
Semantic Refinements for
Program Verification

Satoshi Kura

Dissertation

submitted to the Department of Informatics
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies,
SOKENDAI
March 2022



ii



Abstract

Semantics of programming languages is an essential theory not only for defin-
ing the meaning of programs but also for studying properties of programs. This
thesis aims to apply program semantics to verification of programs. Specifically,
we study refinements of semantics of programs to enhance expressivity and ver-
ification power. The refined models maintain essential mathematical structures
of the original models and have more information about properties of programs.
By replacing the original models with the refined models, we obtain improved
verification methods. In the thesis, we consider four applications of semantic
refinements.

The first one is a semantic construction of dependent refinement type sys-
tems. A dependent refinement type system is a type system that admits both
refinement types and dependent types. Refinement types are types whose val-
ues are restricted by predicates and can be used to specify preconditions and
postconditions of functional languages. Dependent types are types that depend
on other terms and allow us to use postconditions that depend on the input
value. We study categorical semantics of dependent refinement type systems.
Our construction is based on the following intuition: a dependent refinement
type system is obtained from an underlying type system (a type system that
does not contain refinement types) by refining types by predicates. We formalize
a semantic counterpart of this intuition. Given a model of the underlying type
system (a closed comprehension category and a fibred monad) and a model of
predicate logic (a posetal fibration with some conditions), we construct a model
of the dependent refinement type system (a closed comprehension category and
a fibred monad that refines the model of the underlying type system). We show
that we can define the interpretation of refinement types using our construction.
We also provide several examples of our construction.

The second one is a program logic for effect handlers. Effect handlers are
a programming language feature that allows programmers to implement user-
defined computational effects. However, verification of effect handlers is not
yet well-studied. We provide a program logic for effect handlers by considering
refined semantics of effect handlers. Specifically, we consider Hoare triples for
effect handlers and interpret them as liftings of the interpretation of effect han-
dlers along a fibration. We consider sufficient conditions under which we can
construct those liftings from liftings of each operation in effect handlers. Such
conditions lead to inference rules of our program logic that provide composi-
tional reasoning about effect handlers.

The third one is decision tree-based ranking function synthesis. Ranking
functions are an essential notion for termination analysis. We propose an
example-based termination analyzer that can synthesize piecewise affine rank-

iii



ing function. Our analyzer finds a piecewise affine ranking function for a given
program by repeatedly guessing a candidate solution from a finite set of ex-
amples of the transition relation and accepting the genuine solution from the
candidates. We refine an existing example-based method that synthesizes affine
ranking functions so that our method can synthesize piecewise affine ranking
functions. Our method uses decision trees to express affine ranking functions
and extends the decision tree learning algorithm for transition examples. Our
extended decision tree learning algorithm detects a certain kind of cyclic con-
straints in transition examples and resolves them by appropriately splitting the
state space. We implemented our synthesizer and compared our tool with other
tools.

The fourth one is a method for overapproximating tail probabilities of run-
time of randomized programs. It is known that ranking supermartingales can
give an upper bound of the expected runtime of randomized programs. This
fact can be used to overapproximate tail probabilities of runtime of randomized
programs by applying concentration inequalities like Markov’s inequality. We
refine the existing notion of ranking supermartingales so that they can also give
upper bounds of higher moments of runtime. Technically, our improvement is
based on the order-theoretic characterization of ranking supermartingales. It
is known that the expected runtime is the least fixed point of a certain mono-
tone function, and ranking supermartingales are prefixed points of the monotone
function. We extend this to characterize higher moments of runtime as the least
fixed point and define ranking supermartingales for higher moments as prefixed
points. This extension allows us to improve upper bounds of tail probabilities.
We implemented a synthesizer of our notion of ranking supermartingales and
conducted experiments.

iv



Acknowledgements

I would like to thank my supervisor Ichiro Hasuo for his support of my PhD
life and research. My PhD program could not be more fruitful thanks to his
guidance, knowledge, and leadership in his great research team. I would like
to thank Shin-ya Katsumata, who gave me many helpful comments and advice
when I talked about my research progress. This thesis includes joint work with
Ichiro Hasuo, Natsuki Urabe, and Hiroshi Unno. I am grateful for fruitful
collaborations. Lastly, I would like to thank my parents for their patience and
support since my birth and encouraging my decision to enter the PhD program.

v



vi



Contents

1 Introduction 1
1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Semantic Refinements . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 A Categorical Construction of Dependent Refinement Type
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 A Program Logic for Effect Handlers . . . . . . . . . . . . 5
1.2.3 Decision Tree-Based Ranking Function Synthesis . . . . . 8
1.2.4 Tail Probabilities of Randomized Programs via Higher

Moments of Runtime . . . . . . . . . . . . . . . . . . . . . 11
1.3 Outline of This Thesis and Corresponding Papers . . . . . . . . . 14

2 A Categorical Construction of Dependent Refinement Type
Systems 17
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Comprehension Category . . . . . . . . . . . . . . . . . . 19

2.2 Lifting SCCompCs and Fibred Coproducts . . . . . . . . . . . . 21
2.2.1 Lifting SCCompCs . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Lifting Fibred Coproducts . . . . . . . . . . . . . . . . . . 37

2.3 Lifting Monads on SCCompCs . . . . . . . . . . . . . . . . . . . 40
2.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Underlying Type System . . . . . . . . . . . . . . . . . . 43
2.4.2 Predicate Logic . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Refinement Type System . . . . . . . . . . . . . . . . . . 46
2.4.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Toward Recursion in Refinement Type Systems . . . . . . . . . . 53
2.5.1 Conway Operators . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Recursion in the Underlying Type System . . . . . . . . . 55
2.5.3 Recursion in Refinement Type System . . . . . . . . . . . 56

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 57

3 A Program Logic for Effect Handlers 59
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Ordered Object and Lax Slice Category . . . . . . . . . . 60
3.1.2 Monad Lifting . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 Algebraic Theory . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Syntax and Semantics of Effect Handlers . . . . . . . . . 63

vii



3.2 Weakest Preconditions for Algebraic Operations . . . . . . . . . . 66
3.3 Operation-wise Condition for Lifting Algebras . . . . . . . . . . . 68
3.4 Strong Monad Lifting . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Operation-wise Condition for Lifting Simply Fibred Algebras . . 73
3.6 Program Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.1 Generic Effects . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.2 With a Strong Monad Lifting . . . . . . . . . . . . . . . . 76
3.6.3 Without a Strong Monad Lifting . . . . . . . . . . . . . . 77

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Decision Tree-Based Ranking Function Synthesis 81
4.1 Preview by Examples . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Termination Verification by CEGIS . . . . . . . . . . . . . 81
4.1.2 Handling Cycles in Decision Tree Learning . . . . . . . . 82

4.2 (Non-)Termination Verification as Constraint Solving . . . . . . . 85
4.3 CounterExample-Guided Inductive Synthesis (CEGIS) . . . . . . 87
4.4 Ranking Function Synthesis . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 Segmentation and (Explicit and Implicit) Cycles: One-

Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.3 Segmentation and (Explicit and Implicit) Cycles: Multi-

Dimensional Lexicographic Case . . . . . . . . . . . . . . 91
4.4.4 Our Decision Tree Learning Algorithm . . . . . . . . . . . 91
4.4.5 Improvement by Degenerating Negative Values . . . . . . 95

4.5 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . 95
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 98

5 Tail Probabilities of Randomized Programs via Higher Mo-
ments of Runtime 101
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Ranking Supermartingale for Higher Moments . . . . . . . . . . . 103

5.2.1 Ranking Supermartingales for the Second Moments . . . 104
5.2.2 Ranking Supermartingales for the Higher Moments . . . . 105

5.3 From Moments to Tail Probabilities . . . . . . . . . . . . . . . . 106
5.4 Template-Based Synthesis Algorithm . . . . . . . . . . . . . . . . 107

5.4.1 Linear Template-Based Algorithm . . . . . . . . . . . . . 107
5.4.2 Polynomial Template-based Algorithm . . . . . . . . . . . 109

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 116

A Full Definition of the Underlying Type System and the Depen-
dent Refinement Type System 117
A.1 Underlying Type System . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.1 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Refinement Type System . . . . . . . . . . . . . . . . . . . . . . 126
A.2.1 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

viii



B Details of Chapter 5 131
B.1 Preliminaries on Measure Theory . . . . . . . . . . . . . . . . . . 131
B.2 Higher Moments of Runtimes and Rewards . . . . . . . . . . . . 132
B.3 Omitted Details and Proofs in Section 5.2 . . . . . . . . . . . . . 135

B.3.1 Basic Properties of the Pre-expectation . . . . . . . . . . 135
B.3.2 Basic Properties of the Time-Elapse Function . . . . . . . 138
B.3.3 Characterizing Higher Moments as a Least Fixed Point . 138
B.3.4 Ranking Supermartingale for K-th Moments . . . . . . . 142

B.4 Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.5 Detailed Comparison with Existing Work . . . . . . . . . . . . . 145

B.5.1 Comparison with [26] . . . . . . . . . . . . . . . . . . . . 145
B.5.2 Comparison with [59] . . . . . . . . . . . . . . . . . . . . 145

B.6 An Example of Polynomially Decreasing Tail Probability . . . . . 146

ix



x



Chapter 1

Introduction

This thesis is about the study of program semantics and its application to
program verification. In this chapter, we describe the background of program
semantics and program verification, introduce our approach, and outline this
thesis.

1.1 Backgrounds

Semantics of programming languages. Semantics is a foundation of the
study of programming languages. The meaning of a program is defined by inter-
preting the program in a mathematical model. A choice of a model determines
what features of programming languages can be expressed by the model. Find-
ing appropriate models is an essential topic of the study of program semantics.

Various program semantics have been introduced to capture various features
of programming languages mathematically. One of the classical studies of pro-
gram semantics is Scott’s domain theory for untyped lambda calculus [104].
In domain theory, programs are interpreted as continuous functions in order-
theoretic models, and notably, recursions are captured as least fixed points.
Lambek applied categorical semantics to simply typed lambda calculus and
showed that simply typed lambda calculus corresponds to cartesian closed cat-
egories [75]. Moggi used the category-theoretic notion of monads to uniformly
capture computational effects such as input/output, exception, and nondeter-
minism [84]. Recently, categorical semantics have many applications, such as
probabilistic programs [50] and effect handlers [92].

The semantics of programming languages not only defines the meaning of
programs, but also allows us to discuss properties of programs. Hermida [49]
studied a semantic framework of logical predicates/relations using the category-
theoretic notion of fibrations. A fibration p : E → B has two layers of models.
For example, we can use the base model B = Set to interpret the simply typed
lambda calculus using the cartesian closed structure of B. As the other model E,
we can use the category of predicates on Set whose object is a set X together
with a predicate on X. Then, E is also a cartesian closed category, and the
interpretation of the simply typed lambda calculus in E gives the interpretation
of logical predicates. The functor p : E → B maps the interpretation in E to
the interpretation in B, which can be understood as forgetting predicates. To

1



1.1. Backgrounds

sum up, we can show properties of a lambda term by considering a lifting of its
interpretation along a fibration p : E→ B.

Program verification. Program verification is the problem of proving that a
program satisfies a given specification, which describes desired behaviors of the
program. There are various kinds of specifications to be verified. When we are
interested in the program’s input and output, we can specify the behavior like
“for each input satisfying a (pre)condition, the output of the program satisfies
another (post)condition”. When we are interested in the runtime of the pro-
gram, we can use specifications like “the program terminates within 100 steps”.
Computational effects can also be a target of specifications. We may consider a
specification like “any possible output of the (nondeterministic) program satis-
fies some condition”.

A naive way of proving such properties of programs is paper-and-pencil
proofs. We can calculate the interpretation of a given program and write a
proof of satisfaction of a specification as long as semantics is defined. However,
paper-and-pencil proofs are error-prone and require substantial effort. To pre-
vent errors in proofs, we can use interactive theorem provers such as Coq, Agda,
and Isabelle. These theorem provers use expressive logics that can encode most
of mathematics and allows us to write machine-checked proofs. However, inter-
active theorem provers still require substantial effort and expertise in the target
program and interactive theorem provers themselves, which makes it difficult to
apply this methodology to large-scale programs. Therefore, many studies aim
at more convenient verification. We describe a few of them below.

Hoare logic [51] provides syntactic proof rules for Hoare triples. A Hoare
triple {P}c{Q} says that “if we run the program c from a state satisfying the
precondition P , then the state after running c satisfies the postcondition Q”.
We can prove the validity of {P}c{Q} by applying proof rules. Automation of
Hoare logic is also studied. The weakest precondition transformer wp[c] [32]
is one of the essential techniques to automate verification. Given a program
c and a postcondition Q, we define the weakest precondition wp[c](Q) as the
precondition such that {wp[c](Q)}c{Q} and for any P , if {P}c{Q} holds, then
P =⇒ wp[c](Q) holds. It follows that proving {P}c{Q} is equivalent to cal-
culating wp[c](Q) and proving P =⇒ wp[c](Q). The weakest precondition
can be easily calculated except for while loops, for which we have to guess an
invariant. Therefore, the weakest precondition transformer wp[c] enables us
to extract verification conditions from the program c, and verification condi-
tions can be checked by constraint solvers such as SMT (Satisfiability Modulo
Theories) solvers and CHC (Constrained Horn Clauses) solvers.

Another kind of verification method is refinement type systems. Refinement
type systems can describe specifications by refinement types {v : b | p}, which
restricts values of type b by the predicate p. Verification conditions are extracted
by applying typing rules. Specifically, typing rules for subtypings {v : b | p} <:
{v : b | p} between two refinement types yields the implication p =⇒ q as
a verification condition. Implementations of refinement type systems are also
studied in [94,110,111,124,125].

2



Chapter 1. Introduction

1.2 Semantic Refinements

This thesis aims to extend the scope of program verification to new problems
by what we call semantic refinements. The problem of program verification in-
evitably becomes more difficult if we consider programming language with more
features. Making new verification methods on an ad hoc basis would not be
manageable for complex problems. So, we pursue a more theoretically prin-
cipled way of developing new verification methods. We utilize mathematical
structures of models that are essential for verification methods to work well.
We refine existing models so that refined models have more information about
programs and maintain essential mathematical structures of existing models.
With more information about programs, we can improve the expressivity and
verification power of the existing methods. With the same mathematical struc-
ture, we can minimize modifications to syntactic inference rules or algorithms.
Our semantic refinement includes Hermida’s fibrational approach towards log-
ical predicates/relations but is not necessarily limited to fibrations. We also
study automated verification using semantic refinement as a part of this thesis.

This thesis contains four concrete topics. Each topic corresponds to one
chapter.

1.2.1 A Categorical Construction of Dependent Refine-
ment Type Systems

Dependent refinement types [39] are types equipped with predicates that restrict
values in the types. They are used to specify preconditions and postconditions
which may depend on input values and to verify that programs satisfy the
specifications. Many dependent refinement types systems are proposed [14, 39,
67, 76, 116] and implemented in, e.g., F? [110, 111] and LiquidHaskell [94, 124,
125].

In this topic, we address the question: “How are dependent refinement type
systems, underlying type systems, and predicate logic related from the viewpoint
of categorical semantics?” Although most existing dependent refinement type
systems are proved to be sound using operational semantics, we believe that
categorical semantics is more suitable for the general understanding of their
nature, especially when we consider general computational effects and various
kinds of predicate logic (e.g., for relational verification). This understanding
will provide guidelines to design new dependent refinement type systems.

Our answer to the question is a general semantic construction of depen-
dent refinement type systems from underlying type systems and predicate logic.
More concretely, given a closed comprehension category (CCompC for short)
for interpreting an underlying type system and a fibration for predicate logic,
we combine them to obtain another CCompC that can interpret a dependent
refinement type system built from the underlying type system and the predicate
logic.

For example, consider giving an interpretation to the term “x : {int | x ≥
0} ` x + 1 : {v : int | v = x + 1}” in a dependent refinement type system. Its
underlying term is “x : int ` x + 1 : int,” and we assume that it is interpreted
as the successor function of Z in Set. The problem here is how to refine this
interpretation with predicates. In dependent refinement types, predicates may
depend on the variables in contexts. In this example, the type “x : {int | x ≥

3



1.2. Semantic Refinements

0} ` {v : int | v = x + 1}” depends on the variable x. Thus, the interpretation
of such types must be a predicate on the context and the type, i.e.,

Jx : {int | x ≥ 0} ` {v : int | v = x+ 1}K = {(x, v) ∈ Z× Z | x ≥ 0 ∧ v = x+ 1}.

As a result, the term in the dependent refinement type system is interpreted
as the interpretation in the underlying type system together with the property
that if the input satisfies preconditions, then the output satisfies postconditions.

{x ∈ Z | x ≥ 0} {(x, v) ∈ Z× Z | x ≥ 0 ∧ v = x+ 1}

Z Z× Z

⊆ ⊆
〈idZ,(−)+1〉

(1.1)

{E | P} E

P B

p

q

Figure 1.1: A lifting
of a CCompC.

We formalize this refinement process as a construc-
tion of liftings of CCompCs, which are used to interpret
dependent type theories. Assume that we have a pair of
a CCompC p : E → B for interpreting underlying type
systems and a fibration q : P→ B for predicate logic sat-
isfying certain conditions. Then we construct a CCompC
{E | P} → P for interpreting dependent refinement type
systems. This construction also yields a morphism of
CCompCs from {E | P} → P to p : E → B in Fig. 1.1.
Given the simple fibration s(Set) → Set for underlying
type systems and the subobject fibration Sub(Set) → Set for predicate logic,
then we get interpretations like (1.1).

We extend the construction of liftings of CCompCs to liftings of fibred mon-
ads [8] on CCompCs, which is motivated by the fact that many dependent re-
finement type systems have computational effects, e.g., exception (like division
and assertion), divergence, nondeterminism [116], and probability [14]. Assume
that we have a fibred monad T̂ on p : E → B, a monad T on B, and a lifting
Ṫ of T along q : P → B. Under a certain condition that roughly claims that T̂
and T represent the same computational effects, we construct a fibred monad
on {E | P} → P, which is a lifting of T̂ in the same spirit of the given lifting Ṫ .
This situation is rather realistic because the fibred monad T̂ on the CCompC
p : E→ B is often induced from the monad T on the base category B. The lift-
ing Ṫ of the monad T along p : P→ B specifies how to map predicates P ∈ PX
on values X ∈ B to predicates ṪP ∈ PTX on computations TX, which enables
us to express, for example, total/partial correctness and may/must nondeter-
minism [8].

We explain the usage of these categorical constructions by giving semantics
to a dependent refinement type system with computational effects, which is
based on [11]. Our system also supports subtyping relations induced by logical
implication. We prove soundness of the dependent refinement type system.

Finally, we discuss how to handle recursion in dependent refinement type
systems. In [11], Ahman gives semantics to recursion in a specific model, i.e., the
fibration of continuous families of ω-cpos CFam(CPO)→ CPO. We consider
more general characterization of recursion by adapting Conway operators for
CCompCs, which enables us to lift the structure for recursion. We show that
a rule for partial correctness in our dependent refinement type system is sound
under the existence of a generalized Conway operator.

Our contributions are summarized as follows.

4



Chapter 1. Introduction

• We provide a general construction of liftings of CCompCs from given
CCompCs and posetal fibrations satisfying certain conditions, as a seman-
tic counterpart of construction of dependent refinement type systems from
underlying type systems and predicate logic. We extend this to liftings
of fibred monads on the underlying CCompCs to model computational
effects.

• We consider a type system (based on EMLTT [9–11]) that includes most of
basic features of dependent refinement type systems and prove its sound-
ness in the liftings of CCompCs obtained from the above construction.

• We define Conway operators for dependent type systems. This generalizes
the treatment of general recursion in [11]. We prove soundness of the
typing rule for partial correctness of recursion under the existence of a
lifting of Conway operators.

1.2.2 A Program Logic for Effect Handlers

Effect handlers and their verification. Effect handlers [92] provide a mech-
anism to implement user-defined computational effects. They are a generaliza-
tion of exception handlers in two ways. Firstly, they can handle arbitrary alge-
braic operations (e.g. raising exceptions, input/output, nondeterministic choice,
and read/write to the state of a program). Secondly, they can also specify how
the rest of the computation (i.e. continuation) is resumed when handling an
algebraic operation. These features allow us to flexibly define computational ef-
fects. Effect handlers are implemented in, e.g., Eff [16], Koka [77], and Multicore
OCaml [34].

On the other hand, the flexibility of effect handlers makes it difficult to verify
functional correctness of programs containing effect handlers. First of all, there
are not many studies on the verification of effect handlers. Verifying functional
correctness of effect handlers is studied in [81], but their method is ad hoc,
and it was not known how we could apply their method to effect handlers for
stateful computations. The problem we consider here is how we can provide a
verification method for more general effect handlers.

Program logic for effect handlers. We provide a program logic for effect
handlers in this chapter. We consider specifications in the style of the Hoare
logic [40]. We use the following judgements.

Γ | K {p} `M : C {q} Γ | K {p} ` H : C {q} handler

Here, we add a precondition p and a postcondition q to the typing judgements
Γ | K ` M : C and Γ | K ` M : C handler for terms and effect handlers
defined in [92]. We also provide inference rules for these judgements. Our
inference rules are compositional in the sense that we can reduce verification of
an effect handler to verification of each algebraic operation.

For example, consider the program in Fig. 1.2. We may consider a specifica-
tion like “if x > 0 holds, then the program in Fig. 1.2 returns a value Some(y)
for some y”. This specification can be expressed by the following judgement:

x : int | � {x > 0} `M : F (option int) {r.∃y, r = η(Some(y))}

5



1.2. Semantic Refinements

if x = 0 then raise(eZeroDiv) else 10/x

handled with {raise(e; ) 7→ return None}
to y:int in return Some(y)

Figure 1.2: An example of handling exception. If x is 0, then exception eZeroDiv

is raised. The handler {raise(e; ) 7→ return None} handles the exception and
returns None of type option int := None | Some int. If x is not 0, then the
program returns Some(10/x).

E JφK JψK

B JΓK JAK

p

JMK

Figure 1.3: A lifting of an interpretation JMK.

where M is the program in Fig. 1.2 and η(Some(y)) represent the pure com-
putation that returns Some(y).

Operation-wise liftings of Eilenberg-Moore algebras. The theoretical
backgrounds of our program logic are 1) the relationship between fibrations and
logical relations, which originate in [49], and 2) its application to Eilenberg-
Moore algebras, which give semantics to effect handlers.

The relationship between fibrations and logical relations is studied in [49].
The idea is as follows (and shown in Fig. 1.3). Consider a category B, in which
a program is interpreted. Consider also a fibration p : E → B where the total
category E consists of predicates on some object in B, and the functor p maps
a predicate on X ∈ B to the object X. Suppose that a precondition φ and
a postcondition ψ are interpreted in the total category E. In this situation, a
lifting of the interpretation JMK of a program Γ ` M : A along the fibration p
represents a proof of correctness. Thus, rules for constructing a lifting of JMK
can be understood as inference rules of a program logic.

The idea explained above can be extended for computational effects by con-
sidering monad liftings. Given a monad T on the base category B, a lifting of T
along the fibration p : E→ B provides a mapping from a predicate on values in
X to a predicate on effectful computations in TX. Monad liftings are studied
in ,e.g., [8,63,64] and applied to study program logics in [6,99]. However, none
of these studies deal with effect handlers to the best of our knowledge. So, we
extend these fibrational approach to a program logic for effect handlers in this
thesis.

We consider liftings of the interpretation of an effect handlers to prove the
correctness of the effect handler. Since the interpretation of an effect handler
H = {op(x; k) 7→ Mop}op is given by an Eilenberg-Moore algebra induced by
the interpretation of Mop for each operation op, we aim to obtain liftings of
the Eilenberg-Moore algebra from liftings of the interpretation of Mop for each
algebraic operation. Such operation-wise liftings provide semantics of program
logic that can verify effect handlers in an operation-wise manner (Fig. 1.4).

6



Chapter 1. Introduction

correctness of Mop for each op ∈ Σ

correctness of an effect handler H

a lifting of JMopK for each op ∈ Σ

a lifting of J{op(x; k) 7→Mop}op∈ΣK

Figure 1.4: Operation-wise liftings of Eilenberg-Moore algebras provide seman-
tics of our program logic for effect handlers.

When considering operation-wise liftings of Eilenberg-Moore algebras of a
monad T , we use the domain fibration dom : Set/Ω → Set where the total
category Set/Ω is the lax slice category [8], which intuitively represents a cat-
egory of Ω-valued predicates. There are two reasons for this restriction. We
restrict the base category to Set because if we use Set and the monad T on
Set has countable rank, then T has a corresponding algebraic theory. This
algebraic theory gives a set of algebraic operations that can fully characterize
the monad T . This is the first reason, and the same restriction is used in [92].
The other reason is as follows. We restrict the fibration to the domain fibration
dom : Set/Ω → Set because if we use this fibration, then (a certain kind of)
monad liftings of T correspond to monotone Eilenberg-Moore algebras on Ω [8].
This gives an algebraic characterization of monad liftings of T , which leads to
useful conditions for operation-wise liftings of Eilenberg-Moore algebras. We
believe that our restriction to the domain fibration dom : Set/Ω→ Set is still
useful and general enough to cover many examples of monads on Set. In partic-
ular, we deal with the state monad, which was out of the scope of the existing
work [81].

Strong Monad Lifting. For the technical treatment of operation-wise lift-
ings of Eilenberg-Moore algebras, we also need a lifting of the strength stX,Y :
X × TY → T (X × Y ) of a strong monad. When we consider the sequential
composition of two programs Γ | K ` M1 : F A and Γ, x : A | K ` M2 : C, the
lifting of the strength guarantees that the precondition on Γ of the first compu-
tation M1 is reusable as a part of the precondition of the second computation
M2. We discuss conditions for the existence of a lifting of the strength and show
that not every strong monad has a strong monad lifting (i.e. there exists the
case where no lifting of stX,Y exists for some X,Y ). We also show that even
if we do not have a strong monad lifting, we can guarantee the existence of a
lifting of stX,Y for some X,Y by restricting predicates. Thus, our program logic
has two versions of inference rules: one is stronger but applicable only when we
have a strong monad lifting, and the other is weaker but applicable even if we
do not have a strong monad lifting.

Summary of contribution

• We provide sufficient conditions for operation-wise liftings of Eilenberg-
Moore algebras along dom : Set/Ω→ Set. This allows us to verify effect
handlers in an operation-wise manner and leads to our program logic.

• We provide conditions for the existence of strong monad liftings along
dom : Set/Ω → Set. We list several examples and non-examples of
strong monad liftings.

7



1.2. Semantic Refinements

Synthesizer:
find a candidate
solution σ that is
consistent with E

Validator:
Is σ a solution for C?

a candidate solution σ

No: a set E of examples
(Validator adds new examples to E)

Yes: answer σ

constraints C

No solution

Figure 1.5: the CEGIS architecture

• We provide a compositional program logic for general effect handlers. Our
framework can be applied to any combination of operations and equations
as long as we have an appropriate choice of truth values Ω and a weakest
precondition transformer for each operation.

1.2.3 Decision Tree-Based Ranking Function Synthesis

Termination Verification by Ranking Functions and CEGIS Termi-
nation verification is a fundamental but challenging problem in program analy-
sis. Termination verification usually involves some well-foundedness arguments.
Among them are those methods which synthesize ranking functions [40]: a rank-
ing function assigns a natural number (or an ordinal, more generally) to each
program state, in such a way that the assigned values strictly decrease along
transition. Existence of such a ranking function witnesses termination, where
well-foundedness of the set of natural numbers (or ordinals) is crucially used.

We study synthesis of ranking functions by CounterExample Guided Induc-
tive Synthesis (CEGIS) [107]. CEGIS is an iterative learning model in which a
synthesizer and a validator interact to find solutions for given constraints. At
each iteration, (1) a synthesizer tries to find a candidate solution from the cur-
rent examples, and (2) a validator accepts the candidate solution if it is correct,
or rejects it providing counterexamples. These counterexamples are then used
as part of the next examples (Fig. 1.5).

CEGIS has been applied not only to program verification tasks (synthesis of
inductive invariants [43,44,87,88], that of ranking functions [46], etc.) but also to
constraint solving (for CHC [25,36,98,127], for pwCSP(T ) [117,118], etc.). The
success of CEGIS is attributed to the degree of freedom that synthesizers enjoy.
In CEGIS, synthesizers receive a set of individual examples that synthesizers
can use in various creative and speculative manners (such as machine learning).
In contrast, in other methods such as [12, 17–19, 78, 93], synthesizers receive
logical constraints that are much more binding.

Segmented Synthesis in CEGIS-Based Termination Analysis The choice
of a candidate space for candidate solutions σ is important in CEGIS. A can-
didate space should be expressive: by limiting a candidate space, the CEGIS
architecture may miss a genuine solution. At the same time, complexity should
be low: a larger candidate space tends to be more expensive for synthesizers to
handle.

This tradeoff is also in the choice of the type of examples: using an ex-
pressive example type, a small number of examples can prune a large portion
of the candidate space; however, finding such expressive examples tends to be
expensive.

8



Chapter 1. Introduction

Table 1.1: ranking function synthesis by CEGIS

candidate space \ example type trace examples transition examples
affine ranking functions [37,121] [46]

piecewise affine ranking functions [37,121] our method

In this chapter, we use piecewise affine functions as our candidate space for
ranking functions. Piecewise affine functions are functions of the form

f(x̃) =


ã1 · x̃+ b1 x̃ ∈ L1

...

ãn · x̃+ bn x̃ ∈ Ln

(1.2)

where {L1, . . . , Ln} is a partition of the domain of f(x̃) such that each Li is a
polyhedron (i.e. a conjunction of linear inequalities). We say segmented synthe-
sis to emphasize that our synthesis targets are piecewise affine functions with
case distinction. Piecewise affine functions stand on a good balance between
expressiveness and complexity: the tasks of synthesizers and validators can be
reduced to linear programming (LP); at the same time, case distinction allows
them to model a variety of situations, especially where there are discontinuities
in the function values and/or derivatives.

We use transition examples as our example type (Table 1.1). Transition
examples are pairs of program states that represent transitions; they are much
cheaper to handle compared to trace examples (finite traces of executions until
termination) used e.g. in [37, 121]. The current work is the first to pursue
segmented synthesis of ranking functions with transition examples; see Table 1.1.

Decision Tree Learning for CEGIS-Based Termination Analysis: a
Challenge In this chapter, we represent piecewise affine functions (1.2) by the
data structure of decision trees. The data structure suits the CEGIS architecture
(Fig. 1.5): iterative refinement of candidate solutions can be naturally expressed
by growing decision trees. The main challenge of this chapter is the design of an
effective synthesizer for decision trees—such a synthesizer learns decision trees
from examples.

In fact, decision tree learning in the CEGIS architecture has already been
actively pursued, for the synthesis of invariants as opposed to ranking func-
tions [25, 36, 44, 69, 127]. It is therefore a natural idea to adapt the decision
tree learning algorithms used there, from invariants to ranking functions. How-
ever, we find that a naive adaptation of those algorithms for invariants does
not suffice: they are good at handling state examples that appear in CEGIS for
invariants; but they are not good at handling transition examples.

More specifically, when decision tree learning is applied to invariant syn-
thesis (Fig. 1.6a), examples are given in the form of program states labeled as
positive or negative. Decision trees are then built by iteratively selecting the
best halfspaces—where “best” is in terms of some quality measures—until each
leaf contains examples with the same label. One common quality measure used
here is an information-theoretic notion of information gain.

We extend this from invariant synthesis to ranking function synthesis where
examples are given by transitions instead of states (Fig. 1.6b). In this case,

9



1.2. Semantic Refinements

e+
1

e+
2

e+
3

e−4 e−5

h1

h2

h1

h2
+

{e+
1 , e

+
2 } −
{e−4 , e

−
5 }

+
{e+

3 }

(a) For invariants

h1

h2

e1
e2

e3

e4

h1

h2
f1(x̃)
{e1}

f2(x̃)
{e2}

f3(x̃)
{e3}

(b) For ranking functions

Figure 1.6: Decision tree learning

a major challenge is to cope with examples that cross a border of the current
segmentation—such as the transition e4 crossing the border h1 in Fig. 1.6b.
Our decision tree learning algorithm should handle such crossing examples, tak-
ing into account the constraints imposed on the leaf labels affected by those
examples (the affected leaf labels are f1(x̃) and f3(x̃) in the case of e4).

Our Algorithm: Cycle-Based Decision Tree Learning for Transition
Examples We use what we call the cycle detection theorem (Theorem 4.4.5)
as a theoretical tool to handle such crossing examples. The theorem claims
the following: if there is no piecewise affine ranking function with the current
segmentation of the domain (such as the one in Fig. 1.6b given by h1 and h2),
then this must be caused by a certain type of cycle of constraints, which we call
an implicit cycle.

In our decision tree learning algorithm, when we do not find a piecewise
affine ranking function with the current segmentation, we find an implicit cycle
and refine the segmentation to break the cycle. Once all the implicit cycles
are gone, the cycle detection theorem guarantees the existence of a candidate
piecewise affine ranking function with the segmentation.

We integrate this decision tree learning algorithm in the CEGIS architecture
(Fig. 1.5) and use it as a synthesizer. Our implementation of this framework
gives promising experimental results on existing benchmark sets.

Contribution Our contribution is summarized as follows.

• We provide a decision tree-based synthesizer for ranking functions inte-
grated into the CEGIS architecture. Our synthesizer uses transition ex-
amples to find candidate piecewise affine ranking functions. A major chal-
lenge here, namely handling constraints arising from crossing examples, is
coped with by our theoretical observation of the cycle detection theorem.

• We implement our synthesizer for ranking functions implemented in Mu-
Val and report the experience of using MuVal for termination and non-
termination analysis. The experiment results show that MuVal’s per-
formance is comparable to state-of-the-art termination analyzers [18, 22,

10



Chapter 1. Introduction

35, 48] from Termination Competition 2020, and that MuVal can prove
(non-)termination of some benchmarks with which other analyzers strug-
gle.

1.2.4 Tail Probabilities of Randomized Programs via Higher
Moments of Runtime

The important roles of randomization in algorithms and software systems are
nowadays well-recognized. In algorithms, randomization can bring remarkable
speed gain at the expense of small probabilities of imprecision. In cryptography,
many encryption algorithms are randomized in order to conceal the identity of
plaintexts. In software systems, randomization is widely utilized for the purpose
of fairness, security and privacy.

Embracing randomization in programming languages has therefore been an
active research topic for a long time. Doing so does not only offer a solid in-
frastructure that programmers and system designers can rely on, but also opens
up the possibility of language-based, static analysis of properties of randomized
algorithms and systems.

The current chapter’s goal is to analyze imperative programs with random-
ization constructs—the latter come in two forms, namely probabilistic branching
and assignment from a designated, possibly continuous, distribution. We shall
refer to such programs as randomized programs.1

Runtime and Termination Analysis of Randomized Programs The
runtime of a randomized program is often a problem of our interest; so is almost-
sure termination, that is, whether the program terminates with probability 1.
In the programming language community, these problems have been taken up
by many researchers as a challenge of both practical importance and theoretical
interest.

Most of the existing works on runtime and termination analysis follow either
of the following two approaches.

• Martingale-based methods, initiated with a notion of ranking supermartin-
gale in [23] and extended [5, 27, 28, 38, 54], have their origin in the theory
of stochastic processes. They can also be seen as a probabilistic extension
of ranking functions, a standard proof method for termination of (non-
randomized) programs. Martingale-based methods have seen remarkable
success in automated synthesis using templates and constraint solving (like
LP or SDP).

• The predicate-transformer approach, pursued in [15, 59, 61], uses a more
syntax-guided formalism of program logic and emphasizes reasoning by
invariants.

The essential difference between the two approaches is not big: an invariant
notion in the latter is easily seen to be an adaptation of a suitable notion of

1With the rise of statistical machine learning, probabilistic programs attract a lot of atten-
tion. Randomized programs can be thought of as a fragment of probabilistic programs without
conditioning (or observation) constructs. In other words, the Bayesian aspect of probabilistic
programs is absent in randomized programs.

11



1.2. Semantic Refinements

a randomized program Γ

step 1: template-based synthesis of vector-valued supermartingales (§5.2,5.4)

upper bounds of higher moments E[Trun], . . . ,E[(Trun)K ]

step 2: calculation via a concentration inequality (§5.3)

an upper bound of the tail probability Pr(Trun ≥ d)

a deadline d

Figure 1.8: Our workflow

supermartingale. The work [112] presents a comprehensive account on the order-
theoretic foundation behind these techniques.

These existing works are mostly focused on the following problems: deciding
almost-sure termination, computing termination probabilities, and computing
expected runtime. (Here “computing” includes giving upper/lower bounds.)
See [112] for a comparison of some of the existing martingale-based methods.

Our Problem: Tail Probabilities for Runtimes In this chapter we focus
on the problem of tail probabilities that is not studied much so far.2 We present
a method for overapproximating tail probabilities; here is the problem we solve.

Input: a randomized program Γ, and a deadline d ∈ N
Output: an upper bound of the tail probability Pr(Trun ≥ d), where Trun is

the runtime of Γ
Our target language is a imperative language that features randomization

(probabilistic branching and random assignment). We also allow nondetermin-
ism; this makes the program’s runtime depend on the choice of a scheduler
(i.e. how nondeterminism is resolved). In this chapter we study the longest,
worst-case runtime (therefore our scheduler is demonic). In the technical sec-
tions, we use the presentation of these programs as probabilistic control graphs
(pCFGs)—this is as usual in the literature. See e.g. [5, 112].

1 x := 2; y := 2;
2 while (x > 0 && y > 0) do
3 z := Unif (-2,1);
4 if * then
5 x := x + z
6 else
7 y := y + z
8 fi
9 od

Figure 1.7: An example pro-
gram

An example of our target program is in
Fig. 1.7. It is an imperative program with ran-
domization: in Line 3, the value of z is sampled
from the uniform distribution over the interval
[−2, 1]. The symbol in the line 4 stands for a
nondeterministic Boolean value; in our analysis,
it is resolved so that the runtime becomes the
longest.

Given the program in Fig. 1.7 and a choice
of a deadline (say d = 400), we can ask the ques-
tion “what is the probability Pr(Trun ≥ d) for the
runtime Trun of the program to exceed d = 400 steps?” As we show in Sec-
tion 5.5, our method gives a guaranteed upper bound 0.0684. This means that,
if we allow the time budget of d = 400 steps, the program terminates with the
probability at least 93%.

Our Method: Concentration Inequalities, Higher Moments, and
Vector-Valued Supermartingales Towards the goal of computing tail prob-
abilities, our approach is to use concentration inequalities, a technique from

2An exception is [26]; see Section 5.6 for comparison with the current work.

12



Chapter 1. Introduction

probability theory that is commonly used for overapproximating various tail
probabilities. There are various concentration inequalities in the literature, and
each of them is applicable in a different setting, such as a nonnegative random
variable (Markov’s inequality), known mean and variance (Chebyshev’s inequal-
ity), a difference-bounded martingale (Azuma’s inequality), and so on. Some
of them were used for analyzing randomized programs [26] (see Section 5.6 for
comparison).

In this chapter, we use a specific concentration inequality that uses higher
moments E[Trun], . . . ,E[(Trun)K ] of runtimes Trun, up to a choice of the maxi-
mum degree K. The concentration inequality is taken from [21]; it generalizes
Markov’s and Chebyshev’s. We observe that a higher moment yields a tighter
bound of the tail probability, as the deadline d grows bigger. Therefore it makes
sense to strive for computing higher moments.

For computing higher moments of runtimes, we systematically extend the
existing theory of ranking supermartingales, from the expected runtime (i.e. the
first moment) to higher moments. The theory features a vector-valued super-
martingale, which not only generalizes easily to degrees up to arbitrary K ∈ N,
but also allows automated synthesis much like usual supermartingales.

We also claim that the soundness of these vector-valued supermartingales is
proved in a mathematically clean manner. Following [112], our arguments are
based on the order-theoretic foundation of fixed points (namely the Knaster-
Tarski, Cousot–Cousot and Kleene theorems), and we give upper bounds of
higher moments by suitable least fixed points.

Overall, our workflow is as shown in Fig. 1.8. We note that the step 2 in
Fig. 1.8 is computationally much cheaper than the step 1: in fact, the step 2
yields a symbolic expression for an upper bound in which d is a free variable.
This makes it possible to draw graphs like the ones in Fig. 5.2. It is also easy
to find a deadline d for which Pr(Trun ≥ d) is below a given threshold p ∈ [0, 1].

We implemented a prototype that synthesizes vector-valued supermartin-
gales using linear and polynomial templates. The resulting constraints are
solved by LP and SDP solvers, respectively. Experiments show that our method
can produce nontrivial upper bounds in reasonable computation time. We also
experimentally confirm that higher moments are useful in producing tighter
bounds.

Our Contributions Summarizing, the contribution of this chapter is as fol-
lows.

• We extend the existing theory of ranking supermartingales from expected
runtimes (i.e. the first moment) to higher moments. The extension has a
solid foundation of order-theoretic fixed points. Moreover, its clean pre-
sentation by vector-valued supermartingales makes automated synthesis
as easy as before. Our target randomized programs are rich, embracing
nondeterminism and continuous distributions.

• We study how these vector-valued supermartingales (and the resulting
upper bounds of higher moments) can be used to yield upper bounds of
tail probabilities of runtimes. We identify a concentration lemma that suits
this purpose. We show that higher moments indeed yield tighter bounds.

13



1.3. Outline of This Thesis and Corresponding Papers

• Overall, we present a comprehensive language-based framework for overap-
proximating tail probabilities of runtimes of randomized programs (Fig. 1.8).
It has been implemented, and our experiments suggest its practical use.

1.3 Outline of This Thesis and Corresponding
Papers

We study refinements in categorical semantics in Chapter 2,3 and extension of
existing algorithm via refinements in Chapter 4,5.

In Chapter 2, we study a general construction of a categorical model of de-
pendent refinement type systems. In Section 2.1, we review preliminaries on
fibrations and closed comprehension categories, which give categorical models
of dependent type systems. In Section 2.2 and Section 2.3, we provide a gen-
eral construction of a categorical model of dependent refinement type systems
together with the proof that it also has the structure of closed comprehension
categories. In Section 2.4, we explain how the constructed model can interpret
dependent refinement type systems by defining the interpretation concretely.
In Section 2.5, we consider Conway operators for interpreting recursions in de-
pendent refinement type systems. We discuss related work in Section 2.6 and
conclude in Section 2.7. Chapter 2 is based on our paper [70] and extended with
detailed proofs.

In Chapter 3, we study a program logic for effect handlers. In Section 3.1,
we explain preliminaries on monad liftings and the syntax and semantics of
effect handlers. In Section 3.2, we show that choosing (a certain kind of) a
monad lifting is equivalent to specifying a weakest precondition transformer for
each algebraic operation. In Section 3.3, we provide a necessary and sufficient
condition for operation-wise liftings of Eilenberg-Moore algebras in a simplified
situation. This condition is expressed using the weakest precondition trans-
former for each algebraic operation. To support operation-wise liftings in a
more general situation, we consider liftings of the strength of a strong monad in
Section 3.4 In Section 3.5, we provide the main theoretical results on sufficient
conditions for operation-wise liftings, which allows us to construct a lifting of
the interpretation of an effect handlers H = {op(x; k) 7→ Mop}op from a lifting
of the interpretation of Mop for each algebraic operation op. In Section 3.6, we
provide a compositional program logic for effect handlers. We discuss related
work in Section 3.7.

In Chapter 4, we study an example-based termination analyzer. Section 4.1
shows the overview of our method via examples. Section 4.2 explains our target
class of predicate constraint satisfaction problems and how to encode (non-
)termination problem into such constraints. In Section 4.3, we review CEGIS
architecture, and then explain simplification of examples into positive/negative
examples. Section 4.4 proposes our main contribution, our decision tree-based
ranking function synthesizer. Section 4.5 shows our implementation and exper-
imental results. Related work is discussed in Section 4.6, and we conclude in
Section 4.7. Chapter 4 is based on [71].

In Chapter 5, we study a method to give an upper bound of a tail probability
of a randomized program. We give preliminaries in Section 5.1. In Section 5.2,
we review the order-theoretic characterization of ordinary ranking supermartin-

14



Chapter 1. Introduction

gales and present an extension to higher moments of runtimes. In Section 5.3,
we discuss how to obtain an upper bound of the tail probability of runtimes.
In Section 5.4, we explain an automated synthesis algorithm for our ranking
supermartingales. In Section 5.5, we give experimental results. In Section 5.6,
we discuss related work. We conclude and give future work in Section 5.7.
Chapter 5 is based on [72].

15



1.3. Outline of This Thesis and Corresponding Papers

16



Chapter 2

A Categorical Construction
of Dependent Refinement
Type Systems

In this chapter, we provide a general construction of a categorical model of a
dependent refinement type system from a model of an underlying type system
and a model of predicate logic.

2.1 Preliminaries

We review basic notions and define their notations.
For basic category theoretic notions, we use the following notations. The

identity morphism is denoted by idX : X → X, and the composite of f : X → Y
and g : Y → Z is denoted by g ◦ f : X → Z. The identity functor is denoted
by IdC : C→ C and the composite of two functors is denoted by juxtaposition.
We denote a terminal object by 1 and the unique morphism to 1 by ! : X → 1.
The tupling of f : X → Y and g : X → Z is denoted by 〈f, g〉 : X → Y × Z.
The projections are denoted by π1 : X × Y → X and π2 : X × Y → Y . The
cotupling of f : X → Z and g : Y → Z is denoted by [f, g] : X + Y → Z. The
coprojections are denoted by ι1 : X → X+Y and ι2 : Y → X+Y . The unit and
the counit of an adjunction F a U is denoted by ηFaU and εFaU , respectively,
but we often omit superscript if it is clear from the context. Exponentials are
denoted by X ⇒ Y or Y X .

2.1.1 Fibration

We review basic concepts on fibrations (see e.g. [53] for details).
Let p : E → B be a functor. For any u : I → J in B, we say a morphism

f : X → Y in E is over u if pf = u holds. A vertical morphism is a morphism
over an identity morphism. Given a morphism u : I → J , a Cartesian morphism
(or p-Cartesian morphism) over u (or Cartesian lifting of u) is a morphism
f : X → Y such that pf = u holds and f satisfies the Cartesian lifting property :
for each v : K → I and a morphism h : Z → Y over u ◦ v, we have a unique

17



2.1. Preliminaries

morphism g : Z → X over v such that h = f ◦ g. The functor p : E → B is
a fibration if for each Y ∈ E and a morphism u : I → pY in B, there exists a
Cartesian morphism u(Y ) : u∗Y → Y over u.

A fibre category EI over I ∈ B is a category defined by EI = p−1I, that is,
an object is X ∈ E such that pX = I and a morphism f : X → Y is a vertical
morphism in E. Given a choice of a Cartesian lifting u(Y ) : u∗Y → Y for each
u and Y , we have a reindexing functor u∗ : EJ → EI for each u : I → J , and
canonical natural isomorphisms u∗v∗ ∼= (v ◦ u)∗ and id∗I

∼= IdEI satisfying some
coherent conditions. A split fibration is a fibration together with a choice of
Cartesian morphisms such that these canonical natural isomorphisms become
identities.

Opfibrations are a dual notion of fibrations: a functor p : E → B is an
opfibration if for each X ∈ E and u : pX → J , we have a coCartesian morphism
f : X → u(X) over u. Here, a coCartesian morphism over u : I → J is a
morphism f : X → Y over u such that for each v : J → K and a morphism
h : X → Z over v ◦ u, there exists a unique morphism g : Y → Z over v such
that h = g ◦ f holds.

We call p : E → B a posetal fibration if p is a fibration such that each fibre
category is a poset. Note that the fibration p : E → B is split and faithful if p
is posetal.

Example 2.1.1 (subobject fibration [53, §1.3]). Let Sub(Set) be the category
of subobjects in Set: an object is a pair (I,X ⊆ I) where I ∈ Set, and a
morphism f : (I,X) → (J, Y ) is a morphism f : I → J in Set such that there
exists a (unique) morphism f ′ : X → Y that is a restriction of f (in other words,
for each x ∈ X, we have f(x) ∈ Y ). We define a functor subSet : Sub(Set) →
Set by subSet(I,X) = I and subSetf = f . Then, subSet : Sub(Set)→ Set is a
posetal fibration.

Lemma 2.1.2. Let p : E → B be a posetal fibration, and f : X → Y be a
morphism in E over an isomorphism u : I → J . The following conditions are
equivalent.

1. f is isomorphic.

2. f is Cartesian.

3. X ≥ u∗Y .

Proof. (2 iff 3) In posetal fibration, f is Cartesian if and only if X = u∗Y . Since
X ≤ u∗Y follows from the existence of f , f is Cartesian if and only if X ≥ u∗Y .

(1 implies 3) If f is isomorphic, then f−1 must be over u−1. We have
X ≤ u∗Y and Y ≤ (u−1)∗X, which imply u∗Y ≤ u∗(u−1)∗X = X.

(3 implies 1) If X ≥ u∗Y , then there exists a morphism g : Y → X defined

by Y = (u−1)∗u∗Y ≤ (u−1)∗X
u−1(X)−−−−−→ X. Then, g is the inverse of f because

q is faithful, and f ◦ g and g ◦ f are over u ◦ u−1 = idJ and u−1 ◦ u = idI ,
respectively.

We often use the word “lifting” along a fibration in this thesis. The formal
definition is given on a case-by-case basis, but the common intuition can be
understood as follows. Let ♦ be a category theoretic notion (e.g. monad) and
p : E → B be a fibration. Roughly speaking, given an instance X of ♦ in the

18



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

base category B, a lifting of X is an instance Y of ♦ in the total category E
such that p maps the structure of Y to that of X.

2.1.2 Comprehension Category

We review basic definitions and fix notations for comprehension categories,
which are used as categorical models for dependent type theories.

A comprehension category is a functor P : E→ B→ such that the composite
cod ◦ P : E → B is a fibration and P maps Cartesian morphisms to pullbacks
in B. A comprehension category P is full if P is fully faithful.

A comprehension category with unit is a fibration p : E→ B that has a fibred
terminal object 1 : B → E and a comprehension functor {−} : E → B which
is a right adjoint of the fibred terminal object functor 1 a {−}. Projection

πX : {X} → pX is defined by πX = pε
1a{−}
X for each X ∈ E. Intuitively, E

represents a collection of types Γ ` A in dependent type theories; B represents
a collection of contexts Γ; p : E → B is the mapping (Γ ` A) 7→ Γ; 1 : B → E
is the unit type Γ 7→ (Γ ` 1); and {−} is the mapping (Γ ` A) 7→ Γ, x : A
where x is a fresh variable. Note that the notation πX has the same form as
the projections π1, π2 for binary products, but they can be distinguished by the
subscript.

The comprehension category with unit p : E→ B induces several structures.
It induces a comprehension category P : E → B→ defined by PX = πX . The
adjunction 1 a {−} defines the bijection s : EI(1I,X) ∼= {f : I → {X} |
πX ◦ f = idI} between vertical morphisms in E and sections in B. For each
X,Y ∈ EI , we have an isomorphism φ : E{X}(1{X}, π∗XY ) ∼= EI(X,Y ). We
have the pullback square P(πX(Y )) for each X,Y ∈ EI , and this induces the
symmetry isomorphism σX,Y : {π∗XY } → {π∗YX} as a unique morphism σX,Y
such that ππ∗XY = {πY (X)} ◦ σX,Y and {πX(Y )} = ππ∗YX ◦ σX,Y by the
universal property of pullbacks. Similarly, we have the diagonal morphism δX :
{X} → {π∗XX} as a unique morphism δX such that ππ∗XX ◦ δX = {πX(X)} ◦
δX = id{X}.

Let p : E → B be a comprehension category with unit and q : D → B be
a fibration. The fibration q has p-products if π∗X : DpX → D{X} has a right
adjoint π∗X a

∏
X for each X ∈ E and these adjunctions satisfy the BC (Beck-

Chevalley) condition for each pullback square Pf where P is a comprehension
category induced by p and f is a Cartesian morphism in E. Similarly, we define
p-coproducts by

∐
X a π∗X and p-equality by EqX a δ∗X plus the BC condition

for each Cartesian morphism (see [53, Definition 9.3.5] for detail).

A comprehension category with unit p : E→ B admits products (coproducts)
if it has p-products (p-coproducts). The coproducts are strong if the canonical

morphism κ : {Y } → {
∐
X Y } defined by {πX(

∐
X Y ) ◦ ηπ

∗
Xa

∐
X

Y } is an iso-
morphism for each X ∈ E and Y ∈ E{X}. Intuitively, products

∏
X and strong

coproducts
∐
X in CCompCs represent dependent function types (Γ, x : A `

B) 7→ (Γ ` Πx:A.B) and dependent pair types (Γ, x : A ` B) 7→ (Γ ` Σx:A.B),
respectively. A closed comprehension category (CCompC) is a full comprehen-
sion category with unit that admits products and strong coproducts and has
a terminal object in the base category. A split closed comprehension category
(SCCompC) is a CCompC such that p is a split fibration, and the BC condi-
tion for products and coproducts holds strictly (i.e., canonical isomorphisms are

19



2.1. Preliminaries

identities).

Example 2.1.3 (simple fibration). Let B be a category with finite products.
We define a category s(B) as follows. An object (I,X) ∈ s(B) is a pair of objects
in B. A morphism (u, f) : (I,X)→ (J, Y ) is a pair of morphisms u : I → J and
f : I × X → Y . Identity morphisms are given by (idI , π2) : (I,X) → (I,X),
and the composition is given by (v, g) ◦ (u, f) := (v ◦ u, g ◦ 〈u ◦ π1, f〉).

The simple fibration sB : s(B)→ B is defined by sB(I,X) := I and sB(u, f) :=
u [53, Definition 1.3.1]. The simple fibration is a SCCompC if and only if B is
cartesian closed [53, Theorem 10.5.5]. Specifically, the terminal object functor is
given by I 7→ (I, 1), the comprehension functor by {(I,X)} = I ×X, products
by
∏

(I,X)(I × X,Y ) = (I,X ⇒ Y ), and coproducts by
∐

(I,X)(I × X,Y ) =

(I,X × Y ).

Example 2.1.4 (family fibration). We define a category Fam(Set) as follows.
An object (I,X) ∈ Fam(Set) is a pair of a set I and a family X : I → Set of
sets indexed by I. A morphism (u, f) : (I,X) → (J, Y ) is a pair of a function
u : I → J and a family of functions fi : Xi → Yu(i) for each i ∈ I. Identity
morphisms are given by (idI , {idXi}i∈I) : (I,X)→ (I,X), and the composition
is given by (v, g) ◦ (u, f) := (v ◦ u, {gu(i) ◦ fi}i∈I) where (v, g) : (J, Y )→ (K,Z)
and (u, f) : (I,X)→ (J, Y ).

The family fibration famSet : Fam(Set)→ Set is defined by famSet(I,X) :=
I and famSet(u, f) := u. This is a SCCompC: the terminal object functor
is given by I 7→ (I, {1}i∈I), the comprehension functor by the disjoint union
{(I,X)} =

∐
i∈I Xi, products by a family of sets of dependent functions∏

(I,X)

({(I,X)}, Y ) = (I, {
∏
x∈Xi

Y(i,x)}i∈I),

coproducts by a family of sets of dependent pairs∐
(I,X)

({(I,X)}, Y ) = (I, {
∐
x∈Xi

Y(i,x)}i∈I).

When p : E → B is a CCompC, we define fst ∈ EI(
∐
X Y,X) as a unique

morphism that is mapped by P : E→ B→ to the following morphism.

(
fst :

∐
X

Y → X

)
P7−→

 {∐X Y } {Y } {X}

I I

κ−1

π∐
X Y

πY
πX


Fibred coproducts in a comprehension category with unit p : E → B are

strong if the functor 〈{ι1}∗, {ι2}∗〉 : E{X+Y } → E{X} × E{Y } is fully faithful
where ι1 : X → X +Y and ι2 : Y → X +Y are injections for fibred coproducts.
Strong fibred coproducts are used to interpret fibred coproduct types A+B.

Lemma 2.1.5. The symmetry isomorphism σX,Y : {π∗XY } → {π∗YX} satisfies
the following properties.

• ππ∗YX ◦ σX,Y = {πX(Y )} and {πY (X)} ◦ σX,Y = ππ∗XY

• σY,X ◦ σX,Y = id{π∗XY }

20



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

• {π∗Y f} ◦ σX′,Y = σX,Y ◦ {{f}(π∗XY )} for each f ∈ EI(X ′, X)

• {f ′} ◦ σX′,(pf)∗Y = σX,Y ◦ {{f}(π∗XY )} for X,Y ∈ EI , X ′ ∈ EI′ and
f : X ′ → X where f ′ is defined by the unique morphism in the following
diagram.

π∗(pf)∗YX
′ X ′

π∗YX X

{(pf)∗Y } I ′

{Y } I

π(X′)

f ′ f

π(X)

π

{pf(Y )} pf

π

Proof. The first and the second properties are obvious from the definition. The
third property is a special case of the forth.

The forth property follows from universal property of pullbacks in the fol-
lowing diagram.

{π∗X′(pf)∗Y } {{f}∗π∗XY } {π∗XY } {(pf)∗Y }

{π∗(pf)∗YX
′} {π∗YX} {Y }

{X ′} {X} I

I ′

π...

{πX′ ((pf)∗Y )}

σX′,(pf)∗Y

{{f}(π∗XY )}

{πX(Y )}
σX,Y

{pf(Y )}

π...{π(X)}

{f ′}
ππ∗
Y
X

{πY (X)}
y

πY

πX′

{f} πX

pf

2.2 Lifting SCCompCs and Fibred Coproducts

In this section, we give a construction of liftings of SCCompCs with strong fibred
coproducts from given SCCompCs with strong fibred coproducts for underlying
types and posetal fibrations for predicate logic satisfying appropriate conditions.

2.2.1 Lifting SCCompCs

Let p : E→ B be a SCCompC for underlying type systems. Let q : P→ B be a
posetal fibration with fibred finite products for predicate logic.

Definition 2.2.1. We define a category {E | P} by the pullback of q→ : P→ →
B→ along P : E → B→ where the comprehension category P is induced by
p : E→ B.

21



2.2. Lifting SCCompCs and Fibred Coproducts

{E | P} P→

E B→

(q→)∗P

P∗(q→) y q→

P

That is, objects are tuples (X,P,Q) where X ∈ E, P ∈ PpX , Q ∈ P{X}, and
Q ≤ π∗XP ; and morphisms are tuples (f, g, h) : (X,P,Q) → (X ′, P ′, Q′) where
f : X → X ′, g : P → P ′, h : Q→ Q′, pf = qg, and {f} = qh.

Let {p | q} : {E | P} → P be the functor defined by cod ◦ (q→)∗P, that is,
(X,P,Q) 7→ P .

The intuition of this definition is as follows. For each object (X,P,Q) ∈
{E | P}, X represents a type Γ ` A in the underlying type system, P represents
a predicate on the context Γ, and Q represents the conjunction of a predicate
on Γ, v : A and the predicate P (thus Q ≤ π∗XP is imposed).

Note that P∗(q→) : {E | P} → E is faithful because q is faithful. Note also
that two morphisms (f1, g1, h1), (f2, g2, h2) : (X,P,Q)→ (X ′, P ′, Q′) in {E | P}
are equal if and only if f1 and f2 are equal because q is faithful. This is often
used to show properties of {p | q} : {E | P} → P.

The functor {p | q} inherits most of the CCompC structure of p : E→ B as
we will see below.

The functor {p | q} is a split fibration.

Lemma 2.2.2. A morphism (f, g, h) : (X,P,Q) → (X ′, P ′, Q′) is {p | q}-
Cartesian if and only if f : X → X ′ is p-Cartesian and Q = π∗XP ∧ {f}∗Q′.

Proof. For the forward direction, assume that (f, g, h) : (X,P,Q)→ (X ′, P ′, Q′)
is {p | q}-Cartesian.

We first prove that f is p-Cartesian. Let u = pf , and f ′′ : X ′′ → X ′ be
a morphism over u ◦ u′ where u′ : pX ′′ → pX. There exists a morphism
f ′ : X ′′ → X over u′ such that f ′′ = f ◦ f ′ because (f, g, h) : (X,P,Q) →
(X ′, P ′, Q′) in the diagram below is {p | q}-Cartesian.

(X ′′, (u′)∗P, {f ′′}∗Q′ ∧ π∗X′′(u′)∗P )

{E | P} (X,P,Q) (X ′, P ′, Q′)

P (u′)∗P

P P ′

(f ′,u′(P ),h′)
(f ′′,g◦u′(P ),{f ′′}(Q′)◦π1)

p

(f,g,h)

u′(P )

g

Uniqueness of such f ′ : X ′′ → X is shown as follows. If there are two
morphisms f ′1, f

′
2 : X ′′ → X over u′ such that f ′′ = f ◦ f ′1 = f ◦ f ′1, then f ′1 = f ′2

follows from the {p | q}-Cartesianness of (f, g, h) in the following diagram.

22



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

(X ′′, (u′)∗P, {f ′1}∗Q ∧ {f ′2}∗Q ∧ π∗X′′(u′)∗P )

{E | P} (X,P,Q) (X ′, P ′, Q′)

P (u′)∗P

P P ′

(f ′1,u
′(P ),{f ′1}(Q)◦π1) (f ′2,u

′(P ),{f ′2}(Q)◦π2)
(f ′′,g◦u′(P ),... )

{p|q}

(f,g,h)

u′(P )

g

Therefore, f is p-Cartesian.
Next, we prove Q = π∗XP ∧ {f}∗Q′. By definition of {E | P}, we have

Q ≤ π∗XP and Q ≤ {f}∗Q′, so it suffices to prove Q ≥ π∗XP ∧{f}∗Q′. Consider
the following diagram.

(X,P, π∗XP ∧ {f}∗Q′)

{E | P} (X,P,Q) (X ′, P ′, Q′)

P P

P P ′

(f ′,idP ,h
′)

(f,g,{f}(Q′)◦π2)

{p|q}
(f,g,h)

g

There exists a unique morphism (f ′, idP , h
′). Since f is p-Cartesian, we have

f ′ = idX and thus Q ≥ π∗XP ∧ {f}∗Q′.
For the converse direction, consider a morphism (f, g, h) : (X,P,Q) →

(X ′, P ′, Q′) such that f : X → X ′ is p-Cartesian and Q = π∗XP ∧ {f}∗Q′.
Suppose that we have a morphism (f ′′, g ◦ g′, h′′) : (X ′′, P ′′, Q′′)→ (X ′, P ′, Q′)
over g ◦ g′ where g′ : P ′′ → P . Since p : E→ B is a fibration, we have a unique
f ′ : X ′′ → X such that pf ′ = qg′ and f ′′ = f ◦ f ′. We also have h′ : Q′′ → Q
over {f ′} because the following inequality holds.

{f ′}∗Q = {f ′}∗(π∗XP ∧ {f}∗Q′)
= π∗X′′(pf

′)∗P ∧ {f ′′}∗Q′

≥ π∗X′′P ′′ ∧Q′′

= Q′′

By the uniqueness of f ′ and the faithfulness of q : P → B, it is easy to check
that (f ′, g′, h′) : (X ′′, P ′′, Q′′) → (X,P,Q) is a unique morphism over g′ such
that the following diagram commutes.

(X ′′, P ′′, Q′′)

(X,P,Q) (X ′, P ′, Q′)

(f ′,g′,h′)
(f ′′,g◦g′,h′′)

(f,g,h)

Therefore, (f, g, h) : (X,P,Q)→ (X ′, P ′, Q′) is {p | q}-Cartesian.

23



2.2. Lifting SCCompCs and Fibred Coproducts

Lemma 2.2.3. The functor {p | q} : {E | P} → P is a split fibration. For
each g : P ′ → P in P and (X,P,Q) ∈ {E | P}, the {p | q}-Cartesian morphism
g(X,P,Q) : g∗(X,P,Q)→ (X,P,Q) over g is given as follows.

g∗(X,P,Q) := ((qg)∗X,P ′, π∗(qg)∗XP
′ ∧ {qg(X)}∗Q)

g(X,P,Q) := (qg(X), g, {qg(X)}(Q) ◦ π′)

where π′ : π∗(qg)∗XP
′ ∧ {qg(X)}∗Q→ {qg(X)}∗Q is the projection.

Proof. The morphism g(X,P,Q) is {p | q}-Cartesian by Lemma 2.2.2. The fi-
bration {p | q} is split because p is split.

The functor {p | q} has a terminal object functor.

Definition 2.2.4. We define a functor 1 : P→ {E | P} by 1P := (1qP, P, π∗1qPP )
and 1g := (1qg, g, h) for each P ∈ P and g : P → P ′ where h is a unique mor-
phism in the diagram below.

π∗1qPP P

P π∗1qP ′P
′ P ′

B {1qP} qP

{1qP ′} qP ′

π1qP (P )

h
g

q

π1qP ′ (P
′)

π1qP

{1qg} qg
π1qQ′

Lemma 2.2.5. The functor 1 : P→ {E | P} is a fibred terminal object.

Proof. We prove that we have a fibred adjunction {p | q} a 1 : IdP → {p | q} in
the 2-category FibP.

First, we prove that 1 : P → {E | P} is a fibred functor, i.e., preserves
Cartesian morphisms. It suffices to prove 1g = (1qg, g, h) : (1qP, P, π∗1qPP ) →
(1qP ′, P ′, π∗1qP ′P

′) is {p | q}-Cartesian for each g : P → P ′ in P because every
morphism in P is IdP-Cartesian. We use Lemma 2.2.2. The first component
1qg : 1qP → 1qP ′ is p-Cartesian because the fibred functor 1 : IdB → p preserves
Cartesian morphisms. We also have

π∗1qPP ∧ {1qg}∗(π∗1qP ′P ′) = π∗1qPP ∧ π∗1qP (qg)∗P ′

= π∗1qP (P ∧ (qg)∗P ′)

= π∗1qPP.

Next, We define vertical natural transformations η : Id{E|P} → 1{p | q} and
ε : {p | q}1→ IdP by

η(X,P,Q) = (ηpa1
X , idP , h) : (X,P,Q)→ (1qP, P, π∗1qPP )

εP = idP : P → P

where h is a unique morphism in the following diagram.

24



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

Q P

P π∗1qPP P

B {X} pX

{1pX} pX

h

π(X,P,Q)

q

π1qP (P )

πX

{ηpa1} pη=idpX
π1pX

Note that η is natural because ηpa1 is natural and q : P→ B is faithful.
The remaining part of the proof is the proof of the triangle identities.

1 1{p | q}1

1

η1

1ε

{p | q} {p | q}1{p | q}

{p | q}

{p|q}η

ε{p|q}

The right one is easy to verify. The left one follows from the corresponding
triangle identity id = 1ηpa1 ◦ ηpa1

1 for p a 1 where εpa1 is the identity natural
transformation.

The functor {p | q} has a comprehension functor.

Lemma 2.2.6. The functor {(−)} : {E | P} → P defined by (X,P,Q) 7→ Q and
(f, g, h) 7→ h is a comprehension functor, i.e., we have an adjunction 1 a {(−)}.

Proof. We define the unit η : IdP → {1(−)} by

P

P π∗1qPP P

B qP

{1qP} qP

ηP

q
π1qP (P )

η
1a{(−)}
qP

π1qP

and the counit ε : 1{(−)} → Id{E|P} by

ε(X,P,Q) = (ε
1a{(−)}
X , π(X,P,Q), π1qQ(Q)) : (1qQ,Q, π∗1qQQ)→ (X,P,Q).

Naturality of η and ε can be easily proved.
Lastly, we prove the triangle identities.

{(−)} {1{(−)}}

{(−)}

η{(−)}

{ε}

1(−) 1{1(−)}

1(−)

1η

ε1

The left one follows by definition. The right one follows from the corresponding
triangle identity for 1 a {(−)} : E→ B.

25



2.2. Lifting SCCompCs and Fibred Coproducts

The functor {p | q} is a full comprehension category with unit.

Lemma 2.2.7. The fibration {p | q} : {E | P} → P is a full comprehension
category with unit. For each (X,P,Q) ∈ {E | P}, the projection π(X,P,Q) : Q→
P is the composition of πX(P ) : π∗XP → P and Q ≤ π∗XP , which is a unique
morphism that satisfies qπ(X,P,Q) = πX .

Proof. By Lemma 2.2.5 and Lemma 2.2.6, we have the fibred terminal object
1 : P → {E | P} and the comprehension functor {(−)} : {E | P} → P. The
remaining part of the proof is to prove that P : {E | P} → P→ defined by
(X,P,Q) 7→ π(X,P,Q) is full and faithful. Let (h, g) ∈ P→(π(X,P,Q), π(X′,P ′,Q′)).

Q Q′

P P ′

h

π(X,P,Q) π(X′,P ′,Q′)
g

Since p : E→ B is a full comprehension category, there exists f : X → X ′ that
is mapped to (qh, qg) ∈ B→(πX , πX′) by the functor E→ B→.

{X} {X ′}

pX pX ′

{f}

πX πX′
pf

=
qQ qQ′

qP qP ′

qh

qπ(X,P,Q) qπ(X′,P ′,Q′)
qg

Therefore, we have (f, g, h) ∈ {E | P}((X,P,Q), (X ′, P ′, Q′)) and P(f, g, h) =
(h, g). So, P is full.

Faithfulness of P follows from faithfulness of the functor E→ B→.

The functor {p | q} admits strong coproducts.

Lemma 2.2.8. {p | q} : {E | P} → P admits strong coproducts.

Proof. For each (Y,Q,R) ∈ {E | P}Q and (f, idQ, h) : (Y,Q,R) → (Y ′, Q,R′),∐
(X,P,Q) is defined by∐
(X,P,Q)

(Y,Q,R) := (
∐
X

Y, P, (κ−1)∗R)
∐

(X,P,Q)

(f, idQ, h) := (
∐
X

f, idP , h
′)

where κ = {πX(
∐
X Y )} ◦ {η

∐
Xaπ

∗
X} : {Y } → {

∐
X Y } and h′ is the unique

morphism in the following diagram.

(κ−1)∗R R

P (κ−1)∗R′ R′

B {
∐
X Y } {Y }

{
∐
X Y

′} {Y ′}

κ−1(R)

h′ h

q

κ−1(R′)

κ−1

{
∐
X f} {f}

κ−1

26



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

Note that we have (κ−1)∗R ≤ π∗∐
X Y P because

R ≤ π∗YQ ≤ π∗Y π∗XP = κ∗π∗∐
X Y P,

and thus,
∐

(X,P,Q)(Y,Q,R) is well-defined.

Adjunction
∐

(X,P,Q) a π∗(X,P,Q). Next, we prove that we have an adjunction∐
(X,P,Q) a π∗(X,P,Q). The counit ε :

∐
(X,P,Q) π

∗
(X,P,Q) → Id{E|P}P is defined by

ε(Y,P,R) := (ε
∐
Xaπ

∗
X

Y , idP , h
′′)

where the morphism h′′ over {εY } exists because∐
(X,P,Q)

π∗(X,P,Q)(Y, P,R) = (
∐
X

π∗XY, P, (κ
−1)∗(π∗π∗XYQ ∧ {πX(Y )}∗R))

and
κ∗{εY }∗R = {πX(Y )}∗R ≥ π∗π∗XYQ ∧ {πX(Y )}∗R.

The unit η : Id{E|P}Q → π∗(X,P,Q)

∐
(X,P,Q) is defined by

η(Y,Q,R) := (η
∐
Xaπ

∗
X

Y , idQ, {η
∐
Xaπ∗X

Y }(π∗π∗X
∐
X YQ ∧ {πX(

∐
X

Y )}∗(κ−1)∗R)).

Here, the codomain of η(Y,Q,R) : (Y,Q,R)→ π∗(X,P,Q)

∐
(X,P,Q)(Y,Q,R) is

π∗(X,P,Q)

∐
(X,P,Q)

(Y,Q,R) = (π∗X
∐
X

Y,Q, π∗π∗X
∐
X YQ ∧ {πX(

∐
X

Y )}∗(κ−1)∗R)

and the third component of η(Y,Q,R) is the Cartesian lifting of {η
∐
Xaπ

∗
X

Y } because
we have

{η
∐
Xaπ

∗
X

Y }∗
(
π∗π∗X

∐
X YQ ∧ {πX(

∐
X

Y )}∗(κ−1)∗R

)
= π∗YQ ∧R = R.

Naturality of η and ε, and the triangle identities follow from those for η
∐
Xaπ

∗
X

and ε
∐
Xaπ

∗
X .

BC condition. For the BC condition, consider the following diagram where
(f, g, h) : (X,P,Q)→ (X ′, P ′, Q′) is a Cartesian morphism.

{E | P}P

{E | P}Q {E | P}P

{E | P}Q′ {E | P}P ′

{E | P}Q′

∐
(X,P,Q)

π∗(X,P,Q)

h∗ g∗

π∗
(X′,P ′,Q′)

∐
(X′,P ′,Q′)

27



2.2. Lifting SCCompCs and Fibred Coproducts

Let (Y,Q′, R) ∈ {E | P}Q′ . We have

∐
(X,P,Q)

h∗(Y,Q′, R) =

(∐
X

{f}∗Y, P, (κ−1)∗(π∗{f}∗YQ ∧ {{f}(Y )}∗R)

)

g∗
∐

(X′,P ′,Q′)

(Y,Q′, R) =

(
(pf)∗

∐
X′

Y, P, π∗(pf)∗
∐
X Y P ∧ {pf(

∐
X′

Y )}∗(κ−1)∗R

)
.

To prove that the canonical natural transformation is isomorphic, it suffices to
prove the following inequality by Lemma 2.1.2.

(κ−1)∗(π∗{f}∗YQ ∧ {{f}(Y )}∗R)

≥ {ε
∐
Xaπ

∗
X ◦

∐
X

{f}∗η
∐
X′aπ

∗
X′}∗

(
π∗(pf)∗

∐
X Y P ∧ {pf(

∐
X′

Y )}∗(κ−1)∗R

)
This is equivalent to

π∗{f}∗YQ ∧ {{f}(Y )}∗R

≥ κ∗{ε
∐
Xaπ

∗
X ◦

∐
X

{f}∗η
∐
X′aπ

∗
X′}∗

(
π∗(pf)∗

∐
X Y P ∧ {pf(

∐
X′

Y )}∗(κ−1)∗R

)

We simplify the right-hand side as follows.

κ∗{ε
∐
Xaπ

∗
X ◦

∐
X

{f}∗η
∐
X′aπ

∗
X′}∗

(
π∗(pf)∗

∐
X Y P ∧ {pf(

∐
X′

Y )}∗(κ−1)∗R

)

= {{f}∗η
∐
X′aπ

∗
X′}∗{πX((pf)∗

∐
X′

Y )}∗
(
π∗(pf)∗

∐
X Y P ∧ {pf(

∐
X′

Y )}∗(κ−1)∗R

)
(2.1)

= π∗{f}∗Y π
∗
XP ∧ {{f}(Y )}∗R (2.2)

Here, the first equality (2.1) follows from

{f}∗Y π∗X
∐
X{f}∗Y

∐
X{f}∗Y

{f}∗π∗X′
∐
X′ Y π∗X

∐
X{f}∗π∗X′

∐
X′ Y

∐
X{f}∗π∗X′

∐
X′ Y

π∗X(pf)∗
∐
X′ Y π∗X

∐
X π
∗
X(pf)∗

∐
X′ Y

∐
X π
∗
X(pf)∗

∐
X′ Y

π∗X(pf)∗
∐
X′ Y (pf)∗

∐
X′ Y

η
∐
Xaπ

∗
X

{f}∗η
∐
X′ aπ

∗
X′

πX(...)

π∗X
∐
X{f}

∗η
∐
X{f}

∗η

η
∐
Xaπ

∗
X πX(...)

η
∐
Xaπ

∗
X πX(...)

π∗Xε
∐
Xaπ

∗
X ε

∐
Xaπ

∗
X

πX(...)

(recall the definition of κ and apply rewriting in (2.1) from the top right to
the bottom left of the diagram) and the second equality (2.2) follows from the
following diagrams.

28



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

{f}∗Y {f}∗π∗X′
∐
X′ Y π∗X(pf)∗

∐
X′ Y (pf)∗

∐
X′ Y

{X} {X} pX

{f}∗η

π{f}∗Y π{f}∗π∗
X′

∐
X′ Y

πX(...)

π(pf)∗
∐
X′ Y

πX

{f}∗Y {f}∗π∗X′
∐
X′ Y π∗X(pf)∗

∐
X′ Y (pf)∗

∐
X′ Y

Y π∗X′
∐
X′ Y

∐
X′ Y

{f}∗η

{f}(Y ) {f}(...)

πX(...)

pf(...)

η πX′ (...)

Since Q = π∗XP ∧{f}∗Q′ by Lemma 2.2.2 and R ≤ π∗YQ′, we have the following
inequality.

π∗{f}∗YQ ∧ {{f}(Y )}∗R

= π∗{f}∗Y (π∗XP ∧ {f}∗Q′) ∧ {{f}(Y )}∗R

= π∗{f}∗Y π
∗
XP ∧ {{f}(Y )}∗(π∗YQ′ ∧R)

≥ π∗{f}∗Y π
∗
XP ∧ {{f}(Y )}∗R

Thus, we conclude that the canonical natural transformation is isomorphic.

Strong sum. Lastly, we prove
∐

(X,P,Q) is a strong sum. Let κ′ be the fol-
lowing composite in P.

{(Y,Q,R)} {π∗(X,P,Q)

∐
(X,P,Q)(Y,Q,R)} {

∐
(X,P,Q)(Y,Q,R)}

{η} {π(X,P,Q)({
∐

(X,P,Q)(Y,Q,R)})}

The morphism κ′ : R → (κ−1)∗R is over κ. We also have κ((κ−1)∗R) : R →
(κ−1)∗R over κ. Since q : P→ B is faithful, we have κ′ = κ((κ−1)∗R), and thus
κ′ is isomorphic by Lemma 2.1.2.

The functor {p | q} admits products. The existence of products in {p | q}
requires an additional condition.

Lemma 2.2.9. If q : P→ B has fibred exponentials and p-products (in addition
to fibred finite products), then {p | q} : {E | P} → P admits products.

Proof. We define
∏

(X,P,Q) : {E | P}Q → {E | P}P as follows. For each (Y,Q,R) ∈
{E | P}Q,∏
(X,P,Q)

(Y,Q,R) := (
∏
X

Y, P, π∗∏
X Y P ∧

∏
π∗∏

X Y
X

σ∗∏
X Y,X(π∗π∗

X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R))

Q ∈ P{X}
P{π∗X

∏
X Y } P{π∗∏

X Y
X} P{∏X Y }

R ∈ P{Y }

π∗π∗
X

∏
X Y

σ∗∏
X Y,X

∏
π∗∏

X Y
X

π∗π∗∏
X Y

X

a

{επ
∗
Xa

∏
X

Y }∗

and for each (f, idQ, h) : (Y,Q,R)→ (Y ′, Q,R′),∏
(X,P,Q)

(f, idQ, h) := (
∏
X

f, idP , h1 ∧ h2)

where h1 is defined as the unique morphism in

29



2.2. Lifting SCCompCs and Fibred Coproducts

π∗∏
X Y P P

P π∗∏
X Y ′P P

B {
∏
X Y } pX

{
∏
X Y

′} pX

π∏
X Y (P )

h1

q

π∏
X Y ′ (P )

π∏
X Y

{
∏
X f}
π∏

X Y ′

and h2 is defined by the following composite:

∏
π∗∏

X Y
X σ
∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {εY }

∗R)

∏
π∗∏

X Y
X σ
∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {εY }

∗{f}∗R′)

{
∏
X f}∗

∏
π∗∏

X Y ′X
σ∗∏

X Y ′,X(π∗π∗X
∏
X Y ′Q⇒ {εY ′}

∗R′)

∏
π∗∏

X Y ′X
σ∗∏

X Y ′,X(π∗π∗X
∏
X Y ′Q⇒ {εY ′}

∗R′)

≤

{
∏
X f}(...)

where the equality in the definition of h2 follows from the following equations.

{
∏
X

f}∗
∏

π∗∏
X Y ′X

σ∗∏
X Y ′,X(π∗π∗X

∏
X Y ′Q⇒ {ε

π∗Xa
∏
X

Y ′ }∗R′)

=
∏

π∗∏
X Y

X

{{
∏
X

f}(π∗∏
X Y ′X)}∗σ∗∏

X Y ′,X(π∗π∗X
∏
X Y ′Q⇒ {ε

π∗Xa
∏
X

Y ′ }∗R′) (2.3)

=
∏

π∗∏
X Y

X

σ∗∏
X Y,X{π

∗
X

∏
X

f}∗(π∗π∗X
∏
X Y ′Q⇒ {ε

π∗Xa
∏
X

Y ′ }∗R′)

=
∏

π∗∏
X Y

X

σ∗∏
X Y,X

(
{π∗X

∏
X

f}∗π∗π∗X
∏
X Y ′Q⇒ {π

∗
X

∏
X

f}∗{επ
∗
Xa

∏
X

Y ′ }∗R′
)

=
∏

π∗∏
X Y

X

σ∗∏
X Y,X

(
π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗{f}∗R′
)

(2.4)

The equality (2.3) follows from the BC condition (shown below), and (2.4)
follows from naturality of π and ε.

30



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

P{π∗∏
X Y

X} P{∏X Y }

P{π∗∏
X Y ′X}

P{∏X Y ′}

∏
π∗∏

X Y
X

π∗π∗∏
X Y

X

a

{{
∏
X f}(π∗∏

X Y ′X)}∗ ∏
π∗∏

X Y ′
X

π∗π∗∏
X Y ′

X

a

{
∏
X f}∗

Adjunction π∗(X,P,Q) a
∏

(X,P,Q). Next, we show the existence of an adjunc-

tion π∗(X,P,Q) a
∏

(X,P,Q). We define ε : π∗(X,P,Q)

∏
(X,P,Q) → Id{E|P}Q and

η : Id{E|P}P →
∏

(X,P,Q) π
∗
(X,P,Q) by

ε(Y,Q,R) := (ε
π∗Y a

∏
Y

Y , idQ, h
ε)

η(Y,P,S) := (η
π∗Y a

∏
Y

Y , idP , h
η)

where hε and hη are defined as follows.
The domain of ε is

π∗(X,P,Q)

∏
(X,P,Q)

(Y,Q,R)

= (π∗X
∏
X

Y,Q, π∗π∗X
∏
X YQ ∧ {πX(

∏
X

Y )}∗
(
π∗∏

X Y P∧

∏
π∗∏

X Y
X

σ∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R)

)
)

where the third component can be simplified as follows.

π∗π∗X
∏
X YQ ∧ {πX(

∏
X

Y )}∗
(
π∗∏

X Y P∧

∏
π∗∏

X Y
X

σ∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R)

)

=

π∗π∗X
∏
X YQ ∧ {πX(

∏
X

Y )}∗π∗∏
X Y P∧

{πX(
∏
X

Y )}∗
∏

π∗∏
X Y

X

σ∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R)

=

π∗π∗X
∏
X YQ ∧ π

∗
π∗X

∏
X Y π

∗
XP∧

σ∗X,
∏
X Y π

∗
π∗∏

X Y
X

∏
π∗∏

X Y
X

σ∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R)

31



2.2. Lifting SCCompCs and Fibred Coproducts

= π∗π∗X
∏
X YQ ∧ σ

∗
X,

∏
X Y π

∗
π∗∏

X Y
X

∏
π∗∏

X Y
X

σ∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R)

So we define hε by the following composite.

π∗π∗X
∏
X YQ ∧ σ

∗
X,

∏
X Y π

∗
π∗∏

X Y
X

∏
π∗∏

X Y
X σ
∗∏
X Y,X(π∗π∗X

∏
X YQ⇒ {ε

π∗Xa
∏
X

Y }∗R)

π∗π∗X
∏
X YQ ∧ (π∗π∗X

∏
X YQ⇒ {εY }

∗R)

{εY }∗R

R

π∗π∗
X

∏
X YQ∧ε

π∗a
∏

ev

{εY }(R)

The codomain of η is∏
(X,P,Q)

π∗(X,P,Q)(Y, P, S)

= (
∏
X

π∗XY, P, π
∗∏
X π∗XY

P∧

∏
π∗∏

X π∗
X
Y
X

σ∗∏
X π∗XY,X

(
π∗π∗X

∏
X π∗XY

Q⇒ {επ∗XY }
∗(π∗π∗XYQ ∧ {πX(Y )}∗S)

)
)

so we define hη by the composite of the Cartesian lifting of {ηπ
∗
Xa

∏
X

Y } and the
following inequality.

{ηY }∗
(
π∗∏

X π∗XY
P∧

∏
π∗∏

X π∗
X
Y
X

σ∗∏
X π∗XY,X

(
π∗π∗X

∏
X π∗XY

Q⇒ {επ∗XY }
∗(π∗π∗XYQ ∧ {πX(Y )}∗S)

))

= π∗Y P ∧ {ηY }∗
∏

π∗∏
X π∗

X
Y
X

σ∗∏
X π∗XY,X(

π∗π∗X
∏
X π∗XY

Q⇒ π∗π∗X
∏
X π∗XY

Q ∧ {επ∗XY }
∗{πX(Y )}∗S

)
≥ π∗Y P ∧ {ηY }∗

∏
π∗∏

X π∗
X
Y
X

σ∗∏
X π∗XY,X

{επ∗XY }
∗{πX(Y )}∗S

= π∗Y P ∧
∏
π∗YX

{{ηY }(π∗∏
X π∗XY

X)}∗σ∗∏
X π∗XY,X

{επ∗XY }
∗{πX(Y )}∗S

32



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

= π∗Y P ∧
∏
π∗YX

σ∗Y,X{π∗XηY }∗{επ∗XY }
∗{πX(Y )}∗S

= π∗Y P ∧
∏
π∗YX

σ∗Y,Xσ
∗
X,Y π

∗
π∗YX

S

≥ π∗Y P ∧ S
= S

Naturality of η and ε, and the triangle identities follow from those for ηπ
∗
Xa

∏
X

and επ
∗
Xa

∏
X .

BC condition. We prove the BC condition. Let (f, g, h) : (X,P,Q) →
(X ′, P ′, Q′) be an {p | q}-Cartesian morphism. Consider the following natural
transformation.

{E | P}P

{E | P}Q {E | P}P

{E | P}Q′ {E | P}P ′

{E | P}Q′

∏
(X,P,Q)

π∗(X,P,Q)

h∗ g∗

π∗
(X′,P ′,Q′)

∏
(X′,P ′,Q′)

For each (Y,Q′, R) ∈ {E | P}Q′ , the domain of the natural transformation is

g∗
∏

(X′,P ′,Q′)

(Y,Q′, R)

= ((pf)∗
∏
X′

Y, P, π∗(pf)∗
∏
X′ Y

P ∧ {pf(
∏
X′

Y )}∗π∗∏
X′ Y

P ′ ∧
∏

π∗∏
X′ Y

X′

σ∗∏
X′ Y,X

′(π∗π∗
X′

∏
X′ Y

Q′ ⇒ {επ
∗
X′a

∏
X′

Y }∗R)

)

and the codomain is∏
(X,P,Q)

h∗(Y,Q′, R)

= (
∏
X

{f}∗Y, P, π∗∏
X{f}∗Y

P ∧
∏

π∗∏
X{f}∗Y

X

σ∗∏
X{f}∗Y,X(

π∗π∗X
∏
X{f}∗Y

Q⇒ {επ
∗
Xa

∏
X

{f}∗Y }
∗(π∗{f}∗YQ ∧ {{f}(Y )}∗R)

)
).

33



2.2. Lifting SCCompCs and Fibred Coproducts

We can simplify the domain by the following equation.

π∗(pf)∗
∏
X′ Y

P ∧ {pf(
∏
X′

Y )}∗π∗∏
X′ Y

P ′

= π∗(pf)∗
∏
X′ Y

P ∧ π∗(pf)∗
∏
X′ Y

(pf)∗P ′

= π∗(pf)∗
∏
X′ Y

(P ∧ (pf)∗P ′)

= π∗(pf)∗
∏
X′ Y

P

By Lemma 2.1.2, it suffices to prove that the third component of the domain
is greater than or equal to the reindexing {θ}∗ applied to the third component
of the codomain where θ =

∏
X{f}∗επ

∗
X′a

∏
X′ ◦ ηπ∗Xa

∏
X : (pf)∗

∏
X′ Y →∏

X{f}∗Y is a vertical isomorphism.
First, note the following equation.

{θ}∗π∗∏
X{f}∗Y

P = π∗(pf)∗
∏
X′ Y

P

By BC condition for p-products in P and Lemma 2.1.5, we have

{f}
∏
π∗XY

σ∗X,Y =
∏

π∗
X′ (pf)∗Y

σ∗X′,(pf)∗Y {f
′}∗

for each f : X ′ → X where f ′ is the same as in Lemma 2.1.5.

{θ}∗
∏

π∗∏
X{f}∗Y

X

σ∗∏
X{f}∗Y,X

=
∏

π∗
(pf)∗

∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

{π∗Xθ}∗

{pf(
∏
X′

Y )}∗
∏

π∗∏
X′ Y

X′

σ∗∏
X′ Y,X

′

=
∏

π∗
(pf)∗

∏
X′ Y

(pf)∗X′

σ∗(pf)∗
∏
X′ Y,(pf)∗X′{{pf(X ′)}(π∗X′

∏
X′

Y )}∗

Since f is Cartesian, there exists ψ : (pf)∗X ′ → X such that pf(X ′) = f ◦ ψ.∏
π∗

(pf)∗
∏
X′ Y

(pf)∗X′

σ∗(pf)∗
∏
X′ Y,(pf)∗X′{{pf(X ′)}(π∗X′

∏
X′

Y )}∗

=
∏

π∗
(pf)∗

∏
X′ Y

(pf)∗X′

σ∗(pf)∗
∏
X′ Y,(pf)∗X′{{f ◦ ψ}(π

∗
X′

∏
X′

Y )}∗

=
∏

π∗
(pf)∗

∏
X′ Y

(pf)∗X′

{π∗(pf)∗
∏
X′ Y

ψ}∗σ∗(pf)∗
∏
X′ Y,X

{{f}(π∗X′
∏
X′

Y )}∗

=
∏

π∗
(pf)∗

∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

{{f}(π∗X′
∏
X′

Y )}∗

So, it suffices to prove∏
π∗

(pf)∗
∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

{{f}(π∗X′
∏
X′

Y )}∗(π∗π∗
X′

∏
X′ Y

Q′ ⇒ {επ
∗
X′a

∏
X′

Y }∗R)

≥ π∗(pf)∗
∏
X′ Y

P ∧
∏

π∗
(pf)∗

∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

{π∗Xθ}∗
(
π∗π∗X

∏
X{f}∗Y

Q⇒

{επ
∗
Xa

∏
X

{f}∗Y }
∗(π∗{f}∗YQ ∧ {{f}(Y )}∗R)

)
34



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

where Q = π∗XP ∧ {f}∗Q′. Observe the following.

{{f}(π∗X′
∏
X′

Y )}∗(π∗π∗
X′

∏
X′ Y

Q′ ⇒ {επ
∗
X′a

∏
X′

Y }∗R)

= π∗{f}∗π∗
X′

∏
X′ Y
{f}∗Q′ ⇒ {{f}∗επ

∗
X′a

∏
X′}∗{{f}(Y )}∗R

{π∗Xθ}∗
(
π∗π∗X

∏
X{f}∗Y

Q⇒ {επ
∗
Xa

∏
X

{f}∗Y }
∗(π∗{f}∗YQ ∧ {{f}(Y )}∗R)

)
= π∗{f}∗π∗

X′
∏
X′ Y

Q⇒ (π∗{f}∗π∗
X′

∏
X′ Y

Q ∧ {{f}∗επ
∗
X′a

∏
X′}∗{{f}(Y )}∗R)

π∗(pf)∗
∏
X′ Y

P ∧
∏

π∗
(pf)∗

∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

(. . . )

≤
∏

π∗
(pf)∗

∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

σ∗X,(pf)∗
∏
X′ Y

π∗π∗
(pf)∗

∏
X′ Y

X

(
π∗(pf)∗

∏
X′ Y

P∧

∏
π∗

(pf)∗
∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

(. . . )
)

≤
∏

π∗
(pf)∗

∏
X′ Y

X

σ∗(pf)∗
∏
X′ Y,X

(
π∗π∗X(pf)∗

∏
X′ Y

π∗XP ∧ (. . . )
)

Now it suffices to prove

π∗{f}∗π∗
X′

∏
X′ Y
{f}∗Q′ ⇒ {{f}∗επ

∗
X′a

∏
X′}∗{{f}(Y )}∗R

≥ π∗{f}∗π∗
X′

∏
X′ Y

π∗XP ∧
(
π∗{f}∗π∗

X′
∏
X′ Y

Q⇒

(π∗{f}∗π∗
X′

∏
X′ Y

Q ∧ {{f}∗επ
∗
X′a

∏
X′}∗{{f}(Y )}∗R)

)
which is equivalent to

{{f}∗επ
∗
X′a

∏
X′}∗{{f}(Y )}∗R

≥ π∗{f}∗π∗
X′

∏
X′ Y
{f}∗Q′ ∧ π∗{f}∗π∗

X′
∏
X′ Y

π∗XP∧(
π∗{f}∗π∗

X′
∏
X′ Y

Q⇒ (π∗{f}∗π∗
X′

∏
X′ Y

Q ∧ {{f}∗επ
∗
X′a

∏
X′}∗{{f}(Y )}∗R)

)
.

This inequality follows from Q = π∗XP ∧ {f}∗Q′ and the evaluation morphism
of exponentials.

The functor {p | q} is a SSCompC. As a result of above lemmas, we get a
lifting of SCCompCs over p : E→ B.

Theorem 2.2.10. If p : E → B is a SCCompC and q : P → B is a fibred
ccc that has p-products, then {p | q} : {E | P} → P is a SCCompC. Moreover,
(P∗(q→), q) : {p | q} → p is a morphism of SCCompCs, i.e., a split fibred functor
that preserves the CCompC structure strictly.

{E | P} E

P B

{p|q}

P∗(q→)

p

q

35



2.2. Lifting SCCompCs and Fibred Coproducts

Proof. By Lemma 2.2.7,2.2.8,2.2.9. A terminal object in P exists because B has
a terminal object and q : P→ B has fibred terminal objects. It is almost obvious
that (P∗(q→), q) preserves the structure of CCompCs.

Example 2.2.11. Consider the simple fibration sSet : s(Set) → Set and the
subobject fibration subSet : Sub(Set) → Set. Objects in {s(Set) | Sub(Set)}
are tuples ((I,X), P,Q) where (I,X) ∈ s(Set), P ⊆ I, and Q ⊆ P ×X ⊆ I×X,
and morphisms are those in s(Set) that preserve predicates. In {sSet | subSet} :
{s(Set) | Sub(Set)} → Sub(Set), products and coproducts are given by∏

((I,X),P,Q)

((I ×X,Y ), Q,R) =
(
(I,X ⇒ Y ), P, {(i, f) ∈ I × (X ⇒ Y ) |

i ∈ P ∧ ∀x ∈ X, (i, x) ∈ Q =⇒ ((i, x), f(x)) ∈ R}
)

(2.5)∐
((I,X),P,Q)

((I ×X,Y ), Q,R) =
(
(I,X × Y ), P, {(i, (x, y)) | ((i, x), y) ∈ R}

)
.

Example 2.2.12. Let erel : ERel → Set be the fibration of endorelations
defined by change-of-base from Sub(Set)→ Set along the functor X 7→ X×X.
The fibration erel is a fibred ccc and has products (i.e. right adjoints of reindexing
functors that satisfy the BC condition for each pullback square). Therefore,
erel has p-products for any comprehension category with unit p. If we apply
Theorem 2.2.10 to erel and the simple fibration sSet : s(Set) → Set, then
products are defined similarly to Example 2.2.11.

Example 2.2.13. We can construct a SCCompC for relational verification as
follows. Let p : E → B be a SCCompC and q : P → B be a fibred ccc. We
have a SCCompC p2 : E2 → B2. Here, each of the CCompC structures of
p2 : E2 → B2 are defined component-wise from the corresponding structure of
p : E→ B. We also consider the fibration BRel(q) : BRel(P)→ B2 defined by
the change-of-base along × : B2 → B.

BRel(P) P

B2 B
BRel(q) y q

×

The fibration BRel(q) : BRel(P) → B2 is posetal and a fibred ccc because
the change-of-base functor (×)∗ : FibB → FibB2 is a 2-functor that preserves
finite products. Therefore, we can apply Theorem 2.2.10 to the combination of
p2 : E2 → B2 and BRel(q) : BRel(P)→ B2 if BRel(q) has p2-products.

For example, when p is the simple fibration sSet : s(Set) → Set and q is
the subobject fibration subSet : Sub(Set)→ Set, then we obtain a SCCompC
{s2Set | BRel(subSet)} : {s(Set)2 | BRel(Sub(Set))} → BRel(Sub(Set)). An
object in the total category is ((I1, X1), (I2, X2), P,Q) where (I1, X1), (I2, X2) ∈
s(Set), P ⊆ I1 × I2, and Q ⊆ I1 ×X1 × I2 ×X2.

Example 2.2.14. Consider the family fibration famSet : Fam(Set)→ Set [53,
Def 1.2.1] and the subobject fibration subSet : Sub(Set) → Set. Objects in
{Fam(Set) | Sub(Set)} are tuples ((I,X), P,Q) where (I,X) ∈ Fam(Set),
P ⊆ I, and Q ⊆

∐
i∈P Xi ⊆

∐
i∈I Xi. Note that subsets Q ⊆

∐
i∈I Xi have

a one-to-one correspondence with families of subsets (Qi ⊆ Xi)i∈I when we
define Qi = ι∗i (Q) where ιi : Xi →

∐
i∈I Xi is the i-th injection. So, we

36



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

often identify Q with the family of subsets Qi ⊆ Xi. We get products in
{famSet | subSet} : {Fam(Set) | Sub(Set)} → Sub(Set) by modifying (2.5)
for dependent functions.

2.2.2 Lifting Fibred Coproducts

A sufficient condition for {p | q} : {E | P} → P to have strong fibred coproducts
is given by the following lemma, which is analogous to [49, Prop. 4.5.8].

Lemma 2.2.15. If

• p : E→ B has strong fibred coproducts

• for each X,Y ∈ EI , X ′, Y ′ ∈ EI′ , u : I → I ′ and Cartesian lifting f : X →
X ′ and g : Y → Y ′ over u, the following two squares are pullbacks

{X} {X + Y } {Y }

{X ′} {X ′ + Y ′} {Y ′}

y

{ι1}

{f} {f+g}

{ι2}

{g}
x

{ι1} {ι2}

where ι1 : X → X + Y and ι2 : Y → X + Y are coprojections

• q : P→ B is a fibred distributive category

• for each X,Y ∈ EI and Z ∈ E{X+Y }, q has cocartesian lifting of

– {ι1} : {X} → {X + Y }
– {ι2} : {Y } → {X + Y }
– {{ι1}(Z)} : {{ι1}∗Z} → {Z}
– {{ι2}(Z)} : {{ι2}∗Z} → {Z}

that satisfy the Beck-Chevalley condition for each pullback squares and
the Frobenius condition

then {p | q} : {E | P} → P has strong fibred coproducts and the fibred functor
(P∗(q→), q) : {p | q} → p strictly preserves coproducts.

Proof. We define fibred coproducts by

(X,P,Q) + (Y, P,R) := (X + Y, P, {ι1}!Q ∨ {ι2}!R)

and coprojections by

(ι1, idP , ι1 ◦ {ι1}(Q)) : (X,P,Q)→ (X,P,Q) + (Y, P,R)

(ι2, idP , ι2 ◦ {ι2}(Q)) : (Y, P,R)→ (X,P,Q) + (Y, P,R).

For each (f1, idP , h1) : (X,P,Q) → (Z,P, S) and (f2, idP , h2) : (Y, P,R) →
(Z,P, S), we define the cotupling by

[(f1, idP , h1), (f2, idP , h2)] = ([f1, f2], idP , [h
′
1, h
′
2])

: (X,P,Q) + (Y, P,R)→ (Z,P, S)

where h′1 and h′2 are defined as follows.

37



2.2. Lifting SCCompCs and Fibred Coproducts

S S

P Q {ι1}!Q R {ι2}!R

B {Z} {Z}

{X} {X + Y } {Y } {X + Y }

q

h1

{ι1}(Q)

h′1
h2

{ι2}(R)

h′2

{f1}

{ι1}

{[f1,f2]}
{f2}

{ι2}

{[f1,f2]}

It is easy to verify that this definition satisfies universal property of coproducts
in {E | P}P .

Fibred coproduct. Next, we prove that coproducts are preserved by rein-
dexing functors. Let f : P → P ′ be a morphism in P and (X,P ′, Q), (Y, P ′, R) ∈
{E | P}P ′ . We have a canonical morphism

[f∗ι1, f
∗ι2] : f∗(X,P ′, Q) + f∗(Y, P ′, Q)→ f∗((X,P ′, Q) + (Y, P ′, R))

where

f∗(X,P ′, Q) + f∗(Y, P ′, Q)

= ((qf)∗X + (qf)∗Y, P ′,

{ι1}!(π∗(qf)∗XP
′ ∧ {qf(X)}∗Q) ∨ {ι2}!(π∗(qf)∗XP

′ ∧ {qf(X)}∗R))

f∗((X,P ′, Q) + (Y, P ′, R))

= ((qf)∗(X + Y ), P ′, π∗(qf)∗(X+Y )P
′ ∧ {qf(X + Y )}∗({ι1}!Q ∨ {ι2}!R)).

The canonical morphism is isomorphic by Lemma 2.1.2 and the following equa-
tion.

{[(qf)∗ι1, (qf)∗ι2]}∗
(
π∗(qf)∗(X+Y )P

′ ∧ {qf(X + Y )}∗({ι1}!Q ∨ {ι2}!R)
)

= π∗(qf)∗X+(qf)∗Y P
′ ∧ {qf(X) + qf(Y )}∗({ι1}!Q ∨ {ι2}!R)

= π∗(qf)∗X+(qf)∗Y P
′ ∧
(
{ι1}!{qf(X)}∗Q ∨ {ι2}!{qf(Y )}∗R

)
=
(
π∗(qf)∗X+(qf)∗Y P

′ ∧ {ι1}!{qf(X)}∗Q
)
∨(

π∗(qf)∗X+(qf)∗Y P
′ ∧ {ι2}!{qf(Y )}∗R

)
= {ι1}!

(
{ι1}∗π∗(qf)∗X+(qf)∗Y P

′ ∧ {qf(X)}∗Q
)
∨

{ι2}!
(
{ι2}∗π∗(qf)∗X+(qf)∗Y P

′ ∧ {qf(Y )}∗R
)

= {ι1}!
(
π∗(qf)∗XP

′ ∧ {qf(X)}∗Q
)
∨ {ι2}!

(
π∗(qf)∗Y P

′ ∧ {qf(Y )}∗R
)

Strong fibred coproduct. Finally, we prove that fibred coproducts of {p | q} :
{E | P} → P are strong. That is, the functor

{E | P}{ι1}!Q∨{ι2}!R {E | P}Q × {E | P}R
〈{ι1}∗,{ι2}∗〉

38



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

is full and faithful.
The functor 〈{ι1}∗, {ι2}∗〉 is faithful: if 〈{ι1}∗, {ι2}∗〉 maps two morphism

(f1, id, h1), (f2, id, h2) : (Z, {ι1}!Q∨{ι2}!R,S)→ (Z ′, {ι1}!Q∨{ι2}!R,S′) to the
same pair of morphisms, then f1 = f2 follows because p : E → B has strong
fibred coproducts, and h1 = h2 also follows because q : P→ B is faithful.

For fullness, given

• (X,P,Q), (Y, P,R) ∈ {E | P}P ,

• two objects over {(X,P,Q) + (Y, P,R)}

(Z1, {ι1}!Q ∨ {ι2}!R,S1), (Z2, {ι1}!Q ∨ {ι2}!R,S2) ∈ {E | P}{ι1}!Q∨{ι2}!R,

• and a pair of morphisms in {E | P}Q and {E | P}R

(f1, idQ, h1) : ({ι1}∗Z1, Q, π
∗
{ι1}∗Z1

Q ∧ {{ι1}(Z1)}∗S1)

→ ({ι1}∗Z2, Q, π
∗
{ι1}∗Z2

Q ∧ {{ι1}(Z2)}∗S2)

(f2, idR, h2) : ({ι2}∗Z1, R, π
∗
{ι2}∗Z1

R ∧ {{ι2}(Z1)}∗S1)

→ ({ι2}∗Z2, R, π
∗
{ι2}∗Z2

R ∧ {{ι2}(Z2)}∗S2),

we prove that there exists a morphism

(f, id, h) : (Z1, {ι1}!Q ∨ {ι2}!R,S1)→ (Z2, {ι1}!Q ∨ {ι2}!R,S2)

such that (f1, id, g1) = {ι1}∗(f, id, h) and (f2, id, g2) = {ι2}∗(f, id, h). Since
〈{ι1}∗, {ι2}∗〉 : E{X+Y } → E{X} × E{Y } is full, there exists f : Z1 → Z2 such
that {ι1}∗f = f1 and {ι2}∗f = f2. To prove the existence of the morphism h
over {f}, it suffices to prove S1 ≤ {f}∗S2.

S1 = S1 ∧ π∗Z1
({ι1}!Q ∨ {ι2}!R)

= (S1 ∧ π∗Z1
{ι1}!Q) ∨ (S1 ∧ π∗Z1

{ι2}!R)

=
(
S1 ∧ {{ι1}(Z1)}!π∗{ι1}∗Z1

Q
)
∨
(
S1 ∧ {{ι2}(Z1)}!π∗{ι2}∗Z1

R
)

= {{ι1}(Z1)}!
(
{{ι1}(Z1)}∗S1 ∧ π∗{ι1}∗Z1

Q
)
∨

{{ι2}(Z1)}!
(
{{ι2}(Z1)}∗S1 ∧ π∗{ι2}∗Z1

R
)

≤ {{ι1}(Z1)}!{f1}∗
(
{{ι1}(Z2)}∗S2 ∧ π∗{ι1}∗Z2

Q
)
∨

{{ι2}(Z1)}!{f2}∗
(
{{ι2}(Z2)}∗S2 ∧ π∗{ι2}∗Z2

R
)

≤ {{ι1}(Z1)}!{f1}∗{{ι1}(Z2)}∗S2 ∨ {{ι2}(Z1)}!{f2}∗{{ι2}(Z2)}∗S2

= {{ι1}(Z1)}!{{ι1}(Z1)}∗{f}∗S2 ∨ {{ι2}(Z1)}!{{ι2}(Z1)}∗{f}∗S2

≤ {f}∗S2

Note that if q is fibred bicartesian closed, then q is a fibred distributive
category.

39



2.3. Lifting Monads on SCCompCs

Example 2.2.16. Consider sSet : s(Set) → Set and subSet : Sub(Set) →
Set (recall Example 2.2.11). This combination satisfies four conditions in
Lemma 2.2.15. Fibred coproducts in {s(Set) | Sub(Set)} → Sub(Set) are
defined as follows.

((I,X), P,Q) + ((I, Y ), P,R) = ((I,X + Y ), P, {(i, x) | (i, x) ∈ Q ∨ (i, x) ∈ R})

2.3 Lifting Monads on SCCompCs

In this section, we consider computational effects in dependent refinement type
systems.

Definition 2.3.1 (monad lifting). Let p : E→ B be a fibration and (T, η, µ) be
a monad on B. A lifting (or monad lifting) of T is a monad (Ṫ , η̇, µ̇) on E such
that pṪ = Tp, pη̇ = ηp, and pµ̇ = µp. A fibred lifting of T is a lifting (Ṫ , η̇, µ̇)

of T such that Ṫ is a fibred functor, and a Cartesian lifting is a fibred lifting
(Ṫ , η̇, µ̇) of T such that each component of η̇ and µ̇ is a Cartesian morphism.

Suppose we have a SCCompC p : E → B and a posetal fibration q : P → B
as ingredients for {p | q} : {E | P} → P in Theorem 2.2.10. We are going to
explain how to construct a fibred monad on {p | q} : {E | P} → P from monads
on p and q.

First, we assume that a monad T on B and a fibred monad T̂ on p : E→ B
are given. These monads are intended to represent the same computational
effects in underlying type systems, but T is more “primitive” than T̂ , and T̂
is induced from T in some natural way. For example, we can use the maybe
monad or the powerset monad on Set as T and define T̂ by (I,X) 7→ (I, TX)
on the simple fibration s(Set) → Set. In such a situation, we often have an
oplax monad morphism (Definition 2.3.2) θ : {T̂ (−)} → T{−}. Intuitively,
θ extends the action of T̂ on types to contexts, just like strengths of strong
monads. We also need a lifting Ṫ of T along q : P → B to specify a mapping
from predicates on values in X ∈ B to predicates on computations in TX [8].
Given all these ingredients and some additional conditions, we define a fibred
monad on {p | q} : {E | P} → P, which is a lifting of the fibred monad T̂ on
p : E→ B.

Definition 2.3.2 (oplax monad morphism). Let C,D be categories, F : C→ D
be a functor, and (S, ηS , µS), (T, ηT , µT ) be monads on C and D, respectively. A
natural transformation θ : FS → TF is an oplax monad morphism if θ respects
units and multiplications.

FX

FSX TFX

FηSX
ηTFX

θX

FS2X TFSX T 2FX

FSX TFX

θSX

FµSX

TθX

µTFX
θX

Theorem 2.3.3. Let T be a monad on B, T̂ be a fibred monad on p : E → B
in the 2-category FibB of fibrations over B, θ : {T̂ (−)} → T{−} be an oplax
monad morphism, and Ṫ be a fibred lifting [8] of T along q : P→ B. If

π∗
T̂X

P ∧ θ∗X ṪQ ≤ θ∗X Ṫ (π∗XP ∧Q) (2.6)

40



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

holds for each X ∈ E, P ∈ PpX and Q ∈ P{X}, then there exists a fibred monad
S on {p | q} : {E | P} → P in FibP such that the fibred functor {p | q} → p in
Theorem 2.2.10 is a fibred monad morphism from S to T̂ .

E

B

p

T̂ P

B

q

Ṫ

T

Proof. The functor S : {E | P} → {E | P} is defined by

S(X,P,Q) := (T̂X, P, π∗
T̂X

P ∧ θ∗X ṪQ) S(f, g, h) := (T̂ f, g, h0)

P θ∗X ṪQ ṪQ

B {T̂X} T{X}
q

θX(ṪQ)

θX

for each (X,P,Q), (X ′, P ′, Q′) ∈ {E | P} and (f, g, h) : (X,P,Q)→ (X ′, P ′, Q′)
where h0 : π∗

T̂X
P ∧ θ∗X ṪQ→ π∗

T̂X′
P ′ ∧ θ∗X′ ṪQ′ is defined by combining the two

dashed arrows in the following diagram.

π∗
T̂X

P P θ∗X ṪQ ṪQ

P π∗
T̂X′

P ′ P ′ θ∗X′ ṪQ
′ ṪQ′

B {T̂X} pX {T̂X} T{X}

{T̂X ′} pX ′ {T̂X ′} T{X ′}

πT̂X(P )

g

θX(ṪQ)

Ṫ h

q

πT̂X′ (P
′) θX′ (ṪQ

′)

πT̂X

{T̂ f} pf

θX

{T̂ f} T{f}
πT̂X′ θX′

The unit is defined by

η(X,P,Q) := (ηT̂X , idP , 〈h1, h2〉) : (X,P,Q)→ (T̂X, P, π∗
T̂X

P ∧ θ∗X ṪQ)

where h1 and h2 are unique morphisms in the following diagram.

Q P

π∗
T̂X

P P

{X} pX

{T̂X} pX

π(X,P,Q)

h1

πT̂X(P )

πX

{ηT̂X} pηT̂X

πT̂X

Q

P θ∗X ṪQ ṪQ

B {X}

{T̂X} T{X}

ηṪQ
h2

q

θX(ṪQ)

{ηSX}
ηT{X}

θX

The multiplication is defined by

µ(X,P,Q) := (µT̂X , idP , h3 ∧ (h4 ◦ θ∗T̂X Ṫ π2)) : S2(X,P,Q)→ S(X,P,Q)

41



2.3. Lifting Monads on SCCompCs

where the domain of µ(X,P,Q) is given by

S2(X,P,Q) = (T̂ 2X,P, π∗
T̂ 2X

P ∧ θ∗
T̂X

Ṫ (π∗
T̂X

P ∧ θ∗X ṪQ))

and thus, h3 and h4 are defined by the following diagram.

π∗
T̂ 2X

P P

π∗
T̂X

P P

{T̂ 2X} pX

{T̂X} pX

πT̂2X(P )

h3

πT̂X(P )

πT̂2X

{µT̂X} pµT̂X

πT̂2X

θ∗TX Ṫ θ
∗
X ṪQ Ṫ θ∗X ṪQ Ṫ 2Q

θ∗X ṪQ ṪQ

{T̂ 2X} T{T̂X} T 2{X}

{T̂X} T{X}

θTX(Ṫ θ∗X ṪQ)

h4

Ṫ θX(ṪQ)

µṪQ

θX(ṪQ)

θT̂X

{µT̂X}

TθX

µT{X}

θX

The monad laws follow from those for T̂ .

The monad S is fibred. We prove S is a fibred functor. Let (f, g, h) :
(X,P,Q) → (X ′, P ′, Q′) be an {p | q}-Cartesian morphism. By Lemma 2.2.2,
f : X → X ′ is p-Cartesian and Q = π∗XP ∧ {f}∗Q′. To prove that S(f, g, h) is

also {p | q}-Cartesian, it suffices to prove that T̂ f is p-Cartesian and π∗
T̂X

P ∧
θ∗X ṪQ = π∗

T̂X
P ∧ {T̂ f}∗(π∗

T̂X′
P ′ ∧ θ∗X′ ṪQ′). The former follows because T̂ is a

fibred functor. For the latter, the following three inequalities obviously hold.

π∗
T̂X

P ∧ θ∗X ṪQ ≤ π∗T̂XP

π∗
T̂X

P ∧ θ∗X ṪQ ≤ {T̂ f}∗(π∗T̂X′P
′ ∧ θ∗X′ ṪQ′)

π∗
T̂X

P ≥ π∗
T̂X

P ∧ {T̂ f}∗(π∗
T̂X′

P ′ ∧ θ∗X′ ṪQ′)

So, it suffices to prove θ∗X ṪQ ≥ π∗
T̂X

P ∧ {T̂ f}∗(π∗
T̂X′

P ′ ∧ θ∗X′ ṪQ′). The right-
hand side can be simplified as follows.

π∗
T̂X

P ∧ {T̂ f}∗(π∗
T̂X′

P ′ ∧ θ∗X′ ṪQ′)

= π∗
T̂X

P ∧ {T̂ f}∗π∗
T̂X′

P ′ ∧ {T̂ f}∗θ∗X′ ṪQ′

= π∗
T̂X

P ∧ π∗
T̂X

(pf)∗P ′ ∧ θ∗X(T{f})∗ṪQ′

= π∗
T̂X

P ∧ θ∗X(T{f})∗ṪQ′

Since we have Q = π∗XP ∧ {f}∗Q′, what we need to show is

π∗
T̂X

P ∧ θ∗X(T{f})∗ṪQ′ ≤ θ∗X Ṫ (π∗XP ∧ {f}∗Q′),

which follows from (2.6) and the fibredness of Ṫ .

Example 2.3.4. Any strong monad T on a CCC B gives rise to a split fibred
monad T̂ on the simple fibration sB : s(B) → B (actually, there is a one-to-one
correspondence [53, Ex.2.6.10]). The monad T̂ is defined by (I,X) 7→ (I, TX).
An oplax monad morphism θ : I × TX → T (I ×X) is given by the strength.

42



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

Now consider the case where B = Set. Since the strength for the monad T
on Set is given uniquely [84, Proposition 3.4], we can prove that (2.6) holds for
any fibred lifting of T along the subobject fibration subSet : Sub(Set)→ Set.

Let T be the maybe monad (−) + {∗}. There are two fibred liftings of T :

Ṫ1(P ⊆ I) = (P + {∗} ⊆ I + {∗}) Ṫ2(P ⊆ I) = (P ⊆ I + {∗})

for each (P ⊆ I) ∈ Sub(Set). The lifting Ṫ1 corresponds to partial correctness,
and Ṫ2 corresponds to total correctness. The fibred monads on {sSet | subSet}
defined in Theorem 2.3.3 from Ṫ1 and Ṫ2 are given by

((I,X), P,Q) 7→
(
(I,X + {∗}), P, {(i, x) | (i ∈ P ∧ x = ∗) ∨ (i, x) ∈ Q}

)
((I,X), P,Q) 7→

(
(I,X + {∗}), P, {(i, x) | (i, x) ∈ Q}

)
respectively. Here, we leave the left/right injection of coproducts implicit.

Example 2.3.5. For each monad T on Set, we have a split fibred monad on
the family fibration Fam(Set) → Set defined by T̂ (I,X) = (I, T ◦ X). We
have an oplax monad morphism θ :

∐
i∈I TXi → T

∐
i∈I Xi defined by the

cotupling [(Tιi)i∈I ] :
∐
i∈I TXi → T

∐
i∈I Xi where ιi : Xi →

∐
i∈I Xi is the

i-th injection. The condition (2.6) holds for any fibred lifting of T along the
subobject fibration Sub(Set) → Set. Moreover, we have ι∗i θ

∗ṪQ = Ṫ ι∗iQ for
each Q ∈ Sub(Set)∐

i∈I Xi
, so the monad in Theorem 2.3.3 is given by(

(I,X), P, (Qi ⊆ Xi)i∈I
)
7→
(
(I, T ◦ X), P, (ṪQi ⊆ TXi)i∈I

)
.

2.4 Soundness

We consider a concrete dependent refinement type system with computational
effects and define sound semantics to show that the SCCompC defined in The-
orem 2.2.10 has sufficient structures for dependent refinement types. Here, we
consider two type systems. One is an underlying type system that is a fragment
of EMLTT [9–11]. The other is a refinement of the underlying type system that
has refinement types {v : A | p} and a subtyping relation Γ ` A <: B induced
by logical implication. The two type systems share a common syntax for terms
while types are more expressive in the refinement type system. We consider lift-
ings of fibred adjunction models to interpret the refinement type system. Here,
Theorem 2.3.3 can be used to obtain a lifting of fibred adjunction models via
Eilenberg-Moore construction. We prove a soundness theorem that claims if a
term is well-typed in the refinement type system, then the interpretation of the
term has a lifting along the morphism of CCompCs defined in Theorem 2.2.10.

2.4.1 Underlying Type System

We define the underlying dependent type system by a slightly modified version
of a fragment of EMLTT [9–11]. We remove some of the types and terms from
the original for simplicity. We parameterize our type system with a set of base
type constructors (ranged over by b) and a set of value constants (ranged over
by c) for convenience.

43



2.4. Soundness

` Γ � ` ty(c)

Γ ` cty(c) : ty(c)

b : A→ Type
� ` A Γ ` V : A

Γ ` bA(V )

b : A→ Type � ` A
Γ ` V = W : A

Γ ` bA(V ) = bA(W )

Figure 2.1: Some typing rules for the underlying type system. See A.1 for the
full definition.

We define value types (A,B, . . . ), computation types (C,D, . . . ), contexts
(Γ, . . . ), value terms (V,W, . . . ), and computation terms (M,N, . . . ) as follows.

A := 1 | bA(V ) | Σx:A.B | UC | A+B

C := FA | Πx:A.C Γ := � | Γ, x : A

V := x | ∗ | cA | 〈V,W 〉(x:A).B | thunk M | inlA+B V | inrA+B V

M := return V |M to x : A inC N | forceC V | λx : A.M |M(V )(x:A).C |
pm V as 〈x : A, y : B〉 inz.C M |
case V ofz.C (inl (x : A) 7→M, inr (y : B) 7→ N)

We implicitly assume that variables in Γ are mutually different. We use many
type annotations in the syntax of terms for a technical reason, but we might
omit them if they are clear from the context. We define substitution A[V/x],
C[V/x], W [V/x], and M [V/x] as usual.

For each type constructor b, let arg(b) be a closed value type of the argument
of b. We write b : A→ Type if A = arg(b). For each value constant c, let ty(c)
be a closed value type of c.

We have several kinds of judgements: well-formed contexts ` Γ; well-formed
(value or computation) types Γ ` A, Γ ` C; well-typed (value or computation)
terms Γ ` V : A, Γ `M : C; and definitional equalities for contexts, types and
terms ` Γ1 = Γ2, Γ ` A = B, Γ ` C = D, Γ ` V = W : A, Γ `M = N : C.

Typing rules are basically the same as EMLTT. Rules for base type con-
structors and value constants are shown in Fig. 2.1

Semantics. We use fibred adjunction models to interpret terms and types.
We adapt the definition for our fragment of EMLTT as follows.

Definition 2.4.1 (Fibred adjunction models). A fibred adjunction model is a
fibred adjunction F a U : r → p where p : E → B is a SCCompC with strong
fibred coproducts and r : C→ B is a fibration with p-products.

The Eilenberg-Moore fibration of a CCompC p : E→ B inherits products in
p [9, Theorem 4.3.24] and thus gives an example of fibred adjunction models.

Lemma 2.4.2. Given a SCCompC p : E→ B with strong fibred products and a
split fibred monad T on p, then the Eilenberg-Moore adjunction of T is a fibred
adjunction model.

We assume that a fibred adjunction model F a U : r → p between p : E→ B
and r : C→ B is given and that interpretations of base type constructors JbK ∈ E
and value constants JcK ∈ E1(1, X) (for some X ∈ E1) are given. We define a
partial interpretation J−K of the following form for raw syntax.

44



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

E C

B
p

F

r
U

a JΓK ∈ B JΓ;AK ∈ EJΓK JΓ;CK ∈ CJΓK

JΓ;V K ∈ EJΓK(1JΓK, A) for some A

JΓ;MK ∈ EJΓK(1JΓK, UC) for some C ∈ C

Most of the definition of J−K are the same as [9]. For base type constructors b
and value constants c, we define J−K as follows.

JΓ; bA(V )K = (sJΓ;V K)∗{!JΓK(J�;AK)}∗JbK JΓ; cAK = !∗JΓKJcK

Here, left-hand sides are defined if right-hand sides are defined. The full defini-
tion of J−K is listed in Appendix A.

Proposition 2.4.3 (Soundness). Assume that JbK ∈ E{J�;AK} holds for each
b : A → Type such that J�;AK is defined, and JcK ∈ E1(1, J�; ty(c)K) holds
if J�; ty(c)K ∈ E1 is defined. Interpretations J−K of well-formed contexts and
types and well-typed terms are defined. If two contexts, types, or terms are
definitionally equal, then their interpretations are equal.

Proof. See [9].

2.4.2 Predicate Logic

We define syntax for logical formulas by

p = > | p ∧ q | p⇒ q | ∀x : A.p | V =A W | a(V )

where a ranges over predicate symbols. Here, we added > and V =A W for
typing rule for the unique value of the unit type and variables of base types (i.e.
for selfification [86]), respectively, which we describe later. However, there is
a large amount of freedom to choose the syntax of logical formulas. The least
requirement here is that logical formulas can be interpreted in a posetal fibration
q : P → B, and interpretations of logical formulas admit semantic weakening,
substitution, and conversion in the sense of [9, Proposition 5.2.4, 5.2.6]. So, we
can almost freely add or remove logical connectives and quantifiers as long as
q : P→ B admits them.

We define a standard judgement of well-formedness for logical formulas.
Rules for well-formedness are shown in Fig. 2.2

Logical formulas are interpreted in the fibration q : P→ B. We assume that
interpretation JaK ∈ P{J�;AK} for each predicate symbol a : A → Prop is given.
The interpretation JΓ ` pK ∈ PJΓK is standard and defined inductively for each
well-formed formulas:

JΓ ` >K = >JΓK
JΓ ` p ∧ qK = JΓ ` pK ∧ JΓ ` qK

JΓ ` p⇒ qK = JΓ ` pK⇒ JΓ ` qK

JΓ ` ∀x : A.pK =
∏

JΓ;AK

JΓ, x : A ` pK

JΓ ` V =A W K = (sJΓ;V K)∗(s(π∗JΓ;AKJΓ;W K))∗Eq(>{JΓ;AK})

JΓ ` a(V )K = s(JΓ;V K)∗{!JΓK(J�;AK)}∗JaK

45



2.4. Soundness

` Γ

Γ ` > : Prop

Γ ` p : Prop Γ ` q : Prop

Γ ` p ∧ q : Prop

Γ ` p : Prop Γ ` q : Prop

Γ ` p⇒ q : Prop

Γ, x : A ` p : Prop

Γ ` ∀x : A.p : Prop

Γ ` V : A Γ `W : A

Γ ` V =A W : Prop

a : A→ Prop � ` A Γ ` V : A

Γ ` a(V ) : Prop

Figure 2.2: Rules for well-formed predicates.

where > : B → P is the terminal object functor, a : A → Prop is a predicate
symbol, s : EI(1I,X) ∼= {f : I → {X} | πX ◦ f = idI} is the bijection defined
in Section 2.1 for each I ∈ B and X ∈ EI , and Eq : PJΓ;AK → Pπ∗JΓ;AKJΓ;AK is a

left adjoint of δ∗JΓ;AK.

2.4.3 Refinement Type System

We refine the underlying type system by adding predicates to base types and
the unit type. From now on, we use subscript Au for types in the underlying
type system to distinguish them from types in the refinement type system.

A := {v : bAu(V ) | p}
∣∣ {v : 1 | p}

∣∣ Σx:A.B
∣∣ UC | A+B

C := FA | Πx:A.C Γ := � | Γ, x : A

We use the same definition of terms as the underlying type system and the same
set of base type constructors and value constants. Argument types of base type
constructors b : Au → Type are also the same, but types ty(c) assigned to value
constants c are redefined as refinement types. Given a type A (or C) in the
refinement type system, we define its underlying type |A| (or |C|) by induction
where predicates are eliminated in the base cases.

|{v : bAu(V ) | p}| = bAu(V ) |{v : 1 | p}| = 1

Underlying contexts |Γ| are also defined by | � | = � and |Γ, x : A| = |Γ|, x : |A|.
Judgements in the refinement type system are as follows. We have judge-

ments for well-formedness or well-typedness for contexts, types and terms in the
refinement type system, which are denoted in the same way as the underlying
type system. We do not consider definitional equalities for terms because they
are the same as the underlying type system. Instead, we add judgements for
subtyping between types and contexts. They are denoted by ` Γ1 <: Γ2 for
context, Γ ` A <: B for value types, and Γ ` C <: D for computation types.

Most of term and type formation rules are similar to the underlying type sys-
tem. We listed some of the non-trivial modifications of typing rules in Fig. 2.3.
We add typing rules for {v : bBu(V ) | p} and {v : 1 | p}. Subtyping for these
types are defined by judgements Γ; v : Au | p ` q for logical implication. Here,
Γ; v : Au | p ` q means “assumptions in Γ and p implies q” where p and q are
well-formed formulas in the context |Γ|, v : Au. We do not specify derivation

46



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

b : Au → Type ` Γ |Γ| ` bAu(V )
|Γ|, v : bAu(V ) ` p : Prop

Γ ` {v : bAu(V ) | p}

` Γ |Γ| ` bAu(V ) = bAu(W )
Γ; v : bAu(V ) | p ` q

Γ ` {v : bAu(V ) | p} <: {v : bAu(W ) | q}

` Γ1, x : {v : bAu(V ) | p},Γ2

Γ1, x : {v : bAu(V ) | p},Γ2 ` x : {v : bAu(V ) | v = x}
` Γ � ` ty(c)

Γ ` c|ty(c)| : ty(c)

Γ ` A2 <: A1

Γ, x : A1 ` C1 Γ, x : A2 ` C1 <: C2

Γ ` Πx:A1.C1 <: Πx:A2.C2

Γ2 ` V : A
` Γ1 <: Γ2 Γ1 ` A <: B

Γ1 ` V : B

` Γ

Γ ` ∗ : {v : 1 | >}
` Γ |Γ|, v : 1 ` p : Prop

Γ ` {v : 1 | p}

` Γ Γ; v : 1 | p ` q
Γ ` {v : 1 | p} <: {v : 1 | q}

Figure 2.3: Some typing rules for the refinement type system. See A.2 for the
full definition.

rules for the judgement Γ; v : Au | p ` q but assume soundness of the judge-
ment (explained later). We allow “selfification” [86] for variables of base types.
Subtyping for Σx:A.B, UC, FA, and Πx:A.C are defined covariantly except
the argument type A of Πx:A.C, which is contravariant. We have the rule of
subsumption. Value constants are typed with a refined type assignment ty(c).
The unique value ∗ of the unit type has type {v : 1 | >}.

Lemma 2.4.4. If we eliminate predicates in the refinement types from well-
formed contexts, types and terms, then we get well-formed contexts, types and
terms of the underlying type system.

• If ` Γ, then ` |Γ|. If Γ ` A, then |Γ| ` |A|. If Γ ` C, then |Γ| ` |C|.

• If ` Γ1 <: Γ2, then ` |Γ1| = |Γ2|. If Γ ` A <: B, then |Γ| ` |A| = |B|. If
Γ ` C <: D, then |Γ| ` |C| = |D|.

Proof. By induction on the derivation of judgements. Each typing rule in the
refinement type system has a corresponding rule in the underlying system.

Example 2.4.5. We can express conditional branching using the elimination
rule of the fibred coproduct type 1+1. For example, assume we have a base type
constructor int : 1→ Type for integers and a value constant for comparison.

(≤) : U(Πx:int.Πy:int.F ({v : 1 | x ≤ y}+ {v : 1 | x > y}))

47



2.4. Soundness

We can define if x ≤ y then M else N to be a syntax sugar for

(x ≤′ y) to z in (case z of (inl v 7→M, inr v 7→ N))

where (≤′) = force (≤). Note that M and N are typed in contexts that have
v : {v : 1 | x ≤ y} or v : {v : 1 | x > y} depending on the result of comparison.

2.4.4 Semantics

Definition 2.4.6 (lifting of fibred adjunction models). Suppose that we have
two fibred adjunction models F a U : q → p between p : E→ B and q : C→ B
and Ḟ a U̇ : s → r between r : U → P and s : D → P. The fibred adjunction
model Ḟ a U̇ is a lifting of F a U if there exists functors u : U→ E, v : D→ C,
and t : P→ B such that these functors strictly preserve all structures of Ḟ a U̇
to those of F a U . That is, (u, t) : r → p and (v, t) : s → q are split fibred
functors, the pair of fibred functor (u, t) and (v, t) is a map of adjunctions in
the 2-category Fib, (u, t) strictly preserves the CCompC structure and fibred
coproducts, and (v, t) maps r-products to p-products in the strict sense.

We assume that a lifting of fibred adjunction models is given as follows.

E C

B
p

F

U
a {E | P} D

P{p|q}

Ḟ

U̇

a {E | P} E

P B

u

{p|q} p

q

D C

P B

v

q

(2.7)

Here, we assume more than just a lifting of fibred adjunction models by re-
quiring the specific SCCompC {p | q} with strong fibred coproducts, and the
split functor (u, q) : {p | q} → p defined in Theorem 2.2.10 and Lemma 2.2.15.
The underlying fibred adjunction model F a U is used for the underlying type
system in Section 2.4.1, and q : P → B is for predicate logic in Section 2.4.2.
One way to obtain such liftings of fibred adjunction models is to apply the
Eilenberg-Moore construction to the monad morphism in Theorem 2.3.3, but
in general we do not restrict C and D to be Eilenberg-Moore categories. We
further assume that q has p-equalities to interpret logical formulas of the form
V =A W .

We define partial interpretation of refinement types JΓK ∈ P, JΓ;AK ∈
{E | P}JΓK, and JΓ;CK ∈ DJΓK similarly to the underlying type system but with

the following modification. Here, we make use of the definition of {E | P}.

JΓ; {v : b(V ) | p}K =
(
J|Γ|; b(V )K, JΓK, π∗J|Γ|;b(V )KJΓK ∧ J|Γ|, v : b(V ) ` pK

)
JΓ; {v : 1 | p}K =

(
J|Γ|; 1K, JΓK, π∗J|Γ|;1KJΓK ∧ J|Γ|, v : 1 ` pK

)
See A.2 for the full definition of J−K.

For each (X,P,Q), (X ′, P ′, Q′) ∈ {E | P}, we define a semantic subtyping
relation (X,P,Q) <: (X ′, P ′, Q′) by the conjunction of X = X ′, P = P ′, and
Q ≤ Q′. In other words, we have (X,P,Q) <: (X ′, P ′, Q′) if and only if there
exists a morphism (idX , idP , h) : (X,P,Q) → (X ′, P ′, Q′) that is mapped to
identities by u : {E | P} → E and {p | q} : {E | P} → P.

Lemma 2.4.7. • If JΓK is defined, then J|Γ|K is defined and equal to qJΓK.

48



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

• If JΓ;AK is defined, then J|Γ|; |A|K is defined and equal to uJΓ;AK.

• If JΓ;CK is defined, then J|Γ|; |C|K is defined and equal to vJΓ;CK.

Proof. By simultaneous induction. The case of {v : Au | p} is obvious, and
other cases follow from the definition of liftings of fibred adjunction models.

We do not specify syntactic derivation rules for judgement for logical im-
plication Γ; v : Au | p ` q. Instead, we assume soundness of the judgement
Γ; v : Au | p ` q in the following sense:

Γ; v : Au | p ` q implies

π∗J|Γ|;AuKJΓK ∧ J|Γ|, v : Au ` pK ≤ J|Γ|, v : Au ` qK in PJ|Γ|,v:AuK.
(2.8)

For example, we can define a derivation rule for logical implication Γ; v : Au |
p ` q from derivation rules for predicate logic Γu | p ` q (“p implies q in the
context Γu”). This is done by collecting predicates in context Γ by

L�M = > LΓ, x : AM =

{
LΓM ∧ p[x/v] if A = {v : Au | p}
LΓM otherwise

and defining a derivation rule for judgement for logical implication Γ; v : Au |
p ` q by |Γ|, v : Au | LΓM ∧ p ` q. If the derivation rules for predicate logic
Γu | p ` q is sound (i.e., Γu | p ` q implies JΓu ` pK ≤ JΓu ` qK), then so are the
derivation rule for Γ; v : Au | p ` q. This technique is used in, e.g., [125].

Our proof of soundness follows [9] with a few modifications for the depen-
dent refinement type system. We first define two auxiliary morphisms, semantic
projection projΓ1;x:A;Γ2

: JΓ1, x : A,Γ2K → JΓ1,Γ2K and semantic substitu-
tion substΓ1;x:A;Γ2;V : JΓ1,Γ2[V/x]K → JΓ1, x : A,Γ2K in the base category of
{p | q} : {E | P} → P. The functor q : P → B maps these morphisms to the
corresponding morphisms defined for the underlying type system (see [9] for
semantic projection and semantic substitution for the underlying type system).

Definition 2.4.8. Assume JΓ1, x : A,Γ2K and JΓ1,Γ2K are defined. We define
projΓ1;x:A;Γ2

: JΓ1, x : A,Γ2K→ JΓ1,Γ2K inductively by

projΓ1;x:A;� := πJΓ1;AK

projΓ1;x:A;Γ2,y:B := {projΓ1;x:A;Γ2
(JΓ1,Γ2;BK)}

where the latter is defined when proj∗Γ1;x:A;Γ2
JΓ1,Γ2;BK = JΓ1, x : A,Γ2;BK.

Lemma 2.4.9. If projΓ1;x:A;Γ2
: JΓ1, x : A,Γ2K → JΓ1,Γ2K is defined, then

proj|Γ1|;x:|A|;|Γ2| : J|Γ1|, x : |A|, |Γ2|K → J|Γ1|, |Γ2|K (for the underlying type
system) is defined and equal to q(projΓ1;x:A;Γ2

).

Proof. By induction on the length of Γ2.

Lemma 2.4.10 (semantic weakening). Assume JΓ1, x : A,Γ2K and JΓ1,Γ2K are
defined.

• projΓ1;x:A;Γ2
: JΓ1, x : A,Γ2K→ JΓ1,Γ2K is defined.

• If JΓ1,Γ2;BK is defined, then JΓ1, x : A,Γ2;BK is defined and equal to
proj∗Γ1;x:A;Γ2

JΓ1,Γ2;BK.

49



2.4. Soundness

• If JΓ1,Γ2;CK is defined, then JΓ1, x : A,Γ2;CK is defined and equal to
proj∗Γ1;x:A;Γ2

JΓ1,Γ2;CK.

Proof. By induction on the size of the content of J−K. The only non-trivial part
of the proof is the case of refinement types {v : b(V ) | p}.

Assume JΓ1,Γ2; {v : b(V ) | p}K = (J|Γ1|, |Γ2|K, JΓ1,Γ2K, π∗J|Γ1|,|Γ2|KJΓ1,Γ2K ∧
J|Γ1|, |Γ2|, v : b(V ) ` pK) is defined. By induction hypothesis, projΓ1;x:A;Γ2

:
JΓ1, x : A,Γ2K→ JΓ1,Γ2K is defined. By the semantic weakening lemma for the
underlying type system and logical formulas, we also have

J|Γ1|, x : |A|, |Γ2|; b(V )K = proj∗|Γ1|;x:|A|;|Γ2|J|Γ1|, |Γ2|; b(V )K

J|Γ1|, x : |A|, |Γ2|, v : b(V ) ` pK = proj∗|Γ1|;x:|A|;|Γ2|J|Γ1|, |Γ2|, v : b(V ) ` pK.

Therefore, JΓ1, x : A,Γ2; {v : b(V ) | p}K is defined. The equation

JΓ1, x : A,Γ2; {v : b(V ) | p}K = proj∗Γ1;x:A;Γ2
JΓ1,Γ2; {v : b(V ) | p}K

follows by Lemma 2.4.9.

Definition 2.4.11. If JΓ1, x : A,Γ2K, JΓ1,Γ2[V/x]K and subst|Γ1|;x:|A|;|Γ2|;V are
defined and JΓ1,Γ2[V/x]K = subst∗|Γ1|;x:|A|;|Γ2|;V JΓ1, x : A,Γ2K, then we define
substΓ1;x:A;Γ2;V : JΓ1,Γ2[V/x]K→ JΓ1, x : A,Γ2K by

substΓ1;x:A;Γ2;V := subst|Γ1|;x:|A|;|Γ2|;V (JΓ1, x : A,Γ2K).

Lemma 2.4.12 (semantic substitution). Assume JΓ1;AK and J|Γ1|;V K : 1J|Γ1|K→
J|Γ1|; |A|K are defined, and there exists a lifting 1JΓ1K→ JΓ1;AK above J|Γ1|;V K.

• If JΓ1, x : A,Γ2K is defined, then JΓ1,Γ2[V/x]K is defined and equal to
subst∗|Γ1|;x:|A|;|Γ2|;V JΓ1, x : A,Γ2K, that is, substΓ1;x:A;Γ2;V is defined.

• If JΓ1, x : A,Γ2;BK is defined, then JΓ1,Γ2[V/x];B[V/x]K is defined and
equal to subst∗Γ1;x:A;Γ2;V JΓ1, x : A,Γ2;BK.

• If JΓ1, x : A,Γ2;CK is defined, then JΓ1,Γ2[V/x];C[V/x]K is defined and
equal to subst∗Γ1;x:A;Γ2;V JΓ1, x : A,Γ2;CK.

Proof. By induction on the size of the content of J−K.
Assume JΓ1, x : A,Γ2K is defined and Γ2 = �. Obviously JΓ1K is defined.

Since J|Γ1|;V K has a lifting 1JΓ1K → JΓ1;AK, subst|Γ1|;x:|A|;�;V = sJ|Γ1|;V K has
a lifting JΓ1K→ JΓ1, x : AK. Therefore, we have

JΓ1K ≤ (sJ|Γ1|;V K)∗JΓ1, x : AK ≤ (sJ|Γ1|;V K)∗π∗JΓ1;AKJΓ1K = JΓ1K.

The case for refinement types {v : b(V ) | p} follows from induction hypoth-
esis and the semantic substitution for the underlying type system and logical
formulas.

Other cases are easy. Note that the following square is a pullback because
subst is Cartesian and the image of the square by q : P→ B is a pullback.

JΓ1,Γ2[V/x], y : B[V/x]K JΓ1, x : A,Γ2, y : BK

JΓ1,Γ2[V/x]K JΓ1, x : A,Γ2K

subst

π π

subst

50



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

Lemma 2.4.13 (semantic subsumption). Let Γ1 and Γ2 be contexts such that
` |Γ1| = |Γ2|. Assume JΓ1K and JΓ2K are defined, and JΓ1K ≤ JΓ2K in PJ|Γ1|K.

• If JΓ2;AK is defined, then JΓ1;AK is defined and equal to (JΓ1K ≤ JΓ2K)∗JΓ2;AK.

• If JΓ2;CK is defined, then JΓ1;CK is defined and equal to (JΓ1K ≤ JΓ2K)∗JΓ2;CK.

Proof. By induction.
For the case of refinement types, we use the semantic conversion for the

underlying type system and logical formulas. Other cases are easy. Note that
if JΓ1K ≤ JΓ2K holds, and JΓ1;AK and JΓ2;AK are defined, then JΓ1, x : AK ≤
JΓ2, x : AK holds because {JΓ1K ≤ JΓ2K(JΓ2;AK)} : JΓ1, x : AK → JΓ2, x : AK is
vertical.

Theorem 2.4.14 (Soundness). Assume

• Γ; v : Au | p ` q is sound in the sense of (2.8),

• JbK ∈ E{J�;AK} holds for each b : A→ Type if J�;AK is defined, and

• JcK ∈ {E | P}1(1, J�; ty(c)K) holds if J�; ty(c)K ∈ {E | P}1 is defined.

Then we have the following.

• If ` Γ, then JΓK ∈ P is defined. If Γ ` A, then JΓ;AK ∈ {E | P}JΓK is

defined. If Γ ` C, then JΓ;CK ∈ DJΓK is defined.

• If ` Γ1 <: Γ2, then JΓ1K ≤ JΓ2K in a fibre category of P.

• If Γ ` A <: B, then JΓ;AK <: JΓ;BK. If Γ ` C <: D, then U̇JΓ;CK <:
U̇JΓ;DK.

• If Γ ` V : A, then there exists a lifting JΓ;V K : 1JΓK → JΓ;AK above
J|Γ|;V K along u : {E | P} → E. If Γ ` M : C, then there exists a lifting
JΓ;MK : 1JΓK→ UJΓ;CK above J|Γ|;MK along u : {E | P} → E.

Proof. By induction on type derivation. We can basically construct a lifting
of term interpretations in the same way as the interpretation in the underlying
type system. Most cases are easy or a straightforward extension of the proof for
the underlying type system. Non-trivial cases are the selfification and subtyping
rule for computational Π-types.

Selfification. For selfification, assume JΓ; {v : b(V ) | p}K is defined and let
(X,P,Q) = JΓ; {v : b(V ) | p}K. Then, we have

1JΓ, x : {v : b(V ) | p}K = (1{X}, Q, π∗1{X}Q)

JΓ, x : {v : b(V ) | p}; {v : b(V ) | x = v}K
= (π∗XX,Q, π

∗
π∗XX

Q ∧ h∗Eq(>{π∗π∗XXπ
∗
XX}))

where h = s(π∗J|Γ|, x : b(V ), v : b(V ); vK) ◦ s(J|Γ|, x : b(V ), v : b(V );xK). We
prove that J|Γ|, x : b(V );xK : 1{X} → π∗XX has a lifting 1JΓ, x : {v : b(V ) |
p}K→ JΓ, x : {v : b(V ) | p}; {v : b(V ) | x = v}K. It suffices to prove

π∗1{X}Q ≤ {J|Γ|, x : b(V );xK}∗(π∗π∗XXQ ∧ h
∗Eq(>{π∗π∗XXπ

∗
XX})).

51



2.4. Soundness

Since ππ∗XX ◦ {J|Γ|, x : b(V );xK} = π1{X}, we can further simplify this to

π∗1{X}Q ≤ {J|Γ|, x : b(V );xK}∗h∗Eq(>{π∗π∗XXπ
∗
XX}).

First note the following equation.

h ◦ δX = s(π∗J|Γ|, x : b(V ), v : b(V ); vK) ◦ s(J|Γ|, x : b(V ), v : b(V );xK) ◦ δX
= s(π∗J|Γ|, x : b(V ), v : b(V ); vK) ◦ {δX(. . .)} ◦ s(δ∗Xπ∗J|Γ|, x : b(V );xK)
= s(π∗J|Γ|, x : b(V ), v : b(V ); vK) ◦ δ ◦ δ
= {δ(. . .)} ◦ s(δ∗π∗J|Γ|, x : b(V ), v : b(V ); vK) ◦ δ
= δ ◦ δ ◦ δ

So, we get the following inequality by considering a mate of adjunction Eq a δ∗.

h∗Eq(>{π∗π∗XXπ
∗
XX}) ≥ Eq((δ ◦ δ)∗>{π∗π∗XXπ

∗
XX}) = Eq(>{X})

We also have π∗1{X}Q ≤ {J|Γ|, x : b(V );xK}∗Eq(Q) by the following composite
of morphisms.

π∗1{X}Q

π∗1{X}δ
∗
XEq(Q)

δ∗XEq(Q)

(η
1a{−}
{X} )∗{J|Γ|, x : b(V );xK}∗Eq(Q)

{J|Γ|, x : b(V );xK}∗Eq(Q)

π∗1{X}η
Eqaδ∗

π1{X}(δ
∗
XEq(Q))

η
1a{−}
{X} (...)

Note that η
1a{−}
{X} is isomorphic and π1{X} is the inverse of η

1a{−}
{X} , so this

composite is vertical.

Therefore, we have the following inequality.

π∗1{X}Q ≤ {J|Γ|, x : b(V );xK}∗Eq(Q)

≤ {J|Γ|, x : b(V );xK}∗Eq(>{X})
≤ {J|Γ|, x : b(V );xK}∗h∗Eq(>{π∗π∗XXπ

∗
XX})

Subtyping for computational Π-types. For the subtyping rule of compu-
tational Π-types, consider the following composite.

52



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

U̇
∏

JΓ;A1KJΓ, x : A1;C1K

∏
JΓ;A1K U̇JΓ, x : A1;C1K

∏
JΓ;A2K π

∗
JΓ;A2K

∏
JΓ;A1K U̇JΓ, x : A1;C1K

∏
JΓ;A2K(JΓ;A2K <: JΓ;A1K)∗π∗JΓ;A1K

∏
JΓ;A1K U̇JΓ, x : A1;C1K

∏
JΓ;A2K(JΓ;A2K <: JΓ;A1K)∗U̇JΓ, x : A1;C1K

∏
JΓ;A2K U̇(JΓ;A2K <: JΓ;A1K)∗JΓ, x : A1;C1K

∏
JΓ;A2K U̇JΓ, x : A2;C1K

∏
JΓ;A2K U̇JΓ, x : A2;C2K

U̇
∏

JΓ;A2KJΓ, x : A2;C2K

ζJΓ1;AK

η

∏
JΓ;A2K(JΓ;A2K<:JΓ;A1K)∗ε

∏
JΓ;A2K(U̇JΓ,x:A2;C1K<:U̇JΓ,x:A2;C2K)

ζ−1
JΓ2;AK

Note that the image of the composite by u : {E | P} → E is an identity, and
both domain and codomain of the composite are in {E | P}JΓK. Therefore this

composite is the subtyping U̇
∏

JΓ;A1KJΓ, x : A1;C1K <: U̇
∏

JΓ;A2KJΓ, x : A2;C2K.

Since we have the bijection s : {E | P}P (1P, (X,P,Q)) → {f : P → Q |
π(X,P,Q) ◦ f = idP } for each (X,P,Q) ∈ {E | P}, we obtain liftings of interpre-
tations of terms along q : P→ B.

Corollary 2.4.15. If Γ ` V : A, then sJ|Γ|;V K : J|Γ|K → {J|Γ|;AK} has a
lifting sJΓ;V K : JΓK→ {JΓ;AK} along q : P→ B (and similarly for computation
terms Γ `M : C).

Corollary 2.4.16. Assume the lifting of fibred adjunction models is given
by applying the Eilenberg-Moore construction to a lifting of monads in The-
orem 2.3.3. If Γ ` M : FA, then θ ◦ sJ|Γ|;MK : J|Γ|K → T{J|Γ|;AK} has a
lifting of type JΓK→ Ṫ{JΓ;AK} along q : P→ B.

2.5 Toward Recursion in Refinement Type Sys-
tems

We consider how to deal with general recursion in dependent refinement type
systems. In [11], Ahman used a specific model of the fibration CFam(CPO)→
CPO of continuous families of ω-cpos to extend EMLTT with recursion. How-
ever, we need to identify the structure that characterizes recursion to lift recur-
sion from the underlying type system to dependent refinement type systems. So,
we consider a generalization of Conway operators [106] and prove the soundness

53



2.5. Toward Recursion in Refinement Type Systems

of the underlying and the dependent refinement type system extended with
typing rules for recursion. This extension enables us to reason about partial
correctness of general recursion.

Unfortunately, we still do not know an example of liftings of Conway oper-
ators, although (1) CFam(CPO) → CPO does have a Conway operator and
(2) the soundness of the refinement type system with recursion holds under the
existence of a lifting of Conway operators. We leave this problem for future
work.

2.5.1 Conway Operators

The notion of Conway operators for cartesian categories is defined in [106]. We
adapt the definition for comprehension categories with unit. We allow partially
defined Conway operators because we need those defined only on interpretations
of computation types.

Definition 2.5.1 (Conway operator for comprehension categories with unit).
Let p : E→ B be a comprehension category with unit and K ⊆ E be a collection
of objects. A Conway operator for the comprehension category with unit p
defined on K is a family of mappings (−)‡ : EI(X,X) → EI(1I,X) for each
X ∈ EI ∩K such that the following conditions are satisfied.

(Naturality) For each X ∈ K, f ∈ EI(X,X), and u : J → I, u∗f‡ = (u∗f)‡.

(Dinaturality) For each X,Y ∈ K, f ∈ EI(X,Y ), and g ∈ EI(Y,X), (g ◦
f)‡ = g ◦ (f ◦ g)‡.

(Diagonal property) For each X ∈ K and f ∈ E{X}(π∗XX,π∗XX), if π∗XX ∈
K, then (φ(f‡))‡ = (φ(δ∗X(φ−1(f))))‡ holds where φ : E{X}(1{X}, π∗XX)→
EI(X,X) is the isomorphism defined in Section 2.1.

Lemma 2.5.2. Let B be a cartesian category. There is a bijective correspon-
dence between the following. (1) Conway operators (−)† on the cartesian cat-
egory B. (2) Conway operators (−)‡ on the simple comprehension category
s(B)→ B→ that are defined totally on s(B).

Proof. Given a Conway operator (−)† on B, we define (−)‡ on s(B)→ B→ by

(idI , f)‡ = (idI , f
† ◦ π1) : (I, 1)→ (I,X) (2.9)

for each f ∈ s(B)I((I,X), (I,X)).
Given a Conway operator (−)‡ on s(B)→ B→, we define (−)† by

f† = f ′ ◦ 〈idI , !〉

where (idI , f
′) = (idI , f)‡ for each f : I ×X → X.

It is easy to verify that these constructions are mutually inverse. Moreover,
this is a bijection between Conway operators on B and Conway operators on
s(B)→ B because we have the following equations if we assume (2.9).

Dinaturality. For each f : I × X → Y and g : I × Y → X, we have the
following equations.

((idI , g) ◦ (idI , f))
‡

= (idI , (g ◦ 〈π1, f〉)† ◦ π1)

(idI , g) ◦ ((idI , f) ◦ (idI , g))
‡

= (idI , g ◦ 〈idI , (f ◦ 〈π1, g〉)†〉 ◦ π1)

54



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

Γ ` C Γ, x : UC `M : C

Γ ` µx : UC.M : C

Γ ` C = D Γ, x : UC `M = N : C

Γ ` µx : UC.M = µx : UD.N : C

Γ ` C Γ, x : UC `M : C

Γ `M [thunk (µx : UC.M)/x] = µx : UC.M : C

Γ ` C Γ, x : UC, y : UC `M : C

Γ ` µx : UC.µy : UC.M = µx : UC.M [x/y] : C

Figure 2.4: Typing rules for general recursion.

Naturality. For each f : I × X → X and u : J → I, we have the following
equations.

u∗(idI , f)‡ = (idI , f
† ◦ u ◦ π1)

(u∗(idI , f))‡ = (idI , (f ◦ (u× idX))† ◦ π1)

Diagonal property. For each f : (I ×X)×X → X, we have

(φ((idI×X , f)‡))‡ = (idI , (f
†)† ◦ π1)

(φ(δ∗(I,X)(φ
−1(f))))‡ = (idI , (f ◦ (idI ×∆X))† ◦ π1)

where ∆X : X → X ×X is the diagonal morphism in B.

Example 2.5.3. Let K ⊆ CFam(CPO) be a collection of objects defined by
K = {(I,X) ∈ CFam(CPO) | for each i ∈ I, Xi has a least element}. For
each (I,X) ∈ K and vertical morphism f = (idI , (fi)i∈I) : (I,X) → (I,X),
we define f‡ = (idI , (∗ 7→ lfpfi)i∈I) : (I, 1) → (I,X). Then (−)‡ is a Conway
operator, which is implicitly used in [11].

2.5.2 Recursion in the Underlying Type System

Syntax. We add recursion µx : UC.M to the syntax of computation terms.
We also add typing rules in Fig. 2.4.

Semantics. Assume we have a fibred adjunction model F a U : r → p where
p : E → B and r : C → B. We need a Conway operator defined on objects in
{JΓ;UCK | Γ ` C} ⊆ E. However, here is a circular definition because JΓ;UCK
may contain terms of the form µx : UD.M , whose interpretations are defined
by the Conway operator. So, we use a slightly stronger condition.

Definition 2.5.4. A Conway operator defined on computation types is a Con-
way operator defined on K ⊆ E such that K satisfies the following conditions.
(1) UFX ∈ K holds for each X ∈ E. (2)

∏
X Y ∈ K holds for each X ∈ E and

Y ∈ K ∩ E{X}. (3) For each X ∈ K and Y ∈ E, X ∼= Y implies Y ∈ K.

Given a Conway operator defined on computation types, we interpret µx :
UC.M by JΓ;µx : UC.MK = (φ(JΓ, x : UC;MK))‡ : 1JΓK→ UJΓ;CK.

55



2.6. Related Work

Proposition 2.5.5. Soundness (Proposition 2.4.3) holds for the underlying
type system extended with general recursion.

Proof. By induction. We can prove that the given Conway operator is defined
on {JΓ;UCK | Γ ` C} ⊆ E by [9, Proposition 4.1.14].

2.5.3 Recursion in Refinement Type System

Syntax. We add the typing rule for Γ ` µx:UC.M : C in Fig. 2.4 to the
refinement type system. Here, recall that we remove definitional equalities when
we consider the refinement type system.

Semantics. We consider liftings of Conway operators to interpret recursion
in the refinement type system.

Definition 2.5.6. Let p : E → B and q : D → A be comprehension categories
with unit, (u, v) : p→ q be a morphism of comprehension categories with unit.
Assume q has a Conway operator (−)‡ defined on K ⊆ D. A lifting of the
Conway operator (−)‡ along (u, v) is a Conway operator (−)\ for p defined on
L ⊆ E such that uL ⊆ K and u(f \) = (uf)‡ for each f ∈ EI(X,X) where
X ∈ L.

Lemma 2.5.7. Let (u, v) be a morphism of CCompCs defined in Theorem 2.2.10.
Assume p : E→ B has a Conway operator (−)‡ defined onK ⊆ E. The CCompC
{E | P} → P has a lifting of the Conway operator defined on L ⊆ {E | P} if
uL ⊆ K and for each (X,P,Q) ∈ L and f ∈ {E | P}P ((X,P,Q), (X,P,Q)),
{f‡} has a lifting π∗1pXP → Q along q : P→ B.

Proof. Let (f, idP , h) : (X,P,Q) → (X,P,Q) be a morphism in {E | P} where
(X,P,Q) ∈ L. We define a Conway operator by (f, idP , h)\ = (f‡, idP , h

′) :
(1pX,P, π∗1pXP )→ (X,P,Q) where h′ is a lifting of {f‡}.

We assume that a lifting of fibred adjunction models (2.7) together with a
lifting of Conway operators defined on computation types is given.

Theorem 2.5.8. Soundness (Theorem 2.4.14) holds for the refinement type
system extended with general recursion.

Consider the fibration CFam(CPO) → CPO for the underlying type sys-
tem with recursion. To support recursion in our refinement type system, a
natural choice of a fibration for predicate logic is the fibration of admissible
subsets Adm(CPO)→ CPO because the least fixed point of an ω-continuous
function f : X → X is given by lfpf =

∨
n f

n(⊥). However, we cannot apply
Theorem 2.2.10 because Adm(CPO) → CPO is not a fibred ccc [49, §4.3.2].
Specifically, it is not clear whether this combination admits products. We be-
lieve that our approach is quite natural but leave giving concrete examples of
liftings of Conway operators for future work.

2.6 Related Work

Dependent refinement types. Historically, there are two kinds of refine-
ment types. One is datasort refinement types [41], which are subsets of un-
derlying types but not necessarily dependent. The other is index refinement

56



Chapter 2. A Categorical Construction of Dependent Refinement Type
Systems

types [126]. A typical example of index refinement types is a type of lists in-
dexed by natural numbers that represent the length of lists. Nowadays, the word
“refinement types” includes datasort and index refinement types, and moreover,
mixtures of them.

Among a wide variety of the meaning of refinement types, we focus on types
equipped with predicates that may depend on other terms [39, 97], which we
call dependent refinement types or just refinement types. Dependent refinement
types are widely studied [14,67,76,116], and implemented in, e.g., F? [110,111]
and LiquidHaskell [94,124,125]. However, most studies focus on decidable type
systems, and only a few consider categorical semantics.

We expect that some of the existing refinement type systems are combined
with effect systems. For example, a dependent refinement type system for non-
determinism and partial/total correctness proposed in [116] contains types for
computations indexed by quantifiers Q1Q2 where Q1, Q2 ∈ {∀,∃}. Here, Q1

represents may/must nondeterminism, and Q2 represents total/partial correct-
ness. It has been shown that Q1Q2 corresponds to four cartesian liftings of the
monad P+((−) + 1) [8, 66]. We conjecture that these liftings are connected by
monad morphisms and hence yield a lattice-graded monad. Another example
is a relational refinement type system for differential privacy [14]. Their sys-
tem seems to use a graded lifting of the distribution monad where the lifting
is graded by privacy parameters, as pointed out in [101]. We leave for future
work combining our refinement type system with effect systems based on graded
monads [42,65,82].

Categorical semantics. Our interpretation of refinement type systems is
based on a morphism of CCompCs, which is a similar strategy to [83]. The
difference is that our thesis focuses on dependent refinement types and makes
the role of predicate logic explicit by giving a semantic construction of refinement
type systems from given underlying type systems and predicate logic.

Combining dependent types and computational effects is discussed in [9–11].
Although their aim is not at refinement types, their system is a basis for the
design and semantics of our refinement type system with computational effects.

Semantics for types of the form {v : Au | p} are characterized categorically
as right adjoints of terminal object functors in [53, Chapter 11]. Such types are
called subset types there. They consider the situation where a given CCompC
p : E → B is already rich enough to interpret {v : Au | p}, and do not aim to
interpret refinement type systems by liftings of CCompCs. Moreover, we cannot
directly use the interpretations in [53] for our CCompC {E | P} → P because
we are not given a fibration for predicate logic whose base category is P.

2.7 Conclusion and Future Work

We provided a general construction of liftings of CCompCs from combinations
of CCompCs and posetal fibrations satisfying certain conditions. This can be
seen as a semantic counterpart of constructing dependent refinement type sys-
tems from underlying type systems and predicate logic. We identified sufficient
conditions for several structures in underlying type systems (e.g. products, co-
products, fibred coproducts, fibred monads, and Conway operators) to lift to

57



2.7. Conclusion and Future Work

dependent refinement type systems. We proved the soundness of a dependent re-
finement type system with computational effects with respect to interpretations
in CCompCs obtained from the general construction.

We aim to extend our dependent refinement type system by combining effect
systems based on graded monads [42, 65, 82]. We hope that this extension will
give us a more expressive framework that subsumes, for example, dependent
refinement type systems in [14, 116]. Another direction is to define interpreta-
tions of {v : Au | p} in the style of subset types in [53, Chapter 11]. Lastly, we
are interested in finding more examples of possible combinations of underlying
type systems and predicate logic (especially for recursion in dependent refine-
ment type systems but not limited to this) so that we can find a new practical
application of this chapter.

58



Chapter 3

A Program Logic for Effect
Handlers

In this chapter, we provide a compositional program logic for effect handlers
based on operation-wise liftings of Eilenberg-Moore algebras.

Workflow of verification. The usage of our program logic is illustrated as
follows (see Table 3.1).

1. Define a set of operations and equations. We define operations that cause
computational effects and equations between terms. We get a strong
monad T on Set that represents the computational effects by the cor-
respondence between algebraic presentations and monads [90].

2. Write a program using algebraic operations and effect handlers. We can
define implementations of algebraic operations as an effect handler [92].

3. Define a set of truth values. We define a poset Ω as a set of truth values.
For example, a classical choice of Ω is two-element boolean algebra {⊥,>}.
For quantitative property like expectation of probabilistic programs, we
can also use [0,∞] as Ω. The poset Ω induces a fibration dom : Set/Ω→
Set [8] where each object in Set/Ω represents an Ω-valued predicate P :
X → Ω.

4. Define a monotone weakest precondition transformer for each operation.
This induces a monotone Eilenberg-Moore T -algebra o : TΩ → Ω (see
Section 3.2) and further induces a lifting Ṫ of the monad T . This lifting
gives a mapping from a predicate P : X → Ω on values to a predicate
ṪP : TX → Ω on computations [8].

5. Provide a specification and apply our program logic (Section 3.6).

3.1 Preliminaries

We review notions required in this chapter and fix notations. For fibrations, see
also 2.1.1.

59



3.1. Preliminaries

Table 3.1: Ingredients for our program logic for effect handlers and correspond-
ing notions in categorical semantics.

For programmers For category theorists Details
operations and equations monad T [89–91]

effect handlers T -algebra [92]
truth values for specification pointwise ordered object Ω [8]

monotone weakest
precondition transformer

for each operation
monotone T -algebra on Ω §3.2

correctness of an effect handler
lifting of a T -algebra

along dom : Set/Ω→ Set
§3.3-3.6

Given a set X, we sometimes identify an element x ∈ X with a morphism
in Set(1, X) ∼= X. We use λx.f to denote a function in Set that takes x as an
argument. This notation is the same as the lambda abstraction in the language
we consider, but they can be distinguished by the context.

3.1.1 Ordered Object and Lax Slice Category

Let C be a category. In this chapter, we focus on a fibration dom : C/Ω → C
where Ω is a pointwise ordered object defined below. Note that when we discuss
interpretations of effect handlers and their liftings in Section 3.6, we focus on
the case of C = Set, but we keep C as abstract as possible in the other parts of
this chapter.

Definition 3.1.1 (ordered object [8, Definition 4.1]). An ordered object is an
object Ω ∈ C together with a partial order ≤X on C(X,Ω) for each X ∈ C such
that P ≤Y Q implies P ◦ f ≤X Q ◦ f for each f : X → Y and P,Q : Y → Ω.

We often omit the subscript X of ≤X when it is clear from the context.

Definition 3.1.2 (lax slice category [8]). Given an ordered object Ω, the lax
slice category C/Ω is a category where

• an object is a morphism P : X → Ω in C for some X, and

• a morphism from P : X → Ω to Q : Y → Ω is a morphism f : X → Y in
C such that P ≤X Q ◦ f .

We also define the domain functor dom : C/Ω → C by dom P = X and
dom f = f . It is known that the domain functor dom : C/Ω → C is a posetal
fibration.

The intuition of the lax slice category is as follows. An object P ∈ (C/Ω)X =
C(X,Ω) represents an Ω-valued predicate on X. A morphism in C/Ω is a
morphism in C that preserves predicates.

One possible way to define an ordered object is to define a partial order to
C(1,Ω) and extend them to the poinwise order in C(X,Ω) for each X ∈ C.

60



Chapter 3. A Program Logic for Effect Handlers

Lemma 3.1.3. Assume that C is a well-pointed category with a terminal object
1, i.e., C(1,−) is faithful. If (C(1,Ω),≤1) is a partially ordered set, then the
relation P ≤X Q on C(X,Ω) defined by

∀x : 1→ X,P ◦ x ≤1 Q ◦ x (3.1)

is an ordered object.

Proof. It is easy to check that ≤X is reflexive and transitive. The anti-symmetry
follows from that of ≤1 and well-pointedness of C. For each f : X → Y and
P ≤Y Q, it is easy to prove P ◦ f ≤X Q ◦ f .

Based on Lemma 3.1.3, we carve out the specific class of ordered objects.

Definition 3.1.4 (pointwise ordered object). We say an ordered object Ω is
pointwise if C is well-pointed and (3.1) implies P ≤X Q for any P,Q : X → Ω.

Note that pointwise ordered objects are a strict subclass of ordered objects:
for any ordered object Ω, P ≤X Q implies (3.1), but the converse does not
always hold.

Example 3.1.5 (an ordered object that is not pointwise). Let C = Set and
Ω = 2 = {⊥,>}. We define a poset (Set(X, 2),≤X) by

≤X := {(λx.⊥, λx.>)} ∪ {(f, f) | f : X → 2}

for each X ∈ Set. Then, (2, {≤X}X) is an ordered object but not pointwise.

3.1.2 Monad Lifting

Given a monad T on a category C, an Eilenberg-Moore T -algebra, or T -algebra
is an object X ∈ C together with a morphism α : TX → X in C such that
α ◦ ηX = idX (the unit law) and α ◦ Tα = α ◦ µ (the associative law) hold.

Given a lifting of a monad T (Definition 2.3.1), we can define the weak-
est precondition transformer and the Hoare triple for an effectful computation
whose computational effect is interpreted by T .

Definition 3.1.6 (weakest precondition transformer and Hoare triple [8, Def-
inition 3.3]). Let p : E → B be a posetal fibration and Ṫ be a lifting of a
monad T on B. For each f : X → TY , the weakest precondition transformer
wp[f ] : EY → EX is defined by wp[f ](P ) := f∗ṪP , and the Hoare triple
{P}f{Q} is defined by {P}f{Q} := (P ≤ wp[f ](Q)).

When we consider dom : C/Ω→ C, the following fact is known.

Definition 3.1.7 (monotone T -algebra [8, Definition 4.3]). A T -algebra o :
TΩ→ Ω is monotone if i ≤X i′ implies o ◦ Ti ≤TX o ◦ Ti′.

Proposition 3.1.8 ( [8, Corollary 4.5]). There is a bijective correspondence
between a monotone T -algebra o : TΩ → Ω and a Cartesian lifting of T along
dom : C/Ω → C. This bijection is given by o 7→ To where Tof := o ◦ Tf for
each f ∈ C/Ω.

61



3.1. Preliminaries

3.1.3 Algebraic Theory

Following [92], we define several concepts of algebraic theories and their models
in Set.

Signature types A ,B are defined by

A ,B := b | 1 | A ×B |
∑
l∈L

Al

where b ranges over base types and L ranges over finite sets of labels. A signature
Σ is a set of typed operation symbol (op : A _ B) ∈ Σ.

An effect theory T is a set of equations of the form Γ | Z ` T1 = T2 where
Γ = x1 : A1, . . . , xn : An is a context of value variables, Z = z1 : B1, . . . , zm :
Bm is a context of template variables (z : B ∈ Z means that z takes a term
of type B as an argument), and T1, T2 are well-formed templates relative to Γ
and Z. Here, templates T are defined by

T := z(V ) |match V with 〈x, y〉 7→ T

|match V with{l(xl) 7→ Tl}l∈L | opV (x:B.T )

where V ranges over value terms defined later. The definition of well-formedness
is standard, so we omit it (see [92]).

Example 3.1.9 (state with one location [92]). We consider global state that
stores one value of type int. Let Σ = {set : int _ 1, get : 1 _ int}. The effect
theory for the global state is given as follows.

� | z : int× int ` get(x.get(x′.z(x, x′))) = get(x.z(x, x))

x : int | z : int ` setx(get(x′.z(x′))) = setx(z(x))

� | z : 1 ` get(x.setx(z)) = z

x : int, x′ : int | z : 1 ` setx(setx′(z)) = setx′(z)

Suppose that an interpretation JbK ∈ Set is given for each base type b.
The interpretation J−K can be extended to signature types using corresponding
operations in Set.

A model of T is a pair (X, {opX}op∈Σ) where X is a set and opX : JA K ×
XJBK → X is an interpretation of each :A _ B such that {opX}op∈Σ satisfies
all the equations in T . A morphism f : (X, {opX}op∈Σ) → (Y, {opY }op∈Σ) of
models is a morphism f : X → Y such that opY ◦ (JA K × f JBK) = f ◦ opX

holds for each :A _ B. We denote the category of models of T by ModT .

Free model functor We have a left adjoint F to the forgetful functor U :
ModT → Set by [92, Prop. 4.3], which is defined by FX := TermΣX/∼ where
TermΣX is defined inductively by

• if x ∈ X, then x ∈ TermΣX

• if op : A _ B, a ∈ JA K, and t ∈ (TermΣX)JBK, then opa(t) ∈ TermΣX

and ∼ is the equivalence relation induced by T (see [92] for details). For simplic-
ity, we usually identify an equivalence class [t]∼ ∈ FX with its representative
t.

62



Chapter 3. A Program Logic for Effect Handlers

Note that the counit εFaU of the free-forgetful adjunction F a U : ModT →
Set is given as follows:

εFaU(X,{opX})([t]∼) = ε′(t)

where ε′ : TermΣX → X is defined inductively by

ε′(x) = x if x ∈ X
ε′(opa(t)) = opX(a, ε′ ◦ t) ∀op : A _ B, a ∈ JA K, t ∈ (TermΣX)JBK.

Using the free-forgetful adjunction F a U : ModT → Set, we obtain a
monad T := UF on Set from the effect theory T .

Example 3.1.10. The effect theory in Example 3.1.9 corresponds to the global
state monad T = (−× Z)Z.

Comparison functor KT Any model in ModT induces an Eilenberg-Moore
T -algebra via the comparison functor KT : ModT → SetT defined by

KT (X, {opX}) = UεFaU(X,{opX}) : TX → X.

ModT SetT

Set

U

KT

UTF

FT

a a

3.1.4 Syntax and Semantics of Effect Handlers

We review syntax and semantics of the language with effect handlers in [92].

Syntax. We define a functional programming language with effect handlers
following [92]. We focus on only some parts of the language in [92] relevant to
effect handlers.

The language is based on the call-by-push-value [79]. We have value types
A,B, computation types C, value contexts Γ, and continuation contexts K.

A,B := b | 1 | A×B |
∑
l∈L

Al | UC

C := FA | A→ C |
∏
l∈L

Cl

Γ := � | Γ, x : A

K = � | K, k : A → C

Here, note that value types subsume signature types.
Let Σ = {op1 : A1 _ B1, . . . , opn : An _ Bn} be a signature. Value terms

V , computation terms M,N , and effect handlers H are defined as follows.

V := x | thunk M | . . .
M,N := M handled with H to x:A in N | op(V ; y:B.M) | return V |

M to x : A in N | force V | k(V ) |M V | λx : A.M | . . .
H := {op1(x1; k1) 7→Mop1

, . . . , opn(xn; kn) 7→Mopn}

63



3.1. Preliminaries

Γ, x : A | K, k : B → C `Mop : C for each op : A _ B

Γ | K ` {op(x; k) 7→Mop} : C handler

Γ | K `M : FA Γ | K ` H : C handler Γ, x : A | K ` N : C

Γ | K `M handled with H to x:A in N : C

Figure 3.1: Typing rules for effect handlers and handling construct.

Here, x ranges over value variables and k ranges over continuation variables.
An effect handler is sometimes denoted by {op(x; k) 7→Mop}op∈Σ.

We have three kinds of typing judgements for value terms, computation
terms, and effect handlers.

Γ | K ` V : A Γ | K `M : C Γ | K ` H : C handler

Typing rules are standard [92], and we listed the typing rules for effect handlers
and handling constructs in Fig. 3.1.

Example 3.1.11 (Continuation of Example 3.1.9). Consider the signature Σ =
{set : int _ 1, get : 1 _ int}. We can define an effect handler for these
operations as follows.

H := {set(x; k) 7→ λs : int.k () x, get(x; k) 7→ λs : int.k s s}

The type of this effect handler is � | � ` H : (int→ F int) handler.

Semantics. The semantics of the language is also based on [92]. Most of the
semantics is defined as the standard CBPV semantics [79]. Here, the adjunction
F a U : ModT → Set is used as an adjunction model, and value types and
computation types are interpreted by the corresponding structure of Set and
ModT , respectively.

JAK ∈ Set JCK ∈ModT

Jx1 : A1, . . . , xn : AnK := JA1K× · · · × JAnK

Jk1 : A1 → C1, . . . , kn : An → CnK := (UJC1K)
JA1K × · · · × (UJCnK)

JAnK

JΓ | K ` V : AK : JΓK× JKK→ JAK JΓ | K `M : CK : JΓK× JKK→ UJCK

We often write JΓ | K ` V : AK and JΓ | K ` M : CK as JV K and JMK,
respectively.

The most essential part of the semantics is that an effect handler Γ | K ` H :
C handler is interpreted as a family of models of T (or equivalently, Eilenberg-
Moore algebras) indexed by the context JΓK× JKK.

For theoretical clarity, we use an equivalent but slightly different formulation
of the semantics of effect handlers. We consider the simple fibration sC : s(C)→
C and formulate a family of Eilenberg-Moore algebras indexed by the context as
an Eilenberg-Moore algebra of a fibred monad. This formulation is an instance
of [10] that uses the simple fibration and the split fibred monad induced by a
strong monad.

64



Chapter 3. A Program Logic for Effect Handlers

Lemma 3.1.12 ( [53, Exercise 2.6.10 (ii)]). Let C be a category with finite
products. There is a one-to-one correspondence between strong monads on C
and split fibred monads on the simple fibration sC : s(C)→ C.

Proof. Given a strong monad, we define a split fibred monad by T ′(I,X) :=
(I, TX). This gives the one-to-one correspondence.

Consider the Eilenberg-Moore fibration (sC)T
′

: (s(C))T
′ → C of T ′. By [53,

Exercise 1.7.9 (ii)], a T ′-algebra in (s(C))T
′

is a vertical morphism (idI , α) :
T ′(I,X)→ (I,X) in s(C) that satisfies (idI , α) ◦ η = id(I,X) and (idI , α) ◦ µ =
(idI , α) ◦ T ′(idI , α). By focusing on the second component α, a T ′-algebra over
I can be rephrased as a morphism α : I × TX → X that satisfies the following
condition.

Definition 3.1.13 (simply fibred T -algebra). Let T be a strong monad. A
simply fibred T -algebra on X over I is a morphism α : I × TX → X in C that
makes the following diagram commute.

I ×X I × TX

X

idI×η

π2 α

I × T 2X I × TX

I × TX X

〈π1,Tα◦st〉

idI×µ α

α

Lemma 3.1.14. If T is a monad on Set, then α : I×TX → X is a simply fibred
T -algebra if and only if α(i,−) : TX → X is a T -algebra for each i ∈ I.

Next, we extend the comparison functor KT : ModT → SetT as follows.
A simply fibred model of T over I ∈ Set is a set X together with a family

of functions {opX : I × JA K × XJBK → X}op∈Σ such that {opX(i,−,−) :
JA K×XJBK → X}op∈Σ is a model of T for each i ∈ I.

Given a simply fibred model (X, {op}op∈Σ), we define a fibred T -algebra
KT
I ((X, {opX}op∈Σ)) by

KT
I ((X, {opX}op∈Σ))(i,−) := KT ((X, {opX(i,−,−)}op∈Σ))

where KT is the comparison functor.
Given an effect handler {op(x; k) 7→Mop}op∈Σ, the family of interpretations

of Mop define a simply fibred model (if they satisfy all equations in T ), and thus
define a simply fibred T -algebra. We use this as the interpretation J{op(x; k) 7→
Mop}op∈ΣK of the effect handler.

Definition 3.1.15. For Γ | K ` op(V ; y:B.M) : C where op : A _ B, its
interpretation is defined by

JV K : JΓK× JKK→ JA K JMK : JΓ, y : BK× JKK→ UJCK
m = λ(γ, κ).JMK((γ,−), κ) : JΓK× JKK→ (UJCK)JBK

Jop(V ; y:B.M)K := opJCK ◦ 〈JV K,m〉

where opJCK : JA K × (UJCK)JBK → UJCK is the interpretation of op : A _ B
in JCK ∈ModT . This definition means that if functions in the upper part are
defined, then the function in the lower part is defined.

65



3.2. Weakest Preconditions for Algebraic Operations

For an effect handler Γ | K ` {op(x; k) 7→ Mop}op∈Σ : C handler, its
interpretation is a simply fibred T -algebra J{op(x; k) 7→Mop}K : (JΓK× JKK)×
TUJCK→ UJCK defined as follows.

JMopK : (JΓK× JA K)× (JKK× UJB → CK)→ UJCK for each op : A _ B
mop = λ((γ, κ), a, k).JMopK((γ, a), (κ, k))

: (JΓK× JKK)× JA K× UJB → CK→ UJCK
(UJCK, {mop}op∈Σ) is a simply fibred model of T

J{op(x; k) 7→Mop}K := KT
JΓK×JKK(UJCK, {mop}op∈Σ)

Here, note that we have UJB → CK = (UJCK)JBK in any adjunction model.
Note also that we use mop to change the order of arguments of JMopK.

For a handling construct Γ | K `M handled with H to x:A in N : C, its
interpretation is defined as follows.

JMK : JΓK× JKK→ UF JAK
JHK : (JΓK× JKK)× TUJCK→ UJCK is a simply fibred T -algebra

JNK : (JΓK× JAK)× JKK→ UJCK
n = λ((γ, κ), a).JNK((γ, a), κ) : (JΓK× JKK)× JAK→ UJCK

JM handled with H to x:A in NK := JHK ◦ 〈π1, UFn ◦ st〉 ◦ 〈idJΓK, JMK〉

Example 3.1.16 (Continuation of Example 3.1.11). The effect handler H in
Example 3.1.11 is interpreted as the simply fibred T -algebra on U(FZ)Z

JHK = KT
1 (U(FZ)Z, {setJHK, getJHK}) : 1× TU(FZ)Z → U(FZ)Z

induced by the following interpretations of operations.

getJHK = Jx : 1 | k : int→ (int→ F int) ` λs.k s sK
: 1× 1× (U(FZ)Z)Z → U(FZ)Z

setJHK = Jx : int | k : 1→ (int→ F int) ` λs.k () xK

: 1× Z× (U(FZ)Z)1 → U(FZ)Z

3.2 Weakest Preconditions for Algebraic Oper-
ations

In this section, we discuss the relationship between a Cartesian lifting of a
monad and monotone weakest precondition transformers of each operation op :
A _ B.

Let T be the monad that corresponds to the effect theory T and Ω be an
ordered object in Set. By Proposition 3.1.8, a Cartesian lifting of T along
dom : Set/Ω → Set corresponds to a monotone T -algebra o : TΩ → Ω. We
consider defining a monotone T -algebra o : TΩ→ Ω by giving an interpretation
opΩ : JA K × ΩJBK → Ω of each operation op : A _ B. We show that the
monotonicity of o is equivalent to the monotonicity of opΩ : JA K× ΩJBK → Ω.

Theorem 3.2.1 (operation-wise condition for monotone T -algebra). Assume Ω
is pointwise. Let (Ω, {opΩ}op) ∈ModT be a model. The T -algebraKT (Ω, {opΩ}op)
is monotone if and only if each opΩ is monotone, that is, P ≤JBK Q implies
opΩ(−, P ) ≤JA K opΩ(−, Q) for any P,Q : JBK→ Ω.

66



Chapter 3. A Program Logic for Effect Handlers

Proof. Let o := KT (Ω, {opΩ}op). Since Ω is pointwise, the monotonicity of o is
equivalent to the condition that i ≤X i′ implies o ◦ Ti ◦ x ≤TX o ◦ Ti′ ◦ x for
any i, i′ ∈ Set(X,Ω) and x ∈ Set(1, TX).

The “if” part is proved by induction on (a representative of) x.

• If x = η ◦ x′ for some x′ ∈ Set(1, X),

o ◦ Ti ◦ x = i ◦ x′ ≤ i′ ◦ x′ = o ◦ Ti′ ◦ x.

• If x = opa(t) for some t : JBK→ TΩ, then we have

o ◦ Ti ◦ x = o ◦ opa(Ti ◦ t)
= opΩ(a, o ◦ Ti ◦ t)
≤ opΩ(a, o ◦ Ti′ ◦ t)
= o ◦ Ti′ ◦ x

by the induction hypothesis and the monotonicity of opΩ.

For the “only if” part, assume P ≤ Q. By the monotonicity of o, we have
o ◦ TP ◦ opa(η) ≤ o ◦ TQ ◦ opa(η) for each a ∈ JA K where η : JBK → T JBK.
This inequality simplifies to opΩ(a, P ) ≤ opΩ(a,Q) for each a ∈ JA K.

Moreover, we can think of opΩ : JA K×ΩJBK → Ω as the weakest precondition
transformer of the generic effect for op : A _ B.

Proposition 3.2.2 (weakest precondition transformer of generic effects). Let
genop : JA K → T JBK be the generic effect defined by genop(a) = opa(η) for

each a ∈ JA K. Let Ṫ be a Cartesian lifting induced by a monotone T -algebra
o := KT (Ω, {opΩ}). Then, we have

wp[genop](P ) = opΩ(−, P )

for each op : A _ B and P : JBK→ Ω.

Proof. By easy calculation: for each a : 1→ JA K,

o ◦ TP ◦ genop ◦ a = o ◦ TP ◦ opa(η) = opΩ(a, P ) = opΩ(−, P ) ◦ a.

Therefore, to obtain a Cartesian lifting of T along dom : Set/Ω→ Ω where Ω
is a pointwise ordered object, it suffices to provide a monotone weakest precon-
dition transformer opΩ : JA K× ΩJBK → Ω that specifies the intended behavior
of each op : A _ B.

Example 3.2.3 (Continuation of Example 3.1.16). Let T be the state monad
in Example 3.1.9 and Ω := 2Z be the pointwise ordered object where the order
in Ω is defined pointwise: for each f, g ∈ 2Z, f ≤ g ⇐⇒ ∀x ∈ Z, f(x) ≤ g(x).
We consider the following interpretations of get : 1→ int and set : int→ 1.

getΩ(x, p) = λs.p s s setΩ(x, p) = λs.p () x

These interpretations satisfy the effect theory in Example 3.1.9, and it is obvious
that these are monotonic in p. Thus, we get a Cartesian lifting of T induced
by the above interpretations. This gives the standard weakest precondition
transformers for stateful computations.

67



3.3. Operation-wise Condition for Lifting Algebras

3.3 Operation-wise Condition for Lifting Alge-
bras

Recall that the interpretation of an effect handler H is the simply fibred T -
algebra induced by interpretations of operations. To verify the effect handler
H, we need to obtain a lifting of the simply fibred T -algebra. As a program
logic for effect handlers, it is desirable to provide a (sufficient) condition of the
existence of the lifting as a condition on each operation. We aim to obtain such
an operation-wise condition.

In this section, we consider a simpler situation as a warm-up: we consider
a lifting of T -algebra (instead of a simply fibred T -algebra) and provide an
operation-wise condition. We consider liftings of simply fibred T -algebras later
in §3.5 after discussing the problem of strong monad liftings in §3.4.

Definition 3.3.1 (lifting of T -algebra). Let α : TX → X be a T -algebra in
Set and Ṫ be a monad lifting of T along dom : Set/Ω→ Set. A lifting of α is
a Ṫ -algebra α̇ : ṪP → P such that dom α̇ = α.

Since dom : Set/Ω → Set is faithful, the unit and associative law for α̇
follows from those for α.

Lemma 3.3.2. A morphism α̇ : ṪP → P in Set/Ω is a lifting of the T -algebra
α : TX → X if and only if α̇ is a morphism over α.

So, we only care about the existence of a morphism over α.

Proposition 3.3.3 (operation-wise condition for lifting T -algebra). Suppose
that we have a Cartesian lifting Ṫ induced by a monotone T -algebra o :=
KT (Ω, {opΩ}op∈Σ) on the pointwise ordered object Ω. Let (X, {opX}op∈Σ) ∈
ModT be a model and α := KT (X, {opX}op∈Σ) ∈ SetT . We have a Ṫ -algebra
on P ∈ Set(X,Ω) over α if and only if

JA K×XJBK X

JA K× ΩJBK Ω

opX

JA K×P JBK ≤ P

opΩ

(3.2)

holds for each op : A _ B in Σ.

Proof. We have a Ṫ -algebra on p over α if and only if we have the following
inequation by definition.

TX X

TΩ Ω

α

TP ≤ P

o

(3.3)

((3.3) =⇒ (3.2)): For each op : A _ B, we consider a function fop :
JA K × XJBK → TX defined by fop(a, t) := opa(η ◦ t). Then we get (3.2) by
composing fop and (3.3). Here, we have α ◦ fop = opX and o ◦ TP ◦ fop =

68



Chapter 3. A Program Logic for Effect Handlers

opΩ ◦ (JA K× P JBK) by the following calculation.

α(opa(η ◦ t)) = opX(a, α ◦ η ◦ t)
= opX(a, t)

o(TP (opa(η ◦ t))) = o(opa(TP ◦ η ◦ t))
= o(opa(η ◦ P ◦ t))
= opΩ(a, o ◦ η ◦ P ◦ t)
= opΩ(a, P ◦ t)

((3.3) ⇐= (3.2)): We prove o ◦ TP ◦ x ≤ P ◦ α ◦ x for each x : 1 → TX
by induction on (a representative of) x.

For the base case, let x = η ◦ x′ for some x′ : 1 → X. Then, we have
o ◦ TP ◦ η = P ◦ α ◦ η by the following diagram.

X TX X

Ω TΩ Ω

η

P

α

TP P
η o

Step case: if x = opa(t) for some op : A _ B, a ∈ JA K, and t ∈ (TX)JBK,
then

o(TP (opa(t))) = opΩ(a, o ◦ TP ◦ t)
≤ opΩ(a, P ◦ α ◦ t)
≤ P (opX(a, α ◦ t))
= P (α(opa(t))).

Here, we use monotonicity of opΩ and the induction hypothesis in the second
line, and we use (3.2) in the third line.

Note that (3.2) is equivalent to the existence of the following morphism over
opX .

Set/Ω λ(a, k).opΩ(a, P ◦ k) P

Set JA K×XJBK X

dom
opX

3.4 Strong Monad Lifting

The interpretation of our target language uses the strength stX,Y : X × TY →
T (X×Y ) of a strong monad T . When we consider a lifting of the interpretation
along dom : Set/Ω→ Set, we need not only a lifting Ṫ of the monad structure
of T but also a lifting of the strength. In this section, we provide a few criteria of
the existence of a lifting of the strength and show that some liftings of monads
are unfortunately not strong (i.e., have only a “partial” lifting of the strength).

69



3.4. Strong Monad Lifting

Definition 3.4.1 (strong monad lifting). Let p : E → B be a fibration such
that E and B have finite products and p strictly preserves finite products. Let
T be a strong monad on B. A monad lifting Ṫ of T is a strong monad lifting if
Ṫ is a strong monad and p maps the strength ṡt of Ṫ to the strength st of T ,
i.e., p ṡtX,Y = stpX,pY for each X,Y ∈ E.

Note that Ṫ being a strong monad lifting is a stronger condition than what
we really need for our program logic: to obtain a lifting of the interpretation of a
term M , we need only ṡtX,Y for some X,Y that are relevant to the interpretation
and pre-/postconditions ofM . The existence of a strong monad lifting makes the
situation much simpler, but we also consider a program logic that is applicable
to the case where there is only a “partial” strength of Ṫ later in this chapter.

Next, we consider strong monad liftings along the domain fibration dom :
C/Ω → C. The existence of a strong monad lifting can be reduced to the
existence of a specific morphism over the specific component stΩ,Ω : Ω× TΩ→
T (Ω× Ω).

Proposition 3.4.2 (existence of a strong monad lifting along dom : C/Ω→ C).
Assume that C is a category with finite products and T is a strong monad on
C. Assume also that dom : C/Ω → C has fibred finite products. Note that,
by [49, Cor. 3.3.6], C/Ω has finite products, which are defined by P ×̇Q :=
π∗1P ∧π∗2Q where π1 and π2 are the first and the second projection, respectively,
and dom : C/Ω→ C strictly preserves these finite products.

The Cartesian lifting Ṫ of T induced by a monotone T -algebra o : TΩ→ Ω
is strong if and only if there is a morphism ṡtidΩ,idΩ

: idΩ×̇Ṫ idΩ → Ṫ (idΩ×̇idΩ)
over stΩ,Ω : Ω× TΩ→ T (Ω× Ω).

C/Ω idΩ×̇Ṫ idΩ Ṫ (idΩ×̇idΩ)

C Ω× TΩ T (Ω× Ω)

dom

ṡtidΩ,idΩ

stΩ,Ω

(3.4)

Proof. The essence of the proof is to use the fact that Ω is a split generic
object [53, Definition 5.2.1] of dom : C/Ω→ C.

If Ṫ is strong, then we obviously have ṡtidΩ,idΩ
: idΩ×̇Ṫ idΩ → Ṫ (idΩ×̇idΩ)

(3.4).
Conversely, assume we have the lifting of (3.4). We first prove that stX,Y :

X × TY → T (X × Y ) has a lifting ṡtP,Q : P ×̇ṪQ → Ṫ (P ×̇Q) for each P,Q ∈
C/Ω. This is given by considering the following diagram.

P ×̇ṪQ Ṫ (P ×̇Q)

C/Ω idΩ×̇Ṫ idΩ Ṫ (idΩ×̇idΩ)

X × TY T (X × Y )

C Ω× TΩ T (Ω× Ω)

P×TQ(...)

ṡtP,Q

T (P×Q)(...)

dom
stX,Y

P×TQ T (P×Q)
stΩ,Ω

Here, we use the following equations.

(P × TQ)∗(idΩ×̇Ṫ idΩ) = P ∗idΩ×̇(TQ)∗Ṫ idΩ = P ×̇ṪQ
(T (P ×Q))∗Ṫ (idΩ×̇idΩ) = Ṫ (P ×Q)∗(idΩ×̇idΩ) = Ṫ (P ∗idΩ×̇Q∗idΩ) = Ṫ (P ×̇Q)

70



Chapter 3. A Program Logic for Effect Handlers

Lastly, ṡt is natural and satisfies the equations for strengths. This follows
because dom : C/Ω→ C is faithful and dom(ṡt) = st is a strength for T .

The condition (3.4) is equivalent to idΩ×̇o ≤ o ◦ T (idΩ×̇idΩ) ◦ stΩ,Ω by defi-
nition. If Ω is pointwise, then (3.4) is also equivalent to the pointwise inequality

(idΩ×̇o) ◦ 〈x, y〉 ≤ o ◦ T (idΩ×̇idΩ) ◦ stΩ,Ω ◦ 〈x, y〉

for each x : 1 → Ω and y : 1 → TΩ. By [84, Prop. 3.4], this simplifies to the
following condition.

Corollary 3.4.3. Consider the situation in Proposition 3.4.2, and assume that
Ω is pointwise. The Cartesian lifting Ṫ is a strong if and only if

x ∧ (o ◦ y) ≤ o ◦ T ((x ◦ !) ∧ idΩ) ◦ y. (3.5)

holds for each x : 1→ Ω and y : 1→ TΩ.

There are a few situations that we can easily show the inequality (3.5).
Specifically, (3.5) holds if Ω is two-valued.

Lemma 3.4.4. Assume that Ω is pointwise.

• If C(1,Ω) has a bottom element ⊥, then (3.5) holds when x = ⊥.

• If C(1,Ω) has a top element >, then (3.5) holds when x = >.

• If C(1,Ω) is isomorphic to {⊥ ≤ >} as a poset, then Ṫ is a strong monad
lifting.

Proof. • If x = ⊥ ∈ C(1,Ω), then (3.5) is ⊥ ≤ o ◦ T (⊥ ◦ !) ◦ y.

• If x = > ∈ C(1,Ω), then (3.5) is o ◦ y ≤ o ◦ y.

• Apply Corollary 3.4.3. By cases on x ∈ C(1,Ω) ∼= {⊥ ≤ >}.

Even if Ω itself is not two-valued and Ṫ is not a strong monad lifting, we may
have a lifting of stX,Y : X × TY → T (X × Y ) by taking a predicate P : X → Ω
from the class of two-valued predicates.

Definition 3.4.5 (two-valued predicate). Assume that Ω is pointwise and that
we have a morphism i : Ω2 → Ω such that (1) C(1,Ω2) ∼= {⊥,>} and (2)
C(1, i) : C(1,Ω2)→ C(1,Ω) maps ⊥ : 1→ Ω2 to the bottom element ⊥ : 1→ Ω
and > : 1→ Ω2 to the top element > : 1→ Ω. A predicate P : X → Ω is two-
valued if P : X → Ω factors through i, i.e., P = i ◦ P ′ for some P ′ : X → Ω2.

Corollary 3.4.6. If P : X → Ω is two-valued, then there is a morphism
ṡtP,Q : P ×̇ṪQ→ Ṫ (P ×̇Q) over stX,Y : X × TY → T (X × Y ).

Proof. Note that we have a morphism i×̇o → Ṫ (idΩ×̇idΩ) over st ◦ (i × idTΩ)
by Lemma 3.4.4. The morphism ṡtP,Q is defined by the following diagram.

71



3.4. Strong Monad Lifting

P ×̇ṪQ Ṫ (P ×̇Q)

i×̇o Ṫ (idΩ×̇idΩ)

X × TY T (X × Y )

Ω′ × TΩ T (Ω× Ω)

P ′×TQ(...)

ṡtP,Q

T (P×Q)(...)

stX,Y

P ′×TQ T (P×Q)
stΩ,Ω◦(i×idTΩ)

Example 3.4.7 (Ω = 2Z). If T is the state monad in Example 3.1.9 and
Ω = 2Z (see Example 3.2.3), then i : Ω2 → Ω is given by the inclusion Ω2 :=
{λs.⊥, λs.>} ⊆ Ω. That is, P : X → Ω is two-valued if and only if P (x)(s) ∈ 2
does not depend on s ∈ Z.

We can decompose the condition in Corollary 3.4.3 to obtain an operation-
wise condition.

Lemma 3.4.8 (operation-wise condition for lifting a strength). Consider the
situation in Proposition 3.4.2. Let C be Set and T be a monad induced by
an effect theory T . Assume that Ω is a pointwise ordered object and that
(Ω, {opΩ}) ∈ModT is monotone in the sense of Theorem 3.2.1. The Cartesian
lifting Ṫ induced by o := KT (Ω, {opΩ}) is a strong monad lifting of T if and
only if

x ∧ opΩ(a, y) ≤ opΩ(a, (x ◦!) ∧ y) (3.6)

holds for each op : A _ B, x : 1→ Ω, y : JBK→ Ω, and a ∈ JA K.

Proof. If we have a strong monad lifting, then we obtain (3.6) by substituting
opa(η ◦ y′) for y in (3.5) where y′ : JBK→ Ω.

For the converse, we prove (3.5) by induction on (a representative of) y :
1 → TY . For the base case where y = η ◦ y′ for some y′ : 1 → Ω, (3.5) is
x ∧ y′ ≤ x ∧ y′, which trivially holds. For the step case, let y = opa(t) for some
a ∈ JA K and t ∈ (TΩ)JBK.

x ∧ (o ◦ opa(t)) = x ∧ opΩ(a, o ◦ t)
≤ opΩ(a, (x ◦ !) ∧ (o ◦ t)) by (3.6)

≤ opΩ(a, o ◦ T ((x ◦ !) ∧ idΩ) ◦ t) by IH (see below)

= o ◦ T ((x ◦ !) ∧ idΩ) ◦ opΩ(a, t)

Note that for each b : 1→ JBK, we have by the induction hypothesis

((x ◦ !) ∧ (o ◦ t)) ◦ b = x ∧ (o ◦ t ◦ b) ≤ o ◦ T ((x ◦ !) ∧ idΩ) ◦ t ◦ b,

and thus, we have (x ◦ !) ∧ (o ◦ t) ≤ o ◦ T ((x ◦ !) ∧ idΩ) ◦ t.

The inequation (3.6) can be understood as something similar to the rule of
constancy in Hoare logic. Since opΩ is the weakest precondition transformer of
the generic effect genop by Proposition 3.2.2, the inequation (3.6) can be read
as (P ◦ !) ∧ wp[genop](Q) ≤ wp[genop]((P ◦ !) ∧ Q) for each op : A _ B,

72



Chapter 3. A Program Logic for Effect Handlers

P : 1 → Ω, and Q : JBK → Ω. By Definition 3.1.6, it is equivalent to the
following rule for Hoare triples.

constancy
{R}genop{Q}

{(P ◦ !) ∧R}genop{(P ◦ !) ∧Q}

Here, P ◦ ! represents a predicate that does not refer to neither JA K nor JBK
in this rule.

Example 3.4.9. Consider dom : Set/2 → Set where 2 = {⊥ ≤ >} is the
pointwise ordered object. Any Cartesian lifting of a monad T on Set along
dom : Set/2 → Set is a strong monad lifting by Lemma 3.4.4. This situation
includes

• two Cartesian liftings of the maybe monad that represent total and partial
correctness [8, Example 5.1],

• two Cartesian liftings of the nonempty finite powerset monad that repre-
sent may and must correctness of nondeterministic computation [8, Ex-
ample 5.2], and

• two Cartesian liftings of the finite probability distribution monad that
represent may and must correctness of probabilistic computation [8, The-
orem 5.7].

Example 3.4.10. Let T := D be the finitely supported probability distribution
monad and Ω := [0,∞]. We have a monotone T -algebra E : TΩ→ Ω defined by
the expectation operator [8, Example 6.3]. However, E does not satisfy (3.5).

The inequality (3.5) is equivalent to x ∧ Eµ ≤ E(µ ↓ x) where x ∈ [0,∞],
µ = y ∈ D[0,∞], and µ ↓ x is the “truncated” probability distribution defined
by

(µ ↓ x)(z) =


µ(z) if z < x

Σz′≥xµ(z′) if z = x

0 if z > x.

A counterexample is given by x = 1 and µ defined by µ(0) = µ(2) = 1
2 . Here, the

truncated probability distribution µ ↓ x is given by (µ ↓ x)(0) = (µ ↓ x)(1) = 1
2 .

Therefore, we have x ∧ Eµ = 1 � E(µ ↓ x) = 1
2 .

Example 3.4.11. Let T := (S × (−))S be the state monad and Ω := 2S

where S ∈ Set. We have a monotone EM T -algebra o : TΩ → Ω defined by
o(f) := λs.let (s′, p) = f s in p s′. However, o does not satisfy (3.5) if |S| ≥ 2
by the following argument.

Let s1, s2 ∈ S be states such that s1 6= s2. Let x = (λs.s = s1) ∈ 2S and
y = λs.(s2, λs

′.s′ = s2) ∈ (S × 2S)S . Then, the lhs of (3.5) is λs.s = s1 while
the rhs is λs.⊥, and we have λs.(s = s1) � λs.⊥.

3.5 Operation-wise Condition for Lifting Simply
Fibred Algebras

In this section, we consider a lifting of a simply fibred T -algebra. If we have a
strong monad lifting, a sufficient condition for the existence of the lifting of a

73



3.5. Operation-wise Condition for Lifting Simply Fibred Algebras

simply fibred T -algebra is a straightforward extension of Proposition 3.3.3 If we
do not have a strong monad lifting, that is, if a lifting ṡtP,Q : P ×̇ṪQ→ Ṫ (P ×̇Q)
of stX,Y : X × TY → T (X × Y ) does not necessarily exist, then we need to
restrict the predicate P to the class of two-valued predicates to guarantee the
existence of ṡtP,Q.

Definition 3.5.1 (lifting of simply fibred T -algebra). Let α : I×TX → X be a
simply fibred T -algebra and Ṫ be a monad lifting along dom : Set/Ω→ Set. A
lifting of α is a simply fibred Ṫ -algebra α̇ : P ×̇ṪQ→ Q such that dom α̇ = α.
Here, even if the strength ṡt of Ṫ is only partially defined, we say α̇ is a simply
fibred Ṫ -algebra if ṡtP,ṪQ : P ×̇Ṫ 2Q→ Ṫ (P ×̇ṪQ) is defined and α̇ satisfies the
condition in Definition 3.1.13.

Assuming that ṡtP,ṪQ : P ×̇Ṫ 2Q→ Ṫ (P ×̇ṪQ) is defined, α̇ is a lifting of α if
and only if α̇ is a morphism over α by a similar argument to (not simply fibred)
T -algebras.

Proposition 3.5.2 (operation-wise lifting of fibred T -algebra). Let T be a
monad on Set induced by an effect theory T , Ṫ be a Cartesian lifting of T
induced by a monotone T -algebra o := KT (Ω, {opΩ}) on the pointwise ordered
object Ω, and α := KT

I (X, {opX}) be a simply fibred T -algebra.

1. Consider the case where Ṫ is strong. The morphism α : I × TX → X has
a lifting α̇ : P ×̇ṪQ → Q if for all op : A _ B, the following inequation
holds

I × JA K×XJBK X

I × JA K× ΩJBK Ω

≤I×JA K×QJBK

opX

Q

P ×̇opΩ

(3.7)

that is, there exists a morphism ȯpX : (P ×̇opΩ) ◦ (I × JA K×QJBK)→ Q
over opX in dom : Set/Ω→ Set.

2. Consider the case where Ṫ is not necessarily strong. The morphism α :
I × TX → X has a lifting α̇ : P ×̇ṪQ → Q if P is two-valued and for all
op : A _ B, (3.7) holds.

Proof. 1. If Ṫ is strong, we prove

(P ×̇ṪQ) ◦ 〈x, y〉 ≤ Q ◦ α ◦ 〈x, y〉

for each x : 1→ X and y : 1→ TY by induction on (a representative of)
y.

For the base case, let y = η ◦ y′ for some y′ : 1→ Y .

(P ×̇ṪQ) ◦ 〈x, y〉 = (P ◦ x) ∧ (o ◦ TQ ◦ η ◦ y′)
= (P ◦ x) ∧ (Q ◦ y′)
≤ Q ◦ y′

= Q ◦ α ◦ 〈x, y〉

74



Chapter 3. A Program Logic for Effect Handlers

For the step case, let y = opa(t) for some op : A _ B, a ∈ JA K, and
t : JBK→ TY .

(P ×̇ṪQ) ◦ 〈x, y〉
= (P ◦ x) ∧ (o ◦ TQ ◦ opa(t))

= (P ◦ x) ∧ opΩ(a, o ◦ TQ ◦ t)
≤ (P ◦ x) ∧ opΩ(a, (P ◦ x ◦ !) ∧ (o ◦ TQ ◦ t)) by Lemma 3.4.8

≤ (P ◦ x) ∧ opΩ(a,Q ◦ α ◦ 〈x ◦ !, t〉) by IH

≤ Q ◦ opX,Y (x, a, α ◦ 〈x ◦ !, t〉) by assumption

= Q ◦ α ◦ 〈x, opa(t)〉
= Q ◦ α ◦ 〈x, y〉

2. The proof is almost the same as above except that we cannot use Lemma 3.4.8
in this case. Here, we prove

(P ◦ x) ∧ opΩ(a, o ◦ TQ ◦ t) ≤ opΩ(a, (P ◦ x ◦ !) ∧ (o ◦ TQ ◦ t))

by cases. There are two cases: P ◦ x is either > or ⊥ because P is
two-valued. In both cases, the inequality follows immediately.

3.6 Program Logic

In this section, we consider a program logic for effect handlers. We provide
inference rules for generic effects, effect handlers, and handling constructs and
prove the soundness of inference rules. We do not consider inference rules for the
other construct of the language (such as lambda abstractions and applications)
because these are not our aim and are already studied in e.g. [7].

Judgement. In our program logic, we use three kinds of judgements for value
terms, computation terms, and effect handlers.

Γ | K {P} ` V : A {Q}
Γ | K {P} `M : C {R}

Γ | K {P} ` H : C {R} handler

Here, typing judgements are annotated with the precondition P : JΓK×JKK→ Ω
and the postconditions Q : JAK→ Ω and R : UJCK→ Ω where Ω is a pointwise
ordered object in Set.

The meaning of these judgements are as follows. Let T be a monad on Set
induced by an effect theory T and Ṫ be a Cartesian lifting of T induced by
o := KT (Ω, {opΩ}). For value terms, Γ | K {P} ` V : A {Q} means that there
is a lifting P → Q of JV K.

Set/Ω P Q

Set JΓK× JKK JAK
dom

JV K

75



3.6. Program Logic

GenericEffect
op : A → B Γ | K {P} ` V : A {opΩ(−, Q)}

Γ | K {P} ` genop(V ) : FB {ṪQ}

where genop(V ) := opV (o.return o).

Figure 3.2: The inference rule for generic effects.

The meaning for computation terms Γ | K {P} `M : C {R} is defined similarly.
For effect handlers, Γ | K {P} ` H : C {R} handler means that there is a
lifting of JHK of the following form.

Set/Ω P ×̇ṪR R

Set (JΓK× JKK)× TUJCK UJCK
dom

JHK

3.6.1 Generic Effects

By the equivalence between generic effects and algebraic operations [91], we
can rewrite algebraic operations to generic effects. So, we only consider generic
effects for simplicity. The inference rule is shown in Fig. 3.2.

Theorem 3.6.1 (soundness). GenericEffect is sound.

Proof. The interpretation of genop(V ) is given by Jgenop(V )K = genop ◦ JV K
where the genop : JA K → T JBK is defined in Proposition 3.2.2. Therefore, we
have the following lifting.

Set/Ω P opΩ(−, Q) ṪQ

Set JΓK× JKK JA K JBK
dom

JV K genop

Here, the left lifting is the premise of the rule, and the right lifting is by Propo-
sition 3.2.2.

Note that the soundness of the rule for generic effects does not depend on
whether there exists a strong monad lifting of T .

3.6.2 With a Strong Monad Lifting

First, we consider the case where the Cartesian lifting Ṫ is strong. We can verify
effect handlers operation-wise. Inference rules of our program logic are given in
Figure 3.3.

Theorem 3.6.2 (soundness). If Ṫ is strong, then Handler-Strong and
Handle-Strong are sound.

Proof. For Handler-Strong, apply Proposition 3.5.2 to JHK in Definition 3.1.15.
Because every ingredient of JM handled with H to x:A in NK in Defini-

tion 3.1.15 has a lifting, Handle-Strong follows.

76



Chapter 3. A Program Logic for Effect Handlers

Handler-Strong
∀op : A _ B,

Γ, x : A | K, k : B → C {λ((γ, x), (κ, k)).P (γ, κ) ∧ opΩ(x,Q ◦ k)} `Mop : C {Q}
Γ | K {P} ` {op(x; k) 7→Mop} : C {Q} handler

Handle-Strong
Γ | K {P} `M : FA {ṪQ} Γ | K {P} ` H : C {R} handler

Γ, x : A | K {λ((γ, x), κ).P (γ, κ) ∧Q(x)} ` N : C {R}
Γ | K {P} `M handled with H to x:A in N : C {R}

Figure 3.3: Inference rules when we have a strong monad lifting.

Handler-Weak
∀op : A _ B,

Γ, x : A | K, k : B → C {λ((γ, x), (κ, k)).P (γ, κ) ∧ opΩ(x,Q ◦ k)} `Mop : C {Q}
P is two-valued

Γ | K {P} ` {op(x; k) 7→Mop} : C {Q} handler

Handle-Weak
Γ | K {P} `M : FA {ṪQ} Γ | K {P ′} ` H : C {R} handler

Γ, x : A | K {λ((γ, x), κ).P ′(γ, κ) ∧Q(x)} ` N : C {R}
P ≤ P ′ P ′ is two-valued

Γ | K {P} `M handled with H to x:A in N : C {R}

Figure 3.4: Inference rules when we do not have a strong monad lifting.

3.6.3 Without a Strong Monad Lifting

Next, we consider the case where the Cartesian lifting Ṫ is not necessarily
strong. We cannot use inference rules in Figure 3.3, but if we consider two-
valued predicates, then we obtain similar rules shown in Figure 3.4.

Theorem 3.6.3 (soundness). Assume we have i : Ω2 → Ω in Definition 3.4.5.
Handler-Weak and Handle-Weak are sound.

Proof. For Handler-Weak, apply Proposition 3.5.2 to JHK in Definition 3.1.15.

Because every ingredient of JM handled with H to x:A in NK in Defini-
tion 3.1.15 has a lifting, Handle-Weak follows. Here, we use Corollary 3.4.6
for the existence of a lifting of stJΓK×JKK,JAK.

Example 3.6.4 (Continuation of Example 3.2.3). Let H be the effect handler
in Example 3.1.11 and consider proving

� | � {>} ` H : (int→ F int) {Q} handler

77



3.7. Related Work

where Q : UJint→ F intK→ Ω. By Handler-Weak, it suffices to prove

x : int | k : 1→ (int→ F int) {setΩ(x,Q ◦ k)} ` λs.k () x : int→ F int {Q}
x : 1 | k : int→ (int→ F int) {getΩ(x,Q ◦ k)} ` λs.k s s : int→ F int {Q}

which are equivalent to

∀x ∈ Z,∀k : 1→ Z→ UFZ, λs.Q (k ()) x ≤ Q (λs.k () x)

∀k : Z→ Z→ UFZ, λs.Q (k s) s ≤ Q (λs.k s s).

These are satisfied if we define Q by Q f s := Q′ (f s) for some Q′ : UFZ→ 2.

Next, we consider

� | � `M handled with H to x:int in N : int→ F int

where

M := get(();λs.return s) N := λs.return x

and prove that this term is a function that returns 0 when the input is 0.
Specifically, we prove

� | � {λs.s = 0} `M handled withH to x:int inN : int→ F int {λr.λs.r s = η 0}

where η is the unit of T . Note that this judgement is a bit tricky: it says that
if the initial state is s = 0 and if we apply this term to the initial state s, then
the result is η 0 which is a pure computation that returns 0.

By Handle-Weak, it suffices to prove

� | � {λs.s = 0} `M : F int {Ṫ (λx.λs.x = 0)}
� | � {>} ` H : (int→ F int) {λr.λs.r s = η 0} handler

x : int | � {λx.λs.x = 0} ` N : int→ F int {λr.λs.r s = η 0}.

Note that the second judgement follows from the above argument. The third
judgement is also obvious.

We apply GenericEffect to the first judgement. The proof obligation is
now � | � {λs.s = 0} ` () : 1 {λs.s = 0)}, which is obviously true.

3.7 Related Work

Logics for computational effects. A fibrational account of weakest precon-
dition transformers is presented using monad liftings in [8]. They also discuss
the relationship between monad liftings and Eilenberg-Moore algebras.

There is another construction of monad liftings called >>-lifting [63]. >>-
liftings are applied to the effect simulation problem [64] for a language with
algebraic operation. Program logics for differential privacy is also studied in [99,
100] using >>-liftings as semantic foundation.

However, none of the above papers deal with effect handlers.

78



Chapter 3. A Program Logic for Effect Handlers

Verification of effect handlers. There are not many studies on verifying
effect handlers. Some of them consider equational reasoning of whether a given
effect handler satisfies an effect theory. Plotkin and Pretnar [92, Section 5] focus
on existence assertion M ↓ and Kleene equality M ' N to reason about effect
handlers. Equational reasoning is further studied in [80], which provides a more
practical type system that can track equations.

More general predicates than just equations are studied in [10, Section 7].
Here, effect handlers are used to lift a predicate P : A → Ω on the value
type A to a predicate P ′ : UFA → Ω on the type UFA. This is similar to
what we did in 3.2 to define a Cartesian lifting, but they did not provide the
clear correspondence between a T -algebra on Ω and a weakest precondition
transformer of each generic effect (Theorem 3.2.1 and Proposition 3.2.2) nor
the program logic (Section 3.6) to verify effect handlers.

A separation logic for effect handlers is proposed in [31]. Their separation
logic is based on Iris [58]. They define protocols that specify preconditions and
postconditions of algebraic operations and then define the weakest precondition
transformer of the form ewp e 〈Ψ〉{Φ} where e is a program, Ψ is a protocol,
and Φ is a postcondition. The main difference from our work is that their effect
handlers are limited to one-shot continuations with only one unnamed effect.
That is, their effect handler cannot invoke a continuation twice nor use multiple
algebraic operations (e.g. set and get for stateful computations) at the same
time.

The most related paper to ours is [81, Section 6]. They provide two ap-
proaches to verify effect handlers in a dependently typed functional language,
and specifically their “2nd approach” is similar to our program logic as ex-
plained below. Given a specification (Pop, Qop) for each operation op : I _ O
where Pop : I → P is a precondition, Qop : I × O → P is a postcondition, and
P is a type of predicates, then their 2nd approach verifies effect handlers by
considering the following handling construct.

handle : D A (λp.∀a.Q a→ p a)

→ ((a : A)→ Q a→ (b : B)×R b)

→ (hop : I → (O → B)→ B)op:I_O

→ (∀i.∀k.(∀o.Qop (i, o)→ R (k o))→ Pop i→ R (hop i k))op:I_O

→ (b : B)×R b
(3.8)

This can be understood in our approach as follows. For each operation op : I _
O, suppose that we are given a specification (Pop, Qop) where Pop : JIK→ Ω and
Qop : JIK× JOK→ Ω, and Ω is a pointwise ordered object. Consider a monotone
T -algebra TΩ→ Ω induced by opΩ(a, k) := Pop a∧∀b.Qop (a, b) =⇒ k o. Using
the Cartesian lifting induced by this monotone T -algebra, the combination of
our Handle-Strong and Handler-Strong rules applied to the judgement
Γ | K {>} `M handled with {op(x; k) 7→ hop} to x:A in N : C {R} roughly
corresponds to the above handling construct.

J1 J2

J3

Γ | K {>} ` {op(x; k) 7→ hop} : C {R} handler

Γ | K {>} `M handled with {op(x; k) 7→ hop} to x:A in N : C {R}

79



3.7. Related Work

Here, J1, J2, and J3 are judgements defined as follows.

J1 := Γ | K {>} `M : FA {ṪQ}
J2 := Γ, x : A | K {Q x} ` N : C {R}
J3 := ∀op : A _ B, Γ, x : A | K, k : B → C {opΩ(x,R ◦ k)} ` hop : C {R}

The first argument of handle (3.8) corresponds to the judgement J1 for the com-
putation M being handled, the second argument corresponds to the judgement
J2 for the computation N for returned value, the third argument corresponds
to the effect handler H = {op 7→ hop}, the fourth argument corresponds to the
judgement J3, which is the premise of Handler-Strong (recall the definition
of opΩ above), and the result type corresponds to the postcondition R of the
whole term. They say that their approach is “ad hoc”, but we provide a the-
oretical understanding via liftings along fibrations. Moreover, our fibrational
approach provides clues to the generalization to various monads. For example,
our approach can deal with the state monad, which is left unsolved in their
paper.

80



Chapter 4

Decision Tree-Based
Ranking Function Synthesis

In this chapter, we provide an example-based synthesis of ranking functions for
termination analysis.

4.1 Preview by Examples

We present a preview of our method using concrete examples. We start with an
overview of the general CEGIS architecture, after which we proceed to our main
contribution, namely a decision tree learning algorithm for transition examples.

4.1.1 Termination Verification by CEGIS

Our method follows the usual workflow of termination verification by CEGIS.
It works as follows: given a program, we encode the termination problem into
a constraint solving problem, and then use the CEGIS architecture to solve the
constraint solving problem.

Encoding the termination problem. The first step of our method is to
encode the termination problem as the set C of constraints.

Example 4.1.1. As a running example, consider the following C program.

while(x != 0) { if(x < 0) { x++; } else { x--; } }

The termination problem is encoded as the following constraints.

x < 0 ∧ x′ = x+ 1 =⇒ R(x, x′) (4.1)

¬(x < 0) ∧ x′ = x− 1 =⇒ R(x, x′). (4.2)

Here, R is a predicate variable representing a well-founded relation, and term
variables x, x′ are universally quantified implicitly.

The set C of constraints claims that the transition relation for the given
program is subsumed by a well-founded relation. So, verifying termination
is now rephrased as the existence of a solution for C. Note that we omitted
constraints for invariants for simplicity in this example (see Section 4.2 for the
full encoding).

81



4.1. Preview by Examples

synthesizer validator

E = ∅
(i)

R(x, x′) = ⊥
(ii)

E = {R(1, 0)}
(iii)

R(x, x′) = x > x′ ∧ x ≥ 0
(iv)

E = {R(1, 0), R(−2,−1)}
(v)

R(x, x′) = |x| > |x′| ∧ |x| ≥ 0 (vi)

Figure 4.1: An example of CEGIS iterations

Constraint solving by CEGIS. The next step is to solve C by CEGIS.
In the CEGIS architecture, a synthesizer and a validator iteratively exchange

a set E of examples and a candidate solution R(x, x′) for C. At the moment, we
present a rough sketch of CEGIS, leaving the details of our implementation to
Section 4.1.2.

Example 4.1.2. Fig. 4.1 shows how the CEGIS architecture solves the set
C of constraints shown in (4.1) and (4.2). Fig. 4.1 consists of three pairs of
interactions (i)-(vi) between a synthesizer and a validator.

(i) The synthesizer takes E = ∅ as a set of examples and returns a candidate
solution R(x, x′) = ⊥ synthesized from E . In general, candidate solutions
are required to satisfy all constraints in E , but the requirement is vacuously
true in this case.

(ii) The validator receives the candidate solution and finds out that the can-
didate solution is not a genuine solution. The validator finds that the
assignment x = 1, x′ = 0 is a counterexample for (4.2), and thus adds
R(1, 0) to E to prevent the same candidate solution in the next iteration.

(iii) The synthesizer receives the updated set E = {R(1, 0)} of examples, finds
a ranking function f(x) = x for E (i.e. for the transition from x = 1 to
x′ = 0), and returns a candidate solution R(x, x′) = x > x′ ∧ x ≥ 0.

(iv) The validator checks the candidate solution, finds a counterexample x =
−2, x′ = −1 for (4.1), and adds R(−2,−1) to E .

(v) The synthesizer finds a ranking function f(x) = |x| for E and returns
R(x, x′) = |x| > |x′| ∧ |x| ≥ 0 as a candidate solution. Note that the
synthesizer have to synthesize a piecewise affine function here, but details
are deferred to Section 4.1.2.

(vi) The validator accepts the candidate solution because it is a genuine solu-
tion for C.

4.1.2 Handling Cycles in Decision Tree Learning

We explain the importance of handling cycles in our decision tree-based synthe-
sizer of piecewise affine ranking functions.

In what follows, we deal with such decision trees as shown in Fig. 4.2: their
internal nodes have affine inequalities (i.e. halfspaces); their leaves have affine
functions; and overall, such a decision tree expresses a piecewise affine function

82



Chapter 4. Decision Tree-Based Ranking Function Synthesis

y ≥ 0?

x− 1 ≥ 0? f(x, y) = −y

f(x, y) = x− 1 f(x, y) = 1− x

<≥

≥ <

f(x, y) =
x− 1 y ≥ 0 ∧ x− 1 ≥ 0

1− x y ≥ 0 ∧ x− 1 < 0

−y y < 0

Figure 4.2: An example of a decision tree that represents a piecewise affine
ranking function f(x, y)

(Fig. 4.2). When we remove leaf labels from such a decision tree, then we obtain
a template of piecewise functions where condition guards are given but function
bodies are not. We shall call the latter a segmentation.

Input and output of our synthesizer. The input of our synthesizer is
a set E of transition examples (e.g. E = {R(1, 0), R(−2,−1)}) as explained
in Section 4.1.1. The output of our synthesizer is a well-founded relation
R(x̃, x̃′) := f(x̃) > f(x̃′)∧ f(x̃) ≥ 0 where x̃ is a sequence of variables and f(x̃)
is a piecewise affine function, which is represented by a decision tree (Fig. 4.2).
Therefore our synthesizer aims at learning a suitable decision tree.

Refining segmentations and handling cycles. Roughly speaking, our syn-
thesizer learns decision trees in the following steps.

1. Generate a set H of halfspaces from the given set E of examples. This H
serves as the vocabulary for internal nodes. Set the initial segmentation
to be the one-node tree (i.e. the trivial segmentation).

2. Try to synthesize a piecewise affine ranking function f for E with the
current segmentation—that is, try to find suitable leaf labels. If found,
then use this f in a candidate well-founded relation R(x̃, x̃′) = f(x̃) >
f(x̃′) ∧ f(x̃) ≥ 0.

3. Otherwise, refine the current segmentation with some halfspace in H, and
go to Step 2.

The key step of our synthesizer is Step 3. We show a few examples.

Example 4.1.3. Suppose we are given E = {R(1, 0), R(−2,−1)} as a set of
examples. Our synthesizer proceeds as follows: (1) Our synthesizer generates
the set H := {x ≥ 1, x ≥ 0, x ≥ −2, x ≥ −1} from the examples in E . (2)
Our synthesizer tries to find a ranking function of the form f(x) = ax + b
(with the trivial segmentation), but there is no such ranking function. (3) Our
synthesizer refines the current segmentation with (x ≥ 0) ∈ H because x ≥ 0
“looks good”. (4) Our synthesizer tries to find a ranking function of the form
f(x) = if x ≥ 0 then ax+ b else cx+ d, using the current segmentation. Our
synthesizer obtains f(x) = if x ≥ 0 then x else − x and use this f(x) for a
candidate solution.

83



4.1. Preview by Examples

−2 −1 0 1 2

f(x)

(a) Good (x ≥ 0)

−2 −1 0 1 2

(b) Bad (x ≥ −2)

Figure 4.3: Selecting halfspaces. Transition examples are shown by red arrows.
Boundaries of halfspaces are shown by dashed lines.

−2 −1 0 1 2 3

Figure 4.4: Two examples R(−1, 1) and R(1, 0) make an implicit cycle between
x ≥ 1 and ¬(x ≥ 1).

How can we decide which halfspace in H “looks good”? We use quality
measure that is a value representing the quality of each halfspace and select the
halfspace with the maximum quality measure.

Fig. 4.3 shows the comparison of the quality of x ≥ 0 and x ≥ −2 in this
example. Intuitively, x ≥ 0 is better than x ≥ −2 because we can obtain a simple
ranking function if x ≥ 0 then x else −x with x ≥ 0 (Fig. 4.3a) while we need
further refinement of the segmentation with x ≥ −2 (Fig. 4.3b). In Section 4.4,
we introduce a quality measure for halfspaces following this intuition.

Our synthesizer iteratively refines segmentations following this quality mea-
sure, until examples contained in each leaf of the decision tree admit an affine
ranking function. This approach is inspired by the use of information gain in
the decision tree learning for invariant synthesis.

Example 4.1.3 showed a natural extension of a decision tree learning method
for invariant synthesis. However, this is not enough for transition examples, for
the reasons of explicit and implicit cycles. Here are their examples.

Example 4.1.4. Suppose we are given E = {R(1, 0), R(0, 1)}. In this case,
there is no ranking function because E contains a cycle 1 → 0 → 1 witnessing
non-termination. We call such a cycle an explicit cycle.

Example 4.1.5. Let E = {R(−1, 1), R(1, 0), R(−1,−2), R(2, 3)} (Fig. 4.4).
Our synthesizer proceeds as follows. (1) Our synthesizer generates the set
H := {x ≥ 1, x ≥ 0, . . . } of halfspaces. (2) Our synthesizer tries to find a
ranking function of the form f(x) = ax + b (with the trivial segmentation),
but there is no such. (3) Our synthesizer refines the current segmentation with
(x ≥ 1) ∈ H because x ≥ 1 “looks good” (i.e. is the best with respect to a
quality measure).

We have reached the point where the naive extension of decision tree learning
explained in Example 4.1.3 no longer works: although all constraints contained
in each leaf of the decision tree admit an affine ranking function, there is no
piecewise affine ranking function for E of the form f(x) = if x ≥ 1 then ax +
b else cx+ d.

More specifically, in this example, the leaf representing x ≥ 1 contains
R(2, 3), and the other leaf representing ¬(x ≥ 1) contains R(−1,−2). The ex-
ample R(2, 3) admits an affine ranking function f1(x) = −x+ 2, and R(−1,−2)

84



Chapter 4. Decision Tree-Based Ranking Function Synthesis

admits f2(x) = x + 1, respectively. However, the combination f(x) = if x ≥
1 then f1(x) else f2(x) is not a ranking function for E . Moreover, there is no
ranking function for E of the form f(x) = if x ≥ 1 then ax+ b else cx+ d.

It is clear that this failure is caused by the crossing examples R(−1, 1) and
R(1, 0). It is not that every crossing example is harmful. However, in this case,
the set {R(−1, 1), R(1, 0)} forms a cycle between the leaf for x ≥ 1 and the leaf
for ¬(x ≥ 1) (see Fig. 4.4). This “cycle” among leaves—in contrast to explicit
cycles such as {R(1, 0), R(0, 1)} in Example 4.1.4—is called an implicit cycle.

Once an implicit cycle is found, our synthesizer cuts it by refining the current
segmentation. Our synthesizer continues the above steps (1–3) of decision tree
learning as follows. (4) Our synthesizer selects (x ≥ 0) ∈ H and cuts the im-
plicit cycle {R(−1, 1), R(1, 0)} by refining segmentations. (5) Using the refined
segmentation, our synthesizer obtains f(x) = if x ≥ 1 then −x+ 2 else if x ≥
0 then 0 else x+ 3 as a ranking function for E .

As explained in Example 4.1.4,4.1.5, handling (explicit and implicit) cycles
is crucial in decision tree learning for transition examples. Moreover, our cycle
detection theorem (Theorem 4.4.5) claims that if there is no explicit or implicit
cycle, then one can find a ranking function for E without further refinement of
segmentations.

4.2 (Non-)Termination Verification as Constraint
Solving

We explain how to encode (non-)termination verification to constraint solving.

Following [118], we formalize our target class pwCSP of predicate constraint
satisfaction problems parametrized by a first-order theory T .

Definition 4.2.1. Given a formula φ, let ftv(φ) be the set of free term variables
and fpv(φ) be the set of free predicate variables in φ.

Definition 4.2.2. A pwCSP is defined as a pair (C,R) where C is a finite set
of clauses of the form

φ ∨

(∨̀
i=1

Xi(t̃i)

)
∨

(
m∨

i=`+1

¬Xi(t̃i)

)
(4.3)

and R ⊆ fpv(C) is a set of predicate variables that are required to denote well-
founded relations. Here, 0 ≤ ` ≤ m. Meta-variables t and φ range over T -terms
and T -formulas, respectively, such that ftv(φ) = ∅. Meta-variables x and X
range over term and predicate variables, respectively.

A pwCSP (C,R) is called CHCs (constrained Horn clauses, [20]) if R = ∅
and ` ≤ 1 for all clauses c ∈ C. The class of CHCs has been widely studied in
the verification community [25,36,98,127].

Definition 4.2.3. A predicate substitution σ is a finite map from predicate
variables X to closed predicates of the form λx1, . . . , xar(X).φ. We write dom(σ)
for the domain of σ and σ(C) for the application of σ to C.

85



4.2. (Non-)Termination Verification as Constraint Solving

Definition 4.2.4. A predicate substitution σ is a (genuine) solution for (C,R)
if (1) fpv(C) ⊆ dom(σ); (2) |=

∧
σ(C) holds; and (3) for all X ∈ R, σ(X)

represents a well-founded relation, that is, sort(σ(X)) = (s̃, s̃) → • for some
sequence s̃ of sorts and there is no infinite sequence ṽ1, ṽ2, . . . of sequences ṽi of
values of the sorts s̃ such that |= ρ(X)(ṽi, ṽi+1) for all i ≥ 1.

Encoding termination. Given a set of initial states ι(x̃) and a transition
relation τ(x̃, x̃′), the termination verification problem is expressed by the pwCSP
(C,R) where R = {R}, and C consists of the following clauses.

ι(x̃) =⇒ I(x̃) τ(x̃, x̃′) ∧ I(x̃) =⇒ I(x̃′) τ(x̃, x̃′) ∧ I(x̃) =⇒ R(x̃, x̃′)

We use φ =⇒ ψ as syntax sugar for ¬φ ∨ ψ, so this is a pwCSP. The well-
founded relation R asserts that τ is terminating. We also consider an invariant
I for τ to avoid synthesizing ranking functions on unreachable program states.

Encoding non-termination. We can encode a problem of non-termination
verification to a pwCSP via recurrent sets [47]. The existence of a recurrent
set witnesses an infinite run of the program. For simplicity of explanation, we
assume there is only a single loop with one program variable where ι(x) is a set
of initial states, τ(x, x′) is a transition relation of the loop body, and γ(x) is
a guard condition. A recurrent set is a set R of program states satisfying the
following condition.

1. The set R implies the guard condition γ.

2. Some state reachable from ι satisfies R.

3. For any state x in R, there exists a successor state x′ in R.

These conditions can be expressed as follows.

R(x) =⇒ γ(x)

∃x.ι(x) ∧R(x) (4.4)

R(x) =⇒ ∃x′.τ(x, x′) ∧R(x′) (4.5)

We need to remove ∃ from (4.4) and (4.5) because such occurrences of ∃ are
not allowed in pwCSP. The existential quantifier ∃ in (4.5) can be removed by
considering the following constraint where S is a well-founded relation.

R(x) =⇒ E(x, 0) (4.6)

E(x, x′) =⇒
(
τ(x, x′) ∧R(x′)

)
∨
(
S(x′, x′ − 1) ∧ E(x, x′ − 1)

)
∨
(
S(x′, x′ + 1) ∧ E(x, x′ + 1)

)
(4.7)

The intuition is as follows. Given x in the recurrent set R, the relation E(x, x′)
searches for the value of ∃x′ in (4.5). The search starts from x′ = 0 in (4.6),
and x′ is nondeterministically incremented or decremented in (4.7). The well-
founded relation S asserts that the search finishes within finite steps. The
existential quantifier ∃ in (4.4) is removed in the same way as (4.5). As a result,
we obtain a pwCSP for the non-termination problem.

86



Chapter 4. Decision Tree-Based Ranking Function Synthesis

Example 4.2.5. Consider the following C program.

while(x > 0) { x = -2 * x + 9; }

The non-termination problem is encoded as the pwCSP (C,R) where R =
{S, S′}, and C consists of

R(x) =⇒ x > 0

> =⇒ E(0)

E(x) =⇒ R(x) ∨ (S(x, x− 1) ∧ E(x− 1)) ∨ (S(x, x+ 1) ∧ E(x+ 1))

R(x) =⇒ E′(x, 0)

E′(x, x′) =⇒ (x′ = −2x+ 9 ∧R(x′))

∨ (S′(x′, x′ − 1) ∧ E′(x, x′ − 1))

∨ (S′(x′, x′ + 1) ∧ E′(x, x′ + 1)).

The program is non-terminating when x = 3. This is witnessed by the solution
σ for (C,R) defined as follows.

σ(R)(x) := x = 3

σ(E)(x) := 0 ≤ x ∧ x ≤ 3

σ(S)(x, x′) := x′ = x+ 1 ∧ x′ ≤ 3

σ(E′)(x, x′) := x = 3 ∧ 0 ≤ x′ ∧ x′ ≤ 3

σ(S′)(x, x′) := x′ = x+ 1 ∧ x′ ≤ 3

In the general case where there are multiple (possibly nested) loops with
many program variables, we can generalize the above encoding by characterizing
the set of terminating states as a least fixed point, taking the dual to obtain the
set of non-terminating states, and removing the existential quantifiers.

4.3 CounterExample-Guided Inductive Synthe-
sis (CEGIS)

We explain how CounterExample-Guided Inductive Synthesis [107] (CEGIS for
short) works for a given pwCSP (C,R) following [118]. Then, we add the ex-
traction of positive/negative examples to the CEGIS architecture, which enables
our decision tree-based synthesizer to use a simplified form of examples.

CEGIS proceeds through the iterative interaction between a synthesizer and
a validator (Fig. 1.5), in which they exchange examples and candidate solutions.

Definition 4.3.1. A formula φ is an example of C if ftv(φ) = ∅ and
∧
C |= φ

hold. Given a set E of examples of C, a predicate substitution σ is a candidate
solution for (C,R) that is consistent with E if σ is a solution for (E ,R).

Synthesizer. The input for a synthesizer is a set E of examples of C collected
from previous CEGIS iterations. The synthesizer tries to find a candidate solu-
tion σ consistent with E instead of a genuine solution for (C,R). If the candidate
solution σ is found, then σ is passed to the validator. If E is unsatisfiable, then
E witnesses unsatisfiability of (C,R). Details of our synthesizer is described in
Section 4.4.

87



4.3. CounterExample-Guided Inductive Synthesis (CEGIS)

Validator. A validator checks whether the candidate solution σ from the syn-
thesizer is a genuine solution of (C,R) by using SMT solvers. That is, satis-
fiability of |= ¬

∧
σ(C) is checked. If |= ¬

∧
σ(C) is not satisfiable, then σ is

a genuine solution of the original pwCSP (C,R), so the validator accepts this.
Otherwise, the validator adds new examples to the set E of examples. Finally,
the synthesizer is invoked again with the updated set E of examples.

If |= ¬
∧
σ(C) is satisfiable, new examples are constructed as follows. Using

SMT solvers, the validator obtains an assignment θ to term variables such that
|= ¬θ(ψ) holds for some ψ ∈ σ(C). By (4.3), |= ¬θ(ψ) is a clause of the form

|= ¬θ(φ)∧
(∧`

i=1 ¬σ(Xi)(θ(t̃i))
)
∧
(∧m

i=`+1 σ(Xi)(θ(t̃i))
)
. To prevent this coun-

terexample from being found in the next CEGIS iteration again, the validator
adds the following example to E .

∨̀
i=1

Xi(θ(t̃i)) ∨
m∨

i=`+1

¬Xi(θ(t̃i)) (4.8)

The CEGIS architecture repeats this interaction between the synthesizer
and the validator until a genuine solution for (C,R) is found or E witnesses
unsatisfiability of (C,R).

Extraction of positive/negative examples. Examples obtained in the
above explanation are a bit complex to handle in our decision tree-based syn-
thesizer: each example in E is a disjunction (4.8) of literals, which may contain
multiple predicate variables.

To simplify the form of examples, we extract from E the sets E+
X and E−X of

positive examples (i.e., examples of the form X(ṽ)) and negative examples (i.e.,
examples of the form ¬X(ṽ)) for each X ∈ fpv(E). This allows us to synthesize a
predicate σ(X) for each predicate variableX ∈ fpv(E) separately. For simplicity,
we write ṽ ∈ E+

X and ṽ ∈ E−X instead of X(ṽ) ∈ E+
X and ¬X(ṽ) ∈ E−X .

The extraction is done as follows. We first substitute for each predicate
variable application X(ṽ) in E a boolean variable bX(ṽ) to obtain a SAT problem
SAT(E). Then, we use SAT solvers to obtain an assignment η that is a solution
for SAT(E). If a solution η exists, then we construct positive/negative examples
from η; otherwise, E is unsatisfiable.

Definition 4.3.2. Let η be a solution for SAT(E). For each predicate variable
X ∈ fpv(E), we define the set E+

X of positive examples and the set E+
X of negative

examples under the assignment η by E+
X := {ṽ | η(bX(ṽ)) = true} and E−X :=

{ṽ | η(bX(ṽ)) = false}.

Note that some of predicate variable applications X(ṽ) may not be assigned
true nor false because they do not affect the evaluation of SAT(E). Such pred-
icate variable applications are discarded from {(E+

X , E
−
X)}X∈fpv(E).

Our method uses the extraction of positive and negative examples when the
validator passes examples to the synthesizer. If X ∈ fpv(E) ∩R, then we apply
our ranking function synthesizer to (E+

X , E
−
X). If X ∈ fpv(E) \R, then we apply

an invariant synthesizer.
We say a candidate solution σ is consistent with {(E+

X , E
−
X)}X∈fpv(E) if |=

σ(X)(ṽ+) and |= ¬σ(X)(ṽ−) hold for each predicate variable X ∈ fpv(E), ṽ+ ∈
E+
X , and ṽ− ∈ E−X . If a candidate solution σ is consistent with {(E+

X , E
−
X)}X∈fpv(E),

then σ is also consistent with E .

88



Chapter 4. Decision Tree-Based Ranking Function Synthesis

Note that unsatisfiability of {(E+
X , E

−
X)}X∈fpv(E) does not immediately im-

plies unsatisfiability of E nor (C,R) because {(E+
X , E

−
X)}X∈fpv(E) depends on the

choice of the assignment η. Therefore, the CEGIS architecture need to be mod-
ified: if synthesizers find unsatisfiability of {(E+

X , E
−
X)}X∈fpv(E), then we add the

negation of an unsatisfiability core to E to prevent using the same assignment
η again.

Note that some restricted forms of (4.8) have also been considered in previous
work and are called implication examples in [43] and implication/negation con-
straints in [25]. Our extraction of positive and negative examples is applicable
to the general form of (4.8).

4.4 Ranking Function Synthesis

In this section, we describe one of the main contributions, that is, our deci-
sion tree-based synthesizer, which synthesizes a candidate well-founded relation
σ(R) from a finite set E+

R of examples. We assume that only positive exam-
ples are given because well-founded relations occur only positively in pwCSP
for termination analysis (see Section 4.2). The aim of our synthesizer is to find

a piecewise affine lexicographic ranking function f̃(x̃) for the given set E+
R of

examples. Below, we fix a predicate variable R ∈ R and omit the subscript
E+
R = E+.

4.4.1 Basic Definitions

To represent piecewise affine lexicographic ranking functions, we use decision
trees like the one in Figure 4.2. Let x̃ = (x1, . . . , xn) be the program variables
where each xi ranges over Z.

Definition 4.4.1. A decision tree D is defined by D := g̃(x̃) | if h(x̃) ≥
0 then D else D where g̃(x̃) = (gk(x̃), . . . , g0(x̃)) is a tuple of affine functions
and h(x̃) is an affine function. A segmentation tree S is defined as a decision
tree with undefined leaves ⊥: that is, S := ⊥ | if h(x̃) ≥ 0 then S else S. For
each decision tree D, we can canonically assign a segmentation tree by replacing
the label of each leaf with ⊥. This is denoted by S(D). For each decision tree D,

we denote the corresponding piecewise affine function by f̃D(x̃) : Zn → Zk+1.

Each leaf in a segmentation tree S corresponds to a polyhedron. We often
identify the segmentation tree S with the set of leaves of S and a leaf with the
polyhedron corresponding to the leaf. For example, we say something like “for
each L ∈ S, ṽ ∈ L is a point in the polyhedron L”.

Suppose we are given a segmentation tree S and a set E+ of examples.

Definition 4.4.2. For each L1, L2 ∈ S, we denote the set of example transitions
from L1 to L2 by E+

L1,L2
:= {(ṽ, ṽ′) ∈ E+ | ṽ ∈ L1, ṽ

′ ∈ L2}. An example

(ṽ, ṽ′) ∈ E+ is crossing w.r.t. S if (ṽ, ṽ′) ∈ E+
L1,L2

for some L1 6= L2, and

non-crossing if (ṽ, ṽ′) ∈ E+
L,L for some L.

Definition 4.4.3. We define the dependency graph G(S, E+) for S and E+ by
the graph (V,E) where vertices V = S are leaves, and edges E = {(L1, L2) |
L1 6= L2,∃(ṽ, ṽ′) ∈ E+

L1,L2
} are crossing examples.

89



4.4. Ranking Function Synthesis

We denote the set of start points ṽ and end points ṽ′ of examples (ṽ, ṽ′) ∈ E+

by E+ := {ṽ | (ṽ, ṽ′) ∈ E+} ∪ {ṽ′ | (ṽ, ṽ′) ∈ E+}.

4.4.2 Segmentation and (Explicit and Implicit) Cycles:
One-Dimensional Case

For simplicity, we first consider the case where f̃(x̃) = f(x̃) : Zn → Z is a one-
dimensional ranking function. Our aim is to find a ranking function f(x̃) for E+,
which satisfies ∀(ṽ, ṽ′) ∈ E+. f(ṽ) > f(ṽ′) and ∀(ṽ, ṽ′) ∈ E+. f(ṽ) ≥ 0. If our
ranking function synthesizer finds such a ranking function f(x̃), then a candidate
well-founded relation Rf is constructed as Rf (x̃, x̃′) := f(x̃) ≥ 0∧f(x̃) > f(x̃′).

Our synthesizer builds a decision tree D to find a ranking function fD(x̃) for
E+. The main question in doing so is “when and how should we refine partitions
of decision trees?” To answer this question, we consider the case where there
is no ranking function fD(x̃) for E+ with a fixed segmentation S, and classify
reasons for this into three cases as follows.

Case 1: explicit cycles in examples. We define an explicit cycle in E+ as a
cycle in the graph (Zn, E+). An explicit cycle witnesses that there is no ranking
function for E+ (see e.g., Example 4.1.4).

Case 2: non-crossing examples are unsatisfiable. The second case is
when there is a leaf L ∈ S such that no affine (not piecewise affine) ranking
function for the set E+

L,L of non-crossing examples exists. This prohibits the

existence of piecewise affine function fD(x̃) for E+ with segmentation S = S(D)
because the restriction of fD(x̃) to L ∈ S must be an affine ranking function for
E+
L,L.

Case 3: implicit cycles in the dependency graph. We define an implicit
cycle by a cycle in the dependency graph G(S, E+). Case 3 is the case where
an implicit cycle prohibits the existence of piecewise affine ranking functions for
E+ with the segmentation S (e.g., Example 4.1.5). If Case 1 and Case 2 do
not hold but no piecewise affine ranking function for E+ with the segmentation
S exists, then there must be an implicit cycle by (the contraposition of) the
following proposition.

Proposition 4.4.4. Assume E+ is a set of examples that does not contain
explicit cycles (i.e. Case 1 does not hold). Let S be a segmentation tree and
assume that for each L ∈ S, there exists an affine ranking function fL(x̃) for
E+
L,L (i.e. Case 2 does not hold). If the dependency graph G(S, E+) is acyclic,

then there exists a decision tree D with the segmentation S(D) = S such that
fD(x̃) is a ranking function for E+.

Proof. By induction on the height (i.e. the length of a longest path from a
vertex) of vertices in G(S, E+). We construct a decision tree D as follows. If
the height of L ∈ S is 0, then we assign f ′L(x̃) := fL(x̃) to the leaf L where
fL(x̃) is a ranking function for E+

L,L. If the height of L ∈ S is n > 0, then we
assign f ′L(x̃) := fL(x̃) + c to the leaf L where c ∈ Z is a constant that satisfies
∀(ṽ, ṽ′) ∈ E+

L,L′ , fL(ṽ) + c > f ′L′(ṽ
′) for each cell L′ with the height less than

n.

90



Chapter 4. Decision Tree-Based Ranking Function Synthesis

Note that the converse of Proposition 4.4.4 does not hold: the existence of
implicit cycles in G(S, E+) does not necessarily imply that no piecewise affine
ranking function exists with the segmentation S.

4.4.3 Segmentation and (Explicit and Implicit) Cycles:
Multi-Dimensional Lexicographic Case

We consider a more general case where f̃(x̃) = (fk(x̃), . . . , f0(x̃)) is a multi-
dimensional lexicographic ranking function and k is a fixed nonnegative integer.

Given a function f̃(x̃), we consider the well-founded relation Rf̃ (x̃, x̃′) de-
fined inductively as follows.

R()(x̃, x̃
′) := ⊥ R(fk,...,f0)(x̃, x̃

′) := fk(x̃) ≥ 0 ∧ fk(x̃) > fk(x̃′)
∨fk(x̃) = fk(x̃′) ∧R(fk−1,...,f0)(x̃, x̃

′)
(4.9)

Our aim here is to find a lexicographic ranking function f̃(x̃) for E+, i.e. a

function f̃(x̃) such that Rf̃ (ṽ, ṽ′) holds for each (ṽ, ṽ′) ∈ E+. Our synthesizer
does so by building a decision tree. The same argument as the one-dimensional
case holds for lexicographic ranking functions.

Theorem 4.4.5 (cycle detection). Assume E+ is a set of examples that does
not contain explicit cycles. Let S be a segmentation tree and assume that
for each L ∈ S, there exists an affine function f̃L(x̃) that satisfies ∀(ṽ, ṽ′) ∈
E+
L,L, Rf̃L(ṽ, ṽ′). If the dependency graph G(S, E+) is acyclic, then there exists

a decision tree D with the segmentation S(D) = S such that Rf̃D (ṽ, ṽ′) holds

for each (ṽ, ṽ′) ∈ E+.

Proof. The proof is almost the same as Proposition 4.4.4. Here, note that if
f̃ ′(x̃) = f̃(x̃) + c̃ where c̃ is a tuple of nonnegative integer constants, then
Rf̃ ′(x̃, x̃

′) subsumes Rf̃ (x̃, x̃′).

4.4.4 Our Decision Tree Learning Algorithm

We design a concrete algorithm based on Theorem 4.4.5. It is shown in Algo-
rithm 1 and consists of three phases. We shall describe the three phases one by
one.

Phase 1

Phase 1 (Line 1-3) detects explicit cycles in E+ to exclude Case 1. Here, we use
a cycle detection algorithm for directed graphs.

Phase 2

Phase 2 (Line 4) detects and resolves Case 2 by using ResolveCase2 (Algo-
rithm 2), which is a function that grows a decision tree recursively. Resolve-
Case2 takes non-crossing examples in a leaf, divides the leaf, and returns a
template tree that is fine enough to avoid Case 2. Here, template trees are
decision trees whose leaves are labeled by affine templates.

Algorithm 2 shows the detail of ResolveCase2. ResolveCase2 builds a
template tree recursively starting from the trivial segmentation S = ⊥ and all
given examples. In each polyhedron, ResolveCase2 checks whether the set C

91



4.4. Ranking Function Synthesis

Algorithm 1 Building decision trees.

Input: a set E+ of examples, an integer k ≥ 0
Output: a well-founded relation R such that ∀(x̃, x̃′) ∈ E+, R(x̃, x̃′)
1: if E has a cycle then
2: return unsatisfiable
3: end if
4: D := ResolveCase2(E)
5: while true do
6: C := GetConstraints(D,E)
7: O := SumAbsParams(D)
8: ρ := Minimize(O,C)
9: if ρ is defined then

10: f̃(x̃) := f̃ρ(D)(x̃)
11: return Rf̃
12: else
13: get an unsat core in C
14: find an implicit cycle (ṽ1, ṽ

′
1), . . . , (ṽl, ṽ

′
l) in the unsat core

15: find a cell C and two distinct points ṽ′i, ṽi+1 ∈ C in the implicit cycle
16: add a halfspace to separate ṽ′i and ṽi+1 and update D
17: end if
18: end while

of constraints imposed by non-crossing examples can be satisfied by an affine
lexicographic ranking function on the polyhedron (Line 2-3). If the set C of
constraints is not satisfiable, then ResolveCase2 chooses a halfspace h(x̃) ≥ 0
(Line 6) and divides the current polyhedron by the halfspace.

There is a certain amount of freedom in the choice of halfspaces. To guar-
antee termination of the whole algorithm, we require that the chosen halfspace
h separates at least one point in E ′+ := {ṽ | (ṽ, ṽ′) ∈ E ′+} ∪ {ṽ′ | (ṽ, ṽ′) ∈ E ′+}
from the other points in E ′+. That is:

Assumption 4.4.6. If halfspace h(x̃) ≥ 0 is chosen in Line 6 of Algorithm 2,
then there exist ṽ, ũ ∈ E ′+ such that h(ṽ) ≥ 0 and h(ũ) < 0.

We explain two strategies (eager and lazy) to choose halfspaces that can
be used to implement ChooseQualifier. Both of them are guaranteed to
terminate, and moreover, intended to yield simple decision trees.

Eager strategy. In the eager strategy, we eagerly generate a finite set H of
halfspaces from the set E+ of all examples beforehand and choose the best one
from H with respect to a certain quality measure. To satisfy Assumption 4.4.6,
H are generated so that any two points ũ, ṽ ∈ E+ can be separated by some
halfspace (h(x̃) ≥ 0) ∈ H.

For example, we can use intervals H = {±(xi − ai) ≥ 0 | i = 1, . . . , n ∧
(a1, . . . , an) ∈ E+} and octagons H = {±(xi − ai) ± (xj − aj) ≥ 0 | i 6=
j ∧ (a1, . . . , an) ∈ E+} where x̃ = (x1, . . . , xn). For any input E ′+ ⊆ E+ of
ResolveCase2, intervals and octagons satisfy ∅ 6= H ′ := {h(x̃) ≥ 0 | ∃ṽ, ũ ∈
E ′+.h(ṽ) ≥ 0 ∧ h(ũ) < 0}, so Assumption 4.4.6 is satisfied by choosing the best
halfspace with respect to the quality measure from H ′.

92



Chapter 4. Decision Tree-Based Ranking Function Synthesis

Algorithm 2 Resolving Case 2.

1: function ResolveCase2(E ′+)

2: f̃ := MakeAffineTemplate(k)

3: C := GetConstraints(f̃ , E ′+)
4: ρ := GetModel(C)
5: if ρ is undefined then
6: h := ChooseQualifier(E ′+)
7: D≥0 := ResolveCase2({(ṽ, ṽ′) ∈ E ′+ | h(ṽ) ≥ 0 ∧ h(ṽ′) ≥ 0})
8: D<0 := ResolveCase2({(ṽ, ṽ′) ∈ E ′+ | h(ṽ) < 0 ∧ h(ṽ′) < 0})
9: return (if h(x̃) ≥ 0 then D≥0 else D<0)

10: else
11: return f̃
12: end if
13: end function
14: function GetConstraints(D, E+)

15: return {Rf̃D (ṽ, ṽ′) | (ṽ, ṽ′) ∈ E+} where f̃D is the tuple of piecewise
affine functions corresponding to D

16: end function

Algorithm 3 A criterion for eager qualifier selection.

1: function QualityMeasure(h, E ′+)
2: E++ := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) ≥ 0 ∧ h(ṽ) ≥ 0}
3: E+− := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) ≥ 0 ∧ h(ṽ) < 0}
4: E−+ := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) < 0 ∧ h(ṽ) ≥ 0}
5: E−− := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) < 0 ∧ h(ṽ) < 0}
6: f̃ := MakeAffineTemplate(k)

7: C+ := GetConstraints(f̃ , E++)

8: C− := GetConstraints(f̃ , E−−)
9: N+ := MaxSmt(C+)

10: N− := MaxSmt(C−)
11: return N+ +N− + (|E+−|+ |E−+|)(1− entropy(|E+−|, |E−+|))
12: end function

For each halfspace (h(x̃) ≥ 0) ∈ H ′, we calculate QualityMeasure in Al-
gorithm 3, and choose one that maximizes QualityMeasure(h, E ′+). Qual-
ityMeasure(h, E ′+) calculates the sum of the maximum number of satisfiable
constraints in each leaf divided by h(x̃) ≥ 0 plus an additional term (|E+−| +
|E−+|)(1− entropy(|E+−|, |E−+|)) where entropy(x, y) = − x

x+y log2
x
x+y −

y
x+y

log2
y

x+y . Therefore, the term (|E+−| + |E−+|)(1 − entropy(|E+−|, |E−+|)) is

close to |E+−|+ |E−+| if almost all examples in E+−∪E−+ cross h in the same
direction and close to 0 if |E+−| is almost equal to |E−+|.

Lazy strategy. In the lazy strategy, we lazily generate halfspaces. We divide
the current polyhedron so that non-crossing examples in the cell point to almost
the same direction.

First, we label states that occur in E+
C,C as follows. We find a direction that

most examples in C point to by solving the MAX-SMT ~a := max~a
∣∣{(ṽ, ṽ′) ∈

93



4.4. Ranking Function Synthesis

E+
C,C | ~a · (ṽ − ṽ′) > 0}

∣∣. For each (ṽ, ṽ′) ∈ E+
C,C , we label two points ṽ, ṽ′ with

+1 if ~a · (ṽ − ṽ′) > 0 and with −1 otherwise.

Then we apply weighted C-SVM to generate a hyperplane that separates
most of the positive and negative points. To guarantee termination of Algo-
rithm 1, we avoid “useless” hyperplanes that classify all the points by the same
label. If we obtain such a useless hyperplane, then we undersample a majority
class and apply C-SVM again. By undersampling suitably, we eventually get
linearly separable data with at least one positive point and one negative point.

Note that since coefficients of hyperplanes extracted from C-SVM are float-
ing point numbers, we have to approximate them by hyperplanes with rational
coefficients. This is done by truncating continued fraction expansions of coeffi-
cients by a suitable length.

Phase 3

In Line 5-18 of Algorithm 1, we further refine the segmentation S(D) to resolve
Case 3. Once Case 2 is resolved by ResolveCase2, Case 2 never holds even
after refining S(D) further. This enables to separate Phases 2 and 3.

Given a template tree D, we consider the set C of constraints on parameters
in D that claims f̃D(x̃) is a ranking function for E+ (Line 6).

If C is satisfiable, we use an SMT solver to obtain a solution of C (i.e. an
assignment ρ of integers to parameters) while minimizing the sum of absolute
values of unknown parameters in D at the same time (Line 8). This minimiza-
tion is intended to give a simple candidate ranking function. The solution ρ is
used to instantiate the template tree D (Line 11).

If C cannot be satisfied, there must be an implicit cycle in the dependency
graph G(S(D), E+) by Theorem 4.4.5. The implicit cycle can be found in an
unsatisfiable core of C. We refine the segmentation of D to cut the implicit
cycle in Line 16. To guarantee termination, we choose a halfspace satisfying the
following assumption, which is similar to Assumption 4.4.6.

Assumption 4.4.7. If halfspace h(x̃) ≥ 0 is chosen in Line 16 of Algorithm 1,
then there exist ṽ, ũ ∈ E+ such that h(ṽ) ≥ 0 and h(ũ) < 0.

We have two strategy (eager and lazy) to refine the segmentation of D.

In eager strategy, we choose a halfspace (h(x̃) ≥ 0) ∈ H that separates two
distinct points ṽ′i and ṽi+1 in the implicit cycle. In doing so, we want to reduce
the number of implicit cycles in G(S(D), E+), but adding a new halfspace may
introduce new implicit cycles if there exists (ṽ, ṽ′) ∈ E+

C,C that crosses the new
border from the side of ṽ′i to the side of ṽi+1. Therefore, we choose a hyperplane
that minimizes the number of new crossing examples.

In lazy strategy, we use an SMT solver to find a hyperplane h(x̃) ∈ H that
separates ṽ′i and ṽi+1 and minimizes the number of new crossing examples.

Termination

Assumption 4.4.6 and Assumption 4.4.7 guarantees that every leaf in S(D) con-
tains at least one point in the finite set E+. Because the number of leaves in
S(D) strictly increases after each iteration of Phase 2 and Phase 3, we eventu-
ally get a segmentation S(D) where each L ∈ S(D) contains only one point in

94



Chapter 4. Decision Tree-Based Ranking Function Synthesis

E+ in the worst case. Since we have excluded Case 1 at the beginning, Theo-
rem 4.4.5 guarantees the existence of ranking function with the segmentation
S(D). Therefore, the algorithm terminates within |E+| times of refinement.

Theorem 4.4.8. If Assumption 4.4.6 and Assumption 4.4.7 hold, then Al-
gorithm 1 terminates. If Algorithm 1 returns a piecewise affine lexicographic
function f̃(x̃), then the function satisfies Rf̃ (x̃, x̃′) for each (x̃, x̃′) ∈ E+ where

E+ is the input of the algorithm.

4.4.5 Improvement by Degenerating Negative Values

There is another way to define well-founded relation from the tuple f̃(x̃) =
(fk(x̃), . . . , f0(x̃)) of functions, that is, the well-founded relation R′

f̃
(x̃, x̃′) de-

fined inductively by R′()(x̃, x̃
′) := ⊥ and R′(fk,...,f0)(x̃, x̃

′) := fk(x̃) ≥ 0∧ fk(x̃) >

fk(x̃′) ∨
(
fk(x̃′) < 0 ∨ fk(x̃) = fk(x̃′)

)
∧R′(fk−1,...,f0)(x̃, x̃

′).

In this definition, we loosen the equality fi(x̃) = fi(x̃
′) (where i = 1, . . . , k)

of the usual lexicographic ordering (4.9) to fi(x̃
′) < 0 ∨ fi(x̃) = fi(x̃

′). This
means that once fi(x̃) becomes negative, fi(x̃) must stay negative but the value
do not have to be the same, which is useful for the synthesizer to avoid complex
candidate lexicographic ranking functions and thus improves the performance.

However, if we use this well-founded relation R′
f̃
(x̃, x̃′) instead of Rf̃ (x̃, x̃′)

in (4.9), then Theorem 4.4.5 fails because R′
f̃
(x̃, x̃′) is not necessarily subsumed

by R′
f̃+c̃

where c̃ = (ck, . . . , c0) is a nonnegative constant (see the proof of

Proposition 4.4.4 and Theorem 4.4.5). As a result, there is a chance that no
implicit cycle can be found in line 14 of Algorithm 1. Therefore, when we
use R′

f̃
(x̃, x̃′), we modify Algorithm 1 so that if no implicit cycle can be found

in line 14, then we fall back on the former definition of Rf̃ (x̃, x̃′) and restart
Algorithm 1.

4.5 Implementation and Evaluation

Implementation. We implemented a constraint solver MuVal that supports
invariant synthesis and ranking function synthesis. For invariant synthesis, we
apply an ordinary decision tree learning (see [25, 36, 44, 69, 127] for existing
techniques). For ranking function synthesis, we implemented the algorithm
in Section 4.4 with both eager and lazy strategies for halfspace selection. Our
synthesizer uses well-founded relation explained in Section 4.4.5. Given a bench-
mark, we run our solver for both termination and non-termination verification
in parallel, and when one of the two returns an answer, we stop the other and use
the answer. MuVal is written in OCaml and uses Z3 as an SMT solver backend.
We used clang and llvm2kittel [1] to convert C benchmarks to T2 [3] format
files, which are then translated to pwCSP by MuVal. Our implementation is
available at https://github.com/hiroshi-unno/coar.

Experiments. We evaluated our implementation MuVal on C benchmarks
from Termination Competition 2020 (C Integer) [4]. We compared our tool
with AProVE [22, 35], iRankFinder [18], and Ultimate Automizer [48].
Experiments are conducted on StarExec [2] (CentOS 7.7 (1908) on Intel(R)

95

https://github.com/hiroshi-unno/coar


4.5. Implementation and Evaluation

Table 4.1: Numbers of solved benchmarks

Yes No TO U
MuVal (eager) 204 89 42 0
MuVal (lazy) 200 84 51 0
AProVE 216 100 16 3

iRankFinder 208 921 0 34
Ultimate Automizer 180 83 2 70

Xeon(R) CPU E5-2609 0 @ 2.40GHz (2393 MHZ) with 263932744 kB main
memory). The time limit was 300 seconds.

Results. Results are shown in Table 4.1. Yes/No/TO/U means the num-
ber of benchmarks that these tools could verify termination/could verify non-
termination/could not answer within 300 seconds and timed out (TimeOut)/gave
up before 300 seconds (Unknown), respectively. We also show scatter plots of
runtime in Fig. 4.6.

MuVal was able to solve more benchmarks than Ultimate Automizer.
Compared to iRankFinder, MuVal solved slightly fewer benchmarks, but was
faster in a large number of benchmarks: 265 benchmarks were solved faster by
MuVal, 68 by iRankFinder, and 2 were not solved by both tools within 300
seconds (here, we regard U (unknown) as 300 seconds). Compared to AProVE,
MuVal solved fewer benchmarks. However, there are several benchmarks that
MuVal could solve but AProVE could not. Among them is “TelAviv-Amir-
Minimum true-termination.c”, which does require piecewise affine ranking func-
tions. MuVal found a ranking function f(x, y) = if x − y ≥ 0 then y else x,
while AProVE timed out.

We also observed that using CEGIS with transition examples itself showed
its strengths even for benchmarks that do not require piecewise affine ranking
functions. Notably, there are three benchmarks that MuVal could solve but
the other tools could not; they are examples that do not require segmentations.
Further analysis of these benchmarks indicates the following strengths of our
framework: (1) the ability to handle nonlinear constraints (to some extent)
thanks to the example-based synthesis and the recent development of SMT
solvers; and (2) the ability to find a long lasso-shaped non-terminating trace
assembled from multiple transition examples. Details are described below.

A benchmark containing a nonlinear operation. Fig. 4.5a shows one of
the benchmarks that contains a nonlinear operation y = y * y but admits a
linear ranking function. Although handling nonlinear operation is difficult in
general, MuVal was able to verify termination. The reason can be understood
as follows. (1) Our validator can find transition examples for this benchmark
thanks to the recent development of SMT solvers. (2) Our synthesizer can work
as usual because it is example-based.

A benchmark that requires a long lasso-shaped non-terminating trace
to prove non-termination. Fig. 4.5b is a benchmark that is non-terminating.

1We removed one benchmarks from the result of iRankFinder because the answer was
wrong.

96



Chapter 4. Decision Tree-Based Ranking Function Synthesis

int main() {
int x = ?;
int y = 2;
int res = 1;
if (x < 0 || y < 1) { }
else {

while (x > y) {
y = y*y;
res = 2*res;

}
}

}

(a) A benchmark containing a nonlin-
ear operation.

int main() {
int i = ?;
int range = 20;
while (0 <= i && i <= range) {

if (!(0 == i && i == range)) {
if (i == range) {

i = 0;
range = range -1;

} else {
i = i+1;

}
}

}
}

(b) A benchmark that requires a long
lasso to prove non-termination

Figure 4.5: Some of the benchmarks from Termination Competition 2020 (C
Integer).

 1

 10

 100

 1  10  100

M
u

V
a

l

AProve

 1

 10

 100

 1  10  100

M
u

V
a

l

irankfinder v1.3.2

 1

 10

 100

 1  10  100

M
u

V
a

l

Ultimate Automizer

Figure 4.6: Scatter plots of runtime. Ultimate Automizer and AProVE
sometimes gave up before the time limit, and such cases are regarded as 300s.

To prove non-termination of this benchmark, we need to find a long lasso-shaped
trace that ends in the self loop when i = range = 0. Finding such a long lasso
is difficult in general, but MuVal was able to find one in this benchmark: dur-
ing CEGIS iterations, MuVal found the self loop (i.e. explicit cycle) and then
collected transition examples that were needed to prove reachability of cycles.

Our method can naturally collect transition examples “backward” from the
self loop (an explicit cycle). At the same time, our method collects transition
examples “forward” from an initial state (in the benchmark of Fig. 4.5b, the
pair of i = 10 and range = 20 is an initial state of the while loop). When
transition examples that are collected backward and forward form a trace to
the self loop, our method notice that the benchmark is non-terminating.

4.6 Related Work

There are a bunch of works that synthesize ranking functions via constraint
solving. Among them is a counterexample-guided method like CEGIS [107].
CEGIS is sound but not guaranteed to be complete in general: even if a given
constraint has a solution, CEGIS may fail to find the solution. A complete
method for ranking function synthesis is proposed in [46]. They collect only
extremal counterexamples instead of arbitrary transition examples to avoid in-

97



4.7. Conclusions and Future Work

finitely many examples. A limitation of their method is that the search space
is limited to (lexicographic) affine ranking functions.

Another counterexample-guided method is proposed in [121] and imple-
mented in SeaHorn. This method can synthesize piecewise affine functions,
but their approach is quite different from ours. Given a program, they construct
a safety property that the number of loop iterations does not exceed the value
of a candidate ranking function. The safety property is checked by a verifier. If
it is violated, then a trace is obtained as a counterexample and the candidate
ranking function is updated by the counterexample. The main difference from
our method is that their method uses trace examples while our method uses
transition examples (which is less expensive to handle). FreqTerm [37] also
uses the connection to safety property, but they exploit syntax-guided synthesis
for synthesizing ranking functions.

Aside from counterexample-guided methods, constraint solving is widely
studied for affine ranking functions [93], lexicographic affine ranking functions [12,
18, 78], and multiphase affine ranking functions [17, 19]. Their implementation
includes RankFinder and iRankFinder. Farkas’ lemma or Motzkin’s trans-
position theorem are often used as a tool to transform ∃∀-constraints to ∃-
constraints. However, when we apply this technique to piecewise affine ranking
functions, we get nonlinear constraints [78].

Abstract interpretation is also applied to segmented synthesis of ranking
functions and implemented in FuncTion [120,122,123]. In this series of work,
decision tree representation of ranking functions is used in [123] for better han-
dling of disjunctions. Compared to their work, we believe that our method is
more easily extensible to other theories than linear integer arithmetic as long as
the theories are supported by SMT solvers (although such extensions are out of
the scope of this thesis).

Other state-of-the-art termination verifiers include the following. Ultimate
Automizer [48] is an automata-based method. It repeatedly finds a trace
and computes a termination argument that contains the trace until termination
arguments cover the set of all traces. Büchi automata are used to handle such
traces. AProVE [22, 35] is based on term rewriting systems.

4.7 Conclusions and Future Work

In this chapter, we proposed a novel decision tree-based synthesizer for ranking
functions, which is integrated into the CEGIS architecture. The key observation
here was that we need to cope with explicit and implicit cycles contained in given
examples. We designed a decision tree learning algorithm using the theoretical
observation of the cycle detection theorem. We implemented the framework
and observed that its performance is comparable to state-of-the-art termination
analyzers. In particular, it solved three benchmarks that no other tool solved,
a result that demonstrates the potential of the current combination of CEGIS,
segmented synthesis, and transition examples.

We plan to extend our ranking function synthesizer to a synthesizer of piece-
wise affine ranking supermartingales. Ranking supermartingales [24] are prob-
abilistic version of ranking functions and used for verification of almost-sure
termination of probabilistic programs. Moreover, we would like to extend this
further to ranking supermartingales for higher moments introduced in Chap-

98



Chapter 4. Decision Tree-Based Ranking Function Synthesis

ter 5.
We also plan to implement a mechanism to automatically select a suitable

set of halfspaces with which decision trees are built. In our ranking function
synthesizer, intervals/octagons/octahedron/polyhedra can be used as the set
of halfspaces. However, selecting an overly expressive set of halfspaces may
cause the problem of overfitting [87] and result in poor performance. Therefore,
applying heuristics that adjusts the expressiveness of halfspaces based on the
current examples may improve the performance of our tool.

99



4.7. Conclusions and Future Work

100



Chapter 5

Tail Probabilities of
Randomized Programs via
Higher Moments of
Runtime

This chapter is about a method to give an upper bound of a tail probability of
a randomized program. We provide a new notion, ranking supermartingales for
higher moments based on an order-theoretic characterization of ranking super-
martingales.

5.1 Preliminaries

We present some preliminary materials, including the definition of pCFGs (we
use them as a model of randomized programs) and the definition of runtime.

Given topological spaces X and Y , let B(X) be the set of Borel sets on X
and B(X,Y ) be the set of Borel measurable functions X → Y . We assume that
the set R of reals, a finite set L and the set [0,∞] are equipped with the usual
topology, the discrete topology, and the order topology, respectively. We use
the induced Borel structures for these spaces. Given a measurable space X, let
D(X) be the set of probability measures on X. For any µ ∈ D(X), let supp(µ)
be the support of µ. We write E[X] for the expectation of a random variable
X.

Our use of pCFGs follows recent works including [5].

Definition 5.1.1 (pCFG). A probabilistic control flow graph (pCFG) is a tuple
Γ = (L, V, linit, ~xinit, 7→,Up,Pr, G) that consists of the following.

• A finite set L of locations. It is a disjoint union of sets LD, LP , Ln and LA
of deterministic, probabilistic, nondeterministic and assignment locations.

• A finite set V of program variables.

• An initial location linit ∈ L.

101



5.1. Preliminaries

• An initial valuation ~xinit ∈ RV .

• A transition relation 7→ ⊆ L× L which is total (i.e. ∀l.∃l′. l 7→ l′).

• An update function Up : LA → V ×
(
B(RV ,R)∪D(R)∪B(R)

)
for assign-

ment.

• A family Pr = (Prl)l∈LP of probability distributions, where Prl ∈ D(L),
for probabilistic locations. We require that l′ ∈ supp(Prl) implies l 7→ l′.

• A guard function G : LD×L→ B(RV ) such that for each l ∈ LD and ~x ∈
RV , there exists a unique location l′ ∈ L satisfying l 7→ l′ and ~x ∈ G(l, l′).

The update function can be decomposed into three functions UpD : LAD →
V × B(RV ,R), UpP : LAP → V × D(R) and UpN : LAN → V × B(R), under
a suitable decomposition LA = LAD ∪ LAP ∪ LAN of assignment locations.
The elements of LAD, LAP and LAN represent deterministic, probabilistic and
nondeterministic assignments, respectively. See e.g. [112].

l0

l1

l2 l3 l4

l5

l6l7

x := 2 y := 2 x > 0
and
y > 0

z :=

Unif(−2, 1)

x := x+ z

y := y + z

x ≤ 0
or

y ≤ 0

An example of a pCFG is shown on the
right. It models the program in Fig. 1.7.
The node l4 is a nondeterministic location.
Unif(−2, 1) is the uniform distribution on
the interval [−2, 1].

A configuration of a pCFG Γ is a pair
(l, ~x) ∈ L × RV of a location and a valu-
ation. We regard the set S = L × RV of configurations is equipped with the
product topology where L is equipped with the discrete topology. We say a
configuration (l′, ~x′) is a successor of (l, ~x), if l 7→ l′ and the following hold.

• If l ∈ LD, then ~x′ = ~x and ~x ∈ G(l, l′).

• If l ∈ LN ∪ LP , then ~x′ = ~x.

• If l ∈ LA, then ~x′ = ~x(xj ← a), where ~x(xj ← a) denotes the vector
obtained by replacing the xj-component of ~x by a. Here xj is such that
Up(l) = (xj , u), and a is chosen as follows: 1) a = u(~x) if u ∈ B(RV ,R);
2) a ∈ supp(u) if u ∈ D(R); and 3) a ∈ u if u ∈ B(R).

An invariant of a pCFG Γ is a measurable set I ∈ B(S) such that (linit, ~xinit) ∈ I
and I is closed under taking successors (i.e. if c ∈ I and c′ is a successor of c
then c′ ∈ I). Use of invariants is a common technique in automated synthesis
of supermartingales [5]: it restricts configuration spaces and thus makes the
constraints on supermartingales weaker. It is also common to take an invariant
as a measurable set [5]. A run of Γ is an infinite sequence of configurations
c0c1 . . . such that c0 is the initial configuration (linit, ~xinit) and ci+1 is a successor
of ci for each i. Let Run(Γ) be the set of runs of Γ.

A scheduler resolves nondeterminism: at a location in LN ∪LAN , it chooses
a distribution of next configurations depending on the history of configurations
visited so far. Given a pCFG Γ and a scheduler σ of Γ, a probability measure
νΓ
σ on Run(Γ) is defined in the usual manner. See Section B.1,B.2 for details.

102



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

Definition 5.1.2 (reaching time TΓ
C , T

Γ
C,σ). Let Γ be a pCFG and C ⊆ S be a

set of configurations called a destination. The reaching time to C is a function
TΓ
C : Run(Γ) → [0,∞] defined by (TΓ

C)(c0c1 . . . ) = argmini∈N(ci ∈ C). Fixing
a scheduler σ makes TΓ

C a random variable, since σ determines a probability
measure νΓ

σ on Run(Γ). It is denoted by TΓ
C,σ.

Runtimes of pCFGs are a special case of reaching times, namely to the set
of terminating configurations.

The following higher moments are central to our framework. Recall that we
are interested in demonic schedulers, i.e. those which make runtimes longer.

Definition 5.1.3 (MΓ,k
C,σ and MΓ,k

C ). Assume the setting of Def. 5.1.2, and let

k ∈ N and c ∈ S. We write MΓ,k
C,σ(c) for the k-th moment of the reaching time

of Γ from c to C under the scheduler σ, i.e. that is, MΓ,k
C,σ(c) = E[(TΓc

C,σ)k] =∫
(TΓc
C )k dνΓc

σ where Γc is a pCFG obtained from Γ by changing the initial

configuration to c. Their supremum under varying σ is denoted by MΓ,k

C :=

supσM
Γ,k
C,σ.

5.2 Ranking Supermartingale for Higher Mo-
ments

We introduce one of the main contributions in the chapter, a notion of ranking
supermartingale that overapproximates higher moments. It is motivated by the
following observation: martingale-based reasoning about the second moment
must concur with one about the first moment. We conduct a systematic theo-
retical extension that features an order-theoretic foundation and vector-valued
supermartingales. The theory accommodates nondeterminism and continuous
distributions, too. Detailed proofs are described in Section B.3.

The fully general theory for higher moments will be presented in Section 5.2.2;
we present its restriction to the second moments in Section 5.2.1 for readability.

Prior to these, we review the existing theory of ranking supermartingales,
through the lens of order-theoretic fixed points. In doing so we follow [112].

Definition 5.2.1 (“nexttime” operation X (pre-expectation)). Given η : S →
[0,∞], let Xη : S → [0,∞] be the function defined as follows.

• If l ∈ LD and ~x � G(l, l′), then (Xη)(l, ~x) = η(l′, ~x).

• If l ∈ LP , then (Xη)(l, ~x) =
∑
l 7→l′ Prl(l

′)η(l′, ~x).

• If l ∈ LN , then (Xη)(l, ~x) = supl 7→l′ η(l′, ~x).

• If l ∈ LA, Up(l) = (xj , u) and l 7→ l′,

– if u ∈ B(RV ,R), then (Xη)(l, ~x) = η(l′, ~x(xj ← u(~x)));

– if u ∈ D(R), then (Xη)(l, ~x) =
∫
R η(l′, ~x(xj ← y)) du(y); and

– if u ∈ B(R), then (Xη)(l, ~x) = supy∈u η(l′, ~x(xj ← y)).

103



5.2. Ranking Supermartingale for Higher Moments

Intuitively, Xη is the expectation of η after one transition. Nondeterminism
is resolved by the maximal choice.

We define F1 : (S → [0,∞])→ (S → [0,∞]) as follows.

(F1(η))(c) =

{
1 + (Xη)(c) c ∈ I \ C
0 otherwise

(Here “1+” accounts for time elapse)

The function F1 is an adaptation of the Bellman operator, a classic notion in the
theory of Markov processes. A similar notion is used e.g. in [61]. The function
space (S → [0,∞]) is a complete lattice structure, because [0,∞] is; moreover
F1 is easily seen to be monotone. It is not hard to see either that the expected

reaching time MΓ,1

C to C coincides with the least fixed point µF1.
The following theorem is fundamental in theoretical computer science.

Theorem 5.2.2 (Knaster–Tarski, [114]). Let (L,≤) be a complete lattice and
f : L→ L be a monotone function. The least fixed point µf is the least prefixed
point, i.e. µf = min{l ∈ L | f(l) ≤ l} .

The significance of the Knaster-Tarski theorem in verification lies in the
induced proof rule: f(l) ≤ l ⇒ µf ≤ l. Instantiating to the expected reaching

time MΓ,1

C = µF1, it means F1(η) ≤ η ⇒ MΓ,1

C ≤ η, i.e. an arbitrary prefixed
point of F1—which coincides with the notion of ranking supermartingale [23]—
overapproximates the expected reaching time. This proves soundness of ranking
supermartingales.

5.2.1 Ranking Supermartingales for the Second Moments

We extend ranking supermartingales to the second moments. It paves the way
to a fully general theory (up to the K-th moments) in Section 5.2.2.

The key in the martingale-based reasoning of expected reaching times (i.e.
first moments) was that they are characterized as the least fixed point of a
function F1. Here it is crucial that for an arbitrary random variable T , we have
E[T + 1] = E[T ]+1 and therefore we can calculate E[T + 1] from E[T ]. However,
this is not the case for second moments. As E[(T + 1)2] = E[T 2] + 2E[T ] + 1,
calculating the second moment requires not only E[T 2] but also E[T ]. This
encourages us to define a vector-valued supermartingale.

Definition 5.2.3 (time-elapse function El1). A function El1 : [0,∞]2 → [0,∞]2

is defined by El1(x1, x2) = (x1 + 1, x2 + 2x1 + 1).

Then, an extension of F1 for second moments can be defined as a combination
of the time-elapse function El1 and the pre-expectation X.

Definition 5.2.4 (F2). Let I be an invariant and C ⊆ I be a Borel set. We
define F2 : (S → [0,∞]2)→ (S → [0,∞]2) by

(F2(η))(c) =

{
(X(El1 ◦ η))(c) c ∈ I \ C
(0, 0) otherwise.

Here X is applied componentwise: (X(η1, η2))(c) = ((Xη1)(c), (Xη2)(c)).

We can extend the complete lattice structure of [0,∞] to the function space
S → [0,∞]2 in a pointwise manner. It is a routine to prove that F2 is monotone

104



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

with respect to this complete lattice structure. Hence F2 has the least fixed

point. In fact, while MΓ,1

C was characterized as the least fixed point of F1, a

tuple (MΓ,1

C ,MΓ,2

C ) is not the least fixed point of F2 (cf. Example 5.2.8 and
Thm. 5.2.9). However, the least fixed point of F2 overapproximates the tuple of
moments.

Theorem 5.2.5. For any configuration c ∈ I, (µF2)(c) ≥ (MΓ,1

C (c),MΓ,2

C (c)) .

Let TΓ
C,σ,n = min{n, TΓ

C,σ}. To prove the above theorem, we inductively
prove

(F2)n(⊥)(c) ≥
(∫

TΓc
C,σ,n dνΓc

σ ,
∫

(TΓc
C,σ,n)2 dνΓc

σ

)
for each σ and n, and take the supremum. See Section B.3 for more details.

Like ranking supermartingale for first moments, ranking supermartingale for
second moments is defined as a prefixed point of F2, i.e. a function η such that
η ≥ F2(η). However, we modify the definition for the sake of implementation.

Definition 5.2.6 (ranking supermartingale for second moments). A ranking
supermartingale for second moments is a function η : S → R2 such that: i)
η(c) ≥ (X(El1 ◦ η))(c) for each c ∈ I \ C; and ii) η(c) ≥ 0 for each c ∈ I.

Here, the time-elapse function El1 captures a positive decrease of the ranking
supermartingale. Even though we only have inequality in Thm. 5.2.5, we can
prove the following desired property of our supermartingale notion.

Theorem 5.2.7. If η : S → R2 is a supermartingale for second moments, then(
MΓ,1

C (c),MΓ,2

C (c)
)
≤ η(c) for each c ∈ I.

The following example and theorem show that we cannot replace ≥ with =
in Thm. 5.2.5 in general, but it is possible in the absence of nondeterminism.

Example 5.2.8. The figure on the right shows a pCFG such that l2 ∈ LP and
all the other locations are in LN , the initial location is l0 and l12 is a terminating
location. For the pCFG, the left-hand side of the inequality in Thm. 5.2.5 is
µF2(l0) = (6, 37.5). In contrast, if a scheduler σ takes a transition from l1
to l2 with probability p, (MΓ,1

C,σ(l0),MΓ,2
C,σ(l0)) =

(
6− 1

2p, 36− 5
2p
)
. Hence the

right-hand side is (MΓ,1

C (l0),MΓ,2

C (l0)) = (6, 36).

Theorem 5.2.9. If LN = LAN = ∅, ∀c ∈ I. (µF2)(c) = (MΓ,1

C (c),MΓ,2

C (c)).

5.2.2 Ranking Supermartingales for the Higher Moments

l0

l1

l2

l3 l4 l5 l6 l7

l8 l9 l10 l11

l12

1

2

1

2

We extend the result in Section 5.2.1 to moments
higher than second.

Firstly, the time-elapse function El1 is general-
ized as follows.

Definition 5.2.10 (time-elapse function ElK,k1 ). For

K ∈ N and k ∈ {1, . . . ,K}, a function ElK,k1 : [0,∞]K → [0,∞] is defined by

ElK,k1 (x1, . . . , xK) = 1 +
∑k
j=1

(
k
j

)
xj . Here

(
k
j

)
is the binomial coefficient.

105



5.3. From Moments to Tail Probabilities

Again, a monotone function FK is defined as a combination of the time-
elapse function ElK,k1 and the pre-expectation X.

Definition 5.2.11 (FK). Let I be an invariant and C ⊆ I be a Borel set. We
define FK : (S → [0,∞]K) → (S → [0,∞]K) by FK(η)(c) = (FK,1(η)(c), . . . ,
FK,K(η)(c)), where FK,k : (S → [0,∞]K)→ (S → [0,∞]) is given by

(FK,k(η))(c) =

{
(X(ElK,k1 ◦ η))(c) c ∈ I \ C
0 otherwise.

As in Def. 5.2.6, we define a supermartingale as a prefixed point of FK .

Definition 5.2.12 (ranking supermartingale for K-th moments). We define
η1, . . . , ηK : S → R by (η1(c), . . . , ηK(c)) = η(c). A ranking supermartingale
for K-th moments is a function η : S → RK such that for each k, i) ηk(c) ≥
(X(ElK,k1 ◦ ηk))(c) for each c ∈ I \ C; and ii) ηk(c) ≥ 0 for each c ∈ I.

For higher moments, we can prove an analogous result to Thm. 5.2.7.

Theorem 5.2.13. If η is a supermartingale for K-th moments, then for each

c ∈ I, (MΓ,1

C (c), . . . ,MΓ,K

C (c)) ≤ η(c).

5.3 From Moments to Tail Probabilities

We discuss how to obtain upper bounds of tail probabilities of runtimes from
upper bounds of higher moments of runtimes. Combined with the result in
Section 5.2, it induces a martingale-based method for overapproximating tail
probabilities.

We use a concentration inequality. There are many choices of concentration
inequalities (see e.g. [21]), and we use a variant of Markov’s inequality. We
prove that the concentration inequality is not only sound but also complete in
a sense.

Formally, our goal is to calculate is an upper bound of Pr(TΓ
C,σ ≥ d) for

a given deadline d > 0, under the assumption that we know upper bounds
u1, . . . , uK of moments E[TΓ

C,σ], . . . ,E[(TΓ
C,σ)K ]. In other words, we want to

overapproximate supµ µ([d,∞]) where µ ranges over the set of probability mea-

sures on [0,∞] satisfying
(∫
xdµ(x), . . . ,

∫
xK dµ(x)

)
≤ (u1, . . . , uK).

To answer this problem, we use a generalized form of Markov’s inequality.

Proposition 5.3.1 (see e.g. [21, Section 2.1]). Let X be a real-valued random
variable and φ be a nondecreasing and nonnegative function. For any d ∈ R
with φ(d) > 0,

Pr(X ≥ d) ≤ E[φ(X)]

φ(d)
.

By letting φ(x) = xk in Prop 5.3.1, we obtain the following inequality. It
gives an upper bound of the tail probability that is “tight.”

Proposition 5.3.2. Let X be a nonnegative random variable. Assume E[Xk] ≤
uk for each k ∈ {0, . . . ,K}. Then, for any d > 0,

Pr(X ≥ d) ≤ min
0≤k≤K

uk
dk
.

106



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

Moreover, this upper bound is tight: for any d > 0, there exists a probability
measure such that the above equation holds.

Proof. The former part is immediate from Prop 5.3.1. For the latter part,
consider µ = pδd + (1 − p)δ0 where δx is the Dirac measure at x and p is the
value of the right-hand side of (5.3.2).

By combining Thm. 5.2.13 with Prop. 5.3.2, we obtain the following corol-
lary. We can use it for overapproximating tail probabilities.

Corollary 5.3.3. Let η : S → RK be a ranking supermartingale for K-th
moments. For each scheduler σ and a deadline d > 0,

Pr(TΓ
C,σ ≥ d) ≤ min

0≤k≤K

ηk(linit, ~xinit)

dk
.

Here η0, . . . , ηK are defined by η0(c) = 1 and η(c) = (η1(c), . . . , ηK(c)).

Note that if K = 1, Cor. 5.3.3 is essentially the same as [26, Thm. 4]. Note
also that for each K there exists d > 0 such that

ηK(linit, ~xinit)

dK
= min

0≤k≤K

ηk(linit, ~xinit)

dk
.

Hence higher moments become useful in overapproximating tail probabilities as
d gets large. Later in Section 5.5, we demonstrate this fact experimentally.

5.4 Template-Based Synthesis Algorithm

We discuss an automated synthesis algorithm that calculates an upper bound
for the k-th moment of the runtime of a pCFG using a supermartingale in
Def. 5.2.6 or Def. 5.2.12. They are based on existing template-based algorithms
for synthesizing a ranking supermartingale for first moments in [23,27,28]. Input
to the algorithm is a pCFG Γ, an invariant I, a set C ⊆ I of configurations, and
a natural number K. Output is an upper bound of K-th moment.

5.4.1 Linear Template-Based Algorithm

Synthesis of a ranking supermartingale via reduction to an LP problem is dis-
cussed in [23,28]. We adapt this for our supermartingales.

We first define some notions.

Definition 5.4.1. Let V = {x1, . . . , xn} be a set of variables. A linear expres-
sion over V is a formula of a form a1xi1 + · · ·+anxin +b where a1, . . . , an, b ∈ R
and xi1 , . . . , xin ∈ V . We write Rlin[V ] for the set of linear expressions. A linear
inequality over V is a formula of a form ϕ ≥ 0 where ϕ is a linear expression.
A linear conjunctive predicate is a conjunction ϕ1 ≥ 0 ∧ · · · ∧ ϕp ≥ 0 of linear
constraints, and a linear predicate is a disjunction (ϕ1,1 ≥ 0 ∧ · · · ∧ ϕ1,p1

≥
0)∨ · · · ∨ (ϕq,1 ≥ 0∧ · · · ∧ϕq,pq ≥ 0) of linear conjunctive predicates. We define
their semantics in the standard manner.

For a pCFG Γ = (L, V, linit, ~xinit, 7→,Up,Pr, G), a linear expression map
(resp. linear predicate map) over Γ is a function that assigns a linear expression
(resp. linear predicate) to each location of Γ. The semantics of the former

107



5.4. Template-Based Synthesis Algorithm

is a function assigning a real number to each configuration, i.e. it has a type
L × RV → R, and that of the latter is a set of configurations, i.e. a subset of
L× RV . They are defined in the natural manners.

In the rest of this section, we describe a linear template-based synthesis
algorithm for a pCFG Γ an invariant I, a set C ⊆ I of configurations, and a
natural number K. We assume that the input satisfies the following conditions.
Similar conditions were assumed in [23,28].

Assumption 5.4.2.

• For any l ∈ LA such that Up(l) = (xj , u),

– if u ∈ B(RV ,R), then u is represented by a linear expression over V ;

– if u ∈ D(R), the expectation of u is known; and

– if u ∈ B(R), then u is represented by a linear predicate φ over {xj}.

• For any l ∈ LD and l′ ∈ L, G(l, l′) = JpK is represented by a linear
predicate over V .

• the invariant I is represented by a linear predicate map over Γ.

• the set C of terminal configurations is represented by a linear conjunctive
predicate map.

Let V = {x1, . . . , xn} be the set of variables appearing in Γ. We first fix
a linear template to a supermartingale. It is a family of formulas indexed by
i ∈ {1, . . . ,K} and l ∈ L that have the following form:

ηi(l, ~x) = al1,ix1 + · · ·+ aln,ixn + bli .

Here al1,i, . . . , a
l
n,i, b

l
i are newly added variables called parameters. We write U

for the set of all parameters, i.e. U := {al1,i, . . . , aln,i, bli | i ∈ {1, . . . ,K}, l ∈ L}.
Note that if we fix a valuation U → R of parameters, then each ηi(l, ~x) reduces
to a linear expression over V , and therefore ηi( , ~x) can be regarded as a linear
expression map L × RV → Rlin[V ]. Our goal is to find a valuation U → R
so that a K-tuple

(
η1( , ~x), . . . , ηK( , ~x)

)
of linear expression maps become a

ranking supermartingale for K-th moment (Definition 5.2.12).
To this end, we reduce the axioms of ranking supermartingale for K-th

moments in Definition 5.2.12 to conditions over the parameters. We shall omit
the detail, but it is not so hard to see that as a result of the reduction we obtain
a conjunction of formulas of the following form:

∀~x ∈ RV . ϕ1 �1 0 ∧ · · ·ϕm �m 0 =⇒ ψ ≥ 0 .

Here �i ∈ {≥, >}, each ϕi is a linear expression without parameters, and ψ is
a linear formula over V whose coefficients are linear expressions over U .

We next relax the strict inequalities as follows:

∀~x ∈ RV . ϕ1 ≥ 0 ∧ · · ·ϕm ≥ 0 =⇒ ψ ≥ 0 .

It is easy to see that (5.4.1) implies (5.4.1). The same relaxation is also done
in [23,28].

108



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

Using matrices, we can represent a formula (5.4.1) as follows:

∀~x ∈ RV . A~x ≤ b =⇒ cTx ≤ d .

Here A is a matrix and b is a vector all of whose components are real numbers,
and c is a vector and d is a scalar all of whose components are linear expressions
over U . In [23,28], a formula (5.4.1) is reduced to the following formula:

∃~y ∈ Rm. ∃y′ ∈ R. d− cTx = ~yT
(
b−A~x

)
+ y′ .

Here m is the dimension of b. It is easy to see that (5.4.1) implies (5.4.1). By
comparing the coefficients on both sides, we can see that (5.4.1) is equivalent to

∃~y ∈ Rm. AT~y = c ∧ bT y ≤ d .

Note that the resulting (in)equalities are linear with respect to parameters in U
and ~y. Hence its feasibility can be efficiently checked using a linear programming
(LP) solver.

Recall that our goal is to calculate an upper bound of K-th moment. Hence
we naturally want to minimize the upper bound ηK(linit, ~xinit) calculated by
a supermartingale (see Thm. 5.2.13). We can achieve this goal by setting
ηK(linit, ~xinit), a linear expression over U , to the objective function of the linear
programming problem and ask the LP solver to minimize it.

A natural question would be about the converse of the implication (5.4.1) ⇒
(5.4.1). The following theorem answers the question to some extent.

Theorem 5.4.3 (affine form of Farkas’ lemma (see e.g. [103, Cor. 7.1h])). Let
A ∈ Rn×m, b ∈ Rm, c ∈ Rn and d ∈ R. If {x | Ax ≤ b} is not empty, the
following two conditions are equivalent.

• ∀x ∈ Rn, Ax ≤ b =⇒ cTx ≤ d

• ∃y ∈ Rm, AT y = c ∧ bT y ≤ d

We note that if a pCFG Γ has no program variable (V = ∅) and all the tran-
sitions are probabilistic (that is, if Γ is a Markov chain), the above method gives
the exact value of moments. It is because the LP problem has the following ob-
vious optimal solution: ηk(l) = (the k-th moment of runtimes from location l).

5.4.2 Polynomial Template-based Algorithm

We consider fixing a polynomial template for a supermartingale. The algorithm
in this section is based on [27].

Definition 5.4.4. Let V = {x1, . . . , xn} be a set of variables. A monomial is

a formula of a form xd1
i1
. . . x

dp
ip

. We call d1 + · · ·+ dp a degree of the monomial,
and write M≤d for the set of monomials whose degrees are no greater than d.
A polynomial expression (or simply a polynomial) over V is a formula of a form
a1m1 + · · · + aqmq + b where a1, . . . , aq, b ∈ R and m1, . . . ,mq are monomials.
We write R[V ] for the set of polynomial expressions over V . The notions of
polynomial inequality, polynomial conjunctive predicate, polynomial predicate,
polynomial expression map and polynomial predicate map are defined in a similar
manner to Def. 5.4.1.

109



5.4. Template-Based Synthesis Algorithm

In the polynomial case, we assume that a pCFG Γ, an invariant I, a set C ⊆ I
of configurations and a natural number K satisfy the following conditions.

Assumption 5.4.5.

• For any l ∈ LA, Up(l) = (xj , u),

– if u ∈ B(RV ,R), then u is represented by a polynomial expression
over V

– if u ∈ D(R), the K-th moment of u is known.

– if u ∈ B(R), then u is represented by a polynomial predicate φ over
{xj}.

• For any l ∈ LD, l′, G(l, l′) = JpK is represented by a polynomial predicate
p over V .

• the invariant I is represented by a polynomial predicate map over Γ.

• the set C of terminal configurations is represented by a polynomial con-
junctive predicate map.

The polynomial template-based synthesis algorithm is similar to the linear
template-based one. In the polynomial case, the user have to fix the maximum
degree d of the polynomial template. The algorithm first fixes a d-degree poly-
nomial template for a supermartingale. It is a family of formulas indexed by
i ∈ {1, . . . ,K} and l ∈ L that have the following form:

ηi(l, ~x) =
∑

m∈M≤d

alm,im+ bli .

Each alm,i and bli are newly added variables called parameters, and we write U
for the set of all parameters. Our goal is to find a valuation U → R so that
a K-tuple

(
η1( , ~x), . . . , ηK( , ~x)

)
of polynomial expression maps is a ranking

supermartingale for K-th moment (Definition 5.2.12).
Similarly to the linear case, the algorithm collects conditions on the param-

eters. It results in a conjunction of formulas of the following form:

∀~x ∈ RV . ϕ1 �1 0 ∧ · · ·ϕm �m 0 =⇒ ψ ≥ 0 .

Here �i ∈ {≥, >}, each ϕi is a polynomial expression without parameters, and
ψ is a polynomial formula over V whose coefficients are linear expressions over
U . Relaxing the strict inequalities, we obtain the following:

∀~x ∈ RV . ϕ1 ≥ 0 ∧ · · ·ϕm ≥ 0 =⇒ ψ ≥ 0 .

To reduce (5.4.2) to a form that is solvable by a numerical method, we can
use the notion of sum-of-square polynomials [27]. A polynomial expression f is
said to be sum-of-square (SOS) if there exist polynomial expressions g1, . . . , gl
such that f = g2

1 + · · ·+ g2
l .

Obviously, a sum-of-square polynomial is nonnegative. Therefore the follow-
ing formula is a sufficient condition for (5.4.2):

∃
(
hw : sum-of-square

)
w∈{0,1}m . ψ =

∑
w∈{0,1}m

hw · ϕw1
1 · · · · · ϕwmm .

110



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

Here wi denotes the i-th component of w ∈ {0, 1}m.

One of the reasons that sum-of-square is convenient is that it is characterized
using the notion of positive semidefinite matrix.

Proposition 5.4.6 (see e.g. [52]). A polynomial expression f over V is sum-
of-square if and only if there exist a vector ~y whose components are monomials
over V and a positive semidefinite matrix A such that f = ~yTA~y.

By the proposition above, existence of a valuation U → R of parameters
and sum-of-square polynomials as in (5.4.2) can be reduced to a semidefinite
programming (SDP) problem. Likewise the linear case, by setting a linear ex-
pression ηK(linit, ~xinit) to the objective function, we can minimize it.

In the linear case, completeness was partially ensured by Farkas’ lemma. In
the polynomial case, the role is played by the following theorem.

Theorem 5.4.7 (Schmüdgen’s Positivstellensatz [102]). Let g, g1, . . . , gm be
polynomial expression over a set of variable V . If {~x ∈ RV |

∧m
i=1 gi ≥ 0} is

compact, then the following conditions are equivalent:

• ∀x ∈ RV . g1 ≥ 0 ∧ · · · ∧ gm ≥ 0 =⇒ g > 0.

• there exists a family {hw}w∈{0,1}m of sum-of-square polynomial expres-
sions such that g =

∑
w∈{0,1}m hw · g

w1
1 · · · · · gwmm .

5.5 Experiments

We implemented two programs in OCaml to synthesize a supermartingale based
on a) a linear template and b) a polynomial template. The programs translate
a given randomized program to a pCFG and output an LP or SDP problem
as described in Section 5.4. An invariant I and a terminal configuration C for
the input program are specified manually. See e.g. [62] for automatic synthesis
of an invariant. For linear templates, we have used GLPK (v4.65) [45] as an
LP solver. For polynomial templates, we have used SOSTOOLS (v3.03) [108] (a
sums of squares optimization tool that internally uses an SDP solver) on Matlab
(R2018b). We used SDPT3 (v4.0) [105] as an SDP solver. The experiments
were carried out on a Surface Pro 4 with an Intel Core i5-6300U (2.40GHz) and
8GB RAM. We tested our implementation for the following two programs and
their variants, which were also used in the literature [28, 61]. Their code is in
Section B.4.

Coupon collector’s problem. A probabilistic model of collecting coupons enclosed
in cereal boxes. There exist n types of coupons, and one repeatedly buy cereal
boxes until all the types of coupons are collected. We consider two cases: (1-1)
n = 2 and (1-2) n = 4. We tested the linear template program for them.

Random walk. We used three variants of 1-dimensional random walks: (2-
1) integer-valued one, (2-2) real-valued one with assignments from continuous
distributions, (2-3) with adversarial nondeterminism; and two variants of 2-
dimensional random walks (2-4) and (2-5) with assignments from continuous
distributions and adversarial nondeterminism. We tested both the linear and
the polynomial template programs for these examples.

111



5.5. Experiments

1 x := 200000000;
2 while true do
3 if prob (0.7) then
4 z := Unif (0,1);
5 x := x - z
6 else
7 z := Unif (0,1);
8 x := x + z
9 fi;

10 refute (x < 0)
11 od

Figure 5.1: A variant of (2-2).

Experimental results We measured execution times needed for Step 1 in
Fig. 1.8. The results are in Table 5.1. Execution times are less than 0.2 sec-
onds for linear template programs and several minutes for polynomial template
programs. Upper bounds of tail probabilities obtained from Prop. 5.3.2 are in
Fig. 5.2.

We can see that our method is applicable even with nondeterministic branch-
ing ((2-3), (2-4) and (2-5)) or assignments from continuous distributions ((2-2),
(2-4) and (2-5)). We can use a linear template for bounding higher moments
as long as there exists a supermartingale for higher moments representable by
linear expressions ((1-1), (1-2) and (2-3)). In contrast, for (2-1), (2-2) and (2-
4), only a polynomial template program found a supermartingale for second
moments.

It is expectable that the polynomial template program gives a better bound
than the linear one because a polynomial template is more expressive than a
linear one. However, it did not hold for some test cases, probably because of
numerical errors of the SDP solver. For example, (2-1) has a supermartingale
for third moments that can be checked by a hand calculation, but the SDP
solver returned “infeasible” in the polynomial template program. It appears
that our program fails when large numbers are involved (e.g. the third moments
of (2-1), (2-2) and (2-3)). We have also tested a variant of (2-1) where the initial
position is multiplied by 10000. Then the SDP solver returned “infeasible” in
the polynomial template program while the linear template program returns a
nontrivial bound. Hence it seems that numerical errors are likely to occur to
the polynomial template program when large numbers are involved.

Fig. 5.2 shows that the bigger the deadline d is, the more useful higher
moments become (cf. a remark just after Cor. 5.3.3). For example, in (1-2),
an upper bound of Pr(TΓ

C,σ ≥ 100) calculated from the upper bound of the first
moment is 0.680 while that of the fifth moment is 0.105.

To show the merit of our method compared with sampling-based methods,
we calculated a tail probability bound for a variant of (2-2) (shown in Fig. 5.1 on
p. 112)) with a deadline d = 1011. Because of its very long expected runtime, a
sampling-based method would not work for it. In contrast, the linear template-
based program gave an upper bound Pr(TΓ

C,σ ≥ 1011) ≤ 5000000025/1011 ≈ 0.05
in almost the same execution time as (2-2) (< 0.02 seconds).

112



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

Table 5.1: Upper bounds of the moments of runtimes. “-” indicates that the
LP or SDP solver returned “infeasible”. The “degree” column shows the degree
of the polynomial template used in the experiments.

a) linear template b) polynominal template
moment upper bound time (sec) upper bound time (sec) degree

1st 13 0.012
(1-1) 2nd 201 0.019

3rd 3829 0.023
1st 68 0.024
2nd 3124 0.054

(1-2) 3rd 171932 0.089
4th 12049876 0.126
5th 1048131068 0.191
1st 20 0.024 20.0 24.980 2

(2-1) 2nd - 0.013 2320.0 37.609 2
3rd - 0.017 - 30.932 3
1st 75 0.009 75.0 33.372 2

(2-2) 2nd - 0.014 8375.0 73.514 2
3rd - 0.021 - 170.416 3
1st 62 0.020 62.0 40.746 2

(2-3) 2nd 28605.4 0.038 6710.0 97.156 2
3rd 19567043.36 0.057 - 35.427 3

(2-4) 1st 96 0.020 95.95 157.748 2
2nd - 0.029 10944.0 361.957 2

(2-5) 1st 90 0.022 - 143.055 2
2nd - 0.042 - 327.202 2

5.6 Related Work

Martingale-Based Analysis of Randomized Programs Martingale-based
methods are widely studied for the termination analysis of randomized pro-
grams. One of the first is ranking supermartingales, introduced in [23] for prov-
ing almost sure termination. The theory of ranking supermartingales has since
been extended actively: accommodating nondeterminism [5, 27, 28, 38], syntax-
oriented composition of supermartingales [38], proving properties beyond ter-
mination/reachability [54], and so on. Automated template-based synthesis of
supermartingales by constraint solving has been pursued, too [5, 23,27,28].

Other martingale-based methods that are fundamentally different from rank-
ing supermartingales have been devised, too. They include: different notions of
repulsing supermartingales for refuting termination (in [29,112]; also studied in
control theory [109]); and multiply-scaled submartingales for underapproximat-
ing reachability probabilities [112,119]. See [112] for an overview.

In the literature on martingale-based methods, the one closest to this work
is [26]. Among its contribution is the analysis of tail probabilities. It is done
by either of the following combinations: 1) difference-bounded ranking super-
martingales and the corresponding Azuma’s concentration inequality; and 2)
(not necessarily difference-bounded) ranking supermartingales and Markov’s
concentration inequality. When we compare these two methods with ours, the
first method requires repeated martingale synthesis for different parameter val-
ues, which can pose a performance challenge. The second method corresponds

113



5.6. Related Work

0 20 40
0

0.5

1

k = 1

k = 2

k = 3

deadline d

ta
il
p
ro
b
ab

il
it
y

(1-1)

1

0 50 100 150
0

0.5

1

k = 1

k = 2

k = 3

k = 4

k = 5

deadline d

ta
il
p
ro
b
ab

il
it
y

(1-2)

1

0 50 100 150 200
0

0.5

1

k = 1
k = 2

deadline d

ta
il
p
ro
b
ab

il
it
y

(2-1)

1

0 200 400
0

0.5

1

k = 1
k = 2

deadline d

ta
il
p
ro
b
ab

il
it
y

(2-2)

1

0 200 400 600 800
0

0.5

1

k = 1

k = 2

k = 3

deadline d

ta
il
p
ro
b
ab

il
it
y

(2-3)

1

0 100 200 300 400
0

0.5

1

k = 1

k = 2

deadline d

ta
il
p
ro
b
ab

il
it
y

(2-4)

1

Figure 5.2: Upper bounds of the tail probabilities (except (2-5)). Each gray
line is the value of uk

dk
where uk is the best upper bound in Table 5.1 of k-th

moments and d is a deadline. Each black line is the minimum of gray lines, i.e.
the upper bound by Prop. 5.3.2. The red lines in (1-1), (1-2) and (2-1) show the
true tail probabilities calculated analytically. The red points in (2-2) show tail
probabilities calculated by Monte Carlo sampling where the number of trials
is 100000000. We did not calculate the true tail probabilities nor approximate
them for (2-4) and (2-5) because these examples seem difficult to do so due to
nondeterminism.

to the restriction of our method to the first moment; recall that we showed the
advantage of using higher moments, theoretically (Section 5.3) and experimen-
tally (Section 5.5). See Section B.5.1 for detailed discussions. Implementation
is lacking in [26], too.

We use Markov’s inequality to calculate an upper bound of Pr(Trun ≥ d)
from a ranking supermartingale. In [28], Hoeffding’s and Bernstein’s inequal-
ities are used for the same purpose. As the upper bounds obtained by these
inequalities are exponentially decreasing with respect to d, they are asymptoti-
cally tighter than our bound obtained by Markov’s inequality, assuming that we
use the same ranking supermartingale. However, Hoeffding’s and Bernstein’s
inequalities are applicable to limited classes of ranking supermartingales (so-
called difference-bounded and incremental ones, respectively). There exists a
randomized program whose tail probability for runtimes is decreasing only poly-
nomially (not exponentially, see Section B.6; this witnesses that there are cases
where the methods in [28] do not apply but ours can.

The work [5] is also close to ours in that their supermartingales are vector-
valued. The difference is in the orders: in [5] they use the lexicographic order
between vectors, and they aim to prove almost sure termination. In contrast, we
use the pointwise order between vectors, for overapproximating higher moments.

114



Chapter 5. Tail Probabilities of Randomized Programs via Higher Moments
of Runtime

The Predicate-Transformer Approach to Runtime Analysis In the
runtime/termination analysis of randomized programs, another principal line
of work uses predicate transformers [15, 59, 61], following the precedent works
on probabilistic predicate transformers such as [68,85]. In fact, from the math-
ematical point of view, the main construct for witnessing runtime/termination
in those predicate transformer calculi (called invariants, see e.g. in [61]) is es-
sentially the same thing as ranking supermartingales. Therefore the difference
between the martingale-based and predicate-transformer approaches is mostly
the matter of presentation—the predicate-transformer approach is more closely
tied to program syntax and has a stronger deductive flavor. It also seems that
there is less work on automated synthesis in the predicate-transformer approach.

In the predicate-transformer approach, the work [59] is the closest to ours, in
that it studies variance of runtimes of randomized programs. The main differ-
ences are as follows: 1) computing tail probabilities is not pursued [59]; 2) their
extension from expected runtimes to variance involves an additional variable
τ , which poses a challenge in automated synthesis as well as in generalization
to even higher moments; and 3) they do not pursue automated analysis. See
Section B.5.2 for further details.

Higher Moments of Runtimes Computing and using higher moments of
runtimes of probabilistic systems—generalizing randomized programs—has been
pursued before. In [30], computing moments of runtimes of finite-state Markov
chains is reduced to a certain linear equation. In the study of randomized algo-
rithms, the survey [33] collects a number of methods, among which are some tail
probability bounds using higher moments. Unlike ours, none of these methods
are language-based static ones. They do not allow automated analysis.

Other Potential Approaches to Tail Probabilities We discuss potential
approaches to estimating tail probabilities, other than the martingale-based one.

Sampling is widely employed for approximating behaviors of probabilistic
systems; especially so in the field of probabilistic programming languages, since
exact symbolic reasoning is hard in presence of conditioning. See e.g. [115]. We
also used sampling to estimate tail probabilities in (2-2), Fig. 5.2. The main
advantages of our current approach over sampling are threefold: 1) our upper
bounds come with a mathematical guarantee, while the sampling bounds can
always be erroneous; 2) it requires ingenuity to sample programs with nonde-
terminism; and 3) programs whose execution can take millions of years can still
be analyzed by our method in a reasonable time, without executing them. The
latter advantage is shared by static, language-based analysis methods in general;
see e.g. [15].

Another potential method is probabilistic model checkers such as PRISM [73].
Their algorithms are usually only applicable to finite-state models, and thus not
to randomized programs in general. Nevertheless, fixing a deadline d can make
the reachable part S≤d of the configuration space S finite, opening up the pos-
sibility of use of model checkers. It is an open question how to do so precisely,
and the following challenges are foreseen: 1) if the program contains contin-
uous distributions, the reachable part S≤d becomes infinite; 2) even if S≤d is
finite, one has to repeat (supposedly expensive) runs of a model checker for
each choice of d. In contrast, in our method, an upper bound for the tail prob-

115



5.7. Conclusions and Future Work

ability Pr(Trun ≥ d) is symbolically expressed as a function of d (Prop. 5.3.2).
Therefore, estimating tail probabilities for varying d is computationally cheap.

5.7 Conclusions and Future Work

We provided a technique to obtain an upper bound of the tail probability of
runtimes given a randomized algorithm and a deadline. We first extended the
ordinary ranking supermartingale notion using the order-theoretic characteri-
zation so that it can calculate upper bounds of higher moments of runtimes
for randomized programs. Then by using a suitable concentration inequality,
we introduced a method to calculate an upper bound of tail probabilities from
upper bounds of higher moments. Our method is not only sound but also com-
plete in a sense. Our method was obtained by combining our supermartingale
and the concentration inequality. We also implemented an automated synthesis
algorithm and demonstrated the applicability of our framework.

Future Work Example 5.2.8 shows that our supermartingale is not complete:
it sometimes fails to give a tight bound for higher moments. Studying and im-
proving the incompleteness is one possible direction of future work. For example,
the following questions would be interesting: Can bounds given by our super-
martingale be arbitrarily bad? Can we remedy the completeness by restricting
the type of nondeterminism? Can we define a complete supermartingale?

Making our current method compositional is another direction of future
research. Use of continuations, as in [60], can be a technical solution.

We are also interested in improving the implementation. The polynomial
template program failed to give an upper bound for higher moments because
of numerical errors (see Section 5.5). We wish to remedy this situation. There
exist several studies for using numerical solvers for verification without affected
by numerical errors [55–57, 95, 96]. We might make use of these works for im-
provements.

116



Appendix A

Full Definition of the
Underlying Type System
and the Dependent
Refinement Type System

A.1 Underlying Type System

Our underlying type system in 2.4 is based on [9] but with minor modifications.
In this section, we list all the typing rules and describe the interpretation of
types and terms.

A.1.1 Typing Rules

Well-Formed Contexts

` �
` Γ Γ ` A x /∈ Vars(Γ)

` Γ, x : A

Definitional Equality for Contexts

` � = �
` Γ1 = Γ2 Γ1 ` A = B Γ2 ` B x /∈ Vars(Γ1) ∪Vars(Γ2)

` Γ1, x : A = Γ2, x : B

Definitional Equality

Reflexivity.

Γ ` A
Γ ` A = A

Γ ` C
Γ ` C = C

Γ ` V : A

Γ ` V = V : A

Γ `M : C

Γ `M = M : C

Symmetry.

Γ ` B = A

Γ ` A = B

Γ ` D = C

Γ ` C = D

Γ `W = V : A

Γ ` V = W : A

Γ ` N = M : C

Γ `M = N : C

117



A.1. Underlying Type System

Transitivity.

Γ ` V1 = V2 : A Γ ` V2 = V3 : A

Γ ` V1 = V3 : A

Γ `M1 = M2 : C Γ `M2 = M3 : C

Γ `M1 = M3 : C

Γ ` A1 = A2 Γ ` A2 = A3

Γ ` A1 = A3

Γ ` C1 = C2 Γ ` C2 = C3

Γ ` C1 = C3

Conversion

Γ2 ` A ` Γ1 = Γ2

Γ1 ` A
Γ2 ` C ` Γ1 = Γ2

Γ1 ` C
Γ2 ` A = B ` Γ1 = Γ2

Γ1 ` A = B

Γ2 ` C = D ` Γ1 = Γ2

Γ1 ` C = D

` Γ1 = Γ2 Γ2 ` V : A Γ1 ` A = B

Γ1 ` V : B

` Γ1 = Γ2 Γ2 `M : C Γ1 ` C = D

Γ1 `M : D

Variables

` Γ1, x : A,Γ2

Γ1, x : A,Γ2 ` x : A

Value constants

` Γ � ` ty(c)

Γ ` cty(c) : ty(c)

Unit Type

` Γ

Γ ` 1

` Γ

Γ ` ∗ : 1

Γ ` V : 1

Γ ` V = ∗ : 1

Base Types

Γ ` V : A b : A→ Type � ` A
Γ ` bA(V )

Γ ` V = W : A b : A→ Type � ` A
Γ ` bA(V ) = bA(W )

118



Appendix A. Full Definition of the Underlying Type System and the
Dependent Refinement Type System

Value Σ-Types

Γ ` A Γ, x : A ` B
Γ ` Σx:A.B

Γ ` V : A Γ, x : A ` B Γ `W : B[V/x]

Γ ` 〈V,W 〉 : Σx:A.B

Γ ` V : Σx:A.B Γ, z : Σx:A.B ` C Γ, x : A, y : B `M : C[〈x, y〉/z]
Γ ` pm V as 〈x : A, y : B〉 inz.C M : C[V/z]

Γ ` A1 = A2 Γ, x : A1 ` B1 = B2

Γ ` Σx : A1.B1 = Σx : A2.B2

Γ ` A1 = A2 Γ ` V1 = V2 : A2

Γ, x : A1 ` B1 = B2 Γ `W1 = W2 : B2[V2/x]

Γ ` 〈V1,W1〉 = 〈V2,W2〉 : Σx : A2.B2

Γ ` A1 = A2 Γ, x : A1 ` B1 = B2 Γ, z : Σx:A1.B1 ` C1 = C2

Γ ` V1 = V2 : Σx:A2.B2

Γ, x : A1, y : B1 `M1 = M2 : C2[〈x, y〉(x:A2).B2
/z]

Γ `pm V1 as 〈x : A1, y : B1〉 inz.C1
M1

= pm V2 as 〈x : A2, y : B2〉 inz.C2
M2 : C2[V2/z]

Γ, z : Σx:A.B ` C
Γ ` V : A Γ `W : B[V/x] Γ, x : A, y : B `M : C[〈x, y〉/z]

Γ ` pm 〈V,W 〉 as 〈x : A, y : B〉 inz.C M = M [V/x][W/y] : C[〈V,W 〉/z]

Γ ` A Γ, x : A ` B
Γ ` V : Σx:A.B Γ, z : Σx:A.B ` C Γ, z : Σx:A.B `M : C

Γ ` pm V as 〈x : A, y : B〉 inz.C M [〈x, y〉/z] = M [V/z] : C[V/z]

Thunked Computation

Γ ` C
Γ ` UC

Γ `M : C

Γ ` thunk M : UC

Γ ` V : UC

Γ ` forceC V : C

Γ ` C1 = C2

Γ ` UC1 = UC2

Γ `M1 = M2 : C

Γ ` thunk M1 = thunk M2 : UC

Γ ` C1 = C2 Γ ` V1 = V2 : UC2

Γ ` forceC1
V1 = forceC2

V2 : C2

Γ ` V : UC

Γ ` thunk (forceC V ) = V : UC

Γ `M : C

Γ ` forceC (thunk M) = M : C

Return

Γ ` A
Γ ` FA

Γ ` V : A

Γ ` return V : FA

Γ `M : FA Γ ` C Γ, x : A ` N : C

Γ `M to x : A inC N : C

119



A.1. Underlying Type System

Γ ` A1 = A2

Γ ` FA1 = FA2

Γ ` V1 = V2 : A

Γ ` return V1 = return V2 : FA

Γ ` A1 = A2 Γ `M1 = M2 : FA2

Γ ` C1 = C2 Γ, x : A1 ` N1 = N2 : C2

Γ `M1 to x : A1 inC1
N1 = M2 to x : A2 inC2

N2 : C2

Γ ` V : A Γ ` C Γ, x : A `M : C

Γ ` return V to x : A inC M = M [V/x] : C[V/x]

Γ `M : FA

Γ `M to x : A inC return x = M : FA

Γ `M1 : FA1

Γ ` A2 Γ, x : A1 `M2 : FA2 Γ ` C Γ, y : A2 `M3 : C

Γ `(M1 to x : A1 inFA2
M2) to y : A2 inC M3

= M1 to x : A1 inFA2
(M2 to y : A2 inC M3) : C

Computational Π-Types

Γ ` A Γ, x : A ` C
Γ ` Πx:A.C

Γ, x : A `M : C

Γ ` λx : A.M : Πx:A.C

Γ, x : A ` C Γ `M : Πx:A.C Γ ` V : A

Γ `M(V )(x:A).C : C[V/x]

Γ ` A2 = A1 Γ, x : A2 ` C1 = C2

Γ ` Πx:A1.C1 = Πx:A2.C2

Γ ` A1 = A2 Γ, x : A1 `M1 = M2 : C

Γ ` λx : A1.M1 = λx : A2.M2 : Πx:A1.C

Γ ` A2 = A1 Γ, x : A2 ` C1 = C2

Γ `M1 = M2 : Πx:A2.C2 Γ ` V1 = V2 : A2

Γ `M1(V1)(x:A1).C1
= M2(V2)(x:A2).C2

: C1[V1/x]

Γ, x : A `M : C Γ ` V : A

Γ ` (λx : A.M)(V )(x:A).C = M [V/x] : C[V/x]

Γ, x : A ` C Γ `M : Πx:A.C

Γ `M = λx : A.M(x)(x:A).C : Πx:A.C

120



Appendix A. Full Definition of the Underlying Type System and the
Dependent Refinement Type System

Fibred Coproduct Types

Γ ` A Γ ` B
Γ ` A+B

Γ ` V : A Γ ` B
Γ ` inlA+B V : A+B

Γ ` V : B Γ ` A
Γ ` inrA+B V : A+B

Γ, z : A+B ` C Γ ` V : A+B
Γ, x : A `M : C[inlA+B x/z] Γ, y : B ` N : C[inrA+B y/z]

Γ ` case V ofz.C (inl (x : A) 7→M, inr (y : B) 7→ N) : C[V/z]

Γ ` A1 = A2 Γ ` B1 = B2

Γ ` A1 +B1 = A2 +B2

Γ ` A1 = A2 Γ ` B1 = B2 Γ ` V1 = V2 : A2

Γ ` inlA1+B1
V1 = inlA2+B2

V2 : A2 +B2

Γ ` A1 = A2 Γ ` B1 = B2 Γ ` V1 = V2 : B2

Γ ` inrA1+B1
V1 = inrA2+B2

V2 : A2 +B2

Γ ` A1 = A2 Γ ` B1 = B2 Γ, z : A1 +B1 ` C1 = C2

Γ ` V1 = V2 : A1 +B1 Γ, x : A1 `M1 = M2 : C2[inlA2+B2
x/z]

Γ, y : B1 ` N1 = N2 : C2[inrA2+B2 y/z]

Γ `case V1 ofz.C1
(inl (x : A1) 7→M1, inr (y : B1) 7→ N1)

= case V2 ofz.C2
(inl (x : A2) 7→M2, inr (y : B2) 7→ N2) : C2[V2/z]

Γ, z : A+B ` C Γ ` V : A
Γ, x : A `M : C[inlA+B x/z] Γ, y : B ` N : C[inrA+B y/z]

Γ `case (inlA+B V ) ofz.C (inl (x : A) 7→M, inr (y : B) 7→ N)

= M [V/x] : C[inlA+B V/z]

Γ, z : A+B ` C Γ ` V : B
Γ, x : A `M : C[inlA+B x/z] Γ, y : B ` N : C[inrA+B y/z]

Γ `case (inrA+B V ) ofz.C (inl (x : A) 7→M, inr (y : B) 7→ N)

= N [V/y] : C[inrA+B V/z]

Γ, z : A+B ` C Γ ` V : A+B Γ, z : A+B `M : C

Γ `case V ofz.C (inl (x : A) 7→M [inlA+B x/z], inr (y : B) 7→M [inrA+B y/z])

= M [V/z] : C[V/z]

A.1.2 Semantics

Given a fibred adjunction model (Definition 2.4.1), we define the interpretation
J−K of types and terms as follows (see also [9]). These definitions mean that if
the upper part is defined, then the lower part is also defined.

Contexts

J�K = 1

JΓ;AK ∈ EJΓK x /∈ Vars(Γ)

JΓ, x : AK = {JΓ;AK}

121



A.1. Underlying Type System

Types

b : A→ Type J�;AK ∈ E1 JbK ∈ E{J�;AK} JΓ;V K : 1JΓK→!∗JΓKJ�;AK

JΓ; b(V )K = (sJΓ;V K)∗{!JΓK(J�;AK)}∗JbK

JΓK ∈ B
JΓ; 1K = 1JΓK

JΓ;AK ∈ EJΓK JΓ, x : A;BK ∈ EJΓ,x:AK

JΓ; Σx:A.BK =
∐

JΓ;AK

JΓ, x : A;BK

JΓ;CK
JΓ;UCK = UJΓ;CK

JΓ;AK
JΓ;FAK = F JΓ;AK

JΓ;AK JΓ, x : A;CK

JΓ; Πx:A.CK =
∏

JΓ;AK

JΓ, x : A;CK

JΓ;AK JΓ;BK
JΓ;A+BK = JΓ;AK + JΓ;BK

Value Terms

JΓ, x : AK

JΓ, x : A;xK =



1JΓ, x : AK

π∗JΓ;AK

∐
JΓ;AK

1JΓ, x : AK

π∗JΓ;AKJΓ;AK

η

π∗JΓ;AKfst


JΓ1, x : A,Γ2;BK JΓ1, x : A,Γ2;xK : 1JΓ1, x : A,Γ2K→ A

JΓ1, x : A,Γ2; y : B;xK =



1JΓ1, x : A,Γ2, y : BK

π∗JΓ1,x:A,Γ2;BK1JΓ1, x : A,Γ2K

π∗JΓ1,x:A,Γ2;BKA

π∗JΓ1,x:A,Γ2;BKJΓ1,x:A,Γ2;xK


JΓK ∈ B

JΓ; ∗K =


1JΓK

1JΓK

id1JΓK


JΓK JcK : 1→ J�; ty(c)K

JΓ; cK =


1JΓK

!∗J�; ty(c)K

!∗JcK


122



Appendix A. Full Definition of the Underlying Type System and the
Dependent Refinement Type System

JΓ;V K : 1JΓK→ JΓ;AK JΓ;W K : 1JΓK→ (sJΓ;V K)∗JΓ, x : A;BK

JΓ; 〈V,W 〉(x:A).BK =



1JΓK

(sJΓ;V K)∗JΓ, x : A;BK

(sJΓ;V K)∗π∗JΓ;AK

∐
JΓ;AK

JΓ, x : A;BK

∐
JΓ;AK

JΓ, x : A;BK

JΓ;W K

(sJΓ;V K)∗η



JΓ;MK : 1JΓK→ UC

JΓ; thunk MK = JΓ;MK

JΓ;V K : 1JΓK→ JΓ;AK JΓ;BK

JΓ; inlA+B V K =



1JΓK

JΓ;AK

JΓ;AK + JΓ;BK

JΓ;V K

ι1



JΓ;V K : 1JΓK→ JΓ;BK JΓ;AK

JΓ; inrA+B V K =



1JΓK

JΓ;BK

JΓ;AK + JΓ;BK

JΓ;V K

ι2



Computation Terms

JΓ;V K : 1JΓK→ A

JΓ; return V K =


1JΓK

A

UFA

JΓ;V K

ηA


123



A.1. Underlying Type System

JΓ;MK : 1JΓK→ UF JΓ;AK JΓ, x : A;NK : 1JΓ, x : AK→ Uπ∗JΓ;AKJΓ;CK

JΓ;M to x : A inC NK =



1JΓK

UF JΓ;AK

UFUJΓ;CK

UJΓ;CK

JΓ;MK

UFφ(JΓ,x:A;NK)

Uε



Here, the isomorphism

φ : E{X}(1{JΓ;AK}, π∗JΓ;AKUJΓ;CK) ∼= EI({JΓ;AK}, UJΓ;CK)

is defined in Section 2.1.1.

JΓ;V K : 1JΓK→ UJΓ;CK

JΓ; forceC V K =


1JΓK

UJΓ;CK

JΓ;V K



JΓ;V K : 1JΓK→
∐

JΓ;AK

JΓ, x : A;BK

JΓ, x : A, y : B;MK : 1JΓ, x : A, y : BK→ Uκ∗JΓ, z : Σx:A.B;CK
JΓ; pm V as 〈x : A, y : B〉 inz.C MK

=



1JΓK

(sJΓ;V K)∗(κ−1)∗1JΓ, x : A, y : BK

(sJΓ;V K)∗(κ−1)∗Uκ∗JΓ, z : Σx:A.B;CK

U(sJΓ;V K)∗JΓ, z : Σx:A.B;CK

(sJΓ;V K)∗(κ−1)∗JΓ,x:A,y:B;MK


124



Appendix A. Full Definition of the Underlying Type System and the
Dependent Refinement Type System

JΓ, x : A;MK : 1JΓ, x : AK→ UC

JΓ;λx:A.MK =



1JΓK

∏
JΓ;AK

π∗JΓ;AK1JΓK

∏
JΓ;AK

1JΓ, x : AK

∏
JΓ;AK

UC

U
∏

JΓ;AK

C

η

∏
JΓ,x:A;MK

ζ−1
JΓ;AK



Here, ζJΓ;AK : U
∏

JΓ;AK C →
∏

JΓ;AK UC is the isomorphism induced by the

uniqueness of right adjoints of π∗JΓ;AKF = Fπ∗JΓ;AK [9, Proposition 4.1.14].

JΓ;MK : 1JΓK→ U
∏

JΓ;AK

JΓ, x : A;CK JΓ;V K : 1JΓK→ JΓ;AK

JΓ;M(V )(x:A).CK =



1JΓK

U
∏

JΓ;AK

JΓ, x : A;CK

U(sJΓ;V K)∗π∗JΓ;AK

∏
JΓ;AK

JΓ, x : A;CK

U(sJΓ;V K)∗JΓ, x : A;CK

JΓ;MK

U(sJΓ;V K)∗ε


125



A.2. Refinement Type System

JΓ;V K : 1JΓK→ JΓ;AK + JΓ;BK
JΓ, x : A;MK : 1JΓ, x : AK→ U{ι1}∗JΓ, z : A+B;CK
JΓ, y : B;NK : 1JΓ, y : BK→ U{ι2}∗JΓ, z : A+B;CK

JΓ; case V ofz.C (inl (x : A) 7→M, inr (y : B) 7→ N)K

=



1JΓK

(sJΓ;V K)∗1JΓ, z : A+BK

(sJΓ;V K)∗UJΓ, z : A+B;CK

U(sJΓ;V K)∗JΓ, z : A+B;CK

(sJΓ;V K)∗[JΓ,x:A;MK,JΓ,y:B;NK]


A.2 Refinement Type System

We list the full definition of our dependent refinement type system.

A.2.1 Typing Rules

The main differences in typing rules from the underlying type system are that
we use refinement types {v : b(V ) | p} instead of base types b(V ) and that we
use subtypings Γ ` A <: B instead of type equalities Γ ` A = B. Note that
terms remain the same as the underlying type system.

Well-Formed Contexts

` �
` Γ Γ ` A x /∈ Vars(Γ)

` Γ, x : A

Context Subtyping

` � <: �

` Γ1 <: Γ2 Γ1 ` A <: B Γ2 ` B x /∈ Vars(Γ1) ∪Vars(Γ2)

` Γ1, x : A <: Γ2, x : B

Subtyping

Reflexivity.

Γ ` A
Γ ` A <: A

Γ ` C
Γ ` C <: C

Transitivity.

Γ ` A1 <: A2 Γ ` A2 <: A3

Γ ` A1 <: A3

Γ ` C1 <: C2 Γ ` C2 <: C3

Γ ` C1 <: C3

126



Appendix A. Full Definition of the Underlying Type System and the
Dependent Refinement Type System

Subsumption

Γ2 ` A ` Γ1 <: Γ2

Γ1 ` A
Γ2 ` C ` Γ1 <: Γ2

Γ1 ` C

Γ2 ` A <: B ` Γ1 <: Γ2

Γ1 ` A <: B

Γ2 ` C <: D ` Γ1 <: Γ2

Γ1 ` C <: D

` Γ1 <: Γ2 Γ2 ` V : A Γ1 ` A <: B

Γ1 ` V : B

` Γ1 <: Γ2 Γ2 `M : C Γ1 ` C <: D

Γ1 `M : D

Variables

` Γ1, x : A,Γ2

Γ1, x : A,Γ2 ` x : A

` Γ1, x : {v : b(V ) | p},Γ2

Γ1, x : {v : b(V ) | p},Γ2 ` x : {v : b(V ) | v = x}

Value constants

` Γ � ` ty(c)

Γ ` c|ty(c)| : ty(c)

Unit Type

` Γ

Γ ` ∗ : {v : 1 | >}
` Γ |Γ|, v : 1 ` p : Prop

Γ ` {v : 1 | p}

` Γ Γ; v : 1 | p ` q
Γ ` {v : 1 | p} <: {v : 1 | q}

Refinement Types

` Γ b : Au → Type |Γ| ` b(V ) |Γ|, v : b(V ) ` p : Prop

Γ ` {v : b(V ) | p}

` Γ |Γ| ` b(V ) = b(W ) Γ; v : b(V ) | p ` q
Γ ` {v : b(V ) | p} <: {v : b(W ) | q}

Value Σ-Types

Γ ` A Γ, x : A ` B
Γ ` Σx:A.B

Γ ` V : A Γ, x : A ` B Γ `W : B[V/x]

Γ ` 〈V,W 〉 : Σx:A.B

Γ ` V : Σx:A.B Γ, z : Σx:A.B ` C Γ, x : A, y : B `M : C[〈x, y〉/z]
Γ ` pm V as 〈x : |A|, y : |B|〉 inz.|C| M : C[V/z]

Γ ` A1 <: A2 Γ, x : A2 ` B2 Γ, x : A1 ` B1 <: B2

Γ ` Σx : A1.B1 <: Σx : A2.B2

127



A.2. Refinement Type System

Thunked Computation

Γ ` C
Γ ` UC

Γ `M : C

Γ ` thunk M : UC

Γ ` V : UC

Γ ` force|C| V : C

Γ ` C1 <: C2

Γ ` UC1 <: UC2

Return

Γ ` A
Γ ` FA

Γ ` V : A

Γ ` return V : FA

Γ `M : FA Γ ` C Γ, x : A ` N : C

Γ `M to x : |A| in|C| N : C

Γ ` A1 <: A2

Γ ` FA1 <: FA2

Computational Π-Types

Γ ` A Γ, x : A ` C
Γ ` Πx:A.C

Γ ` A2 <: A1 Γ, x : A1 ` C1 Γ, x : A2 ` C1 <: C2

Γ ` Πx:A1.C1 <: Πx:A2.C2

Γ, x : A `M : C

Γ ` λx : |A|.M : Πx:A.C

Γ, x : A ` C Γ `M : Πx:A.C Γ ` V : A

Γ `M(V )(x:|A|).|C| : C[V/x]

Fibred Coproduct Types

Γ ` A Γ ` B
Γ ` A+B

Γ ` V : A Γ ` B
Γ ` inlA+B V : A+B

Γ ` V : B Γ ` A
Γ ` inrA+B V : A+B

Γ, z : A+B ` C Γ ` V : A+B
Γ, x : A `M : C[inlA+B x/z] Γ, y : B ` N : C[inrA+B y/z]

Γ ` case V ofz.C (inl (x : A) 7→M, inr (y : B) 7→ N) : C[V/z]

Γ ` A1 <: A2 Γ ` B1 <: B2

Γ ` A1 +B1 <: A2 +B2

A.2.2 Semantics

Given a lifting of a fibred adjunction model (Definition 2.4.6), we define the
interpretation of types in the dependent refinement type system as follows. Note
that the interpretation of a term is the same as the underlying type system. The
most essential part of the definition is the interpretation JΓ; {v : b(V ) | p}K (and
JΓ; {v : 1 | p}K) of refinement types.

128



Appendix A. Full Definition of the Underlying Type System and the
Dependent Refinement Type System

Contexts

J�K = 1 ∈ P1

JΓ;AK ∈ {E | P}JΓK x /∈ Vars(Γ)

JΓ, x : AK = {JΓ;AK}

Types

JΓK ∈ PI J|Γ|; b(V )K ∈ EI J|Γ|, v : b(V ) ` pK ∈ P{X}
JΓ; {v : b(V ) | p}K =

(
J|Γ|; b(V )K, JΓK, π∗J|Γ|;b(V )KJΓK ∧ J|Γ|, v : b(V ) ` pK

)
JΓK ∈ P J|Γ|, v : 1 ` pK ∈ P{1qJΓK}

JΓ; {v : 1 | p}K =
(
1qJΓK, JΓK, π∗1qJΓKJΓK ∧ J|Γ|, v : 1 ` pK

)
JΓ;AK JΓ, x : A;BK

JΓ; Σx:A.BK =
∐

JΓ;AK

JΓ, x : A;BK

JΓ;CK
JΓ;UCK = U̇JΓ;CK

JΓ;AK
JΓ;FAK = Ḟ JΓ;AK

JΓ;AK JΓ, x : A;CK

JΓ; Πx:A.CK =
∏

JΓ;AK

JΓ, x : A;CK

129



A.2. Refinement Type System

130



Appendix B

Details of Chapter 5

B.1 Preliminaries on Measure Theory

In this section, we review some results from measure theory that is needed in
the rest of the chapter. For more details, see e.g. [13, 113].

Definition B.1.1. Let φ : X → Y be a measurable function and µ be a
probability measure on X. A pushforward measure (φ)∗µ is a measure on Y
defined by (φ)∗µ(E) = µ(φ−1(E)) for each measurable set E ⊆ Y .

Lemma B.1.2. Let φ : X → Y and f : Y → [0,∞] be measurable functions
and µ be a probability measure on X.∫

f d
(
(φ)∗µ

)
=

∫
(f ◦ φ) dµ

where f ◦ φ denotes the composite function of f and φ.

Lemma B.1.3. Let (X,BX) and (Y,BY ) be measurable spaces and µx be
a probability measure on Y for each x ∈ X. The following conditions are
equivalent.

1. For each E ∈ BY , a mapping x 7→ µx(E) is measurable.

2. For each measurable function f : X × Y → [0,∞],

x 7→
∫
Y

f(x, y)dµx(y)

is measurable.

Proof.

(1 =⇒ 2) We write BX×Y for the product σ-algebra of BX and BY .
By the monotone convergence theorem (see e.g. [13, Theorem 1.6.2]) and the
linearity of integration, it suffices to prove that for each E ∈ BX×Y , f =
1E : X × Y → [0,∞] satisfies the condition 2. Let M = {E ∈ BX×Y |

131



B.2. Higher Moments of Runtimes and Rewards

1E satisfies the condition 2}. By the monotone class theorem (see e.g. [13, The-
orem 1.3.9]), to prove M = BX×Y , it suffices to prove that M is a monotone
class and contains a Boolean algebra

{
n⋃
i=1

(Ei × Fi) | Ei ∈ BX , Fi ∈ BY }.

The rest of the proof is easy.

(2 =⇒ 1) Given E ∈ BY , consider f = 1X×E .

For any f : A→ B and any set X, Xf : XB → XA denotes a precomposition
of f i.e. Xf (u) = u ◦ f . If A ⊆ B, we write XA⊆B for Xi : XB → XA where
i : A→ B is the inclusion mapping.

In Section B.2, we use the following corollary of the Kolmogorov extension
theorem (see [113, Section 2.4]).

Corollary B.1.4. Let (X,BX) be a measurable space and µn be an inner reg-
ular probability measure on Xn for each n < ω. Assume (Xn⊆n+1)∗µn+1 = µn.
There exists a unique probability measure µω on Xω such that (Xn⊆ω)∗µω =
µn.

B.2 Higher Moments of Runtimes and Rewards

We define a probably measure on the set of runs of a pCFG given a scheduler.
We then define the k-th moment of runtimes. Here we slightly generalize run-
time model by considering a reward function and redefine some of the notions
to accommodate the reward function. However, this generalization is not es-
sential, and therefore the readers can safely assume that we are just counting
the number of steps until termination (by taking the constant function 1 as a
reward function).

Let Γ = (L, V, linit, ~xinit, 7→,Up,Pr, G) be a pCFG. A reward function on
Γ is a measurable function Rew : S → [0,∞]. Recall that we regard the set
S = L × RV of configurations as the product measurable space of (L, 2L) and
(RV ,B(RV )). A scheduler of Γ resolves two types of nondeterminism: nonde-
terministic transition and nondeterministic assignment.

Definition B.2.1 (scheduler). A scheduler σ = (σt, σa) of Γ consists of the
following components.

• A function σt : (L× RV )∗(LN × RV )→ D(L) such that

– if π ∈ (L×RV )∗(LN ×RV ) and l ∈ LN is the last location of π, then
l′ ∈ supp(σt(π)) implies l 7→ l′, and

– for each l ∈ L, the mapping π 7→ σt(π)({l}) : (L×RV )∗(LN×RV )→
[0, 1] is measurable.

• A function σa : (L× RV )∗(LAN × RV )→ D(R) such that

– if π ∈ (L × RV )∗(LAN × RV ), l ∈ LAN is the last location of π and
(xj , u) = Up(l), then supp(σa(π)) ⊆ u, and

132



Appendix B. Details of Chapter 5

– for each A ∈ B(R), the mapping π 7→ σa(π)(A) is measurable.

Note that if LN = ∅ and LAN = ∅, then there exists only one scheduler that
is trivial.

In the rest of the chapter, the concatenation of two finite sequences ρ1, ρ2 is
denoted by ρ1ρ2 or by ρ1 · ρ2.

Given a scheduler σ and a history of configurations ρ ∈ S+, let µσρ be a
probability distribution of the next configurations determined by σ.

Definition B.2.2. Let σ be a scheduler and ρ ∈ S+. A probability measure
µσρ on S is defined as follows.

• If l ∈ LD and ~x � G(l, l′), µσρ·(l,~x) = δ(l′,~x).

• If l ∈ LP , µσρ·(l,~x) =
∑
l 7→l′ Prl(l

′)δ(l′,~x).

• If l ∈ LN , µσρ·(l,~x) =
∑
l 7→l′ σt(ρ · (l, ~x))({l′})δ(l′,~x).

• Assume l ∈ LA, Up(l) = (xj , u) and l 7→ l′.

– If u ∈ B(RV ,R), µσρ·(l,~x) = δ(l′,~x(xj←u(~x))).

– If u ∈ D(R), µσρ·(l,~x) = (λy.(l′, ~x(xj ← y)))∗u.

– If u ∈ B(R), µσρ·(l,~x) = (λy.(l′, ~x(xj ← y)))∗σa(ρ · (l, ~x)).

Lemma B.2.3. For each E ∈ B(S), a mapping ρ 7→ µσρ (E) : S+ → [0, 1] is
measurable.

Proof. Let f : S+ → [0, 1] be a function defined by f(ρ) = µσρ (E). It suffices to

prove that for each n < ω and l ∈ L, f |Sn×({l}×RV ) : Sn × ({l} × RV ) → [0, 1]

is measurable, that is, a function gn,l : Sn × RV → [0, 1] defined by gn,l(ρ, ~x) =
µσρ·(l,~x)(E) is measurable.

• Assume l ∈ LD.
gn,l(ρ, ~x) = δ(l,~x)(E) = 1E(l, ~x)

• Assume l ∈ LP .

gn,l(ρ, ~x) =
∑
l 7→l′

Prl(l
′)1E(l′, ~x)

• Assume l ∈ LN .

gn,l(ρ, ~x) =
∑
l 7→l′

σt(ρ · (l, ~x))({l′})1E(l′, ~x)

• Assume l ∈ LA, Up(l) = (xj , u) and l 7→ l′.

– Assume u ∈ B(RV ,R).

gn,l(ρ, ~x) = 1E(l′, ~x(xj ← u(~x)))

– Assume u ∈ D(R).

gn,l(ρ, ~x) =

∫
R

1E(l′, ~x(xj ← y)) du(y)

133



B.2. Higher Moments of Runtimes and Rewards

– Assume u ∈ B(R).

gn,l(ρ, ~x) =

∫
R

1E(l′, ~x(xj ← y)) d(σa(ρ · (l, ~x)))(y)

In each case, it easily follows that gn,l is measurable. Note that δ(−)(E) = 1E
and (~x, y) 7→ ~x(xj ← y) are measurable functions. We use Lemma B.1.3 for the
last two cases.

Given an initial configuration c0, let νσc0,n be a probability measure on the
set {c0ρ | ρ ∈ Sn} ∼= Sn of paths.

Definition B.2.4. For each n ∈ ω, νσc0,n is a probability measure on Sn defined
as

νσc0,n(E) =


∫
S

· · ·
∫
S

1E(c1, . . . , cn) dµσc0...cn−1
(cn) . . . dµc0(c1) if n > 0

δ∗ if n = 0

where ∗ is the element of S0 = {∗}.

Definition B.2.4 is well-defined by Lemma B.1.3 and Lemma B.2.3.
The following lemma is a fundamental property of νσc0,n.

Lemma B.2.5. Assume n > 0. For any measurable function f : Sn → [0,∞],∫
f dνσc0,n =

∫
S

· · ·
∫
S

f(c1, . . . , cn) dµσc0...cn−1
(cn) . . . dµσc0(c1).

Proof. By the monotone convergence theorem and the linearity of integration.

Lemma B.2.6. For each n ∈ N, (Sn⊆n+1)∗ν
σ
c0,n+1 = νσc0,n.

Proof.

((Sn⊆n+1)∗ν
σ
c0,n+1)(E)

= νσc0,n+1(E × S)

=

∫
S

· · ·
∫
S

1E×S(c1, . . . , cn+1) dµσc0...cn(cn+1) . . . dµσc0(c1)

=

∫
S

· · ·
∫
S

(∫
S

1S(cn+1) dµσc0...cn(cn+1)

)
· 1E(c1, . . . , cn) dµσc0...cn−1

(cn) . . . dµσc0(c1)

=

∫
S

· · ·
∫
S

1E(c1, . . . , cn) dµσc0...cn−1
(cn) . . . dµσc0(c1)

= νσc0,n(E)

By Corollary B.1.4, we define a probability measure on Sω. Note that
(S,B(S)) is a Polish space (a separable completely metrizable topological space),
and hence a Radon space. Therefore, νσc0,n is inner regular.

Definition B.2.7. Let νσc0 be the probability measure defined as a unique
measure such that (Sn⊆ω)∗ν

σ
c0 = νσc0,n.

134



Appendix B. Details of Chapter 5

Definition B.2.8 (accumulated reward Rewc0
C ). Given a reward function Rew :

S → [0,∞], let Rewc0
C : Sω → [0,∞] be a measurable function defined by the

sum of the rewards from the initial configuration c0 to the last configuration
before entering C. That is,

Rewc0
C (c1c2 . . . ) =

{∑N−1
j=0 Rew(cj) ∃N ≥ 0 s.t. cN ∈ C ∧ (0 ≤ j < N =⇒ cj /∈ C)∑∞
j=0 Rew(cj) otherwise (i.e. for each i, ci /∈ C).

Note that Rew(c0) is included in the sum.

Definition B.2.9 (k-th moment of rewards). We define two functionsMRew,k
C,σ ,MRew,k

C :
S → [0,∞] as follows.

MRew,k
C,σ (c0) =

∫
(Rewc0

C )k dνσc0 MRew,k

C (c0) = sup
σ
MRew,k
C,σ (c0)

Note that MRew,k
C,σ is measurable by Lemma B.1.3.

The correspondence of the notations in Section 5.1 and in Section B.2 is as
follows.

Section 5.1 Section B.2
νΓ
σ νσc0 where c0 = (linit, ~xinit)

TΓ
C,σ Rewc0

C where c0 = (linit, ~xinit)

MΓ,k
C,σ, MΓ,k

C MRew,k
C,σ , MRew,k

C where Rew(c) = 1 for each c

B.3 Omitted Details and Proofs in Section 5.2

The ultimate goal of this section is to prove Theorem 5.2.13. In Section B.3.1-
B.3.2, we prove some lemmas regarding to X (Definition 5.2.1) and ElK,k1 (Defi-
nition 5.2.10). In Section B.3.3, we prove analogous theorem to Theorem 5.2.7,
Theorem 5.2.9 and Theorem 5.2.13. In Section B.3.4, we prove Theorem 5.2.13.
We prove them in a generalized way so that an arbitrary reward function is
allowed as in Section B.2.

B.3.1 Basic Properties of the Pre-expectation

We prove several lemmas for X in Definition 5.2.1.
The next lemma claims that we can ignore outside of an invariant I.

Lemma B.3.1. Let I be an invariant. If η(c) = η′(c) for any c ∈ I, then
(Xη)(c) = (Xη′)(c) for any c ∈ I.

The complete lattice [0,∞] has the following properties as an ω-cpo, and the
set of functions S → [0,∞]K inherits the same properties.

• Let {ηn}n<ω and {η′n}n<ω be ω-chains. Then we have

sup
n∈ω

ηn + sup
n∈ω

η′n = sup
n∈ω

(ηn + η′n).

That is, the addition + is ω-continuous.

135



B.3. Omitted Details and Proofs in Section 5.2

• Let {ηn}n<ω be a ω-chain and a ≥ 0. Then we have

a · sup
n∈ω

ηn = sup
n∈ω

(a · ηn).

That is, a · (−) is ω-continuous.

These properties are often used in the proofs of ω-continuity in the rest of the
chapter.

Lemma B.3.2. X is ω-continuous.

Proof. Let {ηn : S → [0,∞]}n∈ω be an ω-chain. We prove (X(supn∈ω ηn))(l, ~x) =
supn∈ω(X)(l, ~x) for each (l, ~x) ∈ L× RV .

• Assume l ∈ LD and ~x � G(l, l′).

(X(sup
n∈ω

ηn))(l, ~x) = (sup
n∈ω

ηn)(l′, ~x) = sup
n∈ω

(ηn(l′, ~x)) = sup
n∈ω

(Xηn)(l, ~x)

• Assume l ∈ LP .

(X(sup
n∈ω

ηn))(l, ~x) =
∑
l 7→l′

Prl(l
′)(sup

n∈ω
ηn)(l′, ~x)

= sup
n∈ω

∑
l 7→l′

Prl(l
′)ηn(l′, ~x)

= sup
n∈ω

(Xηn)(l, ~x)

• Assume l ∈ LN .

(X(sup
n∈ω

ηn))(l, ~x) = sup
l 7→l′

sup
n∈ω

ηn(l′, ~x) = sup
n∈ω

sup
l 7→l′

ηn(l′, ~x) = sup
n∈ω

(Xηn)(l, ~x).

• Assume l ∈ LA, Up(l) = (xj , u) and l 7→ l′.

– Assume u ∈ B(RV ,R).

(X(sup
n∈ω

ηn))(l, ~x) = sup
n∈ω

ηn(l′, ~x(xj ← u(~x))) = sup
n∈ω

(Xηn)(l, ~x)

– Assume u ∈ D(R).

(X(sup
n∈ω

ηn))(l, ~x) =

∫
R

(sup
n∈ω

ηn)(l′, ~x(xj ← y)) du(y)

= sup
n∈ω

∫
R
ηn(l′, ~x(xj ← y)) du(y)

= sup
n∈ω

(Xηn)(l, ~x)

by the monotone convergence theorem.

– Assume u ∈ B(R).

(X(sup
n∈ω

ηn))(l, ~x) = sup
y∈u

sup
n∈ω

ηn(l′, ~x(xj ← y))

= sup
n∈ω

sup
y∈u

ηn(l′, ~x(xj ← y))

= sup
n∈ω

(Xηn)(l, ~x)

136



Appendix B. Details of Chapter 5

The next lemma is a justification of the name “pre-expectation”.

Lemma B.3.3. For any configuration c0, measurable function η : S → [0,∞],
scheduler σ,

Xη(c0) ≥
∫
S

η(c1)dµσc0(c1).

Proof. Let (l0, ~x0) = c0.

• Assume l0 ∈ LD and ~x0 � G(l0, l1).∫
S

η(c1)dµσc0(c1) = η(l1, ~x0) = Xη(c0)

• Assume l0 ∈ LP .∫
S

η(c1)dµσc0(c1) =
∑
l0 7→l1

Prl0(l1)η(l1, ~x0) = Xη(c0)

• Assume l0 ∈ LN .∫
S

η(c1)dµσc0(c1) =
∑
l0 7→l1

σt(c0)(l1)η(l1, ~x0) ≤ sup
l0 7→l1

η(l1, ~x0) = Xη(c0)

• Assume l0 ∈ LA, Up(l0) = (xj , u) and l0 7→ l1.

– Assume u ∈ B(RV ,R).∫
S

η(c1)dµσc0(c1) = η(l1, ~x0(xj ← u(~x0))) = Xη(c0)

– Assume u ∈ D(R).∫
S

η(c1)dµσc0(c1) =

∫
R
η(l1, ~x0(xj ← y))du(y) = Xη(c0)

– Assume u ∈ B(R).∫
S

η(c1)dµσc0(c1) =

∫
R
η(l1, ~x0(xj ← y))d(σa(c0))(y)

≤ sup
y∈u

η(l1, ~x0(xj ← y)) = Xη(c0)

Lemma B.3.4. Assume LN = ∅ and LAN = ∅ and let σ be the unique scheduler
that plays no role. For any configuration c0 and any measurable function η :
S → [0,∞],

Xη(c0) =

∫
S

η(c1)dµσc0(c1).

Proof. Immediate from the proof of Lemma B.3.3.

137



B.3. Omitted Details and Proofs in Section 5.2

B.3.2 Basic Properties of the Time-Elapse Function

We next prove lemmas for the time-elapse function in Definition 5.2.10. We
redefine the time-elapse function for the generalized runtime model.

Definition B.3.5 (time-elapse function). For each a ∈ [0,∞], natural number
K and k ∈ {1, . . . ,K}, ElK,ka : [0,∞]K → [0,∞] is a function defined by

ElK,ka (x1, . . . , xK) = ak +

k∑
j=1

(
k

j

)
ak−jxj

Lemma B.3.6. ElK,ka is ω-continuous.

Proof. Immediate from (B.3.1) and (B.3.1).

Lemma B.3.7 (commutativity of
∫

and ElK,ka ). For any probability measure

µ on X, any measurable functions f1, . . . , fn : X → [0,∞] and a ∈ [0,∞], Elk,na
and integrals commute. That is∫

ElK,ka (f1(x), . . . , fn(x))dµ(x) = ElK,ka

(∫
f1(x)dµ(x), . . . ,

∫
fn(x)dµ(x)

)
.

Proof. By the linearity of integration.

B.3.3 Characterizing Higher Moments as a Least Fixed
Point

We prove Theorem 5.2.7, Theorem 5.2.9 and Theorem 5.2.13 in the generalized
runtime model. We first extend Definition 5.2.11 so that an arbitrary reward is
allowed.

Definition B.3.8. Let I be an invariant and C ⊆ I be a Borel set. Let
FK : (S → [0,∞]K) → (S → [0,∞]K) be a function defined by FK(c) =
(FK,1(c), . . . , FK,K(c)) where the k-th component FK,k : (S → [0,∞]K) →
(S → [0,∞]) of FK is defined by

FK,k(η)(c) =

{
(X(ElK,kRew(c) ◦ η))(c) c ∈ I \ C
0 otherwise.

Lemma B.3.9. FK is ω-continuous.

Proof. Immediate from Lemma B.3.2 and Lemma B.3.6.

The following theorems generalizes Theorem 5.2.7,5.2.13 and Theorem 5.2.9,
respectively.

Theorem B.3.10.
µFK ≥

〈
MRew,1

C , . . . ,MRew,K

C

〉
for any c0 ∈ I.

Theorem B.3.11. If LN = ∅ and LAN = ∅,

µFK =
〈
MRew,1

C , . . . ,MRew,K

C

〉
for any c0 ∈ I.

138



Appendix B. Details of Chapter 5

Here a function 〈f1, . . . , fn〉 is defined by 〈f1, . . . , fK〉(x) = (f1(x), . . . , fK(x)).
To prove Theorem B.3.10 and Theorem B.3.11, we consider an approxima-

tion of k-th moments of accumulated rewards up to finite steps.

Definition B.3.12 (accumulated reward up to n steps). Let Rewc0
C,n : Sn →

[0,∞] be a measurable function defined by

Rewc0
C,n(c1 . . . cn) =

{∑N−1
j=0 Rew(cj) ∃N ≥ 0. ci ∈ C ∧ (0 ≤ j < N =⇒ cj /∈ C)∑n−1
j=0 Rew(cj) otherwise

The definition of Rewc0
C,n is similar to Rewc0

C except that the sum of the value
of reward function is restricted to the first n configurations. The next lemma
shows a connection between Rewc0

C and Rewc0
C,n.

Lemma B.3.13. {Rewc0
C,n ◦ Sn⊆ω : Sω → [0,∞]}n is an increasing sequence

of functions and its limit is Rewc0
C .

Proof. Given ρ = c1c2 · · · ∈ Sω, there are two cases.

• Assume there exists N ∈ ω such that cN ∈ C and 0 ≤ j < N =⇒ cj /∈ C.

Rewc0
C,n ◦ S

n⊆ω(c1c2 . . . ) =



n−1∑
j=0

Rew(cj) if n < N − 1

N−1∑
j=0

Rew(cj) if N − 1 ≤ n

Rewc0
C (c1c2 . . . ) =

N−1∑
j=0

Rew(cj)

• Assume ρ ∈ (S \ C)ω.

Rewc0
C,n ◦ S

n⊆ω(c1c2 . . . ) =

n−1∑
j=0

Rew(cj)

Rewc0
C (c1c2 . . . ) =

∞∑
j=0

Rew(cj)

In both cases, it is easy to prove Rewc0
C,n ◦ Sn⊆ω ≤ Rewc0

C,n+1 ◦ Sn+1⊆ω for each

n, and Rewc0
C = supn∈ω

(
Rewc0

C,n ◦ Sn⊆ω
)
.

The k-th moment of Rewc0
C,n is denoted by MRew,k

C,σ,n (c0).

Definition B.3.14 (k-th moment up to n steps). A function MRew,k
C,σ,n : S →

[0,∞] is defined as follows.

MRew,k
C,σ,n (c0) =

∫
(Rewc0

C,n)kdνσc0,n

A connection between MRew,k
C,σ,n and MRew,k

C,σ is as follows.

139



B.3. Omitted Details and Proofs in Section 5.2

Lemma B.3.15. A sequence {MRew,k
C,σ,n }n∈ω is increasing and its limit isMRew,k

C,σ :

MRew,k
C,σ = sup

n∈ω
MRew,k
C,σ,n .

Proof. The former part is immediate by Lemma B.3.13. The latter part is
proved by the following calculation.

MRew,k
C,σ (c0)

=

∫
(Rewc0

C )k dνσc0

=

∫
sup
n∈ω

(Rewc0
C,n)k ◦ Sn⊆ω dνσc0 (by Lemma B.3.13)

= sup
n∈ω

∫
(Rewc0

C,n)k ◦ Sn⊆ω dνσc0 (by the monotone convergence theorem)

= sup
n∈ω

∫
(Rewc0

C,n)k d
(
(Sn⊆ω)∗ν

σ
c0

)
(by Lemma B.1.2)

= sup
n∈ω

∫
(Rewc0

C,n)k dνσc0,n

= sup
n∈ω

MRew,k
C,σ,n (c0)

Definition B.3.16. For any c and σ, we define a scheduler σc = (σct , σ
c
a) by

σct (ρ) = σt(cρ) and σca(ρ) = σa(cρ).

The following lemma easily follows from the definition of µσρ .

Lemma B.3.17. µσ
c0

ρ = µσc0ρ

The following lemma expresses the n + 1 step approximation MRew,k
C,σ,n+1 in

terms of the n step approximationsMRew,1
C,σc0 ,n, . . . ,M

Rew,K
C,σc0 ,n, which plays a crucial

role in the induction step in the proof of Theorem B.3.10 and Theorem B.3.11.

Lemma B.3.18. Assume c0 /∈ C and k ∈ {1, . . . ,K}. For each n ∈ ω,

MRew,k
C,σ,n+1(c0) = ElK,kRew(c0)

(∫
S

MRew,1
C,σc0 ,n(c1) dµσc0(c1), . . . ,

∫
S

MRew,K
C,σc0 ,n(c1) dµσc0(c1)

)
.

Proof.

MRew,k
C,σ,n+1(c0)

=

∫
Sn+1

(Rewc0
C,n+1)k dνσc0,n+1

=

∫
S

· · ·
∫
S

(
Rewc0

C,n+1(c1, . . . , cn+1)
)k

dµσc0...cn(cn+1) . . . dµσc0(c1)

=

∫
S

· · ·
∫
S

(
Rew(c0) + Rewc1

C,n(c2, . . . , cn+1)
)k

dµσc0...cn(cn+1) . . . dµσc0(c1)

=

∫
S

· · ·
∫
S

 k∑
j=0

(
k

j

)
(Rew(c0))k−j

(
Rewc1

C,n(c2, . . . , cn+1)
)j dµσc0...cn(cn+1) . . . dµσc0(c1)

140



Appendix B. Details of Chapter 5

= (Rew(c0))k +

k∑
j=1

(
k

j

)
(Rew(c0))k−j

·
∫
S

(∫
S

· · ·
∫
S

(
Rewc1

C,n(c2, . . . , cn+1)
)j

dµσ
c0

c1...cn(cn+1) . . . dµσ
c0

c1 (c2)

)
dµσc0(c1)

= (Rew(c0))k +

k∑
j=1

(
k

j

)
(Rew(c0))k−j

∫
S

∫
Sn

(Rewc1
C,n)j dνσ

c0

c1,ndµσc0(c1)

= (Rew(c0))k +

k∑
j=1

(
k

j

)
(Rew(c0))k−j

∫
S

MRew,j
C,σc0 ,n(c1) dµσc0(c1)

Theorem B.3.10.

1. We prove

(FK)n(⊥) ≥
〈
MRew,1
C,σ,n , . . . ,M

Rew,K
C,σ,n

〉
for each σ and n by induction on n.

• If n = 0, the l.h.s. and the r.h.s. are equal to 0.

• If n > 0, it suffices to prove that for each c0, there exists σ′ such that

FK

(〈
MRew,1
C,σ′,n, . . . ,M

Rew,K
C,σ′,n

〉)
(c0) ≥

(
MRew,1
C,σ,n+1(c0), . . . ,MRew,K

C,σ,n+1(c0)
)

by the induction hypothesis. If c0 ∈ C, the l.h.s. and the r.h.s. are
equal to 0. If c0 /∈ C, we prove

X
(

ElK,kRew(c0) ◦
〈
MRew,1
C,σc0 ,n, . . . ,M

Rew,K
C,σc0 ,n

〉)
(c0) ≥MRew,k

C,σ,n+1(c0).

By Lemma B.3.18, it suffices to prove

Xη(c0) ≥
∫
S

η(c1) dµσc0(c1)

where

η = ElK,kRew(c0) ◦
(
MRew,1
C,σc0 ,n, . . . ,M

Rew,K
C,σc0 ,n

)
.

This holds by Lemma B.3.3.

2. We take supremum of (1) with respect to n, and then with respect to σ.

µFK ≥ sup
n∈ω

(
(FK)n(⊥)

)
≥
〈
MRew,1

C , . . . ,MRew,K

C

〉

Theorem B.3.11. Here, we prove

(FK)n(⊥) =
〈
MRew,1
C,σ,n , . . . ,M

Rew,K
C,σ,n

〉
141



B.3. Omitted Details and Proofs in Section 5.2

for each n by induction on n in the same way as Theorem B.3.10 except that
we use Lemma B.3.4 instead of Lemma B.3.3.

By the Kleene fixed-point theorem and Lemma B.3.9, we have supn∈ω
(
(FK)n(⊥)

)
=

µFK .

µFK = sup
n∈ω

(
(FK)n(⊥)

)
= sup
n∈ω

〈
MRew,1
C,σ,n , . . . ,M

Rew,K
C,σ,n

〉
=
〈
MRew,1
C,σ , . . . ,MRew,K

C,σ

〉
Since there is only one scheduler if LN = LAN = ∅, we conclude

µFK =
〈
MRew,1
C,σ , . . . ,MRew,K

C,σ

〉
=
〈
MRew,1

C , . . . ,MRew,K

C

〉
.

B.3.4 Ranking Supermartingale for K-th Moments

The following definition and theorem generalize Definition 5.2.12 and Theo-
rem 5.2.13, respectively.

Definition B.3.19 (ranking supermartingale for K-th moments of accumulated
rewards). A ranking supermartingale for K-th moments is a function η : S →
RK such that for each k,

• ηk(c) ≥ (X(ElK,kRew(c) ◦ ηk))(c) for each c ∈ I \ C

• ηk(c) ≥ 0 for each c ∈ I

where ηk : S → R is defined by (η1(c), . . . , ηK(c)) = η(c) for each c ∈ S.

Theorem B.3.20. If η is a supermartingale for K-th moments, then for any

c ∈ I, (MRew,1

C (c), . . . ,MRew,K

C (c)) ≤ η(c).

Proof. Let η′ : S → [0,∞]K be a function defined by

η′(c) =

{
η(c) c ∈ I
0 otherwise.

By Lemma B.3.1, FK(η′) ≤ η′ is easily proved. By the Knaster-Tarski theorem,
we have µFK ≤ η′. Therefore

(MRew,1

C (c), . . . ,MRew,K

C (c)) ≤ µFK(c) ≤ η′(c) = η(c)

for each c ∈ I.

142



Appendix B. Details of Chapter 5

B.4 Test Programs

We have augmented the standard syntax of randomized program (see e.g. [29])
so that we can specify an invariant and a terminal configuration. To specify an
invariant, we can use either of the following syntax.

• $ . . . specifies an invariant globally.

• {. . .} specifies an invariant locally.

We can specify a terminal configuration by using refute(. . .).

Listing B.1: (1-1) coupon collector

1 $ 0 <= c0 and c0 <= 1 and 0 <= c1 and c1 <= 1
2
3 c0 := 0;
4 c1 := 0;
5
6 while true do
7 if prob (0.5) then
8 c0 := 1
9 else

10 c1 := 1
11 fi;
12 refute (c0 + c1 > 1)
13 od

Listing B.2: (1-2) coupon collector4

1 $ 0 <= c0 and c0 <= 1 and 0 <= c1 and c1 <= 1 and 0 <= c2 and c2 <= 1 and 0
<= c3 and c3 <= 1

2
3 c0 := 0;
4 c1 := 0;
5 c2 := 0;
6 c3 := 0;
7
8 while true do
9 if prob (0.5) then

10 if prob (0.5) then
11 c0 := 1
12 else
13 c1 := 1
14 fi
15 else
16 if prob (0.5) then
17 c2 := 1
18 else
19 c3 := 1
20 fi
21 fi;
22 refute (c0 + c1 + c2 + c3 > 3)
23 od

Listing B.3: (2-1) random walk 1d intvalued

1 { true } x := 1;
2
3 {x >= 1} while true do
4 {x >= 1} if prob (0.6) then
5 {x >= 1} x := x - 1
6 else
7 {x >= 1} x := x + 1
8 fi;
9 {x >= 0} refute (x < 1)

10 od

143



B.4. Test Programs

Listing B.4: (2-2) random walk 1d realvalued

1 { true } x := 2;
2
3 { x >= 0 } while true do
4 { x >= 0 } if prob (0.7) then
5 { x >= 0 } z := Unif (0,1);
6 { x >= 0 and 0 <= z and z <= 1 } x := x - z
7 else
8 { x >= 0 } z := Unif (0,1);
9 { x >= 0 and 0 <= z and z <= 1 } x := x + z

10 fi;
11 { x >= -1 } refute (x < 0)
12 od

Listing B.5: (2-3) random walk 1d adversary

1 { true } x := 2;
2
3 { 0 <= x and x <= 13 } while true do
4 { 0 <= x and x <= 10 } if prob (0.8) then
5 { 0 <= x and x <= 10 } skip
6 else
7 { 0 <= x and x <= 10 } if prob (0.5) then
8 { 0 <= x and x <= 10 } x := x + 1
9 else

10 { 0 <= x and x <= 10 } x := x + 2
11 fi
12 fi;
13 { 0 <= x and x <= 12 } if * then
14 { 0 <= x and x <= 12 } if prob (0.875) then
15 { 0 <= x and x <= 12 } x := x - 1
16 else
17 { 0 <= x and x <= 12 } skip
18 fi
19 else
20 { 0 <= x and x <= 12 } if prob (0.8) then
21 { 0 <= x and x <= 12 } skip
22 else
23 { 0 <= x and x <= 12 } if prob (0.5) then
24 { 0 <= x and x <= 12 } x := x + 1
25 else
26 { 0 <= x and x <= 12 } x := x + 2
27 fi
28 fi;
29 { 0 <= x and x <= 14 } x := x - 1
30 fi;
31 { 0 <= x and x <= 13 } refute (x <= 0)
32 od

Listing B.6: (2-4) random walk 2d demonic

1 { true } x := 2;
2 { x = 2 } y := 2;
3 { 0 <= x and 0 <= y } while true do
4 { 0 <= x and 0 <= y } if * then
5 { 0 <= x and 0 <= y } z := Unif (-2,1);
6 { 0 <= x and 0 <= y and -2 <= z and z <= 1 } x := x + z
7 else
8 { 0 <= x and 0 <= y } z := Unif (-2,1);
9 { 0 <= x and 0 <= y and -2 <= z and z <= 1 } y := y + z

10 fi;
11 { -2 <= x and -2 <= y } refute (x <= 0);
12 { 0 <= x and -2 <= y } refute (y <= 0)
13 od

Listing B.7: (2-5) random walk 2d variant

1 { true } x := 3;
2 { x = 3 } y := 2;
3 { x >= y } while true do

144



Appendix B. Details of Chapter 5

4 { x >= y } if * then
5 { x >= y } if prob (0.7) then
6 { x >= y } z := Unif (-2,1);
7 { x >= y and -2 <= z and z <= 1 } x := x + z
8 else
9 { x >= y } z := Unif (-2,1);

10 { x >= y and -2 <= z and z <= 1 } y := y + z
11 fi
12 else
13 { x >= y } if prob (0.7) then
14 { x >= y } z := Unif (-1,2);
15 { x >= y and -1 <= z and z <= 2 } y := y + z
16 else
17 { x >= y } z := Unif (-1,2);
18 { x >= y and -1 <= z and z <= 2 } x := x + z
19 fi
20 fi;
21 { x >= y + 2 } refute (x <= y)
22 od

B.5 Detailed Comparison with Existing Work

B.5.1 Comparison with [26]

In the literature on martingale-based methods, the one closest to this work
is [26]. Among its contribution is the analysis of tail probabilities by either of
the following two combinations:

• difference-bounded ranking supermartingales and the corresponding choice
of concentration inequality (namely Azuma’s martingale concentration
lemma); and

• (not necessarily difference-bounded) ranking supermartingales and Markov’s
concentration inequality.

While implementation and experiments are lacking in [26], we can make the
following theoretical comparison between these two methods and ours.

• The first method (with difference-bounded supermartingales) requires try-
ing many difference bounds c, synthesizing a martingale for each c, and
picking the best one. This “try many and pick the best” workflow is much
like in [29]; it increases the computational cost, especially in the case a
polynomial template is used (where a single synthesis procedure takes tens
of seconds).

• The second method corresponds precisely to the special case of our method
where we restrict to the first moment. We argued that using higher mo-
ments is crucial in obtaining tighter bounds as the deadline becomes large,
theoretically (Section 5.3) and experimentally (Section 5.5).

B.5.2 Comparison with [59]

In the predicate-transformer approach, the work [59] is the closest to ours,
in that it studies variance of runtimes of randomized programs. The main
differences are as follows: 1) computing tail probabilities is not pursued; 2)
their extension from mean to variance involves an additional variable τ , which

145



B.6. An Example of Polynomially Decreasing Tail Probability

poses a challenge in automated synthesis as well as in generalization to even
higher moments; and 3) they do not pursue automated analysis.

Let us elaborate on the above point 2). In syntax-based static approaches
to estimating variances or second moments, it is inevitable to simultaneously
reason about both first and second moments. See Def. 5.2.3. In this work, we do
so systematically by extending a notion of supermartingale into a vector-valued
notion; this way our theory generalizes to moments higher than the second in a
straight-forward manner. In contrast, in [59], an additional variable τ—which
stands for the elapsed time—is used for mixing first and second moments.

Besides the problem of generalizing to higher moments, a main drawback
of this approach in [59] is that the degrees of templates become bigger when it
comes to automated synthesis. For example, due to the use of τ2 in the condition
for X̂ in [59, Thm. 7], if the template for τ is of degree k, the template for X̂
is necessarily of degree 2k or higher. One consequence is that a fully LP-based
implementation of the approach of [59] becomes hard, while it is possible in the
current work (see Section 5.5).

Let us also note that the work [59] focuses on precondition calculi and does
not discuss automated synthesis or analysis.

B.6 An Example of Polynomially Decreasing Tail
Probability

We show that there exists a randomized program such that the tail probability
of the runtime is polynomially decreasing (not exponentially decreasing). A
similar example can be found in [26, Example 8].

1 $ 0 <= r and r <= 1 and 0 <= n
2 n := 1;
3 r := Unif(0, 1);
4 while r * (n + 1) * (n + 1) <= n * n do
5 r := Unif(0, 1);
6 n := n + 1
7 od

Let Tl be a random variable that represents the number of iterations. As the

program executes the loop body with probability n2

(n+1)2 in the n-th iteration,

the tail probability of the runtime of the program is polynomially decreasing:

Pr(Tl ≥ d) =

(
1

2

)2

· · ·
(

d

d+ 1

)2

=

(
1

d+ 1

)2

.

We can apply the polynomial template-based algorithm for this program (but
cannot apply the linear one since the condition in the while statement is not
linear). Our implementation gives the following upper bound of the first moment
of the runtime. This upper bound can be used to bound tail probabilities, via
the inequality in Prop. 5.3.2.

moment upper bound time (sec) degree
1st 13.15 534.575 3

146



Bibliography

[1] llvm2KITTeL. https://github.com/hkhlaaf/llvm2kittel.

[2] StarExec. https://www.starexec.org.

[3] T2 temporal logic prover. https://github.com/mmjb/T2.

[4] Termination Competition 2020: C Integer. https://termcomp.github.

io/Y2020/job_41519.html.

[5] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexico-
graphic ranking supermartingales: an efficient approach to termination of
probabilistic programs. PACMPL, 2(POPL):34:1–34:32, 2018.

[6] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-
ya Katsumata, and Tetsuya Sato. Higher-order probabilistic adversarial
computations: Categorical semantics and program logics. Proceedings of
the ACM on Programming Languages, 5(ICFP):1–30, August 2021.

[7] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and
Pierre-Yves Strub. A relational logic for higher-order programs. Pro-
ceedings of the ACM on Programming Languages, 1(ICFP):1–29, August
2017.

[8] Alejandro Aguirre and Shin-ya Katsumata. Weakest preconditions in fi-
brations. In Proceedings of the Thirty-Sixth Conference on the Mathemat-
ical Foundations of Programming Semantics, MFPS 2020, Paris, France,
June 2020. to appear.

[9] Danel Ahman. Fibred Computational Effects. PhD Thesis, University of
Edinburgh, 2017.

[10] Danel Ahman. Handling fibred algebraic effects. Proceedings of the ACM
on Programming Languages, 2(POPL):1–29, January 2018.

[11] Danel Ahman, Neil Ghani, and Gordon D. Plotkin. Dependent types and
fibred computational effects. In Bart Jacobs and Christof Löding, edi-
tors, Foundations of Software Science and Computation Structures, vol-
ume 9634, pages 36–54. Springer Berlin Heidelberg, 2016.

[12] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-
dimensional rankings, program termination, and complexity bounds of
flowchart programs. In SAS ’10, pages 117–133. Springer, 2010.

147

https://github.com/hkhlaaf/llvm2kittel
https://www.starexec.org
https://github.com/mmjb/T2
https://termcomp.github.io/Y2020/job_41519.html
https://termcomp.github.io/Y2020/job_41519.html


Bibliography

[13] Robert B. Ash and Catherine A. Doleans-Dade. Probability and Measure
Theory. Academic Press, second edition, 1999.

[14] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu,
Aaron Roth, and Pierre-Yves Strub. Higher-Order Approximate Rela-
tional Refinement Types for Mechanism Design and Differential Privacy.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages - POPL ’15, pages 55–68, Mum-
bai, India, 2015. ACM Press.

[15] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. How long, O bayesian network, will I sample thee? - A
program analysis perspective on expected sampling times. In ESOP, vol-
ume 10801 of Lecture Notes in Computer Science, pages 186–213. Springer,
2018.

[16] Andrej Bauer and Matija Pretnar. Programming with algebraic effects
and handlers. Journal of Logical and Algebraic Methods in Programming,
84(1):108–123, January 2015.

[17] Amir M. Ben-Amram, Jesús J. Doménech, and Samir Genaim.
Multiphase-linear ranking functions and their relation to recurrent sets.
In SAS ’19, pages 459–480. Springer, 2019.

[18] Amir M. Ben-Amram and Samir Genaim. Ranking functions for linear-
constraint loops. Journal of the ACM, 61(4), July 2014.

[19] Amir M. Ben-Amram and Samir Genaim. On multiphase-linear ranking
functions. In CAV ’17, pages 601–620. Springer, 2017.

[20] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Ry-
balchenko. Horn clause solvers for program verification. In Fields of Logic
and Computation II: Essays Dedicated to Yuri Gurevich on the Occasion
of His 75th Birthday, volume 9300 of LNCS, pages 24–51. Springer, 2015.

[21] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration
Inequalities: A Nonasymptotic Theory of Independence. Oxford University
Press, 2013.

[22] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl.
Automated detection of non-termination and NullPointerExceptions for
Java bytecode. In FoVeOOS ’11, volume 7421 of LNCS, pages 123–141.
Springer, 2012.

[23] Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic pro-
gram analysis with martingales. In Natasha Sharygina and Helmut Veith,
editors, Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, vol-
ume 8044 of Lecture Notes in Computer Science, pages 511–526. Springer,
2013.

[24] Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic Pro-
gram Analysis with Martingales. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,

148



Bibliography

Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu
Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Natasha Sharygina, and Helmut Veith, editors, Computer Aided
Verification, volume 8044, pages 511–526. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[25] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato.
ICE-based refinement type discovery for higher-order functional programs.
In TACAS ’18, volume 10805 of LNCS, pages 365–384. Springer, 2018.

[26] Krishnendu Chatterjee and Hongfei Fu. Termination of nondeterministic
recursive probabilistic programs. CoRR, abs/1701.02944, 2017.

[27] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Ter-
mination analysis of probabilistic programs through positivstellensatz’s.
In CAV (1), volume 9779 of Lecture Notes in Computer Science, pages
3–22. Springer, 2016.

[28] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hashem-
inezhad. Algorithmic analysis of qualitative and quantitative termination
problems for affine probabilistic programs. ACM Trans. Program. Lang.
Syst., 40(2):7:1–7:45, 2018.

[29] Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. Stochastic in-
variants for probabilistic termination. In POPL, pages 145–160. ACM,
2017.

[30] Tugrul Dayar and Nail Akar. Computing moments of first passage times to
a subset of states in markov chains. SIAM J. Matrix Analysis Applications,
27(2):396–412, 2005.

[31] Paulo Emı́lio de Vilhena and François Pottier. A separation logic for
effect handlers. Proceedings of the ACM on Programming Languages,
5(POPL):1–28, January 2021.

[32] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457, Au-
gust 1975.

[33] Benjamin Doerr. Probabilistic tools for the analysis of randomized opti-
mization heuristics. CoRR, abs/1801.06733, 2018.

[34] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Mad-
havapeddy, K. C. Sivaramakrishnan, and Leo White. Concurrent system
programming with effect handlers. In Meng Wang and Scott Owens, ed-
itors, Trends in Functional Programming, volume 10788, pages 98–117.
Springer International Publishing, Cham, 2018.

[35] Fabian Emmes, Tim Enger, and Jürgen Giesl. Proving non-looping non-
termination automatically. In IJCAR ’12, volume 7364 of LNCS, pages
225–240. Springer, 2012.

149



Bibliography

[36] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Mad-
husudan. Horn-ICE learning for synthesizing invariants and contracts.
Proceedings of the ACM on Programming Languages, 2(OOPSLA):131:1–
131:25, October 2018.

[37] Grigory Fedyukovich, Yueling Zhang, and Aarti Gupta. Syntax-guided
termination analysis. In CAV ’18, volume 10981 of LNCS, pages 124–143.
Springer, 2018.

[38] Luis Maŕıa Ferrer Fioriti and Holger Hermanns. Probabilistic termination:
Soundness, completeness, and compositionality. In POPL, pages 489–501.
ACM, 2015.

[39] Cormac Flanagan. Hybrid type checking. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL’06, pages 245–256, Charleston, South Carolina, USA,
2006. ACM Press.

[40] Robert W. Floyd. Assigning meanings to programs. Proceedings of Sym-
posium on Applied Mathematics, 19:19–32, 1967.

[41] Tim Freeman and Frank Pfenning. Refinement types for ML. ACM SIG-
PLAN Notices, 26(6):268–277, June 1991.

[42] Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a
Formal Theory of Graded Monads. In Bart Jacobs and Christof Löding,
editors, Foundations of Software Science and Computation Structures, vol-
ume 9634, pages 513–530. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[43] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE:
A robust framework for learning invariants. In CAV ’14, pages 69–87.
Springer, 2014.

[44] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. Learning
invariants using decision trees and implication counterexamples. In POPL
’16, pages 499–512. ACM, 2016.

[45] The GNU linear programming kit. https://www.gnu.org/software/

glpk/.

[46] Laure Gonnord, David Monniaux, and Gabriel Radanne. Synthesis of
ranking functions using extremal counterexamples. In PLDI ’15, pages
608–618. ACM, 2015.

[47] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Ry-
balchenko, and Ru-Gang Xu. Proving non-termination. In POPL ’08,
pages 147–158. ACM, 2008.

[48] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Termination
analysis by learning terminating programs. In CAV ’14, pages 797–813.
Springer, 2014.

[49] Claudio Hermida. Fibrations, logical predicates and indeterminates. PhD
Thesis, University of Edinburgh, UK, 1993.

150

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/


Bibliography

[50] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A con-
venient category for higher-order probability theory. In 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–
12, Reykjavik, Iceland, June 2017. IEEE.

[51] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, October 1969.

[52] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, New York, NY, USA, 2nd edition, 2012.

[53] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies
in Logic and the Foundations of Mathematics. Elsevier, paperback edition,
2001.

[54] Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Temporal logic
verification of stochastic systems using barrier certificates. In Lahiri and
Wang [74], pages 177–193.

[55] Christian Jansson. Termination and verification for ill-posed semidefinite
programming problems. Optimization Online, 2005.

[56] Christian Jansson. Vsdp: A matlab software package for verified semidef-
inite programming. NOLTA, pages 327–330, 2006.

[57] Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error
bounds for the optimal value in semidefinite programming. SIAM J. Nu-
merical Analysis, 46(1):180–200, 2007.

[58] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular founda-
tion for higher-order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[59] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
Inferring covariances for probabilistic programs. In QEST, volume 9826
of Lecture Notes in Computer Science, pages 191–206. Springer, 2016.

[60] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and
Federico Olmedo. Weakest precondition reasoning for expected run-times
of probabilistic programs. In Peter Thiemann, editor, Programming Lan-
guages and Systems - 25th European Symposium on Programming, ESOP
2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Sci-
ence, pages 364–389. Springer, 2016.

[61] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and
Federico Olmedo. Weakest precondition reasoning for expected runtimes
of randomized algorithms. J. ACM, 65(5):30:1–30:68, 2018.

[62] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C.
Morgan. Linear-invariant generation for probabilistic programs: - auto-
mated support for proof-based methods. In Static Analysis - 17th Inter-
national Symposium, SAS 2010, pages 390–406, 2010.

151



Bibliography

[63] Shin-ya Katsumata. A semantic formulation of > >-lifting and logical
predicates for computational metalanguage. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Stef-
fen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi,
Gerhard Weikum, and Luke Ong, editors, Computer Science Logic, vol-
ume 3634, pages 87–102. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[64] Shin-ya Katsumata. Relating computational effects by >>-lifting. Infor-
mation and Computation, 222:228–246, January 2013.

[65] Shin-ya Katsumata. Parametric effect monads and semantics of effect
systems. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages - POPL ’14, pages 633–645, San
Diego, California, USA, 2014. ACM Press.

[66] Shin-ya Katsumata. private communication, 2020.

[67] Kenneth Knowles and Cormac Flanagan. Compositional reasoning and
decidable checking for dependent contract types. In Proceedings of the
3rd Workshop on Programming Languages Meets Program Verification -
PLPV ’09, page 27, Savannah, GA, USA, 2008. ACM Press.

[68] Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci.,
22(3):328–350, 1981.

[69] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. Learning in-
variants using decision trees. CoRR, abs/1501.04725, 2015.

[70] Satoshi Kura. A General Semantic Construction of Dependent Refine-
ment Type Systems, Categorically. In Stefan Kiefer and Christine Tas-
son, editors, Foundations of Software Science and Computation Struc-
tures, volume 12650, pages 406–426. Springer International Publishing,
Cham, 2021.

[71] Satoshi Kura, Hiroshi Unno, and Ichiro Hasuo. Decision Tree Learning in
CEGIS-Based Termination Analysis. In Alexandra Silva and K. Rustan M.
Leino, editors, Computer Aided Verification, volume 12760, pages 75–98.
Springer International Publishing, Cham, 2021.

[72] Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. Tail Probabilities for
Randomized Program Runtimes via Martingales for Higher Moments. In
Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 25th International Conference,
TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer
Science, pages 135–153. Springer, 2019.

[73] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, volume 6806 of
Lecture Notes in Computer Science, pages 585–591. Springer, 2011.

152



Bibliography

[74] Shuvendu K. Lahiri and Chao Wang, editors. Automated Technology for
Verification and Analysis - 16th International Symposium, ATVA 2018,
Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume 11138 of
Lecture Notes in Computer Science. Springer, 2018.

[75] Joachim Lambek and P. J. Scott. Introduction to Higher Order Categor-
ical Logic. Number 7 in Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge [Cambridgeshire] ; New York,
1986.

[76] Nico Lehmann and Éric Tanter. Gradual refinement types. ACM SIG-
PLAN Notices, 52(1):775–788, May 2017.

[77] Daan Leijen. Koka: Programming with row polymorphic effect types.
Electronic Proceedings in Theoretical Computer Science, 153:100–126,
June 2014.

[78] Jan Leike and Matthias Heizmann. Ranking templates for linear loops.
In TACAS ’14, volume 8413 of LNCS, pages 172–186. Springer, 2014.

[79] Paul Blain Levy. Call-by-push-value. PhD Thesis, Queen Mary University
of London, UK, 2001.

[80] Žiga Lukšič and Matija Pretnar. Local algebraic effect theories. Journal
of Functional Programming, 30:e13, 2020.

[81] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Mart́ınez, Cătălin
Hriţcu, Exequiel Rivas, and Éric Tanter. Dijkstra monads for all. Proceed-
ings of the ACM on Programming Languages, 3(ICFP):1–29, July 2019.

[82] Dylan McDermott and Alan Mycroft. Extended Call-by-Push-Value: Rea-
soning About Effectful Programs and Evaluation Order. In Lúıs Caires,
editor, Programming Languages and Systems, volume 11423, pages 235–
262. Springer International Publishing, Cham, 2019.

[83] Paul-André Melliès and Noam Zeilberger. Functors are Type Refinement
Systems. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages - POPL ’15, pages
3–16, Mumbai, India, 2015. ACM Press.

[84] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, July 1991.

[85] Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic pred-
icate transformers. ACM Trans. Program. Lang. Syst., 18(3):325–353,
1996.

[86] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dy-
namic Typing with Dependent Types. In Jean-Jacques Levy, Ernst W.
Mayr, and John C. Mitchell, editors, Exploring New Frontiers of Theoreti-
cal Informatics, volume 155, pages 437–450. Kluwer Academic Publishers,
Boston, 2004.

153



Bibliography

[87] Saswat Padhi, Todd D. Millstein, Aditya V. Nori, and Rahul Sharma.
Overfitting in synthesis: Theory and practice. In CAV ’19, volume 11561
of LNCS, pages 315–334. Springer, 2019.

[88] Saswat Padhi, Rahul Sharma, and Todd D. Millstein. Data-driven pre-
condition inference with learned features. In PLDI ’16, pages 42–56, 2016.

[89] Gordon Plotkin and John Power. Adequacy for algebraic effects. In
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Furio Honsell, and
Marino Miculan, editors, Foundations of Software Science and Compu-
tation Structures, volume 2030, pages 1–24. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001.

[90] Gordon Plotkin and John Power. Notions of computation determine mon-
ads. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Mogens Nielsen,
and Uffe Engberg, editors, Foundations of Software Science and Computa-
tion Structures, volume 2303, pages 342–356. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

[91] Gordon Plotkin and John Power. Algebraic Operations and Generic Ef-
fects. Applied Categorical Structures, 11(1):69–94, 2003.

[92] Gordon Plotkin and Matija Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4):23, December 2013.

[93] Andreas Podelski and Andrey Rybalchenko. A complete method for the
synthesis of linear ranking functions. In VMCAI ’04, volume 2937 of
LNCS, pages 239–251. Springer, 2004.

[94] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types.
In Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation - PLDI ’08, page 159, Tucson, AZ,
USA, 2008. ACM Press.

[95] Pierre Roux, Mohamed Iguernlala, and Sylvain Conchon. A non-linear
arithmetic procedure for control-command software verification. In
TACAS (2), volume 10806 of Lecture Notes in Computer Science, pages
132–151. Springer, 2018.

[96] Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Validat-
ing numerical semidefinite programming solvers for polynomial invariants.
Formal Methods in System Design, 53(2):286–312, 2018.

[97] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Pred-
icate subtyping in PVS. IEEE Transactions on Software Engineering,
24(9):709–720, Sept./1998.

[98] Yuki Satake, Hiroshi Unno, and Hinata Yanagi. Probabilistic inference
for predicate constraint satisfaction. In Proceedings of AAAI 2020, 2020.

[99] Tetsuya Sato. Approximate relational hoare logic for continuous random
samplings. Electronic Notes in Theoretical Computer Science, 325:277–
298, October 2016.

154



Bibliography

[100] Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak
Garg, and Justin Hsu. Formal verification of higher-order probabilistic
programs: Reasoning about approximation, convergence, Bayesian infer-
ence, and optimization. Proceedings of the ACM on Programming Lan-
guages, 3(POPL):1–30, January 2019.

[101] Tetsuya Sato, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Shin-ya
Katsumata. Approximate Span Liftings: Compositional Semantics for
Relaxations of Differential Privacy. In 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–14, Vancouver,
BC, Canada, June 2019. IEEE.

[102] Konrad Schmüdgen. Thek-moment problem for compact semi-algebraic
sets. Mathematische Annalen, 289(1):203–206, Mar 1991.

[103] Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

[104] Dana Scott. Relating theories of the lambda calculus. To H.B. Curry:
Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages
403–450, 1980.

[105] SDPT3. http://www.math.nus.edu.sg/~mattohkc/SDPT3.html.

[106] A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point
operators. In Proceedings Fifteenth Annual IEEE Symposium on Logic
in Computer Science (Cat. No.99CB36332), pages 30–41, Santa Barbara,
CA, USA, 2000. IEEE Comput. Soc.

[107] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and
Vijay Saraswat. Combinatorial sketching for finite programs. In ASPLOS
XII, pages 404–415. ACM, 2006.

[108] SOSTOOLS. http://sysos.eng.ox.ac.uk/sostools/.

[109] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification of
stochastic non-linear systems. I. J. Robotics Res., 31(7):901–923, 2012.

[110] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. Secure distributed program-
ming with value-dependent types. Journal of Functional Programming,
23(4):402–451, July 2013.

[111] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Ben-
jamin Livshits. Verifying higher-order programs with the dijkstra monad.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation - PLDI ’13, page 387, Seattle,
Washington, USA, 2013. ACM Press.

[112] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. Rank-
ing and repulsing supermartingales for reachability in probabilistic pro-
grams. In Lahiri and Wang [74], pages 476–493.

[113] Terence Tao. An Introduction to Measure Theory. American Mathematical
Society, 2011.

155

http://www.math.nus.edu.sg/~mattohkc/SDPT3.html
http://sysos.eng.ox.ac.uk/sostools/


Bibliography

[114] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5, 06 1955.

[115] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D.
Wood. Design and implementation of probabilistic programming language
anglican. In IFL, pages 6:1–6:12. ACM, 2016.

[116] Hiroshi Unno, Yuki Satake, and Tachio Terauchi. Relatively complete
refinement type system for verification of higher-order non-deterministic
programs. Proceedings of the ACM on Programming Languages, 2:1–29,
January 2018.

[117] Hiroshi Unno, Yuki Satake, Tachio Terauchi, and Eric Koskinen. Program
verification via predicate constraint satisfiability modulo theories. CoRR,
abs/2007.03656, 2020.

[118] Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. Constraint-based re-
lational verification. In CAV ’21. Springer, 2021.

[119] Natsuki Urabe, Masaki Hara, and Ichiro Hasuo. Categorical liveness
checking by corecursive algebras. In Proc. of LICS 2017, pages 1–12.
IEEE Computer Society, 2017.

[120] Caterina Urban. The abstract domain of segmented ranking functions. In
SAS ’13, volume 7935 of LNCS, pages 43–62. Springer, 2013.

[121] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. Synthesizing
ranking functions from bits and pieces. In TACAS ’16, page 54–70.
Springer, 2016.

[122] Caterina Urban and Antoine Miné. An abstract domain to infer ordinal-
valued ranking functions. In ESOP ’14, pages 412–431. Springer, 2014.

[123] Caterina Urban and Antoine Miné. A decision tree abstract domain for
proving conditional termination. In SAS ’14, pages 302–318. Springer,
2014.

[124] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract Refine-
ment Types. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Matthias
Felleisen, and Philippa Gardner, editors, Programming Languages and
Systems, volume 7792, pages 209–228. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[125] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. Refinement types for Haskell. In Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming -
ICFP ’14, pages 269–282, Gothenburg, Sweden, 2014. ACM Press.

[126] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation -
PLDI ’98, pages 249–257, Montreal, Quebec, Canada, 1998. ACM Press.

156



Bibliography

[127] He Zhu, Stephen Magill, and Suresh Jagannathan. A data-driven CHC
solver. In PLDI ’18, pages 707–721. ACM, 2018.

157


	Introduction
	Backgrounds
	Semantic Refinements
	A Categorical Construction of Dependent Refinement Type Systems
	A Program Logic for Effect Handlers
	Decision Tree-Based Ranking Function Synthesis
	Tail Probabilities of Randomized Programs via Higher Moments of Runtime

	Outline of This Thesis and Corresponding Papers

	A Categorical Construction of Dependent Refinement Type Systems
	Preliminaries
	Fibration
	Comprehension Category

	Lifting SCCompCs and Fibred Coproducts
	Lifting SCCompCs
	Lifting Fibred Coproducts

	Lifting Monads on SCCompCs
	Soundness
	Underlying Type System
	Predicate Logic
	Refinement Type System
	Semantics

	Toward Recursion in Refinement Type Systems
	Conway Operators
	Recursion in the Underlying Type System
	Recursion in Refinement Type System

	Related Work
	Conclusion and Future Work

	A Program Logic for Effect Handlers
	Preliminaries
	Ordered Object and Lax Slice Category
	Monad Lifting
	Algebraic Theory
	Syntax and Semantics of Effect Handlers

	Weakest Preconditions for Algebraic Operations
	Operation-wise Condition for Lifting Algebras
	Strong Monad Lifting
	Operation-wise Condition for Lifting Simply Fibred Algebras
	Program Logic
	Generic Effects
	With a Strong Monad Lifting
	Without a Strong Monad Lifting

	Related Work

	Decision Tree-Based Ranking Function Synthesis
	Preview by Examples
	Termination Verification by CEGIS
	Handling Cycles in Decision Tree Learning

	(Non-)Termination Verification as Constraint Solving
	CounterExample-Guided Inductive Synthesis (CEGIS)
	Ranking Function Synthesis
	Basic Definitions
	Segmentation and (Explicit and Implicit) Cycles: One-Dimensional Case
	Segmentation and (Explicit and Implicit) Cycles: Multi-Dimensional Lexicographic Case
	Our Decision Tree Learning Algorithm
	Improvement by Degenerating Negative Values

	Implementation and Evaluation
	Related Work
	Conclusions and Future Work

	Tail Probabilities of Randomized Programs via Higher Moments of Runtime
	Preliminaries
	Ranking Supermartingale for Higher Moments
	Ranking Supermartingales for the Second Moments
	Ranking Supermartingales for the Higher Moments

	From Moments to Tail Probabilities
	Template-Based Synthesis Algorithm
	Linear Template-Based Algorithm
	Polynomial Template-based Algorithm

	Experiments
	Related Work
	Conclusions and Future Work

	Full Definition of the Underlying Type System and the Dependent Refinement Type System
	Underlying Type System
	Typing Rules
	Semantics

	Refinement Type System
	Typing Rules
	Semantics


	Details of Chapter 5
	Preliminaries on Measure Theory
	Higher Moments of Runtimes and Rewards
	Omitted Details and Proofs in Section 5.2
	Basic Properties of the Pre-expectation
	Basic Properties of the Time-Elapse Function
	Characterizing Higher Moments as a Least Fixed Point
	Ranking Supermartingale for K-th Moments

	Test Programs
	Detailed Comparison with Existing Work
	Comparison with DBLP:journals/corr/ChatterjeeF17
	Comparison with DBLP:conf/qest/KaminskiKM16

	An Example of Polynomially Decreasing Tail Probability


