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Abstract

The co-existence of relational database schemas is an important feature of a database.
Today, most information systems consist of applications and relational databases. They
continuously evolve to meet the ever-changing real world. Applications are well
supported by the technology to maintain and operate multiple versions for continuous
and iterative development. However, it is a challenging task in databases to make one
relational database schema (source schema) evolve to a new relational database schema
(target schema) and make them co-exist by sharing data for concurrently running
multiple application versions or applications.

The existing work proposes the view-based approach to realize the co-existence of
relational database schemas in a database. It gives logically computed view instances of
both schemas transformed from a shared database. Update sharing is realized between
view instances through updates of the database. A data structure of the database is
compatible between a database schema suited for source schema (source-side database
schema) and a database schema suited for target schema (target-side database schema).
When updates against view instances of target schema increase, the source-side
database becomes unsuited for view instances of target schema. The existing work
makes data migration into the target-side database based on the target-side database
schema available.

However, there exist three problems. First, a co-existence strategy to specify how
to evolve a schema and which case data is shared between view instances of schemas is
limited to the prede�ned one, which lacks the �exibility. Second, there is no systematic
methodology to realize co-existence strategies based on the view-based approach. This
problem causes di�culty in designing user intended strategies and realizing them.
Especially it is challenging to design the source-side and target-side database schemas
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with auxiliary relation names to control update sharing between view instances of
schemas. Third, due to the second problem, there is no systematic methodology for
data migration between the source-side database and the target-side database for an
arbitrary co-existence strategy. This problem makes the co-existence of relational
database schemas with �exible data migration di�cult for any co-existence strategies.

In order to make the co-existence of relational database schemas more practical,
this thesis aims to make co-existence strategies for the co-existence of relational
database schemas programmable by solving the problems mentioned above.

To solve the �rst problem, we propose a Datalog-based DSL (domain-speci�c
language) to specify various co-existence strategies. DSL is designed for the following
three items: describing de�nitions of source schema and target schema, describing
schema evolution to specify how to evolve relations of source schema to a relation
of target schema, and describing backward update sharing to specify how to share
updates against a relation of target schema to relations of source schema. We assume a
relationship between source schema and target schema is kept after schema evolution.
Thus update sharing from relations of source schema to a relation of target schema
follows the relationship speci�ed by schema evolution. Furthermore, we introduce a
property, the consistency of updates, and its veri�cation method. We show that the
proposed DSL can describe co-existence strategies of the existing work and other
co-existence strategies.

To solve the second problem, we propose methods to systematically derive two
types of bidirectional transformations (BXs for short) from a given co-existence
strategy: BX between source-side or target-side database and view instances of source
schema, and BX between source-side or target-side database and a view instance of
target schema.

We de�ne the source-side database schema to consist of base relation names having
the same data structure with relation names of source schema and auxiliary relation
names. A key idea of deriving BXs on the source-side database is that BX between the
source-side database and the view instance of source schema is basically identity
mapping between the base relation and the view instance. BX between the source-side
database and the view instances of target schema is derived so that a co-existence
strategy is realized between the base relations and the view instance of target schema.
Auxiliary relations are systematically speci�ed to compute the updated view instances
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from the updated base relations and the auxiliary relations without loss or gain.
To have a database suited for target schema, we de�ne the target-side database

schema to consist of a base relation name having the same data structure with a
relation name of target schema and auxiliary relation names that are di�erent from
auxiliary relation names of the source-side database schema. A key idea of deriving
BXs on the target-side database is that schema evolution is replaced to BXs between
target-side database and view instances of source schema, and backward update
sharing is replaced to BX between target-side database and the view instance of target
schema. Auxiliary relations are systematically speci�ed to compute the updated view
instances from the updated base relations and the auxiliary relations without loss or
gain.

We evaluate the usefulness of the proposed methods by showing results of derived
BXs and execution time of writing and reading against view instances of source schema
and target schema. Co-existence strategies of the existing work and other co-existence
strategies are evaluated.

To solve the third problem, we propose a method of data migration based on the
derived BXs. The source-side database is migrated to the target-side database by the
following two steps: the BXs on the source-side database compute view instances of
source schema and target schema, then such view instances are transformed into the
target-side database by the BXs on the target-side database. The target-side database is
migrated to the source-side database by the opposite operations. We evaluate the
usefulness of the proposed method by showing the execution time of data migration.
Co-existence strategies of the existing work and other co-existence strategies are
evaluated.
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2 Chapter 1. Introduction

1.1 Motivation

The co-existence of relational database schemas is an important feature of a database.
Today, most information systems consist of applications and relational databases [13].
They continuously evolve to meet the ever-changing real world. In an application,
technologies to support continuous evolution are widely and deeply studied [39, 4,
27, 77]. For example, strong tools, SVN and GIT, support continuous and iterative
development by maintaining multiple versions of an application and deploying several
versions to run concurrently. Databases are also expected to accommodate these
features. However, it is a challenging task in databases to make one relational database
schema (a schema for short) evolve to a new schema and make multiple schemas
co-exist by sharing data over them for concurrently running multiple application
versions or applications.

1.1.1 Strategies forCo-existence ofRelationalDatabase Schemas

We give an overview of the co-existence of relational database schemas and what
strategies are designed for it. The co-existence of relational database schemas (the
co-existence of schemas for short) requires that each schema can operate arbitrary
updates against a certain common data set [3]. In this thesis, the co-existence of
schemas is a set of schemas that satis�es the following features: a new schema (target
schema) is de�ned by schema evolution based on an original schema (source schema),
and updates can be shared among these schemas. Note that update sharing has cases to
share and not share an update over one schema with another schema depending on the
situation, such as application design, phases of application rollout, or business logic.

Strategies for the co-existence of schemas to meet such situations are designed by
specifying schema evolution and update sharing. Suppose that a relation (1(-,., / )
of source schema evolves to a relation )1(-,. ) of target schema by projection c to
project away (1’s attribute / . Schema evolution computes the initial data of target
schema as follows: {

(1 - . /

G1 ~1 I1

}
c−−→

{
)1 - .

G1 ~1

}
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Once target schema is evolved from source schema and has initial data, updates would
occur against data over each schema. Several cases of update sharing between them
could exist. The following strategy shares any updates in the forward and backward
direction between (1 and )1 except for values in the projected away attribute / (+/−
denotes an update as insertion/deletion of a tuple against a relation):


(1 - . /

− ��G1 ��~1 ��I1
+ G2 ~2 I2

 →

)1 - .

− ��G1 ��~1
+ G2 ~2



(1 - . /

− ��G2 ��~2 ��I2
+ G3 ~3

 ←

)1 - .

− ��G2 ��~2
+ G3 ~3


As another strategy, if source schema evolves to target schema as a testbed of a
new application version, inserted and deleted test data of a target schema must not
contaminate data of source schema. It is an extreme but reasonable strategy that
updates against (1 of source schema is shared with )1 of a target schema, and updates
against )1 is not shared with (1:

(1 - . /

− ��G1 ��~1 ��I1
+ G2 ~2 I2

 →

)1 - .

− ��G1 ��~1
+ G2 ~2


{
(1 - . /

G2 ~2 I2

}
←


)1 - .

− ��G2 ��~2
+ G3 ~3


Designing the co-existence of schemas amounts to designing a strategy consisting of
schema evolution and a rule to specify in what case an update is shared or not shared
among data over schemas. This strategy, named the co-existence strategy, ought to be
programmable to meet a variety of situations in practical use. "Programmable" is
to equip a language to describe co-existence strategies and a mechanism to realize
written strategies.
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1.1.2 Problems of Existing Methods

We show existing methodologies for the co-existence of schemas and clarify their
problems. Current RDBMSes (Relational Database Management Systems) do not
support the co-existence of schemas. Practitioners prepare one database for source
schema and another database for target schema. Schema evolution is implemented as
data migration from one database to another database. Update sharing is implemented
so that an update against one database triggers an update against another database [2].
Since all can be programmed by SQL, this method is good to make schema evolution and
rules of update sharing programmable. However, writing a mapping for data migration
by SQL is error-prone work and requires considerable development resources [13, 36].
Furthermore, update sharing between schemas causes duplicated data in two databases.
It makes update sharing in both directions, from source schema to target schema
and vice versa, di�cult because a synchronization mechanism for duplicated data is
additionally required.

Research about the co-existence of schemas is still in the early stage, even if we look
around the database community. As a notable work, Herrmann et al. propose MSVDB
(Multi-Schema-Version Database) [34, 35] to overcome the di�culty mentioned above.
MSVDB provides schema modi�cation operations (SMOs). Each SMO prede�nes
a co-existence strategy: schema evolution specifying how to evolve relations of
source schema to relations of target schema, and one rule of update sharing between
these relations. Note that SMOs’ expressive power to describe schema evolution is
relationally complete.

Figure 1.1 depicts MSVDB’s high-level architecture. MSVDB realizes the co-
existence of schemas by the view-based approach. Figure 1.1 (a) shows that MSVDB
gives instances of both source schema and target schema as union of view instances
logically computed from a shared database (source-side database) by views. The
source-side database schema consists of base relation names having the same data
structure with relation names of source schema and auxiliary relation names for
supplemental data to compute view instances of target schema. Updates against a view
instance are transformed into the database by an update translator. Updates are shared
among view instances through the updated database. When updates against view
instances of target schema increase, the source-side database becomes unsuited for
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(a)

(b)

SMO

source-side 
database

source schema

...

target schema

view update translator

view  
instance

view  
instance

...view  
instance

source-side 
database

source schema
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target schema

view  
instance

view  
instance

...view  
instance

target-side 
database

SMO

Figure 1.1: The co-existence of schemas by the view-based approach.

view instances of target schema. MSVDB makes data migration into the target-side
database based on target schema (Figure 1.1 (b)). The target-side database consists of
the base relation names having the same data structure with the relation names of
target schema and other auxiliary relation names for supplemental data to compute the
view instances of source schema and target schema. MSVDB provides another set of
views and update translators on the target-side database.

MSVDB provides a solution to design the co-existence of schemas and realize it
easily. However, several problems exist:

• A relationship between schemas is �xed by one prede�ned strategy of SMO.
Since SMO’s co-existence strategy consists of one schema evolution with one
prede�ned behavior of update sharing, it lacks the �exibility to arbitrarily design
a co-existence strategy by specifying schema evolution and update sharing.
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• There is no systematic methodology to realize co-existence strategies by the
view-based approach. The architect of MSVDB designs views and update
translators on an ad hoc basis for each SMO’s prede�ned strategy. Especially,
it is challenging to design source-side and target-side database schemas with
auxiliary relation names to control update sharing between view instances by
following co-existence strategies. This problem causes di�culty in designing
user intended strategies and realizing them. Even if a user of MSVDB will change
a strategy or introduce a new strategy, it is challenging to systematically derive
views, update translators and auxiliary relation names without troubling a user.

• Due to the second problem, there is no systematic methodology for data migration
between a source-side database and a target-side database for an arbitrary
co-existence strategy. This problem makes the co-existence of schemas with
�exible data migration di�cult for any co-existence strategies.

1.2 Research Objective

This thesis aims to make the co-existence of schemas practical by making co-existence
strategies programable. "Programmable" for a co-existence of relational database
schema is to satisfy two features: a co-existence strategy is describable, and a mechanism
to realize a described strategy is equipped. A co-existence strategy consists of schema
evolution from the source schema to the target schema and a speci�cation of update
sharing between data over them. An expressive power for schema evolution must be
relationally complete.

1.3 Contributions

To achieve the research objective, we must overcome two challenges: how to describe a
co-existence strategy and how to realize an arbitrarily written co-existence strategy.
For the �rst challenge, we propose a language to describe a co-existence strategy. For
the second challenge, we propose methods to derive bidirectional transformations that
realize a co-existence strategy on the source-side database or the target-side database.
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The view-based approach of the existing work is based on an updatable view by
view and update translator between a view instance and a database. The updatable
view has been widely studied in the database community [1, 16] and the programming
language community as bidirectional transformation [29]. We treat deriving views
and update translators as deriving bidirectional transformations (BX for short). Our
contributions of this thesis are summarized as follows:

• For the �rst challenge, the existing work has a problem that it cannot arbitrarily
describe a co-existence strategy. We propose a Datalog-based DSL to describe
co-existence strategies. It makes a co-existence strategy between relations of
source schema and a relation of target schema programmable. The proposed
DSL is relationally complete to describe schema evolution and has the same
expressive power with MSVDB’s SMOs. We show that the proposed DSL can
describe SMOs’ strategies and other strategies. Furthermore, we introduce a
property, the consistency of updates, and its veri�cation methods. We show that
the proposed DSL can describe co-existence strategies of the existing work and
other co-existence strategies.

• For the second challenge, the existing work has a problem that there is no
systematic methodology to realize a co-existence strategy regardless of whether
the source-side or the target-side database. We propose a method to systematically
derive two types of BXs on the source-side database from a given co-existence
strategy: BXs between the source-side database and view instances of source
schema and BX between the source-side database and a view instance of target
schema. We de�ne the source-side database schema to consist of base relation
names having the same data structure with relation names of source schema and
auxiliary relation names. A key idea of deriving the BXs is that BX between the
source-side database and a view instance of source schema is basically identity
mapping between the base relation and the view instance. Then BX between the
source-side database and a view instance of target schema is derived so that a
co-existence strategy is realized between the base relations and the view instance
of target schema. We evaluate the usefulness of the proposed method by showing
results of derived BXs and execution time of writing and reading against view
instances of source schema and target schema. Co-existence strategies of the
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existing work and other co-existence strategies are evaluated.

• Following the second challenge, we propose a method to systematically derive
two types of BXs on the target-side database from a given co-existence strategy:
BXs between the target-side database and view instances of source schema and
BX between the target-side database and a view instances of target schema.
A key idea of deriving the BXs is that schema evolution is replaced to BXs
between the target-side database and view instances of source schema, and
backward update sharing is replaced to BX between the target-side database and
a view instance of target schema. We evaluate the usefulness of the proposed
method deriving BXs on the target-side databases in the same manner as the
third contribution mentioned above.

• Due to the second challenge, the existing work has a problem that there is no
systematic methodology for data migration between the source-side database
and the target-side database for a co-existence strategy. We propose a method of
data migration based on the derived BXs. The source-side database is migrated to
the target-side database by the following two steps: the BXs on the source-side
database compute view instances of source schema and target schema, then such
view instances are transformed into the target-side database by the BXs on the
target-side database. The target-side database is migrated to the source-side
database by the opposite operation. We evaluate the usefulness of the proposed
method by showing the execution time of data migration. Co-existence strategies
of the existing work and other co-existence strategies are evaluated.

We published parts of �rst and second contributions in [66, 65, 67].
Figure 1.2 shows an overall procedure to derive BXs for the realization of co-

existence strategies. The input is a co-existence strategy written by the proposed DSL.
The output is BXs to realize the co-existence strategy on the source-side database or
the target-side database. The �rst step is a veri�cation of the consistency of updates
whether a given co-existence strategy satis�es it. If satis�ed, the second step is a
realization of co-existence strategies on the source-side database or the target-side
database. This step outputs two types of BXs on the source-side database or the
target-side database.
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Verification of the consistency of updates

Co-existence strategy

Realization of co-existence strategies on
source-side database

Realization of co-existence strategies on
target-side database

BXs between a source-side database
and view instances of source schema
BX between a source-side database
and a view instance of target schema

BXs between a target-side database
and view instances of source schema
BX between a target-side database
and a view instance of target schema

Figure 1.2: Overall procedure to derive BXs for realization of co-existence strategies.

The following chapters of this thesis explain each step in order from the top. The
next section shows an outline of this thesis.

1.4 Outline

We organize the remainder of the thesis as follows. Chapter 3 – Chapter 5 are the main
contributions of this thesis. These chapters include ideas to make the co-existence
schemas programmable.

Chapter 2. We introduce background knowledge for making the co-existence of
schemas programmable. It consists of four major objectives: Datalog with a notation
that will be used throughout this thesis, schema evolution as a basis of co-existence of
schemas to support continuous evolution of database schema, co-existence of schemas
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to make schemas utilized in parallel by sharing data, and bidirectional transformation
as a method to realize co-existence of schemas.

Chapter 3. We present a DSL, domain-speci�c language, to describe a co-existence
strategy. Its syntax and semantics are given. A property, consistency of updates, and its
veri�cation method are explained. We provide examples of strategies written by the
proposed DSL.

Chapter 4. We present how to realize a given co-existence strategy on the source-side
database. We explain how to design auxiliary relations systematically and derive BXs be-
tween the source-side database and view instances of source schema and target schema.
We show experimental results to evaluate the usefulness of the proposed method
for co-existence strategies of SMOs in the related work and other co-existence strategies.

Chapter 5. We present how to realize a given co-existence strategy on the target-side
database. We explain how to design other auxiliary relations systematically and derive
BXs between the target-side database and view instances of source schema and target
schema. Further, we explain how to migrate data between the source-side database and
the target-side database. We show experimental results to evaluate the usefulness of
the proposed method for co-existence strategies of SMOs in the related work and other
co-existence strategies.

Chapter 6. We conclude the thesis by reviewing our contributions and discussing
possible future works.
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This chapter provides background knowledge for making the co-existence of
schemas programmable. We �rst introduce basic knowledge of Datalog with a notation
that is used throughout this thesis. We explain schema evolution by presenting its
basic concept, then introduce how the co-existence of schemas by the view-based
approach works and bidirectional transformation as a technique for realization of a
co-existence schemas.

2.1 Datalog

We �rst introduce a notation of relational database and then explain basic knowledge
of Datalog. A database schema is a �nite sequence of relation names (or predicate
symbols) 〈A1, . . . , A=〉. Each relation name A8 has attribute names -1, . . . -< . By denoting
attribute names as a vector ®-8 = (-1, . . . -<), a relation name is denoted as A8 ( ®-8). A
relation '8 ( ®-8) (or simply '8 by omitting attributes) is a set of tuples over relation
name A8 ( ®-8). Database D is union of relations '1( ®-1), . . . , '= ( ®-=).

A Datalog program % is a non-empty �nite set of rules expressed by the following
form [72, 15]:

� :− !1, . . . , !8, . . . , != . (2.1)

� is called the head of the rule, and !1, . . . , !8, . . . , != is called the body of the rule.
� is a predicate. Each !8 in the body is literal. Literal is a non-negated or negated
predicate A8 ( ®-8) corresponding to a relation '8 ( ®-8), a non-negated or negated predicate
appearing in heads of other Datalog rules, or a non-negated or negated predicate
built-in predicate with an arithmetic comparison operator such as =, <.

2.2 Schema Evolution

An objective of schema evolution is to modify an original database schema (source
schema) to a new database schema (target schema) without data loss and translate
queries and updates issued over the source schema to work on the target schema. In
order to specify schema evolution this thesis follows the instance-level semantics [11]
of schema evolution. It speci�es a mapping between a database of the source schema
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and one of target schema given data structure change between these schemas. If S and
T are databases of the source schema and the target schema, a mapping between them
de�nes a subset of S × T. Usually, the mapping is expressed as a set of transformations.
A transformation is a formula in some mapping language and de�nes the subset of
S × T that the formula holds. Each transformation might be a mapping based on simple
schema modi�cations, such as the addition, deletion, or renaming of attributes of
a relation, and composed schema modi�cations, such as join of two relations into
one relation, decomposition of one relation to two relations, merge of tuples in two
relations into one relation, and partition of tuples in one relation into two relations [48].

Example 1. Suppose a database of source schema as union of relations (1(�, �,�),
(2(-,. ) and (3(-,/ ) and another database of target schema as union of relations
)1(�, �) and )2(-,., / ). The relation )1(�, �) is a result of schema evolution from
(1(�, �,�) by projection to drop the attribute � . The relation )2(-,., / ) is a result of
schema evolution from (2(-,. ) and (3(-,/ ) by join of them. These transformations
of schema evolution are described by Datalog as follows:

C1(�, �) :− B1(�, �,�). (2.2)

C2(-,., / ) :− B2(-,. ), B3(-,/ ). (2.3)

where predicates B1(�, �,�), B2(-,. ), B3(-,/ ), C1(�, �), and C2(-,., / ) correspond to
relations (1, (2, (3, )1, and )2 respectively. Rule (2.2) expresses that the relation )1 is
transformed from the relation (1 by dropping the attribute � . Rule (2.3) expresses that
the relation )2 is transformed from the relations (2 and (3 by join when values of
attributes - are the same. �

2.3 Co-Existence of Schemas

An objective of co-existence of schemas is to realize a co-existence strategy consisting
of schema evolution and update sharing between relations of schemas. In this thesis, we
follow the view-based approach proposed in [34, 35] to realize co-existence strategies.

Recall the example of co-existence strategy shown in section 1.1 that the relation (1
of source schema is evolved to the relation )1 of target schema by projecting away an
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attribute / and any updates are shared in the forward and backward direction between
(1 and )1 except for values in the projected away attribute / . Figure 2.1 depicts the
view-based approach to realize this strategy in one database. Figure 2.1 (a) shows
initial data after schema evolution. Database is designed to have a base relation �(1
that has same attributes with a relation (1. The relation (1 of source schema is turned
to a view instance (1 that is logically computed by the view as identity mapping from
the base relation �(1 . The relation )1 of target schema is turned to a view instance )1
that is logically computed by the view that speci�es schema evolution as projection
from the base relation �(1 . Figure 2.1 (b) shows forward update sharing from (1 to )1.
The updated view instance of (1 is transformed to the updated base relation by the
update translator as identity mapping. Then the updated base relation is transformed
into the updated view instance of)1 by the view as projection. As a result, inserted and
deleted tuples against (1 are shared with )1. Figure 2.1 (c) shows backward update
sharing from )1 to (1. The updated instance of )1 is transformed to the updated base
relation by the update translator. Then the updated base relation is transformed to the
updated view instance of (1 by the view as identity mapping. As a result, inserted and
deleted tuples against )1 are shared with (1.

However, if a co-existence strategy speci�es not to share update against )1 to (1,
we cannot update the base relation �(1 . If the base relation �(1 is updated, its updated
result is re�ected to the view instance (1 even though the strategy speci�es not to
share with (1. To avoid this case, database can be deigned to have auxiliary relations so
that supplemental data to compute the view instance )1 is separately kept from the
base relation. In this thesis, we propose methods to systematically derive a database
schema having auxiliary relation names to realize update sharing speci�ed by an
arbitrary co-existence strategy.
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source schema target schema

(b) source schema target schema
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Figure 2.1: Realization of a co-existence strategy by the view-based approach.
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2.4 Bidirectional Transformation

Bidirectional transformation (BX for short) [29] is a mature technique synchronizing
updates between heterogeneous data models. It is a pair of a forward transformation
64C and a backward transformation ?DC . Given source data S and view data V, a
transformation 64C (S) = V accepts source data S and produces view dataV . Another
transformation ?DC (S,V′) = S′ accepts the original source data S and updated view
dataV′, and produces updated source S′.

To ensure the consistency between source data and target data, BX must satisfy the
following round-tripping laws, called GETPUT and PUTGET:

?DC (S, 64C (S)) = S (GETPUT)

64C (?DC (S,V′)) = V′ (PUTGET)

The GETPUT ensures not updated target data corresponds to not updated source data.
The PUTGET ensures an updated target data is transformed into source data such that
the updated target can be computed again by 64C giving the updated source data. BX
satisfying both GETPUT and PUTGET is well-behaved.

In this thesis, we realize the co-existence schemas by the view-based approach
based on updatable views. A problem of updatable view is how to �nd an update
translator that translates updates of a view instance to updates of a database so that
the updated view is recomputed from the updated database without loss or gain [1].

It is known that bidirectional transformation and view update problem essentially
handle the same topic [71]. Let source data S be a database and view dataV be a
view instance. A view to compute a view instance from the database corresponds to
64C (S) = V . Let D be update of a view instance fromV toV′, i.e. D (64C (S)) = V′. If
an update translator T transforms the update D so that ) (D) updates database S to S′,
i.e. T(D) (S) = S′, T is obtained by 64C and ?DC of BX as follows:

T(D) (S) = ?DC (S, D (64C (S)))

Thus this thesis treats a realization of a given co-existence strategy by the view-based
approach as a challenge to derive BXs from a given co-existence strategy.
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This chapter presents a DSL, domain-speci�c language, to describe co-existence
strategies. In general, DSL is designed for e�ciency to describe a domain-speci�c
program and easiness for veri�cation of domain-speci�c properties [73, 52]. In this
thesis, we design DSL to describe co-existence strategies e�ciently by specifying
items required for it and introducing a veri�cation method of a speci�c property,
the consistency of updates. We �rst give an overview of DSL, then formally explain
syntax snd semantics of the DSL, and a property of the consistency of updates with its
veri�cation method. Examples of co-existence strategies are given. The end of this
chapter explains related work to the proposed DSL.

3.1 Overview

We go through an overview of the co-existence of schemas: how they behave, how
their behaviors are described, and what consistency must be satis�ed.

3.1.1 Running Example

We introduce a running example of a co-existence of schemas which is used through
this thesis. Suppose a simpli�ed OMS (order management system) is used in shops. It is
modi�ed to a new version to meet new requirements. The original version and the new
versions of OMS run in parallel to provide the service of each version concurrently
while gradually migrating users from the original version to the new version. The
following example shows that one relation of source schema evolves to one relation in
target schema, and data of two schemas co-exist.

Example 2. Suppose schema ver1 is source schema for the OMS. Schema ver1
consists of a relation name ord1(OID, ITEM_NO, QTY, MEMO) in which OID is a
primary key and ITEM_NO must be greater than 1. Also, suppose that the OMS is
modi�ed to handle new products in which ITEM_NO is greater than 100 and drop MEMO
because its use has become unclear. For that purpose, schema ver2 is target schema
for the modi�ed OMS consisting of a relation name ord2(OID, ITEM_NO, QTY). OID
is a primary key, and ITEM_NO must be greater than 1. We denote ORD1 and ORD2 as
relations over relation names ord1 and ord2, respectively.
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(a)

(b)

(c)

(d)

schema ver1 schema ver2

Figure 3.1: An example of a co-existence of schemas when one relation evolves to one
relation.

Figure 3.1 (a) shows initial data as a result of schema evolution. The relation ORD1
of schema ver1 is transformed into the relation ORD2 of schema ver2. The relation
ORD1 = {〈>1, 10, 1, 5 >>〉, 〈>2, 50, 2, 10A 〉, 〈>3, 15, 3, 10I〉} is transformed to the relation
ORD2 = {〈>1, 10, 1〉, 〈>2, 50, 2〉, 〈>3, 15, 3〉} by projection to drop an attribute MEMO from
ORD1.

In order to run the original OMS and the modi�ed OMS in parallel after schema
evolution, updates over schema ver1 and schema ver2 are shared with each. Fig-
ure 3.1 (b) shows forward update sharing from schema ver1 to schema ver2 by
following a relationship de�ned by schema evolution. A set of deleted tuples from
ORD1, {〈>1, 10, 1, 5 >>〉, 〈>3, 15, 1, 10I〉}, is transformed into a set of deleted tuples from
ORD2, {〈>1, 10, 1〉, 〈>3, 15, 3〉}. A set of inserted tuples to ORD1, {〈>4, 50, 4,<4<>〉,
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〈>5, 10, 5,<4<>〉} is transformed into a set of inserted tuples to ORD2, {〈>4, 50, 4〉,
〈>5, 10, 5〉}.

Figure 3.1 (c) and (d) show backward update sharing from schema ver2 to ver1.
Figure 3.1 (c) shows that a set of deleted tuples from ORD2, {〈>2, 50, 20〉, 〈>5, 10, 5〉}, is
shared with ORD1 by transforming to a set of deleted tuples from ORD1, {〈>2, 50, 2, 10A 〉,
〈>5, 10, 5,<4<>〉}. Figure 3.1 (d) shows that a set of inserted tuples to ORD2, {〈>6, 50, 6 〉,
〈>7, 10, 7 〉, 〈>8, 101, 8 〉}, is shared with ORD1 by transforming to a set of inserted tuples
to ORD1, {〈>6, 50, 6, 〉, 〈>7, 10, 7, 〉}. An inserted tuple 〈>8, 101, 8〉 to the relation ORD2
is not shared because it is an order of new products speci�ed by the value of ITEM_NO
as 101 greater than 100. �

3.1.2 Co-Existence Strategy

This subsection shows an overview of describing a co-existence strategy and verifying
the consistency of updates.

Description of Co-Existence Strategy

A co-existence strategy consists of speci�cations of source schema and target schema,
schema evolution, and update sharing. Schema evolution is a change of data structure
from source schema to target schema and a transformation of an instance as a set of
tuples of source schema to one of target schema. We describe it by the instance-level
semantics introduced in chapter 2. Data sharing is a transformation between a set of
updated tuples over source schema and a set of updated tuples over target schema.
This thesis follows Keller’s de�nition of updates [42]. An update over a schema is
insertion, deletion, or replacement. Replacement is a sequence of deletion and insertion.
Thus, we describe update sharing as transformations between a set of inserted/deleted
tuples over source schema and a set of inserted/deleted tuples over target schema.

Taking Example 2, we illustrate how to describe a co-existence strategy by Datalog
rules. Schema ver1 as source schema and schema ver2 as target schema are de�ned as
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follows.

source: ver1#ord1($ :string, � :int, & :int, " :string). (3.1)

target: ver2#ord2($ :string, � :int, & :int). (3.2)

pk(ord1, [′$′]). (3.3)

pk(ord2, [′$′]). (3.4)

Lowercase characters express a relation name by following the convention of Datalog.
Variables are assigned corresponding to an order of attributes. For example, variables
($, �,&,") correspond to attributes (OID, ITEM_NO, QTY, MEMO). Types of each attribute
are speci�ed as string, int, int, and string, respectively. A primary key is speci�ed
by describing a relation name and its variables of primary key.

We specify schema evolution by describing transformations from relations of
source schema to a relation of target schema. Following Example 2, schema evolution is
described by a transformation from the relation $'�1 of schema ver1 to the relation
$'�2 of schema ver2 based on Datalog as follows:

ord2($, �,&) :− ord1($, �,&,") . (3.5)

Predicates with relation names, ord1 and ord2, correspond to relations, $'�1 and
$'�2, respectively. Rule (3.5) represents projection from a relation $'�1 by omitting
the attribute MEMO.

Update sharing after schema evolution consists of forward update sharing from
updates over source schema to updates over target schema and backward update
sharing as the inverse of forward update sharing. We assume a relationship between
source schema and target schema de�ned by schema evolution is kept while they
co-exist. Thus forward update sharing follows a relationship de�ned by schema
evolution. We do not speci�cally describe forward update sharing. We specify backward
update sharing by describing transformations from a set of inserted/deleted tuples
against a relation of target schema to sets of inserted/deleted tuples against relations of
source schema. Following Example 2, its backward update sharing is described as
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follows:

+ord1($, �,&,") :− +ord2($, �,&),¬ord1($, �,&, _), � < 100, " = ‘ ’. (3.6)

−ord1($, �,&,") :− −ord2($, �,&), ord1($, �,&,"), � < 100. (3.7)

A predicate with symbols of +/− represents a set of inserted/deleted tuples against a
corresponding relation. For example, +ord1($, �,&,") represents a set of inserted
tuples into a relation $'�1. Rule (3.6) expresses that a set of inserted tuples to the
relation $'�2 is transformed to a set of inserted tuples to the relation $'�1 by �lling
the value of MEMO as ‘ ’ when such tuples do not exist in the relation $'�1 and their
value of ITEM_NO is less than 100. Rule (3.7) expresses that a set of deleted tuples from
$'�2 is transformed to a set of deleted tuples from a relation$'�1 when these tuples
exist in the relation $'�1 and their value of ITEM_NO is less than 100.

In Example 2, values of ITEM_NO in relations $'�1 and $'�2 must be greater
than 1. We specify such constraints as followings by giving a truth constant false to
rule head:

⊥() :− ord1($, �,&,"), � ≤ 0. (3.8)

⊥() :− ord2($, �,&), � ≤ 0. (3.9)

Note that prior researches [34, 35] de�ne one prede�ned co-existence strategy of
SMO for schema evolution by projection. The strategy speci�es backward update
sharing to transform any updates on a relation in target schema without specifying
selection conditions. The example above shows another strategy of backward update
sharing by specifying a selection condition.

Veri�cation of Co-Existence Strategy

We verify the consistency of updates between schemas. Intuitively, the consistency of
updates assures that updates against a relation of schema do not cause additional
updates by sharing updates following a co-existence strategy.

Additional updates occur on a relation of target schema if further tuples of insertion
or deletion are resulted in schema evolution after backward update sharing based on
inserted and deleted tuples against the relation of target schema. In other words,
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satisfying the consistency of updates requires that tuples of insertion and deletion
resulted in schema evolution after backward update sharing must be subsets of initially
inserted and deleted tuples against the relation of target schema.

We focus on the consistency of updates against a relation of target schema because
updates against a relation of source schema do not cause additional updates following
a co-existence strategy. Updates against the relation of source schema are shared with
the relation of target schema following schema evolution. Since this transformation
does not directly compute a set of inserted or deleted tuples to the relation of target
schema, backward update sharing does not compute a set of inserted or deleted tuples
to relations of source schema. Thus additional updates do not occur based on updates
against the relation of source schema.

The next example shows that the co-existence strategy of Example 2 satis�es the
consistency of updates on updates against a relation of target schema.

Example 3. Suppose updates shown in Figure 3.1 and the co-existence strategy
consisting of schema evolution ruled by (3.6) and backward update sharing ruled by
(3.6) and (3.7).

Figure 3.1 (c) shows that a set of tuples {〈>2, 50, 2〉, 〈>5, 10, 5〉} is initially deleted
from the relation$'�2. The set is transformed to a set of deleted tuples {〈>2, 50, 2, 10A 〉,
〈>5, 10, 5,<4<>〉} from the relation$'�1 by the backward update sharing. By applying
the schema evolution, the set of deleted tuples from $'�1 is transformed to a set of
deleted tuples {〈>2, 50, 2〉, 〈>5, 10, 5〉} from $'�2. The result equals the initial set of
deleted tuples from $'�2. Additional deletions do not occur based on deletion from
$'�2 of target schema.

Figure 3.1 (d) shows that a set of tuples {〈>6, 50, 6〉, 〈>7, 10, 7〉, 〈>8, 101, 8〉} is initially
inserted to $'�2. The set is transformed to a set of inserted tuples {〈>6, 50, 6, 〉,
〈>7, 10, 7, 〉} to the relation $'�1 by the backward update sharing. By applying
the schema evolution, the set of inserted tuples to $'�1 is transformed to a set of
inserted tuples {〈>6, 50, 6〉, 〈>7, 10, 7〉} to $'�1. The result is a subset of the initial set
of inserted tuples to $'�1. Additional insertions do not occur based on insertion to
$'�2 of target schema.

Thus the co-existence strategy satis�es the consistency of updates. �

Note that the de�nition of the consistency of updates is a relaxed version of the



24 Chapter 3. DSL for Description of Co-Existence Strategies

consistency of bidirectional transformation [29]. Its PUTGET requires that an updated
view data must be recomputed from an updated source data without loss or gain by
assuming all updates of view data are transformed into the source data. In contrast,
backward update sharing of a co-existence strategy may not transform any updates
against a relation of target schema into relations of source schema. Therefore, as
a relaxed version of bidirectional transformation’s consistency, the consistency of
updates requires that a result of schema evolution after backward update sharing
generates subsets of initially inserted and deleted tuples against a relation of target
schema, but does not require to generate all of them.

3.2 De�nitions

We de�ne a co-existence of relational database schemas.

De�nition 3.1 (Co-Existence of Relational Database Schemas). Let a relational database
schema be a set of relation names and an instance of schema be union of relations. A set
of relational database schemas is a co-existence of relational database schemas when it
satis�es the followings:

1. A new schema (target schema) is de�ned by schema evolution that speci�es how
to modify data structure and transform an instance of original schema (source
schema) to an instance of target schema.

2. Once the instance of target schema is de�ned by schema evolution, updates on
relations over source schema and target schema can be shared in both directions,
from the instance of source schema to the instance of target schema and vice versa.

�

We use a co-existence of schemas as an abbreviation of a co-existence of relational
database schemas. Note that a relationship between source schema and target schema
de�ned by schema evolution is kept over a period while both schemas are available
and co-exist.

Based on De�nition 3.1, a co-existence of schema is speci�ed by a de�nition of
source schema and target schema, schema evolution, and rules of update sharing.
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Update sharing consists of a forward update sharing from source schema to target
schema and a backward update sharing from target schema to source schema. Since a
relationship de�ned by schema evolution is kept between schemas and a forward
update sharing follows the relationship, a backward update sharing must be separately
speci�ed. Now we design a co-existence of schemas by a co-existence strategy
consisting of these items.

De�nition 3.2 (Co-Existence Strategy). A co-existence strategy consists of follows:

1. A de�nition of source schema and target schema to specify schema name and a set
of relation names of each scehma.

2. Schema evolution to modify data structure and transform relations of source schema
into a relation of target schema.

3. Backward update sharing to specify transformations from sets of inserted and
deleted tuples against a relation of target schema into sets of inserted and deleted
tuples against relations of source schema.

�

We make a co-existence strategy between relations of source schema and a relation
of target schema programmable.

3.3 Design Details

3.3.1 Syntax

Figure 3.2 shows syntax of a proposed DSL. It follows syntax of Datalog with additional
things to specify a co-existence strategy. New things are <schema> to specify a
de�nition of schema, and symbols + and − to specify <predicate> appearing in Datalog
rules. A program of a co-existence strategy is a <program> which consists of a set
of <statement>. Each <statement> is <schema>, <rule> or <constraint>. <schema>
speci�es a de�nition of schemas. <rule> or <constraint> is a Datalog rule described
with <predicate> and <literal>. <predicate> can be described with or without a symbol
+ or −.
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<program> ::= <statement>∗
<statement> ::= <schema> | <rule> | <constraint>
<schema> ::= source:<version>#<relname> ( <varname>:<type>

{, <varname>:<type> }∗ ).
| target:<version>#<relname> (<varname>:<type>

{, <varname>:<type>}∗).
| pk(<relname>, [<varname> {, <varname>}∗ ]).

<rule> ::= <predeicate> :− <literal> {, <literal>}∗.
<constraint> ::= ⊥() :− <literal> {, <literal> }∗.
<literal> ::= <predeicate> | not <predeicate> | <builtin> | not <builtin>
<predeicate> ::= [ + | - ] <relname>(<term> {, <term>}∗)
<builtin> ::= <varname> ( = | <> | < | > | <= | >= ) <const>
<term> ::= <varname> | <annonvar> | <const>
<type> ::= <int> | <�oat> | <string>

Figure 3.2: Syntax of DSL for a co-existence strategy.

3.3.2 Semantics

Semantics of the DSL follows the semantics of Datalog with additional things, <schema>
and symbols + and − to specify a predicate.

<schema> expresses a de�nition of schemas by specifying source schema or target
schema, <version> for a schema version, <relname> for a relation name, <varname> for
variable name, and <type> for a type of variable. Primary key constraint is described
by ?: with <relname> and <varname> of keys. <rule> expresses a transformation to
specify schema evolution and backward update sharing by following the semantics
of Datalog. A predicate described by <relname> with symbols + or − expresses a
predicate corresponding to a set of inserted or deleted tuples. <constraint> expresses
constraints other than primary key by following semantics of Datalog. Its head ⊥()
expresses a truth constant false.

3.3.3 Description of Schema Evolution

We explain details of how to describe schema evolution. Restrictions of its description
are also introduced so that a written co-existence strategy can be veri�ed whether the
consistency of updates is satis�ed or not.

Let source schema consist of a set of relation names B8 ( ®G8) (8 ∈ [1, =]) and target
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schema consist of a relation name C ( ®~). Vectors ®G8 and ®~ are sets of attributes of relation
name B8 and C respectively. We denote a relation (8 ( ®-8) (or (8 by omitting attributes ®-8 )
as a set of tuples over relation name B8 ( ®-8) and an instance of source schema S as union
of relations of source schema. In the same manner, we denote a relation ) ( ®. ) (or ) ) as
a set of tuples over relation name C ( ®. ) and an instance of target schema T as union of
relations of target schema.

We follow the instance-level semantics [11] to describe schema evolution � as
a mapping from source schema instance S to target schema instance T given data
structure change between them.

T = � (S) (3.10)

Since T is a set of all tuples of relations of target schema and a co-existence strategy
handles one relation ) of target schema, schema evolution � is a transformation 5

from source schema instance S to a relation ) as follows:

) = 5 (S) (3.11)

We specify a transformation 5 by a set of Datalog rules. The following format
describes each Datalog rule:

� :− !1, . . . , !: , . . . , !:= . (3.12)

Each !: in body is a literal. A literal is a non-negated or negated predicate B8 ( ®-8)
corresponding to a relation (8 ( ®-8) (8 ∈ [1, =]), a non-negated or negated predicate
predicate appearing in heads of other Datalog rules consisting of 5 , or a non-negated
or negated built-in predicate with an arithmetic comparison operator such as =, <.
Head � is a predicate C ( ®. ) corresponding to a relation ) ( ®. ) of target schema or a
predicate which appears in bodies of other Datalog rules consisting of 5 except for a
predicate B8 ( ®-8) and built-in predicates.

Datalog rule of 5 is restricted to be described by non-recursive GN-Datalog
(Guarded Negation Datalog [10, 9, 71]) so that the consistency of updates for a written
strategy can be veri�ed. To describe as non-recursive Datalog rule, a literal !: in body
of a rule must not be a predicate appearing its rule head. To describe as GN-Datalog
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rule, body of a rule must have non-negated predicates or built-in predicates with
equality (=) that contain all variables occurring in a predicate of head and negated
predicates in body.

Example 4. Following Datalog rule is not GN-Datalog because a variable -3 of a
negated predicate ¬B2(-1, -2, -3) in its body does not appear in a non-negated predicate
in its body.

C1(-1, -2) :− B1(-1, -2),¬B2(-1, -2, -3). (3.13)

�

In Datalog program, the satis�ability is an existence of non-empty relations
corresponding to predicates appearing in rule body such that these tuples result in
a non-empty relation corresponding to a rule head that a set of Datalog rules in a
program �nally speci�es. It is known that the satis�ability is decidable in Datalog
program consisting of GN-Datalog rules [10, 9, 71]. Veri�cation for the consistency of
updates in subsection 3.3.5 exploits this property.

3.3.4 Description of Backward Update Sharing

We explain details of how to describe backward update sharing with some restrictions.
Given a relation ', let Δ+

'
be a set of tuples to insert into a relation ', Δ−

'
be a set of

tuples to delete from a relation ', and Δ' be a delta relation that is a set of all tuples
of Δ+

'
and Δ−

'
. We denote Δ+

(8
( ®-8) and Δ−

(8
( ®-8) (or Δ+

(8
and Δ−

(8
) as sets of inserted and

deleted tuples against a relation (8 ( ®-8) of source schema and Δ(8 ( ®-8) (or Δ(8 ) as a delta
relation of (8 ( ®-8). In the same manner, we denote Δ+

)
( ®. ) and Δ−

)
( ®. ) (or Δ+

)
and Δ−

)
) as

sets of inserted and deleted tuples against a relation ) ( ®. ) of target schema and Δ) ( ®. )
(or Δ) ) as delta relation of ) ( ®. ). Further, we denote Δ+S and Δ−S as sets of inserted and
deleted tuples against source schema instance S, and ΔS as a set of tuples of all Δ+S and
Δ−S .

We de�ne backward update sharing � as a transformation from a pair of source
schema instance S and a delta relation Δ) into ΔS as a set of all inserted and deleted
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tuples against S as follows:

ΔS = � (S,Δ) ) (3.14)

� refers to source schema instance S to compensate information for transformation
into ΔS from Δ) because Δ) may not have all information of S.

Since ΔS is a set of all inserted and deleted tuples against source schema instance S
and S is union of all relations (8 (8 ∈ [1, =]), backward update sharing � is a set of
transformations 6+B8 and 6−B8 which transform to Δ+

(8
( ®-8) and Δ−

(8
as sets of inserted and

deleted tuples against a relation (8 from a pair of source schema instance S and a delta
relation Δ) .

Δ+(8 = 6
+
B8
(S,Δ) ) (3.15)

Δ−(8 = 6
−
B8
(S,Δ) ) (3.16)

We specify transformations 6+B8 and 6−B8 by sets of Datalog rules. Each Datalog rule of 6+B8
and 6−B8 are described by the following format:

�+ :− !+1 , . . . , !+: , . . . , !
+
:=+. (3.17)

�− :− !−1 , . . . , !−: , . . . , !
−
:=−. (3.18)

!+
:

and !−
:

in bodies are literals. A literal is a predicate B8 ( ®-8) (8 ∈ [1, =]), a predicate
+C ( ®. ), a predicate −C ( ®. ), a predicate appearing in heads of other Datalog rules
consisting of 6+B8 and 6−B8 respectively, or a built-in predicate. All predicates are non-
negated or negated. Predicates +C ( ®. ) and −C ( ®. ) corresponds to Δ+

)
and Δ−

)
against a

relation ) of target schema. Head �+ is a predicate +B8 ( ®-8) corresponding to Δ+
(8

or a
predicate which appears in bodies of other Datalog rules consisting of 6+B8 except for
B8 ( ®-8) (8 ∈ [1, =]), +C ( ®~), −C ( ®. ) and built-in predicates. Head �− is a predicate −B8 ( ®-8)
corresponding to Δ−

(8
or a predicate which appears in bodies of other Datalog rules

consisting of 6−B8 except for B8 ( ®-8) (8 ∈ [1, =]), +C ( ®. ), −C ( ®. ) and built-in predicates.

A Datalog rule consisting of 6+B8 or 6−B8 is restricted to be described by non-recursive
GN-Datalog with monotonicity and linearity. This thesis de�nes the monotonicity as a
transformation from a set of inserted or deleted tuples to a set of inserted or deleted
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tuples. Description of backward update sharing is restricted so that a non-negated
predicate with a symbol of − or + can not appear in body of a rule in which head is a
predicate symbol of + or − respectively.

The linearity is a restriction that a non-negated predicate with a symbol of + or
− can appear in body at most once. If +C ( ®. ) or −C ( ®. ) appears in body of the rule
more than twice, the rule expresses self-join of inserted or deleted tuples. Self-join
generates more tuples than actually inserted or deleted over target schema. Therefore
it is prohibited that a rule has more than two non-negated +C ( ®. ) or −C ( ®. ) in body.

Example 5. The following Datalog rule does not satisfy a restriction of monotonicity
because a predicate with symbol − appears in rule body while its head is a predicate
with symbol +.

+B1(-1, -2, -3) :− −C1(-1, -2), B1(-1, -2, -3).

�

Example 6. The following Datalog rule does not satisfy a restriction of linearity
because predicates with symbol + appear twine in rule body, i.e., +C1(-1, -2) and
+C2(-1, -3).

+B1(-1, -2, -3) :− +C1(-1, -2), +C2(-1, -3),¬B1(-1, -2, -3).

�

3.3.5 Consistency of Updates

In this subsection, we formally de�ne the consistency of updates and show a method to
verify it.

De�nition of Consistency of Updates

First, we introduce an application of delta relation, then formally de�ne the consistency
of updates by utilizing the application of delta relation.

The application of delta relation is to compute an updated relation by applying a
set of inserted and deleted tuples. Given a relation ', Δ+

'
, and Δ−

'
, sets of inserted



3.3 Design Details 31

and deleted against ', an updated relation '′ is computed by adding tuples of Δ+
'

and
deleting tuples of Δ−

'
against '. Considering set semantics, the application of delta

relation Δ' to ' is the following:

'′ = ' ⊕ Δ' = (' ∩ ¬Δ−' ) ∪ Δ+' (3.19)

We de�ne the consistency of updates. Recall satisfying the consistency of updates
requires that tuples of insertion and deletion resulted from schema evolution after
backward update sharing must be subsets of initially inserted and deleted tuples against
a relation of target schema, respectively. Let us start to de�ne Δ+

)
′ and Δ−

)
′ as sets of

tuples of insertion and deletion resulted from schema evolution after backward update
sharing based on delta relation Δ) as initially inserted and deleted tuples to a relation
of target schema. They are computed as set di�erence between a result of schema
evolution � from an original source schema instance S and a result of schema evolution
� from an updated source schema instance S′ by backward update sharing. Since set
di�erence � \ � = � ∩ ¬� when � and � are sets, Δ+

)
′ and Δ−

)
′ are de�ned as follows:

Δ+)
′
= � (S′) ∩ ¬� (S) (3.20)

Δ−)
′ = � (S) ∩ ¬� (S′) (3.21)

An updated source schema instance S′ is de�ned by applying ΔS as a set of inserted
and deleted tuples against an original source schema instance S as follows:

S′ = S ⊕ ΔS (3.22)

Since ΔS is computed by backward update sharing� of (3.14), equations (3.20) and
(3.21) are rewritten as followings:

Δ+)
′
= � (S ⊕ � (S,Δ) )) ∩ ¬� (S) (3.23)

Δ−)
′ = � (S) ∩ ¬� (S ⊕ � (S,Δ) )) (3.24)

Now satisfying the consistency of updates requires that Δ+
)
′ is a subset of Δ+

)
, a set of

initially inserted tuples into a relation ) of target schema, and Δ−
)
′ is a subset of Δ−

)
, a

set of initially deleted tuples from ) .
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De�nition 3.3 (Consistency of Updates). Let S be source schema instance, ) be a
relation of target schema, Δ+

)
be a set of inserted tuples to ) , Δ−

)
be a set of deleted tuples

from ) , and Δ) be delta relation of ) . A co-existence strategy satis�es the consistency of
updates when the followings are satis�ed.

� (S ⊕ � (S,Δ) )) ∩ ¬� (S) ⊆ Δ+) (3.25)

� (S) ∩ ¬� (S ⊕ � (S,Δ) )) ⊆ Δ−) (3.26)

�

Veri�cation for the Consistency of Updates

We show that veri�cation for the consistency of updates is treated as a decidable
satis�ability problem of Datalog program. Let us take the formula (3.25) of De�nition
3.3 and show how to verify it. The formula (3.26) of De�nition 3.3 is also veri�ed in the
same manner.

Because of � ⊆ � ⇔ � ∩ ¬� = ∅, the formula (3.25) is transformed as follows:

� (S ⊕ � (S,Δ) )) ∩ ¬� (S) ∩ ¬Δ+) = ∅ (3.27)

When equation (3.27) is satis�ed, the consistency of updates is satis�ed. Let a result of
left-hand side of (3.27) be a relation �+ as follows:

�+ = � (S ⊕ � (S,Δ) )) ∩ ¬� (S) ∩ ¬Δ+) (3.28)

If we can derive Datalog program specifying a relation �+ from a co-existence strategy,
proof of equation (3.27) is equivalent to a proof of unsatis�ability of the Datalog
program. The next example shows a derivation of such Datalog program consisting of
GN-Datalog rules, and satis�ability of the derived Datalog program is treated as a
decidable problem.

Example 7. Suppose the co-existence strategy consisting of schema de�nition speci�ed
by (3.1) – (3.4), schema evolution ruled by (3.6), backward update sharing ruled by
(3.6) – (3.7), and constraints rules by (3.8) – (3.9). Since source schema consists of one
relation name ord1, source schema instance is equivalent to a relation $'�1 over
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ord1. The relation �+ of this co-existence strategy is expressed as follows:

�+ = � ($'�1 ⊕ � ($'�1,Δ$'�2)) ∩ ¬� ($'�1) ∩ ¬Δ+$'�2 (3.29)

where Δ$'�2 is a delta relation for a relation $'�2 of target schema and Δ+
$'�2 is a

set of inserted tuples to $'�2. Datalog rules to express �+ is derived as follows:

+ord1($, �,&,") :− +ord2($, �,&),¬ord1($, �,&, _), � < 100, " = ‘ ’. (3.30)

−ord1($, �,&,") :− −ord2($, �,&), ord1($, �,&,"), � < 100. (3.31)

ord1’($, �,&,") :− ord1($, �,&,"),¬ −ord1($, �,&,"). (3.32)

ord1’($, �,&,") :− +ord1($, �,&,"). (3.33)

ord2’($, �,&) :− ord1’($, �,&,"). (3.34)

ord2($, �,&) :− ord1($, �,&,"). (3.35)

d+($, �,&) :− ord2’($, �,&),¬ord2($, �,&),¬ +ord2($, �,&). (3.36)

Rules (3.30) and (3.31) correspond to Δ$'�1 = � ($'�1,Δ$'�2) where Δ$'�1 is a
set of inserted tuples to $'�1. Rules (3.32) and (3.33) correspond to $'�1′ = $'�1 ⊕
Δ$'�1. A rule (3.34) corresponds to $'�2′ = � ($'�1′). A rule (3.35) corresponds to
$'�2 = � ($'�1). Finally, a rule (3.36) corresponds to�+ = $'�2′∩¬$'�2∩¬Δ+

$'�2.

Rules (3.30), (3.31), (3.34) and (3.35) are GN-Datalog because they are GN-Datalog
rules of backward update sharing and schema evolution of the co-existence strategy.
Rules (3.32) and (3.33) are also GN-Datalog. When a set of tuples of updated relation is
speci�ed by applying sets of inserted and deleted tuples against the relation, all tuples
have the same attributes. Thus these rules are GN-Datalog because all attributes in
heads appear in bodies. Finally, rule (3.36) is GN-Datalog because all attributes in head
and negated predicates in body appear in a non-negated predicate in body. Therefore,
the satis�ability of the above Datalog program to transform into �+ is decidable. �

In Example 7, the Datalog program for veri�cation of the satis�ability consists of
GN-Datalog rules of a co-existence strategy and GN-Datalog rules to treat sets of
inserted and deleted tuples against an original relation. Therefore, its satis�ability is
decidable for an arbitrary co-existence strategy.
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// schemas:
source : ver1#B1(- :int, Y:int) .
target : ver2#C (- :int, Y:int).

// schema evolution:
C (-,. ) :− B1(-,. ), . = ‘A’.

// backward update sharing:
+B1(-,. ) :− +C (-,. ),¬B1(-,. ), . = ‘A’.
+B1(-,. ) :− +C (-,. ),¬B1(-,. ), . = ‘B’.
−B1(-,. ) :− −C (-,. ), B1(-,. ), . = ‘A’.
−B1(-,. ) :− −C (-,. ), B1(-,. ), . = ‘B’.

Figure 3.3: Co-existence strategy for schema evolution by selection.

3.4 Examples of Strategies

This subsection shows examples of co-existence strategies: co-existence of schemas
when a schema is evolved by selection, projection, join, union, and set di�erence.

Co-Existence Strategy for Schema Evolution by Selection

Figure 3.3 shows a co-existence strategy for schema evolution by selection. A rule
of schema evolution transforms a relation (1 of source schema (ver1) to a relation
) of target schema (ver2) if tuples of (1 satisfy the condition of . = ‘A’. Rules of
backward update sharing transform inserted and deleted tuples against the relation
) into inserted and deleted tuples against the relation (1 if tuples of ) satisfy the
condition . = ‘A’ or . = ‘B’. Note that any conditions can be designed for schema
evolution and backward update sharing. No selection condition of backward update
sharing is also available.
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// schemas:
source : ver1#B1(- :int, . :int, / :string).
target : ver2#C (- :int, . :int).

// schema evolution:
C (-,. ) :− B1(-,., / ).

// backward update sharing:
+B1(-,., / ) :− +C (-,. ),¬B1(-,., _), / = ‘w’.
−B1(-,., / ) :− −C (-,. ), B1(-,., / )

Figure 3.4: Co-existence strategy for schema evolution by projection.

Co-Existence Strategy for Schema Evolution by Projection

Figure 3.4 shows a co-existence strategy for schema evolution by projection. A rule of
schema evolution transforms a relation (1 of source schema (ver1) into a relation ) of
target schema (ver2) by dropping attribute / because it appears in body of the rule but
does not appear in head of the rule.

Backward update sharing is that inserted and deleted tuples against ) are shared
with the relation (1. Its rules transform inserted tuples to a relation ) to tuples to be
inserted into (1 by giving default value w of attribute / , and deleted tuples from a
relation ) to tuples to be deleted from (1 when tuples’ values of attributes - and . are
the same.

Co-existence Strategy for Schema Evolution by Join

Figure 3.5 shows a co-existence strategy for schema evolution by join. The rule of
schema evolution transforms the relations (1 and (2 of source schema (ver1) to the
relation )1 of target schema (ver2) by join if tuples of relations (1 and (2 have the same
value of the primary key, attribute - .

The rules of backward update sharing transform inserted and deleted tuples against
)1 to inserted and deleted tuples against (1 and (2. The rule that head is −B1(-,. )
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// schemas:
source : ver1#B1(- :int, . :int).
source : ver1#B2(- :int, / :int).
target : ver2#C (- :int, . :int, / :int).
pk(B1, [‘- ’]) .
pk(B2, [‘- ’]) .
pk(C, [‘- ’]).

// schema evolution:
C (-,., / ) :− B1(-,. ), B2(-,/ ).

// backward update sharing:
+B1(-,. ) :− +C (-,., / ),¬B1(-,. ), B2(-,/ ).
+B2(-,/ ) :− +C (-,., / ),¬B2(-,/ ), B1(-,. ).
−B1(-,. ) :− −C (-,., _),¬+C (-,., _), B1(-,. ), B2(-, _).
−B2(-,/ ) :− −C (-, _, / ),¬+C (-, _, / ), B1(-, _), B2(-,/ ) .

Figure 3.5: Co-existence strategy for schema evolution by join.

expresses a transformation of a set of deleted tuples from )1 into a set of deleted tuples
from (1. Its body has −C1(-,., _) and negated +C1(-,/, _) to handle a replacement by
a sequence of deletion and insertion. Suppose that a replacement of a tuple (1, 1, 1)
in the relation )1 to a tuple (1, 1, 2) is a sequence of deletion (1, 1, 1) and insertion
(1, 1, 2). Value of attribute / is replaced from 1 to 2. Since only the relation (2 has
attribute / and the relation (1 does not have it, a replacement of the tuple in (1 is not
required when values of an attribute / in a relation )1 is replaced and values of other
attributes - and . are not changed. This transformation is ruled by having predicates
−C1(-,., _) and negated +C1(-,/, _) in body of the rule. This is also equipped in the
rule that head is −B2(-,. ) in the same manner.
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// schemas:
source : ver1#B1(- :int, . :int).
source : ver1#B2(- :int, . :int).
target : ver2#C (- :int, . :int).
pk(B1, [‘- ’]) .
pk(B2, [‘- ’]) .
pk(C, [‘- ’]).

// schema evolution:
C (-,. ) :− B1(-,. ).
C (-,. ) :− B2(-,. ),¬B1(-, _).

// backward update sharing:
+B1(-,. ) :− +C (-,. ),¬B1(-,. ),¬B2(-,. ), . ≥ 1.
+B2(-,. ) :− +C (-,. ),¬B1(-,. ),¬B2(-,. ), . = 1.
−B1(-,. ) :− −C (-,. ), B1(-,. ).
−B2(-,. ) :− −C (-,. ), B2(-,. ),¬B1(-, _).
−B2(-,. ) :− −C (-,.1),¬ +C (-,. ), B2(-,. ), B1(-,.1).

Figure 3.6: Co-existence strategy for schema evolution by union.

Co-existence Strategy for Schema Evolution by Union

Figure 3.6 shows a co-existence strategy for schema evolution by union. The rules of
schema evolution transform the relations (1 and (2 of source schema (ver1) to the
relation ) of target schema (ver2) by giving a priority to (1. If tuples having the same
value of the primary key - exist in both (1 and (2, tuples of (1 are transformed into
tuples of ) of target schema.

The rules of backward update sharing transform inserted and deleted tuples against
the relation ) to inserted and deleted tuples against (1 and (2. Inserted tuples to )1
are transformed to inserted tuples to (1 and (2 if they are not exist in both (1 and (2
and satisfy the condition . ≥ 1 and . = 1 respectively. Deleted tuples from ) are
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// schemas:
source : ver1#B1(- :int, . :int).
source : ver1#B2(- :int, . :int).
target : ver2#C (- :int, . :int).
pk(B1, [‘- ’]) .
pk(B2, [‘- ’]) .
pk(C, [‘- ’]).

// schema evolution:
C (-,. ) :− B1(-,. ),¬B2(-,. )

// backward update sharing:
+B1(-,. ) :− +C (-,. ),¬B1(-,. ),¬B2(-,. ).
−B1(-,. ) :− −C (-,. ), B1(-,. ),¬B2(-,. ).

Figure 3.7: Co-existence strategy for schema evolution by set di�erence.

transformed to deleted tuples from (1 and (2 by satisfying a condition to give priority
to (1. Furthermore, the last rule expresses a transformation of deleted tuples from ) to
(2 if tuples of ) are deleted, tuples that have the same values of the primary key - are
not inserted into ) , and tuples that have the same values of the primary key - exist
in (1 and (2. Recall that the consistency of updates requires additional inserted or
deleted tuples must not appear as a result of schema evolution after backward updated
sharing. Suppose a tuple (1, 1) exist in (1 and a tuple (1, 2) exist in (2. The rule of
schema evolution transforms them to a tuple (1, 1) of ) because of priority to (1. If
a tuple (1, 1) of ) is deleted and transformed to deletion of (1, 1) from (1 but is not
transformed to deletion of (1, 2) from (2, a tuple (1, 2) newly appears in ) by following
schema evolution. The last rule is to avoid such violence of the consistency of updates.
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Co-existence Strategy for Schema Evolution by Set Di�erence

Figure 3.7 shows a co-existence strategy for schema evolution by set di�erence. The
rule of schema evolution transforms tuples of the relations (1 of source schema (ver1)
to tuples of the relation ) of target schema (ver2) if such tuples do not exist in the
relation (2 of source schema.

The rules of backward update sharing specify transformations to sets of inserted
and deleted tuples against the relation (1. If inserted tuples to ) do not exist in (1 and
(2, they are transformed into a set of inserted tuples to (1. If deleted tuples from) exist
in (1 and do not exist in (2, they are transformed into a set of deleted tuples from (1.

Based on schema evolution by set di�erence, it could be another transformation
that insertions (deletions) against ) are transformed into deletions (insertions) against
(2. However, such transformations are not speci�ed because Datalog rules of such
transformations are not monotonic.

Co-existence Strategy for Schema Evolution by Join and Projection

Figure 3.8 shows a co-existence strategy for schema evolution by join and projection.
In comparing with backward update sharing of the co-existence strategy for schema
evolution by join, a predicate,, = ‘w’, to set a default value w to the attribute, is
added because the attribute, is projected away by schema evolution.

3.5 Related Work

This section shows related work about specifying schema evolution and co-existence
of schemas.

Schema Evolution

Schema evolution has been widely drawn the attention of database researchers to
contribute continuous evolution of information systems with changes of databases.
Due to a wide research domain, we will not go over thousand of works for schema
evolution but introduce relevant works for the co-existence of schemas.

To highlight feature of schema evolution, Skoulis [62] and Vassiliadis [74] report
investigation result about open source databases. In contrast to the continuous
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// schemas:
source : ver1#B1(- :int, . :int).
source : ver1#B2(- :int, / :int,, :string).
target : ver2#C (- :int, . :int, / :int).
pk(B1, [‘- ’]) .
pk(B2, [‘- ’]) .
pk(C, [‘- ’]).

// schema evolution:
C (-,., / ) :− B1(-,. ), B2(-,/,, ).

// backward update sharing:
+B1(-,. ) :− +C (-,., / ),¬B1(-,. ), B2(-,/ ).
+B2(-,/,, ) :− +C (-,., / ),¬B2(-,/, _),, = ‘w’, B1(-,. ).
−B1(-,. ) :− −C (-,., _),¬+C (-,., _), B1(-,. ), B2(-, _, _).
−B2(-,/,, ) :− −C (-, _, / ),¬+C (-, _, / ), B1(-, _), B2(-,/,, ).

Figure 3.8: Co-existence strategy for schema evolution by join and projection.

evolution of information systems in general, schema evolution of databases shows burst
in their whole lifetime. For example, early periods of the database life demonstrate
a higher level of evolutionary changes than later ones. The necessity to support
such burst changes of database underpins our work to make co-existence strategies
programmable.

Roddick[58, 59] provides a bibliography of schema evolution in 1992 and 1995. It
highlights two aspects of schema evolution: modi�cation of schema de�nition from
source schema to target schema without data loss and access to data over any schema
through an interfaced schema when multiple schemas exist as a result of schema
modi�cation. More recently in 2016, Caruccio et al. [14] survey schema evolution
from information capacity perspective whether schema evolution lost information or
not [38, 54], and categorize methods to specify schema evolution into three approaches:
operation-based approach, mapping-based approach, and hybrid approach. In the
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following, we show the related work of each approach.
Note that schema evolution assumes to modify a schema into a new schema without

data loss but does not assume the co-existence of schemas to share independent
updates over schemas.

Operation-Based Approach for Schema Evolution

Roddick [59] insists that the modi�cations algebraic operations on a schema should
express the modi�cations of a schema, and changes of a schema on a larger scale might
be made available through a composition of elementary operations. Curino et al. [20]
investigates evolutional steps of MediaWiki as a backend technology of Wikipedia
and propose a set of primitive operations, SMOs (Schema Modi�cation Operations),
to describe schema evolution. These SMOs are designed so that a composition of
SMOs can describe the actual schema evolution of MediaWiki. Herrmann et al. [33]
propose CODEL as enhanced SMO. Since practitioners write transformations for
schema evolution by SQL, the author redesigns SMO to be relationally complete.

These SMOs are good for describing schema evolution. However, describing update
sharing to program co-existence strategy is out of scope. This thesis proposes a DSL to
describe co-existence strategies consisting of schema evolution and update sharing.

Mapping-Based Approach for Schema Evolution

Since a mapping between source schema and target schema speci�es schema evolution,
the idea of describing a mapping has been universalized to the abstract level of
schema evolution. Bernstein and Melnick [11] propose Model Management 2.0 to
manage mappings among heterogeneous metamodels. Schema evolution is treated as a
mapping between one metamodel as the source schema and another metamodel as the
target schema. Domínguez et al. [24] propose MeDEA as a model-driven schema
evolution that schema changes are speci�ed in an Entity-Relationship diagram, and
it is automatically mapped to the underlying relational database model. Wall and
Angryk [75] propose ScaDaVar that gives a schema version control mechanism by
specifying mapping between schema versions. The schema version control realizes
making branched schema version from an original schema version and merging
branched schema versions into one schema version.
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Again they are good for describing schema evolution. However, a description of
update sharing to program co-existence strategy is out of scope. Since it is challenging
to classify a variety of rules for update sharing into limited numbers of basic operations,
this thesis proposes mapping-based DSL to describe co-existence strategies.

Hybrid Approach for Schema Evolution

The hybrid approach is to describe schema evolution by operation-based DSL and
automatically generates a mapping between schemas. Schuler and Kessleman [60]
propose CHiSEL as domain-speci�c SMO for a scienti�c database. It shows the
usefulness of the hybrid approach that designs SMO for domain-speci�c matter and
provides a mapping of schemas of generally used databases. Curino et al. [19, 18, 18]
propose PRISM/PRISM++ based on the previously proposed SMO from investigation of
MediaWiki [20]. In general, query rewriting is problematic when schema evolution
discards information, for example, deleting attributes, because lost information cannot
be queried. By introducing the idea of inverse SMO and primitive operators of integrity
constraints, PRISM/PRISM++ generates transformations from target schema to source
schema. The transformations inverse data of target schema so that queries and updates
issued over source schema work. Moon et al. [55] propose PRIMA. By describing
schema evolution based on SMO, PRIMA translates queries and updates on target
schema retrospectively to legacy schemas to access data over them.

PRIMA is the �rst step toward the co-existence of schemas. Since the co-existence
of schemas accommodates update sharing, it is required to transform updates against
target schema to updates against source schema. PRIMA provides a feature to generate
a mapping from target schema to source schema under schema evolution though it
is limited to relationships de�ned by SMOs. In order to realize the co-existence of
schemas, this thesis proposes methods to handle schema evolution and update sharing
under circumstances that schema evolution may or may not lose information and
arbitrary updates occurs against each schema after schema evolution.

Co-Existence of Schemas

To realize the co-existence of schemas, Herrmann et al. [34, 35] enhance CoDEL [33] to
BiDEL of MSVDB to describe co-existence strategies. As we already mentioned in
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Chapter 1, this SMO lacks the �exibility to arbitrarily design a co-existence strategy by
specifying schema evolution and backward update sharing. This thesis proposes a DSL
to specify schema evolution and backward update sharing based on Datalog.
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This chapter presents deriving BXs between the source-side database and view
instances of schemas as a realization of co-existence strategies on the source-side
database in the overall procedure shown in Figure 1.2 of Chapter 1. We start with
an overview and then explain how to derive BXs and show their evaluation with
experimental results. Related work is explained at the end of this chapter.

4.1 Overview

Before discussing the details of deriving BXs, we present an overview of what BXs
realize co-existence strategies on the source-side database, how to derive them, and
their relation with the later sections.

BX to Realize Co-Existence Strategies

Recall a co-existence strategy speci�es a relationship between source schema instance
S and a relation ) of target schema by schema evolution � and backward updated
sharing� (Figure 4.1 (a)). A source schema instance S is union of relations (8 (8 ∈ [1, =])
of source schema. We realize co-existence strategies by two types of bidirectional
transformations following the view-based approach (Figure 4.1 (b)). We make relations
(8 (8 ∈ [1, =]) and ) turned to view instances. DB is the source-side database. It is union
of base relations corresponding to relations of source schema and auxiliary relations
for supplemental information. In this chapter, we shorten the source-side database as
the database unless speci�ed otherwise.

For each 8 (8 ∈ [1, =]), �-BA2.8 is a bidirectional transformation between the database
DB and the view instance (8 of source schema. Its 64C (denoted as 64CBA2.8) and ?DC
(denoted as ?DCBA2.8 ) are as followings:

64CBA2.8 (DB) = (8 (4.1)

?DCBA2.8 (DB, (8 ′) = DB ′ (4.2)

where (8 ′ is the updated view instance and DB ′ is the updated database. We derive this
BX as identity mapping between the view instance (8 and the corresponding base
relation and transformations from (8

′ to the updated auxiliary relation.
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Figure 4.1: Realization of a co-existence strategy by bidirectional transformations on
the source-side database.

�-CA6 is a bidirectional transformation between the database DB and the view
instance ) of target schema. Its 64C (denoted as 64CCA6) and ?DC (denoted as ?DCCA6) are
as followings:

64CCA6 (DB) = ) (4.3)

?DCCA6 (DB,) ′) = DB ′ (4.4)

where ) ′ is the updated view instance. We derive this bidirectional transformation so
that it realizes a co-existence strategy between the base relations of the database and
the view instance ) of target schema while unshared tuples of ) with view instance (8
of source schema are separately stored in the auxiliary relations of the database.

These two types of BXs make updates against the view instance of source schema
(target schema) shared with the view instance of target schema (source schema)
through updates of the database. In the forward direction, ?DCBA2.8 transforms the
updated (8 ′ of source schema into the updated database DB ′. And then, 64CCA6 transforms
DB ′ into the updated ) ′. In the backward direction, ?DCCA6 then 64CBA2.8 transforms the
updated ) ′ into the updated (8 ′ through the updated database DB ′.
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Deriving source-side database schema

Deriving BX between a source-
side database and a view
instance of target schema

Deriving BXs between a
source-side database and view
instances of source schema

BX between a source-side
database and a view instance

of target schema

BXs between a source-side
database and view instances of

source schema

Co-existence strategy satisfying the
consistency of updates

source-side database schema

Figure 4.2: Procedure of deriving BXs between a source-side database and view
instances of schemas.

Procedure to Derive BXs

Figure 4.2 shows a procedure of deriving BXs between the source-side database and the
view instances of schemas. This is the following procedure after a given co-existence
strategy is veri�ed whether the consistency of updates is satis�ed in Figure 1.2.

The �rst step is deriving the source-side database schema. Given a co-existence
strategy that speci�es source schema and target schema, the source-side database
schema is de�ned so that the database is union of the base relations corresponding to
the relations of source schema and the auxiliary relations required for a realization of a
co-existence strategy by �-CA6.

The next step is deriving BXs based on the following policy:

1. �-CA6 as bidirectional transformation between the database and the view instance
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) of target schema is derived so that a co-existence strategy is realized between
the base relations of the database and the view instance ) . 64C of �-CA6 follows
schema evolution speci�ed in a co-existence strategy. ?DC of �-CA6 follows
backward update sharing speci�ed in a co-existence strategy.

2. Updates against the view instance ) are transformed to auxiliary relations as
needed so that the updated view instance can be computed from the updated base
and auxiliary relations without loss or gain. Recall the consistency of updates
assures that schema evolution after backward update sharing results in a subset
of initially inserted (deleted) tuples against a relation of target schema. Thus
some initially inserted (deleted) tuples may be lost (gained) in the result. Suppose
schema evolution after backward update sharing between the base relations and
the updated view instance of target schema results in lost and gained tuples. In
that case, they are stored in an auxiliary relation for lost tuples and an auxiliary
relation for gained tuples, respectively. The source-side database schema de�nes
two auxiliary relation names for such two auxiliary relations.

3. �-BA2.8 for each 8 (8 ∈ [1, =]) is derived as identity mapping between the base
relation and the view instance (8 and additional transformations of its ?DC to
delete tuples of auxiliary relations for lost tuples. When schema evolution
transforms inserted and deleted tuples against (8 to inserted and deleted tuples
against ) and such tuples exist in the auxiliary relation for lost tuples, these
tuples are not lost tuples anymore. Thus such tuples are deleted from the
auxiliary relation.

In the following section, we explain the details of deriving BXs shown above.
Subsection 4.2.1 shows an outline of deriving BXs through examples, Subsection 4.2.2
explains deriving the source-side database schema in the procedure, Subsection 4.2.3
explains deriving BX between the source-side database and the view instance of target
schema, and Subsection 4.2.4 explains deriving BXs between the source-side database
and the view instances of source schema.
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4.2 Deriving BX to Realize Co-Existence Strategies

This section explains how to derive BXs from a given co-existence strategy. We �rst
give its outline, then explain derivation algorithms and the correctness of them.

4.2.1 Outline

We show an outline of deriving bidirectional transformations based on the policy in
the overview thorough examples.

Derivation of Bidirectional Transformations betweenView Instances andBase
Relations

Let us start with a simple co-existence strategy that does not require auxiliary relations
to realize the strategy. Let (1(-,., /,, ) be a relation of source schema and ) (-,., / )
be a relation of target schema. A co-existence strategy consists of schema evolution
by projection from (1(-,., /,, ) to ) (-,., / ) and backward update sharing to set a
default value into a projected away attribute, . Datalog rules of the strategy are as
follows:

schema evolution:

C (-,., / ) :− B1(-,., /,, ). (4.5)

backward update sharing:

+B1(-,., /,, ) :− +C (-,., / ),¬B1(-,., /, _),, = ‘w’. (4.6)

−B1(-,., /,, ) :− −C (-,., / ), B1(-,., /,, ). (4.7)

By following the policy of deriving BXs, we de�ne the source-side database schema.
Let �(1 (-,., /,, ) be a base relation corresponding to the relation (1(-,., /,, ) of
source schema. Let �;>BC

)
(-,., / ) and �608=

)
(-,., / ) be auxiliary relations for lost and

gained tuples even though auxiliary relations are not utilized in this example.
By following the �rst policy, we derive transformations of bidirectional transforma-

tion �-CA6 between the base relation �(1 (-,., /,, ) and the view instance ) (-,., / )
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of target schema. Rule (4.5) of schema evolution are replaced to 64CCA6 of �-CA6 by
replacing the predicate symbol B1 to 1_B1 for the base relation.

64CCA6:

C (-,., / ) :− 1_B1(-,., /,, ). (4.8)

Rules (4.6) – (4.7) of backward update sharing are replaced to ?DACA6 of �-CA6 by replac-
ing the predicate symbol B1 to 1_B1 and adding supplemental rules. Following Datalog
rules are derived.

?DCCA6:

+1_B1(-,., /,, ) :− +C (-,., / ),¬1_B1(-,., /, _),, = ‘w’. (4.9)

−1_B1(-,., /,, ) :− −C (-,., / ), 1_B1(-,., /,, ). (4.10)

+C (-,., / ) :− C ′(-,., / ),¬C (-,., / ). (4.11)

−C (-,., / ) :− ¬C ′(-,., / ), C (-,., / ). (4.12)

1_B1′(-,., /,, ) :− 1_B1(-,., /,, ),¬ − 1_B1(-,., /,, ). (4.13)

1_B1′(-,., /,, ) :− +1_B1(-,., /,, ). (4.14)

where predicates with symbols +C , −C , C ′, and 1_B1′ correspond to relations Δ+
)

, Δ−
)

,
) ′, and �(1′ respectively. Relations Δ+

)
and Δ−

)
are sets of inserted and deleted tuples

against the view instance ) . ) ′ is the updated view instance of target schema and �(1′

is the updated base relation.

Rules (4.9) – (4.10) are derived from rules (4.6) – (4.7) of backward update sharing.
Rules (4.11) – (4.14) are supplemental rules. Rules (4.11) – (4.12) computes relations
Δ+
)

and Δ−
)

for predicate +C (-,.,, ) and −C (-,.,, ) appearing in bodies of rules
(4.9) – (4.10). Since Δ+

)
and Δ−

)
are sets of inserted and deleted tuples against the view

instance ) , they are computed as results of set di�erence between the non-updated
original view instance) and the updated view instance) ′1. Rules (4.13) – (4.14) express
transformations to the updated base relation �(1′ by application of delta relation as

1) is computed by 64CCA6 from a base relation.
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�(1
′ = (�(1 ∩ ¬Δ−�(1 ) ∪ Δ+

�(1
.

By following the second policy, we consider necessity of Datalog rules to transform
into the auxiliary relations. Rules (4.9) – (4.14) of ?DCCA6 derived from backward update
sharing transform any inserted (deleted) tuples against the view instance ) to inserted
(deleted) tuples against the base relation �(1 if they do not exist (exist) in it. Then rule
(4.8) of 64CCA6 derived from schema evolution transforms the updated base relation �(1′

to the updated view instance ) ′ without loss or gain. Datalog rules to transform lost or
gained tuples to the auxiliary relations are not necessary.

By following the third policy, bidirectional transformation �-BA2.1 is derived as
identity mapping between the base relation �(1 and the view instance (1 of source
schema. Since it is rather simple, we skip to show it here and explain details in
Subsection 4.2.4 later.

The following example shows another co-existence strategy that requires Datalog
rules to utilize auxiliary relations.

Derivation of Bidirectional Transformations Utilizing Auxiliary Relations

We show a derivation of Datalog rules to transform into auxiliary relations. Suppose a
co-existence strategy consisting of schema evolution expressed by rule (4.5) and the
following backward update sharing added selection condition . < 100.

+B1(-,., /,, ) :− +C (-,., / ),¬B1(-,., /, _), . < 100,, = ‘w’. (4.15)

−B1(-,., /,, ) :− −C (-,., / ), B1(-,., /,, ), . < 100. (4.16)

By following the �rst policy, Datalog rules of ?DCCA6 of �-CA6 are derived by replacing
the predicate symbol B1 appearing in rules (4.15) – (4.16) to 1_B1 as follows and by
adding rules (4.11) – (4.14).

+1_B1(-,., /,, ) :− +C (-,., / ),¬1_B1(-,., /, _),, = ‘w’, . < 100. (4.17)

−1_B1(-,., /,, ) :− −C (-,., / ), 1_B1(-,., /,, ), . < 100. (4.18)

These rules transform inserted and deleted tuples against the view instance ) (-,., / )
to inserted and deleted tuples against the base relation �(1 (-,., /,, ) if their value of
. is less than 100. Otherwise, they do not transform inserted and deleted tuples against
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) to the base relation �(1 . Since such tuples are not transformed to the base relation,
transformation from the updated base relation by rule (4.8) of schema evolution does
not compute all originally inserted and deleted tuples against ) . Thus lost and gained
tuples occur.

By following the second policy, such lost and gained tuples are inserted into the
auxiliary relations �;>BC

)
(-,., / ) and �608=

)
(-,., / ) respectively so that the updated

view instance of target schema can be computed from the updated database without
loss or gain. We de�ne the following Datalog rules to express insertion of lost and
gained tuples to auxiliary relations:

C ′′(-,., / ) :− 1_B1′(-,., /,, ). (4.19)

+0_;>BC_C (-,., / ) :− C ′(-,., / ),¬C ′′(-,., / ),¬0_;>BC_C (-,., / ). (4.20)

+0_608=_C (-,., / ) :− ¬C ′(-,., / ), C ′′(-,., / ),¬0_608=_C (-,., / ). (4.21)

where predicates C ′′(-,., / ), 0_;>BC_C (-,., / ), 0_608=_C (-,., / ), +0_608=_C (-,., / ),
and +0_608=_C (-,., / ) correspond to relations ) ′′, �;>BC

)
, �608=

)
, Δ+

�;>BC
)

, and Δ+
�
608=

)

re-
spectively. Rule (4.19) expresses a transformation to a relation ) ′′ as a result of
schema evolution from the updated base relation �(1′ that is updated by backward
transformation of rule (4.17) and (4.18). Rule (4.20) expresses that lost tuples which
exist in the updated view instance ) ′ but do not exist in ) ′′ are inserted into the
auxiliary relation �;>BC

)
if they do not exist in it. Rule (4.21) expresses that gained tuples

which do not exist in the updated view instance ) ′ but exist in ) ′′ are inserted into the
auxiliary relation �608=

)
if they do not exist in it.

Datalog rules to delete lost and gained tuples from the auxiliary relations are
de�ned as follows:

−0_;>BC_C (-,., / ) :− 0_;>BC_C (-,., / ),¬C ′(-,., / ). (4.22)

−0_608=_C (-,., / ) :− 0_608=_C (-,., / ), C ′(-,., / ). (4.23)

−0_608=_C (-,., / ) :− 0_608=_C (-,., / ),¬C ′′(-,., / ) . (4.24)

where predicates −0_608=_C (-,., / ), and −0_608=_C (-,., / ) correspond to relations
Δ−
�;>BC
)

, and Δ−
�
608=

)

respectively. If lost tuples in the auxiliary relation �;>BC
)

do not exist in
the updated view instance ) ′, they are not lost tuples anymore and must be deleted
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from �;>BC
)

. Rule (4.22) expresses such transformation to a set of deleted tuples from
�;>BC
)

. If gained tuples in the auxiliary relation �608=
)

exist in the updated view instance
) ′ or do not exist in ) ′′ as a result of schema evolution after backward update sharing,
they are not gained tuples anymore. They must be deleted from �

608=

)
. Rule (4.23) and

(4.24) express such transformation to a set of deleted tuples from �
608=

)
.

The updated auxiliary relations �;>BC
)

′ and �608=
)

′ are de�ned by following rules as
applications of delta relations.

0_;>BC_C (-,., / )′ :− 0_;>BC_C (-,., / ),¬ − 0_;>BC_C (-,., / ). (4.25)

0_;>BC_C (-,., / )′ :− +0_;>BC_C (-,., / ). (4.26)

0_608=_C (-,., / )′ :− 0_608=_C (-,., / ),¬ − 0_608=_C (-,., / ). (4.27)

0_608=_C (-,., / )′ :− +0_608=_C (-,., / ). (4.28)

Finally ?DCCA6 is derived as rules (4.11) – (4.14) and (4.17) – (4.28).
We derive 64CCA6 to compute the view instance) without loss or gain by adding lost

tuples in the auxiliary relation �;>BC
)

and deleting gained tuples in the auxiliary relation
�
608=

)
against a result of schema evolution from the base relation �(1 . Datalog rules to

express such transformation are de�ned as follows:

C_4E> (-,., / ) :− 1_B1(-,., /,, ). (4.29)

C (-,., / ) :− C_4E> (-,., / ),¬0_608=_C (-,., / ). (4.30)

C (-,., / ) :− 0_;>BC_C (-,., / ). (4.31)

By following the third policy, rule (4.29) is derived from rule (4.5) of schema evolution
by replacing a predicate symbol B1 to 1_B1 and replacing a predicate symbol C in head to
C_4E> corresponding to a relation ) 4E> . Rules (4.30) and (4.31) express a transformation
that a set of gained tuples as �608=

)
is deleted and a set of lost tuples as �;>BC

)
is added

against a relation )4E> .
By following the third policy, bidirectional transformation �-BA2.1 is identity

mapping between a base relation �(1 (-,., /,, ) and a view instance (1(-,., / ) of
source schema and transformations to delete tuples of auxiliary relations. As with the
former example, we show details of it in Subsection 4.2.4 later.

In the following subsections, we show algorithms to derive the source-side database
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Algorithm 4.1 Deriving Source-Side Database Schema
Input: a co-existence strategy %
Output: a set of relation names of source-side database schema BA2_31

= ← a number of relation names of source schema de�ned in %
10B4 ← ∅
for 8 = 1 to = do

B8, ®-8 ← 8-th relation name and attributes of source schema de�ned in %
1_B8 ← { ("1_" & B8 , ®-8 ) } // base relation name
10B4 ← 10B4 ∪ 1_B8

end for
C, ®. ← a relation name and attributes of target schema de�ned in %
0_;>BC_C ← { ("0_;>BC_" & C , ®. ) } // auxiliary relation name for lost tuples
0_608=_C ← { ("0_608=_" & C , ®. ) } // auxiliary relation name for gained tuples
BA2_31 ← 10B4 ∪ 0_;>BC_C ∪ 0_608=_C
return BA2_31

schema, BXs between the database and the view instance of target schema, and BXs
between the database and the view instances of source schema.

4.2.2 Deriving Source-Side Database Schema

We give Algorithm 4.1 to derive the source-side database schema. The input is a
co-existence strategy. The output is a set of relation names of the base relations and
the auxiliary relations.

The following example shows relation names that the algorithm outputs from a
given co-existence strategy.

Example 8. Rewrite the co-existence strategy of the running example introduced in
Section 3.1 for readability.

% schemas:

source: ver1#B1(- :string, . :int, / :int,, :string).
target: ver2#C (- :string, . :int, / :int).
pk(B1, [′- ′]) .
pk(C, [′- ′]).
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% schema evolution:

C (-,., / ) :− B1(-,., /,, ).

% backward update sharing:

+B1(-,., /,, ) :− +C (-,., / ),¬B1(-,., /, _), . < 100,, = ‘ ’.

−B1(-,., /,, ) :− −C (-,., / ), B1(-,., /,, ), . < 100.

% constraint:

⊥() :− B1(-,., /,, ), . ≤ 0.

⊥() :− C (-,., / ), . ≤ 0.

Note that schema evolution and backward update sharing of this co-existence strategy
are the same with rules (4.5) and (4.15) – (4.16) introduced in the previous subsection.

Since the co-existence strategy speci�es one relation name of source schema,
Algorithm 4.1 sets = as 1. Then the algorithm sets B1 as B1, ®-1 as {-,., /,, }, C as C ,
®. as {-,., / } from relation names B1(-,., /,, ) of source schema and C (-,., / ) of
target schema.

Based on them, the algorithm outputs the following relation names: 1_B1(-,., /,, )
as the base relation name, 0_;>BC_C (-,., / ) as the auxiliary relation name for lost
tuples, and 0_608=_C (-,., / ) as the auxiliary relation name for gained tuples. �

4.2.3 Deriving BX between Source-Side Database and View In-
stance of Target Schema

We give Algorithm 4.2 to derive BX between the source-side database and view instance
of target schema. The input is a co-existence strategy satisfying the consistency
of updates. The output is a bidirectional transformation �-CA6. For readability,
transformations are described by relational algebra in the algorithm. The outline of the
procedure to derive BX is shown in Subsection 4.2.1. In the algorithm, a derivation of
constraints for a primary key follows the derivation method in [71].

The following example shows how the algorithm derives BX.
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Example 9. Suppose the co-existence strategy in Example 8. Algorithm 4.2 outputs
Datalog rules of BXs between the source-side database and the view instances of
schemas from the co-existence strategy. Since schema evolution and backward update
sharing of the strategy are the same with rules (4.5) and (4.15) – (4.16) treated in the
previous subsection, the algorithm outputs following rules of 64CCA6: A4E> as a rule (4.29),
and A) as rules (4.30) – (4.31).

The algorithm outputs following rules of ?DCCA6: A10B4 as rules (4.17) – (4.18), A0DG as
rules (4.20) – (4.21) and (4.22) – (4.24), A ′

10B4
as rules (4.13) – (4.14), A ′0DG as rules (4.25) –

(4.28), AΔ) as of rules (4.11) – (4.12), and A) ′′ as a rule (4.19). In addition, the algorithm
outputs Datalog rules of 2 for a constraint that predicate symbol C appears in its body,
20DG for constraints applied to the auxiliary relations, and 2?: for constraints of a
primary key.

2:

⊥() :− C ′(-,., / ), . ≤ 0.

20DG :

⊥() :− 0_;>BC_C (-,., / ), 0_608=_C (-,., / ).
⊥() :− 0_608=_C (-,., / ),¬C_4E> (-,., / ).

where a predicate C_4E> (-,., / ) corresponds to a relation ) 4E> (-,., / ).

2?: :

⊥() :− C ′(-,., / ), C ′(-,.1, /1), . ≠ .1.

⊥() :− C ′(-,., / ), C ′(-,.1, /1), / ≠ /1.

�
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Algorithm 4.2 Deriving BX between Source-Side Database and View Instance of
Target Schema
Input: a co-existence strategy % satisfying the consistency of updates
Output: bidirectional transformation �-CA6

// Speci�cation described in %
= ← a number of relation names of source schema
for 8 = 1 to = do

B8, ®-8 ← 8-th relation name and attributes of source schema
// corresponding to a relation (8 ( ®-8)

end for
C, ®. ← a relation name and attributes of target schema

// corresponding to a view instance ) ( ®. )
C ← a set of constraints
5 ← a set of Datalog rules to transform to ) ( ®. ) // schema evolution
for 8 = 1 to = do

6+B8 ← a set of Datalog rules to transform Δ+
(8
( ®-8) // backward update sharing

6−B8 ← a set of Datalog rules to transform Δ−
(8
( ®-8) // backward update sharing

end for

// base relations �(8 (-8) and auxiliary relations �;>BC
)
( ®. ) and �608=

)
( ®. )

BA2_31 ← a set of base and auxiliary relation names de�ned by Algorithm 4.1

// 64CCA6
A4E> ← a set of Datalog rules of 5 to transform to ) 4E> ( ®. ) by replacing predicate

symbols B8 for all 8 (8 ∈ [1, =]) to base relation names corresponding to
�(8 ( ®-8) and C to a predicate symbol corresponding to ) 4E> ( ®. )

A) ← a set of Datalog rules to transform to ) ( ®. ) as
) ( ®. ) = () 4E> ( ®. ) ∩ ¬�608=

)
( ®. )) ∪�;>BC

)
( ®. )

64CCA6 ← A4E> ∪ A)

// ?DCCA6
A10B4 ← a set of Datalog rules of 6+B8 and 6−B8 for all 8 (8 ∈ [1, =]) to transform to

Δ+
�(8
( ®-8) and Δ+

�(8
( ®-8) by replacing predicate symbols B 9 for all 9 ( 9 ∈ [1, =])

to a base relation names corresponding to �( 9 ( ®- 9 )
A0DG ← a set of Datalog rules to transform to Δ+

�;>BC
)

( ®. ), Δ−
�;>BC
)

( ®. ), Δ+
�
608=

)

( ®. ), and

Δ−
�
608=

)

( ®. ) as

Δ+
�;>BC
)

( ®. ) = ) ′( ®. ) ∩ ¬) ′′( ®. ) ∩ ¬�;>BC
)
( ®. ),

Δ−
�;>BC
)

( ®. ) = �;>BC
)
( ®. ) ∩ ¬) ′( ®. ),

Δ+
�
608=

)

( ®. ) = ¬) ′( ®. ) ∩) ′′( ®. ) ∩ ¬�608=
)
( ®. ), and

Δ−
�
608=

)

( ®. ) = (�608=
)
( ®. ) ∩) ′( ®. )) ∪ (�608=

)
( ®. ) ∩ ¬) ′′( ®. ))
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A ′
10B4
← ∅ // Transformations to updated �(8

′ for all 8
for 8 = 1 to = do

A ′8 ← a set of Datalog rules to transform updated �(8 ′( ®-8) as
�(8
′( ®-8) = (�(8 ( ®-8) ∩ ¬Δ−�(8 (

®-8)) ∪ Δ+
�(8
( ®-8)

A ′
10B4
← A ′

10B4
∪ A ′8

end for
A ′0DG ← a set of Datalog rules to transform updated �;>BC

)

′( ®. ) and �608=
)

′( ®. ) as
�;>BC
)

′( ®. ) = (�;>BC
)
( ®. ) ∩ ¬Δ−

�;>BC
)

( ®. )) ∪ Δ+
�;>BC
)

( ®. )) and

�
608=

)

′( ®. ) = (�608=
)
( ®. ) ∩ ¬Δ−

�
608=

)

( ®. )) ∪ Δ+
�
608=

)

( ®. ))

AΔ) ← a set of Datalog rules to transform to Δ+
)
( ®. ) and Δ−

)
( ®. ) as

Δ+
)
( ®. ) = ) ′( ®. ) ∩ ¬) ( ®. ) and

Δ−
)
( ®. ) = ¬) ′( ®. ) ∩) ( ®. )

A) ′′ ← a set of Datalog rules of 5 to transform to ) ′′( ®. ) by replacing predicate
symbols B8 for all 8 (8 ∈ [1, =]) into base relation names corresponding to
�(8
′( ®-8) and a predicate symbol C into a relation name corresponding to

) ′′( ®. ).
2 ← a set of constrains in C that a predicate with symbol C appears in body and

predicate symbols C and B 9 for all 9 ( 9 ∈ [1, =]) are replaced to relation
names corresponding to ) ′( ®. ) and �( 9 ( ®- 9 ) respectively.

20DG ← a set of constraints of
�;>BC
)
( ®. ) ∩�608=

)
( ®. ) = ∅ and

�
608=

)
( ®. ) ∩ ¬) 4E> ( ®. ) = ∅

2?: ← a set of constrains for primary key of relation name C if it is speci�ed
?DCCA6 ← A10B4 ∪ A0DG ∪ A ′10B4 ∪ A

′
0DG ∪ AΔ) ∪ A4E> ∪ A) ′′ ∪ 2 ∪ 20DG ∪ 2?:

�-CA6 ← {(64CCA6, ?DCCA6)}
return �-CA6



60 Chapter 4. Realization of Co-Existence Strategies on Source-Side Database

Properties

Based on transformations of 64CCA6 and ?DCCA6 derived by Algorithm 4.2, the following
lemmas and a proposition are satis�ed. Lemmas state that particular relationships of
the auxiliary relations and the base relations are kept. Note that they are given as
constraints in the algorithm.

Lemma 4.1 (Disjointness of Auxiliary Relations of Source-Side Database). The auxiliary
relations �;>BC

)
( ®. ) and �608=

)
( ®. ) are disjoint.

�;>BC) ( ®. ) ∩�
608=

)
( ®. ) = ∅

�

The formal proof is available in Appendix A.1.

Lemma 4.2 (Inclusion of Auxiliary Relation of Source-Side Database). The auxiliary
relation�608=

)
( ®. ) for gained tuples is included in the relation) 4E> ( ®. ) de�ned in Algorithm

4.2.

�
608=

)
( ®. ) ⊆ ) 4E> ( ®. )

�

The proof is available in Appendix A.2.
In order to realize a co-existence of schema by the view-based approach, the

updated view instance must be recomputed from the updated database without loss or
gain, and the non-updated view instance must not change the database. The following
proposition states a bidirectional transformation �-CA6 derived by Algorithm 4.2 is
well-behaved and satis�es these features.

Proposition 4.3 (Well-Behaveness of BX between Source-Side Database and View
Instance of Target Schema). Given a co-existence strategy between relations of source
schema and a relation of target schema and turning each relation to view instance,
bidirectional transformation �-CA6 derived by the Algorithm 4.2 is well-behaved by
satisfying GETPUT and PUTGET laws. �

The proof is available in Appendix A.3.



4.2 Deriving BX to Realize Co-Existence Strategies 61

4.2.4 Deriving BX between Source-Side Database and View In-
stance of Source Schema

We give Algorithm 4.3 to derive BXs between the source-side database and the
view instances of source schema. The input is a co-existence strategy satisfying the
consistency of updates. The output is bidirectional transformations �-BA2.8 for all 8
(8 ∈ [1, =]) expressed by Datalog rules. For readability, transformations are described
by relational algebra in the following and the algorithm. A derivation of constraints for
a primary key follows the derivation method in [71]

The algorithm derives identity mapping between the view instance of source
schema (8 ( ®-8) and the base relation �(8 ( ®-8) of the database. The algorithm de�nes
64CBA2.8 as following:

(8 ( ®-8) = �(8 ( ®-8) (4.32)

It is obvious that this transformation is identity mapping. The algorithm de�nes A ′
10B4

of ?DCBA2.8 as a set of transformations from the updated view instance (8 ′( ®-8) to the
updated base relation �(8 ′( ®-8) as follows:

Δ+�B8
( ®-8) = (8 ′( ®-8) ∩ ¬�B8 ( ®-8) (4.33)

Δ−�B8
( ®-8) = ¬(8 ′( ®-8) ∩ �B8 ( ®-8) (4.34)

�(8
′( ®-8) = (�(8 ( ®-8) ∩ ¬Δ−�(8 (

®-8)) ∪ Δ+�(8
( ®-8) (4.35)

Rules (4.33) and (4.34) for transformations to inserted and deleted tuples against
the base relation �B8 ( ®-8) respectively. Rules (4.35) is an application of delta relation
to transform into the updated base relation �(8

′( ®-8). The following shows these
transformations are identify mapping between (8 ′(-8) and �(8 ′(-8). Since all relations
appearing in rules have the same attributes ®-8 , it is omitted.

�(8
′ = {Rule (4.35)}
(�(8 ∩ ¬Δ−�(8 ) ∪ Δ+�(8

= {Substitute rules (4.33) and (4.34)}
(�(8 ∩ ¬(¬(8 ′ ∩ �B8 )) ∪ ((8 ′ ∩ ¬�B8 )
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= {Deformation of a formula by set operation}
(�(8 ∩ ¬�(8 ) ∪ (�(8 ∩ (8 ′) ∪ ((8 ′ ∩ ¬�(8 ) ∪ (�(8 ∪ (8 ′) ∪ (¬�(8 ∩ (8 ′)

= {Deformation of a formula by set operation and � ∩ ¬� = ∅}
(8
′

The algorithm de�nes A ′0DG as transformations to the update auxiliary relation �;>BC
)

′

for lost tuples because lost tuples can be disappeared when updates against the view
instance (8 of source schema are shared with the view instance ) of target schema by a
transformation of schema evolution. Transformations of A ′0DG are de�ned as followings:

Δ−
�;>BC
)

( ®. ) = (Δ+) (. ) ∩�;>BC) (. )) ∪ (Δ
−
) (. ) ∩�;>BC) (. )) (4.36)

�;>BC)

′( ®. ) = �;>BC) ( ®. ) ∩ ¬Δ
−
�;>BC
)

( ®. ) (4.37)

A relation Δ+
)
( ®. ) (Δ−

)
( ®. )) is a set of tuples that newly appears (disappears) in the

updated view instance of target schema as a result of schema evolution from the
updated base relations but does not exist (exists) in the original view instance of target
schema as a result of schema evolution from the original base relations. If tuples of
Δ+
)
( ®. ) exist in �;>BC

)
, they are not lost tuples anymore. If tuples of Δ−

)
( ®. ) exist in �;>BC

)
,

such tuples must not appear in the view instance ) of target schema as lost tuples.
Rule (4.36) transforms such tuples into tuples tuples to be deleted from �;>BC

)
. Rule

(4.37) expresses an application of delta relation to transform into the updated auxiliary
relation �;>BC

)

′( ®. ). Relations Δ+
)
( ®. ) and Δ−

)
( ®. ) are de�ned as transformations of A) , A) ′

and AΔ) in the algorithm.
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Algorithm 4.3 Deriving BXs between Source-Side Database and View Instances of
Source Schema
Input: a co-existence strategy % satisfying the consistency of updates
Output: bidirectional transformations of source schema �-BA2

// Speci�cation described in %
= ← a number of relation names of source schema
for 8 = 1 to = do

B8, ®-8 ← a relation name and attributes of source schema
//corresponding to a view instance (8 ( ®-8)

end for
C, ®. ← a relation name and attributes of target schema

//corresponding to a relation ) ( ®. )
C ← a set of constraints in %
5 ← a set of Datalog rules to transform ) ( ®. ) //schema evolution

// base relations �(8 (-8) and auxiliary relations �;>BC
)
( ®. ) and �608=

)
( ®. )

BA2_31 ← a set of base and auxiliary relation names de�ned by Algorithm 4.1

�-BA2 ← ∅
for 8 = 1 to = do

// 64CBA2.8
64CBA2.8 ← a set of Datalog rule to transform to (8 ( ®-8) as (8 ( ®-8) = �(8 ( ®-8)

// ?DCBA2.8
A ′
10B4
← a set of Datalog rules to transform to �(8 ′( ®-8) as

Δ+
�(8
( ®-8) = (8 ′( ®-8) ∩ ¬�B8 ( ®-8),

Δ−
�(8
( ®-8) = ¬(8 ′( ®-8) ∩ �B8 ( ®-8), and

�(8
′( ®-8) = (�(8 ( ®-8) ∩ ¬Δ−�(8 (

®-8)) ∪ Δ+
�(8
( ®-8)

A4E> ← a set of Datalog rules of 5 to transform to ) 4E> ( ®. ) by replacing
predicate symbols B 9 for all 9 ( 9 ∈ [1, =]) to base relation names
corresponding to �( 9 ( ®- 9 ) and a predicate C to a predicate symbol
corresponding to ) 4E> ( ®. )

A ′4E> ← a set of Datalog rules of 5 to transform to ) 4E>′( ®. ) by replacing
predicate symbols B8 and C to base relation names corresponding to
�(8
′( ®-8) and ) 4E>′( ®. ), and B 9 ( 9 ≠ 8) to a relation names corresponding

to �( 9 ( ®- 9 ) if it exist.
AΔ4E> ← a set of Datalog rules to transform to Δ+

) 4E> ( ®. ) and Δ−
) 4E> ( ®. ) as

Δ+
) 4E> ( ®. ) = ) 4E>′( ®. ) ∩ ¬) 4E> ( ®. ) and

Δ−
) 4E> ( ®. ) = ¬) 4E>′( ®. ) ∩) 4E> ( ®. )

A ′0DG ← a set of Datalog rules to transform to �;>BC
)

′( ®. ) as
Δ−
�;>BC
)

( ®. ) = (Δ+
) 4E> ( ®. ) ∩�;>BC)

( ®. )) ∪ (Δ−
) 4E> ( ®. ) ∩�;>BC)

( ®. )) and

�;>BC
)

′( ®. ) = �;>BC
)
( ®. ) ∩ ¬Δ−

�;>BC
)

( ®. )
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2 ← a set of constrains in C that a predicate with symbol C does not appears
in body and predicate symbol B8 and B 9 ( 9 ≠ 8) are replaced to a
corresponding relation names of �(8 ′( ®-8) and �( 9 ( ®- 9 ) respectively.

2?: ← a set of constrains for primary key of relation name B8 if it is speci�ed
?DCBA2.8 ← A ′

10B4
∪ A4E> ∪ A ′4E> ∪ AΔ4E> ∪ A ′0DG ∪ 2 ∪ 2?:

�-BA2.8 ← {(64CBA2.8, ?DCBA2.8)}
�-BA2 ← �-BA2 ∪ �-BA2.8

end for
return �-BA2
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The following examples show how the algorithm derives BXs.

Example 10. Suppose the co-existence strategy in Example 8. Algorithm 4.3 derives a
transformation of 64CBA2.1 as follows:

B1(-,., /,, ) :− 1_B1(-,., /,, ) .

where the predicate with symbol 1_B1 corresponds to the base relation �(1 .
The algorithm derives the following transformations of ?DCBA2.1.

A ′
10B4

:

+1_B1(-,., /,, ) :− B1′(-,., /,, ),¬1_B1(-,., /,, ).
−1_B1(-,., /,, ) :− ¬B1′(-,., /,, ), 1_B1(-,., /,, ).
1_B1′(-,., /,, ) :− 1_B1(-,., /,, ),¬ − 1_B1(-,., /,, ).
1_B1′(-,., /,, ) :− +1_B1(-,., /,, ).

where predicates with symbols B1′ and 1_B1′ correspond to the updated view instance
(1
′ and �(1′ respectively.

A4E> :

C_4E> (-,., / ) :− 1_B1(-,., /,, ).

A rule of A4E> is derived by replacing the predicate symbols C and B1 in the rule of
schema evolution into the predicate symbols C_4E> and 1_B1 respectively.

A ′4E> :

C_4E>′(-,., / ) :− 1_B1′(-,., /,, ).

A rule of A4E> ′ is derived by replacing predicate symbol C and B1 appearing in the rule of
schema evolution into predicate symbols C_4E>′ and 1_B1′ respectively.
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AΔ4E> :

+C_4E> (-,., / ) :− C_4E>′(-,., / ),¬C_4E> (-,., / ).
−C_4E> (-,., / ) :− ¬C_4E>′(-,., / ), C_4E> (-,., / ).

where predicates with symbols +C_4E> and −C_4E> correspond to relations Δ+
) 4E> and

Δ−
) 4E> respectively.

A ′0DG :

−0_;>BC_C (-,., / ) :− +C_4E> (-,., / ), 0_;>BC_C (-,., / ).
−0_;>BC_C (-,., / ) :− −C_4E> (-,., / ), 0_;>BC_C (-,., / ).
0_;>BC_C ′(-,., / ) :− 0_;>BC_C (-,., / )¬ − 0_;>BC_C (-,., / ).

where predicates with symbols 0_;>BC_C , 0_;>BC_C ′ +0_;>BC_C , −0_;>BC_C , correspond to
relations �;>BC

)
, �;>BC

)

′, Δ+
�;>BC
)

, and Δ−
�;>BC
)

respectively.
In addition, the algorithm outputs Datalog rules of 2 for a constraint that predicate

symbol C does not appear in its body and 2?: for constraints of a primary key.

2:

⊥() :− B1′(-,., /,, ), . ≤ 0.

2?: :

⊥() :− B1′(-,., /,, ), B1′(-,.1, /1,, 1), . ≠ .1.

⊥() :− B1′(-,., /,, ), B1′(-,.1, /1,, 1), / ≠ /1.

⊥() :− B1′(-,., /,, ), B1′(-,.1, /1,, 1),, ≠, 1.

�

In the algorithm, derivation of A) ′ is rather complicated. The following example
shows how it is derived when two relations of source schema are speci�ed.

Example 11. Suppose a co-existence strategy with schema evolution by join in Figure
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3.5. Its schema evolution is as follows:

C (-,., / ) :− B1(-,. ), B2(-,/ ) .

This strategy de�nes two relation names B1 and B2 of source schema. Thus the
algorithm sets = = 2. It derives the following Datalog rule for A4E> ′ of ?DCBA2.1.

C_4E>′(-,., / ) :− 1_B1′(-,. ), 1_B2(-,/ ).

Predicate symbols C , B1 and B2 appearing in the Datalog rule of schema evolution are
replaced into C_4E>′, 1_B1′ and 1_B2 respectively.

The algorithm derives the following Datalog rule for A4E> ′ of ?DCBA2.2.

C_4E>′(-,., / ) :− 1_B1(-,. ), 1_B2′(-,/ ).

Predicate symbols C , B1 and B2 appearing in schema evolution are replaced into C_4E>′,
1_B1 and 1_B2′ respectively. �

Properties

The following proposition states that a bidirectional transformations �-BA2.8 for each 8
(8 ∈ [1, =]) derived by Algorithm 4.3 is well-behaved.

Proposition 4.4 (Well-Behaveness of BXs between Source-Side Database and View
Instances of Source Schema). Given a co-existence strategy between relations (8 (8 ∈ [1, =])
of source schema and a relation of target schema and turning each relation to view
instance, bidirectional transformation �-BA2.8 for each 8 derived by the Algorithm 4.3 are
well-behaved by satisfying GETPUT and PUTGET laws. �

The proof is available in Appendix A.4.

4.2.5 Correctness of Derivation Algorithms

We �rst show schema evolution and backward update sharing of a co-existence strategy
are realized by the derived BXs, then show the soundness of the proposed algorithms
to derive BXs.
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Realization of Schema Evolution

Schema evolution of a co-existence strategy is realized if a result of transformations by
schema evolution and derived BXs are the same.

Theorem 4.5 (Realization of Schema Evolution by BXs between Source-Side Database
and View Instances of Schemas). Given a co-existence strategy, the derived bidirectional
transformations by Algorithm 4.2 and 4.3 realize its schema evolution. �

Suppose a co-existence strategy between relations (8 (8 ∈ [1, =]) of source schema
and a relation) of target schema, and �-BA2.8 for all 8 and �-CA6 as derived bidirectional
transformations from the co-existence strategy by Algorithm 4.2 and 4.3. Recall source
schema instance S is union of relations (8 for all 8 . Schema evolution of the co-existence
strategy transforms S to ) . On the other hand, for each 8 , ?DCBA2.8 of �-BA2.8 transforms
the view instance (8 to the source-side database DB , and 64CCA6 of �-CA6 transforms DB
to the view instance ) . If a result of these transformations from union of (8 to ) via DB
is equivalent to a result of the transformation by schema evolution, schema evolution
is realized by the derived BXs. Further details and the formal proof are available in
Appendix A.5.

Realization of Backward Update Sharing

Backward update sharing of a co-existence strategy is realized if a result of transforma-
tions by backward update sharing and derived BXs are the same.

Theorem 4.6 (Realization of Backward Update Sharing by BXs between Source-Side
Database and View Instances of Schemas). Given a co-existence strategy, the derived
bidirectional transformations by Algorithm 4.2 and 4.3 realize its backward update
sharing. �

Suppose the co-existence strategy and derived bidirectional transformations
mentioned above. Backward update sharing of the co-existence strategy transforms
sets of inserted and deleted tuples against the relation ) of target schema to sets of
inserted and deleted tuples to each relation (8 (8 ∈ [1, =]) of source schema. They
update the relation (8 to (8 ′. On the other hand, ?DCCA6 of �-CA6 transforms sets of
inserted and deleted tuples against a view instance ) to sets of inserted and deleted
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tuples against the source-side database DB and 64CBA2.8 of �-BA2.8 for each 8 transforms
the updated source-side database DB ′ to the updated view instance (8 ′. If a result of
these transformations is equivalent to a result of the transformation by backward
update sharing, backward update sharing is realized by the derived BXs. Further details
and the formal proof are available in Appendix A.6.

Soundness

Given a co-existence strategy, the derived BXs by Algorithm 4.3 and 4.2 are well-
behaved and realize its schema evolution and backward update sharing. Thus the
algorithms are sound.

4.3 Evaluation

This section shows experimental results and an evaluation of the proposed method.

4.3.1 Implementation

We have implemented the veri�cation of the consistency of updates and Algorithm 4.1,
4.2, and 4.3 into a prototype. The prototype is coded in OCaml2. The input to the
prototype is co-existence strategies written by the proposed DSL. The output from the
prototype is Datalog programs of BXs between the source-side or target-side database
and view instances of schemas.

The veri�cation of the consistency of updates is implemented as satis�ability check
of a Datalog program explained in Chapter 3. The prototype transforms a Datalog
program of a co-existence strategy into a program expressed by �rst-order logic and
then veri�es its satis�ability by using SMT solver, Z3. If its satis�ability is satis�ed,
the prototype outputs Datalog programs of BXs by Algorithm 4.1, 4.2, and 4.3. The
generated Datalog programs of BXs are checked whether the well-behaveness is
satis�ed just in case and transformed into SQL programs to run on a commercial
RDBMS, PostgreSQL by BIRDS [71]. BIRDS is a bidirectionalization engine between a
view instance and a database and generates a SQL program �le specifying a view

2The full source code is available at https://github.com/JumpeiTanaka/COXS/



70 Chapter 4. Realization of Co-Existence Strategies on Source-Side Database

derived from 64C of a given BX described by Datalog rules and triggers from ?DC of the
BX.

4.3.2 Experimental Result

We conduct an experiment to evaluate our approach. The experiment investigates a
practical relevance of our proposed method in describing co-existence strategies,
deriving BXs to realize strategies, and performance of writing and reading on view
instances of both source schema and target schema while sharing updates with each.
In order to evaluate them, we de�ne a benchmark as co-existence strategies to be
evaluated from the following points:

• Co-existence strategies prede�ned for SMOs of existing work [34, 35].

• Co-existence strategies consisting of schema evolution expressed by basic
operations of relational algebra, selection, projection, union, Cartesian product,
and set di�erence, and backward update sharing paired with schema evolution.

For the �rst point, SMOs’ prede�ned strategies are obtained from Figure 2 and appendix
of [34]. For the second point, since practitioners describe a script of data migration
for schema evolution by SQL program [2], the expressive power of the proposed
DSL must be relational complete to describe schema evolution. Thus, we evaluate
co-existence strategies consisting of schema evolution expressed by the �ve base
operations mentioned above.

The experiment is run on a Core i5 machine with 2 GHz and 16 GB memory and
PostgreSQL 10.16.

Table 4.1 shows experimental results of benchmark co-existence strategies described
by the proposed DSL and derived BXs between the source-side database and the view
instances of source schema and target schema. The �rst column of the table shows
SMO’s operator3. The third and fourth columns show schema evolution and backward
update sharing of co-existence strategies. We experimented with co-existence strategies
consisting of schema evolutions equivalent to transformations by basic relational
algebra operations and several types of backward update sharing paired with each

3Since SMO DECOMPOSE TABLE is inverse SMO of JOIN TABLE, we evaluated JOIN TABLE only.
DECOMPOSE TABLE is speci�ed by swapping relations of source schema and target schema.
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schema evolution. The �fth column is checked for SMO’s prede�ned co-existence
strategies. Since SMOs do not directly support schema evolution by Cartesian product
and set di�erence, co-existence strategies consisting of such schema evolution are
added.

For example, the table shows that SMO DROP COLUMN expresses modi�cation of a
relation (1 of source schema to a relation ) of target schema by dropping columns
(attributes). Its co-existence strategy consists of schema evolution that expresses
dropping columns by projection and backward update sharing that transforms any
updates against ) to (1. This SMO prede�nes one auxiliary relation name to realize its
co-existence strategy. On the other hand, the proposed DSL describes its co-existence
strategy as an 8 LOC Datalog program. Our method derives BXs as 41 LOC of Datalog
programs and 701 LOC of SQL programs by de�ning two auxiliary relation names of
the source-side database schema.



72 Chapter 4. Realization of Co-Existence Strategies on Source-Side Database

Table 4.1: Results of derived BXs between the source-side database and view instances
of source schema and target schema.

SMOs co-existence strategy the proposed method
Operator #

of
aux.

schema
evolution

backward update shar-
ing

SMO DSL
[LOC]

#
of
aux.

BXs
[LOC]

SQL
[LOC]

No.

DROP
COLUMN

1 projection share all with (1 X 8 2 41 701 1

((1→ ) ) share with (1 if a condi-
tion is satis�ed

8 2 41 701 2

share only deletion with
(1 if a condition is satis-
�ed

6 2 38 546 3

not share with (1 3 2 33 419 4
ADD
COLUMN

1 outer join
(pk)

share all with (1 X 17 2 76 4209 5

((1→ ) ) not share with (1 9 2 66 797 6
JOIN
TABLE

0 outer join
(pk)

share all with (1 and (2 X 15 2 80 3664 7

((1, (2→) ) not share with (1 and (2 9 2 72 800 8
0 outer join share all with (1 and (2 X 12 2 78 2007 9

(fk) not share with (1 and (2 5 2 70 845 10
0 inner join share all with (1 and (2 X 11 2 62 1192 11

(pk) not share with (1 and (2 7 2 56 698 12
2 inner join share all with (1 and (2 X 16 2 66 4158 13

(cond.) not share with (1 and (2 4 2 50 630 14
SPLIT
TABLE

1 selection share with (1 without
condition

X 7 2 39 636 15

((1→ ) ) share with (1 if selection
condition is satis�ed

7 2 39 636 16

not share with (1 5 2 36 456 17
MERGE
TABLE

1 union share with (1 and (2 if
conditions are satis�ed

X 13 2 68 1481 18

((1, (2→) ) share insertion with (1
and deletion with (2

8 2 65 1197 19

not share with (1 and (2 8 2 124 731 20
((1, (2→) ) - Cartesian

product
share with (1 and (2 18 2 66 3973 21

((1, (2→) ) - set di�er-
ence

share with (1 and not
share with (2

6 2 53 860 22
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Figure 4.3 shows writing and reading while updates are shared by schema evolution
realized on the source-side database. Each graph shows relationships between the
number of executed tuples and execution time of writing (insertion) to (1 of source
schema, reading its result as the view instances (1 of source schema, and reading of the
view instance ) of target schema as a result of update sharing by schema evolution of
each co-existence strategy. Figure 4.3 (a) is a result of the co-existence strategy No.1 in
Table 4.1 for schema evolution by projection. Figure 4.3 (b), (c), (d), (e) are results
of the co-existence strategies No.13 for schema evolution by inner join by a given
condition, No.15 for schema evolution by selection, No.18 for schema evolution by
union, and No.22 for schema evolution by set di�erence respectively. Since join is a
combination of Cartesian product and selection, we experimented inner join of Figure
4.3 (b) instead of Cartesian product. In writing on (1 of (b) and (e), a view instance (2 of
source schema has 10,000 tuples in advance.

Results show that reading time is almost the same for view instances of source
schema and target schema except for (c) of schema evolution by selection. Since
schema evolution by selection discards tuples, tuples of view instance ) of target
schema are less than tuples of view instance (1 of source schema. Then the reading
time of view instance ) is faster than the reading time of (1. The execution time of
writing varies depending on strategies of backward update sharing. While schema
evolution by projection, join, and set di�erence ((a), (b), (d) respectively) show linear
relationships between the number of executed tuples and executed time, schema
evolution by selection and union ((c) and (e) respectively) show non-linear increases of
execution time against the increase of executed tuples.

Figure 4.4 shows performances of writing and reading while updates are shared by
backward update sharing realized on the source-side database. Each graph shows
relationships between the number of executed tuples and execution time of writing
(insertion) to ) of target schema, reading its result as the view instances ) of target
schema, and reading of the view instance (1 of source schema as a result of update
sharing by backward update sharing of each co-existence strategy. In the same manner
with Figure 4.3, Figure 4.4 (a), (b), (c), (d), (e) are results of the co-existence strategy
No.1 for schema evolution by projection, the co-existence strategies No.13 for schema
evolution by inner join by a given condition, No.15 for schema evolution by selection,
No.18 for schema evolution by union, and No.22 for schema evolution by set di�erence
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respectively. In writing on ) of (b) and (e), the view instance (2 of source schema
already has 10,000 tuples in advance. Note that the scale of writing time in Figure 4.4
(b) is di�erent from others.

Results show that reading time is almost the same for view instances of source
schema and target schema except for (c) of schema evolution by selection. The
execution time of writing varies depending on strategies. While schema evolution by
join and set di�erence ((b), (d) respectively) show linear relationships between the
number of executed tuples and executed time, schema evolution by projection, selection
and, union ((a), (c), and (e) respectively) show non-linear increases of execution time
against the increase of the executed tuples. Figure 4.4 (b) shows the execution time of
writing on backward update sharing against schema evolution by join takes more time
than others because it updates the base relation corresponding to the view instance (1
of source schema by checking join condition.

Furthermore, we investigate the variation of performance depending on the
auxiliary relation. Figure 4.4 (f) shows performances depending on the ratio of recorded
tuples in the auxiliary relation for lost tuples and the base relation. This experiment is
performed based on the co-existence strategy No.15 in Table 4.1 for schema evolution
by selection. Its selection condition of backward update sharing is varied so that
inserted tuples are stored in 0%, 50%, and 100% in the auxiliary relation (100%, 50%, and
0% in the base relation). The result shows a case of 50% is the slowest while cases of 0%
and 100% are almost the same performance.
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(e) set difference

(a) projection

(c) selection

(b) join

(d) union

JOIN COND
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JOIN TABLE x 1000

0 2 4 6 8 10

inj cond Ds source schema write on S1 0 278 589 898 1,092 1,258

B=X 0 0.3 0.6 0.9 1.1 1.3

read on S1 0 27 44 59 80 95

read on T 0 31 51 68 88 105 S2 has 10000 tuples

target schema write on T 0 2,633 4,926 7,880 10,215 12,471

0 2.6 4.9 7.9 10.2 12.5

read on T 0 29 51 68 87 110

read on S1 0 27 45 59 78 96

Dt source schema write on S1 0 955 1,710 1,981 2,585 2,904 S2 has 10000 tuples

0 1.0 1.7 2.0 2.6 2.9

read on S1 0 32 52 72 90 106

read on T 0 29 46 66 83 103

target schema write on T 0 6,547 11,319 19,611 34,542 60,122

0 6.5 11.3 19.6 34.5 60.1

read on T 0 28 47 69 84 103

read on S1 0 32 50 71 90 110

DM Ds to Dt s1 0 535 850 11,075 1,475 1,803

s2 0 746 1,292 1,866 2,460 2,891

t 0 11,075 42,370 72,453 150,755 235,021

total 0 12 45 85 155 240

Dt to Ds s1 0 312 588 785 1,127 1,400

s2 0 306 574 785 1,103 1,388

t 0 2,246 6,609 14,442 23,159 33,825

total 0 3 8 16 25 37

complex 0 0.5 1.0 1.5 2.0 2.5

B=X Ds target schema write 0 2,880 7916.9 17390 31210.66 48720.2

A=Y 0 2.9 7.9 17.4 31.2 48.7

read 0 12.84 20.022 27.636 35.66 41.789

10.91 19.026 27.404 31.587 38.358

11.74 20.076 27.148 30.95 41.511

0 11.829 19.708 27.396 32.73233 40.5527

Dt target schema write 0 4910.9 16303 36413 68732.89

0 4.9 16.3 36.4 68.7 0.0

read 9.705 16.403 22.902 27.405

11.196 17.786 21.667 28.597

9.345 16.028 21.086 28.088

0 10.082 16.739 21.885 28.03 #DIV/0!

条件が複雑になるとライトが遅くなる．

リードは大きく影響を受けない
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x 1000

0 2 4 6 8 10

MERGE TABLE Ds source schema write on S1 0 552 1,587 2,889 4,750 6,845

0 0.6 1.6 2.9 4.8 6.8

read on S1 0 30 47 62 80 101

read on T 0 30 51 69 86 106

target schema write on T 0 629 1,681 2,994 4,791 6,970

0 0.6 1.7 3.0 4.8 7.0

read on T 0 30 48 68 87 105

read on S1 0 27 46 65 80 100

Dt source schema write on S1 0 495 921 1,256 1,620 1,963

0 0.5 0.9 1.3 1.6 2.0

read on S1 0 30 48 69 90 107

read on T 0 28 46 67 82 103

target schema write on T 0 670 1,639 3,086 4,871 6,883

0 0.6704 1.6391 3.0859 4.8706 6.883

read on T 0 29 49 69 86 104

read on S1 0 32 51 69 85 105

DM Ds to Dt s1 0 485 856 1,269 1,565 2,036

s2 0 10 10 14 11 10

t 0 1,333 4,395 8,293 13,694 21,429

total 0 2 5 10 15 23

Dt to Ds s1 0 542 1,589 2,959 4,980 6,940

s2 0 10 11 9 11 10

t 0 612 3,835 7,695 12,706 20,562

total 0 1 5 11 18 28

union/ selection
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x 1000

0 2 4 6 8 10

DROP TABLE Ds source schema write on S1 0 346 708 1,087 1,437 1,798

0 0.3 0.7 1.1 1.4 1.8

projection read on S1 0 29 48 65 79 98

read on T 0 25 52 67 83 98

target schema write on T 0 679 1,836 3,492 5,756 8,394

0 0.7 1.8 3.5 5.8 8.4

read on T 0 28 48 63 83 101

read on S1 0 27 48 64 85 102

Dt source schema write on S1 0 704 1,404 2,048 2,738 3,318

0 0.7 1.4 2.0 2.7 3.3

read on S1 0 31 50 67 89 107

read on T 0 29 46 67 86 101

target schema write on T 0 736 2,087 4,185 6,687 9,531

0 0.7 2.1 4.2 6.7 9.5

read on T 0 29 49 65 84 104

read on S1 0 30 48 68 87 102

DM Ds to Dt s1 0 705 1,376 2,006 2,664 3,388

s2 0

t 0 1,595 4,587 9,307 15,523 22,660

total 0 2 6 11 18 26

Dt to Ds s1 0 364 706 1,043 1,386 1,720

s2 0

t 0 1,289 4,270 9,173 14,633 21,681

total 0 2 5 10 16 23

having 200 tuples in s2

complex 0 2 4 6 8 10 projected cols aux-c

B=X Ds target schema write 0 10

A=Y 0 1

0 9

0 0.0 0.0 0.0 0.0 0.0 0 1

0 0.0 0.0 0.0 0.0 0.0 1 2

0 0.0 0.0 0.0 0.0 0.0 9 10

Dt target schema write 0 1,035 2,173 3,681 5,921 7,913 0/10 (10 LOC) 1

0 1,185 2,402 5,737 7,919 9,141 1/10 (10 LOC) 2

1,201 2,474 4,281 6,314 8,436

0 1,193 2,438 5,009 7,116 8,788

0 1,001 2,299 3,404 6,161 8,305 5/10 (6 LOC) 6

1,069 2,554 3,159 5,299 7,153

0 1,035 2,427 3,281 5,730 7,729

0 721 1,513 2,353 3,264 4,332 9/10 (2 LOC) 10

741 1,648 2,614 3,618 3,889

0 731 1,581 2,483 3,441 4,110

0 1.2 2.4 5.0 7.1 8.8 1/10 (10 LOC)

0 1.0 2.3 3.4 6.2 8.3 5/10 (6 LOC)

0 1.1 2.6 3.2 5.3 7.2 9/10 (2 LOC)

read 0 32.292 54.233 75.146 96.927 115.16 0

32.351 53.971 72.787 97.765 110.86 11

32.303 54.183 74.069 97.682 117.36 55

33.669 54.172 74.692 95.027 114.19 100
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SPLIT TABLE x 1000

0 2 4 6 8 10

projection Ds source schema write on S1 0 530 1,474 2,885 4,732 6,814

0 0.5 1.5 2.9 4.7 6.8

read on S1 0 27 46 61 82 100

read on T 0 18 30 40 49 59

target schema write on T 0 555 1,512 2,877 4,560 6,944

0 0.6 1.5 2.9 4.6 6.9

read on T 0 29 34 61 83 102

read on S1 0 15.9 28.2 36.7 47.1 55.1

Dt source schema write on S1 0 421 724 1,052 1,407 1,721

0 0.4 0.7 1.1 1.4 1.7

read on S1 0 32 52 70 92 113

read on T 0 17 29 40 48 57

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 18 32 39 52 59

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

50% 50%

aux ratio 0 2 4 6 8 10 aux ratio

no redundancy Ds target schema write 0 495 1,272 2,307 3,593 5,399 0%

0 518 1,485 2,805 4,700 6,872 50%

0 479 1,262 2,269 3,605 5,059 100%

0 0.5 1.3 2.3 3.6 5.4 0%

0 0.5 1.5 2.8 4.7 6.9 50%

0 0.5 1.3 2.3 3.6 5.1 100%

Dt target schema write 0 513 1,278 2,431 4,013 5,717 0%

0 539 1,527 2,935 4,830 7,154 50%

0 476 1,275 2,365 3,726 5,328 100%

0 0.5 1.3 2.4 4.0 5.7 0%

0 0.5 1.5 2.9 4.8 7.2 50%

0 0.5 1.3 2.4 3.7 5.3 100%
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SET DIFF x 1000

0 2 4 6 8 10

Ds source schema write on S1 0 312.72 590 877 1,086 1,329

0 0.3 0.6 0.9 1.1 1.3

read on S1 0 28.217 47 64 80 98

read on T 0 34.01 54 72 93 104 S2 has 10000 tuples

target schema write on T 0 322 598 777 1,083 1,459

0 0.3 0.6 0.8 1.1 1.5

read on T 0 32 50 65 86 104

read on S1 0 29 49 62 82 95

Dt source schema write on S1 0 445 745 1,086 1,391 1,623 S2 has 10000 tuples
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total 0 1 3 6 10 15
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Figure 4.3: Performance of writing and reading with update sharing by schema
evolution realized on the source-side database.
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(e) set difference

(a) projection

(c) selection

(b) join

(d) union

DROP COL
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x 1000

0 2 4 6 8 10

DROP TABLE Ds source schema write on S1 0 346 708 1,087 1,437 1,798

0 0.3 0.7 1.1 1.4 1.8

projection read on S1 0 29 48 65 79 98

read on T 0 25 52 67 83 98

target schema write on T 0 679 1,836 3,492 5,756 8,394

0 0.7 1.8 3.5 5.8 8.4

read on T 0 28 48 63 83 101

read on S1 0 27 48 64 85 102

Dt source schema write on S1 0 704 1,404 2,048 2,738 3,318

0 0.7 1.4 2.0 2.7 3.3

read on S1 0 31 50 67 89 107

read on T 0 29 46 67 86 101

target schema write on T 0 736 2,087 4,185 6,687 9,531

0 0.7 2.1 4.2 6.7 9.5

read on T 0 29 49 65 84 104

read on S1 0 30 48 68 87 102

DM Ds to Dt s1 0 705 1,376 2,006 2,664 3,388

s2 0

t 0 1,595 4,587 9,307 15,523 22,660

total 0 2 6 11 18 26

Dt to Ds s1 0 364 706 1,043 1,386 1,720

s2 0

t 0 1,289 4,270 9,173 14,633 21,681

total 0 2 5 10 16 23
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JOIN TABLE x 1000

0 2 4 6 8 10

inj cond Ds source schema write on S1 0 278 589 898 1,092 1,258

B=X 0 0.3 0.6 0.9 1.1 1.3

read on S1 0 27 44 59 80 95

read on T 0 31 51 68 88 105 S2 has 10000 tuples

target schema write on T 0 2,633 4,926 7,880 10,215 12,471

0 2.6 4.9 7.9 10.2 12.5

read on T 0 29 51 68 87 110

read on S1 0 27 45 59 78 96

Dt source schema write on S1 0 955 1,710 1,981 2,585 2,904 S2 has 10000 tuples

0 1.0 1.7 2.0 2.6 2.9

read on S1 0 32 52 72 90 106

read on T 0 29 46 66 83 103

target schema write on T 0 6,547 11,319 19,611 34,542 60,122

0 6.5 11.3 19.6 34.5 60.1

read on T 0 28 47 69 84 103

read on S1 0 32 50 71 90 110

DM Ds to Dt s1 0 535 850 11,075 1,475 1,803

s2 0 746 1,292 1,866 2,460 2,891

t 0 11,075 42,370 72,453 150,755 235,021

total 0 12 45 85 155 240

Dt to Ds s1 0 312 588 785 1,127 1,400

s2 0 306 574 785 1,103 1,388

t 0 2,246 6,609 14,442 23,159 33,825

total 0 3 8 16 25 37

complex 0 0.5 1.0 1.5 2.0 2.5

B=X Ds target schema write 0 2,880 7916.9 17390 31210.66 48720.2

A=Y 0 2.9 7.9 17.4 31.2 48.7

read 0 12.84 20.022 27.636 35.66 41.789

10.91 19.026 27.404 31.587 38.358

11.74 20.076 27.148 30.95 41.511

0 11.829 19.708 27.396 32.73233 40.5527

Dt target schema write 0 4910.9 16303 36413 68732.89

0 4.9 16.3 36.4 68.7 0.0

read 9.705 16.403 22.902 27.405

11.196 17.786 21.667 28.597

9.345 16.028 21.086 28.088

0 10.082 16.739 21.885 28.03 #DIV/0!

条件が複雑になるとライトが遅くなる．

リードは大きく影響を受けない

0 2 4 6 8 10

0

5

10

15

20

0

50

100

150

200

250

300
write on T

read on T

read on S1

number of tuples (x 1000)

w
ri
te

 [
s

e
c

]

re
a
d

 [
m

s
e

c
]

0 2 4 6 8 10

0

2

4

6

8

10

0

50

100

150

200

250

300
write on S1

read on S1

read on T

number of tuples (x 1000)

w
ri

te
 [

s
e

c
]

re
a

d
 [

m
s
e

c
]

0 2 4 6 8 10

0

2

4

6

8

10

0

50

100

150

200

250

300
write on S1

read on S1

read on T

number of tuples (x 1000)

w
ri

te
 [

s
e

c
]

re
a
d

 [
m

s
e

c
]

0 2 4 6 8 10

0

20

40

60

80

100

0

50

100

150

200

250

300
write on T

read on T

read on S1

number of tuples (x 1000)

w
ri

te
 [

s
e

c
]

re
a

d
 [

m
s

e
c

]

0 2 4 6 8 10

0

50

100

150

200

250

300

Ds to Dt

Dt to Ds

number of tuples (x 1000)

ti
m

e
 [

s
e

c
]

0 0.5 1 1.5 2

0

20

40

60

80

0

10

20

30

40

50
write

read

number of tuples (x 1000)

w
ri

te
 [

s
e

c
]

re
a

d
 [

m
s

e
c

]

0 0.5 1 1.5 2

0

20

40

60

80

0

10

20

30

40

50
write

read

number of tuples (x 1000)

w
ri

te
 [

s
e

c
]

re
a

d
 [

m
s

e
c

]

SPLIT TABLE

ページ 10

SPLIT TABLE x 1000

0 2 4 6 8 10

projection Ds source schema write on S1 0 530 1,474 2,885 4,732 6,814

0 0.5 1.5 2.9 4.7 6.8

read on S1 0 27 46 61 82 100

read on T 0 18 30 40 49 59

target schema write on T 0 555 1,512 2,877 4,560 6,944

0 0.6 1.5 2.9 4.6 6.9

read on T 0 29 34 61 83 102

read on S1 0 15.9 28.2 36.7 47.1 55.1

Dt source schema write on S1 0 421 724 1,052 1,407 1,721

0 0.4 0.7 1.1 1.4 1.7

read on S1 0 32 52 70 92 113

read on T 0 17 29 40 48 57

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 18 32 39 52 59

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

50% 50%

aux ratio 0 2 4 6 8 10 aux ratio

no redundancy Ds target schema write 0 495 1,272 2,307 3,593 5,399 0%

0 518 1,485 2,805 4,700 6,872 50%

0 479 1,262 2,269 3,605 5,059 100%

0 0.5 1.3 2.3 3.6 5.4 0%

0 0.5 1.5 2.8 4.7 6.9 50%

0 0.5 1.3 2.3 3.6 5.1 100%

Dt target schema write 0 513 1,278 2,431 4,013 5,717 0%

0 539 1,527 2,935 4,830 7,154 50%

0 476 1,275 2,365 3,726 5,328 100%

0 0.5 1.3 2.4 4.0 5.7 0%

0 0.5 1.5 2.9 4.8 7.2 50%

0 0.5 1.3 2.4 3.7 5.3 100%
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SET DIFF x 1000

0 2 4 6 8 10

Ds source schema write on S1 0 312.72 590 877 1,086 1,329

0 0.3 0.6 0.9 1.1 1.3

read on S1 0 28.217 47 64 80 98

read on T 0 34.01 54 72 93 104 S2 has 10000 tuples

target schema write on T 0 322 598 777 1,083 1,459

0 0.3 0.6 0.8 1.1 1.5

read on T 0 32 50 65 86 104

read on S1 0 29 49 62 82 95

Dt source schema write on S1 0 445 745 1,086 1,391 1,623 S2 has 10000 tuples

0 0.4 0.7 1.1 1.4 1.6

read on S1 0 31 52 71 89 109

read on T 0 30 50 66 88 106

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 31 52 70 92 113

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

complex
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A=Y
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SPLIT TABLE x 1000

0 2 4 6 8 10

projection Ds source schema write on S1 0 530 1,474 2,885 4,732 6,814

0 0.5 1.5 2.9 4.7 6.8

read on S1 0 27 46 61 82 100

read on T 0 18 30 40 49 59

target schema write on T 0 555 1,512 2,877 4,560 6,944

0 0.6 1.5 2.9 4.6 6.9

read on T 0 29 34 61 83 102

read on S1 0 15.9 28.2 36.7 47.1 55.1

Dt source schema write on S1 0 421 724 1,052 1,407 1,721

0 0.4 0.7 1.1 1.4 1.7

read on S1 0 32 52 70 92 113

read on T 0 17 29 40 48 57

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 18 32 39 52 59

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

50% 50%

aux ratio 0 2 4 6 8 10 aux ratio

no redundancy Ds target schema write 0 495 1,272 2,307 3,593 5,399 0%

0 518 1,485 2,805 4,700 6,872 50%

0 479 1,262 2,269 3,605 5,059 100%

0 0.5 1.3 2.3 3.6 5.4 0%

0 0.5 1.5 2.8 4.7 6.9 50%

0 0.5 1.3 2.3 3.6 5.1 100%

Dt target schema write 0 513 1,278 2,431 4,013 5,717 0%

0 539 1,527 2,935 4,830 7,154 50%

0 476 1,275 2,365 3,726 5,328 100%
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(f) auxiliary relation for lost tuples
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x 1000

0 2 4 6 8 10

MERGE TABLE Ds source schema write on S1 0 552 1,587 2,889 4,750 6,845

0 0.6 1.6 2.9 4.8 6.8

read on S1 0 30 47 62 80 101

read on T 0 30 51 69 86 106

target schema write on T 0 629 1,681 2,994 4,791 6,970

0 0.6 1.7 3.0 4.8 7.0

read on T 0 30 48 68 87 105

read on S1 0 27 46 65 80 100

Dt source schema write on S1 0 495 921 1,256 1,620 1,963

0 0.5 0.9 1.3 1.6 2.0

read on S1 0 30 48 69 90 107

read on T 0 28 46 67 82 103

target schema write on T 0 670 1,639 3,086 4,871 6,883

0 0.6704 1.6391 3.0859 4.8706 6.883

read on T 0 29 49 69 86 104

read on S1 0 32 51 69 85 105

DM Ds to Dt s1 0 485 856 1,269 1,565 2,036

s2 0 10 10 14 11 10

t 0 1,333 4,395 8,293 13,694 21,429

total 0 2 5 10 15 23

Dt to Ds s1 0 542 1,589 2,959 4,980 6,940

s2 0 10 11 9 11 10

t 0 612 3,835 7,695 12,706 20,562

total 0 1 5 11 18 28

union/ selection
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Figure 4.4: Performance of writing and reading with update sharing by backward
update sharing realized on the source-side database
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4.3.3 Discussion

Table 4.1 shows that the benchmark co-existence strategies mentioned above are
describable by the proposed DSL, and BXs to realize them are automatically derived. All
strategies are described by less than 20 LOC. The proposed method makes co-existence
strategies programmable with a reasonable amount of description. The table also shows
that the existing work prede�nes auxiliary relation names for SMO’s strategies on a
one-by-one basis. On the other hand, our proposed method realizes any co-existence
strategies based on two auxiliary relation names systematically derived by Algorithm
4.1 from a given co-existence strategy.

Figure 4.3 and Figure 4.4 show that the sampled co-existence strategies of Table 4.1
are realized by sharing updates between view instances of schemas based on the
derived BXs. The performance of reading is almost the same regardless of strategies.
However, the performance of writing is much slower than reading. It shows non-linear
increases of execution time in some co-existence strategies against the increase of
executed tuples. Figure 4.4 (f) shows that the performance of writing is the worst when
the view instance is evenly transformed to the base relation and the auxiliary relation.
These results suggest that improving performance for the writing on view instances
makes the proposed method more practical.

4.4 Related Work

This section shows related work about realization of a co-existence strategy.

Practical Operation of Schema Evolution

Due to di�culty to realize both schema evolution and backward update sharing of
co-existence strategies, schema evolution has been tread mainly in practical operation.
For practitioners, Ambler et al. [2] summarize the refactoring databases as design
patterns of more than 100 cases to de�ne a new schema based on an original schema
by SQL program, for example, dropping a column and merging tables. Since it is
challenging to correctly manage thousands of SQL program �les for all changes
of schema evolution, tools, Flyway [28], Liquibase [49], MyBatis migration [53],
DBDeploy [23], and DB maestro [23], support managing a bunch of SQL program �les
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for each change and correctly executing them.
These strong tools make our work practical because our implemented prototype

generates BXs to realize a co-existence strategy as SQL program �les.

NoSQL databases

NoSQL database is another angle of schema evolution [21, 64]. When an application
is not sensitive for consistency or availability of data, NoSQL database provides a
more �exible schema or schemaless model to reduce the cost of modifying schemas.
However, we focus on relational database because NoSQL relaxes ACID properties and
is not a full replacement for relational database.

Data Integration

While each database is independently developed for each purpose, the same data
would exist in some databases with di�erent formats or attribute names and additional
information. Data integration aims to provide the uni�ed view sharing data among
databases.

Designing a shared global schema with mapping to each database is one data
integration technique. Such a top-down approach works well if the problem domain is
well understood. As a bottom-up approach, Ng et al. [56] propose PeerDB, Halevy
and Tatarinov [31, 68] propose Pizza as a peer-to-peer-based data sharing system.
Halevy [32] also propose PDMS with decentralized and extensible mediators for
data sharing. Ives et al. [40] propose ORCHESTRA as a successor project of Piazza.
ORCHESTRA is a collaborative data sharing systems (CDSS) in which a database
shares data in the �rst step, copies updated data by other databases, and decides
whether accept updates by others or not. Karvounarakis et al. [41] enhance CDSS
to utilize provenance semirings [32] to decide whether accept an update or not by
knowing which database originally updates data.

Even though there is a gap between the data integration based on multiple databases
and the view-based co-existence of schema on one database, data integration gives
ideas about how to control data sharing by specifying which database originally
updates data. In this thesis, we control update sharing by auxiliary relations to specify
which view instance of a schema originally updates tuples.
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Multitenancy Databases

Multitenancy database for cloud and SaaS is another angle of co-existence of schemas.
In cloud and SaaS, data of multiple customers (tenants) for cloud applications is
stored in a database. Basically application and data structure are common for all
customers. However, slight variations of each customer exist. Aulbach [6, 7] proposes
a set of generic schema designs ranging from base tables and a methodology to
customize them for each tenant while allowing data sharing between tenants. Shengqi
et al. [61] propose multi-version metadata of Basic-Table combined with Extension-
Table for e�cient schema evolution. As enterprise applications, Weissman and
Bobrowski [76] report metadata-driven architecture for multitenancy database of CRM
(client relationship management) system, and Chen et al. [17] report multitenancy
databases of a mobile company.

Objectives of multitenacy database is close to one of co-existence of schemas.
However, multitenacy databases have worked for simple schema evolution such as
addling and deleting columns and do not support relational database. In this thesis, we
propose programmable strategies for co-existence relational database schemas.

Virtual Database

View-based virtual databases have been proposed for high �exibility of schema
modi�cation [70, 63, 5]. While these works focus on providing �exibility to design a
consolidated view for a particular purpose from a source database, co-existence schema
requires handling arbitrary updates and sharing data by following a certain strategy. In
this thesis, we propose a view-based co-existence schema to handle the above features.

View Update Problem

In order to realize a co-existence of schemas by the view-based approach, deriving
transformations between a database and a view instance is required. It is known as
view update problem in the database community.

In general, ambiguity exists that a translator from an update of view instance
to an update of a database is not uniquely decided from a given view because a
view may discard information of a database. Bancilhon and Spyratos [8] introduce a
constant complement to keep lost information by view for translation of an update of
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view instance, Dayal and Bernstein [22] clari�es conditions to correctly translate an
update of view instance, Lechtenbörger [47, 46] studies how to compute a complement
e�ciently. Keller [43] proposes a dialog-based method to specify a relevant update
translator. Masunaga [50] proposes a semantic-based methodology to decide which
update translator is relevant.

Our proposed method to design a co-existence strategy and derive bidirectional
transformations is similar to Keller’s dialog-based method. While Keller’s dialog
describes how to translate any updates of view instance to the database, our co-existence
strategy directly describes how to share data between schemas. Since a co-existence
strategy designs a case that update is shared and not shared, some updates on a schema
might be discarded in data sharing. Unlike a complement to keep lost information in
the computation of a view instance, we propose to utilize auxiliary relations to keep
lost information in data sharing.

Designing of Bidirectional Transformation

In the programming language community, view update problem has been widely
discussed as bidirectional transformations [69, 16]. The pioneering work of Foster et
al. [29] propose the �rst bidirectional programming languages, lenses, for de�ning views
of tree-structured data. The lenses enable to construct a bidirectional transformation by
concatenating primitive operators. Each primitive operator is well-behaved bidirectional
transformation consisting of 64C and ?DC . Several lenses are proposed for each purpose.
Bohannon et al. [12] propose lenses for view update of a relational database, called
relational lenses. It de�nes primitive operators consisting of 64C as view by enriching
the SQL expression for de�ning a view instance of projection, selection, and join from
base relations of a database and ?DC to transform updates of a view instance to the base
relations. Due to the ambiguity de�ning update translator from a given view, the
e�ectiveness of lenses comes from limiting a user’s knowledge and control of an
update translator by ?DC in advance.

However, the expressive power of lenses is limited because ?DC is prede�ned.
Matsuda et al. [51] propose a bidirectionalization technique to derive ?DC from a given
64C by deriving a complement automatically. To fully re�ect a user’s intention for
designing ?DC , a putback-based bidirectionalization technique is proposed to derive 64C
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from a given ?DC so that they consist of well-behaved bidirectional transformation.
[29, 51, 57, 25, 37, 26, 44]. Tran et al. [71] apply the putback-based bidirectionalization
technique to view update problem of relational database and propose BIRDS. It provides
a language to formally describe an update transformation from a view instance to a
database as ?DC and automatically derives a view as 64C .

While the putback-based bidirectionalization technique provides full expressiveness
of ?DC , it is challenging for a user to describe ?DC . In order to compute the updated
target data from the updated source data, bidirectional transformation assumes any
updates of the target data must be transformed to source data. Therefore, a user
needs to describe all cases of update transformation from the target data to the source
data. On the other hand, our proposed DSL makes user’s work easier by limiting
a description of a co-existence strategy only for cases to share data, by giving the
consistency of updates as a relaxed version of PUTGET, and by automatically deriving
well-behaved bidirectional transformations to realize a co-existence strategy.
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This chapter presents how to realize co-existence strategies on the target-side
database. In Chapter 4, co-existence strategies are realized on the source-side database
having base relations corresponding to relations of source schema and auxiliary
relations. In this chapter, co-existence strategies are realized on the target-side database
having a base relation corresponding to a relation of target schema and other auxiliary
relations. We explain deriving BXs between the target-side database and view instances
of schemas as a realization of co-existence strategies on the target-side database in the
overall procedure shown in Figure 1.2 of Chapter 1. We start with an overview and
then explain how to derive BXs and mapping for data migration from a source-side
database to a target-side database. We show their evaluation with experimental results.
Related work is explained at the end of this chapter.

5.1 Overview

Before we discuss the details of deriving bidirectional transformations, we present an
overview of what bidirectional transformations realize co-existence strategies on a
target-side database, how to derive them, how to derive mapping for data migration,
and relation with the later sections.

BX to Realize Co-Existence Strategies

We realize co-existence strategies by two types of bidirectional transformations
following the view-based approach (Figure 5.1). By giving a co-existence strategy
specifying a relationship between relations (8 (8 ∈ [1, =]) of source schema and a
relation ) of target schema, we turn (8 for all 8 and ) into view instances. DC is a
target-side database. It is union of a base relation corresponding to a relation of target
schema and auxiliary relations for supplemental information. These auxiliary relations
have di�erent data structures from auxiliary relations of the source-side database.
Details are explained later. In this chapter, we shorten a target-side database as a
database unless speci�ed otherwise.
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Figure 5.1: Realization of a co-existence strategy by bidirectional transformations on
the target-side database.

For each 8 (8 ∈ [1, =]), �-C .BA2.8 is bidirectional transformations between view
instance (8 of source schema and database DC . Its 64C (denoted as 64CC .BA2.8) and ?DC
(denoted as ?DCC .BA2.8 ) are as followings:

64CC .BA2.8 (DC ) = (8 (5.1)

?DCC .BA2.8 (DC , (8 ′) = DC ′ (5.2)

where (8 ′ is an updated view instance and DC ′ is an updated database. We derive this
bidirectional transformation so that it realizes schema evolution of a co-existence
strategy between view instances of source schema and a base relation of database.

�-C .CA6 is a bidirectional transformation between view instance ) of target schema
and database DC . Its 64C (denoted as 64CC .CA6) and ?DC (denoted as ?DCC .CA6) are as
followings:

64CC .CA6 (DC ) = ) (5.3)

?DCC .CA6 (DC ,) ′) = DC ′ (5.4)

where ) ′ is an updated view instance. We derive this bidirectional transformation so
that it realizes backward update sharing of a co-existence strategy between view
instances of target schema and a base relation and auxiliary relations of the database.
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Deriving target-side database schema

Deriving BXs between a target-
side database and view

instances of source schema

Deriving BX between a target-
side database and a view
instance of target schema

BXs between a target-side
database and view instances of

target schema

BX between a target-side
database and a view instance

of target schema

Co-existence strategy satisfying the
consistency of updates

target-side database schema

Figure 5.2: Procedure of deriving BXs between a target-side database and view instances
of schemas.

These bidirectional transformations make updates against a view instance of
sources schema shared with a view instance of target schema and vice versa through
updates of database. In the forward direction, ?DCC .BA2.8 transforms an updated view
instance (8 ′ of source schema into an updated database DC ′. And then 64CC .CA6 transforms
the updated DC ′ into an updated view instance ) ′ of target schema. In the backward
direction, ?DCC .CA6 then 64CC .BA2.8 transforms an updated ) ′ into an updated (8 ′ through
an updated database DC ′.

Procedure to Derive BXs

Figure 5.2 shows a procedure of deriving bidirectional transformations between a
target-side database and view instances of schemas. This is the following procedure
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after a given co-existence strategy is veri�ed whether the consistency of updates is
satis�ed in Figure 1.2.

The �rst step is deriving a target-side database schema. Given a co-existence
strategy that speci�es source schema and target schema, a target-side database schema
is de�ned so that the database is union of a base relation corresponding to a relation
of target schema and auxiliary relations required for a realization of a co-existence
strategy by bidirectional transformations mentioned above.

Then the next step is deriving bidirectional transformations based on the following
policy:

1. Schema evolution is replaced with ?DC of �-C .BA2.8 so that it transforms a view
instance of source schema to a base relation corresponding to a view instance
of target schema. Since schema evolution may project away attributes of a
view instance of source schema, such values of projected away attributes are
transformed to a complement, an auxiliary relation for lost attributes.

2. When a view instance of source schema is updated, the updated view instance
must be recomputed from the updated database without loss or gain. If lost or
gained tuples occurs in the recomputed view instance from the updated base
relation and auxiliary relation by the �rst policy, ?DC of �-C .BA2.8 transforms such
lost and gained tuples to other auxiliary relations for each.

3. Backward update sharing is replaced with ?DC of �-C .CA6 so that it transforms a
view instance of target schema to a base relation and auxiliary relation for lost
attributes. Inserted and deleted tuples against a view instance of target schema
are transformed to a base relation if backward update sharing transforms them
to inserted and deleted tuples against relations of source schema. Values of the
projected away attributes in inserted and deleted tuples against relations of
source schema are transformed to an auxiliary relation for lost attributes.

4. When a view instance of target schema is updated, the updated view instance
must be recomputed from an updated database without loss or gain. If lost or
gained tuples occurs in a recomputed view instance of target schema from the
updated base relation and auxiliary relation by the third policy, ?DC of �-C .CA6
transforms such lost and gained tuples to other auxiliary relations for each.
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Five types of auxiliary relations are utilized: auxiliary relation for lost attributes,
auxiliary relation for lost tuples against a view instance of source schema, auxiliary
relation for gained tuples against a view instance of source schema, auxiliary relation
for lost tuples against a view instance of target schema, and auxiliary relation for
gained tuples against a view instance of target schema.

In the following section, we explain details of the procedure deriving bidirectional
transformations. Subsection 5.2.1 shows an outline of deriving bidirectional transfor-
mations through examples. Subsection 5.2.2 explains deriving a target-side database
schema. Subsection 5.2.3 explains deriving bidirectional transformations between a
target-side database and a view instance of source schema. Subsection 5.2.4 explains
deriving bidirectional transformations between a target-side database and a view
instance of source schema.

Data Migration

After a co-existence strategy is realized on a source-side database and update sharing
between view instances of source schema and target schema are operated based on
that, a realization of the strategy on the target-side database might be required due to
an increase of access to data of target schema or decrease of access to data of source
schema. In that case, data migration from the source-side database to the target-side
database is required. Or data migration from the target-side database to the source-side
database might be required if access to data of source schema increases again. We
migrate data by the following policy:

• The source-side database is migrated to the target-side database by the following
two steps: transforming the source-side database to view instances of source
schema and target schema by 64C of �-BA2 and �-CA6 derived from a given co-
existence strategy by the method shown in Chapter 4, then transforming these
view instances to the target-side database by ?DC of �-C .BA2 and �-C .CA6 derived
from the co-existence strategy by the method introduced in this chapter.

• The target-side database is migrated to the source-side database by the following
two steps: transforming the target-side database to view instances of source
schema and target schema by 64C of �-C .BA2 and �-C .CA6 derived from the co-
existence strategy by the method introduced in this chapter, then transforming
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these view instances to the source-side database by ?DC of �-BA2 and �-CA6
derived from the co-existence strategy by the method shown in Chapter 4.

We explain the details of data migration in Section 5.3.

5.2 Deriving BX to Realize Co-Existence Strategies

This section explains how to derive bidirectional transformations between a target-side
database and view instances from a given co-existence strategy. We �rst give its outline
and then explain the derivation algorithms and the correctness of them.

5.2.1 Outline

We show an outline of how to derive bidirectional transformations based on the policy
in the overview through the example. Suppose the co-existence strategy that consists
of schema evolution ruled by (4.5) and backward update sharing ruled by (4.15) – (4.16)
in Section 4.2. Let attribute - be primary key for a relation (1(-,., /,, ) of source
schema and a relation ) (-,., / ) of target schema.

De�nition of Target-Side Database

By turning (1(-,., /,, ) and ) (-,., / ) to view instances, we de�ne data structure of
target-side database. We de�ne target-side database schema based on the policy of
deriving bidirectional transformations,

Following the �rst policy, let a base relation of the database be �) (-,., / ) that has
the same attributes with a view instance ) (-,., / ) of target schema. Let an auxiliary
relation be �2

(1
(-,, ) as a complement having values of projected away attributes by

schema evolution. Its attributes consist of key - 1 to map tuples in (1 and ) and an
projected away attribute, by rule (4.5) of schema evolution.

Following the second policy, let �;>BC
(1
(-,., /,, ) and �608=

(1
(-,., /,, ) be auxiliary

relations for lost tuples and gained tuples against a view instance (1 respectively. They
1Since attribute - is a primary key for both (1 (-,., /,, ) and ) (-,., / ) and common for both, it is

key to map tuples between them. If primary keys are not speci�ed, a key to map tuples between the
relations is common attributes of them. In this example, if - is not speci�ed as a primary key of (1 and
) , a key is common attributes - , . , and / .
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have the same attributes with a view instance (1(-,., /,, ).
Following the fourth policy, let �;>BC

)
(-,., / ) and �608=

)
(-,., / ) be auxiliary rela-

tions for lost and gained tuples against a view instance ) respectively. They have the
same attributes with a view instance ) (-,., / ).

Derivation of ?DC of �-C .BA2.8

We start to derive ?DCC .BA2.1 of �-C .BA2.1 from the co-existence strategy. Recall ?DCC .BA2.1
transforms to an updated database from a pair of database and an updated view
instance (1′ of source schema.

First, we replace rule (4.5) of schema evolution to transformations of ?DCC .BA2.1 by
following the �rst policy. We derive transformations to the updated base relation �) ′

of the database from a pair of the database and the updated (1′.

C_4E> (-,., / ) :− B1(-,., /,, ). (5.5)

C_4E>′(-,., / ) :− B1′(-,., /,, ). (5.6)

+1_C (-,., / ) :− C_4E>′(-,., / ),¬C_4E> (-,., / ),¬1_C (-,., / ). (5.7)

−1_C (-,., / ) :− ¬C_4E>′(-,., / ), C_4E> (-,., / ), 1_C (-,., / ). (5.8)

1_C ′(-,., / ) :− 1_C (-,., / ),¬ − 1_C (-,., / ). (5.9)

1_C ′(-,., / ) :− +1_C (-,., / ). (5.10)

where predicates B1′(-,., /,, ), C_4E> (-,., / ), C_4E>′(-,., / ), 1_C (-,., / ), and
1_C ′(-,., / ) correspond to the updated view instance (1′ of source schema, the result
of schema evolution ) 4E> , the result of schema evolution from the updated view
instances of source schema ) 4E> ′, the base relation �) , and the updated base relation
�)
′ respectively. Rule (5.5) is equivalent to rule (4.5) of schema evolution and expresses

a transformation to a set of tuples ) 4E> from the view instance (1 by schema evolution.
The view instance (1 is computed from database by 64CC .BA2.1 introduced later. Rule (5.6)
expresses a transformation to a set of tuples ) 4E> ′ from the updated view instance (1′

by schema evolution.
Rules (5.7) and (5.8) are a core of a transformation to the updated base relation

�)
′. Rule (5.7) ((5.8)) expresses a transformation to a set of inserted tuples to (deleted

tuples from) the base relation �) . If tuples exist (do not exist) in ) 4E> ′ but do not exist
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(exist) in ) 4E> and the base relation �) , such tuples are added to (deleted from) the base
relation �) . Rule (5.9) and (5.10) are application of delta relation to transform to the
updated base relation �) ′.

Second, we handle values of a projected away attribute, by schema evolution.
Such values are transformed to the auxiliary relation �2

(1
for the projected away

attribute by following the second policy. As transformations of ?DCC .BA2.1, we de�ne
transformations to the updated auxiliary relation �2

(1
′ of database from a pair of the

database and the updated view instance (1′ as follows:

+B1(-,., /,, ) :− B1′(-,., /,, ),¬B1(-,., /,, ). (5.11)

−B1(-,., /,, ) :− ¬B1′(-,., /,, ), B1(-,., /,, ). (5.12)

+0_2_B1(-,, ) :− +B1(-,., /,, ), +1_C (-,., / ),¬0_2_B1(-,, ). (5.13)

−0_2_B1(-,, ) :− −B1(-,., /,, ),−1_C (-,., / ), 0_2_B1(-,, ) . (5.14)

0_2_B1′(-,, ) :− 0_2_B1(-,, ),¬ − 0_2_B1(-,, ). (5.15)

0_2_B1′(-,, ) :− +0_2_B1(-,, ). (5.16)

where predicates 0_2_B1(-,, ), and 0_2_B1′(-,, ) correspond to the auxiliary relation
�2
(1

and the updated auxiliary relation �2
(1
′ respectively. Rule (5.11) ((5.12)) expresses a

transformation to inserted (deleted) tuples against the view instance (1. If tuples exist
(do not exist) in the updated view instance (1′ but do not exist (exist) in the original
view instance (1, such tuples are inserted (deleted) tuples against (1.

Rules (5.13) and (5.14) are core of a transformation to the updated auxiliary relation
�2
(1
′. Rules express a transformation to a set of inserted and deleted tuples against �2

(1
.

These rules are equivalent to the following expressions by relational algebra.

Δ+�2
(1
(-,, ) = c{-,, } (Δ+(1 (-,., /,, ) ⊲⊳ Δ

+
�)
(-,., / )) ∩ ¬�2(1 (-,, )

Δ−�2
(1
(-,, ) = c{-,, } (Δ−(1 (-,., /,, ) ⊲⊳ Δ

−
�)
(-,., / )) ∩�2(1 (-,, )

where predicates +B1(-,., /,, ), −B1(-,., /,, ), +0_2_B1(-,, ), −0_2_B1(-,, ),
+B1(-,., /,, ), +1_C (-,., / ), and −1_C (-,., / ) in Datalog rules correspond to sets
of inserted and deleted tuples of Δ+

(1
, Δ−

(1
, Δ+

�2
(1

, Δ−
�2
(1

, Δ+
�)

, and Δ−
�)

respectively. Join
Δ+
(1
⊲⊳ Δ+

�)
results in inserted tuples to the view instance (1 with values of a projected
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away attribute by schema evolution. Then if its projection to values of a key - and the
projected away attribute, does not exist in the auxiliary relation �2

(1
, such tuples

are inserted into it. Similarly, join Δ−
(1
⊲⊳ Δ−

�)
results in deleted tuples from the view

instance (1 with values of the projected away attribute by schema evolution. Then
if its projection to values of the key - and the projected away attribute, exist in
the auxiliary relation �2

(1
, such tuples are deleted from it. Rule (5.15) and (5.16) are

application of delta relation to transform to the updated auxiliary relation �2
(1
′.

Third, we derive transformations of ?DCC .BA2.1 to update auxiliary relations �;>BC
(1

and �
608=

(1
by following the third policy. Since this outline is almost same with

transformations to auxiliary relations �608=
)

and �;>BB
)

explained in Section 4.2, we skip
its explanation here and show details in the algorithm introduced in Section 5.2.3 later.

Derivation of 64C of �-C .BA2.8

We de�ne transformations of 64CC .BA2.1 of �-C .BA2.1 by following the third policy as
follows:

B1_4E> (-,., /,, ) :− 1_C (-,., / ), 0_2_B1(-,, ). (5.17)

B1(-,., /,, ) :− B1_4E> (-,., /,, ),¬0_608=_B1(-,., /,, ). (5.18)

B1(-,., /,, ) :− 0_;>BC_B1(-,., /,, ) . (5.19)

where predicate B1_4E> (-,., /,, ) in Datalog rule corresponds to a relation (4E>1 . Rule
(5.17) is equivalent to the following expression by relational algeba.

(4E>1 (-,., /,, ) = c{-,.,/,, } (�) (-,., / ) ⊲⊳ �2(1 (-,, ))

This expression is a transformation to the relation (4E>1 by projection to attributes of
the view instance (1 from join of the base relation �) and the auxiliary relation for lost
attributes �2

(1
. Join of �) and �2

(1
results in tuples which have values of projected away

attributes by schema evolution.
If (4E>1 does not cause any lost or gained tuples against the view instance (1, (4E>1 is

enough to compute (1. Recall auxiliary relations �;>BC
(1

and �608=
(1

are for such lost and
gained tuples against updates of view instance (1. To compute the view instance of
source schema (1 without loss or gain, rules (5.18) and (5.19) express transformations
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to a view instance (1 by deleting gained tuples in auxiliary relation �608=
(1

and adding
lost tuples in auxiliary relation �;>BC

(1
against a relation (4E>1 .

Derivation of ?DC of �-C .CA6

We derive ?DCC .CA6 of �-C .BA2.1 from the co-existence strategy so that ?DCC .CA6 transforms
to the updated database from a pair of the database and the updated view instance ) ′

of target schema.

First, following the fourth policy, we de�ne transformations of ?DCC .CA6 to the
updated base relation �) ′ of the database from a pair of the database and the updated
) ′ as follows:

+C (-,., / ) :− C ′(-,., / ),¬C (-,., / ). (5.20)

−C (-,., / ) :− ¬C ′(-,., / ), C (-,., / ). (5.21)

+B1(-,., /,, ) :− +C (-,., / ),¬B1(-,., /, _), . < 100,, = ‘ ’. (5.22)

−B1(-,., /,, ) :− −C (-,., / ), B1(-,., /,, ), . < 100. (5.23)

+1_C (-,., / ) :− +B1(-,., /,, ), +C (-,., / ),¬1_C (-,., / ). (5.24)

−1_C (-,., / ) :− −B1(-,., /,, ),−C (-,., / ), 1_C (-,., / ). (5.25)

1_C ′(-,., / ) :− 1_C (-,., / ),¬ − 1_C (-,., / ). (5.26)

1_C ′(-,., / ) :− +1_C (-,., / ). (5.27)

where predicates C ′(-,., / ), 1_C (-,., / ), and 1_C ′(-,., / ) correspond to the updated
view instance) ′ of target schema, the base relation �) , and the updated base relation �) ′

respectively. Predicates +B1(-,., /,, ), −B1(-,., /,, ), +C (-,., / ), and −C (-,., / )
correspond to sets of inserted and deleted tuples of Δ+

(1
, Δ−

(1
, Δ+

)
, and Δ−

)
respectively.

Rule (5.20) ((5.21)) expresses a transformation to inserted (deleted) tuples against a
view instance ) . If tuples exist (do not exist) in an updated view instance ) ′ but do not
exist (exist) in the original view instance ) , such tuples are inserted (deleted) tuples
against ) . Rules (5.22) and (5.23) are transformations of backward update sharing.
They are a core of a transformation to an updated base relation �) ′. Rules express
transformations to sets of inserted and deleted tuples against �) . These rules are
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equivalent to the following expressions by relational algebra.

Δ+�) (-,., / ) = c{-,.,/ } (Δ
+
(1
(-,., /,, ) ⊲⊳ Δ+) (-,., / )) ∩ ¬�) (-,., / )

Δ−�) (-,., / ) = c{-,.,/ } (Δ
−
(1
(-,., /,, ) ⊲⊳ Δ−) (-,., / )) ∩ �) (-,., / )

Join Δ+
(1
⊲⊳ Δ+

)
results in tuples inserted into the view instance ) and the view instance

(1 by backward update transformation. Then its projection to attributes of the base
relation �) is a set of inserted tuples to �) if a result of projection does not exist in �) .
Similarly, join Δ−

(1
⊲⊳ Δ−

)
results in tuples deleted from the view instance) and the view

instance (1 by backward update transformation. Then its projection to attributes of the
base relation �) is a set of deleted tuples from �) , if a result of projection exist in �) .
Rule (5.24) and (5.25) are application of delta relation to transform to an updated base
relation �) ′.

Second, we de�ne transformations to the updated auxiliary relation for lost
attributes�2

(1
′ of the database from a pair of the database and the updated view instance

) ′. Following the fourth policy, we de�ne such transformations as follows:

+0_2_B1(-,, ) :− +B1(-,., /,, ),¬0_2_B1(-,, ). (5.28)

−B1′(-,., /,, ) :− −B1(-,., /,, ),¬ + B1(-, _, _, _). (5.29)

−0_2_B1(-,, ) :− −B′1(-,., /,, ), 0_2_B1(-,, ) . (5.30)

0_2_B1′(-,, ) :− 0_2_B1(-,, ),¬ − 0_2_B1(-,, ). (5.31)

0_2_B1′(-,, ) :− +0_2_B1(-,, ). (5.32)

where predicates 0_2_B1(-,, ), 0_2_B1′(-,, ), and −B1′(-,., /,, ) correspond to
the auxiliary relation �2

(1
, the updated auxiliary relation �2

(1
′, and the relation Δ−

(1
′

respectively. Predicates +0_2_B1(-,, ) and +B1(-,., /,, ) correspond to relations
Δ+
�2
(1
(-,, ) and Δ+

(1
(-,., /,, ) respectively.

Rule (5.28) expresses a transformation to a set of inserted tuples to the auxiliary
relation �2

(1
. This rule is equivalent to the following expression by relational algebra.

Δ+�2
(1
(-,, ) = c{-,, } (Δ+(1 (-,., /,, )) ∩ ¬�

2
(1
(-,, )

Note that Δ+
(1
(-,., /,, ) as a set of deleted tuples from (1(-,., /,, ) is computed by
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rule (5.22) of backward update sharing. If tuples resulted in projection of Δ+
(1
(-,., /,, )

to a set of tuples with attribute- and, do not exist in the auxiliary relation�2
(1
(-,, ),

such tuples are added to �2
(1
(-,, ).

Rule (5.29) is to exclude deleted tuples from (1 in replacement of tuples of (1. When
tuples of ) are replaced, backward update sharing may result in sets of inserted and
deleted tuples against (1 with the same values of the key. For example, suppose a tuple
〈G1, ~1, I1,F1〉 of (1, a tuple 〈G1,F1〉 of �2

(1
, an inserted tuple 〈G1, ~2, I2,F1〉 of Δ+

(1
,

and a deleted tuple 〈G1, ~1, I1,F1〉 of Δ−
(1

to replace the tuple 〈G1, ~1, I1,F1〉 of (1 to
〈G1, ~2, I2,F1〉. All tuples have the same value G1 of attribute - as the key. In this case,
we do not need to delete the tuple 〈G1,F1〉 of �2

(1
by 〈G1, ~1, I1,F1〉 of Δ−

(1
because a

value of attribute, is not updated. The rule expresses a transformation to Δ−
(1
′ by

excluding such tuples from Δ−
(1

.
Rule (5.30) expresses a transformation to a set of deleted tuples from the auxiliary

relation �2
(1

. This rule is equivalent to the following expression by relational algebra.

Δ−�2
(1
(-,, ) = c{-,, } (Δ−(1

′(-,., /,, )) ∩�2(1 (-,, )

If tuples as a result of projection Δ−
(1
′(-,., /,, ) to attributes - and, exist in the

auxiliary relation �2
(1
(-,, ), such tuples are deleted from it. Rules (5.31) and (5.32) are

application of delta relation to transform the updated auxiliary relation �2
(1
′.

Third, we derive transformations ?DCC .CA6 to update auxiliary relations�;>BC
)

and�608=
)

by following the �fth policy. Since this outline is almost same with transformations to
auxiliary relations �608=

)
and �;>BB

)
explained in Section 4.2, we skip its explanation here

and show details in the algorithm introduced in Section 5.2.4 later.

Derivation of 64C of �-C .CA6

We de�ne 64CC .CA6 of �-C .CA6 by following the �fth policy as follows:

C (-,., / ) :− 1_C (-,., / ),¬0_608=_C (-,., / ). (5.33)

C (-,., / ) :− 0_;>BC_C (-,., / ). (5.34)

If tuples of a base relation �) do not cause any lost or gained tuples against view
instance ) , �) is enough to compute it. Recall auxiliary relations �;>BC

)
and �608=

)
are
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Algorithm 5.1 Deriving Target-Side Database Schema
Input: a co-existence strategy %
Output: a set of relation names of target-side database schema C0A_31

C, ®. ← a relation name and attributes of target schema de�ned in %
10B4 ← { ("1_" & C , ®. ) } // base relation name
0_;>BC_C ← { ("0_;>BC_" & C , ®. ) } // auxiliary relation name for lost tuple
0_608=_C ← { ("0_608=_" & C , ®. ) } // auxiliary relation name for gained tuple
= ← a number of relation names of source schema de�ned in %
BA2_0DG ← ∅
for 8 = 1 to = do

B8, ®-8 ← 8-th relation name and attributes of source schema de�ned in %
:4~ ← primary key of B8 and C if both are the same, otherwise ®-8 ∩ ®. .
®/8 ← :4~ ∪ ( ®-8 ∩ ¬®. )
0_2_B8 ← { ("0_2_" & B8 , ®/8 ) } //auxiliary relation name for lost attributes
0_;>BC_B8 ← { ("0_;>BC_" & B8 , ®-8 ) } //auxiliary relation name for lost tuples
0_608=_B8 ← { ("0_608=_" & B8 , ®-8 ) } //auxiliary relation name for gained tuples
BA2_0DG ← 0A2_0DG ∪ 0_2_B8 ∪ 0_;>BC_B8 ∪ 0_608=_B8

end for
C0A_31 ← 10B4 ∪ BA2_0DG
return C0A_31

for such lost and gained tuples against updates of view instance ) . To compute a
view instance of target schema ) without loss or gain, rules (5.33) and (5.34) express
transformations to a view instance ) by deleting gained tuples in auxiliary relation
�
608=

)
and adding lost tuples in auxiliary relation �;>BC

)
against a base relation �) .

5.2.2 Deriving Target-Side Database Schema

We give Algorithm 5.1 to derive the target-side database schema. The input is a
co-existence strategy. The output is a set of relation names of base relations and
auxiliary relations. A base relation name corresponds to a relation name of target
schema. The number of derived auxiliary relation names varies depending on the
number of relation names of source schema. The algorithm de�nes three auxiliary
relation names for one relation name of source schema and two auxiliary relation
names for one relation name of target schema.

The following example shows relation names which the algorithm outputs from a
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given co-existence strategy.

Example 12. Suppose the co-existence strategy in Example 8 as input to Algorithm
5.1. Since the co-existence strategy speci�es one relation name of source schema, the
algorithm sets = as 1. Then, the algorithm sets B1 as B1, ®-1 as {-,., /,, }, C as C , ®. as
{-,., / } from relation names B1(-,., /,, ) of source schema and C (-,., / ) of target
schema.

Based on them, the algorithm outputs the following relation names: 1_C (-,., / )
as the base relation name, 0_;>BC_C (-,., / ) as the auxiliary relation name for lost
tuples of a view instance) (-,., / ) of target schema, 0_608=_C (-,., / ) as the auxiliary
relation name for gained tuples of the view instance ) (-,., / ), 0_2_B1(-,, ) as
the auxiliary relation name for lost attributes of a view instance (1(-,., /,, ) of
source schema, 0_;>BC_B1(-,., /,, ) as the auxiliary relation name for lost tuples of
(1(-,., /,, ), and 0_608=_B1(-,., /,, ) as the auxiliary relation name for gained
tuples of (1(-,., /,, ). �

5.2.3 Deriving BX between Target-Side Database and View In-
stance of Source Schema

We give Algorithm 5.2 to derive bidirectional transformations between the view instance
(8 of source schema and the target-side database. The input is a co-existence strategy
satisfying the consistency of updates. The output is bidirectional transformations�-C .BA2.8
for all 8 (8 ∈ [1, =]) expressed by Datalog rules. The outline to derive bidirectional
transformation is shown in Subsection 5.2.1. In the algorithm, a derivation of constraints
for a primary key follows a derivation method in [71].
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Algorithm 5.2 Deriving BXs between Target-Side Database and View Instances of
Source Schema
Input: a co-existence strategy % satisfying the 2>=B8BC4=2~ of updates
Output: bidirectional transformations of source schema �-C .BA2

// Speci�cation described in %
= ← a number of relation names of source schema
for 8 = 1 to = do

B8, ®-8 ← a relation name and attributes of source schema
// corresponding to a relation (8 ( ®-8)

end for
C, ®. ← a relation name and attributes of target schema

// corresponding to a view instance ) ( ®. )
C ← a set of constraints
5 ← a set of Datalog rules to transform to ) ( ®. ) //schema evolution

// updated view instance (8 ′(-8)
// base relation �) ( ®. )
// auxiliary relations �2

(8
( ®/8), �;>BC(8

( ®-8), �608=(8
( ®-8), �;>BC)

( ®. ), and �608=
)
( ®. )

CA6_31 ← a set of base and auxiliary relation names de�ned by Algorithm 5.1
A( ← ∅
for 8 = 1 to = do

A(8 ← a set of Datalog rules to transform to a view instance (8 ( ®-8) as
(4E>8 ( ®-8) = c0CCA ((8 ) (�) ( ®. ) ⊲⊳ �2(8 ( ®/8)) and
(8 ( ®-8) = ((4E>8 ( ®-8) ∩ ¬�

608=

(8
( ®-8)) ∪�;>BC(8

( ®-8)
A( ← A( ∪ A(8

end for
�-C .BA2 ← ∅
for 8 = 1 to = do

// 64CC .BA2.8
64CC .BA2.8 ← A(8
// ?DCC .BA2.8
A4E> ← a set of Datalog rules of 5 to transform to ) 4E> ( ®. ) by replacing a

predicate symbol C to a predicate symbol corresponding to ) 4E> ( ®. )
A ′4E> ← a set of Datalog rules of 5 to transform to ) 4E> ′( ®. ) by replacing

predicate symbols B8 and C to predicate symbols corresponding
to (8 ′( ®-8) and ) 4E> ′( ®. )

A ′
10B4
← a set of Datalog rules to transform to updated �) ′( ®. ) as

Δ+
�)
( ®. ) = ) 4E> ′( ®. ) ∩ ¬) 4E> ( ®. ) ∩ ¬�) ( ®. ),

Δ−
�)
( ®. ) = ¬) 4E> ′( ®. ) ∩) 4E> ( ®. ) ∩ �) ( ®. ), and

�)
′( ®. ) = (�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+

�)
( ®. )
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A ′0DG.2 ← a set of Datalog rules to transform to updated �2
(8

′( ®/8) as
Δ+
(8
( ®-8) = (8 ′( ®-8) ∩ ¬(8 ( ®-8),

Δ−
(8
( ®-8) = ¬(8 ′( ®-8) ∩ (8 ( ®-8),

Δ+
�2
(8

( ®/8) = c ®/8 (Δ
+
(8
( ®-8) ⊲⊳ Δ+�) ( ®. )) ∩ ¬�

2
(8
( ®/8),

Δ−
�2
(8

( ®/8) = c ®/8 (Δ
−
(8
( ®-8) ⊲⊳ Δ−�) ( ®. )) ∩�

2
(8
( ®/8), and

�2
(8

′( ®/8) = (�2(8 ( ®/8) ∩ ¬Δ
−
�2
(8

( ®/8)) ∪ Δ+
�2
(8

( ®/8)

A ′0DG ← a set of Datalog rules to transform to updated �;>BC
(8

′( ®-8), �608=(8

′( ®-8),
�;>BC
)

′( ®) ), and �608=
)

′( ®. ) as
(8
′′( ®-8) = c0CCA ((8 ) (�) ′( ®. ) ⊲⊳ �2(8

′( ®/8)),
Δ+
�;>BC
(8

( ®-8) = (8 ′( ®-8) ∩ ¬(8 ′′( ®-8) ∩ ¬�;>BC(8
( ®-8),

Δ−
�;>BC
(8

( ®-8) = ¬(8 ′( ®-8) ∩�;>BC(8
( ®-8),

Δ+
�
608=

(8

( ®-8) = ¬(8 ′( ®-8) ∩ (8 ′′( ®-8) ∩ ¬�608=(8
( ®-8),

Δ−
�
608=

(8

( ®-8) = ((8 ′( ®-8) ∩�608=(8
( ®-8)) ∪ (¬(8 ′′( ®-8) ∩�608=(8

( ®-8)),

Δ−
�;>BC
)

( ®. ) = (Δ+
�)
( ®. ) ∩�;>BC

)
( ®. )) ∪ (Δ−

�)
( ®. ) ∩�;>BC

)
( ®. )),

Δ−
�
608=

)

( ®. ) = (Δ+
�)
( ®. ) ∩�608=

)
( ®. )) ∪ (Δ−

�)
( ®. ) ∩�608=

)
( ®. )),

�;>BC
(8

′( ®-8) = (�;>BC(8
( ®-8) ∩ ¬Δ−

�;>BC
(8

( ®-8)) ∪ Δ+
�;>BC
(8

( ®-8),

�
608=

(8

′( ®-8) = (�608=(8
( ®-8) ∩ ¬Δ−

�
608=

(8

( ®-8)) ∪ Δ+
�
608=

(8

( ®-8),

�;>BC
)

′( ®. ) = �;>BC
)
( ®. ) ∩ ¬Δ−

�;>BC
)

( ®. ), and

�
608=

)

′( ®. ) = �608=
)
( ®. ) ∩ ¬Δ−

�
608=

)

( ®. )
2 ← a set of constrains in C that a predicate with symbol C does not appears

in body and predicate symbol B8 is replaced to a corresponding predicate
symbols of (8 ′( ®-8).

20DG ← a set of constraints of
�;>BC
(8
( ®-8) ∩�608=(8

( ®-8) = ∅ and
�
608=

(8
( ®-8) ∩ ¬(4E>8 ( ®-8) = ∅

2?: ← a set of constrains for primary key of relation name B8 if it is speci�ed
?DCBA2.8 ← A( ∪ A4E> ∪ A ′4E> ∪ A ′10B4 ∪ A

′
0DG.2 ∪ A ′0DG ∪ 2 ∪ 20DG ∪ 2?:

�-C .BA2.8 ← {(64CC .BA2.8, ?DCC .BA2.8)}
�-C .BA2 ← �-C .BA2 ∪ �-C .BA2.8

end for
return �-C .BA2
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The following example shows how the algorithm derives bidirectional transforma-
tion.

Example 13. Suppose the co-existence strategy in Example (8) as input to Algorithm
(5.2). The algorithm sets = as 1 because the co-existence strategy speci�es one relation
name of source schema. Based on relation names derived in Example (12), the algorithm
outputs bidirectional transformation �-C .BA2.1

The algorithm outputs transformations of 64CC .BA2.1 consisting of Datalog rules (5.17)
– (5.17) shown in Subsection 5.2.1. The algorithm outputs the following transformations
of ?DCC .BA2.1: A) as rule (5.5), A) ′ as rule (5.6), A ′

10B4
as rules (5.7) – (5.10), and A ′0DG.2 as rules

(5.11) – (5.16). Further the algorithm outputs the following Datalog rules of A ′0DG to
transform to the updated auxiliary relations Δ;>BC

(1

′, Δ608=
(1

′, Δ;>BC
)

′, and Δ
608=

)

′.

A ′0DG :

B1
′′(-,., /,, ) :− 1_C ′(-,., / ) ⊲⊳ 0_2_B1′(-,, ).

+0_;>BC_B1(-,., /,, ) :− B1′(-,., /,, ),¬B1′′(-,., /,, ),¬0_;>BC_B1_8=B (-,., /,, ).
−0_;>BC_B1(-,., /,, ) :− ¬B1′(-,., /,, ), 0_;>BC_B1(-,., /,, ).
+0_608=_B1(-,., /,, ) :− ¬B1′(-,., /,, ), B1′′(-,., /,, ),¬0_608=_B1_8=B (-,., /,, ).
−0_608=_B1(-,., /,, ) :− B1′(-,., /,, ), 0_608=_B1(-,., /,, ).
−0_608=_B1(-,., /,, ) :− ¬B1′′(-,., /,, ), 0_608=_B1(-,., /,, ).
−0_;>BC_C (-,., / ) :− +1_C (-,., / ), 0_;>BC_C (-,., / ).
−0_;>BC_C (-,., / ) :− −1_C (-,., / ), 0_;>BC_C (-,., / ).
−0_608=_C (-,., / ) :− +1_C (-,., / ), 0_608=_C (-,., / ).
−0_608=_C (-,., / ) :− −1_C (-,., / ), 0_608=_C (-,., / ).

0_;>BC_B1′(-,., /,, ) :− 0_;>BC_B1(-,., /,, ),¬ −0_;>BC_B1(-,., /,, ).
0_;>BC_B1′(-,., /,, ) :− +0_;>BC_B1(-,., /,, ).
0_608=_B1′(-,., /,, ) :− 0_608=_B1(-,., /,, ),¬ −0_608=_B1(-,., /,, ).
0_608=_B1′(-,., /,, ) :− +0_608=_B1(-,., /,, ).
0_;>BC_C ′(-,., /,, ) :− 0_;>BC_C (-,., /,, ),¬ −0_;>BC_C (-,., /,, ).
0_608=_C ′(-,., /,, ) :− 0_608=_C (-,., /,, ),¬ −0_608=_C (-,., /,, ).
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where predicates with symbols 0_;>BC_B1′, 0_608=_B1′, 0_;>BC_C ′, and 0_608=_C ′ corre-
spond to the updated auxiliary relations �;>BC

(1

′, �608=
(1

′, �;>BC
)

′, and �608=
(1

′ respectively.
The algorithm outputs Datalog rules of 2 for a constraint that predicate symbol C

does not appears in its body, 20DG for constraints applied to the auxiliary relations, and
2?: for constraints of a primary key.

2:

⊥() :− B1′(-,., /,, ), . ≤ 0.

20DG :

⊥() :− 0_;>BC_B1(-,., /,, ), 0_608=_B1(-,., /,, ).
⊥() :− 0_608=_B1(-,., /,, ),¬B1_4E> (-,., /,, ).

where predicates with symbols B1_4E> corresponds to a relation (4E>1 .

2?: :

⊥() :− B1′(-,., /,, ), B1′(-,.1, /1,, 1), . ≠ .1.

⊥() :− B1′(-,., /,, ), B1′(-,.1, /1,, 1), / ≠ /1.

⊥() :− B1′(-,., /,, ), B1′(-,.1, /1,, 1),, ≠, 1.

�

Properties

Based on transformations of 64CC .BA2.8 and ?DCC .BA2.8 for each 8 (8 ∈ [1, =]) derived by
Algorithm 5.2, the following lemmas and a proposition are satis�ed. Lemmas state that
particular relationships of the auxiliary relations and the base relation are kept. Note
that they are given as constraints in the algorithm.

Lemma 5.1 (Disjointness of Auxiliary Relations of Target-Side Database for Source
Schema’s View Instance). The auxiliary relations �;>BC

(8
( ®-8) and �608=(8

( ®-8) for source
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schema’s view instance (8 ( ®-8) are disjoint for each 8 (8 ∈ [1, =]).

�;>BC(8
( ®-8) ∩�608=(8

( ®-8) = ∅

�

The proof is available in Appendix A.7.

Lemma 5.2 (Inclusion of Auxiliary Relation of Target-Side Database for Source
Schema’s View Instance). The auxiliary relations �608=

(8
( ®-8) for source schema’s view

instance (8 ( ®-8) is included in the relation (4E>8 ( ®-8) de�ned in Algorithm 5.2 for each 8
(8 ∈ [1, =]).

�
608=

(8
( ®-8) ⊆ (4E>8 ( ®-8)

�

The proof is available in Appendix A.8.
The following proposition states that a bidirectional transformations �-C .BA2.8 for

each 8 (8 ∈ [1, =]) derived by Algorithm 5.2 is well-behaved.

Proposition 5.3 (Well-Behaveness of BX between Target-Side Database and View
Instance of Source Schema). Given a co-existence strategy between relations of source
schema and a relation of target schema and turning each relation to view instance,
bidirectional transformation �-C .BA2.8 for each 8 (8 ∈ [1, =]) derived by Algorithm 5.2 is
well-behaved by satisfying GETPUT and PUTGET laws. �

The proof is available in Appendix A.9.

5.2.4 Deriving BX between Target-Side Database and View In-
stance of Target Schema

We give Algorithm 5.3 to derive a bidirectional transformation �-C .CA6 between a view
instance of target schema and target-side database. The input is a co-existence strategy
satisfying the consistency of updates. The output is a bidirectional transformation
�-C .CA6 expressed by Datalog rules. The outline to derive a bidirectional transformation
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is shown in Subsection 5.2.1. In the algorithm, a derivation of constraints from a
de�nition of primary key follows the derivation method in [71].

The following example shows how the algorithm derives a bidirectional transfor-
mation.

Example 14. Suppose the co-existence strategy in Example 8 as input to Algorithm
5.3. The algorithm sets = as 1 because the co-existence strategy speci�es one relation
name of source schema. Based on relation names derived in Example 12, the algorithm
outputs a bidirectional transformation �-C .CA6.

The algorithm outputs transformations of 64CC .CA6 consisting of Datalog rules
(5.33) and (5.34) shown in Subsection 5.2.1. The algorithm outputs the following
transformations of ?DCC .CA6: A( as (5.17) – (5.19), AΔ) as (5.20) – (5.21), A102: as (5.22) –
(5.25) and (5.28) – (5.30), A ′

10B4
as (5.26) – (5.27).

Further the algorithm outputs the following Datalog rules of A ′
0DG.)

and A ′
0DG.(

to
transform to the updated auxiliary relations Δ;>BC

)

′, Δ608=
)

′, Δ;>BC
(1

′, and Δ
608=

(1

′

A ′
0DG.)

:

+0_;>BC_C (-,., / ) :− C ′(-,., / ),¬1_C ′(-,., / ),¬0_;>BC_C (-,., / ).
−0_;>BC_C (-,., / ) :− ¬C ′(-,., / ), 0_;>BC_C (-,., / ).
+0_608=_C (-,., / ) :− ¬C ′(-,., / ), 1_C ′(-,., / ),¬0_608=_C (-,., / ).
−0_608=_C (-,., / ) :− C ′(-,., / ), 0_608=_C (-,., / ).
−0_608=_C (-,., / ) :− ¬1_C ′(-,., / ), 0_608=_C (-,., / ).
0_;>BC_C ′(-,., / ) :− 0_;>BC_C (-,., / ),¬ −0_;>BC_C (-,., / ).
0_;>BC_C ′(-,., / ) :− +0_;>BC_C (-,., / ).
0_608=_C ′(-,., / ) :− 0_608=_C (-,., / ),¬ −0_608=_C (-,., / ).
0_608=_C ′(-,., / ) :− +0_608=_C (-,., / ).

A ′
0DG.(

:

−0_;>BC_B1(-,., /,, ) :− +B1(-,., /,, ), 0_;>BC_B1(-,., /,, ).
−0_;>BC_B1(-,., /,, ) :− −B1(-,., /,, ), 0_;>BC_B1(-,., /,, ).
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−0_608=_B1(-,., /,, ) :− +B1(-,., /,, ), 0_608=_B1(-,., /,, ).
−0_608=_B1(-,., /,, ) :− −B1(-,., /,, ), 0_608=_B1(-,., /,, ).

0_2_B1′(-,, ) :− 0_2_B1(-,, ),¬ −0_2_B1(-,, ).
0_2_B1′(-,, ) :− +0_2_B1(-,, ).

0_;>BC_B1′(-,., /,, ) :− 0_;>BC_B1(-,., /,, ),¬ −0_;>BC_B1(-,., /,, ).
0_608=_B1′(-,., /,, ) :− 0_608=_B1(-,., /,, ),¬ −0_608=_B1(-,., /,, ).

where predicates 0_2_B1′(X,W), 0_;>BC_B1′(-,., /,, ), and 0_608=_B1′(-,., /,, ) cor-
respond to the updated auxiliary relations �2

(1
′, �;>BC

(1

′, and �608=
(1

′ respectively.
The algorithm outputs Datalog rules of 2 for a constraint that predicate symbol C

appears in its body, 20DG for constraints applied to the auxiliary relations, and 2?: for
constraints of a primary key.

2:

⊥() :− C ′(-,., / ), . ≤ 0.

20DG :

⊥() :− 0_;>BC_C (-,., / ), 0_608=_C (-,., / ).
⊥() :− 0_608=_C (-,., / ),¬1_C (-,., / ).

2?: :

⊥() :− C ′(-,., / ), C ′(-,.1, /1), . ≠ .1.

⊥() :− C ′(-,., / ), C ′(-,.1, /1), / ≠ /1.

�
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Algorithm 5.3 Deriving BX between Target-Side Database and View Instance of
Target Schema
Input: a co-existence strategy % satisfying the 2>=B8BC4=2~ of updates
Output: bidirectional transformations of source schema �-C .CA6

= ← a number of relation names of source schema
for 8 = 1 to = do

B8, ®-8 ← a relation name and attributes of source schema
// corresponding to a relation (8 ( ®-8)

end for
C, ®. ← a relation name and attributes of target schema

// corresponding to a view instance ) ( ®. )
C ← a set of constraints in %
5 ← a set of Datalog rules to transform to ) ( ®. ) //schema evolution
for 8 = 1 to = do

6+B8 ← a set of Datalog rules to transform Δ+
(8
( ®-8) // backward update sharing

6−B8 ← a set of Datalog rules to transform Δ−
(8
( ®-8) // backward update sharing

end for

// updated view instance ) ′( ®. )
// base relation �) ( ®. )
// auxiliary relations �2

(8
( ®/8), �;>BC(8

( ®-8), �608=(8
( ®-8), �;>BC)

( ®) ), and �608=
)
( ®) )

CA6_31 ← a set of base and auxiliary relation names de�ned by Algorithm 5.1

// 64CC .CA6
A) ← a set of Datalog rules to transform to a view instance ) ( ®. ) as

) ( ®. ) = (�) ( ®. ) ∩ ¬�608=)
( ®. )) ∪�;>BC

)
( ®. )

64CC .CA6 ← A)

// ?DCC .CA6
A( ← ∅
for 8 = 1 to = do

A(8 ← a set of Datalog rules to transform to (8 ( ®-8) as
(4E>8 ( ®-8) = c0CCA ((8 ) (�) ( ®. ) ⊲⊳ �2(8 ( ®/8)) and
(8 ( ®-8) = ((4E>8 ( ®-8) ∩ ¬�

608=

(8
( ®-8)) ∪�;>BC(8

( ®-8)
A( ← A( ∪ A(8

end for
AΔ) ← A set of Datalog rules to transform to Δ+

)
( ®. ) and Δ−

)
( ®. )as

Δ+
)
( ®. ) = ) ′( ®. ) ∩ ¬) ( ®. ), and

Δ−
)
( ®. ) = ¬) ′( ®. ) ∩) ( ®. )

A102: ← ∅
for 8 = 1 to = do

AΔ(8 ← 6+B8 ∪ 6
−
B8

A8 ← a set of Datalog rules to transform to Δ+
�)
( ®. ), Δ−

�)
( ®. ), Δ+

�2
(8

( ®/8), and

Δ−
�2
(8

( ®/8) as
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Δ+
�)
( ®. ) = c0CCA () ) (Δ+(8 ( ®-8) ⊲⊳ Δ

+
)
( ®. )) ∩ ¬�) ( ®. ),

Δ−
�)
( ®. ) = c0CCA () ) (Δ−(8 ( ®-8) ⊲⊳ Δ

−
)
( ®. )) ∩ �) ( ®. ),

Δ+
�2
(8

( ®/8) = c ®/8 (Δ
+
(8
( ®-8)) ∩ ¬�2(8 ( ®/8),

Δ−
(8

′( ®-8) = Δ−
(8
( ®-8) ⊲⊳ (c:4~ (Δ−(8 ( ®-8)) ∩ ¬c:4~ (Δ

+
(8
( ®-8))), and

Δ−
�2
(8

( ®/8) = c ®/8 (Δ
−
(8

′( ®-8)) ∩�2(8 ( ®/8)
A102: ← A102: ∪ AΔ(8 ∪ A8

end for
A ′
10B4
← a set of Datalog rules to transform to �) ′( ®. ) as

�)
′( ®. ) = (�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+

�)
( ®. )

A ′
0DG.)

← a set of Datalog rules transform to �;>BC
)

′( ®. ) and �608=
)

′( ®. ) as
Δ+
�;>BC
)

( ®. ) = ) ′( ®. ) ∩ ¬�) ′( ®. ) ∩ ¬�;>BC)
( ®. ),

Δ−
�;>BC
)

( ®. ) = ¬) ′( ®. ) ∩�;>BC
)
( ®. ),

Δ+
�
608=

)

( ®. ) = ¬) ′( ®. ) ∩ �) ′( ®. ) ∩ ¬�608=)
( ®. ),

Δ−
�
608=

)

( ®. ) = () ′( ®. ) ∩�608=
)
( ®. )) ∪ (¬�) ′( ®. ) ∩�608=)

( ®. )),

�;>BC
)

′( ®. ) = (�;>BC
)
( ®. ) ∩ ¬Δ−

�;>BC
)

( ®. )) ∪ Δ+
�;>BC
)

( ®. ), and

�
608=

)

′( ®. ) = (�608=
)
( ®. ) ∩ ¬Δ−

�
608=

)

( ®. )) ∪ Δ+
�
608=

)

( ®. )
A ′
0DG.(
← ∅

for 8 = 1 to = do
A ′
0DG.(8

← a set of Datalog rules transform to �2
(8

′( ®/8), �;>BC(8

′( ®-8), and �608=
(8

′( ®-8)
as
Δ−
�;>BC
(8

( ®-8) = (Δ+(8 ( ®-8) ∩�
;>BC
(8
( ®-8)) ∪ (Δ−(8 ( ®-8) ∩�

;>BC
(8
( ®-8)),

Δ−
�
608=

(8

( ®-8) = (Δ+(8 ( ®-8) ∩�
608=

(8
( ®-8)) ∪ (Δ−(8 ( ®-8) ∩�

608=

(8
) ( ®-8),

�2
(8

′( ®/8) = (�2(8 ( ®/8) ∩ ¬Δ
−
�2
(8

( ®/8)) ∪ Δ+
�2
(8

( ®/8),

�;>BC
(8

′( ®-8) = �;>BC(8
( ®-8) ∩ ¬Δ−

�;>BC
(8

( ®-8), and

�
608=

(8

′( ®-8) = �608=(8
( ®-8) ∩ ¬Δ−

�
608=

(8

( ®-8)

A ′
0DG.(
← A ′

0DG.(
∪ A ′

0DG.(8
end for
2 ← a set of constrains in C that a predicate with symbol C is replaced to a

corresponding predicate symbol of ) ′( ®. ).
20DG ← a set of constraints of

�;>BC
)
( ®. ) ∩�608=

)
( ®. ) = ∅

�
608=

)
( ®. ) ∩ ¬�) ( ®. ) = ∅

2?: ← a set of constrains for primary key of relation name C if it is speci�ed
?DCC .CA6 ← A( ∪ AΔ) ∪ A102: ∪ A ′10B4 ∪ A

′
0DG.)

∪ A ′
0DG.(
∪ 2 ∪ 20DG ∪ 2?:

�-C .CA6 ← {(64CC .CA6, ?DCC .CA6)}
return �-C .CA6
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Properties

Based on transformations of 64CC .CA6 and ?DCC .CA6 derived by Algorithm 5.3, the following
lemmas and a proposition are satis�ed. Lemmas state that particular relationships of
the auxiliary relations and the base relation are kept. Note that they are given as
constraints in the algorithm.

Lemma 5.4 (Disjointness of Auxiliary Relations of Target-Side Database). The auxiliary
relations �;>BC

)
( ®. ) and �608=

)
( ®. ) are disjoint.

�;>BC) ( ®. ) ∩�
608=

)
( ®. ) = ∅

�

The proof is available in Appendix A.10.

Lemma 5.5 (Inclusion of Auxiliary Relation of Target-Side Database). The auxiliary
relation �608=

)
( ®. ) is included in the base relation �) ( ®. ).

�
608=

)
( ®. ) ⊆ �) ( ®. )

�

The proof is available in Appendix A.11.
The following proposition states the bidirectional transformation �-C .CA6 derived by

Algorithm 5.3 is well-behaved.

Proposition 5.6 (Well-Behaveness of BX between Target-Side Database and View
Instance of Target Schema). Given a co-existence strategy between relations of source
schema and a relation of target schema and turning each relation to view instance,
the bidirectional transformation �-C .CA6 derived by Algorithm 5.3 is well-behaved by
satisfying GETPUT and PUTGET laws. �

The proof is available in Appendix A.12.

5.2.5 Correctness of the Algorithms

In the same manner with the correctness of the derivation algorithms in Chapter 4, we
show schema evolution and backward update sharing of a co-existence strategy are
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realized by the derived BXs, and the soundness of the proposed algorithms to derive
BXs.

Realization of Schema Evolution

Schema evolution of a co-existence strategy is realized if a result of transformation by
schema evolution and the derived BXs are the same. The following theorem states that
the derived bidirectional transformations realize schema evolution.

Theorem 5.7 (Realization of Schema Evolution by BXs between Target-Side Database
and View Instances of Schemas). Given a co-existence strategy, the derived bidirectional
transformations by Algorithm 5.2 and 5.3 realize its schema evolution. �

Suppose a co-existence strategy between relations (8 (8 ∈ [1, =]) of source schema
and a relation) of target schema, and �-C .BA2.8 for all 8 and �-C .CA6 as derived bidirectional
transformations from the co-existence strategy by Algorithm 5.2 and 5.3. Recall source
schema instance S is union of relations (8 for all 8 . Schema evolution of the co-existence
strategy transforms S to) . On the other hand, for each 8 , ?DCC .BA2.8 of �-C .BA2.8 transforms
a view instance (8 to a source-side database DC , and 64CC .CA6 of �-C .CA6 transforms DC to a
view instance ) . If a result of these transformations from union of (8 to ) via DC is
equivalent to a result of the transformation by schema evolution, schema evolution is
realized by the derived bidirectional transformations. Further details and the formal
proof are available in Appendix A.13.

Realization of Backward Update Sharing

Backward update sharing of a co-existence strategy is realized if a result of transforma-
tion by backward update sharing and the derived BXs are the same. The following
theorem states that the derived bidirectional transformations realize backward update
sharing.

Theorem 5.8 (Realization of Backward Update Sharing by BXs between Source-Side
Database and View Instances of Schemas). Given a co-existence strategy, the derived
bidirectional transformations by Algorithm 5.2 and 5.3 realize its backward update
sharing. �
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Suppose the co-existence strategy and the derived bidirectional transformations
mentioned above. Backward update sharing of the co-existence strategy transforms to
sets of inserted and deleted tuples against a relation ) of target schema to sets of
inserted and deleted tuples to the relation (8 of source schema for each 8 (8 ∈ [1, =]).
They update the relation (8 to (8 ′. On the other hand, ?DCC .CA6 of �-C .CA6 transforms the
updated ) ′ of target schema by sets of inserted and deleted tuples against it to the
updated source-side database DC ′ and 64CC .BA2.8 of �-C .BA2.8 for each 8 transforms it to
the updated view instance (8 ′. If a result of these transformations is equivalent to a
result of the transformation by backward update sharing, backward update sharing is
realized by the derived bidirectional transformations. Further details and the formal
proof are available in Appendix A.14.

Soundness

Given a co-existence strategy, the derived BXs by Algorithm 5.2 and 5.3 are well-
behaved and realize its schema evolution and backward update sharing. Thus the
algorithms are sound.

5.3 Data Migration

This section explains how to migrate data between the source-side database and the
target-side database.

Data Migration from Source-Side Database to Target-Side Database

Data migration from the source-side database to the target-side database consists
of two steps. Recall �-BA2 and �-CA6 are bidirectional transformations between the
source-side database and view instances of source schema and target schema. �-C .BA2
and �-C .CA6 are bidirectional transformations between target-side database and view
instances of source schema and target schema respectively.

Figure 5.3 shows steps of a data migration from the source-side database DB to
the target-side database DC . Figure 5.3 (a) depicts the �rst step. DB is transformed to
the view instances (8 of source schema by 64CBA2.8 of �-BA2 for each 8, and then these
view instances are transformed to the target-side database one-by-one by ?DCC .BA2.8 .
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Eventually its state ends up DC<?C . Figure 5.3 (b) depicts the second step to �nally
migrate data from the source-side database DB to the target-side database DC . DB is
transformed to the view instance ) of target schema by 64CCA6 of �-BA2 , and then a pair
of DC<?C and the view instance ) are transformed to the target-side database DC by
?DCC .CA6.

Data Migration from Target-Side Database to Source-Side Database

Figure 5.4 shows steps of data migration from the target-side database DC to the
source-side database DC . Figure 5.4 (a) depicts the �rst step. DC is transformed to the
view instances (8 of source schema by 64CC .BA2.8 of �-C .BA2 for each 8, and then these
view instances are transformed to the source-side database one-by-one by ?DCBA2.8 .
Eventually its state ends up DC<?B . Figure 5.4 (b) depicts the second step to �nally
migrate data from the target-side database DC to the source-side database DB . DC is
transformed to the view instance ) of target schema by 64CC .CA6 of �-C .CA6, and then a
pair of DC<?B and the view instance ) are transformed to the target-side database DB by
?DCCA6.

The correctness of the data migration requires that view instances of schemas
computed from a migrated database must be the same as view instances of schemas
computed from an original database. The following proposition states such property.

Proposition 5.9 (Data Migration). Suppose BXs derived by Algorithm 4.3, 4.2, 5.2, and
5.3 from a given co-existence strategy. View instances of source schema and target schema
are equivalent when they are computed from the source-side database and the migrated
target-side database based on the derived BXs. View instances of source schema and target
schema are equivalent when they are computed from the target-side database and the
migrated source-side database based on the derived BXs. �

The proof is available in Appendix A.15.
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Figure 5.3: Data Migration from a source-side database to a target-side database.
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Figure 5.4: Data Migration from a target-side database to a source-side database.

5.4 Evaluation

This section shows experimental results and an evaluation of the proposed method.

5.4.1 Implementation

We have implemented a prototype in OCaml to verify the consistency of updates and
realization of co-existence strategy on a target-side database in the same manner as
Chapter 4. This prototype derives Datalog programs of bidirectional transformations
by Algorithm 5.1, 5.2, and 5.3. All other components of the prototype are the same as
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the prototype explained in Chapter 4.

5.4.2 Experimental Result

To evaluate our approach, we conduct two experiments. The �rst experiment aims to
investigate derived BXs from co-existence strategies described by the proposed DSL
and performance of writing and reading on view instances of both source schema
and target schema while sharing updates with each. In the second experiment, we
evaluate the performance of the data migration between the source-side database and
the target-side database. We utilize the same co-existence strategies in Table 4.1 of
Chapter 4 as the benchmark to perform evaluations. The experiments are run on a
Core i5 machine with 2 GHz and 16 GB memory and PostgreSQL 10.16.

Deriving BXs between Target-Side Database and View Instances of Schemas

Table 5.1 shows experimental results of derived BXs between the target-side database
and view instances of source schema and target schema from co-existence strategies
described by the proposed DSL. The structure of the table is the same as in Table 4.1.
For example, the table shows that a co-existence strategy of SMO DROP COLUMN (a
co-existence strategy No.1) is described as an 8 LOC Datalog program by the proposed
DSL. Our method derives 75 LOC of BXs as Datalog programs, 1891 LOC of SQL
programs, and �ve auxiliary relation names of the target-side database schema. The
number of derived auxiliary relation names varies depending on the number of relation
names of source schema. For example, the algorithm derives 5 auxiliary relation names
from a co-existence strategy No.13 that speci�es 3 (= 3 × 1) auxiliary relation names
from one relation of source schema and 2 auxiliary relation names from one relation of
target schema. On the other hand, the algorithm derives 8 auxiliary relation names
from a co-existence strategy No.16 that speci�es 6 (= 3 × 2) auxiliary relation names
from two relations of source schema and 2 auxiliary relation names from one relation
of target schema.
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Table 5.1: Results of derived BXs between the target-side database and view instances
of source schema and target schema.

SMOs co-existence strategy the proposed method
Operator #

of
aux.

schema
evolution

backward update shar-
ing

SMO DSL
[LOC]

#
of
aux.

BXs
[LOC]

SQL
[LOC]

No.

DROP
COLUMN

1 projection share all with (1 X 8 5 75 1891 1

((1→ ) ) share with (1 if a condi-
tion is satis�ed

8 5 75 1891 2

share only deletion with
(1 if a condition is satis-
�ed

6 5 68 1390 3

not share with (1 3 5 59 1057 4
ADD
COLUMN

1 outer join
(pk)

share all with (1 X 17 8 153 7452 5

((1→ ) ) not share with (1 9 8 128 4248 6
JOIN
TABLE

0 outer join
(pk)

share all with (1 and (2 X 15 8 154 8032 7

((1, (2→) ) not share with (1 and (2 9 8 131 5720 8
1 outer join share all with (1 and (2 X 12 8 147 6698 9

(fk) not share with (1 and (2 5 8 131 4297 10
2 inner join share all with (1 and (2 X 11 8 144 4356 11

(pk) not share with (1 and (2 7 8 123 2744 12
3 inner join share all with (1 and (2 X 16 8 144 12582 13

(cond.) not share with (1 and (2 4 8 113 2358 14
SPLIT
TABLE

1 selection share with (1 without
condition

X 7 5 73 1717 15

((1→ ) ) share with (1 if selection
condition is satis�ed

7 5 73 1729 16

not share with (1 5 5 62 1141 17
MERGE
TABLE

5 union share with (1 and (2 if
conditions are satis�ed

X 13 8 146 5162 18

((1, (2→) ) share insertion with (1
and deletion with (2

8 8 136 4428 19

not share with (1 and (2 8 8 124 3468 20
((1, (2→) ) - Cartesian

product
share all with (1 and (2 18 8 144 9102 21

((1, (2→) ) - set di�er-
ence

share with (1 and not
share with (2

6 8 124 3436 22
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Figure 5.5 shows performances of writing and reading while updates are shared by
schema evolution realized on the target-side database. Each graph shows relationships
between the number of executed tuples and execution time of writing (insertion)
to (1 of source schema, reading its result as the view instances (1 of source schema,
and reading of the view instance ) of target schema as a result of update sharing by
schema evolution of each co-existence strategy. In the same manner with Figure 4.3 of
Chapter 4, Figure 5.5 (a), (b), (c), (d), (e) are results of the co-existence strategy No.1 for
schema evolution by projection, No.13 for schema evolution by inner join with a given
condition, No.15 for schema evolution by selection, No.18 for schema evolution by
union, and No.22 for schema evolution by set di�erence respectively. In writing on (1
of (b) and (e), a view instance (2 of source schema has 10,000 tuples in advance.

Results show that reading time is almost the same for view instances of source
schema and target schema regardless of co-existence strategies except for reading on
the view instance ) resulted in schema evolution of selection in (c). As discussed in
Chapter 4, reading on the view instance ) is faster than (1 because schema evolution
by selection discards tuples and tuples of the view instance ) of target schema are less
than tuples of view instance (1 of source schema. The execution time of writing shows
linear relationships between the number of executed tuples and executed time, even
though execution time varies depending on strategies.

Figure 5.6 shows performances of writing and reading while updates are shared by
backward update sharing realized on the target-side database. Each graph shows
relationships between the number of executed tuples and execution time of writing
(insertion) to ) of target schema, reading its result as the view instances ) of target
schema, and reading of the view instance (1 of source schema as a result of update
sharing by backward update sharing of each co-existence strategy. Figure 5.6 (a) – (e)
are results of backward update sharing in the co-existence strategies corresponding to
(a) – (e) of Figure 5.5. In writing on ) of (b) and (e), the view instance (2 of source
schema already has 10,000 tuples in advance. Note that the scale of writing time in
Figure 5.6 (b) is di�erent from others.

Results show that reading time is almost the same for view instances of source
schema and target schema except for (c) of schema evolution by selection. Reading on
the view instance (1 is faster than ) because backward update sharing for schema
evolution by selection discards tuples and tuples of the view instance (1 of source
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schema are less than tuples of view instance ) of target schema.
The execution time of writing varies depending on strategies of backward update

sharing. Results of backward update sharing for schema evolution by selection and set
di�erence ((c) and (e) respectively) show linear relationships between the number
of executed tuples and executed time. On the other hand, a non-linear increase of
execution time against the increase of executed tuples are shown in the results of
backward update sharing for schema evolution by projection, join, and union ((a), (b),
and (d), respectively). Especially, backward update sharing for schema evolution by
join shows a much longer execution time of writing.

Furthermore, we investigate performance depending on the structure of the
auxiliary relation for lost attributes. Figure 5.5 (f) shows performances of writing
depending on the portion of projected away attributes by schema evolution. This
experiment is performed based on the co-existence strategy No.1 in Table 5.1 for
schema evolution by projection. For example, in the graph, a legend of "1/10 (10 LOC)"
says about a co-existence strategy that consists of schema evolution to discard one
attribute from 10 attributes and 10 LOC of backward update sharing. The result shows
that the execution time of writing becomes longer when the portion of discarded
attributes increases and LOC of backward update sharing increases.
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(e) set difference

(a) projection

(c) selection

(b) join

(d) union

DROP COL
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x 1000

0 2 4 6 8 10

DROP TABLE Ds source schema write on S1 0 346 708 1,087 1,437 1,798

0 0.3 0.7 1.1 1.4 1.8

projection read on S1 0 29 48 65 79 98

read on T 0 25 52 67 83 98

target schema write on T 0 679 1,836 3,492 5,756 8,394

0 0.7 1.8 3.5 5.8 8.4

read on T 0 28 48 63 83 101

read on S1 0 27 48 64 85 102

Dt source schema write on S1 0 704 1,404 2,048 2,738 3,318

0 0.7 1.4 2.0 2.7 3.3

read on S1 0 31 50 67 89 107

read on T 0 29 46 67 86 101

target schema write on T 0 736 2,087 4,185 6,687 9,531

0 0.7 2.1 4.2 6.7 9.5

read on T 0 29 49 65 84 104

read on S1 0 30 48 68 87 102

DM Ds to Dt s1 0 705 1,376 2,006 2,664 3,388

s2 0

t 0 1,595 4,587 9,307 15,523 22,660

total 0 2 6 11 18 26

Dt to Ds s1 0 364 706 1,043 1,386 1,720

s2 0

t 0 1,289 4,270 9,173 14,633 21,681

total 0 2 5 10 16 23

having 200 tuples in s2

complex 0 2 4 6 8 10 projected cols aux-c

B=X Ds target schema write 0 10

A=Y 0 1

0 9

0 0.0 0.0 0.0 0.0 0.0 0 1

0 0.0 0.0 0.0 0.0 0.0 1 2

0 0.0 0.0 0.0 0.0 0.0 9 10

Dt target schema write 0 1,035 2,173 3,681 5,921 7,913 0/9 (10 LOC) 1

0 1,185 2,402 5,737 7,919 9,141 1/9 (10 LOC) 2

1,201 2,474 4,281 6,314 8,436

0 1,193 2,438 5,009 7,116 8,788

0 1,001 2,299 3,404 6,161 8,305 5/9 (6 LOC) 6

1,069 2,554 3,159 5,299 7,153

0 1,035 2,427 3,281 5,730 7,729

0 721 1,513 2,353 3,264 4,332 9/9 (2 LOC) 10

741 1,648 2,614 3,618 3,889

0 731 1,581 2,483 3,441 4,110

0 1.2 2.4 5.0 7.1 8.8 1/9 (10 LOC)

0 1.0 2.3 3.4 6.2 8.3 5/9 (6 LOC)

0 1.1 2.6 3.2 5.3 7.2 9/9 (2 LOC)

read 0 32.292 54.233 75.146 96.927 115.16 0

32.351 53.971 72.787 97.765 110.86 11

32.303 54.183 74.069 97.682 117.36 55
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JOIN TABLE x 1000

0 2 4 6 8 10

inj cond Ds source schema write on S1 0 278 589 898 1,092 1,258

B=X 0 0.3 0.6 0.9 1.1 1.3

read on S1 0 27 44 59 80 95

read on T 0 31 51 68 88 105 S2 has 10000 tuples

target schema write on T 0 2,633 4,926 7,880 10,215 12,471

0 2.6 4.9 7.9 10.2 12.5

read on T 0 29 51 68 87 110

read on S1 0 27 45 59 78 96

Dt source schema write on S1 0 955 1,710 1,981 2,585 2,904 S2 has 10000 tuples

0 1.0 1.7 2.0 2.6 2.9

read on S1 0 32 52 72 90 106

read on T 0 29 46 66 83 103

target schema write on T 0 6,547 11,319 19,611 34,542 60,122

0 6.5 11.3 19.6 34.5 60.1

read on T 0 28 47 69 84 103

read on S1 0 32 50 71 90 110

DM Ds to Dt s1 0 535 850 11,075 1,475 1,803

s2 0 746 1,292 1,866 2,460 2,891

t 0 11,075 42,370 72,453 150,755 235,021

total 0 12 45 85 155 240

Dt to Ds s1 0 312 588 785 1,127 1,400

s2 0 306 574 785 1,103 1,388

t 0 2,246 6,609 14,442 23,159 33,825

total 0 3 8 16 25 37

complex 0 0.5 1.0 1.5 2.0 2.5

B=X Ds target schema write 0 2,880 7916.9 17390 31210.66 48720.2

A=Y 0 2.9 7.9 17.4 31.2 48.7

read 0 12.84 20.022 27.636 35.66 41.789

10.91 19.026 27.404 31.587 38.358

11.74 20.076 27.148 30.95 41.511

0 11.829 19.708 27.396 32.73233 40.5527

Dt target schema write 0 4910.9 16303 36413 68732.89

0 4.9 16.3 36.4 68.7 0.0

read 9.705 16.403 22.902 27.405

11.196 17.786 21.667 28.597

9.345 16.028 21.086 28.088

0 10.082 16.739 21.885 28.03 #DIV/0!

条件が複雑になるとライトが遅くなる．

リードは大きく影響を受けない
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SPLIT TABLE x 1000

0 2 4 6 8 10

projection Ds source schema write on S1 0 530 1,474 2,885 4,732 6,814

0 0.5 1.5 2.9 4.7 6.8

read on S1 0 27 46 61 82 100

read on T 0 18 30 40 49 59

target schema write on T 0 555 1,512 2,877 4,560 6,944

0 0.6 1.5 2.9 4.6 6.9

read on T 0 29 34 61 83 102

read on S1 0 15.9 28.2 36.7 47.1 55.1

Dt source schema write on S1 0 421 724 1,052 1,407 1,721

0 0.4 0.7 1.1 1.4 1.7

read on S1 0 32 52 70 92 113

read on T 0 17 29 40 48 57

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 18 32 39 52 59

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

50% 50%

aux ratio 0 2 4 6 8 10 aux ratio

no redundancy Ds target schema write 0 495 1,272 2,307 3,593 5,399 0%

0 518 1,485 2,805 4,700 6,872 50%

0 479 1,262 2,269 3,605 5,059 100%
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0 0.5 1.3 2.3 3.6 5.1 100%
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x 1000

0 2 4 6 8 10

MERGE TABLE Ds source schema write on S1 0 552 1,587 2,889 4,750 6,845

0 0.6 1.6 2.9 4.8 6.8

read on S1 0 30 47 62 80 101

read on T 0 30 51 69 86 106

target schema write on T 0 629 1,681 2,994 4,791 6,970

0 0.6 1.7 3.0 4.8 7.0

read on T 0 30 48 68 87 105

read on S1 0 27 46 65 80 100

Dt source schema write on S1 0 495 921 1,256 1,620 1,963

0 0.5 0.9 1.3 1.6 2.0

read on S1 0 30 48 69 90 107

read on T 0 28 46 67 82 103

target schema write on T 0 670 1,639 3,086 4,871 6,883

0 0.6704 1.6391 3.0859 4.8706 6.883

read on T 0 29 49 69 86 104

read on S1 0 32 51 69 85 105

DM Ds to Dt s1 0 485 856 1,269 1,565 2,036

s2 0 10 10 14 11 10

t 0 1,333 4,395 8,293 13,694 21,429

total 0 2 5 10 15 23

Dt to Ds s1 0 542 1,589 2,959 4,980 6,940

s2 0 10 11 9 11 10

t 0 612 3,835 7,695 12,706 20,562

total 0 1 5 11 18 28

union/ selection
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SET DIFF x 1000

0 2 4 6 8 10

Ds source schema write on S1 0 312.72 590 877 1,086 1,329

0 0.3 0.6 0.9 1.1 1.3

read on S1 0 28.217 47 64 80 98

read on T 0 34.01 54 72 93 104 S2 has 10000 tuples

target schema write on T 0 322 598 777 1,083 1,459

0 0.3 0.6 0.8 1.1 1.5

read on T 0 32 50 65 86 104

read on S1 0 29 49 62 82 95

Dt source schema write on S1 0 445 745 1,086 1,391 1,623 S2 has 10000 tuples

0 0.4 0.7 1.1 1.4 1.6

read on S1 0 31 52 71 89 109

read on T 0 30 50 66 88 106

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 31 52 70 92 113

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15
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]Figure 5.5: Performance of writing and reading with update sharing by schema
evolution realized on the target-side database.



5.4 Evaluation 117

(e) set difference

(a) projection

(c) selection

(b) join

(d) union

DROP COL
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x 1000

0 2 4 6 8 10

DROP TABLE Ds source schema write on S1 0 346 708 1,087 1,437 1,798

0 0.3 0.7 1.1 1.4 1.8

projection read on S1 0 29 48 65 79 98

read on T 0 25 52 67 83 98

target schema write on T 0 679 1,836 3,492 5,756 8,394

0 0.7 1.8 3.5 5.8 8.4

read on T 0 28 48 63 83 101

read on S1 0 27 48 64 85 102

Dt source schema write on S1 0 704 1,404 2,048 2,738 3,318

0 0.7 1.4 2.0 2.7 3.3

read on S1 0 31 50 67 89 107

read on T 0 29 46 67 86 101

target schema write on T 0 736 2,087 4,185 6,687 9,531

0 0.7 2.1 4.2 6.7 9.5

read on T 0 29 49 65 84 104

read on S1 0 30 48 68 87 102

DM Ds to Dt s1 0 705 1,376 2,006 2,664 3,388

s2 0

t 0 1,595 4,587 9,307 15,523 22,660

total 0 2 6 11 18 26

Dt to Ds s1 0 364 706 1,043 1,386 1,720

s2 0

t 0 1,289 4,270 9,173 14,633 21,681

total 0 2 5 10 16 23

having 200 tuples in s2

complex 0 2 4 6 8 10 projected cols aux-c

B=X Ds target schema write 0 10

A=Y 0 1

0 9
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Dt target schema write 0 1,035 2,173 3,681 5,921 7,913 0/9 (10 LOC) 1

0 1,185 2,402 5,737 7,919 9,141 1/9 (10 LOC) 2

1,201 2,474 4,281 6,314 8,436

0 1,193 2,438 5,009 7,116 8,788

0 1,001 2,299 3,404 6,161 8,305 5/9 (6 LOC) 6

1,069 2,554 3,159 5,299 7,153

0 1,035 2,427 3,281 5,730 7,729

0 721 1,513 2,353 3,264 4,332 9/9 (2 LOC) 10

741 1,648 2,614 3,618 3,889

0 731 1,581 2,483 3,441 4,110
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JOIN TABLE x 1000

0 2 4 6 8 10

inj cond Ds source schema write on S1 0 278 589 898 1,092 1,258

B=X 0 0.3 0.6 0.9 1.1 1.3

read on S1 0 27 44 59 80 95

read on T 0 31 51 68 88 105 S2 has 10000 tuples

target schema write on T 0 2,633 4,926 7,880 10,215 12,471

0 2.6 4.9 7.9 10.2 12.5

read on T 0 29 51 68 87 110

read on S1 0 27 45 59 78 96

Dt source schema write on S1 0 955 1,710 1,981 2,585 2,904 S2 has 10000 tuples

0 1.0 1.7 2.0 2.6 2.9

read on S1 0 32 52 72 90 106

read on T 0 29 46 66 83 103

target schema write on T 0 6,547 11,319 19,611 34,542 60,122

0 6.5 11.3 19.6 34.5 60.1

read on T 0 28 47 69 84 103

read on S1 0 32 50 71 90 110

DM Ds to Dt s1 0 535 850 11,075 1,475 1,803

s2 0 746 1,292 1,866 2,460 2,891

t 0 11,075 42,370 72,453 150,755 235,021

total 0 12 45 85 155 240

Dt to Ds s1 0 312 588 785 1,127 1,400

s2 0 306 574 785 1,103 1,388

t 0 2,246 6,609 14,442 23,159 33,825

total 0 3 8 16 25 37

complex 0 0.5 1.0 1.5 2.0 2.5

B=X Ds target schema write 0 2,880 7916.9 17390 31210.66 48720.2

A=Y 0 2.9 7.9 17.4 31.2 48.7

read 0 12.84 20.022 27.636 35.66 41.789

10.91 19.026 27.404 31.587 38.358

11.74 20.076 27.148 30.95 41.511

0 11.829 19.708 27.396 32.73233 40.5527

Dt target schema write 0 4910.9 16303 36413 68732.89

0 4.9 16.3 36.4 68.7 0.0

read 9.705 16.403 22.902 27.405

11.196 17.786 21.667 28.597

9.345 16.028 21.086 28.088

0 10.082 16.739 21.885 28.03 #DIV/0!

条件が複雑になるとライトが遅くなる．

リードは大きく影響を受けない
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SPLIT TABLE x 1000

0 2 4 6 8 10

projection Ds source schema write on S1 0 530 1,474 2,885 4,732 6,814

0 0.5 1.5 2.9 4.7 6.8

read on S1 0 27 46 61 82 100

read on T 0 18 30 40 49 59

target schema write on T 0 555 1,512 2,877 4,560 6,944

0 0.6 1.5 2.9 4.6 6.9

read on T 0 29 34 61 83 102

read on S1 0 15.9 28.2 36.7 47.1 55.1

Dt source schema write on S1 0 421 724 1,052 1,407 1,721

0 0.4 0.7 1.1 1.4 1.7

read on S1 0 32 52 70 92 113

read on T 0 17 29 40 48 57

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 18 32 39 52 59

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

50% 50%

aux ratio 0 2 4 6 8 10 aux ratio

no redundancy Ds target schema write 0 495 1,272 2,307 3,593 5,399 0%

0 518 1,485 2,805 4,700 6,872 50%

0 479 1,262 2,269 3,605 5,059 100%

0 0.5 1.3 2.3 3.6 5.4 0%

0 0.5 1.5 2.8 4.7 6.9 50%

0 0.5 1.3 2.3 3.6 5.1 100%

Dt target schema write 0 513 1,278 2,431 4,013 5,717 0%

0 539 1,527 2,935 4,830 7,154 50%

0 476 1,275 2,365 3,726 5,328 100%

0 0.5 1.3 2.4 4.0 5.7 0%

0 0.5 1.5 2.9 4.8 7.2 50%

0 0.5 1.3 2.4 3.7 5.3 100%
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x 1000

0 2 4 6 8 10

MERGE TABLE Ds source schema write on S1 0 552 1,587 2,889 4,750 6,845

0 0.6 1.6 2.9 4.8 6.8

read on S1 0 30 47 62 80 101

read on T 0 30 51 69 86 106

target schema write on T 0 629 1,681 2,994 4,791 6,970

0 0.6 1.7 3.0 4.8 7.0

read on T 0 30 48 68 87 105

read on S1 0 27 46 65 80 100

Dt source schema write on S1 0 495 921 1,256 1,620 1,963

0 0.5 0.9 1.3 1.6 2.0

read on S1 0 30 48 69 90 107

read on T 0 28 46 67 82 103

target schema write on T 0 670 1,639 3,086 4,871 6,883

0 0.6704 1.6391 3.0859 4.8706 6.883

read on T 0 29 49 69 86 104

read on S1 0 32 51 69 85 105

DM Ds to Dt s1 0 485 856 1,269 1,565 2,036

s2 0 10 10 14 11 10

t 0 1,333 4,395 8,293 13,694 21,429

total 0 2 5 10 15 23

Dt to Ds s1 0 542 1,589 2,959 4,980 6,940

s2 0 10 11 9 11 10

t 0 612 3,835 7,695 12,706 20,562

total 0 1 5 11 18 28

union/ selection
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SET DIFF x 1000

0 2 4 6 8 10

Ds source schema write on S1 0 312.72 590 877 1,086 1,329

0 0.3 0.6 0.9 1.1 1.3

read on S1 0 28.217 47 64 80 98

read on T 0 34.01 54 72 93 104 S2 has 10000 tuples

target schema write on T 0 322 598 777 1,083 1,459

0 0.3 0.6 0.8 1.1 1.5

read on T 0 32 50 65 86 104

read on S1 0 29 49 62 82 95

Dt source schema write on S1 0 445 745 1,086 1,391 1,623 S2 has 10000 tuples

0 0.4 0.7 1.1 1.4 1.6

read on S1 0 31 52 71 89 109

read on T 0 30 50 66 88 106

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 31 52 70 92 113

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

complex
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x 1000

0 2 4 6 8 10

DROP TABLE Ds source schema write on S1 0 346 708 1,087 1,437 1,798

0 0.3 0.7 1.1 1.4 1.8

projection read on S1 0 29 48 65 79 98

read on T 0 25 52 67 83 98

target schema write on T 0 679 1,836 3,492 5,756 8,394

0 0.7 1.8 3.5 5.8 8.4

read on T 0 28 48 63 83 101

read on S1 0 27 48 64 85 102

Dt source schema write on S1 0 704 1,404 2,048 2,738 3,318

0 0.7 1.4 2.0 2.7 3.3

read on S1 0 31 50 67 89 107

read on T 0 29 46 67 86 101

target schema write on T 0 736 2,087 4,185 6,687 9,531

0 0.7 2.1 4.2 6.7 9.5

read on T 0 29 49 65 84 104

read on S1 0 30 48 68 87 102

DM Ds to Dt s1 0 705 1,376 2,006 2,664 3,388

s2 0

t 0 1,595 4,587 9,307 15,523 22,660

total 0 2 6 11 18 26

Dt to Ds s1 0 364 706 1,043 1,386 1,720

s2 0

t 0 1,289 4,270 9,173 14,633 21,681

total 0 2 5 10 16 23

having 200 tuples in s2

complex 0 2 4 6 8 10 projected cols aux-c

B=X Ds target schema write 0 10

A=Y 0 1

0 9

0 0.0 0.0 0.0 0.0 0.0 0 1

0 0.0 0.0 0.0 0.0 0.0 1 2

0 0.0 0.0 0.0 0.0 0.0 9 10

Dt target schema write 0 1,035 2,173 3,681 5,921 7,913 0/10 (10 LOC) 1

0 1,185 2,402 5,737 7,919 9,141 1/10 (10 LOC) 2

1,201 2,474 4,281 6,314 8,436

0 1,193 2,438 5,009 7,116 8,788

0 1,001 2,299 3,404 6,161 8,305 5/10 (6 LOC) 6

1,069 2,554 3,159 5,299 7,153

0 1,035 2,427 3,281 5,730 7,729

0 721 1,513 2,353 3,264 4,332 9/10 (2 LOC) 10

741 1,648 2,614 3,618 3,889

0 731 1,581 2,483 3,441 4,110

0 1.2 2.4 5.0 7.1 8.8 1/10 (10 LOC)

0 1.0 2.3 3.4 6.2 8.3 5/10 (6 LOC)

0 1.1 2.6 3.2 5.3 7.2 9/10 (2 LOC)

read 0 32.292 54.233 75.146 96.927 115.16 0

32.351 53.971 72.787 97.765 110.86 11

32.303 54.183 74.069 97.682 117.36 55

33.669 54.172 74.692 95.027 114.19 100
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Figure 5.6: Performance of writing and reading with update sharing by backward
update sharing realized on the target-side database.
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Performance of Data Migration

Figure 5.7 shows the performance of data migration between the source-side database
instance DB and the target-side database instance DC by the method explained in
Section 5.3. Experiments are performed based on co-existence strategies experimented
in Figure 4.4 and Figure 5.6. Note that the scale of writing time in Figure 5.6 (b) is
di�erent from others.

Results show a non-linear relationship between the increase of migrated tuples
and the increase of the execution time of data migration regardless of co-existence
strategies and a direction of data migration. A data migration consists of reading
(computing) view instances of schemas and writing (inserting) them to a database.
However, results of data migrations show a longer execution time than a summation of
their execution time shown in Figure 4.3, 4.4, 5.5, and 5.6. Since ?DC of the second
step in a data migration refers to the database resulted in the �rst step, e.g., DC<?C in
Figure 5.3 and DC<?B in Figure 5.4, its execution time shows non-linear increase against
increase of executed tuples and becomes longer than results of writing in Figure 4.3,
4.4, 5.5, and 5.6, in which writing (?DC ) refers to an empty database 2.

2Exceptions are (b) and (e) of Figure 4.3, 4.4, 5.5, and 5.6 in which the base relation and auxiliary
relations have tuples in advance so that the view instance (2 has 10,000 tuples. However, these base and
auxiliary relations do not contain tuples to consist of tuples of the view instance (1 while DC<?

B or DC<?

C

has such tuples.



5.4 Evaluation 119

(e) set difference

(a) projection

(c) selection

(b) join

(d) union
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x 1000

0 2 4 6 8 10

DROP TABLE Ds source schema write on S1 0 346 708 1,087 1,437 1,798

0 0.3 0.7 1.1 1.4 1.8

projection read on S1 0 29 48 65 79 98

read on T 0 25 52 67 83 98

target schema write on T 0 679 1,836 3,492 5,756 8,394

0 0.7 1.8 3.5 5.8 8.4

read on T 0 28 48 63 83 101

read on S1 0 27 48 64 85 102

Dt source schema write on S1 0 704 1,404 2,048 2,738 3,318

0 0.7 1.4 2.0 2.7 3.3

read on S1 0 31 50 67 89 107

read on T 0 29 46 67 86 101

target schema write on T 0 736 2,087 4,185 6,687 9,531

0 0.7 2.1 4.2 6.7 9.5

read on T 0 29 49 65 84 104

read on S1 0 30 48 68 87 102

DM Ds to Dt s1 0 705 1,376 2,006 2,664 3,388

s2 0

t 0 1,595 4,587 9,307 15,523 22,660

total 0 2 6 11 18 26

Dt to Ds s1 0 364 706 1,043 1,386 1,720

s2 0

t 0 1,289 4,270 9,173 14,633 21,681

total 0 2 5 10 16 23

having 200 tuples in s2

complex 0 2 4 6 8 10 projected cols aux-c

B=X Ds target schema write 0 10

A=Y 0 1

0 9

0 0.0 0.0 0.0 0.0 0.0 0 1

0 0.0 0.0 0.0 0.0 0.0 1 2

0 0.0 0.0 0.0 0.0 0.0 9 10

Dt target schema write 0 1,035 2,173 3,681 5,921 7,913 0/9 (10 LOC) 1

0 1,185 2,402 5,737 7,919 9,141 1/9 (10 LOC) 2

1,201 2,474 4,281 6,314 8,436

0 1,193 2,438 5,009 7,116 8,788

0 1,001 2,299 3,404 6,161 8,305 5/9 (6 LOC) 6

1,069 2,554 3,159 5,299 7,153

0 1,035 2,427 3,281 5,730 7,729

0 721 1,513 2,353 3,264 4,332 9/9 (2 LOC) 10

741 1,648 2,614 3,618 3,889

0 731 1,581 2,483 3,441 4,110

0 1.2 2.4 5.0 7.1 8.8 1/9 (10 LOC)
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0 1.1 2.6 3.2 5.3 7.2 9/9 (2 LOC)

read 0 32.292 54.233 75.146 96.927 115.16 0

32.351 53.971 72.787 97.765 110.86 11

32.303 54.183 74.069 97.682 117.36 55
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JOIN TABLE x 1000

0 2 4 6 8 10

inj cond Ds source schema write on S1 0 278 589 898 1,092 1,258

B=X 0 0.3 0.6 0.9 1.1 1.3

read on S1 0 27 44 59 80 95

read on T 0 31 51 68 88 105 S2 has 10000 tuples

target schema write on T 0 2,633 4,926 7,880 10,215 12,471

0 2.6 4.9 7.9 10.2 12.5

read on T 0 29 51 68 87 110

read on S1 0 27 45 59 78 96

Dt source schema write on S1 0 955 1,710 1,981 2,585 2,904 S2 has 10000 tuples

0 1.0 1.7 2.0 2.6 2.9

read on S1 0 32 52 72 90 106

read on T 0 29 46 66 83 103

target schema write on T 0 6,547 11,319 19,611 34,542 60,122

0 6.5 11.3 19.6 34.5 60.1

read on T 0 28 47 69 84 103

read on S1 0 32 50 71 90 110

DM Ds to Dt s1 0 535 850 11,075 1,475 1,803

s2 0 746 1,292 1,866 2,460 2,891

t 0 11,075 42,370 72,453 150,755 235,021

total 0 12 45 85 155 240

Dt to Ds s1 0 312 588 785 1,127 1,400

s2 0 306 574 785 1,103 1,388

t 0 2,246 6,609 14,442 23,159 33,825

total 0 3 8 16 25 37

complex 0 0.5 1.0 1.5 2.0 2.5

B=X Ds target schema write 0 2,880 7916.9 17390 31210.66 48720.2

A=Y 0 2.9 7.9 17.4 31.2 48.7

read 0 12.84 20.022 27.636 35.66 41.789

10.91 19.026 27.404 31.587 38.358

11.74 20.076 27.148 30.95 41.511

0 11.829 19.708 27.396 32.73233 40.5527

Dt target schema write 0 4910.9 16303 36413 68732.89

0 4.9 16.3 36.4 68.7 0.0

read 9.705 16.403 22.902 27.405

11.196 17.786 21.667 28.597

9.345 16.028 21.086 28.088

0 10.082 16.739 21.885 28.03 #DIV/0!

条件が複雑になるとライトが遅くなる．

リードは大きく影響を受けない
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x 1000

0 2 4 6 8 10

MERGE TABLE Ds source schema write on S1 0 552 1,587 2,889 4,750 6,845

0 0.6 1.6 2.9 4.8 6.8

read on S1 0 30 47 62 80 101

read on T 0 30 51 69 86 106

target schema write on T 0 629 1,681 2,994 4,791 6,970

0 0.6 1.7 3.0 4.8 7.0

read on T 0 30 48 68 87 105

read on S1 0 27 46 65 80 100

Dt source schema write on S1 0 495 921 1,256 1,620 1,963

0 0.5 0.9 1.3 1.6 2.0

read on S1 0 30 48 69 90 107

read on T 0 28 46 67 82 103

target schema write on T 0 670 1,639 3,086 4,871 6,883

0 0.6704 1.6391 3.0859 4.8706 6.883

read on T 0 29 49 69 86 104

read on S1 0 32 51 69 85 105

DM Ds to Dt s1 0 485 856 1,269 1,565 2,036

s2 0 10 10 14 11 10

t 0 1,333 4,395 8,293 13,694 21,429

total 0 2 5 10 15 23

Dt to Ds s1 0 542 1,589 2,959 4,980 6,940

s2 0 10 11 9 11 10

t 0 612 3,835 7,695 12,706 20,562

total 0 1 5 11 18 28

union/ selection
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SET DIFF x 1000

0 2 4 6 8 10

Ds source schema write on S1 0 312.72 590 877 1,086 1,329

0 0.3 0.6 0.9 1.1 1.3

read on S1 0 28.217 47 64 80 98

read on T 0 34.01 54 72 93 104 S2 has 10000 tuples

target schema write on T 0 322 598 777 1,083 1,459

0 0.3 0.6 0.8 1.1 1.5

read on T 0 32 50 65 86 104

read on S1 0 29 49 62 82 95

Dt source schema write on S1 0 445 745 1,086 1,391 1,623 S2 has 10000 tuples

0 0.4 0.7 1.1 1.4 1.6

read on S1 0 31 52 71 89 109

read on T 0 30 50 66 88 106

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 31 52 70 92 113

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

complex
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SPLIT TABLE x 1000

0 2 4 6 8 10

projection Ds source schema write on S1 0 530 1,474 2,885 4,732 6,814

0 0.5 1.5 2.9 4.7 6.8

read on S1 0 27 46 61 82 100

read on T 0 18 30 40 49 59

target schema write on T 0 555 1,512 2,877 4,560 6,944

0 0.6 1.5 2.9 4.6 6.9

read on T 0 29 34 61 83 102

read on S1 0 15.9 28.2 36.7 47.1 55.1

Dt source schema write on S1 0 421 724 1,052 1,407 1,721

0 0.4 0.7 1.1 1.4 1.7

read on S1 0 32 52 70 92 113

read on T 0 17 29 40 48 57

target schema write on T 0 334 643 947 1,217 1,556

0 0.3 0.6 0.9 1.2 1.6

read on T 0 29 49 67 89 102

read on S1 0 18 32 39 52 59

DM Ds to Dt s1 0 359 683 960 1,242 1,561

s2 0 7 6 7 8 7

t 0 1,161 3,650 7,192 11,755 19,257

total 0 2 4 8 13 21

Dt to Ds s1 0 305 511 810 1,082 1,373

s2 0 6 6 5 5 6

t 0 836 2,596 5,628 9,340 13,259

total 0 1 3 6 10 15

50% 50%

aux ratio 0 2 4 6 8 10 aux ratio

no redundancy Ds target schema write 0 495 1,272 2,307 3,593 5,399 0%
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Figure 5.7: Performance of data migration between the source-side database DB and the
target-side database DC .
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5.4.3 Discussion

Table 5.1 shows that the benchmark co-existence strategies mentioned above are
describable by the proposed DSL, and BXs to realize them are automatically derived.
While the existing work prede�nes auxiliary relation names for SMO’s strategies on
a one-by-one basis, the proposed method realizes any co-existence strategies on a
target-side database with systematically derived auxiliary relation names by Algorithm
5.1 from a given co-existence strategy.

Figure 5.5 and Figure 5.6 show that the sampled co-existence strategies from
Table 5.1 are realized by sharing updates between view instances of schemas based
on the derived BXs. The performance of reading is almost the same regardless of
strategies. However, in some co-existence strategies, the performance of writing is
much slower than reading and causes non-linear increases of execution time against
the increase of executed tuples. Figure 5.6 (f) shows that the performance of writing is
varied by rules of backward update sharing for schema evolution by projection even
though the same type of auxiliary relation is utilized. However, its variation is smaller
than the variation of the execution time of writing by various co-existence strategies.
These results suggest that improving performance for the writing on view instances of
target schema makes the proposed method more practical.

Figure 5.5 shows that the derived BXs realize data migrations between the source-
side database and the target-side database. The result reveals that execution time of
data migration is a non-linear increase against the number of executed tuples because
the referred database by ?DC (writing) is not empty. Again, it suggests that improving
performance for the writing on view instances of target schema would contribute to
more practical usefulness.

5.5 Related Work

Almost related work for the realization of co-existence strategy on the target-side
database is common with related work introduced in Chapter 4. This section shows
related work about complement when a transformation from a database to a view
instance discards information.

A data warehouse is an integrated and time-varying collection of data from
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multiple source databases. To maintain a data warehouse e�ciently by getting only
updates of source databases without querying all data, a data warehouse needs to keep
uncollected data for future updates. For example, dangling tuples of one out of two
relations should be separately kept when a data warehouse collects data by join of
two relations. Halevy [30] proposes a data warehouse based on a materialized view.
Then, Laurent [45] proposes a methodology to derive minimal auxiliary views as
complements to maintain uncollected data for e�cient maintenance of data warehouse.
Even though there is a gap between a data warehouse that partially collects data of
each database and the view-based co-existence schemas that provides a part of the
database to each view instance of schemas, a notion of auxiliary view for uncollected
data is similar to a notion of auxiliary relation for unshared data.

Several researchers have investigated the complement in view update problem
[8, 22, 47, 46]. In bidirectional transformation, Matsuda et al. [51] propose a methodology
to derive ?DC from 64C by deriving a view complement function accompanying a
transformation of tree-structured data.

In this chapter, based on a relational database, we propose a methodology to derive
the auxiliary relation as complement so that projected away attributes by schema
evolution are kept, and the view instance of source schema can be computed from the
base relation corresponding to the view instance of target schema and the auxiliary
relation as a complement.
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6
Conclusion
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This thesis presented a methodology to make the co-existence of relational database
schemas programmable. First, we presented the DSL to make co-existence strategies
describable. We also presented the consistency of updates and its veri�cation method so
that a described co-existence strategy does not cause additional updates when updates
are shared between relations of schemas.

Second, we presented a method to realize co-existence strategies described by
the DSL on the source-side database by the view-based approach. A source-side
database schema is systematically derived from a given co-existence strategy. Then,
BXs between the source-side database and view instances of source schema and
target schema are derived. We implemented the proposed method and evaluated
its usefulness. The results show that co-existence strategies de�ned in the existing
work [34] and other strategies are describable by the proposed DSL, BXs to realize
them are automatically derived, and the described co-existence strategies are realized
based on the derived BXs by sharing updates between view instances of source schema
and target schema.

Third, we presented a method to realize co-existence strategies described by the
DSL on the target-side database instead of the source-side database. The target-side
database schema is systematically derived from a given co-existence strategy. Then,
BXs between the target-side database and view instances of source schema and target
schema are derived. We implemented the proposed method and evaluated its usefulness.
The results show that the described co-existence strategies are realized based on the
derived BXs by sharing updates between view instances of source schema and target
schema.

Fourth, we presented the method for data migration between the source-side
database and the target-side database based on the derived BXs. We evaluated its
usefulness by showing the execution time of data migration.

Possible future works are considered from each achievement of this thesis. The
handling of more than two relations of target schema is considered about DSL. For
example, duplicated tuples can appear in relations of target schema if a relation
of source schema is evolved to two relations of target schema by selection with
overlapped conditions. To specify backward update sharing for such duplicated tuples,
a description of backward update sharing must refer to multiple relations of target
schema. DSL would be designed by considering reasonable restrictions to handle
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multiple relations of target schema.
About deriving BXs to realize a co-existence strategy on the source-side or the

target-side database, performance improvement of wiring will make the proposed
methods more practical. In our proposed method, the derived BXs compute whole a
view instance many times to compute sets of inserted and deleted tuples as di�erences
between an updated view instance and a computed view instance from a database. If we
utilize a technique of incrementalization in the database community, the performance
of writing would be improved. Further experiments and analysis with large data sizes
are also required for suitable design of performance improvement.

About data migration, performance improvement will make the proposed methods
more practical. Since our method utilizes views to migrate data between databases,
mapping to directly transform the source-side database to the target-side database and
vice versa would contribute to the performance.
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A
Proofs

A.1 Proof of Lemma 4.1

We prove this lemma by induction. Attributes ®. of relations are omitted in below.

Let) (=) be a view instance of target schema at = step. ) (=) is updated from the view
instance ) (= − 1) at = − 1 step. In the same manner, let �(8 (=), �;>BC)

(=), and �608=
)
(=)

be base relations for each 8 (8 ∈ [1, =]) and auxiliary relations at = step that �(8 (=),
�;>BC
)
(=), and�608=

)
(=) are updated from �(8 (= − 1), �;>BC)

(= − 1), and�608=
)
(= − 1) at = − 1

step respectively. Given a view instance ) (=), ?DCCA6 transforms �(8 (= − 1) for each
8 (8 ∈ [1, =]), �;>BC

)
(= − 1), and �608=

)
(= − 1) into updated �(8 (=), �;>BC)

(=), and �608=
)
(=).

Let BS(=) be union of base relations �(8 (=) for all 8 . Let ) 4E> (=) be ) 4E> (=) = 5 (BS(=))
where 5 is a transformation of schema evolution.

(Base) As step 0, let �;>BC
)
(0) and �608=

)
(0) be empty set. It is obvious the follow-
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ing equation is satis�ed.

�;>BC) (0) ∩�
608=

)
(0) = ∅

(Induction) As an induction hypothesis, suppose �;>BC
)
(= − 1) and �608=

)
(= − 1) are

disjoint and satisfy the following equation.

�;>BC) (= − 1) ∩�
608=

)
(= − 1) = ∅

We show that �;>BC
)
(=) ∩�608=

)
(=) = ∅ is satis�ed.

�;>BC) (=) ∩�
608=

)
(=) = {Apply delta relations to �;>BC) (= − 1) and �608=

)
(= − 1)}(

(�;>BC) (= − 1) ∩ ¬Δ
−
�;>BC
)

) ∪ Δ+
�;>BC
)

)
∩

(
(�608=

)
(= − 1) ∩ ¬Δ−

�
608=

)

) ∪ Δ+
�
608=

)

)
= {Substitute transformations to Δ+

�;>BC
)

,Δ−
�;>BC
)

,Δ+
�
608=

)

, and Δ−
�
608=

)

de�ned in Algorithm 4.2 by replacing updated ) ′ to ) (=) and

updated ) ′′ to ) ′′(=).}( (
�;>BC) (= − 1) ∩ ¬(�

;>BC
) (= − 1) ∩ ¬) (=))

)
∪ () (=) ∩ ¬) ′′(=) ∩ ¬�;>BC) (= − 1))

)
∩

( (
�
608=

)
(= − 1) ∩ ¬((�608=

)
(= − 1) ∩) (=))

∪ ((�608=
)
(= − 1) ∩ ¬) ′′(=))

)
∪ (¬) (=) ∩) ′′(=) ∩ ¬�608=

)
(= − 1))

)
= {Deformation of a formula by set operation and applying

� ∩ ¬� = ∅}
∅

Thus �;>BC
)
∩�608=

)
= ∅. �
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A.2 Proof of Lemma 4.2

Since �608=
)
( ®. ) ⊆ ) 4E> ( ®. ) is equivalent to �608=

)
( ®. ) ∩ ¬) 4E> ( ®. ) = ∅, we prove the

following equation by induction.

�
608=

)
( ®. ) ∩ ¬) 4E> ( ®. ) = ∅

Attributes ®. of relations are omitted in below.
Let ) (=) be a view instance of target schema at = step. ) (=) is updated from the

view instance ) (= − 1) at = − 1 step. In the same manner, let �(8 (=) and �608=
)
(=) be

base relations for each 8 (8 ∈ [1, =]) and auxiliary relation at = step that �(8 (=) and
�
608=

)
(=) are updated from �(8 (= − 1) and �608=

)
(= − 1) at = − 1 step respectively. Given

a view instance ) (=), ?DCCA6 transforms an auxiliary relation �608=
)
(= − 1) and base

relations �(8 (= − 1) for each 8 (8 ∈ [1, =]) into updated �608=
)
(=) and �(8 (=). Let BS(=)

be union of base relations �(8 (=) for all 8 and ) 4E> (=) be ) 4E> (=) = 5 (BS(=)) where 5 is
a transformation of schema evolution. Since Algorithm 4.2 de�nes ) ′′ as a result of
schema evolution 5 from the updated base relations �(8 ′ for all 8 and �(8 ′ is expressed
as �(8 (=), ) ′′ is equivalent to ) 4E> (=).

(Base) As step 0, let �608=
)
(0) and �(8 (0) for all 8 be empty set. Then BS(0) is empty set.

) 4E> (0) is also empty set because a result of transformation 5 from empty set BS(0) is
empty set. Now, it is obvious the following equation is satis�ed.

�
608=

)
(0) ∩ ¬) 4E> (0) = ∅

(Induction) As an induction hypothesis, suppose the following equation.

�
608=

)
(= − 1) ∩ ¬) 4E> (= − 1) = ∅.

We show that �608=
)
(=) ∩ ¬) 4E> (=) = ∅ is satis�ed.

�
608=

)
(=) ∩ ¬) 4E> (=) = {Apply delta relations to �608=

)
(= − 1)}

((�608=
)
(= − 1) ∩ ¬Δ−

�
608=

)

) ∪ Δ+
�
608=

)

) ∩ ¬) 4E> (=)
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= {Substitute transformations to Δ+
�
608=

)

, and Δ−
�
608=

)

de�ned in

Algorithm 4.2 by replacing updated ) ′ to ) (=) and ) ′′ to

) 4E> (=).}( (
�
608=

)
(= − 1)∩

¬((�608=
)
(= − 1) ∩) (=)) ∪ ((�608=

)
(= − 1) ∩ ¬) 4E> (=))

)
∪ (¬) (=) ∩) 4E> (=) ∩ ¬�608=

)
(= − 1))

)
∩ ¬) 4E> (=)

= {Deformation of a formula by set operation and applying

� ∩ ¬� = ∅}
∅

Thus �608=
)
∩ ¬) 4E> = ∅. �

A.3 Proof of Proposition 4.3

First, we prove the following GETPUTis satis�ed.

?DCCA6 (DB, 64CCA6 (DB)) = DB

where the database DB is union of the base relation �(8 for all 8 (8 ∈ [1, =]) and auxiliary
relations �;>BC

)
and �608=

)
. We prove GETPUT by showing a result of ?DCCA6 after 64CCA6

does not update the base relations and the auxiliary relations of the database. Since a
result of 64CCA6 is not updated in the proof of GETPUT, let ) ′( ®. ) be ) ( ®. ) as a result of
schema evolution. The following shows that Δ+

)
( ®. ) and Δ−

)
( ®. ) become empty set

when ) ′( ®. ) = ) ( ®. ) is substituted into transformations to Δ+
)
( ®. ) and Δ−

)
( ®. ) de�ned in

Algorithm 4.2. Note that attributes are omitted if all relations in a formula have the
same attributes.

Δ+) = {De�nition in Algorithm 4.2}
) ′ ∩ ¬)

= {Substitute ) ′ = ) }
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) ∩ ¬)
= {� ∩ ¬� = ∅}
∅

Δ−) = {De�nition by Algorithm 4.2}
¬) ′ ∩)

= {Substitute ) ′ = ) }
¬) ∩)

= {� ∩ ¬� = ∅}
∅

When Δ+
)
( ®. ) and Δ−

)
( ®. ) are empty sets, backward update transformation does not

transform anything to Δ+
(8

and Δ−
(8

as inserted and deleted tuples against relations (8 of
source schema for each 8 (8 ∈ [1, =]). Since rules of A10B4 are transformations to Δ+

�(8

and Δ−
�(8

against the base relation �(8 based on backward update transformation, Δ+
�(8

and Δ−
�(8

are empty sets when Δ+
)
( ®. ) and Δ−

)
( ®. ) are empty set. Thus base relations �(8

are not updated.

When base relations are not updated, ) ′′( ®. ) is equivalent to ) 4E> ( ®. ) as a result of
schema evolution from the non-updated base relations. Thus ) ′′( ®. ) = ) 4E> ( ®. ). The
following shows that Δ+

�;>BC
)

, Δ−
�;>BC
)

, Δ+
�
608=

)

, and Δ−
�
608=

)

are empty set when ) ′( ®. ) = ) ( ®. )

and ) ′′( ®. ) = ) 4E> ( ®. ) are substituted into transformations to them de�ned in the
Algorithm 4.2.

Δ+
�;>BC
)

= {De�nition in Algorithm 4.2}

) ′ ∩ ¬) ′′ ∩ ¬�;>BC)

= {) ′ = ),) ′′ = ) 4E>}
) ∩ ¬) 4E> ∩ ¬�;>BC)

= {) = () 4E> ∩ ¬�608=
)
) ∪�;>BC) by Algorithm 4.2}

(() 4E> ∩ ¬�608=
)
) ∪�;>BC) ) ∩ ¬)

4E> ∩ ¬�;>BC)

= {Deformation of a formula by set operation}
() 4E> ∩ ¬�608=

)
∩ ¬) 4E> ∩ ¬�;>BC) ) ∪ (�

;>BC
) ∩ ¬) 4E> ∩ ¬�;>BC) )
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= {� ∩ ¬� = ∅}
∅

Δ−
�;>BC
)

= {De�nition in Algorithm 4.2}

�;>BC) ∩ ¬) ′

= {) ′ = ) }
�;>BC) ∩ ¬)

= {) = () 4E> ∩ ¬�608=
)
) ∪�;>BC) by Algorithm 4.2}

�;>BC) ∩ ¬(() 4E> ∩ ¬�608=
)
) ∪�;>BC) )

= {De Morgan’s laws}
�;>BC) ∩ (¬() 4E> ∪�608=

)
) ∩ ¬�;>BC) )

= {� ∩ ¬� = ∅}
∅

Δ+
�
608=

)

= {De�nition in Algorithm 4.2}

¬) ′ ∩) ′′ ∩ ¬�608=
)

= {) ′ = ),) ′′ = ) 4E>}
¬) ∩) 4E> ∩ ¬�608=

)

= {) = () 4E> ∩ ¬�608=
)
) ∪�;>BC) by Algorithm 4.2}

¬(() 4E> ∩ ¬�608=
)
) ∪�;>BC) ) ∩)

4E> ∩ ¬�608=
)

= {Deformation of a formula by set operation}
(¬) 4E> ∩ ¬�608=

)
∩) 4E> ∩ ¬�608=

)
) ∪ (�608=

)
∩ ¬�;>BC) ∩) 4E> ∩ ¬�608=

)
)

= {� ∩ ¬� = ∅}
∅

Δ−
�
608=

)

= {De�nition in Algorithm 4.2}

(�608=
)
∩) ′) ∪ (�608=

)
∩ ¬) ′′)

= {) ′ = ),) ′′ = ) 4E>}
(�608=

)
∩) ) ∪ (�608=

)
∩ ¬) 4E>)

= {Deformation of a formula by set operation}
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(�608=
)
∩�;>BC) ) ∪ (�

608=

)
∩ ¬) 4E>)

= {Lemma 4.1 and Lemma 4.2}
∅

Thus auxiliary relations �;>BC
)

and �608=
)

are not updated. Since both base relations and
auxiliary relations are not updated, GETPUT is satis�ed.

Second, we prove the following PUTGET is satis�ed.

64CCA6 (?DCCA6 (DB,) ′)) = ) ′

A result of ?DCCA6 (DB,) ′) is the updated database. The updated database is union of
the updated base relations (8 ′ for all 8 (8 ∈ [1, =]) and the updated auxiliary relations
�;>BC
)

′ and �608=
)

′. PUTGET is proved as follows.

64CCA6 (?DCCA6 (DB,) ′)) = {De�nition of 64CCA6 in Algorithm 4.2 and ) ′′( ®. ) is a result of

schema evolution from the updated base relations}
() ′′ ∩ ¬�608=

)

′) ∪�;>BC)

′

= {Substitute de�nition of �;>BC)

′ and �608=
)

′ in Algorithm 4.2}
() ′′ ∩ ¬((�608=

)
∩ ¬Δ−

�
608=

)

) ∪ Δ+
�
608=

)

))

∪ ((�;>BC) ∩ ¬Δ−
�;>BC
)

) ∪ Δ+
�;>BC
)

)

= {Substitute de�nition of Δ+
�;>BC
)

,Δ−
�;>BC
)

,Δ+
�
608=

)

and Δ−
�
608=

)

in Algorithm 4.2}
() ′′ ∩ ¬((�608=

)
∩ ¬((�608=

)
∩) ′) ∪ (�608=

)
∩ ¬) ′′)))∪

(¬) ′ ∩) ′′ ∩ ¬�608=
)
))) ∪ ((�;>BC) ∩ ¬(�;>BC) ∩ ¬) ′))∪

() ′ ∩ ¬) ′′ ∩ ¬�;>BC) ))
= {Deformation of a formula by set operation}
) ′ ∩ () ′′ ∪�;>BC) ∪ ¬) ′′) ∩ () ′′ ∪�;>BC) ∪ ¬�;>BC) )

= {� ∩ (� ∪ ¬�) = �}
) ′
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Thus PUTGET is satis�ed. �

A.4 Proof of Proposition 4.4

First, we prove the following GETPUT is satis�ed.

?DCBA2.8 (DB, 64CBA2.8 (DB)) = DB

where the database DB is union of the base relation �(8 ( ®-8) for all 8 (8 ∈ [1, =]) and the
auxiliary relations �;>BC

)
( ®. ) and �608=

)
( ®. ). We prove GETPUT by showing a result of

?DCBA2.8 after 64CBA2.8 does not update the base relations and the auxiliary relations of the
database. 64CBA2.8 de�ned in Algorithm 4.3 transforms the base relation �(8 ( ®-8) into the
view instance (8 ( ®-8) as (8 ( ®-8) = �(8 ( ®-8). Since a result of 64CBA2.8 is not updated in the
proof of GETPUT, the update view instance (8 ′( ®-8) appearing in ?DCBA2.8 is equivalent to
(8 ( ®-8) as a result of 64CBA2.8 . Thus, (8 ′( ®-8) = (8 ( ®-8) = �(8 ( ®-8). The following shows that
Δ+
�(8
( ®-8) and Δ−

�(8
( ®-8) for each 8 become empty set when (8 ′( ®-8) = �(8 ( ®-8) is substituted

into transformations to Δ+
�(8
( ®-8) and Δ−

�(8
( ®-8) de�ned in Algorithm 4.3. Note that

attributes are omitted if all relations in a formula have the same attributes.

Δ+�(8
= {De�nition in Algorithm 4.3}

(8
′ ∩ ¬�B8

= {(8 ′ = �(8 }
�(8 ∩ ¬�(8

= {� ∩ ¬� = ∅}
∅

Δ−�(8
= {De�nition in Algorithm 4.3}

¬(8 ′ ∩ �B8
= {(8 ′ = �(8 }
¬�(8 ∩ �(8

= {� ∩ ¬� = ∅}
∅
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Algorithm 4.3 de�nes that ) 4E> ( ®. ) is a result of schema evolution from the base
relations and ) 4E>′( ®. ) is a result of schema evolution from the updated base relations.
Since each base relation �(8 is not updated in the proof of GETPUT,) 4E> ( ®. ) is equivalent
to ) 4E>′( ®. ). Based on that, the following shows that Δ+

) 4E> ( ®. ) and Δ−
) 4E> ( ®. ) become

empty set when ) 4E> ( ®. ) = ) 4E>′( ®. ) is substituted into transformations to Δ+
)
( ®. ) and

Δ−
)
( ®. ) de�ned in Algorithm 4.3.

Δ+) 4E> = {De�nition in Algorithm 4.3}
) 4E>′ ∩ ¬) 4E>

= {) 4E> = ) 4E>′ and � ∩ ¬� = ∅}
∅

Δ−) 4E> = {De�nition in Algorithm 4.3}
¬) 4E>′ ∩) 4E>

= {) 4E> = ) 4E>′ and � ∩ ¬� = ∅}
∅

By substituting Δ+
) 4E> ( ®. ) = ∅ and Δ−

) 4E> ( ®. ) = ∅ into a transformation to Δ−
�;>BC
)

( ®. )
de�ned in the algorithm, it becomes empty set.

Δ−
�;>BC
)

= {De�nition in Algorithm 4.3}

(Δ+) 4E> ∩�;>BC) ) ∪ (Δ
−
) 4E> ∩�;>BC) )

= {Δ+) 4E> = ∅ and Δ−) 4E> = ∅}
∅

The algorithm does not specify a transformation into the updated auxiliary relation
�
608=

)

′. Therefore, 64CBA2.8 after ?DCBA2.8 does not update the base relations and the
auxiliary relations of the database. Thus GETPUT is satis�ed.

Second, we prove the following PUTGET is satis�ed.

64CBA2.8 (?DCBA2.8 (DB, (8 ′)) = (8 ′

Algorithm 4.3 de�nes ?DCBA2.8 consisting of identity mapping from the view instance
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(8 ( ®-8) to the base relation �(8 ( ®-8) and a transformation from the view instance (8 ( ®-8)
to the auxiliary relation �;>BC

)
. The algorithm de�nes 64CBA2.8 as identity mapping from

the base relation �(8 ( ®-8) to the view instance (8 ( ®-8). Therefore, ?DCBA2.8 transforms the
updated view instance (8 ′( ®-8) to the updated base relation �(8 ′( ®-8) and the auxiliary
relation �;>BC

)

′( ®. ) and then 64CBA2.8 transforms the updated base relation �(8 ′( ®-8) into
the updated view instance (8 ′( ®-8). Thus PUTGET is satis�ed. �

A.5 Proof of Theorem 4.5

Suppose a co-existence strategy strategy satisfying the consistency of updates between
relations (8 ( ®-8) (8 ∈ [1, =]) of source schema and a relation ) ( ®. ) of target schema.
Recall that schema evolution is speci�ed as a transformation 5 from source schema
instance S to a relation ) ( ®. ).

) ( ®. ) = 5 (S) (A.1)

Source schema instance S is union of relations (8 ( ®-8) (8 ∈ [1, =]) of source schema.
�-BA2.8 for all 8 are derived by Algorithm 4.3 from the strategy. �-CA6 is derived by

Algorithm 4.2 from the strategy. ?DCBA2.8 of �-BA2.8 for each 8 transforms the updated
view instance (8 ′ to the updated source-side database DB ′. 64CCA6 of �-CA6 transforms
the database DB to the view instance ) . The derived BXs realize schema evolution of
a co-existence strategy if the following two cases are satis�ed: as an initial state, a
transformation from union of (8 to ) via DB by �-BA2.8 for all 8 and �-CA6 is equivalent
to a result of the transformation by schema evolution, and as forward update sharing,
a transformation of updates against (8 to updates against ) by �-BA2.8 and �-CA6 is
equivalent to a result of update sharing by schema evolution.

First, it is proved that a result of schema evolution is equivalent to a result of
64CCA6 of �-CA6 after ?DCBA2.8 of �-BA2.8 for all 8 from a pair of the view instance (8 ( ®-8)
and the database when the base relations �(8 ( ®-8) for all 8 and the auxiliary relations
�;>BC
)
( ®. ) and �608=

)
( ®. ) are empty set as the initial state. Algorithm 4.3 de�nes ?DCBA2.8

that consists of a transformation from the updated view instance (8 ′( ®-8) to the update
base relation �(8 ′( ®-8) as identity mapping and a transformation from the updated
view instance (8 ′( ®-8) to the updated auxiliary relation �;>BC

)

′( ®. ) by applying a set of
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deleted tuples Δ−
�;>BC
)

( ®. ) to the original auxiliary relation �;>BC
)
( ®. ). Therefore, when the

view instance is (8 ( ®-8) and the base relations and the auxiliary relations are empty
set, ?DCBA2.8 transforms (8 ( ®-8) into the base relation �(8 ( ®-8) as (8 ( ®-8) = �(8 ( ®-8) and the
auxiliary relations as empty set.

Algorithm 4.2 de�nes 64CCA6 that transforms the base relations and the auxiliary
relations of the database into the view instance ) ( ®. ) as follows:

) ( ®. ) = () 4E> ( ®. ) ∩ ¬�608=
)
( ®. )) ∪�;>BC) ( ®. ) (A.2)

where ) 4E> ( ®. ) is de�ned by the algorithm as a result of the transformation 5 from
union of the base relations �(8 (8 ∈ [1, =]). Now (8 ( ®-8) = �(8 ( ®-8) for all 8 , and �;>BC

)
( ®. )

and �608=
)
( ®. ) are empty sets. Therefore, left-hand side of equation (A.2) is equivalent to

left-hand side of equation (A.1) as 5 (S). Thus, a result of schema evolution is equivalent
to a result of 64CCA6 after ?DCBA2.8 for all 8 from a pair of the view instance (8 ( ®-8) and the
database when the base relations and the auxiliary relations of the database are empty
set.

Second, it is proved that a transformation of updates against (8 to updates against)
by 64CCA6 of �-CA6 after ?DCBA2.8 of �-BA2.8 is equivalent to a result of update sharing by
schema evolution. 64CCA6 de�ned by equation (A.2) expresses that the view instance
) ( ®. ) is computed by deleting tuples in the auxiliary relation �608=

)
( ®. ) and adding

tuples in the auxiliary relation �;>BC
)
( ®. ) against ) 4E> ( ®. ). ) 4E> ( ®. ) is a result of schema

evolution 5 from union of the base relations �(8 (8 ∈ [1, =]). Let BS
′ be union of

base relations that one of them is updated to �(8 ′( ®-8) by ?DCBA2.8 from the updated
view instance (8 ′( ®-8). Algorithm 4.3 de�nes the updated ) 4E> ′( ®. ) as a result of the
transformation 5 of schema evolution from BS

′. When the base relations and auxiliary
relations are updated to �(8 ′( ®-8) and �;>BC

)

′( ®. ) by ?DCBA2.8 from the updated (8 ′( ®-8), the
updated view instance ) ′( ®. ) is computed by 64CCA6 as follows:

) ′( ®. ) = () 4E> ′( ®. ) ∩ ¬�608=
)
( ®. )) ∪�;>BC)

′( ®. ) (A.3)

If tuples that do not exist in ) 4E> ( ®. ) and newly appear in ) 4E> ′( ®. ) are not deleted by
tuples of �608=

)
( ®. ) and tuples that exist in ) 4E> ( ®. ) and newly disappear from ) 4E> ′( ®. )

are not added by tuples of �;>BC
)

′( ®. ) as a result of right-hand side of equation (A.3),
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a transformation of updates against (8 ( ®-8) to updates against ) ( ®. ) by the BXs is
equivalent to a result of update sharing by schema evolution.

Since ?DCBA2.8 does not change the auxiliary relation �608=
)
( ®. ) from the updated

view instance (8 ′( ®-8) and �608=
)
( ®. ) ⊆ ) 4E> ( ®. ) by Lemma 4.2, tuples that do not exist in

) 4E> ( ®. ) and newly appear in ) 4E> ′( ®. ) are not deleted as a result of right-hand side of
equation (A.3).

On the other hand, ?DCBA2.8 transforms to the updated �;>BC
)

′( ®. ) by deleting a set of
tuples Δ−

�;>BC
)

( ®. ) as follows:

Δ+) 4E> ( ®. ) = ) 4E>′( ®. ) ∩ ¬) 4E> ( ®. ) (A.4)

Δ−) 4E> ( ®. ) = ¬) 4E>′( ®. ) ∩) 4E> ( ®. ) (A.5)

Δ−
�;>BC
)

( ®. ) = (Δ+) 4E> ( ®. ) ∩�;>BC) ( ®. )) ∪ (Δ
−
) 4E> ( ®. ) ∩�;>BC) ( ®. )) (A.6)

�;>BC)

′( ®. ) = �;>BC) ( ®. ) ∩ ¬Δ
−
�;>BC
)

( ®. ) (A.7)

Rule (A.4) express that Δ+
) 4E> ( ®. ) is a set of newly appeared tuples in) 4E>′( ®. ) as a result

of schema evolution 5 from BS
′ while they do not exist in) 4E> ( ®. ) as a result of schema

evolution from the original base relations. Rule (A.5) express that Δ−
) 4E> ( ®. ) is a set

of newly disappeared tuples from ) 4E>′( ®. ) as a result of schema evolution 5 from
BS
′ while they exist in ) 4E> ( ®. ) as a result of schema evolution from the original base

relations. Rule (A.6) expresses that tuples in Δ+
) 4E> ( ®. ) or Δ−

) 4E> ( ®. ) are deleted from
the auxiliary relation �;>BC

)
( ®. ) if they exist in it. Based on rule (A.7), �;>BC

)

′( ®. ) does
not have tuples of Δ−

) 4E> ( ®. ) that is a set of tuples newly disappeared from ) 4E>′( ®. ).
Thus, tuples that exist in ) 4E> ( ®. ) and newly disappear from ) 4E> ′( ®. ) are not added as
a result of right-hand side of equation (A.3).

Therefore, schema evolution of a co-existence strategy is realized by the BXs
derived by Algorithm 4.2 and 4.3. �

A.6 Proof of Theorem 4.6

Suppose a co-existence strategy strategy satisfying the consistency of updates between
relations (8 ( ®-8) (8 ∈ [1, =]) of source schema and a relation ) ( ®. ) of target schema.
Recall that backward update sharing is speci�ed as transformations 6+B8 and 6−B8 for
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each 8 (8 ∈ [1, =]) from a pair of source schema instance S and delta relation Δ) ( ®. ) to
Δ+
(8
( ®-8) and Δ−

(8
( ®-8) as sets of inserted and deleted tuples against a relation (8 of source

schema.

Δ+(8 ( ®-8) = 6
+
B8
(S,Δ) ( ®. ))

Δ−(8 ( ®-8) = 6
−
B8
(S,Δ) ( ®. ))

where source schema instance S is union of all relations (8 of source schema. Such
Δ+
(8
( ®-8) and Δ−

(8
( ®-8) update the relation (8 ( ®-8) to (8 ′( ®-8).

�-BA2.8 for all 8 are derived by Algorithm 4.3 from the strategy. �-CA6 is derived by
Algorithm 4.2 from the strategy. ?DCCA6 of �-CA6 transforms Δ) ( ®. ) as the delta relation
of the view instance ) ( ®. ) of target schema into the updated database D( ′. The base
relations �(8 ( ®-8) for each 8 of the database is updated to �(8 ′( ®-8) as follows:

Δ+�(8
( ®-8) = 6+B8 (BS,Δ) ( ®. ))

Δ−�(8
( ®-8) = 6−B8 (BS,Δ) ( ®. ))

�(8
′( ®-8) = (�(8 ( ®-8) ∩ ¬Δ−�(8 (

®-8)) ∪ Δ+�(8
( ®-8)

where BS is union of the base relations �(8 ( ®-8) for all 8 .
The updated base relation �(8 ′( ®-8) is transformed into the updated view instance

(8
′( ®-8) of source schema by 64CBA2.8 as follows:

(8
′( ®-8) = �(8 ′( ®-8)

Therefore, a result of the transformation by backward update sharing is equivalent
to a result of transformations of updates against the view instance ) ( ®. ) of target
schema to the updated view instance (8 ′( ®-8) of source schema by ?DCCA6 and 64CBA2.8 .
Thus, backward update sharing is realized by the derived BXs. �

A.7 Proof of Lemma 5.1

We prove this lemma by induction. Attributes ®-8 of relations are omitted in the
following.
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Let (8 (=) be a view instance of source schema at = step. (8 (=) is updated from the
view instance (8 (= − 1) at = − 1 step. Given the view instance (8 (=), ?DCC .BA2.8 trans-
forms auxiliary relations�;>BC

(8
(=−1) and�608=

(8
(=−1) into updated�;>BC

(8
(=) and�608=

(8
(=).

(Base) As step 0, let �;>BC
(8
(0) and �608=

(8
(0) be empty set. It is obvious the follow-

ing equation is satis�ed.

�;>BC(8
(0) ∩�608=

(8
(0) = ∅

(Induction) As an induction hypothesis, suppose �;>BC
(8
(= − 1) and �608=

(8
(= − 1) are

disjoint and satisfy the following equation.

�;>BC(8
(= − 1) ∩�608=

(8
(= − 1) = ∅

We show that �;>BC
(8
(=) ∩�608=

(8
(=) = ∅ is satis�ed.

�;>BC(8
(=) ∩�608=

(8
(=) = {Apply delta relations to �;>BC(8

(= − 1) and �608=
(8
(= − 1)}(

(�;>BC(8
(= − 1) ∩ ¬Δ−

�;>BC
(8

) ∪ Δ+
�;>BC
(8

)
∩

(
(�608=

(8
(= − 1) ∩ ¬Δ−

�
608=

(8

) ∪ Δ+
�
608=

(8

)
= {Substitute transformations to Δ+

�;>BC
(8

,Δ−
�;>BC
(8

,Δ+
�
608=

(8

, and Δ−
�
608=

(8

de�ned in Algorithm 5.2 by replacing updated (8 ′ to (8 (=) and

updated (8 ′′ to (8 ′′(=).}( (
�;>BC(8
(= − 1) ∩ ¬(¬(8 (=) ∩�;>BC(8

(= − 1))
)

∪ ((8 (=) ∩ ¬(8 ′′(=) ∩ ¬�;>BC(8
(= − 1))

)
∩

( (
�
608=

(8
(= − 1) ∩ ¬(((8 (=) ∩�608=(8

(= − 1))

∪ (¬(8 ′′(=) ∩�608=(8
(= − 1))

)
∪ (¬(8 (=) ∩ (8 ′′(=) ∩ ¬�608=(8

(= − 1))
)

= {Deformation of a formula by set operation and applying
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� ∩ ¬� = ∅}
∅

Thus �;>BC
(8
∩�608=

(8
= ∅. �

A.8 Proof of Lemma 5.2

Since �608=
(8
( ®-8) ⊆ (4E>8 ( ®-8) is equivalent to �608=

(8
( ®-8) ∩ ¬(4E>8 ( ®-8) = ∅, we prove the

following equation by induction.

�
608=

(8
( ®-8) ∩ ¬(4E>8 ( ®-8) = ∅

Let (8 ( ®-8) (=) be a view instance of source schema at= step. (8 ( ®-8) (=) is updated from
the view instance (8 ( ®-8) (= − 1) at = − 1 step. Let the base relation �) ( ®. ), the auxiliary
relations �608=

(8
( ®-8) and �2

(8
( ®/8) be �) ( ®. ) (= − 1), �608=(8

( ®-8) (= − 1), and �2
(8
( ®/8) (= − 1) at

=−1 step and �) ′( ®. ),�608=(8

′( ®-8) and�2
(8

′( ®/8) be �) ( ®. ) (=),�608=(8
( ®-8) (=), and�2

(8
( ®/8) (=)

at = step. Given the view instance (8 ( ®-8) (=), �) ( ®. ) (= − 1), �608=
(8
( ®-8) (= − 1) and

�2
(8
( ®/8) (= − 1) are updated to �) ( ®. ) (=), �608=(8

( ®-8) (=) and �2
(8
( ®/8) (=) respectively by

?DCC .BA2.8 . By following the de�nition in Algorithm 5.2, (4E>8 ( ®-8) (=) is transformed from
�) ( ®. ) (=) and �2

(.8
( ®/8) (=)) as follows:

(4E>8 ( ®-8) (=) = c0CCA ((8 ) (�) ( ®. ) (=) ⊲⊳ �2(.8 ( ®/8) (=))

Also, by following the de�nition in Algorithm 5.2, (8 ′′( ®-8) (=) is transformed from
�) ( ®. ) (=) and �2

(.8
( ®/8) (=)) as follows:

(8
′′( ®-8) (=) = c0CCA ((8 ) (�) ( ®. ) (=) ⊲⊳ �2(.8 ( ®/8) (=))

Thus

(4E>8 ( ®-8) (=) = (8 ′′( ®-8) (=)

Attributes ®-8 of relations are omitted in below.
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(Base) As step 0, let �) ( ®. ) (0), �608=(8
( ®-8) (0) and �2

(8
( ®/8) (0) be empty set. (4E>8 ( ®-8) (0) is

also empty set because a result of transformation 5 from empty set �) ( ®. ) (0) and
�2
(8
( ®/8) (0) is empty set. Now, it is obvious that the following equation is satis�ed.

�
608=

(8
(0) ∩ ¬(4E>8 (0) = ∅

(Induction) As an induction hypothesis, suppose the following equation.

�
608=

(8
(= − 1) ∩ ¬(4E>8 (= − 1) = ∅

We show that �608=
(8
(=) ∩ ¬(4E>8 (=) = ∅ is satis�ed.

�
608=

(8
(=) ∩ ¬(4E>8 (=) = {Apply delta relations to �608=

(8
(= − 1)}

((�608=
(8
(= − 1) ∩ ¬Δ−

�
608=

(8

) ∪ Δ+
�
608=

(8

) ∩ ¬(4E>8 (=)

= {Substitute transformations to Δ+
�
608=

(8

, and Δ−
�
608=

(8

de�ned by

Algorithm 5.2 by replacing updated (8 ′ to (8 (=) and (8 ′′ to

(4E>8 (=).}( (
�
608=

(8
(= − 1) ∩ ¬(((8 (=) ∩�608=(8

(= − 1))

∪ (¬(4E>8 (=) ∩ (�
608=

(8
(= − 1))

)
∪ (¬(8 (=) ∩ (4E>8 (=) ∩ ¬�

608=

(8
)
)

∩ ¬(4E>8 (=)
= {Deformation of a formula by set operation and applying

� ∩ ¬� = ∅}
∅

Thus �608=
(8
∩ ¬(4E>8 = ∅. �
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A.9 Proof of Proposition 5.3

First, we prove the following GETPUT is satis�ed.

?DCC .BA2.8 (DC , 64CC .BA2.8 (DC )) = DC

where the database DC is union of the base relation �) and the auxiliary relations �2
(8

,
�;>BC
(8

, �608=
(8

for all 8 (8 ∈ [1, =]), �;>BC
)

and �608=
)

. We prove GETPUT is satis�ed by showing
a result of ?DCC .BA2.8 after 64CC .BA2.8 does not update base relations and auxiliary relations
of the database.

Since a result of 64CC .BA2.8 is not updated in the proof of GETPUT, let (8 ′( ®-8) be
equivalent to ( ( ®-8) as a result of schema evolution. Then relations ) 4E> ′( ®. ) and
) 4E> ( ®. ) de�ned in Algorithm 5.2 are the same because both are results of schema
evolution 5 from non-updated view instances (8 for all 8 (8 ∈ [1, =]). By substituting
) 4E> ′( ®. ) = ) 4E> ( ®. ) into transformations to Δ+

�)
( ®. ) and Δ−

�)
( ®. ) de�ned in the algorithm,

they become empty set as follows. We omit attributes if all relations in a formula have
the same attributes in the following.

Δ+�) = {De�nition in Algorithm 5.2}
) 4E>

′ ∩ ¬) 4E> ∩ ¬�)
= {) 4E> ′ = ) 4E>}
) 4E> ∩ ¬) 4E> ∩ ¬�)

= {� ∩ ¬� = ∅}
∅

Δ−�) = {De�nition in Algorithm 5.2}
¬) 4E> ′ ∩) 4E> ∩ �)

= {) 4E> ′ = ) 4E>}
¬) 4E> ∩) 4E> ∩ �)

= {� ∩ ¬� = ∅}
∅

Thus the base relation �C is not updated.
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By substituting Δ+
�)
( ®. ) = ∅ and Δ−

�)
( ®. ) = ∅ into transformations to Δ+

�2
(8

( ®/8) and

Δ−
�2
(8

( ®/8) de�ned in the algorithm, they become empty set as follows:

Δ+�2
(8

( ®/8) = {De�nition in Algorithm 5.2}

c ®/8 (Δ
+
(8
( ®-8) ⊲⊳ Δ+�) ( ®. )) ∩ ¬�

2
(8
( ®/8)

= {Δ+�) ( ®. ) = ∅}
∅

Δ−�2
(8

( ®/8) = {De�nition in Algorithm 5.2}

c ®/8 (Δ
−
(8
( ®-8) ⊲⊳ Δ−�) ( ®. )) ∩�

2
(8
( ®/8)

= {Δ−�) ( ®. ) = ∅}
∅

Thus the auxiliary relation �2
(8

is not updated.

Since �) ( ®. ) and �2
(8
( ®/8) are not updated, �) ′( ®. ) = �) ( ®. ) and �2

(8

′( ®/8) = �2(8 ( ®/8).
Then (8 ′′( ®-8) de�ned in the algorithm is equivalent to (4E>8 ( ®-8) as follows:

(8
′′( ®-8) = {De�nition in Algorithm 5.2}

c0CCA ((8 ) (�) ′( ®. ) ⊲⊳ �2(8
′( ®/8))

= {�) ′( ®. ) = �) ( ®. ) and �2(8
′( ®/8) = �2(8 ( ®/8)}

c0CCA ((8 ) (�) ( ®. ) ⊲⊳ �2(8 ( ®/8))
= {De�nition to transform to (4E>8 ( ®-8) in Algorithm 5.2}
(4E>8 ( ®-8)

By substituting (8
′( ®-8) = (8 ( ®-8) and (8

′′( ®-8) = (4E>8 ( ®-8) into transformations to
Δ+
�;>BC
(8

( ®-8) and Δ−
�;>BC
(8

( ®-8) de�ned in the algorithm, they become empty set as follows:

Δ+
�;>BC
(8

= {De�nition in Algorithm 5.2}

(8
′ ∩ ¬(8 ′′ ∩ ¬�;>BC(8
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= {(8 ′ = (8 and (8 ′′ = (4E>8 }
(8 ∩ ¬(84E> ∩ ¬�;>BC(8

= {Substitute de�nition of (8 in Algorithm 5.2}
(((4E>8 ∩ ¬�

608=

(8
) ∪�;>BC(8

) ∩ ¬(84E> ∩ ¬�;>BC(8

= {Distributive law}
((4E>8 ∩ ¬�

608=

(8
∩ ¬(84E> ∩ ¬�;>BC(8

) ∪ (�;>BC(8
∩ ¬(84E> ∩ ¬�;>BC(8

)

= {� ∩ ¬� = ∅}
∅

Δ−
�;>BC
(8

= {De�nition in Algorithm 5.2}

¬(8 ′ ∩�;>BC(8

= {(8 ′ = (8 and substitute de�nition of (8 in Algorithm 5.2}
¬(((4E>8 ∩ ¬�

608=

(8
) ∪�;>BC(8

) ∩�;>BC(8

= {De Morgan’s law}
(¬((4E>8 ∩ ¬�

608=

(8
) ∩ ¬�;>BC(8

) ∩�;>BC(8

= {� ∩ ¬� = ∅}
∅

Thus, the auxiliary relation �;>BC
(8

is not updated.

By substituting (8 ′( ®-8) = (8 ( ®-8) and (8 ′′( ®-8) = (4E>8 ( ®-8) into transformations to
Δ+
�
608=

(8

( ®-8) and Δ−
�
608=

(8

( ®-8) de�ned in the algorithm, they become empty set as follows:

Δ+
�
608=

(8

= {De�nition in Algorithm 5.2}

¬(8 ′ ∩ (8 ′′ ∩ ¬�608=(8

= {(8 ′ = (8 and (8 ′′ = (4E>8 }
¬(8 ∩ (84E> ∩ ¬�608=(8

= {Substitute de�nition of (8 in Algorithm 5.2}
¬(((4E>8 ∩ ¬�

608=

(8
) ∪�;>BC(8

) ∩ (84E> ∩ ¬�608=(8

= {De Morgan’s law and Distributive law}
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(¬(4E>8 ∩ ¬�;>BC(8
∩ (84E> ∩ ¬�608=(8

) ∪ (�608=
(8
∩ ¬�;>BC(8

∩ (84E> ∩ ¬�608=(8
)

= {� ∩ ¬� = ∅}
∅

Δ−
�
608=

(8

= {De�nition in Algorithm 5.2}

((8 ′ ∩�608=(8
) ∪ (¬(8 ′′ ∩�608=(8

)

= {(8 ′ = (8 and (8 ′′ = (4E>8 }
((8 ∩�608=(8

) ∪ (¬(84E> ∩�608=(8
)

= {Substitute de�nition of (8 in Algorithm 5.2}
(((4E>8 ∩ ¬�

608=

(8
) ∪�;>BC(8

) ∩�608=
(8
) ∪ (¬(84E> ∩�608=(8

)

= {Distributive law}
((4E>8 ∩ ¬�

608=

(8
∩�608=

(8
) ∪ (�;>BC(8

∩�608=
(8
) ∪ (¬(84E> ∩�608=(8

)

= {� ∩ ¬� = ∅ , Lemma 5.1 and Lemma 5.2 }
∅

Thus the auxiliary relation �608=
(8
( ®-8) is not updated.

By substituting Δ+
�)
( ®. ) = ∅ and Δ−

�)
( ®. ) = ∅ into transformations to Δ−

�;>BC
)

( ®. ) and

Δ−
�
608=

)

( ®. ) de�ned in the algorithm, they become empty set as follows:

Δ−
�;>BC
)

= {De�nition in Algorithm 5.2}

(Δ+�) ∩�
;>BC
) ) ∪ (Δ

−
�)
∩�;>BC) )

= {Δ+�) = ∅ and Δ−�) = ∅}
∅

Δ−
�
608=

)

= {De�nition in Algorithm 5.2}

(Δ+�) ∩�
608=

)
) ∪ (Δ−�) ∩�

608=

)
)

= {Δ+�) = ∅ and Δ−�) = ∅}
∅

Thus the auxiliary relation �;>BC
)
( ®. ) and �608=

)
( ®. ) are not updated. Since the base
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relation and the auxiliary relations are not updated, GETPUT is satis�ed.
Second, we prove the following PUTGET is satis�ed.

64CC .BA2.8 (?DCC .BA2.8 (DC , (8 ′)) = (8 ′

A result of ?DCC .BA2.8 (DC , (8 ′) is the updated database DC ′. The updated database DC ′

consists of the updated base relation �) ′( ®. ), the updated auxiliary relations �2
(8

′( ®/8),
�;>BC
(8

′( ®-8), �608=(8

′( ®-8), �;>BC)

′( ®. ), and �608=
)

′( ®. ). Also, Algorithm 5.2 de�nes (8 ′′( ®-8) as
(8
′′( ®-8) = c0CCA ((8 ) (�) ′( ®. ) ⊲⊳ �2(8

′( ®-8)). Based on them, PUTGET is proved as follows.

64CC .BA2.8 (?DCC .BA2.8 (DC , (8 ′)) = {De�nition of 64CC .BA2.8 in Algorithm 5.2 based on the updated

database by ?DCC .BA2.8 (DC , (8 ′)}
(c0CCA ((8 ) (�) ′( ®. ) ⊲⊳ �2(8

′( ®-8)) ∩ ¬�608=(8

′) ∪�;>BC(8

′

= {(8 ′′( ®-8) = c0CCA ((8 ) (�) ′( ®. ) ⊲⊳ �2(8
′( ®-8))}

((′′8 ∩ ¬�
608=

(8

′) ∪�;>BC(8

′

= {Substitute de�nition of �;>BC(8

′( ®-8) and �608=
(8

′( ®-8)

in Algorithm 5.2}(
(′′8 ∩ ¬((�

608=

(8
∩ ¬Δ−

�
608=

(8

) ∪ Δ+
�
608=

(8

)
)

∪ ((�;>BC(8
∩ ¬Δ−

�;>BC
(8

) ∪ Δ+
�;>BC
(8

)

= {Substitute de�nition of Δ+
�;>BC
(8

,Δ−
�;>BC
(8

,Δ+
�
608=

(8

, and Δ−
�
608=

(8

in Algorithm 5.2}(
(′′8 ∩ ¬

( (
�
608=

(8
∩ ¬(((8 ′ ∩�608=(8

) ∪ (¬(8 ′′ ∩�608=(8
))

)
∪ (¬(8 ′ ∩ (8 ′′ ∩ ¬�608=(8

)
))

∪
( (
�;>BC(8

∩ ¬(¬(8 ′ ∩�;>BC(8
)
)
∪ ((8 ′ ∩ ¬(8 ′′ ∩ ¬�;>BC(8

)
)

= {Deformation of a formula by set operation}
((8 ′′ ∩ ¬�608=(8

∩ (8 ′) ∪ ((8 ′′ ∩ (8 ′ ∩�608=(8
) ∪ (�;>BC(8

∩ (8 ′)

∪ ((8 ′ ∩ ¬(8 ′′ ∩ ¬�;>BC(8
)
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= {(� ∩ ¬�) ∪ (� ∩ �) = � and distributive law}
(8
′ ∩ ((8 ′′ ∪�;>BC(8

∪ (8 ′) ∩ ((8 ′′ ∪�;>BC(8
∪ ¬�;>BC(8

)
= {(� ∪ ¬�) ∩ � = �}
(8
′

Thus PUTGET is satis�ed. �

A.10 Proof of Lemma 5.4

We prove this lemma by induction. Attributes ®. of relations are omitted in the
following.

Let ) (=) be the view instance of target schema at = step. ) (=) is updated from the
view instance ) (= − 1) at = − 1 step. Given the view instance ) (=), ?DCC .CA6 transforms
the base relation �) (= − 1), the auxiliary relations �;>BC

)
(= − 1) and �608=

)
(= − 1) into

updated �) (=), �;>BC)
(=) and �608=

)
(=) respectively.

(Base) As step 0, let �;>BC
)
(0) and �608=

)
(0) be empty set. It is obvious the follow-

ing equation is satis�ed.

�;>BC) (0) ∩�
608=

)
(0) = ∅

(Induction) As an induction hypothesis, suppose �;>BC
)
(= − 1) and �608=

)
(= − 1) are

disjoint and satisfy the following equation.

�;>BC) (= − 1) ∩�
608=

)
(= − 1) = ∅

We show that �;>BC
)
(=) ∩�608=

)
(=) = ∅ is satis�ed.

�;>BC) (=) ∩�
608=

)
(=) = {Apply delta relations to �;>BC) (= − 1) and �608=

)
(= − 1)}(

(�;>BC) (= − 1) ∩ ¬Δ
−
�;>BC
)

) ∪ Δ+
�;>BC
)

)
∩

(
(�608=

)
(= − 1) ∩ ¬Δ−

�
608=

)

) ∪ Δ+
�
608=

)

)
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= {Substitute transformations to Δ+
�;>BC
)

,Δ−
�;>BC
)

,Δ+
�
608=

)

, and Δ−
�
608=

)

de�ned in Algorithm 5.3 by replacing updated ) ′ to ) (=) and

updated �) ′ to �) (=).}( (
�;>BC) (= − 1) ∩ ¬(¬) (=) ∩�

;>BC
) (= − 1))

)
∪ () (=) ∩ ¬�) (=) ∩ ¬�;>BC) (= − 1))

)
∩

( (
�
608=

)
(= − 1) ∩ ¬(() (=) ∩�608=

)
(= − 1))

∪ (¬�) (=) ∩�608=)
(= − 1))

)
∪ (¬) (=) ∩ �) (=) ∩ ¬�608=)

(= − 1))
)

= {Deformation of a formula by set operation and applying

� ∩ ¬� = ∅}
∅

Thus �;>BC
)
∩�608=

)
= ∅. �

A.11 Proof of Lemma 5.5

Since�608=
)
( ®. ) ⊆ �) ( ®. ) is equivalent to�608=

)
( ®. ) ∩¬�) ( ®. ) = ∅, we prove the following

equation by induction.

�
608=

)
( ®. ) ∩ ¬�) ( ®. ) = ∅

Let ) (=) be the view instance of target schema at = step. ) (=) is updated from the
view instance ) (= − 1) at = − 1 step. Given the view instance ) (=), ?DCC .CA6 transforms
the base relation �) (= − 1) and the auxiliary relation �608=

)
(= − 1) into updated �) (=)

and �608=
)
(=) respectively.

(Base) As step 0, let �) (0) and �608=
)
(0) be empty set. It is obvious that the following

equation is satis�ed.

�
608=

)
(0) ∩ ¬�) (0) = ∅
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(Induction) As an induction hypothesis, suppose the following equation.

�
608=

)
(= − 1) ∩ ¬�) (= − 1) = ∅

We show that �608=
)
(=) ∩ ¬�) (=) = ∅ is satis�ed.

�
608=

)
(=) ∩ ¬�) (=) = {Apply delta relations to �608=

)
(= − 1)}

((�608=
)
(= − 1) ∩ ¬Δ−

�
608=

)

) ∪ Δ+
�
608=

)

) ∩ ¬�) (=)

= {Substitute transformations to Δ+
�
608=

)

, and Δ−
�
608=

)

de�ned in

Algorithm 5.3 by replacing updated ) ′ to ) (=) and

�)
′ to �) (=).}( (
�
608=

)
(= − 1) ∩ ¬(() (=) ∩�608=

)
(= − 1))

∪ (¬�) (=) ∩ (�608=)
(= − 1))

)
∪ (¬) (=) ∩ �) (=) ∩ ¬�608=)

(= − 1))
)

∩ ¬�) (=)
= {Deformation of a formula by set operation and applying

� ∩ ¬� = ∅}
∅

Thus �608=
)
∩ ¬�) = ∅. �

A.12 Proof of Proposition5.6

First, we prove following GETPUTis satis�ed.

?DCC .CA6 (DC , 64CC .CA6 (DC )) = DC

where the database DC is union of the base relation �) and the auxiliary relations �2
(8

,
�;>BC
(8

, �608=
(8

for all 8 (8 ∈ [1, =]), �;>BC
)

and �608=
)

. We prove GETPUT by showing a result of
?DCC .CA6 after 64CC .CA6 does not update the base relations and the auxiliary relations of the
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database.
Since a result of 64CC .CA6 is not updated in the proof of GETPUT, the update view

instance ) ′( ®. ) appearing in ?DCC .CA6 is equivalent to ) ( ®. ) as a result of 64CC .CA6. By
substituting ) ′( ®. ) = ) ( ®. ) into transformations to Δ+

)
( ®. ) and Δ−

)
( ®. ) de�ned in the

algorithm, they become empty set as follows. We omit attributes if all relations in a
formula have the same attributes in the following.

Δ+) = {De�nition in Algorithm 5.3}
) ′ ∩ ¬)

= {) ′ = ) and � ∩ ¬� = ∅}
∅

Δ−) = {De�nition in Algorithm 5.3}
¬) ′ ∩)

= {) ′ = ) and � ∩ ¬� = ∅}
∅

By substituting Δ+
)
( ®. ) = ∅ and Δ−

)
( ®. ) = ∅ into transformations to Δ+

�C
( ®. ) and

Δ−
�C
( ®. ) de�ned in the algorithm, they become empty set as follows:

Δ+�) ( ®. ) = {De�nition in Algorithm 5.3}
c0CCA () ) (Δ+(8 ( ®-8) ⊲⊳ Δ

+
) ( ®. )) ∩ ¬�) ( ®. )

= {Substitute Δ+) ( ®. ) = ∅}
∅

Δ−�) ( ®. ) = {De�nition in Algorithm 5.3}
c0CCA () ) (Δ−(8 ( ®-8) ⊲⊳ Δ

−
) ( ®. )) ∩ �) ( ®. )

= {Substitute Δ−) ( ®. ) = ∅}
∅

Thus base relation �) is not updated. Updated �) ′ is equivalent to �) .
By substituting ) ′( ®. ) = ) ( ®. ) and �)

′( ®. ) = �) ( ®. ) into transformations to
Δ+
�)

;>BC
( ®. ) and Δ−

�)
;>BC
( ®. ) de�ned in the algorithm, they become empty set as fol-
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lows:

Δ+
�)

;>BC = {De�nition in Algorithm 5.3}

) ′ ∩ ¬�) ′ ∩ ¬�;>BC)

= {) ′ = ), �) ′ = �) }
) ∩ ¬�) ∩ ¬�;>BC)

= {Substitute de�nition of ) in Algorithm 5.3}
((�) ∩ ¬�608=)

) ∪�;>BC) ) ∩ ¬�) ∩ ¬�
;>BC
)

= {Distributive law}
(�) ∩ ¬�608=)

∩ ¬�) ∩ ¬�;>BC) ) ∪ (�
;>BC
) ∩ ¬�) ∩ ¬�;>BC) )

= {� ∩ ¬� = ∅}
∅

Δ−
�)

;>BC = {De�nition in Algorithm 5.3}

¬) ′ ∩�;>BC)

= {) ′ = ) and substitute de�nition of ) in Algorithm 5.3}
¬((�) ∩ ¬�608=)

) ∪�;>BC) ) ∩�
;>BC
)

= {De Morgan’s law}
(¬(�) ∩ ¬�608=)

) ∩ ¬�;>BC) ) ∩�
;>BC
)

= {� ∩ ¬� = ∅}
∅

Thus the auxiliary relation �;>BC
)

is not updated.

By substituting ) ′( ®. ) = ) ( ®. ) and �)
′( ®. ) = �) ( ®. ) into transformations to

Δ+
�)

608= ( ®. ) and Δ−
�)

608= ( ®. ) de�ned in the algorithm, they become empty set as follows:

Δ+
�)

608= = {De�nition in Algorithm 5.3}

¬) ′ ∩ �) ′ ∩ ¬�608=)

= {) ′ = ), �) ′ = �) }
¬) ∩ �) ∩ ¬�608=)
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= {Substitute de�nition of ) in Algorithm 5.3}
¬((�) ∩ ¬�608=)

) ∪�;>BC) ) ∩ �) ∩ ¬�
608=

)

= {De Morgan’s law and Distributive law}
(¬�) ∩ ¬�;>BC) ∩ �) ∩ ¬�608=)

) ∪ (�608=
)
∩ ¬�;>BC) ∩ �) ∩ ¬�608=)

)
= {� ∩ ¬� = ∅}
∅

Δ−
�)

608= = {De�nition in Algorithm 5.3}

() ′ ∩�608=
)
) ∪ (¬�) ′ ∩�608=)

)
= {) ′ = ), �) ′ = �) and substitute de�nition of ) in Algorithm 5.3}
(((�) ∩ ¬�608=)

) ∪�;>BC) ) ∩�
608=

)
) ∪ (¬�) ∩�608=)

)
= {Distributive law}
(�) ∩ ¬�608=)

∩�608=
)
) ∪ (�;>BC) ∩�608=

)
) ∩ (¬�) ∩�608=)

)
= {� ∩ ¬� = ∅ , Lemma 5.4 and Lemma 5.5 }
∅

Thus the auxiliary relation �608=
)

is not updated.

Since Δ+
)

and Δ−
)

are empty set, Δ+
(8
( ®-8) and Δ−

(8
( ®-8) as results of backward updated

sharing 6+B8 and 6−B8 are empty set for all 8 (8 ∈ [1, =]). By substituting Δ+
(8
( ®-8) = ∅ and

Δ−
(8
( ®-8) = ∅ into transformations to Δ+

�2
(8

( ®/8), Δ−�2
(8

( ®/8), Δ−
�;>BC
(8

( ®-8), and Δ−
�
608=

(8

( ®-8) for

each 8 , they become empty set as follows:

Δ+�2
(8

( ®/8) = {De�nition in Algorithm 5.3}

c ®/8 (Δ
+
(8
( ®-8)) ∩ ¬�2(8 ( ®/8)

= {Δ+(8 ( ®-8) = ∅}
∅

Δ−�2
(8

( ®/8) = {De�nition in Algorithm 5.3}

c ®/8 (Δ
−
(8

′( ®-8)) ∩�2(8 ( ®/8)

= {Δ−(8
′( ®-8) = Δ−(8 ( ®-8) ⊲⊳ (c:4~ (Δ

−
(8
( ®-8)) ∩ ¬c:4~ (Δ+(8 ( ®-8))) and Δ−(8 ( ®-8) = ∅}

∅
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Δ−
�;>BC
(8

( ®-8) = {De�nition in Algorithm 5.3}

(Δ+(8 ( ®-8) ∩�
;>BC
( .8 ( ®-8)) ∪ (Δ

−
(8
( ®-8) ∩�;>BC( .8 ( ®-8))

= {Δ+(8 ( ®-8) = ∅,Δ
−
(8
( ®-8) = ∅}

∅
Δ−
�
608=

(8

( ®-8) = {De�nition in Algorithm 5.3}

(Δ+(8 ( ®-8) ∩�
608=

(.8
( ®-8)) ∪ (Δ−(8 ( ®-8) ∩�

608=

(.8
) ( ®-8)

= {Δ+(8 ( ®-8) = ∅,Δ
−
(8
( ®-8) = ∅}

∅

Thus the auxiliary relations �2
(8

, �;>BC
(8

and �608=
(8

are not updated. Since the base relation
and the auxiliary relations are not updated, GETPUT is satis�ed.

Second, we prove following PUTGET is satis�ed.

64CC .CA6 (?DCC .CA6 (DC ,) ′)) = ) ′

A result of ?DCC .CA6 (DC ,) ′) is the updated database DC ′. The updated database DC ′

consists of the updated base relation �) ′( ®. ), the updated auxiliary relations �2
(8

′( ®/8),
�;>BC
(8

′( ®-8), �608=(8

′( ®-8), �;>BC)

′( ®. ), and �608=
)

′( ®. ). PUTGET is proved as follows.

64CC .CA6 (?DCC .CA6 (DC ,) ′)) = {De�nition of 64CC .CA6 in Algorithm 5.3 based on the

updated database by ?DCC .CA6 (DC ,) ′)}
(�′) ∩ ¬�

608=

)

′) ∪�;>BC)

′

= {Substitute de�nition of �;>BC)

′( ®-8) and �608=
)

′( ®-8)
in Algorithm 5.3}(
�′) ∩ ¬((�

608=

)
∩ ¬Δ−

�
608=

)

) ∪ Δ+
�
608=

)

)
)

∪ ((�;>BC) ∩ ¬Δ−
�;>BC
)

) ∪ Δ+
�;>BC
)

)

= {Substitute de�nition of Δ+
�;>BC
)

,Δ−
�;>BC
)

,Δ+
�
608=

)

, and Δ−
�
608=

)

in Algorithm 5.3}
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�′) ∩ ¬

( (
�
608=

)
∩ ¬(() ′ ∩�608=

)
) ∪ (¬�) ′ ∩�608=)

))
)

∪ (¬) ′ ∩ �) ′ ∩ ¬�608=)
)
))

∪
( (
�;>BC) ∩ ¬(¬) ′ ∩�;>BC) )

)
∪ () ′ ∩ ¬�) ′ ∩ ¬�;>BC) )

)
= {Deformation of a formula by set operation}
(�) ′ ∩ ¬�608=)

∩) ′) ∪ (�) ′ ∩) ′ ∩�608=)
) ∪ (�;>BC) ∩) ′)

∪ () ′ ∩ ¬�) ′ ∩ ¬�;>BC) )
= {(� ∩ ¬�) ∪ (� ∩ �) = � and distributive law}
) ′ ∩ (�) ′ ∪�;>BC) ∪) ′) ∩ (�) ′ ∪�;>BC) ∪ ¬�;>BC) )

= {(� ∪ ¬�) ∩ � = �}
) ′

Thus PUTGET is satis�ed. �

A.13 Proof of Theorem 5.7

Suppose a co-existence strategy strategy satisfying the consistency of updates between
relations (8 ( ®-8) (8 ∈ [1, =]) of source schema and a relation ) ( ®. ) of target schema.
Recall that schema evolution is speci�ed as a transformation 5 from source schema
instance S to a relation ) ( ®. ).

) ( ®. ) = 5 (S) (A.8)

Source schema instance S is union of relations (8 ( ®-8) (8 ∈ [1, =]) of source schema.
�-C .BA2.8 for all 8 are derived by Algorithm 5.2 from the co-existence strategy. ?DCC .BA2.8

of �-C .BA2.8 for each 8 transforms the updated view instance (8 ′ to the updated target-side
database DC ′. �-C .CA6 is derived by Algorithm 5.3 from the co-existence strategy. 64CC .CA6
of �-C .CA6 transforms the database DC to the view instance ) . The derived BXs realize
schema evolution of a co-existence strategy if the following two cases are satis�ed: as
an initial state, a transformation from union of the view instance (8 to the view instance
) via DC by �-C .BA2.8 for all 8 and �-C .CA6 is equivalent to a result of the transformation
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by schema evolution, and as forward update sharing, a transformation of updates
against (8 to updates against ) via updated DC ′ by �-C .BA2.8 and �-C .CA6 is equivalent to a
result of update sharing by schema evolution.

First, it is proved that a result of schema evolution is equivalent to a result of 64CC .CA6
of �-C .CA6 after ?DCC .BA2.8 of �-C .BA2.8 for all 8 from the view instances (8 ( ®-8) for all 8 and
empty set of the base relation and the auxiliary relations as the initial state. Given
empty set of the base relation, empty set of the auxiliary relations, and the instance of
source schema S as union of the view instance (8 ( ®-8) for all 8 , the transformations of
?DCC .BA2.8 of �-C .BA2.8 compute ) 4E> ( ®. ) as empty set and ) 4E> ′( ®. ) as a result of schema
evolution 5 (S). By substituting such ) 4E> ( ®. ) = ∅, ) 4E> ′( ®. ) = 5 (S) and empty set of
the base relation into the transformation to Δ+

�)
and Δ−

�)
in ?DCC .BA2.8 , the updated

base relation �) ′( ®. ) becomes 5 (S) and the updated auxiliary relations �;>BC
)
( ®. )′ and

�
608=

)
( ®. ) become empty set as follows:

�)
′( ®. ) = {De�nition in Algorithm 5.2}

(�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+�) ( ®. )
= {Substitute de�niton of Δ+�) ( ®. ) and Δ−�) ( ®. ) in Algorithm 5.2, �) ( ®. ) = ∅,
) 4E> ( ®. ) = ∅, and ) 4E> ′( ®. ) = 5 (S)}
5 (S)

�;>BC)

′( ®. ) = {De�nition in Algorithm 5.2}
�;>BC) ( ®. ) ∩ ¬Δ

−
�;>BC
)

( ®. )

= {Substitute de�niton of Δ−
�;>BC
)

( ®. ) in Algorithm 5.2 and �;>BC) ( ®. ) = ∅,

∅
�
608=

)

′( ®. ) = {De�nition in Algorithm 5.2}
�
608=

)
( ®. ) ∩ ¬Δ−

�
608=

)

( ®. )

= {Substitute de�niton of Δ−
�
608=

)

( ®. ) in Algorithm 5.2 and �608=
)
( ®. ) = ∅,

∅

Then, by renaming the updated �) ′( ®. ), �;>BC)

′( ®. ), and �608=
)

′( ®. ) to the current state of
the base relation and auxiliary relations as �) ( ®. ), �;>BC)

( ®. ), and �608=
)
( ®. ) respectively,
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they are transformed to the view instance ) ( ®. ) of target schema by 64CC .CA6 of �-C .CA6
as follows:

) ( ®. ) = {De�nition in Algorithm 5.3}
(�) ( ®. ) ∩ ¬�608=)

( ®. )) ∪�;>BC) ( ®. )
= {Substitute �608=

)
( ®. ) = ∅ and �;>BC) ( ®. ) = ∅}

�) ( ®. )
= {Substitute �) ( ®. ) = 5 (S)}
5 (S)

Thus a result of schema evolution expressed by the equation (A.8) is equivalent to a
result of 64CC .CA6 of �-C .CA6 after ?DCC .BA2.8 of �-C .BA2.8 for all 8 based on the view instances
(8 ( ®-8) for all 8 and empty set of the base relations and the auxiliary relations.

Second, it is proved that a transformation of updates against (8 ( ®-8) to updates
against ) ( ®. ) by 64CC .CA6 of �-CA6 after ?DCC .BA2.8 of �-C .BA2.8 is equivalent to a result of
update sharing by schema evolution. Let S′ be union of relations of source schema that
one relation (8 ( ®-8) is updated to (8 ′( ®-8). ) ′( ®. ) is a result of schema evolution from S′

as follows:

) ′( ®. ) = 5 (S′) (A.9)

By tuning the relations of source schema into the view instance, let S be union of
view instances of source schema and S′ be union of view instances of source schema
that one view instance (8 ( ®-8) is updated to (8 ′( ®-8). Then ?DCC .BA2.8 transforms S and S′

by schema evolution 5 as follows:

) 4E> ( ®. ) = 5 (S)
) 4E>

′( ®. ) = 5 (S′)

?DCC .BA2.8 transforms ) 4E> ( ®. ) and ) 4E> ′( ®. ) into the updated base relation �) ′( ®. ) and the
updated auxiliary relations �;>BC

)

′( ®.8) and �608=
)

′( ®.8) by computing sets of inserted and
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deleted tuples Δ+
�)
( ®. ) and Δ−

�)
( ®. ) as follows:

Δ+�) ( ®. ) = )
4E> ′( ®. ) ∩ ¬) 4E> ( ®. ) ∩ ¬�) ( ®. )

Δ−�) ( ®. ) = ¬)
4E> ′( ®. ) ∩) 4E> ( ®. ) ∩ �) ( ®. )

�)
′( ®. ) = (�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+�) ( ®. )

Δ−
�;>BC
)

( ®. ) = (Δ+�) ( ®. ) ∩�
;>BC
) ) ( ®. ) ∪ (Δ

−
�)
( ®. ) ∩�;>BC) ( ®. ))

�;>BC)

′( ®. ) = �;>BC) ( ®. ) ∩ ¬Δ
−
�;>BC
)

( ®. )

Δ−
�
608=

)

( ®. ) = (Δ+�) ( ®. ) ∩�
608=

)
( ®. )) ∪ (Δ−�) ( ®. ) ∩�

608=

)
( ®. ))

�
608=

)

′( ®. ) = �608=
)
( ®. ) ∩ ¬Δ−

�
608=

)

( ®. )

�)
′( ®. ) is equivalent to ) 4E> ′( ®. ) as follows:

�)
′( ®. ) = {De�nition in Algorithm 5.2}

(�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+�) ( ®. )
= {Substitute Δ−�) ( ®. ) and Δ−�) ( ®. ) de�ned in Algorithm 5.2 }(

�) ( ®. ) ∩ ¬
(
¬) 4E> ′( ®. ) ∩) 4E> ( ®. ) ∩ �) ( ®. )

) )
∪

(
) 4E>

′( ®. ) ∩ ¬) 4E> ( ®. ) ∩ ¬�) ( ®. )
)

= {Substitute �) ( ®. ) = 5 (S) and ) 4E> ( ®. ) = 5 (S)}(
) 4E> ( ®. ) ∩ ¬

(
¬) 4E> ′( ®. ) ∩) 4E> ( ®. ) ∩) 4E> ( ®. )

) )
∪

(
) 4E>

′( ®. ) ∩ ¬) 4E> ( ®. ) ∩ ¬) 4E> ( ®. )
)

= {Deformation of a formula by set operation}(
) 4E> ( ®. ) ∩) 4E> ′( ®. )

)
∪

(
) 4E>

′( ®. ) ∩ ¬) 4E> ( ®. )
)

= {(� ∩ �) ∪ (� ∩ ¬�) = �}
) 4E>

′( ®. )

Then 64CC .CA6 transforms these updated base relation and auxiliary relations into the
updated view instance ) ′( ®. ) of target schema as follows:

) ′( ®. ) = {De�nition in Algorithm 5.2}
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(�) ′( ®. ) ∩ ¬�608=)

′( ®. )) ∪�;>BC)

′( ®. )
= {Substitute �) ′( ®. ) = 5 (S′) because of �) ′( ®. ) = ) 4E> ′( ®. ) and

) 4E>
′( ®. ) = 5 (S′)}(

5 (S′) ∩ ¬�608=
)

′( ®. )
)
∪�;>BC)

′( ®. )

Because of �) ( ®. ) = 5 (S) and �) ′( ®. ) = 5 (S′), the updates from 5 (S) to 5 (S′) are
equivalent to the updates from �) ( ®. ) to �) ′( ®. ) when union of view instances of
source schema is updated from S to S′. As mentioned above, ?DCC .BA2.8 updates the
base relation �) ( ®. ) to �) ′( ®. ) by applying sets of inserted and deleted tuples Δ+

�)
( ®. )

and Δ−
�)
( ®. ). It also updates the auxiliary relations �;>BC

)
( ®. ) and �608=

)
( ®. ) to �;>BC

)

′( ®. )
and �608=

)

′( ®. ) by excluding tuples of Δ+
�)
( ®. ) and Δ−

�)
( ®. ). Thus, inserted and deleted

tuples from 5 (S) to 5 (S′) as a result of update sharing by schema evolution 5 are not
deleted and inserted by the updated auxiliary relations �;>BC

)

′( ®. ) and �608=
)

′( ®. ) in the
transformation to ) ′( ®. ) by 64CC .CA6. Therefore, transformation of updates against (8 ( ®-8)
to updates against ) ( ®. ) by 64CC .CA6 after ?DCC .BA2.8 is equivalent to a result of update
sharing by schema evolution. �

A.14 Proof of Theorem 5.8

Suppose a co-existence strategy strategy satisfying the consistency of updates between
relations (8 ( ®-8) (8 ∈ [1, =]) of source schema and a relation ) ( ®. ) of target schema.
Recall that backward update sharing is speci�ed as transformations 6+B8 and 6−B8 for
each 8 (8 ∈ [1, =]) from a pair of source schema instance S and delta relation Δ) ( ®. ) to
Δ+
(8
( ®-8) and Δ−

(8
( ®-8) as sets of inserted and deleted tuples against a relation (8 of source

schema.

Δ+(8 ( ®-8) = 6
+
B8
(S,Δ) ( ®. )) (A.10)

Δ−(8 ( ®-8) = 6
−
B8
(S,Δ) ( ®. )) (A.11)

where source schema instance S is union of all relations (8 of source schema. Such
Δ+
(8
( ®-8) and Δ−

(8
( ®-8) update the relation (8 ( ®-8) to (8 ′( ®-8).
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On the other hand, �-C .CA6 is derived by Algorithm 5.3 from the co-existence
strategy. ?DCC .CA6 of �-C .CA6 transforms Δ) ( ®. ) as the delta relation of the view instance
) ( ®. ) of target schema into the updated database D) ′. The base relation �) ( ®. ) and
auxiliary relations �2

(8
( ®/8), �;>BC(8

( ®-8), and �608=
(8
( ®-8) of the database are updated to

�)
′( ®. ), �2

(8

′( ®/8), �;>BC(8

′( ®-8), and �608=
(8

′( ®-8) as follows:

Δ+�) ( ®. ) = c0CCA () ) (Δ
+
(8
( ®-8) ⊲⊳ Δ+) ( ®. )) ∩ ¬�) ( ®. ) (A.12)

Δ−�) ( ®. ) = c0CCA () ) (Δ
−
(8
( ®-8) ⊲⊳ Δ−) ( ®. )) ∩ �) ( ®. ) (A.13)

�)
′( ®. ) = (�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+�) ( ®. ) (A.14)

Δ+�2
(8

( ®/8) = c ®/8 (Δ
+
(8
( ®-8)) ∩ ¬�2(8 ( ®/8) (A.15)

Δ−(8
′( ®-8) = Δ−(8 ( ®-8) ⊲⊳ (c:4~ (Δ

−
(8
( ®-8)) ∩ ¬c:4~ (Δ+(8 ( ®-8))) (A.16)

Δ−�2
(8

( ®/8) = c ®/8 (Δ
−
(8

′( ®-8)) ∩�2(8 ( ®/8) (A.17)

�2(8
′( ®/8) = (�2(8 ( ®/8) ∩ ¬Δ

−
�2
(8

( ®/8)) ∪ Δ+�2
(8

( ®/8) (A.18)

Δ−
�;>BC
(.8

( ®-8) = (Δ+(8 ( ®-8) ∩�
;>BC
( .8 ( ®-8)) ∪ (Δ

−
(8
( ®-8) ∩�;>BC( .8 ( ®-8)) (A.19)

�;>BC(8

′( ®-8) = �;>BC(8
( ®-8) ∩ ¬Δ−�;>BC

(8

( ®-8) (A.20)

Δ−
�
608=

(.8

( ®-8) = (Δ+(8 ( ®-8) ∩�
608=

(.8
( ®-8)) ∪ (Δ−(8 ( ®-8) ∩�

608=

(.8
) ( ®-8) (A.21)

�
608=

(8

′( ®-8) = �608=(8
( ®-8) ∩ ¬Δ−

�
608=

(8

( ®-8) (A.22)

where Δ+
(8
( ®-8) and Δ−

(8
( ®-8) are results of backward updated sharing of (A.10) and (A.11)

based on S as union of view instances (8 ( ®-8) for all 8 of source schema and Δ) ( ®. ) as
the delta relation of the view instance ) ( ®. ) of target schema.

The updated base relations and auxiliary relations are transformed into the updated
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view instance (8 ′( ®-8) of source schema by 64CC .BA2.8 as follows:

(4E>8
′( ®-8) = c0CCA ((8 ) (�) ′( ®. ) ⊲⊳ �2( .8

′( ®/8)) (A.23)

(8
′( ®-8) = ((4E>8

′( ®-8) ∩ ¬�608=(8

′( ®-8)) ∪�;>BC(8

′( ®-8) (A.24)

Let (4E>8
′( ®-8) be updated by Δ+

(4E>
8

( ®-8) and Δ−
(4E>
8

( ®-8) as sets of inserted and deleted
tuples against (4E>8 ( ®-8). In the transformation to the updated view instance (8 ′( ®-8)
by (A.24), if Δ+

(4E>
8

( ®-8) and Δ−
(4E>
8

( ®-8) are equivalent to Δ+
(8
( ®-8) and Δ−

(8
( ®-8) respectively,

tuples of Δ+
(4E>
8

( ®-8) are not deleted by tuples of the updated auxiliary relation �608=
(8

′( ®-8),
and tuples of Δ−

(4E>
8

( ®-8) are not added by tuples of the updated auxiliary relation
�;>BC
(8

′( ®-8), the updated view instance (8 ′( ®-8) is computed by applying all tuples of
Δ+
(8
( ®-8) and Δ−

(8
( ®-8) transformed by backward update sharing. Thus, the derived BXs

realize backward update sharing of a co-existence strategy.
First, it is shown that Δ+

(8
( ®-8) and Δ−

(8
( ®-8) are equivalent to Δ+

(4E>
8

( ®-8) and Δ−
(4E>
8

( ®-8)
respectively when tuples of Δ+

(8
( ®-8) do not exist in (4E>8 ( ®-8) and tuples of Δ−

(8
( ®-8)

exist in (4E>8 ( ®-8). Since backward update sharing is restricted to be the monotonic
so that Δ+

(8
( ®-8) is transformed from Δ+

)
( ®. ) and Δ−

(8
( ®-8) is transformed from Δ−

)
( ®. ),

tuples of Δ+
(8
( ®-8) and Δ−

(8
( ®-8) are not generated without tuples of Δ+

)
( ®. ) and Δ−

)
( ®. )

respectively. Thus, when tuples are inserted to the view instance ) ( ®. ) by Δ+
)
( ®. ),

Δ+
(8
( ®-8) as a result of backward update sharing is transformed to both Δ+

�)
( ®. ) and Δ+

�2
(8

by (A.12) and (A.15) respectively if tuples of Δ+
(8
( ®-8) do not exist in (4E>8 ( ®-8) de�ned

as (4E>8 ( ®-8) = c0CCA ((8 ) (�) ( ®. ) ⊲⊳ �2( .8 ( ®/8)) by 64CC .BA2.8 . Attributes ®/8 consist of key to
uniquely specify a tuple having attributes ®. . When tuples are deleted from the view
instance ) ( ®. ) by Δ−

)
( ®. ), Δ−

(8
( ®-8) as a result of backward update sharing is transformed

to both Δ−
�)
( ®. ) and Δ−

�2
(8

by (A.13), (A.16), and (A.17) respectively if tuples of Δ+
(8
( ®-8)

exist in (4E>8 ( ®-8). When tuples of the view instance ) ( ®. ) is replaced by Δ+
)
( ®. ) and

Δ−
)
( ®. ), tuples of �) ( ®. ) is replaced by Δ+

�)
( ®. ) and Δ−

�)
( ®. ) while tuples of �2

(8
is not

replaced due to (A.18). Therefore, dangling tuples do not exit in �) ( ®. ) and �2
( .8
( ®/8).

Δ+
(4E>
8

( ®-8) and Δ−
(4E>
8

( ®-8) are speci�ed as follows:

Δ+(4E>
8
( ®-8) = c0CCA ((8 ) (Δ+�) ( ®. ) ⊲⊳ Δ

+
�2
(.8
( ®/8))

Δ−(4E>
8
( ®-8) = c0CCA ((8 ) (Δ−�) ( ®. ) ⊲⊳ Δ

−
�2
(.8
( ®/8))
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Since Δ+
(8
( ®-8) and Δ−

(8
( ®-8) are transformed to a pair of Δ+

�)
( ®. ) and Δ+

�2
(.8

( ®/8) and a pair
of pair of Δ−

�)
( ®. ) and Δ−

�2
(.8

( ®/8), Δ+(8 ( ®-8) and Δ−
(8
( ®-8) are equivalent to Δ+

(4E>
8

( ®-8) and
Δ−
(4E>
8

( ®-8) respectively when tuples of Δ+
(8
( ®-8) do not exist in (4E>8 ( ®-8) and tuples of

Δ−
(8
( ®-8) exist in (4E>8 ( ®-8).

Second, it is shown that the updated view instance (8 ′( ®-8) of source schema is a
result of adding tuples of Δ+

(8
( ®-8) and deleting tuples of Δ−

(8
( ®-8) against the original view

instance (8 ( ®-8) when tuples of Δ+
(8
( ®-8) do not exist in (4E>8 ( ®-8) and tuples of Δ−

(8
( ®-8) exist

in (4E>8 ( ®-8). (A.24) transfroms (4E>8
′( ®-8) updated by Δ+

(8
4E> ( ®-8) and Δ−

(8
4E> ( ®-8), �;>BC(8

′( ®-8),
and �608=

(8

′( ®-8) into the updated view instance (8 ′( ®-8). (A.20) transforms to the updated
auxiliary relation�;>BC

(8

′( ®-8) by excluding tuples of Δ+
(8
( ®-8) and Δ−

(8
( ®-8) from the original

�;>BC
(8
( ®-8). (A.22) transforms to the updated auxiliary relation �608=

(8

′( ®-8) by excluding
tuples of Δ+

(8
( ®-8) and Δ−

(8
( ®-8) from the original �608=

(8
( ®-8). Thus, tuples of Δ+

(8
4E> ( ®-8)

are not deleted from (4E>8
′( ®-8) and tuples of Δ−

(8
4E> ( ®-8) are not added to (4E>8

′( ®-8) in
the transformation to (8 ′( ®-8) by (A.24) because Δ+

(8
( ®-8) and Δ−

(8
( ®-8) are equivalent to

Δ+
(4E>
8

( ®-8) and Δ−
(4E>
8

( ®-8) respectively when tuples of Δ+
(8
( ®-8) do not exist in (4E>8 ( ®-8)

and tuples of Δ−
(8
( ®-8) exist in (4E>8 ( ®-8). Therefore, the updated view instance (8 ′( ®-8)

is a result of adding tuples of Δ+
(8
( ®-8) equivalent to Δ+

(8
4E> ( ®-8) and deleting tuples of

Δ−
(8
( ®-8) equivalent to Δ−

(8
4E> ( ®-8) against the original view instance (8 ( ®-8) when tuples

of Δ+
(8
( ®-8) do not exist in (4E>8 ( ®-8) and tuples of Δ−

(8
( ®-8) exist in (4E>8 ( ®-8).

Third, it is shown that the updated view instance (8 ′( ®-8) of source schema is a
result of adding tuples of Δ+

(8
( ®-8) and deleting tuples of Δ−

(8
( ®-8) against the original

view instance (8 ( ®-8) even when tuples of Δ+
(8
( ®-8) exist in (4E>8 ( ®-8) and tuples of Δ−

(8
( ®-8)

does not exist in (4E>8 ( ®-8). In such case, as the above shows, (84E> ′( ®-8) is equivalent to
(8
4E> ( ®-8) because the base relation �) ( ®. ) and the auxiliary relation �2

(8
( ®-8) are not

updated to �) ′( ®. ) and �2
(8

′( ®-8) by Δ+
(8
( ®-8) and Δ−

(8
( ®-8).

On the other hand, tuples of Δ+
(8
( ®-8) existing in (4E>8 ( ®-8) are deleted from the

auxiliary relation �608=
(8
( ®-8) if they exist in �608=

(8
( ®-8). Thus, such tuples of Δ+

(8
( ®-8)

appear in (8 ′( ®-8) as a result of (A.24). Tuples of Δ−
(8
( ®-8) not existing in (4E>8 ( ®-8) are

deleted from the auxiliary relation �;>BB
(8
( ®-8) if they exist in �;>BB

(8
( ®-8). Thus, such tuples

of Δ−
(8
( ®-8) do not appear in (8 ′( ®-8) as a result of (A.24). Therefore, the updated view

instance (8 ′( ®-8) of source schema is a result of adding tuples of Δ+
(8
( ®-8) and deleting

tuples of Δ−
(8
( ®-8) against the original view instance (8 ( ®-8).
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From the above, it is shown that a result of the transformation by backward update
sharing is equivalent to a result of transformations of updates against the view instance
) ( ®. ) of target schema to the updated view instance (8 ′( ®-8) of source schema by ?DCC .CA6
and 64CC .BA2.8 . Thus, backward update sharing is realized by the derived BXs. �

A.15 Proof of Proposition 5.9

Suppose a co-existence strategy satisfying the consistency of updates between relations
(8 ( ®-8) (8 ∈ [1, =]) of source schema and a relation ) ( ®. ) of target schema. Let S be
union of (8 ( ®-8) for all 8. Let �-BA2.8 for all 8 and �-CA6 be the derived bidirectional
transformations from the co-existence strategy by Algorithm 4.3 and Algorithm 4.2
respectively. Let �-C .BA2.8 for all 8 and �-C .CA6 be the derived bidirectional transformations
from the co-existence strategy by Algorithm 5.2 and Algorithm 5.3 respectively.

Suppose we migrate the source-side database DB to the target-side databaseDC by
the derived BXs. Also suppose that a view instance ) ( ®. ) of target schema is updated
by a delta relation Δ) ( ®. ) against a previous state ) ?A4 ( ®. ) of target schema and a view
instance (8 ( ®-8) for each 8 of source schema is updated from a previous state (?A4

8
( ®-8) of

source schema by sets of inserted and deleted tuples Δ+
(8
( ®-8) and Δ−

(8
( ®-8). Δ+(8 ( ®-8) and

Δ−
(8
( ®-8) are transformed from Δ) ( ®. ) by backward update sharing of the co-existence

strategy. The delta relation Δ) ( ®. ) is union of sets of inserted and deleted tuples Δ+
)
( ®. )

and Δ−
)
( ®. ). Union of the view instances (8 ( ®-8) for all 8 is source schema instance S.

Based on the derived BXs, the view instance (8 ( ®-8) of source schema for each 8
is transformed from the source-side database DB by 64CBA2.8 of �-BA2.8 and the view
instance ) ( ®. ) of target schema is transformed from the source-side database DB by
64CCA6 of �-CA6. In the �rst step of data migration, the target-side database is updated by
?DCC .BA2.8 in a stepwise manner. Let DC<?C (8) be a target-side database at 8-th step of data
migration as a result of ?DCC .BA2.8 from a pair of the database DC<?C (8 − 1) and the view
instance (8 ( ®-8), DC<?C (0) be empty set, and DC<?C (=) be DC<? . For example, DC<?C (0) as
empty set is updated to DC<?C (1) by ?DCC .BA2.1 from a pair of DC<?C (0) and (1( ®-1), DC<?C (1)
is updated to DC<?C (2) by ?DCC .BA2.2 from a pair of DC<?C (1) and (2( ®-2), and eventually
DC<?C (= − 1) is updated to DC<?C (=) by ?DCC .BA2.= from a pair of DC<?C (= − 1) and (= ( ®-=).
DC<?C (=) is equivalent to DC<?C . In the second step of data migration, ?DCC .CA6 transforms
a pair of DC<?C and the view instance ) ( ®. ) that is transformed from the source-side
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database DB by 64CCA6 into the migrated target-side database DC . Then 64CC .BA2.8 of �-C .BA2.8
transforms the migrated target-side database DC into the view instance (8 ′( ®-8) of source
schema. 64CC .CA6 of �-C .CA6 transforms DC into the view instance ) ′( ®. ) of target schema.
Thus, by proving (8 ( ®-8) = (8 ′( ®-8) and ) ( ®. ) = ) ′( ®. ), we prove that view instances of
source schema and target schema are equivalent when they are computed from the
original source-side database and the migrated target-side database based on the
derived BXs.

First, we prove ) ( ®. ) = ) ′( ®. ). ) ′( ®. ) is a result of 64CC .CA6 from the migrated target-
side database DC . DC is a result of ?DCC .CA6 from a pair of DC<?C and the view instance
) ( ®. ). Such transformation to ) ′( ®. ) is expressed as follows:

) ′( ®. ) = 64CC .CA6 (?DCC .CA6 (DC<?C ,) ( ®. )))

Since Proposition 5.6 says 64CC .CA6 and ?DCC .CA6 of �-C .CA6 satisfy PUTGET, ) ( ®. ) = ) ′( ®. ).

Second, we prove (8 ( ®-8) = (8 ′( ®-8) for each 8. Let (8 C<? ( ®-8) be a result of 64CC .BA2.8
from DC<?C (8). Such transformation to (8 C<? ( ®-8) is expressed as follows:

(8
C<? ( ®-8) = {(8 C<? ( ®-8) is a result of 64CC .BA2.8 from the target-side database DC<?C (8)}

64CC .BA2.8 (DC<?C (8))
= {DC<?C (8) is a result of ?DCC .BA2.8 from a pair of DC<?C (8 − 1) and the view

instance (8 ( ®-8))}

64CC .BA2.8

(
?DCC .BA2.8

(
DC<?C (8 − 1), (8 ( ®-8)

) )
Since Proposition 5.3 says 64CC .BA2.8 and ?DCC .BA2.8 of �-C .C .BA2.8 satisfy PUTGET as follows:

(8
C<? ( ®-8) = (8 ( ®-8) (A.25)

On the other hand, in a process of data migration, ?DCC .BA2.1 at 1st step makes the
updated base relation �) ′( ®. ) to be a result of schema evolution 5 (S) from DC<?C (0) as
union of empty set and S as union of the view instance (8 ( ®-8) of source schema for all 8
as follows:

�)
′( ®. ) = {De�nition in Algorithm 5.2}
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(�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+�) ( ®. )
= {Substitute de�nitions of Δ+�) ( ®. ) and Δ−�) ( ®. ) in Algorithm 5.2}(

�) ( ®. ) ∩ ¬
(
¬) 4E> ′( ®. ) ∩) 4E> ( ®. ) ∩ �) ( ®. )

) )
∪

(
) 4E>

′( ®. ) ∩ ¬) 4E> ( ®. ) ∩ ¬�) ( ®. )
)

= {Substitute �) ( ®. ) = ∅}
) 4E>

′( ®. ) ∩ ¬) 4E> ( ®. )
= {Since the view instance of source schema are empty set and updated to

(8 ( ®-8) for all 8 at 1st step, ) 4E> ( ®. ) = ∅ and ) 4E> ′( ®. ) = 5 (S) by de�nition in

Algorithm 5.2 }
5 (S)

By turning the updated base relation �) ′( ®. ) to the current base relation �) ( ®. ) = 5 (S)
of DC<?C (1), ?DCC .BA2.2 at 2nd step makes the updated base relation �) ′( ®. ) to be a result
of schema evolution 5 (S) as follows:

�)
′( ®. ) = {De�nition in Algorithm 5.2}

(�) ( ®. ) ∩ ¬Δ−�) ( ®. )) ∪ Δ+�) ( ®. )
= {Substitute de�nitions of Δ+�) ( ®. ) and Δ−�) ( ®. ) in Algorithm 5.2}(

�) ( ®. ) ∩ ¬
(
¬) 4E> ′( ®. ) ∩) 4E> ( ®. ) ∩ �) ( ®. )

) )
∪

(
) 4E>

′( ®. ) ∩ ¬) 4E> ( ®. ) ∩ ¬�) ( ®. )
)

= {Substitute �) ( ®. ) = 5 (S),) 4E> ( ®. ) = ∅, and ) 4E> ′( ®. ) = 5 (S)}
5 (S)

By turning the updated base relation �) ′( ®. ) to the current base relation �) ( ®. ) = 5 (S)
of DC<?C (2), ?DCC .BA2.3 at 3rd step makes the updated base relation �) ′( ®. ) to be 5 (S) in
the same manner. Therefore, the base relations of DC<?C (8) for each 8 and DC<?C are a
result of schema evolution 5 (S).

Also ?DCC .BA2.1 at 1st step makes the updated base relation �;>BC
)

′( ®. ) and �608=
)

′( ®. ) to
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be empty set based on DC<?C (0) as union of empty set as follows:

�;>BC)

′( ®. ) = {De�nition in Algorithm 5.2}
�;>BC) ( ®. ) ∩ ¬Δ

−
�;>BC
)

( ®. )

= {Substitute de�nitions of Δ−
�;>BC
)

( ®. ) in Algorithm 5.2}

�;>BC) ( ®. ) ∩ ¬
(
(Δ+�) ( ®. ) ∩�

;>BC
) ( ®. )) ∪ (Δ

−
�)
( ®. ) ∩�;>BC) ( ®. ))

)
= {Substitute �;>BC) ( ®. ) = ∅}
∅

�
608=

)

′( ®. ) = {De�nition in Algorithm 5.2}
�
608=

)
( ®. ) ∩ ¬Δ−

�
608=

)

( ®. )

= {Substitute de�nitions of Δ−
�
608=

)

( ®. ) in Algorithm 5.2}

�
608=

)
( ®. ) ∩ ¬

(
(Δ+�) ( ®. ) ∩�

608=

)
( ®. )) ∪ (Δ−�) ( ®. ) ∩�

608=

)
( ®. ))

)
= {Substitute �;>BC) ( ®. ) = ∅}
∅

By turning the updated auxiliary relations �;>BC
)

′( ®. ) and �608=
)

′( ®. ) as empty set to
the current auxiliary relations �;>BC

)

′( ®. ) and �608=
)

′( ®. ) as empty set, ?DCC .BA2.2 at 2nd
step makes the updated auxiliary relations to be empty set again. Therefore, the
auxiliary relations �;>BC

)
( ®. ) and �608=

)
( ®. ) of DC<?C (8) at 8-th step and DC<?C are empty set.

Then 64CC .BA2.8 transforms the base relation as 5 (S) and 8-th auxiliary relations �2
(8
( ®/8),

�;>BC
(8
( ®-8), and �608=

(8
( ®-8) of DC<?C (8) into the view instance (C<?

8
( ®-8).

On the other hand, the target-side database DC<?C is union of the base relation as 5 (S),
auxiliary relations�2

(8
( ®/8),�;>BC(8

( ®-8), and�608=
(8
( ®-8) that are update by ?DCC .BA2.8 for each 8 ,

and other auxiliary relations�;>BC
)
( ®. ) and�608=

)
( ®. ) as empty set. Thus, 64CC .BA2.8 (DC<?C (8))

and 64CC .BA2.8 (DC<?C ) is equivalent and (8 ( ®-8) is equivalent to 64CC .BA2.8 (DC<?C ) as follows:

(8 ( ®-8) = {(A.25)}
(
C<?

8
( ®-8)

= {(C<?
8
( ®-8) = 64CC .BA2.8 (DC<?C (8)) and 64CC .BA2.8 (DC<?C (8)) = 64CC .BA2.8 (D

C<?

C )}
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64CC .BA2.8 (DC<?C )

In the second step of data migration, ?DCC .CA6 transforms a pair of DC<?C and the view
instance ) ( ®. ) that is transformed from the source-side database DB by 64CCA6 into the
migrated target-side database DC . Then, the view instance (8 ′( ®-8) is transformed from
the migrated DC by 64CC .BA2.8 . In order to prove (8 ( ®-8) = (8 ′( ®-8), we prove (8 C<? ( ®-8) =
(8
′( ®-8) because of (8 C<? ( ®-8) = (8 ( ®-8) as (A.25) shows.

Sets of newly appeared and disappeared tuples Δ+
)
′( ®. ) and Δ−

)
′( ®. ) as a result of

schema evolution after backward update sharing from the delta relation Δ) ( ®. ) against
) ?A4 ( ®. ) are expressed as followings because source schema instance S is union of the
view instance (8 ( ®-8) for all 8 that are updated by backward update sharing:

Δ+)
′( ®. ) = 5 (S) ∩ ¬) ?A4 ( ®. )

Δ−)
′( ®. ) = ¬5 (S) ∩) ?A4 ( ®. )

Since the consistency of updates is satis�ed, the followings are satis�ed.

Δ+)
′( ®. ) ⊆ Δ+) ( ®. )

Δ−)
′( ®. ) ⊆ Δ−) ( ®. )

Let Δ) ′( ®. ) be union of Δ+
)
′( ®. ) and Δ−

)
′( ®. ), and Δ+

(8

′( ®-8) and Δ−
(8

′( ®-8) be a result of
backward updates sharing from Δ) ′( ®. ). Since Datalog rules of backward update
sharing are restricted so that predicates corresponding to Δ+

)
( ®. ) and Δ−

)
( ®. ) are not

negated, backward update sharing is monotonic. Thus Δ+
(8

′( ®-8) and Δ−
(8

′( ®-8) are subsets
of Δ+

(8
and Δ−

(8
respectively as follows:

Δ+(8
′( ®-8) ⊆ Δ+(8 ( ®-8)

Δ−(8
′( ®-8) ⊆ Δ−(8 ( ®-8)

Since the base relation �) ( ®. ) as 5 (S) and auxiliary relations �2
(8
( ®/8), �;>BC(8

( ®-8), and
�
608=

(8
( ®-8) of DC<?C are a result of ?DCC .BA2.8 based on (8 ( ®-8) applied Δ+

(8
( ®-8) and Δ−

(8
( ®-8),

these base relations and auxiliary relations are not updated as a result of ?DCC .CA6 based
on Δ+

(8

′( ®-8) and Δ−
(8

′( ®-8). Then, the view instance (C<?
8
( ®-8) transformed from these
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base relations and auxiliary relations of the DC<?C by 64CC .BA2.8 is equivalent to the view
instance (8 ′( ®-8) transformed from these base relations and auxiliary relations of the
migrated DC by 64CC .BA2.8 .

(8
C<? ( ®-8) = (8 ′( ®-8) (A.26)

(A.25) and (A.26) conclude (8 ( ®-8) = (8 ′( ®-8) for each 8 .

Suppose we migrate a target-side database DC to a source-side databaseDB by the
derived BXs. A view instance (8 ( ®-8) for each 8 of source schema and a view instance of
) ( ®. ) of target schema are transformed from the original target-side database DC by
64CC .BA2.8 of �-C .BA2.8 and 64CC .CA6 of �-C .CA6 respectively. A view instance (8 ′( ®-8) for each
8 of source schema and a view instance of ) ′( ®. ) of target schema are transformed
from the migrated source-side database DB by 64CBA2.8 of �-BA2.8 and 64CCA6 of �-CA6
respectively. Thus, by proving (8 ′( ®-8) = (8 ( ®-8) and ) ′( ®. ) = ) ( ®. ), we prove that view
instances of source schema and target schema are equivalent when they are computed
from the migrated source-side database and the original target-side database based on
the derived BXs.

First, we prove ) ′( ®. ) = ) ( ®. ). ) ′( ®. ) is a result of 64CCA6 from the migrated source-
side database DB . DB is a result of ?DCCA6 from a pair of DC<?B and a view instance ) ( ®. )
where DC<?B is a result of ?DCBA2.8 from a pair of the source-side database as empty
set and view instances (8 ( ®-8) for all 8. Such transformation to ) ′( ®. ) is expressed as
follows:

) ′( ®. ) = 64CCA6 (?DCCA6 (DC<?B ,) ( ®. )))

Proposition 4.4 says 64CCA6 and ?DCCA6 of �-CA6 satisfy PUTGET. Thus ) ( ®. ) = ) ′( ®. ).

Second, we prove (8 ( ®-8) = (8 ′( ®-8) for each 8 . In the �rst step of the data migration,
the view instance (8 ( ®-8) is transformed to the corresponding base relation �(8 ( ®-8) of
the source-side database DC<?B as identity mapping. In the second step of the data
migration, DC<?B is transformed to DB by ?DCCA6 from the view instance ) ( ®. ). However,
?DCCA6 does not update the base relations corresponding to view instances (8 ( ®-8) for
each 8 because (8 ( ®-8) is already a result of backward update sharing from the delta
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relation Δ) ( ®. ) to make the view instance ) ( ®. ). The view instance (8 ′( ®-8) is computed
from the base relations of DB by 64CBA2.8 while the base relations are not updated from
base relations of DC<?B . Thus (8 ( ®-8) = (8 ′( ®-8) for each 8 . �


	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Strategies for Co-existence of Relational Database Schemas
	1.1.2 Problems of Existing Methods

	1.2 Research Objective
	1.3 Contributions
	1.4 Outline

	2 Background Knowledge
	2.1 Datalog
	2.2 Schema Evolution
	2.3 Co-Existence of Schemas
	2.4 Bidirectional Transformation

	3 DSL for Description of Co-Existence Strategies
	3.1 Overview
	3.1.1 Running Example
	3.1.2 Co-Existence Strategy

	3.2 Definitions
	3.3 Design Details
	3.3.1 Syntax
	3.3.2 Semantics
	3.3.3 Description of Schema Evolution
	3.3.4 Description of Backward Update Sharing
	3.3.5 Consistency of Updates

	3.4 Examples of Strategies
	3.5 Related Work

	4 Realization of Co-Existence Strategies on Source-Side Database
	4.1 Overview
	4.2 Deriving BX to Realize Co-Existence Strategies
	4.2.1 Outline
	4.2.2 Deriving Source-Side Database Schema
	4.2.3 Deriving BX between Source-Side Database and View Instance of Target Schema
	4.2.4 Deriving BX between Source-Side Database and View Instance of Source Schema
	4.2.5 Correctness of Derivation Algorithms

	4.3 Evaluation
	4.3.1 Implementation
	4.3.2 Experimental Result
	4.3.3 Discussion

	4.4 Related Work

	5 Realization of Co-Existence Strategies on Target-Side Database
	5.1 Overview
	5.2 Deriving BX to Realize Co-Existence Strategies
	5.2.1 Outline
	5.2.2 Deriving Target-Side Database Schema
	5.2.3 Deriving BX between Target-Side Database and View Instance of Source Schema
	5.2.4 Deriving BX between Target-Side Database and View Instance of Target Schema
	5.2.5 Correctness of the Algorithms

	5.3 Data Migration
	5.4 Evaluation
	5.4.1 Implementation
	5.4.2 Experimental Result
	5.4.3 Discussion

	5.5 Related Work

	6 Conclusion
	Bibliography
	Appendix A Proofs
	A.1 Proof of Lemma 4.1
	A.2 Proof of Lemma 4.2
	A.3 Proof of Proposition 4.3
	A.4 Proof of Proposition 4.4
	A.5 Proof of Theorem 4.5
	A.6 Proof of Theorem 4.6
	A.7 Proof of Lemma 5.1
	A.8 Proof of Lemma 5.2
	A.9 Proof of Proposition 5.3
	A.10 Proof of Lemma 5.4
	A.11 Proof of Lemma 5.5
	A.12 Proof of Proposition5.6
	A.13 Proof of Theorem 5.7
	A.14 Proof of Theorem 5.8
	A.15 Proof of Proposition 5.9


