chapter aim to deal with deepfakes, i.e., images and

videos generated or manipulated by computers, including deep master faces. In this

chapter, we introduce a novel deepfake detection network called “Capsule-Forensics,”

which overcomes two of the limitations of traditional CNNs.

4.1 Introduction

To deal with the rapid growth of deepfake methods, several countermeasures have been

developed to detect deepfake images and videos. Automatic feature extraction using

CNNs has dramatically improved detection performance [22, 23, 28]. Several methods

are image-based [22, 23, 30] while others work only on videos [26–28] or on video with

voice [29]. Although some video-based methods perform better than image-based ones,

they are only applicable to particular kinds of attacks. For example, some of them [26, 27]

may fail if the quality of the eye area is sufficiently good or the synchronization between

the video and audio parts is sufficiently natural [124]. In this chapter, we limit our scope

to image-based methods since our aim is to build a general detector that can work with

both generated/manipulated images and videos and does not rely on any particular kind

of attack.
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Conventionally, the performance of a CNN can be improved by increasing its depth [42],

its width [43], and/or the number of inner connections [44]. Another solution is to

use multiple CNNs as is done in Zhou et al.’s two-stream network [30] or to use

feature aggregation (feature fusion) or output fusion (ensemble). The fusion approach

has been used in several competitions [31, 110]. This approach not only improves network

performance on seen data but also improves network performance on unseen data. This

has resulted in CNNs and groups of CNNs becoming bigger and thus consuming more

memory and computation power. Moreover, they may need more training data, which

are not always available when new attacks emerge. Rather than making the network

bigger, we took a different approach: redesign it to make it more efficient in memory

usage, detection accuracy, and generalization.

We introduce “Capsule-Forensics” [125], a proof-of-concept capsule network [126] de-

signed especially for detecting manipulated images and videos. We hypothesize that the

special design of the network makes it better able to detect deepfakes than a correspond-

ing CNN while keeping the network smaller. This special design includes:

• A feature extractor, which is part of a pretrained image classification CNN, pre-

vents the network from overfitting and improves its performance on both seen and

unseen attacks.

• A statistical pooling layer, which is used in each primary capsule of the network,

greatly reduces the number of parameters compared with the original capsule net-

work while improving performance on deepfake detection.

• A dynamic routing algorithm produces better fusion than the traditional feature

aggregation approach.

To sum up, our contribution is four-fold:

1. We propose “Capsule-Forensics”, a novel designed deepfake detection network that

focuses on efficiency and memory usage.

2. We provide a theoretical explanation of the Capsule-Forensics network on deep-

fake detection by verifying our hypothesis that its special design is the reason it

performs better than the corresponding CNN version.
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3. We visualize the activation of each primary capsule as well as the routing weights

and thereby clarify which kind of information these capsules learn and how they

agree on the final decision of the entire network. This is a step towards explain-

ability of the Capsule-Forensics network.

4. We introduce small deepfake detection benchmarks that focuses on detection per-

formance, number of parameters, and inference time for both seen and unseen

data.

The rest of this chapter is structured as follows. We first briefly introduce the capsule

networks and our reason of choosing this kind of architecture for deepfake detection.

Next, we describe the proposed Capsule-Forensics network. We also visualize the fea-

tures the Capsule-Forensics network learns to understand the differences between it and

a conventional capsule network, which learns the hierarchical relationships between ob-

ject parts. Then, we describe several experiments we performed to test our hypothesis

that the special design of the network makes it better able to detect deepfakes than a cor-

responding CNN while keeping the network smaller. Finally, we conclude by discussing

the meaning of our results and mentioning future work.

4.2 Capsule Networks

4.2.1 Original capsule network

“Capsule network” is not a new term as it was first introduced in 2011 by Hinton et

al. [127]. They argued that CNNs have limited ability to learn the hierarchical rela-

tionships between object parts and introduced a more robust architecture comprising

several “capsules.” However, they initially faced the same problem affecting CNNs –

limited hardware performance – and the lack of effective algorithms, which prevented

practical application of capsule networks. CNNs thus remained dominant in this research

field.

These problems were overcome when the dynamic routing algorithm [126] and its vari-

ant – the expectation-maximization routing algorithm [128] – were introduced. These

breakthroughs enabled capsule networks to achieve better performance and outperform

CNNs on object classification tasks [126, 128–131]. The agreements between low- and

49



Chapter 4. Deepfake Detection

Capsule-
Forensics

Pre-
processing

Post-
processing

Figure 4.1: Capsule-Forensics unit processing.

high-level capsules, which encode the hierarchical relationships between objects and their

parts with pose information, enable a capsule network to preserve more information than

a CNN while using only a fraction of the data used by a CNN.

4.2.2 Why Capsule-Forensics?

To overcome the weakness of conventional CNNs, we adapted the capsule network con-

cept [126], which was originally designed for computer vision tasks, to make it well suited

for deepfake detection. We named our adapted network “Capsule-Forensics.” Its design

takes advantage of transfer learning by using part of a pretrained CNN (trained on the

ImageNet dataset [50]) as the feature extractor. This helps the network achieve high

performance and have better generalizability. The feature aggregation used in conven-

tional CNNs was replaced with a modified version of the dynamic routing algorithm.

The use of a statistical pooling layer in each primary capsule reduces the number of

parameters while improving performance. The next section describe the processing flow

and architecture. We performed several experiments to verify the novelty of this design.

The results are presented and discussed in the Evaluation section.

4.3 Proposed Method

4.3.1 Overview

The Capsule-Forensics based method comprises three processing units, as illustrated in

Figure 4.1. The task performed in the pre-processing unit depends on the input. If the

input is video, the first step is to separate the frames. A face detection algorithm is used

to crop the facial area(s). The cropped face(s) are sent to the Capsule-Forensics unit for

classification. The detection result(s) are sent to the post-processing unit, which works

in accordance with the pre-processing one. If the input is an image, nothing is done

50



Proposed Method

864

B
at

ch
 N

or
m

2D
 C

on
v

R
eL

U

B
at

ch
 N

or
m

2D
 C

on
v

R
eL

U

B
at

ch
 N

or
m

1D
 C

on
v

B
at

ch
 N

or
m

1D
 C

on
v

St
at

s 
Po

ol
in

g

B
at

ch
 N

or
m

2D
 C

on
v

R
eL

U

B
at

ch
 N

or
m

2D
 C

on
v

R
eL

U

B
at

ch
 N

or
m

1D
 C

on
v

B
at

ch
 N

or
m

1D
 C

on
v

St
at

s 
Po

ol
in

g

B
at

ch
 N

or
m

2D
 C

on
v

R
eL

U

B
at

ch
 N

or
m

2D
 C

on
v

R
eL

U

B
at

ch
 N

or
m

1D
 C

on
v

B
at

ch
 N

or
m

1D
 C

on
v

St
at

s 
Po

ol
in

g

… … …

Feature 
extractor

Real
capsule

Fake
capsule

So
ftm

ax
M

ea
n

Dynamic
routing

Primary capsules Output
capsules

Final
output

3×3
stride 1 

3×3
stride 1 

5×1
stride 2 

3×1
stride 1 

16 1
4×1 vector

4×1 vector

Output
depth

A B C

𝝁(")

𝝈(")

𝝁($)

𝝈($)

𝝁(%)

𝝈(%)

𝒖(")

𝒖($)

𝒖(%)

𝒗(")

𝒗($)

𝑦&

Figure 4.2: Capsule-Forensics architecture. Blocks A, B, and C contain tunable
hyperparameters.

here. If the input is video, the scores of all frames are averaged. This average score is

the final output.

4.3.2 Architecture

The Capsule-Forensics network includes a feature extractor, several primary capsules,

and two output capsules (“real” and “fake”), as illustrated in Figure 4.2. For sim-

plification, we use the same architecture for all primary capsules. Since we use random

weight initialization, their behaviors are not the same after training. The number of

primary capsules is a hyperparameter.

Each primary capsule has three parts: a 2D convolutional part, a statistical pooling

layer, and a 1D convolutional part. The statistical pooling layer has been proven to

be effective in detecting computer-generated images [32, 132] by learning the statistical

differences between the real and computer-generated images. For deepfakes, when a part

of a face image is swapped, the swapped face region may have different textures and

color patterns. The blending region between the swapped face region and the remaining

original face region may also contain artifacts. Thus, the statistics such as mean and

variance of each filter are useful for differentiating the swapped region from the original

one. Moreover, they help reduce the number of parameters by omitting features that

are not useful for deepfake detection.
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The mean and variance of each filter are calculated in the statistical pooling layer.

• Mean:

µk = 1
H ×W

H∑
i=1

W∑
j=1

Ikij

• Variance:

σ2
k = 1

H ×W − 1

H∑
i=1

W∑
j=1

(Ikij − µk)2,

where k is the layer index, H and W are respectively the height and width of the filter,

and I is a two-dimensional filter array.

The output of the statistical layer goes through the following 1D convolutional part.

Then it is dynamically routed to the output capsules. The final result is calculated on

the basis of the activation of the output capsules. The algorithm is discussed in detail

in the next section. For binary classification, there are two output capsules, as shown

in Figure 4.2. Multi-class classification could be performed by adding more output

capsules, as discussed in section 4.4.3.

The Capsule-Forensics source code has been published at https://github.com/nii-

yamagishilab/Capsule-Forensics-v2.

4.3.3 Dynamic routing algorithm

Different manipulation methods use different face regions, generating models, and blend-

ing algorithms. Therefore, each primary capsule extracts different features depending

on the manipulation method, and they may work better on a particular manipulation

than on others. Furthermore, since the weights of the primary capsules are initialized

differently in training, the capsules learn different features for the same input. These

features need to be fused correctly to predict whether the input is real or fake. For

a capsule network, this fusion is done dynamically using a dynamic routing algorithm.

The “agreement” between all primary capsules is calculated and routed to the appro-

priate output capsule (real or fake for binary classification). An example of the routing

weight vectors is visualized in Figure 4.3. Since the primary capsules may make differ-

ent judgments and some of them may be wrong, this algorithm is designed to find a

consensus. The output probabilities are determined on the basis of the activations of
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Original Deepfake Face2Face FaceSwap

Capsule 1
Capsule 2
Capsule 3

Input 
image

Figure 4.3: Visualization of the routing matrix C(2)ᵀ used to route the outputs of
three primary capsules to fake output capsule. Face2Face and FaceSwap methods are
graphical based, so their routing weights are similar. Deepfake method is deep learning
based, so its routing weights are different from the two graphical-based manipulation

methods.

cap. 1
cap. 2
cap. 3

cap. 1
cap. 2
cap. 3

fake
real

fake
real

real
input

fake
input

primary capsules output capsules

Figure 4.4: Average results calculated by primary capsules and output capsules from
real and fake images generated with Face2Face method [17]. Three primary capsules
have significantly different reactions between real and fake inputs. Although their

weights are also different, there is strong agreement in the output capsules.

the output capsules. An example of the activation of the output capsules is illustrated

in Figure 4.4.

Let us call the output vector of each primary capsule u(i) ∈ Rk and each output vector

capsule v(j) ∈ Rl. There are m primary capsules and n output capsules. W(i) ∈ Rl×k

is the matrix used to route an u(i) to all v(j), and r is the number of iterations. The

dynamic routing algorithm is shown in Algorithm 3.

We slightly improved the algorithm of Sabour et al. [126] by introducing two regulariza-

tions: adding random noise to the routing matrix and adding a dropout operation. They

are used only during training to reduce overfitting. Their effectiveness is discussed in

the Evaluation section. Furthermore, a squash function (equation 4.1) is applied to u(i)
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Algorithm 3 Dynamic routing between capsules.
procedure Routing(u(i),W(i), r)

Ŵ(i) ←W(i) + rand(size(W(i)))
û(i) ← Ŵ(i)squash(u(i)) . û(i) ∈ Rl
û(i) ← dropout(û(i))
for all output capsules j do

B(j) ← 0 . B(j) ∈ Rl×m
for r iterations do

for all output capsules j and all vector elements do
(c(j)

,1 , c
(j)
,2 , . . . , c

(j)
,m)← softmax(b(j)

,1 , b
(j)
,2 , . . . , b

(j)
,m)

for all output capsules j do s(j) ←
∑m
i c(j)

:,i � û(i)

for all output capsules j do v(j) ← squash(s(j))
for all input capsules i and output capsules j do

B(j) ← B(j) +
[
û(1) û(2) . . . û(m)

]
� v(j)

return v(j)

before routing to normalize it, which helps stabilize the training process. The squash

function is used to scale the vector magnitude to unit length.

squash(u) = ‖u‖22
1 + ‖u‖22

u
‖u‖2

(4.1)

In practice, to stabilize the training process, the random noise should be sampled from

a normal distribution (N (0, 0.01)), the dropout ratio should not be greater than 0.05

(we used 0.05 in all experiments), and two iterations (r = 2) should be used in the

dynamic routing algorithm. The two regularizations are used along with random weight

initialization to increase the level of randomness, which helps the primary capsules learn

with different parameters.

To calculate predicted label ŷ, we apply the softmax function to each dimension of

the output capsule vectors to achieve stronger polarization rather than simply using

the length of the output capsules [126]. The final results are the means of all softmax

outputs:

ŷ = 1
l

l∑
i

softmax(v(1)
i , v

(2)
i , . . . , v

(n)
i ), (4.2)

where ŷ is the predicted probabilities vector. Since there is no reconstruction in the

Capsule-Forensics method, we simply use the cross-entropy loss function and the Adam

optimizer [133] to optimize the network.
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4.3.4 Visualization

To illustrate how Capsule-Forensics works, we used a Capsule-Forensics network with

three primary capsules trained on the FaceForensics++ database [23]. For visualization,

we applied and modified an open-source tool [134] implementing the guided back prop-

agation algorithm [135]. To visualize each primary capsule in this way, we chose the

latent features extracted before the statistical pooling layers since they still had the 2D

structure.

The activations of each capsule and of the whole network are illustrated in Figure 4.5.

The differences in activation among capsules and between each capsule and the whole

network are also shown. The regions of interest mainly include the eyes, nose, mouth

region, and facial contours. Some capsules missed some of these regions, and some failed

to detect the manipulated input (i.e.., the third capsule in Figure 4.6). Nevertheless,

the final results mostly focused on the important regions detected by all capsules due to

agreement driven by the dynamic routing algorithm between the other two capsules. A

CNN using only the third primary capsule would fail to detect the manipulated input.

The behavior of the Capsule-Forensics network for the deepfake detection problem differs

from that of the original capsule network for the inverse graphics problem, in which the

focus is on the spatial hierarchies between simple and complex objects [126–128]. In the

deepfake detection problem, abnormal appearances are the key features, so each primary

capsule is designed to capture them and communicate its findings to the other capsules.

This behavior is similar to that of jurors during a trial, and the consensus judgment is

the final detection result.

4.4 Evaluation

We conducted several experiments to test the detection performance of the Capsule-

Forensics network. After describing the datasets and metrics we used (section 4.4.1

and 4.4.2), we discuss the effects of the size of the input image, number of primary cap-

sules, and dropout in the dynamic routing algorithm (section 4.4.3). We then compare

several candidate feature extractors (section 4.4.4) and evaluate the effectiveness of the
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Face2Face
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1 - 2 1 - 3 2 - 3 1 - final 2 - final 3 - final

Capsule 1 Capsule 2 Capsule 3 Whole networkInput Manipulated region

1 - 2 1 - 3 2 - 3 1 - final 2 - final 3 - final

Capsule 1 Capsule 2 Capsule 3 Whole networkInput Manipulated region

1 - 2 1 - 3 2 - 3 1 - final 2 - final 3 - final

Capsule 1 Capsule 2 Capsule 3 Whole networkInput Manipulated region

1 - 2 1 - 3 2 - 3 1 - final 2 - final 3 - final

Capsule 1 Capsule 2 Capsule 3 Whole networkInput Manipulated region

Neural
Textures

1 - 2 1 - 3 2 - 3 1 - final 2 - final 3 - final

Capsule 1 Capsule 2 Capsule 3 Whole networkInput Manipulated region

Real

Figure 4.5: Activation of three capsules and entire Capsule-Forensics network
(columns 2, 3, 4, and 5, respectively) on images created using deepfake [7] (row 1),
Face2Face [17] (row 3), FaceSwap [23] (row 5), and Neural Textures [18] (row 7) meth-
ods and on a real image. Column 6 shows the manipulated regions corresponding to
the manipulated images in column 1. The first three columns of rows 2, 4, 6, 8, and 10
show the differences between the activations of capsules 1 and 2, 1 and 3, and 2 and
3 on the corresponding row above, respectively. The three last columns in order show
the differences between the activations of capsules 1, 2, and 3 and the activation of the

whole network.
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Capsule 1 Capsule 2 Capsule 3Whole network
(final)

1 - final 2 - final 3 - finalInput

Figure 4.6: Example case in which one capsule did not work correctly. First row shows
activation of whole network and of three capsules. Second row from left to right shows
input image and differences between activation of each capsule and of whole network.
Although capsule 3 failed to detect manipulated image, final result was correct due to

agreement between other two capsules.

statistical pooling layer used in each primary capsule (section 4.4.5). Finally, we com-

pare the detection performance of the Capsule-Forensics network with that of a CNN

on both seen and unseen attacks (section 4.4.6 and 4.4.7, respectively). For the CNNs,

we used the corresponding version of the Capsule-Forensics network using feature aggre-

gation instead of the dynamic routing algorithm, the multi-task learning network [33],

the XceptionNet version used in FaceForensics++ work [23], and the EfficientNet net-

work [136]. Among them, the multi-task learning network is a generative classifier while

the rest are discriminative classifiers. For the multi-task learning network, in addition

to ground-truth labels, segmentation masks of the manipulated regions are needed for

training. When testing, since segmenting manipulated regions is beyond the scope of this

work, we used only its encoder part to perform binary classification. For XceptionNet,

we modified its fully connected layer and trained it in two phases. For EfficientNet [136],

which recently received a high score in the Deepfake Detection Challenge, we used the

B4 version (denoted as EfficientNet-B4) which requires an input size of 380×380 pixels.

The larger versions (B5, B6, and B7) require larger inputs and have more parameters,

making it impossible to train them on a single-GPU machine.

For simplicity, we used only multi-class classification to compare the original setting in

our previous work [125] with the new setting in this work. For the remaining experi-

ments, we tested only binary classification. Except for the one discussed in section 4.4.7,

all the evaluations were for performance on seen attacks.
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4.4.1 Datasets

4.4.1.1 Face swapping datasets

We used videos from the FaceForensics++ dataset [23], supplemented with the Google

DFD dataset [101] for all following experiments except for the GAN image detection

experiment. We used all three levels of compression (none, moderate, and high) and

mixed them together to make multiple compression datasets for our experiments. For

training, we used version 1 of the FaceForensics++ dataset including original videos and

three corresponding manipulated videos created by deepfake [7], Face2Face [17], and

FaceSwap [23] methods. For testing, two scenarios were used: seen attacks and unseen

attacks. For seen attacks, we used a test set from version 1 of the FaceForensics++

dataset. For unseen attacks, we used test videos created using Neural Textures [18]

(unseen method), which was added in version 2 of the FaceForensics++ dataset, and

the entire Google DFD dataset [101] (unseen data).

We took the first 100 frames of the input video for the training set and the first 10 frames

for the validation and test sets. FaceForensics++ dataset version 1 (for seen attacks)

was divided into a training set, a validation set, and a test set, as shown in Table 4.1.

The test sets for unseen attacks are shown in Table 4.2.

Table 4.1: Configuration of training, validation, and test sets from FaceForensics++
dataset version 1 (for seen attacks) [23].

Type Training set Validation set Test set

Real 720× 3 vids
72, 000× 3 imgs

140× 3 vids
1, 400× 3 imgs

140× 3 vids
1, 400× 3 imgs

Deepfake 720× 3 vids
72, 000× 3 imgs

140× 3 vids
1, 400× 3 imgs

140× 3 vids
1, 400× 3 imgs

Face2Face 720× 3 vids
72, 000× 3 imgs

140× 3 vids
1, 400× 3 imgs

140× 3 vids
1, 400× 3 imgs

FaceSwap 720× 3 vids
72, 000× 3 imgs

140× 3 vids
1, 400× 3 imgs

140× 3 vids
1, 400× 3 imgs

Table 4.2: Configuration of test sets for unseen attacks created using Neural Textures
method [18] and Google DFD dataset [101].

Type Neural Textures
(unseen method)

Google DFD dataset
(unseen data)

Real 0 vids
0 imgs

140× 3 vids
1, 400× 3 imgs

Fakes 358× 3 vids
3, 580× 3 imgs

3, 065× 3 vids
30, 650× 3 imgs
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Table 4.3: Configuration of GAN image dataset. Texts in red mean unseen GAN
methods.

Type Real GAN

Training
set

19,745 VoxCeleb
20,000 FF++Orignial

39,745 Total

Low-quality
• 9,745 StarGAN
High-quality:
• 10,000 ProGAN
• 10,000 StarGAN2
• 10,000 StyleGAN
39,745 Total

Validation
set

100 VoxCeleb
100 FF++ Orignial
50 VidTIMIT

250 Total

Low-quality:
• 50 StarGAN
• 50 RelGAN
High-quality:
• 50 ProGAN
• 50 StarGAN2
• 50 StyleGAN
250 Total

Test
set

400 VoxCeleb
400 FF++ Orignial
400 VidTIMIT

1,200 Total

Low-quality:
• 200 StarGAN
• 200 RelGAN
High-quality:
• 200 ProGAN
• 200 StarGAN2
• 200 StyleGAN
• 200 StyleGAN2
1,200 Total

4.4.1.2 GAN image dataset

We designed a balanced dataset with both real and GAN images, divided into training,

validation, and test sets, shown in Table 4.3. For real images, to ensure diversity, we bor-

rowed video frames from the VoxCeleb dataset [137], the original part of the FaceForen-

sics++ dataset [23], and the VidTIMIT dataset [138]. For GAN images, we used various

GAN methods. In more detail, for low-quality GAN images, we used StarGAN [10] and

RelGAN [139]. For high-quality GAN images, we used ProGAN [8], StyleGAN [9], Style-

GAN2 [83], and StarGAN2 [11]. RelGAN and StarGAN2 were treated as unseen GAN

methods.

4.4.2 Metrics

We used four metrics in our evaluation:
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• Classification accuracy = TP+TN
TP+TN+FP+FN , where TP, TN, FP, and FN are true

positive, true negative, false positive, and false negative, respectively.

• Equal error rate (EER): common value when false positive rate (FPR) equals false

negative rate (FNR). FPR = FP
N (number of false positives divided by number of

negatives). FNR = FN
P (number of false negatives divided by number of positives).

• Half total error rate (HTER): HTER = FPR+FNR
2 .

• Attack presentation classification error rate (APCER): “proportion of attack pre-

sentations using the same PAI species incorrectly classified as bona fide presenta-

tions in a specific scenario.”1

The thresholds used to determine whether the classification outputs were real or fake

were selected on the basis of the EERs calculated for the development sets.

4.4.3 Effect of hyper-parameters

In the first experiment, we measured the effect of the size of the input image, number

of primary capsules, and dropout in the dynamic routing algorithm. Since Capsule-

Forensics is not limited to binary classification, we also evaluated its multi-class clas-

sification ability by changing the number of output capsules, from “Real” and “Fake”

capsules to “Real,” “Deepfake,” “Face2Face,” and “FaceSwap” capsules. This modifica-

tion is obvious and did not require substantial changes to the network architecture.
1ISO/IEC 30107-3 definition. Accessed at https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:

-1:ed-1:v1:en:term:3.1

Table 4.4: Performance of Capsule-Forensics with various hyper-parameter values.

Input size No. of
capsules

Random
noise Dropout

Binary
classification
accuracy (%)

Binary
classification
HTER (%)

Multi-class
classification
accuracy (%)

128 × 128 3 No No 87.45 15.41 85.89
128 × 128 3 Yes No 88.57 15.35 87.12
300 × 300 3 No No 89.88 11.28 87.51
300 × 300 3 Yes No 90.86 11.29 87.54
300 × 300 10 No No 91.61 11.52 88.51
300 × 300 10 Yes No 91.32 12.07 89.98
300 × 300 3 No Yes 91.33 12.37 89.19
300 × 300 3 Yes Yes 91.19 11.93 88.44
300 × 300 10 No Yes 92.17 10.70 90.51
300 × 300 10 Yes Yes 92.00 10.64 91.22
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As shown in Table 4.4, using larger images improved performance substantially as ex-

pected. Although the random noise did not result in improvement in all cases, it still

played an important role in reducing the HTER when combined with dropout and in-

creased the accuracy of multi-class classification. Increasing the number of primary

capsules also helped improve performance. The combination of all three points achieved

the best performance for both binary and multi-class classification.

4.4.4 Feature extractor comparison

The feature extractor is an important part of the Capsule-Forensics network (block A

in Figure 4.2). Rather than training a simple CNN from scratch along with the other

parts of the network, as is done in the traditional capsule network approach [126], we

used part of a pretrained CNN (trained on the ImageNet dataset [50]). We selected

three commonly used extractors as candidates:

• VGG-19 [51]: used from the beginning until the third max pooling layer.

• ResNet-50 [42]: used from the beginning until the end of the “conv3 x” layer.

• XceptionNet [91]: used from the beginning until the end of the first block of its

“middle flow.”

We name the Capsule-Forensics with three primary capsules and 128 × 128 input size

“Capsule-Forensics light”. The bigger version with ten capsules and 300×300 input size is

named “Capsule-Forensics full”. In addition to evaluating these two version with different

feature extractor candidates, we evaluated a simple CNN with three convolutional layers

as the feature extractor, like the ones used in conventional capsule networks. The CNN

was trained along with the other parts of the Capsule-Forensics network. In addition, we

also fine tuned the pretrained feature extractors (indicated by “FT” after their names)

to check whether finetuning helps improve overall performance. The results are shown

in Table 4.5.

All the extractors performed better with the Capsule-Forensics full. Finetuning did not

help much for Capsule-Forensics full. Besides reducing memory usage and shortening

training time, using pretrained feature extractors resulted in better performance than
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Table 4.5: Performance (in %) of feature extractors with and without finetuning (FT).

Feature
extractor

Training
accuracy

Test
accuracy

Test
HTER

No. of
parameters

Capsule-Forensics light:
Simple CNN 98.97 83.36 25.42 371,712
VGG-19 99.81 88.57 15.35 2,325,568
VGG-19 FT 99.54 90.08 12.49 2,325,568
ResNet-50 99.60 88.21 16.09 225,344
ResNet-50 FT 99.69 87.45 13.60 225,344
XceptionNet 99.58 85.52 19.10 2,720,736
XceptionNet FT 99.45 85.41 18.91 2,720,736
Capsule-Forensics full:
VGG-19 99.83 92.00 10.64 2,325,568
VGG-19 FT 99.63 90.98 13.40 2,325,568
ResNet-50 99.17 90.59 14.60 225,344
ResNet-50 FT 99.69 90.14 14.94 225,344
XceptionNet 99.79 90.42 13.35 2,720,736
XceptionNet FT 99.84 91.39 10.85 2,720,736

using a CNN extractor trained from scratch. These results support our hypothesis

that using a pretrained feature extractor contributes to the superiority of our Capsule-

Forensics network.

The ResNet-50 based feature extractor has the smallest number of parameters, making

it about ten times smaller than the VGG-19 and XceptionNet ones. The VGG-19

extractor with the new setting achieved the highest classification accuracy and had the

lowest HTER. For dealing with seen manipulations, if performance is more important

than the number of parameters, VGG-19 is the best choice. Otherwise, ResNet-50 is

more suitable.

4.4.5 Effect of statistical pooling layers

In another experiment, we compared the performance and size of two versions of the

Capsule-Forensics network: one using and one not using a statistical pooling layer for

each primary capsule (block B in Figure 4.2). Previous work [32, 132] suggested that

using a statistical pooling layer is effective for detecting computer-generated images. For

the version without statistical pooling layers, we replaced the 1D convolutional layers

with 2D ones and added an adaptive average pooling layer at the end of each primary

capsule. We hypothesized that the statistical pooling layer helps filter out unnecessary

information, i.e.., information that is not relevant to deepfake detection. Therefore,
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Table 4.6: Performance (in %) with and without statistical pooling (SP) layer in
primary capsules with VGG-19 feature extractor. (Number of parameters does not

include number for feature extractor.)

Settings Test
accuracy

Test
HTER

No. of
parameters

Capsule-Forensics light:
With SP layer 88.57 15.35 1,571,070
Without SP layer 83.51 15.78 6,689,280
Capsule-Forensics full:
With SP layer 92.00 10.64 1,571,070
Without SP layer 87.70 11.65 6,689,280

using a statistical pooling layer in each primary capsule helps reduce feature size and

improve performance. Moreover, reducing the feature size results in a smaller routing

matrix, which uses less memory and computation power. We used the VGG-19 feature

extractor in this experiment. The results are shown in Table 4.6.

With both light and full version, using statistical pooling layers greatly improved clas-

sification accuracy and reduced the HTER for the seen test set. Moreover, using them

reduced the number of parameters by 400%. These results support our hypothesis that

using statistical pooling layers contributes to the superiority of our Capsule-Forensics

network. An interesting observation from the results is that the number of parameters

was independent of the input size (128 × 128 for light version and 300 × 300 for full

version). This is because both the statistical and adaptive average pooling layers were

designed to deal with variations in input size.

4.4.6 Capsule-Forensics network vs. CNNs: seen attacks

In a third experiment, we compared the performance of the dynamic routing algorithm

used in the Capsule-Forensics network with that of traditional feature aggregation (block

C in Figure 4.2). The VGG-19 feature extractor was used in both cases. We also

evaluated the performance of the multi-task learning network [33], the XceptionNet

network, and the EfficientNet-B4 network [136]. It is important to note that this version

of XceptionNet differs from the one used in our feature extractor (section 4.4.4), which

was pretrained on the ImageNet dataset [50], with only part of it used. Since the training

dataset was imbalanced (the number of fake samples was three time the number of real

samples), we additionally evaluated the effect of using a weighted softmax function

during training. The experiment results are shown in Table 4.7.
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Table 4.7: Performance (in %) of Capsule-Forensics using dynamic routing algorithm,
its corresponding CNN using the traditional feature aggregation approach, and the
other baselines on seen attacks. Number of parameters is for entire network, including

feature extractor.

Settings Test
accuracy

Test
HTER

No. of
parameters

Capsule-Forensics light:
Dynamic routing 88.57 15.35 2,796,889
Feature aggregation 86.26 15.15 2,798,059
Capsule-Forensics full:
Dynamic routing 92.00 10.64 3,896,638
Feature aggregation 91.82 11.51 3,903,328
Multi-task learning [33] 73.08 26.30 148,200
XceptionNet [23] 90.73 9.91 20,811,050
EfficientNet-B4 [136] 92.82 8.67 17,552,202
Using weighted softmax:
Dynamic routing 92.21 10.91 3,896,638
Feature aggregation 91.75 10.68 3,903,328
XceptionNet [23] 91.83 10.14 20,811,050
EfficientNet-B4 [136] 91.49 8.64 17,552,202

The effect of using a weighted softmax function is not clear. Since the dataset was not

heavily imbalanced, this result is reasonable. Although having the smallest number of

parameters, the multi-task learning network had the worst performance. The dynamic

routing algorithm helped the Capsule-Forensics network achieve higher performance,

especially with the full version. The numbers of parameters for the Capsule-Forensics

network and the corresponding CNN using feature aggregation were almost the same,

whereas the numbers for the EfficientNet-B4 and the XceptionNet networks were about

4.5 to 5.3 times larger. Moreover, the test accuracy of the Capsule-Forensics network and

the Efficient-B4 network were almost the same. The large input size of the EfficientNet-

B4 network (380× 380 vs 300× 300) might be the reason for its lower HTER.

In addition to the results on the mixed compression test set shown in Table 4.7, we also

broke it down into three compression levels, as shown in Table 4.8. There were no sub-

stantial differences between the performances of Capsule-Forensics, XceptionNet, and

EfficientNet-B4. Their performances were degraded from no compression to moderate

compression to high compression. With their average accuracy about 84%, detecting

highly compressed deepfake videos was still challenging when most of the deepfake ar-

tifacts were erased by the compression algorithm. Capsule-Forensics and EfficientNet

handled the moderately compressed deepfake videos quite well, with only about 3%

degradation in accuracy compared with the uncompressed ones.
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Table 4.8: Performance (in %) of Capsule-Forensics and other classifiers at three
levels of compression on the FaceForensics++ dataset.

No compression Moderate compression High CompressionDetector Accuracy HTER Accuracy HTER Accuracy HTER
Capsule-Forensics 97.27 3.87 94.62 6.42 84.11 21.64
Multi-task learning [33] 81.12 17.80 69.23 25.94 68.86 35.19
XceptionNet [23] 96.12 4.80 92.82 7.60 83.25 17.33
EfficientNet-B4 [136] 98.37 2.50 95.50 4.88 84.96 18.62

Using the Capsule-Forensics network can save a large amount of memory and compu-

tation power compared with the amounts used by CNNs while maintaining high per-

formance even for compressed videos. This is important for applications integrating a

presentation attack detector into an Internet of things or a handheld device that does

not have powerful hardware to prevent unauthorized facial authentication. The Capsule-

Forensics network demonstrated it effectiveness against this kind of attack [125].

4.4.7 Capsule-Forensics network vs. CNNs: unseen attacks

Detecting unseen attacks is a difficult problem in deepfake detection, especially for

machine-learning-based detectors. When the data distribution changes, the learned fea-

tures and decision boundaries are usually no longer correct. Furthermore, large networks

with a large number of parameters tend to memorize the training data, especially when

the data amount is small. We expected that the Capsule-Forensics network can be better

generalized than large networks thanks to the statistical pooling operation and dynamic

routings of the primary capsules. To test this, we performed one last experiment in

which we tested the detectors on a challenging unseen manipulation method, Neural

Textures [18]. It is unlike any of the methods normally used to create seen datasets. We

also tested the detectors on a different large deepfake dataset, the Google DFD dataset.

We evaluated three full versions of the Capsule-Forensics network with different feature

extractors (VGG-19, ResNet-50 (lightweight) and finetuned XceptionNet) and with two

versions of a CNN using feature aggregation (with VGG-19 and ResNet-50 feature ex-

tractors), the multi-task learning network [33], the XceptionNet network [23], and the

EfficientNet-B4 network [136].

As shown in Table 4.9, all the detectors performed poorly on the Neural Textures

method, with APCERs greater than 50%. The three best detectors on seen attacks
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Table 4.9: Performance (in %) of three versions of Capsule-Forensics network, two
versions of the corresponding CNN, and other baselines on unseen attacks. Number of

parameters is for entire network, including feature extractor.

Detectors Neural Textures Google DFD dataset No. of
parametersAccuracy APCER Accuracy HTER

Capsule-Forensics (VGG-19) 24.33 75.67 44.51 40.29 3,896,638
Capsule-Forensics (ResNet-50) 37.93 62.07 64.98 40.89 1,796,414
Capsule-Forensics (XceptionNet FT) 31.38 68.62 55.73 38.30 4,007,673
Feature aggregation (VGG-19) 28.81 71.19 58.09 38.70 3,903,328
Feature aggregation (ResNet-50) 24.00 76.00 62.48 37.70 1,803,104
Multi-task learning [33] 44.69 55.31 78.74 42.21 148,200
XceptionNet [23] 26.79 73.21 47.29 40.37 20,811,050
EfficientNet-B4 [136] 31.55 68.45 58.63 34.23 17,552,202

(Capsule-Forensics using VGG-19, XceptionNet, and EfficientNet-B4 - which are dis-

criminative classifiers) had the worst performances on this method. The multi-task

learning network (which is a generative classifier) achieved the best results, followed by

the lightweight Capsule-Forensics network using the ResNet-50 feature extractor. The

performances of all detectors were slightly better on the Google DFD dataset. The

Capsule-Forensics network using ResNet-50 again had the second highest accuracy, be-

low the multi-task learning network. Since the multi-task learning network was specially

designed to deal with unseen attacks, it was able to beat all the other detectors. However,

its drawback is poor performance on seen attacks, as seen in the previous section.
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Figure 4.7: Comparison between several versions of Capsule-Forensics network and
CNNs for classification accuracy, inference time, and model size on Google DFD

dataset [101].
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Figure 4.7 shows a comparison on the classification accuracy, inference time (for one

image), and model size of all detectors on the Google DFD dataset [101]. All tests were

done using a NVIDIA DGX Station machine. The Capsule-Forensics network using the

ResNet-50 feature extractor and its corresponding CNN using feature aggregation had

the second smallest sizes and were the second fastest detectors. They were a bit slower

than the Capsule-Forensics network using the XceptionNet feature extractor. Due to the

design of the VGG-19 network, detectors using it as the feature extractor have the longest

inference times (about twice the shortest times). The XceptionNet-based detector had

the largest size but had limited detection accuracy. The EfficientNet-B4-based detector

and the multi-task learning detector were the two slowest ones. It is important to note

that we measured only the inference time of the encoder part of the multi-task learning

detector for the binary classification task. Although it has fewer parameters than the

other detectors, some memory-related operations slowed it down.

Although having limited performance on unseen attacks, this experiment demonstrated

that the Capsule-Forensics network is better able to detect deepfakes than CNNs. Be-

tween the two versions of the Capsule-Forensics network, if performance on seen attacks

is more important, using VGG-19 as the feature extractor is the better choice. If perfor-

mance on unseen attacks is more important, or a lightweight and fast network is needed,

using ResNet-50 as the feature extractor is the better choice.

4.4.8 Detect GAN images

Different from the above experiments, the fake images in this experiment were synthe-

sized entirely by GANs. We used the GAN image dataset described in Table 4.3 to train

and evaluate the detectors. The results are shown in Table 4.10. All three detectors had

approximately the same high performance (> 99% accuracy). Although there were im-

ages synthesized by an unseen GAN method (StyleGAN2) in the test set, the detectors

easily detected them using their knowledge of GAN artifacts.

Table 4.10: Performance (in %) of Capsule-Forensics, XceptionNet, and EfficientNet-
B4 networks on GAN image dataset.

Detectors Accuracy EER HTER
Capsule-Forensics (VGG-19) 99.33 0.58 0.67
XceptionNet [23] 99.79 0.25 0.21
EfficientNet-B4 [136] 99.25 0.67 0.75
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4.5 Conclusion

Our experiments demonstrated that the Capsule-Forensics network is better able to

detect deepfakes than conventional CNNs. Its use of a pretrained feature extractor,

statistical pooling layers, and a dynamic routing algorithm enable it to achieve better

performance with fewer parameters than corresponding CNNs. Furthermore, it has bet-

ter performance than other discriminative classifiers on unseen manipulations, although

further improvement is needed. Visualization of the activation of each capsule enables

the learned features to be analyzed. These promising results and the understanding

gained from the analysis should lead to further research on and development of capsule

networks, not only for digital forensics but also for many other applications.

Another important point is that facial images generated using current GAN methods

can be effectively detected by the Capsule-Forensics network and other state-of-the-art

classifiers. This means that we can use these detectors to detect master faces in digital

attacks.

Future work includes enabling the Capsule-Forensics network to use temporal informa-

tion to detect fake videos and improving its generalizability (in other words, reducing

the gap between discriminative classifiers and generative classifiers). Moreover, deepfake

datasets mostly contain images and videos containing only one or two people. In reality,

deepfake methods can be applied to a crowd; therefore, deepfake detection in the wild

is also an important research direction.
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5
Deepfake Segmentation

Another major concern in digital image forensics is locating manipulated regions. In this

chapter, we introduce a novel method for segmenting manipulated regions in addition

to detecting deepfake images. The proposed method can easily adapt to new deepfake

methods even with a limited amount of fine-tuning data.

5.1 Introduction

Explainability of deepfake detection is important, especially in some critical applica-

tions like journalism or law enforcement. Most deepfake countermeasure methods only

provide the label of the input or its probability of being manipulated. Moreover, most

deepfake detectors are CNN-based, which are treated like black-boxes. Therefore, the

detection results are inconvincible. One solution is to provide the segmentation of the

manipulated regions. The shapes of the segmentation masks could also reveal hints

about the type of manipulation used, as illustrated in Figure 5.1. Most existing forensic

segmentation methods focus on traditional manipulations methods with three commonly

used means of tampering: removal, copy-move, and splicing [95, 96, 140]. As in other

image segmentation tasks, these methods need to process full-scale images. Rahmouni

et al. [132] used a sliding window to deal with high-resolution images, as subsequently
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Figure 5.1: Original video frame (top left), video frame modified using Face2Face
method [17] (top right, smooth mask almost completely covers the skin area), using
Deepfakes method [7] (bottom left, rectangular mask), and using FaceSwap method [23]

(bottom right, polygon-like mask).

used by us [32] and Rossler et al. [99]. This sliding window approach effectively segments

manipulated regions in spoofed images [99] created using the Face2Face method [17].

However, these methods need to score many overlapped windows by using a spoofing

detection method, which takes a lot of computation power. Another challenging problem

is to locating manipulated regions of deepfake images and videos produced by unseen

methods. Moreover, it is challenging to make the detectors work with new methods

when the training data for them is limited.

We develop a multi-task learning approach for simultaneously performing classification

and segmentation of manipulated facial images [33]. Our autoencoder comprises an

encoder and a Y-shaped decoder and is trained in a semi-supervised manner. The

activation of the encoded features is used for classification. The output of one branch

of the decoder is used for segmentation, and the output of the other branch is used

to reconstruct the input data. The information gained from these tasks (classification,

segmentation, and reconstruction) is shared among them, thereby improving the overall

performance of the network. This also helps the model to have better adaptability with

unseen deepfake methods.
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Figure 5.2: Overview of proposed network.

5.2 Proposed Method

5.2.1 Overview

Unlike other single-target methods [96, 125, 141], our proposed method outputs both the

probability of an input being spoofed and segmentation maps of the manipulated regions

in each frame of the input, as diagrammed in Figure 5.2. Video inputs are treated as a

set of frames. We focused on facial images in this work, so the face areas are extracted in

the pre-processing phase. In theory, the proposed method can deal with various sizes of

input images. However, to maintain simplicity in training, we resize cropped images to

256×256 pixels before feeding them into the autoencoder. The autoencoder outputs the

reconstructed version of the input image (which is used only in training), the probability

of the input image having been spoofed, and the segmentation map corresponding to

this input image. For video inputs, we average the probabilities of all frames before

drawing a conclusion on the probability of the input being real or fake.

5.2.2 Y-shaped autoencoder

The partitioning of the latent features (motivated by Cozzolino et al.’s work [141]) and

the Y-shaped design of the decoder enables the autoencoder to share valuable infor-

mation between the classification, segmentation, and reconstruction tasks and thereby

improve overall performance by reducing loss. There are three types of loss: activation

loss Lact, segmentation loss Lseg, and reconstruction loss Lrec.
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Given label yi ∈ {0, 1}, activation loss measures the accuracy of partitioning in the

latent space on the basis of the activation of the two halves of the encoded features:

Lact = 1
N

∑
i

|ai,1 − yi|+ |ai,0 − (1− yi)|, (5.1)

where N is the number of samples, ai,0 and ai,1 are the activation values and defined as

the L1 norms of the corresponding halves of the latent features, hi,0 and hi,1 (given K

is the number of features of {hi,0|hi,1}):

ai,c = 1
2K ‖hi,c‖1, c ∈ {0, 1}. (5.2)

This ensures that, given an input xi of class c, the corresponding half of the latent

features hi,c is activated (ai,c > 0). The other half, hi,1−c, remains quiesced (ai,1−c = 0).

To force the two decoders, Dseg and Drec, to learn the right decoding schemes, we set

the off-class part to zero before feeding it to the decoders (ai,1−c := 0).

We utilize cross-entropy loss as the segmentation loss to measure the agreement be-

tween the segmentation mask (si = Dseg({hi,0|hi,1})) and the ground-truth mask (mi)

corresponding to input xi:

Lseg = 1
N

∑
i

‖mi log(si) + (1−mi) log(1− si)‖1. (5.3)

The reconstruction loss uses the L2 distance to measure the difference between the

reconstructed image (x̂ = Drec({hi,0|hi,1})) and the original one (xi). For N samples,

the reconstruction loss is

Lrec = 1
N

∑
i

‖xi − x̂i‖2. (5.4)

The total loss is the weighted sum of the three activation losses:

L = γactLact + γsegLseg + γrecLrec. (5.5)

Unlike Cozzolino et al. [141], we set the three weights equal to each other (equal to 1).

This is because the classification task and the segmentation task are equally important,

and the reconstruction task plays an important role in the segmentation task. We

experimentally compared the effects of the different settings (described below).
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5.2.3 Implementation
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Figure 5.3: Proposed autoencoder with Y-shaped decoder for detecting and segment-
ing manipulated facial images.

The Y-shaped autoencoder was implemented as shown in Figure 5.3. It is a fully con-

nected CNN using 3×3 convolutional windows (for the encoder) and 3×3 deconvolutional

windows (for the decoder) with a stride of 1 interspersed with a stride of 2. Following

each convolutional layer is a batch normalization layer [142] and a rectified linear unit
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(ReLU) [143]. The selection block allows only the true half of the latent features (hi,yi)

to pass by and zeros out the other half (hi,1−yi). Therefore, the decoders (Dseg,Drec)

are forced to decode only the true half of the latent features. The dimension of the em-

bedding is 128, which has been shown to be optimal [141]. For the segmentation branch

(Dseg), a softmax activation function at the end is used to output segmentation maps.

For the reconstruction branch (Drec), a hyperbolic tangent function (tanh) is used to

shape the output into the range [−1, 1]. For simplicity, we directly feed normalized im-

ages into the autoencoder without converting them into residual images [141]. Further

work will focus on investigating the benefits of using residual images in the classification

and segmentation tasks.

Following Cozzolino et al.’s work [141], we trained the network using the ADAM opti-

mizer [133] with a learning rate of 0.001, a batch size of 64, betas of 0.9 and 0.999, and

epsilon equal to 10−8.

5.3 Experiments

5.3.1 Databases

We evaluated our proposed network using two databases: FaceForensics [99] and Face-

Forensics++ [23]. The FaceForensics database contains 1004 real videos collected from

YouTube and their corresponding manipulated versions, which are divided into two sub-

datasets:

• Source-to-Target Reenactment dataset containing 1004 fake videos created using

the Face2Face method [17]; in each input pair for reenactment, the source video

(the attacker) and the target video (the victim) are different.

• Self-Reenactment dataset containing another 1004 fake videos created again using

the Face2Face method; in each input pair for reenactment, the source and target

videos are the same. Although this dataset is not meaningful from the attacker’s

perspective, it does present a more challenging benchmark than does the Source-

to-Target Reenactment dataset.
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Table 5.1: Design of training and testing datasets.

Name Source dataset Description Manipulation
Method

Number
of Videos

Training FaceForensics
Source-to-Target

Training set used for
all tests Face2Face 704 ×2

Test 1 FaceForensics
Source-to-Target

Match condition for
seen attack Face2Face 150 ×2

Test 2 FaceForensics
Self-Reenactment

Mismatch condition for
seen attack Face2Face 150 ×2

Test 3 FaceForensics++
Deepfakes

Unseen attack (deep-
learning-based) Deepfakes 140 ×2

Test 4 FaceForensics++
FaceSwap

Unseen attack (computer-
graphics-based) FaceSwap 140 ×2

Each dataset was split into 704 videos for training, 150 for validation, and 150 for testing.

The database also provided segmentation masks corresponding to manipulated videos.

Three levels of compression based on the H.264 codec1 were used: no compression, light

compression (quantization = 23), and strong compression (quantization = 40).

The FaceForensics++ database is an enhanced version of the FaceForensics database and

includes the Face2Face dataset plus the FaceSwap2 dataset (graphics-based manipula-

tion) and the DeepFakes3 dataset (deep-learning-based manipulation) [23]. It contains

1,000 real videos and 3,000 manipulated videos (1,000 in each dataset). Each dataset was

split into 720 videos for training, 140 for validation, and 140 for testing. The same three

levels of compression based on the H.264 codec were used with the same quantization

values.

For simplicity, we used only videos with light compression (quantization = 23). Images

were extracted from videos using Cozzolino et al.’s settings [141]: 200 frames of each

training video were used for training, and 10 frames of each validation and testing

video were used for validation and testing, respectively. There is no detailed description

of the rules for frame selection, so we selected the first (200 or 10) frames of each

video and cropped the facial areas. For all databases, we applied normalization with

mean = (0.485, 0.456, 0.406) and standard deviation = (0.229, 0.224, 0.225); these values

have been widely used in the ImageNet Large Scale Visual Recognition Challenge [50].

We did not apply any data augmentation to the trained datasets.
1http://www.h264encoder.com/
2https://github.com/MarekKowalski/FaceSwap/
3https://github.com/deepfakes/faceswap/
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Table 5.2: Settings for autoencoder.

No. Method Depth Seg.
weight

Rec.
weight

Rec.
loss Comments

1 FT Res Shallower 0.1 0.1 L1 Re-implementation of ForensicsTransfer [141]
using residual images as input

2 FT Shallower 0.1 0.1 L1 Re-implementation of ForensicsTransfer [141]
using normal images as input

3 Deeper FT Deeper 0.1 0.1 L1 Proposed deeper version of FT (Proposed Old
method without segmentation branch)

4 Proposed Old Deeper 0.1 0.1 L1 Proposed method using ForensicsTransfer
settings

5 No Recon Deeper 1 1 L2 Proposed method without reconstruction
branch

6 Proposed New Deeper 1 1 L2 Complete proposed method with new settings

The training and testing datasets were designed as shown in Table 5.1. For the Training,

Test 1, and Test 2 datasets, the Face2Face method [99] was used to create manipulated

videos. Images in Test 2 were harder to detect than those in Test 1 since the source and

target videos used for reenactment were the same, meaning that the reenacted video

frames had better quality. Therefore, we call Test 1 and Test 2 the match and mis-

match conditions for a seen attack. Test 3 used the Deepfake attack method while Test

4 used the FaceSwap attack method, presented in the FaceForensics++ database [23].

These both attack methods were not used to create the training set, therefore they were

considered as unseen attacks. For the classification task, we calculated the accuracy and

equal error rate (EER) of each method. For the segmentation task, we used pixel-wise

accuracy between ground-truth masks and segmentation masks. The FT Res, FT, and

Deeper FT method could not perform the segmentation task. All the results were at

the image level.

5.3.2 Training Y-shaped autoencoder

To evaluate the contributions of each component in the Y-shaped autoencoder, we

designed the settings as shown in Table 5.2. The FT Res and FT methods are re-

implementations of Cozzolino et al.’s method with and without using residual im-

ages [141]. They can also be understood as the Y-shaped autoencoder without the

segmentation branch. The Deeper FT method is a deeper version of FT, which has the

same depth as the proposed method. The Proposed Old method is the proposed method

using weighting settings from Cozzolino et al.’s work [141], the No Recon method is
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the version of the proposed method without the reconstruction branch, and the Pro-

posed New method is the complete proposed method with the Y-shaped autoencoder

using equal losses for the three tasks and the mean squared error for reconstruction loss.

Since shallower networks take longer to converge than deeper ones, we trained the shal-

lower ones with 100 epochs and the deeper ones with 50 epochs. For each method,

the training stage with the highest accuracy for the classification task and a reasonable

segmentation loss (if available) was used to perform all the tests described in this section.

5.3.3 Dealing with seen attacks

The results for the match and mismatch conditions for seen attacks are shown in Ta-

ble 5.3. The deeper networks (the last four) had substantially better classification per-

formance than the shallower ones (the first two) proposed by Cozzolino et al. [141].

Among the four deeper networks, there were no substantial differences in their per-

formances on the classification task. For the segmentation task, the No Recon and

Proposed New methods, which used the new weighting settings, had higher accuracy

than the Proposed Old method, which used the old weighting settings.

The performances of all methods was slightly degraded when dealing with the mis-

match condition for seen attacks. The FT Res and Proposed New methods had the

best adaptation ability, as indicated by the lower degradation in their scores. This indi-

cates the importance of using residual images (for the FT Res method) and of using the

reconstruction branch (for the Y-shaped autoencoder with new weighting settings: Pro-

posed New method). The reconstruction branch also helped the Proposed New method

achieve the highest score on the segmentation task.

Table 5.3: Results for Test 1 and Test 2 (image level).

Method
Test 1 Test 2

Classification Segmentation Classification Segmentation
Acc(%) EER (%) Acc(%) Acc(%) EER (%) Acc(%)

FT Res 82.30 14.53 82.33 15.07
FT 88.43 11.60 87.33 12.03
Deeper FT 93.63 7.20 92.70 7.80
Proposed Old 92.60 7.40 81.40 91.83 8.53 81.40
No Recon 93.40 7.07 89.21 92.83 8.29 89.10
Proposed New 92.77 8.18 90.27 92.50 8.07 90.20
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Table 5.4: Results for Test 3 and Test 4 without fine-tuning (image level).

Method
Test 1 Test 2

Classification Segmentation Classification Segmentation
Acc(%) EER (%) Acc(%) Acc(%) EER (%) Acc(%)

FT Res 64.75 30.71 53.50 43.10
FT 62.61 37.43 52.29 41.79
Deeper FT 51.21 42.71 53.39 37.00
Proposed Old 53.75 42.00 70.18 56.82 36.29 84.23
No Recon 51.96 42.45 70.43 54.86 35.86 84.86
Proposed New 52.32 42.24 70.37 54.07 34.04 84.67

5.3.4 Dealing with unseen attacks

5.3.4.1 Evaluation using pre-trained model

When encountering unseen attacks, all six methods had substantially lower accuracies

and higher EERs, as shown in Table 5.4. In Test 3, the shallower methods had better

adaptation ability, especially the FT Res method, which uses residual images. The

deeper methods, which had a greater chance of being over-fitted, had nearly random

classification results. In Test 4, although all methods suffered from nearly random

classification accuracies, their better EERs indicated that the decision thresholds had

been moved.

A particularly interesting finding was in the segmentation results. Although degraded,

the segmentation accuracies were still high, especially in Test 4, in which FaceSwap

copied the facial area from the source faces to the target ones using a computer-graphics

method. When dealing with unseen attacks, this segmentation information could thus

be an important clue in addition to the classification results for judging the authenticity

of the queried images and videos.

5.3.4.2 Fine-tuning using small amount of data

We used the validation set (a small set normally used for selecting hyper-parameters in

training that differs from the test set) of the FaceForensics++ - FaceSwap dataset [23]

for fine-tuning all the methods. To ensure that the amount of data was small, we used

only ten frames for each video. We divided the dataset into two parts: 100 videos of

each class for training and 40 of each class for evaluation. We trained them using 50
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Table 5.5: Results for Test 4 after fine-tuning (image level).

Method Classification Segmentation
Acc (%) EER (%) Acc (%)

FT Res 80.04 (↑ 26.54) 17.57 (↓ 25.53)
FT 70.89 (↑ 18.60) 25.56 (↓ 16.23)
Deeper FT 82.00 (↑ 28.61) 17.33 (↓ 19.67)
Proposed Old 78.57 (↑ 21.75) 20.79 (↓ 15.50) 84.39 (↑ 0.16)
No Recon 82.93 (↑ 28.07) 16.93 (↓ 18.93) 92.60 (↑ 7.74)
Proposed New 83.71 (↑ 29.64) 15.07 (↓ 18.97) 93.01 (↑ 8.34)

epochs and selected the best models on the basis of their performance on the evaluation

set.

The results after fine-tuning for Test 4 are shown in Table 5.5. Their classification

and segmentation accuracies increased around 25% and 8%, respectively, which are

remarkable compared with the small amount of data used. The one exception was the

Proposed Old method – its segmentation accuracy did not improve. The FT Res method

had better adaptation than the FT one, which supports Cozzolino et al.’s claim [141].

The Proposed New method had the highest transferability against unseen attacks as

evidenced by the results in Table 5.5.

5.4 Conclusion

The proposed convolutional neural network with a Y-shaped autoencoder demonstrated

its effectiveness for both classification and segmentation tasks without using a sliding

window, as is commonly used by classifiers. Information sharing among the classification,

segmentation, and reconstruction tasks improved the network’s overall performance,

especially for the mismatch condition for seen attacks. Moreover, the autoencoder can

quickly adapt to deal with unseen attacks by using only a few samples for fine-tuning.

Future work will mainly focus on investigating the effect of using residual images [141]

on the autoencoder’s performance, processing high-resolution images without resizing,

improving its ability to deal with unseen attacks, and extending it to the audiovisual

domain.
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6
Conclusion

6.1 Summary

Since faces are the ultimate way for people to recognize and communicate with each

other, people are in no doubt confident about their natural ability to perceive and

recognize faces. That is both good and bad. The good side is that people are way better

than machines in avoiding master face attacks. The bad side is that they generally fail

to “detect” high-quality computer-generated and manipulated facial images and videos,

which makes them susceptible to the consequences of deepfakes. This thesis identifies

critical problems in facial biometrics and suggests solutions to deal with them.

On the attacker side, we demonstrate that master face attacks pose a significant se-

curity threat against state-of-the-art face recognition systems. By using an improved

version of latent variable evolution, we can generate high-quality master faces for use in

performing white-box, gray-box, and even some black-box attacks on face recognition

systems. The required materials for the attackers are simple and can be easily obtained

from the Internet. By evaluating the results for various settings of the LVE algorithm

parameters and analyzing the distributions of the face embedding (identity) spaces, we

obtained insights into master faces and identified weakness in face recognition systems.

We hypothesize that master faces originate from clusters in the identity spaces, which
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are not well-distributed. This finding provides hints for improving the robustness of

those systems.

On the defender side, we address both deepfake detection and deepfake segmentation

problems. For deepfake detection, we adopted an approach different from that of our

predecessors: instead of increasing the detector network’s depth, its width, and/or the

number of inner connections, we redesigned its architecture using the novel concept of

the capsule network. By doing so, we avoid the problem of computation and mem-

ory resource consumption while maintaining high detection performance. The proposed

Capsule-Forensics network has a special design in which a feature extractor is used

for preventing over-fitting and for leveraging prior knowledge, statistical pooling layers

(which are effective for deepfake detection and greatly reduce the number of parameters)

are used in the primary capsule, and a dynamic routing algorithm that produces better

fusion than the traditional feature aggregation approach is used. We also provide a the-

oretical explanation of the Capsule-Forensics network and visualization of the activation

of its components to improve its explainability.

Besides deepfake detection, we present a multi-task learning network that can locate

manipulated regions. By locating them, we improve the trustworthiness of the detection

results. If one of the two tasks fails, the other task can compensate for its failure or

warn the user of the need for further consideration of the result. This network is a

Y-shaped autoencoder with a shared encoder and a Y-shaped decoder, one branch for

deepfake segmentation and one branch for input reconstruction. The network is trained

in a semi-supervised manner. Thanks to its special design and training strategy, it

can adapt well to new deepfake methods even with a small amount of fine-tuning data.

Moreover, unlike the approach in which a sliding window with a detector is used for

segmentation, segmentation runs only one time per input image in our approach, thus

reducing the computation load.

6.2 Remaining Problems

On the attacker side, the performance of deepfake generation methods is not always sta-

ble, especially when end-to-end manipulation is applied automatically without human

revision. The main problem lies face detection and segmentation, which is not 100%
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accurate. This problem becomes worse when the input images or videos are of bad qual-

ity (e.g., bad lighting conditions, noisy, blurry, low-resolution). Another problem is the

blending of manipulated faces into the original images and videos. Although there are

improvements in the blending algorithms, there are still artifacts at the border between

the manipulated region and original region in many cases. Moreover, the mismatch be-

tween these two regions (e.g., lighting condition, skin color, or noise) can degrade the

quality of manipulated images and videos and make them easier to be detected. A third

problem is temporal consistency in manipulated videos. It is easier to fool humans using

still manipulated images than videos. Although frame-level quality is good, inconsis-

tency between frames is a strong clue for identifying manipulation. In a broader scope,

liveness properties (for example, biological signals such as blood circulation) have not

been considered for most manipulation techniques. Although these properties may not

be easily perceived by humans, machines can generally detect them.

On the defender side, the identity spaces of face recognition systems are not uniformly

distributed, resulting in the existence of dense areas. This makes them vulnerable to

master face attacks. Our hypothesis is that this problem may be due to an imbalance

in the training data and/or the lack of a good objective function. Although master face

attacks can be mitigated by using presentation attack detectors and deepfake detectors

before the recognition phase, false acceptance still occurs. The ultimate goal is to

improve the distributions of the identity spaces, which will help deal with master face

attacks and improve recognition performance.

Detection results in the field have significantly improved for seen manipulations. Unfor-

tunately, generalization is still a big problem, especially when deep learning (machine

learning) is the core of almost state-of-the-art deepfake detectors. Although recent work,

including ours, has achieved better results in unseen deepfake methods, performance is

still low. On the other hand, it is challenging to work with low-quality images and

videos. These two problems make deepfake detectors unreliable for real-world applica-

tions. Moreover, the lack effective explanations of how they operate makes them less

convincing, especially in critical applications like journalism and law enforcement.

Regarding the evaluation of deepfake detection results, many deepfake datasets provide

annotations of the face regions. In most work on deepfake detection, the assumption

has been that this pre-processing is available. Therefore, only the cropped faces were
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used for benchmarking. The reported scores are only for deepfake detection. In reality,

face detection does not always work correctly, especially in extreme conditions, which

greatly affects overall performance.

Regarding public datasets, most of them are still small and monotonic compared with

those in other areas like image classification and speech (e.g., ImageNet [50] and Vox-

Celeb [137]). One of the largest datasets, the Deepfake Detection Challenge dataset [31],

has only 128,154 videos representing less than 20 types of manipulation methods. More-

over, most datasets contain only one or two persons in an image or video, except for

recently released datasets [5, 105], and they are easily perceived and detected (excepting

those that are small or obscured). There is thus a gap between deepfake detection in

the laboratory and in the field. The only dataset containing manipulated or synthesized

speech is the Deepfake Detection Challenge dataset, and the audio manipulation meth-

ods represented are hard to consider as “fake.” Many manipulation techniques have been

introduced, but only a few have been used to create deepfake datasets.

6.3 Final Remarks

For deepfake detection, there is an upper bound on the generalizability of detectors, espe-

cially when deepfake techniques are rapidly advancing. Online learning is one promising

way to deal with this limitation. Unfortunately, current datasets are not optimal for

conducting online learning research. Therefore, focusing on creating better datasets

suitable for online learning and then developing better online learning techniques are

top priorities.

Deepfake
segmenation

Fact
retrieval

Fact
corpus

Query image

Original image 1

Original image 2

Figure 6.1: Overview of fact retrieval.
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The explanations of deepfake detector models and their results are still limited to vi-

sualizing network activation and providing segmentation maps, heat maps, and/or the

blending boundaries. This is not enough for making critical decisions, for example, in

law enforcement. There is a need for providing the original version of a manipulated

image or video. Therefore, fact retrieval for deepfakes is an important topic. That is,

given a fact corpus and a query sample, the task is to check whether the query sample

is fake and then, if it is, localize the manipulated region(s) and find the corresponding

original version(s), as shown in Fig. 6.1. Similarity search can be used to find the original

version of the manipulated region(s) and the remaining region. However, finding and

verifying facts to create the fact corpus is a challenging undertaking.
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Appendix

A
Enhancing Computer-Generated

Images to Avoid Being Detected

In this appendix, we introduce a method for use on the attacker side that enhances

computer-generated (CG) images so that they cannot be detected by CG image detec-

tors. It works independently of the generating method and thus can be applied to any

CG image.

A.1 Introduction

A presentation attack is commonly used to bypass authentication systems using bio-

metrics information (face, fingerprint, iris, and/or voice). Integration of a spoofing

detector into the system before the authentication phase is one approach to prevent-

ing such attacks. A good candidate for this is liveness detection, which generally uses

a challenge-response protocol in which the user is asked to perform an action such

as blinking, smiling, or moving the lips. However, recent work has shown that it is

possible to avoid liveness detection by, for example, using real-time face capture and

reenactment [17]. It has thus become necessary to develop and implement natural–CG

image/video discriminators.
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Figure A.1: Scenario of proposed presentation attack method.

Forensic research on discriminating between CG and natural images has focused on both

images in general and facial images. As an example of the former, Wu et al. extracted

statistical features from histograms of differential images [144]. Although this approach

was proposed several years ago, our evaluation demonstrated that it has fast feature

extraction and good performance. Therefore, we used it as the basis of the discriminator

used to train our CNN. In 2017, Peng et al. [145] reported a detector based on multi-

fractal and regression analysis. As an example of focusing on facial images, our previous

work [146] focused on facial smoothness as represented by edges and local entropy of the

skin areas.

In the research reported here, we developed a method for avoiding detection by spoofing

detectors like those natural–CG image discriminators mentioned above. It works by

transforming CG images input to facial authentication systems to make them appear

more natural. Our work is motivated by the idea of “adversarial machine learning”

of Huang et al. for attacking machine learning based systems [147]. Although we did

not target a specific system, we used a spoofing detection algorithm as the basis of the

discriminator. The attack scenario is illustrated in Fig. A.1. Given two sets of data

(a set of natural images and a set of CG ones which are not necessarily corresponding

person-to-person or pose-to-pose), a system using the proposed method implemented as

a CNN transforms the CG input images in an attempt to make them indistinguishable

from the natural counterparts.

Unlike the original generative adversarial network (GAN) [35], the discriminator used to
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train our CNN was pre-trained, kept fixed during training, and could not perform back

propagation. Moreover, the generated images retained important information from the

input images, such as the person’s identity, the facial expression, or the lips’ shapes,

which are hard to control when using the original GAN. When designing our CNN we

focused on minimizing the number of parameters so that it can work without consuming

a large amount of GPU memory. We also considered the “training with small dataset

problem,” which is often faced by attackers when collecting data.

Our approach is different from those of other computer graphic engines, which mainly

focus on the rendering phase. It also differs from the style transfer problem, which

mainly focuses on applying the “look” or textures of one image (the style) to another

one (the content). In our case, the style is not just a picture or an artistic style, so it is

hard to define.

Our contributions here are threefold:

• Presentation of a CNN comprising two autoencoders and a transformer net that

increases the difficulty of detecting computer-generated facial images.

• Suggestion of a method for dealing with back propagation when training using an

external black-box discriminator that does not have gradient information.

• Raising of an alarm about the robustness of facial authentication systems, which

are being implemented in many mobile devices and have become a tempting target

for attacker.

A.2 Model Architecture

A.2.1 Overview

It is very hard to explicitly point out what makes natural images look “natural” and CG

ones look “unnatural.” We humans have been “trained” by our encounters with many

natural things and scenes since we were born, so we can intuitively distinguish which

images were produced by computer. Some forensic researchers have tried describing

these intuitive feelings in terms of specific properties [145, 146]. Others, such as Wu

et al. [144], have tried using statistical methods to distinguish natural images from CG
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Figure A.2: H-Net architecture.

images. However, these approaches are problematic, require lengthy experiments and

do not sufficiently describe the essence of the two kinds of images.

To tackle this feature-finding problem, we use two autoencoders [148] with the same

design but different weights ({EθEN
, DθDN

} and {EθECG
, DθDCG

}) to automatically ex-

tract latent features from natural image IN and CG image ICG. They are trained to

learn representations of the inputs and to regenerate them with the same properties. To

transform the latent feature space of CG images into those of natural ones, we use a

transformer net TθT
with five bottleneck residual blocks [42]. This block design reduces

the number of parameters for the network. Old information given by the skip connection

combines with new one created by the layers in a residual block are suitable for trans-

formation. Since our network is shaped like an “H,” as illustrated in Fig. A.2, we call it

“H-Net.” In the evaluation phase, the CG encoder EθECG
, the transformer TθT

, and the

natural decoder DθEN
transform CG input ICG into a natural-looking image OT that is

similar to natural image IN from the perspective of a natural–CG image discriminator.

The encoder has four convolutional layers with 3 × 3 kernels and a stride of 1. Batch

normalization [142] is used to deal with high learning rates and the less careful initial-

ization problem. After batch normalization layers are exponential linear unit (ELU)

layers, which give better performance than traditional rectified linear units (ReLUs),

leaky ReLUs (LReLUs), and parametrized ReLUs (PReLUs) [149]. To reduce the spa-

tial size of the representation, we use 2× 2 average pooling layers, which have recently

come to be used instead of max pooling ones. In the decoder, the convolutional layers

are replaced with their counterparts: transposed convolutional ones and two sub-pixel
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Figure A.3: Design of encoder net (left) and decoder net (right).

convolutional ones, which have been reported to give better upscaling results than pre-

vious approaches[150]. The detailed designs of the encoder and decoder are shown in

Fig A.3.

A.2.2 Loss functions

Loss functions are used to optimize the model in the training phase. Pixel-wise loss

functions such as mean squared error (MSE) ones are widely used but have limited

capabilities for images when measuring perceptual quality [151]. To overcome this lim-

itation, Dosovitskiy and Brox [152] used Euclidean-based loss in feature space in com-

bination with adversarial loss. Another approach is to use a perceptual loss function

based on the Euclidean distance between feature maps extracted from a VGG network

proposed by the Visual Geometry Group at the University of Oxford [51]. Ledig et

al. combined both VGG loss and adversarial loss in their super-resolution generative

adversarial network [153].

We use four loss functions:

91



Appendix A. Enhancing Computer-Generated Images to Avoid Being Detected

1. MSE loss LMSE is only used to calculate the loss between two feature maps,

including high-level presentations encoded by the encoders and others extracted

from the VGG-19 network.

2. VGG loss LV GG, or perceptual loss, is the MSE loss of features maps (of I1 and I2)

extracted using the VGG-19 network: LV GG = LMSE(V GG(I1), V GG(I2)). VGG

loss represents the perceptual quality of generated images.

3. Adversarial loss LAdv is the binary cross entropy loss between two labels: one

is from the discriminator and the other is the destination label. Details of the

discriminator are discussed in section A.2.3.

4. Total loss LTol is the combination of LV GG and LAdv, formulated as equation A.1.

It represents the quality of images generated by natural decoder DθEN
. In our

experiments, we set the hyper-parameter α to 5×10−3. Gradient back propagation

is discussed in section A.2.3.

LTol = (1− α)LV GG + αLAdv (A.1)

A.2.3 Discriminator

Unlike the original GAN proposed by Goodfellow et al. [35], we use a pre-trained dis-

criminator for training our H-Net. It can be any black-box spoofing detector. Since it is

unlikely for attackers in the wild to have full access to the spoofing detectors in authen-

tication systems, it is more realistic to assume that the spoofing detector used as the

discriminator used for training is a “black-box” rather than a differentiable white-box

discriminator. In our experiments, the use of a “traditional” discriminator in the GAN,

such as the one used by Ledig et al. [153], results in very poor performance. This is

because performing only convolution is not enough for extracting the features needed for

distinguishing natural images from CG images. Hence, we borrow the detector of Wu

et al., which focuses on statistical features from histograms of differential images [144].

We use a neural net instead of Fisher’s linear discriminant analysis (FLDA) as Wu et al.

did because we can easily run the discriminator in parallel with H-Net in the training

phase without using an additional framework.
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We need to compute the gradient of total loss LTol in equation A.1 with respect to

the parameters in the generator. However, since the discriminator is a black-box, the

adversarial loss LAdv is not differentiable. One possible approach is to approximate it

on the basis of the gradient of the VGG loss LV GG only. However, the adversarial loss

makes no contribution to the gradient. Therefore, we approximate the total gradient as

follows:

gradLT ol
= (1− α)LV GG + αLAdv

LV GG
gradLV GG

(A.2)

A.2.4 Training and evaluation

H-Net is trained using two sets of images: natural images and CG ones. The two sets

do not have to be pairwise correlated, which means that they may contains images of

different people with different poses or facial expressions. This loose condition comes

from reality; i.e., it is very hard for an attacker to find a large number of natural–CG

image pairs with similar perceptual content.

In training, four optimization processes are performed sequentially:

Step 1: Training the natural autoencoder {EθEN
, DθDN

} with natural image IN by

minimizing equation A.3.

argmin
θEN

,θDN

LTol[DθDN
(EθEN

(IN )), IN ] (A.3)

The output image ON = DθDN
(EθEN

(IN )) must satisfy two conditions: (1) have the

same perceptual content as input IN and (2) be classified as a natural image by the

discriminator.

Step 2: Training the CG autoencoder {EθECG
, DθDCG

} with CG image ICG by mini-

mizing equation A.4.

argmin
θECG

,θDCG

LV GG[DθDCG
(EθECG

(ICG)), ICG] (A.4)

In this step, the discriminator loss is not necessary. The only requirement is that output

image OCG be perceptually similar to ICG.
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Step 3: Training the transformer net TθT
to convert latent features encoded by CG

encoder EθECG
into ones that have the same distribution of features as those extracted

by the natural encoder EθEN
. As mentioned above, due to the lack of pairwise cor-

related IN and ICG pairs, it is very hard to minimize the loss between EθEN
(IN ) and

TθT
(EθECG

(ICG)). An acceptable solution is feeding IN into both networks and mini-

mizing the features they encode, formulated in equation A.5.

argmin
θT

LMSE [EθEN
(IN ), TθT

(EθECG
(IN ))] (A.5)

Step 4: Training the CG transformation path, which includes CG encoder EθECG
,

transformer TθT
, and natural decoder DθDN

. As in the first step, total loss must be used

to ensure that transformed output OT = DθDN
(TθT

(EθECG
(ICG))) is not classified as a

CG image. The lack of pairwise correlated IN and ICG pairs in Step 3 appears here as

well, so we need to replace IN with ICG in equation A.6.

argmin
θECG

,θT ,θDN

LTol[DθDN
(TθT

(EθECG
(ICG))), ICG] (A.6)

Doing this could also bring back some “balance” from the effect of IN on CG encoder

EθECG
in step 3.

When we compute the transformed output from the CG input in the evaluation phase,

we use a step similar to step 4 in the training phase:

OT = DθDN
(TθT

(EθECG
(ICG))) (A.7)

We do not use the tanh function to scale the output images because of the resulting

low contrast. To avoid extreme values with resulting abnormal color spots, the pixel

intensities are restricted to the range [−1.8, 1.8] before being denormalized to [0, 255].

A.3 Evaluation

In facial image forensic research, there was no standardized dataset used for mutual

comparison. Each research group tended to have its own datasets. Therefore, we had

to combine pieces from five different sources to create three datasets used for evaluation
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Table A.1: Three datasets used in evaluation.

No. Components Size Description

1 Dang-Nguyen et al. [154]
CG: 240

Nat: 240

40 very realistic CG images collected from Web plus
200 good quality CG images extracted from PES 2012 soccer game
240 natural images retrieved from Internet

2 Basel (CG) [155]
Caltech99 (Nat) [156]

CG: 270
Nat: 270

3D face scans and rendered images from Basel Face Model
Natural images from Caltech Faces 1999 dataset

3 MIT (CG - Grayscale) [157]
MS-Celeb-1M (Nat) [46]

CG: 3236
Nat: 3236

CG images extracted from MIT CBCL dataset
Natural images selected from MS-Celeb-1M cropped version

(see Table A.1). All images were resized to 256 × 256 pixel resolution. We tested H-

Net on two scenarios: (1) the attacker knows the dataset used for training the spoofing

detector, and (2) the attacker has no knowledge of the training dataset. Three spoofing

detectors were used: Wu et al.’s [144], Peng et al.’s [145], and ours [146]. Note that only

Wu et al.’s spoofing detector was used as a discriminator for training H-Net; the other

spoofing detectors were unseen by the attacker. Moreover, in Wu et al.’s one, we used

FLDA for classification as in the authors’ report. We compared both the accuracies and

detection rates of the three spoofing detectors. Let nTP and nTN be respectively the

number of images correctly classified as CG or natural, nFN be the number of CG or

transformed images misclassified as natural ones, and N be the total number of images.

Accuracy is defined as sum of nTP and nTN over N : nT P +nT N
N . The detection rate

represents the ability of the spoofing detector to detect positive items: nT P
nT P +nF N

.

Table A.2: Scenario 1 - Accuracies (%) and detection rates (%) of three spoofing
detectors on three datasets before and after performing transformation on CG parts.

Spoofing detectors
Dataset 1 Dataset 2 Dataset 3

Accuracy Detection rate Accuracy Detection rate Accuracy Detection rate
Before After↓ Before After↓ Before After↓ Before After↓ Before After↓ Before After↓

Wu et al. [144] 92.71 48.33 93.33 0.00 83.89 55.37 93.33 36.30 64.65 56.83 35.51 19.90
Peng et al. [145] 90.63 52.71 92.08 16.25 59.26 19.26 97.41 17.41 50.20 13.58 100.00 26.79
Our previous detector [146] 83.54 64.79 87.08 48.33 17.78 32.78 0.00 30.00 32.31 63.23 0.49 62.11

Figure A.4: Original images (top) and transformed ones (bottom) from dataset 1.
Color and brightness of images in second row were normalized by H-Net as learned
from training data. First two images demonstrate good transformation in perception.
Contrast of third image was improved. In last image, skin color was whitened a bit

undesirably.
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Figure A.5: Original images (top) and transformed ones (bottom) from dataset 2
(left) and dataset 3 (right). Brightness of first two image was unexpectedly reduced
due to bright background. Although grayscale images were given skin-like color, they

can easily be converted back into grayscale.
©Copyright University of Basel. ©Copyright 2003-2005 Massachusetts Institute of Tech-

nology. All Right Reserved.

A.3.1 Scenario 1: Attacker knows training dataset of spoofing detector

We trained both spoofing detectors and H-Net on dataset 1. We then evaluated them

on all datasets to see if the images transformed by H-Net could avoid detection by

these pre-trained spoofing detectors. Comparisons of sample images before and after

transformation are shown in Figs. A.4 and A.5. As shown in Table A.2, the detection

rates significantly decreased when the CG images were transformed, especially for Wu

et al.’s and Peng et al.’s detectors.

Although our previous detector had the lowest performance on dataset 1, its detection

rate after transformation was the highest (nearly 50%). On datasets 2 and 3, its per-

formance before transformation was very poor; it was better after transformation. Our

analysis shows that this detector was over-fitted for dataset 1 which had high-quality

CG images. It had a tendency to classify fine-texture images as CG ones. On datasets

2 and 3, which did not have fine-texture CG images, it classified almost of the images

as natural ones. Because of the spoofing detector’s preset threshold, some transformed

images had good enough texture to be classified as CG ones, which increased the detec-

tion rate. Therefore, if an attacker tries to avoid detection by this spoofing detector, he

or she may be successful the first time without the help of H-Net.
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A.3.2 Scenario 2: Attacker does not know training dataset of spoofing
detector

Unlike in the first scenario, we trained the H-Net and the spoofing detectors on difference

datasets (switched between dataset 1 and 2), and evaluated them on dataset 3.

A.3.2.1 Scenario 2.1: H-Net was trained on dataset 1, spoofing detectors

were trained on dataset 2

The evaluation results on dataset 3 are shown in Table A.3. The transformed images

again significantly reduced the detection rates of all spoofing detectors, especially those

of Wu et al. and Peng et al., which were nearly 0%. Our previous detector had a

detection rate of around 50%, down from nearly 100%, meaning that the attacker had a

50–50 chance of avoiding detection by this spoofing detector. In this case, this spoofing

detector learned that low-texture images had a high probability of being CG ones, which

was opposite to its knowledge in scenario 1. Therefore, after transformation on dataset

3, the textures of the CG images were improved so that the images would likely be

classified as natural ones. This also clarifies the contrasting changes in the detection

rate in the first scenario on dataset 1 vs. datasets 2 and 3.

A.3.2.2 Scenario 2.2: H-Net was trained on dataset 2, spoofing detectors

were trained on dataset 1

The evaluation results on dataset 3 are shown in Table A.4. Before transformation, Peng

et al.’s detector seemed to classify all input as CG. After transformation, its decision was

changed that all transformed CG images were classified as natural ones, therefore both

the accuracy and the detection rate were around 0. Our previous detector had the same

behavior as in the first scenario as expected. The performance of Wu et al.’s detector

was increased after transformation, which was different from the two above scenarios.

A possible explanation for this phenomenon is that the training dataset used for H-Net

is small and monotonous. As the result, H-Net did not have enough knowledge about

other kinds of CG images.
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Table A.3: Scenario 2.1 - Evaluation results on dataset 3.

Spoofing detectors Accuracy Detection rate
Before After Before After

Wu et al. [144] 56.38 6.46 100.00 0.19
Peng et al. [145] 92.32 42.57 100.00 0.49
Our previous detector [146] 96.72 71.54 99.20 48.89

Table A.4: Scenario 2.2 - Evaluation results on dataset 3.

Spoofing detectors Accuracy Detection rate
Before After Before After

Wu et al. [144] 64.65 82.73 35.51 71.66
Peng et al. [145] 50.20 0.20 100.00 0.00
Our previous detector [146] 32.31 41.27 0.49 18.17

A.4 Conclusion and Future Work

The performances of both H-Net and detectors are depended on the quality of training

datasets. However, in most cases, over 50% of the CG images transformed using our

H-Net avoided detection by three state-of-the-art spoofing detectors. Since the facial

features were preserved, facial recognition was unaffected. This means that the network

can be trained using a black-box discriminator that cannot perform back propagation.

However, H-Net has some limitations, especially when up to 50% transformed images

are still separable from natural ones. Future work will mainly focus on this limitation

as well as finding better datasets. We will also evaluate the local substitute method

to perform black-box attacks [158]. Other issues to be addressed are solving the black

skin-color problem, dealing with larger images, and reducing network size to enable it

to work smoothly with video frames in real time.
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B
Distinguishing between Computer

Graphics Images and

Photographic Images

In this appendix, we introduce a modular classifier for distinguishing computer graphics

images (images generated using a computer graphics model) and photographic images.

The use of a probabilistic patch aggregation strategy reduces computational expense.

In addition, the use of a sliding window enables segmentation as well as classification to

be performed.

B.1 Introduction

Statistical properties obtained from transformed images (e.g., from wavelet transform

or differential operators) have been widely used to distinguish computer graphics images

(CGIs) from photographic images (PIs) [144, 159–163] and were recently demonstrated to

be the best features for discrimination by Rahmouni et al. [132]. They also demonstrated

that applying automatic feature extraction using a convolutional neural network (CNN)

can substantially improve classification compared with using handcrafted features.
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Extractor
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Figure B.1: Overview of modular CNN discriminator.

In addition, the pre-trained VGG networks [51] (VGG-16 and VGG-19) have been widely

used in areas outside their originally intended scope as image classification networks,

such as for perceptual loss in the style transfer problem and for the super-resolution

problem [153, 164]. Furthermore, these VGG networks were trained using a large-scale

dataset [50], which maximizes the generalization ability of a CNN.

In the research reported here, we leveraged the generalization ability of the VGG-19

network, combined with statistical properties applicable to CNNs, to build a modular

CGI–PI classifier. To deal with high-resolution images while minimizing computational

cost, we use a probabilistic patch aggregation strategy that reduces V-RAM usage and

shortens classification time.

B.2 Network Architecture

B.2.1 Overview

Our modular CNN for discriminating between CGIs and PIs includes three modules, as

illustrated in Figure B.1. Unlike recent work [132], we do not train the whole network

end-to-end. The biggest problem with CNNs is the need to use a large-scale and diverse-

content training dataset in order to achieve the best generalization. The dataset used by

Rahmouni et al. [132] is relatively large but is less diverse in content than the ILSVRC15

dataset [50]. Unfortunately, the ILSVRC15 dataset was designed for visual recognition,

not digital image forensics research. However, CNNs have the ability to transfer learning,

so the knowledge gained from solving one problem can be used to solve a different but

related problem. Therefore, we used one of the winners of the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) – the pre-trained VGG-19 network, as the

feature extractor module. It is important to note that we did not fine tune the feature

extractor in the training process.
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Although recent work [132, 144] has shown that statistical properties obtained from

transformed images are the best features for CGI–PI discrimination, the features ex-

tracted from the pre-trained VGG-19 network were designed for visual recognition.

Therefore, we constructed feature transformer modules to transform the output ex-

tracted by the feature extractor into statistical features. The number of convolutional

layers in the transformers must be limited to prevent them from extracting semantic

information, but there must be a sufficient number of such layers to be able to extract

good statistical information.

The final module is a classifier. For this module, we selected the machine learning

algorithm among state-of-the-art ones that has the best classification results.

B.2.2 Feature extractor

Johnson et al. [164] suggested that the results obtained from some activation layers of

the pre-trained VGG-16 network can be used to calculate the feature reconstruction loss

and the style reconstruction loss, which are used for both the style transfer problem

and the image super-resolution problem. Ledig et al. [153] argued that, in the case

of feature reconstruction loss, using output from a deeper activation layer of the pre-

trained VGG-19 network results in better perceptual quality than that with Johnson

et al.’s approach. Therefore, there is no standard guideline for the utilization of the

VGG network family. In the case of digital forensics, we hypothesized that features in

lower layers have more discriminating power than ones from higher levels, which mostly

contain semantic information. Moreover, instead of using the output of the rectified

linear units (ReLUs) [143], for which negative values are omitted, we extracted output

immediately after the convolutional layers.

To verify this hypothesis, we performed an experiment using the patches dataset pro-

posed by Rahmouni et al. [132] and the pre-trained VGG-19 network. We extracted

the outputs after five convolutional layers located immediately before the max-pooling

layers as shown in Figure B.2. For the five settings given in Table B.1, the combination

of layers 1, 2, and 3 gave the highest classification accuracy. These results indicate

that using only one layer does not produce the highest accuracy. However, if semantic

layers were included, the classification performance would be affected by this irrelevant
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Figure B.2: Detailed design of feature extractor and its connections with feature
transformers and classifier.

Table B.1: Accuracies for training using patches dataset for five settings.

Setting Accuracy (%)
1 95.40
1 + 2 97.60
1 + 2 + 3 97.70
1 + 2 + 3 + 4 96.50
1 + 2 + 3 + 4 + 5 96.10

information. Therefore, we chose outputs from layers 1, 2, and 3 in Figure B.2 (conv1 2,

conv2 2, and conv3 4, respectively) as features to be extracted by the feature extractor.

B.2.3 Feature transformers

The role of the feature transformers is to transform features encoded by the pre-trained

VGG-19 network into statistical properties that can be used to distinguish CGIs from
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Figure B.3: Detailed settings of feature transformers and classifier.

PIs. Because there are three feature transformer modules, it is necessary to minimize

their depths. Moreover, a deep feature transformer may produce unnecessary semantic

information, which could negatively affect the network. However, a shallow network has

a limited ability to transform the features. Therefore, we used two convolutional layers

with 3× 3 kernels and a stride of 1. We integrated batch normalization layers [142] into

the transformers to regularize their training processes. Following the batch normaliza-

tion layers are the ReLU activation layers. We attached a statistical pooling layer at the

end of the modules to extract the statistical properties. The three feature transformers

share the same architecture, as illustrated in Figure B.3.

We built the statistical pooling layer following Rahmouni et al.’s approach [132]. How-

ever, we assumed that finding the maximum and minimum of each filter was not neces-

sary and that these actions would consume computational power, especially when per-

forming back propagation in the training phase. Therefore, we calculate only the mean

and variance of each filter, which are important in statistics and also are differentiable.

• Mean:

µk = 1
H ×W

H∑
i=1

W∑
j=1

Ikij

.
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• Variance:

σ2
k = 1

H ×W − 1

H∑
i=1

W∑
j=1

(Ikij − µk)2

.

The k represents the layer index, H and W are respectively the height and width of the

filter, and I is a two-dimensional filter array.

B.2.4 Classifier

Feed-forward multilayer networks, or multilayer perceptrons (MLPs), [165] are widely

used to build classifiers in CNNs because of their differentiable property. However, there

are other strong classification algorithms that have been widely used such as Fisher’s lin-

ear discriminant analysis (LDA) algorithm [166] and the support vector machine (SVM)

algorithm [167]. Therefore, we first use an MLP to build the classifier to train the fea-

ture transformers (as well as to train the classifier itself). After the training, the feature

transformers are kept fixed, and the classifier is trained using the LDA and SVM classifi-

cation algorithms. The learning curves of these algorithm are plotted in Figure B.4. The

proposed network converged very quickly in the few first epochs. The MLP algorithm

had high accuracy but was less stable than the LDA and SVM algorithms. Since the

LDA algorithm usually has higher accuracy than the SVM one, we evaluated only MLP

and LDA classifiers, as described in section B.4.

In more detail, two properties are extracted by each statistical pooling filter: the mean

µi and the variance σi. Each pooling layer has 64 filters. Since there are three feature ex-

tractor modules, the classifier receives a 384-dimension vector. For the MLP algorithm,

we used two hidden layers and one dropout layer [168] in between (with a dropout rate

of one-third to avoid over-fitting). A classifier using the MLP algorithm is illustrated in

Figure B.3. For the LDA and SVM classifiers, we used the LinearDiscriminantAnalysis

and SVC module of the scikit-learn library. 1

To choose the best weights for the feature transformers and the classifier, we begin from

epoch 20 and use the one with the highest score in the validation set. Although the

proposed network converged very quickly, it is better to use a longer training time to

optimize its weights before harvesting.
1http://scikit-learn.org/
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Figure B.4: Learning curves of MLP, LDA, and SVM classifiers on Patch-100-Full
validation set described in section B.4.1

.

B.3 Patch Aggregation

Using a CNN with large-scale input requires a large amount of GPU memory. One

possible solution is to split the input into patches, perform classification, and aggregate

the results [132]. Although this approach can also detect local CGI inlay in large PI

images (or vice-versa), it has high computational cost, especially when dealing with

very large images. For instance, an image 4900× 3200 pixels in size would require 1568

patches if the patch size was 100 × 100 pixels. This would result in 1568 classification

calculations.

To reduce the number of calculations, we devised an approach using a probability sam-

pling method that randomly selects a portion of the patches, performs classification

using the selected patches, calculates the average of the predicted probabilities, and

uses it as the final decision. Two patch selection strategies are illustrated in Figure B.5.

For some fixed number of patches (e.g., 10, 25, or 50), we could integrate them into one

batch and feed that batch into the network instead of feeding each patch separately into

the network, thereby shortening the computation time.

Let

• ypred be the predicted label of input image I, which is either 0 (PI) or 1 (CGI).

• W be the set of patches wi extracted from the full-size image I, |W | = N (patches).
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Figure B.5: Patch selection strategies: Selecting all patches (left) vs. random sam-
pling (right).

• p(wi) = D(wi) be the probability of patch wi being classified by the proposed

network D as CGI.

The probability of I being classified as CGI is calculated using

p(I) = 1
N

N∑
i=1

p(wi). (B.1)

Hence, the predicted label of I is

ypred =


1, if p(I) > 0.5

0, otherwise.
(B.2)

B.4 Evaluation

B.4.1 Datasets

For the image datasets, we began with the one recently constructed by Rahmouni et

al. [132]. Its CGI part contains 1800 high-resolution (around 1920×1080 pixels) screen-

shots in JPEG format from five photo-realistic video games. The PI part includes 1800

very high-resolution JPEG images (around 4900× 3200) directly converted from RAW

format. Both parts cover many kinds of indoor and outdoor environments. Sample

images from this dataset are shown in Figure B.6.

We made one major change to this dataset. We contend that the reduced-size images

created by cropping high-resolution images to 650 × 650 are not appropriate for our
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Figure B.6: Sample images from dataset constructed by Rahmouni et al. [132]. Images
on the left are PIs and those on the right are CGIs.

Table B.2: Datasets used for evaluation.

Name No. for training No. for valid. No. for testing Image size
Full-Size 2,520 360 720 High-resolution
Patch-100-Full 40,000 1,000 2,000 100 × 100
Patch-256-Full 40,000 1,000 2,000 256 × 256
Reduced-Size 2,520 360 720 360p
Patch-100-Reduced 40,000 1,000 2,000 100 × 100

purposes because their quality is still good. In reality, many images and videos have low

quality, and a malicious person could additionally apply transformation to the CGIs,

for example, scaling them to produce lower quality, to disguise the attack. Therefore,

instead of cropping, we resized each high-resolution image to 360p resolution using a

bilinear interpolation algorithm. This increased the diversity in quality of images used

for evaluation.

In addition to using a patch size of 100× 100, we also used a patch size of 256× 256 for

the high-resolution images to reduce the number of patches. This larger patch size could

be used with large-memory GPUs. Moreover, a larger patch size should contain more

valuable information, and with the size is the power of 2, we could reduce the effect of

JPEG artifacts. In addition, we also extracted 100× 100 patches from the reduced-size

images. The datasets derived from the original one are summarized in Table B.2.

We trained each discriminator on the training sets of the patch datasets. The valid. sets

were used to validate the training process. After training, the discriminators were tested

on the testing sets of both patch datasets and their corresponding Full-Size or Reduced-

Size ones. Moreover, as described in section B.4.3, we also tested the discriminators
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Table B.3: Accuracy for several patch aggregation strategies on Full-Size dataset.
The random sampling strategy was evaluated three times.

Classifier MLP LDA
Patch size No. of patches 1 2 3 Avg. 1 2 3 Avg.

100
×

100

10 99.31 99.72 99.86 99.63 99.86 99.31 99.72 99.63
50 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
100 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
All 99.86 99.86

256
×

256

5 99.72 99.44 99.72 99.63 99.44 99.03 99.58 99.35
10 100.00 99.72 100.00 99.91 99.86 99.58 99.72 99.72
25 99.86 99.86 99.86 99.86 99.72 99.72 99.72 99.72
All 99.86 99.72

which were trained using the Patch-100-Full dataset on the Reduced-Size dataset to

check whether this training strategy is capable of generalization.

B.4.2 Testing on high-resolution images

For testing on high-resolution images, we trained our proposed method and Rahmouni

et al.’s one [132] on the Patch-100-Full and the Patch-256-Full datasets. We then eval-

uated them on both the corresponding patch dataset and the Full-Size one. The pro-

posed method was also tested for several patch aggregation strategies, as presented in

Table B.3. For the 100 × 100 patch size, it was sufficient to sample only 50 patches to

obtain performance equivalent to that of evaluating all patches on the Full-Size dataset.

When the sampling process avoided some confused areas in the images, sampling only 10

256×256 patches outperformed sampling 25 patches or evaluating all patches, achieving

an accuracy of 100%. Otherwise, the accuracy was slightly lower (e.g., 99.72%).

Our proposed method substantially outperformed Rahmouni et al.’s method [132] on

both the Patch-100-Full and Patch-256-Full datasets. It also had the highest results

on the Full-Size dataset, reaching 100%. A comparison of accuracy between Rahmouni

et al.’s method [132] and the proposed method is shown in Table B.4. Comparing the

original 100 × 100 patch size with the 256 × 256 one shows that increasing the patch

size improves the accuracy of Rahmouni et al.’s method. Moreover, use of the MLP

classifier rather than the LDA one in the proposed method resulted in higher accuracy

for both the Reduced- and Full-Size datasets. The ROC curves for the Patch-100-Full

and Full-Size dataset discriminators are plotted in Figure B.7.
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Table B.4: Comparison of accuracy between Rahmouni et al.’s method [132] and
proposed method.

Method Patch-100-Full Patch-256-Full Full-Size
Rahmouni et al. - 100 [132] 86.10 × 96.94
Rahmouni et al. - 256 [132] × 93.95 98.75
Proposed method - MLP - 100 96.55 × 99.86
Proposed method - LDA - 100 96.40 × 99.86
Proposed method - MLP - 256 × 98.70 99.72 - 100.00
Proposed method - LDA - 256 × 98.70 99.58 - 99.86

Patch-100-Full dataset Full-Size dataset

Figure B.7: ROC curves of discriminators tested on Patch-100-Full dataset (left) and
Full-Size dataset (right). Proposed method used MLP classifier.

B.4.3 Dealing with low-resolution images

In reality, many videos on social networks such as YouTube, Facebook, and Vimeo have

360p quality. Attackers can take advantage of this to produce low-resolution videos

(and images) that are more difficult to detect. The results shown in Table B.5 highlight

this problem for discriminators trained on the Patch-100-Full dataset. Their perfor-

mance substantially decreased to the random-selection level. To solve this problem, we

mixed the Patch-100-Full and the Patch-100-Reduced datasets to form the Patch-100-

Mixed dataset. We then retrained the discriminators on this new dataset and evaluated

them on the Patch-100-Reduced & Reduced-Size datasets and Patch-100-Full & Full-Size

datasets.

The results in Table B.5 show that both discriminators had better performance on

the Patch-100-Reduced and the Reduced-Size datasets. However, their performance on

the Patch-100-Full and the Full-Size datasets was slightly lower than with the previous

scheme for high-resolution datasets. The difference in performance between the pro-

posed method and Rahmouni et al.’s was also substantially greater. The results also
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Table B.5: Accuracy of classifiers trained on Patch-100-Full dataset (Old) and on
Patch-100-Mixed dataset (New). For simplicity, proposed method used all-patch strat-

egy.

Method Patch-100-Reduced Reduced-Size Patch-100-Full Full-Size
Rahmouni et al. (old) [132] 51.50 50.97 86.10 96.94
Proposed method - MLP (old) 52.55 51.81 96.55 99.86
Proposed method - LDA (old) 52.35 51.53 96.40 99.86
Rahmouni et al. (new) [132] 60.45 79.72 81.20 95.00
Proposed method - MLP (new) 88.60 96.67 93.40 97.64
Proposed method - LDA (new) 89.95 97.92 94.80 98.89

Reduced-Size dataset Full-Size dataset

Figure B.8: ROC curves of retrained discriminators tested on Reduced-Size dataset
(left) and Full-Size dataset (right). Proposed method used LDA classifier.

demonstrated the advantage of choosing among state-of-the-art classifiers to find the

best one; i.e., use of the LDA classifier resulted in higher accuracy when the Patch-100-

Mixed dataset was used. The ROC curves for the Reduced-Size and Full-Size dataset

discriminators after being retrained are shown in Figure B.8.

B.4.4 Detecting image splicing

In an experiment, we used the discriminators to detect image splicing. Along with the

normal way of dividing the test input into 100×100 patches, we also used an overlapping

patch strategy. The probability of splicing for each area is the average of the probabilities

of all patches to which the area belongs. Although this strategy has a higher calculation

cost, it produces smoother output than the non-overlapping one. Example images are

shown in Figure B.9; the input sizes were 1800×1200 and 1200×800 pixels. Our proposed

method (both overlapped and non-overlapped patches) outperformed Rahmouni et al.’s

one [132]. Although our method did not flawlessly separate all the splices and had a

few minor false positives, it could detect their relative positions. Rahmouni et al.’s one,
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Original Rahmouni et al. Non-overlapped Overlapped

Figure B.9: Three examples of splice detection. Patches detected as CGI are in red;
those detected as PI are in blue. The color intensities illustrate the probabilities of

classes.

on the other hand, failed to detect the splice in the first image and was confused in the

second image.

B.5 Summary and Future Work

The proposed modular CGI–PI discriminator uses the VGG-19 network as the feature

extractor, statistical convolutional neural networks as the feature transformers, and the

machine learning algorithm among state-of-the-art ones that has the best classification

results as a discriminator. It outperformed a state-of-the-art CGI–PI discriminator. The

proposed random sampling strategy used for patch aggregation was demonstrated to be

effective for large images. Testing showed that using only high-resolution images for

training is not sufficient to counter real-world attacks.

Our top priority now is to use ensemble adversarial training [37] to counter adversarial

machine learning attacks [147]. This kind of attack is becoming more common and is

very effective against machine-learning-based discriminators. A promising candidate to

replace patch aggregation for dealing with high-resolution images is the attention-based

approach [169]. We also plan to adapt the proposed discriminator to enable it to work

with videos, not simply extracting data frame-by-frame and performing classification to

reduce computational time.
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C
Detecting and Correcting

Adversarial Images

Adversarial attacks can target any deep neural network by adding certain perturbations

(such as noises and/or patterns) to the network inputs and thereby alter their outputs.

DNN-based deepfake detectors are not an exception [170]. Therefore, it is vital to detect

and correct adversarial examples to ensure the robustness of deep neural networks.

In this appendix, we introduce novel methods for detecting and correcting adversarial

images crafted using classical adversarial attacks.

C.1 Introduction

Despite the success of deep learning in both academia and industry, deep neural networks

(DNNs) are vulnerable to adversarial attacks [36], and this has attracted much atten-

tion and effort. Besides traditional logical attacks in which adversarial noise is added to

image or audio files, attackers can now create physical adversarial examples [171–175].

When autonomous systems have become mainstream, physical adversarial attacks may

threaten their safety and reliability. Besides white-box attacks, in which attackers have

full knowledge of the inner configuration of the target models, attackers will also be able
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to perform black-box attacks, which are more likely since attackers need acquire only

the models’ outputs [176]. Moreover, attackers are able to create universal adversar-

ial perturbations that are applicable to multiple inputs [177] and to create adversarial

examples that can be used to attack multiple DNNs [178]. Such adversarial examples

could be used to directly attack DNN-based systems or to poison the training data of

DNNs to corrupt their models (a “data poisoning attack”) [179].

Approaches to counter adversarial attacks can be classified into four groups: adversar-

ial example detection, adversarial training, input pre-processing, and randomization or

private keying. Some approaches were designed for multiple domains while others were

simply designed for a single domain like the image one. For adversarial example de-

tection, a statistical-based approach is commonly used [180, 181]. Another approach

is to build a detector that takes raw images [182] or features from intermediate layers

of the targeted DNN [183, 184] as input. Ma et al. used local intrinsic dimensionality

to characterize the adversarial subspace [185]. Xu et al. presented a feature squeezing

method in which the differences in the DNN’s outputs between the normal and squeezed

images are used for detection [186]. Liang et al. subsequently proposed an adaptive

noise reduction method [187]. For adversarial training, there are several approaches

including distillation [188], obfuscating gradients [189], optimizing the saddle point for-

mulation [190], and applying the reverse cross-entropy loss function [191]. For input

pre-processing, Guo et al. trained DNNs on transformed images (to which cropping,

total variance minimization, and/or quilting operations had been applied) so as to miti-

gate adversarial noise [192]. Prakash et al. proposed using a DNN-based adaptive JPEG

encoder to pre-process the input [193]. For randomization or private keying, Taran et

al. proposed a key-based diversified aggregation mechanism to defend against gray- and

black-box adversarial attacks [194]. Several adversarial databases have been indepen-

dently created for evaluation, but guidelines for creating them have not been reported

in detail [180, 186, 192].

In this appendix, we present methods for detecting and correcting adversarial examples

in the digital image domain. By limiting our focus to the digital image domain, we

can use more domain knowledge and can use many potential efficient and cheap image

processing operations for our framework. We target classical adversarial attacks that do

not consider optimizing the robustness of adversarial perturbations against transforma-

tions. These attacks generally require less computation than robust ones, so attackers
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Figure C.1: Visualization of our contributions.

can easily create a massive number of adversarial examples in a short period of time.

One practical use is for data poisoning. We target both black-box and white-box attack

scenarios.

Our approach is to use multiple image processing operations with multiple parameters

for detection and correction. These parameters include the quality factor (QF) of JPEG

compression, the scaling factor, the size of the Gaussian blur kernel, and the rotation

angle. We hypothesized and then verified that the classification labels of the adversarial

images change when the values of the parameters change while the classification labels

of normal images remain mostly unchanged. Our approach to detection and correction

does not require any modification or re-training of the target DNNs. In summary, our

contribution is three-fold (visualized in Fig. C.1):

• We introduce a standardized procedure for creating a normal dataset and an ad-

versarial dataset. The latter includes several state-of-the-art targeted and non-

targeted adversarial attacks [176]. Targeted attacks are attacks that try to change

the output label of a DNN to a predefined label while non-targeted attacks are

attacks that aim to make the output label of a DNN different from the original
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one. Both datasets are derived from the ImageNet validation set [50]. The ad-

versarial dataset created using this procedure has protocols for evaluating seen

and unseen attacks to measure the models’ generalizability. This standardized

procedure is expected to promote fair comparisons and reproducible research in

adversarial machine learning (ML).

• We present a method that uses operation-oriented characteristics for detecting ad-

versarial images. It is unrealistic to use an exhaustive search to find the optimal

combination of multiple image processing operations with multiple parameter val-

ues. We thus observed the changes in DNN output with an increase in the strength

of image processing operations, which work as a kind of noise removal filter. Using

simulation, we quantitatively evaluated and identified the best choice of operation-

oriented characteristics. This method is more advanced than the feature squeezing

method [186], which uses only three image processing operations with manually

set parameter values.

• We present a method that uses for the first time two levels of adversarial image

correction: label correction (to restore the correct labels of the adversarial images

for the current task) and image correction (to mitigate the adversarial noise in

the adversarial images so that the targeted DNN can correctly work on them

and making these images usable in other tasks). In label correction, only the

outputs of the DNNs are of interest while in image correction, the quality and

usability of the corrected images as well as the labels are of interest. Our proposed

method is heuristic and is based on using multiple image processing operations

with multiple parameter values. Unlike Guo et al.’s method [192], our method does

not require re-training of the DNNs and is applicable to their pre-trained models.

Unlike Prakash et al.’s method [193], our method uses multiple standardized image

processing operations rather than a customized DNN-based JPEG encoder, which

is not robust to adversarial attacks.

The rest of this appendix is organized as follows: In section C.2, we introduce our

standardized procedure for creating the normal and adversarial datasets used for the

experiments described in this appendix. Next, in section C.3, we discuss the effects

of using multiple image processing operations with multiple parameter values on both

normal and adversarial images. The observed distinctive effects are used as the backbone
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for the proposed adversarial image detection method described in section C.4 and the

image correction method described in section C.5. We summarize the key points and

discuss future work in section C.6.

C.2 Dataset Creation

C.2.1 Overview

Although several normal and adversarial datasets have been independently created, de-

tailed guidelines for their creation are lacking [180, 186, 192]. We thus created our own

datasets as shown in Fig. C.2 for use in our experiments. We applied several policies

when designing them:

• They must be large enough to be used to train both handcrafted and convolutional

neural network (CNN) based methods.

• The adversarial dataset must contain images for various types of adversarial attacks

including both targeted and non-targeted ones [176]. This is crucial to building

protocols for seen and unseen attacks.

• Since the datasets were derived from the ImageNet database, we followed its pro-

tocol by utilizing the top-5 accuracy as the metric for all experiments. A correct

classification is defined to be when one of the top-5 predicted labels is the true

label.

• All images in the normal dataset must be correctly classified by the targeted CNNs

(100% accuracy). All images in the adversarial dataset must be misclassified by

the targeted CNNs (0% accuracy). To make the attacks realistic, the images in

the adversarial dataset are saved as JPEG files since some adversarial noise is

mitigated when saving.

• Since some labels fall into the same category (for example, different breeds of dogs),

the adversarial attacks should produce adversarial images with a label belonging

to a different category than the original one.
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In the next sections, we describe in detail the dataset construction and the adversarial

attacks used. Finally, we describe the analysis we performed on the newly created

datasets to determine their quality and to gain some insight about them.

C.2.2 Dataset construction

We used the images from the validation set of the ImageNet database [50] (which has

ground-truth labels) to generate the adversarial images used in our experiments. There

were 1,000 labels in total. For the object-recognition CNNs, we used the VGG-16 and

VGG-19 networks [51] and the ResNet-18 and ResNet-50 networks [42] pre-trained on

the ImageNet database, implemented using the PyTorch framework [195]. We used the

Pillow library1 for image processing and the FoolBox library (version 1.8.0) [196] for

adversarial image generation. Twelve commonly used methods (Table C.1) were used to

perform targeted and non-targeted adversarial attacks.

As shown in Fig. C.2, we used each CNN to classify five million images from the ImageNet

2012 validation set. Classification was considered correct when the ground-truth label

was one of the predicted top-5 labels. We then randomly selected 1,000 images per

CNN from the correctly classified images; therefore, there were 4,000 normal images

in total. We limited the number because the time required to craft adversarial images

from them is quite long. These 4,000 images were added to the normal dataset. We then

performed the 12 adversarial attacks listed in Table C.1 on the 4,000 images as described

in section C.2.3. The Pillow library was used to save them as JPEG files with a QF
1https://pillow.readthedocs.io/en/stable

ImageNet
2012

validation set

Randomly
selecting 1000 
correct images

Classifying images
by a CNN Normal dataset

Performing 
adversarial ML 

attacks

Saving adversarial 
images to
JPEG files

Adding incorrect 
images to 

adversarial ML 
dataset

Adversarial 
dataset

Classifying
saved images

by a CNN

Adding correct 
images to

normal dataset

Figure C.2: Overview of dataset creation procedure using a CNN. The same procedure
was used with VGG-16, VGG-19, ResNet-18, and ResNet-50 networks to together create
a full normal dataset (for normal images) and a full adversarial dataset (for adversarial

images).
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of 100 to preserve most of the adversarial noise. We then loaded the saved images and

used the same CNN to classify them again to ensure that they were still misclassified

(the predicted top-5 results did not contain the ground-truth label). We obtained 22,326

misclassified adversarial images in total and added them to the adversarial dataset.

We distributed the obtained normal and adversarial images into training (train), devel-

opment (dev), and evaluation (eval) sets as detailed in Table C.2. The train set was used

for training, the dev set was used to select the model, and the eval set was used to test

the detectors. We ensured that the normal images and their adversarial versions in the

train, dev, and eval sets did not overlap so that the detectors would not remember the

training images. There were three attack settings: targeted, non-targeted, and combina-

tion. The targeted and non-targeted attack settings were used to test the generalization

of the adversarial image detectors while the combination setting was used mainly for

hyper-parameter selection for the proposed detection method. This combination attack

setting was also used for all experiments on adversarial image correction.

C.2.3 Crafting adversarial images

To craft the adversarial images used for the targeted attacks, we used the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method proposed by Szegedy et

al. [36], the basic iterative method (BIM) using L-infinity, the projected gradient descent

Table C.1: Number of successful adversarial images created from 1,000 input images
using FoolBox library [196] on VGG-16, VGG-19, ResNet-18, and ResNet-50 networks.

Method VGG-16 VGG-19 ResNet-18 ResNet-50
Targeted attacks:
L-BFGS [36] 618 623 348 229
BIM [171] 693 711 531 431
PGD [171] 651 678 484 348
L1-iter [196] 661 591 680 513
L2-iter [196] 820 746 722 583
Non-targeted attacks:
Gradient [196] 654 548 590 517
FGSM [197] 509 450 451 379
Deep Fool [198] 707 671 658 604
Newton [199] 571 505 558 425
ADef [200] 1 4 1 1
JSMA [201] 102 86 114 71
Carlini-Wagner [202] 427 361 401 299
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Table C.2: Details of normal and adversarial image datasets, which were divided into
training, development, and evaluation sets for three attack settings.

Attack Setting/Datasets Normal Adversarial Total Ratio
Targeted attacks:
Train 2,800 8,392 11,192 1:3.00
Dev 600 1,623 2,223 1:2.71
Eval 600 1,646 2,246 1:2.74
Non-targeted attacks:
Train 2,800 7,718 10,518 1:2.75
Dev 600 1,469 2,069 1:2.45
Eval 600 1,478 2,078 1:2.46
Combination attacks:
Train 2,800 16,110 18,910 1:5.75
Dev 600 3,092 3,692 1:5.15
Eval 600 3,124 3,724 1:5.21

(PGD) method described by Kurakin et al. [171], and the L1- and L2- versions of BIM

(L1-iter and L2-iter) implemented in FoolBox [196]. For the indexes of the image labels

of the ImageNet database, nearby labels often fall into the same group. For example,

239 is “Bernese mountain dog,” 245 is “French bulldog,” and 250 is “Siberian husky.”

All of them are dog breeds. To maximize the effect of the adversarial attacks, the target

label should be in a different category than the original label. The target label for the

adversarial attack image was thus shifted 100 steps right from the predicted top-1 label

for the normal image. It is important to note that we used the top-1 predicted label, not

the ground-truth label annotated in the database to perform adversarial attacks in order

to make them more realistic (which is in accordance with the viewpoint of an attacker

attacking a large-scale system without any knowledge of the ground-truth labels). Since

there were 1,000 labels in total, modular operation was used to ensure the shifted label

index was in the range [0, 1000). The attack objective was to achieve a target class

probability of 99%.

For non-targeted attacks, we used the basic gradient attack method implemented in Fool-

Box [196], the fast gradient signed method (FGSM) proposed by Goodfellow et al. [197],

the Deep Fool method proposed by Moosavi-Dezfooli et al. [198], the Newton method

proposed by Jang et al. [199], the ADef method proposed by Alaifari et al. [200], the

Jacobian-based saliency map attack (JSMA) method proposed by Papernot et al. [201],

and the method proposed by Carlini and Wagner [202]. Since these methods are non-

targeted attacks, the attack objective was to change the predicted top-5 labels so that

they differed from the original predicted top-1 labels.
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C.2.4 Dataset analysis

As shown by the results in Table C.1, the VGG networks were generally more vulnerable

to targeted attacks than the ResNet networks, resulting in more misclassified images.

One possible explanation is that the skip connections used by ResNet networks make

them more robust than the VGG networks. The modified BIM attack using the L2

distance (L2-iter) was the most effective attack overall. The non-targeted attacks were

more difficult to carry out since they needed to change the top-5 labels so that they did

not include the current top-1 labels. Among the attack methods, Deep Fool was the

most successful while the ADef attack was the least successful overall, producing only

one or four adversarial images for each network. The JSMA method also had limited

success, with around 100 adversarial images for each network.

Beside the success rate of attacks, we also evaluated the quality of the obtained adver-

sarial images by calculating the peak-signal-to-noise ratio (PSNR) and the structural

similarity index measure (SSIM) [203] between them and their corresponding original

images. The results are shown in Fig. C.3. Although there were some extreme cases,

the average PSNR was about 40 dB while the average SSIM was greater than 0.9. This

means that the quality of the adversarial images was high and that the perceived qual-

ity of the original images was preserved. The L-BFGS, Deep Fool, and Carlini-Wagner

attacks produced adversarial images with the highest quality whereas the Gradient and

FGSM attacks produced ones with the lowest quality. The L-BFGS, PGD, Deep Fool,

ADef, JSMA, and Carlini-Wanger attacks produced adversarial images with stable and

high SSIM.

C.3 Effects of Image Processing Operations on Normal

and Adversarial Images

Some image processing operations like JPEG compression, spatial smoothing, and scalar

quantization have recently been found to have noticeable effects on adversarial noise [186,

187, 192]. We expand on this and hypothesize that using multiple common image pro-

cessing operations (already implemented in many image processing libraries) and mul-

tiple parameter values will provide much more useful information than using operations
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Figure C.3: Average PSNR (blue) and SSIM (red) between adversarial images used
for targeted and non-targeted attacks and corresponding original images. Error bars

indicate min and max values.

with fixed values as in previous work. Furthermore, the effects of multiple parame-

ter values on adversarial images differ from those on natural images depending on the

differences in the values. Although common image processing operations like JPEG

compression, Gaussian blurring, rotation, and scaling do not substantially affect the us-

ability of the processed images, they have certain non-linear effects on adversarial noise.

JPEG compression reduces the number of bits needed for storage. Gaussian blurring

removes high-frequency components and thus acts as a low-pass filter. Rotation, which

requires the use of an interpolation algorithm to adjust the pixels, removes noise2. Scal-

ing up also removes noise while scaling down, which reduces the entropy of an image

(the degree of disorder, which is used to characterize the texture of an image), reduces

the amount of noise. These effects on adversarial noise can be used to distinguish ad-

versarial images from normal images as well as to correct adversarial images. It should

thus be possible to identify operation-dependent characteristics from the outputs of an

object-recognition CNN as the strength of an operation is gradually increased
2We used nearest-neighbor interpolation in our experiments.
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To confirm this hypothesis, we applied the four image processing operations to images

from our two datasets and classified the resulting images using the VGG-16, VGG-19,

ResNet-18, and ResNet-50 networks. The parameter values were as follows:

• JPEG compression with QF ∈ {100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40,

35, 30, 25}.

• Gaussian blurring with kernel size ∈ {2, 3, 4, 5}.

• Clockwise image rotation with angle ∈ {1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°} and without

reversing back. Nearest-neighbor interpolation was used.

• Image scaling with scale ∈ {0.75, 0.8, 0.85, 0.9, 0.95, 1.05, 1.1, 1.15, 1.2, 1.25} and

without reversing back. Nearest-neighbor interpolation was used.

The image operations were done using Pillow version 6.1.0. Some of the results for

ResNet-50 are shown in Table C.3. Similar effects were also observed for VGG-16,

VGG-19, and ResNet-18. The combined result of all networks is visualized in Fig. C.4.

JPEG compression with a QF of 100 changed the top-5 labels for both the normal and

adversarial images, and the effect on adversarial images was clearer. Reducing image

quality by increasing the compression ratio greatly reduced the number of misclassified

adversarial images and slightly increased that of misclassified normal images. A large

increase in the ratio increased the misclassification rate for normal images. The results

for scaling and rotation were similar to those for compression while those for Gaussian

blurring differed slightly. JPEG compression is thus the best candidate to eliminate ad-

versarial noise while scaling is the best for preserving the correctness of normal images.

One result in particular should be noted: the number of misclassified normal images

after applying a 3× 3 Gaussian blur kernel was higher than after applying the other op-

erations, which is not good for our objectives, i.e., detection and correction of adversarial

images. In summary, these results support our hypothesis that the classification labels

of the adversarial images change when the values of the parameters change while the

classification labels of normal images remain mostly unchanged. The next two sections

describe the methods we devised for detecting and correcting adversarial examples by

exploiting variations in the outputs of a DNN.
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Figure C.4: Percentages of incorrectly classified normal and adversarial images after
applying four image processing operations. Note that before applying these operations,
the accuracy on normal images was 100% and on adversarial images was 0%. (Due to

our dataset design, unqualified images were eliminated.)

C.4 Detecting Adversarial Images

As demonstrated in the previous section, the four image processing operations had dif-

ferent effects on normal and adversarial images. Moreover, changing the parameter

values changed the DNN outputs. We utilize these effects and two statistical-based

features, a counting feature (described in section C.4.1) and a differences feature (de-

scribed in section C.4.2), to detect adversarial images. With each of these two features,

we use four traditional machine learning classifiers (traditional classifiers, described

in section C.4.3), and a CNN-based classifier (stats-CNN classifier, described in sec-

tion C.4.4). For comparison, we used a feature squeezing method [186] as a baseline

since it and our detection method are conceptually similar. To make our results more

convincing, we also used as baselines two CNN-based classifiers that take raw images as

input (raw-image CNN classifiers) (described in section C.4.4).

As statistical-based features of our detection method, we define three variables:

• L = (a, b, c, d, e): top-5 label for image I (normal or adversarial) predicted using a

CNN before applying image processing operation i (e.g., JPEG compression with

a QF of 80 or 5°clockwise rotation).
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Appendix C. Detecting and Correcting Adversarial Images

• Li = (ai, bi, ci, di, ei): top-5 label for an image after applying image processing

operation i.

• n: total number of image processing operations (38 in our experiments).

C.4.1 Counting feature

We define C(a) as the number of occurrences of label a ∈ L = (a, b, c, d, e) at the first

position in an ordered top-5 label set {Li|i = 1, . . . , n}.

C(a) is defined as

C(a) =
n∑
i=1

δ(a, ai), (C.1)

with

δ(a, ai) =


1, if a = ai

0, if a 6= ai.

(C.2)

The same equation is used for b, c, d, and e at the second, third, fourth, and fifth posi-

tions, respectively. Therefore, the features of each image are {C(a), C(b), C(c), C(d), C(e)}.

The following is a simple example of the counting feature using three image processing

operations. Given L = (100, 105, 198, 213, 479), we have

• L1 = (100, 97, 198, 220, 221)

• L2 = (101, 80, 201, 119, 212)

• L3 = (100, 89, 213, 117, 304)

after applying the image processing operations. The resulting counting features are

{2, 0, 1, 0, 0}.

C.4.2 Differences feature

We define ∆(a, ai) as the binary differential function used to measure the difference

between two labels a and ai:

∆(a, ai) = 1− δ(a, ai). (C.3)
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The differences feature derived from input image I can be expressed as the set

{(∆(a, ai),∆(b, bi),∆(c, ci),∆(d, di),∆(e, ei))|i = 1, . . . , n}.

The differences features obtained using this example are {0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1}.

C.4.3 Feature selection and hyper-parameter tuning

Using the two statistical-based features introduced above (counting and differences),

we evaluated the performance of detectors using one of the four traditional machine

learning classifiers: the C-support vector classification (SVC) version of the support

vector machine (SVM) classifier [167], the random forest classifier (RF) [204] with 100

trees and a maximum depth of 2, the linear discriminant analysis (LDA) classifier [166],

and the multiple layer perception (MLP) classifier [165]. All of them were implemented

in the scikit-learn library version 0.21.33. For simplicity, we call them traditional

classifiers. It is important to note that we use the terms “detector” and “classifier”

interchangeably. In this feature selection and hyper-parameter tuning step, we trained

them on only the dataset for the combination attack setting.

As shown in Table C.4, the differences feature and the counting one generally produced

similar accuracies. Among the individual image processing operations, the scaling one

achieved the highest accuracy for all detectors. The combination of JPEG compression

and scaling and the combination of all operations resulted in higher accuracy than

using any of them individually. However, these combinations also increased the feature

size, and more classification operations were required for the object detection CNNs

(VGG-Nets and ResNets) to produce those features. For the counting feature, using the

MLP-based detector on the features from JPEG compression and the scaling operation

resulted in the highest accuracy (93.56%) while for the differences feature, using the

SVM-based detector on all features from all image processing operations resulted in the

highest accuracy (94.20%).
3https://scikit-learn.org/stable

127



Appendix C. Detecting and Correcting Adversarial Images

Table C.4: Accuracy (in %) of each classifier using counting feature (count) and
differences feature (diff.) on eval set.

Classifier
JPEG

Compression Scaling Gaussian
Blurring Rotation JPEG +

Scaling All

Count Diff. Count Diff. Count Diff. Count Diff. Count Diff. Count Diff.
SVM [167] 90.98 91.92 92.56 92.32 87.35 87.35 89.90 89.39 92.86 94.04 93.39 94.20
RF [204] 90.57 89.82 91.08 91.27 86.87 86.04 88.24 88.59 92.16 91.94 92.35 92.35
LDA [166] 89.98 90.36 91.97 91.62 85.77 87.35 89.15 89.29 92.86 92.67 92.21 92.86
MLP [165] 91.25 90.41 92.32 92.35 86.95 87.38 89.66 89.02 93.56 92.19 93.37 92.29

C.4.4 CNN-based classifiers

In addition to the traditional machine learning algorithms described in section C.4.3, we

used two simple feed-forward CNNs as classifiers, one that takes the counting feature

as input and one that takes the differences feature. The two CNNs used all the fea-

tures extracted using the four image processing algorithms: JPEG compression, scaling,

Gaussian blurring, and rotation. Each CNN had five layers of 1-D convolution (each

convolution layer was followed by a batch normalization layer and a rectified linear unit),

and two fully connected layers at the end with a dropout rate of 50%. For simplicity,

we call these two networks stats-CNN classifiers.

We also used two common CNNs that take raw images as input: ResNet-50 [42] and

XceptionNet [91]. The XceptionNet one is commonly used for forgery detection [23]. We

modified their last fully connected layer so that the output was binary. These two CNN-

based classifiers take images as input and output the probabilities that those images are

adversarial. Since there was limited training data, beside training them from scratch,

we also fine-tuned their ImageNet pre-trained versions. For simplicity, we call these two

networks raw-image CNN classifiers.

For both the stats- and raw-image CNN classifiers, we used a learning rate of 5× 10−4

for all cases. Each network was trained for 150 epochs, and the checkpoint with the

highest accuracy on the dev set was selected for evaluation.

C.4.5 Evaluation

We selected the two best traditional classifiers, the SVM (SVC) one using all features

and the MLP one using the JPEG compression and scaling features, to compare with

the stats-CNN classifiers, the raw-image CNN classifiers, and the feature squeezing
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method [186]. We tested them on two scenarios: (1) seen attacks in which all clas-

sifiers were trained and tested on the dataset for the combination setting and (2) unseen

attacks in which all classifiers were trained on the dataset for the targeted attack setting

and were tested on the dataset for the non-targeted attack setting and vice versa. The

dataset details are listed in Table C.2. Since the feature squeezing method only requires

training on normal images, we used the “Best Joint Detection (5-bit, 2x2, 11-3-4)” set-

ting [186] (designed for the ImageNet database) with a threshold of 1.2128 pre-trained

for all scenarios. Since the output of the feature squeezing method is binary, EERs

could not be calculated. For the other methods, the accuracies were calculated using a

threshold of 0.5. The experiment results are shown in Table C.5.

Overall, the raw-image CNN classifiers outperformed the statistical-based ones (includ-

ing the traditional classifiers and the stats-CNN classifier) and the feature squeezing

method in both the seen and unseen scenarios. Between the two raw-image CNN classi-

fiers, surprisingly, the XceptionNet one trained from scratch achieved better performance

and outperformed its fine-tuned version with accuracies greater than 99% and EERs less

than 1%. On the other hand, the ResNet classifier with fine-tuning outperformed its

trained version. The performances of the traditional classifiers and the stats-CNN clas-

sifiers were similar, indicating that their scores are the upper limits for the statistical

features. Although having limited results and limited generalizability compared with the

raw-image CNN classifiers, our statistical-based classifiers nevertheless have reasonable

discriminative ability and overall outperformed the feature squeezing method. These

results support our hypothesis that using various parameter values is better than using

fixed ones. In addition, it is important to note that CNN-based classifiers, especially

raw-image ones, are potentially vulnerable to second-level adversarial attacks. That is,

attackers can disguise their adversarial images by adding secondary adversarial noise to

alter the output of the adversarial image detector from adversarial to normal. In this

case, our statistical-based detection method is more robust.

Another interesting result is that the detectors trained on the dataset for the non-

targeted attack setting had better generalizability than those trained on the dataset for

the targeted attack one. This can be interpreted to mean that the adversarial noise

created by non-targeted attacks is more general than that created by targeted attacks.

Therefore, when designing an adversarial machine learning dataset, it is crucial to include

a sufficient amount of data for non-targeted attacks.
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Table C.5: Accuracy and EER (in %) of each detector on eval sets. First two detectors
were best statistical-based classifiers selected on basis of results presented in previous

section. Next four were CNN-based detectors used as baselines.

Attack Setting/Detector Accuracy EER
Seen attacks (Combination):
MLP - counting feature 93.56 10.00
SVM - differences feature 94.20 9.67
CNN - counting feature 93.29 10.21
CNN - differences feature 94.09 9.50
Feature squeezing [186] 83.97 -
ResNet-50 (training) 83.89 49.09
ResNet-50 (fine-tuning) 99.49 0.66
XceptionNet (training) 99.95 0.15
XceptionNet (fine-tuning) 99.60 0.49
Targeted attacks → Non-targeted attacks:
MLP - counting feature 68.62 18.81
SVM - differences feature 71.03 15.16
CNN - counting feature 60.39 21.31
CNN - differences feature 66.79 17.73
Feature squeezing [186] 72.71 -
ResNet-50 (training) 71.13 50.50
ResNet-50 (fine-tuning) 95.72 3.17
XceptionNet (training) 99.42 0.60
XceptionNet (fine-tuning) 83.69 12.95
Non-targeted attacks → Targeted attacks:
MLP - counting feature 93.63 3.77
SVM - differences feature 93.99 3.76
CNN - counting feature 93.32 3.04
CNN - differences feature 93.32 4.02
Feature squeezing [186] 84.42 -
ResNet-50 (training) 99.42 0.61
ResNet-50 (fine-tuning) 99.02 0.97
XceptionNet (training) 100.00 0.00
XceptionNet (fine-tuning) 99.78 0.52

C.5 Correcting Adversarial Images

Given that the image processing operations substantially reduced the number of mis-

classified adversarial images while only slightly affecting the normal images, we utilized

them to correct adversarial images. We developed a correction method with two levels

of correction:

• Label correction: Restore the original labels of adversarial images. At this

level, only the output labels are of interest; for example, only the true label of a

manipulated stop sign is of interest to a self-driving car.
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• Image correction: Mitigate adversarial noise in adversarial images to restore

their original labels and make them usable for other tasks. At this level, the

quality and usability of the corrected images as well as the labels are of interest.

Image correction is therefore more complicated than label correction.

Our correction method can be used independently or in combination with an adversarial

image detector. Since it is not always clear whether an image is normal or adversarial,

a correction method should work well on both normal and adversarial images. Details

of the label correction and image correction algorithms are described in the next two

sections.

C.5.1 Label correction algorithm

We define SL = {Li|i = 1, . . . , n} as the set of top-5 labels acquired by applying n image

processing operations to image I. The frequencies of every label in SL are calculated,

and the five labels with the highest frequencies are identified as the corrected top-5 ones.

C.5.2 Image correction algorithm

In the context of image classification, an image correction method must satisfy the

following conditions:

• Adversarial noise must be mitigated so that the corrected images can be correctly

classified by the DNN.

• The usability of the adversarial images must be recovered and that of the normal

images must be preserved.

• The quality of both the normal and adversarial images must be preserved as much

as possible.

Since JPEG compression has good performance on both normal and adversarial images,

we use it as the core image processing operation to eliminate adversarial noise. There

are two ways of using JPEG compression for image correction:
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Label b Label c
Label a

Label d Label e

100 9095 85 80 75 70 65
QF

min2ndminmedianmax

Figure C.5: Visualization of corrected top-5 labels calculated in step 1 of heuristic
algorithm and their corresponding QFs calculated in step 2. The max, median, 2ndmin,
and min of SQF labels on the axis represent the candidate QFs to be selected in step

3.

1. Baseline: Use a fixed QF for JPEG compression. The downside with this ap-

proach is that there are trade-offs between performance on normal and adversarial

images and between performance and the quality of the corrected images.

2. Proposed: Use a heuristic algorithm to determine the optimal QF for JPEG

compression. With this approach, the corrected labels calculated with the label

correction algorithm are used to calculate the best QFs for producing those labels.

This is discussed in detail below.

We define flabel as the corrector function described in section C.5.1 and I as the image

to be corrected. The proposed heuristic algorithm has three steps:

• Step 1 : Calculate the corrected top-5 labels: Lcorr = flabel(I).

• Step 2 : For each label l in Lcorr, select the highest QF from the sorted list of QFs

{100, 95, 90, . . . , 40} that produces l and put it into SQF .

• Step 3 : Select a QF from SQF and use it to compress I to obtain the corrected

image.

The strategies that can be used for selecting a QF from SQF in step 3 are visualized

in Fig. C.5. The candidates are max, median, 2ndmin, and min of SQF . The higher

the QF, the better the quality of the corrected image. If the input image is natural,

max(SQF ) is obviously the best choice. However, if the input image is adversarial,

min(SQF ) seem to be the safest choice. The performances achieved with these choices

are presented and discussed in the next section.
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C.5.3 Evaluation

Since there is no learning required for the correction algorithms, we tested them on the

entire normal dataset and adversarial image dataset. We tested label correction first

and then image correction.

C.5.3.1 Label correction

We used JPEG compression, scaling, and their combination for label correction. As

shown in Fig. C.6, JPEG compression had better performance than scaling for the

adversarial images, and their combination produced the best overall performance. Only

1.88% of the normal images was misclassified after “correction” while 89.91% of the

adversarial images were corrected. If this correction was performed after detection of

adversarial images, about 98.12% of the false positive inputs (normal images misclassified

as adversarial ones) would also be corrected, therefore boosting the overall performance.

C.5.3.2 Image correction

We tested the fixed QF baseline approach with several QF values from 40 to 90 and

the proposed heuristic algorithm with SQF values of max, median, 2ndmin, and min.

In addition, we built a convolutional denoising autoencoder [205] to check whether it is

useful for adversarial noise removal. To avoid data overlapping, we trained it on the test

set of the ImageNet database using Gaussian noise with σ = 0.1.
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Figure C.6: Percentage of correct classification results after applying label correction
method to both normal and adversarial images.
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Table C.6: Percentage of correct classification of corrected images (both normal and
adversarial).

Correction Method Normal Images Adversarial Images
QF 90 98.40 77.38
QF 80 97.17 86.24
QF 70 95.93 88.07
QF 60 94.97 88.46
QF 50 93.97 88.02
QF 40 93.12 87.28
Heuristic - max 99.65 25.81
Heuristic - median 99.55 54.03
Heuristic - 2ndmin 98.98 72.96
Heuristic - min 97.52 88.98
Denoising autoencoder 57.77 49.81

As shown in Table C.6, the denoising autoencoder had poor performances on both nor-

mal and adversarial images. One explanation is that denoised images have different

distributions than normal images; therefore, the DNNs could not correctly classify most

of them. For the fixed QF baseline approach, there was a trade-off between performance

on normal and adversarial images. The QFs between 60 and 80 are safe choices for

achieving balanced performance between the two types of images. With the heuristic

algorithm, using max(SQF ) preserved most of the normal images, but it was the worst at

mitigating adversarial noise. Although it sits at the mid-point of the SQF values, using

median resulted in poor correction of the adversarial images. Using the two remain-

ing values resulted in substantial improvement in mitigating adversarial noise. Using

min achieved the best balance in performance between normal and adversarial images:

97.52% correct classification for normal images and 88.98% for adversarial images.

Examples of normal images, their corresponding adversarial images, and their corrected

versions are shown in Fig. C.7. There were no perceived substantial differences between

the different versions, meaning that adversarial noise is difficult to notice and that the

correction algorithm did not substantially degrade the quality of both the normal and

adversarial images. The average PSNR and SSIM between the corrected adversarial

images and their original versions in the entire datasets are shown in Fig. C.8. The

heuristic - min approach had higher PSNR and SSIM than the fixed QF approach. The

explanation for this is illustrated in Fig. C.9, which is a histogram of the QFs selected

using the heuristic - min approach for both normal and adversarial images. For the

normal images, in most cases, a QF of 100 was selected, so their quality was almost
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Figure C.7: From top to bottom: Examples of normal images, their corrected versions,
their adversarial versions, and the corrected versions of the adversarial images (corrected

using heuristic - min algorithm).
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Figure C.8: Average PSNR (blue) and SSIM (red) between corrected adversarial
images and corresponding original images. Error bars indicate min and max values.

completely preserved. For the adversarial images, more than two-thirds of the selected

QFs were from 75 to 95, so their quality was also good. Since there are some extreme

cases in the adversarial dataset, the correction algorithm could not fully recover their

quality, resulting in low values of PSNR and SSIM.
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Figure C.9: Histogram of JPEG QF calculated using heuristic - min algorithm on
both normal and adversarial images.

C.5.4 Considerations

Our experiments demonstrated the effectiveness of using image processing operations

for both label correction and image correction. For label correction, using multiple

operations with multiple parameter values helped maximize the chance of restoring the

original labels. It also provides label information for image correction. The proposed

heuristic - min algorithm effectively determines which QF is the best for image correction

so that image quality is preserved as much as possible, which is better than using JPEG

compression with a fixed QF. The correction algorithms can be used independently,

for instance, in data cleansing, or in combination with an adversarial image detector to

provide multiple outputs: (1) whether the input image is adversarial and (2) if yes, what

its true label is.

C.6 Discussion and Future Work

Our results demonstrated that image processing operations like JPEG compression,

scaling, Gaussian blurring, and rotation have different effects on normal and adversarial

images depending on the parameter values. Although these operations have negligible

effects on normal images, they are effective in mitigating adversarial noise, which is

useful for both detection and correction of adversarial images. Different from adversarial

training, the proposed detection and correction methods can be performed as a pre-filter
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to process the data before being processed by a DNN. They are thus applicable to all

pre-trained DNNs without the need for re-training. One disadvantage of using multiple

image processing operations with multiple parameter values is the computation cost

when several processed images need to be classified .

Our results also demonstrated that using statistical features based on image processing

operations and using feature squeezing are not as effective as using features automat-

ically extracted by a CNN from raw images, especially the XceptionNet one, which

can be trained with a small amount of data. However, the traditional classifiers us-

ing handcrafted features are more robust than the CNN-based ones when the attackers

add adversarial noise to fool the adversarial image detector (due to the fact that most

of the currently implemented image processing operations are non-differentiable). We

also found that the adversarial noise created by non-targeted attacks is more general

than that created by targeted attacks; therefore, it is important to include non-targeted

adversarial images in the training data.

Future work includes testing using more adversarial attacks with multiple noise strengths

on larger and more diverse databases. It also includes evaluating additional image pro-

cessing operations and reducing the computational expense of detection and correction.

Another important task is dealing with robust adversarial examples, which is a chal-

lenging problem.
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